

AOF Rules User Guide
Release 12.1

CA OPS/MVS® Event
Management and Automation

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time. This
Documentation is proprietary information of CA and may not be copied, transferred, reproduced, disclosed, modified or
duplicated, in whole or in part, without the prior written consent of CA.

If you are a licensed user of the software product(s) addressed in the Documentation, you may print or otherwise make
available a reasonable number of copies of the Documentation for internal use by you and your employees in connection with
that software, provided that all CA copyright notices and legends are affixed to each reproduced copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable
license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to
certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such
license agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2013 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

CA Technologies Product References

This document references the following CA Technologies products:

■ CA 7™ Workload Automation (CA 7)

■ CA ACF2™ for z/OS (CA ACF2)

■ CA Automation Point

■ CA Common Services (CCS)

■ CA Endevor® Software Change Manager (CA Endevor SCM)

■ CA Event Manager

■ CA MIC Message Sharing (CA MIC)

■ CA MIM™ Resource Sharing (CA MIM)

■ CA Netman™ (CA Netman)

■ CA NetMaster® Network Automation (CA NetMaster)

■ CA NSM

■ CA OPS/MVS® Event Management and Automation (CA OPS/MVS)

■ CA SYSVIEW® Performance Management (CA SYSVIEW)

■ CA Top Secret® for z/OS (CA Top Secret)

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

■ Online and telephone contact information for technical assistance and customer
services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

To provide feedback about CA Technologies product documentation, complete our
short customer survey which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://www.ca.com/docs
http://www.ca.com/docs

Documentation Changes

The following documentation updates have been made since the last release of this
documentation:

Note: In PDF format, page references identify the first page of the topic in which a
change was made. The actual change may appear on a later page.

■ Updated the -AOF Variables Available in an EOM Rule (see page 169) section.

■ Updated the Execution Considerations for GLV Rules (see page 185) section.

■ Updated the AOF Variables Available in a GLV Rule (see page 188) section.

■ Updated the OPAU Variables for All Security Events (see page 271) section.

■ Updated the ADDRESS HWS (see page 364) section.

■ Updated the OPS/REXX Host Environments in the)PROC Section of an API Rule (see
page 72) section.

■ Updated the OPS/REXX Host Environments in the)PROC Section of an ARM Rule
(see page 117) section.

■ Updated the OPS/REXX Host Environments in the)PROC Section of a CMD Rule (see
page 136) section.

■ Updated the OPS/REXX Host Environments in the)PROC Section of a DOM Rule (see
page 147) section.

■ Updated the OPS/REXX Host Environments in the)PROC Section of an EOJ Rule (see
page 155) section.

■ Updated the OPS/REXX Host Environments in the)PROC Section of an EOM Rule
(see page 166) section.

■ Updated the OPS/REXX Host Environments in the)PROC Section of an EOS Rule (see
page 174) section.

■ Updated the OPS/REXX Host Environments in the)PROC Section of a GLV Rule (see
page 185) section.

■ Updated the OPS/REXX Host Environments in the)PROC Section of an MSG Rule
(see page 201) section.

■ Updated the OPS/REXX Host Environments in the)PROC Section of an OMG Rule
(see page 239) section.

■ Updated the OPS/REXX Host Environments in the)PROC Section of a REQ Rule (see
page 247) section.

■ Updated the OPS/REXX Host Environments in the)PROC Section of an SCR Rule (see
page 255) section.

■ Updated the OPS/REXX Host Environments in the)PROC Section of an SEC Rule (see
page 266) section.

■ Updated the OPAU Variables for OPSGLOBAL Security Events (see page 288)
section.

■ Updated the OPS/REXX Host Environments in the)PROC Section of a TOD Rule (see
page 335) section.

■ Updated the OPS/REXX Host Environments in the)PROC Section of a TLM Rule (see
page 322) section.

■ Updated the OPS/REXX Host Environments in the)PROC Section of a USS Rule (see
page 346) section.

■ Updated the OPAU Variables for SOF Security Events (see page 292) section.

■ Updated the Installation Requirements for GLV Rules (see page 183) section.

■ Updated the Example: GLV Rule (see page 192) section.

Contents 7

Contents

Chapter 1: Using the AOF 15

What Is the AOF ... 15

AOF Rules and Rule Sets ... 18

Determine AOF Rule Set Names ... 19

Sharing Rule Data Sets .. 19

Allocate Rule Sets .. 20

Additional AOF Rule Set Information .. 20

Chapter 2: AOF Rule Structure 21

Structure of an AOF Rule .. 21

)eventtype eventspec—Event Definition Section (Required) ... 22

)PROC—Processing Section ... 24

)INIT—Initialization Section .. 25

)TERM—Termination Section .. 26

)END—End Section .. 27

Chapter 3: AOF Rule Tools 29

Tools Available in AOF Rules .. 29

AOF Variables ... 30

Environmental (Event-related) Variables .. 30

Dynamic Variables ... 32

Static Variables .. 33

Address Space-related Variables ... 34

OPS/REXX Global Variables ... 35

Event-related Variables ... 37

REXX Programming Techniques ... 39

OPS/REXX Host Environments and Built-in Functions .. 40

OPS/REXX Host Environments ... 40

OPS/REXX Built-in Functions ... 41

AOF RETURN Statement ... 44

)INIT Section—Enable a Rule ... 45

)PROC Section—Valid Return Statement Values ... 45

)TERM Section—Disable a Rule ... 46

8 AOF Rules User Guide

Chapter 4: Building and Controlling AOF Rules 49

Ways to Create AOF Rules .. 49

EasyRule .. 49

ISPF/PDF Editor in the AOF Test Facility .. 50

ISPF/PDF Editor in the AOF Production Facility ... 50

Automation Analyzer .. 50

MPF Conversion Facility .. 51

Sample AOF Rules ... 51

Control AOF Rule Status ... 51

Definition of AOF Rule Status .. 51

How to Control Rules from the Rule Set Level .. 52

Create and Control Rules Programmatically ... 53

AOFINITREXX Parameter ... 54

Process Modified AOF Rules... 54

Execution of Enabled Rules .. 54

Protect Against Rule Errors ... 54

Parameters for Setting Global AOF Rule Limits ... 55

Set Limits for Individual Rules ... 56

How Multiple Rules Execute in Response to a Single Event ... 56

ABENDLOG Automation .. 57

Chapter 5: Code and Debug AOF Rules 59

Coding Guidelines... 59

Automation Tools .. 59

How to Add Comments in AOF Rules .. 60

REXX Functions and Routines in AOF Rules... 60

Interactive Automation or Automation that Requires Waiting .. 62

Logic in Automated Applications .. 63

Events Specified with the Wildcard Character .. 64

Debugging Techniques ... 64

OPSLOG Facility ... 65

REXX TRACE Built-in Function ... 66

How RULETRACE Parameter Works .. 66

BROWSExxx Parameter ... 67

Chapter 6: Coding Each AOF Rule Type 69

Generic Event Application Program Interface .. 69

Install and Activate API Rules .. 70

Event Specifier of API Rules .. 70

Initialization, Processing, and Termination Sections of API Rules... 71

Contents 9

RETURN Statements in the)PROC Section of an API Rule .. 71

Execution Considerations for API Rules .. 71

OPS/REXX Host Environments in the)PROC Section of an API Rule ... 72

Common API Event Variables .. 74

API.suffix—Specific API Event Variables.. 76

Debug an API Rule ... 76

SOF API Rules .. 76

How OPSOF001 Rule Selectively Varies Devices Online .. 79

Hardware Event API Rules ... 80

Linux Connector API Rules .. 111

OPS/REXX Rule Variables For Linux Connector Events.. 112

CA Product API Event Types .. 114

Automatic Restart Management Rules .. 115

Installation Requirements for ARM Rules ... 115

)ARM—Event Specifier of ARM Rules ... 116

Initialization, Processing, and Termination Sections of ARM Rules .. 116

RETURN Statements in the)PROC Section of an ARM Rule .. 117

Execution Considerations for ARM Rules .. 117

OPS/REXX Host Environments in the)PROC Section of an ARM Rule ... 117

AOF Variables Available in an ARM Rule ... 120

Debug an ARM Rule .. 124

Command Rules ... 125

Installation Requirements for CMD Rules ... 125

)CMD—Event Specifier of CMD Rules ... 125

Initialization, Processing, and Termination Sections of CMD Rules .. 134

RETURN Statements in the)PROC Section of a CMD Rule .. 134

Execution Considerations for CMD Rules .. 135

OPS/REXX Host Environments in the)PROC Section of a CMD Rule ... 136

AOF Variables Available in a CMD Rule ... 138

Debug a CMD Rule .. 144

Examples of CMD Rules ... 145

Delete-Operator-Message Rules .. 146

Installation Requirements for DOM Rules .. 146

)DOM—Event Specifier of DOM Rules .. 146

Initialization, Processing, and Termination Sections of DOM Rules ... 147

RETURN Statements in the)PROC Section of a DOM Rule ... 147

Execution Considerations for DOM Rules ... 147

OPS/REXX Host Environments in the)PROC Section of a DOM Rule .. 147

AOF Variables Available in a DOM Rule .. 150

Debug a DOM Rule .. 152

Example: DOM Rule .. 152

End-of-Job Rules ... 153

10 AOF Rules User Guide

Installation Requirements for EOJ Rules ... 153

)EOJ—Event Specifier of EOJ Rules ... 154

Initialization, Processing, and Termination Sections of EOJ Rules .. 154

RETURN Statements in the)PROC Section of an EOJ Rule .. 154

Execution Considerations for EOJ Rules .. 155

OPS/REXX Host Environments in the)PROC Section of an EOJ Rule ... 155

AOF Variables Available in an EOJ Rule ... 157

Debug an EOJ Rule .. 163

Example: EOJ Rule ... 164

End-of-Memory Rules .. 165

Installation Requirements for EOM Rules ... 165

)EOM—Event Specifier of EOM Rules ... 165

Initialization, Processing, and Termination Sections of EOM Rules .. 166

RETURN Statements in the)PROC Section of an EOM Rule .. 166

Execution Considerations for EOM Rules .. 166

OPS/REXX Host Environments in the)PROC Section of an EOM Rule ... 166

AOF Variables Available in an EOM Rule ... 169

Debug an EOM Rule .. 171

Example: EOM Rule ... 171

End-of-Step Rules ... 172

Installation Requirements for EOS Rules .. 172

)EOS—Event Specifier of EOS Rules .. 172

Initialization, Processing, and Termination Sections of EOS Rules ... 173

RETURN Statements in the)PROC Section of an EOS Rule ... 173

Execution Considerations for EOS Rules ... 173

OPS/REXX Host Environments in the)PROC Section of an EOS Rule .. 174

AOF Variables Available in an EOS Rule .. 176

Debug an EOS Rule .. 182

Example: EOS Rule .. 183

Global Variable Rules ... 183

Installation Requirements for GLV Rules .. 183

)GLV—Event Specifier of GLV Rules .. 184

Initialization, Processing, and Termination Sections of GLV Rules ... 184

RETURN Statements in the)PROC Section of a GLV Rule ... 184

Execution Considerations for GLV Rules ... 185

OPS/REXX Host Environments in the)PROC Section of a GLV Rule .. 185

AOF Variables Available in a GLV Rule .. 188

Debug a GLV Rule .. 191

Example: GLV Rule .. 192

Message Rules .. 192

Installation Requirements for MSG Rules ... 193

)MSG—Event Specifier of MSG Rules.. 194

Contents 11

How to Use the NOOPSLOG Option .. 195

Initialization, Processing, and Termination Sections of MSG Rules .. 196

RETURN Statements in the)PROC Section of an MSG Rule .. 196

Execution Considerations for MSG Rules .. 197

OPS/REXX Host Environments in the)PROC Section of an MSG Rule ... 201

AOF Variables Available in MSG Rules .. 204

Debug an MSG Rule .. 235

MSG Rules Examples ... 236

OMEGAMON Rules ... 237

Installation Requirements for OMG Rules .. 238

)OMG—Event Specifier of OMG Rules .. 238

Initialization, Processing, and Termination Sections of OMG Rules ... 238

RETURN Statements in the)PROC Section of an OMG Rule ... 238

Execution Considerations for OMG Rules ... 239

OPS/REXX Host Environments in the)PROC Section of an OMG Rule .. 239

AOF Variables Available in an OMG Rule .. 241

Debug an OMG Rule .. 244

Example: OMG Rule .. 244

Request Rules ... 245

Installation Requirements for REQ Rules .. 245

)REQ—Event Specifier of REQ Rules ... 246

Initialization, Processing, and Termination Sections of REQ Rules ... 246

RETURN Statements in the)PROC Section of a REQ Rule ... 246

Execution Considerations for REQ Rules ... 247

OPS/REXX Host Environments in the)PROC Section of a REQ Rule .. 247

AOF Variables Available in REQ Rules ... 249

Debug an REQ Rule ... 250

Examples: REQ Rules ... 250

Screen Rules ... 252

Installation Requirements for SCR Rules ... 252

)SCR—Event Specifier of SCR Rules ... 252

How Screen Rules Are Triggered ... 254

Initialization, Processing, and Termination Sections of SCR Rules .. 254

RETURN Statements in the)PROC Section of an SCR Rule .. 254

Execution Considerations for SCR Rules.. 255

OPS/REXX Host Environments in the)PROC Section of an SCR Rule .. 255

AOF Variables Available in an SCR Rule ... 257

Debug an SCR Rule .. 260

Examples: SCR Rules .. 260

Security Rules ... 261

Installation Requirements for SEC Rules ... 261

)SEC—Event Specifier of SEC Rules ... 262

12 AOF Rules User Guide

Initialization, Processing, and Termination Sections of SEC Rules .. 264

RETURN Statements in the)PROC Section of an SEC Rule .. 265

Execution Considerations for SEC Rules .. 266

OPS/REXX Host Environments in the)PROC Section of an SEC Rule ... 266

AOF Variables Available in an SEC Rule ... 268

Debug an SEC Rule .. 317

Examples: SEC Rules .. 317

Time Limit-Exceeding Rules .. 319

Installation Requirements for TLM Rules .. 319

)TLM—Event Specifier of TLM Rules ... 320

Initialization, Processing, and Termination Sections of TLM Rules ... 320

RETURN Statements in the)PROC Section of a TLM Rule ... 321

Execution Considerations for TLM Rules ... 321

OPS/REXX Host Environments in the)PROC Section of a TLM Rule .. 322

AOF Variables Available in a TLM Rule .. 324

Debug a TLM Rule ... 327

Time-of-Day Rules .. 328

Installation Requirements for TOD Rules .. 328

)TOD—Event Definition Section of TOD Rules .. 328

Initialization, Processing, and Termination Sections of TOD Rules ... 334

RETURN Statements in the)PROC Section of a TOD Rule ... 334

Execution Considerations for TOD Rules ... 335

OPS/REXX Host Environments in the)PROC Section of a TOD Rule .. 335

AOF Variables Available in a TOD Rule .. 337

Debug a TOD Rule ... 339

Examples: TOD Rules Event Specifiers .. 340

Examples: Complete TOD Rules .. 341

UNIX System Services Rules ... 343

Installation Requirements for USS Rules ... 343

Installation Requirements for USS Process Event Rules ... 344

)USS—Event Specifier of USS Rules ... 344

)USS USSPROCBEG—Event Specifier of USS Process Event Rules ... 344

Initialization, Processing, and Termination Sections of USS Rules .. 345

RETURN Statements in the)PROC Section of a USS Rule .. 346

Execution Considerations for USS Rules ... 346

OPS/REXX Host Environments in the)PROC Section of a USS Rule .. 346

AOF Variables Available in a USS Rule... 348

Additional AOF Variables Available in a USS Process Event Rule .. 357

Debug a USS Rule .. 360

Example of a USS Rule ... 361

Contents 13

Appendix A: Summary of AOF Coding Guidelines 363

OPS/REXX Host Environment Rule Characteristics ... 363

ADDRESS AOF .. 363

ADDRESS AP .. 364

ADDRESS EPI .. 364

ADDRESS HWS ... 364

ADDRESS MIM ... 365

ADDRESS ISPEXEC .. 365

ADDRESS LXCON .. 366

ADDRESS MESSAGE ... 366

ADDRESS NETMAN .. 367

ADDRESS NETMASTR ... 367

ADDRESS OPER .. 368

ADDRESS OPSCTL .. 368

ADDRESS OPSDYNAM ... 369

ADDRESS OSF, ADDRESS OSFTSL, and ADDRESS OSFTSP .. 369

ADDRESS SOF .. 369

ADDRESS SQL .. 370

ADDRESS SYSVIEWE .. 370

ADDRESS TSO .. 371

ADDRESS USS .. 371

ADDRESS WTO... 372

SAY Output .. 373

TRACE Output .. 373

Execution Considerations for Each Rule Type ... 374

Index 377

Chapter 1: Using the AOF 15

Chapter 1: Using the AOF

This section contains the following topics:

What Is the AOF (see page 15)
AOF Rules and Rule Sets (see page 18)

What Is the AOF

Through the CA OPS/MVS Automated Operations Facility (AOF), you can develop
applications to automate responses to system events.

The ability to react to various system events is mandatory when attempting to build
effective automated applications. The AOF is a base component of CA OPS/MVS that
monitors system events and automatically responds to them. You determine the system
events that the AOF recognizes, and how it responds to those events, by defining special
OPS/REXX programs called AOF rules.

AOF rules are classified as special OPS/REXX programs because AOF rules have a unique
structure, reside in PDS data sets called rule sets, and are triggered by a system event.

The AOF can take action in response to the following types of system events:

Application Program Interface (API)

An API event occurs when an application program calls the API interface. Typically,
the application that calls the API is a system service provider program, such as a
tape library manager, or a network control program. When these programs detect
an event that needs attention, they can initiate automation rules by calling the API.
Applications can also request information from CA OPS/MVS through the API.

Automatic Restart Management (ARM)

An ARM event occurs when the z/OS Automatic Restart Manager tries to restart an
ARM-registered job or started task after an unexpected termination. The restart
may occur on the same system or on another system in the sysplex if the
termination was due to a complete system failure.

Command (CMD)

A command event occurs when any z/OS or subsystem command is issued on the
system.

Delete-operator-message (DOM)

A DOM event occurs when any z/OS component issues a DOM macro to remove a
highlighted message from an MCS console; for example, a tape mount message gets
internally DOMed when the mount is satisfied.

What Is the AOF

16 AOF Rules User Guide

End-of-job (EOJ)

EOJ events occur when a task such as a batch job terminates and the INITSMF and
EOSRULES parameters of CA OPS/MVS are set to YES.

EOJ rules have these advantages over message rules:

■ Usually, two separate message rules are needed to handle both successful and
unsuccessful completion cases. EOJ rules can contain the logic for both cases in
one rule.

■ Message rules do not work if a software component fails silently (without
issuing any messages).

End-of-memory (EOM)

EOM events occur when any address space such as a TSO user or started task
terminates.

EOM rules have these advantages over message rules:

■ Usually, two separate message rules are needed to handle both successful and
unsuccessful completion cases. EOM rules can contain the logic for both cases
in one rule.

■ Message rules do not work if a software component fails silently (without
issuing any messages).

End-of-step (EOS)

An EOS event occurs when a step terminates in a job or started task and the
INITSMF and EOSRULES parameters of CA OPS/MVS are set to YES.

Global variable (GLV)

A global variable event occurs when the value of an OPS/REXX global variable
changes.

Message (MSG)

A message event occurs when a system component sends a message to a console or
to a system log. The AOF recognizes and responds to these types of messages:

■ z/OS

■ IMS

■ CICS (Transient Data Queue messages)

■ JES2 or JES3

■ WTOs (write-to-operator), WTORs (write-to-operator-with-reply), and WTLs
(write-to-log) generated by an application

■ Log file directed I/O (GDI)

■ CA 7 Browse Log

What Is the AOF

Chapter 1: Using the AOF 17

OMEGAMON exception from MVS, IMS, CICS, and DB2 performance monitors (OMG)

An OMG event occurs when an OMEGAMON exception is generated from any of
these products:

■ OMEGAMON/MVS

■ OMEGAMON/IMS

■ OMEGAMON/CICS

■ OMEGAMON/DB2

End user request (REQ)

A request event is triggered on demand by any end user.

Screen (SCR)

A screen event occurs when the screen or state of an EPI virtual terminal changes.
Screen event rules allow you to automate any VTAM application.

Security (SEC)

A security event occurs when you invoke any CA OPS/MVS facility (for example,
using the OPSCMD command processor to issue a z/OS command), allowing
security for CA OPS/MVS to be performed by coding OPS/REXX programs, rather
than by complex assembler exits. Security rules can be used to interface with your
security product to provide comprehensive and flexible control of CA OPS/MVS
facilities.

Time limit-exceeding (TLM)

A TLM event occurs when a job or task exceeds the processor time limit imposed by
the system, either by default or by the TIME JCL parameter on the JOB or execute
statement. A TLM event also occurs if a non-exempt job exceeds the maximum
continuous wait time specified in the SMF parameters for the system.

Time-of-day (TOD)

A time event occurs at a specified time or date or after a specified time interval.

UNIX System Services (USS)

A USS event occurs when the CA OPS/MVS message exit of CCS for z/OS is driven by
one of the following:

■ The arrival of a local USS syslogd message

■ A CA NSM message from the local CCS for z/OS

■ A message forwarded from any remote CA NSM platform in the network

More information

Coding Each AOF Rule Type (see page 69)

AOF Rules and Rule Sets

18 AOF Rules User Guide

AOF Rules and Rule Sets

AOF rules are stored in AOF rule sets. Rule sets are partitioned data sets whose names
are defined by the CA OPS/MVS initialization parameters RULEPREFIX and RULESUFFIX.
You can define from 1 to 70 rule sets, each containing any number of rules.

For example, according to the following parameter settings:

RULEPREFIX = 'OPSMVS.AOF'

RULESUFFIX = 'RULES'

AOF rule sets have a name mask of OPSMVS.AOF.*.RULES, where * is the rule set name.
The following are examples of rule set names:

OPSMVS.AOF.SUPPRESS.RULES

OPSMVS.AOF.CICS.RULES

OPSMVS.AOF.STATEMAN.RULES

OPSMVS.AOF.DB2.RULES

OPSMVS.AOF.SECURITY.RULES

Each AOF rule occupies a separate member in the AOF rule set.

Examples: Individual rule in the SUPPRESS rule set

In the following example, $HASP100 is an individual rule in the SUPPRESS rule set:

OPSMVS.AOF.SUPPRESS.RULES($HASP100)

In the following example, IEF403I is an individual rule in the SUPPRESS rule set:

OPSMVS.AOF.SUPPRESS.RULES(IEF403I)

Note: Since AOF rule sets are defined by the RULEPREFIX and RULESUFFIX, it is possible
to add or remove rule sets at any time without having to restart the product.

AOF Rules and Rule Sets

Chapter 1: Using the AOF 19

Determine AOF Rule Set Names

Choose a naming convention for your CA OPS/MVS rule sets that best fits your
installation requirements.

To determine your AOF rule set names

1. Review the following examples of rule set naming conventions:

■ Rule sets named for each AOF rule type, for example, MSG for message rules,
CMD for command rules, or TOD for time-of-day rules.

■ Rule sets named for a particular automated application or request, for
example, a SUPPRESS rule set containing suppression rules, a JES rule set
containing JES-related rules, or an IPLTIME rule set containing IPL-related rules.

■ Rule sets named for individual groups or divisions in your operations, for
example, a CICSGRP rule set for CICS personnel, OPERATNS rule set for the
operations personnel, or IMSGRP rule set for IMS personnel.

Multiple rule sets allow various groups using CA OPS/MVS in your data center to work
independently of each other. Because each rule set is a separate data set, your security
product can restrict rule set access to specific groups.

Sharing Rule Data Sets

AOF rule data sets (rule sets) can be shared between multiple copies of CA OPS/MVS
that are running on either the same or different z/OS images that share DASD.

This configuration lets you easily manage your automated AOF application in a
multi-system environment and is strongly recommended by CA. Even in cases where
systems do not share DASD; we strongly recommended that you develop and manage a
single set of AOF rule data sets from a central location and distribute these data sets to
the remote systems.

For a discussion of how to implement the OPS/REXX logic to allow or disallow execution
of a shared AOF rule on selected systems, see the chapter “AOF Rule Tools (see
page 29).”

AOF Rules and Rule Sets

20 AOF Rules User Guide

Allocate Rule Sets

Follow standard ISPF/PDF data set naming requirements when creating rule sets.

To allocate rule sets

1. Use either of the following methods:

■ Option 3.2 of ISPF/PDF

■ The TSO ALLOCATE command

The Data Set Utility menu displays.

2. Complete the fields and allocate the data set.

3. Use the following parameter values when allocating AOF rule sets:

■ DSORG=PO

■ RECFM=FB

■ LRECL=80

Use these parameters at your discretion:

■ DSN (see Determining AOF Rule Set Names in this chapter.)

■ BLKSIZE

■ SPACE

■ UNIT

■ STORCLAS

The rule sets are allocated.

Additional AOF Rule Set Information

The Installation Guide contains the following information:

■ Security and performance-related information

■ Alternative naming conventions

For information on the RULEPREFIX, RULESUFFIX, and RULEALTFIX parameters, see the
Parameter Reference.

Chapter 2: AOF Rule Structure 21

Chapter 2: AOF Rule Structure

This section contains the following topics:

Structure of an AOF Rule (see page 21)

Structure of an AOF Rule

AOF rules are classified as special OPS/REXX programs and, like any programming
language, require a structured format. This chapter discusses the general coding format
you should use in all AOF rules.

An AOF rule can contain up to five of the following control sections. Not all of the
control sections are required, but they must appear in the following order. A unique
section header in the rule identifies the control section.

Event Definition

The section header identifier is)eventtype eventspec.

Initialization

The section header identifier is)INIT.

Processing

The section header identifier is)PROC.

Termination

The section header identifier is)TERM.

End

The section header identifier is)END.

Section header identifiers delimit each section of a rule and logically control when the
code in the associating section executes. A rule must contain an event definition section
and at least one other section.

Each section header identifier must:

■ Begin with a) character in column 1 of the line

■ Appear on a line by itself

The fact that a rule section must begin with a) character in column one imposes a
restriction on OPS/REXX code used in rules. OPS/REXX continuation lines in rules may
not start with a) character in column one.

Structure of an AOF Rule

22 AOF Rules User Guide

For example, the following rule will fail to enable:

)MSG BADRULE

)PROC

if (GLOBAL.SUPPRESSIT=1,

) then

 return “SUPPRESS”

)eventtype eventspec—Event Definition Section (Required)

The event definition section of a rule identifies the system event that causes the rule to
execute. CA OPS/MVS uses the information in the event definition section to determine
when to run the processing section of the rule.

The event definition section is required and is always the first section of a rule.

Use this format for coding the event definition section:

)eventtype eventspec

Following is a description of the two parts (eventtype and eventspec) that make up the
event definition section.

■ The eventtype Value

The following eventtype values represent events that the AOF can recognize:

API

Application Program Interface

ARM

Automatic Restart Management event

CMD

Operator command event

DOM

Delete-operator-message event

EOJ

End-of-job event

EOM

End-of-memory event

EOS

End-of-step event

Structure of an AOF Rule

Chapter 2: AOF Rule Structure 23

GLV

Global variable event

MSG

Message event

OMG

OMEGAMON exception event

REQ

End user request event

SCR

Screen event

SEC

Security event

TLM

Time limit-exceeded event

TOD

Time-of-day event

USS

UNIX System Services event

For more information about the types of system events that the AOF recognizes,
see the chapter “Using the AOF (see page 15).”

■ The eventspec Value

The eventspec value is a character string template matching some event identifier
(such as message IDs for MSG events, system commands for CMD events, and time
specifications for TOD events).

Each AOF rule type has a different eventspec template.

Examples: Event Definition Section

■ Example 1: Identifies $HASP100 messages

)MSG $HASP100

■ Example 2: Identifies VARY commands

)CMD VARY

■ Example 3: Identifies an hourly time event

)TOD ,1 HOUR

Structure of an AOF Rule

24 AOF Rules User Guide

)PROC—Processing Section

The processing section of a rule specifies the actions that the rule takes in response to
the AOF detecting the system event that is defined in the event definition section. This
section can contain actions of varying complexity.

The processing section is optional. If included, the processing section always follows
these sections:

■ Event definition

■ Initialization (if this section exists)

The processing section has the following format:

)PROC

/* Insert processing section actions */

Example:)PROC Section

The processing section in the following example uses a combination of AOF tools (REXX,
AOF variables, OPS/REXX host environments) to send an alert message to the sysplex
master console if job PRDCICSA abends.

)MSG IEF450I

)INIT

/* This code will fire ONCE when the rule is enabled */

if OPSINFO('SMFID') <> 'SYSA' then

 Return 'REJECT'

TABENDS = 0

)PROC

/* This code will fire each time AOF detects an IEF450I */

/* message event on the system. */

TABENDS = TABENDS + 1

if MSG.JOBNAME <> 'PRDCICSA' then

 return

parse var MSG.TEXT . 'ABEND=' ABEND

CONSOLE = OPSINFO('MSTCONSNM')

ADDRESS WTO

"MSGID(OPSAUTO1) TEXT('PRDCICSA ABEND CODE=",

ABEND" at "TIME()" ') HILITE CNNAME("CONSOLE")"

Structure of an AOF Rule

Chapter 2: AOF Rule Structure 25

)INIT—Initialization Section

The initialization section of a rule specifies the actions the rule takes when an attempt is
made to enable it. This section can contain actions of varying complexity. Use the
initialization section to do the following:

■ Perform one-time initialization for the rule

■ Define static variables

■ Prevent the enabling of a rule using the OPS/REXX RETURN statement

Note: The execution of the)INIT section of any rule type is an enable rule event. The
REXX stem variable, ENA., is reserved for future enable event environment variables.
Any use of the ENA. stem in any)INIT section of a rule will result in a REXX improper
variable use error and cause the rule to be not enabled.

The initialization section is optional and if included, this section always follows the event
definition section.

The initialization section has the following format:

)INIT

/* Insert initialization section actions */

Example:)INIT Section

The initialization section in the following example uses the OPS/REXX OPSINFO function
to obtain the SMFID of the current system and determines if this rule is about to be
enabled on system SYSA. The rule will reject (not allow) enabling for all other systems.
This example also initializes a static variable called TABENDS to zero, which is used in the
subsequent processing section.

)MSG IEF450I

)INIT

/*This code will fire ONCE when the rule is enabled */

if OPSINFO('SMFID') <> 'SYSA' then

 return 'REJECT'

TABENDS = 0

Structure of an AOF Rule

26 AOF Rules User Guide

)TERM—Termination Section

The termination section of a rule specifies the actions that the rule takes when an
attempt is made to disable it. This section can contain actions of varying complexity.

Use the termination section to do the following:

■ Re-initialize or reset global variables, RDF tables, or both.

■ Record information about the activity of a rule. This information may have been
accumulated in static or global variables.

■ Prevent disabling of a rule using the AOF RETURN statement.

Note: The execution of the)TERM section of any rule type is a disable rule event. The
REXX stem variable, DIS., is reserved for future disable event environment variables. Any
use of the DIS. stem in any)TERM section of a rule will result in a REXX improper
variable use error and cause the rule not to be disabled.

The termination section is optional. If included, the termination section always follows
these sections:

■ Event description

■ Initialization section (if it exists)

■ Processing section (if it exists)

Use this format when coding the termination section:

)TERM

/* Insert termination section actions */

Structure of an AOF Rule

Chapter 2: AOF Rule Structure 27

Example:)TERM Section

The termination section in the following example allows the rule to be disabled only at
CA OPS/MVS shutdown. In addition, it sends a message to the OPSLOG with the value of
the static variable TABENDS, which was calculated during the)PROC section of the rule.

)MSG IEF450I

)INIT

/* This code will fire ONCE when the rule is enabled */

if OPSINFO('SMFID') <> 'SYSA' then

 return 'REJECT'

TABENDS = 0

)PROC

/* This code will fire each time AOF detects an IEF450I */

/* message event on the system. */

TABENDS = TABENDS + 1

if MSG.JOBNAME <> 'PRDCICSA' then

 return

parse var MSG.TEXT . 'ABEND=' ABEND

CONSOLE = OPSINFO('MSTCONSNM')

ADDRESS WTO

"MSGID(OPSAUTO1) TEXT('PRDCICSA ABEND CODE",

"("ABEND" at "TIME()" ') HILITE CNNAME("CONSOLE")"

)TERM

/* This code will fire ONCE when the rule is disabled */

if OPSINFO('PRODUCTSTATUS') <> 'TERM' then

 return 'REJECT'

MSG = 'OPSAUTO1 total IEF450I ABENDS = 'TABENDS

LOGTOTALS = OPSSEND('*','B',MSG)

)END—End Section

The end section consists of the END statement, which marks the end of a rule.

The END statement is optional and does not affect rule execution. If included, the END
statement is always the last line of a rule.

The END statement has the following format:

)END

Chapter 3: AOF Rule Tools 29

Chapter 3: AOF Rule Tools

This section contains the following topics:

Tools Available in AOF Rules (see page 29)
AOF Variables (see page 30)
REXX Programming Techniques (see page 39)
OPS/REXX Host Environments and Built-in Functions (see page 40)
AOF RETURN Statement (see page 44)

Tools Available in AOF Rules

The purpose of all AOF rules is to perform an automated procedure such as issuing
system messages or system commands, querying system devices, or updating user
databases.

The following tools are available in AOF rules to accomplish these automated tasks:

AOF variables

Obtains, saves, and shares event data.

REXX programming techniques

Makes decisions about AOF events.

OPS/REXX host environments and built-in functions

Programmatically performs various system actions and queries the status of system
resources.

AOF RETURN statement

Suppresses messages.

These tools are described in the following sections.

AOF Variables

30 AOF Rules User Guide

AOF Variables

When creating AOF rules to trigger on a particular system event, you need to know
specific information regarding the event, such as the job name that issued a message,
the route codes associated with the message, or the console name from which a certain
system command was issued. In addition, your particular automated application may
require that data be saved over various executions of an event or shared between
different events. You obtain, save, and share event data by using AOF variables.

AOF variables can be one of the following types:

■ Environmental (event-related)

■ Dynamic

■ Static

■ Address space-related

■ OPS/REXX global

■ Event-related

Environmental (Event-related) Variables

AOF environmental (event-related) variables provide detailed information about the
system event that AOF is evaluating. Each AOF event rule type (MSG, CMD, EOM, and so
on) provides a set of unique environmental variables. For example, in a MSG rule type,
you have access to various MSG.xxxx variables such as the following:

MSG.TEXT

Contains the complete text of the current message.

MSG.JOBNAME

Contains the name of the job or address space that issued the message.

MSG.REPLYID

Contains the reply for WTOR messages.

In a CMD rule type, you have access to various CMD.xxxx variables such as the following:

CMD.TEXT

Contains the complete text of the current command.

CMD.JOBNAME

Contains the name of the job or address space that issued the command.

CMD.CONSNAME

Contains the name of the console from which the command was issued.

AOF Variables

Chapter 3: AOF Rule Tools 31

Review the following additional facts about environmental (event-related) variables:

■ Environmental variables are automatically provided by the AOF engine and are
available only in the)PROC (processing) section of a rule.

■ Some environmental variables are modifiable and can affect original event
attributes.

For example, changing the contents of the MSG.TEXT variable in a)MSG rule
changes the text of the WTO message, or modifying the CMD.TEXT variable in a
)CMD rule changes the original command that was entered.

Note: Some environmental variables are designated as read-only; changing the
value of a read-only variable is not allowed and results in an error condition.
Because the values of read-only environmental variables do not change, all rules
that execute for a single event get the same environmental data.

■ Changes to an environmental variable by multiple rules are cumulative. The first
rule to execute receives original event information. Subsequent rules (executing in
response to the same event) receive event information modified by each preceding
rule.

Note: Because rules cannot change the values of read-only variables, these
variables always contain original information.

■ All rules that usually execute in response to an event do so regardless of how each
rule changes an environmental variable.

For example, if a message rule changes the message ID contained in the MSG.ID
variable, then all rules matching the original message ID still execute (and no rules
matching the new message ID execute).

■ You can view most environmental variables using the DISPLAY primary command in
the OPSLOG Browse facility.

Note: For more information about the OPSLOG Browse facility, see the OPSVIEW
User Guide.

More information:

Coding Each AOF Rule Type (see page 69)

AOF Variables

32 AOF Rules User Guide

Dynamic Variables

Dynamic variables are user-defined variables that are created each time a rule section
executes. The dynamic variable data is available only when a rule section is executing.
You use dynamic variables generally as a reference in the logic of an AOF rule section.

For example, consider the following rule logic:

)MSG $HASP094

)PROC

/**/

/* Rule Purpose : Hilite I/O Error messages for Line 50 */

/* $HASP094 I/O LNExx SNA ,17,0000,087D0001,JOB NAME */

/**/

LINE = WORD(MSG.TEXT,3) /* Extract line no. */

if LINE < > 'LNE50' then /* Is this LNE50? */

 return

MSG.DESC = OPSBITS('IMEDACTN') /* Hilite if it is */

The variable LINE is an example of a dynamic variable and is only available as each
$HASP094 message is processed by this MSG rule.

Review the following additional facts about dynamic variables:

■ Simple dynamic variables are used in the)PROC or)TERM sections of a rule but not
in the)INIT section. Compound dynamic variables are used in all rule sections.

■ The name of a dynamic variable can be up to 256 characters in length.

■ The value assigned to a dynamic variable can be up to 32,000 bytes in length.

■ A dynamic variable can be a compound symbol, such as JOB.COUNT.

Note: It cannot begin with a reserved stem used by the environmental variables for
that particular event type (for example, MSG.xxx, CMD.xxx, EOM.xxx).

■ The value of an uninitialized dynamic variable (a variable that has not yet been
assigned a value) is the variable name itself.

■ The following three special variables in standard REXX are always dynamic variables
in AOF rules:

– RC

– RESULT

– SIGL

AOF Variables

Chapter 3: AOF Rule Tools 33

Static Variables

Static variables maintain their value across multiple executions of a single rule, which
means that data can be shared between executions of the same AOF rule.

For example, consider the following rule logic:

)MSG $HASP373

)INIT

COUNT=0

)PROC

/**/

/* Rule Purpose : Keep a running total of HASP373 jobs */

/* $HASP373 jobname STARTED */

/**/

COUNT= COUNT + 1 /* Add to counter */

)TERM

LOGIT = OPSSEND('*','B','OPSAUTO4 TOTAL 373 = 'COUNT)

The variable COUNT is a static variable that retains its value each time this rule
processes a $HASP373 message.

Review the following additional facts about static variables:

■ Static variables are rule-specific and must be defined (initialized) in the)INIT
section.

■ The same static variable name used in the initialization sections of two different
rules refers to two different static variables.

■ A static variable cannot be a compound symbol (for example, JOB.COUNT).

■ The name of a static variable can be up to 50 characters in length.

■ The value assigned to a static variable can be up to 256 bytes in length. Any value
assigned with a length greater than 256 is truncated.

■ A static variable is deleted when the rule is disabled.

■ Access to static variables is not serialized. If serialization is needed, then use
OPS/REXX global variables and the OPSVALUE function of OPS/REXX.

AOF Variables

34 AOF Rules User Guide

Address Space-related Variables

Address space-related variables are compound symbols that begin with a reserved stem
of GLVJOBID. They let you share data between different AOF rules for events that
originate from the same address space. This lets you save data generated during one
event created by a job, and then use that data in another event created by the same
job.

For example, consider the following two AOF rules:

■ Rule #1

)MSG $HASP375

)PROC

/***/

/* Rule Purpose : Set a local variable to keep track of the most */

/* current # of lines exceeded during run time */

/* This variable will be checked when the job */

/* ending event occurs. */

/* $HASP375 jobname ESTIMATE EXCEEDED BY # LINES */

/***/

if WORD(MSG.TEXT,5) < > 'BY' then

 return

GLVJOBID.EXCEEDED = WORD(MSG.TEXT,6) /* # of lines */

■ Rule #2

)EOJ *

)PROC

/***/

/* Rule Purpose : Check to see if the batch job that just ended */

/* exceeded any output lines during its run time */

/* by testing to see if the GLVJOBID variable */

/* that would have been set in the $HASP375 */

/* rule exists. Log info if variable is present. */

/* EOJ fires automatically when job terminates. */

/***/

if OPSVALUE('GLVJOBID.EXCEEDED','E') = 'N' then

 return

JOB = EOJ.JOBNAME

NUMLINES = GLVJOBID.EXCEEDED

MSG = 'OPSAUTO1 BATCH JOB ' JOB' LAST EXCEED ='NUMLINES

LOGIT = OPSSEND('*','B',MSG)

Suppose that JOB1 and JOB2 start on the system at the same time. JOB1 begins to
exceed expected output lines and the JOB1 address space produces a $HASP375
message. This event executes Rule #1, which sets a unique GLVJOBID.EXCEEDED variable
for JOB1 only. Both JOB1 and JOB2 end at the same time, thus executing Rule #2.

AOF Variables

Chapter 3: AOF Rule Tools 35

While Rule #2 is processing the end-of-job event caused by JOB1 ending, the local
variable GLVJOBID exists, and the rule produces the informational message in the
OPSLOG that includes the value of the GLVJOBID.EXCEEDED address space-related
variable that was set in Rule #1. While Rule #2 is processing the end-of-job event caused
by JOB2, the local variable GLVJOBID.EXCEEDED does not exist, so no further processing
is done in the rule.

Review the following additional facts about address space-related variables:

■ Address space-related variables are used only in the)PROC section of a rule and are
unique to the address space that triggered the rule.

■ They are automatically deleted by CA OPS/MVS when the address space or batch
job associated with it terminates. Batch jobs are handled differently than other
address spaces. The address space-related variables associated with a batch job are
deleted when the batch job ends, even though the initiator address space in which
it ran remains active and may subsequently execute other batch jobs.

■ An address space-related variable name must begin with a stem of GLVJOBID.

■ The name can be up to 78 characters in length including the stem of GLVJOBID.

■ The value can be up to 32,000 bytes.

■ Some messages appear to be issued from a particular job but are actually issued on
behalf of another address space. For example, the $HASP100 message that
indicates a job is on the internal reader is actually issued from the JES2 address
space and not the address space of the job. Use the OPSLOG JOBNAME and ASID
columns to verify that the message is being issued from unique address spaces prior
to selecting a GLVJOBID variable.

OPS/REXX Global Variables

OPS/REXX global variables are compound symbols that begin with a reserved stem of
GLOBAL., GLOBALx, or GLVTEMPx. They let you share data between different AOF rules
for events that occur from any address space. Programs running in CA OPS/MVS OSF
TSO servers, batch, TSO, NetView, and UNIX System Services environments can all
access OPS/REXX global variables used in AOF rules.

A global variable with a stem of GLOBAL. or GLOBALx is permanently saved across IPLs
or restarts of CA OPS/MVS. A global variable with a stem of GLVTEMPx is saved only
while CA OPS/MVS is active.

AOF Variables

36 AOF Rules User Guide

Examples: OPS/REXX Global Variables Used in AOF Rules

■ Rule #1: This rule will execute for every DFHSI1517 message that is issued when a
CICS region initializes. An OPS/REXX global variable is created using the region name
as part of the compound symbol name so that a unique variable exists for each CICS
region, such as GLVTEMP1.UPTIME.CICSA (for region CICSA) and
GLVTEMP1.UPTIME.CICSB (for region CICSB). The variable is set to the current
system time.

)MSG DFHSI1517

)PROC

/**/

/* Rule Purpose : Set a unique OPS/REXX global variable with */

/* the initialization times of all CICS regions. */

/* DFHSI1517 cicsregion Control is being given to CICS. */

/**/

JOB = MSG.JOBNAME /* set JOB to issuer of this message */

CTIME = TIME() /* set CTIME to current time */

/* Create a unique global variable using the JOB value as a stem*/

/* name to make it unique. Set it to the CTIME value */

SET = OPSVALUE('GLVTEMP1.UPTIME.'JOB,'U',CTIME) */

■ Rule #2: This is an AOF request rule (a different event type from Rule #1) that will
execute on demand by any TSO user and be able to access and display the
GLVTEMP1.UPTIME OPS/REXX variables set by Rule #1. It is using the OPSVALUE
OPS/REXX function to retrieve this variable information.

)REQ CICSINIT

)PROC

/**/

/* Rule Purpose : Display initialization times of active CICS */

/* regions when requested. Obtain this info */

/* via any GLVTEMP1.UPTIME global variable. */

/* Invoked when a TSO users issues OPSREQ CICINIT */

/**/

ACTREGIONS = OPSVALUE('GLVTEMP1.UPTIME','L')

if ACTREGIONS = 0 then

 say 'No initialized regions'

else

 do ACTREGIONS

 PULL REGION

 UPTIME = OPSVALUE('GLVTEMP1.UPTIME'.REGION,'O')

 say 'CICSINIT - 'REGION' INIT TIME = 'UPTIME

 end

return

Note: For a detailed description of the uses and characteristics of GLOBAL., GLOBALx,
and GLVTEMPx OPS/REXX global variables, see the User Guide.

AOF Variables

Chapter 3: AOF Rule Tools 37

Event-related Variables

Event-related variables are compound symbols that begin with a reserved stem of
GLVEVENT. They let you share data between different AOF rules that are processing the
same event. In a case where you allow different groups (for example, operations, CICS,
IMS) to have their own rule sets, there may be a need to coordinate a process between
two or more rules that execute on the same event. Event-related variables have a life
span of the event.

Example: Sharing Data Between AOF Rules

■ Rule # 1: This first rule resides in the CICSGRP rule set

)MSG $HASP100

)PROC

/***/

/* Rule Purpose : Set a event-related variable to flag that */

/* the CICSGRP wants to currently request that */

/* $HASP100 messages from CICSx jobs get */

/* suppressed and deleted from SYSLOG */

/* $HASP100 CICSxxx ON INTRDR */

/***/

JOB = WORD(MSG.TEXT,2) /* get 2nd word of message */

if SUBSTR(JOB,1,4) <> 'CICS' then /* not CICSx */

 return

GLVEVENT.DISP = 'DELETE'

■ Rule #2: This second rule resides in the IMSGRP rule set

)MSG $HASP100

)PROC

/***/

/* Rule Purpose : Set a event-related variable to flag that */

/* the IMSGRP wants to currently request that */

/* $HASP100 messages from IMSx jobs get */

/* suppressed. */

/* $HASP100 IMSxxx ON INTRDR */

/***/

JOB = WORD(MSG.TEXT,2) /* get 2nd word of message */

if SUBSTR(JOB,1,3) <> 'IMS' then /* not IMSx */

 return

GLVEVENT.DISP = 'SUPPRESS'

AOF Variables

38 AOF Rules User Guide

■ Rule #3: This third rule resides in the OPERATNS rule set

)MSG $HASP*

)PROC

/**/

/* Rule Purpose : Operations makes the final call on message */

/* disposition based on the value of a event-related */

/* variable that different groups can override */

/* at their request. Assume disposition is */

/* NORMAL if a group hasn't set the variable */

/**/

if OPSVALUE('GLVEVENT.DISP','E') = 'N' then

 DISP = 'NORMAL'

else

 DISP = GLVEVENT.DISP

return DISP

Rule #1 and Rule #2 execute on a specific $HASP100 event and will execute before Rule
#3 because it is a more generic message specification of $HASP*. They will set the
event-related variable GLVEVENT.DISP accordingly. Rule #3 will then interrogate this
variable to determine what action to take.

Review the following additional facts about event-related variables:

■ Event-related variables are used only in the)PROC section of a rule and are unique
to rules that execute on the same event.

■ They are automatically deleted by CA OPS/MVS when the last rule executing on the
event completes.

■ An event-related variable must begin with a stem of GLVEVENT.

■ The name can be up to 78 characters in length including the stem of GLVEVENT.

■ The value can be up to 32,000 bytes.

More information:

Building and Controlling AOF Rules (see page 49)

REXX Programming Techniques

Chapter 3: AOF Rule Tools 39

REXX Programming Techniques

Logic commonly implemented in all AOF rules is to manipulate and process data.
Standard REXX programming tools can be used in AOF rules to perform this type of logic,
such as making decisions about an AOF event or further breaking down AOF event data.

REXX instructions, such as the IF..THEN..ELSE statement or the
SELECT..WHEN..OTHERWISE statement, let you make decisions about data in an AOF
rule, while the PARSE instruction-or perhaps a REXX function such as WORD(), SUBSTR(),
or POS()-lets you further interrogate AOF event data.

Examples: REXX Programming Techniques

The following examples demonstrate standard REXX programming used in AOF rules:

■ Example 1: Insert REXX comments to provide information:

/* Date Created: 11/11/12 */

/* Purpose : Configure initiators to handle batch window */

■ Example 2: Make decisions through the IF..THEN..ELSE REXX instruction:

JOB=MSG.JOBNAME /* set JOB to issuer of msg */

if JOB = 'MYJOBA' then

 RETURN 'SUPPRESS'

else

 return 'DELETE'

■ Example 3: Break down a data string with the PARSE REXX instruction:

/* Obtain the abend code from this message and put in ABEND var */

parse var MSG.TEXT . 'ABEND=' ABEND .

■ Example 4: Break down a data string with the WORD and SUBSTR REXX functions:

/* Obtain the first 3 characters of the job name in this message */

JOBN = WORD(MSG.TEXT,2) /* job is 2nd blank delimited word */

 /* in this msg */

MASK = SUBSTR(JOBN,1,3) /* get the job name mask */

For more detailed information about standard REXX, see any REXX reference guide. An
excellent reference is the second edition of THE REXX LANGUAGE: A Practical Approach
to Programming by M.F. Cowlishaw, available through Prentice Hall publishers. In
addition, the CA OPS/MVS EasyRule facility is a good tool for learning REXX.

Note: OPS/REXX is the underlying programming language used in AOF rules. Standard
REXX is a subset of OPS/REXX, so minor operational differences may exist for particular
standard REXX techniques that you attempt to use in AOF rules. For information
regarding these differences, see the User Guide and Command and Function Reference.

OPS/REXX Host Environments and Built-in Functions

40 AOF Rules User Guide

OPS/REXX Host Environments and Built-in Functions

The OPS/REXX language is considered an enhanced REXX language implementation,
designed specifically for automation use, because it provides the tools needed to
programmatically perform various system actions and query the status of a wide range
of system resources. You can use these tools, known as OPS/REXX host environments
and OPS/REXX built-in functions, in AOF rules.

OPS/REXX Host Environments

OPS/REXX host environments let you perform common automation and system
operations, such as issuing messages (WTOs), z/OS commands, and UNIX System
Services commands. You can also use OPS/REXX host environments in AOF rules to
control various CA OPS/MVS facilities.

Use the following OPS/REXX host environments in AOF rules:

ADDRESS AOF

Programmatically control rules and create dynamic AOF rules.

ADDRESS EPI

Programmatically interact with any VTAM application.

ADDRESS LXCON

Issue commands to VM and Linux systems that are connected to the Linux
Connector component.

ADDRESS MIM

The CA MIM product manages and collects this display information.

ADDRESS NETMAN

Open, update, or close records in CA Netman.

ADDRESS OPSCTL

Control COF, ECF, OSF, MSF, and OPSLOG components

ADDRESS OPER

Issue z/OS, JES, VM, subsystem commands

ADDRESS OSF

Schedule TSO commands, CLISTs, or REXX EXECs to CA OPS/MVS OSF TSO servers

ADDRESS OSFTSL

Schedule TSO commands, CLISTs, or REXX EXECs to CA OPS/MVS OSF TSL servers

OPS/REXX Host Environments and Built-in Functions

Chapter 3: AOF Rule Tools 41

ADDRESS OSFTSP

Schedule TSO commands, CLISTs, or REXX EXECs to CA OPS/MVS OSF TSP servers

ADDRESS SOF

Provide a user interface for managing devices that are attached through ESCON
directors and FICON switches.

ADDRESS SQL

Create and maintain SQL tables in the CA OPS/MVS RDF component.

ADDRESS SYSVIEWE

Retrieve output from CA SYSVIEW commands.

ADDRESS USS

Issue UNIX System Services commands

ADDRESS WTO

Issue system messages in the form of WTOs, or WTORs

Note: For complete descriptions and coding guidelines for each OPS/REXX host
environment, see the CA OPS/MVS Command and Function Reference.

More information:

Coding Each AOF Rule Type (see page 69)

OPS/REXX Built-in Functions

These built-in functions are part of OPS/REXX that gives these AOF rules access to a wide
variety of system data for programmatic actions. In some cases, certain OPS/REXX
functions can perform specific system tasks. OPS/REXX functions can retrieve a system
information, such as job status, device status, or JES2-related resource data. OPS/REXX
functions can also perform such tasks as low lighting messages or invoking z/OS
Automatic Restart Management Services.

You can use the following OPS/REXX built-in functions in these AOF rules:

OPSARM

Performs z/OS Automatic Restart Management Services.

OPSARMST

Determines whether a single job or element name is registered with ARM.

OPSCA7

Issues commands to the CA 7 scheduling product.

OPS/REXX Host Environments and Built-in Functions

42 AOF Rules User Guide

OPSCAWTO

Creates an SNMP trap.

OPSCLEDQ

Empties the contents of the External Data Queue (stack)

OPSCOLOR

Changes the color of OPSLOG (or console) messages.

OPSCPF

Obtains z/OS Command Prefix Facility information.

OPSDEV

Obtains device information.

OPSDOM

Deletes highlighted operator messages.

OPSECURE

Returns security package related information.

OPSHFI

Reads or writes variables to a shared VSAM file.

OPSINFO

Returns various system and CA OPS/MVS information.

OPSIPL

Obtains various IPL parameter library information.

OPSJES2

Obtains JES2 related resource data.

OPSLOG

Retrieves OPSLOG data.

OPSMTRAP

Generates a warm- or cold-start SNMP trap.

OPSPRM

Controls CA OPS/MVS parameters.

OPSSEND

Sends messages to OPSLOG or other copies of CA OPS/MVS.

OPSSMF

Creates SMF records.

OPS/REXX Host Environments and Built-in Functions

Chapter 3: AOF Rule Tools 43

OPSSRM

Collects System Resource Manager (SRM) data.

OPSTATUS

Obtains active ASID, WTOR, IMS, or WLM information.

OPSUBMIT

Builds and submit batch jobs.

OPSSYSYM

Obtains z/OS system symbol information.

OPSVALUE

Manipulates variables.

OPSVASRV

Manipulates SYSPLEX variables.

For complete descriptions and coding guidelines for each OPS/REXX built-in function, as
well as a list of valid rule types in which each can execute, see the CA OPS/MVS
Command and Function Reference.

AOF RETURN Statement

44 AOF Rules User Guide

Example: AOF Rule Using Built-in Functions

The following AOF rule uses OPS/REXX host environments and built-in functions:

)TOD 02:00

)INIT

/* This rule should only be active on SYSA. Use the OPSINFO */

/* built-in function to get the SMFID of this system to see */

/* if the rule should be enabled or not. */

if OPSINFO('SMFID') <> 'SYSA' then

 return 'REJECT'

)PROC

/**/

/* Rule purpose : Set up Z initiators for batch window */

/* TOD rule spec fires every 2:00 AM */

/**/

/* Issue info message using ADDRESS WTO OPS/REXX */

/* Host Environment to let everybody know of change. */

msgtxt= 'Initiators configured to handle 2:00 Batch Flow'

ADDRESS WTO

"MSGID(OPSAUTO1) TEXT(' "msgtxt" ') ROUTE(2)"

/* Let's start all drained 'Z' initiators. We'll obtain this info */

/* by using one of the options on the OPSJES2 built-in function. */

/* Then we'll use the ADDRESS OPER OPS/REXX host */

/* environment to issue a command to JES. */

ZINITS=OPSJES2('I','INIT','Z','D')

do ZINITS /* Loop for all drained Z' inits */

 pull RECORD /* Obtain data from the EDQ */

 INITID=WORD(RECORD,1) /* First word is init id */

 address OPER /* Switch to ADDRESS OPER */

 "C($SI"INITID") NOO" /* Issue JES2 $Six command */

end /* End of DO */

AOF RETURN Statement

You can use the AOF RETURN statement to suppress messages from going to a console
or the SYSLOG and to reject system commands. You can also use it to allow or disallow a
rule from being enabled or disabled.

Valid values for the RETURN statement vary according to the rule section that is
processing the statement.

AOF RETURN Statement

Chapter 3: AOF Rule Tools 45

)INIT Section—Enable a Rule

The RETURN statement in the)INIT section of an AOF rule allows or disallows the
enabling of a rule. Creating logic to prevent a rule from being enabled may be necessary
in an environment in which you have multiple CA OPS/MVS images sharing rule sets,
and you only want particular rules to be enabled on certain systems.

The)INIT section of an AOF rule has the following format:

)INIT

/* This rule should only be active on SYSA. Use the OPSINFO */

/* built-in function to get the SMFID of this system to see */

/* if the rules should be enabled or not.If this is not SYSA */

/* then use the AOF RETURN statement with a value of REJECT */

/* to cause the rule to not be ENABLEd. */

if OPSINFO('SMFID') <> 'SYSA' then

 return 'REJECT'

Valid values for a RETURN statement in the initialization section of a rule are:

ACCEPT

(Default) Allows the rule to be enabled.

REJECT

Prevents the rule from being enabled.

If you do not specify a return value in the initialization section of the rule, the default
return value is ACCEPT.

If a runtime error occurs in the INIT section, the return value is REJECT and the rule is
not enabled.

)PROC Section—Valid Return Statement Values

The RETURN statement in the)PROC section of an AOF rule works differently according
to the type of event that the rule is acting upon. Valid RETURN statement values are
different in a)MSG rule than a)CMD rule. An unrecognized return value (for example, a
misspelled value) defaults to a value of NOACTION.

WARNING! Make sure you use the valid RETURN values associated with each rule type.
Using RETURN values for the wrong AOF rule type does not result in a syntax error and
does not default to NOACTION. The results may not be what you expect them to be.

AOF RETURN Statement

46 AOF Rules User Guide

The)PROC section on an AOF rule has the following format:

)MSG $HASP100

)PROC

/* Suppress $HASP100 message using the SUPPRESS RETURN value */

/* available in)MSG rules. */

return 'SUPPRESS'

)CMD MOVECICS

)PROC

/* This pseudo command rule allows operators to enter the */

/* command MOVECICS from the console to initiate the OPS/REXX*/

/* program to move all CICS regions. The RETURN value of */

/* 'ACCEPT' in a)CMD rule causes z/OS to not process this */

/* pseudo command. */

address OSF "OI P(MOVECICS)"

return 'ACCEPT'

For a list of valid RETURN statement values for each AOF rule type and an outline of the
coding guidelines, see the chapter “Coding Each AOF Rule Type (see page 69).”

)TERM Section—Disable a Rule

The RETURN statement in the)TERM section of an AOF rule allows or disallows the
disabling of a rule.

The)TERM section of an AOF rule has the following format:

)TERM

/* This rule must never be disabled, unless CA OPS/MVS */

/* is shutting down. Use the OPSINFO function to see if */

/* the product is terminating. If it is not, then don't */

/* allow the rule to be disabled by using the REJECT */

/* value of the RETURN statement. */

if OPSINFO('PRODUCTSTATUS') <> 'TERM' then

 return 'REJECT'

Valid values for a RETURN statement in the termination section of a rule are:

ACCEPT

(Default) Allows the rule to be disabled.

REJECT

Prevents the rule from being disabled.

If you do not specify a return value, then the default return value is ACCEPT.

AOF RETURN Statement

Chapter 3: AOF Rule Tools 47

If a runtime error occurs, then the return value is ACCEPT (assuming that the error
occurs while the termination section is executing).

Note: A return value of REJECT stops the disabling of a single rule only. If you disable a
rule set, the enabled rules in the rule set are always disabled regardless of the RETURN
values in the individual rules.

More information:

Building and Controlling AOF Rules (see page 49)

Chapter 4: Building and Controlling AOF Rules 49

Chapter 4: Building and Controlling AOF
Rules

This section contains the following topics:

Ways to Create AOF Rules (see page 49)
Control AOF Rule Status (see page 51)
Process Modified AOF Rules (see page 54)
Execution of Enabled Rules (see page 54)

Ways to Create AOF Rules

CA OPS/MVS provides various ways to create AOF rules. Such flexibility allows
automation to be created at your installation by either a novice or an experienced user.
Most of the tools for creating rules can be accessed through the OPSVIEW ISPF interface
of CA OPS/MVS.

EasyRule

EasyRule is an ISPF-based application that lets you create AOF rules using a series of
fill-in-the-blank panels.

To access EasyRule, use any of the various options of the CA OPS/MVS OPSVIEW facility.

The AOF rule REXX code is generated in the background in response to the options that
you specify on the selection panels. Little, if any, AOF rule knowledge is required to use
EasyRule, so it is an excellent starting place for new CA OPS/MVS users.

EasyRule lets you build suppression rules and rules that perform many sorts of tasks,
including:

■ Issuing WTOs and z/OS and UNIX System Services commands

■ Replying to WTORs

■ Updating global variables and RDF tables

■ Invoking OPS/REXX programs in CA OPS/MVS TSO servers

EasyRule also provides a series of panels to help you incorporate decision-making logic
in rules, such as manipulating data in a message or querying the status of a job or
device. Because some automated applications require greater complexity and may need
to use a CA OPS/MVS OPS/REXX function or host environment not available in EasyRule,
you may be unable to create some automated applications with EasyRule.

Ways to Create AOF Rules

50 AOF Rules User Guide

At that point you have the following two options:

■ Add your own code at selected points in the code generated by EasyRule. With this
option you can continue to use EasyRule in the future to modify the EasyRule
generated portions of the code.

■ Directly edit the generated code or copy the code to a rule that you create outside
of EasyRule.

For details on using EasyRule, see the User Guide.

ISPF/PDF Editor in the AOF Test Facility

The AOF Test facility lets you create and test rules outside of the production AOF
environment, thus providing you with a safe method of developing rules. A standard
ISPF/PDF editor is the primary tool for creating rules in the AOF Test facility, but you can
also use the EasyRule application.

Note: For an overview of the AOF Test facility, see the chapter “How to Begin Using the
Product” in the User Guide. For more information about the AOF Test facility, see the
OPSVIEW User Guide.

ISPF/PDF Editor in the AOF Production Facility

This facility is the primary way of controlling your production AOF rules. As you become
more proficient in understanding the syntax of AOF rules and the various automation
tools that they use, the ISPF/PDF editor of the AOF production environment will most
likely become your primary method of creating rules.

To access the AOF production environment, choose option 4.5 of the CA OPS/MVS
primary OPSVIEW panel.

For details on accessing the AOF production environment, see the OPSVIEW User Guide.

Automation Analyzer

The Automation Analyzer facility examines and displays a statistical analysis of the
message activity of your system, and lets you directly create suppression rules and
invoke the EasyRule facility.

To access this facility, choose option 7.2 of the CA OPS/MVS primary OPSVIEW panel.

For an overview of the Automation Analyzer, see the chapter “How to Begin Using the
Product” in the User Guide. Additional details can also be found in the OPSVIEW User
Guide.

Control AOF Rule Status

Chapter 4: Building and Controlling AOF Rules 51

MPF Conversion Facility

The MPF Conversion Facility reads the installation Message Processing Facility (MPF)
member that is currently being used to suppress messages and automatically generates
CA OPS/MVS suppression rules.

To access this facility, choose option 7.3 of the CA OPS/MVS OPSVIEW primary panel.

For an overview of the MPF Conversion Facility, see the chapter “How to Begin Using
the Product” in the User Guide. More details can also be found in the OPSVIEW User
Guide.

Sample AOF Rules

The CA OPS/MVS installation tape includes data sets that contain various pre-coded AOF
rules. You can use these samples and the examples in this guide as models to create
your own AOF rules.

Control AOF Rule Status

You control AOF rule status primarily in the AOF production environment.

To access the AOF production environment, choose option 4.5 of the CA OPS/MVS
primary OPSVIEW panel.

Definition of AOF Rule Status

This section explains the AOF rule control terminology.

ENABLE

You must enable a rule so CA OPS/MVS can react to the event that you specified. A
rule responds to a system event only if it is enabled.

DISABLE

A disabled rule is an inactive rule. CA OPS/MVS does not respond to the specified
system event.

AUTOENABLE

An auto-enabled rule is automatically enabled when CA OPS/MVS initializes through
either a system IPL or a restarting of the product. A reserved area in the ISPF
directory entry is internally set when a rule is auto-enabled. ISPF statistics must be
turned on to auto-enable a rule.

Control AOF Rule Status

52 AOF Rules User Guide

RESET AUTOENABLE

The reset auto-enable operation turns off the auto-enable flag, which means CA
OPS/MVS does not enable the rule when it initializes through either a system IPL or
a restart.

COMPILE

A compiled rule is a rule whose compiled version is saved in a predefined data set.
Compiled rules expedite the enabling of auto-enabled rules during CA OPS/MVS
initialization. For details on setting up the required AOFPRECOMPILED parameters
and creating the pre-compiled AOF data set, see the Parameter Reference.

Note: Using AOF precompiled rules is optional. The volume of auto-enabled rules
you have determines whether you need to use AOF precompiled rules.

DELCOMP

Deleting a compiled rule deletes the compiled versions from the AOF pre-compiled
data set. For details on setting up the required AOF PRECOMPILED parameters and
creating the pre-compiled AOF data set, see the Parameter Reference.

How to Control Rules from the Rule Set Level

Most AOF rule control is performed at the individual rule level but it can also be done at
the rule set level.

For example, suppose the rule set OPSMVS.PROD.SUPPRESS.RULES contains all of your
individual suppression rules and a situation arises in which you want to disable all
suppression rules. Rather than having to disable each individual suppression rule that
resides in the SUPPRESS rule set, you can disable the rule set itself.

To control rules at the rule set level, use the following guidelines:

■ Enable an AOF rule set

Enables only those rules that have the auto-enable bit set in the rule set.

■ Disable an AOF rule set

Disables all the rules that are currently enabled in the rule set.

■ Auto-enabling an AOF rule set

Sets the auto-enable bit for all rules in the rule set.

More information:

Using the AOF (see page 15)

Control AOF Rule Status

Chapter 4: Building and Controlling AOF Rules 53

Create and Control Rules Programmatically

You can programmatically control AOF rules using the OPS/REXX ADDRESS AOF host
environment.

While AOF rules are mainly controlled manually using OPSVIEW option 4.5, the ADDRESS
AOF OPS/REXX host environment provides you with the flexibility of controlling your
rules in an automated application. This feature is commonly used as a tool in the form of
a pseudo-AOF command rule that can be invoked from anywhere a z/OS command can
be entered, which eliminates the need to use the OPSVIEW 4.5 option.

In addition to programmatically controlling rules, the ADDRESS AOF OPS/REXX host
environment gives you a way to dynamically create AOF rules. The ADDRESS AOF host
environment lets you build an AOF rule in other AOF rules or OPS/REXX programs. This
type of logic is mainly used to trigger automation for events that can occur at any time.

To programmatically create and control rules

■ Suppose your suppression rules are in a rule set called
OPSMVS.PROD.SUPPRESS.RULES and you wanted to create a quick way to disable
all suppression rules. You can create the following rule:

)CMD SUPPOFF

)PROC

/* Emergency pseudo command rule to disable all suppression */

/* Enter the command SUPPOFF from any system console to */

/* trigger this rule. */

/* Send DISABLE command to AOF for SUPPRESS ruleset */

ADDRESS AOF

"DISABLE SUPPRESS"

■ Suppose you want to invoke an OPS/REXX program that performs various checks
against VTAM-related nodes and to trigger this program 10 minutes after VTAM
initializes. You can code the following:

)MSG IST020I

)PROC

 /* This message indicates that VTAM has initialized. We want */

 /* to schedule our VTAM check EXEC 10 minutes from now. Since */

 /* we never know in advance the exact time that VTAM will */

 /* initialize, we create a dynamic AOF TOD rule to wake up 10 */

 /* minutes from the time this message was issued. */

 queue ")TOD *+10 MINS"

 queue ")PROC"

 queue "ADDRESS OSF"

 queue "'OI PROGRAM(VTAMCHCK)'"

 address AOF

 "ENABLE *DYNAMIC.VTAMCHCK"

Process Modified AOF Rules

54 AOF Rules User Guide

For more information on using the ADDRESS AOF OPS/REXX host environment to
programmatically control and create AOF rules, see the Command and Function
Reference.

AOFINITREXX Parameter

The recommended method for automatically enabling AOF rules at CA OPS/MVS
initialization is to set the auto-enable flag, which is set in the ISPF directory of each rule
in the rule data set. CA OPS/MVS checks the flag during initialization and enables those
rules that have this flag set.

An alternative is to use the CA OPS/MVS AOFINITREXX parameter. This parameter
specifies the name of an OPS/REXX program that gets control before the AOF process in
CA OPS/MVS initializes. That OPS/REXX program can use the ADDRESS AOF host
environment to enable your rules. If you are using a product that may modify the ISPF
directory statistics of your AOF rules data set, such as CA Endevor SCM, then you must
use the AOFINITREXX parameter to specify the name of the OPS/REXX program that
enables your rules.

Note: For more information, see the Parameter Reference.

Process Modified AOF Rules

When CA OPS/MVS enables a rule in the production AOF environment, it validates
syntax, compiles the rule, and then loads the compiled rule into the CA OPS/MVS
address space for execution.

This means that if you edit your rules from native ISPF-that is, outside of the ISPF/PDF
editor in OPSVIEW option 4.5-you need to disable then re-enable the rule to process the
changes. Also, when preparing to rename a rule member, you must first disable the rule,
rename it, and then re-enable it after renaming. If the modified rule is auto-enabled,
you must reset the auto-enable flag.

Execution of Enabled Rules

The following sections discuss how to control the execution of enabled rules.

Protect Against Rule Errors

The AOF provides ways to protect against common programming problems in rules.

To protect against rule errors, you can set limits to protect against runaway (endlessly
looping) rules and other programming errors.

Execution of Enabled Rules

Chapter 4: Building and Controlling AOF Rules 55

Parameters for Setting Global AOF Rule Limits

The following CA OPS/MVS parameters affect all AOF rules:

AOFMAXCLAUSES and REXXMAXCLAUSES (REQ rules only)

Limits the number of OPS/REXX clauses that can execute in one rule invocation.

Default: 10000 and 1000000 respectively

AOFMAXSAYS and REXXMAXSAYS (REQ rules only)

Limits the number of OPS/REXX SAY statements in one rule invocation.

Default Values: 1000 and 100000 respectively

AOFMAXCOMMANDS and REXXMAXCOMMANDS (REQ rules only)

Limits the number of host commands that can execute in one rule invocation.

Default Values: 100 and 100000 respectively

AOFMAXSECONDS and REXXMAXSECONDS (REQ rules only)

Limits the amount of elapsed time that a rule has to execute for each invocation.

Default Values: 10 and unlimited respectively

AOFFIRELIMIT

Limits the number of times that a rule can execute in one minute. A value of 0 turns
limit checking off (both globally and at the rule level).

Default Value: 10000

AOFLIMITDISABLE

A YES value disables a rule if the AOFFIRELIMIT limit has been reached. A NO value
temporarily disables the rule until the AOFFIRELIMIT interval has expired.

Default Value: NO

MESSAGEMAX

Limits the number of OPSx messages issued on behalf of some work done by CA
OPS/MVS.

Default Value: 1000

COMMANDMAX

Determines the total number of commands that CA OPS/MVS can issue per second.

Default Value: 200

Depending on the logic that you implement in your AOF rules, you may need to increase
the default values of these parameters. For details, see the Parameter Reference.

Execution of Enabled Rules

56 AOF Rules User Guide

Set Limits for Individual Rules

You can override some of the AOF rule limit values for any rule section.

To set limits for individual rules

1. Use the OPS/REXX OPTIONS statement in that rule section.

Since the limit values are only changed when the OPTIONS statement is executed,
OPTIONS should be one of the first statements executed in the rule section.

Note: For more information about the OPS/REXX OPTIONS instruction, see the chapter
“Using OPS/REXX” in the User Guide.

How Multiple Rules Execute in Response to a Single Event

You can write any number of rules that respond to a single event. Except for time rules
with exactly matching event criteria, rules execute in a predictable order, as shown:

1. Rules with the most specific event criteria are tested first.

For example, message rules with most specific to least specific event specifiers are
tested in this order:

■ IST020I (Seven significant characters-most specific)

■ IST*I (Four significant characters-less specific)

■ IST* (Three significant characters-least specific)

2. Event specifiers containing the same number of significant characters are tested in
the order of longest prefix length.

For example, if three event specifiers all contain six significant characters, they are
tested in this order:

■ IST02*I (Five-character prefix)

■ IST0*0I (Four-character prefix)

■ IST*20I (Three-character prefix)

3. Rules containing identical event specifiers are tested in unpredictable order. If you
want the rules to execute in a particular order, then combine them into a single
rule.

However, do not combine unrelated rules because doing so makes applications
difficult to manage.

Note: If you have to continually rely on the above executing order, you may be
developing an ineffective application. You should incorporate the logic of the multiple
rules into one rule.

Execution of Enabled Rules

Chapter 4: Building and Controlling AOF Rules 57

ABENDLOG Automation

ABENDLOG demonstrates how to collect an event (the logic uses IEF450I abend
MLTWOs), store it in an OPS/MVS RDF table, and then offload the saved data into a
sequential data set.

This type of automation creates reports with specific events. Utilization of the RDF table
as an initial repository eliminates the possibility of bottlenecks within the automation,
which occur when attempting to write/save each event directly to the sequential data
set.

Chapter 5: Code and Debug AOF Rules 59

Chapter 5: Code and Debug AOF Rules

This section contains the following topics:

Coding Guidelines (see page 59)
Debugging Techniques (see page 64)

Coding Guidelines

The following sections discuss tools, procedures, and other pertinent information to
help you create effective AOF rules.

Note: For information on how to implement common coding guidelines, see the CA
OPS/MVS User Guide.

Automation Tools

CA OPS/MVS provides a variety of tools designed to help you build effective applications
for automating all areas of your system environment. Understanding exactly what these
tools can do is crucial when you build your AOF rules. Take time to familiarize yourself
with the OPS/REXX built-in functions and OPS/REXX host environments because they are
the primary tools that you use when creating AOF rules.

Note: For complete details of each of the OPS/REXX built-in functions and OPS/REXX
host environments, see the Command and Function Reference. For an overview of the
automation tools provided by the CA OPS/MVS base and optional components, see the
User Guide.

Coding Guidelines

60 AOF Rules User Guide

How to Add Comments in AOF Rules

Good structured REXX code begins with detailed comments. Comments can assist those
who review the rule and can help in debugging, if necessary.

Create a detailed comment model that can be implemented in all of your AOF rules.

Include detailed comments as follows:

■ At the beginning of each rule that fully describe the following:

– The logic of the rule

– The variables

– Any related OPS/REXX programs

■ In the logic of the rule.

REXX Functions and Routines in AOF Rules

The User Guide and Command and Function Reference completely outline the
differences of various standard REXX instructions and functions as they are used in any
OPS/REXX environment, such as a program running in a CA OPS/MVS OSF TSO server or
in an AOF rule.

The following are special guidelines for the SAY instruction, stem variables, and external
subroutines.

How to Use the SAY Instruction

The destination of a SAY-generated message is different among rule types and often
even among sections of a rule.

The only logical use of the SAY instruction is as follows:

■ Direct message traffic to a user from a request rule or an OPS/REXX program
running in the address space of that user.

■ Debugging purposes, such as dumping the contents of a variable.

When you need to issue a message to a system console, consoles, or even directly to the
SYSLOG, always use the OPS/REXX ADDRESS WTO host environment-not the SAY
instruction. Also, you can use the OPS/REXX OPSSEND built-in function in rules to
directly send messages only to the OPSLOG. These tools are far more effective than the
SAY instruction because you have complete control of where the messages are directed.

Coding Guidelines

Chapter 5: Code and Debug AOF Rules 61

Reference a Stem Variable in an INTERPRET Statement or VALUE Function

If a REXX INTERPRET statement or VALUE function references a stem variable that is
represented as an OPS/REXX global variable (for example, GLVTEMP1.SomeName or
GLOBAL.SomeName) or an AOF environmental variable applicable to the current rule
(for example, MSG.TEXT or CMD.TEXT), then the stem variable is resolved only if a
variable that has the same stem is directly referenced somewhere else in the rule
section, even if that section is never executed.

Example: Stem Variable in an Interpret Statement

The value of the MSG.TEXT variable in the following example is “Test for OPS/MVS”.

■ In this rule:

)MSG TEST

)PROC

interpret "say msg.text"

return "NOACTION"

The result of the SAY instruction in the INTERPRET statement is:

OPS1000I MSG.TEXT

■ In this rule, there is a direct reference to the msg. stem (msg.id) in the)PROC
section:

)MSG TEST

)PROC

interpret "say msg.text"

return "NOACTION"

NeverExecuted = msg.id

The result of the SAY instruction in the INTERPRET statement is:

“Test for OPS/MVS”

Use External Subroutines

When enabling a rule, any referenced external subroutines called in AOF rules are
compiled and placed in memory with the rule itself.

To use external subroutines

1. Change an external subroutine

2. Disable and re-enable the calling rule.

■ The change takes effect.

■ The AOF searches for external subroutine references in this order:

a. The current rule set or the data set containing the rule

b. The SYSEXEC concatenation of the OPSMAIN started task

Coding Guidelines

62 AOF Rules User Guide

Interactive Automation or Automation that Requires Waiting

A powerful feature of AOF rules is the ability to process inline, or synchronously, as an
event occurs. Such realtime automation is possible because AOF rules execute in the
address space from which an event occurred. Furthermore, the design of the OPS/REXX
functions and host environments used in AOF rules not only lets you synchronously
issue WTOs and system commands, but obtain vital system-related data needed to
make programmatic decisions as an event occurs.

The only type of automation that you cannot perform in rules is interactive automation
or automation that requires waiting. Examples are:

■ Issuing a WTOR to a console and needing to interrogate the reply.

Note: If no reply interrogation is needed, then issue the WTOR directly from the
rule.

■ Issuing a z/OS or UNIX System Services command and needing to interrogate the
command output.

Note: If no command response interrogation is needed, then issue the command
directly from the rule. Also, verify that no OPS/REXX built-in function exists for the
type of command you are attempting to interrogate. For example, to see if a job is
active, you can use the synchronous OPSTATUS built-in function in the rule, rather
than invoking an OPS/REXX program in a server to issue the z/OS DISPLAY ACTIVE
command.

■ Any type of file I/O.

■ A cross-system request through the CA OPS/MVS MSF facility that causes output to
be retrieved.

Coding Guidelines

Chapter 5: Code and Debug AOF Rules 63

You can perform automation of this type by scheduling an OPS/REXX program to a CA
OPS/MVS server. Use the OPS/REXX ADDRESS OSF host environment, as shown in this
example:

)MSG IST521I

)PROC

/* React to GBIND failures if the from node is A45PROD. */

/* The logic of this rule simply interrogates the message */

/* text to see if this is a GBIND failure for the A45PROD */

/* node. If it is, then we need to trigger an EXEC called */

/* IST521I to run in an OSF TSO server. This is needed */

/* because we need to issue VTAM commands and interrogate */

/* the command output, and waiting can't be done from */

/* within the AOF rule environment. */

/* */

/* IST521I GBIND failed for ISTCOS from A45PROD to A04X99 */

FROMNODE = WORD(MSG.TEXT,7)

TONODE = WORD(MSG.TEXT,9)

if FROMNODE ¬= 'A45PROD' then /* NOT A45PROD */

 RETURN

/* Trigger OPS/REXX program IST521I in OPSOSF TSO server */

/* passing it the nodes as arguments. IST521I would be */

/* located in the OPSEXEC or SYSEXEC concatenation of the */

/* OPSOSF procedure. */

ADDRESS OSF

"OI PROGRAM(IST52I1) ARG("NODE1 NODE2") "

Note: For details on calling OPS/REXX programs, see the Command and Function
Reference.

More information:

Coding Each AOF Rule Type (see page 69)

Logic in Automated Applications

As you design your automated applications, avoid inefficient logic for triggering rules.
Specifically, you want to avoid the triggering of an AOF rule as a result of an action taken
by another AOF rule.

For example, do not issue a command in a message event rule (MSG) using the ADDRESS
OPER host environment, and then try to have a command event (CMD) trigger on the
command created by the ADDRESS OPER command.

Debugging Techniques

64 AOF Rules User Guide

Similarly, do not implement logic to trigger a MSG rule by an ADDRESS WTO host
environment instruction that is issued by other AOF rules or OPS/REXX programs.
Attempting to code logic in rule A that causes rule B to execute, and then having rule C
execute on logic performed by rule B is not only confusing to maintain, but may also
cause CA OPS/MVS to use process blocks unnecessarily. The process blocks are crucial to
AOF processing and other CA OPS/MVS components.

If you have a piece of common logic that needs to be performed by various AOF rules
and requires no waiting, then invoke this code as a REXX external subroutine.

Events Specified with the Wildcard Character

Many AOF rule types let you use the wildcard character (*) to specify events, for
example)MSG * or)CMD *.

Performance may be degraded in CA OPS/MVS and the address space that generates
the event if a rule:

■ Uses the generic specifier (*)

■ Contains a)PROC section that references either the OPS/REXX OPSVALUE function
or OPS/REXX ADDRESS SQL host environment

■ Contains lengthy programmatic logic

For example, the rule containing)MSG * will execute for every message on the system,
including hard-copy messages and any message generated by any CA OPS/MVS facility
(such as IOF) that you may have implemented.

More information:

Coding Each AOF Rule Type (see page 69)

Debugging Techniques

CA OPS/MVS has several tools and techniques you can use to debug problems in your
AOF rules.

For debugging information for each type of AOF rule and additional information on the
following parameters, see the chapter “Coding Each AOF Rule Type (see page 69).”

Debugging Techniques

Chapter 5: Code and Debug AOF Rules 65

OPSLOG Facility

The CA OPS/MVS OPSLOG facility is a good source of information when debugging
problems with your automated applications.

OPSLOG PROFILE

This command provides you with filtering capabilities that let you drill down to
specific events.

OPSLOG DISPLAY

This command lets you view valuable internal data of all events such as the
following:

■ route codes

■ job name

■ job ID

■ originating consoles

■ event types

Depending on the logic implemented in your rules, the values in these columns can
be compared to event variables that you are using in the rule.

The OPSLOG also provides an audit trail of all CA OPS/MVS activity, including messages
that may indicate various execution errors in your applications. These messages begin
with OPx where x is the fourth character of the subsystem ID of your production CA
OPS/MVS, for example, S for the default subsystem OPSS.

Becoming proficient with these OPSLOG tools will help you to debug your applications
quickly.

Note: For more information on the OPSVIEW OPSLOG option, see the OPSVIEW User
Guide.

Debugging Techniques

66 AOF Rules User Guide

REXX TRACE Built-in Function

Use the REXX TRACE instruction for debugging logic problems in your AOF rules. The
TRACE instruction is the primary tool for determining why a rule is not doing what you
expect. Use this statement for debugging purposes only. Having the TRACE statement in
frequently triggered AOF rules will flood the OPSLOG with trace messages.

You can view the trace output in the OPSLOG. Depending on the TRACE setting, the
function can resolve expression results, variable values, results of function calls, and so
on. The most commonly used TRACE setting is R, which you can implement in a rule by
coding the REXX statement TRACE R.

Be sure to include the TRACE statement in the appropriate section of the rule you are
debugging. For example, coding a TRACE R statement in the)INIT section causes only
the)INIT section code to produce trace output.

Note: For more details regarding the TRACE instruction, see any REXX guide.

How RULETRACE Parameter Works

More than one AOF rule can process a single system event, which can often lead to
conflicting logic.

To determine if you have multiple AOF rules executing on the same event, display the
following columns in the OPSLOG facility:

COUNT

Displays the number of rules that executed on the event.

RULESET

Displays the rule set and the rule that executed on the event first (or the only rule
that executed if COUNT=1).

By default, the OPSLOG records only the first rule that executed on the event. If COUNT
> 1 and you need to reveal all rules that processed the event, do the following:

1. Set the RULETRACE parameter to ON.

Use this setting for debugging purposes only.

2. Reinitiate the event.

This parameter setting causes the OPSLOG to record each AOF rule that processed the
event.

You can set the RULETRACE parameter manually using OPSVIEW option 4.1.1 or
programmatically using the OPS/REXX OPSPRM built-in function.

Debugging Techniques

Chapter 5: Code and Debug AOF Rules 67

BROWSExxx Parameter

Many of the AOF rules can optionally record event data in the OPSLOG by setting a
unique BROWSExxx parameter. For example, if you are debugging a particular EOJ rule,
you can set the BROWSEEOJ parameter to YES to cause EOJ events to be recorded in the
OPSLOG.

More information:

Coding Each AOF Rule Type (see page 69)

Chapter 6: Coding Each AOF Rule Type 69

Chapter 6: Coding Each AOF Rule Type

This section contains the following topics:

Generic Event Application Program Interface (see page 69)
Automatic Restart Management Rules (see page 115)
Command Rules (see page 125)
Delete-Operator-Message Rules (see page 146)
End-of-Job Rules (see page 153)
End-of-Memory Rules (see page 165)
End-of-Step Rules (see page 172)
Global Variable Rules (see page 183)
Message Rules (see page 192)
OMEGAMON Rules (see page 237)
Request Rules (see page 245)
Screen Rules (see page 252)
Security Rules (see page 261)
Time Limit-Exceeding Rules (see page 319)
Time-of-Day Rules (see page 328)
UNIX System Services Rules (see page 343)

Generic Event Application Program Interface

The CA OPS/MVS generic event Application Program Interface (API) enables CA software
products to trigger CA OPS/MVS events directly. CA OPS/MVS responds to
API-generated events by executing AOF rules. The interface is synchronous, meaning all
rules that execute due to API activity complete execution before control returns to the
application.

Coding guidelines are described for each type of AOF rule. The following specific
information is presented in alphabetical order by rule type for all AOF rule types:

■ Event specifier options

■ Additional implementation steps

■ Available AOF event variables

Traditionally, CA software products triggered a CA OPS/MVS event by issuing a console
message, which was trapped by CA OPS/MVS in the subsystem interface and processed
in a MSG rule. Using the API instead of issuing a console message reduces some of the
overhead associated with messages. In addition, the information passed to CA OPS/MVS
is not constrained by message restrictions such as message length. Generic events are
processed by API type rules.

Generic Event Application Program Interface

70 AOF Rules User Guide

For each event generated by an application, the application provides CA OPS/MVS the
information needed to create a set of environmental variables related to that event.
There is a set of common environmental variables that are generically described in this
chapter. However, each application may provide more detailed information about these
variables in its own documentation set. In addition, see the documentation of the calling
application for details of the application-specific variables that are created by each
application for each event.

More information:

Summary of AOF Coding Guidelines (see page 363)

Install and Activate API Rules

Certain conditions must be satisfied before you can activate API rules.

To activate API rules

1. Set the APIACTIVE parameter to ON in CA OPS/MVS.

The API is enabled. For example, a production image and a few test images.

Note: Use caution when enabling APIACTIVE on more than one system. Duplicate
event processing could occur.

2. Write and enable the API rules.

CA OPS/MVS can now process the application events.

Event Specifier of API Rules

API rules process all events that are generated through the API. To write an API rule, you
must know the name of the event you want to process and the names of the
environmental variables that are available to the rule when the event occurs. The event
name can be up to 10 characters long and is used on the API statement. For example:

)API EVNAME

A rule may or may not be coded for each event name the application creates. Wildcard
matches can be used to allow a single rule to react to more than one event. It is possible
for two or more rules to react to a single event. For example, EVENT1 and EVEN* both
match event EVENT1.

You must know the format of the data that the application places in environmental
variables that are available to your rule, whether each environmental variable is
read-only or read/write, and the format of the data that the application should receive
from CA OPS/MVS.

Generic Event Application Program Interface

Chapter 6: Coding Each AOF Rule Type 71

Initialization, Processing, and Termination Sections of API Rules

API rules follow the general guidelines for coding the initialization, processing, and
termination sections and the various AOF tools that you can use.

More information:

AOF Rule Structure (see page 21)
AOF Rule Tools (see page 29)

RETURN Statements in the)PROC Section of an API Rule

The OPS/REXX RETURN statement has no special meaning in the processing section of
an API rule. The return value has no effect on AOF processing.

Execution Considerations for API Rules

The processing section of an API rule executes in the address space of the application
that generated the event. Therefore, any complex logic or interactive logic that may
cause a wait to occur should be done in an OPS/REXX program that gets scheduled to an
OSF TSO server on behalf of the API rule. For a discussion of dispatching OPS/REXX
programs to OSF TSO servers, see the chapter “Code and Debug AOF Rules (see
page 59).”

The AOF execution limits apply to the processing section of a rule that responds to a
screen event.

More information:

Building and Controlling AOF Rules (see page 49)

Generic Event Application Program Interface

72 AOF Rules User Guide

OPS/REXX Host Environments in the)PROC Section of an API Rule

The)PROC section of an API rule has the following host environments with the following
API rule characteristics. The AOFDEFAULTADDRESS parameter specifies the default host
environment for the API rules.

ADDRESS AOF

Sent to CA OPS/MVS. Does not wait. Output is not returned.

ADDRESS AP

Sent to MSF and then forwarded to the CA Automation Point system. Does not wait.
Output is not returned.

ADDRESS EPI

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS HWS

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS ISPEXEC

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS LXCON

The VM and Linux command requests sent to USS server for execution. Does not
wait. Output is not returned. The List request runs inline and returns VM and Linux
system data in stem variables.

ADDRESS MESSAGE

Sent as a WTO. The AOFDEST parameter specifies the destination.

ADDRESS MIM

The request is sent to CA MIM. Output is returned in stem variables. Error
messages, if any, are returned to an external data queue.

Note: Within a rule, storage demands are limited to 32 K. QNAME and TAPE requests for
all available information can fail. Therefore, name filtration is highly recommended.

ADDRESS MQ

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS NETMAN

Sent to a CA OPS/MVS internal CA Netman request queue to issue MGPT
commands. Does not wait. Output is not returned.

Generic Event Application Program Interface

Chapter 6: Coding Each AOF Rule Type 73

ADDRESS NETMASTR

Sent to CA NetMaster NM for SNA on the local system. Does not wait. Output is not
returned.

ADDRESS OPER

Sent to target console as specified through the OCCONSOLENAME parameters
when no CONNAME operands are present. Output is not returned. Schedule an
OPS/REXX program in a server when a command output interrogation is needed.

ADDRESS OPSCTL

Sent to the specified facility. If the facility is ECF or OSF, does not wait. If the facility
is MSF, slight wait occurs. The external data queue returns the output.

Note: If the command is MSF LIST, no wait occurs.

ADDRESS OPSDYNAM

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS OSF

Schedule TSO commands, CLISTs, or REXX EXECs to CA OPS/MVS OSF TSO servers.

ADDRESS OSFTSL

Schedule TSO commands, CLISTs, or REXX EXECs to CA OPS/MVS OSF TSL servers.

ADDRESS OSFTSP

Schedule TSO commands, CLISTs, or REXX EXECs to CA OPS/MVS OSF TSP servers.

ADDRESS SOF

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS SQL

Does not wait. Processed synchronously for requests that can be satisfied on the
local system. Output is returned in stem variable. Error messages, if any, are
returned to an external data queue.

ADDRESS SYSVIEWE

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS TSO

Sent to an OSF TSO server. Does not wait. Output is not returned.

Generic Event Application Program Interface

74 AOF Rules User Guide

ADDRESS USS

Sent to a USS server. Does not wait. Output is not returned. Schedule an OPS/REXX
program in a server if a command output interrogation is needed.

ADDRESS WTO

Does not wait. Output is sent to specified (or default) destination. When attempting
a WTOR, host command is sent to a TSO server for execution. The response is then
returned to the server. Schedule an OPS/REXX program in a server if a WTOR
response interrogation is needed.

More information:

Code and Debug AOF Rules (see page 59)

Common API Event Variables

The following common API event variables are supplied to every API rule:

API.APPLICATION

The application identifier string as defined by the application and registered with CA
OPS/MVS development to ensure uniqueness

Data Type: Character, read-only

Sample Value: PDSMAN

API.COLOR

The color that certain messages will display in OPSLOG Browse

Data Type: 1-byte binary (unprintable), read/write

Sample Value: '00'X

Note: For additional information on setting this environmental variable, see the
chapter “OPS/REXX Built-In Functions” in the Command and Function Reference.

API.ID

When a rule executes due to a wildcard match, API.ID can be used to determine
which event caused the rule to execute.

The complete event name that the rule is processing

Data Type: Character, read-only

Sample Value: XXXXCLOSE

Generic Event Application Program Interface

Chapter 6: Coding Each AOF Rule Type 75

API.LEVEL

A 1- to 8-character string provided by the application. One intended purpose of this
variable is to allow the application to differentiate between multiple copies of the
application executing on the same system, if it is possible to do so. Otherwise, the
application may or may not provide information in this variable.

Data Type: Character, read-only

Sample Value: 1

API.USER

Before AOF processing, this variable is initialized to binary zeros. It is then passed to
each rule that executes for the same API event; each rule can look at or change the
variable contents before passing the variable to the next rule for the API event.

The primary purpose of the USER variable is to provide a method to pass a small
amount of data between the rules. This data may be in any format. The USER field
may also be used for filtering in the OPSLOG; however, USER data used for OPSLOG
filtering must be uppercase and displayable.

An 8-byte variable providing communication between rules that execute for the
same API event. The variable can contain any installation data that these rules
need, and it can store a character string displayable through OPSLOG Browse.

Data Type: User-defined, read/write

API.VERSION

A 1- to 8-character string provided by the application to identify the version of the
application that generated the API event. Note that different versions of the
application may provide different environmental variables. In such cases, the rule
writer can use this variable to determine which application version-specific
environmental variables to use.

Data Type: Character, read-only

Sample Value: 05.01

API.TEXT

This variable is not usually used by the API rules. Its primary purpose is to provide a
readable explanation of the event in the OPSLOG.

The first 128 characters of data of this variable are displayed in OPSLOG.

Determined by the application

Data Type: Character, read-only

Sample Value: XXXX EVENT RECORDED 10MAY2011

Generic Event Application Program Interface

76 AOF Rules User Guide

API.suffix—Specific API Event Variables

In addition to the common API event variables, each application that uses the API
defines its own application-specific variables.

These variables have the following format:

API.suffix

suffix

Specifies a length of 1 to 15 characters.

The names and characteristics of the specific API event variables are supplied in
documentation provided by the application. There may be a few specific variables or as
many as 256. Individual variables may hold up to 4096 bytes in length, and the total
data length allowed by the API is 32768 bytes per event. Specific API variables may be
read-only or read/write variables.

Debug an API Rule

The following are additional API rule debugging techniques:

■ To enable error messages from the API processor, set OPSPARM DEBUGAPI YES .

■ To view all API events, set the CA OPS/MVS BROWSEAPI parameter to YES and the
API event profile of your OPSLOG display to Y. To see recorded API events with
these parameters set, display the OPSLOG EVENT column.

■ If OPSLOG is not recording API events, see Install and Activate API Rules (see
page 70).

More information:

Code and Debug AOF Rules (see page 59)

SOF API Rules

The Switch Operations Facility (SOF) generates API events to report status changes to CA
OPS/MVS, which responds by either logging the information or taking action in response
to the information. You can write)API rules that specify how CA OPS/MVS responds to
API-generated events.

SOF produces the following two events through the API:

■ OPSOF001-Status change for devices

■ OPSOF002-Status change for device paths

Generic Event Application Program Interface

Chapter 6: Coding Each AOF Rule Type 77

OPSOF001 Event—Device Status Change

The OPSOF001 event indicates that a switch operation has resulted in a status change
for one or more devices. The API.TEXT environmental variable contains the details of the
change.

This event has the following format:

OPSOF001 cmd status dev1 dev2

cmd

Identifies the name of the switch command that caused the status change.

Valid Values: BLOCK, UNBLOCK, CONNECT, DISCONNECT, ALLOW, PROHIBIT, SYNC,
or ACTIVATE

status

Specifies the new status for the devices, which can be one of the following:

■ ONLINE indicates that the device is now online.

■ OFFLINE indicates that the device is now offline.

■ AVAILABLE indicates that the device is now available, but was not brought
online by SOF because either the NOVARY option was specified or the device
does not match any of the device classes specified on the VARYCLASS option.

dev1

Specifies the device number for the first device to undergo a status change.

dev2

Specifies the device number for the last device to undergo a status change. When
only a single device is affected, dev2 and dev1 will be the same.

Generic Event Application Program Interface

78 AOF Rules User Guide

OPSOF002 Event—Device Path Status Change

The OPSOF002 event indicates that a switch operation has resulted in a status change
for one or more device paths. The API.TEXT environmental variable contains the details
of the change.

This event has the following format:

OPSOF002 cmd status chpid dev1 dev2

cmd

Identifies the name of the switch command that caused the status change.

Valid Values: BLOCK, UNBLOCK, CONNECT, DISCONNECT, ALLOW, PROHIBIT, SYNC,
or ACTIVATE

status

Specifies the new status for the device paths. The status can be one of the
following:

■ ONLINE indicates that the device is now online.

■ OFFLINE indicates that the device is now offline.

■ AVAILABLE indicates that the device is now available, but was not brought
online by SOF because the NOVARY option was specified.

chpid

Specifies the ID of the channel path that changed status.

dev1

Specifies the device number for the first device to undergo a status change.

dev2

Specifies the device number for the last device to undergo a status change. When
only a single device is affected, dev2 and dev1 will be the same.

OPSOF003 Event—Connectivity Command Accepted

The OPSOF003 event indicates that a switch operation command, which can alter device
or path status, has been accepted. The API.TEXT environmental variable contains the
details of the command.

This event has the following format:

OPSOF003 origin cmd operands

origin

Identifies the origin of the command, that is, the console or TSO user that issued
the command.

Generic Event Application Program Interface

Chapter 6: Coding Each AOF Rule Type 79

cmd

Identifies the name of the command.

operands

Provides the full text of the command operands.

How OPSOF001 Rule Selectively Varies Devices Online

Event OPSOF001 indicates that a switch operation has resulted in a status change for
one or more devices.

When SOF makes connectivity changes, the following process occurs:

1. The generic event OPSOF001 is issued for each contiguous block of devices affected
by the command.

2. The rule looks for devices which are now available.

This indicates that the one or more paths for the device should now be functional,
but the devices were not brought online by SOF.

3. The rule then examines the device numbers and issues a VARY ONLINE command
for only devices falling within a specific range of device numbers, for example,
8902-8907.

Example: API Rule for the OPSOF001 Event

The following sample API rule selectively varies online devices affected by a CA
OPS/MVS SOF switch command.

)API OPSOF001

)PROC

 DEVSTAT = word(API.TEXT, 3)

 LOWDEV = x2d('8902')

 HIDEV = x2d('8907')

 if DEVSTAT == 'AVAILABLE' then do

 DEV1 = x2d(word(API.TEXT,4))

 DEV2 = x2d(word(API.TEXT,5))

/*--*/

/* If no devices are in our range, we have nothing to do, so quit. */

/*--*/

 if DEV1 > HIDEV | DEV2 < LOWDEV then return 0

/*--*/

/* Remove device numbers that are too low */

/*--*/

 if DEV1 < LOWDEV then DEV1 = LOWDEV

Generic Event Application Program Interface

80 AOF Rules User Guide

/*--*/

/* Remove device numbers that are too high */

/*--*/

 if DEV2 > HIDEV then DEV2 = HIDEV

/*--*/

/* Construct the VARY command */

/*--*/

 CMD = 'VARY ' || d2x(DEV1,4) || '-' || d2x(DEV2,4) || ',ONLINE'

/*--*/

/* Issue the command */

/*--*/

 address oper "COMMAND('" || CMD || "')"

 end

 return 0

Hardware Event API Rules

CA OPS/MVS Hardware Services (HWS) interfaces with the Hardware Interface Service
to deliver hardware event notifications and their associated data as OPS API events. You
can write)API rules that specify how CA OPS/MVS responds to API-generated hardware
events. Every hardware API event ID begins with the prefix HWS. This allows you to
write API rules for specific hardware events or a single rule for all events (example:)API
HWS*)

For more information on Hardware Services, see Hardware Services in the CA
OPS/MVSEvent Management and Automation Administration Guide.

Note: Generally, HWS hardware events should only be received and automated by one
CA OPS/MVS in the hardware (HMC) network to avoid duplicate automation of events.

Entity-related Hardware Events

The following entity-related hardware events are available through API rules. An entity
is an object within the hardware (HMC) network such as a CPC, Image, or Activation
Profile.

Activation Profile Change

An activation profile has been changed.

Application Ended

An application has ended

Application Started

An application has started

Attribute Added/Updated

An attribute has been added/updated for an entity.

Generic Event Application Program Interface

Chapter 6: Coding Each AOF Rule Type 81

Capacity Change

A capacity change has been detected.

Capacity Record

A capacity record event has been detected.

Command Response

A command response has been received for a command issued against an entity.

Disabled Wait

A disabled wait has been detected.

Entity Exception

An entity exception has been detected.

Hardware Communication Error

A hardware communication error has occurred.

Hardware Message

A hardware message has been issued.

Hardware Message Delete

A previously issued hardware message has been deleted.

New Child

The entity has a new child.

New Entity

A new entity has been detected.

Operating System Message

An operating system message has been issued.

Power Change

A power change has been detected.

Security Event

A security event has occurred.

Status change

A status change has occurred.

Generic Event Application Program Interface

82 AOF Rules User Guide

System-related Hardware Events

The following system-related hardware events are available through the API. A system
event relates to the infrastructure providing hardware events rather than to the entities
in the hardware network. For example, system events may indicate a change in the
status of the underlying interface used by the Hardware Interface Service.

Hardware Interface Up

An underlying hardware interface used by the Hardware Interface Service has
become active. For example, this event will be produced when the Hardware
Interface Service detects that BCPii has become active.

Hardware Interface Down

An underlying hardware interface used by the Hardware Interface Service has
terminated. For example, this event will be produced when the Hardware Interface
Service detects that BCPii has terminated.

Topology Complete

The Hardware Interface Service has completed its hardware topology discovery.

Topology Error

The Hardware Interface Service encountered an error during topology discovery.

OPS/REXX Rule Variables For Hardware Events

All variables listed below are available for all event types. However, some variables are
not applicable for all events. If a variable represents event data that is not applicable for
a particular event, the variable will have a zero length for that event.

Generic Event Application Program Interface

Chapter 6: Coding Each AOF Rule Type 83

API.ALARMMSGFLG

Description

Indicates alarm message.

Data Type

Character, read-only, 1 character.

Values

0

Not an alarm message.

1

Alarm message.

Example

0

Applicable events

HWSOSMSG

API.APPLICATION

Description

Name of application providing the event.

Data Type

Character, read-only, up to 8 characters.

Values

Application name

Example

HIS

Note: HIS is the Hardware Interface Service

Applicable events

All events

Generic Event Application Program Interface

84 AOF Rules User Guide

API.CAPCHVAL

Description

Capacity change value.

Data Type

Character, read-only, up to 10 characters.

Values

Capacity change value.

Example

2

Applicable events

HWSCAPCHG

Capacity Change Values

0

FENCED_BOOK

1

DEFECTIVE_PROCESSOR

2

CONCURRENT_BOOK_REPLACE

3

CONCURRENT_BOOK_ADD

4

CHECK_STOP

5

CHANGES_ALLOWED

6

CHANGES_NOT_ALLOWED

Generic Event Application Program Interface

Chapter 6: Coding Each AOF Rule Type 85

API.CAPRECVL

Description

Capacity record value.

Data Type

Character, read-only, up to 10 characters.

Values

Capacity record value

Example

3

Applicable events

HWSCAPREC

Capacity Record Values

0

RECORD_ADD

1

RECORD_DELTA

2

RECORD_DELETE

3

RECORD_ACCOUNTING

4

ACTIVATION_LEVEL

5

PRIORITY_PENDING

6

RECORD_OTHER

Generic Event Application Program Interface

86 AOF Rules User Guide

API.CMDLASTFLG

Description

Indicates command last.

Data Type

Character, read-only, 1 character.

Values

0

Flag is off.

1

Flag is on.

Example

0

Applicable events

HWSCMDRESP

API.CMDRC

Description

Command return code.

Data Type

Character, read-only, up to 10 characters.

Values

Return Code

Example

12

Applicable events

HWSCMDRESP

Generic Event Application Program Interface

Chapter 6: Coding Each AOF Rule Type 87

API.CMDTYPE

Description

Command type.

Data Type

Character, read-only, up to 10 characters

Values

Command type

Example

5

Applicable events

HWSCMDRESP

API.DWPARTID

Description

Disabled wait partition ID.

Data Type

Character, read-only, up to 10 characters

Values

Partition ID

Example

4

Applicable events

HWSDBLWAIT

API.DWPROCNUM

Description

Disabaled wait processor number

Data Type

Character, read-only, up to 10 characters

Values

Processor number

Example

1

Applicable events

HWSDBLWAIT

Generic Event Application Program Interface

88 AOF Rules User Guide

API.DWPSW

Description

Disabled wait PSW.

Data Type

Character, read-only, up to 32 characters.

Values

PSW

Example

00020000000000000000000000009003

Applicable events

HWSDBLWAIT

API.DWSERIALNO

Description

Disabled wait serial number.

Data Type

Character, read-only, up to 16 characters

Values

Serial number

Example

00001316F574

Applicable events

HWSDBLWAIT

Generic Event Application Program Interface

Chapter 6: Coding Each AOF Rule Type 89

The variables API.NUMENTRIES, API.ELEVELx, API.ETYPEx, and API.ENAMEx describe the
hierarchy of entities for an event. For each entity related event, the entity level, type
and name are returned for the entity directly related to the event. In addition, the entity
level, type and name are returned for each entity in the event entity hierarchy. That is,
the level, type and name are returned for each parent, grandparent, and any other
entity of the event entity. There can be up to 10 entities defined in the entity hierarchy.

Variables API.ELEVELx, API.ETYPEx, and API.ENAMEx where x is 1 through 10 are always
defined for each event.

Variable API.NUMENTRIES indicates how many entities are actually returned in the
hierarchy.

API.ENAME1, APIETYPE1, and APIELEVEL1 will contain the information for the entity
which is directly related to the event. Starting at API.ENAME2, API.ETYPE2, and
API.ELEVEL2, the variables will contain information related to the parent, grandparent,
and any other entity. The entities go up the topology hierarchy.

Example

If API.NUMENTRIES=2, two entities are returned in the hierarchy. Variables
API.ELEVEL1, API.ETYPE1, API.ENAME1, API.ELEVEL.2, API.ETYPE2, and API.ENAME2
will be filled in with entity information.

Variables API.ELEVELx, API.ETYPEx, and API.ENAMEx where x is 3-10 will have a zero
length.

API.ELEVELx

Description

Level of entity in the returned entity hierarchy.

Data Type

Character, read-only, up to 10 characters.

Values

Level of entity in the hierarchy

Example

3

Applicable events

Entity related events

Generic Event Application Program Interface

90 AOF Rules User Guide

API.ENAMEx

Description

Name of entity in the returned entity hierarchy

Data Type

Character, read-only, up to 32 characters.

Values

Name of entity

Example

IBM500EX.SY01

Applicable events

Entity related events

Generic Event Application Program Interface

Chapter 6: Coding Each AOF Rule Type 91

API.ETYPEx

Description

Type of entity in the returned entity hierarchy.

Data Type

Character, read-only, up to 10 characters.

Values

Entity type values:

1

Enterprise or Root

5

Installation or Data Center

10

Ensemble

12

Machine

15

CPC

16

zBX

20

LPAR

21

Capacity Record

22

Reset Activation Profile

23

Image Activation Profile

24

Load Activation Profile

30

Sysplex

31

System

Generic Event Application Program Interface

92 AOF Rules User Guide

32

Coupling Facility

Example

15

Applicable events

Entity related events

API.EVDATE

Description

Event date.

Data Type

Character, read-only, 10 characters.

Values

Format: YYYY/MM/DD

Example

2011/04/01

Applicable events

All events.

API.EVDESC

Description

Event description.

Data Type

Character, read-only, up to 60 characters.

Values

Each event has its own description. See the values listed with individual events
in the Event ID, Associated Entity, and Description Table below.

Example:

ENTITY STATUS CHANGE

Applicable events

All events.

Generic Event Application Program Interface

Chapter 6: Coding Each AOF Rule Type 93

API.EVLEVEL

Description

Entity hierarchy level.

Data Type

Character, read only, up to 10 characters.

Values

0 for system related event, otherwise level of event entity in hierarchy.

Example

6

Applicable events

All events

API.EVTIME

Description

Event time

Data Type

Character, read-only, up to 11 characters.

Values

Format: HH:MM:SS.TH

Example

10:53:56.97

Applicable events

All events

Generic Event Application Program Interface

94 AOF Rules User Guide

API.EXCSTATE

Description

Exception State.

Data Type

Character, read-only, 1 character.

Value

0

Not exception state

1

Exception state

Example

0

Applicable events

HWSENTEXC

API.HELDMSGFLG

Description

Indicates held message

Data Type

Character, read-only, 1 character

Values

0

Not a held message

1

Held message

Example

0

Applicable events

HWSOSMSG

Generic Event Application Program Interface

Chapter 6: Coding Each AOF Rule Type 95

API.HWIFNAME

Description

Hardware I/F name. This is the name of the underlying hardware interface
being used by the application in API.APPLICATION.

Data Type

Character, read-only, up to 16 characters.

Values

Name of underlying interface.

Example

BCPII

Applicable events

HWSINTFUP, HWSINTFDWN

API.ID

Description

Name of the event.

Data Type

Character, read-only, up to 10 characters.

Values

Each event has its own event ID. The event ID is the value used to match API
rules. See the values listed with individual events in the Event ID, Associated
Entity, and Description Table below. All event IDs start with the HWS prefix.

Example

HWSSTATCHG

Applicable events

All events.

Generic Event Application Program Interface

96 AOF Rules User Guide

API.IMGLIST

Description

Image List

Data Type

Character, read-only, up to 32000 characters.

Values

List of images

Example

TS03 TS12 TS22 TS30 COUPLEA1 COUPLEA2

Applicable events

HWSHWMSG, HWSHWMSGD

API.ITOPIP

Description

Indicates event was issued while topology initialization was in progress by
application in API.APPLICATION.

Data Type

Character, read-only, 1 character.

Values

0

Topology initialization not in progress when event issued

1

Topology initialization was in progress when event issued

Example

0

Applicable events

HWSNEWCHLD, HWSNEWENT

Generic Event Application Program Interface

Chapter 6: Coding Each AOF Rule Type 97

API.LEVEL

Description

Reserved for future use.

Data Type

Character, read-only, up to 8 characters.

Values

Text indicating reserved field.

Example

RESERVED

Applicable events

All events.

API.MSGDATE

Description

Message Date

Data Type

Character, read-only, 8 characters.

Value

Format: YYYYMMDD

Example

20110402

Applicable events

HWSOSMSG

API.MSGID

Description

Message ID

Data Type

Character, read-only, up to 16 characters

Values

ID of message

Example

187898401

Applicable events

HWSOSMSG

Generic Event Application Program Interface

98 AOF Rules User Guide

API.MSGTEXT

Description

Message Text.

Data Type

Character, read-only, up to 32000 characters.

Values

Text of message. May include multiple lines separated by the EBCDIC ‘NL’
(X’15’) character. API.MTNUML specifies the number of lines and can be used
in conjunction with the ‘NL’ character to parse into individual lines if desired.
The ‘NL’ character is only present if there are two or more lines.

Example

The reset profile RESETSY01. was changed.

Applicable events

HWSOSMSG, HWSHWMSG, HWSSECUR

API.MSGTIME

Description

Message Time

Data Type

Character, read-only, 8 characters.

Value

Format: HHMMSSTH

Example

17015043

Applicable events

HWSOSMSG

Generic Event Application Program Interface

Chapter 6: Coding Each AOF Rule Type 99

API.MSGTS

Description

Message time stamp.

Data Type

Character, read-only, up to 32000 characters.

Values

Time stamp

Example

03-28-2011 16:14:03:806

Applicable events

HWSHWMSG, HWSSECUR

API.MTNUML

Description

Number of lines in API.MSGTEXT.

Data Type

Character, read-only, up to 10 characters.

Values

0 if no message text is included with the event, 1 or more if message text is
included.

Example

2

Applicable events

HWSHWMSG, HWSOSMSG, HWSSECUR

Generic Event Application Program Interface

100 AOF Rules User Guide

API.NEWETYPE

Description

New entity type.

Data Type

Character, read-only, up to 10 characters.

Values

See Values under API.ETYPEx (see page 91)

Example

15

Applicable events

HWSNEWCHLD, HWSNEWENT

API.NEWMSGFLG

Description

Indicates new message.

Data Type

Character, read-only, 1 character.

Values

0

Not a new message.

1

New message.

Example

0

Applicable events

HWSOSMSG, HWSHWMSG

Generic Event Application Program Interface

Chapter 6: Coding Each AOF Rule Type 101

API.NEWNAME

Description

New name.

Data Type

Character, read-only, up to 32 characters.

Values

Name

Example

SY03

Applicable events

HWSNEWCHLD, HWSNEWENT, HWSACTPCHG

API.NEWPMV

Description

New power mode value.

Data Type

Character, read-only, up to 10 characters.

Values

Power mode value

Example

4

Applicable events

HWSPOWCHG

API.NEWPSMA

Description

New power save mode allowed.

Data Type

Character, read-only, up to 10 characters

Values

Power mode allowed.

Example

3

Applicable events

HWSPOWCHG

Generic Event Application Program Interface

102 AOF Rules User Guide

API.NEWSTATUS

Description

New status value.

Data Type

4 byte binary (unprintable), read-only.

Values

See Status Values (see page 102).

Example

'00000002'X

Applicable events

HWSSTATCHG

Status Values

'00000001'X

OPERATING

'00000002'X

NOT_OPERATING

'00000004'X

NO_POWER

'00000008'X

NOT ACTIVATED

'00000010'X

EXCEPTIONS

'00000020'X

STATUS_CHECK

'00000040'X

SERVICE

'00000080'X

LINKNOTACTIVE

'00000100'X

POWERSAVE

'00000200'X

SERIOUSALERT

Generic Event Application Program Interface

Chapter 6: Coding Each AOF Rule Type 103

'00000400'X

ALERT

'00000800'X

ENVALERT

'00001000'X

SERVICE_REQ

'00002000'X

DEGRADED

'01000000'X

STORAGE_EXCEEDED

'02000000'X

LOGOFF_TIMEOUT

'04000000'X

FORCED_SLEEP

'08000000'X

IMAGE_NOT_OPERATING

'10000000'X

IMAGE_NOT_ACTIVATED

'20000000'X

IMAGE_NOT_CAPABLE

API.NUMENTRIES

Description

Number of entries for entity hierarchy.

Data Type

Character, read-only, up to 10 characters.

Values

A number between 0 and 10.

Example

4

Applicable events

All events, but generally 0 for system related events.

Generic Event Application Program Interface

104 AOF Rules User Guide

API.OLDNAME

Description

Old/prior name.

Data Type

Character, read-only, up to 32 characters.

Values

Name

Example

COUPLEA1

Applicable events

HWSACTPCHG

API.OLDPMV

Description

Old power mode value.

Data Type

Character, read-only, up to 10 characters.

Values

Power mode value.

Example

5

Applicable events

HWSPOWCHG

API.OLDPSMA

Description

Old power save mode allowed.

Data Type

Character, read-only, up to 10 characters.

Values

Power mode allowed.

Example

6

Applicable events

HWSPOWCHG

Generic Event Application Program Interface

Chapter 6: Coding Each AOF Rule Type 105

API.OLDSTATUS

Description

Old/prior status value.

Data Type

4 byte binary (unprintable), read-only.

Values

See Status Values (see page 102)

Example

'00000004'X

Applicable events

HWSSTATCHG

API.OPSSSNA

Description

Name of CA OPS/MVS subsystem receiving the event.

Data Type

Character, read-only, 4 characters.

Value

CA OPS/MVS subsystem name.

Example

OPSS

Applicable Events

All events.

API.OSNAME

Description

Operating system instance name.

Data Type

Character, read-only, up to 16 characters.

Values

Name of the operating system.

Example

SY11

Applicable events

HWSOSMSG

Generic Event Application Program Interface

106 AOF Rules User Guide

API.PERMHWEFLG

Description

Indicates permanent hardware error.

Data Type

Character, read-only, 1 character.

Values

0

Not permanent error (temporary error).

1

Permanent error

Example

1

Applicable events

HWSHWCOMER

API.PRMPT

Description

Prompt text.

Data Type

Character, read-only, up to 32,000.

Values

Text of prompt

Example

NULL

Applicable events

HWSOSMSG

Generic Event Application Program Interface

Chapter 6: Coding Each AOF Rule Type 107

API.PRTYMSGFLG

Description

Indicates priority message.

Data Type

Character, read-only, 1 character.

Values

0

Not a priority message.

1

Priority message.

Example

0

Applicable events

HWSOSMSG

API.SYSTEMFLG

Description:

Indicates system or entity related event.

Data Type

Character, read only, 1 character.

Values

 0

 Entity related event.

 1

 System related event.

Example

0

Applicable events

All events.

Generic Event Application Program Interface

108 AOF Rules User Guide

API.TEXT

Description

Text for event.

Data Type

Character, read-only, up to 128 characters.

Values

Order of text fields:

■ Event/Rule ID

■ Event Description

■ Current Entity type

■ Current Entity Name

■ Message text (if any)

Example

HWSSECUR SECURITY EVENT CPC IBM500EX.SY01 The reset profile RESETSY01.
was changed.

Applicable events

All events.

API.VERSION

Description

Version of application identified in API.APPLICATION.

Data Type

Character, read-only , up to 8 characters.

Values

For application HIS (Hardware Interface Service) the version is in the form
VV.MM.RR.

Example

01.00.09

Note: This is example in the format used by the HIS application.

Applicable events

All events.

Generic Event Application Program Interface

Chapter 6: Coding Each AOF Rule Type 109

Event ID, Associated Entity and Description Table

Event Name Event ID
(API.ID value)

Associated Entity
Type

Event Description
(API.EVDESC value)

Activation Profile
Change

HWSACTPCHG CPC/LPAR ACTIVE PROFILE
CHANGED

Application
Ended

HWSAPPEND CPC APPLICATION ENDED

Application
Started

HWSAPPSTRT CPC APPLICATION
STARTED

Attribute
Added/Updated

HWSATRUPDT Any ATTRIBUTES ADDED
OR UPDATED

Capacity Change HWSCAPCHG CPC CAPACITY CHANGED

Capacity Record HWSCAPREC CPC CAPACITY RECORD
CHANGE

Command
Response

HWSCMDRESP CPC/LPAR ENTITY COMMAND
RESPONSE

Disabled Wait HWSDBLWAIT LPAR DISABLED WAIT

Entity Exception HWSENTEXC CPC/LPAR ENTITY EXCEPTION

Hardware
Communication
Error

HWSHWCOMER CPC HARDWARE
COMMUNICATIONS
ERROR

Hardware
Interface Down

HWSINTFDWN N/A SERVER HARDWARE
INTERFACE DOWN

Hardware
Interface Up

HWSINTFUP N/A SERVER HARDWARE
INTERFACE UP

Hardware
Message

HWSHWMSG CPC HARDWARE
MESSAGE ISSUED BY
ENTITY

Hardware
Message Delete

HWSHWMSGD CPC HARDWARE
MESSAGE DELETED

New Child HWSNEWCHLD Any NEW CHILD UNDER
ENTITY

New Entity HWSNEWENT Any NEW ENTITY
CREATED

Operating System
Message

HWSOSMSG LPAR OPERATING SYSTEM
MESSAGE

Generic Event Application Program Interface

110 AOF Rules User Guide

Event Name Event ID
(API.ID value)

Associated Entity
Type

Event Description
(API.EVDESC value)

Power Change HWSPOWCHG CPC POWER CHANGE

Security Event HWSSECUR LPAR SECURITY EVENT

Status Change HWSSTATCHG CPC/LPAR ENTITY STATUS
CHANGE

Topology
Complete

HWSTOPCOMP N/A INITIAL H/W
TOPOLOGY
COLLECTION
COMPLETE

Topology Error HWSTOPERR N/A INITIAL H/W
TOPOLOGY
COLLECTION HAD
ERRORS

Other (See Note) HWSOTHER varies varies

Note: The Other event is generated when CA OPS/MVS receives an unknown event
type. The Other event type is designed to handle new Hardware Interface Service events
that have not yet been defined as their own HWS event type. For example, if the
Hardware Interface Service adds support for a new event and delivers the event
notification to CA OPS/MVS, CA OPS/MVS will see the event and generate it as an
HWSOTHER event with associated event data. Once CA OPS/MVS adds support for the
new event type, it will have its own HWS event type and will no longer fall under the
Other event. Implementing the Other event type in this way allows CA OPS/MVS to
receive and process new events as they become available.

Generic Event Application Program Interface

Chapter 6: Coding Each AOF Rule Type 111

Linux Connector API Rules

CA OPS/MVS Linux Connector interface (LXCON) connects with the Linux Connector
component through a local IP connection. This interface delivers unsolicited message
events from monitored VM and Linux systems as normalized messages that are
processed as CA OPS/MVS API events. Write API rules that specify how CA OPS/MVS can
respond to these Linux and VM events. Typically, the System State Manager (SSM)
component of CA OPS/MVS is used to monitor and control the availability of Linux
systems that run as VM guest computers. The Address LXCON host command can be
used to display any connected VM and Linux systems and to issue commands to the
systems. Every Linux Connector API event ID begins with a common prefix, LX. Write
individual API rules for specific LXCON events or a single rule for all events with the rule
specification:

)API LX*

For more information about the Linux Connector interface and component, see the
Linux Connector Service in the CA OPS/MVS Administration Guide.

Note: Generally, Linux Connector unsolicited message events should only be received
and automated by one CA OPS/MVS per Linux Connector component. This avoids
duplicate automation of events.

The following Linux Connector unsolicited message events are available through API
rules:

Z/VM Messages

Description

LXMSG001I z/VM-node message-type user ID message-text

Example

LXMSG001I ZVM002 MSG POLLGEN NMVM0001 00:34:49 Hello

Z/VM Events

Description

LXEVT001I z/VM-node user ID event-type

Example

LXEVT001I ZVM002 LINUX113 RUNNABLESTATEENABLED

Linux Syslog-ng Messages

Description

LXLOG001I Linux-name z/VM-host facility severity message-text

Example

LXLOG001I LINUX113 ZVM002 user notice logger: Test Message

Generic Event Application Program Interface

112 AOF Rules User Guide

OPS/REXX Rule Variables For Linux Connector Events

These variables are available for all unsolicited VM and Linux message events.

Note: When a variable representing event data is not applicable for that event, the
variable-length is zero.

API.APPLICATION

Description

The name of the application providing the event.

Data Type

Character, read-only, up to eight characters.

Fixed Value

LXC

API.HOSTNAME

Description

The name of the VM or Linux system that issued the unsolicited message.

Data Type

Character, read-only, 1-16 characters.

Example

LINUX113

API.ID

Description

The first word of the unsolicited message text.

Data Type

Character, read-only, 1-10 characters.

Example

LXLOG0001

Generic Event Application Program Interface

Chapter 6: Coding Each AOF Rule Type 113

API.LEVEL

Description

This value is set to the CA OPS/MVS subsystem name that created the API
event.

Data Type

Character, read-only, four characters.

Example

OPSS

API.SYSTYPE

Description

The system type that generated the message.

Data Type

Character, read-only, character

Values

VM

VM or Linux guest computers

LPAR

A Linux guest system that does not support the VMCP command.

INTEL

A Linux system running on an Intel platform

OTHER

A Linux system running on a non-Intel platform

API.TEXT

Description

The complete normalized message text that was passed from the Linux
Connector component. The first 128 characters appear in OPSLOG when the
BROWSELXC parameter is set to YES.

Data Type

Character, read-only, 1-4096 characters.

Example

LXLOG001I LINUX113 ZVM002 user notice logger: Test Message

Generic Event Application Program Interface

114 AOF Rules User Guide

API.VERSION

Description

This value is set to the CA OPS/MVS product version code.

Data Type

Character, read-only, eight characters.

Example

12.00.00

API.VMNODE

Description

The name of the VM system that issued a VM message or the Linux guest VM
system name.

Data Type

Character, read-only, 1-8 characters.

Example

ZVM002

CA Product API Event Types

For information on other CA products that generate API events, please see the
documentation for the desired product.

Automatic Restart Management Rules

Chapter 6: Coding Each AOF Rule Type 115

Automatic Restart Management Rules

An Automatic Restart Management (ARM) rule triggers when the Automatic Restart
Manager component of z/OS attempts to restart an ARM-registered job or started task
after an unexpected termination.

The restart may occur on the same system or on another system in the sysplex if the
termination was due to a complete system failure.

ARM rules provide the ability to:

■ Intercept ARM restart events before the restart occurs.

■ Override JCL or start text by setting the modifiable ARM event variables or by
terminating the restart event.

If System State Manager is being used to manage resources that are using ARM for
restart, ARM rules provide the ability to either:

■ Suppress the ARM restart if System State Manager has already acted to restart the
resource.

■ Allow ARM to proceed and prevent System State Manager from duplicating the
restart action.

Installation Requirements for ARM Rules

To install ARM rules, set the parameters INITARM and ARMRULES to YES. For more
information, see the Parameter Reference.

Automatic Restart Management Rules

116 AOF Rules User Guide

)ARM—Event Specifier of ARM Rules

The following is the format for coding the ARM-event definition section:

)ARM elementnamespec

elementnamespec

Specifies the element name. Follow these guidelines when specifying the character
string:

■ Specify 1 to 16 characters of the registered ARM element name.

■ The string cannot contain embedded blank spaces.

■ You can use the wildcard (*) character. For example:

– CICS* matches CICSA, CICSABC, CICS123, and any other element name
containing a CICS prefix.

– CICS*05 matches CICSD05, CICS205, CICS1105, and so on.

– *05 matches any element name ending with 05.

– * alone matches all element names.

■ Lowercase letters are acceptable, but the AOF converts them to uppercase for
event testing.

Initialization, Processing, and Termination Sections of ARM Rules

ARM rules follow the general guidelines for coding the initialization, processing, and
termination sections and the various AOF tools that you can use.

More information:

AOF Rule Structure (see page 21)
AOF Rule Tools (see page 29)

Automatic Restart Management Rules

Chapter 6: Coding Each AOF Rule Type 117

RETURN Statements in the)PROC Section of an ARM Rule

The OPS/REXX RETURN statement specifies whether the ARM restart for the element
should be prevented or allowed to continue. This statement may specify the following
values:

NORMAL

Continue the element restart in accordance with the current value of the
ARM.RESTARTTYPE variable. Other modifiable event variables may have also
changed values.

SUPPRESS

The value of the ARM.RESTARTTYPE variable is set to 1, which tells ARM that a
restart should not be performed for this element.

Default: RETURN NORMAL

The return values listed here are character constants rather than keywords. An
unrecognized return value (for example, a misspelled value) defaults to a value of
NORMAL.

Execution Considerations for ARM Rules

The processing section of a rule that responds to an ARM event executes in the z/OS
XCFAS address space. Therefore, any type of logic that could possibly suspend the
processing of an ARM rule should be performed by scheduling an OPS/REXX program to
run in a CA OPS/MVS OSF TSO, TSL, or TSP server.

More information:

Code and Debug AOF Rules (see page 59)

OPS/REXX Host Environments in the)PROC Section of an ARM Rule

The)PROC section of an ARM rule has the following host environments with the
following ARM rule characteristics. Specify the AOFDEFAULTADDRESS parameter for the
default host environment for ARM rules.

ADDRESS AOF

Sent to CA OPS/MVS. Does not wait. Output is not returned.

ADDRESS AP

Sent to MSF and then forwarded to the CA Automation Point system. Does not wait.
Output is not returned.

Automatic Restart Management Rules

118 AOF Rules User Guide

ADDRESS EPI

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS HWS

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS ISPEXEC

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS LXCON

The VM and Linux command requests sent to USS server for execution. Does not
wait. Output is not returned. The List request runs inline and returns VM and Linux
system data in stem variables.

ADDRESS MESSAGE

Sent as a WTO. The AOFDEST parameter specifies the destination.

ADDRESS MQ

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS NETMAN

Sent to a CA OPS/MVS internal CA Netman request queue to issue MGPT
commands. Does not wait. Output is not returned.

ADDRESS NETMASTR

Sent to CA NetMaster NM for SNA on the local system. Does not wait. Output is not
returned.

ADDRESS OPER

Sent to target console as specified through the OCCONSOLENAME parameters
when no CONNAME operands are present. Output is not returned. Schedule an
OPS/REXX program in a server when a command output interrogation is needed.

ADDRESS OPSCTL

Sent to a specified facility. If the facility is ECF or OSF, does not wait. If the facility is
MSF, slight wait occurs. The external data queue returns the output.

Note: If the command is MSF LIST, no wait occurs.

ADDRESS OPSDYNAM

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

Automatic Restart Management Rules

Chapter 6: Coding Each AOF Rule Type 119

ADDRESS OSF

Schedule TSO commands, CLISTs, or REXX EXECs to CA OPS/MVS OSF TSO servers.

ADDRESS OSFTSL

Schedule TSO commands, CLISTs, or REXX EXECs to CA OPS/MVS OSF TSL servers.

ADDRESS OSFTSP

Schedule TSO commands, CLISTs, or REXX EXECs to CA OPS/MVS OSF TSP servers.

ADDRESS SQL

Does not wait. Processed synchronously for requests that can be satisfied on the
local system. The output is returned in a stem variable. Error messages, if any, are
returned to an external data queue.

ADDRESS SOF

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS SYSVIEWE

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS TSO

Sent to an OSF TSO server. Does not wait. Output is not returned.

ADDRESS USS

Sent to a USS server. Does not wait. Output is not returned. Schedule an OPS/REXX
program in a server if a command output interrogation is needed.

ADDRESS WTO

Does not wait. Output is sent to specified (or default) destination. When attempting
a WTOR, host command is sent to a TSO server for execution. The response is
returned to the server. Schedule an OPS/REXX program in a server if a WTOR
response interrogation is needed.

More information:

Code and Debug AOF Rules (see page 59)

Automatic Restart Management Rules

120 AOF Rules User Guide

AOF Variables Available in an ARM Rule

You can use all AOF variable types in ARM rules. The following unique AOF event
variables are available in the)PROC section of an ARM rule. It also lists the
corresponding OPSLOG display field that you can manually interrogate as an aid in
debugging or implementing rule logic.

ARM.CLONEID

Specifies the z/OS sysplex clone ID of the system on which the job originally
registered with ARM.

Data Type: 2-byte character, read-only

Sample Value: 02

ARM.COLOR

Specifies the color that the ARM event message text will use in OPSLOG Browse.

Data Type: 1-byte binary (unprintable), read/write

Sample Value: '00'X

Notes:

■ Use the OPSCOLOR function of OPS/REXX to set the ARM.COLOR variable.

■ If multiple rules set ARM.COLOR for a single ARM message, CA OPS/MVS uses
only the last value. To trace the color set by each rule, set the RULETRACE
parameter to ON.

■ For a description of the RULETRACE parameter, see the Parameter Reference.

OPSLOG Browse Column: COLOR

ARM.ELEMENT

Specifies the ARM element name of the job or started task that is being restarted.
ARM element names are unique across a sysplex. The first 10 characters of the
element name are also in the OPSLOG MSGID field.

Data Type: 1 to 16-byte character, read-only

Sample Value: OPSMVSSYSA

OPSLOG Browse Column: Text is always displayed

ARM.ELEMTYPE

Specifies the ARM element type, which is used in the ARM policy to define restart
characteristics for groups of related resources so that individual definitions are not
required for every element.

Data Type: 0 to 8 characters, read-only

Sample Value: OPSMVS

OPSLOG Browse Column: TERMNAME

Automatic Restart Management Rules

Chapter 6: Coding Each AOF Rule Type 121

ARM.EVENTCODE

Specifies a code value that represents the reason that ARM restarted the job.

Data Type: 2-byte binary (unprintable), read-only

Possible Values:

■ 1 (the restart was caused by the termination of the element)

■ 2 (the restart was caused by the termination of the system)

Sample Value: 1

ARM.FROMSYS

Specifies the z/OS system name of the system on which the job was last executed.

Data Type: 1- to 8-byte character, read-only

Sample Value: SYS03

OPSLOG Browse Column: DSPNAME

ARM.HOMESYS

Specifies the z/OS system name of the system on which the job originally registered
with ARM.

Data Type: 1- to 8-byte character, read-only

Sample Value: SYS02

ARM.JCLDSN

Specifies the name of the data set that contains the JCL that will be submitted to
restart the job.

Data Type: 0 to 44 characters, read/write

Sample Value: USER.CNTL

Note: If this value is changed, the ARM.RESTARTTYPE variable must be set to 4. If
the JCL requires system variable substitution, variable values from the home system
will be used.

ARM.JCLMEM

Specifies the PDS member name of the data set name specified in ARM.JCLDSN,
which contains the JCL that will be used to restart the job. If the data set is not a
PDS, the value of this variable will be null.

Data Type: 0 to 8 characters, read/write

Sample Value: USERJOB

Automatic Restart Management Rules

122 AOF Rules User Guide

ARM.JOBNAME

Specifies the job name of the ARM element that is being restarted.

Data Type: 1- to 8-byte character, read-only

Sample Value: OPSMAIN

OPSLOG Browse Column: JOBNAME

ARM.PERSISTJCL

Specifies a value indicating whether persistent JCL is available for the restart of the
job.

Data Type: Integer, read-only

Possible Values: 0 (persistent JCL is not available) or 1 (persistent JCL is available)

Sample Value: 0

ARM.POLICYSTART

Specifies a value indicating whether the start command text for a restart that is
being performed using a start command (ARM.RESTARTTYPE=2) is from the ARM
policy definition or a system-entered start command (persistent text).

Data Type: Integer, read-only

Possible Values:

■ 0-start text is persistent

■ 1-start text is from ARM policy

Sample Value: 1

ARM.RESTARTTYPE

Specifies a value indicating the type of restart to be performed.

Data Type: 1-byte binary, read/write

Possible Values:

■ 1-Do not restart this job (same as RETURN 'SUPPRESS')

■ 2-Restart this started task using the start text value in ARM.STARTTEXT

■ 3-Restart this job using the persistent JCL

■ 4-Restart this job using the override JCL specified in ARM.JCLDSN and
ARM.JCLMEM

Sample Value: 1

Automatic Restart Management Rules

Chapter 6: Coding Each AOF Rule Type 123

ARM.STARTTEXT

Specifies the text of the z/OS start command that will be issued to restart the job.
This may be the original start command text, command text from the ARM policy
couple data set, or an override value from an AOF ARM rule.

Data Type: 0 to 126 characters, read/write

Sample Value: START USERJOB, PARM='RESTART'

Note: If this value is changed, the variable ARM.RESTARTTYPE must be set to 2. If
the text requires system variable substitution, variable values from the home
system will be used.

ARM.TEXT

Specifies the message text generated for this ARM AOF event. The text is constant
except for the last word, which is the ARM element name.

Data Type: Character, read-only

Sample Value: MVS ARM RESTART OF OPSMVSSYSA

OPSLOG Browse Column: Text is always displayed

ARM.TOSYS

Specifies the current z/OS system name on which the job is being restarted

Data Type: 1- to 8-byte character, read-only

Sample Value: SYS03

OPSLOG Browse Column: SYSNAME

ARM.USER

Contains an 8-byte variable providing communication between rules that execute
for the same ARM event. The variable can contain any installation data that these
rules need, and it can store a character string displayable through OPSLOG Browse.

Data Type: User-defined, read/write

Notes:

■ Before AOF processing, this variable is initialized to binary zeros. It is then
passed to each rule that executes for the same ARM event; each rule can look
at or change the variable contents before passing the variable to the next rule
for the ARM event.

■ The primary purpose for the USER variable is to provide a method to pass a
small amount of data between the rules. This data may be binary or mixed
case. The USER field may also be used for filtering in the OPSLOG. However,
USER data used for OPSLOG filtering must be uppercase and displayable.

OPSLOG Browse Column: USER

Automatic Restart Management Rules

124 AOF Rules User Guide

More information:

AOF Rule Tools (see page 29)

Debug an ARM Rule

The following example assumes:

■ A System State Manager resource table for all CICS regions exists on all systems in a
sysplex.

■ The resource table entries for CICS regions that are not running on each system
have a mode of INACTIVE.

■ If one of the systems fail, ARM restarts the CICS region from the failing system on
one of the other systems.

■ The System State Manager on the new system allows ARM to restart the
transferred CICS region; however, System State Manager will handle any
subsequent restarts.

■ An action entry table for CURRENT=UP DESIRED=UPARM will reset the desired state
to UP.

Example: Debug an ARM Rule

)ARM CICS*

)PROC

 if arm.fromsys <> arm.tosys then /* CICS region transfer */

 do

 address SQL "Update CICS_TABLE Set CURRENT_STATE='DOWN',",

 "DESIRED_STATE='UPARM', MODE='ACTIVE',",

 "Where JOBNAME='"arm.jobname"' And ",

 "MODE='INACTIVE'"

 return "NORMAL" /* Let ARM do 1st start */

 End

 /* Local system restart */

 address SQL "Select NAME From CICS_TABLE",

 "Where JOBNAME='"arm.jobname"' And",

 "MODE='ACTIVE'"

 if rc=0 & sqlcode=0 then /* Found in SSM table */

 return "SUPPRESS" /* SSM will do restart */

 return "NORMAL" /* Not under SSM control */

)END

Note: For debugging techniques that you can use with all AOF rules, see the chapter
“Code and Debug AOF Rules (see page 59).”

Command Rules

Chapter 6: Coding Each AOF Rule Type 125

Command Rules

An AOF command (CMD) rule is triggered by commands that are broadcast through the
Subsystem Interface (SSI), such as z/OS, JES2, and JES3 commands.

CMD rules let you perform the following tasks:

■ Disallow commands

■ Modify command operands

■ Replace commands

■ Create new commands

In addition, CMD rules can be used to intercept pseudo (user created) commands,
allowing you to trigger some automated process from anywhere in your environment
that allows you to issue system commands through the SSI.

Installation Requirements for CMD Rules

Set the parameter SSICMD to YES to allow CA OPS/MVS to process commands before
any other subsystems. For details, see the Parameter Reference.

The CA OPS/MVS optional IMS Operator Facility is required to process IMS commands
that are issued by an IMS MTO.

Note: For more information on the IOF facility, see the Administration Guide and User
Guide.

)CMD—Event Specifier of CMD Rules

The CMD-event definition section has the following format:

)CMD cmdverbspec

Adhere to the following guidelines when specifying the character string for the
cmdverbspec:

■ Specify 1 to 10 characters.

■ The string cannot contain embedded blank spaces.

Command Rules

126 AOF Rules User Guide

■ z/OS Command Considerations:

– Specify the full command verb or a mask of the command verb when
attempting to trigger on z/OS commands.

For example, when writing a command rule that triggers whenever a z/OS
DISPLAY command is issued, specify)CMD DISPLAY rather than)CMD D, or
specify)CMD MODIFY rather than)CMD F to execute on z/OS modify
commands. Although you must specify the full z/OS command verb in the
event definition section of the rule, a command rule recognizes a command
event if an operator issues a short form (alias) of the command. Additional logic
can be implemented into the)PROC section of the rule to interrogate the
CMD.TEXT event variable to see the exact command that was entered.

– Z/OS may reissue some commands internally if they do not originate from the
CONSOLE address space, that is, if a program issues the commands rather than
a z/OS console.

z/OS reissues such commands so that the processing occurs in the CONSOLE
address space, thus causing a CMD rule to possibly execute twice. z/OS reissues
DISPLAY ACTIVE commands and any other command that creates paged-frame
display output on a z/OS console.

■ JES2 Command Considerations:

Use these guidelines when you are writing rules that respond to JES2 commands:

– When you attempt to trigger on JES2 commands, specify the JES2 command
character followed by the first letter of the JES2 command. For example, if $ is
the JES2 command character and you want to trigger on the $TI initiator
command, then specify)CMD $T.

– You can add logic to the)PROC section of the rule to interrogate the CMD.TEXT
event variable and see the JES2 command that was entered.

– For both JES2 and z/OS, you can use a delimiter character to enter more than
one command on a single line. JES2 uses a semicolon to delimit multiple
commands and z/OS uses the character specified by the CMDDELIM parameter
in the CONSOLxx member of the logical PARMLIB concatenation.

Command Rules

Chapter 6: Coding Each AOF Rule Type 127

The CMD rule specifier needed to trap stacked JES2 commands is impacted by
the type of issuing console (extended, MCS, SMCS, and so on). It is also
impacted by the setting of the z/OS CMDDELIM parameter.

Use these guidelines when you are creating CMD rules to process JES2 stacked
commands:

– If CMDDELIM is set to a semicolon (;), and the issuing console is a MCS or
SMCS console, then stacked JES2 commands can only be issued in the form
of: $cmd1;$cmd2;$cmd3. For example, $PI1;$TI1,C=X;$SI1.

 Each stacked JES2 command will trigger an associating unique CMD rule, or
a wild card catch all JES2 CMD rule will be executed for each stacked
command. In this example, a)CMD $* rule would execute three times
(once for each command), a)CMD $P rule would execute once, a)CMD $T
would execute once, and a)CMD $S rule would execute once.

– If CMDDELIM is not set (there is no z/OS command stacking), or
CMDDELIM is set to some value other than a semicolon (;), or CMDDELIM
is set to a semi-colon (;) and the issuing console is not a MCS or SMCS
console, then stacked JES2 commands can be issued in the form of
$cmd1;cmd2;cmd3. For example, $PI1;TI1,C=X;SI1.

 The entire list of commands stacked together is treated as one command.
This command is processed by either one CMD rule that processes all JES2
commands or a specific CMD rule that processes the first command within
the list of stacked commands.

 For example, a)CMD $* rule would execute once for the complete stacked
command, or a)CMD $P rule would execute once for the complete stacked
command. In both cases, additional rule logic to interrogate the value of
the cmd.text environmental variable should be coded to process each
command accordingly.

If you are attempting to process and automate various JES2 commands, it may
be suitable to create a catch all JES2 rule that rejects command stacking. To
implement this type of control logic, see the sample rule JESSTACK in the
ops.sample data set.

■ JES3 Command Considerations:

When writing rules that respond to JES3 commands, begin the cmdverbspec event
identifier string with the first character in the JESCHAR parameter string. Only the
first character in JESCHAR is meaningful in a JES3 environment. When CA OPS/MVS
processes a command on a JES3 system, it attempts to match the command prefix
with one of the JES3 system or sysplex prefixes. If a match is found, CA OPS/MVS
creates a common command verb (see CMD.VERB), regardless of which command
prefix was used or whether the command was abbreviated. The purpose of this is to
make sure that you have to write only a single command rule for each JES3
command, regardless of how it was issued.

Command Rules

128 AOF Rules User Guide

The command verb (and CMD.VERB) consists of the real command verb with the
original prefix stripped off and replaced by the first character in JESCHAR. This does
not affect the command text itself, only the verb used to execute the rules. For
example, assume you have the following:

JES3 SYN prefix = 8

JES3 PLEXSYN prefix = %%

CA OPS/MVS JESCHAR parameter = *

When you issue the JES3 command 8I S, a rule with a command verb (CMD.VERB) of
*INQUIRY is executed. CMD.TEXT will not be changed and remains 8I S (unless
CMD.TEXT is changed by the rule itself). The same rule is executed if you issue the
command %%I S; CMD.VERB will be the same as in the prior case but the CMD.TEXT
will be %%I S.

The use of multiple system or sysplex command prefixes is fully supported by CA
OPS/MVS, whether these prefixes are single- or multiple-character.

If your CMD rule needs to make decisions based on the original JES3 command
prefix, then use the following three environmental variables:

CMD.JES3PREFIX

Indicates the original command prefix

CMD.JES3SYN

Set to 1 if the original JES3 command prefix is a system scope prefix (SYN)

CMD.JES3PLEXSYN

Set to 1 if the original JES3 command prefix is defined as a sysplex scope prefix
(PLEXSYN)

If you set JESCHAR to the same value on all your systems, one rule should be able to
work on all your JES3 systems, regardless of what the SYN and PLEXSYN values are
on those systems.

– If the first character in JESCHAR is an * (which is also the wildcard character),
you may need to perform additional checking in the PROC section of the rule.
Because the cmdverbspec string in the event definition section begins with the
wildcard (*) character, a rule triggered by an INQUIRY command is also
triggered by NOINQUIRY (not a JES3 command) and INQUIRY (a possible z/OS
command). You can solve the problem by coding the processing section of your
rule as shown in this example:

)CMD *INQUIRY

)PROC

 if CMD.VERB ¬= '*INQUIRY' then

 return 'NOACTION'

– A CMD rule can change *START PRTR1 to *START PRTR2 but not to VARY
2F0,OFFLINE.

Command Rules

Chapter 6: Coding Each AOF Rule Type 129

■ Subsystem Command Character Considerations other than JES2 Commands:

Specify the command character followed by the wildcard character (*) to execute
on commands issued using a product-defined command character. For example,
assuming the character / is the command character of a particular subsystem, code
a specification of)CMD /* to trigger on commands issued using its command
character. Additional logic can be implemented in the)PROC section of the rule to
interrogate the CMD.TEXT event variable to see the exact command that was
entered.

■ You can use the wildcard character (*) where applicable. For example,

– ST* matches z/OS START and STOP commands or any pseudo command that
beings with ST.

– * matches all command events on the system.

■ Lowercase letters are acceptable, but the AOF converts them to uppercase for
event testing.

z/OS Command Guidelines

Specify the full command verb or a mask of the command verb when attempting to
trigger on z/OS commands.

Example

This command rule triggers whenever a z/OS Display command is issued.

)CMD DISPLAY rather than)CMD D

This command executes on z/OS modify commands.

)CMD MODIFY rather than)CMD F

Specify the full z/OS command verb which is required in the event definition section of
the rule. A command rule recognizes a command event when an operator issues a short
form (alias) of the command.

Logic can be implemented into the)PROC section of the rule to interrogate the
CMD.TEXT event variable to see the exact command that was entered.

Z/OS can reissue some commands internally when they do not originate from the
CONSOLE address space. That is, if a program issues the commands rather than a z/OS
console.

z/OS reissues such commands so that the processing occurs in the CONSOLE address
space, thus causing a CMD rule to execute possibly twice. z/OS reissues DISPLAY ACTIVE
commands and any other command that creates paged-frame display output on a z/OS
console.

Command Rules

130 AOF Rules User Guide

JES2 Command Guidelines

Use these guidelines when writing rules that respond to JES2 commands:

■ To trigger on JES2 commands, specify the JES2 command character followed by the
first letter of the JES2 command.

Example

If $ is the JES2 command character and you want to trigger on the $TI initiator
command, then specify:

)CMD $T.

■ Add logic to the)PROC section of the rule to interrogate the CMD.TEXT event
variable and see the JES2 command that was entered.

■ For both JES2 and z/OS, use a delimiter character to enter more than one command
on a single line. JES2 uses a semicolon to delimit multiple commands. z/OS uses the
character that is specified by the CMDDELIM parameter in the CONSOLxx member
of the logical PARMLIB concatenation.

The CMD rule specifier traps stacked JES2 commands with an impact from the:

■ Type of issuing console. For example, extended, MCS, and SMCS.

■ Setting of the z/OS CMDDELIM parameter.

Command Rules

Chapter 6: Coding Each AOF Rule Type 131

JES2 Stacked Command Guidelines

Use these guidelines when you are creating CMD rules to process JES2 stacked
commands:

■ When CMDDELIM is set to a semicolon (;), and the issuing console is an MCS or
SMCS console. Then stacked JES2 commands can only be issued in the form of:
$cmd1;$cmd2;$cmd3. For example, $PI1;$TI1,C=X;$SI1.

Each stacked JES2 command triggers an associating unique CMD rule. Or a wildcard
catch all JES2 CMD rule is executed for each stacked command.

Example

A)CMD $* rule would execute three times (once for each command).

A)CMD $P rule would execute once.

A)CMD $T would execute once.

A)CMD $S rule would execute once.

■ When CMDDELIM is not set there is not any z/OS command stacking.

When CMDDELIM is set:

To some value other than a semicolon (;). Or is set to a semi-colon (;) and the
issuing console is not an MCS or SMCS console. Then the stacked JES2 commands
can be issued in the form of:

$cmd1;cmd2;cmd3.

For example:

$PI1;TI1,C=X;SI1.

The entire list of commands that is stacked together is treated as one command.
This command processes by either one CMD rule that processes all JES2 commands.
Or a specific CMD rule that processes the first command within the list of stacked
commands.

Example

A)CMD $* rule would execute once for the complete stacked command.

A)CMD $P rule would execute once for the complete stacked command.

In both cases, code additional rule logic to interrogate the value of the cmd.text
environmental variable.

To process and automate various JES2 commands, create a catch all JES2 rule that
rejects command stacking. To implement this type of control logic, see the sample
rule JESSTACK in the CCLXRULS data set.

Command Rules

132 AOF Rules User Guide

Respond Rules For JES3 Command Guidelines

When writing rules that respond to JES3 commands, do:

Begin the cmdverbspec event identifier string with the first character in the JESCHAR
parameter string. Only the first character in JESCHAR is meaningful in a JES3
environment.

CA OPS/MVS attempts to match the command prefix with one of the JES3 system or
sysplex prefixes, while processes a command.

When CA OPS/MVS, finds a match it creates a common command verb (CMD.VERB).
Regardless of which command prefix was used or whether the command was
abbreviated.

Use these guidelines, to write a single command rule only for each JES3 command,
regardless of how it was issued.

The command verb (and CMD.VERB) consists of the real command verb with the original
prefix stripped off and replaced by the first character in JESCHAR. This first character
does not affect the command text itself, only the verb that is used to execute the rules.

Example

JES3 SYN prefix = 8

JES3 PLEXSYN prefix = %%

CA OPS/MVS JESCHAR parameter = *

When issuing the JES3 command 8I S, a rule with a command verb (CMD.VERB) of
*INQUIRY is executed. CMD.TEXT does not change and remains 8I S unless the rule itself
changes CMD.TEXT. The same rule is executed when the command %%I S. CMD.VERB is
the same as in the prior case but the CMD.TEXT is %%I S.

CA OPS/MVS supports the use of multiple system or sysplex command prefixes, whether
these prefixes are single- or multiple-character.

When decision making using a CMD rule-based on the original JES3 command prefix, use
the following three environmental variables:

CMD.JES3PREFIX

Indicates the original command prefix

CMD.JES3SYN

Set to 1 if the original JES3 command prefix is a system scope prefix (SYN)

CMD.JES3PLEXSYN

Set to 1 if the original JES3 command prefix is defined as a sysplex scope prefix
(PLEXSYN)

Command Rules

Chapter 6: Coding Each AOF Rule Type 133

When the JESCHAR is set to the same value on all your systems. One rule works on all
JES3 systems, regardless of the SYN and PLEXSYN values are on those systems.

■ When the first character in JESCHAR is a wildcard (*) character. Perform additional
checking in the PROC section of the rule.

■ The cmdverbspec string in the event definition section begins with the wildcard (*)
character. A rule that is triggered by an INQUIRY command is also triggered by
NOINQUIRY (not a JES3 command) and INQUIRY (a possible z/OS command).

■ This issue is solved by coding the processing section of the rule as follows.

)CMD *INQUIRY

)PROC

 if CMD.VERB ¬= '*INQUIRY' then

 return 'NOACTION'

■ A CMD rule can change:

*START PRTR1 to *START PRTR2

But not to:

VARY 2F0,OFFLINE

Subsystem Command Character Guidelines

When using subsystem command character other than JES2 Commands, do:

Specify the command character followed by the wildcard (*) character to execute on
commands issued using a product-defined command character.

Example

Assume the character / is the command character of a particular subsystem. Code a
specification of)CMD /* to trigger on commands that are issued using its command
character. Logic can be implemented in the)PROC section of the rule to interrogate the
CMD.TEXT event variable to see the exact command that was entered.

■ Use the wildcard character (*) where applicable.

Example

■ ST* matches z/OS START and STOP commands or any pseudo command that
beings with ST.

■ * matches all command events on the system.

■ Lowercase letters are acceptable, but the AOF converts them to uppercase for
event testing.

Command Rules

134 AOF Rules User Guide

Initialization, Processing, and Termination Sections of CMD Rules

The general guidelines for coding the initialization, processing, and termination sections
and the various AOF tools that you can use, apply to CMD rules.

More information:

AOF Rule Structure (see page 21)
AOF Rule Tools (see page 29)

RETURN Statements in the)PROC Section of a CMD Rule

The OPS/REXX RETURN statement specifies the final disposition of a z/OS command.

The following are valid values for a RETURN statement in the processing section of a
command rule:

NOACTION

Allows z/OS to process a command (after CMD rule processing, if any)

ACCEPT

Prevents z/OS from processing a command (after CMD rule processing, if any)

REJECT

Causes z/OS to reject a command as invalid, resulting in message IEE707I cmd NOT
EXECUTED (after CMD rule processing, if any)

Default: RETURN 'NOACTION'

The return values listed here are character constants rather than keywords. An
unrecognized return value (for example, a misspelled value) defaults to a value of
NOACTION.

Command Rules

Chapter 6: Coding Each AOF Rule Type 135

Other RETURN Statement Considerations

In a command rule, the return value can affect command processing as follows:

■ If multiple rules respond to a single command event, the AOF uses the
highest-precedence return value; the order of precedence is:

– REJECT (highest precedence)

– ACCEPT

– NOACTION (lowest precedence)

■ To effectively intercept a command before any other subsystem processes it,
perform the following steps:

1. Set the SSICMD parameter to YES.

2. Within the CMD rule logic, set the cmd.text environmental variable to null
(cmd.text='') before exiting the rule with a RETURN 'ACCEPT.' See the AOF rule
sample member JES2$TJ for an example of intercepting and processing a JES2
command.

Other types of commands (such as JES, DB2, NetView, BDT) are not affected by the
RETURN statement. In these cases, you must modify CMD.TEXT to prevent these
subsystems from processing the command.

Execution Considerations for CMD Rules

The processing section of a rule that responds to a command event executes in the
address space from which the command originated, which is usually the CONSOLE
address space. Therefore, any type of logic that could possibly suspend the processing
of a CMD rule should be performed by scheduling an OPS/REXX program to run in a CA
OPS/MVS OSF TSO, TSL, or TSP server.

More information:

Code and Debug AOF Rules (see page 59)

Command Rules

136 AOF Rules User Guide

OPS/REXX Host Environments in the)PROC Section of a CMD Rule

The)PROC section of a CMD rule has the following host environments with the following
CMD rule characteristics. The AOFDEFAULTADDRESS parameter specifies the default
host environment for CMD rules.

ADDRESS AOF

Sent to CA OPS/MVS. Does not wait. Output is not returned.

ADDRESS AP

Sent to MSF and then forwarded to the CA Automation Point system. Does not wait.
Output is not returned.

ADDRESS EPI

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS HWS

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS ISPEXEC

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS LXCON

The VM and Linux command requests sent to USS server for execution. Does not
wait. Output is not returned. The List request runs inline and returns VM and Linux
system data in stem variables.

ADDRESS MESSAGE

Sent as a WTO to the issuing console.

ADDRESS MQ

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS NETMAN

Sent to a CA OPS/MVS internal CA Netman request queue to issue MGPT
commands. Does not wait. Output is not returned.

ADDRESS NETMASTR

Sent to CA NetMaster NM for SNA on the local system. Does not wait. Output is not
returned.

Command Rules

Chapter 6: Coding Each AOF Rule Type 137

ADDRESS OPER

Sent to target console as specified through the OCCONSOLENAME parameters
when no CONNAME operands are present. Output is not returned. Schedule an
OPS/REXX program in a server when a command output interrogation is needed.

ADDRESS OPSCTL

Sent to a specified facility. If the facility is ECF or OSF, does not wait. If the facility is
MSF, slight wait occurs. The external data queue returns the output.

Note: If the command is MSF LIST, no wait occurs.

ADDRESS OPSDYNAM

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS OSF

Schedule TSO commands, CLISTs, or REXX EXECs to CA OPS/MVS OSF TSO servers.

ADDRESS OSFTSL

Schedule TSO commands, CLISTs, or REXX EXECs to CA OPS/MVS OSF TSL servers.

ADDRESS OSFTSP

Schedule TSO commands, CLISTs, or REXX EXECs to CA OPS/MVS OSF TSP servers.

ADDRESS SOF

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS SQL

Does not wait. Processed synchronously for requests that can be satisfied on the
local system. Output is returned in stem variable. Error messages, if any, are
returned to an external data queue.

ADDRESS SYSVIEWE

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS TSO

Sent to an OSF TSO server. Does not wait. Output is not returned.

Command Rules

138 AOF Rules User Guide

ADDRESS USS

Sent to a USS server. Does not wait. Output is not returned. Schedule an OPS/REXX
program in a server if the command input interrogation is needed.

ADDRESS WTO

Does not wait. Output is sent to specified (or default) destination. When attempting
a WTOR, host command is sent to a TSO server for execution. The response is
returned to the server. Schedule an OPS/REXX program in a server if a WTOR
response interrogation is needed.

More information:

Code and Debug AOF Rules (see page 59)

AOF Variables Available in a CMD Rule

You can use all AOF variable types in CMD rules. The following unique AOF event
variables are available in the)PROC section of a CMD rule. Also listed are the
corresponding OPSLOG display field that you can manually interrogate as an aid in
debugging or implementing rule logic.

CMD.AOFCMD

A value indicating whether CA OPS/MVS issued the current command from within
an AOF rule

Data Type: Integer, read-only

Possible Values:

■ 0-The command was not issued by a CA OPS/MVS AOF rule

■ 1-The command was issued by a CA OPS/MVS AOF rule

Sample Value: 1

Notes:

■ When the value of the CMD.AOFCMD variable is 1, the value of the
CMD.PRODCMD variable is also 1.

■ When the value of the CMD.AOFCMD variable is 1, it is most likely that the
command was issued through an ADDRESS OPER host command in an AOF rule.

OPSLOG Browse Column: Second bit of OPSFLAGS when the EVENT column
indicates a CMD event

Command Rules

Chapter 6: Coding Each AOF Rule Type 139

CMD.CONSNAME

The name of the console from which the command was issued Data Type:
Character, read-only

Sample Value: MASTSYSA

Note: For commands originating in the subsystem interface, CMD.CONSNAME
contains the console name.

OPSLOG Browse Column: CONSNAME

CMD.IMSID

The ID of the IMS control region that issued this command, or NONE for non-IMS
commands. The CMD.IMSID variable is available only if the IOF is licensed, installed,
and active at your site (that is, the INITIMS parameter must be set to YES).

Data Type: Character, read-only

Sample Value: IMSA

OPSLOG Browse Column: IMSID

CMD.JES3PLEXSYN

Indicates whether the command prefix is a JES3 sysplex scope prefix. Set to 1 if the
original JES3 command prefix is defined as a sysplex scope prefix (PLEXSYN).

Data Type: Character, read-only

Possible Values:

■ 0-The prefix is not a JES3 sysplex scope prefix

■ 1-The prefix is a JES3 sysplex scope prefix

Sample Value: 1

Note: This variable is only meaningful for JES3 commands in a JES3 environment.

OPSLOG Browse Column: Eighth bit of OPSFLAGS when the event column indicates
a CMD event, and a JES command prefix was used.

CMD.JES3PREFIX

The original JES3 prefix used on the JES3 command

Data Type: Character, read-only

Possible Values: Any valid JES3 system or sysplex command prefix, which can be
from 1 to 8 characters in length. With the special exception of the character 8, JES3
command prefixes cannot start with a numeric character.

Sample Value: *

Note: This variable is only meaningful for JES3 commands in a JES3 environment.

OPSLOG Browse Column: AUTOTOKN when the event column indicates a command
event, and a JES command prefix is used.

Command Rules

140 AOF Rules User Guide

CMD.JES3SYN

Indicates whether the command prefix is a JES3 system scope prefix. Set to 1 if the
original JES3 command prefix is a system scope prefix (SYN).

Data Type: Character, read-only

Possible Values:

■ 0-The prefix is not a JES3 system scope prefix

■ 1-The prefix is a JES3 system scope prefix

Sample Value: 0

Note: This variable is only meaningful for JES3 commands in a JES3 environment.

OPSLOG Browse Column: Seventh bit of OPSFLAGS when the event column
indicates a CMD event, and a JES command prefix was used.

CMD.JOBNAME

The name of the job or the TSO user who issued the command

Data Type: Character, read-only

OPSLOG Browse Column: JOBNAME

CMD.MSFID

The MSF system name of the copy of CA OPS/MVS that issued the command

Data Type: Character, read-only

Sample Value: OPSP

Note: For all commands issued from sources other than remote copies of CA
OPS/MVS, the value of CMD.MSFID is the MSF ID of the local copy of CA OPS/MVS.

OPSLOG Browse Column: MSFID

CMD.ORIGINSYS

The system name from which the command originated. This variable enables you to
identify the origin of commands routed to this system through the ROUTE
command. CMD.ORIGINSYS can only return the correct information when the
SSICMD product parameter is set to YES. When SSICMD is set to NO, this variable
and the SYSNAME column in OPSLOG are set to UNKNOWN.

Data Type: Character, read-only.

Sample Value: SYSA

OPSLOG Browse Column: SYSNAME

CMD.OTEXT

The original text of the command, unmodified by subsequent rule processing

Data Type: Character, read-only

Command Rules

Chapter 6: Coding Each AOF Rule Type 141

CMD.PRODCMD

A value indicating whether CA OPS/MVS issued the current command

Data Type: Integer, read-only

Possible Values: 0 (if CA OPS/MVS did not issue the command) or 1 (if CA OPS/MVS
issued the command)

Sample Value: 1

Notes:

■ When the value of the CMD.PRODCMD variable is 1, the command was issued
through either an ADDRESS OPER host command or the OPSCMD command
processor.

■ The value of the CMD.PRODCMD variable is 1 only if the command was issued
through a z/OS service. Thus, for JES3 commands this value is always 0.

OPSLOG Browse Column: First bit of OPSFLAGS when the EVENT column indicates a
CMD event

CMD.SSMCMD

A value indicating whether System State Manager issued the current command

Data Type: Integer, read-only

Possible Values:

■ 0-The command was not issued by System State Manager

■ 1-The command was issued by System State Manager

Sample Value: 1

Notes:

■ When the value of the CMD.SSMCMD variable is 1, the value of the
CMD.PRODCMD variable is also 1.

■ When the value of the CMD.SSMCMD variable is 1 and the value of
SSM.AOFCMD is 1, the command was issued from a System Manager State
Manager REQ rule (EVRULE or RULE action keywords).

■ The value of the CMD.SSMCMD variable will be 0 if the command was issued
from an OSF TSO server as a result of an asynchronous System State Manager
action (TSOCMD, CLIST or REXX action keywords).

OPSLOG Browse Column: Third bit of OPSFLAGS when the EVENT column indicates
a CMD event

Command Rules

142 AOF Rules User Guide

CMD.TERMNAME

The JES3 console name that submitted the current command, or the string NONE if
the current JES3 command is not associated with a JES3 console

Notes:

■ If the command was issued from a TSO address space, the terminal name
associated with the logged-on user is available in CMD.TERMNAME.

■ If the command was issued from CA Remote Console, the CMD.TERMNAME
environmental variable contains the name of the terminal with which the RCS
user logged on.

Data Type: Character, read-only

OPSLOG Browse Column: TERMNAME

CMD.TEXT

The command text as it will execute, taken from:

■ The MGCRTEXT field of the MGCR parameter list or the MGCETXT field of the
MGCRE parameter list (z/OS or JES3 commands)

■ An internal IMS buffer (IMS commands)

Data Type: Character, read/write

Sample Value: 'D TS,L'

Notes:

■ You cannot change IMS command length, but z/OS commands can be
lengthened or shortened.

■ z/OS and IMS always process modified command text.

■ If subsystems such as JES2 and JES3, DB2, and NetView receive the command
text before CA OPS/MVS, the changes made by AOF CMD rules are ignored.
However, these changes take effect if CA OPS/MVS gets the command first. To
make sure that CA OPS/MVS processes commands prior to other subsystems,
set the SSICMD parameter to YES. For a description of the SSICMD parameter,
see the Parameter Reference.

OPSLOG Browse Column: Text is always displayed.

Command Rules

Chapter 6: Coding Each AOF Rule Type 143

CMD.TYPE

The exit environment where the command was trapped

Data Type: Character, read-only

Possible Values:

■ MVS-Subsystem interface exit

■ JES3-JES3 IATUX18 exit

■ IMS-IMS AOI or command processing exit

■ NONE-Command was not obtained from an exit

OPSLOG Browse Column: Not applicable

CMD.USER

An 8-byte variable providing communication between rules executing for the same
command event. The variable can contain any installation data that these rules
need, and it can store a character string displayable through OPSLOG Browse.

Data Type: User-defined, read/write

Notes:

■ Before AOF processing, this variable is initialized to binary zeros. It is then
passed to each rule that executes for the same command event. Each rule can
look at or change the variable contents before passing the variable to the next
rule for the command event.

■ The primary purpose for the USER variable is to provide a method to pass a
small amount of data between the rules. This data may be binary or mixed
case. The USER field may also be used for filtering in the OPSLOG. However,
USER data used for OPSLOG filtering must be uppercase and displayable.

OPSLOG Browse Column: USER

CMD.USERID

The security user ID of the command issuer for the security product on your system.
This value is usually the CA ACF2, CA Top Secret, or RACF user ID from the UTOKEN
associated with the command. If the command was issued from CA Remote
Console, this value is the user ID of the particular RCS user who issued the
command.

Data Type: Character, read-only

Sample Value: TSOID01

Note: The CMD.USERID variable may contain the same value as the JOBNAME
(which is typical for a TSO address space). These values need not match; for
example, user IDs and the job names for batch jobs or started tasks may differ.

OPSLOG Browse Column: USERID

Command Rules

144 AOF Rules User Guide

CMD.VERB

The command verb as CA OPS/MVS extracts it

Sample Value: DISPLAY

Data Type: Character, read-only

Notes:

■ The CMD.VERB value determines which command rules execute for a
command event.

■ The variable contains the best verb found in the current command. For
example, z/OS command aliases such as F for MODIFY are converted to the
base verb, MODIFY. Likewise, z/OS command abbreviations and JES3 command
aliases or abbreviations also revert to the base verb.

■ Except for $ADD, $DEL, $VS, and $TRACE, JES2 command verbs are always the
first two characters of the command. For example, $D is the verb in the JES2
command $DJ1234.

■ In cases such as IMS commands, the command verb is the first blank delimited
word of the command text.

■ Because the command verb is read-only, do not change it.

OPSLOG Browse Column: MSGID

CMD.XCONID

The decimal value corresponding to the 4-byte extended console ID of the console
that issued the command. This field is not set for IMS commands.

Data Type: Integer, read-only

Sample Value: 16777253

Note: The XCONID column in OPSLOG displays this value as a hexadecimal value.
For example, an extended console ID of 16777253 will be displayed in the XCONID
column in OPSLOG as M01000025.

OPSLOG Browse Column: XCONID

More information:

AOF Rule Tools (see page 29)

Debug a CMD Rule

For debugging techniques that you can use with all AOF rules, see the chapter “Code
and Debug AOF Rules (see page 59).”

Command Rules

Chapter 6: Coding Each AOF Rule Type 145

Examples of CMD Rules

■ Example 1: This example show how to have a CMD rule secure that only JES2
initiator control commands ($TIx) can be issued from the current sysplex master
console:

)CMD $T

)PROC

/* Attempting to fire on a JES2 command means we must have a */

/* specifier of the JES2 command character (normally $) */

/* followed by the first letter of the desired command */

/* (T FOR TIxxx). Since many JES2 commands begin with a 'T' */

/* (For example: $TIXXX,TPRTXXX) we must check the */

/* environmental variable CMD.TEXT to see the exact text of */

/* the command that was entered. Leave the rule if this */

/* is not a JES2 initiator control command. SSICMD parm must */

/* be set to YES for JES2 CMD control. */

if SUBSTR(CMD.TEXT,1,3) ¬= '$TI' then

 return

/* Use the OPS/REXX OPSINFO function to get current sysplex */

/* master console value, then compare this value to the */

/* value of the console that issued the command which is */

/* contained in the CMD.CONSNAME event variable. If this */

/* is not the sysplex master, we'll send a message back to */

/* console and null out the command so JES2 won't see it. */

PLEXMSTR= OPSINFO('MSTCONSNM')

if CMD.CONSNAME ¬= PLEXMSTR then

 do

 msgtxt = 'JES2 init control not allowed from this console'

 ADDRESS WTO

 "MSGID(OPSMVS01) TEXT('"msgtxt"') HILITE",

 "CNNAME("CMD.CONSNAME")"

 CMD.TEXT = ''

 return 'ACCEPT'

 end

else

 return /* OK to issue */

Delete-Operator-Message Rules

146 AOF Rules User Guide

■ Example 2: This example shows how to use a pseudo command rule to cycle a
VTAM node:

)CMD VNET

)PROC

/* The purpose of this pseudo CMD rule is to give operators */

/* or anyone wanting to cycle any VTAM node, a tool to */

/* facilitate the issuing of the V NET,INACT and V NET,ACT */

/* commands with one command. From any console you simply */

/* enter 'VNET nodeid' and the logic of this rule will simply*/

/* issue a V NET,INACT and then a V NET,ACT command to the */

/* extracted nodeid using the console that invoke the pseudo */

/* command so that the command responses get routed back. */

NODEID= WORD(CMD.TEXT,2) /* get the passed node id */

ADDRESS OPER /* Issue vtam command . */

"COMMAND(V NET,INACT,ID="NODEID",F) CONNAME("CMD.CONSNAME")"

"COMMAND(V NET,ACT,ID="NODEID",SCOPE=ALL) CONNAME("CMD.CONSNAME")"

return 'ACCEPT' /* z/OS won't see pseudo cmd */

Delete-Operator-Message Rules

An AOF delete-operator-message (DOM) rule is triggered when any system component
issues the z/OS DOM macro instruction to low-light some previously issued action
message. For example, when a tape mount has been satisfied, the associating
highlighted tape mount message gets internally DOMed or low-lighted, thus producing a
DOM event that could be trapped through a DOM rule. DOM rules are commonly used
in conjunction with other rules, such as MSG and TOD rules, to create applications such
as monitoring tape mounts and performing some type of notification for outstanding
tape mounts. In addition, DOM rules can be useful for console consolidation, allowing
you to send DOM macro requests from several systems to a single system.

Installation Requirements for DOM Rules

None are required.

)DOM—Event Specifier of DOM Rules

The following is the format for coding the DOM-event definition section:

)DOM *

Because a DOM rule responds to every DOM event on the system, the event specifier
will always be an asterisk. Logic can be added to manipulate the DOM.WTOID event
variable (as shown in the following example section) to detect specific DOM events.

Delete-Operator-Message Rules

Chapter 6: Coding Each AOF Rule Type 147

Initialization, Processing, and Termination Sections of DOM Rules

DOM rules follow the general guidelines for coding the initialization, processing, and
termination sections and the various AOF tools that you can use.

More information:

AOF Rule Structure (see page 21)
AOF Rule Tools (see page 29)

RETURN Statements in the)PROC Section of a DOM Rule

The OPS/REXX RETURN statement has no special meaning in the processing section of a
DOM rule. The return value has no effect on AOF processing.

Execution Considerations for DOM Rules

The processing section of a rule that responds to a DOM event executes in the address
space in which the DOM was issued. Therefore, any type of logic that could possibly
suspend the processing of a DOM rule should be performed by scheduling an OPS/REXX
program to a CA OPS/MVS OSF TSO, TSL, or TSP server.

More information:

Code and Debug AOF Rules (see page 59)

OPS/REXX Host Environments in the)PROC Section of a DOM Rule

The)PROC section of a DOM rule has the following host environments with the
following DOM rule characteristics. Specify the AOFDEFAULTADDRESS parameter for the
default host environment for DOM rules.

ADDRESS AOF

Sent to CA OPS/MVS. Does not wait. Sent as a WTO. Output is not returned.

ADDRESS AP

Sent to MSF and then forwarded to the CA Automation Point system. Does not wait.
Output is not returned.

ADDRESS EPI

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

Delete-Operator-Message Rules

148 AOF Rules User Guide

ADDRESS HWS

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS ISPEXEC

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS LXCON

The VM and Linux command requests sent to USS server for execution. Does not
wait. Output is not returned. The List request runs inline and returns VM and Linux
system data in stem variables.

ADDRESS MESSAGE

Sent as a WTO. The AOFDEST parameter specifies the destination.

ADDRESS MQ

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS NETMAN

Sent to a CA OPS/MVS internal CA Netman request queue to issue MGPT
commands. Does not wait. Output is not returned.

ADDRESS NETMASTR

Sent to CA NetMaster NM for SNA on the local system. Does not wait. Output is not
returned.

ADDRESS OPER

Sent to target console as specified through the OCCONSOLENAME parameters
when no CONNAME operands are present. Output is not returned. Schedule an
OPS/REXX program in a server when a command output interrogation is needed.

ADDRESS OPSCTL

Sent to a specified facility. If the facility is ECF or OSF, does not wait. If the facility is
MSF, slight wait occurs. The external data queue returns the output.

Note: If the command is MSF LIST, no wait occurs.

ADDRESS OPSDYNAM

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS OSF

Schedule TSO commands, CLISTs, or REXX EXECs to CA OPS/MVS OSF TSO servers.

ADDRESS OSFTSL

Schedule TSO commands, CLISTs, or REXX EXECs to CA OPS/MVS OSF TSL servers.

Delete-Operator-Message Rules

Chapter 6: Coding Each AOF Rule Type 149

ADDRESS OSFTSP

Schedule TSO commands, CLISTs, or REXX EXECs to CA OPS/MVS OSF TSP servers.

ADDRESS SOF

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS SQL

Does not wait. Processed synchronously for requests that can be satisfied on the
local system. Output is returned in stem variable. Error messages, if any, are
returned to an external data queue.

ADDRESS SYSVIEWE

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS TSO

Sent to an OSF TSO server. Does not wait. Output is not returned.

ADDRESS USS

Sent to a USS server. Does not wait. Output is not returned. Schedule an OPS/REXX
program in a server if the command output interrogation is needed.

ADDRESS WTO

Does not wait. Output is sent to the specified console. When attempting a WTOR,
host command is sent to a TSO server for execution. The response is returned to the
server. Schedule an OPS/REXX program in a server if WTOR response interrogation
is needed.

More information:

Code and Debug AOF Rules (see page 59)

Delete-Operator-Message Rules

150 AOF Rules User Guide

AOF Variables Available in a DOM Rule

You can use all AOF variable types in DOM rules. You can use the following unique AOF
event variables in the)PROC section of a DOM rule, and you can manually interrogate
the corresponding OPSLOG display field as an aid in debugging or implementing rule
logic.

DOM.SYSPLEX

Indication of whether this DOM was routed to this system by sysplex processing

Data Type: Integer, read-only

Possible Values: 0 if the DOM was issued on this system; 1 if it was routed to this
system by sysplex processing

Sample Value: 1

Note: Sysplex reissued DOMs are only processed by AOF rules if the AOFMESSAGES
parameter is set to a value of MVSGLOBAL.

OPSLOG Browse Column: X'0004' flag of OPSFLAGS when the EVENT column
indicates DOM event

DOM.TOKEN

The TOKEN value used to DOM one or more messages that were WTOed using the
same TOKEN value. For more information, see the explanations for using the TOKEN
keyword with the ADDRESS WTO host command environment and the OPSWTO
command processor.

Data Type: 4-byte binary (possibly printable), read-only

Possible Values: Any possible 4-byte token used by the issuer of the WTO

Sample Value: A009

Notes:

■ You can use a token to DOM a group of related messages that were WTOed
using that same TOKEN value.

■ The token may or may not contain a printable value. If it is not printable, you
can display its hexadecimal value using the C2X(DOM.TOKEN) REXX construct.

■ When the TOKEN field is not binary zeros, then the value of the DOM.WTOID
variable will be binary zeros and the value of DOM.WTOIDNUM will be zero.

■ When DOM.WTOIDNUM is non-zero, this variable will always contain binary
zeros.

OPSLOG Browse Column: TOKEN

Delete-Operator-Message Rules

Chapter 6: Coding Each AOF Rule Type 151

DOM.USER

An 8-byte variable providing communication between rules executing for the same
DOM event. The variable can contain any installation data that these rules need,
and it can store a character string displayable through OPSLOG Browse.

Data Type: User-defined, read/write

Notes:

■ Before AOF processing, this variable is initialized to binary zeros. It is then
passed to each rule that executes for the same DOM event; each rule can look
at or change the variable contents before passing the variable to the next rule
for the DOM event.

■ The primary purpose for the USER variable is to provide a method to pass a
small amount of data between the rules. This data may be binary or mixed
case. The USER field may also be used for filtering in the OPSLOG. However,
USER data used for OPSLOG filtering must be uppercase and displayable.

OPSLOG Browse Column: USER

DOM.WTOID

The internal sequence ID of the message to be deleted, taken from the DOMCID
field of the DOM control block (WTO or WTOR sequence number)

Data Type: 4-byte binary (unprintable), read-only

Sample Value: '00004C94'

Notes:

■ The DOM.WTOID value provides information that the OPSSEND function of
OPS/REXX uses in transmitting DOM events to other systems.

■ Your system assigns sequence numbers to WTO or WTOR messages. You can
use these sequence numbers to delete (using DOM) highlighted, non-scrollable
messages. Use the sequence of a message as its unique token identifier, but do
not use the contents of the sequence number itself.

OPSLOG Browse Column: WTOID

DOM.WTOIDNUM

The internal sequence ID of the message to be deleted, taken from the DOMCID
field of the DOM control block (WTO or WTOR sequence number)

Data Type: Integer, read-only

Sample Value: 1694508484

Note: The only difference between this variable and the DOM.WTOID variable is its
display format.

OPSLOG Browse Column: WTOID

Delete-Operator-Message Rules

152 AOF Rules User Guide

More information:

AOF Rule Tools (see page 29)

Debug a DOM Rule

To debug a DOM Rule

1. Set the CA OPS/MVS BROWSEDOM parameter to YES

2. Set the DOM event profile of your OPSLOG display to view all DOM events.

OPSLOG will now record entries of DOM.

3. With these parameters set, display the OPSLOG WTOID column to see the
associating message ID.

The WTOID on the DOM event should be that of the WTOID for the associating
action message in the OPSLOG in which the DOM occurred.

More information:

Code and Debug AOF Rules (see page 59)

Example: DOM Rule

The following is an example of a rule that responds to a DOM event. The example
assumes that you have an associating MSG rule that is sending messages to some focal
system. This DOM rule would allow those remotely sent action messages to be
low-lighted. This might be a desired application in a non-sysplex CA OPS/MVS MSF
connected environment, or a normal sysplex.

)DOM *

)PROC

/* SYSTEM A is our focal system, as to which we are currently */

/* shipping all message traffic. This DOM rule will use */

/* the OPS/REXX OPSSEND function to ship over this DOM event */

/* We also need to exclude shipping sysplex generated DOMS */

/* to avoid a possible rule loop. */

 if DOM.SYSPLEX = 0 then /* locally generated DOM */

 sendrc = OPSSEND(“SYSA”,”D”)

 return

End-of-Job Rules

Chapter 6: Coding Each AOF Rule Type 153

Note: The AOFMESSAGES parameter controls whether reissued messages and DOMs are
processed by AOF rules. This includes messages and DOMs that originated on another
system and were transported and reissued on this system by MSF, CA MIC, or sysplex
services.

See examples TAPEMNT1, TAPEMNT2, and TAPEMNT3 of your CA OPS/MVS data set
that contains the downloaded OPS.CCLXRULS file. These examples demonstrate how to
use a DOM rule in conjunction with an MSG and TOD rule to control outstanding tape
mounts.

End-of-Job Rules

An end-of-job (EOJ) rule is triggered when any job or started task ends. EOJ rules
facilitate the process of detecting when a job or started task ends, because one EOJ rule
usually replaces several MSG rules that need to be coded to detect job ending states
such as abend and normal termination messages. In addition, some address spaces may
end silently (no message notification). An EOJ rule can effectively detect this type of
termination.

In many cases, you can use an EOJ rule (and an EOS rule) to replace your existing
IEFACTRT SMF exit, which is written in assembler language.

Installation Requirements for EOJ Rules

Set the parameters INITSMF, EOJRULES, and EOSRULES to YES.

The installation IEFACTRT SMF exits must be implemented and SMF type 30 subtype
records must be generated.

Note: For more information, see the Parameter Reference.

End-of-Job Rules

154 AOF Rules User Guide

)EOJ—Event Specifier of EOJ Rules

The following is the format for coding the EOJ-event definition section:

)EOJ jobnamespec

jobnamespec

Specifies the job name. Follow these guidelines when specifying the character
string:

■ Specify one to eight characters of the job name.

■ The string cannot contain embedded blank spaces.

■ You can use the wildcard (*) character. For example,

– CICS* matches CICSA, CICSABC, CICS123 and any other job name
containing a CICS prefix.

– CICS*05 matches CICSD05, CICS205, CICS1105, and so on.

– *05 matches any job name ending with 05.

– * alone matches all job names.

■ Lowercase letters are acceptable, but the AOF converts them to uppercase for
event testing.

Initialization, Processing, and Termination Sections of EOJ Rules

The general guidelines for coding the initialization, processing, and termination sections
and the various AOF tools that you can use, apply to EOJ rules.

More information:

AOF Rule Structure (see page 21)
AOF Rule Tools (see page 29)

RETURN Statements in the)PROC Section of an EOJ Rule

The OPS/REXX RETURN statement has no special meaning in the processing section of
an EOJ rule. The return value has no effect on AOF processing.

End-of-Job Rules

Chapter 6: Coding Each AOF Rule Type 155

Execution Considerations for EOJ Rules

The processing section of a rule that responds to an EOJ event executes in the address
space of the job or task that is ending. Therefore, schedule an OPS/REXX program to a
CA OPS/MVS OSF TSO, TSL, or TSP serve to perform any type of logic that could possibly
suspend the processing of an EOJ rule.

The active JSCB in the ending address space is the region control task, or the initiator.
This causes the ACCOUNT, EXECPGM, and MODULE operands of OPSINFO to return the
values for the RCT or initiator program, rather than the application program that is
ending.

Since SMF may generate more than one type 30 record for reach EOJ event, only the
first record containing all the job data that only occurs once is used to generate the EOJ
event. The additional records containing repeatable sections such as EXCP counts for
every data set are not visible to the EOJ rules.

More information:

Code and Debug AOF Rules (see page 59)

OPS/REXX Host Environments in the)PROC Section of an EOJ Rule

The)PROC section of an EOJ rule has the following host environments with the following
EOJ rule characteristics. Specify the AOFDEFAULTADDRESS parameter for the default
host environment for EOJ rules.

ADDRESS AOF

Sent to CA OPS/MVS. Does not wait. Output is not returned.

ADDRESS AP

Sent to MSF and then forwarded to the CA Automation Point system. Does not wait.
Output is not returned.

ADDRESS EPI

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS HWS

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS ISPEXEC

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

End-of-Job Rules

156 AOF Rules User Guide

ADDRESS LXCON

The VM and Linux command requests sent to USS server for execution. Does not
wait. Output is not returned. The List request runs inline and returns VM and Linux
system data in stem variables.

ADDRESS MESSAGE

Sent as a WTO. The AOFDEST parameter specifies the destination.

ADDRESS MQ

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS NETMAN

Sent to a CA OPS/MVS internal CA Netman request queue to issue MGPT
commands. Does not wait. Output is not returned.

ADDRESS NETMASTR

Sent to CA NetMaster NM for SNA on the local system. Does not wait. Output is not
returned.

ADDRESS OPER

Sent to target console as specified through the OCCONSOLENAME parameters
when no CONNAME operands are present. Output is not returned. Schedule an
OPS/REXX program in a server when a command output interrogation is needed.

ADDRESS OPSCTL

Sent to a specified facility. If the facility is ECF or OSF, does not wait. If the facility is
MSF, slight wait occurs. The external data queue returns the output.

Note: If the command is MSF LIST, no wait occurs.

ADDRESS OPSDYNAM

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS OSF

Schedule TSO commands, CLISTs, or REXX EXECs to CA OPS/MVS OSF TSO servers.

ADDRESS OSFTSL

Schedule TSO commands, CLISTs, or REXX EXECs to CA OPS/MVS OSF TSL servers.

ADDRESS OSFTSP

Schedule TSO commands, CLISTs, or REXX EXECs to CA OPS/MVS OSF TSP servers.

ADDRESS SOF

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

End-of-Job Rules

Chapter 6: Coding Each AOF Rule Type 157

ADDRESS SQL

Does not wait. Proceed synchronously for requests that can be satisfied on the local
system. Output is returned in stem variable. Error messages, if any, are returned to
an external data queue.

ADDRESS SYSVIEWE

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS TSO

Sent to an OSF TSO server. Does not wait. Output is not returned.

ADDRESS USS

Sent to a USS server. Does not wait. Output is not returned. Schedule an OPS/REXX
program in a server if the command output interrogation is needed.

ADDRESS WTO

Does not wait. Output is sent to the specified console. When attempting a WTOR,
the host command is sent to a TSO server for execution. The response is returned to
the server. Schedule an OPS/REXX program in a server if the WTOR response
interrogation is needed.

More information:

Code and Debug AOF Rules (see page 59)

AOF Variables Available in an EOJ Rule

You can use all AOF variable types in EOJ rules. You can use the following unique AOF
event variables in the)PROC section of a EOJ rule, and you can manually interrogate the
corresponding OPSLOG display field as an aid in debugging or implementing rule logic.

EOJ.ACCOUNT

The value of the job card accounting field. This field is a character string where each
accounting field is separated by a comma.

Data Type: Character, read-only

Sample Value: 12 (Reason code 12)

End-of-Job Rules

158 AOF Rules User Guide

EOJ.COLOR

The color that the message text has in OPSLOG Browse

Data Type: 1-byte binary (unprintable), read/write

Sample Value: '00'X

Note: Use the OPSCOLOR function of OPS/REXX to set the EOJ.COLOR variable.

OPSLOG Browse Column: COLOR

EOJ.CONDCODE

The condition code of the last step of the job that was executed. The format is the
same as EOJ.MAXCC and is often the same value. The value for this field is derived
from SMF30SCC in the type 30 SMF record.

Data Type: Character, read-only

Sample Value: 0008 (Condition code 8)

EOJ.CPUSRB

The amount of CPU time (measured in hundredths of seconds) that was consumed
by the job while running in SRB mode. This is roughly equivalent to the amount of
CPU time to service I/O requests by the application. This value is field SMF30CPS in
the type 30 SMF record.

Data Type: Integer, read-only

Sample Value: 20 (.2 seconds of SRB time consumed)

EOJ.CPUTCB

The amount of CPU time (measured in hundredths of seconds) that was consumed
by the job while running under a z/OS TCB. This is roughly equivalent to the CPU
usage of the application program. This value is field SMF30CPT in the type 30 SMF
record.

Data Type: Integer, read-only

Sample Value: 910 (9.1 seconds of CPU time consumed)

EOJ.EXCPCNT

The total number of data blocks transferred from I/O channel program executions.
This is a measure of the amount of I/O done by the job. This value is field SMF30TEP
in the type 30 SMF record.

Data Type: Integer, read-only

Sample Value: 400 (400 blocks transferred)

End-of-Job Rules

Chapter 6: Coding Each AOF Rule Type 159

EOJ.JOBCLASS

The JES job class for an initiated batch job. This value is field SMF30C18 in the type
30 SMF record.

Data Type: Character, read-only

Sample Value: A

EOJ.JOBNAME

The job name or started task that has ended. JOBNAME is taken from the
identification section of the SMF type 30 record.

Data Type: Character, read-only

Sample Value: IBMUSER

OPSLOG Browse Column: JOBNAME

EOJ.MAXCC

The maximum condition code of any step executed during the job. This value is
always five characters.

The condition code has the following formats:

■ S0XXX-System hexadecimal abend code

■ unnnn-User decimal abend code

■ nnnnn-Normal decimal return code

■ FLUSH-All steps of the job were flushed

System abends are considered the highest values, followed by user abends and
normal return codes. FLUSH is only returned if all steps of the job are not executed.

Data Type: Character, read-only

Sample Value: S00C7 (system abend 0C7)

Note: EOSRULES needs to be set to YES for the EOJ.MAXCC to work properly. The
end-of-step cc is tracked to place the proper data in this variable.

EOJ.NONSPTAPE

The number of non-specific tape mounts for the job. This value is field SMF30PTM
in the type 30 SMF record.

Data Type: Integer, read-only

Sample Value: 2

EOJ.PGMRNAME

The programmer name field from the JOB statement. This value is field SMF30USR
in the type 30 SMF record.

Data Type: Character, read-only

Sample Value: JOHN DOE

End-of-Job Rules

160 AOF Rules User Guide

EOJ.REASCODE

If an abend occurs in the last executed step of the job, the reason code passed in
register 15 is sometimes a reason code for the abend. The value for this field is
derived from SMF30ARC in the type 30 SMF record.

Data Type: Integer, read-only

Sample Value: 12 (Reason code 12)

EOJ.RESGROUP

The WLM resource group name for the job if the system is using the z/OS Workload
Manager for system management. This value is field SMF30GRN in the type 30 SMF
record.

Data Type: Character, read-only

Sample Value: ALLCICS

EOJ.SECGROUP

The security group ID taken from the ACEE. This value is field SMF30GRP in the type
30 SMF record.

Data Type: Character, read-only

Sample Value: OPERS

EOJ.SECUSER

The security user ID taken from the ACEE. This value is field SMF30RUD in the type
30 SMF record.

Data Type: Character, read-only

Sample Value: OPER1

EOJ.SERVCLAS

The WLM service class for the job if the system is using the z/OS Workload Manager
for system management. This value is field SMF30SCN in the type 30 SMF record.

Data Type: Character, read-only

Sample Value: SPEEDY

EOJ.SMF30AD

The address of the SMF type 30 record. This address may be used with the
OPSTORE function of OPS/REXX to access any field in the type 30 record to obtain
data that is not provided by the EOJ event variables. The IBM macro IFASMFR (30)
generates the assembler DSECT for the SMF type 30 record.

Data Type: 4-byte binary (unprintable), read-only

Sample Value: '00702C00'X

End-of-Job Rules

Chapter 6: Coding Each AOF Rule Type 161

EOJ.SPTAPE

The number of volume specific tape mounts for the job. This value is field
SMF30TPR in the type 30 SMF record.

Data Type: Integer, read-only

Sample Value: 6

EOJ.STARTDATE

The sample value date that the system began execution of this job or started task.
The date is in the format YYYY/MM/DD.

Data Type: Character, read-only

Sample Value: 2000/05/12

EOJ.STARTTIME

The time that the system began execution of this job or started task. The time value
is in hundredths of seconds since midnight.

Data Type: Character, read-only

Sample Value: 3600000 (10AM)

EOJ.SUBSYS

The subsystem name of the job used by SMF for workload accounting. Subsystem
names are defined in the SMFPRMxx member of PARMLIB and extracted from the
OUCBSUBN field of the OUCB control block.

Data Type: Character, read-only

Sample Value: TSO

EOJ.TERMNAME

The symbolic name of the TSO terminal for a TSO session. This value is field
SMF30TSN in the type 30 SMF record.

Data Type: Character, read-only

Sample Value: OPSS1

OPSLOG Browse Column: TERMNAME

EOJ.TEXT

The OPSLOG message text that describes the end of a job event including the
maximum condition code

Data Type: Character, read-only

Sample Value: IBMUSER JOB00123 ENDED MAXCC=00000 SUBSYS=TSO

OPSLOG Browse Column: Text is always displayed

End-of-Job Rules

162 AOF Rules User Guide

EOJ.USER

An 8-byte variable providing communication between rules executing for the same
EOJ event. The variable can contain any installation data that these rules need, and
it can store a character string displayable through OPSLOG Browse.

Data Type: User-defined, read/write

Notes:

Before AOF processing, this variable is initialized to binary zeros. It is then passed to
each rule that executes for the same EOJ event; each rule can look at or change the
variable contents before passing the variable to the next rule for the EOJ event.

The primary purpose for the USER variable is to provide a method to pass a small
amount of data between the rules. This data may be binary or mixed case. The
USER field may also be used for filtering in the OPSLOG. However, USER data used
for OPSLOG filtering must be uppercase and displayable.

OPSLOG Browse Column: USER

EOJ.USERCOM

The value contained in the JMRUCOM of the JMR control block. This field is
sometimes used to point to tables or control blocks used by installation SMF exits.

Data Type: 4-byte binary (unprintable), read-only

Sample Value: '0A002CFC' X

Note: Use the OPSTORE function of OPS/REXX to access any storage pointed to by
EOJ.USERCOM.

EOJ.WORKLOAD

The WLM workload name of the job if the system is using the z/OS Workload
Manager for system management. This value is field SMF30WLM in the type 30 SMF
record.

Data Type: Character, read-only

Sample Value: PRODCICS

More information:

AOF Rule Tools (see page 29)

End-of-Job Rules

Chapter 6: Coding Each AOF Rule Type 163

Debug an EOJ Rule

The following are EOJ Rule Debugging Techniques:

■ Set the CA OPS/MVS BROWSEEOJ parameter to YES and the EOJ event profile of
your OPSLOG display to Y to view all EOJ events. With these parameters set, display
the OPSLOG EVENT column to see recorded EOJ events.

■ If OPSLOG is not recording EOJ events, see Installation Requirements for EOJ Rules
in this chapter.

For additional debugging techniques that you can use with all AOF rules, see the chapter
“Code and Debug AOF Rules.”

More information:

Code and Debug AOF Rules (see page 59)

End-of-Job Rules

164 AOF Rules User Guide

Example: EOJ Rule

Assume that you defined an RDF table containing information on the production payroll
jobs. When each batch job in the processing sequence ends, the start and stop times
and the maximum condition codes must be recorded.

)EOJ PAY*

)PROC

/* Only process productions jobs a by checking EOJ event variable */

if eoj.jobclass = 'P' then

/* Update RDF table with the EOJ data. Call the internal CONVTIME */

/* subroutine to format the start time to HH:MM:SS. This value */

/* is originally in hundredths of seconds since midnight. */

 address SQL Update PAYTAB Set

 "Start_date='"eoj.startdate" ',",

 "Start_time='"Convtime(eoj.starttime)"' ,", /* convert data */

 "End_date='"Date('B')"',",

 "End_time='"Time('N')"',",

 "Cond_code='"eoj.maxcc"'",

 "Where Jobname='"eoj.jobname" ' "

return "NORMAL"

/* Convert binary time from hundredths of seconds since midnight */

CONVTIME:

 cvtime=Arg(1)%100

 return Right(cvtime%3600,2,'0')':'||, /* HH: */

 Right((cvtime%60)//60,2,'0')':'||, /* MM: */

 Right(cvtime//60,2,'0') /* SS */

)END

End-of-Memory Rules

Chapter 6: Coding Each AOF Rule Type 165

End-of-Memory Rules

An end-of-memory (EOM) rule is triggered when a started task ends. EOM rules
facilitate the process of detecting when a started task ends, because one EOM rule
usually replaces several MSG rules that need to be coded to detect job ending states
such as abend and termination messages. In addition, some stated tasks might end
silently (no message notification), and an EOM can effectively detect this type of
termination.

Note: EOM rules have similar functionality to EOJ rules. The primary difference is that
EOM rules only detect the ending of an address space and cannot detect the end of a
batch job, as do EOJ rules. Also, the amount of environmental data available in EOJ rules
is much greater than in EOM rules. In some cases you may choose an EOJ rule instead of
an EOM rule.

Installation Requirements for EOM Rules

None are required.

)EOM—Event Specifier of EOM Rules

The following is the format for coding the EOM-event definition section:

)EOM jobnamespec

jobnamespec

Specifies the job name. Follow these guidelines when specifying the character
string:

■ Specify one to eight characters of the job name.

■ The string cannot contain embedded blank spaces.

■ You can use the wildcard (*) character. For example,

– CICS* matches CICSA, CICSABC, CICS123 and any other job name
containing a CICS prefix

– CICS*05 matches CICSD05, CICS205, CICS1105, and so on

– *05 matches any job name ending with 05

– * alone matches all job names

■ Lowercase letters are acceptable, but the AOF converts them to uppercase for
event testing.

End-of-Memory Rules

166 AOF Rules User Guide

Initialization, Processing, and Termination Sections of EOM Rules

EOM rules follow the general guidelines for coding the initialization, processing, and
termination sections and the various AOF tools that you can use.

More information:

AOF Rule Structure (see page 21)
AOF Rule Tools (see page 29)

RETURN Statements in the)PROC Section of an EOM Rule

The OPS/REXX RETURN statement has no special meaning in the processing section of
an EOM rule. The return value has no effect on AOF processing.

Execution Considerations for EOM Rules

The processing section of a rule that responds to an EOM event executes in the z/OS
master (*MASTER*) address space. Therefore, any type of logic that could possibly
suspend the processing of an EOM rule should be performed by scheduling an OPS/REXX
program to a CA OPS/MVS OSF TSO, TSL, or TSP server.

More information:

Code and Debug AOF Rules (see page 59)

OPS/REXX Host Environments in the)PROC Section of an EOM Rule

The)PROC section of an EOM rule has the following host environments with the
following EOM rule characteristics. Specify the AOFDEFAULTADDRESS parameter for the
default host environment for EOM rules.

ADDRESS AOF

Sent to CA OPS/MVS. Does not wait. Output is not returned.

ADDRESS AP

Sent to MSF and then forwarded to the CA Automation Point system. Does not wait.
Output is not returned.

ADDRESS EPI

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

End-of-Memory Rules

Chapter 6: Coding Each AOF Rule Type 167

ADDRESS HWS

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS ISPEXEC

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS LXCON

The VM and Linux command requests sent to USS server for execution. Does not
wait. Output is not returned. The List request runs inline and returns VM and Linux
system data in stem variables.

ADDRESS MESSAGE

Sent as a WTO. The AOFDEST parameter specifies the destination.

ADDRESS MQ

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS NETMAN

Sent to a CA OPS/MVS internal CA Netman request queue to issue MGPT
commands. Does not wait. Output is not returned.

ADDRESS NETMASTR

Sent to CA NetMaster NM for SNA on the local system. Does not wait. Output is not
returned.

ADDRESS OPER

Sent to target console as specified through the OCCONSOLENAME parameters
when no CONNAME operands are present. Output is not returned. Schedule an
OPS/REXX program in a server when a command output interrogation is needed.

ADDRESS OPSCTL

Sent to a specified facility. If the facility is ECF or OSF, does not wait. If the facility is
MSF, slight wait occurs. The external data queue returns the output.

Note: If the command is MSF LIST, no wait occurs.

ADDRESS OPSDYNAM

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS OSF

Schedule TSO commands, CLISTs, or REXX EXECs to CA OPS/MVS OSF TSO servers.

ADDRESS OSFTSL

Schedule TSO commands, CLISTs, or REXX EXECs to CA OPS/MVS OSF TSL servers.

End-of-Memory Rules

168 AOF Rules User Guide

ADDRESS OSFTSP

Schedule TSO commands, CLISTs, or REXX EXECs to CA OPS/MVS OSF TSP servers.

ADDRESS SOF

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS SQL

Does not wait. Processed synchronously for requests that can be satisfied on the
local system. Output is returned in stem variable. Error messages, if any, are
returned to an external data queue.

ADDRESS SYSVIEWE

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS TSO

Sent to an OSF TSO server. Does not wait. Output is not returned.

ADDRESS USS

Sent to a USS server. Does not wait. Output is not returned. Schedule an OPS/REXX
program in a server if a command output interrogation is needed.

ADDRESS WTO

Does not wait. Output that is sent to specified (or default) destination. When
attempting a WTOR, host command is sent to a TSO server for execution. The
response is returned to the server. Schedule an OPS/REXX program in a server if the
WTOR response interrogation is needed.

More information:

Code and Debug AOF Rules (see page 59)

End-of-Memory Rules

Chapter 6: Coding Each AOF Rule Type 169

AOF Variables Available in an EOM Rule

You can use all AOF variable types in EOM rules. You can use the following unique AOF
event variables in the)PROC section of a EOM rule. You can also manually interrogate
the corresponding OPSLOG display field as an aid in debugging or implementing rule
logic.

EOM.ABNORMAL

An integer value indicting whether the address space terminated abnormally. This
value is derived from the SSENTYPE flag in the SSOB extension.

Data Type: Integer, read-only

Possible values are:

■ 0 = normal termination

■ 1 = abnormal termination.

Abnormal does not include all abends. S222 abends are not considered abnormal.
Abend S069 reason code 4 for ASCRE failure is considered abnormal.

Sample Value: 0

EOM.ASID

The address space ID of the terminating address space, which is taken from the
SSENASID field of the SSOB extension.

Data Type: 2-byte binary (unprintable), read-only

Sample Value: '003E'X

Notes:

■ To convert this variable to printable hexadecimal characters, use the OPS/REXX
C2X function.

■ Using this variable, you can check to see if an address space is terminating. For
example, suppose that an automation application keeps a list of critical address
spaces and their ASIDs. You can write an EOM rule that compares the list
entries against the ASID of the currently terminating address space. If a match
is found, restarts the address space or takes another recovery action.

OPSLOG Browse Column: ASID

End-of-Memory Rules

170 AOF Rules User Guide

EOM.JOBNAME

The job name of the terminated address space, which is taken from one of these
sources:

■ TSO users: The OUCBUSRD (user ID) field of the OUCB; the value is the user ID
for time sharing address spaces

■ Started tasks: The OUCBTRXN (transaction name) field of the OUCB; the value
is the started task name for started task address spaces

Data Type: Character, read-only

Sample Value: VTAM

Note: The EOM.JOBNAME variable determines which EOM rules execute for an
EOM event.

OPSLOG Browse Column: JOBNAME

EOM.TEXT

Description of the terminated address space, which is taken from the OUCBSUBN
(subsystem name) field of the OUCB and from the EOM.JOBNAME variable.

Data Type: Character, read-only

Sample Value: TSO USERA

Notes:

■ The type of terminated address space is either TSO for a TSO user or STC for a
started task.

■ You can extract the first word of the EOM.TEXT string to determine the current
address space type use the OPS/REXX WORD function.

OPSLOG Browse Column: Text is always displayed.

EOM.USER

An 8-byte variable providing communication between rules executing for the same
EOM event. The variable can contain any installation data that these rules need,
and it can store a character string displayable through OPSLOG Browse.

Data Type: User-defined, read/write

Notes:

■ Before AOF processing, this variable is initialized to binary zeros. This variable is
then passed to each rule that executes for the same EOM event. Each rule can
look at or can change the variable contents before passing the variable to the
next rule for the EOM event.

■ The primary purpose for the USER variable is to provide a method to pass a
small amount of data between the rules. This data can be binary or mixed case.
The USER field can also be used for filtering in the OPSLOG. However, USER
data that is used for OPSLOG filtering must be uppercase and displayable.

OPSLOG Browse Column: USER

End-of-Memory Rules

Chapter 6: Coding Each AOF Rule Type 171

More information:

AOF Rule Tools (see page 29)

Debug an EOM Rule

To debug an EOM rule

1. Set the CA OPS/MVS BROWSEEOM parameter to YES

2. Set the EOM event profile of your OPSLOG display to Y

You can now view all EOM events.

3. With these parameters set, display the OPSLOG EVENT column

This lets you see recorded EOM events.

Note: If OPSLOG is not recording EOM events, see Installation Requirements for EOM
Rules (see page 165) in this chapter.

More information:

Code and Debug AOF Rules (see page 59)

Example: EOM Rule

The following is an example of a rule that responds to an EOM event. The rule detects a
VTAM failure and displays a highlighted message. This would be a catchall rule to detect
if VTAM ended; individual MSG rules would not be needed.

)EOM VTAM

)INIT

/* Initialize a flag variable to be used in the)PROC section */

/* to determine if system is being shutdown. */

GLVTEMP1.SYSSHUT.STAT = 'N'

)PROC

/* Only do this if we are not shutting down the system. If we are */

/* shutting down the system, then our shutdown procedures will set */

/* this flag glvtemp variable to Y so that this code won't fire */

SHUTDOWN = OPSVALUE('GLVTEMP1.SYSSHUT.STAT','O') /* get value */

if SHUTDOWN = 'Y' then return /* get out */

address WTO /* OPS/REXX Host environment to issue msgs */

 "MSGID(OPSAUTO1) TEXT('VTAM HAS ENDED ABNORNALLY') HILITE Route(1)"

)END

End-of-Step Rules

172 AOF Rules User Guide

End-of-Step Rules

End-of-step (EOS) rules provide the ability to monitor and optionally terminate a batch
job based on any criteria that can be extracted from the SMF type 30 record that is
produced during step termination of a batch job. Since the EOS rule is matched by a job
name specification, it can be used to monitor step completion of jobs that produce no
message traffic at step termination that would be visible to message rules. In addition,
the option to cancel a job based on completion code, or any other data provided in the
SMF type 30 record, is provided.

EOS and EOJ rules provide you with the option of replacing your assembler language
IEFACTRT SMF exit with easier-to-maintain AOF OPS/REXX rules.

Installation Requirements for EOS Rules

Set the parameters INITSMF and EOSRULES to YES.

The installation IEFACTRT SMF exits must be implemented and SMF type 30 subtype 4
records must be generated.

Note: For more information, see the CA OPS/MVS Parameter Reference.

)EOS—Event Specifier of EOS Rules

The following is the format for coding the EOS event definition section:

)EOS jobnamespec

jobnamespec

Specifies the job name. Follow these guidelines when specifying the character
string:

■ Specify one to eight characters of the job name.

■ The string cannot contain embedded blank spaces.

■ You can use the wildcard (*) character. For example,

– CICS* matches CICSA, CICSABC, CICS123 and any other job name
containing a CICS prefix.

– CICS*05 matches CICSD05, CICS205, CICS1105, and so on.

– *05 matches any job name ending with 05.

– * alone matches all job names.

■ Lowercase letters are acceptable, but the AOF converts them to uppercase for
event testing.

End-of-Step Rules

Chapter 6: Coding Each AOF Rule Type 173

Initialization, Processing, and Termination Sections of EOS Rules

The general guidelines for coding the initialization, processing, and termination sections
and the various AOF tools that you can use, apply to EOS rules.

More information:

AOF Rule Structure (see page 21)
AOF Rule Tools (see page 29)

RETURN Statements in the)PROC Section of an EOS Rule

The OPS/REXX RETURN statement specifies whether the job containing the ended step
is allowed to continue or is cancelled. Valid values for a RETURN statement in the
processing section of an EOS rule are as follows:

NORMAL

Allow the job or started task to continue processing.

CANCEL

Bypass all remaining job steps and terminate the job.

Default: RETURN NORMAL

Notes:

■ The return values listed here are character constants rather than keywords.

■ An unrecognized return value defaults to a value of NORMAL.

■ Inadvertently coding a RETURN SUPPRESS will have the same meaning as RETURN
CANCEL.

Execution Considerations for EOS Rules

The processing section of a rule that responds to an EOS event executes in the address
space of the job or task whose step has ended. Therefore, any type of logic that could
possibly suspend the processing of an EOS rule should be performed by scheduling an
OPS/REXX program to a CA OPS/MVS OSF TSO, TSL, or TSP server.

The active JSCB in the ending address space is the region control task, or the initiator.
This causes the ACCOUNT, EXECPGM, and MODULE operands of OPSINFO to return the
values for the RCT or initiator program, rather than the application program that is
ending.

End-of-Step Rules

174 AOF Rules User Guide

Because SMF may generate more than one type 30 record for reach EOS event, only the
first record containing all the job data that only occurs once is used to generate the EOS
event. The additional records containing repeatable sections such as EXCP counts for
every data set are not visible to the EOS rules.

More information:

Code and Debug AOF Rules (see page 59)

OPS/REXX Host Environments in the)PROC Section of an EOS Rule

The)PROC section of an EOS rule has the following host environments with the
following EOS rule characteristics. Specify the AOFDEFAULTADDRESS parameter for the
default host environment for EOS rules.

ADDRESS AOF

Sent to CA OPS/MVS. Does not wait. Output is not returned.

ADDRESS AP

Sent to MSF and then forwarded to the CA Automation Point system. Does not wait.
Output is not returned.

ADDRESS EPI

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS HWS

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS ISPEXEC

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS LXCON

The VM and Linux command requests sent to USS server for execution. Does not
wait. Output is not returned. The List request runs inline and returns VM and Linux
system data in stem variables.

ADDRESS MESSAGE

Sent as a WTO. The AOFDEST parameter specifies the destination.

ADDRESS MQ

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

End-of-Step Rules

Chapter 6: Coding Each AOF Rule Type 175

ADDRESS NETMAN

Sent to a CA OPS/MVS internal CA Netman request queue to issue MGPT
commands. Does not wait. Output is not returned.

ADDRESS NETMASTR

Sent to CA NetMaster NM for SNA on the local system. Does not wait. Output is not
returned.

ADDRESS OPER

Sent to target console as specified through the OCCONSOLENAME parameters
when no CONNAME operands are present. Output is not returned. Schedule an
OPS/REXX program in a server when a command output interrogation is needed.

ADDRESS OPSCTL

Sent to a specified facility. If the facility is ECF or OSF, does not wait. If the facility is
MSF, slight wait occurs. The external data queue returns the output.

Note: If the command is MSF LIST, no wait occurs.

ADDRESS OPSDYNAM

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS OSF

Schedule TSO commands, CLISTs, or REXX EXECs to CA OPS/MVS servers.

ADDRESS OSFTSL

Schedule TSO commands, CLISTs, or REXX EXECs to CA OPS/MVS OSF TSL servers.

ADDRESS OSFTSP

Schedule TSO commands, CLISTs, or REXX EXECs to CA OPS/MVS OSF TSP servers.

ADDRESS SOF

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS SQL

Does not wait. Processed synchronously for requests that can be satisfied on the
local system. Output is returned in stem variable. Error messages, if any, are
returned to an external data queue.

ADDRESS SYSVIEWE

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS TSO

Sent to an OSF TSO server. Does not wait. Output is not returned.

End-of-Step Rules

176 AOF Rules User Guide

ADDRESS USS

Sent to a USS server. Does not wait. Output is not returned. Schedule an OPS/REXX
program in a server if a command output interrogation is needed.

ADDRESS WTO

Does not wait. Output is sent to the specified console. When attempting a WTOR,
host command is sent to a TSO server for execution. The response is returned to the
server. Schedule an OPS/REXX program in a server if the WTOR response
interrogation is needed.

More information:

Code and Debug AOF Rules (see page 59)

AOF Variables Available in an EOS Rule

You can use all AOF variable types in EOS rules. You can use the following unique AOF
event variables in the)PROC section of a EOS rule, and you can manually interrogate the
corresponding OPSLOG display field as an aid in debugging or implementing rule logic.

EOS.ACCOUNT

The value of the EXEC statement account keyword or a null string if no EXEC
accounting is specified. This field is a character string, where a comma separates
each accounting field.

Data Type: Character, read-only

Sample Value: PROD,HR,,05210

EOS.COLOR

The color that the message text has in OPSLOG browse

Data Type: 1-byte binary (unprintable), read/write

Sample Value: '00'X

Note: Use the OPSCOLOR function of OPS/REXX to set the EOS.COLOR variable.

OPSLOG Browse Column: COLOR

EOS.CONDCODE

The condition code of the current step that has ended. The format is the same as
EOS.MAXCC and may be the same value. The value for this field is derived from
SMF30SCC in the type 30 SMF record.

Data Type: Character, read-only

Sample Value: 00008 (Condition code 8)

End-of-Step Rules

Chapter 6: Coding Each AOF Rule Type 177

EOS.CPUSRB

The amount of CPU time, in hundredths of seconds, that was consumed by the step
while running in SRB mode. This is roughly equivalent to the amount of CPU time to
service I/O requests by the application. This value is field SMF30CPS in the type 30
SMF record.

Data Type: Integer, read-only

Sample Value: 20 (.2 seconds of SRB time consumed)

EOS.CPUTCB

The amount of CPU time, in hundredths of seconds, that was consumed by the step
while running under a z/OS TCB. This is roughly equivalent to the CPU usage of the
application program. This value is field SMF30CPT in the type 30 SMF record.

Data Type: Integer, read-only

Sample Value: 910 (9.1 seconds of CPU time consumed)

EOS.EXCPCNT

The total number of data blocks transferred from I/O channel program executions.
This is a measure of the amount of I/O completed by the step. This value is field
SMF30TEP in the type 30 SMF record.

Data Type: Integer, read-only

Sample Value: 400 (400 blocks transferred)

EOS.JOBCLASS

The JES job class for an initiated batch job. This value is field SMF30C18 in the type
30 SMF record.

Data Type: Character, read-only

Sample Value: A

EOS.JOB NAME

The name of the job or started task whose step has ended. JOB NAME is taken from
the identification section of SMF type 30 record.

Data Type: Character, read-only

Sample Value: IBMUSER

OPSLOG Browse Column: JOB NAME

End-of-Step Rules

178 AOF Rules User Guide

EOS.MAXCC

The maximum condition code of any step executed, up to and including the current
step. This value is always a 5-character value. The condition code has the following
formats:

■ S0XXX-system hexadecimal abend code

■ Unnnn-user decimal abend code

■ nnnnn-normal decimal return code

■ FLUSH-all steps of the job were flushed

System abends are considered the highest values, followed by user abends and
normal return codes. FLUSH is only returned if all steps, up to and including the
current step, were not executed.

Data Type: Character, read-only

Sample Value: S00C7 (System abend 0C7)

EOS.NONSPTAPE

The number of non-specific tape mounts for the step. This value is field SMF30PTM
in the type 30 SMF record.

Data Type: Character, read-only

Sample Value: 2

EOS.OESUBSTEP

The Open MVS UNIX sub-step number that is incremented by 1 each time the
OMVS EXEC function is invoked. This field is 0 for z/OS programs. This value is field
SMF30SSN in the type 30 SMF record.

Data Type: Integer, read-only

Sample Value: 25

EOS.PGMNAME

The name of the job step program specified in the PGM keyword of the JCL EXEC
statement. For an OMVS UNIX program, this field may be 16 characters in length
and reflects the file name specified at the end of the UNIX path specification. This
value is field SMF30PGM in the type 30 SMF record.

Data Type: Character, read-only

Sample Value: IEBGENER

EOS.PGMRNAME

The programmer name field from the JOB statement. This value is field SMF30USR
in the type 30 SMF record.

Data Type: Character, read-only

Sample Value: JOHN DOE

End-of-Step Rules

Chapter 6: Coding Each AOF Rule Type 179

EOS.PROCSTEP

If the EXEC statement invokes a catalogued procedure, this variable is the name of
the EXEC statement. Otherwise, it is a null string. This value is field SMF30PSN in the
type 30 SMF record.

Data Type: Character, read-only

Sample Value: ASMHCLG

EOS.REASCODE

If an abend occurs in the terminating step, the value passed in register 15 is
sometimes a reason code for the abend. The value for this field is derived from
SMF30ARC in the type 30 SMF record.

Data Type: Integer, read-only

Sample Value: 12 (Reason code 12)

EOS.RESGROUP

The WLM resource group name for the job if the system is using the z/OS Workload
Manager for system management. This value is field SMF30GRN in the type 30 SMF
record.

Data Type: Character, read-only

Sample Value: ALLCICS

EOS.SECGROUP

The security group ID taken from the ACEE. This value is field SMF30GRP in the type
30 SMF record.

Data Type: Character, read-only

Sample Value: OPERS

EOS.SECUSER

The security user ID taken from the ACEE. This value is field SMF30GRP in the type
30 SMF record.

Data Type: Character, read-only

Sample Value: OPER1

EOS.SERVCLAS

The WLM service class for the job if the system is using the z/OS Workload Manager
for system management. This value is field SMF30SCN in the type 30 SMF record.

Data Type: Character, read-only

Sample Value: SPEEDY

End-of-Step Rules

180 AOF Rules User Guide

EOS.SMF30AD

The address of the SMF type 30 record. This address may be used with the
OPSTORE function of OPS/REXX to access any field in the type 30 record to obtain
data not provided by the EOS event variables. The IBM macro IFASMFR (30)
generates the assembler DSECT for the SMF type 30 record.

Data Type: 4-byte binary (unprintable), read-only

Sample Value: '00702C00'X

EOS.SPTAPE

The number of volume specific tape mounts for the step. This value is field
SMF30TPR in the type 30 SMF record.

Data Type: Integer, read-only

Sample Value: 6

EOS.STARTDATE

The date on which the system began execution of this step

Data Type: Character, read-only

Sample Value: YYYY/MM/DD

EOS.STARTTIME

The time that the system begins execution of this job or started task step. The time
value is measured in hundredths of seconds, starting from 12 a.m.

Data Type: Character, read-only

Sample Value: 3600000 (10AM)

EOS.STEPNAME

The step name of the job step that terminated. This value is field SMF30STM in the
type 30 SMF record.

Data Type: Character, read-only

Sample Value: LKED

EOS.STEPNUMB

The step number of the job step that terminated. The first step has number 1, and
so forth. This value is from field SMF30STN in the type 30 SMF record.

Data Type: Integer, read-only

Sample Value: 2

End-of-Step Rules

Chapter 6: Coding Each AOF Rule Type 181

EOS.SUBSYS

The subsystem name of the job used by SMF for workload accounting. Subsystem
names are defined in the SMFPRMxx member of parmlib and extracted from the
OUCBSUBN field of the OUCB control block.

Data Type: Character, read-only

Sample Value: TSO

EOS.TERMNAME

The symbolic name of the TSO terminal for a TSO session. This value is field
SMF30TSN in the type 30 SMF record.

Data Type: Character, read-only

Sample Value: OPSS1

OPSLOG Browse Column: TERMNAME

EOS.TEXT

The OPSLOG message text that describes the end of step event, including the
maximum condition code

Data Type: Character, read-only

Sample Value: PAYJOB JOB00123 STEP 1 PAYPROC.STEP1 PGM=P

OPSLOG Browse Column: Text is always displayed.

EOS.USER

An 8-byte variable providing communication between rules executing for the same
EOS event. The variable can contain any installation data that these rules need, and
it can store a character string displayable through OPSLOG Browse.

Data Type: User-defined, read/write

Notes:

■ Before AOF processing, this variable is initialized to binary zeros. It is then
passed to each rule that executes for the same EOS event; each rule can look at
or change the variable contents before passing the variable to the next rule for
the EOS event.

■ The primary purpose for the USER variable is to provide a method to pass a
small amount of data between the rules. This data may be binary or mixed
case. The USER field may also be used for filtering in the OPSLOG. However,
USER data used for OPSLOG filtering must be uppercase and displayable.

OPSLOG Browse Column: USER

End-of-Step Rules

182 AOF Rules User Guide

EOS.USERCOM

The value contained in the JMRUCOM of the JMR control block. This field is
sometimes used to point to tables or control blocks used by installation SMF exits.

Data Type: 4-byte binary (unprintable), read-only

Sample Value: '0A002CFC'X

Note: Use the OPSTORE function of OPS/REXX to access any storage pointed to by
EOS.USERCOM.

EOS.WORKLOAD

The WLM workload name of the job if the system is using the z/OS Workload
Manager for system management. This value is field SMF30WLM in the type 30 SMF
record.

Data Type: Character, read-only

Sample Value: PRODCICS

More information:

AOF Rule Tools (see page 29)

Debug an EOS Rule

To debug an EOS Rule

1. Set the CA OPS/MVS BROWSEEOS parameter to YES

2. Set the EOS event profile of your OPSLOG display to Y

This lets you view all EOS events.

3. With these parameters set, display the OPSLOG EVENT column.

This lets you see recorded EOS events.

Note: If OPSLOG is not recording EOS events, see Installation Requirements for EOS
Rules (see page 172) in this chapter.

More information:

Code and Debug AOF Rules (see page 59)

Global Variable Rules

Chapter 6: Coding Each AOF Rule Type 183

Example: EOS Rule

Assume that the CICS on-line payroll databases may be reopened after STEP3 of the
payroll job, called PAYLAST, completes successfully. An OPS/REXX program called
OPENPAYB, running in an OSF server, reopens the databases.

)EOS PAYLAST

)PROC

if eos.jobclass = 'P' & , /* Only the production jobs */

eos.stepname = 'STEP3' & , /* Step3 is the signal */

eos.condcode = '0000' then /* Must complete normally */

 address OSF "OI OPENPAYB" /* Open the databases */

)END

Global Variable Rules

A global variable (GLV) rule is triggered when the value of an OPS/REXX global variable,
whose stem begins with GLVTEMPx., GLOBAL., or GLOBALx., is changed. Depending on
the logic of your automated CA OPS/MVS applications, you may need to react to the
changing of a common OPS/REXX global variable that is being processed by many
different OPS/REXX rules or OPS/REXX programs. A GLV rule allows you to centralize this
type of processing.

Installation Requirements for GLV Rules

The parameters GLVCHAINMAX and GLVPENDINGMAX prevent the runaway recursion
of global variable events. Depending on the logic of your applications that triggers the
GLV rules, you can increase the default values of these parameters. To allow updates to
CA CCS Common Variable Service (sysplex variables) to trigger the GLV rules, set the
GLVNOTIFYRULES parameter to YES.

Note: For more information, see the Parameter Reference.

Global Variable Rules

184 AOF Rules User Guide

)GLV—Event Specifier of GLV Rules

The following is the format for coding the GLV event definition section:

)GLV glvnamespec

glvnamespec

Specifies the global variable name. Follow these guidelines when specifying the
character string:

■ Specify one to 50 characters of the complete GLVTEMPx or GLOBALx variable
name. The x can be a letter from A to Z.

■ The string cannot contain embedded blank spaces.

■ You can use the wildcard (*) character. For example,

– GLVTEMPA* matches GLVTEMPA.CICS, GLVTEMPA.IMS.UPTIME, and any
other OPS/REXX global variable name with a stem of GLVTEMPA.

– GLVTEMP*.CICS matches GLVTEMPA.CICS, GLVTEMPB.CICS, and so on.

– *.CICS matches any GLVTEMPx or GLOBALx variable name ending with a
tail name of CICS.

– * alone matches all variables.

■ Lowercase letters are acceptable, but the AOF converts them to uppercase for
event testing.

Initialization, Processing, and Termination Sections of GLV Rules

The general guidelines for coding the initialization, processing, and termination sections
and the various AOF tools that you can use, apply to GLV rules.

More information:

AOF Rule Structure (see page 21)
AOF Rule Tools (see page 29)

RETURN Statements in the)PROC Section of a GLV Rule

The OPS/REXX RETURN statement has no special meaning in the processing section of a
global variable rule. The return value has no effect on AOF processing.

Global Variable Rules

Chapter 6: Coding Each AOF Rule Type 185

Execution Considerations for GLV Rules

The processing section of a rule that responds to a GLV event executes in the address
space from which the global variable event originated. Therefore, any type of logic that
could possibly suspend the processing of a GLV rule can be performed by scheduling an
OPS/REXX program to a CA OPS/MVS OSF TSO, TSL, or TSP server. For more information
see, Code and Debug AOF Rules (see page 59).

A change in the value of an OPS/REXX global variable triggers a GLV rule. However, a
global variable event does not trigger a global variable rule under these conditions:

■ Changing the value of a global variable triggers a global variable event unless that
variable has a stem of GLOBALx. or GLVTEMPx. (where x is a number from 0 to 9)

■ During CA OPS/MVS startup or shutdown

■ When a global variable in the initialization or termination section of the rule
changes.

■ When a global variable is deleted and the GLVDELETERULES parameter is set to NO,
the default value.

If a global variable update occurs in the processing section of a rule, the rule can trigger
itself. A global variable rule triggering itself is not true recursion. The AOF maintains
such global variable events in a FIFO queue. The AOF extracts the events from the queue
and triggers other rules when the rule that caused the recursion has finished executing.
The GLVPENDINGMAX parameter determines size of the FIFO queue; the default queue
size is 100.

To prevent infinite recursion, specify the GLVCHAINMAX parameter to limit the number
of global variable events that can occur from in the original rule; the default limit is 1000
events.

Note: For more information about the GLVPENDINGMAX and GLVCHAINMAX
parameters, see the CA OPS/MVS Parameter Reference Guide.

OPS/REXX Host Environments in the)PROC Section of a GLV Rule

The)PROC section of a GLV rule has the following host environments with the following
GLV rule characteristics. Specify the AOFDEFAULTADDRESS parameter for the default
host environment for EOS rules.

ADDRESS AOF

Sent to CA OPS/MVS. Does not wait. Output is not returned.

ADDRESS AP

Sent to MSF and then forwarded to the CA Automation Point system. Does not wait.
Output is not returned.

Global Variable Rules

186 AOF Rules User Guide

ADDRESS EPI

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS HWS

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS ISPEXEC

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS LXCON

The VM and Linux command requests sent to USS server for execution. Does not
wait. Output is not returned. The List request runs inline and returns VM and Linux
system data in stem variables.

ADDRESS MESSAGE

Sent as a WTO. The AOFDEST parameter specifies the destination.

ADDRESS MQ

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS NETMAN

Sent to a CA OPS/MVS internal CA Netman request queue to issue MGPT
commands. Does not wait. Output is not returned.

ADDRESS NETMASTR

Sent to CA NetMaster NM for SNA on the local system. Does not wait. Output is not
returned.

ADDRESS OPER

Sent to target console as specified through the OCCONSOLENAME parameters
when no CONNAME operands are present. Output is not returned. Schedule an
OPS/REXX program in a server when a command output interrogation is needed.

ADDRESS OPSCTL

Sent to a specified facility. If the facility is ECF or OSF, does not wait. If the facility is
MSF, slight wait occurs. The external data queue returns the output.

Note: If the command is MSF LIST, no wait occurs.

ADDRESS OPSDYNAM

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

Global Variable Rules

Chapter 6: Coding Each AOF Rule Type 187

ADDRESS OSF

Schedule TSO commands, CLISTs, or REXX EXECs to CA OPS/MVS OSF TSO servers.

ADDRESS OSFTSL

Schedule TSO commands, CLISTs, or REXX EXECs to CA OPS/MVS OSF TSL servers.

ADDRESS OSFTSP

Schedule TSO commands, CLISTs, or REXX EXECs to CA OPS/MVS OSF TSP servers.

ADDRESS SOF

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS SQL

Does not wait. Processed synchronously for requests that can be satisfied on the
local system. Output is returned in stem variable. Error messages, if any, are
returned to an external data queue.

ADDRESS SYSVIEWE

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS TSO

Sent to an OSF TSO server. Does not wait. Output is not returned.

ADDRESS USS

Sent to a USS server. Does not wait. Output is not returned. Schedule an OPS/REXX
program in a server if a command output interrogation is needed.

ADDRESS WTO

Does not wait. Output is sent to specified (or default) destination. When attempting
a WTOR, host command is sent to a TSO server for execution. The response is
returned to the server. Schedule an OPS/REXX program in a server if WTOR
response interrogation is needed.

More information:

Code and Debug AOF Rules (see page 59)

Global Variable Rules

188 AOF Rules User Guide

AOF Variables Available in a GLV Rule

You can use all AOF variable types in GLV rules. You can use the following unique AOF
event variables in the)PROC section of a GLV rule. You can also manually interrogate the
corresponding OPSLOG display field as an aid in debugging or implementing rule logic.

GLV.FUNCTION

The OPSVALUE function code that caused the GLV rule to execute.

Data Type: Character, read-only

Notes:

■ For global variable delete events, the parameter GLVDELETERULES must be set
to YES.

■ This variable must be used to distinguish between updates and deletes.

■ The function codes for deletes are R (remove), 4 (variable mask delete), and 6
(single variable delete).

■ For Sysplex variable events, the parameter GLVNOTIFYRULES must be set to
YES. The function codes are one of: CREATE, UPDATE, or DELETE.

Sample Value: U

OPSLOG Browse Column: DSPNAME

GLV.JOBNAME

The job name of the address space that originated the GLV event.

Data Type: Character, read-only

Sample Value: OPSPROD

Note: For Sysplex variable events, the value of GLV.JOBNAME is the job name on
the originating system on which the variable value change first occurred.

OPSLOG Browse Column: JOBNAME

GLV.MSFID

The Multi-System Facility or CAICCI ID of the system, either local or remote, that
caused the global variable event to be invoked by setting a global variable to a
value.

Data Type: Character, read-only

Sample Value: SYSA

Note: For Sysplex variable events, the value of GLV.MSFID is always the local system
MSF or CCI ID.

OPSLOG Browse Column: MSFID

Global Variable Rules

Chapter 6: Coding Each AOF Rule Type 189

GLV.NAME

The 1- to 50-byte derived name of the global variable whose modification triggered
this event.

Data Type: Character, read-only

Sample Value: GLOBAL.CICS.ACTIVE

OPSLOG Browse Column: Text is always displayed.

GLV.NEWVALUE

The value of the global variable after modification

Data Type: Character, read-only

Notes:

■ The standard REXX definitions apply to variables that have never been
referenced before or have been dropped.

■ This value can or cannot be the current value of the variable, since a
subsequent update can have changed its value again.

OPSLOG Browse Column: Text is always displayed.

GLV.OLDVALUE

The value that the global variable had before the global variable event modified it.

Data Type: Character, read-only

Notes:

■ The standard REXX definitions apply to variables that have never been
referenced before or have been dropped.

■ For the Sysplex variables, the OLDVALUE is never provided or always null.

OPSLOG Browse Column: Text is always displayed.

Global Variable Rules

190 AOF Rules User Guide

GLV.PROGRAM

The name of the program or rule that triggered the current global variable event
rule.

Data Type: Character, read-only

Sample Value: PROD.VTAM

Notes:

■ If a REXX program running in a TSO address space triggered the global variable
event, GLV.PROGRAM is the member name of the program. If a rule triggered
the event, GLV.PROGRAM has the value ruleset.rule.

■ For Sysplex variable events, the value of GLV.PROGRAM is set to blanks.

OPSLOG Browse Column: TEXT

GLV.SYNA

The name of the system on which the GLV event originated.

Data Type: Character, read-only

Sample Value: PRODS1

Note: For Sysplex variable events, the value of GLV.SYNA is the system name on
which the variable value change first occurred.

OPSLOG Browse Column: SYSNAME

GLV.TEXT

The message text as seen in OPSLOG Browse, which is taken from these values of:

■ GLV.NAME

■ GLV.PROGRAM

■ GLV.OLDVALUE

■ GLV.NEWVALUE.

Data Type: Character, read-only

Notes:

■ CA OPS/MVS truncates GLV.TEXT at 100 characters. So, in some cases this
variable can contain only part of the GLV.OLDVALUE value and part or none of
the GLV.NEWVALUE value of the variable.

■ The GLV.TEXT variable is documented here for completeness. Do not use it for
automation.

OPSLOG Browse Column: Text is always displayed.

Global Variable Rules

Chapter 6: Coding Each AOF Rule Type 191

GLV.USER

An 8-byte variable providing communication between rules executing for the same
global variable event. The variable can contain any installation data that these rules
need, and it can store a character string displayable through OPSLOG Browse.

Data Type: User-defined, read/write

Notes:

■ Before AOF processing, this variable is initialized to binary zeros. This variable is
then passed to each rule that executes for the same global variable event. Each
rule can look at or can change the variable contents before passing the variable
to the next rule for the global variable event.

■ The primary purpose for the USER variable is to provide a method to pass a
small amount of data between the rules. This data can be binary or mixed case.
The USER field can also be used for filtering in the OPSLOG. However, USER
data that is used for OPSLOG filtering must be uppercase and displayable.

OPSLOG Browse Column: USER

More information:

AOF Rule Tools (see page 29)

Debug a GLV Rule

To debug a GLV rule

1. Set the CA OPS/MVS BROWSEGLV parameter to YES

2. Set the GLV event profile of your OPSLOG display to Y

This lets you view all GLV events.

3. With these parameters set, display the OPSLOG EVENT column.

This lets you see recorded GLV events. This record will show the variable name and
its old and new values.

More information:

Code and Debug AOF Rules (see page 59)

Message Rules

192 AOF Rules User Guide

Example: GLV Rule

The following is an example of a rule that responds to a global variable event. The rule
starts CICS if VTAM is active.

)GLV GLOBAL.STATUS.VTAM

)PROC

 if GLOBAL.STATUS.VTAM = 'ACTIVE' then

 do

 address OPER

 "COMMAND(S CICSPROD) NOOUTPUT"

 "COMMAND(S TSO) NOOUTPUT"

 end

This example shows a rule that responds to a global sysplex variable event. If VTAM
becomes active on a system PLEXA, then this rule starts PLXBPROC on a system PLEXB.

)GLV GLVPLXTA.*

)PROC

if GLV.MSFID = „PLEXA‟ then

 if GLV.NAME = 'GLVPLXTA.VTAM.STATUS' then

 if GLV.OLDVALUE = „DOWN‟ & GLV.NEWVALUE = 'ACTIVE' then

 do

 address OPER

 "COMMAND(S PLXBPROC) NOOUTPUT"

 end

Message Rules

A message (MSG) event occurs when a system component sends a message to a console
or to a system log. The AOF recognizes and responds to these types of messages:

■ z/OS

■ IMS

■ CICS (Transient Data Queue messages)

■ CA 7 Browse Log

■ NetView alerts

■ Log file directed messages (through the Generic Dataset Interface)

■ Application generated WTOs (write-to-operator), WTORs
(write-to-operator-with-reply), and WTLs (write-to-log)

■ JES2/JES3

Message Rules

Chapter 6: Coding Each AOF Rule Type 193

Installation Requirements for MSG Rules

Most system messages are broadcast on the subsystem interface (SSI) and no additional
installation steps are necessary. However, depending on the product that is issuing the
message and how it responds to messages on the SSI, you have to set the initialization
parameter SSIMSG to YES. This parameter determines how CA OPS/MVS positions itself
on the SSI.

Note: For more information, see the Parameter Reference.

The general rule to follow is: If the particular message that you are electing to automate
using an MSG rule is not being broadcast on the SSI (not in OPSLOG), an additional CA
OPS/MVS installation step is required, as noted on the following page.

IMS Messages

Implementation of the CA OPS/MVS IMS Operator Facility (IOF) lets you create MSG
rules against IMS messages that are destined to the IMS log or IMS MTO terminal
only-not in OPSLOG or SYSLOG.

Note: For more information, see the Administration Guide.

CICS TDQ Messages

Implementation of the CA OPS/MVS CICS Operator Facility (IOF) lets you create MSG
rules against messages that are destined to unique CICS Transient Data Queues (TDQ)
only-not in OPSLOG or SYSLOG.

Note: For more information, see the Administration Guide.

CA 7 Log Messages

Implementation of the CA OPS/MVS CA 7 Browse Log feature lets you create MSG rules
against CA 7 messages that are destined to the CA 7 log only-not in OPSLOG or SYSLOG.

Note: For more information, see the Administration Guide.

NetView Alert Messages

Installing the CA OPS/MVS NetView Operator Facility (NOF) lets you create MSG rules
against NetView alert messages.

Note: For more information, see the Administration Guide.

Message Rules

194 AOF Rules User Guide

Reissued Messages

The AOFMESSAGES parameter controls whether reissued messages and DOMs are
processed by AOF rules. This includes messages and DOMs that originated on another
system and were transported and reissued on this system by MSF, CA MIC, or sysplex
services.

Log File Directed Messages

You can direct output from data sets such as log files through the CA OPS/MVS generic
data set interface (GDI).

Note: For more information, see the Installation Guide.

CA OPS/MVS Messages

In general, CA OPS/MVS messages cannot be processed by the AOF. However, CA
OPS/MVS messages that have a severity code of O or J are exceptions to this rule; you
can write message rules for these CA OPS/MVS messages only. Thus, you can specify an
msgidspec string for any CA OPS/MVS message having a suffix of O or J. For a list of CA
OPS/MVS messages that by default have a severity code of O or J, and information on
changing the severity code of messages, see the Messages Guide.

)MSG—Event Specifier of MSG Rules

The following is the format for coding the MSG event definition section:

)MSG msgidspec [MLWTO] [NOOPSLOG] [SUPPRESS]

msgidspec

Specifies the message ID. Follow these guidelines when specifying the character
string:

■ Specify one to ten characters of the message ID.

■ The string cannot contain embedded blank spaces.

Message Rules

Chapter 6: Coding Each AOF Rule Type 195

■ If the MLWTO keyword is not specified, you can use the wildcard (*) character.
For example,

– IEC* matches IEC234, IECTL56, IEC6705, and any other event identifier
containing an IEC prefix.

– IEC*05 matches IEC05, IECD05, IECDE05, and so on.

– *05 matches any message ending with 05.* alone matches all messages.

■ Lowercase letters are acceptable, but the AOF converts them to uppercase for
event testing.

MLWTO

(Optional) To be specified when interrogating a multi-line message and each data
line is needed to be stored in stemmed msg.text.n variables for further
manipulation. Rule will process after the end-line of the multi-line message is
received. Wildcarding is not allowed if utilizing this keyword. Therefore the
msgidspec must be that of the complete message id of the multi-line message. For
more information see Execution Considerations for Msg Rules (see page 197) for
details on processing Multi-line messages.

NOOPSLOG

(Optional) Prevents a message (specified by msgidspec) from appearing in the
OPSLOG. Specify the NOOPSLOG option before you enable a rule.

SUPPRESS

(Optional) Only valid if the MLWTO optional keyword is utilized, and causes the
multi-line message to be suppressed.

More information:

Code and Debug AOF Rules (see page 59)

How to Use the NOOPSLOG Option

You cannot use the NOOPSLOG option to remove all message event records from the
OPSLOG. For example, specifying MSG * NOOPSLOG causes AOF to ignore the
NOOPSLOG option. The NOOPSLOG option is ignored if the msgidspec contains an
imbedded wildcard (*) character (for example, IST*I). The NOOPSLOG option is
acknowledged only for complete msgidspecs (for example, IST123I) or for a prefix
msgidspec (for example, IST*).

Message Rules

196 AOF Rules User Guide

You can monitor and control the use of the NOOPSLOG option using these methods:

■ To display the current number of NOOPSLOG messages, check the value of the
display-only parameter MSGNOOPSLOG.

■ To tell the AOF to ignore the NOOPSLOG option, set the AOFNOOPSLOG parameter
to NO. The default is YES.

■ To determine whether the NOOPSLOG option has been specified in enabled rules,
issue the ADDRESS AOF LIST command. For more information about the ADDRESS
AOF commands, see the Command and Function Reference.

WARNING! Using the NOOPSLOG option in conjunction with a RETURN “DELETE” in the
)PROC section eliminates the message from both the OPSLOG and SYSLOG.

Initialization, Processing, and Termination Sections of MSG Rules

MSG rules follow the general guidelines for coding the initialization, processing, and
termination sections and the various AOF tools that you can use.

More information:

AOF Rule Structure (see page 21)
AOF Rule Tools (see page 29)

RETURN Statements in the)PROC Section of an MSG Rule

The OPS/REXX RETURN statement specifies the final disposition of a message. The
RETURN statement can:

■ Allow the operating system to route a message as usual (The message appears both
on the console and in the SYSLOG log file).

■ Prevent a message from appearing on the console.

■ Prevent a message from appearing in the SYSLOG log file.

■ Delete a message (Prevent a message from appearing on both, the console and the
SYSLOG log file).

Valid values for a RETURN statement in the processing section of a message rule are:

NORMAL

Allows z/OS to route a message as usual.

SUPPRESS

Prevents a message from appearing on the console. The message appears in the
system log.

Message Rules

Chapter 6: Coding Each AOF Rule Type 197

DISPLAY

Prevents a message from appearing in the system log. The message appears on the
console.

DELETE

Suppresses a message entirely. The message appears neither on the console nor in
the SYSLOG log file.

FORCENORMAL

Allows z/OS to route a message normally, but overrides any return value that was
specified by a prior rule.

The default is RETURN NORMAL. The return values listed here are character constants
rather than keywords. An unrecognized return value (for example, a misspelled value),
defaults to a value of NORMAL.

Other RETURN Statement Considerations

Consider the following when specifying the RETURN statement in the processing section
of a message rule:

■ If multiple rules respond to a single message event, the AOF uses the
highest-precedence return value; the order of precedence is:

– DELETE (highest precedence)

– DISPLAY

– SUPPRESS

– NORMAL (lowest precedence)

■ The DELETE and DISPLAY return values work as described only if the AOFDELETE
parameter is set to YES (the default setting). If the AOFDELETE parameter is set to
NO, the rule processes a message as though the DELETE return value is SUPPRESS
and the DISPLAY return value is NORMAL.

For information about the AOFDELETE parameter, see the Parameter Reference.

Execution Considerations for MSG Rules

The processing section of a rule that responds to a message event executes in the
address space from where the message originated. Therefore, any type of logic that
could possibly suspend the processing of an MSG rule must be performed by scheduling
an OPS/REXX program to a CA OPS/MVS OSF TSO, TSL, or TSP server. For more
information, see Code and Debug AOF Rules (see page 59).

Message Rules

198 AOF Rules User Guide

MSG rules execute on both single-line messages (WTOs) and multiple line messages
(MLWTOs). Single-line WTOs are processed once, meaning they enter the rule, and then
exit. A)MSG rule with the MLWTO option specified executes upon the issuing of the
end-line of the multiline message.

Note: While processing a multi-line message, if the MLWTO keyword is omitted, the rule
logic executes for each line of the MLWTO. Meaning, that the primary line is processed
first by the rule logic, and then each subsequent data line and the end-line is processed.
Thus a four line multi-line message would cause the rule to execute four times.

Adhere to the following guidelines when attempting to perform automation on true
MLWTOs:

1. Using the OPSFLAGS display field in the OPSLOG, verify that the message is a true
MLWTO (primary line, data lines, end-line). Some applications internally issue
multiple single WTOs, making them appear as one MLWTO. For details on this field,
see the discussion of the event variable MSG.FLAGS in AOF Variables Available in an
MSG Rule. Single-line WTOs have an eight in the first byte of this field and MLWTOs
have a 2 or a 3 in the first byte.

2. Identify the complete message specifier for the)MSG rule. To see exactly what CA
OPS/MVS sees as this message ID, display the MSGID column in the OPSLOG for the
MLWTO. Specify the complete message ID. Wildcarding is not allowed when using
the MLWTO keyword. While processing a multi-line message, if the MLWTO
keyword is omitted, the rule logic executes for each line of the MLWTO. Meaning,
that the primary line is processed first by the rule logic, and then each subsequent
data line and the end-line is processed. Thus a four line multi-line message would
cause the rule to fire four times.

)MSG IST663I MLWTO or)MSG IST663I MLWTO SUPPRESS

Add the SUPPRESS keyword if the suppression of the MLWTO is desired.

Note: If you are attempting to modify the route or descriptor codes of a multi-line
message, then this logic cannot be accomplished when specifying the MLWTO
optional keyword. This is because the MLWTO keyword causes the rule to process
after the end-line has been issued, and disposition alteration logic (change route or
desc codes) must be performed at the time the primary line of the multi-line
message is issued.

Message Rules

Chapter 6: Coding Each AOF Rule Type 199

3. The following MSG event variables are available to manipulate multiline messages
when the MLWTO optional keyword is included on the message specifier:

msg.text.0

Shows the number of lines available in the MLWTO.

msg.text.n

Text of individual lines. For example, msg.text.1 is the first line, msg.text.2 is
the second line.

msg.linetype.0

Shows number of lines available in the MLWTO.

msg.linetype.n

The line type of each line in the MLWTO. For example, msg.linetype.1 is the line
type of the first line, msg.linetype.2 is the line type of the second line.

C

Control line

L

Label line

D

Data line

E

End line

DE

Data and end line

Suppose you have the following VTAM multi-line message:

IST663I CDINIT REQUEST FROM A55X99 FAILED, SENSE=08570002

IST664I REAL OLU=USILDA02.A13IOML0 REAL DLU=USILDA01

IST314I END

Using this test rule to dump these environmental variables for this message:

)MSG IST663I MLWTO SUPPRESS

)Proc

say '**Total Number of lines in message='msg.text.0

do l = 1 to msg.text.0

say ' **Line 'l' contents =>'msg.text.l

say ' **Line type of line 'l'=>'msg.linetype.l

do w = 1 to WORDS(msg.text.l)

say ' **Word 'w 'of line 'l' =>'WORD(msg.text.l,w)

end

say ''

end

Message Rules

200 AOF Rules User Guide

Resulting SAY output from test rule:

*Total Number of lines in message=3

**Line 1 contents =>IST663I CDINIT REQUEST

 FROM A55X99 FAILED, SENSE=08570002

**Line type of line 1=>D

**Word 1 of line 1 =>IST663I

**Word 2 of line 1 =>CDINIT

**Word 3 of line 1 =>REQUEST

**Word 4 of line 1 =>FROM

**Word 5 of line 1 =>A55X99

**Word 6 of line 1 =>FAILED,

**Word 7 of line 1 =>SENSE=08570002

**Line 2 contents =>IST664I REAL OLU=USILDA02.A13OML0

 REAL DLU=USILDA01

**Line type of line 2=>D

**Word 1 of line 2 =>IST664I

**Word 2 of line 2 =>REAL

**Word 3 of line 2 =>OLU=USILDA02.A13IOML0

**Word 4 of line 2 =>REAL

**Word 5 of line 2 =>DLU=USILDA01

**Line 3 contents =>IST314I END

**Line type of line 3=>DE

**Word 1 of line 3 =>IST314I

**Word 2 of line 3 =>END

4. If logic is needed to pass the complete contents of a multi-line message to an
OPS/REXX program in order to perform asynchronous processing that cannot be
performed in an MSG rule. Then the corresponding msg.text.n variables can be
stored in unique GLVTEMP variables and then obtained within the OPS/REXX
program. For example, writing the message to some data set. Refer to the sample
rule member MLWTO of the opsmvshlq.CCLXRULS data set for specific coding
details on passing the contents of a MLWTO to an OPS/REXX program.

For more information, about a specific sample rule that utilizes the MLWTO option
in addition to the MLWTOx samples of the opsmvshlq.CCLXRULS library, see MSG
Rules Examples (see page 236).

These samples outline various coding techniques that can be used to process
MLWTOs including altering message disposition.

Message Rules

Chapter 6: Coding Each AOF Rule Type 201

OPS/REXX Host Environments in the)PROC Section of an MSG Rule

The)PROC section of an MSG rule has the following host environments with the
following MSG rule characteristics. The AOFDEFAULTADDRESS parameter specifies the
default host environment for MSG rules.

ADDRESS AOF

Sent to CA OPS/MVS. Does not wait. Output is not returned.

ADDRESS AP

Sent to MSF and then forwarded to the CA Automation Point system. Does not wait.
Output is not returned.

ADDRESS EPI

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS HWS

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS ISPEXEC

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS LXCON

The VM and Linux command requests sent to USS server for execution. Does not
wait. Output is not returned. The List request runs inline and returns VM and Linux
system data in stem variables.

ADDRESS MESSAGE

Sent as a WTO to the destination the AOFDEST parameter specifies.

ADDRESS MQ

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS NETMAN

Sent to a CA OPS/MVS internal CA Netman request queue to issue MGPT
commands. Does not wait. Output is not returned.

ADDRESS NETMASTR

Sent to CA NetMaster NM for SNA on the local system. Does not wait. Output is not
returned.

Message Rules

202 AOF Rules User Guide

ADDRESS OPER

Sent to target console as specified through the OCCONSOLENAME parameters
when no CONNAME operands are present. Output is not returned. Schedule an
OPS/REXX program in a server when a command output interrogation is needed.

ADDRESS OPSCTL

Sent to a specified facility. If the facility is ECF or OSF, does not wait. If the facility is
MSF, slight wait occurs. External data queue returns the output.

Note: If the command is MSF LIST, no wait occurs.

ADDRESS OPSDYNAM

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS OSF

Schedule TSO commands, CLISTs, or REXX EXECs to CA OPS/MVS OSF TSO servers.

ADDRESS OSFTSL

Schedule TSO commands, CLISTs, or REXX EXECs to CA OPS/MVS OSF TSL servers.

ADDRESS OSFTSP

Schedule TSO commands, CLISTs, or REXX EXECs to CA OPS/MVS OSF TSP servers.

ADDRESS SOF

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS SQL

Does not wait. Processed synchronously for requests that can be satisfied on the
local system. Output is returned in stem variable. Error messages, if any, are
returned to an external data queue.

ADDRESS SYSVIEWE

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS TSO

Sent to an OSF TSO server. Does not wait. Output is not returned.

Message Rules

Chapter 6: Coding Each AOF Rule Type 203

ADDRESS USS

Sent to a USS server. Does not wait. Output is not returned. Schedule an OPS/REXX
program in a server if the command output interrogation is needed.

ADDRESS WTO

Does not wait. Output is sent to specified (or default) destination. When attempting
a WTOR, host command is sent to a TSO server for execution. The response is then
returned to the server. Schedule an OPS/REXX program in a server if the WTOR
response interrogation is needed.

More information:

Code and Debug AOF Rules (see page 59)

Message Rules

204 AOF Rules User Guide

AOF Variables Available in MSG Rules

The following unique AOF event variables appear in the)PROC section of an MSG rule.
Use all variables as an aid in debugging or implementing rule logic. The corresponding
OPSLOG display fields are listed. For more information, see AOF Rule Tools (see
page 29).

MSG.AMRF

Displays a value indicating whether the message is retained in the Action Message
Retention Facility (AMRF).

Data Type

Integer, read/write

Values

0

Do not retain this message.

1

Retain this message.

Example

1

Notes:

■ A message must have one of the AMRF descriptor codes in order to be
considered for AMRF. See the OPSBITS OPS/REXX function for the following
AMRF eligible descriptor code values: IMEDACTN, EVENACTN, CRITEVET. Unless
the message has one of these descriptor codes, setting MSG.AMRF to 1 has no
significant effect on the AMRF retention status of the message. For more
information about AMRF eligible descriptor codes values, see the OPSBIT
OPS/REXX function in the CA OPS/MVS Command and Reference Guide.

■ For messages originally issued with any of the AMRF descriptor codes, setting
MSG.AMRF to 0 prevents AMRF from retaining the message. Even when the
descriptor codes are not changed in the AOF rule.

■ Suppressing or deleting a message using the AOF rule RETURN statement has
no effect on the AMRF retention status of a message.

Example

The following two lines of code in an MSG rule results in the AMRF retaining the
message:

MSG.DESC = OPSBITS("IMEDACTN")

MSG.AMRF=1

OPSLOG Browse Column: Fourth bit of AFLAGS

Message Rules

Chapter 6: Coding Each AOF Rule Type 205

MSG.AUTOFLAG

The NetView automation flag, which is taken from the WQESAUT bit flag. In
addition, the WQEAUTO bit flag is also used.

Data Type

Integer, read/write

Example

1, if automation is specified.

Notes:

■ Modifying the MSG.AUTOFLAG variable is equivalent to dynamically modifying
the AUTO(YES|NO) parameter in the appropriate MPFLSTxx member of the
Logical Parmlib Concatenation. For more information, see the IBM
documentation.

■ Modifying this variable determines whether NetView processes the message.
Using a rule, you can change the value of the variable to 0 (equivalent to
AUTO(NO)) or non-zero (equivalent to AUTO(YES)).

OPSLOG Browse Column: The high-order bit in the AFLAGS (AF) column

MSG.AUTOTOKN

The NetView automation token, which is taken from the WQEAUTOT flag in the
WQE.

Data Type

8-byte character, read/write

Example

Parm1

Notes:

■ Modifying the MSG.AUTOTOKN variable is equivalent to modifying the
AUTO(token) parameter in the appropriate MPFLSTxx member of the Logical
Parmlib Concatenation. For more information, see the IBM documentation.

■ Only the first 8 bytes of the modified value are passed to NetView.

■ When setting fewer than 8 bytes of the value, the remainder of the 8-byte field
is padded with nulls.

OPSLOG Browse Column: AUTOTOKN

Message Rules

206 AOF Rules User Guide

MSG.BEWTO

A value indicating whether the current message was issued as a branch entry WTO.

Data Type

Integer, read-only

Values

0

Message is not a branch entry WTO.

1

Message is a branch entry WTO.

Usage Notes:

This variable can be used to determine whether MSG.JOBNAME or MSG.OJOBNAME
should be used in your automation procedure.

Example

The following code can be used to determine which variable contains the appropriate
JOBNAME:

IF MSG.BEWTO = 1 THEN

 jobname = MSG.OJOBNAME

ELSE

 jobname = MSG.JOBNAME

MSG.CMDRESPONSE

A value indicating whether the current message is a command response.

Data Type

Integer, read-only

Values

0

Message is not a command response.

1

Message is a command response

Example

0

OPSLOG Browse Column: Third bit of AFLAGS

Message Rules

Chapter 6: Coding Each AOF Rule Type 207

MSG.COLOR

The color that the message has in OPSLOG Browse and, optionally, on the console.

Data Type

1-byte binary (unprintable), read/write

Note: Write takes effect only if the value of the PROPAGATEATTR parameter is
YES.

Example

'00'X

Notes:

■ Use the OPSCOLOR function of OPS/REXX to set the MSG.COLOR variable.

■ IMS messages use the colors set in IMSnCOLOR parameters.

■ MCS descriptor codes 1 and 11 generate red messages; code 2 generates a
white message.

■ When using multiple rules, set the MSG.COLOR variable for the same message,
CA OPS/MVS uses the last value set. To determine the color of each rule set,
set the CA OPS/MVS RULETRACE parameter to ON. For a description of the
RULETRACE parameter, see the CA OPS/MVS Parameter Reference.

■ For messages from the generic data set interface, MSG.COLOR contains the
color that is specified with the optional third parameter in the SUBSYS JCL
keyword. If you do not specify this parameter, the variable contains the text
string NONE.

OPSLOG Browse Column: COLOR

MSG.CONSNAME

The console name that is used to get messages from the subsystem interface:

■ For messages originating in the subsystem interface, MSG.CONSNAME contains
the console name.

■ For messages originating in the JES3 IATUX31 exit, MSG.CONSNAME contains
the JES3 DSP name.

■ For messages originating in the generic data set interface or in the
OMEGAMON interface, MSG.CONSNAME contains the report ID.

Data Type

Character, read/write

Example

MSTCONS

OPSLOG Browse Column: CONSNAME

Message Rules

208 AOF Rules User Guide

MSG.CONTROLLN

A value indicating whether the current message is a control line in a multiline
message (MLWTO).

Data Type

Character, read-only

Values

0

Not a control line.

1

A control line.

Example

1

OPSLOG Browse Column: Fourth bit of OPSFLAGS

MSG.DATALN

A value indicating whether the current message is a data line in a multiline message
(MLWTO).

Data Type

Character, read-only

Values

0

Not a data line.

1

A data line.

Example

1

OPSLOG Browse Column: Sixth bit of OPSFLAGS

Message Rules

Chapter 6: Coding Each AOF Rule Type 209

MSG.DATESTMP

The date when the message was issued.

Data Type

Character, read-only

Example

20050908

Notes:

■ CA OPS/MVS sets this variable only for messages where OPSINFO("EXITTYPE")
returns a value of either MVS or NIP.

■ The format of the date value is the same as the format for the REXX standard
date function - DATE("S") - which is yyyymmdd.

■ MSG.DATESTMP can return a date one day earlier than the REXX DATE("S")
function in a message rule. This early date occurs when a message is issued a
fraction of a second before midnight. Any such difference reflects the
difference in time between when the operating system constructed the
message control block and when CA OPS/MVS intercepted the message.

Recommended

Use the REXX DATE("S") function because that date always matches the date
for the message in OPSLOG Browse. MSG.DATESTMP is provided for
completeness.

MSG.DESC

The descriptor codes of the message, which are taken from the WQEDESCD field of
the WQE control block.

Data Type

2-byte binary (unprintable), read/write

Example

'0400'X

Note: Use the OPSBITS function of OPS/REXX to set the MSG.DESC variable. For a
description of message descriptor codes, see the IBM documentation.

OPSLOG Browse Column: ROUTE or ROUTEX

Message Rules

210 AOF Rules User Guide

MSG.DISP

The current disposition of the message that is set previously in executed rules. For
example, SUPPRESS.

Data Type

Integer, read-only

Example

4

Note: CA OPS/MVS sets this variable automatically after each rule processes a
message; this variable cannot be set manually. The next rule always gets the highest
return code that is set in all of the previous rules. The following list shows the
correspondence between the MSG.DISP value and the AOF RETURN values:

0

NORMAL

4

SUPPRESS

8

DISPLAY

12

DELETE

OPSLOG Browse Column: DISP

Note: This column uses descriptive character strings to display the final, highest
return code.

MSG.ENDLN

A value indicating whether the current message is the end line in a multiline
message (MLWTO).

Data Type

Character, read-only

Values

0

Not an end line.

1

An end line.

Example

1

OPSLOG Browse Column: Seventh bit of OPSFLAGS

Message Rules

Chapter 6: Coding Each AOF Rule Type 211

MSG.FLAGS

The message type is taken from CA OPS/MVS message flags. For example, MLWTO.

Data Type

2-byte binary (unprintable), read-only

Example

'0010'X

Message Flags

Many of the bits represented in MSG.FLAGS are also represented by
bit-specific MSG variables. We recommend using the bit-specific variables
wherever possible. In all cases, the bit-specific variable takes on a value of
1 or 0 to show whether the corresponding bit is set.

'8000'X

Single-line message flag.

Single-bit equivalent: MSG.SINGLELN

'4000'X

WTOR message flag.

Single-bit equivalent: MSG.WTOR

'2000'X

Multiline message (MLWTO) flag.

Single-bit equivalent: MSG.MULTILN

'1000'X

Control line of an MLWTO flag.

Single-bit equivalent: MSG.CONTROLLN

'0800'X

Label line of an MLWTO flag.

Single-bit equivalent: MSG.LABELLN

'0400'X

Data line of an MLWTO flag.

Single-bit equivalent: MSG.DATALN

'0200'X

End line of an MLWTO flag. See note.

Single-bit equivalent: MSG.ENDLN

'0100'X

Message Rules

212 AOF Rules User Guide

Last command output message flag. CA OPS/MVS sets this variable to mark
the last output line.

'0080'X

Urgent attention message flag. Set when the message has descriptor code
1 or 11 set.

Single-bit equivalent: MSG.URGENT

'0040'X

Immediate action message flag, Set when the message has descriptor code
2 is set or is a WTOR.

Single-bit equivalent: MSG.IMMEDACT

'0020'X

Message is from a local JES3.

'0010'X

Current message is a z/OS (WTO/SVC 35) message from a global JES3.

'0002'X

Current message is a WTL (SVC 36) rather than a WTO. CA OPS/MVS
intercepts WTL messages only if its SSIWTL parameter is set to YES.

'0008'X

Current message is from an authorized task.

'0004'X

Current message was originally issued on a different system and is now
being reissued on the current system.

Single-bit equivalent: MSG.REISSUE

'0001'X

MPF has suppressed the current message.

Single-bit equivalent: MSG.MPFSUPP

Note: The '0200'X bit is set for the last line of an MLWTO, and usually marks the
end of output from a single command. However, HSM, JES2, and other products can
issue multiple MLWTOs in response to a single command, so this bit is not a reliable
indication that output has been completed.

OPSLOG Browse Column: OPSFLAGS

Message Rules

Chapter 6: Coding Each AOF Rule Type 213

MSG.FULLTEXT

The COF feature of the product generates message rule events from the CICS
Transient Data Queue. This variable contains up to 256 characters of the TD queue
message text. When the MSG.TEXT variable is reworded, it replaces the
MSG.FULLTEXT value once the message event is fully processed by the message
rules. Because the maximum length of MSG.TEXT is shorter than MSG.FULLTEXT,
truncation of the original message text value can occur. For all other message rule
event types, this variable is the same as MSG.TEXT.

Data Type

256-byte character, read-only

Example

DFHTD0101I applid Transient Data initialization has ended.

MSG.ID

The message identifier, usually the first token, or the first blank delimited word of
the message text. This variable has a maximum length of ten characters. If this
token exceeds ten characters in length, this variable contains the leftmost ten
characters of the token.

Data Type

Character, read-only

Example

IEF125I

Note: The MSG.ID variable value determines which message rules execute for the
current message event. This variable never contains any special screen characters
or leading or trailing blanks.

OPSLOG Browse Column: MSGID

Message Rules

214 AOF Rules User Guide

MSG.IMMEDACT

A value indicating whether the current message is an immediate action message.
An immediate action message is one that has descriptor code 2 set.

Data Type

Character, read-only

Values

0

Not an urgent attention message.

1

An urgent attention message.

Example

1

OPSLOG Browse Column: Tenth bit of OPSFLAGS

MSG.IMSID

The IMS ID of the associated IMS control region; or, for non-IMS messages, the
value of the IMSNONE parameter. The default for the IMSNONE parameter is
NONE.

Data Type

Character, read-only

Example

IMSA

Notes:

■ The IMS ID is set for all z/OS messages that any IMS-related address space
issues; for example, messages from the IMS control and message processing
regions.

■ The MSG.IMSID variable is available only when the IOF is licensed, installed,
and active at your site. The INITIMS parameter must be YES.

OPSLOG Browse Column: IMSID

Message Rules

Chapter 6: Coding Each AOF Rule Type 215

MSG.JOBID

The identifier that JES2 or JES3 assigned to the message issuer.

Data Type

Character, read-only

Examples

■ T12345 for a TSO user

■ J12345 for a job

■ S12345 for a started task

■ ACF2 for a started task that is started with SUB=MSTR.

When JOBIDs greater than 100,000 are supported and activated in z/OS, the
examples are in the format T0012345, J0012345, and S0012345.

Note: The contents of this variable depend on where the current address space was
created:

■ When the address space was created using JES2 or JES3 and does not have a
job ID, the value of the variable is a modified job identifier. The job identifier
begins with a character identifying the address space type: T for TSO, J for a
batch job, S for a started task.

■ When the address space was created using the MSTR subsystem, the variable
value is the first five characters of the job name.

This value can be different than the value OPSINFO('JOBID') returns when used in a
message rule. MSG.JOBID contains the job ID explicitly specified by the message
issuer or determined by z/OS. Messages that are issued by JES2 in response to JES2
commands specify the job ID of the address space to which the message relates
rather than the job ID of JES2. When the WQE does not contain an explicit job ID.
CA OPS/MVS uses the job ID of the address space that issued the message.

OPSLOG Browse Column: JOBID

Message Rules

216 AOF Rules User Guide

MSG.JOBLOGSUP

A value indicating whether the message should appear in the JES job log of the job
that issued the message or on whose behalf the message was issued.

Data Type

Integer, read/write

Values

0

Display the message in the JES job log.

1

Suppress the message from the JES job log.

Example

1

Notes:

■ For example, use the OPSPRM function to change the severity of message
OPS1000 to J. Keep the result of SAY statements from rules out of the JES job
log by setting the MSG.JOBLOGSUP variable to 1 in a message rule for
OPS1000J.

■ The value of the MSG.JOBLOGSUP variable takes effect only if the value of the
SSIMSG parameter is YES.

OPSLOG Browse Column: Sixth bit of AFLAGS

MSG.JOBNAME

The job name of the message issuer, which is taken from:

■ The WQE, for IMS or z/OS messages that are reissues of messages that
originated on another system.

■ Data areas the ASCB points to, for all other IMS and z/OS messages.

■ The message text prefix areas, for most JES3 messages.

Note: The MSG.JOBNAME value is blank for some JES3 messages.

Data Type

Character, read-only

Example

VTAM

OPSLOG Browse Column: JOBNAME

Message Rules

Chapter 6: Coding Each AOF Rule Type 217

MSG.JOBNM

The name of the job that is associated with this line of output, which is taken from
the WQEJOBNM field of the WQE.

Data Type

Character, read-only

Example

VTAM

Notes:

■ Set only for z/OS messages, the MSG.JOBNM variable contains the data that is
displayed on an MCS console using the MFORM=J keyword of the Control
command. For more information, see the IBM documentation.

■ Usually, the MSG.JOBNM value is a job name string, but is set to a job number
for output from some JES2 commands. For example, MSG.JOBNM contains job
numbers for each output line from the JES2 command $DA.

■ When the CA OPS/MVS SSIMSG parameter is set to YES at startup. JES2 does
not put a job name in MSG.JOBNM because this parameter setting dictates that
<projectname> receives messages before the subsystem.

OPSLOG Browse Column: JOBNM

Message Rules

218 AOF Rules User Guide

MSG.LABELLN

A value indicating whether the current message is a label line in a multiline message
(MLWTO).

Data Type

Character, read-only

Values

0

Not a label line.

1

A label line.

Example

1

OPSLOG Browse Column: Fifth bit of OPSFLAGS

MSG.LINETYPE.0

Shows number of lines available in the MLWTO. Only valid if the MLWTO option is
specified on the message specifier.

Data Type

Character, read-only

Message Rules

Chapter 6: Coding Each AOF Rule Type 219

MSG.LINETYPE. n

The line type of each line in the MLWTO (msg.linetype.1 is the line type of the first
line, msg.linetype.2 is the line type of the second line,etc). Only valid if the MLWTO
option is specified on the message specifier.

Data Type

Character, read-only

Values

C

Control line

L

Label line

D

Data line

E

End line

DE

Data and end line

MSG.MCSFG

Internal z/OS, IMS, or MCS message flags, which are taken from:

■ z/OS messages-The WQEMCSF field of WQE

■ JES3 messages-The MSGMASK field of MESSAGE macro PLIST

■ IMS messages-2 flag bytes of UEHB or DFSAOE0, and the 1-byte entry code

– UEHBFLG1/UEHBFLG2 for IMS DFSAOUE0 (type 1) exit

– AOE0FLG1/AOE0FLG2 for IMS DFSAOE00 (type 2) exit

■ COF messages-The CICS start code.

Data Type

3-byte binary (unprintable), read-only

Example

'0E0000'X

Note: For information about WQE flags, see the IBM documentation.

OPSLOG Browse Column: FLAGS

Message Rules

220 AOF Rules User Guide

MSG.MIC

A value indicating whether the current message is a message that was imported
and reissued on this system by CA MIC.

Data Type

Character, read-only

Values

0

CA MIC did not reissue this message.

1

CA MIC reissued this message.

Example

1

Note: When the AOFMESSAGES parameter is set to MVSGLOBAL, CA MIC reissued
messages are eligible for processing by the AOF. Even response messages which are
returned to this system as a result of a cross-system command that is issued on this
system through CA MIC.

MSG.MLWTOMIN

When the message is a minor line of an MLWTO message, the value is 1. When the
message is the major line of an MLWTO message, or the only line of a WTO
message, the variable 0.

Data Type

Character, read-only

OPSLOG Browse Column: Second bit of AFLAGS

Message Rules

Chapter 6: Coding Each AOF Rule Type 221

MSG.MPFSUPP

A value indicating whether the z/OS Message Processing Facility (MPF) has
suppressed the current message.

Data Type

Character, read-only

Values

0

MRF did not suppress this message.

1

MPF suppressed this message.

Example

1

Note: MPF processes messages before they are passed to the subsystem interface
where CA OPS/MVS processes them.

OPSLOG Browse Column: 16th bit of OPSFLAGS

MSG.MSFID

The system ID of the system where the message originated, supplied by the CA
OPS/MVS Multi-System Facility (MSF).

Data Type

Character, read-only

Example

SYSA

Note: The MSF ID of a message is the local SYSID, for a message that is created on
the current system. For a remote system, the MSFID is the SYSID of that system.

OPSLOG Browse Column: MSFID

Message Rules

222 AOF Rules User Guide

MSG.MULTILN

A value indicating whether the current message is a part of a multiline message
(MLWTO).

Data Type

Character, read-only

Values

0

Not part of a multiline message.

1

Part of a multiline message.

Example

1

Third bit of OPSFLAGS

MSG.OASID

The original ASID associated with the message.

When the message is:

■ Issued asynchronously from the CONSOLE address space

■ Reissued for some reason

The value differs from OPSINFO("ASID") and represents the ASID in which the
message was intercepted.

In the following cases, the value of MSG.OASID is always the same as
OPSINFO("ASID"):

■ AOFTEST

■ The EXITTYPE is not MVS

Data Type

2-byte binary (unprintable), read-only

Example

'003E'X

Notes:

■ Use the C2X function of OPS/REXX to convert the value of this variable to
hexadecimal characters.

■ Use MSG.ASID to determine the ASID from which a message was originally
issued.

Message Rules

Chapter 6: Coding Each AOF Rule Type 223

MSG.ODESC

The original descriptor codes that are assigned to a message.

Data Type

2-byte binary (unprintable), read-only

Example

'0400'X

Note: The MSG.ODESC variable is equivalent to the Automate &DESC
environmental variable.

MSG.OJOBNAME

The original job name that is associated with the message.

When the message is:

■ Issued asynchronously from the CONSOLE address space

■ Reissued for some reason

This value differs from MSG.JOBNAME.

In the following cases, the value of MSG.OJOBNAME is always the same as
MSG.JOBNAME:

■ AOFTEST

■ The EXITTYPE is not MVS

Data Type

Character, read-only

Example

VTAM

Message Rules

224 AOF Rules User Guide

MSG.OMAJORTEXT

The original message text. The value of MSG.OMAJORTEXT does not change from a
rule to a rule, even if a rule rewords the message text.

Data Type

Character, read-only

Values

For a WTO message, the value is the original message text; for an MLWTO
message, the value is the possibly updated text from the first line of the
message.

Notes:

■ The MSG.OMAJORTEXT variable is equivalent to the Automate &MSG
environmental variable.

■ For example, if there are two MSG rules processing a message the first MSG
rule modifies MSG.TEXT, the second rule sees the changed MSG.TEXT but
MSG.OMAJORTEXT remains unchanged and contains the original text of the
message. When an MSG rule changes the text of the first line of an MLWTO,
rules for the minor lines see the changed text in MSG.OMAJORTEXT.

MSG.OROUTE

The original routing codes that are assigned to a message.

Data Type

16-byte binary (unprintable), read-only

Example

'100000000000000000000000000000'X

Note: The MSG.OROUTE variable is equivalent to the Automate &ROUTCDE
environmental variable.

MSG.OTEXT

The complete text of a secondary line of a multiline WTO message; this value is null
for a message that is not a multiline WTO. The secondary line is a line other than
the first or primary line.

Data Type

Character, read-only

Note: The MSG.OTEXT variable is equivalent to the Automate &MLMSG
environmental variable.

Message Rules

Chapter 6: Coding Each AOF Rule Type 225

MSG.REISSUE

A value indicating whether the current message is a message that was originally
issued on another system and has been transported and then reissued on this
system.

Data Type

Character, read-only

Values

0

Not a reissued message.

1

A reissued message.

Example

1

Note: Messages can be reissued as a result of sysplex console processing, MSF, CA
MIC, and possibly other software products. Reissued messages are only eligible to
be processed by the AOF when the AOFMESSAGES parameter is set to MVSGLOBAL.

14th bit of OPSFLAGS

MSG.REPLYID

The reply number that is associated with a WTOR message, which is taken from the
OREID field of the ORE.

Data Type

Character, read-only

Example

01

Notes:

■ This variable is valid only for WTORs.

■ The MSG.REPLYID variable field is the defined size by RMAX in the DEFAULT
statement of the appropriate CONSOLxx member, which is in the Logical
Parmlib Concatenation.

OPSLOG Browse Column: First part of the text field when the message is a WTOR.

Message Rules

226 AOF Rules User Guide

MSG.REPORTID

The report ID associated with the message. If the message comes from the generic
data set interface, MSG.REPORTID contains the subsystem report ID parameter.

Data Type

Character, read-only

Example

PAYLOG1

OPSLOG Browse Column: DSPNAME

MSG.ROUTE

The routing codes of the message, that is taken from the WQE control block.

Data Type

16-byte binary (unprintable), read/write

Example

'10000000000000000000000000000000'X

Notes:

Use the OPSBITS function of OPS/REXX to set this variable.

For a description of routing codes, see the IBM documentation.

OPSLOG Browse Column: ROUTE or ROUTEX

MSG.SINGLELN

A value indicating whether the current message is a single-line message.

Data Type

Character, read-only

Values

0

Not a single-line message.

1

A single-line message.

Example

1

OPSLOG Browse Column: First bit of OPSFLAGS

Message Rules

Chapter 6: Coding Each AOF Rule Type 227

MSG.SPCHR

The message special screen character. For example, the + preceding problem CA
OPS/MVS messages.

Data Type

Character, read-only

Example

+

Note: This variable often is blank. For more information about special screen
characters, see the IBM documentation.

OPSLOG Browse Column: SPECIAL

MSG.SUBSMOD

A value indicating whether the current message is eligible for subsystem
modification. The value of the SUBSMOD parameter that is specified for the WTO
message determines message eligibility.

Data Type

Integer, read-only

Values

0

Message is not eligible for subsystem modification.

1

Message is eligible for subsystem modification.

Example

1

OPSLOG Browse Column: Fifth bit of AFLAGS

Message Rules

228 AOF Rules User Guide

MSG.SYNA

The system name of the system issuing the message.

Data Type

Character, read-only

Example

MVS34

Notes:

The system name is derived from the SYSNAME parameter specified in the
appropriate IEASYSxx member of the Logical Parmlib Concatenation.

For messages imported through the CA MIC product, this variable contains the
name of the system from which the message originated.

OPSLOG Browse Column: SYSNAME or SYNA

MSG.SYSID

The system ID of the system where the message was issued, usually the SMF ID. For
JES3 messages, the SYSID value derives from the MPNAME field of the Active Main
Processor Control Table. For JES2 messages, the SYSID value derives from the SMF
ID string.

Data Type

Character, read-only

Example

S000

Note: The OPSLOG Browse column displays two characters of this variable, not the
complete field. The CA OPS/MVS BROWSEIDFORMAT parameter determines which
characters are displayed. For a description of the BROWSEIDFORMAT parameter,
see the CA OPS/MVS Parameter Reference.

OPSLOG Browse Column: SYSID

Message Rules

Chapter 6: Coding Each AOF Rule Type 229

MSG.TERMNAME

The name of the terminal that is associated with the message:

■ For z/OS messages, the variable has the value NONE unless the message
originated from a TSO address space.

■ For IMS messages, the variable contains the name of the IMS LTERM.

■ For JES3 messages, the variable contains the JES3 console name.

■ For COF messages, the variable contains the CICS intra-partition queue name.

■ For messages from the generic data set interface, the variable contains the
ddname that is related to the subsystem data set from which the message was
obtained.

Data Type

Character, read-only

Example

OPSS1

OPSLOG Browse Column: TERMNAME

Message Rules

230 AOF Rules User Guide

MSG.TEXT

The message text:

■ For z/OS messages, which are taken from the WQE text field and excludes
special characters and blanks.

■ For JES3 messages, which are taken from a parameter list that is passed to the
IATUX31 exit.

■ For IMS messages, which are taken from the AOI exit parameter list.

Data Type

Character, read/write

Example

IEF125I USERA - LOGGED ON - TIME=06.49.05

OPSLOG Browse Column: Text is always displayed.

MSG.TEXT.0

Shows the number of lines available in a multiline message. Only valid if the
MLWTO option is specified on the message specifier.

Data Type

Character, read only

MSG.TEXT.n

Text of each data line of a multiline message. Only valid if the MLWTO option is
specified on the message specifier.

Data Type

Character, read only

Message Rules

Chapter 6: Coding Each AOF Rule Type 231

MSG.TIMESTMP

The time when the message was issued, as it would appear on an MCS console
through MFORM=T.

Data Type

Character, read-only

Example

12.43.14

Notes:

■ CA OPS/MVS sets this variable only for messages where OPSINFO("EXITTYPE")
returns a value of either MVS or NIP.

■ The format of the timestamp value (hh.mm.ss) is slightly different from the
format for the REXX normal time function - TIME("N") - which is hh:mm:ss. The
timestamp format uses a period as a delimiter, whereas the TIME function uses
a colon as a delimiter.

■ This variable is related to the MSG.DATESTMP variable in that it represents the
point of view of the operating system as to the date and time the message was
issued. MSG.TIMESTMP can return a time slightly earlier than the REXX
TIME("N") function in a message rule. Any such difference reflects the
difference in time between when the operating system constructed the
message control block and when CA OPS/MVS intercepted the message.

Recommended

Use the REXX TIME("N") function because that time always matches the time
for the message in OPSLOG Browse. MSG.TIMESTMP is provided for
completeness.

OPSLOG Browse Column: TIMESTMP

Message Rules

232 AOF Rules User Guide

MSG.TOKEN

The variable token set when the MSF receives the message and the originating
system specified OPSSEND('W' ,...).

Data Type

4-byte binary (unprintable), read-only

Example

'00004C94'

Notes:

■ MSG.TOKEN has the same value as the MSG.WTOID variable on the originating
system.

■ Using MSG.TOKEN, a DOM rule on the receiving system can translate the
DOM.WTOID variable by comparing its value to that of MSG.TOKEN. When the
DOM.WTOID and MSG.TOKEN values match, the DOM has been issued for
MSG.WTOID.

OPSLOG Browse Column: TOKEN

MSG.URGENT

A value indicating whether the current message is an urgent attention message. An
urgent attention message is one that has descriptor codes 1 or 11 set.

Data Type

Character, read-only

Values

0

Not an urgent attention message.

1

An urgent attention message.

Example

1

OPSLOG Browse Column: Ninth bit of OPSFLAGS

Message Rules

Chapter 6: Coding Each AOF Rule Type 233

MSG.USER

An 8-byte variable providing communication between rules that execute for the
same message event. The variable can contain any installation data that these rules
need, and it can store a character string displayable through OPSLOG Browse.

Data Type

User-defined, read/write

Notes:

■ Before AOF processing, this variable is initialized to binary zeros. The variable is
then passed to each rule that executes for the same message event. Each rule
can look at or can change the variable contents before passing the variable to
the next rule for the message event.

■ The primary purpose for the USER variable is to provide a method to pass a
small amount of data between the rules. This data can be binary or mixed case.
The USER field can also be used for filtering in the OPSLOG. However, USER
data that is used for OPSLOG filtering must be uppercase and displayable.

OPSLOG Browse Column: USER

MSG.USERID

The user ID for the security product on your system. This value is usually the CA
ACF2 user ID from the ACFASVT or the RACF user ID from the current ACEE. For IMS,
the user ID from the CTB is valid only if IMS is generated with enhanced security.

Data Type

Character, read-only

Example

TSOID01

Note: The MSG.USERID value can have the same value as the JOBNAME which is
typical for a TSO address space. These values need not match; for instance, the user
IDs and the job names for batch jobs or started tasks can be different.

OPSLOG Browse Column: USERID

Message Rules

234 AOF Rules User Guide

MSG.WTOID

The internal WTO sequence number, which is taken from the WQERTCT field of the
WQE delimited word of the message text.

Data Type

4-byte binary (unprintable), read-only

Example

'00004C94'X

Notes:

■ The MSG.WTOID value provides information that the OPSSEND function of
OPS/REXX uses in transmitting message events to other systems.

■ Your system assigns sequence numbers to WTO or WTOR messages. Use these
sequence numbers to delete (using DOM) highlighted, nonscrollable messages.
Use the sequence of a message as its unique token identifier, but do not use
the contents of the sequence number itself.

■ To store a WTO ID, use the C2X REXX function. To use a WTO ID, such as with
the OPSDOM built-in function, use the X2C REXX function.

OPSLOG Browse Column: WTOID

MSG.WTOR

A value indicating whether the current message is a WTOR.

Data Type

Character, read-only

Values

0

This message is not a WTOR.

1

This message is a WTOR.

Example

1

OPSLOG Browse Column: Second bit of OPSFLAGS

Message Rules

Chapter 6: Coding Each AOF Rule Type 235

MSG.WTP

A value indicating whether the message is set to Write to Programmer (WTP). WTP
messages appear in the JESYSMSG data set. The JESYSMSG data that is set. These
data set allocated data set messages appear and are different from the job log of
the job that issued the message or on whose behalf the message was issued. If the
issuing address space is a TSO address space, a WTP message is written (TPUT) to
the TSO screen.

Data Type

Integer, read/write

Values

1

Issue the WTP

0

Do not issue the WTP

Example

1

For example, Use the OPSPRM function to change the severity of message OPS1000
to J. Keep the results of SAY statements from rules out of the JESYSMSG data set by
setting the MSG.WTP variable to 0 in a message rule for OPS1000J.

By default, messages that are issued with a ROUTE code of 11 have MSG.WTP set to
1.

OPSLOG Browse Column: Seventh bit of AFLAGS

Debug an MSG Rule

To debug an MSG rule

In cases where the)MSG is not executing, verify that you have the correct message
specifier defined. You can do this by displaying the MSGID column in the OPSLOG for the
problem message. The message specifier of the)MSG rule should be the same as the
value of this column.

More information:

Code and Debug AOF Rules (see page 59)

Message Rules

236 AOF Rules User Guide

MSG Rules Examples

Example 1

Demonstrates how MSG rules can respond to WTOR events as they are generated:

)MSG $HASP426

)INIT

/***/

/* Verify rule is only enabled on our development system */

/***/

if OPSINFO('SMFID') ¬= 'SYST' then

 return 'REJECT'

)PROC

/***/

/* Reply COLD to the JES2 initialization WTOR message */

/* MSGTXT - IDNUM $HASP426 SPECIFY OPTIONS - SYST */

/***/

ID = MSG.REPLYID /* Get REPLYID from an event variable */

address OPER /* Set environment to issue cmds */

"C(R "ID",COLD) NOOUTPUT" /* Issues a z/OS REPLY command*/

Example 2

Demonstrates how to incorporate REXX tools and OPS/REXX tools to make various
automated decisions about a particular event:

)MSG IEF450I

/**/

/* Manipulate JOB ABEND messages using the following criteria */

/* -Suppress all IEF450I except those prefixed with P (PROD) */

/* -Hilite the abend message if JOBNAME = PMNTHEND */

/* -Invoke ACCTRECV OPS/REXX program for all PACCT* JOBS */

/* -Start DRECOVER JOB if PDAILY1 ABENDS with S000 & U0004 */

/* IEF450I AMAJA03 CATSO CATSO - ABEND=S000 U0004 REASON=0000 */

/* TIME=08.00.18 */

/**/

)PROC

if MSG.MLWTOMIN =1 then return /* No need to look at 2nd line */

JOB = MSG.JOBNAME /* Get the JOBNAME that abended */

if SUBSTR(JOB,1,1) ¬= 'P' then /* suppress all non prod jobs */

 return 'SUPPRESS'

/**/

OMEGAMON Rules

Chapter 6: Coding Each AOF Rule Type 237

/* Further manipulate the abending production job */

/**/

select

 / *Hilite message if PMNTHEND abended, setting the descriptor */

 /* code environmental variable using the OPS/REXX OPSBITS */

 /* function. */

 when JOB = 'PMNTHEND' then

 do

 MSG.DESC=OPSBITS('HILITE')

 end /*END OF PMNTHEND CHECK*/

 /* If PDAILY1 ABENDs, start DRECOVER JOB only if ABEND code */

 /* in message is 'S000' with a user code of 'U0004'. */

 /* Use the REXX PARSE instruction to break down the message. */

when JOB = 'PDAILY1' then

 do

 parse var MSG.TEXT . 'ABEND=' ACODE UCODE .

 if ACODE = 'S000' & UCODE = 'U0004' then

 do

 address OPER

 "COMMAND(S DRECOVER) NOOUTPUT"

 end /*end of code checks */

 end /*end of pdaily1 check */

 /**/

 /* Schedule the ACCTRECV OPS/REXX program to a server if */

 /* this is a production accounting job (PACCT*). Pass the job */

 /* to the EXEC. We have to schedule the EXEC to run in a server */

 /* since it will be issuing WTORs to operations and will */

 /* wait for the operator responses. */

 /* Remember that waiting in MSG rules is not allowed!!! */

 /**/

when SUBSTR(JOB,1,5) = 'PACCT' then

 do

 address OSF /* Ship to server */

 "OI P(ACCTRECV) ARG("JOB")"

 end /* End of PACCT check */

 otherwise RETURN 'NORMAL' /* NOT A SPECIAL CASE */

end /* END OF SELECT */

OMEGAMON Rules

An OMEGAMON (OMG) rule allows you to trigger automation from exception analysis
data that is generated by IBM® Tivoli® OMEGAMON® XE on z/OS products and reported
to an OMEGAMON terminal.

OMEGAMON Rules

238 AOF Rules User Guide

Installation Requirements for OMG Rules

Establishing an interface between CA OPS/MVS and OMEGAMON lets you create OMG
rules against messages generated by the exception analysis feature of IBM® Tivoli®
OMEGAMON® XE on z/OS products.

Note: For more information, see the CA OPS/MVS Administration Guide.

)OMG—Event Specifier of OMG Rules

The following is the format for coding the OMG-event definition section:

)OMG omgexspec

omgexspec

Specifies the exception label. Follow these guidelines when specifying the character
string:

■ Specify one to four characters of the exception label.

■ The string cannot contain embedded blank spaces.

■ You can use the wildcard (*) character. For example,

– N* matches NVSC or any exception label beginning with an N.

– *C matches any exception label ending with a C.

– * alone matches all exception labels.

■ Lowercase letters are acceptable, but the AOF converts them to uppercase for
event testing.

Initialization, Processing, and Termination Sections of OMG Rules

The general guidelines for coding the initialization, processing, and termination sections
and the various AOF tools that you can use, apply to OMG rules.

More information:

AOF Rule Structure (see page 21)
AOF Rule Tools (see page 29)

RETURN Statements in the)PROC Section of an OMG Rule

The OPS/REXX RETURN statement has no special meaning in the processing section of
an OMEGAMON rule. The return value has no effect on AOF processing.

OMEGAMON Rules

Chapter 6: Coding Each AOF Rule Type 239

Execution Considerations for OMG Rules

The processing section of a rule that responds to an OMEGAMON exception event
executes in the OMEGAMON address space that generated the exception. Therefore,
any type of logic that could possibly suspend the processing of an OMG rule should be
performed by scheduling an OPS/REXX program to a CA OPS/MVS OSF TSO, TSL, or TSP
server.

The AOF execution limits apply to the processing section of a rule that responds to an
OMEGAMON event.

More information:

Code and Debug AOF Rules (see page 59)

OPS/REXX Host Environments in the)PROC Section of an OMG Rule

The)PROC section of an OMG rule has the following host environments with the
following OMG rule characteristics. Specify the AOFDEFAULTADDRESS parameter for the
default host environment for ARM rules.

ADDRESS AOF

Sent to CA OPS/MVS. Does not wait. Output is not returned.

ADDRESS AP

Sent to MSF and then forwarded to the CA Automation Point system. Does not wait.
Output is not returned.

ADDRESS EPI

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS HWS

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS ISPEXEC

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS LXCON

The VM and Linux command requests sent to USS server for execution. Does not
wait. Output is not returned. The List request runs inline and returns VM and Linux
system data in stem variables.

OMEGAMON Rules

240 AOF Rules User Guide

ADDRESS MESSAGE

Sent as a WTO. The AOFDEST parameter specifies the destination.

ADDRESS MQ

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS NETMAN

Sent to a CA OPS/MVS internal CA Netman request queue to issue MGPT
commands. Does not wait. Output is not returned.

ADDRESS NETMASTR

Sent to CA NetMaster NM for SNA on the local system. Does not wait. Output is not
returned.

ADDRESS OPER

Sent to target console as specified through the OCCONSOLENAME parameters
when no CONNAME operands are present. Output is not returned. Schedule an
OPS/REXX program in a server when a command output interrogation is needed.

ADDRESS OPSCTL

Sent to a specified facility. If the facility is ECF or OSF, does not wait. If the facility is
MSF, slight wait occurs. The external data queue returns the output.

Note: If the command is MSF LIST, no wait occurs.

ADDRESS OPSDYNAM

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS OSF

Schedule TSO commands, CLISTs, or REXX EXECs to <CA OPS/MVS OSF TSO servers.

ADDRESS OSFTSL

Schedule TSO commands, CLISTs, or REXX EXECs to CA OPS/MVS OSF TSL servers.

ADDRESS OSFTSP

Schedule TSO commands, CLISTs, or REXX EXECs to CA OPS/MVS OSF TSP servers.

ADDRESS SOF

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS SQL

Does not wait. Processed synchronously for requests that can be satisfied on the
local system. Output is returned in stem variable. Error messages, if any, are
returned to an external data queue.

OMEGAMON Rules

Chapter 6: Coding Each AOF Rule Type 241

ADDRESS SYSVIEWE

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS TSO

Sent to an OSF TSO server. Does not wait. Output is not returned.

ADDRESS USS

Sent to a USS server. Does not wait. Output is not returned. Schedule an OPS/REXX
program in a server if a command output interrogation is needed.

ADDRESS WTO

Does not wait. Output is sent to the specified console. When attempting a WTOR,
host command is sent to a TSO server for execution. The response is returned to the
server. Schedule an OPS/REXX program in a server if the WTOR response
interrogation is needed.

More information:

Code and Debug AOF Rules (see page 59)

AOF Variables Available in an OMG Rule

You can use all AOF variable types in OMG rules, as described in the chapter “AOF Rule
Tools (see page 29).” You can use the following unique AOF event variables in the)PROC
section of a OMG rule, and you can manually interrogate the corresponding OPSLOG
display field as an aid in debugging or implementing rule logic.

OMG.COLOR

The color a message line is used in OPSLOG Browse

Data Type: 1-byte binary (unprintable), read/write

Sample Value: '00'X

Notes:

■ Use the OPSCOLOR function of OPS/REXX to set the OMG.COLOR variable.

■ To change the default display colors for OMEGAMON messages, reset the CA
OPS/MVS parameters whose names begin with OMG. For descriptions of these
parameters, see the Parameter Reference.

■ If multiple rules set OMG.COLOR for a single OMEGAMON message, CA
OPS/MVS uses only the last value. To trace the color set by each rule, set the
CA OPS/MVS RULETRACE parameter to ON. For a description of the RULETRACE
parameter, see the Parameter Reference.

OPSLOG Browse Column: COLOR

OMEGAMON Rules

242 AOF Rules User Guide

OMG.DDNAME

The 8-character ddname associated with the OMEGAMON report file

Data Type: Character, read-only

Sample Value: OMREPORT

Note: Use this variable to identify the source of an OMEGAMON exception event.

OPSLOG Browse Column: TERMNAME

OMG.JOBNAME

The name of the OMEGAMON address space that caused the rule to execute

Data Type: Character, read-only

Sample Value: OMEGTASK

OPSLOG Browse Column: JOBNAME

OMG.NAME

The name of the OMEGAMON exception (for instance, DNSR for DASD Not
Responding). Usually, this is a 4-character code.

Data Type: Character, read-only

Sample Value: XREP

Note: The OMG.NAME variable value determines which OMEGAMON rules execute
for the current OMEGAMON event. For descriptions of the OMEGAMON exception
codes, see your OMEGAMON manuals. For information on setting up the CA
OPS/MVS interface to OMEGAMON, see the Administration Guide.

OPSLOG Browse Column: MSGID

OMG.REPORTID

A unique report ID you can use to identify the source of an OMEGAMON message.
This is taken from the SUBSYS parameter (if specified).

Data Type: Character, read-only

Sample Value: CICSA

Note: Knowing where OMEGAMON events are coming from can be useful when you
monitor multiple CICS systems from a single address space. The OMG.REPORTID
variable enables you to tell to which CICS system the event refers.

OPSLOG Browse Column: DSPNAME

OMEGAMON Rules

Chapter 6: Coding Each AOF Rule Type 243

OMG.SYSID

The ID of the system where OMEGAMON is running. For JES3 messages, the SYSID
value derives from the MPNAME field of the Active Main Processor Control Table.
For JES2 messages, the SYSID value derives from the SMF ID string.

Data Type: Character, read-only

Sample Value: S000

OPSLOG Browse Column: SYSID

Note: The OPSLOG Browse column displays two characters of this variable, not the
complete field. The CA OPS/MVS BROWSEIDFORMAT parameter determines which
characters are displayed. For a description of the BROWSEIDFORMAT parameter,
see the Parameter Reference.

OMG.TEXT

The text of the exception message

Data Type: Character, read-only

Sample Value: 'XREP Number of Outstanding Replies = 4'

Notes:

■ Some OMEGAMON exceptions generate several lines of output; when this
occurs, the OMG.TEXT variable contains all of these lines concatenated
together.

■ All sequences of multiple blanks are compressed to a single blank.

■ If the exception produces more output lines than the OMG.TEXT variable can
hold, CA OPS/MVS truncates the lines that do not fit.

OPSLOG Browse Column: Text is always displayed.

OMG.USER

An 8-byte variable providing communication between rules that execute for the
same OMEGAMON event. The variable can contain any installation data that these
rules need, and it can store a character string displayable through OPSLOG Browse.

Data Type: User-defined, read/write

Notes:

■ Before AOF processing, this variable is initialized to binary zeros. It is then
passed to each rule that executes for the same OMEGAMON event; each rule
can look at or change the variable contents before passing the variable to the
next rule for the OMEGAMON event.

■ The primary purpose of the USER variable is to provide a method to pass a
small amount of data between the rules. This data may be binary or mixed
case. The USER field may also be used for filtering in the OPSLOG. However,
USER data used for OPSLOG filtering must be uppercase and displayable.

OPSLOG Browse Column: USER

OMEGAMON Rules

244 AOF Rules User Guide

Debug an OMG Rule

To debug an OMG rule

1. Set the CA OPS/MVS BROWSEOMG parameter to YES

2. Set the OMG event profile of your OPSLOG display to Y.

This lets you view all OMG events.

3. With these parameters set, display the OPSLOG EVENT column

This lets you see recorded OMG events. This record will contain details for each
OMEGAMON exception that is generated.

More information

Code and Debug AOF Rules (see page 59)

Example: OMG Rule

The following is an example of a rule that responds to an OMEGAMON event. The rule
cancels or stops any job that exceeds the exception limit.

)OMG NVSC

)PROC

 /* Extract the type of address space that generated the */

 /* NVSC exception and the associated JOBNNAME. Issue */

 /* the appropriate command to terminate the address */

 /* space based on the type of address space. */

 ADDRTYPE = WORD(OMG.TXT,2)

 JOBN = WORD(OMG.TXT,3)

 address OPER /* Send Host commands to OPER env */

 select

 when (ADDRTYPE = 'STC') then

 'P 'JOBN

 when (ADDRTYPE ='BAT') then

 'C 'JOB

 otherwise

 'C U='JOBN

 end

)END

Request Rules

Chapter 6: Coding Each AOF Rule Type 245

Request Rules

A request (REQ) rule provides an arbitrary method in which end users (primarily TSO
users), can invoke AOF rule processing. REQ rules allow you to perform any task that you
would typically perform with a standard OPS/REXX program, with these added benefits:

■ Because an AOF rule is not subject to security processing, you can distribute a
normally authorized task to unauthorized users (think of a request rule as a kind of
authorized OPS/REXX program library).

■ Because an AOF rule is preloaded (usually at CA OPS/MVS startup), it begins
executing much sooner than a standard OPS/REXX program.

■ Because an AOF rule is precompiled, you can enhance the performance of a
user-written, interactive application by writing an OPS/REXX program that uses one
or more request rules.

■ Use ADDRESS ISPEXEC services.

■ Get the output of any command from the OPS/REXX external data queue.

■ Easily control accessibility by enabling or disabling the rule.

Installation Requirements for REQ Rules

The REQ rule is triggered whenever the OPSREQ command processor executes.

REQ rules can also be triggered through the System State Manager EVRULE and RULE
actions.

Note: For more information, see the Command and Function Reference.

Request Rules

246 AOF Rules User Guide

)REQ—Event Specifier of REQ Rules

The following is the format for coding the REQ-event definition section:

)REQ requestcode

requestcode

Specifies the request code. Follow these guidelines when specifying the character
string:

■ Specify 1 to 10 characters of the request code specifier.

■ The string cannot contain embedded blank spaces.

■ You can use the wildcard (*) character. For example,

– CANCEL* matches CANCELJOB, CANCELUSER, and any other request code
beginning with CANCEL.

– * alone matches all request codes.

■ Lowercase letters are acceptable, but the AOF converts them to uppercase for
event testing.

Initialization, Processing, and Termination Sections of REQ Rules

REQ rules follow the general guidelines for coding the initialization, processing, and
termination sections and the various AOF tools that you can use.

More information:

AOF Rule Structure (see page 21)
AOF Rule Tools (see page 29)

RETURN Statements in the)PROC Section of a REQ Rule

The return value has no effect on AOF processing unless the request rule is invoked as
the System State Manager EVRULE action keyword.

Note: For more information, see the chapter “Using System State Manager” in the User
Guide.

Request Rules

Chapter 6: Coding Each AOF Rule Type 247

Execution Considerations for REQ Rules

The processing section of a rule that responds to a request event executes in the
address space from which the request originated, which is usually that of a TSO user
that invokes the OPSREQ command processor. Automation that requires waiting, such
as file allocation, issuing WTORs and manipulating the reply, and issuing system
commands and interrogating the output can be performed. Therefore, this type of
automation suspends the address space that triggered the REQ rule.

Note: Creating this type of automation in REQ rules triggered through the System State
Manager EVRULE and RULE actions suspends the SSM task.

The OPS/REXX batch execution limits as controlled through the REXX* parameters apply
to the processing section of a rule that responds to a request event.

Note: For more information, see the chapters “Using OPS/REXX” and “Using System
State Manager” in the User Guide.

OPS/REXX Host Environments in the)PROC Section of a REQ Rule

The)PROC section of an REQ rule has the following host environments with the
following REQ rule characteristics. The REXXDEFAULTADDRESS parameter specifies the
default host environment for REQ rules.

ADDRESS AOF

Runs inline. Waits for output in an external data queue.

ADDRESS AP

Sent to MSF and then forwarded to the CA Automation Point system. Does not wait.
Output is not returned.

ADDRESS EPI

Runs inline. Waits for output in an external data queue.

ADDRESS HWS

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS ISPEXEC

Runs inline. Waits for output in an external data queue.

ADDRESS LXCON

Runs inline. Waits for output that is returned in stem variables.

ADDRESS MESSAGE

Sent to a TSO user when invoked from a foreground TSO session. Otherwise, it is
sent as a WTO.

Request Rules

248 AOF Rules User Guide

ADDRESS MQ

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS NETMAN

Sent to a CA OPS/MVS internal CA Netman request queue to issue MGPT
commands. Waits for a command completion. External data queue returns output.

ADDRESS NETMASTR

Sent to CA NetMaster NM for SNA on the local system. Does not wait. Output is not
returned.

ADDRESS OPER

Sent to target console as specified through the OCCONSOLENAME parameters
when no CONNAME operands are present. Output is not returned. Schedule an
OPS/REXX program in a server when a command output interrogation is needed.

ADDRESS OPSCTL

Sent to a specified facility. If the facility is ECF or OSF, does not wait. If the facility is
MSF, slight wait occurs. External data queue returns output.

Note: If the command is MSF LIST, no wait occurs.

ADDRESS OPSDYNAM

Runs inline. Returns output in variables.

ADDRESS OSF

Schedule TSO commands, CLISTs, or REXX EXECs to CA OPS/MVS OSF TSO servers.

ADDRESS OSFTSL

Schedule TSO commands, CLISTs, or REXX EXECs to CA OPS/MVS OSF TSL servers.

ADDRESS OSFTSP

Schedule TSO commands, CLISTs, or REXX EXECs to CA OPS/MVS OSF TSP servers.

ADDRESS SOF

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS SQL

Does not wait. Processed synchronously for requests that can be satisfied on the
local system. Output is returned in stem variable. Error messages, if any, are
returned to an external data queue.

ADDRESS SYSVIEWE

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

Request Rules

Chapter 6: Coding Each AOF Rule Type 249

ADDRESS TSO

Runs inline. Waits for output in an external data queue.

ADDRESS USS

Runs inline. Waits for output that is returned in stem variables.

ADDRESS WTO

Does not wait. Output is sent to the specified console. If you attempt a WTOR, runs
inline and waits for response in an external data queue.

More information:

Code and Debug AOF Rules (see page 59)

AOF Variables Available in REQ Rules

You can use all AOF variable types in REQ rules, as described in the chapter “AOF Rule
Tools (see page 29).” You can use the following unique AOF event variables in the)PROC
section of a REQ rule, and you can manually interrogate the corresponding OPSLOG
display field as an aid in debugging or implementing rule logic.

REQ.CODE

The current OPSREQ event specifier, taken from the CODE keyword of the OPSREQ
command

Data Type: Character, read-only

Sample Value: CANTSO

Note: You can enter the CODE value of OPSREQ either as a keyword (for example,
CODE(CANTSO)) or as a positional parameter. The CODE value determines which
request rules execute for the current event.

OPSLOG Browse Column: MSGID

REQ.TEXT

A description of the current request

Data Type: Character, read-only

Sample Value: CANTSO USERA

Note: CA OPS/MVS creates the REQ.TEXT variable by concatenating the value of the
CODE clause and the value of the TEXT clause in an OPSREQ command. A blank
separates the two values.

OPSLOG Browse Column: Text is always displayed.

Request Rules

250 AOF Rules User Guide

REQ.USER

An 8-byte variable providing communication between rules that execute for the
same request event. The variable can contain any installation data that these rules
need, and it can store a character string displayable through OPSLOG Browse.

Data Type: User-defined, read/write

Note: Before AOF processing, this variable is initialized to binary zeros. It is then
passed to each rule that executes for the same request event; each rule can look at
or change the variable contents before passing the variable to the next rule for the
request event.

OPSLOG Browse Column: USER

Debug an REQ Rule

To debug an REQ rule

1. Set the CA OPS/MVS BROWSEREQ parameter to YES

2. Set the REQ event profile of your OPSLOG display to Y.

This lets you view all REQ events.

3. With these parameters set, display the OPSLOG EVENT column

This lets you see recorded REQ events. This record shows the request rule that was
invoked and you can display the OPSLOG JOBNAME column to see the TSO user that
invoked the rule.

More information:

Code and Debug AOF Rules (see page 59)

Examples: REQ Rules

The following examples show the response to request events.

■ Example 1: The following is an example of a rule that responds to a request event.
The rule allows a TSO user to cancel any other TSO user who has the same user ID
prefix.

)REQ CANTSO

)PROC

/**/

/* Allow users in the same group to cancel each other's */

/* TSO ids. Invoke this REQ rule from TSO by entering: */

/* OPSREQ CANTSO userid from any TSO command line */

/**/

Request Rules

Chapter 6: Coding Each AOF Rule Type 251

USERID = TRANSLATE(WORD(REQ.TEXT,2)) /* passed userid */

/* See if this users TSO id is the same as the passed userid*/

if SUBSTR(USERID,1,4) = SUBSTR(OPSINFO(JOBNAME),1,4) then

 do

 address OPER

 'COMMAND(C U='USERID') NOOUTPUT' /* OK to cancel */

 end

else

 say 'You are not authorized to cancel user 'USERID

■ Example 2: The following is an example of a rule that responds to a request event.
The rule obtains and displays various system-related data.

)REQ SYSINFO

)PROC

/***/

/* TSO users can invoke this REQ rule by entering: */

/* OPSREQ SYSINFO from any TSO command line */

/* This rule will collect and display various system info */

/* by invoking various OPS/REXX functions. */

/***/

 SYSPLEX_INFO = OPSYSPLX('I','S') /* SYSPLEX information */

 say '***Number of systems in PLEX = 'SYSPLEX_INFO

 do while QUEUED() > 0

 pull EDQ

 say 'PLEX info='EDQ

 end

CMD = OPSIPL('IEASYS','CMD') /* COMMNDxx used in last IPL */

 say 'COMMNDxx members used for this IPL='cmd

say 'CPUID = 'OPSINFO('CPUID') /* CPUID */

say 'DFSMSVERSION = 'OPSINFO('DFSMSVERSION')/* DFSMSVERSION */

say 'SYSTEM IPL DATE = 'OPSINFO('IPLDATE') /* IPL DATE */

say 'IPL VOLSER NAME = 'OPSINFO('IPLVOLSER') /* IPL VOLSER */

say 'IPL TYPE = 'OPSINFO('IPLTYPE') /* IPL TYPE */

say 'SYSTEM IPL TIME = 'OPSINFO('IPLTIME') /* IPL TIME */

Screen Rules

252 AOF Rules User Guide

Screen Rules

A screen rule (SCR) is triggered when a screen change occurs on an External Product
Interface (EPI) virtual terminal. The EPI permits CA OPS/MVS to communicate with any
VTAM application that supports IBM 3270 type virtual terminals. For any EPI terminal
defined to a VTAM application that can be set up to generate automatic screen updates,
an SCR can be created to process these screen changes.

Do not design SCR rules that trigger from programmatic keystrokes entered to an EPI
terminal by the ADDRESS EPI OPS/REXX environment. The ADDRESS EPI keystroke tools
have mechanisms to trap and return the screen image so that you can programmatically
manipulate the screen contents in the OPS/REXX program that issued the keystroke.

Note: For more information, see the Command and Function Reference.

Installation Requirements for SCR Rules

The External Product Interface (EPI) requires the use of VTAM virtual terminals, in
addition to the issuing of a series of ADDRESS EPI host environment commands that
define and activate the terminals.

Note: For information on EPI terminal implementation, see the Administration Guide
and for information on controlling EPI terminals, see the User Guide.

)SCR—Event Specifier of SCR Rules

Use this format when coding the screen-event definition section:

)SCR termspec

[screencond1]

[screencond2]

[screencond3]

 .

 .

 .

[screencond10]

termspec

Terminal name specifier:

■ Specify one to eight characters of the EPI virtual terminal name.

■ The string cannot contain embedded blank spaces.

■ You can use the wildcard (*) character.

■ Lowercase letters are acceptable, but the AOF converts them to uppercase for
event testing.

Screen Rules

Chapter 6: Coding Each AOF Rule Type 253

screencond1 through screencond10

Compares the screen condition of a specified string with a portion of the virtual
terminal screen. If you do not specify one or more screen conditions (screencond1
through screencond10), a screen rule executes when the terminal:

■ Becomes enabled or disabled.

■ Logs on or off.

■ Receives an instruction from a host application to unlock its keyboard.

■ Receives data from a host application that causes a screen change.

If you specify one or more screen conditions, a screen rule executes only when:

■ At least one of the conditions is satisfied when the screen event occurs.

■ A non-screen update (ENABLE, DISABLE, KBUNLOCK, LOGON, or LOGOFF)
condition occurs.

Use this format when coding a screen condition:

row column [string]

row and column

Specify any of the following values:

■ A positive integer.

■ A range, specified by a pair of integers separated by a colon. For example,
5:15.

■ The wildcard (*) character (equivalent to the range 1:255).

string

(Optional) The value of string has these characteristics:

■ It is a character string enclosed in double or single quotes.

■ It defaults to a null string if you do not specify a value.

■ Only strings wholly contained in one row of the terminal screen can match
a specified string value. If a screen string wraps to the next line, it cannot
match any screen condition that you specify.

Screen Rules

254 AOF Rules User Guide

How Screen Rules Are Triggered

The following information concerns how screen rules are triggered:

■ Screen update events and keyboard unlocking events occur after the host
application sends a VTAM Request Unit (RU) chain.

– Some applications (such as ISPF) send a full screen of data using multiple RUs

– Other applications (such as native TSO in READY mode) send one line of data
per RU.

■ A screen rule executes once per screen event. For example, a rule triggered when
the word READY appears in a screen update executes only once even if READY
appears three times on the screen.

■ A rule triggered by any change, either to an entire screen or to a portion of a
screen, executes only once.

■ The string contained in the SCR.TEXT event-related variable indicates the first
position (row and column) of the change and the new text found at that location.

■ If your rule is concerned with specific screen updates, have the rule check the
SCR.TYPE event-related variable for the SCRUPDATE screen-update value.

■ Because SCR rules allow multiple spec lines, they must be followed by a section
header before comments can be used; either a)INIT card must be inserted prior to
the comment card or the comment must be moved after the)PROC card.

Initialization, Processing, and Termination Sections of SCR Rules

The general guidelines for coding the initialization, processing, and termination sections
and the various AOF tools that you can use, apply to SCR rules.

More information:

AOF Rule Structure (see page 21)
AOF Rule Tools (see page 29)

RETURN Statements in the)PROC Section of an SCR Rule

The RETURN statement has no special meaning in the processing section of a SCR rule.

Screen Rules

Chapter 6: Coding Each AOF Rule Type 255

Execution Considerations for SCR Rules

The processing section of a SCR rule executes in the CA OPS/MVS main address space.
Therefore, any complex logic or interactive logic that may cause a wait to occur should
be done in an OPS/REXX program that gets scheduled to an OSF TSO server on behalf of
the SCR rule. For a discussion of dispatching OPS/REXX programs to OSF TSO, TSL, or TSP
servers, see the chapter “Code and Debug AOF Rules (see page 59).”

The AOF execution limits apply to the processing section of a rule that responds to a
screen event.

More information:

Building and Controlling AOF Rules (see page 49)

OPS/REXX Host Environments in the)PROC Section of an SCR Rule

The)PROC section of an SCR rule has the following host environments with the
following SCR rule characteristics. The AOFDEFAULTADDRESS parameter specifies the
default host environment for SCR rules.

ADDRESS AOF

Sent to CA OPS/MVS. Does not wait. Output is not returned.

ADDRESS AP

Sent to MSF and then forwarded to the CA Automation Point system. Does not wait.
Output is not returned.

ADDRESS EPI

Runs inline. Waits for output in an external data queue.

ADDRESS HWS

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS ISPEXEC

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS LXCON

Runs inline. Waits for output that is returned in stem variables.

ADDRESS MESSAGE

Sent as a WTO. The AOFDEST parameter specifies the destination.

Screen Rules

256 AOF Rules User Guide

ADDRESS MQ

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS NETMAN

Sent to a CA OPS/MVS internal CA Netman request queue to issue MGPT
commands. Does not wait. Output is not returned.

ADDRESS NETMASTR

Sent to CA NetMaster NM for SNA on the local system. Does not wait. Output is not
returned.

ADDRESS OPER

Sent to target console as specified through the OCCONSOLENAME parameters
when no CONNAME operands are present. Output is not returned. Schedule an
OPS/REXX program in a server when a command output interrogation is needed.

ADDRESS OPSCTL

Sent to a specified facility. If the facility is ECF or OSF, does not wait. If the facility is
MSF, slight wait occurs. The external data queue returns the output.

Note: If the command is MSF LIST, no wait occurs.

ADDRESS OPSDYNAM

Runs Inline. Returns output in variables.

Note: For possible implications, see Execution Considerations for SCR Rules (see
page 255) in this chapter.

ADDRESS OSF

Schedule TSO commands, CLISTs, or REXX EXECs to CA OPS/MVS OSF TSO servers.

ADDRESS OSFTSL

Schedule TSO commands, CLISTs, or REXX EXECs to CA OPS/MVS OSF TSL servers.

ADDRESS OSFTSP

Schedule TSO commands, CLISTs, or REXX EXECs to CA OPS/MVS OSF TSP servers.

ADDRESS SOF

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS SQL

Does not wait. Processed synchronously for requests that can be satisfied on the
local system. Output is returned in stem variable. Error messages, if any, are
returned to an external data queue.

Screen Rules

Chapter 6: Coding Each AOF Rule Type 257

ADDRESS SYSVIEWE

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS TSO

Sent to the server. Does not wait. Output is not returned.

ADDRESS USS

Runs inline. Waits for output in stem variables.

Note: For possible implications, see Execution Considerations for SCR Rules (see
page 255).

ADDRESS WTO

Does not wait. Output is sent to the specified console. If you attempt a WTOR, runs
inline and waits for response in the external data queue.

Note: For possible implications, see Execution Considerations for SCR Rules (see
page 255).

More information:

Code and Debug AOF Rules (see page 59)

AOF Variables Available in an SCR Rule

You can use all AOF variable types in SCR rules, as described in the chapter “AOF Rule
Tools (see page 29).” You can use the following unique AOF event variables in the)PROC
section of a SCR rule, and you can manually interrogate the corresponding OPSLOG
display field as an aid in debugging or implementing rule logic.

SCR.ASID

The ASID of the address space that caused this screen event taken from either the
address space of the issuer of an EPI command or, in all other cases, from the CA
OPS/MVS main address space

Data Type: 2-byte binary (unprintable), read-only

Sample Value: '003E'X

Notes:

■ Use the C2X function of OPS/REXX to convert the value of this variable to
hexadecimal characters.

■ You can use SCR.ASID to check whether a specific address space is issuing an
EPI command.

OPSLOG Browse Column: ASID

Screen Rules

258 AOF Rules User Guide

SCR.JOBNAME

The job name of the address space that caused the current screen event. This name
can be one of the following:

■ The name of the job which issued an EPI command

■ The name of the address space of the CA OPS/MVS product

Data Type: Character, read-only

Sample Value: OPSMAIN

OPSLOG Browse Column: JOBNAME

SCR.TERMNAME

The name of the virtual terminal associated with this screen event; taken from the
DEFINE command used to define the terminal to EPI

Data Type: Character, read-only

Sample Value: IMSTERM

Note: The SCR.TERMNAME variable determines which screen rules execute for the
current screen event.

OPSLOG Browse Column: TERMNAME

SCR.TEXT

A description of the screen event.

Possible Values:

■ ENABLE-The virtual terminal has been enabled.

■ DISABLE-The virtual terminal has been disabled.

■ LOGON-The virtual terminal has logged on to an application.

■ LOGOFF-The virtual terminal has logged off from an application.

■ CHANGE-The virtual terminal characteristics have been changed (the EPI
CHANGE, SETMODEL, and SETUNAME commands only).

■ SCRUPDATE row col string-The virtual terminal screen has been updated at the
named row and column. The string reflects the new text on the screen.

■ MVCURSOR row col-The virtual terminal cursor has been moved to the
specified row and column.

■ KBUNLOCK-The virtual terminal keyboard has been unlocked.

Data Type: Character, read-only

Sample Value: SCRUPDATE 3 2 READY

Note: The first word of the SCR.TEXT variable always matches the value of the
SCR.TYPE variable.

OPSLOG Browse Column: Text is always displayed.

Screen Rules

Chapter 6: Coding Each AOF Rule Type 259

SCR.TYPE

A description of the screen event.

Possible Values:

■ ENABLE-The virtual terminal has been enabled

■ DISABLE-The virtual terminal has been disabled

■ LOGON-The virtual terminal has logged on to an application

■ LOGOFF-The virtual terminal has logged off of an application

■ CHANGE-The virtual terminal characteristics have been changed (the EPI
CHANGE, SETMODEL, and SETUNAME commands only)

■ SCRUPDATE-The virtual terminal screen has been updated

■ MVCURSOR-The virtual terminal cursor has been moved

■ KBUNLOCK-The virtual terminal keyboard has been unlocked

Data Type: Character, read-only

Sample Value: SCRUPDATE

Note: The value of SCR.TYPE always matches the first word of the SCR.TEXT
variable.

OPSLOG Browse Column: MSGID

SCR.USER

An 8-byte variable providing communication between rules that execute for the
same screen event. The variable can contain any installation data that these rules
need, and it can store a character string displayable through OPSLOG Browse.

Data Type: User-defined, read/write

Notes:

■ Before AOF processing, this variable is initialized to binary zeros. It is then
passed to each rule that executes for the same screen event; each rule can look
at or change the variable contents before passing the variable to the next rule
for the screen event.

■ You can store Dialog Manager attribute characters in this variable to control
the color of the OPSLOG Browse column.

OPSLOG Browse Column: USER

Screen Rules

260 AOF Rules User Guide

Debug an SCR Rule

To debug an SCR rule

1. Set the CA OPS/MVS BROWSESCR parameter to YES

2. Set the SCR event profile of your OPSLOG display to Y.

This lets you view all SCR events.

3. With these parameters set, display the OPSLOG EVENT column

This lets you see recorded SCR events. The record shows the screen type that
triggered the rule, indicated by the RULE OPSLOG column.

More information:

Code and Debug AOF Rules (see page 59)

Examples: SCR Rules

The following example screen-event definitions show how to specify screen conditions.
In the examples, the rule is triggered when:

■ Example 1: A change occurs anywhere on the screen:

)SCR TSOTERM

* *

or

)SCR TSOTERM

* * ""

or

)SCR TSOTERM

■ Example 2: READY appears in row 1, column 2:

)SCR TSOTERM

1 2 "READY"

■ Example 3: READY appears in column 2 of any row, on any terminal with a name
beginning with TSO:

)SCR TSO*

* 2 "READY"

■ Example 4: READY appears anywhere on the screen:

)SCR TSOTERM

* * "READY"

Security Rules

Chapter 6: Coding Each AOF Rule Type 261

■ Example 5: READY appears anywhere in row 1:

)SCR TSOTERM

1 * "READY"

■ Example 6: ALERT appears anywhere in rows 3 through 24 in columns 2 through 72:

)SCR TSOTERM

3:24 2:72 "ALERT"

Security Rules

A security rule responds to a security event and provides an easy-to-use method for
protecting the many CA OPS/MVS facilities. Unlike an authorization exit written in
assembler language, a security (SEC) rule is easy to write, implement, and update.

Installation Requirements for SEC Rules

Use the SECURITYRULESET parameter to allocate a rule set containing only security
rules, allowing you to easily enable and disable security-rules.

To prevent accidental or unauthorized editing of security rules, use the installation
security product to allow read/write access to only those users that maintain security
rules.

For example, consider these parameter settings:

■ RULEPREFIX = 'OPSMVS.PROD'

■ RULESUFFIX = 'RULES'

■ SECURITYRULESET = 'SEC'

Using these examples, your security rule set is the PDS named
OPSMVS.PROD.SEC.RULES and is the only rule set from which the AOF allows a SEC type
rule to be enabled.

Note: For more information about the SECURITYRULESET parameter and other security
parameters that affect rule security such as SECRULEFAILURE and AOFINITOPEN, see the
Parameter Reference.

Security Rules

262 AOF Rules User Guide

)SEC—Event Specifier of SEC Rules

Use this format for coding the security-event definition section:

)SEC facility||eventqualifier

facility

Specifies a CA OPS/MVS facility. This security-event specifier is one of the following
character strings:

AP

The ADDRESS AP host environment, used to restrict commands sent to CA
Automation Point.

OPSAOF

An ADDRESS AOF host command issued in an OPS/REXX program.

OPSBRW

The OPSBRW command processor, used to view entries in the OPSLOG Browse
facility.

OPSCMD

The OPSCMD command processor or OPS/REXX ADDRESS OPER command,
used to issue operator commands.

OPSCTL

The ADDRESS OPSCTL host environment, used to control the Multi-System
Facility (MSF).

OPSDOM

The OPSDOM command processor, used to delete an outstanding message.

OPSEPI

An ADDRESS EPI host command issued from in an OPS/REXX program.

OPSGLOBAL

An OPS/REXX global variable that is accessed or updated.

OPSHFI

The OPSHFI command or REXX function, used to read, write, or delete variable
records from the shared VSAM file supporting global variables.

OPSLOG

A CA OPS/MVS API request (processed by the CA OPS/MVS Automation
Analyzer).

Security Rules

Chapter 6: Coding Each AOF Rule Type 263

OPSOSF

An ADDRESS OSF, ADDRESS OSFTSL, or ADDRESS OSFTSP host command issued
from within an OPS/REXX program.

OPSPARM

The OPSPARM command processor or the OPSPRM OPS/REXX function, used to
change CA OPS/MVS parameter values.

OPSREPLY

The OPSREPLY command processor, used to reply to WTOR messages.

OPSREQ

The OPSREQ command processor, used to invoke AOF request rules.

OPSRMT

The OPSRMT command processor, used to issue a command to a remote
system.

OPSSMTBL

The OPSSMTBL command processor, used to maintain the directory table that
System State Manager uses to manage tables containing system resource
information.

OPSVIEW

The OPSVIEW command processor, used to invoke
the CA OPS/MVS OPSVIEW interface.

OPSWTO

The OPSWTO command processor or the ADDRESS WTO host environment,
used to send WTO or WTOR messages.

SOF

The ADDRESS SOF host environment, used to access the Switch Operations
Facility (SOF) for managing the I/O configuration.

SQL

The OPSQL command processor or the ADDRESS SQL host environment, used
to issue Structured Query Language commands.

SUBSYSDSN

A CA OPS/MVS subsystem data set that is opened.

USS

An ADDRESS USS host command issued from within an OPS/REXX program.

Security Rules

264 AOF Rules User Guide

eventqualifier

Specifies a subset of the facility security-event specifier. The value is a character
string.

Follow these guidelines when specifying the eventqualifier value:

■ Concatenate the string with the facility string (no blanks between them).

■ For all facility values except OPSCMD and OPSGLOBAL, you can only specify a
wildcard (*) character. For example,

)SEC OPSBRW*

or

)SEC OPSAOF*

■ For OPSCMD, you can specify OPSCMD* to execute on all OPSCMDs or
optionally specify a full command verb to be more specific. For example,

)SEC OPSCMDMODIFY

This facility and eventqualifier combination in this security event definition
would execute for any z/OS MODIFY (or short form F) command issued through
the OPSCMD command processor.

■ For OPSGLOBAL, you can specify OPSGLOBAL* to execute on all OPS/REXX
global variable updates, or optionally specify up to 41 characters of the global
variable name, followed by the wildcard (*) character. For example,

)SEC OPSGLOBALGLOBAL1.VAR*

The facility and eventqualifier combination in this security event definition
matches all global variables beginning with the GLOBAL1.VAR prefix.

■ Lowercase letters are acceptable, but the AOF converts them to uppercase for
event testing.

■ You can specify an * for the event definition to process all facilities.

Initialization, Processing, and Termination Sections of SEC Rules

SEC rules follow the general guidelines for coding the initialization, processing, and
termination sections and the various AOF tools that you can use.

More information:

AOF Rule Structure (see page 21)
AOF Rule Tools (see page 29)

Security Rules

Chapter 6: Coding Each AOF Rule Type 265

RETURN Statements in the)PROC Section of an SEC Rule

The OPS/REXX RETURN statement specifies the final disposition of a security event. The
RETURN statement can:

■ Refer a security event to the OPUSEX security exit.

■ Force CA OPS/MVS to deny access to a requested facility.

■ Allow access to a requested facility.

Valid values for a RETURN statement in the processing section of a security rule are as
follows:

NOACTION

Allows the event to occur with no intervention from the AOF. CA OPS/MVS passes
the event to the OPUSEX security exit after AOF processing (if any). This is the
default.

ACCEPT

Allows access to the requested facility and does not call the OPUSEX security exit.

REJECT

Denies access to the requested CA OPS/MVS facility and does not call the OPUSEX
security exit.

Note: The return values listed here are character constants rather than keywords. An
unrecognized return value, a misspelled value for example, defaults to a value of
NOACTION.

If multiple rules respond to a single security event, the AOF uses the highest-precedence
return value. The order of precedence is:

■ REJECT (highest)

■ ACCEPT

■ NOACTION (lowest)

Security Rules

266 AOF Rules User Guide

Execution Considerations for SEC Rules

The processing section of a rule that responds to a security event executes in the TSO
users or batch address space that is attempting to invoke the specified CA OPS/MVS
facility. Any type of logic that could possibly suspend the processing of an SEC rule, such
as issuing a command and interrogating the output, or allocating and manipulating data
sets is not practical and therefore is not allowed. The primary logic that should be
incorporated in all security rules is to allow/disallow access to CA OPS/MVS facilities
based on a check against the requester (TSO user, or possibly a batch job) of the facility.

Note: Security rules do not process facilities that are invoked from within other AOF
rules.

The AOF execution limits apply to the processing section of a rule that responds to a
security event.

More information:

Code and Debug AOF Rules (see page 59)

OPS/REXX Host Environments in the)PROC Section of an SEC Rule

The)PROC section of an SEC rule has the following host environments with the following
SEC rule characteristics. The default host environment for SEC rules is specified by the
AOFDEFAULTADDRESS parameter.

ADDRESS AOF

Sent to CA OPS/MVS. Does not wait. Output is not returned.

ADDRESS AP

Sent to MSF and then forwarded to the CA Automation Point system. Does not wait.
Output is not returned.

ADDRESS EPI

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

Note: For details, see Code and Debug AOF Rules (see page 59).

ADDRESS HWS

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS ISPEXEC

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

Security Rules

Chapter 6: Coding Each AOF Rule Type 267

ADDRESS MESSAGE

Sent to a TSO user if invoked from a foreground TSO session. Otherwise, it is sent as
a WTO.

ADDRESS MQ

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS NETMAN

Sent to a CA OPS/MVS internal CA Netman request queue to issue MGPT
commands. Does not wait. No output is returned.

ADDRESS NETMASTR

Sent to CA NetMaster on the local system. Does not wait. No output is returned.

ADDRESS OPER

Sent to target console as specified through the OCCONSOLENAME parameters
when no CONNAME operands are present. Output is not returned. Schedule an
OPS/REXX program in a server when a command output interrogation is needed.

ADDRESS OPSCTL

Sent to a specified facility. If the facility is ECF or OSF, does not wait. If the facility is
MSF, slight wait occurs. Output is returned to an external data queue.

Note: If the command is MSF LIST, no wait occurs.

ADDRESS OPSDYNAM

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS OSF

Schedule TSO commands, CLISTs, or REXX EXECs to CA OPS/MVS OSF TSO servers.

ADDRESS OSFTSL

Schedule TSO commands, CLISTs, or REXX EXECs to CA OPS/MVS OSF TSL servers.

ADDRESS OSFTSP

Schedule TSO commands, CLISTs, or REXX EXECs to CA OPS/MVS OSF TSP servers.

ADDRESS SOF

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS SQL

Does not wait. Processed synchronously for requests that can be satisfied on the
local system. Output is returned in stem variable. Error messages, if any, are
returned to an external data queue.

Security Rules

268 AOF Rules User Guide

ADDRESS SYSVIEWE

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS TSO

Sent to an OSF TSO server. Does not wait. No output is returned.

ADDRESS USS

Sent to a USS server. Does not wait. No output is returned. Schedule an OPS/REXX
program in a server if a command output interrogation is needed.

ADDRESS WTO

Does not wait. Output is sent to specified (or default) destination. If you attempt a
WTOR, host command is sent to a TSO server for execution, and the response is
returned to a server. Schedule an OPS/REXX program in a server if a WTOR
response interrogation is needed.

More information:

Code and Debug AOF Rules (see page 59)

AOF Variables Available in an SEC Rule

You can use all AOF variable types in SEC rules, as described in the chapter “AOF Rule
Tools (see page 29).” You can use the following unique AOF event variables in the)PROC
section of a SEC rule, and you can manually interrogate the corresponding OPSLOG
display field as an aid in debugging or implementing rule logic.

Security Rules

Chapter 6: Coding Each AOF Rule Type 269

SEC.TEXT

A description of the current security event. Taken from the full security event text
of the CA OPS/MVS component that the user is trying to use, the description
consists of:

 eventtype||de-aliased verb|| commandtext

■ The first word of SEC.TEXT is the value that determines which security rules
execute for the current security event

■ The de-aliased verb is present only for OPSCMD events

■ The commandtext is present only for OPSCMD, OPSCTL, OPSRMT, OPSAOF, and
OPSEPI events

■ The eventtype is always one of the following:

– OPSAOF-An OPS/REXX program addressed commands to the AOF

– OPSBRW-Someone used OPSLOG Browse

– OPSCMD-Someone issued the OPSCMD command processor, or an
OPS/REXX program issued ADDRESS OPER commands

– OPSCTL-Someone used the MSF

– OPSEPI - An OPS/REXX program addressed commands to the EPI

– OPSGLOBAL - Global variables were accessed or updated

– OPSLOG - Someone used the CA OPS/MVS Automation Analyzer to process
OPSLOG

– OPSOSF - An OPS/REXX program addressed commands to the OSF

– OPSPARM - Someone issued the OPSPARM TSO command or invoked the
OPSPRM() REXX function to change CA OPS/MVS parameters

– OPSREPLY - Someone used the OPSREPLY command processor to respond
to a WTOR

– OPSRMT - Someone used the OPSRMT command processor to issue a
command to a remote machine

– OPSSMTBL - Someone used the OPSSMTBL command processor

– OPSWTO - Someone used the OPSWTO command processor to issue a
WTO message

Security Rules

270 AOF Rules User Guide

– SOF - An OPS/REXX program addressed commands to the SOF

– SQL - Someone issued the OPSQL command processor, or an OPS/REXX
program issued ADDRESS SQL commands

– SUBSYSDN - Someone opened a CA OPS/MVS subsystem data set

– OPSVIEW - Someone invoked the OPSVIEW application

Data Type: Character, read-only

Sample Value: OPSCMDSTOP P OPSS

OPSLOG Browse Column: Text is always displayed.

SEC.TYPE

The SEC.TYPE variable determines which rules execute for the current security
event.

The type of security request from the CA OPS/MVS component that the user is
trying to access. See the event types listed in the description of the SEC.TEXT
variable.

Data Type: Character, read-only

Sample Value: OPSPARM

Notes:

■ If the event type is OPSCMD, CA OPS/MVS appends the command verb to the
event type (for instance, OPSCMDSTOP). But, because the variable can contain
no more than ten characters, some of the verb may be truncated.

■ If the event type is OPSGLOBAL, the SEC.TYPE variable may have the first
character of the global variable name appended to OPSGLOBAL when you
append the name of a global variable prefix on the)SEC rule specifier. For
example, if you specify)SEC OPSGLOBALGLOBAL1.*, the SEC.TYPE variable has
the value OPSGLOBALG.

OPSLOG Browse Column: MSGID

SEC.USER

The primary purpose of the USER variable is to provide a method to pass a small
amount of data between the rules. This data may be binary or mixed case. The
USER field may also be used for filtering in the OPSLOG. However, USER data used
for OPSLOG filtering must be uppercase and displayable.

An 8-byte variable providing communication between rules that execute for the
same security event. The variable can contain any installation data that these rules
need, and it can store a character string displayable through OPSLOG Browse.

Data Type: User-defined, read/write

Security Rules

Chapter 6: Coding Each AOF Rule Type 271

Note: Before AOF processing, this variable is initialized to binary zeros. It is then
passed to each rule that executes for the same security event. Each rule can look at
or change the variable contents before passing the variable to the next rule for the
security event.

OPSLOG Browse Column: USER

OPAU Control Block Variables

The)PROC section of security rules can also contain variables set to the value of fields in
the OPAU control block that CA OPS/MVS passes to the user exit. Some OPAU variables
are available for all security events, but most are valid for only one type of security
event.

OPAU control block variables have these characteristics:

■ OPSLOG Browse does not display them.

■ OPAU variables containing bit data become OPS/REXX compound symbols that are
either true (indicated by 1) or false (indicated by 0).

■ OPAU variables containing integers become OPS/REXX compound symbols
containing numeric data. When modifying one of these variables, take its
significance or its sign into account.

■ If an OPAU variable containing character data is set to a value larger than the size of
an OPAU field, the variable is truncated upon return. If the variable value is shorter
than an OPAU field, CA OPS/MVS adds trailing blanks to that value.

■ You can change the SEC.OPAURQRC variable only by setting the return value
through the OPS/REXX RETURN statement.

OPAU Variables for All Security Events

The following variables are available for all types of security events:

SEC.OPAUAUSR

The authorization string of the CA OPS/MVS installation

Data Type: Character, read-only

Source: The value of the CA OPS/MVS AUTHSTRING parameter (described in the
Parameter Reference)

Sample Value: TRIAL

Security Rules

272 AOF Rules User Guide

SEC.OPAUBYSC

Indicates whether security processing should be bypassed.

Data Type: Bit, read-only

Source: The CA OPS/MVS component indicates whether security is bypassed.

Sample Value: 1

Note: This flag is true for the CA OPS/MVS main address space and for AOF rules.

SEC.OPAUECJB

Indicates whether the current address space is an ECF user.

Data Type: Bit, read-only

Source: The CA OPS/MVS component indicates the address space type.

Sample Value: 1

SEC.OPAUERMG

The error message text

Data Type: Character, read/write

Source: Other security rules

Sample Value: 'You are not allowed to use OPSCMD'

Notes:

■ Security rules can set this variable to create and send short error messages to
the current user.

■ CA OPS/MVS passes this variable to each rule that a security event triggers.
Each rule can examine or reset this variable before passing it to the next rules
for the current event.

■ If multiple security rules set this variable, CA OPS/MVS uses only the value set
last.

SEC.OPAUGNER

Indicates that the CA OPS/MVS authorization routine (OPAUCK) can produce error
messages.

Data Type: Bit, read-only

Source: The CA OPS/MVS component that calls OPAUCK.

Sample Value: 1

Security Rules

Chapter 6: Coding Each AOF Rule Type 273

SEC.OPAUJBNA

The current job name that the ASCB points to

Data Type: Character, read-only

Source: The ASCBJBNI field for batch jobs, or the ASCBJBNS field for other address
spaces

Sample Value: USERA

SEC.OPAUOPJB

Indicates whether the current address space is the main CA OPS/MVS product
address space.

Data Type: Bit, read-only

Source: The CA OPS/MVS component indicates the address space type.

Sample Value: 1

SEC.OPAUOSJB

Indicates whether the current address space is an OSF server.

Data Type: Bit, read-only

Source: The CA OPS/MVS component indicates the address space type.

Sample Value: 1

SEC.OPAURQRC

The return code from the current access request

Data Type: Integer, read-only

Source: Set by authorization components

Possible Values:

■ 0-Request approved

■ 8-Request failed

■ 12-Request abended

Sample Value: 8

Security Rules

274 AOF Rules User Guide

SEC.OPAURQTX

The type of access request

Data Type: 1 to 10 characters, right-justified, read-only, padded with blanks

Source: The CA OPS/MVS component that calls OPAUCK.

Possible Values:

AP

ADDRESS AP Host command

OPSAOF

ADDRESS AOF command

OPSBRW

OPSLOG Browse request

OPSCMD

OPSCMD/ADDRESS OPER (MVS, VM, JES3, IMS CMD)

OPSCTL

ADDRESS OPSCTL (MSF, OSF, ECF) request

OPSDOM

OPSDOM (DOM A MESSAGE) request

OPSEPI

ADDRESS EPI command or EPI request

OPSGLOBAL

Global or Sysplex variable access/update request

OPSHFI

SHARED file I/O request

OPSLOG

OPSLOG API request

OPSOSF

OPSOSF request (OSF command request)

OPSPARM

OPSPARM (SET PARAMETERS) request

OPSREPLY

OPSREPLY (WTO/WTOR) request

Security Rules

Chapter 6: Coding Each AOF Rule Type 275

OPSREQ

Attempt to execute a REQUEST Rule.

OPSRMT

SEND a command to a server request

OPSSMTBL

STATETBL request

OPSVIEW

OPSVIEW request

OPSWTO

OPSWTO/ADDRESS WTO (WTO, WTP, WTOR) request

SOF

ADDRESS SOF request

SQL

SQL/RDF request

SUBSYSDSN

Subsystem data set open request

USS

ADDRESS USS command

Sample Value: SQL. When OPAUQRTY is blank, OPAUTRTX must be checked for a
valid security type.

Security Rules

276 AOF Rules User Guide

SEC.OPAURQTY

The type of access request

Data Type: Character, read-only

Source: The CA OPS/MVS component that calls OPAUCK.

Possible Values:

<blank>

ADDRESS AP Host Command

A

OPSVIEW request

B

OPSLOG Browse request

E

OPSEPI request

F

Automated Operations Facility request

H

OPSOSF request

J

OPSDOM request

K

OPSCTL request

L

OPSLOG API request

M

OPSRMT request

N

USS request

O

OPSCMD request

P

OPSPARM request

Q

OPSREQ request

Security Rules

Chapter 6: Coding Each AOF Rule Type 277

R

OPSREPLY request

U

SQL request

V

Global and Sysplex variable access/update request

W

OPSWTO request

X

Subsystem data set open request

Y

OPSSMTBL request

Z

OPSHFI request

Sample Value: A

Notes:

■ This variable will be removed with the next release of CA OPS/MVS.

■ In some cases where SEC.OPAURQTX contains a value, this variable contains a
single blank.

SEC.OPAUSSNA

The CA OPS/MVS subsystem name to which the request was directed.

Data Type: Character, read-only

Source: Subsystem to which the request was directed.

Sample Value: OPSS

Note: You can use this variable to create a security rule that works on multiple
subsystems (for example, a production and a test system).

SEC.OPAUUSID

The CA ACF2/CA Top Secret/RACF logon ID for this request

Data Type: Character, read-only

Source: The SAF user ID associated with the current task or address space

Sample Value: USERA

Security Rules

278 AOF Rules User Guide

OPAU Variables for OPSAOF Security Events

The following variables are available for OPSAOF security events:

SEC.AUAOBULN

The command buffer length

Data Type: Integer, read-only

Source: The ADDRESS AOF host command

Sample Value: 4

SEC.AUAOCMBU

The complete ADDRESS AOF command buffer string

Data Type: Character, read-only

Source: The ADDRESS AOF host command

Sample Value: LIST IPL

SEC.AUAODSNA

The current verb data set name string

Data Type: Character, read-only

Source: The ADDRESS AOF host command

Sample Value: SYS1.OPS.CCLXRULS

Note: This variable contains between 1 and 44 characters.

SEC.AUAORLNA

The current security rule name string

Data Type: Character, read-only

Source: The ADDRESS AOF host command

Sample Value: IEF404I

SEC.AUAORQTY

The type of ADDRESS AOF request

Data Type: Character, read-only

Source: The ADDRESS AOF host command string

Possible Values:

■ A-Set Auto-Enable flag

■ D-Disable rule or rules

■ E-Enable rule or rules

■ I-List DSNAME index

Security Rules

Chapter 6: Coding Each AOF Rule Type 279

■ J-List in-storage rules

■ L-List rule set or rule

■ M-List rule source text

■ S-Set or reset subsystem string

■ V-Compile a rule or rules

■ W-Delete a compiled rule or rules

■ Y-List a compiled rule or rules

■ Z-Reset auto-enable flag

Sample Value: A

SEC.AUAORSNA

The current rule set name string

Data Type: Character, read-only

Source: The ADDRESS AOF host command

Sample Value: IPL

SEC.AUAORSSC

The current security rule set name string

Data Type: Character, read-only

Source: The CA OPS/MVS SECURITYRULESET parameter

Sample Value: SEC

SEC.AUAOSCOP

Indicates that the AOF operation uses the security rule set. Check this variable if
your site imposes more restrictive security for the security rule set.

Data Type: Bit, read-only

Source: The ADDRESS AOF command processor

Sample Value: 1

SEC.AUAOSYNA

The remote/local system ID of the system on which the AOF request is issued

Data Type: Character, read-only

Source: The value entered using the ADDRESS AOF SYSTEM keyword

Sample Value: SYS4

Security Rules

280 AOF Rules User Guide

SEC.AUAOVBSR

The current verb string

Data Type: Character, read-only

Source: The first blank delimited word of the ADDRESS AOF host command

Sample Value: LIST

Note: CA OPS/MVS converts the verb to uppercase letters.

OPAU Variables for OPSBRW Security Events

The following variables are available for OPSBRW security events:

SEC.AUBODBCD

The browse database ID code

Data Type: Character, read-only

Source: The OPSLOG Browse command

Possible Values: O-MVS/JES OPSLOG Browse database

Sample Value: O

SEC.AUBODBLN

The length of the database string

Data Type: Integer, read-only

Source: The OPSLOG Browse command

Sample Value: 6

SEC.AUBODBSR

The database string, which provides a character description of the database code

Data Type: Character, read-only

Source: The OPSLOG Browse command

Sample Value: OPSLOG

SEC.AUBOSSLN

The length of the CA OPS/MVS subsystem name

Data Type: Integer, read-only

Source: The OPSLOG Browse command

Sample Value: 4

Security Rules

Chapter 6: Coding Each AOF Rule Type 281

SEC.AUBOSSNA

The CA OPS/MVS subsystem name

Data Type: Character, read-only

Source: The OPSLOG Browse command

Sample Value: OPST

SEC.AUBOSYNA

The MSF system name of the remote OPSLOG that a user is trying to access

Data Type: Character, read-only

Source: The OPSLOG Browse SYSTEM primary command

Sample Value: MSIC

OPAU Variables for OPSCMD and ADDRESS OPER Security Events

The following variables are available for OPSCMD and ADDRESS OPER security events:

SEC.AUOCBULN

The command buffer length

Data Type: Integer, read-only

Sample Value: 6

SEC.AUOCCMBU

The command buffer string

Data Type: Character, read/write

Source: Command text from OPSCMD or ADDRESS OPER

Sample Value: P OPSS

Notes:

■ Security rules can set this variable. The modified command text buffer then
executes the actual command.

■ CA OPS/MVS initially sets this variable from the command buffer that the user
entered.

■ Each rule triggered by the same security event can examine and reset this
variable before passing it on to the next rule executed for this event.

■ If multiple security rules set this variable, CA OPS/MVS uses the value set last.

Security Rules

282 AOF Rules User Guide

SEC.AUOCCMLN

The current command verb length

Data Type: Integer, read-only

Source: The de-aliased verb string type

Sample Value: 7

SEC.AUOCCMSR

The current command verb

Data Type: Character, read-only

Source: The de-aliased command verb from OPSCMD or ADDRESS OPER

Sample Value: STOP

SEC.AUOCCNNM

Console name, or blank if no console name is specified

Data Type: Character, read-only

Source: The NAME or CONNAME keywords from OPSCMD or ADDRESS OPER

Sample Value: MASTER

SEC.AUOCDLTM

The delay time in seconds

Data Type: Integer, read-only

Source: The contents of the DELAY keyword on the OPSCMD or ADDRESS OPER
command

Sample Value: 10

Note: The SEC.AUOCDLTM value will be a number between 1 and 300 seconds.

Security Rules

Chapter 6: Coding Each AOF Rule Type 283

SEC.AUOCORSY

The MSFID of the system where the command originated

Data Type: Character, read-only

Sample Value: MFSSYSA

Notes:

■ If the command originated in the local system, then this variable contains a null
value (zero length).

■ If the command was sent to this system through MSF as a result of the SYSTEM
keyword of OPSCMD or ADDRESS OPER, or if the OPSCMD was imbedded in an
OPSRMT command that was issued on another system, then this variable
contains the name of the origin system.

■ If OPSRMT is used to run a REXX EXEC on another system, and that EXEC uses
ADDRESS OPER or OPSCMD, then the command is considered to have
originated on the system where the OPSRMT was issued; hence this variable
contains the name of the origin system.

SEC.AUOCRQTY

The type of command OPSCMD or ADDRESS OPER is processing

Data Type: Character, read-only

Source: OPSCMD or ADDRESS OPER determines the command type as follows:

■ The command is an IMS command if the IMSID keyword was entered or if the
command character matches the IMS command character

■ If JES3 is running and the command starts with an asterisk (*) or the number
eight, the command is a JES3 command

■ The command is a VM command if it begins with #CP

■ If the command meets none of the above criteria, it is treated as a z/OS
command

Security Rules

284 AOF Rules User Guide

Possible Values:

■ M-MVS command entered

■ 3-JES3 command entered

■ V-VM command entered

■ I-IMS command entered

Sample Value: M

SEC.AUOCSYID

The remote/local system ID string

Data Type: Character, read-only

Source: The value entered using the OPSCMD or ADDRESS OPER SYSID keyword

Sample Value: SYSA

OPAU Variables for OPSCTL Security Events

The following variables are available for OPSCTL security events:

SEC.AUCTBULN

The command buffer length

Data Type: Integer, read-only

Source: The ADDRESS OPSCTL host command

Sample Value: 10

SEC.AUCTCMBU

The command buffer string

Data Type: Character, read-only

Source: The ADDRESS OPSCTL host command

Sample Value: MSF ACTIVATE(SYSA)

SEC.AUCTCMLN

The length of the current command verb

Data Type: Integer, read-only

Source: The ADDRESS OPSCTL host command

Sample Value: 2

Security Rules

Chapter 6: Coding Each AOF Rule Type 285

SEC.AUCTCMSR

The current command verb

Data Type: Character, read-only

Source: The ADDRESS OPSCTL host command

Sample Value: OK

SEC.AUCTRQTY

The ADDRESS OPSCTL request type

Data Type: Character, read-only

Source: The ADDRESS OPSCTL host command

Possible Values:

■ B-OPSLOG request

■ C-COF request

■ E-ECF request

■ M-MSF request

■ O-OSF request

SEC.AUCTSYNA

One of the following values:

The MSF system name to which the OPSCTL host command will be routed for
execution

ALL if the command will be routed to all active MSF-defined systems including the
local system

EXT if the command will be routed to all active, remote MSF-defined systems

Data Type: Character, read-only

Source: The ADDRESS OPSCTL host command

Sample Value: MSIX

OPAU Variables for OPSEPI Security Events

The following variables are available for OPSEPI security events:

SEC.AUEPAPID

The application ID (if any) used in the command, usually specified with the APPLID()
keyword and containing 0 to 8 characters

Data Type: Character, read-only

Source: The ADDRESS EPI host command

Sample Value: TSO

Security Rules

286 AOF Rules User Guide

SEC.AUEPBULN

The length of the command buffer

Data Type: Integer, read-only

Source: The ADDRESS EPI host command

Sample Value: 4

SEC.AUEPCMBU

The complete ADDRESS EPI command buffer string. This variable can contain 0 to
256 characters.

Data Type: Character, read-only

Source: The ADDRESS EPI host command

Sample Value: 'DEFINE OPSS0001 APPLID(TSO) LOGMODE(T3278M3)'

SEC.AUEPRQTY

The request type

Data Type: Character, read-only

Source: The ADDRESS EPI host command string

Possible Values:

■ '25'X-BIND command

■ '01'X-CHANGE command

■ '02'X-DEBUG command

■ '03'X-DEFINE command

■ '04'X-DELETE command

■ '05'X-DEQ command

■ '06'X-DISABLE command

■ '07'X-ENABLE command

■ '08'X-ENQ command

■ '0b'X-INQINPUT command

■ '0c'X-LIST command

■ '0d'X-LOGON command

■ '0e'X-LOGOFF command

■ '23'X-MVCURSOR command

■ '10'X-PEEK command

■ '11'X-POKE command

Security Rules

Chapter 6: Coding Each AOF Rule Type 287

■ '12'X-RDCURSOR command

■ '13'X-RDSCREEN command

■ '14'X-RDSCRROW command

■ '16'X-SETMODEL command

■ '17'X-SETUNAME command

■ '1c'X-TRACE command

■ '1e'X-TYPE command

■ '1f'X-TYPESEC command

■ '20'X-TYPETEST command

■ '26'X-UNBIND command

SEC.AUEPTMID

The terminal ID (if any) used in the command, up to 8 characters in length

Data Type: Character, read-only

Source: The ADDRESS EPI host command

Sample Value: OPSS0001

Note: CA OPS/MVS converts the verb to uppercase letters.

SEC.AUEPTMPW

The terminal password (if any) used in the command, usually specified with the
PASSWORD() keyword and containing 0 to 8 characters

Data Type: Character, read-only

Source: The ADDRESS EPI host command

Sample Value: SECRET

SEC.AUEPVBSR

The current verb string

Data Type: Character, read-only

Source: The ADDRESS EPI host command

Sample Value: LIST

Note: CA OPS/MVS converts the verb to uppercase letters.

Security Rules

288 AOF Rules User Guide

OPAU Variables for OPSGLOBAL Security Events

The following variables are available for OPSGLOBAL security events:

SEC.AUGLDELN

The global variable derived name length

Data Type: Integer, read-only

Source: The global variable access/update routine

Sample Value: 24

SEC.AUGLDENA

The global or sysplex variable derived name string

Data Type: Character, read-only

Source: The global or sysplex variable access/update routine

Sample Value: GLOBAL.MSG.IEF450I.COUNT

Notes:

■ Global variable derived names are 1 through 84 characters long after symbol
substitution.

■ Sysplex variable names begin with the prefix GLVPLXTx. and can be up to 128
characters in length. A 32-byte printable hex token value can be substituted for
a variable name in some sysplex variable functions. Additionally the PURGE and
QUERY functions of sysplex variables do not allow variable name operands. For
these cases, a constant value replaces the variable name.

Function Value

PURGE CAVARSRV.PURGE

QUERY CAVARSRV.QUERY

Token name CAVARSRV.TOKEN

SEC.AUGLOPCH

The global variable access option byte, which corresponds to the function byte
operand of the OPSVALUE function of OPS/REXX.

Data Type: Character, read-only

Source: The global variable access/update routine

Security Rules

Chapter 6: Coding Each AOF Rule Type 289

Possible Values:

A

Add an option value.

B

Compare/update without executing a global variable rules option value.

C

Compare/update option value.

D

Drop an option value.

E

Exist option value.

F

Exist/obtain option value.

H

High-level security option value.

I

Info an option value.

L

List an option value.

N

Obtain or return a null option value.

O

Obtain an option value.

R

Remove an option value.

S

Subtree an option value.

T

Subtree info option value.

U

Update an option value.

Security Rules

290 AOF Rules User Guide

V

Value an option value.

Z

Update without executing a global variable rules option value.

0

Obtain or return zero option value.

1

Obtain or return null with an update token option value.

2

Compare/update with a token option value.

3

Compare/update with a token without executing a global variable rules option
value.

4

Remove with the name mask option value.

5

Obtain variable names with the name mask option value.

6

Remove a single variable option value.

Sample Value: C

SEC.AUGLRQTY

The request type. You can use this variable in place of the SEC.AUGLOPCH variable.

Data Type: Character, read-only

Source: The global variable access/update routine

Possible Values:

A

Access a global variable

U

Update a global variable

Sample Value: A

Security Rules

Chapter 6: Coding Each AOF Rule Type 291

SEC.AUGLSYNA

The MSF system name of the remote system to which an OPSVALUE request has
been targeted.

Data Type: Character, read-only

Source: The ADDRESS OPSCTL MSF DEFAULT SYSTEM(sysname) command

Sample Value: SYSA

OPAU Variables for OPSHFI Security Events

The following variables are available for OPSHFI security events:

SEC.AUSHDENA

The variable name or name mask specified in the shared file request. The plus sign
(+) is a single wildcard character. A trailing asterisk (*) means match all subsequent
characters.

Data Type: Character, read-only

Source: The value specified for the variablename operand of the OPSHFI command

Sample Value: GLOBAL0.TEST.*

SEC.AUSHFUCD

The type of file request operation

Data Type: Character, read-only

Source: The function value (DELETE, READ, or WRITE) specified for the OPSHFI
command

Possible Values:

■ D-Delete request

■ R-Read request

■ W-Write request

SEC.AUSHSFID

The SMF ID when the scope value is I

Data Type: Character, read-only

Source: The value specified for the SMFID keyword of the OPSHFI command

Sample Value: TST1

Security Rules

292 AOF Rules User Guide

SEC.AUSHSYID

The system name list on which to perform the shared file request. System names
are separated by a single blank for REXX parsing.

Data Type: Character, read-only

Source: The value specified for the SYSTEM keyword of the OPSHFI command

Sample Value: SYS1 PROD06 TESTSYS

SEC.AUSHVATY

The scope of the variable records to be read, written, or deleted

Data Type: Character, read-only

Source: The OPSHFI command

Possible Values:

■ B-Both local and shared variables

■ I-Variables with a specific SMF ID

■ L-Local variables only

■ S-Shared variables only

OPAU Variables for SOF Security Events

The following variables are available for SOF security events:

SEC.AUIOCMND

Contains the entire command line as passed to the ADDRESS SOF processor.

Data Type: Character, read-only

Source: The entire ADDRESS SOF command string

Sample Value: QUERY CONTROLUNITS LOCAL SYSNAME(D44ENF9)

SEC.AUIOCTYP

Contains the SOF command.

Data Type: Character, read-only

Source: The specific command type

Sample Value: QUERY

Possible Values for PPRC:

■ P-PPRCCMD DISPLAY command

■ U-PPRCCMD SETUP/DELETE/FREEZE/RUN command

Security Rules

Chapter 6: Coding Each AOF Rule Type 293

SEC.AUIOQTYP

Contains the target of a QUERY command.

Data Type: Character, read-only

Source: The keyword specification of the QUERY command

Sample Value: CONTROLUNITS

Note: Not used for PPRC.

SEC.OPMOUSID

Contains the TSO user ID issuing ADDRESS SOF or the submitting jobname.

Data Type: Character, read-only

Source: System provided userid or Jobname

Sample Value: JEDFR03

OPAU Variables for OPSLOG Security Events

The following variables are available for OPSLOG security events:

SEC.AULGFUCD

The function type

Data Type: Character, read-only

Source: The OPSLOG interface routine

Possible Values:

■ END-Terminates access to OPSLOG

■ IDENTIFY-Identifies the OPSLOG to be accessed

■ RETRIEVE-Fetches data from OPSLOG

■ WINDOW-Indicates that a window to carry part of the OPSLOG has been
created

Sample Value: RETRIEVE

SEC.AULGLGNA

The log name of the OPSLOG to be accessed

Data Type: Character, read-only

Source: The OPSLOG interface routine

Sample Value: OPSLOG1

Security Rules

294 AOF Rules User Guide

SEC.AULGMXSC

The maximum number of OPSLOG records that will be scanned to satisfy a retrieve
request

Data Type: Integer, read/write

Source: The OPSLOG interface routine

Sample Value: 100

Note: A value of 0 means that an unlimited number of records will be scanned.

SEC.AULGSFCD

The subfunction requested

Data Type: Character, read-only

Source: The OPSLOG interface routine

Sample Value: SUBSYS

SEC.AULGSSNA

The subsystem ID of the CA OPS/MVS OPSLOG to be accessed

Data Type: Character, read-only

Source: The OPSLOG interface routine

Sample Value: OPSS

OPAU Variables for OPSOSF Security Events

The following variables are available for OPSOSF security events:

SEC.AUOSBULN

The command buffer length

Data Type: Integer, read-only

Source: The ADDRESS OSF host command

Sample Value: 5

SEC.AUOSCMBU

The complete ADDRESS OSF command buffer string

Data Type: Character, read-only

Source: The ADDRESS OSF host command

Sample Value: LISTA STATUS

Security Rules

Chapter 6: Coding Each AOF Rule Type 295

SEC.AUOSHOEV

The name specified on the host command

Data Type: Character, read-only

Source: The host command environment name

Possible Values:

■ OSF

■ OSFTSL

■ OSFTSP

Sample Value: OSF

SEC.AUOSVBSR

The function type

Data Type: Character, read-only

Source: The ADDRESS OSF host command

Sample Value: LISTA

OPAU Variables for OPSPARM and OPSPRM Security Events

The following variables are available for OPSPARM and OPSPRM security events:

SEC.AUPAPANA

The name of the parameter requested for change or display

Data Type: Character, read-only

Source: The contents of the SET or SHOW keyword clauses type

Sample Value: AOFMESSAGES

SEC.AUPARQTY

The type of OPSPARM or OPSPRM request

Data Type: Character, read-only

Source: A modification request, if the SET keyword is specified; or a display request,
if the SHOW keyword is specified

Possible Values:

■ D-The request includes the SHOW keyword, so the request is a display request

■ M-The request includes the SET keyword, so the request is a modification
request

Sample Value: D

Security Rules

296 AOF Rules User Guide

SEC.AUPASYNA

One of the following values:

■ The MSF system name to which the OPSPRM function or OPSPARM command
will be routed for execution

■ ALL-if the command will be routed to all active MSF-defined systems including
the local system

■ EXT-if the command will be routed to all active, remote MSF-defined systems

Data Type: Character, read-only

Source: The ADDRESS OPSCTL “MSF DEFAULT SYSTEM(sysname)” command

Sample Value: SYSA

OPAU Variables for OPSREPLY Security Events

The following variables are available for OPSREPLY security events:

SEC.AURPDLTM

The delay time in seconds

Data Type: Integer, read-only

Source: The contents of the DELAY keyword on the OPSREPLY command processor

Sample Value: 10

Note: The value of the variable will be a number between 1 and 300 seconds.

SEC.AURPFUCD

The reply function code byte

Data Type: Character, read-only

Source: The OPSREPLY command processor

Possible Values:

■ R - Reply to an outstanding WTOR message

■ T - Test for an outstanding WTOR message

Sample Value: R

SEC.AURPIMID

The IMS ID string

Data Type: Character, read-only

Source: The contents of the IMSID keyword on the OPSREPLY command processor

Sample Value: IMSA

Security Rules

Chapter 6: Coding Each AOF Rule Type 297

SEC.AURPIMKY

Indicates that the IMSID keyword was entered

Data Type: Bit, read-only

Source: The OPSREPLY command processor

Sample Value: 1

SEC.AURPJBKY

Indicates that the JOBNAME keyword was entered

Data Type: Bit, read-only

Source: The OPSREPLY command processor

Sample Value: 1

SEC.AURPJBNA

The job name string

Data Type: Character, read-only

Source: The contents of the JOBNAME keyword on the OPSREPLY command
processor

Sample Value: VTAM

SEC.AURPJNKY

Indicates that the JOBNUMBER keyword was entered

Data Type: Bit, read-only

Source: The OPSREPLY command processor

Sample Value: 1

SEC.AURPJNNM

The JES job number of the WTOR to be replied to

Data Type: Integer, read-only

Source: The contents of the JOBNUMBER keyword on the OPSREPLY command
processor

Sample Value: 1406

Security Rules

298 AOF Rules User Guide

SEC.AURPMGID

The value of the MSGID or MSGTEXT keyword string used to select matching
WTORs. The SEC.AURPMGID or SEC.AURPTXKY variable determines which keyword
was used.

Data Type: Character, read-only

Source: The contents of the MSGID or MSGTEXT keyword on the OPSREPLY
command processor

Sample Values: DFS996I (MSGID keyword; maximum length is ten) and DSI803A
A44IM (MSGTEXT keyword; maximum length is 124)

SEC.AURPMGKY

Indicates that the MSGID keyword was entered

Data Type: Bit, read-only

Source: The OPSREPLY command processor

Sample Value: 1

SEC.AURPRIID

The WTOR reply ID to be replied to

Data Type: Integer, read-only

Source: The contents of the REPLYID keyword on the OPSREPLY command
processor

Sample Value: 106

SEC.AURPRIKY

Indicates that the REPLYID keyword was entered

Data Type: Bit, read-only

Source: The OPSREPLY command processor

Sample Value: 1

SEC.AURPRPKY

Indicates that the TEXT keyword was entered

Data Type: Bit, read-only

Source: The OPSREPLY command processor

Sample Value: 1

Security Rules

Chapter 6: Coding Each AOF Rule Type 299

SEC.AURPRPTX

The text that will be used to reply to an outstanding WTOR message

Data Type: Character, read-only

Source: The contents of the TEXT keyword on the OPSREPLY command processor

Sample Value: /DIS A

Note: The maximum length is 119 bytes.

SEC.AURPSLCN

The number of criteria a WTOR must match to be eligible for further processing by
the OPSREPLY command processor

Data Type: Integer, read-only

Source: The count of the keywords IMSID, JOBNAME, JOBNUMBER, MSGID, or
MSGTEXT, REPLYID, STEPNAME, and SYSNAME on an OPSREPLY command
processor

Sample Value: 3

SEC.AURPSPKY

Indicates that the STEPNAME keyword was entered

Data Type: Bit, read-only

Source: The OPSREPLY command processor

Sample Value: 1

SEC.AURPSPNA

The step name string

Data Type: Character, read-only

Source: The contents of the STEPNAME keyword on the OPSREPLY command
processor

Sample Value: NET

SEC.AURPSYKY

Indicates that the SYSNAME keyword was entered

Data Type: Bit, read-only

Source: The OPSREPLY command processor

Sample Value: 1

Security Rules

300 AOF Rules User Guide

SEC.AURPSYNA

The system name on which the WTOR to be replied to was issued. This variable is
primarily used in a sysplex.

Data Type: Character, read-only

Source: The z/OS system name specified on the SYSNAME keyword of the
OPSREPLY command processor

Sample Value: SYSA

SEC.AURPTXKY

Indicates that the MSGTEXT keyword was entered or that the MSGID keyword was
entered with a text string value greater than ten characters

Data Type: Bit, read-only

Source: The OPSREPLY command processor

Sample Value: 1

SEC.AURPWAKY

Indicates that the WAIT keyword was entered

Data Type: Bit, read-only

Source: The OPSREPLY command processor

Sample Value: 1

SEC.AURPWATM

The wait time in seconds

Data Type: Integer, read-only

Source: The contents of the WAIT keyword on the OPSREPLY command processor

Sample Value: 30

The maximum value is 3600 seconds.

OPAU Variables for OPSREQ Security Events

The following variables are available for OPSREQ security events:

SEC.AURQFUCD

The 1 to 10-character request code

Data Type: Alphabetic, national characters, or both, read-only

Source: The CODE keyword on the OPSREQ command processor

Sample Value: CANUSER

Security Rules

Chapter 6: Coding Each AOF Rule Type 301

SEC.AURQRQTX

The request text (in most cases, the length of this string cannot exceed 117
characters)

Data Type: Character, read-only

Source: The TEXT keyword on the OPSREQ command processor

Sample Value: TSOID1

OPAU Variables for OPSRMT Security Events

The following variables are available for OPSRMT security events:

SEC.AURMBULN

The command buffer length

Data Type: Integer, read-only

Source: The length of the command verb from OPSRMT

Sample Value: 1

SEC.AURMCMBU

The command buffer string

Data Type: Character, read-only

Source: Command text from OPSRMT

Sample Value: P OPSS

SEC.AURMCMLN

The current command verb length

Data Type: Integer, read-only

Source: The command verb length from OPSRMT type

Sample Value: 1

SEC.AURMCMSR

The current command verb

Data Type: Character, read-only

Source: The command verb from OPSRMT. OPSRMT does not strip aliases from
command verbs

Sample Value: P

Security Rules

302 AOF Rules User Guide

SEC.AURMDETY

The destination of the command OPSRMT is processing

Data Type: Character, read-only

Source: If the value of the SYSID keyword (representing the target system) matches
the SYSID for the local system, the destination is the local system. Otherwise, the
destination is a remote system.

Possible Values:

■ L-Command destination is the local system

■ R-Command destination is a remote system

■ Sample Value: L

SEC.AURMSYID

The remote/local system ID list that will receive the remote command

Data Type: Character, read-only

Source: The value entered using the OPSRMT SYSID keyword

Sample Value: SYSA SYSB

OPAU Variables for OPSWTO Security Events

The following variables are available for OPSWTO security events:

SEC.AUWTCIKY

Indicates that the CNNAME keyword was entered on the OPSWTO command
processor or ADDRESS WTO host command

Data Type: Bit, read-only

Source: OPSWTO command processor or ADDRESS WTO host command

Sample Value: 3

SEC.AUWTCNKY

Indicates that the CNID keyword was entered

Data Type: Bit, read-only

Source: The OPSWTO command processor or the ADDRESS WTO host command

Sample Value: 1

Security Rules

Chapter 6: Coding Each AOF Rule Type 303

SEC.AUWTCNNM

The contents of the CNNAME keyword on the OPSWTO command processor or
ADDRESS WTO host command

Data Type: Character, read-only

Source: The CNNAME keyword on the OPSWTO command processor or ADDRESS
WTO host command

Sample Value: MASTER

SEC.AUWTDCCD

The WTO or WTOR descriptor codes

Data Type: Binary, read-only

Source: The contents of the DESC keyword on the OPSWTO command processor or
ADDRESS WTO host command

Sample Value: '1000'X

Note: This variable contains as many as 16 bytes. To format the variable for
printing, use the C2X function in OPS/REXX.

SEC.AUWTDCKY

Indicates that the DESC keyword was entered

Data Type: Bit, read-only

Source: The OPSWTO command processor or the ADDRESS WTO host command

Sample Value: 1

SEC.AUWTDLTM

The delay time in seconds

Data Type: Integer, read-only

Source: The contents of the DELAY keyword on the OPSWTO command processor
or ADDRESS WTO host command

Sample Value: 10

Note: This value of the variable will be between 1 and 300 seconds.

Security Rules

304 AOF Rules User Guide

SEC.AUWTFUCD

The WTO or WTOR function code byte

Data Type: Character, read-only

Source: The presence of the REPLY keyword determines how OPSWTO or ADDRESS
WTO sets this byte

Possible Values:

■ R-A WTOR is requested

■ W-A WTO is requested

Sample Value: R

SEC.AUWTHIKY

Indicates that the HILITE keyword was entered

Data Type: Bit, read-only

Source: The OPSWTO command processor or the ADDRESS WTO host command

Sample Value: 1

SEC.AUWTLOKY

Indicates that the LOWLITE keyword was entered

Data Type: Bit, read-only

Source: The OPSWTO command processor or the ADDRESS WTO host command

Sample Value: 1

SEC.AUWTMCFG

The WTO or WTOR MCS flags

Data Type: Binary, read-only

Source: The contents of the MCSFLAGS keyword on the OPSWTO command
processor or ADDRESS WTO host command

Sample Value: '1000'X

Note: This variable contains as many as 16 bytes. To format the variable for
printing, use the C2X function in OPS/REXX.

SEC.AUWTMCKY

Indicates that the MCSFLAGS keyword was entered

Data Type: Bit, read-only

Source: The OPSWTO command processor or the ADDRESS WTO host command

Sample Value: 1

Security Rules

Chapter 6: Coding Each AOF Rule Type 305

SEC.AUWTMGID

The WTO or WTOR message ID string

Data Type: Character, read-only

Source: The contents of the MSGID keyword on the OPSWTO command processor
or ADDRESS WTO host command

Sample Value: ZRX011

Note: The maximum length cannot exceed 10 characters.

SEC.AUWTMGKY

Indicates that the MSGID keyword was entered

Data Type: Bit, read-only

Source: The OPSWTO command processor or the ADDRESS WTO host command

Sample Value: 1

SEC.AUWTROCD

The WTO or WTOR route codes

Data Type: Binary, read-only

Source: The contents of the ROUTE keyword on the OPSWTO command processor
or the ADDRESS WTO host command

Sample Value: '100000000000000000000000000000000'X

Note: This variable contains as many as 16 bytes. To format the variable for
printing, use the C2X function in OPS/REXX.

SEC.AUWTROKY

Indicates that the ROUTE keyword was entered

Data Type: Bit, read-only

Source: The OPSWTO command processor or the ADDRESS WTO host command

Sample Value: 1

SEC.AUWTRPKY

Indicates that the REPLY keyword was entered

Data Type: Bit, read-only

Source: The OPSWTO command processor or the ADDRESS WTO host command

Sample Value: 1

Security Rules

306 AOF Rules User Guide

SEC.AUWTSYNA

The remote/local system ID of the system on which the WTO request will be issued

Data Type: Character, read-only

Source: The value entered using the OPSWTO SYSTEM keyword

Sample Value: SYSA

SEC.AUWTTXKY

Indicates that the TEXT keyword was entered

Data Type: Bit, read-only

Source: The OPSWTO command processor or the ADDRESS WTO host command

Sample Value: 1

SEC.AUWTTXSR

The WTO or WTOR text string

Data Type: Character, read-only

Source: The contents of the TEXT keyword on the OPSWTO command processor or
the ADDRESS WTO host command

Sample Value: 'This is a test message'

SEC.AUWTWAKY

Indicates that the WAIT keyword was entered

Data Type: Bit, read-only

Source: The OPSWTO command processor or the ADDRESS WTO host command

Sample Value: 1

SEC.AUWTWATM

The wait time in seconds

Data Type: Integer, read-only

Source: The contents of the WAIT keyword on the OPSWTO command processor or
the ADDRESS WTO host command

Sample Value: 60

OPAU Variables for SQL Security Events

The Relational Data Framework, System State Manager, and all other SQL-related
components of CA OPS/MVS use the standard CA OPS/MVS security exit and AOF
security rules. The following variables are available in security rules:

Security Rules

Chapter 6: Coding Each AOF Rule Type 307

SEC.AUSQCAID

A single-character code that represents the environment where the SQL request
originated

Data Type: Character, read-only

Source: The environment from which the SQL request originated

Possible Values:

■ A-ADDRESS SQL (OPS/REXX)

■ C-TSO/E CLIST

■ D-Remote Automate system

■ E-RDF table editor

■ O-OPSQL command processor (or SQL alias)

■ R-TSO/E REXX

■ T-OPSSMTBL command processor (or STATETBL alias)

Sample Value: A

SEC.AUSQFTXT

The complete text of the SQL statement. The maximum size of an SQL statement in
CA OPS/MVS is currently 2048 characters.

Data Type: Character, read-only

Source: The SQL statement

Sample Value: SELECT * FROM STCTBL WHERE NAME=‘VTAM’

SEC.AUSQFUCD

The function code returned by the OPSQL command processor. The function code
should always be S for SQL.

Data Type: Character, read-only

SEC.AUSQHVCN

The count of host variable references that occur within the SQL statement. This
variable can be used as a loop count limit for reading host variable names and
values using the SEC.AUSQHVIX facility for obtaining a specific host variable name
and value.

Data Type: Integer, read-only

Source: The SQL statement control block created by the SQL syntax compiler.

Sample Value: 3

Security Rules

308 AOF Rules User Guide

SEC.AUSQHVIX

The host variable reference sequence number for obtaining a host variable name or
value using the SEC.AUSQHVNA and SEC.AUSQHVVL variables. The maximum usable
value is the value of SEC.AUSQHVCN.

The initial value is 0.

Data Type: Integer, read/write

Source: Set by user for host variable name and value retrieval

Sample Value: 2

SEC.AUSQHVNA

The host variable name of the host variable pointed to by the SEC.AUSQHVIX index
number. The SQL syntax compiler creates a table of host variable names in the
order they occur in the statement. The index number points to the name entry to
retrieve.

Data Type: Character, read-only

Source: The SQL statement control block created by the SQL syntax compiler.

Sample Value: VNAME

SEC.AUSQHVVL

The host variable value of the host variable pointed to by the SEC.AUSQHVIX index
number. Values for host variables are provided for host variable names in the SQL
statement in a separate table at the time that the SQL statement is executed. In an
SQL cursor statement, the values are supplied when the OPEN cursor statement is
executed. The DECLARE cursor statement has no values for the host variables in the
SQL statement.

Data Type: Character/Numeric, read-only

Source: The SQL host variable input value table (VIL) provided at SQL statement
execution.

Sample Value: CICSAOR

SEC.AUSQRQTY

The SQL request type.

Data Type: Character, read-only.

Source: The SQL verb of the SQL statement.

Possible Values:

■ A-Access a SQL table

■ U-Update a SQL table

Sample Value: A

Security Rules

Chapter 6: Coding Each AOF Rule Type 309

SEC.AUSQSMTY

The SQL statement type.

Data Type: Character, read-only.

Source: The SQL verb of the SQL statement.

Possible Values:

■ CA-Alter table add column; AUSQRQTY=U

■ CD-Alter table drop column; AUSQRQTY=U

■ CL-Close cursor; AUSQRQTY=A

■ CT-Create table; AUSQRQTY=U

■ DC-Declare cursor; AUSQRQTY=A

■ DE-Delete rows; AUSQRQTY=U

■ DT-Drop table; AUSQRQTY=U

■ FE-Fetch rows; AUSQRQTY=A

■ IN-Insert row; AUSQRQTY=U

■ OP-Open cursor; AUSQRQTY=A

■ SE-Select rows; AUSQRQTY=A

■ UP-Update rows; AUSQRQTY=U

Sample Value: SE

SEC.AUSQSQST

The first 128 characters of an SQL statement

Data Type: Character, read-only

Source: The SQL statement

Sample Value: DROP TABLE TABLE

SEC.AUSQSYNA

The list of system names to which the request is being sent. If the request is being
sent to the local system, it may be empty or it may contain the words ALL or EXT.

Data Type: Character, read-only

Source: The system keyword on the SQL request

Sample Value: SYSA

Security Rules

310 AOF Rules User Guide

SEC.AUSQTBLS

A word delimited list of table names referenced in the SQL statement. Host variable
table names are resolved to their values. Most simple SQL statements have only
one table reference that is usually a literal value. More complex SQL statements
such as joins and sub-select clauses will reference more than one table.

Data Type: Character, read-only

Source: The SQL statement control block created by the SQL syntax compiler and
the host variable value table.

Sample Value: STCTBL DB2TBL

Example: Read Host Variable Names and Values into Stem Variable Array

The following sample code shows how all the host variable names and values in a SQL
statement can be read into a stem variable array for use in:

■ Security authorization decisions

■ Monitoring of critical table changes from sources outside the OPS/MVS address
space.

The host variable names can also be created as simple REXX variables with the correct
values.

hvnam.0=SEC.AUSQHVCN /* Count of host variables */

Do ix=1 To hvnam.0 /* Find all the host variables */

 SEC.AUSQHVIX=ix /* Set the host variable index */

 hvnam.ix=SEC.AUSQHVNA /* Get the host variable name */

 hvval.ix=SEC.AUSQHVVL /* Get the host variable value */

 vrc=VALUE(hvnam.ix,hvval.ix) /* Create the Rexx variable */

End

OPAU Variables for SUBSYSDSN Security Events

The following variables are available for SUBSYSDSN security events:

SEC.AUSSDDNA

The ddname associated with the subsystem data set

Data Type: Character, read-only

Source: The ddname from the JCL

Sample Value: OMREPORT

Security Rules

Chapter 6: Coding Each AOF Rule Type 311

SEC.AUSSPA01

The CA OPS/MVS subsystem name

Data Type: Character, read-only

Source: The first SUBSYS parameter from the JCL

Sample Value: OPSS

SEC.AUSSPA02

Identifies the interface that is opening the subsystem data set

Data Type: Character, read-only

Source: The second SUBSYS parameter from the JCL

Possible Values:

■ OMEGAMON-OMEGAMON log data set interface

■ OPSDSN-CA OPS/MVS product generic data set interface

Sample Value: OPSDSN

SEC.AUSSPA03

The characteristics of subsystem messages

Data Type: Character, read-only

Source: The third SUBSYS parameter from the JCL

Possible Values for OPSDSN:

■ BLUE-OPSLOG messages are blue

■ GREEN-OPSLOG messages are green

■ PINK-OPSLOG messages are pink

■ RED-OPSLOG messages are red

■ TURQ-OPSLOG messages are turquoise

■ WHITE-OPSLOG messages are white

■ YELLOW-OPSLOG messages are yellow

Possible Values for OMEGAMON:

■ CICS-Exceptions originated from OMEGAMON/CICS

■ DB2-Exceptions originated from OMEGAMON/DB2

■ IMS-Exceptions originated from OMEGAMON/IMS

■ MVS-Exceptions originated from OMEGAMON/MVS

Sample Value: RED

Security Rules

312 AOF Rules User Guide

SEC.AUSSPA04

A user-defined identifier to uniquely identify the source of messages

Data Type: Character, read-only

Source: The fourth SUBSYS parameter from the JCL

Sample Value: CICSA

OPAU Variables for System State Manager Security Events

The CA OPS/MVS OPSSMTBL command processor invokes security rules that have the
following variables defined:

SEC.AUSTACTB

The name of the action table specified on the ACTION keyword of the OPSSMTBL
command processor

Data Type: Character, read-only

Sample Value: TSOACTNS

SEC.AUSTFUCD

The function code returned by the OPSSMTBL command processor, which is one of
the following:

■ A (Add)

■ C (Change)

■ D (Delete)

■ L (List)

■ P (Post)

Data Type: Character, read-only

Sample Value: A

SEC.AUSTMDTB

The first letter of the mode of the table specified through the MODE keyword of the
OPSSMTBL command processor. Mode types are INACTIVE, PASSIVE, ACTIVE, and
NOPREREQ.

Data Type: Character, read-only

Sample Value: P (Passive)

SEC.AUSTNADW

The DOWN state of the table to be operated on, specified on the DOWN keyword of
the OPSSMTBL command processor

Data Type: Character, read-only

Sample Value: DOWNSTAT1

Security Rules

Chapter 6: Coding Each AOF Rule Type 313

SEC.AUSTNATB

The name of the table to be operated, specified on the ADD, CHANGE, DELETE, or
LIST keyword of the OPSSMTBL command processor

Data Type: Character, read-only

Sample Value: MYTABLE

SEC.AUSTNAUN

The UNKNOWN state of the table to be operated on, specified on the UNKNOWN
keyword of the OPSSMTBL command processor

Data Type: Character, read-only

Sample Value: UNKNOWN1

SEC.AUSTNAUP

The UP state of the table to be operated on, specified on the UP keyword of the
OPSSMTBL command processor

Data Type: Character, read-only

Sample Value: UPSTATE1

SEC.AUSTOTCR

The name of the table created, if the OPSSMTBL command processor specified the
name of a non-existent table in conjunction with an ADD operation

Data Type: Bit, read-only

Sample Value: 1 (create option specified)

SEC.AUSTSTTB

The name of the System State Manager resource directory table to be read or
updated

Data Type: Character, read-only

Sample Value: SSM_MANAGED_TABLES

SEC.AUSTSYNA

The MSF system name to which the OPSSMTBL command is to be routed for
execution

Data Type: Character, read-only

Sample Value: MSIX

Security Rules

314 AOF Rules User Guide

OPAU Variables for OPSVIEW Security Events

The following variables are available for OPSVIEW security events:

SEC.AUSYCMSR

The OPSVIEW option 6 command string

Data Type: Character, read-only

Source: The contents of the COMMAND keyword of the OPSVIEW command

Sample Value: 'D TS,L'

SEC.AUSYFUCD

The OPSVIEW function code byte

Data Type: Character, read-only

Source: The OPSVIEW command

Note: This variable is not defined at this time.

SEC.AUSYJSNA

The primary JES name string

Data Type: Character, read-only

Source: The JESPJESN field of the JESCT

Sample Value: JES3

SEC.AUSYOTSR

The OPSVIEW option string

Data Type: Character, read-only

Source: The option entered with the OPSVIEW command

Sample Value: 3.2

SEC.AUSYSSNA

The subsystem name string

Data Type: Character, read-only

Source: The contents of the SUBSYS keyword of the OPSVIEW command

Sample Value: OPST

SEC.AUSYSYID

The remote system ID string

Data Type: Character, read-only

Source: The contents of the SYSID keyword of the OPSVIEW command

Sample Value: SYSA

Security Rules

Chapter 6: Coding Each AOF Rule Type 315

OPAU Variables for USS Security Events

The following variables are available for ADDRESS USS security events:

SEC.AUUNFUCD

The server class of the request. Currently, the function code is always U for USS.

Data Type: Character, read-only

Source: The ADDRESS USS host command

SEC.AUUNUNCM

The first 255 bytes of the UNIX command string or CCS for z/OS API request
keyword syntax

Data Type: Character, read-only

Source: The ADDRESS USS host command

Sample Values:

■ UNIX Command: ps -a

■ CCS for z/OS API Command: Node(UNIPC1) Text('Message for TNG pc')

Note: The case of the text can be mixed.

SEC.AUUNVERB

The verb name that indicates whether a UNIX command or a CCS for z/OS API
command is sent to the OSF server

Data Type: Character, read-only

Source: The ADDRESS USS host command

Possible Values:

■ USSCMD-UNIX System Services command

■ WTO-Framework write-to-operator API

■ WTOR-Framework write-to-operator with reply API

■ REPLY-Framework reply to write-to-operator with reply API

■ CMD-Framework command API

■ DOM-Framework acknowledge message API

■ PING-Framework ping network node API

■ LOGOFF-Command to USS server to shut down

■ TRACE-Command to USS server to toggle the command tracing parameter

Sample Value: USSCMD

Security Rules

316 AOF Rules User Guide

OPAU Variables for CA Automation Point Security Events

The following variables are available for ADDRESS AP security events:

SEC.AUAPVERB

The ADDRESS AP command verb

Data Type: Character, read-only

Source: The ADDRESS AP host command

Possible Values:

■ REXX

■ NMFIND

■ PPQ WRITE

Sample Value: REXX

SEC.AUAPCOMM

The first 255 bytes of the command text (truncated)

Data Type: Character, read-only

Source: The ADDRESS AP host command

Sample Value: REXX SYSTEM(APSYS1) PROGRAM(REXXPGM1)

SEC.AUAPSYSN

The 8-byte CA Automation Point system name as defined in MSF

Data Type: Character, read-only

Source: AP address environment command

Sample Value: MVSSY01

A security rule is required for all CA Automation Point function calls from CA OPS/MVS.
For example,

)SEC AP*

)PROC

 CmdVerb = SEC.AUAPVERB

 Command = SEC.AUAPCOMM

 Uid = SEC.OPAUUSID

 say "Hello” Uid “using AP command verb: "CmdVerb

 say "Command is:" Command

 return “ACCEPT”

Security Rules

Chapter 6: Coding Each AOF Rule Type 317

Debug an SEC Rule

To debug an SCR rule

1. Set the CA OPS/MVS BROWSESEC parameter to YES

2. Set the SEC event profile of your OPSLOG display to Y.

This lets you view all SEC events.

3. With these parameters set, display the OPSLOG EVENT column.

This lets you see recorded SEC events. This record will contain details for each
security rule and you can use additional OPSLOG display columns to further
interrogate the event.

More information:

Code and Debug AOF Rules (see page 59)

Examples: SEC Rules

The following security rule example executes for any TSO user attempting to access a
RDF table. The rule has logic to only allow specific users to access specific tables.

)SEC SQL*

)INIT

/* The purpose of this security rule is to allow only specific users */

/* to update specific RDF tables especially SSM type tables. */

/* Optionally, a GLOBAL.XX variable such as GLOBAL.SSM.USERS could */

/* contain a list of authorized SSM users. This variable could be */

/* used in all SSM SEC type rules and can be simply updated via */

/* OPSVIEW option 4.8. */

USERS = 'TSOUSR1 TSOUSR2 TSOUSR3 TSOUSR4' /* List of allowed users */

TABLES = 'STCTBL DASD_TBL MAJORNODES_TBL'

)PROC

if POS(SEC.OPAUUSID,USERS) = 0 then

 do i = 1 to WORDS(TABLES)

 TBL = WORD(TABLES,I)

 if POS(TBL,SEC.AUSQSQST) > 0 then

 return 'REJECT'

 end

Security Rules

318 AOF Rules User Guide

The following security rule demonstrates how to limit access to specific CA OPS/MVS
facilities:

)SEC *

)PROC

/***/

/* Variable definitions : */

/* TSOID - Set to current requestor (SEC.OPAUUSID) */

/* AUTHUSERS - Set to authorized users as set in global variable */

/* OPSREQUEST - Set to the attempting OPSMAIN request */

/***/

TSOID = SEC.OPAUUSID

AUTHUSERS = OPSVALUE('GLOBAL1.OPSMAINP.USERS','O')

OPSREQUEST = SEC.TYPE

/***/

/* Set the security error message variable and reject any user not */

/* in the list of authorized users attempting to perform all */

/* OPSMAIN requests EXCEPT viewing the OPSLOG. */

/***/

if POS(TSOID,AUTHUSERS) = 0 & OPSREQUEST ¬= 'OPSBRW' then

 do

 ERRMSG = 'Unauthorized to issue OPSMAIN request -'OPSREQUEST

 SEC.OPAUERMG = ERRMSG

 return 'REJECT'

 end

Time Limit-Exceeding Rules

Chapter 6: Coding Each AOF Rule Type 319

Time Limit-Exceeding Rules

Time limit-exceeding (TLM) rules provide the ability to intercept events that exceed a
time limit when either processor usage or continuous wait time limits for a batch job or
address space are exceeded. An extension to the exceeded time limit may be granted to
prevent the usual termination of the job or address space. The major benefit of TLM
rules is the ability to write the equivalent of an IEFUTL SMF exit in OPS/REXX, rather
than assembly language, and to use the power of OPS/REXX facilities for making time
limit extension decisions.

Example: TLM Rule

Assume that a privileged set of TSO users are not subject to the SMF continuous wait
time limit when they leave their sessions unattended. A TLM rule may be installed to
extend their session limits each time the wait time limit is exceeded up to a maximum of
ten times.

)TLM *

)INIT

/* Create a STATIC variable with a list of privileged TSO users.*/

/* This variable will be compared against the TLM.JOBNAME TLM */

/* environmental variable which indicates who just exceeded the */

/* limit. */

GoodGuys = 'OPER1 SYSPRG1 NETPRG1'

)PROC

/* Verify data from tlm event variables that this is a TSO user */

/* that has exceeded the defined wait limits. If it is, then */

/* check to see if it is one of the users in the good_guys list */

/* and increase limit if we haven't done it 10 times yet. */

if TLM.LIMIT = 'WAIT' & TLM.SUBSYS = 'TSO' & ,

 WORDPOS(TLM.JOBNAME,GoodGuys) > 0 & ,

 TLM.WAITCOUNT < 10 then ,

 do

 TLM.EXTEND = 3600 /* Extend session 1 hour */

 return "EXTEND"

 end

return "NORMAL" /* Let system cancel them */

)END

Installation Requirements for TLM Rules

Set the parameters INITSMF and TLMRULES to YES.

The installation IEFUTL SMF exit must be implemented.

Note: For more information, see the CA OPS/MVS Parameter Reference.

Time Limit-Exceeding Rules

320 AOF Rules User Guide

)TLM—Event Specifier of TLM Rules

The following is the format for coding the TLM event definition section:

)TLM jobnamespec

jobnamespec

Specifies the job name. Follow these guidelines when specifying the character
string:

■ Specify one to eight characters of the job name.

■ The string cannot contain embedded blank spaces. You can use the wildcard (*)
character. For example,

– CICS* matches CICSA, CICSABC, CICS123 and any other job name
containing a CICS prefix.

– CICS*05 matches CICSD05, CICS205, CICS1105, and so on.

– *05 matches any job name ending with 05.

– * alone matches all job names.

■ Lowercase letters are acceptable, but the AOF converts them to uppercase for
event testing.

Initialization, Processing, and Termination Sections of TLM Rules

The general guidelines for coding the initialization, processing, and termination sections
and the various AOF tools that you can use, apply to TLM rules.

More information:

AOF Rule Structure (see page 21)
AOF Rule Tools (see page 29)

Time Limit-Exceeding Rules

Chapter 6: Coding Each AOF Rule Type 321

RETURN Statements in the)PROC Section of a TLM Rule

The OPS/REXX RETURN statement must specify one of the following values:

NORMAL

Returns without granting a time limit extension. Unless another IEFUTL SMF exit in
the system grants an extension, the system terminates the job or address space.

EXTEND

Extends the time limit exceeded by the number of seconds in the TLM.EXTEND
variable.

Default: RETURN NORMAL

The return values listed here are character constants rather than keywords. An
unrecognized return value, for example, a misspelled value, defaults to a value of
NORMAL.

If multiple TLM rules are active, and more than one return EXTEND is performed, then
the last non-zero value specified for variable TLM.EXTEND is used as the time extension
seconds value.

To nullify the extension granted by a prior TLM rule, a rule may set TLM.EXTEND to zero
and return NORMAL.

Execution Considerations for TLM Rules

The processing section of a rule that responds to a TLM event executes in the address
space that exceeded the time limit. Therefore, any type of logic that could possibly
suspend the processing of a TLM rule should be performed by scheduling an OPS/REXX
program to a CA OPS/MVS OSF TSO, TSL, or TSP server.

The active JSCB in the ending address space is the region control task, or the initiator.
This causes the ACCOUNT, EXECPGM, and MODULE operands of OPSINFO to return the
values for the RCT or initiator program, rather than the application program that is
ending.

The AOF execution limits apply to the processing section of a rule that responds to a
time-limit-exceeding event.

More information:

Building and Controlling AOF Rules (see page 49)
Code and Debug AOF Rules (see page 59)

Time Limit-Exceeding Rules

322 AOF Rules User Guide

OPS/REXX Host Environments in the)PROC Section of a TLM Rule

The)PROC section of a TLM rule has the following host environments with the following
TLM rule characteristics. The AOFDEFAULTADDRESS parameter specifies the default
host environment for TLM rules.

ADDRESS AOF

Sent to CA OPS/MVS. Does not wait. Output is not returned.

ADDRESS AP

Sent to MSF and then forwarded to the CA Automation Point system. Does not wait.
Output is not returned.

ADDRESS EPI

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS HWS

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS ISPEXEC

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS LXCON

The VM and Linux command requests sent to USS server for execution. Does not
wait. Output is not returned. The List request runs inline and returns VM and Linux
system data in stem variables.

ADDRESS MESSAGE

Sent as a WTO. The AOFDEST parameter specifies the destination.

ADDRESS MQ

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS NETMAN

Sent to a CA OPS/MVS internal CA Netman request queue to issue MGPT
commands. Does not wait. Output is not returned.

ADDRESS NETMASTR

Sent to CA NetMaster NM for SNA on the local system. Does not wait. Output is not
returned.

Time Limit-Exceeding Rules

Chapter 6: Coding Each AOF Rule Type 323

ADDRESS OPER

Sent to target console as specified through the OCCONSOLENAME parameters
when no CONNAME operands are present. Output is not returned. Schedule an
OPS/REXX program in a server when a command output interrogation is needed.

ADDRESS OPSCTL

Sent to a specified facility. If the facility is ECF or OSF, does not wait. If the facility is
MSF, slight wait occurs. The external data queue returns the output.

Note: If the command is MFS LIST, no wait occurs.

ADDRESS OPSDYNAM

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS OSF

Schedule TSO commands, CLISTs, or REXX EXECs to CA OPS/MVS OSF TSO servers.

ADDRESS OSFTSL

Schedule TSO commands, CLISTs, or REXX EXECs to CA OPS/MVS OSF TSL servers.

ADDRESS OSFTSP

Schedule TSO commands, CLISTs, or REXX EXECs to CA OPS/MVS OSF TSP servers.

ADDRESS SOF

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS SQL

Does not wait. Processed synchronously for requests that can be satisfied on the
local system. Output is returned in stem variable. Error messages, if any, are
returned to an external data queue.

ADDRESS SYSVIEWE

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS TSO

Sent to an OSF TSO server. Does not wait. Output is not returned.

Time Limit-Exceeding Rules

324 AOF Rules User Guide

ADDRESS USS

Sent to a USS server. Does not wait. Output is not returned. Schedule an OPS/REXX
program in a server if a command output interrogation is needed.

ADDRESS WTO

Does not wait. Output is sent to specified (or default) destination. When attempting
a WTOR, host command is sent to a TSO server for execution. The response is then
returned to the server. Schedule an OPS/REXX program in a server if the WTOR
response interrogation is needed.

More information:

Code and Debug AOF Rules (see page 59)

AOF Variables Available in a TLM Rule

You can use all AOF variable types in TLM rules, as described in the chapter “AOF Rule
Tools (see page 29).” You can use the following unique AOF event variables in the)PROC
section of a TLM rule, and you can manually interrogate the corresponding OPSLOG
display field as an aid in debugging or implementing rule logic.

TLM.COLOR

The color that the message text will have in OPSLOG browse

Data Type: 1-byte binary (unprintable), read/write

Sample Value: '00'X

Note: Use the OPSCOLOR function of OPS/REXX to set the TLM.COLOR variable.

OPSLOG Browse Column: COLOR

TLM.CPUCOUNT

The number of extensions for CPU time-limit-exceeding that has been granted thus
far by TLM rules. This variable is incremented each time a non-zero extension is
granted by TLM rules.

Data Type: Integer, read-only

Sample Value: 3 (3 extensions granted)

TLM.CPUSECS

The number of CPU seconds that have been granted thus far by TLM rule
extensions. Each time a non-zero extension is granted by TLM rules, the number of
seconds is added to this variable.

Data Type: Integer, read-only

Sample Value: 600 (10 minutes of extension)

Time Limit-Exceeding Rules

Chapter 6: Coding Each AOF Rule Type 325

TLM.EXTEND

The number of CPU or elapsed time seconds to add to the CPU or wait time limit to
allow the job to continue. If this value remains zero, the job is canceled by the
system.

Data Type: Integer, read/write

Sample Value: 120 (2 minute extension)

TLM.JOBNAME

The name of the job that has exceeded the CPU/wait time limit taken. JOBNAME is
taken from JMRJOB in the JMR control block

Data Type: Character, read-only

Sample Value: IBMUSER

OPSLOG Browse Column: JOBNAME

TLM.JMRADDR

The address of the JMR control block passed to IEFUTL SMF exit. This address may
be used with the OPSTORE function of OPS/REXX to access any field in the JMR to
obtain data that is not provided by the TLM event variables. The IBM macro IEFJMR
maps the contents of the JMR.

Data Type: 4-byte (unprintable), binary

Sample Value: '00ABC004'X

TLM.LIMIT

The type of time limit that has been exceeded by this job

Data Type: Character, read-only

Possible Values:

■ JOB-Job processor time limit exceeded

■ STEP-Step processor time limit exceeded

■ WAIT-SMF continuous wait time limit exceeded

■ Sample Value: WAIT (TSO user went home without logging off)

TLM.RDRDATE

The date on which the system input reader recognized the JCL JOB statement for
this job. The value is seven digits long, with the high order four digits set to the
year, and the low order three digits set to the day of the year.

Data Type: Character, read-only

Sample Value: 2003023

Time Limit-Exceeding Rules

326 AOF Rules User Guide

TLM.RDRTIME

The time at which the system input reader recognizes the JCL JOB statement for this
job. The time value is in hundredths of seconds since midnight.

Data Type: Character, read-only

Sample Value: 3976655

TLM.SUBSYS

The subsystem name of the job used by SMF for workload accounting. Subsystem
names are defined in the SMFPRMxx member of parmlib and extracted from the
OUCBSUBN field of the OUCB control block.

Data Type: Character, read-only

Sample Value: TSO

TLM.TEXT

The OPSLOG message text that describes the time-limit-exceeding event for the
above JOBNAME

Data Type: Character, read-only

Sample Value: IBMUSER EXCEEDED WAIT TIME LIMIT

OPSLOG Browse Column: Text is always displayed

TLM.USER

An 8-byte variable providing communication between rules executing for the same
TLM event. The variable can contain any installation data that these rules need, and
it can store a character string displayable through OPSLOG Browse.

Data Type: User-defined, read/write

Notes:

■ Before AOF processing, this variable is initialized to binary zeros. It is then
passed to each rule that executes for the same TLM event; each rule can look
at or change the variable contents before passing the variable to the next rule
for the TLM event.

■ The primary purpose for the USER variable is to provide a method to pass a
small amount of data between the rules. This data may be binary or mixed
case. The USER field may also be used for filtering in the OPSLOG. However,
USER data used for OPSLOG filtering must be uppercase and displayable.

OPSLOG Browse Column: USER

Time Limit-Exceeding Rules

Chapter 6: Coding Each AOF Rule Type 327

TLM.USERCOM

The value contained in the JMRUCOM of the JMR control block. This field is
sometimes used to point to tables or control blocks used by installation SMF exits.

Data Type: 4-byte binary (unprintable), read-only

Sample Value: '0A002CFC'X

Note: Use the OPSTORE function of OPS/REXX to access any storage pointed to by
TLM.USERCOM.

TLM.WAITCOUNT

The number of extensions for wait time limit-exceeding that has been granted thus
far by TLM rules. This variable is incremented each time a non-zero extension is
granted by TLM rules.

Data Type: Integer, read-only

Sample Value: 3 (3 extensions granted)

TLM.WAITSECS

The number of wait time seconds that have been granted thus far by TLM rule
extensions. Each time a non-zero extension is granted by TLM rules, the number of
seconds is added to this variable.

Data Type: Integer, read-only

Sample Value: 600 (10 minutes of extension)

Debug a TLM Rule

Debug a TLM rule to intercept and review events that exceed a time limit.

To debug a TLM rule

1. Set the CA OPS/MVS BROWSETLM parameter to YES

2. Set the TLM event profile of your OPSLOG display to Y.

This setting lets you view all TLM events.

3. With these parameters set, display the OPSLOG EVENT column.

This lets you see recorded TLM events. The column contains details for each time
limit-exceeding rule.

You can use additional OPSLOG display columns to further interrogate the event.

More information:

Code and Debug AOF Rules (see page 59)

Time-of-Day Rules

328 AOF Rules User Guide

Time-of-Day Rules

Time-of-day (TOD) rules let you schedule automation to perform system tasks that need
to be done at specific times or time intervals. Additionally, you can use TOD rules to
initiate proactive automation, such as probing critical applications to validate response
times or interrogating system resource usage, thus determining potential problems
before they occur.

Installation Requirements for TOD Rules

If you are using the CATCHUPYES or CATCHUPMAN TOD qualifiers as described next, you
must have the SYSCHK1 DD allocated to your OPSMAIN task.

Note: For more information on allocating this linear VSAM file for the SYSCHK1 DD, if it
was not performed during your original installation of CA OPS/MVS, see the
Administration Guide.

)TOD—Event Definition Section of TOD Rules

Every TOD rule requires the presence of at least one event specifier, with a maximum of
ten. The first event specifier may be coded on the)TOD event definition line, as shown
in the example above, or it may be coded on its own line following the event definition
line. Additional specifiers, if any, must be coded one per line, following the first
specifier. Start-time, End-time, Interval, and Max Execs can be declared independently.

Options follow the first event specifier and must be entered in the order shown in the
previous code sample. Each of the following options controls the operation of the whole
rule, not just the first event specifier.

Use this format for coding the time-of-day event definition section:

)TOD EventSpecifier1,[MSGALLOW],[CATCHVAL],[SYNCH]

 EventSpecifier2

…

 EventSpecifier10

EventSpecifier

Describes when and how often a TOD rule should execute.

Time-of-Day Rules

Chapter 6: Coding Each AOF Rule Type 329

An event specifier has four elements: Start-time, Interval, End-time, and MaxExecs.
A comma separates each element.

Start-time and End-time

(Optional) Start-time and End-time are both defined as a todspec, which may
be written in one of several formats. For example, a todspec can specify a day
of the week, a specific date and time, or a delay after the rule is enabled.
End-time must be specified in the same todspec format as Start-time. It is not
valid to specify a day of the week as a Start-time and then specify a specific
date as an End-time.

Note: Start-time and End-time are optional. You may specify either or both.

Days of the week begin on Sunday at 00:00 and end on Saturday at 23:59. It is
invalid to specify a Start-time that is later than an End-time. For example, you
cannot code a rule to begin execution on or before Saturday and end on or
after Sunday.

Note: Rules with start and end times coded as dates, rather than days of the
week, are not subject to this restriction. Code two event specifiers for the rule,
one ending on Saturday and another starting on Sunday, to avoid this
limitation.

Interval

This element specifies the frequency of rule executions, once Start-time has
been satisfied and before End-time is reached. If interval is omitted, the rule
executes only once at Start-time. Interval is the amount of time, that is, the
number of specified time units that the AOF waits between rule executions. It
is expressed as:

n interval

Following is an example of the frequency and type of an interval:

■ n-An integer multiplier indicating the number of interval time units

■ interval-One of the following time units: DAY(S), WEEK(S), HOUR(S),
MINUTE(S) or MIN(S), SECOND(S) or SEC(S)

For example: 2 HOURS, 30 SECS, 1 MIN

MaxExecs

This element is an integer that specifies the maximum number of times a rule
executes for the event specifier. The event specifier no longer triggers the rule
once this limit is reached.

MSGALLOW

(Optional) Controls the OPS3900O message, which is an audit trail indicating the
next TOD setting for a rule. Msgallow may be set to MSG to allow the message, or
NOMSG to disallow the message. The default is MSG. Do not specify the Msgallow
qualifier more than once in a rule if the TOD rule contains more than one todspec
line.

Time-of-Day Rules

330 AOF Rules User Guide

CATCHVAL

(Optional) Determines whether catch-up processing occurs for the rule. Catch-up
processing allows or disallows a TOD rule to execute if CA OPS/MVS was not active
during its scheduled executing time. Do not specify the catchval qualifier more than
once in a rule if the TOD rule contains more than one todspec line. Valid values are:

■ CATCHUPYES - tells CA OPS/MVS to perform catch-up processing for this rule.

■ CATCHUPNO - tells CA OPS/MVS not to perform catch-up processing for this
rule. This is the default.

■ CATCHUPMAN - tells CA OPS/MVS to ask the operator whether this rule
requires catch-up processing.

Notes:

■ Timely operator response to a CATCHUPMAN WTOR can influence the
executing of subsequent TOD rules (all of which run under the task that is
waiting for operator response).

■ Catch-up applies to all event specifiers for the rule in which it is specified.

■ Catch-up executing is not considered when CA OPS/MVS computes whether a
rule has reached the maximum execute-count limit.

■ Neither CATCHUPYES nor CATCHUPMAN may be specified on the TOD rule
specification when enabling a dynamic TOD rule. This causes a syntax error and
the rule is not enabled.

SYNCH

(Optional) Determines whether TOD rule execution is synchronized on a rounded
interval boundary. Do not specify the synch qualifier more than once in a rule if the
TOD rule contains more than one todspec line. Valid values are:

■ SYNCH - Indicates rule execution is synchronized. This is the default.

■ NOSYNCH - Indicates rule execution is not synchronized.

Note: The SYNCH value does not apply to TOD rules that specify a time to execute
after it is enabled (that is, rules in which the *+nn value format is used). These rules
always execute with a NOSYNCH value.

Defining the Todspec

You can specify each todspec for TOD rules in the format of a date or time. In addition,
you can instruct a TOD rule to execute at a specified interval after it is enabled. The
following syntaxes are available for specifying a date or time todspec value in TOD rules:

Time-of-Day Rules

Chapter 6: Coding Each AOF Rule Type 331

Date

The day, month, year, or day of the week (depending on the format you use to
specify the date):

■ dd-A two-digit integer (01 through 31) corresponding to a day of the month

■ MMM-One of the following three-character abbreviations for a month: JAN,
FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, or DEC

■ year-A four-digit year (for example, 2002)

■ mm-A two-digit integer (01 through 12) corresponding to a month of the year

■ weekday-The full name of a weekday (for example, SUNDAY, MONDAY)

Note: In TOD rules, the week starts on Sunday at 00:00, which implies that Saturday
follows Sunday. Start-time must be before End-time; therefore, it is invalid to start a
rule on Saturday and end it on Sunday if you use the weekday format. For an
example, see Start/end order in Rules Governing the Coding of TOD Event Specifiers
in this chapter.

Format (any of the following):

■ dd MMM year

■ year/mm/dd

■ weekday

Time

The time in 24-hour military format, as follows:

■ hh-A two-digit integer (00 through 23) indicating the hour

■ mm-A two-digit integer (00 through 59) indicating the minutes after the hour

■ ss-A two-digit integer (00 through 59) indicating the seconds after the minute.
This value is optional.

Format: hh:mm[:ss]

Time-of-Day Rules

332 AOF Rules User Guide

Start at some interval after rule is enabled

This type of todspec is commonly used in dynamically created TOD rules (explained
in the chapter “Building and Controlling AOF Rules”) to initiate automation that
needs to be performed at some time interval after a specific event occurs, as
follows:

■ nn-a number greater than 0

■ value -DAY(S), WEEK(S), HOUR(S), MINUTE(S) or MIN(S), or SECOND(S) or
SEC(S). For example, the following rule executes 1 minute after it is enabled
and every 30 seconds thereafter, until it executes a total of three times:

)TOD *+1 MINUTE,30 SECONDS,,3

Note: This is a special type of TOD rule SPEC that is only eligible to be used one time
per TOD rule.

Format: *+nn value

Rules Governing the Coding of TOD Event Specifiers

The following rules govern the coding of TOD event specifiers:

■ The number of event specifiers that may be coded is 1 to 10.

■ The number of event specifiers allowed per line is 1.

■ Uppercase or lowercase letters are acceptable.

■ Blank lines are permitted between time event specifiers.

■ Any number of blanks is permitted between qualifiers.

■ An event specifier may begin in any column, except on the)TOD line.

■ An event specifier may use the entire line (72 characters).

■ Because TOD rules allow multiple spec lines, a section header must follow them
before comments can be used. Either a)INIT card must be inserted prior to the
comment card or the comment must be moved after the)PROC card.

Time-of-Day Rules

Chapter 6: Coding Each AOF Rule Type 333

■ If your Start-time and Stop-time are exact dates, for example 03 JUN 2002 and 04
JUNE 2002, the End-time must be in the future. The rule does not enable if
End-time has already expireTime defaults:

If the starting date/time specification contains a time, and the ending date/time
specification does not, the time part of the starting date/time specification is used
for the ending date/time specification. For example, given the following starting
and ending specifications, the rule would execute Monday, Tuesday, Wednesday,
Thursday, and Friday at 08:00 on each day:

)TOD MONDAY 8:00, DAY, FRIDAY

If the Start-time contains only a time value, with an interval unit of HOURS,
MINS, or SECS, and no End-time is specified, then the default End-time would
be midnight each day. For example, given the following TOD specifications, the
rule would execute starting at 15:00 every day, and then execute every 5
minutes until midnight:

)TOD 15:00,5 MINS

If the Start-time contains a day of the week value, with an interval unit of
HOURS, MINS, or SECS, and no End-time is specified, then the default End-time
would be Sunday at 00:00:00. For example, given the following TOD
specifications, the rule would execute starting on Tuesday 08:00, and then
execute every 1 hour until Sunday at 00:00:00 and resume again on Tuesday at
08:00:

)TOD TUESDAY 08:00,1 HOUR

If the TOD specifier contains just a starting specification that contains a day of
the week and time value, then the default End-time would be on a week
boundary. For example, given the following TOD specifier, the rule would
execute every Friday at 06:00:00:

)TOD FRIDAY 06:00:00

■ Completeness and order of date and time: date/time specifications may omit the
date or the time, and they may be coded in any order; use a blank to separate the
date and the time, as shown in the following example:

21 JAN 2002 1:20

Omitting the executing date causes the rule to execute every day. If the time is
omitted, CA OPS/MVS assumes it to be 00:00:00, midnight (there is an exception,
which is noted in the next rule).

Time-of-Day Rules

334 AOF Rules User Guide

■ Start/end order: the starting date/time specification must indicate a point in time
that is before the ending date/time specification. The following is an example that
will not enable because the AOF week starts on Sunday and ends on Saturday:

)TOD FRIDAY,DAY,MONDAY

The correct method to create a TOD rule that executes at midnight on Friday,
Saturday, Sunday, and Monday is:

)TOD FRIDAY,DAY,SATURDAY

 SUNDAY,DAY,MONDAY

■ Format compatibility (date/time): the ending date/time specification must be the
same type as the starting date/time specification; for example, you cannot code:

)TOD MONDAY,,2002/10/14

because the ending date/time specification is in day-of-year format while the
starting date/time specification is in day-of-week format.

■ Although you can specify the msgallow, catchval, and synch options only once in a
rule, you may specify them on any line of the TOD-event definition section. You do
not have to specify these three qualifiers on the same line with each other; you may
specify them in any combination you wish. The values of these qualifiers apply to all
event specifier values in that rule.

Note: CA recommends that you code these options on the first event specifier.

Initialization, Processing, and Termination Sections of TOD Rules

The general guidelines for coding the initialization, processing, and termination sections
and the various AOF tools that you can use, apply to TOD rules.

More information:

AOF Rule Structure (see page 21)
AOF Rule Tools (see page 29)

RETURN Statements in the)PROC Section of a TOD Rule

The RETURN statement has no special meaning in the processing section of a TOD rule.

Time-of-Day Rules

Chapter 6: Coding Each AOF Rule Type 335

Execution Considerations for TOD Rules

The processing section of a TOD rule executes in the CA OPS/MVS main address space.
Therefore, various OPS/REXX host environments that can cause waits to occur, such as
issuing z/OS commands through the ADDRESS OPER and collecting the command
output, can possibly suspend the main address space. The simple rule of thumb to
follow is to keep the logic simple in a TOD rule, and any complex logic or interactive
logic that may cause a wait to occur should be done in an OPS/REXX program that gets
triggered to an OSF TSO server on behalf of the TOD rule.

The AOF execution limits apply to the processing section of a rule that responds to a
security event.

More information:

Building and Controlling AOF Rules (see page 49)
Code and Debug AOF Rules (see page 59)

OPS/REXX Host Environments in the)PROC Section of a TOD Rule

The)PROC section of a TOD rule has the following host environments with the following
TOD rule characteristics. The AOFDEFAULTADDRESS parameter specifies the default
host environment for TOD rules.

ADDRESS AOF

Sent to CA OPS/MVS. Does not wait. Output is not returned.

ADDRESS AP

Sent to MSF and then forwarded to the CA Automation Point system. Does not wait.
Output is not returned.

ADDRESS EPI

Runs inline. Waits for output in the external data queue.

ADDRESS HWS

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS ISPEXEC

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS LXCON

Runs inline. Waits for output that is returned in stem variables.

Time-of-Day Rules

336 AOF Rules User Guide

ADDRESS MESSAGE

Sent as a WTO. The AOFDEST parameter specifies the destination.

ADDRESS MQ

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS NETMAN

Sent to a CA OPS/MVS internal CA Netman request queue to issue MGPT
commands. Does not wait. Output is not returned.

ADDRESS NETMASTR

Sent to CA NetMaster NM for SNA on the local system. Does not wait. Output is not
returned.

ADDRESS OPER

Sent to target console as specified through the OCCONSOLENAME parameters
when no CONNAME operands are present. Output is not returned. Schedule an
OPS/REXX program in a server when a command output interrogation is needed.

ADDRESS OPSCTL

Sent to the specified facility. If the facility is ECF or OSF, it does not wait. If the
facility is MSF, a slight wait occurs. Output is returned to the external data queue.

Note: If the command is MSF LIST, no wait occurs.

ADDRESS OPSDYNAM

Runs Inline. Returns output in variables.

ADDRESS OSF

Schedule TSO commands, CLISTs, or REXX EXECs to CA OPS/MVS OSF TSO servers.

ADDRESS OSFTSL

Schedule TSO commands, CLISTs, or REXX EXECs to CA OPS/MVS OSF TSL servers.

ADDRESS OSFTSP

Schedule TSO commands, CLISTs, or REXX EXECs to CA OPS/MVS OSF TSP servers.

ADDRESS SOF

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS SQL

Does not wait. Processed synchronously for requests that can be satisfied on the
local system. Output is returned in stem variable. Error messages, if any, are
returned to the external data queue.

Time-of-Day Rules

Chapter 6: Coding Each AOF Rule Type 337

ADDRESS SYSVIEWE

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS TSO

Sent to an OSF TSO server. Does not wait. Output is not returned.

ADDRESS USS

Runs Inline. Waits for output in stem variables.

ADDRESS WTO

Does not wait. Output is sent to the specified console. If you attempt a WTOR, it
runs inline and then the WTOR waits for a response in the external data queue.

More information:

Code and Debug AOF Rules (see page 59)
Execution Considerations for TOD Rules (see page 335)

AOF Variables Available in a TOD Rule

You can use all AOF variable types in TOD rules, as described in the chapter “AOF Rule
Tools (see page 29).” You can use the following unique AOF event variables in the)PROC
section of a TOD rule, and you can manually interrogate the corresponding OPSLOG
display field as an aid in debugging or implementing rule logic.

TOD.CATCHUP

A value indicating whether a TOD rule is executing as usual or in catch-up mode

Data Type: Character, read-only

Possible Values:

■ Y-The rule is executing in catch-up mode

■ N-The rule is executing as usual

Sample Value: Y

Notes:

■ The TOD.CATCHUP variable is similar to the Automate &CATCHUP
environmental variable.

■ A rule is executing in catch-up mode when it first executes at CA OPS/MVS
initialization and either:

– The value of the catchup optional TOD qualifier is CATCHUPYES.

– The value of the catchup optional TOD qualifier is CATCHUPMAN, and the
reply of the operator to the WTOR concerning CATCHUPMAN rules is YES.

Time-of-Day Rules

338 AOF Rules User Guide

TOD.FIREMISSED

The TOD.FIREMISSED variable contains 5 pieces, or words, of information. The
information in these words depends on whether the rule that is currently executing
is executing as a result of catch-up processing:

■ If the rule is executing as a result of catch-up processing, TOD.FIREMISSED
contains information about the last time the rule should have executed but did
not.

■ If the rule is not executing as a result of catch-up processing, TOD.FIREMISSED
contains information about the current execution of the rule.

Data Type: Character, read-only

Possible Values: This list explains the contents of the 5 words:

■ Word 1-If the rule is executing in catch-up mode, this is the date when the rule
was last scheduled to execute but did not, in the form yyyy/mm/dd. If the rule
is not executing in catch-up mode, this is the current date, in the format
yyyy/mm/dd.

■ Word 2-If the rule is executing in catch-up mode, this is the time when the rule
was last scheduled to execute but did not, in the form hh:mm:ss. If the rule is
not executing in catch-up mode, this is the current time, in the format
hh:mm:ss.

■ Word 3-If the rule is executing in catch-up mode, this is the date when the rule
was last scheduled to execute but did not, in Julian format: yyyyddd. If the rule
is not executing in catch-up mode, this is the current date, in Julian format:
yyyyddd.

■ Word 4-If the rule is executing in catch-up mode, this is the time, calculated as
seconds since January 1, 1980 (the date when IBM introduced the PC), when
the rule was last scheduled to execute but did not. If the rule is not executing in
catch-up mode, this is the current time, calculated as seconds since January 1,
1980.

■ Word 5-If the rule is executing in catch-up mode, this is the day of the week
(SUN, MON, TUE, WED, THU, FRI, SAT) when the rule was last scheduled to
execute but did not. If the rule is not executing in catch-up mode, this is the
current day of the week.

Sample Value: 2002/08/25 14:29:00 2002237 493828140 FRI

Note: The TOD.FIREMISSED variable was developed to support the Automate
&CDATE, &CDAY, &CTIME, &CJULDATE, and &CCLOCK environmental variables.

Time-of-Day Rules

Chapter 6: Coding Each AOF Rule Type 339

TOD.NEXTFIRE

A value indicating the next time a rule will execute

Data Type: Character, read-only

Possible Values:

■ The date and time the rule will execute, in yyyy/mm/dd hh:mm:ss format

■ NONE if the rule will not execute again

Sample Value: 2002/08/25 14:30:00

Note: The next execute date in automateable message OPS3900O is in the
yyyy/mm/dd format. For example:

OPS3900O RULE O.TODTEST FOR TOD 2002/08/25 14:30 SET

TOD.USER

An 8-byte variable providing communication between rules that execute for the
same TOD event. The variable can contain any installation data that these rules
need, and it can store a character string displayable through OPSLOG Browse.

Data Type: User-defined, read/write

Notes:

■ Before AOF processing, this variable is initialized to binary zeros.

■ The CA OPS/MVS Test Facility shows TOD events both before and after AOF
processing.

■ OPSLOG Browse does not show TOD events unless one of these conditions is
true:

– The CA OPS/MVS BROWSETOD parameter is set to YES, allowing the event
to appear in OPSLOG Browse before AOF processing.

– The CA OPS/MVS RULETRACE parameter is set to ON, allowing the event to
appear in OPSLOG Browse after AOF processing.

For descriptions of the BROWSETOD and RULETRACE parameters, see the
Parameter Reference.

OPSLOG Browse Column: USER

Debug a TOD Rule

For a discussion on debugging techniques that you can use in all AOF rules, see the
chapter “Code and Debug AOF Rules (see page 59).”

Time-of-Day Rules

340 AOF Rules User Guide

Examples: TOD Rules Event Specifiers

This section contains examples of various TOD rule event specifiers. In the following
examples, a week runs from Sunday to Saturday.

■ Example 1: This rule executes every day of the week, every five minutes, on a
five-minute boundary from midnight:

)TOD ,5 MIN

■ Example 2: This rule executes every day, every five minutes, on a five-minute
boundary from the time the rule is enabled:

)TOD ,5 MIN,,,,,NOSYNCH

■ Example 3: This rule executes every 15 minutes on Friday and Saturday:

)TOD FRIDAY,15 MIN

■ Example 4: This rule executes every hour, Monday through Friday:

)TOD MONDAY,1 HOUR,SATURDAY

■ Example 5: This rule executes every two hours on Saturday and Sunday:

)TOD SUNDAY,2 HOURS,MONDAY

 SATURDAY,2 HOURS

■ Example 6: This rule executes every half hour from 12:00 to 15:00, every day:

)TOD 12:00,30 MIN,15:00

■ Example 7: This rule executes every day at 8:00 for the next seven days:

)TOD 08:00,,,7

■ Example 8: This rule executes every day at 01:00 and it will catch up if CA OPS/MVS
is down:

)TOD 01:00,,,,,CATCHUPYES

■ Example 9: This rule executes every hour, on the hour, from 8:00 December 25
through 7:00 December 26:

)TOD 25 DEC 2002 08:00,1 HOUR,26 DEC 2002 08:00

Time-of-Day Rules

Chapter 6: Coding Each AOF Rule Type 341

Examples: Complete TOD Rules

■ Example 1:

)TOD 02:00,,,,,CATCHUPYES

)PROC

/***/

/* This TOD rule will fire 2 AM every day to simply */

/* set up the initiators to handle the backup period. */

/***/

/***/

/* Send information message to sysplex master console */

/* to indicate that we are configuring initiators using */

/* the OPS/REXX ADDRESS WTO host environment. Use the */

/* OPS/REXX OPSINFO function to obtain the name of the */

/* sysplex master console. */

/***/

CONSOLE=OPSINFO('MSTCONSNM') /* GET CURRENT PLEX MSTR */

address WTO

"MSGID(OPSAUTO5) TEXT('INITS CONFIGURED FOR BACKUPS')",

 "CNNAME("CONSOLE")"

/***/

/* Issue commands to set initiators using OPS/REXX */

/* ADDRESS OPER host command environment. */

/***/

address OPER

"COMMAND($TI1-10,ABC) NOOUTPUT"

"COMMAND($TI11-20,EFG) NOOUTPUT"

Time-of-Day Rules

342 AOF Rules User Guide

■ Example 2: The following two rules demonstrate how to use dynamic TOD rules to
initiate a programmatic action at a time after an event occurs. The first rule creates
the TOD rule and the second rule deletes the dynamic TOD rule.

For details about the logic, see the comments in the rules.

)MSG DFHPA1108

)PROC

/**/

/* This rule will fire on a very early CICS initialization */

/* message and simply create a dynamic TOD rule to fire 30 */

/* minutes from now. The JOBNAME of this CICS region will */

/* be used as the name of the TOD rule allowing these monitor */

/* rules to perform this check for all CICS regions. the logic*/

/* of the TOD rule is to simply issue a notification message */

/* to the local master console that indicates that a CICS did */

/* not initialize. This TOD rule will be deleted on the */

/* initialization message, meaning that the region is OK and */

/* thus no message will be issued. */

/* DFHPA1108 A04IC4SL DFHSIT6$ HAS BEEN LOADED. */

/**/

REGION = MSG.JOBNAME /* GET THE REGION NAME OF MESSAGE */

/* Queue the text of the dynamic TOD rule to the EDQ */

queue ")TOD *+30 MINS "

queue ")PROC"

queue "CONSOLE=OPSINFO('LOCMSTCONSNM')"

queue "address WTO"

queue "'MSGID(ALERT:) TEXT(''CICS "REGION" HAS NOT INITIALIZED'')',"

queue "'CNNAME('CONSOLE') DESC(2)'"

/* ENABLE THE DYNAMIC TOD RULE WITH NAME OF THE REGION */

address AOF "ENABLE *DYNAMIC."REGION

)MSG DFHSI1517

)PROC

/**/

/* This rule will delete dynamic TOD rule that was ENABLEd for*/

/* this region during startup, thus indicating all is well. */

/* DFHSI1517 A04IC4S1 Control is being given to CICS. */

/**/

REGION = MSG.JOBNAME /* GET THE REGION NAME OF MESSAGE */

MSG.TEXT=TRANSLATE(MSG.TEXT) /* UPPER CASE THE MESSAGE */

/* VERIFY THAT THIS REALLY IS THE CONTROL GIVEN TO MESSAGE */

if POS('CONTROL IS BEING GIVEN TO CICS',MSG.TEXT) > 0 then

address AOF "DISABLE *DYNAMIC."REGION

UNIX System Services Rules

Chapter 6: Coding Each AOF Rule Type 343

UNIX System Services Rules

UNIX System Services (USS) message rules allow you to write automation procedures for
messages that originate from CCS for z/OS.

Message sources in the CCS for z/OS include:

■ The USS SYSLOG daemon

■ Locally generated CCS for z/OS messages

■ CA NSM messages that are forwarded to the CA Event Manager component by
other platforms and systems (such as Windows and UNIX servers)

A rule responds to a USS message event when one of the following occurs:

■ A local USS application writes a message to the USS syslog.

■ A message is created by or forwarded to CCS for z/OS on the local system.

A special USS event type is also provided in USS AOF rules to monitor the creation and
termination of every USS process. These events are created using the USS dynamic
system exits which are activated by setting the CA OPS/MVS parameter INITUSSPROC to
a value of YES at product initialization.

■ A USS process event message with the fixed message ID of USSPROCBEG is
generated for the creation of every new USS process.

■ A USS process event message with the fixed message ID of USSPROCEND is
generated for the termination of every USS process.

■ An extended set of USS AOF rule variables is defined for USS process events in order
to provide detailed process information not normally available in conventional USS
message rules.

Installation Requirements for USS Rules

The CCS for z/OS must be active on the system.

The optional USS component of CA OPS/MVS must be installed.

Set the parameters INITUSS and USSRULES to YES.

UNIX System Services Rules

344 AOF Rules User Guide

Installation Requirements for USS Process Event Rules

The USS process event rule feature does not require any CCS components or the CA
OPS/MVS USS server components. The INITUSSPROC parameter controls the installation
of the CA OPS/MVS dynamic system exit routine for USS process events while the
USSPROCRULES and BROWSEUSSPROC parameters control the processing of these
events.

Note: For more information, see the Administrator Guide and the Parameter Reference.

)USS—Event Specifier of USS Rules

Use this format for coding the USS event definition section:

)USS msgidspec

msgidspec

Specifies the message ID specifier. Follow these guidelines when specifying the
character string:

■ Specify one to ten characters of the message ID.

■ The string cannot contain embedded blank spaces. You can use the wildcard (*)
character. For example,

– IMW* matches IMW234, IMW56, IMW6705 and any other USS event
identifier containing an IMW prefix.

– IMW*05 matches IMWCD05, IMW205, IMW67505, and so on.

– *05 matches any message ending with 05.

– * alone matches all messages.

Note: For information on using this specifier, see the chapter “Code and Debug
AOF Rules (see page 59).”

■ Lowercase letters are acceptable, but the AOF converts them to uppercase for
event testing.

)USS USSPROCBEG—Event Specifier of USS Process Event Rules

USS process events generate the following USS messages for USS AOF rule processing:

USSPROCBEG DENM44SS 03FD 67108949 SPAWN INIT /bin/onetstat

USSPROCEND DENM44SS 03FD 67108949 SPAWN TERM /bin/onetstat

UNIX System Services Rules

Chapter 6: Coding Each AOF Rule Type 345

The data elements in these messages are:

■ A fixed message ID for begin or end of a process

■ The job name of the process.

■ The ASID of the process in printable hex.

■ The USS process number of the process.

■ The USS service that caused the process to be created.

■ The word INIT for process initialization events or the word TERM for termination
events. If the process terminates abnormally the TERM word may be replaced by
MEMTERM or ABTERM.

■ The USS program name associated with the process. This name can be up to 128
characters long. The message text can be truncated in OPSLOG if the program name
is too long. The full message text is available in the AOF rule variable USS.FULLTEXT.

Because USS process events have only two static message IDs, use the following format
for coding the USS process event definition section:

)USS USSPROCBEG or USSPROCEND or USSPROC*

)PROC

 IF uss.type <> 'PROCESS' Then Return 0

You should code one USS rule for each message ID. In the USSPROCBEG rule, use the
program path name and additional event data to determine if the process is managed
by SSM. If so, the current state of the USS resource would be changed to the UP state
and the process ID, job name, ASID, and exit timestamp would be added to the data
columns of the USS resource for stopping the resource when requested. In the
USSPROCEND rule, you can use the same process information to match the USS
resource in SSM and set the current state to the DOWN state.

Initialization, Processing, and Termination Sections of USS Rules

USS rules follow the general guidelines for coding the initialization, processing, and
termination sections and the various AOF tools that you can use.

More information:

AOF Rule Structure (see page 21)
AOF Rule Tools (see page 29)

UNIX System Services Rules

346 AOF Rules User Guide

RETURN Statements in the)PROC Section of a USS Rule

The OPS/REXX RETURN statement has no special meaning in the processing section of a
USS rule. The return value has no effect on AOF processing.

Execution Considerations for USS Rules

The processing section of a rule that responds to a USS message event executes in the
address space that is running CCS for z/OS. This address space varies depending on how
the CA Event Manager process (CAIOPR) is started in a USS address space of z/OS.
Therefore, any type of logic that could possibly suspend the processing of a USS rule
should be performed by scheduling an OPS/REXX program to a CA OPS/MVS OSF TSO,
TSL, or TSP server.

The AOF execution limits apply to the processing section of a rule that responds to a
security event.

More information:

Code and Debug AOF Rules (see page 59)

OPS/REXX Host Environments in the)PROC Section of a USS Rule

The)PROC section of a USS rule has the following host environments with the following
USS rule characteristics:

ADDRESS AOF

Sent to CA OPS/MVS. Does not wait. Output is not returned.

ADDRESS AP

Sent to MSF and then forwarded to the CA Automation Point system. Does not wait.
Output is not returned.

ADDRESS EPI

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS HWS

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS ISPEXEC

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

UNIX System Services Rules

Chapter 6: Coding Each AOF Rule Type 347

ADDRESS LXCON

The VM and Linux command requests sent to USS server for execution. Does not
wait. Output is not returned. The List request runs inline and returns VM and Linux
system data in stem variables.

ADDRESS MESSAGE

Sent as a route code|WTO.

ADDRESS MQ

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS NETMAN

Sent to the CA OPS/MVS internal CA Netman request queue to issue MGPT
commands. Does not wait. Output is not returned.

ADDRESS NETMASTR

Sent to CA NetMaster NM for SNA on the local system. Does not wait. Output is not
returned.

ADDRESS OPER

Sent to target console as specified through the OCCONSOLENAME parameters
when no CONNAME operands are present. Output is not returned. Schedule an
OPS/REXX program in a server when a command output interrogation is needed.

ADDRESS OPSCTL

Sent to a specified facility. If the facility is ECF or OSF, does not wait. If the facility is
MSF, slight wait occurs. The external data queue returns the output.

Note: If the command is MSF LIST, no wait occurs.

ADDRESS OPSDYNAM

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS OSF

Schedule TSO commands, CLISTs, or REXX EXECs to CA OPS/MVS OSF TSO servers.

ADDRESS OSFTSL

Schedule TSO commands, CLISTs, or REXX EXECs to CA OPS/MVS OSF TSL servers.

ADDRESS OSFTSP

Schedule TSO commands, CLISTs, or REXX EXECs to CA OPS/MVS OSF TSP servers.

ADDRESS SOF

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

UNIX System Services Rules

348 AOF Rules User Guide

ADDRESS SQL

Does not wait. Processed synchronously for requests that can be satisfied on the
local system. Output is returned in stem variable. Error messages, if any, are
returned to an external data queue.

ADDRESS SYSVIEWE

Not supported. Schedule an OPS/REXX program in a server to perform this
functionality.

ADDRESS TSO

Sent to an OSF TSO server. Does not wait. Output is not returned.

ADDRESS USS

Sent to a USS server. Does not wait. Output is not returned. Schedule an OPS/REXX
program in a server if a command output interrogation is needed.

ADDRESS WTO

Does not wait. Output is sent to specified (or default) destination. When attempting
a WTOR, host command is sent to a TSO server for execution. The response is then
returned to the server. Schedule an OPS/REXX program in a server if the WTOR
response interrogation is needed.

More information:

Code and Debug AOF Rules (see page 59)

AOF Variables Available in a USS Rule

You can use all AOF variable types in USS rules. You can use the following unique AOF
event variables in the)PROC section of a USS rule, and you can manually interrogate the
corresponding OPSLOG display field as an aid in debugging or implementing rule logic.

USS.ATTRIBUTE

The CA Event Manager console display flag byte for the video display attributes of
the message

■ '00'X-Default (low intensity)

■ '01'X-Make the message blink

■ '02'X-Display the message in reverse video

Data Type: 1-byte binary (unprintable), read-only

Sample Value: '01'X

Note: ATTRIBUTE is a bit flag, and bits can be combined. '03'X means blinking
reverse video.

UNIX System Services Rules

Chapter 6: Coding Each AOF Rule Type 349

USS.AUTOTOKN

The first 8 characters of the platform name on which the message originated. This
value is extracted from the USS.TAG variable for inclusion in OPSLOG.

Data Type: Character, read/write

Sample Value: OS390

For USS process events, this variable contains an abbreviated name for the z/OS
dynamic exit that created the event.

Possible values are:

■ POSTINIT

■ IMAGINIT

■ PRETERM

OPSLOG Browse Column: AUTOTOKN

USS.CATEGORY

A character string assigned by the issuer of the message for message clarification

Data Type: Character, read-only

Sample Value: System error

USS.COLOR

The color that the message text will use in OPSLOG Browse. This message is initially
set to the message color in the CA Event Manager console display.

Data Type: 1-byte binary (unprintable), read/write

Sample Value: '00' X

Note: Use the OPSCOLOR function of OPS/REXX to set the USS.COLOR variable.

OPSLOG Browse Column: COLOR

USS.DESC

The z/OS descriptor codes for the message. If the CA Event Manager highlights this
message, descriptor code 2 is set.

Data Type: 2-byte binary (unprintable), read/write

Sample Value: '4000' X

Note: Use the OPSBITS function of OPS/REXX to set the USS.DESC variable. For a
description of message descriptor codes, see the IBM documentation.

OPSLOG Browse Column: ROUTE or ROUTEX

UNIX System Services Rules

350 AOF Rules User Guide

USS.DEVICE

A character string that identifies a device associated with an SNMP trap message
that was captured by the CATRAPD daemon and converted to a message in the CA
Event Manager.

Data Type: Character, read-only

Sample Value: MVS25B (DASD volume)

USS.FACILITY

A character string assigned by the issuer of the message primarily for identifying the
application or source of the message

Data Type: Character, read-only

Sample Value: SAPR3

For USS process events, this variable contains one of the following:

■ The USS program name associated with the process. This is equivalent to the
last node of the full path name of the file.

■ A z/OS program name.

USS.FLAGS

The message type, taken from the CA OPS/MVS message flags described below

Data Type: 2-byte binary (unprintable), read-only

Sample Value: '8000' X

Message Flags: The CA OPS/MVS product sets the following flags with the following
bits:

■ '8000' X-Single line message flag

■ '4040' X-WTOR message flag

■ '8040' X-Immediate action message flag set (if message is highlighted in the CA
Event Manager)

OPSLOG Browse Column: OPSFLAGS

USS.FULLTEXT

The complete text (up to 3000 characters) of the message taken from the CA Event
Manager message block that was passed to the CA OPS/MVS USS message exit. For
USS process events, the value is the complete text of the USSPROCBEG or
USSPROCEND message.

Data Type: Character, read-only

Sample Value: USR98765 The names of everybody in the company: Joe, Jill, Sam,
Sandra, John, Jane, and so on

UNIX System Services Rules

Chapter 6: Coding Each AOF Rule Type 351

USS.ID

The message identifier, usually the first token or the first blank delimited word of
the message text

Data Type: Character, read-only

Sample Value: IEF125I

Note: The USS.ID variable value determines which message rules execute for the
current message event. This variable never contains any special screen characters,
leading, or trailing blanks.

OPSLOG Browse Column: MSGID

USS.JOBID

The identifier that JES2 or JES3 assigned to the CA Event Manager address space. If
the address space was created using the MSTR subsystem, the value is the first five
characters of the job name.

Data Type: Character, read-only

Sample Value: S12345

For USS process events, this variable contains the job ID of the address space
running the process.

OPSLOG Browse Column: JOBID

USS.JOBNAME

The job name of the USS address space that is running the CA Event Manager. The
value of this variable varies depending on how the Event Manger task is started.

Data Type: Character, read-only

Sample Value: BPXOINIT

For USS process events, this variable contains the job name of the address space
running the process.

OPSLOG Browse Column: JOBNAME

UNIX System Services Rules

352 AOF Rules User Guide

USS.MSGFLAGS

The CA Event Manager message flag for special processing display options and
handling:

■ '01'X-Put the message in the held message display area

■ '02'X-Highlight the message

■ '04'X-The message was forwarded by the security access facility

■ '08'X-Print the WTOR ID number to standard output (stdout)

■ '10'X-Bypass CA Event Manager rules processing

■ '20'X-Do not display the message on the CA Event Manager console

■ '40'X-The source of event is the Windows event log

Data Type: 1-byte binary (unprintable), read-only

Sample Value: '03'X

USS.MSGUSER

The security user ID responsible for issuing the message. On the mainframe, this
value is the user ID from the particular security package in use. On Windows, the
current logon ID is the usual value. A \ may separate the user ID from other
security-related information.

Data Type: Character, read-only

Sample Value: IBMUSER

For USS process events, this variable contains the process user ID and alias in the
format userid/alias.

USS.NODE

The TCP/IP host name that issued the message. For messages issued from the CCS
for z/OS, this is the z/OS TCP/IP host name. For messages issued from a Windows
platform, this value is the Domain\Node name.

Data Type: Character, read-only

Sample Value: SY23TCPN

USS.PROCESS

A character string composed of the process ID number and the program name of
the message issuer. It is usually in the form processid,program. The UNIX command
KILL requires the process ID to terminate a USS program.

Data Type: Character, read-only

Sample Value: 000356, OPSAEX

For USS process events, this variable contains the same value as the USS.PRCREATE
variable (see the following section).

UNIX System Services Rules

Chapter 6: Coding Each AOF Rule Type 353

USS.REPLYID

The reply number associated with a CA NSM message generated by the CAWTOR
command or API

Data Type: Character, read-only

Sample Value: 11

Notes:

■ This variable is valid only for WTORs.

■ The reply ID appears at the front of the USS.FULLTEXT variable; it is enclosed in
parentheses.

OPSLOG Browse Column: First part of the text field when the message is a WTOR

USS.REPORTID

The first 8 characters of the facility or application name contained in the message.
This value is extracted from the USS.FACILITY variable for inclusion in OPSLOG.

Data Type: Character, read-only

Sample Value: TAPEMGMT

For USS process events, this variable contains one of the following:

■ The first eight characters of the process program name following the last '/'

■ A z/OS program name

OPSLOG Browse Column: DSPNAME

USS.SEVERITY

A single character indicating the importance of the message. The issuer of the
message assigns severity.

Possible Values:

■ I-An informational message

■ W-A warning message

■ E-A serious error message

■ S-Successful completion of a function

■ F-Failure to complete a function

Data Type: Character, read-only

Sample Value: I

UNIX System Services Rules

354 AOF Rules User Guide

USS.SYNA

The system name of the system issuing the message

Data Type: Character, read-only

Sample Value: MVS34

Note: The system name is derived from the SYSNAME parameter specified in the
appropriate IEASYSxx member of the Logical Parmlib Concatenation.

OPSLOG Browse Column: SYSNAME or SYNA

USS.SYSID

The system ID of the system where the message was issued (usually the SMF ID).
For JES3 messages, the SYSID value derives from the MPNAME field of the Active
Main Processor Control Table. For JES2 messages, the SYSID value derives from the
SMF ID string.

Data Type: Character, read-only

Sample Value: S000

Note: The OPSLOG Browse column displays two characters of this variable, not the
complete field. The CA OPS/MVS BROWSEIDFORMAT parameter determines which
characters are displayed. For a description of the BROWSEIDFORMAT parameter,
see the Parameter Reference.

OPSLOG Browse Column: SYSID

USS.TAG

A character string that identifies the type of platform that originated the message

■ OS390-CCS for z/OS

■ WNT-Windows workstation

Data Type: Character, read-only

Sample Value: OS390

For USS process events, this variable contains an abbreviated name for the z/OS
dynamic exit that created the event.

Possible Values:

■ POSTINIT

■ IMAGINIT

■ PRETERM

UNIX System Services Rules

Chapter 6: Coding Each AOF Rule Type 355

USS.TERMNAME

The first 8 characters of the network host name on which the message originated.
This value is extracted from the USS.NODE variable for inclusion in OPSLOG.

Data Type: Character, read-only

Sample Value: NODESY01

For USS process events, this variable contains a system terminal name, if applicable.

OPSLOG Browse Column: TERMNAME

USS.TEXT

The first 128 characters of the USS message, taken from the CA Event Manager
message block passed to the CA OPS/MVS USS message exit. For USS process
events, the value is the potentially truncated text of the USSPROCBEG or
USSPROCEND message.

Data Type: Character, read/write

Sample Value: WIN 12345 CA NSM now active on node IPNODE1

OPSLOG Browse Column: Text is always displayed.

USS.TOKEN

The CA Event Manager token number is a numeric value that can be the reply ID for
a WTOR, an internal record number in the message database, or an offset into the
message database. Except for a WTOR, this field is usually 0.

Data Type: Integer, read-only

Sample Value: 3

OPSLOG Browse Column: TOKEN

USS.TYPE

A character string indicating the type of the message issued

Possible Values:

■ WTO-A standard message

■ WTOR-A message expecting a reply

■ COMMAND-An echo message of a command entered

■ PROCESS -- For USS process events, distinguishes USS process events from
other USS messages having the same message IDs

■ REPLY-A reply to a WTOR message

■ NKNOWN-Type cannot be classified

Data Type: Character, read-only

Sample Value: WTO

UNIX System Services Rules

356 AOF Rules User Guide

USS.USER

An 8-byte variable providing communication between rules that execute for the
same USS message event. The variable can contain any installation data that these
rules need, and it can store a character string displayable through OPSLOG Browse.

Data Type: User-defined, read/write

Notes:

■ Before AOF processing, this variable is initialized to binary zeros. It is then
passed to each rule that executes for the same USS message event; each rule
can look at or change the variable contents before passing the variable to the
next rule for the USS message event.

■ The primary purpose of the USER variable is to provide a method to pass a
small amount of data between the rules. This data may be binary or mixed
case. The USER field may also be used for filtering in the OPSLOG. However,
USER data used for OPSLOG filtering must be uppercase and displayable.

OPSLOG Browse Column: USER

USS.USERDATA

Defines an arbitrary character string assigned by the issuer of the message to pass
data related to the message for automation or diagnostic purposes.

Data Type: Character, read-only

Sample Value: TERMERR=100

USS.USERID

The user ID of the security product on your system. This value is always the CA ACF2
user ID from the ACFASVT or the RACF user ID from the current ACEE of the USS
address space that is running the CA Event Manager.

Data Type: Character, read-only

Sample Value: SYSPG01

OPSLOG Browse Column: USERID

USS.WORKLOAD

The name of a workload to which the message is related. This message field is to be
used by the Workload Management application of CA NSM.

Data Type: Character, read-only

Sample Value: UNIWKLD

For USS process events, this variable contains the same value as the USS.PRTERM
variable (see the following section).

UNIX System Services Rules

Chapter 6: Coding Each AOF Rule Type 357

USS.WORKSTATION

The name of the workstation on which a workload is performed. This could be a
computer or a physical location. This variable is to be used by the CA NSM
Workload Management application.

Data Type: Character, read-only

Sample Value: TAPE BACKUP

USS.WTOID

The CA Event Manager message number assigned by the issuer of the message. This
is usually a number that appears somewhere in the message ID field, such as 999 in
message ID CASH_999_W. This field is usually 0.

Data Type: Integer, read-only

Sample Value: 1032

OPSLOG Browse Column: WTOID

More information:

AOF Rule Tools (see page 29)

Additional AOF Variables Available in a USS Process Event Rule

In addition to the normal USS message AOF variables, the following variables are
defined for USS process events only. The variables that begin with 'cr' are for the
creating process information when a process creation event has occurred. These
variables are null for a process termination event. The variables that begin with 'pr' are
for the process that has been created or terminated.

The following USS rule process event REXX stem variables are available:

USS.CRALIAS

The alias name of the z/OS security user name associated with the creating process.
This value is usually the same as USS.CRUSERID.

Data Type: Character, read-only

Sample Value: USSWIZ

USS.CRASID

The z/OS address space number in which the creating process is running.

Data Type: 2-byte binary (unprintable), read-only

Sample Value: '00AB'X

UNIX System Services Rules

358 AOF Rules User Guide

USS.CRJOBNAME

The z/OS job name of the address space in which the creating process is running.

Data Type: Character, read-only

Sample Value: TESTJOB1

USS.CRPGMNAME

The name of the z/OS program or HFS or zFS in compatibility mode path file name
associated with the creating process.

Data Type: Character, read-only

Sample Value: /bin/sh

USS.CRPID

The USS process id number of the creating process.

Data Type: Integer, read-only

Sample Value: 123789

USS.CRUSERID

The z/OS security user name associated with the creating process

Data Type: Character, read-only

Sample Value: USSGURU

USS.PRALIAS

The alias name of the z/OS security user name associated with the process. This
value is usually the same as USS.PRUSERID

Data Type: Character, read-only

Sample Value: USSWIZ

USS.PRASID

The z/OS address space number in which the process is running.

Data Type: 2-byte binary (unprintable), read-only

Sample Value: '00BA'X

OPSLOG Browse Column: ASID

UNIX System Services Rules

Chapter 6: Coding Each AOF Rule Type 359

USS.PRCREATE

The type of USS service that was used to create the process.

Data Type: Character, read-only

Possible Values:

■ FORK-the USS fork service

■ SPAWN-the USS spawn service

■ ATEXEC-the USS attach_exec service

■ ATEXMVS-the USS attach_execmvs service

■ 1STCALL-the process was created when a program called any USS service
function. When the task that caused the process to be created ends, the
process ends.

Sample Value: FORK

USS.PRJOBNAME

The z/OS job name of the address space the process in which the process is running.

Data Type: Character, read-only

Sample Value: TESTJOB2

OPSLOG Browse Column: JOBNAME

USS.PRPGMNAME

The name of the z/OS program or HFS or zFS in compatibility mode path file name
associated with the process.

Data Type: Character, read-only

Sample Value: /u/bin/myprog

USS.PRPID

The USS process id number of the created or terminated USS process.

Data Type: Integer, read-only

Sample Value: 147249

UNIX System Services Rules

360 AOF Rules User Guide

USS.PRTERM

The type of termination that ended the process.

Data Type: Character, read-only

Possible Values:

■ TERM-Normal termination

■ MEMTERM-the process is being terminated by address space termination.

■ ABTERM-the process terminated abnormally

For process initialization events the value is always INIT.

Sample Value: TERM

USS.PRTIMESTMP

The date and time the process was created. Because process ID numbers can be
reused by USS, the combination of process number and create time serve as a
unique value to identify the process.

Data Type: 8-byte binary value in z/OS time-of-day clock format

Sample Value: 'B256FC206E6980AB'X

USS.PRUSERID

The z/OS security user name associated with the process

Data Type: Character, read-only

Sample Value: USSGURU

OPSLOG Browse Column: USERID

Debug a USS Rule

To debug a TLM rule

1. Set the CA OPS/MVS BROWSEUSS parameter to YES.

2. Set the USS event profile of your OPSLOG display to Y.

This lets you view all USS events.

3. With these parameters set, display the OPSLOG EVENT column.

This lets you see recorded USS events. This record contains details of each USS
event for which you can use additional OPSLOG display columns to further
interrogate each event.

More information:

Code and Debug AOF Rules (see page 59)

UNIX System Services Rules

Chapter 6: Coding Each AOF Rule Type 361

Example of a USS Rule

The following is an example of a USS message rule that informs System State Manager
that the new IBM Web Server product is running in OMVS:

)USS IMW35361

)PROC

/* Inform SSM component that IBM web server running in OMVS has */

/* initialized (CURRENT_STATE = 'UP'). we'll also extract the */

/* USS process id and place it in the STCTBL table. This */

/* ID will be used in the shutdown procedures of the server. */

if USS.NODE = USS.SYNA then /* Be sure msg from our system */

 do

 parse upper var USS.PROCESS PROCID '/' . /* GET USS PROCESS ID */

 /* NEEDED TO STOP THIS PROCESS */

 /* Use OPS/REXX SQL host environment to update SSM table */

 address SQL "UPDATE STCTBL SET CURRENT_STATE = 'UP',",

 "PROCESSID = "PROCID" WHERE NAME = 'WEBSERV'"

/* send a message to a remote UNICENTER server */

 MSGTXT = 'OPSAUTO1 IBM WEB server initialized at 'TIME()

 address USS

 "WTO TEXT('"MSGTXT"') NODE(MAINUNI) "

 End

return

Appendix A: Summary of AOF Coding Guidelines 363

Appendix A: Summary of AOF Coding
Guidelines

This section contains the following topics:

OPS/REXX Host Environment Rule Characteristics (see page 363)

OPS/REXX Host Environment Rule Characteristics

This section discusses the rule characteristics of the various OPS/REXX host
environments. The information is presented alphabetically by host environment.

More information:

Coding Each AOF Rule Type (see page 69)

ADDRESS AOF

ADDRESS AOF uses the following rule types:

API, ARM, CMD, DOM, EOJ, EOM, EOS, GLV, MSG, OMG, SCR, SEC, TLM, TOD, USS

Rule Characteristics:

■ Sent to CA OPS/MVS.

■ Does not wait.

■ No output returned.

REQ

Rule Characteristics:

■ Runs inline.

■ Waits for output in external data queue.

OPS/REXX Host Environment Rule Characteristics

364 AOF Rules User Guide

ADDRESS AP

ADDRESS AP uses the following rule types:

API, ARM, CMD, DOM, EOJ, EOM, EOS, GLV, MSG, OMG, REQ, SCR, SEC, TLM, TOD, USS

Rule Characteristics:

■ Sent to CMSF to be forwarded to the CA Automation Point system.

■ Does not wait.

■ No output returned.

ADDRESS EPI

ADDRESS EPI uses the following rule types:

API, ARM, CMD, DOM, EOJ, EOM, EOS, GLV, MSG, OMG, SEC, TLM, USS

Rule Characteristics:

■ Not supported.

■ Schedule an OPS/REXX program in a server to perform this functionality. For
details, see the chapter “Code and Debug AOF Rules.”

REQ, SCR, TOD

Rule Characteristics:

■ Runs inline.

■ Waits for output in external data queue.

ADDRESS HWS

ADDRESS HWS uses the following rule types:

API, ARM, CMD, DOM, EOJ, EOM, EOS, GLV, MSG, OMG, REQ, SCR, SEC, TLM, TOD, USS

Rule Characteristics:

■ Not supported.

■ Schedule an OPS/REXX program in a server to perform this functionality. For
more information, see Code and Debug AOF Rules (see page 59).

REQ

Rule Characteristics:

■ Runs inline.

■ Waits for output in an external data queue.

OPS/REXX Host Environment Rule Characteristics

Appendix A: Summary of AOF Coding Guidelines 365

ADDRESS MIM

ADDRESS MIM uses the following rule types:

API, ARM, CMD, DOM, EOJ, EOM, EOS, GLV, MSG, OMG, REQ, SCR, SEC, TLM, TOD, USS

Characteristics:

■ Request sent to CA MIM

■ Output returned in stem variables

■ Error messages, if any, returned to external data queue

ADDRESS ISPEXEC

ADDRESS ISPEXEC uses the following rule types:

API, ARM, CMD, DOM, EOJ, EOM, EOS, GLV, MSG, OMG, SCR, SEC, TLM, TOD, USS

Rule Characteristics:

■ Not supported.

■ Schedule an OPS/REXX program in a server to perform this functionality. For
details, see the chapter “Code and Debug AOF Rules.”

REQ

Rule Characteristics:

■ Runs inline.

■ Waits for output in external data queue.

OPS/REXX Host Environment Rule Characteristics

366 AOF Rules User Guide

ADDRESS LXCON

ADDRESS LXCON uses the following rule types:

API, ARM, CMD, DOM, EOJ, EOM, EOS, GLV, MSG, OMG, SEC, TLM, USS

Rule Characteristics:

■ Sent to USS a server.

■ Does not wait.

■ No output is returned.

■ Schedule an OPS/REXX program in a server if command output interrogation is
needed.

■ LIST function of LXCON always runs inline and returns stem variable output.

REQ, SCR, TOD

Rule Characteristics:

■ Runs inline.

■ Waits for output in stem variables.

ADDRESS MESSAGE

ADDRESS MESSAGE uses the following rule types:

API, ARM, DOM, EOJ, EOM, EOS, GLV, MSG, OMG, SCR, TLM, TOD, USS

Rule Characteristics:

Sent as a route code|WTO.

CMD

Rule Characteristics:

Sent to issuing console.

REQ, SEC

Rule Characteristics:

Sent to TSO user if invoked from a foreground TSO session. Otherwise, it is sent to
OPSLOG.

OPS/REXX Host Environment Rule Characteristics

Appendix A: Summary of AOF Coding Guidelines 367

ADDRESS NETMAN

ADDRESS NETMAN uses the following rule types:

API, ARM, CMD, DOM, EOJ, EOM, EOS, GLV, MSG, OMG, SCR, SEC, TOD, TLM, USS

Rule Characteristics:

■ Sent to CA OPS/MVS internal CA Netman request queue to issue MGPT
commands. Does not wait.

■ No output returned.

REQ

Rule Characteristics:

■ Sent to CA OPS/MVS internal CA Netman request queue to issue MGPT
commands. Waits for command completion.

■ Output returned to external data queue.

ADDRESS NETMASTR

ADDRESS NETMASTR uses the following rule types:

API, ARM, CMD, DOM, EOJ, EOM, EOS, GLV, MSG, OMG, REQ, SCR, SEC, TLM, TOD, USS

Rule Characteristics:

■ Does not wait.

■ Command sent to CA NSM NetMaster Option and possibly forwarded to
another CA NSM NetMaster Option system.

■ Return code indicates whether the command was successfully passed to CA
NSM NetMaster Option on the local system.

■ No output returned.

OPS/REXX Host Environment Rule Characteristics

368 AOF Rules User Guide

ADDRESS OPER

ADDRESS OPER uses the following rule types:

API, ARM, CMD, DOM, EOJ, EOM, EOS, GLV, MSG, OMG, SCR, SEC, TLM, USS

Rule Characteristics:

■ Sent to target console as specified through the OCCONSOLENAME parameters
if no CONNAME operands are present.

■ No output returned.

■ Schedule an OPS/REXX program in a server if command output interrogation is
needed.

REQ, TOD

Rule Characteristics:

■ If NOOUTPUT keyword is omitted, valid command responses are returned to
the external data queue. If NOOUTPUT keyword is present (it should be if you
want no output), command is sent to the console as specified through the
OCCONSOLENAME parameters.

■ Waiting for output is highly discouraged except in cases where the responses
are relatively short and timely.

More information:

Code and Debug AOF Rules (see page 59)

ADDRESS OPSCTL

ADDRESS OPSCTL uses the following rule types:

API, ARM, CMD, DOM, EOJ, EOM, EOS, GLV, MSG, OMG, REQ, SCR, SEC, TLM, TOD, USS

Rule Characteristics:

■ Sent to specified facility. If facility is ECF or OSF, does not wait. If facility is MSF,
slight wait occurs.

■ Output returned to external data queue.

Note: If the command is MSF LIST, no wait occurs.

OPS/REXX Host Environment Rule Characteristics

Appendix A: Summary of AOF Coding Guidelines 369

ADDRESS OPSDYNAM

ADDRESS OPSDYNAM uses the following rule types:

API, ARM, CMD, DOM, EOJ, EOM, EOS, GLV, MSG, OMG, SEC, TLM, USS

Rule Characteristics:

■ Not supported.

■ Schedule an OPS/REXX program in a server to perform this functionality.

REQ, SCR, TOD

Rule Characteristics:

■ Runs inline.

■ Returns output in variables.

More information:

Code and Debug AOF Rules (see page 59)

ADDRESS OSF, ADDRESS OSFTSL, and ADDRESS OSFTSP

ADDRESS OSF, ADDRESS OSFTSL, and ADDRESS OSFTSP use the following rule types:

API, ARM, CMD, DOM, EOJ, EOM, EOS, GLV, MSG, OMG, REQ, SCR, SEC, TLM, TOD, USS

Rule Characteristics:

■ Sent to the relevant OSF TSO server class.

■ Does not wait.

■ No output returned.

ADDRESS SOF

ADDRESS SOF uses the following rule types:

API, ARM, CMD, DOM, EOJ, EOM, EOS, GLV, MSG, OMG, REQ, SCR, SEC, TLM, TOD, USS

Rule Characteristics:

■ Not supported.

■ Schedule an OPS/REXX program in a server to perform this functionality.

OPS/REXX Host Environment Rule Characteristics

370 AOF Rules User Guide

More information:

Code and Debug AOF Rules (see page 59)

ADDRESS SQL

ADDRESS SQL uses the following rule types:

API, ARM, CMD, DOM, EOJ, EOM, EOS, GLV, MSG, OMG, REQ, SCR, SEC, TLM, TOD, USS

Rule Characteristics:

■ Does not wait. Processed synchronously for requests that can be satisfied on
the local system.

■ Output returned in stem variable.

■ Error messages, if any, returned to external data queue.

ADDRESS SYSVIEWE

ADDRESS SYSVIEWE uses the following rule types:

API, ARM, CMD, DOM, EOJ, EOM, EOS, GLV, MSG, OMG, REQ, SCR, SEC, TLM, TOD, USS

Rule Characteristics:

■ Not supported.

■ Schedule an OPS/REXX program in a server to perform this functionality.

More information:

Code and Debug AOF Rules (see page 59)

OPS/REXX Host Environment Rule Characteristics

Appendix A: Summary of AOF Coding Guidelines 371

ADDRESS TSO

ADDRESS TSO uses the following rule types:

API, ARM, CMD, DOM, EOJ, EOM, EOS, GLV, MSG, OMG, SCR, SEC, TOD, TLM, USS

Rule Characteristics:

■ Sent to OSF TSO server.

■ Does not wait.

■ No output returned.

REQ

Rule Characteristics:

■ Runs inline.

■ Waits for output in external data queue.

ADDRESS USS

ADDRESS USS uses the following rule types:

API, ARM, CMD, DOM, EOJ, EOM, EOS, GLV, MSG, OMG, SEC, TLM, USS

Rule Characteristics:

■ Sent to USS server.

■ Does not wait.

■ No output returned.

■ Schedule an OPS/REXX program in a server if command output interrogation is
needed.

REQ, SCR, TOD

Rule Characteristics:

■ Runs inline.

■ Waits for output in stem variables.

OPS/REXX Host Environment Rule Characteristics

372 AOF Rules User Guide

ADDRESS WTO

ADDRESS WTO uses the following rule types:

API, ARM, CMD, DOM, EOJ, EOM, EOS, GLV, MSG, OMG, SEC, TLM, USS

Rule Characteristics:

■ Does not wait.

■ Sends output to specified (or default) destination.

■ If you attempt a WTOR, host command is sent to TSO server for execution and
response is returned to server. Schedule an OPS/REXX program in a server if
WTOR response interrogation is needed.

REQ, SCR, TOD

Rule Characteristics:

■ Does not wait.

■ Output sent to specified console.

■ If you attempt a WTOR, runs inline and waits for response in external data
queue.

OPS/REXX Host Environment Rule Characteristics

Appendix A: Summary of AOF Coding Guidelines 373

SAY Output

The following describes the SAY output rule types and where the SAY output is sent for
each rule:

API, ARM, DOM, EOJ, EOM, EOS, MSG, OMG, SCR, TLM, TOD, USS

Sent as a WTO with OPS1000I as a default message ID, which may result in it being
broadcasted to physical consoles.

CMD

Sent as a WTO with OPS1000I as a default message ID and is directed to the console
that triggered the event.

GLV

Destination is that of the SAY destination for the event that initiated the GLV rule.

REQ

Sent as a PUTLINE with OPS1000I as a default message ID to a TSO user. It is sent as
a WTO with OPS3092H as a default message ID (prefixed in front of the OPS1000I)
to the hardcopy log if the request originated in any class of OSF TSO server.

SEC

Sent as a PUTLINE with OPS1000I as a default message ID to a TSO user. Otherwise,
it is sent as a WTO with OPS1000I as a default message ID, which may result in it
being broadcasted to physical consoles.

Note: With the exception of REQ and SEC rules, the SAY instruction should only be used
for debugging purposes. Use the ADDRESS WTO OPS/REXX host environment when
WTO generation is needed in your automation.

TRACE Output

The following describes the TRACE output rule types and where the TRACE output is
sent for each rule:

API, ARM, CMD, DOM, EOJ, EOM, EOS, GLV, MSG, OMG, REQ, SCR, SEC, TLM, TOD, USS

With a default message severity of T for OPS0997, all TRACE activity is sent to the
OPSLOG.

OPS/REXX Host Environment Rule Characteristics

374 AOF Rules User Guide

Execution Considerations for Each Rule Type

The following describes each rule type and where the processing section of rules
execute:

API

In the address space of the application that generated the event

ARM

In the XCFAS address space

CMD

In the address space from which the command was issued (usually CONSOLE)

DOM

In the address space from which the delete operator message was issued

EOJ

In the address space where the job is ending

EOM

In the master address space

EOS

In the address space where the step is ending

GLV

In the same address space in which the REXX program or AOF rule that changed the
global variable ran

MSG

In the address space from which the message was issued

OMG

In the OMEGAMON address space

REQ

In the address space from which the OPSREQ TSO command was issued

OPS/REXX Host Environment Rule Characteristics

Appendix A: Summary of AOF Coding Guidelines 375

SCR, TOD

In the CA OPS/MVS address space

SEC

In the address space where the request that caused the security event was issued

TLM

In the address space that has reached its time or wait limit

USS

In the CA NSM address space

Index 377

Index

A

ADDRESS LXCON • 366
address space, terminating • 169
AOF (Automated Operations Facility) • 15
AOF coding guidelines summary • 363
AOF Production facility • 50
AOF RETURN statement • 44
AOF rule sets • 18
AOF rules

limits • 55
structure • 21

AOF Test facility • 50
AOFINITREXX parameter • 54
API events

SOF API rules • 76
API rules • 70

API event variables • 74
event specifier • 70
execution considerations • 71
initialization, processing, and termination

sections • 71
installation and activation requirements • 70

API.APPLICATION variable • 74
API.COLOR variable • 74
API.ID variable • 74
API.LEVEL variable • 74
API.TEXT variable • 74
API.USER variable • 74
API.VERSION variable • 74
Application Program Interface (API) • 15
ARM event • 15, 115
ARM.CLONEID variable • 120
ARM.COLOR variable • 120
ARM.ELEMENT variable • 120
ARM.ELEMTYPE variable • 120
ARM.EVENTCODE variable • 120
ARM.FROMSYS variable • 120
ARM.HOMESYS variable • 120
ARM.JCLDSN variable • 120
ARM.JCLMEM variable • 120
ARM.JOBNAME variable • 120
ARM.PERSISTJCL variable • 120
ARM.POLICYSTART variable • 120
ARM.RESTARTTYPE variable • 120

ARM.STARTTEXT variable • 120
ARM.TEXT variable • 120
ARM.TOSYS variable • 120
ARM.USER variable • 120
Automated Operations Facility (AOF), described • 15
Automatic Restart Management (ARM) Rules • 115
Automation Analyzer • 50
automation rules • 59

B

BROWSExxx parameter • 67
built-in functions • 40

C

CA 7 messages • 193
CA OPS/MVS messages • 194
CICS TDQ messages • 193
CMD event • 15, 125
CMD.AOFCMD variable • 138
CMD.CONSNAME variable • 138
CMD.IMSID variable • 138
CMD.JES3PLEXSYN variable • 138
CMD.JES3PREFIX variable • 138
CMD.JES3SYN variable • 138
CMD.JOBNAME variable • 138
CMD.MSFID variable • 138
CMD.ORIGINSYS variable • 138
CMD.OTEXT variable • 138
CMD.PRODCMD variable • 138
CMD.SSMCMD variable • 138
CMD.TERMNAME variable • 138
CMD.TEXT variable • 138
CMD.TYPE variable • 138
CMD.USER variable • 138
CMD.USERID variable • 138
CMD.VERB variable • 138
CMD.XCONID variable • 138
command event (CMD) • 15
command rules • 125
command text, storing in variables • 138
comments in rules • 60
CONSOLE address space • 125
console ID, storing in a variable • 138
console name, storing in a variable • 138
controlling the AOF enable process • 54

378 AOF Rules User Guide

D

debugging techniques • 64
Delete-Operater-Message (DOM) rules • 146
delete-operator-message event (DOM) • 15
device path status change • 78
device status change • 77
DOM event • 15, 146
DOM.SYSPLEX variable • 150
DOM.TOKEN variable • 150
DOM.USER variable • 150
DOM.WTOID variable • 150
DOM.WTOIDNUM variable • 150

E

EasyRule • 49
enablement • 45
End-of-Job(EOJ) rules • 153
End-of-Memory (EOM) rules • 165
end-of-memory event (EOM) • 15
End-of-Step (EOS) rules • 172
end-of-step event (EOS) • 15
EOJ event • 153
EOJ.ACCOUNT • 157
EOJ.COLOR • 157
EOJ.CONDCODE • 157
EOJ.CPUSRB • 157
EOJ.CPUTCB • 157
EOJ.EXCPCNT • 157
EOJ.JOBCLASS • 157
EOJ.JOBNAME variable • 157
EOJ.MAXCC • 157
EOJ.NONSPTAPE • 157
EOJ.PGMNAME • 157
EOJ.REASCODE • 157
EOJ.RESGROUP • 157
EOJ.SECGROUP • 157
EOJ.SECUSER • 157
EOJ.SERVCLAS • 157
EOJ.SMF30AD • 157
EOJ.SPTAPE • 157
EOJ.STARTDATE • 157
EOJ.STARTTIME • 157
EOJ.SUBSYS • 157
EOJ.TERMNAME • 157
EOJ.TEXT • 157
EOJ.USER • 157
EOJ.USERCOM • 157
EOJ.WORKLOAD • 157

EOM event • 165
EOM.ASID variable • 169
EOM.JOBNAME variable • 169
EOM.TEXT variable • 169
EOM.USER variable • 169
EOS event • 172
EOS, end-of-step event • 15
EOS.ACCOUNT variable • 176
EOS.COLOR variable • 176
EOS.CONCODE variable • 176
EOS.CPUCTB variable • 176
EOS.CPUSRB variable • 176
EOS.EXCPCNT variable • 176
EOS.JOBCLASS variable • 176
EOS.JOBNAME variable • 176
EOS.MAXCC variable • 176
EOS.NONSPTAPE variable • 176
EOS.OESUBSTEP variable • 176
EOS.PGMNAME variable • 176
EOS.PGMRNAME variable • 176
EOS.PROCSTEP variable • 176
EOS.REASCODE variable • 176
EOS.RESGROUP variable • 176
EOS.SECGROUP variable • 176
EOS.SECUSER variable • 176
EOS.SERVCLAS variable • 176
EOS.SMF30AD variable • 176
EOS.SPTAPE variable • 176
EOS.STARTDATE variable • 176
EOS.STARTTIME variable • 176
EOS.STEPNAME variable • 176
EOS.STEPNUMB variable • 176
EOS.SUBSYS variable • 176
EOS.TERMNAME variable • 176
EOS.TEXT variable • 176
EOS.USER variable • 176
EOS.USERCOM variable • 176
EOS.WORKLOAD variable • 176
event-related variables • 30, 32
eventspec • 22
execution considerations of AOF rules • 374

G

Generic Event API • 69
Global Variable (GLV) rules • 183
global variable event (GLV) • 15
global variables • 30, 185
GLV event • 183

Index 379

GLV.MSFID variable • 188
GLV.NEWVALUE variable • 188
GLV.OLDVALUE variable • 188
GLV.PROGRAM variable • 188
GLV.TEXT variable • 188
GLV.USER variable • 188

H

host environments • 40

I

IMS ID, storing in a variable • 138
IMS messages • 193
INTERPRET statement • 61

J

job name of command issuers, storing in variables •
138

L

Linux Connector API Rules • 111
Log file-directed messages • 194

M

message (MSG) rules • 192
message descriptor codes, storing in a variable • 204
message disposition, storing in a variable • 204
message event (MSG) • 15
message flag, storing in a variable • 204
message ID, storing in a variable • 204
message rules • 56
MPF conversion facility • 51
MSF ID of command issuers, storing in a variable •

138
MSG event • 192
MSG, message event • 15
MSG.AUTOFLAG variable • 204
MSG.AUTOTOKN variable • 204
MSG.CMDRESPONSE variable • 204
MSG.COLOR variable • 204
MSG.CONID variable • 204
MSG.CONSNAME variable • 204
MSG.CONTROLLN variable • 204
MSG.DATALN variable • 204
MSG.DESC variable • 204
MSG.DISP variable • 204
MSG.ENDLN variable • 204

MSG.FLAGS variable • 204
MSG.ID variable • 204
MSG.IMMEDACT variable • 204
MSG.IMSID variable • 204
MSG.JOBID variable • 204
MSG.JOBLOGSUP variable • 204
MSG.JOBNAME variable • 204
MSG.JOBNM variable • 204
MSG.LABELLN variable • 204
MSG.MIC variable • 204
MSG.MLWTOMIN variable • 204
MSG.MPFSUPP variable • 204
MSG.MSFID variable • 204
MSG.MULTILN variable • 204
MSG.OASID variable • 204
MSG.ODESC variable • 204
MSG.OJOBNAME variable • 204
MSG.OMAJORTEXT variable • 204
MSG.OROUTE variable • 204
MSG.OTEXT variable • 204
MSG.REISSUE variable • 204
MSG.REPLYID variable • 204
MSG.REPORTID variable • 204
MSG.ROUTE variable • 204
MSG.SINGLELN variable • 204
MSG.SPCHR variable • 204
MSG.SUBSMOD variable • 204
MSG.SYNA variable • 204
MSG.SYSID variable • 204
MSG.TERMNAME variable • 204
MSG.TEXT variable • 204
MSG.TIMESTAMP variable • 204
MSG.TOKEN variable • 204
MSG.URGENT variable • 204
MSG.USER variable • 204
MSG.USERID variable • 204
MSG.WTOID variable • 204
MSG.WTOR variable • 204
MSG.WTP variable • 204

N

NetView alert messages • 193
non-global compound variable • 32, 33, 34, 37

O

OMEGAMON (OMG) rules • 237
OMEGAMON event (OMG) • 15
OMG event • 237

380 AOF Rules User Guide

OMG, OMEGAMON exception events • 15
OMG.COLOR variable • 241
OMG.DDNAME variable • 241
OMG.JOBNAME variable • 241
OMG.NAME variable • 241
OMG.REPORTID variable • 241
OMG.SYSID variable • 241
OMG.TEXT variable • 241
OMG.USER variable • 241
OPAU control block variables • 271
OPS/REXX

OPSVALUE function • 33
variables • 30

OPS/REXX Host Environment Rule Characteristics •
363

OPS/REXX host environments
ADDRESS AOF • 363
ADDRESS AP • 364
ADDRESS EPI • 364
ADDRESS ISPEXEC • 365
ADDRESS MESSAGE • 366
ADDRESS NETMAN • 367
ADDRESS NETMASTR • 367
ADDRESS OPER • 368
ADDRESS OPSCTL • 368
ADDRESS OPSDYNAM • 369
ADDRESS OSF • 369
ADDRESS OSFTSL • 369
ADDRESS OSFTSP • 369
ADDRESS SQL • 369, 370
ADDRESS SYSVIEWE • 370
ADDRESS TSO • 371
ADDRESS USS • 371
ADDRESS WTO • 372

OPSLOG Browse, choosing message display colors •
204

P

parameters to control AOF • 55
processing section of a rule, coding • 24

R

reissued messages • 194
REQ event • 245
REQ, request event • 15
REQ.CODE variable • 249
REQ.TEXT variable • 249
REQ.USER variable • 249

Request (REQ) rules • 245
request event (REQ) • 15
REXX • 39
REXX TRACE built-in function • 66
rules

automation • 59
comments in • 60
errors • 54
limits • 56
Linux Connector API • See Linux Connector API

Rules
processing section of • 24
SOF API • 76
termination section of • 26

RULETRACE parameter • 66

S

Sample AOF rules • 51
SAY instruction • 60
SAY output of AOF rules • 373
SCR event • 252
SCR, screen event • 15
SCR.ASID variable • 257
SCR.JOBNAME variable • 257
SCR.TERMNAME variable • 257
SCR.TEXT • 254
SCR.TEXT variable • 257
SCR.TYPE variable • 257
SCR.USER variable • 257
screen

rules • 254
update events • 254

Screen (SCR) rules • 252
screen event (SCR) • 15
SEC event • 261
SEC.AUAOBULN variable • 278
SEC.AUAOCMBU variable • 278
SEC.AUAODSNA variable • 278
SEC.AUAORLNA variable • 278
SEC.AUAORQTY variable • 278
SEC.AUAORSNA variable • 278
SEC.AUAORSSC variable • 278
SEC.AUAOSCOP variable • 278
SEC.AUAOSYNA variable • 278
SEC.AUAOVBSR variable • 278
SEC.AUAPCOMM variable • 316
SEC.AUAPSYSN variable • 316
SEC.AUAPVERB variable • 316

Index 381

SEC.AUBODBCD variable • 280
SEC.AUBODBLN variable • 280
SEC.AUBODBSR variable • 280
SEC.AUBOSSLN variable • 280
SEC.AUBOSSNA variable • 280
SEC.AUBOSYNA variable • 280
SEC.AUCTBULN variable • 284
SEC.AUCTCMBU variable • 284
SEC.AUCTCMLN variable • 284
SEC.AUCTCMSR variable • 284
SEC.AUCTRQTY variable • 284
SEC.AUCTSYNA variable • 284
SEC.AUEPAPID variable • 285
SEC.AUEPBULN variable • 285
SEC.AUEPCMBU variable • 285
SEC.AUEPRQTY variable • 285
SEC.AUEPTMID variable • 285
SEC.AUEPTMPW variable • 285
SEC.AUEPVBSR variable • 285
SEC.AUGLDELN variable • 288
SEC.AUGLDENA variable • 288
SEC.AUGLOPCH variable • 288
SEC.AUGLRQTY variable • 288
SEC.AUGLSYNA variable • 288
SEC.AULGFUCD variable • 293
SEC.AULGMXSC variable • 293
SEC.AULGSFCD variable • 293
SEC.AULGSSNA variable • 293
SEC.AUOCBULN variable • 281
SEC.AUOCCMBU variable • 281
SEC.AUOCCMLN variable • 281
SEC.AUOCCMSR variable • 281
SEC.AUOCCNID variable • 281
SEC.AUOCCNNM variable • 281
SEC.AUOCDLTM variable • 281
SEC.AUOCORSY variable • 281
SEC.AUOCRQTY variable • 281
SEC.AUOCSYID variable • 281
SEC.AUOSBULN variable • 294
SEC.AUOSCMBU variable • 294
SEC.AUOSHOEV variable • 294
SEC.AUOSVBSR variable • 294
SEC.AUPAPANA variable • 295
SEC.AUPARQTY variable • 295
SEC.AUPASYNA variable • 295
SEC.AURMBULN variable • 301
SEC.AURMCMBU variable • 301
SEC.AURMCMLN variable • 301
SEC.AURMCMSR variable • 301

SEC.AURMDETY variable • 301
SEC.AURMSYID variable • 301
SEC.AURPDLTM variable • 296
SEC.AURPFUCD variable • 296
SEC.AURPIMID variable • 296
SEC.AURPIMKY variable • 296
SEC.AURPJBKY variable • 296
SEC.AURPJBNA variable • 296
SEC.AURPJNKY variable • 296
SEC.AURPJNNM variable • 296
SEC.AURPMGID variable • 296
SEC.AURPMGKY variable • 296
SEC.AURPRIID variable • 296
SEC.AURPRIKY variable • 296
SEC.AURPRPKY variable • 296
SEC.AURPRPTX variable • 296
SEC.AURPSLCN variable • 296
SEC.AURPSPKY variable • 296
SEC.AURPSPNA variable • 296
SEC.AURPSYKY variable • 296
SEC.AURPSYNA variable • 296
SEC.AURPTXKY variable • 296
SEC.AURPWAKY variable • 296
SEC.AURPWATM variable • 296
SEC.AURQFUCD variable • 300
SEC.AURQRQTX variable • 300
SEC.AUSHDENA variable • 291
SEC.AUSHFUCD variable • 291
SEC.AUSHSFID variable • 291
SEC.AUSHSYID variable • 291
SEC.AUSHVATY variable • 291
SEC.AUSQCAID variable • 306
SEC.AUSQFUCD variable • 306
SEC.AUSQSQST variable • 306
SEC.AUSQSYNA variable • 306
SEC.AUSSDDNA variable • 310
SEC.AUSSPA01 variable • 310
SEC.AUSSPA02 variable • 310
SEC.AUSSPA03 variable • 310
SEC.AUSSPA04 variable • 310
SEC.AUSTACTB variable • 312
SEC.AUSTFUCD variable • 312
SEC.AUSTMDTB variable • 312
SEC.AUSTNADW variable • 312
SEC.AUSTNATB variable • 312
SEC.AUSTNAUN variable • 312
SEC.AUSTNAUP variable • 312
SEC.AUSTOTCR variable • 312
SEC.AUSTSTTB variable • 312

382 AOF Rules User Guide

SEC.AUSTSYNA variable • 312
SEC.AUSYCMSR variable • 314
SEC.AUSYFUCD variable • 314
SEC.AUSYJSNA variable • 314
SEC.AUSYOTSR variable • 314
SEC.AUSYSSNA variable • 314
SEC.AUSYSYID variable • 314
SEC.AUUNFUCD variable • 315
SEC.AUUNUNCM variable • 315
SEC.AUUNVERB variable • 315
SEC.AUWTCIKY variable • 302
SEC.AUWTCNID variable • 302
SEC.AUWTCNKY variable • 302
SEC.AUWTCNNM variable • 302
SEC.AUWTDCCD variable • 302
SEC.AUWTDCKY variable • 302
SEC.AUWTDLTM variable • 302
SEC.AUWTFUCD variable • 302
SEC.AUWTHIKY variable • 302
SEC.AUWTLOKY variable • 302
SEC.AUWTMCFG variable • 302
SEC.AUWTMCKY variable • 302
SEC.AUWTMGID variable • 302
SEC.AUWTMGKY variable • 302
SEC.AUWTROCD variable • 302
SEC.AUWTROKY variable • 302
SEC.AUWTRPKY variable • 302
SEC.AUWTSYNA variable • 302
SEC.AUWTTXKY variable • 302
SEC.AUWTTXSR variable • 302
SEC.AUWTWAKY variable • 302
SEC.AUWTWATM variable • 302
SEC.OPAUAUSR variable • 271
SEC.OPAUBYSC variable • 271
SEC.OPAUECJB variable • 271
SEC.OPAUERMG variable • 271
SEC.OPAUGNER variable • 271
SEC.OPAUJBNA variable • 271
SEC.OPAUOPJB variable • 271
SEC.OPAUOSJB variable • 271
SEC.OPAURQRC variable • 271
SEC.OPAURQTX variable • 271
SEC.OPAUSSNA variable • 271
SEC.OPAUUSID variable • 271
SEC.TYPE variable • 268
SEC.USER variable • 268
security

event • 15
rules • 261

Security (SEC) rules • 261
security event (SEC) • 15
simple variable • 32
SOF

API events • 76
API rule • 79
API rule to vary online devices • 79

static variables • 30
stem variable • 61
switch operation

device status change • 79
Switch Operations Facility (SOF) See SOF • 76

T

termination section of a rule, coding • 26
time limit (TLM) rules • 319
time limit excession event (TLM) • 15
time of day (TOD) rules • 328
time of day event • 15
Time of Day event (TOD) • 15
TLM

time limit excession event • 15
TLM events • 319
TLM.COLOR variable • 324
TLM.CPUCOUNT variable • 324
TLM.CPUSECS variable • 324
TLM.EXTEND variable • 324
TLM.JMRADDR variable • 324
TLM.JOBNAME variable • 324
TLM.LIMIT variable • 324
TLM.RDRDATE variable • 324
TLM.RDRTIME variable • 324
TLM.SUBSYS variable • 324
TLM.TEXT variable • 324
TLM.USER variable • 324
TLM.USERCOM variable • 324
TLM.WAITCOUNT variable • 324
TLM.WAITSECS variable • 324
TOD events • 328
TOD specification • 332
TOD.CATCHUP variable • 337
TOD.FIREMISSED variable • 337
TOD.NEXTFIRE variable • 337
TOD.USER variable • 337
TRACE output of AOF rules • 373

U

UNIX System Services (USS) rules • 343

Index 383

UNIX System Services event • 15
UNIX System Services event (USS) • 15
USS event • 343
USS process event rules, installation requirements •

344
USS rules, installation requirements • 343
USS.ATTRIBUTE variable • 348
USS.AUTOTOKN variable • 348
USS.CATEGORY variable • 348
USS.COLOR variable • 348
USS.DESC variable • 348
USS.DEVICE variable • 348
USS.FACILITY variable • 348
USS.FLAG variable • 348
USS.FULLTEXT variable • 348
USS.ID variable • 348
USS.JOBID variable • 348
USS.JOBNAME variable • 348
USS.MSGFLAGS variable • 348
USS.MSGUSER variable • 348
USS.NODE variable • 348
USS.PROCESS variable • 348
USS.REPLYID variable • 348
USS.REPORTID variable • 348
USS.SEVERITY variable • 348
USS.SYNA variable • 348
USS.SYSID variable • 348
USS.TAG variable • 348
USS.TERMNAME variable • 348
USS.TEXT variable • 348
USS.TOKEN variable • 348
USS.TYPE variable • 348
USS.USER variable • 348
USS.USERDATA variable • 348
USS.USERID variable • 348
USS.WORKLOAD variable • 348
USS.WORKSTATION variable • 348
USS.WTOID variable • 348

V

VALUE function • 61
variables • 30

address space-related • 34
dynamic • 32
environmental (event-related) • 30
event-related • 37
Linux connector events • 112
OPS/REXX global • 35

static • 33

Z

z/OS console • 125

	CA OPS/MVS Event Management and Automation AOF Rules User Guide
	CA Technologies Product References
	Contact CA Technologies
	Documentation Changes
	Contents
	1: Using the AOF
	What Is the AOF
	AOF Rules and Rule Sets
	Determine AOF Rule Set Names
	Sharing Rule Data Sets
	Allocate Rule Sets
	Additional AOF Rule Set Information

	2: AOF Rule Structure
	Structure of an AOF Rule
)eventtype eventspec--Event Definition Section (Required)
)PROC--Processing Section
)INIT--Initialization Section
)TERM--Termination Section
)END--End Section

	3: AOF Rule Tools
	Tools Available in AOF Rules
	AOF Variables
	Environmental (Event-related) Variables
	Dynamic Variables
	Static Variables
	Address Space-related Variables
	OPS/REXX Global Variables
	Event-related Variables

	REXX Programming Techniques
	OPS/REXX Host Environments and Built-in Functions
	OPS/REXX Host Environments
	OPS/REXX Built-in Functions

	AOF RETURN Statement
)INIT Section--Enable a Rule
)PROC Section--Valid Return Statement Values
)TERM Section--Disable a Rule

	4: Building and Controlling AOF Rules
	Ways to Create AOF Rules
	EasyRule
	ISPF/PDF Editor in the AOF Test Facility
	ISPF/PDF Editor in the AOF Production Facility
	Automation Analyzer
	MPF Conversion Facility
	Sample AOF Rules

	Control AOF Rule Status
	Definition of AOF Rule Status
	How to Control Rules from the Rule Set Level
	Create and Control Rules Programmatically
	AOFINITREXX Parameter

	Process Modified AOF Rules
	Execution of Enabled Rules
	Protect Against Rule Errors
	Parameters for Setting Global AOF Rule Limits
	Set Limits for Individual Rules
	How Multiple Rules Execute in Response to a Single Event
	ABENDLOG Automation

	5: Code and Debug AOF Rules
	Coding Guidelines
	Automation Tools
	How to Add Comments in AOF Rules
	REXX Functions and Routines in AOF Rules
	How to Use the SAY Instruction
	Reference a Stem Variable in an INTERPRET Statement or VALUE Function
	Use External Subroutines

	Interactive Automation or Automation that Requires Waiting
	Logic in Automated Applications
	Events Specified with the Wildcard Character

	Debugging Techniques
	OPSLOG Facility
	REXX TRACE Built-in Function
	How RULETRACE Parameter Works
	BROWSExxx Parameter

	6: Coding Each AOF Rule Type
	Generic Event Application Program Interface
	Install and Activate API Rules
	Event Specifier of API Rules
	Initialization, Processing, and Termination Sections of API Rules
	RETURN Statements in the)PROC Section of an API Rule
	Execution Considerations for API Rules
	OPS/REXX Host Environments in the)PROC Section of an API Rule
	Common API Event Variables
	API.suffix--Specific API Event Variables
	Debug an API Rule
	SOF API Rules
	OPSOF001 Event--Device Status Change
	OPSOF002 Event--Device Path Status Change
	OPSOF003 Event--Connectivity Command Accepted

	How OPSOF001 Rule Selectively Varies Devices Online
	Hardware Event API Rules
	Entity-related Hardware Events
	System-related Hardware Events
	OPS/REXX Rule Variables For Hardware Events
	Event ID, Associated Entity and Description Table

	Linux Connector API Rules
	OPS/REXX Rule Variables For Linux Connector Events
	CA Product API Event Types

	Automatic Restart Management Rules
	Installation Requirements for ARM Rules
)ARM--Event Specifier of ARM Rules
	Initialization, Processing, and Termination Sections of ARM Rules
	RETURN Statements in the)PROC Section of an ARM Rule
	Execution Considerations for ARM Rules
	OPS/REXX Host Environments in the)PROC Section of an ARM Rule
	AOF Variables Available in an ARM Rule
	Debug an ARM Rule

	Command Rules
	Installation Requirements for CMD Rules
)CMD--Event Specifier of CMD Rules
	z/OS Command Guidelines
	JES2 Command Guidelines
	JES2 Stacked Command Guidelines
	Respond Rules For JES3 Command Guidelines
	Subsystem Command Character Guidelines

	Initialization, Processing, and Termination Sections of CMD Rules
	RETURN Statements in the)PROC Section of a CMD Rule
	Other RETURN Statement Considerations

	Execution Considerations for CMD Rules
	OPS/REXX Host Environments in the)PROC Section of a CMD Rule
	AOF Variables Available in a CMD Rule
	Debug a CMD Rule
	Examples of CMD Rules

	Delete-Operator-Message Rules
	Installation Requirements for DOM Rules
)DOM--Event Specifier of DOM Rules
	Initialization, Processing, and Termination Sections of DOM Rules
	RETURN Statements in the)PROC Section of a DOM Rule
	Execution Considerations for DOM Rules
	OPS/REXX Host Environments in the)PROC Section of a DOM Rule
	AOF Variables Available in a DOM Rule
	Debug a DOM Rule
	Example: DOM Rule

	End-of-Job Rules
	Installation Requirements for EOJ Rules
)EOJ--Event Specifier of EOJ Rules
	Initialization, Processing, and Termination Sections of EOJ Rules
	RETURN Statements in the)PROC Section of an EOJ Rule
	Execution Considerations for EOJ Rules
	OPS/REXX Host Environments in the)PROC Section of an EOJ Rule
	AOF Variables Available in an EOJ Rule
	Debug an EOJ Rule
	Example: EOJ Rule

	End-of-Memory Rules
	Installation Requirements for EOM Rules
)EOM--Event Specifier of EOM Rules
	Initialization, Processing, and Termination Sections of EOM Rules
	RETURN Statements in the)PROC Section of an EOM Rule
	Execution Considerations for EOM Rules
	OPS/REXX Host Environments in the)PROC Section of an EOM Rule
	AOF Variables Available in an EOM Rule
	Debug an EOM Rule
	Example: EOM Rule

	End-of-Step Rules
	Installation Requirements for EOS Rules
)EOS--Event Specifier of EOS Rules
	Initialization, Processing, and Termination Sections of EOS Rules
	RETURN Statements in the)PROC Section of an EOS Rule
	Execution Considerations for EOS Rules
	OPS/REXX Host Environments in the)PROC Section of an EOS Rule
	AOF Variables Available in an EOS Rule
	Debug an EOS Rule
	Example: EOS Rule

	Global Variable Rules
	Installation Requirements for GLV Rules
)GLV--Event Specifier of GLV Rules
	Initialization, Processing, and Termination Sections of GLV Rules
	RETURN Statements in the)PROC Section of a GLV Rule
	Execution Considerations for GLV Rules
	OPS/REXX Host Environments in the)PROC Section of a GLV Rule
	AOF Variables Available in a GLV Rule
	Debug a GLV Rule
	Example: GLV Rule

	Message Rules
	Installation Requirements for MSG Rules
	IMS Messages
	CICS TDQ Messages
	CA 7 Log Messages
	NetView Alert Messages
	Reissued Messages
	Log File Directed Messages
	CA OPS/MVS Messages

)MSG--Event Specifier of MSG Rules
	How to Use the NOOPSLOG Option
	Initialization, Processing, and Termination Sections of MSG Rules
	RETURN Statements in the)PROC Section of an MSG Rule
	Other RETURN Statement Considerations

	Execution Considerations for MSG Rules
	OPS/REXX Host Environments in the)PROC Section of an MSG Rule
	AOF Variables Available in MSG Rules
	Debug an MSG Rule
	MSG Rules Examples

	OMEGAMON Rules
	Installation Requirements for OMG Rules
)OMG--Event Specifier of OMG Rules
	Initialization, Processing, and Termination Sections of OMG Rules
	RETURN Statements in the)PROC Section of an OMG Rule
	Execution Considerations for OMG Rules
	OPS/REXX Host Environments in the)PROC Section of an OMG Rule
	AOF Variables Available in an OMG Rule
	Debug an OMG Rule
	Example: OMG Rule

	Request Rules
	Installation Requirements for REQ Rules
)REQ--Event Specifier of REQ Rules
	Initialization, Processing, and Termination Sections of REQ Rules
	RETURN Statements in the)PROC Section of a REQ Rule
	Execution Considerations for REQ Rules
	OPS/REXX Host Environments in the)PROC Section of a REQ Rule
	AOF Variables Available in REQ Rules
	Debug an REQ Rule
	Examples: REQ Rules

	Screen Rules
	Installation Requirements for SCR Rules
)SCR--Event Specifier of SCR Rules
	How Screen Rules Are Triggered
	Initialization, Processing, and Termination Sections of SCR Rules
	RETURN Statements in the)PROC Section of an SCR Rule
	Execution Considerations for SCR Rules
	OPS/REXX Host Environments in the)PROC Section of an SCR Rule
	AOF Variables Available in an SCR Rule
	Debug an SCR Rule
	Examples: SCR Rules

	Security Rules
	Installation Requirements for SEC Rules
)SEC--Event Specifier of SEC Rules
	Initialization, Processing, and Termination Sections of SEC Rules
	RETURN Statements in the)PROC Section of an SEC Rule
	Execution Considerations for SEC Rules
	OPS/REXX Host Environments in the)PROC Section of an SEC Rule
	AOF Variables Available in an SEC Rule
	OPAU Control Block Variables
	OPAU Variables for All Security Events
	OPAU Variables for OPSAOF Security Events
	OPAU Variables for OPSBRW Security Events
	OPAU Variables for OPSCMD and ADDRESS OPER Security Events
	OPAU Variables for OPSCTL Security Events
	OPAU Variables for OPSEPI Security Events
	OPAU Variables for OPSGLOBAL Security Events
	OPAU Variables for OPSHFI Security Events
	OPAU Variables for SOF Security Events
	OPAU Variables for OPSLOG Security Events
	OPAU Variables for OPSOSF Security Events
	OPAU Variables for OPSPARM and OPSPRM Security Events
	OPAU Variables for OPSREPLY Security Events
	OPAU Variables for OPSREQ Security Events
	OPAU Variables for OPSRMT Security Events
	OPAU Variables for OPSWTO Security Events
	OPAU Variables for SQL Security Events
	OPAU Variables for SUBSYSDSN Security Events
	OPAU Variables for System State Manager Security Events
	OPAU Variables for OPSVIEW Security Events
	OPAU Variables for USS Security Events
	OPAU Variables for CA Automation Point Security Events

	Debug an SEC Rule
	Examples: SEC Rules

	Time Limit-Exceeding Rules
	Installation Requirements for TLM Rules
)TLM--Event Specifier of TLM Rules
	Initialization, Processing, and Termination Sections of TLM Rules
	RETURN Statements in the)PROC Section of a TLM Rule
	Execution Considerations for TLM Rules
	OPS/REXX Host Environments in the)PROC Section of a TLM Rule
	AOF Variables Available in a TLM Rule
	Debug a TLM Rule

	Time-of-Day Rules
	Installation Requirements for TOD Rules
)TOD--Event Definition Section of TOD Rules
	Defining the Todspec
	Rules Governing the Coding of TOD Event Specifiers

	Initialization, Processing, and Termination Sections of TOD Rules
	RETURN Statements in the)PROC Section of a TOD Rule
	Execution Considerations for TOD Rules
	OPS/REXX Host Environments in the)PROC Section of a TOD Rule
	AOF Variables Available in a TOD Rule
	Debug a TOD Rule
	Examples: TOD Rules Event Specifiers
	Examples: Complete TOD Rules

	UNIX System Services Rules
	Installation Requirements for USS Rules
	Installation Requirements for USS Process Event Rules
)USS--Event Specifier of USS Rules
)USS USSPROCBEG--Event Specifier of USS Process Event Rules
	Initialization, Processing, and Termination Sections of USS Rules
	RETURN Statements in the)PROC Section of a USS Rule
	Execution Considerations for USS Rules
	OPS/REXX Host Environments in the)PROC Section of a USS Rule
	AOF Variables Available in a USS Rule
	Additional AOF Variables Available in a USS Process Event Rule
	Debug a USS Rule
	Example of a USS Rule

	A: Summary of AOF Coding Guidelines
	OPS/REXX Host Environment Rule Characteristics
	ADDRESS AOF
	ADDRESS AP
	ADDRESS EPI
	ADDRESS HWS
	ADDRESS MIM
	ADDRESS ISPEXEC
	ADDRESS LXCON
	ADDRESS MESSAGE
	ADDRESS NETMAN
	ADDRESS NETMASTR
	ADDRESS OPER
	ADDRESS OPSCTL
	ADDRESS OPSDYNAM
	ADDRESS OSF, ADDRESS OSFTSL, and ADDRESS OSFTSP
	ADDRESS SOF
	ADDRESS SQL
	ADDRESS SYSVIEWE
	ADDRESS TSO
	ADDRESS USS
	ADDRESS WTO
	SAY Output
	TRACE Output
	Execution Considerations for Each Rule Type

	Index

