
 

 

Provisioning Reference Guide 
r12.5 SP7 

CA Identity Manager 

 

 

 

 



 

 

 

This documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to as 
the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time.  

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part, without 
the prior written consent of CA. This Documentation is confidential and proprietary information of CA and may not be disclosed 
by you or used for any purpose other than as may be permitted in (i) a separate agreement between you and CA governing 
your use of the CA software to which the Documentation relates; or (ii) a separate confidentiality agreement between you and 
CA.  

Notwithstanding the foregoing, if you are a licensed user of the software product(s) addressed in the Documentation, you may 
print or otherwise make available a reasonable number of copies of the Documentation for internal use by you and your 
employees in connection with that software, provided that all CA copyright notices and legends are affixed to each reproduced 
copy.  

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable 
license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to 
certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.  

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY 
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR 
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, 
DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST 
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE 
POSSIBILITY OF SUCH LOSS OR DAMAGE. 

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such 
license agreement is not modified in any way by the terms of this notice. 

The manufacturer of this Documentation is CA.  

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions 
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or 
their successors.  

Copyright © 2011 CA. All rights reserved.  All trademarks, trade names, service marks, and logos referenced herein belong to 
their respective companies. 

 



 

 

CA Technologies Product References 

 

This document references the following CA products: 

■ CA Identity Manager 

■ CA SiteMinder®  

■ CA Directory 

■ CA Enterprise Log Manager 

■ CA Role & Compliance Manager 
 

Contact CA Technologies 

Contact CA Support 

For your convenience, CA Technologies provides one site where you can access the 
information you need for your Home Office, Small Business, and Enterprise CA 
Technologies products. At http://ca.com/support, you can access the following: 

■ Online and telephone contact information for technical assistance and customer 
services 

■ Information about user communities and forums 

■ Product and documentation downloads 

■ CA Support policies and guidelines 

■ Other helpful resources appropriate for your product 

Provide Feedback 

If you have comments or questions about CA Technologies product documentation, you 
can send a message to techpubs@ca.com. 

If you would like to provide feedback about CA Technologies product documentation, 
complete our short customer survey, which is available on the CA Support website at 
http://ca.com/docs.  
 

http://www.ca.com/support
mailto:techpubs@ca.com
http://www.ca.com/docs
http://www.ca.com/docs




 

Contents  5  
 

Contents 
 

Chapter 1: Provisioning Manager 11 

User Interface for Provisioning ..................................................................... 11 

Provisioning Server ............................................................................... 11 

Administrator Authentication ...................................................................... 12 

Administrator Login ........................................................................... 12 

Administrator Authorization.................................................................... 13 

Chapter 2: Advanced Configuration Options 15 

Advanced Configuration Options Overview ........................................................... 15 

Global Properties ................................................................................. 16 

Domain Configuration ............................................................................. 17 

Provisioning Directory Parameters .............................................................. 20 

Authentication Parameters..................................................................... 20 

Authorization Parameters ...................................................................... 21 

Cache Parameters ............................................................................ 21 

Compatibility Parameters ...................................................................... 27 

Configuration Setup Parameters ................................................................ 29 

Connections Parameters ....................................................................... 29 

Endpoint Parameters .......................................................................... 32 

Explore and Correlate Parameters ............................................................... 35 

Identity Manager Server Parameters ............................................................ 43 

Operation Details Parameters .................................................................. 46 

Password Synchronization Parameters ........................................................... 48 

Password Parameters ......................................................................... 50 

Processes Parameters ......................................................................... 53 

Processor Parameters ......................................................................... 55 

Search Parameters ............................................................................ 56 

Servers Parameters ........................................................................... 60 

Statistics Parameters .......................................................................... 61 

Synchronization Parameters .................................................................... 63 

Transaction Log Parameters .................................................................... 66 

Chapter 3: SPML Service 71 

SPML Overview .................................................................................. 71 

Benefits of Using SPML ........................................................................ 71 

When You Would Use the SPML Service .......................................................... 72 



 
 

6  Provisioning Reference Guide 
 

SPML Architecture ............................................................................ 72 

SPML Integration ............................................................................. 76 

Install SPML ..................................................................................... 77 

SPML Support for FIPS 140-2 ....................................................................... 78 

Uninstall the SPML Service ......................................................................... 78 

SPML Service Configuration ........................................................................ 79 

Log On to the SPML Configuration Application .................................................... 79 

Add a New SPML Service....................................................................... 80 

Modify an Existing Service ..................................................................... 80 

Rename an Existing Service .................................................................... 81 

Delete an Existing Service ...................................................................... 81 

Configure SSL Support for Tomcat Servers ........................................................ 82 

Configure SPML Client Computer to Support SSL Security ........................................... 84 

CMDRA Commands ........................................................................... 85 

SPML Feed .................................................................................. 88 

Using the SPML Manager's Templating Functionality ............................................... 93 

Using Velocity Templates ...................................................................... 95 

Retrying SPML Requests ...................................................................... 100 

Chapter 4: Sample SPML Requests 107 

Request Execution Types ......................................................................... 107 

Request Types .................................................................................. 108 

Add Request ................................................................................ 108 

Batch Request............................................................................... 108 

Cancel Request .............................................................................. 110 

Delete Request .............................................................................. 110 

Extended Request ........................................................................... 111 

Modify Request ............................................................................. 115 

Propagate Global User Changes ................................................................ 116 

Schema Request ............................................................................. 117 

Search Request .............................................................................. 118 

Status Request .............................................................................. 120 

Global Settings .................................................................................. 120 

Example: Search for Attributes Defined in Global Settings.......................................... 121 

Example: Modify Attributes in Global Settings.................................................... 122 

Account Containers .............................................................................. 122 

Example: Create an Account Container.......................................................... 123 

Example: Create an Account within a Sub-Container .............................................. 123 

Complex Attributes .............................................................................. 124 

Example: Add a Single-Valued Complex Attribute ................................................. 125 

Example: Add a Multivalued Complex Attribute .................................................. 125 



 

 

Contents  7  
 

Request Retries ................................................................................. 126 

Propagate Global User Changes.................................................................... 126 

Example: Modify a Global User and Propagate Changes to Associated Accounts ....................... 127 

Example: Modify Complex Attribute and Propagate Changes to Accounts ............................ 127 

Escaping Special Characters in Object Identifiers ..................................................... 128 

Escaping Special Characters in Search Filters ......................................................... 128 

Chapter 5: etautil Batch Utility 129 

Tasks You Can Perform ........................................................................... 129 

etautil Syntax ................................................................................... 130 

etautil Control Statements .................................................................... 131 

Multivalued Attributes ....................................................................... 136 

Use DeletePending .............................................................................. 137 

Common Error Messages ......................................................................... 138 

Unknown error nnn opening Common Object Repository .......................................... 138 

End of file reached while expecting an operator .................................................. 138 

Object 'XXXX' operation failed: DB operation failed: Target DN not found. ............................ 138 

Object 'XXXX' operation failed: No server plug-in found for operation ............................... 138 

Class 'classname' is not a valid class name ....................................................... 139 

Could not find keyword xxxxx for class classname................................................. 139 

Obtain Operation Details ......................................................................... 139 

DOS Output from etautil .......................................................................... 140 

Chapter 6: Provisioning Servers on UNIX 141 

No UNIX GUI Clients or Utilities .................................................................... 141 

Command Line Examples ......................................................................... 142 

Libraries and Executables ......................................................................... 142 

Registry Access .................................................................................. 143 

Parser Tables ................................................................................... 144 

UNIX Services for Provisioning ..................................................................... 144 

Working with Hung or Crashed Servers ............................................................. 144 

Scheduling Periodic Actions ....................................................................... 145 

Passwords on Command Lines ..................................................................... 145 

Server Event Logging Destinations ................................................................. 145 

Program Exit Definitions .......................................................................... 146 

C++ Connector Server on Solaris ................................................................... 146 

Chapter 7: Program Exits 147 

Program Exits Overview .......................................................................... 147 

Ordering of Program Exit Invocations ............................................................... 148 



 
 

8  Provisioning Reference Guide 
 

Basic Structure of Program Exits ................................................................... 150 

Define Common Exits in the Provisioning Manager ................................................... 150 

Chapter 8: Common Program Exit Reference 153 

Program Exit Architecture ........................................................................ 153 

Program Exit Hierarchy and Order.................................................................. 154 

Common Program Exit Structure ................................................................... 155 

Program Exit Input Argument .................................................................. 155 

Program Exit Return Value .................................................................... 157 

Common Exits DLL Interface ................................................................... 160 

Common Exits SOAP Interface ................................................................. 161 

eTExitType ..................................................................................... 162 

Valid Values for eTExitType ................................................................... 163 

Containment ................................................................................ 167 

Custom Function Program Exits .................................................................... 171 

Obscured Returned Values .................................................................... 173 

Sample Flow/Execution Diagram ................................................................... 174 

Code Examples .................................................................................. 174 

Chapter 9: Program Exits In Connectors 175 

Execution Flow (Logic)............................................................................ 175 

Pre-Exits ................................................................................... 175 

Operation .................................................................................. 176 

Post-Exit ................................................................................... 176 

Support for Common Exits ........................................................................ 176 

Parser Table Enhancement .................................................................... 177 

GUI Plug-In Enhancement ..................................................................... 177 

Agent Plug-In Enhancement ................................................................... 177 

Support for Native Exits .......................................................................... 177 

Parser Table Enhancement .................................................................... 177 

GUI Plug-In Enhancement ..................................................................... 178 

Agent Plug-in Enhancement ................................................................... 178 

Exit Types ...................................................................................... 181 

Exit Type Functionality ....................................................................... 181 

Code Examples for Program Exits in Options ......................................................... 181 

Chapter 10: Provisioning Maintenance 183 

Back Up and Restore CA Directory ................................................................. 183 

Shut Down the Provisioning Server service .......................................................... 183 

View and Maintain Log Files ....................................................................... 184 



 

 

Contents  9  
 

Server Event Logging ......................................................................... 184 

Diagnostic Logging ........................................................................... 185 

Log Files for High Availability .................................................................. 190 

Provisioning Directory Monitoring ................................................................. 190 

Monitor Thresholds .......................................................................... 190 

Observe Router Traffic ....................................................................... 191 

Enable SSL Encryption ........................................................................ 191 

Index 193 

  





 

Chapter 1: Provisioning Manager  11  
 

Chapter 1: Provisioning Manager 
 

This section contains the following topics: 

User Interface for Provisioning (see page 11) 
Provisioning Server (see page 11) 
Administrator Authentication (see page 12) 

 

User Interface for Provisioning 

The Provisioning Manager is the user interface for advanced 
provisioning operations. This interface was formerly called eTrust 
Admin Manager. To use Provisioning Manager, choose Start, CA, 
Identity Manager, Provisioning Manager. 

Note: The Provisioning Manager method will not be available in future 
releases, so we recommend using the Identity Manager User Console 
instead. This guide describes the provisioning features of CA Identity 
Manager that are not integrated into the Identity Manager User 
Console.  For the features that are integrated into the User Console, 
such as account management tasks, see the Administration Guide.  

 
 

Provisioning Server 

The Provisioning Server is the server that manages additional accounts 
that are assigned to an Identity Manager user. When you assign a 
provisioning role to an Identity Manager user, the Provisioning Server 
creates accounts on endpoints that meet the requirements of the role. 
For example, if you assign a provisioning role that includes an 
Exchange account template, the Provisioning Server assigns an 
Exchange account to the user. 

 



Administrator Authentication 
 

12  Provisioning Reference Guide 
 

Administrator Authentication 

Objects in the provisioning domain are protected at several different 
levels, but overall access to the domain is protected by authentication 
security, which requires all administrators to identify themselves. The 
global user name and password that the administrator enters are 
checked against information stored in the provisioning directory.  

Note: You can configure the Provisioning Server to request 
authentication with a native system. For more information, see the 
Administration Guide.  

 

Administrator Login 

The first time you log on to the Provisioning Manager, you use the 
etaadmin global user, whose password was set up when the 
Provisioning Server was installed. 

The Provisioning Server also provides other built-in global users that 
provide authentication information for use only by Provisioning Server 
components. You will not use these global users to log on; instead, 
they provide additional authentication information for the domain. 

 

The etaadmin user is similar to a built-in superuser account. You set a 
password for this user when the Provisioning Server is installed. It is 
imperative to remember that password because you need it to log on 
as etaadmin the first time you use Provisioning Manager.  

 

When you log on using the etaadmin object, you have access to all the 
objects in the domain. You should immediately create a global user 
object for yourself and assign the DomainAdministrator profile to it. 
When this user has been created, you should log in as that user and 
not perform any more actions as the non-specific etaadmin 
administrator. Avoiding the use of etaadmin improves the traceability 
of actions as seen in various logs. For more security, you can delete or 
suspend the etaadmin user after you create your own account. 

 



Administrator Authentication 

 

Chapter 1: Provisioning Manager  13  
 

Administrator Authorization 

Authorization determines what administrators can do on the 
Provisioning Server. It defines the privileges that an administrator has 
in a domain. You can authorize an administrator by assigning an admin 
profile to the administrator's global user object or by assigning an 
admin profile to one of the administrator global user groups. 

 

Admin Profiles 

Admin profiles permit administrators certain types of access and 
privileges to manage objects in a domain. Admin profiles contain all 
the privileges that administrators need to perform different tasks. 
While administrative privileges can be assigned directly to global 
users, using admin profiles provides several advantages: 

■ Several administrators can be defined to a profile, and therefore, 
each receives the same administrative privileges. 

■ The operations that an administrator is allowed to perform will 
typically necessitate being granted a long list of administrative 
privileges. Placing them into an admin profile is less error prone as 
it lets you define the profile once and then apply those privileges 
to multiple administrators. 

■ Admin profiles can be accessed from other domains, making it 
easy for other administrators to create new profiles from existing 
profiles in other domains. 

Note: When assigning individual administrative privileges, you must 
give the administrator Read access to the object and its container. This 
access is necessary to list and search for objects.  

 



Administrator Authentication 
 

14  Provisioning Reference Guide 
 

Default Admin Profiles 

The Provisioning Server provides default admin profiles that control 
the privileges of an administrator. These profiles give administrators 
access to the objects in the domain of the profile. Like the default 
administrator objects, such as etaadmin, the following profiles are 
created automatically when you install the Provisioning Server:  

■ DomainAdministrator and DomainAdministrator-NoWeb-Gives 
administrators full access to every object in the domain. 
Administrators who have this profile in the root domain have full 
access to all Provisioning Server objects and security information. 

■ PasswordAdministrator-Lets administrators change passwords 
and activate or suspend global users. 

 

■ UserAdministrator-Lets administrators manage users in the 
domain. Administrators with this profile cannot modify 
provisioning roles or account templates. 

 

■ ReadAdministrator-Lets administrators read every object in the 
domain. 

■ SelfAdministrator-Defines the actions that can be performed by 
self-administrators. By default, this profile authorizes 
self-administrators to read their own global user object, list their 
accounts, and modify specific attributes of their own global user 
or accounts. You can customize this profile to meet your 
self-administrator authorization requirements.  

 



 

Chapter 2: Advanced Configuration Options  15  
 

Chapter 2: Advanced Configuration 
Options 
 

This section contains the following topics: 

Advanced Configuration Options Overview (see page 15) 
Global Properties (see page 16) 
Domain Configuration (see page 17) 

 

Advanced Configuration Options Overview 

The advanced configuration options for the Provisioning Server fall 
into two categories: 

Global Properties 

Configuration settings that are saved in the provisioning directory 
and control the behavior of the Provisioning Server. Click the 
Global Properties button on the Provisioning Manager System 
Task frame. 

Domain Configuration 

Configuration settings that are saved in the provisioning directory 
and control the behavior of the Provisioning Server. Click the 
Domain Configuration button on the Provisioning Manager 
System Task frame. 

 



Global Properties 
 

16  Provisioning Reference Guide 
 

There are additional places to configure various components of the 
Provisioning Server, including the following: 

PSHOME\Data\im-ps.conf  

Parameters control general behaviors of the Provisioning Server 
service not controllable through Domain Configuration 
parameters. See the Installation Guide for more details and 
comments in the file itself.  

PSHOME\Data\im_ccs.conf 

Parameters control general behaviors of the Identity Manager C++ 
Connector Server service. See the Installation Guide for more 
details and comments in the file itself. 

 

PSAHOME\data\eta_pwdsync.conf 

Parameters control an optional Password Synchronization Agent 
you may choose to install on a Windows system. For more 
information, see the Administration Guide. 

Note: PSAHOME is the directory where the Password 
Synchronization Agent is installed. 

%DXHOME%\config\knowledge\*.dxg and *.dxc 

Used to configure CA Directory failover. For more information, 
see the Installation Guide. 

 

Global Properties 

Global Properties are stored in the Provisioning Directory. These 
properties control the entire enterprise and as such are stored outside 
of any of your domain-specific data. To view these properties you 
must have a privilege that grants Read access to the SystemSettings 
object in the ETA domain. All predefined admin profiles in any domain 
grant this read access. 

To change these properties you must have a privilege that grants 
Modify access to the SystemSettings object in the domain. The 
DomainAdministrator and DomainAdministrator-NoWeb admin 
profiles in any domain grant this modify access.  

 



Domain Configuration 

 

Chapter 2: Advanced Configuration Options  17  
 

Updates to global properties in most cases take effect immediately, no 
restarting of services or programs is necessary. Two specific 
exceptions are: 

■ Properties that control Manager behaviors, such as UID controls, 
and Full Name controls, do not affect property sheets that are 
already displayed. You may have to close a property sheet and 
reopen it to have the change take effect for your Manager. 

■ Logging settings are broadcast to affected Provisioning and 
Identity Manager Provisioning Connector server services. 
However, this broadcast currently only goes to one Provisioning 
Server service per domain. If you have installed a failover or 
load-balancing configuration with multiple Provisioning Server 
services for a single domain, you will need to restart all 
Provisioning and Connector Server services for that domain to 
ensure that the new logging settings are recognized by all affected 
components. 

 
 

Domain Configuration 

Domain configuration parameters are also stored in the provisioning 
directory. You manage these from the System Task of Provisioning 
Manager using the Domain Configuration button. Parameters are 
organized into a tree hierarchy using folders so that related 
parameters are easier to manage. These parameters control the 
Provisioning Server for a single domain. 

 



Domain Configuration 
 

18  Provisioning Reference Guide 
 

If you configured multiple alternative servers, each with its own 
Provisioning Server for the same domain, all servers for the domain 
share the same configuration parameter settings. There are a few 
parameters that you might want to set to different values on different 
servers, even in the same domain. Per-server values are referred to as 
specializations. Use the Add Specialization or Remove Specialization 
menu items to work with server-specific values. These server-specific 
specializations are displayed in the tree hierarchy under the domain 
parameter. If there is no specialization for a particular server, the 
domain parameter value applies to that server. In most cases, the 
Provisioning Server lets you create a specialization for a parameter 
even if that could result in inconsistent behaviors from the alternative 
servers for a domain. This lets you have a dedicated server used for a 
specialized purpose where you actually want that different behavior. 
However, for a small set of parameters, specializations are not 
allowed. A typical reason would be because client code needs to know 
the value of the parameter even when it does not know which server 
handles its request. In those cases, the Add Specialization menu item 
is disabled. 

 

To view these parameters, you must have a privilege that grants Read 
access to Configuration Parameter objects in the domain where they 
reside. All the predefined admin profiles grant this Read access to the 
domain configuration parameters in their own domain, including any 
subordinate domain. 

 

To change these parameters, you must have a privilege that grants 
Modify access to Configuration Parameter objects in the domain 
where they reside. The DomainAdministrator and 
DomainAdministrator-NoWeb admin profiles grant Modify access to 
the domain configuration parameters in their own domain and any 
subordinate domain. You can create a custom admin profile that 
grants Read or Modify access to specific configuration parameters if 
you need scoping control. 

 



Domain Configuration 

 

Chapter 2: Advanced Configuration Options  19  
 

Domain Configuration parameter updates take effect immediately on 
the provisioning server where the update was processed.  However, if 
you configured multiple alternative provisioning servers for the 
domain, the other servers will not take the changed parameters into 
account immediately. The updated parameters are stored in the 
provisioning directory immediately, but each affected Provisioning 
Server refreshes its knowledge of the parameter values periodically. 
By default the update frequency is every 10 minutes; however you 
may change this value with the parameter Configuration 
Setup/Parameter Update Time described later. Thus you will need to 
wait up to 10 minutes for the refresh to take place. The refresh is 
recorded in the Provisioning Server Trace log with messages that 
include the text “ETA::Configuration update completed”.  

 

Note: For more information, see the Transaction Log (see page 66) 
section. 

 

You may choose to restart the affected Provisioning Server services to 
ensure the parameters are updated. When the service starts, the 
service writes information to the Provisioning Server trace log about 
configuration parameters. This log can be valuable in understanding 
what parameters were in effect at any particular point. The following 
information is written to the trace log at startup: 

■ If the Transaction Log/Level domain configuration parameter is 
set to a value of 0 or greater and Transaction Log/Enabled is Yes, 
non-default configuration parameters values are written. 

■ If the Transaction Log/Level domain configuration parameter is 
set to a value of 1 or greater and Transaction Log/Enabled is Yes, 
all configuration parameters values are written. 

Note: A few parameters do not take effect even after the periodic 
configuration parameter update. They only take effect on restart of 
the Provisioning Server service. Such parameters display the following 
warning on their properties: Changing this parameter will require 
restarting all affected servers. 

 



Domain Configuration 
 

20  Provisioning Reference Guide 
 

Provisioning Directory Parameters 

The provisioning directory configuration folder contains parameters 
you can use if you have a non-default installation of your provisioning 
directory. 

 

Provisioning Directory/Entry Count Attribute 

Values:  dxEntryCount (default) or <unset> 

Description: Set this attribute to dxEntryCount if CA Directory is being 
used for the provisioning directory; but clear it otherwise. This 
attribute is used in queries sent to the provisioning directory to check 
whether size limits will be reached; but only if the client is not 
requesting partial results. 

 

Authentication Parameters 

The Authentication configuration folder contains parameters you can 
use to customize user authentication behaviors of the Provisioning 
Server. 

 

Authentication/Disable Maintenance User 

Values: No (default) or Yes 

Description: Set this parameter to yes to disable the ability to 
authenticate to the Provisioning Server using the built-in user with the 
Distinguished Name cn=etaserver,dc=eta. This user, whose password 
is controlled by the pwdmgr utility, is used internally during 
installation. 

After installation, this user is only needed for maintenance functions 
such as resetting an administrator’s password.  We recommend that 
you disable this user after installation. 

 



Domain Configuration 

 

Chapter 2: Advanced Configuration Options  21  
 

Authorization Parameters 

The Authorization configuration folder contains parameters you can 
use to customize authorization behaviors of the Provisioning Server. 

 

Authorization/Check Owner Access on Indirect Privileges 

Values:  Yes (default) or No 

Description: Controls what access checks are performed when 
assigning a global user group or admin profile to a global user, global 
user group or admin profile. 

Regardless of the setting of this parameter, the Provisioning Server 
checks for Modify access to a specific attribute of the object being 
assigned and Modify access to a specific attribute of the object to 
which it is assigned. 

 

If this parameter is Yes (the default), the Provisioning Server will also 
check for Owner access to each of the objects to which the assigned 
admin profile or global user group grants access. This prevents one 
from being able to assign privileges through a global user group or 
admin profile that one could not have assigned directly to the target 
global user, global user group or admin profile. 

If you do not need added protection, this parameter can be set to No 
to disable additional Owner access checks. Doing so lets you have one 
set of administrators who define admin profiles and another set of 
administrators who assign those admin profiles to users. 

 

Cache Parameters 

The Cache configuration folder contains parameters that allow you to 
tune the Provisioning Server's use of its internal caches. Caches are 
used in the Provisioning Server to save information read from the 
provisioning directory so that it does not need to be read repeatedly 
in the same operation or across multiple operations. 

Important! Changes to cache parameters do not take effect until the 
Provisioning Server service is restarted. 

 



Domain Configuration 
 

22  Provisioning Reference Guide 
 

Each cache is controlled by the following parameters: 

Maximum Age 

The maximum time in seconds that an item remains in the cache 
without being reread from the provisioning directory. 

Maximum Size 

The maximum number of unused items to retain in the cache. 
While a cache item is being used by an operation, it is considered 
in-use, and there is no limit on the number of in-use cache items. 
However, when all operations finish with the cache item, it is 
marked unused and retained only when the number of used and 
unused items in the cache is no more than the configured 
maximum size. 

 

Cache items are also removed from a cache when explicitly canceled. 
This occurs when a change is made to the provisioning directory data 
from which the cache item originates. This cache invalidation only 
occurs on the Provisioning Server that processed that provisioning 
directory update. If you have multiple provisioning domains or 
alternative servers serving a single domain, other servers may have 
cache items still derived from the prior data. That is why there is a 
cache maximum age parameter. 

 

Cache items also are canceled when access is to be denied. The 
privilege caches (Admin Profile, Global User and Global User Group) 
contain privilege information used to perform authorization checks. If 
you have recently assigned a privilege to someone, you do not want to 
have to wait up to 10 minutes (the default cache maximum age for 
these caches) for that privilege addition to be recognized. Therefore if 
an authorization check using cached privileges is about to report 
DENIED, the cache items are canceled and re-initialized from the 
provisioning directory. If the result is still DENIED, that authorization 
failure is reported to the administrator. 

Important! When you remove a privilege from a global user, admin 
profile, or global user group, expect that this change will take place at 
most 10 minutes (the default) from the time of the change. In most 
cases this is sufficient. However, if the reason for removing the access 
is to remove an imminent security threat, to ensure immediate 
enforcement of that privilege change requires you to restart all 
affected Provisioning Server services. 

 



Domain Configuration 

 

Chapter 2: Advanced Configuration Options  23  
 

Admin Profile Privilege Cache 

Each admin profile privilege cache item stores information obtained 
from an admin profile, including administrative privileges, and the 
names of included admin profiles. 

Parameter: Cache/Admin Profile Privilege Cache Maximum Age 

Default Value: 600 seconds (equals 10 minutes) 

Parameter: Cache/Admin Profile Privilege Cache Maximum Size 

Default Value: 10 
 

Domain Cache 

Each domain cache item stores information obtained from a Domain 
(DSA) Registration object. These objects record information that is 
necessary for one Provisioning Server to talk to another Provisioning 
Server. 

Parameter: Cache/Domain Cache Maximum Age 

Default Value: 3600 seconds (equals 1 hour) 

Parameter: Cache/Domain Cache Maximum Size 

Default Value: 20 
 



Domain Configuration 
 

24  Provisioning Reference Guide 
 

Global User Group Privilege Cache 

Each global user group privilege cache item stores information 
obtained from a global user group, including administrative privileges, 
the names of included admin profiles, and the names of included 
global user groups. 

Parameter: Cache/Global User Group Privilege Cache Maximum Age 

Default Value: 600 seconds (equals 10 minutes) 

Parameter: Cache/Global User Group Privilege Cache Maximum Size 

Default Value: 10 
 

Global User Privilege Cache 

Each global user privilege cache item stores information obtained 
from a global user and its assigned admin profiles and global user 
groups. This information includes administrative privileges, password, 
suspension status and the names of included admin profiles and 
including global user groups. 

Unlike the admin profile privilege cache and global user group 
privilege cache, the global user privilege cache items also store 
indirect information obtained from referenced items, so it contains a 
full list of the accesses privileges that a global user has. 

 



Domain Configuration 

 

Chapter 2: Advanced Configuration Options  25  
 

Each time a global user privilege cache item is initialized, the global 
user's full list of effective privileges and assigned admin profiles and 
global user groups is written to the server trace log. This information, 
written only if Transaction Log/Level is set to 4 or greater, includes 
information obtained directly from the global user, information 
obtained indirectly from assigned global user groups and admin 
profiles, and information obtained implicitly based on assigned web or 
workflow privileges. Look for the text "EFFECTIVE PRIVILEGE LIST 
INITIALIZED" in the server trace log. This will be followed by the 
distinguished name of a global user and a list of privileges, a list of 
admin profiles and a list of global user groups. 

Parameter: Cache/Global User Privilege Cache Maximum Age 

Default Value: 600 seconds (equals 10 minutes) 

Parameter: Cache/Global User Privilege Cache Maximum Size 

Default Value: 20 
 

Notification Config Cache 

The Notification Configuration Cache stores configuration information 
that drives the Identity Manager Server Notification feature. This 
configuration information, stored in the provisioning directory and 
updatable by the service utility etaloadnotificationconf, defines the 
mapping between provisioning actions and notification records that 
are sent to the IMS.  

Parameter: Cache/Notification Config Cache Maximum Age 

Default Value: 600 seconds (equals 10 minutes) 

Parameter: Cache/ Notification Config Cache Maximum Size 

Default Value: 10 
 



Domain Configuration 
 

26  Provisioning Reference Guide 
 

Operation Cache 

Each operation cache item stores information about an ongoing or 
recently completed operation. When you do an explore operation, for 
instance, the displayed Operation detail count value is obtained from 
an operation cache item. 

Parameter: Cache/Operation Cache Maximum Age 

Default Value: 600 seconds (equals 10 minutes) 

Parameter: Cache/Operation Cache Maximum Size 

Default Value: 10 
 

Password Profile Cache 

Each password profile cache item stores information from a password 
profile. Currently there is only one password profile per domain. 

Parameter: Cache/Password Profile Cache Maximum Age 

Default Value: 600 seconds (equals 10 minutes) 

Parameter: Cache/Password Profile Cache Maximum Size 

Default Value: 10 
 



Domain Configuration 

 

Chapter 2: Advanced Configuration Options  27  
 

Connector Server Cache 

Each C++ Connector Server cache item stores a pool of connections 
between the Provisioning Server and the C++ Connector Server. The 
C++ Connector Server server, also known as the Connector Server 
service, is the component that loads each endpoint type option's 
agent module. 

Some endpoint types (for example Active Directory) provide a feature 
to use the administrator's own credentials rather than a configured set 
of proxy credentials for authenticating to the managed directory. Each 
C++ Connector Server cache item represents a pool of LDAP 
connections using a single set of administrator credentials. 

Parameter: Cache/Connector Server Cache Maximum Age 

Default Value: 3600 seconds (equals 1 hour) 

Parameter: Cache/Connector Server Cache Maximum Size 

Default Value: 20 
 

Compatibility Parameters 

The Compatibility configuration folder contains parameters you can 
use to provide temporary backwards compatibility with prior releases 
of eTrust Admin. 

 
 



Domain Configuration 
 

28  Provisioning Reference Guide 
 

Enable Operation Details 

Values:  Yes (default) or No 

Description: Tracks changes to accounts affected by provisioning 
operations in etautil or the Provisioning Manager, such as Explore and 
Correlate.  If you make no provisioning changes in the Provisioning 
Manager or etautil, you can set this parameter to no. Disabling it could 
keep the management of operation detail records from affecting CA 
Directory performance. 

With or without this parameter, inbound synchronization still updates 
the Identity Manager server. Each provisioning server sends account 
details to the Identity Manager server or cluster of servers. Those 
details include attribute-level information not found in the operation 
details. 

 

Relax Self Q&A Reads 

Values:  No (default) or Yes 

Description: By default (No), global user self authentication Q&A 
attributes are returned only when explicitly asked for by users. This 
allows the Provisioning Server to log when these questions and 
answers are viewed. Some older clients depend on the prior behavior 
where these attributes could be retrieved along with all other Global 
User attributes. Set this parameter to Yes to re-instate the prior 
behavior to allow these applications to work with the current 
Provisioning Server. 

 



Domain Configuration 

 

Chapter 2: Advanced Configuration Options  29  
 

Configuration Setup Parameters 

The Configuration Setup configuration folder contains parameters you 
can use to configure the processing of these domain configuration 
parameters. 

Default Value: 600 seconds (equals 10 minutes) 

Description: Configuration parameters are read periodically from the 
provisioning directory. This parameter defines how often, in seconds, 
this refresh of parameters occurs. Hence, this parameter defines the 
maximum amount of time one would need to wait after making a 
change to parameter before being assured the change has taken 
effect. 

The minimum value for this parameter is 30 seconds. 
 

Connections Parameters 

The Connections configuration folder contains parameters you can use 
to tune the connection management mechanisms within the 
Provisioning Server. 

The Provisioning Server maintains pools of LDAP connections that it 
uses for communicating with the provisioning directory, with 
connector servers and with other LDAP servers.  A dedicated thread 
within the provisioning server (the connection monitor thread) wakes 
up periodically to adjust the pools by closing excess idle connections 
and attempting to create connections to LDAP servers previously 
believed to be unavailable. 

The configuration parameters in this folder are consulted by the 
connection monitor thread as it performs its functions. 

 



Domain Configuration 
 

30  Provisioning Reference Guide 
 

Connections/CS Pool Maximum Size 

Default Value: 200 

Description: The maximum size of each of the Provisioning Server's CS 
Connection Pools. A CS Connection Pool is a reusable set of LDAP 
connections that are used to communicate with a specific connector 
server. 

 

Connections/CS Pool Minimum Size 

Default Value: 2 

Description: The minimum size of each of the Provisioning Server's CS 
Connection Pools. The connection monitor thread, when it closes 
expired idle connections, will retain at least this many connections in 
each CS Connection Pool. 

 

Connections/DB Pool Maximum Size 

Default Value: 40 

Description: The maximum size of the Provisioning Server's DB 
Connection Pool. The DB Connection Pool is a reusable set of LDAP 
connections that are used to communicate with the Provisioning 
Directory. 

 

Connections/DB Pool Minimum Size 

Default Value: 5 

Description: The minimum size of the Provisioning Server's DB 
Connection Pool. The connection monitor thread, when it closes 
expired idle connections, will retain at least this many connections in 
DB Connection Pool. 

 



Domain Configuration 

 

Chapter 2: Advanced Configuration Options  31  
 

Connections/Expiration Time 

Default Value: 1800 seconds (30 minutes) 

Description: The time, in seconds, after which an idle connection in 
the provisioning server's LDAP connection pools will be considered 
expired.  An expired connection is a candidate for being closed by the 
connection monitor thread. 

 

Connections/Other Pool Maximum Size 

Default Value: 20 

Description: The maximum size of each of the Provisioning Server's Ad 
Hoc Connection Pools. Each Ad Hoc Connection Pool is a reusable set 
of LDAP connections that are used to communicate with a specific 
LDAP server other than the provisioning directory or regularly used 
connector servers.  For example, changes to endpoint or endpoint 
type attributes may need to be sent to another provisioning server's 
connector server, and the connection pool to communicate with that 
connector server is governed by this parameter. 

 

Connections/Other Pool Minimum Size 

Default Value: 0 

Description: The minimum size of each of the provisioning server's Ad 
Hoc Connection Pools. This value is typically zero as there is rarely a 
need to retain idle connections to these LDAP servers past their 
normal expiration time. 

 

Connections/Refresh Time 

Default Value: 300 seconds (5 minutes) 

Description: The time, in seconds, that the provisioning server's 
connection monitor thread waits between iterations. Each time this 
thread awakens, it identifies expired connections in its LDAP 
connection pools and closes them. It also attempts to establish LDAP 
connections to servers that were believed to be unavailable (but only 
for pools with a minimum size greater than zero). 

 



Domain Configuration 
 

32  Provisioning Reference Guide 
 

Endpoint Parameters 

The endpoint configuration folder contains parameters you can use to 
enable or disable features on a endpoint type-by-endpoint type or 
endpoint-by-endpoint basis. Each parameter can be set to an ordered 
list of values, each of which can be one of the following: 

 

Parameter Description 

ALL Enabled for all endpoints of all endpoint types. 

-ALL Disabled for all endpoints of all endpoint 
types. 

EndpointType Enabled for all endpoints of the specified 
endpoint type. 

-EndpointType Disabled for all endpoint of the specified 
endpoint type. 

EndpointType:Endpoint Enabled for the specified endpoint. 

-EndpointType:Endpoint Disabled for the specified endpoint. 

If more than one value for the same parameter specifies the same 
directory, the last value that specifies the endpoint determines 
whether the feature is enabled or disabled for that endpoint. This lets 
you provide a more general rule first (enabled for all directories or all 
endpoint types) and follow that up with a more specific rule (disabled 
for endpoint ABC of endpoint type ActiveDirectory). 

 



Domain Configuration 

 

Chapter 2: Advanced Configuration Options  33  
 

Endpoint/Check Account Passwords 

Default Value: -ALL (disabled for all endpoints of all endpoint types) 

Description: When this parameter is enabled for a specific endpoint, 
the Provisioning Server checks any password in a password change of 
an existing account on that directory, including attempts to set an 
empty password. 

During account creation, the Provisioning Server performs password 
quality checking when a password is provided. If no password is 
provided, no checking is performed unless the Check Empty Account 
Passwords parameter is also enabled for the directory. 

 

Account password quality checking uses the Password Profile that 
exists in the domain of the global user that owns the account. If the 
account is not associated with any global user, then the Password 
Profile that exists in the domain of the account is used. If the 
password profile located based on the global user or the account's 
domain is disabled, account password quality checking is also disabled 
for that account. 

 

Account password quality checking does not include the checks on 
self-changes that depend on history of recent password-change 
activity. Password reuse frequency (history) and minimum time 
between changes (interval checking) are only applicable to global user 
password changes where the Provisioning Server retains an accurate 
history of recent changes. Account passwords and password history 
are not stored in the Provisioning Server. They are stored only in the 
managed directory and the Provisioning Server makes no assumption 
that all password changes are visible to the Provisioning Server. 

 

A synchronized account password is an account password meeting the 
following criteria: 

■ Account is correlated to a non-restricted global user 

■ Account resides on a directory for which Disable password 
propagation to accounts has not been enabled 

■ Account has not been deleted (it is not in Delete Pending state) 
 



Domain Configuration 
 

34  Provisioning Reference Guide 
 

An attempt to change a synchronized account password to the value 
of the current global user password will be accepted regardless of the 
setting of this configuration parameter. Also, the settings of the 
following configuration parameters can control the effect of password 
quality checking on synchronized account passwords: 

Passwords\Enforce Synchronized Account Passwords 

Passwords\Use External Password Policies 
 

Endpoint/Check Empty Account Passwords 

Default Value: -ALL (disabled for all endpoints of all endpoint types) 

Description: When this parameter is enabled for a specific managed 
endpoint, the Provisioning Server checks any empty password in an 
Add request for account on that endpoint. This parameter is ignored if 
Check Account Passwords is not also enabled for this endpoint. 

This parameter is separate from Check Account Passwords because it 
is acceptable in some endpoint types to create an account with no 
password. 

 

Endpoint/Use Account Template Status 

Default Value: -ALL (disabled for all endpoint of all endpoint types) 

Description: Parameter controls whether to ignore a global user status 
of suspended and allow the creation of accounts in the active state. By 
default accounts created from account templates for a suspended 
global user are suspended regardless of the suspended status 
indicated in the account template. 

 



Domain Configuration 

 

Chapter 2: Advanced Configuration Options  35  
 

Endpoint/Validate Endpoint Credentials 

Default Value: -ALL (disabled for all endpoint of all endpoint types) 

Description: Parameter controls whether the Provisioning Server 
sends changes to passwords, updated on endpoint property sheets, to 
the applicable connector for immediate validation or if only the 
provisioning directory is updated. This functionality is not applicable to 
CA-provided connectors as they have all been updated to always have 
the behavior that is controlled by this parameter.  

If you have a custom connector written using the Software 
Development Toolkit from a previous release of eTrust Admin and that 
connector stores proxy credentials in its endpoint properties, verify 
the behavior of your endpoint type by enabling this parameter for 
your endpoints and attempting to change those proxy credentials. 

 

Explore and Correlate Parameters 

The Explore and Correlate configuration folder contains parameters 
you can use to configure the explore and correlate functions used 
while acquiring managed directories.  

 



Domain Configuration 
 

36  Provisioning Reference Guide 
 

Explore and Correlate/Correlation Attribute 

Value Syntax: 
GUAttrName[=Namespace:AccountAttrName[:Offset,Length]] 

Default Values: 

GlobalUserName 

FullName 

Description: Controls the correlation matching algorithm used by the 
correlate phase of explore/correlate. 

The correlation algorithm uses this parameter when determining how 
accounts are associated with global users. 

Each value defines a global user attribute that will be compared 
against an account attribute. The list is ordered, and only values 
applicable for a endpoint type are used when correlating accounts 
from an endpoint of that endpoint type. If there are two defined 
mappings for the same global user attribute that are applicable to the 
endpoint type where correlate is being run, then the first parameter 
value is used. 

 



Domain Configuration 

 

Chapter 2: Advanced Configuration Options  37  
 

You can provide this mapping in one of the following ways: 

GUAttrName 

In this form, you name only the global user attribute and not the 
corresponding account attribute. This value assumes for the 
omitted account attribute name the account attribute predefined 
by the endpoint type to correspond to this global user attribute. 
For information about the predefined mappings, see the endpoint 
type's Connector Guide. 

A parameter value in this form applies to all endpoint types for 
which an account mapping is defined. All endpoint types define 
mappings for GlobalUserName (typically the account name). Most 
endpoint types define mappings for Full Name. 

GUAttrName=Namespace:AccountAttrName 

In this form, you name the global user attribute and a specific 
account attribute of a specific endpoint type. A parameter value 
in this form applies only to the indicated endpoint type. Use this 
form rather than the first form to match global users on an 
attribute such as Full Name in one endpoint type but not in all 
endpoint types. 

GUAttrName=Namespace:AccountAttrName:Offset,Length 

In this form, you name the global user attribute and a specified 
substring of an account attribute of a specific endpoint type. 
Offset indicates the start of the substring, the value 1 indicating 
the start of the attribute value. Length indicates the number of 
characters in the substring value. If the full account value is 
shorter than (Length + Offset - 1) characters, the substring value 
used will be shorter than Length characters. 

A parameter value in this form applies only to the indicated 
endpoint type. Use this form if you know that an account 
attribute value (for example, description) has a form where the 
first 8 characters are known to contain a unique employee 
identifier that can be matched to a global user attribute value. 

 



Domain Configuration 
 

38  Provisioning Reference Guide 
 

For example, assume the configured parameter values are the 
following: 

GlobalUserName 

FullName=LDAP Namespace:globalFullName 

FullName=ActiveDirectory:DisplayName 

 CustomField01=ActiveDirectory:Telephone 

The following occurs for each previously uncorrelated account found 
while correlating accounts in an Active Directory container: 

1. The Provisioning Server starts with the first parameter value 
(GlobalUserName) and determines that the Active Directory 
endpoint type's defined account attribute that maps to 
GlobalUserName is NT_AccountID (LDAP attribute name 
eTADSsAMAccountName). It attempts to find the unique global 
user whose name is equal to the account's NT_AccountID 
attribute value. If a unique match is found, the Provisioning Server 
associates the account with the global user. If more than one 
match is found, the Provisioning Server performs Step 5. If no 
match is found, the Provisioning Server performs the next step. 

2. The Provisioning Server considers the second parameter value 
(FullName=LDAP Namespace:globalFullName). Since this value is 
specific to another endpoint type, it is skipped and the 
Provisioning Server performs the next step. 

 

3. The Provisioning Server considers the third parameter value 
(FullName=ActiveDirectory:DisplayName). Since this value is 
specific to Active Directory, it is used. It attempts to find the 
unique global user whose FullName is equal to the account's 
DisplayName attribute value. If a unique match is found, the 
Provisioning Server associates the account with the global user. If 
more than one match is found, the Provisioning Server performs 
Step 5. If no match is found, the Provisioning Server performs step 
4. 

 



Domain Configuration 

 

Chapter 2: Advanced Configuration Options  39  
 

4. The Provisioning Server considers the final parameter value 
(CustomField01=ActiveDirectory:Telephone). Because this value is 
specific to Active Directory, it is used. It attempts to find the 
unique global user whose Custom Field #01 attribute is equal to 
the account's Telephone attribute value. Note that the name you 
gave to the custom global user attribute using global properties of 
the System Task is not displayed here. If a unique match is found, 
the Provisioning Server associates the account with the global 
user. If more than one match is found, the Provisioning Server 
performs Step 5. If no match is found, the Provisioning Server 
performs the next step. 

5. The Provisioning Server associates the account with the [default 
user] object in the domain specified by the configuration 
parameter Explore and Correlate/Create Users Domain. If the 
[default user] object does not already exist, it is created. 

 

Explore and Correlate/Correlation Domain 

Values: Root Domain  

Description: A value indicating which domain or domains should be 
searched for global users during the Correlate with existing global 
users phase of explore/correlate. This parameter is deprecated as the 
root domain is the only choice now. 

 

Explore and Correlate/Create Users Default Attributes 

Value Syntax: GUAttrName=Value. 

Default Values:  None 

Description: The parameter provides default values for global user 
attributes for global users created during the Create Global Users 
phase of explore/correlate. 

For example, use 'SelfAdministration=1' to enable self administration 
for your new global users. Use this feature to assign constant values to 
optional global user attributes for global users created during the 
acquisition of a primary directory. 

 



Domain Configuration 
 

40  Provisioning Reference Guide 
 

Explore and Correlate/Create Users Domain 

Values: Root Domain  

Description: The domain in which global users are to be created 
during the Create Global Users phase of explore/correlate. A value 
indicating which domain or domains should be searched for global 
users during the Correlate with existing global users phase of 
explore/correlate. This parameter is deprecated as the root domain is 
the only choice now. 

 

Explore and Correlate/Create Users Verify Not Correlated 

Values:  Yes (default) or No 

Description: Temporarily set this parameter to No to enable the 
alternate behavior whereby the Create Global Users phase of 
explore/correlate will skip the check that the account is not already 
correlated to a global user.  

This capability is deprecated since exploring primary endpoints no 
longer applies. 

The Create Global Users function works as follows for each account 
present in the container being correlated. 

■ Check to see if the account is already correlated to an existing 
global user. If so, leave this account still correlated to that global 
user. On an initial acquisition no accounts will be correlated. 
However, on a later re-explore/recorrelate this step is important 
so that the accounts remain correlated to the global user to which 
they were previously correlated. 

Note: In a primary endpoint, you would not expect accounts to be 
correlated to any global user other than the one named the same 
as the account. There are various scenarios where this could 
occur. For instance, you may have renamed the account or the 
global user at some point after they were correlated to one 
another. Or you might have some system accounts on your 
primary endpoint that you do not want to correlate to separate 
global users - opting instead to correlate them to a single 
restricted global user. 

 



Domain Configuration 

 

Chapter 2: Advanced Configuration Options  41  
 

■ Attempt to create a global user named the same as the account. If 
this global user already exists, go on to the next step. This can 
happen if the global user was also present in another primary 
endpoint or you deleted your primary endpoint and re-acquired, 
correlating to global users created during the prior acquisition. 

■ Create an inclusion between the account and the global user, 
correlating the account with the global user. 

 

If this configuration parameter is set to No, the first step is skipped. 
This can greatly improve the performance since that test is 
time-consuming and slows down as the Provisioning Directory 
becomes untuned. If you are acquiring an endpoint with more than 
thousands of accounts, the Provisioning Directory needs to be tuned, 
but you do not have the chance to do that tuning in the middle of the 
long-running Correlate operation. 

Important! Set this parameter to No only during the initial acquisition 
of your primary endpoints. Subsequent use can result in accounts 
incorrectly correlated to multiple global users. Once the acquisition is 
completed, set the parameter to Yes. 

 

Explore and Correlate/Map User ID to Lowercase 

Values:  No (default) or Yes 

Description: Map all user IDs to lowercase when creating global users 
during the Create Users phase of explore/correlate. When you acquire 
one of your primary directories, you create global users for the 
accounts on that directory. Two of the global user properties that get 
set by this creation of global users are the following: 

Account Name (LDAP attribute name eTUserid):  Set to the 
corresponding account's account name property. 

Global User Name (LDAP attribute name eTGlobalUserName): Set to 
be the same as the Account Name property, but translated to 
lowercase. 

 



Domain Configuration 
 

42  Provisioning Reference Guide 
 

If you acquire a primary directory with mixed case account names, this 
will by default result in the created global user's Account Name 
property also having mixed case. Set the configuration parameter to 
Yes to force the Account Name property to be the same as the Global 
User Name property - always in lowercase. 

 

Preserve the original case in the Account Name property by leaving 
the configuration parameter set to No if you have no endpoint types 
such as UNIX for which account names are case-sensitive. 

 

An alternative to setting this parameter to Yes is to define your 
case-sensitive endpoint types' account template rule expressions for 
account name to use the TOLOWER built-in rule function, 
%$$TOLOWER(%AC%)%, instead of the normal account name rule 
expression, which is %AC%. 

Note: If your primary directory has only uppercase account names, 
this configuration parameter has no effect. The global user's Account 
Name property will already be translated to lowercase. 

 

Explore and Correlate/Explore Compare in Memory 

Values:  No (default) or Yes 

Description: Obtains two lists of objects at a time: one from the 
endpoint system being explored and one from the provisioning 
directory.  These lists are compared in memory to determine what 
changes should be applied to the provisioning directory.  If this 
parameter is no only a single list of objects at a time is explored and 
correlated, which uses far less virtual memory when working with 
large lists of objects. 

 
 



Domain Configuration 

 

Chapter 2: Advanced Configuration Options  43  
 

Identity Manager Server Parameters 

The Identity Manager Server configuration folder contains parameters 
you can use to control interactions between the Provisioning Server 
and the Identity Manager Server.  Before enabling any of these 
parameters, you should verify the configuration of the communication 
between the Provisioning Server and the Identity Manager using the 
“Identity Manager Setup” button on the System task of Provisioning 
Manager,   

 

Identity Manager Server/Enable Corporate User Access 

Values: No (default) or Yes 

Description: Enables/disables retrieval of corporate user attributes 
from the Identity Manager Server during account template evaluation.  

Important! This feature was not available at the publication time for 
this document. Please check the availability of the feature in the 
release notes before enabling this parameter. 

 

Identity Manager Server/Enable Notification 

Values:  No (default) or Yes 

Description:  Enables/disables the collection of audit data 
(notifications) by the Provisioning Server for transmission to the 
Identity Manager Server. When enabled, any changes to data 
managed by the PS, other than changes directly initiated by the 
Identity Manager Server, generate notifications which are queued in 
the Notification DSA and then later sent to the Identity Manager 
Server. Upon receipt at the Identity Manager Server, certain 
notifications trigger events, while most are simply added to the full 
Identity Manager audit data.  

 



Domain Configuration 
 

44  Provisioning Reference Guide 
 

Identity Manager Server/Notify Batch Size 

Default Value:  100 

Description: The number of notifications that are processed in one 
batch.  When sending notifications to the Identity Manager Server, the 
Provisioning Server will retrieve at most this many records (a batch) 
from the Notification DSA, process those entries, and then continue 
with additional batches. 

 

Identity Manager Server/Notify Retry Time 

Default Value:  600 seconds (10 minutes) 

Description: The time, in seconds, that the notification thread pauses 
between iterations.  The notification thread is a dedicated thread 
within the Provisioning Server that wakes up periodically and attempts 
to transmit (or retransmit) any queued notifications. 

 

Identity Manager Server/Notify Timeout 

Default Value:  30 seconds 

Description: The timeout value, in seconds, for sending notifications 
or password validations to the Identity Manager Server. A value of 
zero indicates an unlimited timeout. 

 



Domain Configuration 

 

Chapter 2: Advanced Configuration Options  45  
 

Identity Manager Server/Use External Password Policies 

Description: When set to Yes, users changing their own global user 
passwords or one of their synchronized account passwords will have 
the password validated using externally-defined password rules. 
Users' synchronized account passwords are the passwords for their 
accounts on endpoints for which the Disable Password Propagation 
property is disabled. You should set the parameter Enforce 
Synchronized Account Passwords to Yes whenever Identity Manager 
Server/Use External Password Policies is set to Yes. When this 
parameter is set to Yes, the Provisioning Server password rules that 
are applicable to users changing their own passwords (Password 
history checks and Minimum interval between self-changes) are no 
longer consulted. 

Values: No (default) or Yes 
 

Note:  Even when integration with Identity Manager password policies 
is enabled with this configuration parameter, the Provisioning Server 
uses its per-domain password profiles in various situations. In 
particular, Administrative password changes, initial global user 
passwords, changes to unsynchronized account passwords and 
generating temporary initial passwords all consult the Provisioning 
Server password profile. In addition, the Locking and Password 
Expiration features defined in the Provisioning Server password profile 
are always used. However, the Provisioning Server password profile 
rules that are applicable to users changing their own passwords 
(Password history checks and Minimum interval between 
self-changes) are not consulted when this configuration parameter is 
Yes. 

 



Domain Configuration 
 

46  Provisioning Reference Guide 
 

Operation Details Parameters 

The Operation Details configuration folder contains parameters you 
can use to control the behavior of operation details. Operation Details 
is the function that tracks the status of child operation spawned from 
higher-level operations such as Explore, Synchronization or 
Propagation. When you perform one of these higher-level operations 
from Identity Manager tasks or from Provisioning Manager, you 
receive a message in the message summarizing the results of the child 
operation.  

 

The following is a sample summary message for a User 
Synchronization request: 

(accounts created: 1, updated: 1, recreated: 0, failures: 0) 

If you ask to view status details for the task (or double-click on the 
icon next to the summary message when using Provisioning Manager), 
this displays a screen with operation details including a series of 
success, failure, or warning messages corresponding to the statistics 
present in the summary message. 

 

Operation Details/Maximum Operation Detail 

Default Value: 100 

Description: The maximum number of operation detail items which 
can be retrieved in one search of an operation object. When you 
perform a high-level operation that spawns hundreds or thousands of 
child operations and you call up the Operation Status window, this 
parameter controls how the details are returned from the Provisioning 
Server to the Provisioning Manager or other client application. 

 



Domain Configuration 

 

Chapter 2: Advanced Configuration Options  47  
 

Operation Details/Operation Details Expiration Time 

Default Value: 96 hours (equals 4 days) 

Description: The number of hours to keep operation details in the 
provisioning directory. 

Operation details are maintained in the server in the following parts: 

1. An operation object stored in the provisioning directory (one per 
high-level operation). 

2. An XML data file stored in the Operations folder containing the 
operation details, concatenated one after another. 

Both objects are deleted when the operation object is deleted. Some 
clients delete their operation objects as soon as they retrieve the 
operation details or when the client terminates. Other clients such as 
Provisioning Manager leave the operation objects in the directory until 
they expire and are deleted in four days (by default). 

 

Operation Details/Operations Folder 

Default Value: Operations 

Description: The name of the folder on the Provisioning Server where 
the XML data files storing operation details reside. This value can be a 
simple filename or a relative path name. However, it may not be an 
absolute path name. 

Its value is relative to one of the following file path names: 

%ETAVARHOME% 

PSHOME 

.. 
 



Domain Configuration 
 

48  Provisioning Reference Guide 
 

Normally, this means that the operations folder is placed along side 
the Data and Logs folder with a path name like the following: 

C:\Program Files\CA\Identity Manager\Provisioning 

Server\Operations 

However, to relocate this folder to another drive (so as to be able to 
run from a read-only drive), you should set the environment variable 
%ETAVARHOME% to a value such as D:\ProvisioningData before 
restarting the Provisioning Server service. Then the operations XML 
files will be placed instead into the following folder: 

D:\ProvisioningData\Operations 
 

The ETAVARHOME value can also be set as a registry value instead of 
an environment variable by using the eta-env utility that is installed 
with the provisioning server: 

eta-env action=set name="ETAVARHOME" value="D:\ProvisioningData" 

Important! Changes to this parameter do not take effect until the 
Provisioning Server service is restarted. 

 

Password Synchronization Parameters 

The Password Synchronization configuration folder contains 
parameters you can use to control the behavior of password 
synchronization operations. Password synchronization is the feature 
that involves installing the Password Synchronization Agent on a 
Windows system or other systems to intercept password changes, 
send password validation requests, and password notification 
requests to the Provisioning Server. 

 



Domain Configuration 

 

Chapter 2: Advanced Configuration Options  49  
 

Password Synchronization/Agent Response Threshold 

Default Value:  600 seconds (equals 10 minutes) 

Description: Maximum expected duration (in seconds) of each 
password change that the Provisioning Server sends to a managed 
endpoint on which a password synchronization agent is installed. This 
parameter allows the Provisioning Server to recognize when a 
Password Synchronization agent is processing a password change sent 
to it by the Provisioning Server as distinct from a password change 
originating on that managed endpoint. 

 

When installing a password synchronization agent, you must check 
that the Password synchronization agent is installed check box on the 
Endpoint Settings tab. Then when the Provisioning Server sends a 
password change to the managed endpoint, it records the time when 
the password was sent. For a number of seconds set by the Agent 
Response Threshold, any password change notification or password 
validation request received for this account is assumed to be false. 
Only password changes originating on the native system initiate 
password synchronization. Account password changes originating in 
the Provisioning Server update the account but not the global user or 
other accounts. 

If, during the Agent Response Threshold, a password other than the 
password just sent to the managed endpoint is provided in a password 
validation or password change notification, this password is rejected. 
Two concurrent password changes to the same account are not 
allowed. 

 



Domain Configuration 
 

50  Provisioning Reference Guide 
 

Password Synchronization/Update Only Global User 

Values:  No (default) or Yes 

Description: This parameter controls what action is carried out when 
the Provisioning Server receives a password change notification. By 
default, the new endpoint account password received in a password 
change notification is used first to update the global user's password 
and then to update all of that global user's account passwords for 
accounts other than the one from which the notification arrived. 

Set this parameter to Yes to change this behavior so that only the 
global user password is updated. No account passwords will then be 
updated. 

 

There are various situations in which the global user and affected 
accounts are not updated, including the following: 

■ Global user Enable Password Synchronization Agent property is 
not enabled. Global Users and account passwords are not 
updated. 

■ Password change notification occurred during the Agent Response 
Threshold period and is treated as a false password change 
notification. Global Users and account passwords are not 
updated. 

■ A endpoint containing one of the global user's accounts is marked 
on its Endpoint Properties for Disable propagation to accounts. 
The accounts on this endpoint are not updated. 

■ Global user Restricted property is enabled. Restricted global users 
such as [default user] are protected from accidentally propagating 
changes to their associated accounts. 

 

Password Parameters 

The Password configuration folder contains parameters you can use to 
control the behavior of certain password operations. 

 



Domain Configuration 

 

Chapter 2: Advanced Configuration Options  51  
 

Passwords/Enforce Synchronized Account Passwords 

Values: Yes (default) or No 

Description: When Yes, users cannot change any of their synchronized 
account passwords to a value other than the current value of their 
global user password. We recommend that you set this parameter to 
Yes whenever the Identity Manager Server\Use External Password 
Policies parameter is set to Yes. 

Users' synchronized account passwords are the passwords for their 
accounts on endpoints for which the Disable Password Propagation 
property is disabled and which have not been marked as Delete 
Pending. 

 

Passwords/Pre-expire Passwords 

Values: No (default) or Yes 

Description: Controls having new global users created with their 
passwords already expired, forcing users to change their passwords 
during the initial login. If you set this parameter to Yes, global users 
created from non-interactive interfaces have their password initially 
set as expired. This is represented in the global user properties as a 
value of 1 for the property PwdPreExpired. This option appears on the 
global user's property sheet as the Force one-time expiration (mark 
password as temporary) check box. 

 



Domain Configuration 
 

52  Provisioning Reference Guide 
 

The setting of the password as initially expired occurs when global 
users are created through the following interfaces: 

■ Correlate. When acquiring a primary endpoint, global users are 
created for each account. These users will generally not have a 
password unless you set a constant value using the Create Users 
Default Attributes parameter described previously. Enabling the 
Pre-expire Passwords parameter will cause the global users to be 
created with passwords that are initially expired. If you set a value 
for PwdPreExpired using the Create Users Default Attributes 
parameter, that value takes precedence over one specified by 
enabling the Pre-expire Passwords parameter. 

■ Identity Manager Server, ETAUTIL or other on-demand clients. If 
you create a single global user using the batch utility (ETAUTIL) or 
some other on demand LDAP client, these users will start out with 
expired passwords if you enable the Pre-expire Passwords 
parameter and do not otherwise specify a value of the 
PwdPreExpired property. 

 

If you create a global user using an interactive client such as 
Provisioning Manager, whether the global user's password is initially 
expired or not is determined from the value of the PwdPreExpired 
property provided when the global user is created. In Provisioning 
Manager, you control this value by selecting or clearing the check box 
labeled Force immediate expiration (one-time). Provisioning Manager 
automatically selects the Force one-time expiration (mark password as 
temporary) field if the Pre-expire passwords parameter is enabled. To 
disable this default behavior, clear the field before creating the global 
user. 

 



Domain Configuration 

 

Chapter 2: Advanced Configuration Options  53  
 

Passwords/Store User Passwords 

Values: Yes (default) or No 

Description: Controls whether the EncryptedPassword global user 
attribute is stored and whether %P% rule variables are supported. 

By default the Provisioning Server encrypts the global user password 
and stores it in the provisioning directory as a global user attribute 
named EncryptedPassword. When you later attempt to create an 
account for that global user using an account template with the %P% 
expression for the password rule, then the Provisioning Server 
decrypts the stored EncryptedPassword value and provides it to the 
endpoint type option as the initial Password attribute for the account 
being created. 

 

However, if you will not be creating any accounts using account 
templates with %P% rule expressions, then you can improve security 
by not storing these passwords. 

Note: By not storing the EncryptedPassword attribute, you are only 
giving up %P% rule evaluation. You can authenticate users by using the 
global user password. When the Store User Passwords parameter is 
set to No, the Provisioning Server stores a one-way hash of the 
password for use in authenticating user passwords during login. 

 

Processes Parameters 

The Processes configuration folder contains parameters you can use to 
control the process behaviors on Windows provisioning servers. 

 



Domain Configuration 
 

54  Provisioning Reference Guide 
 

Processes/Catch Program Exit Exceptions 

Default Values: Yes (default) and No 

Description: This parameter controls the behavior of the Provisioning 
Server when invoked program exits throw runtime exceptions. By 
default (yes), the exception is caught and the current operation fails 
with an uncaught exception error message. However, if you are 
developing new program exits you may choose to set this parameter 
to no and allow the uncaught exception to result in server 
termination, which provides more information about the exception. 
This parameter only affects common program exits of the DLL type. 

 
 

Processes/Child Operation Thread Pool Size 

Default Value: 200 

Description: This parameter defines the maximum number of threads 
in the server-wide child operation thread pool. When the server 
decides to split up a single operation into multiple sub-operations, 
those sub-operations are carried out by the threads in the child 
operation thread pool. The larger you make the value for this 
parameter, the more work the Provisioning Server attempts in 
parallel. 

Currently the Provisioning Server only uses the child operation thread 
pool to carry out the multi-account search and multi-account update 
functions submitted by the Web interface. For synchronization and 
propagation operation, regardless of which client submits these 
requests, and even though they also spawn child operations, the child 
operations are carried out in series in the main operation's thread. 

 



Domain Configuration 

 

Chapter 2: Advanced Configuration Options  55  
 

This parameter does not affect the primary server thread pool used 
for processing separate requests received from client applications. 
This thread pool size is controlled by the SLAPD parameter called 
threads in the eta_slapd.conf file. See on the Provisioning Manager 
help for editing parameters in this configuration file. 

Important! Changes to this parameter do not take effect until the 
Provisioning Server service is restarted. 

 

Processes/Parallel Propagation 

Default Values: Yes (default) and No 

Description: This parameter controls whether account passwords 
updated as part of global user to account password propagation are 
carried out in parallel or sequentially. By default, account passwords 
are updated in parallel, and the degree or parallelization is controlled 
by the Processes/Child Operation Thread Pool Size parameter. 

This parameter has no effect on requests from clients that carry out 
the account updates explicitly. It only affects those clients that direct 
the Provisioning Server to update a global user password and 
propagate that change immediately to all synchronized account 
passwords. 

 

Processor Parameters 

The Processes configuration folder contains parameters you can use to 
control values related to the use of CPU processors. These parameters 
control operating system values that are process-wide and as such 
affect the entire Provisioning Server service. This is specifically 
relevant if you install any additional backends into the slapd process 
that runs your Provisioning Server. 

Important! Changes to these parameters do not take effect until the 
Provisioning Server service is restarted. 

 



Domain Configuration 
 

56  Provisioning Reference Guide 
 

Processor/Process Affinity Mask 

Default Value:  0 (no restrictions) 

Description: Specifies the process affinity mask for the Provisioning 
Server service process. The process affinity mask is a bit vector in 
which each bit represents the processor of a multiprocessor server on 
which the threads of the process are allowed to run. 

The value 0 (default) signifies no restrictions. 

The values 1, 2, 4, 8, 16, 32, 64, or 128 restrict the threads to running 
on the 1st, 2nd, 3rd, 4th, 5th, 6th, 7th, or 8th processor, respectively. 

For example, the values can be combined so the value 5 (1+4) can be 
used to allow running on processors 1 and 3. 

 

Processor/Process Priority 

Default Value: 0 (use system default priority) 

Description: Specifies the scheduling priority of the Provisioning 
Server service process. 

The value 0 (default) uses the system default. 

The only other recommended value is 16384, indicating below-normal 
priority. This value should be used when the Provisioning Server runs 
on the same server as its provisioning directory. This effectively raises 
the priority of the provisioning directory and consequently increases 
over-all server performance. 

 

Search Parameters 

The Search configuration folder contains parameters you can use to 
control search behaviors. 

 



Domain Configuration 

 

Chapter 2: Advanced Configuration Options  57  
 

Search/Allow Partial Results 

Values:  Yes (default) or No 

Description: Allow search requests to return less than the full number 
of matched entries when the search size limit is reached. If you set this 
parameter to No, or if the client fails to request partial results, partial 
results are not returned and clients receive a size limit exceeded error 
when the size limit is reached. 

For example, if partial results are permitted, the search limit is 200, 
and the search found 5000 entries, 200 of them are returned. If partial 
results are not permitted, this search would return no results. 

Note: The Provisioning Server does not define which 200 of the 5000 
entries are returned. The Provisioning Server does not necessarily 
return the first 200 entries, either alphabetically or using any other 
ordering method. 

 

Two settings are required to activate Partial Results: 

■ The domain configuration parameter Allow Partial Results 
described here. 

■ A selection in the Provisioning Manager GUI Search Preference 
control. 

 

The effective partial result setting is the combination of these two 
settings. A partial result is returned only if Allow Partial Results is set 
to Yes and the GUI Search Preference control has Show Partial Result 
Lists selected. 

The Provisioning Server is most efficient when partial results are not 
returned. When partial results are not needed, the Provisioning Server 
can report quickly when a search would exceed the size limit. 
However, if required to return the number of entries indicated by size 
limit, this will add processing load to the provisioning directory, 
Provisioning Server and client application. This load will take away 
from the processing load available to other users' queries or 
modifications. 

 



Domain Configuration 
 

58  Provisioning Reference Guide 
 

Search/Max Scope Filter Objects 

Default Value:  10 

Description: The maximum number of objects that will be placed into 
a search filter during scoped searches. When a search of a container is 
initiated by an administrator who has access to only some of the 
objects in the container, the Provisioning Server augments the 
client-supplied filter with a scope filter that restricts the objects 
returned to those for which the administrator has access. However, if 
the administrator has access to more than Max Scope Filter Objects 
objects, this is deemed too many to be placed into the filter that will 
be sent to the provisioning directory and/or managed endpoint and 
the Provisioning Server uses its backup algorithm. In this case, the 
Provisioning Server will ask for all objects the client requested and 
then discard those that the scope filter would have excluded. 

 

Search/Search Size Limit 

Default Value:  0 (unlimited) 

Description: The maximum number of entries returned by the 
Provisioning Server in a search request. The effective size limit for a 
search is the smallest of this value, the SLAPD size limit parameter, 
and the client-provided size limit operation parameter. 

Limiting the number of entries returned in searches is important for 
good interactive performance of the Provisioning Server. If the 
effective size limit is too large, poorly formed search requests may 
return very long lists of global users, accounts or other objects that are 
not easy for administrators to work with. Conversely, if the effective 
size limit is too small, it may limit the administrator's ability to browse 
provisioning roles or other objects whose number is more moderate 
than that of global users or accounts. 

 



Domain Configuration 

 

Chapter 2: Advanced Configuration Options  59  
 

There are three ways to control the effective size limit of a search 
request: 

■ The SLAPD sizelimit parameter in the following files: 

PSHOME\Data\im_ps.conf 

PSHOME\Data\im_ccs.conf 

This value is set to 0 (unlimited) by default and controls all LDAP 
servers running in the Provisioning and Provisioning Connector 
server services, respectively. There should be no need to change 
this parameter. Doing so would limit operations like exploration 
that perform searches of accounts in managed directories and 
relies on being able to receive all accounts present in a single 
container in a single search request. 

 

■ The Domain Configuration parameter Search Size Limit 

This value is also set to 0 (unlimited) by default. It controls the 
maximum number of entries returned to provisioning clients in a 
single search request. If you set this to a non-zero value (500), this 
will prevent any client from being able to receive more than 500 
entries from the Provisioning Server in a search request. 

Set this parameter only if you can be sure that no clients require 
receiving more than this number of entries from any search. 

You should leave the Search Size Limit configuration parameter as 
0 (unlimited) on any interactive or mixed-use Provisioning Server. 
If you have an environment where certain Provisioning Servers 
are dedicated to interactive use and other Provisioning Servers 
are available for batch activity, you may want to set the Search 
Size Limit between 500 and 1000 on the interactive servers only. 
Use the Add Specialization menu item to set a server-specific 
Domain Configuration parameter. 

 

■ The Provisioning Manager's size limit preference setting 

To change this preference, select File, Preferences, click the 
Search tab, and change the value in the Limit on Returned Items 
for a Search field. 

The Provisioning Manager preset return limit is 500. Each user can 
increase or decrease this preference, but increasing the value 
above the server's Search Size Limit value has no effect because 
the server's effective size limit is the smallest of the three size 
limit controls. 

 



Domain Configuration 
 

60  Provisioning Reference Guide 
 

If a search operation encounters a search-limit failure, assuming that 
you enabled the retrieval of partial results, in some cases the number 
of items displayed may be different than the actual search limit 
because a single search operation (from the perspective of the user) 
might require several searches (from the perspective of the 
Provisioning Server). 

Depending on how a client combines the results of the multiple search 
operations (for example, through a union or intersection) when 
displaying the results, the net display may contain more or fewer 
items than the search-limit. In all cases, an error message is displayed 
informing you that the results were truncated due to the search limits.  

 

Servers Parameters 

The Servers configuration folder contains read-only parameters that 
identify which Provisioning Servers are installed for your domain. After 
a default installation, a single server is listed. 

If you install alternative servers for failover or load-balancing, multiple 
servers appear in this list.  For each server listed, read-only 
parameters identify the Build, Patch and Version numbers for the 
Provisioning Server software. An additional parameter identifies 
whether the FIPS 140-2 encryption feature is enabled for that 
Provisioning Server.  

Note: The server names listed here are the same server names used 
when creating specialization parameters.  These are also the names 
you should use for the server parameter in the csfconfig 
command-line utility when creating specializations for connector 
server configuration objects.  

 



Domain Configuration 

 

Chapter 2: Advanced Configuration Options  61  
 

Statistics Parameters 

The Statistics configuration folder contains parameters you can use to 
control how statistics are maintained by the Provisioning Server. Most 
objects stored in the provisioning directory have statistic attributes to 
record when and by whom the object was created; and when and by 
whom the object was last updated. These statistics are displayed on 
the Statistics tab of the respective objects' properties. 

 

Statistics/Enabled 

Values:  Yes (default) or No 

Description: When disabled, statistic attributes on objects in the 
provisioning directory are not updated by the Provisioning Server as 
those objects are created or updated. This can improve performance 
during large scale changes or in installations where maintaining 
creation and update statistics is not necessary. 

Certain statistics on global users such as password update date and 
time, and suspension update date and time are required for correct 
operation of server functions. These statistics are updated even when 
the Statistics/Enabled configuration parameter is set to No. 

 



Domain Configuration 
 

62  Provisioning Reference Guide 
 

Statistics/Node Stats from Connection 

Values:  No (default) or Yes 

Description: Use the client node name taken from the LDAP 
connection object when recording node statistics. The default (No) 
behavior is to take the node name provided by the client application. 

The Node statistic displayed on the Statistics tab of the Global User 
property page and other objects' property pages is not always 
updated when other statistics such as date, time, userid, and 
username are. This behavior is a result of the way the Node name is 
determined. By default, the node name must be provided by client 
applications in their requests. If the clients fail to do so, or the client 
submits a high-level operation, such as Synchronize, that spawns child 
operations to carry out the individual object updates, the server has 
no Node value to use to update that statistic. To rectify this problem, 
use the Node Stats From Connection configuration parameter. Change 
its setting from the default No to Yes to select the alternative Node 
statistic algorithm.  

 

The alternate algorithm uses the Node information obtained from the 
LDAP connection, which identifies the host that was the immediate 
client sending the request. This is often the same as the originating 
client, but can be another system.  

For example, requests originating from the Identity Manager Server 
would be recorded as originating from the computer where the 
Identity Manager Server is running, not the computer where the 
administrator is running a web browser.  Also, if the clients connect to 
a dXRouter process for failover or load-balancing between replicated 
Provisioning Servers and have the dXRouter send the request to the 
Provisioning Server, you should not enable the Node Stats from 
Connection parameter. It will result in all Node statistics indicating the 
router system. 

 



Domain Configuration 

 

Chapter 2: Advanced Configuration Options  63  
 

Synchronization Parameters 

The Synchronization configuration folder contains parameters you can 
use to choose from alternative variants of the Provisioning Server's 
synchronization functions. 

 

Synchronization/Automatic Correlation 

Values:  No (default) or Yes 

Description: Enable the alternative User Synchronization behavior 
whereby an attempt to update an existing, uncorrelated account 
triggers an automatic correlation of the account to the global user 
prior to the update of the account. If the parameter is No (default), 
the attempt to update the account will fail with a message indicating 
the account has not yet been correlated to this global user. 

 

Synchronization/Remove Account Template Values from Accounts 

Values:  Yes (default) or No 

Description:  When Yes, the Weak Synchronization algorithm will 
consider that capability account values (for example, account group 
membership) prescribed by a account template should be removed 
when that account template is removed from an account. Set this 
parameter to No to restore the prior Weak Synchronization behavior 
where account attribute values are never removed when 
synchronizing an account with its weak-synchronization account 
templates. This parameter only affects multivalued attributes. String, 
integer or Boolean single-valued attributes are only increased in 
capability by weak synchronization. 

 

Only certain multivalued attributes designated as SyncRemoveValues 
attributes are affected by this feature. Consult the eTaCapability.txt 
file for a list of which multivalued capability attributes may have 
values removed by the SyncRemoveValues feature described here.   

To generate the eTaCapability.txt file, use the following command: 

PSHOME\bin\dumpptt –c > eTaCapability.txt 
 



Domain Configuration 
 

64  Provisioning Reference Guide 
 

Synchronization/Use Existing Accounts 

Values:  No (default) or Yes 

Description:  Enable the alternative User Synchronization behavior 
whereby a global user's set of assigned account templates (through 
assigned provisioning roles) will only attempt to prescribe one account 
correlated to the global user on any particular managed endpoint. This 
behavior can be useful if some accounts already correlated to the 
global user are named differently or are in different containers than 
what is prescribed by the account templates included in the global 
user's provisioning roles and only one account is needed or allowed. If 
the parameter is enabled and multiple account templates for one 
endpoint prescribe different names and/or different containers for the 
account only one account will be created. 

If a global user already has multiple accounts on a single endpoint, the 
User Synchronization function (when Use Existing Accounts is set to 
Yes) attempts to figure out which account is required by which 
account templateaccount template. This is done through a heuristic 
that attempts to handle situations where a user's provisioning roles do 
in fact prescribe multiple accounts on one endpoint. 

 

For example, if global users have two accounts (A1 and A2) on 
endpoint E and their provisioning roles indicate that they should have 
one account on endpoint E through account template AT1 and one 
account on endpoint E through account template AT2, User 
Synchronization pairs each account template (AT1 and AT2) with one 
of the existing accounts. The pairing is done with the following 
heuristic: 

■ Match account template with an account with exactly the DN 
specified by the account template. 

■ Match account template with an account already belonging to the 
specified account template. If more than one account matches, 
pick the first one. 

 



Domain Configuration 

 

Chapter 2: Advanced Configuration Options  65  
 

■ Match account template with an account whose endpoint 
type-specific account name attribute matches the global user's 
name. In some endpoint types, for instance Active endpoint, the 
account name is represented by an attribute of the account 
whereas the name as seen when you list the account is a display 
name (a full name). This rule accounts for such endpoint types. 

 

■ Account with name value matching the name value specified in 
the account template. That is, it matches an account with the 
right name but the wrong container. If there is more than one 
matching account, pick the first one. 

■ Pick the first account. 

Note: When Use Existing Accounts parameter is set to No, only the 
first of these rules (exact matching based on account DN) is applied. 

 

Continuing with the example, if the previous rules resulted in pairing 
both account template AT1 and account template AT2 with account 
A1, then User Synchronization would correct the accounts for this user 
by doing the following: 

Deleting account A2 (assuming the administrator selected the Delete 
extra accounts or extra account templateaccount template 
assignments option of User Synchronization); and 

Assigning either account template AT1 or AT2 to account A1 that was 
not already assigned. 

These rules ensure that User Synchronization (with Use Existing 
Accounts enabled) never attempts to create additional accounts on an 
endpoint where a user already has an account. If your business 
requires you to create multiple accounts for your users on a single 
endpoint from provisioning roles, do not enable this configuration 
parameter. For more information about synchronization, see the 
Administration Guide. 

 



Domain Configuration 
 

66  Provisioning Reference Guide 
 

Transaction Log Parameters 

The Transaction Log configuration folder contains parameters you can 
use to control transaction logging, also known as Provisioning Server 
trace logging. This is the log you use to monitor activity performed by 
the Provisioning Server while it processes requests received from its 
client applications. 

 

Transaction Log/Enable 

Values:  Yes (default) or No 

Description: Set this parameter to No to completely disable the 
logging of information to the server trace log. Typically, you control 
the amount of information you want logged using the Level 
parameter. However, even at level 0 some important items are logged 
to the server trace log. To disable these items from being logged, set 
the Enable parameter to No. 

 

Transaction Log/Enable/Configuration 

Values:  Yes (default) or No 

Description: This parameter enables or disables logging of diagnostic 
output from the Provisioning Server Configuration subsystem. The 
configuration subsystem checks every 10 minutes (by default) to see 
whether any of the configuration parameters have been changed. 
Each time this periodic refresh occurs, a line such as the following is 
written to the server trace log: ETA::Configuration update completed. 
No changes found. 

Alternative messages are written if actual changes were found. To 
suppress all of these messages from the server trace log, set this 
configuration parameter to No. 

 

Transaction Log/Enable/Connector Server Framework 

Values: Yes (default) or No 

Description: Enables/disables logging of the diagnostic output from 
the Provisioning Connector Server Framework (CSF).  

 



Domain Configuration 

 

Chapter 2: Advanced Configuration Options  67  
 

Transaction Log/Enable/LDAP 

Values: Yes (default) or No 

Description: This parameter enables or disables logging of diagnostic 
output from the Provisioning Server LDAP subsystem. The LDAP 
subsystem manages the communications between each Provisioning 
Server and other LDAP servers, including the provisioning directory 
and Connector Servers  

 
 

Transaction Log/File Name 

Default Value:  etatrans 

Description: This parameter defines the transaction log's base file 
name. The suffix YYYYMMDD-HHMM.log will be appended to this base 
file name to build the log file name. You can change this parameter to 
use a different base file name in the PSHOME\Logs folder or to 
relocate the log file to another folder on your server. 

 



Domain Configuration 
 

68  Provisioning Reference Guide 
 

The value of this parameter can be any of the following: 

■ Simple base name (for example, etatrans), the log is created in the 
Logs folder in the folder where you installed the Provisioning 
Server. By default, this makes the log file named C:\Program 
Files\CA\Identity Manager\Provisioning 
Server\Logs\etatransYYYYMMDD-HHMM.log. 

■ Relative path (for example, ..\Logs\etatrans), the log path name 
will be relative to the current directory of the Provisioning Server 
service (PSHOME\bin). For the example given, this will result in 
the same pathname as before (C:\Program Files\CA\Identity 
Manager\Provisioning 
Server\Logs\etatransYYYYMMDD-HHMM.log). 

■ Absolute path (for example, D:\ProvisioningData\Logs\etatrans), 
you can specify an alternative drive for your log file. For this 
example, the resulting log file would be 
D:\ProvisioningData\Logs\etatransYYYYMMDD-HHMM.log. 

The Provisioning Server switches to a new log file every day, every 
time the Provisioning Server restarts, and any time the log file size 
exceeds 100 Megabytes. 

 

Transaction Log/Level 

Values:  0 through 7 (default) 

Description: This parameter lets you set the level of logging for the 
Server Trace log. Valid values are: 

 

Value Description 

0 No trans logging 

1 Log external/child errors 

2 Log external operations 

3 Log child operations 

4 Log informative messages 

5 Log DSA (Directory Service Agent) errors 



Domain Configuration 

 

Chapter 2: Advanced Configuration Options  69  
 

Value Description 

6 Log DSA operations 

7 Log search operations 

Note: Alert log entries are logged at all logging levels (1 - 7). 
 

After installation, the log level is set to the maximum value (7). This 
ensures that any problems during or immediately after installation are 
logged. After installation, you may select alternative logging levels to 
meet your logging requirements. Many customers run with level 7 for 
maximum information in the event that problems are reported by 
users. Other customers select a more modest level such as level 3 that 
reports failures without much of the internal tracing information 
associated with the processing of requests. Another useful level is 
level 6 that removes the many search operations that could dominate 
the log while maintaining all other information. 

 

Log user-friendly Attribute and Object Class Names 

The Identity Manager Provisioning Server currently logs attribute 
values in its server trace log (etatransYYYYMMDD-hhmm.log) as it logs 
the attributes in Add and Modify operations, listing the LDAP attribute 
names and the LDAP objectClass values. For DYN connectors, the LDAP 
attributes and object classes are generic names (such as 
eTDYN-str-multi-01, eTDYNObject001) which are not that meaningful. 
For release 12.5, these log entries are expanded to list the LDAP 
attribute names and object class values, and the the user-friendly 
names taken from the metadata. 
 





 

Chapter 3: SPML Service  71  
 

Chapter 3: SPML Service 
 

This section contains the following topics: 

SPML Overview (see page 71) 
Install SPML (see page 77) 
SPML Support for FIPS 140-2 (see page 78) 
Uninstall the SPML Service (see page 78) 
SPML Service Configuration (see page 79) 

 

SPML Overview 

The Provisioning Server helps you manage, provision, and de-provision entities. A good 
provisioning system is vital for security and efficiency. Many companies have multiple 
provisioning systems. It can often be difficult to configure different provisioning systems 
to communicate with each other. 

OASIS (Organization for the Advancement of Structured Information Standards) has 
developed a markup language specifically designed to facilitate communications 
between and within user provisioning software. This is named SPML (Service 
Provisioning Markup Language). 

SPML is an open standard that provides an XML-based protocol for provisioning 
requests. It facilitates provisioning requests between clients and servers that can be 
both intranet and extranet. 

 

Benefits of Using SPML 

The benefits of the SPML include the following: 

■ SPML is an open standard and can therefore communicate with other provisioning 
systems that can process SPML Requests. This lets businesses continue to use and 
integrate existing systems. 

■ Data can be shared across different provisioning systems to leverage the best 
features of each system. 

 

■ SPML is especially designed to handle provisioning-related data. 

■ SPML can easily handle data driven assignments of role-based access control. 
 

■ SPML is a best-of-breed technology for user provisioning. 

■ SPML facilitates business-to-business communications, where appropriate. 
 



SPML Overview 
 

72  Provisioning Reference Guide 
 

■ SPML XML requests and responses are more human-readable than LDAP. Requests 
which is the native language of the Provisioning Server. 

■ SPML is a web-based technology. 
 

When You Would Use the SPML Service 

SPML simplifies provisioning requests and facilitates communication between 
provisioning systems. You do not need to deploy the SPML Service for a basic 
Provisioning Server installation, but it is an efficient and elegant provisioning solution. 

You would deploy the SPML Service and the associated SPML Configuration Application 
as part of an installation or upgrade of the Provisioning Server. You can then deploy the 
SPML clients and tools that come with the Provisioning Server (CMDRA, SPML Manager, 
and WS-Mapper). You can also write or integrate a third-party clients and requesting 
authorities if they support the SPML version 1.0 standard. 

 

SPML Architecture 

The SPML Service is the server-side component that processes SPML requests. The SPML 
Service is a Provisioning Server component that uses and processes SPML requests. The 
SPML Service uses SPML version 1.0. 

This section describes the components that make up the SPML architecture of the 
Provisioning Server. 

 



SPML Overview 

 

Chapter 3: SPML Service  73  
 

SPML Architectural Diagram 

The following diagram shows the SPML components of the Provisioning Server and how 
they relate to each other. 

 
 

SPML Service 

The SPML Service is the server-side component that processes SPML requests. The SPML 
Service is a Provisioning Server component that uses and processes SPML requests. The 
SPML Service uses SPML version 1.0. 

 



SPML Overview 
 

74  Provisioning Reference Guide 
 

SPML Configuration Application 

The SPML Configuration Application is a web-based interface that lets you configure one 
or more Provisioning Servers as unique instances of SPML services. You should use the 
SPML Service Configuration tool to configure the SPML Service. 

The SPML Configuration Application is automatically installed when you install the SPML 
service.  

To access the SPML Configuration Application, Start Menu, Programs, CA, Identity 
Manager, IM SPML Service Configuration. 

 

Command Line Requesting Authority (CMDRA) 

The Command Line Requesting Authority (CMDRA) is a sample SPML Requesting 
Authority that can submit well-formed SPML Request XML files to the SPML Web 
Service. The CMDRA lets advanced users submit SPML requests using the command line 
or from scripts. It is ideal for sorting and managing large amounts of data using SPML 
templating, as well as automating requests and large batch jobs. 

 

To download the CMDRA 

1. Click Start Menu, Programs, CA, Identity Manager, IM SPML Requesting Authority  

2. Click the cmdra.zip link.  

3. Unzip the CMDRA to your hard disk to use it. 
 

SPML Manager 

The SPML Manager is a graphical user interface that lets administrators create and 
execute SPML provisioning requests. The SPML Manager can also help advanced users 
integrate with other provisioning systems. You can design provisioning requests in the 
SPML Manager then view the SPML requests in its native XML format. 

 

To download the SPML Manager 

1. Click Start Menu, Programs, CA, Identity Manager, IM SPML Requesting Authority  

2. Click the SPML Manager web link.  

3. Unzip the SPML Manager to your hard disk to use it. 
 



SPML Overview 

 

Chapter 3: SPML Service  75  
 

How the SPML Service Works 

This section explains how an SPML request works from the Requesting Authority 
through to the provisioning server. 

1. Using the SPML Manager, an administrator creates a new user. 

2. The SPML Manager creates an SPML-specific XML form and sends it to the SPML 
service. 

3. The SPML Service translates the request to LDAP and passes the LDAP request to 
the Provisioning Server. 

4. The Provisioning Server processes the LDAP request. 

5. The Provisioning Server sends confirmation to the SPML Service. 

6. The SPML Service sends confirmation to the SPML Manager. 
 

 
 



SPML Overview 
 

76  Provisioning Reference Guide 
 

SPML Integration 

This section gives you an outline of the following: 

■ SPML Templating to integrate large amounts of data from external provisioning 
systems 

■ The WS Mapper tool to convert protocols 

■ Requesting Authorities to connect to the Provisioning Server through the SPML 
Service 

 

SPML Templates 

SPML technology lets you create templates that can be applied to data that is being 
imported into the Provisioning Server through the SPML Service. You can also use SPML 
Templating to modify the data as it goes into the Provisioning Server. 

The SPML template takes records from a CSV or XML files and applies the template to 
each record. Because the template is applied to each record, you can impose some 
rule-based conditions to each record that affects the data output. The SPML output is 
then fed to the SPML Service and then sent to the Provisioning Server. 

 

The templates are written using Velocity. Velocity is an open source Java-based engine 
that is specifically designed for processing templates. You can create your own 
templates or use the sample template that comes with the SPML Manager or the 
CMDRA. 

 

You can write templates using the SPML Manager, or you can code them yourself. You 
can import mass data into the Provisioning Server using the templating functionality 
with the SPML Manager, SPML Feed, or the CMDRA. 

 

The SPML service comes with example templates and example data files to help you 
understand and create your own templates. 

For more information on SPML Templates, see using the SPML Manager's Templating 
Functionality. 

 

WS Mapper 

WS Mapper (Web Service Mapper) is a lightweight web service that takes a proprietary 
web service request and transforms the data into another web service request format. 
The service can also transform the response to the web service request back into the 
original format. 

This service was designed to allow web service requests from third-party applications to 
be redirected to this service and mapped into SPML Service provisioning requests that 
will end up as provisioning tasks in the Provisioning Server. 

 



Install SPML 

 

Chapter 3: SPML Service  77  
 

Requesting Authorities 

Any Requesting Authority client that uses standard SPML 1.0 can send provisioning 
requests to the Identity Manager SPML Service. The SPML Service takes the operations 
specified in the SPML requests and executes provisioning actions accordingly. The 
CMDRA and the SPML Manager are both requesting authorities. 

Note: Command line requesting authorities such as CMDRA and SPML Feed can accept 
input from property files. Requesting authorities' process property files using 
java.util.Properties class. For that reason, certain character such as backslash (\) should 
be escaped. For example, username parameters in property files should be specified as 
Domain\\Username.For more details on usage requirements, see java.util.properties 
documentation. 

 

Before a Requesting Authority can send requests to the SPML Service, it must be 
authenticated using HTTP basic client authentication. The Requesting Authority must 
provide the login credentials of a valid eTrust Admin user. 

Important! When the client prompts for the username and password, the Username 
must include the user's domain name and a backslash in the format Domain\Username. 

 

Install SPML 

If you intend to use SPML in a FIPS-compliant environment, additional instructions (see 
page 78) apply. 

To install the SPML service 

1. Locate the Provisioning Component installation media. 

2. Run the SPML installer under Clients. 

Answer the questions to provide information about your system. 
 



SPML Support for FIPS 140-2 
 

78  Provisioning Reference Guide 
 

SPML Support for FIPS 140-2 

The SPML server is FIPS 140-2 compliant. We recommend deploying the SPML service 
on:  

■ Apache Tomcat Server 4.1.36 or a higher version of 4.1 

■ JDK 1.5.11 or a higher version of JDK 1.5. Note that Tomcat must be enabled to run 
in SSL mode.  For details, see the Apache's administrator guide for Tomcat 4, 
(http://jakarta.apache.org/tomcat/) section “SSL Configuration HOW-TO.” 

If you use CA Tomcat instead of Apache Tomcat, CA Identity Manager requires these 
workarounds for SPML: 

■ If you are using JDK 1.4.xx with CA Tomcat, FIPS 140-2 must be disabled. JDK 1.4.xx 
is incompatible with CA Tomcat because the RSA Jsafe CryptoJ 4.0 library needed 
for FIPS 140-2 support cannot be placed as the first security provider in JDK1.4.  

To disable FIPS 140-2 support, pass the JVM flag 
“-Dcom.ca.commons.security.fips=false” during Tomcat start up. 

■ If you are running Tomcat from the command line, you can include the JVM flag 
catalina.bat. More details exist in the batch file itself. 

■ If you are running Tomcat as windows service, pass the flag as follows: 

a. Using the registry editor, navigate to 
“HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\CA Tomcat 
4.1.29 eTrustIAMWebServer\Parameters” 

b. Add a String Value called “JVM Option Number n” where 'n' is the number 
following on from the previous JVM parameter. For the value, specify: 

  Dcom.ca.commons.security.fips=false 

c. Increase by one the value of Edit DWORD Value “JVM Option Count” to 
account for the newly added parameter. 

■ If you are using JDK 1.5 with CA Tomcat, an incompatibility problem exists. To work 
around this problem: 

a. Manually remove the two Xerces libraries (xercesImpl.jar and 
xmlParserAPIs.jar) from %TOMCATHOME%\common\endorsed. 

b. Restart Tomcat. 
 

Uninstall the SPML Service 

To un-install SPML, use the Windows Add or Remove Programs option and remove CA 
Identity Manager. 

Important! This action removes all CA Identity Manager products. 
 



SPML Service Configuration 

 

Chapter 3: SPML Service  79  
 

SPML Service Configuration 

During the installation of the Identity Manager SPML Service, you specified a single 
Provisioning Server. We can now run a Requesting Authority to connect to the SPML 
Service and start sending provisioning requests targeting that Provisioning Server. But 
you can also configure the SPML Service to manage multiple Provisioning Servers. 

 

This section explains how to perform functions using the application. It covers topics 
such as the following: 

■ Log on to the SPML Configuration Application 

■ Add a new SPML service 

■ Modify, rename and delete an existing service 
 

Log On to the SPML Configuration Application 

These instructions assume that you have installed the SPML Service on the local 
computer. 

To access and use the SPML Configuration Application, follow these steps: 

1. Click Start Menu, Programs, CA, Identity Manager, IM SPML Service Configuration. 

The SPML Configuration Login page appears. 
 

2. Log in to SPML Configuration by entering your Provisioning Server login credentials. 
A user name with Delegated Administration (DAWI) privileges must be used: 

Username 
Provisioning Server user with administrator privileges. 

Password 
Password for this username. 

Service 
Admin Service to authenticate against. 

Domain Name 
Enter the domain name to which the username belongs. 

Note: The domain name and password are case-sensitive. 

3. Click Enter. 

You are now logged in to the SPML Service Configuration application. 
 



SPML Service Configuration 
 

80  Provisioning Reference Guide 
 

Add a New SPML Service 

To add a new SPML service using the SPML configuration application, follow these steps: 

Note: These instructions assume that you have installed the SPML Service on the local 
computer. 

1. Log on to the SPML Configuration application. 

2. Enter the following fields in the Admin Service Details form, on the right side of the 
screen: 

Service Name 
Specifies a reference name to Provisioning Server service. This name must not 
appear in the list of available Provisioning Servers on the left side or this will modify 
the existing service rather than create a new one. 

Admin Hostname 
Specifies the name of the computer running the Provisioning Server. 

Clear Port Number 
Specifies the LDAP port number used for communication with the Provisioning 
Server. By default, this port number is 20389. 

SSL/TLS Port Number 
Specifies the LDAP TLS port number if you are securing communication with TLS 
encryption. By default, this port number is 20390. 

User SSL/TLS 
Select this option. For security reason, the TLS encryption must be used. 

3. Click the Add/Modify Service button to save the new service. 
 

Note: If you enter adminserver in the Service Name field and 
adminserver.yourcompany.com in the Admin Hostname field then the Requesting 
Authority client would need to use the URL 
http://spmlserver.yourcompany.com:8443/iamspml/spml/adminserver when connecting 
to the SPML Server in order to send provisioning requests to this Provisioning Server. 

You should replace spmlserver.yourcompany.com and adminserver.yourcompany.com 
with the names of the computers on which the SPML Service and the Provisioning 
Server are running. 

 

Modify an Existing Service 

To modify an existing Provisioning Server Service, perform the following steps: 

1. Log on to the SPML Service Configuration application. 

2. Select the service from the list of Available Admin Services 
 



SPML Service Configuration 

 

Chapter 3: SPML Service  81  
 

3. In the Admin Service Details form, make any modifications to the following fields: 

Admin Hostname 

Clear Port Number 

SSL/TLS Port Number 

User SSL/TLS 

4. Click the Add/Modify Service button. 

Note: If you modify the Service Name field you will create a new instance of an SPML 
service rather than modifying an existing one. 

 

Rename an Existing Service 

To rename an existing Provisioning Server Service, perform the following steps: 

1. Log on to the SPML Service Configuration application. 

2. Select the service from the list of Available Admin Services. 
 

3. Click the Remove the Selected Service button to remove the service from the list. 
 

4. On the form on the right, enter the new name in the Service Name field. 

5. Click the Add/Modify Service button. 

The new service is added to the list of Available Admin Services with the new name. 
 

Delete an Existing Service 

To delete an existing Provisioning Server Service, perform the following steps: 

1. Log on to the SPML Service Configuration tool. 

2. Select the service from the list of Available Admin Services. 

3. Click the Remove the selected Service button. 

The service is now deleted. 
 



SPML Service Configuration 
 

82  Provisioning Reference Guide 
 

Configure SSL Support for Tomcat Servers 

The Secure Socket Layer (SSL) is a technology that helps ensure the authentication, 
integrity, and confidentiality of SPML messages. For information on setting up the SSL, 
see the Configuration HOWTO at http://jakarta.apache.org/tomcat/. 

Note: The following procedure is provided for reference only. You may want to 
configure your SSL certificate differently or change your keystore password to one of 
your own choosing for better security. Also, if you have installed JDK version 1.5, you 
should refer to http://jakarta.apache.org/tomcat/ for details. 

 

To install and configure SSL support for Tomcat using a self-signed certificate, perform 
the following steps: 

1. Verify that JDK version 1.4.2_04 is installed by selecting the Add/Remove Programs 
list in your Control Panel for the program Java 2 SDK, SE v 1.4.2_04. 

2. Create a new keystore containing one self-signed certificate by entering the 
appropriate command from the command prompt. 

On Windows systems, you should enter: 

%JAVA_HOME%\bin\keytool -genkey -alias tomcat -keyalg RSA -keystore 

\path\keystore_filename 

On UNIX systems, you should enter the following: 

%JAVA_HOME%/bin/keytool -genkey -alias tomcat -keyalg RSA -keystore 

\path\keystore_filename 

The keystore creation process begins. 
 

3. Enter the keystore password when prompted. 

Note: The default password used by Tomcat is changeit (all lowercase). If preferred, 
you can specify a custom password, but you must then specify the custom 
password in the server.xml configuration file also (see Step 8). 

The keystore creation process continues. 
 

4. Enter general information for the certificate when prompted. The general 
information includes company, contact name, and so on. This information displays 
to users who attempt to access a secure page in your application, so make sure that 
the information provided here is appropriate. 

The keystore creation process continues. 
 

5. Enter the key password when prompted. This password is created specifically for 
this certificate (not for any other certificates stored in the same keystore file). You 
must use the same password for this and the keystore password. 

A keystore file with a certificate that your server can use is created. 
 

6. Browse to the <Tomcat_installation_directory>\conf\ directory and open the 
server.xml file in a text editor. 

 



SPML Service Configuration 

 

Chapter 3: SPML Service  83  
 

7. Ensure that the SSL Coyote HTTP/1.1 Connector entry is not commented out in the 
file. The connector information looks similar to the following: 

<!-- Define an SSL HTTP/1.1 Connector on port 8443 --> 

<!-- 

<Connector className="org.apache.catalina.connector.http.HttpConnector" 

      port="8443" minProcessors="5" maxProcessors="75" 

      enableLookups="true" acceptCount="10" debug="0" scheme="https" 

      secure="true"> 

 <Factory className="org.apache.catalina.net.SSLServerSocketFactory" 

      clientAuth="false" protocol="TLS"/> 

</Connector> 

--> 

If the Connector element is commented out, you must remove the comment tags, 
defined as less than sign, exclamation point, hyphen, hyphen (<!--) and  hyphen, 
hyphen, greater than sign (-->) around it. 

 

8. Configure the SSL Coyote HTTP/1.1 Connector entry to include the keystoreFile and 
keystorePass attributes for the Factory element. 

keystoreFile 
Specifies the location where the keystore file is located. 

keystorePass 
Specifies the keystore (and certificate) password. 

The connector information should look similar to the following: 

<Connector className="org.apache.catalina.connector.http.HttpConnector" 

      port="8443" minProcessors="5" maxProcessors="75" 

      enableLookups="true" acceptCount="10" debug="0" scheme="https" 

      secure="true"> 

 <Factory className="org.apache.catalina.net.SSLServerSocketFactory" 

      keystoreFile="your_keystore_full_path" 

      keystorePass="your_keystore_password" 

      clientAuth="false" protocol="TLS"/> 

</Connector> 
 

9. Save the file and close it. 

SSL support and self-signed certificates are configured for Tomcat. 

10. Restart the Tomcat server. 
 



SPML Service Configuration 
 

84  Provisioning Reference Guide 
 

Configure SPML Client Computer to Support SSL Security 

The SPML Web Service requires that the Secure Socket Layer (SSL) be enabled. The 
SPML clients, the CMDRA, SPML Manager, and SPML Feed must trust the SSL server 
certificate to communicate with the server.  

Note: Third party requesting authorities will need to support SSL to communicate with 
the SPML Web Service. 

 

To configure the SPML client computer to use SSL security, perform the following steps: 

1. Install the SSL certificate to the user's trusted keystore on the computer where the 
Requesting Authority runs.  (By default, the SSL certificate will be added to the 
.spmlkeystore file in the user's home directory, as determined by the 
%HOMEPATH% system property.) 

a. In a web browser, open the following URL:  

 https://spmlserver.yourcompany.com:8443  

b. Double click on the SSL certificate icon at the bottom right corner of web 
browser to view the certificate. 

c. On the Certificate Viewer window, select the Details tab and click Copy to File.  

d. Save the server certificate.  

e. Run the following command:  

<drive>:\<JRE-File-Path>\bin\keytool -import -file <Certificate-File-Path> 

-keystore "%HOMEDRIVE%%HOMEPATH%\.spmlkeystore" -storepass changeit -noprompt  
 

This command creates a new keystore called .spmlkeystore, located in user's home 
directory (as determined by "%HOMEDRIVE%%HOMEPATH%"). The batch files that 
launch the RA clients (SPMLManager, Command Line RA, and SPML Feed) read this 
file to allow SSL communication. 

Note: By default the batch files use the truststore path and password as defined by 
the keytool command described in step 1e. To use different path and password, 
variables set in the batch files for each client have to be modified accordingly. For 
example: 

set TRUSTSTORE=%HOMEDRIVE%%HOMEPATH%\.spmlkeystore 

set TRUSTSTORE_PASSWORD=changeit 
 

2. Test the SPML Service with the Command Line RA:  

a. Open the login.properties file, in the Command Line RA directory, to make sure 
that HTTPS version of the Server URL is used and user logon details are correct. 

b. Open the command line prompt. 

c. From the Command Line RA directory, type: 

 RA.batsampleXML\schemaRequest.xml 
 



SPML Service Configuration 

 

Chapter 3: SPML Service  85  
 

CMDRA Commands 

CMDRA Command Options 

This table shows you the command options that you can use in the CMDRA. 

 

Comman
d 

Full Command Explanation 

-c --check Check the request is a valid SPML request. 
This will not send the request to the SPML 
Server. 

If you are using the SPML Templating feature, 
the records will be expanded and the 

resulting SPML request will be checked. 

-e --explodedOutputFile  Specify a file to contain the exploded request 
XML output, overwriting any file by that 

name. 

-f --propertyFile Specify a file that contains default command 
settings. You would create a property file that 
contains frequently used values to avoid 

having to specify them manually every time. 

For example: 

mappingFile=C:\SPMLdata\Mapping1.csv 
templateFile=C:\SPMLdata\ImportUsers.xml 
dataFile=C:\SPMLdata\Users.csv 
serverURL=https://spmlserver.yourcompany.

com:8443/iamspml/spml/adminserver 

You would not typically include the data file 
in the property file because it is highly 
variable. 

The CMDRA looks for the property file 
login.properties. If your property file is 
named login.properties you do not need to 
specify -f. 

When you specify information in the property 
file, you should use the full command but 

remove the two dashes (--). 

-h --help Display the command line help page that 
gives you a summary of these commands. 

-i --inputFileNames Specifies a file to read data/request file 
names from instead of putting file names on 

the command line 



SPML Service Configuration 
 

86  Provisioning Reference Guide 
 

Comman
d 

Full Command Explanation 

-m --mappingFile Use this to match your Velocity template 
variables with your data file variables. 

Typically this is generated using the Save 
Mapping button in the SPML Manager. You 
can include multiple mappings that are 
separated by commas if you include multiple 

–t options. 

Note: This must always be used in 
conjunction with the Data File and the 
Template File. 

-o --outputFile Specify where you want the response from 
the SPML Service stored. By default, this is 

written to stdout. 

This output can be redirected to a file, for 

example: 

RA.bat yourparameters > SPMLresponse.text 

This can contain information other than the 
raw XML response. 

-p --password Specify the Provisioning Server password for 
the user. Therefore, this must be used in 

conjunction with the user (-u). 

You do not need to specify the user or 

password if you are just checking a request. 

-q --quiet Specify that you want minimum detail in the 

output. 

-R --explodePerRowOutputFile
Names 

Specify file that will list the names of files 
that contain the exploded request XML 
output, overwriting any file of the same 
name. One file is created per template per 

datafile record. 

-s --serverUrl Specify the SPML server URL that you want to 
send the request to. 

-S --csvRuntimeStatistics  Name of .CSV file to write time to complete 
each request 



SPML Service Configuration 

 

Chapter 3: SPML Service  87  
 

Comman
d 

Full Command Explanation 

-t --templateFile Specify the SPML Template file. Typically you 
would create the template file using the 
SPML Manager. If the -R option is included, 
the -t option can include a comma separated 

list of filenames. 

Note: This must always be used in 
conjunction with the Data File and the 
Mapping File. 

-u --user Specify the Provisioning Server user. This 
must be used in conjunction with password 
(-p). 

You do not need to specify the user or 

password if you are just checking the request. 

You must include the domain of the user, for 

example: 

YOURDOMAIN\\user 

-V --verbose Include detailed information in the output. 

-v 

 

--version  The version and build number of the CMDRA. 
This must be lowercase. 

 
 

CMDRA Examples 

The first example creates several small requests: 

Ra.bat -t 01_add_user.xml.vpp,02_modify_user.xml.vpp -R req_file_names.txt -m 

-,funny_mapping.csv data10.csv 

■ When used with the -R option, the -t template and -m mapping options accept 
multiple files separated by commas.  

■ The –R option creates a request file per template per datafile record and the names 
of resulting files are collected in the named file. So this command creates file names 
01_add_user0000000.xml and  02_modify_user0000000.xml through 
01_add_user0000009.xml and 02_modify_user0000009.xml.  

These files are written to the same directory as the –R file (.) and appended to 
./req_file_names.txt. 

 



SPML Service Configuration 
 

88  Provisioning Reference Guide 
 

The second example creates many requests and reports basic performance metrics: 

Ra.bat -S stats.csv -i req_file_names.txt 

■ The -i option takes the name of a file containing names of SPML request files. In this 
case, the filename is output by the first example.  

The -S option can be included when you submit SPML requests without a template 
(whether using file names on the command line, or the i- option, or both). The option 
records the execution time in milliseconds for each request and presents summary data 
after execution.  

 
 

SPML Feed 

SPML Feed is a command line application that you start by using the feeder.cmd (on 
Windows) or feeder.sh  (on Unix).  All command options can be set by using a properties 
file; some options can be specified on the command line. Options specified on the 
command line override those in the property file. A property file is used when you 
include the -f or -propertyFile command line option. 

You can run SPML Feed in standard or daemon mode. In standard mode, the application 
runs once over the specified input files and then quits. In daemon mode, the application 
does not terminate. Instead, it periodically wakes up and checks if any input files has 
been modified. If a file has been modified, it is processed as it would be in standard 
mode. 

 



SPML Service Configuration 

 

Chapter 3: SPML Service  89  
 

The template supplied to the SPML Feed by using the -template option is applied to 
every record in the input CSV or XML files. The template produces a single SPML add, 
modify, or delete request. 

 

The template is in the cmdra.zip file.  To access it, go to Start, Program CA, Identity 
Manager, IM SPML Requesting Authority.   

 
 



SPML Service Configuration 
 

90  Provisioning Reference Guide 
 

SPML Feed Command Options 

Options can have three names: the short command line name (-s), the long command 
line name (--serverURL) and the property file name (serverURL). 

-b, --batchSize, batchSize 

Integer value that defaults to 1. If this number is greater than 1, requests will be 
submitted as batch requests, with this value determining how many requests are 
placed in each batch.  

By batching multiple requests together, performance can be improved because less 
time is spent performing TCP socket and SOAP setup, at the expense of additional 
memory usage. The memory used depends on the size of your requests, but setting 
batchSize to several hundred should pose no problem.  

Note: batchSize should be always be 1 if your template is for a search or batch 
request, as these cannot be placed inside a batch request. 

 

-d, --daemon, daemon 

Causes the application runs in daemon mode. 
 

-x, --explodeOnly, explodeOnly 

The template is exploded using the data files as normal. However, instead of 
sending the resulting request to the SPML server, it is written to stdout (or a file if 
output or daemonResponseDir is set). 

 

-h, --help 

Display help for the command line switches to stdout. 
 

-i, --inputFileNames, inputFileNames 

Specifies a text file. Each line in the text file is used as the name of an input file. This 
is an alternative method of listing input files on the command line itself. The set of 
input files is the union of those listed in this file and those listed on the command 
line. 

 

-l, --logging, logging 

Specifies a properties file to configure the Java logging system instead of using the 
default logging system. See the documentation for the java.util.logging.LogManager 
class for details. 

 

-m, --mappingFile, mappingFile 

Specifies a CSV file in a special format that maps parts of the input files to Velocity 
variable names. The variable names defined in this file can be referenced in the 
Velocity template file. If there is a mapping to a variable named timestamp, this has 
a special meaning and is used to determine which records have been changed since 
the last run. 

 



SPML Service Configuration 

 

Chapter 3: SPML Service  91  
 

-o, --outputFile, outputFile 

Specifies a file to record the output, overwriting any existing file. If you omit this 
option, and the daemonResponseDir property is not set, output is written to stdout. 

 

-p, --password, password 

Specifies the password to use to authenticate with the SPML server. 
 

-f, --propertyFile 

Specifies a property file with the options to use. You can specify any command line 
option (except -h and -f)  in the properties file by setting a property that matches 
the option's long name without the - prefix. For example, -mapping becomes simply 
mapping in the properties file. Some options for daemon mode can only be set via a 
properties file. Any option specified on the command line replaces a setting from 
the properties. 

 

-q, --quiet, quiet 

Causes no output to appear unless a catastrophic failure occurs. In that case, an 
error message is output to stderr before the program exits. 

 

-s, --serverUrl, serverUrl 

The URL of the SPML server to send the request to. 
 

-t, --templateFile, templateFile 

Specifies a Velocity template file that can be merged with data from XML or CSV 
input files to produce an SPML request. The application runs in exploder mode; the 
input files are either XML or CSV files instead of SPML requests. Each record in the 
input files is applied to the template (after mapping to variable names via the 
mapping file) to produce an SPML request that is sent to the server. 

Note: the template should not contain <?xml?> processing headers. 
 

-u, --user, user 

Specifies a user name to authenticate with the SPML Server. For the SPML Server, 
this option's value should be of the form domain\username. 

-v, --verbose, verbose 

Outputs additional information to stderr about the application's actions.  

-V, --version, version 

When the application starts, its name and version number is written to stderr. 
 



SPML Service Configuration 
 

92  Provisioning Reference Guide 
 

Property File Only 

timestampFile 

Specifies a file used to record when input files have been processed. This is mainly 
useful in daemon mode to keep track of the latest run times when the daemon is 
shutdown temporarily or restarted. 

daemonResponseDir 

Specifies a directory to write SPML responses to when running in daemon mode. 
The SPML response from each run over an input file by the daemon is written to a 
new file in this directory. The output files have the same name as the input data 
file, with a digit appended. For example, if the file test.csv is processed for the first 
time, the response is written to test.csv.1, the second run to test.csv.2, and so on.  

If you omit this option, all responses are written to the file specified with -o, or 
stdout if neither -o nor -q are present. 

daemonSleep 

Specifies the length of time in milliseconds to sleep between polling for data file 
changes. If this parameter is not specified, the length of sleep time is 30 seconds. 

 
 

Flow of the SPML Feed Command 

The flow of the SPML Feed command is: 

1. This command is invoked with these parameters: 

■ Mapping file 

■ Velocity template that produces a valid SPML request. 

■ Data files to watch 

■ Output file or output directory 

■ Length of time to sleep between polling for file data file changes. 
 

2. When a data file changes, the running daemon begins processing the file on the 
next poll. 

 

3. The data file is locked to prevent writes. 
 



SPML Service Configuration 

 

Chapter 3: SPML Service  93  
 

4. The daemon reads the data file one record at a time. 

■ If the mapping file has an entry mapping to the special value timestamp, that 
field will be retrieved from the record. If the record's timestamp is earlier than 
the last time the file was processed, the record has not changed and is skipped. 

Note: The timestamp should be specified in GMT time zone and YYYY-MM-DD 
HH:MM:SS format, such as 2006-02-14 21:02:03. If the timestamp is not in this 
format, or is absent, the request is skipped. 

■ If the record is not skipped, it is loaded into a Velocity context and merged with 
the template to produce an SPML request. 

■ If the mapping file does not have an entry mapping to the special value 
timestamp, the daemon  submits all requests from the data file without 
exception. 

 

5. The SPML requests are submitted to the SPML Service. 

6. The response from the SPML Service is classified and appended to the appropriate 
output files. 

The SPML Feed can use the Velocity templates created for the SPML Manager and 
CMDRA applications if the batchSize argument is set to 1. Ideally, you should modify 
templates to match SPML Feed requirements, which are less strict.  

 
 

Using the SPML Manager's Templating Functionality 

The SPML Manager is a graphical user interface that lets administrators create and 
execute SPML provisioning requests. You can design provisioning requests using the 
SPML Manager then view the SPML Request in XML format. 

Note: The SPML Manager is an unsupported technology preview. 
 

Download the SPML Manager 

1. Download the SPML Manager from the following location: 

https://spmlserver.yourcompany.com:8443/iamspml/download/techpreview/SPMLMana

ger.zip 

2. Unzip SPMLManager.zip to your hard disk. 

3. To launch the SPML Manager, navigate to the SPMLManager folder and double-click 
SPMLManager.bat. 

 



SPML Service Configuration 
 

94  Provisioning Reference Guide 
 

Create an SPML Template Request 

To create an SPML Template request, perform the following steps: 

1. Create an XML file containing some sample data. 

You can find a sample in the SPMLManager\sample Templates directory. 

2. Using the SPML Manager, connect to an SPML service. 

 
 

3. Use one of the tabs (Add, Modify, Delete, or Extended) to construct an SPML 
request that conforms to the schema of the SPML service. 

The name given to the Exploder Velocity context is REC_, so whenever you want to 
refer to a variable in the data file, use the syntax ${REC_.variable}. 

To hard-code a constant in the generated requests, type the data you want into the 
attribute fields. 

 

4. Click the Raw XML tab to see the SPML Request in XML format. 
 

5. Click the Add to Batch Request button when you are happy with your simple 
variable replacement. 

Note: The Add to Batch Request button is only available when viewing the tab in 
Request mode and is therefore not available in Raw <XML> mode. 

 

6. Use the Batch tab to see the addition to batch. 

A batch request can contain as many individual requests as you like. 
 

7. Save the SPML Batch Request Template to a file. 
 

8. Click the Template tab and load your simple SPML Template from your saved Batch 
Request File. 

 

9. Click the Raw <XML> tab to edit your SPML Template: 
 

10. In the XML code, insert a velocity directive for each loop at the point in your batch 
request where you want the request to cycle through loading each row in the CSV 
into the context and put a #end statement where you want the cycling to end. The 
format of the syntax for each loop is #foreach ( $REC_ in $RECS_. 

 

11. Click Save Template to save your modified template file. 
 



SPML Service Configuration 

 

Chapter 3: SPML Service  95  
 

12. Load the XML data file that will fill in the data in your request. 

13. Click the Save button if you want to Save the resulting batch request to a file for 
inspection or click Submit if you want to submit the resulting Batch Request to the 
SPML Service. 

For each XML record in the data file, a corresponding SPML Request will be generated to 
initiate a provisioning operation inside the Provisioning Server. 

The example files used in this tutorial are in the 
SPMLManager/sampleTemplates/simple directory. 

 

Using Velocity Templates 

The SPML Manager, SPML Feed, and CMDRA use the same templating system, which 
parses references to variables and performs data transformations. 

 

List Templating Variables 

The templating system deduces which variables are ArrayLists by parsing references to 
them in the Velocity template you provide. The templating system looks for an attribute 
references or method invocations against the variable which show that it should be 
bound to a java.util.ArrayList (which can have 0, 1 or more values) rather a single value. 
The SPML Manager and CMDRA can use this capability. 

 

All the read-only methods on the class java.util.ArrayList are looked for: 

■ isEmpty 

■ get 

■ size 

■ contains 

■ indexOf 

■ lastIndexOf 

■ subList 

■ iterator 

■ listIterator 
 



SPML Service Configuration 
 

96  Provisioning Reference Guide 
 

In mapping file entries, such list variables have the suffix [] after their names. For 
instance the variable comments is a single valued variable, but comments[] would be a 
list. 

For example references, see the sampleTemplates\simple\template.xml.vpp template, 
including the  $comments variable. Also, included are example mapping files:  
map_csv_datafile.csv against the CSV datafile and map_xml_datafile.csv against the 
XML datafile. 

 
 

Data Transformations 

SPML Templating offers several routines for manipulating data from a unique or 
proprietary format into the format required by the SPML Service which is generally the 
same as the standard XML Schema Data Types (see http://www.w3.org/tr/xmlschema-2 
for more information). These tools are provided by the Velocity Tools project which is in 
the SPML Requesting Authority classpath and therefore available for reference in your 
SPML Template. 

SPML Manager, SPML Feed, and Requesting Authority. 
 

Useful tools for manipulating and transforming data inside of your SPML Template 
include the following: 

■ Date Tool: A tool for manipulating and formatting dates. 

■ Math Tool: A tool for performing floating point math. 

■ Number Tool: A tool for formatting numbers. 

■ Iterator Tool: A tool to use with #foreach loops. It wraps a list to let the designer 
specify a condition to terminate the loop, and reuse the same list in different loops. 

■ Render Tool: A tool to evaluate and render arbitrary strings of VTL (Velocity 
Template Language). 

The templating system loads data from XML and CSV files in string format. You can use 
these tools to convert data in your template to the type required for the operation you 
want to perform with the data. 

 

Example Data Transformation 

This example takes a numeric value which has been converted to a string inside the 
templating system and then converts it into an integer value to perform preprocessing 
on the data before sending it to the SPML Service. 

 

http://www.w3.org/tr/xmlschema-2
http://www.w3.org/tr/xmlschema-2


SPML Service Configuration 

 

Chapter 3: SPML Service  97  
 

In this example, the imported CSV file contains only three pieces of data. 

■ username,expirydate,priority 

■ user3,20101001,999 

■ user4,20101005,333 
 

<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 

<batchRequest onError="urn:oasis:names:tc:SPML:1:0#resume" 

processing="urn:oasis:names:tc:SPML:1:0#sequential" 

execution="urn:oasis:names:tc:SPML:1:0#synchronous" 

xmlns="urn:oasis:names:tc:SPML:1:0"> 

#foreach ( $REC_ in $RECS_ ) 

  #set ($userhandle = 

"User=${REC_.username},Domain=YOUR_USER_DOMAIN,Server=Server") 

'''  #set ($datetimeobject = 

$date.toDate('yyyyMMdd',${REC_.expirydate})) 

 #set ($formatdate = $date.format('yyyy-MM-dd', $datetimeobject)) 

  #set ($formattime = $date.format('H:m:s', $datetimeobject))''' 

  <addRequest requestID="batchAdd${REC_.INDEX}"> 

    <identifier type="urn:oasis:names:tc:SPML:1:0#DN"> 

      <id>$userhandle</id> 

    </identifier> 
 

    <attributes> 

      <attr name="accountId"> 

        <ns1:value 

xmlns:ns1="urn:oasis:names:tc:DSML:2:0:core">${REC_.username}</ns1:value> 

      </attr>  

      <attr name="roleHandles"> 

          <ns2:value 

xmlns:ns2="urn:oasis:names:tc:DSML:2:0:core">Role=ntRole,Domain=YOUR_USER_DOM

AIN,Server=Server</ns2:value> 

      </attr> 

      <attr name="enableDate"> 

          <ns3:value 

xmlns:ns3="urn:oasis:names:tc:DSML:2:0:core">'''${formatdate}T${formattime}''

'</ns3:value> 

      </attr>                      

    </attributes> 

  </addRequest> 

'''#if($math.toInteger(${REC_.priority}) > 500)'''   
 



SPML Service Configuration 
 

98  Provisioning Reference Guide 
 

<extendedRequest xmlns="urn:oasis:names:tc:SPML:1:0"> 

    <operationalAttributes/> 

    <providerIdentifier providerIDType="urn:oasis:names:tc:SPML:1:0#URN"> 

        <providerID/> 

    </providerIdentifier> 

    <operationIdentifier 

operationIDType="urn:oasis:names:tc:SPML:1:0#GenericString"> 

        <operationID>User-SyncWithRolesAddAccounts</operationID> 

    </operationIdentifier> 

    <identifier type="urn:oasis:names:tc:SPML:1:0#DN"> 

        <id>$userhandle</id> 

    </identifier> 

    <attributes/> 

</extendedRequest>  

#end  

#end 

</batchRequest> 
 

This request formats a proprietary data format into a format that the Provisioning 
Server can understand. The results of this request are: 

■ user3 is created with an XSD Enable Date of 2010-10-01T0:0:0 that has been 
converted from the yyyymmdd format of 20101001 

■ user3 has been considered a high priority case and has synced with the NT role 
immediately upon creation to create accounts. This is because user3 had a high 
priority of 999 which has been evaluated to see if it was greater than 500. 

 

■ user4 is created with an XSD Enable Date of 2010-10-05T0:0:0 that has been 
converted from the yyyymmdd format of 20101005 

■ user4 has not been considered a high priority case for account creation because 
their priority code was 333 which is less than 500. Their account will not be created 
until a later stage, perhaps when a nightly sync operation occurs. 

 



SPML Service Configuration 

 

Chapter 3: SPML Service  99  
 

<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 

<batchRequest onError="urn:oasis:names:tc:SPML:1:0#resume" 

processing="urn:oasis:names:tc:SPML:1:0#sequential" 

execution="urn:oasis:names:tc:SPML:1:0#synchronous" 

xmlns="urn:oasis:names:tc:SPML:1:0"> 

    <addRequest requestID="batchAdd0"> 

        <identifier type="urn:oasis:names:tc:SPML:1:0#DN"> 

            <id>User=user3,Domain=YOUR_USER_DOMAIN,Server=Server</id> 

        </identifier> 

        <attributes> 

            <attr name="accountId"> 

                <ns1:value 

xmlns:ns1="urn:oasis:names:tc:DSML:2:0:core">user3</ns1:value> 

            </attr> 

            <attr name="roleHandles"> 

                <ns2:value 

xmlns:ns2="urn:oasis:names:tc:DSML:2:0:core">Role=ntRole,Domain=YOUR_USER_DOM

AIN,Server=Server</ns2:value> 

            </attr> 

            <attr name="enableDate"> 

                <ns3:value 

xmlns:ns3="urn:oasis:names:tc:DSML:2:0:core">'''2010-10-01T0:0:0'''</ns3:valu

e> 

            </attr> 

        </attributes> 

    </addRequest> 
 
 

    <extendedRequest> 

        <operationalAttributes/> 

        <providerIdentifier providerIDType="urn:oasis:names:tc:SPML:1:0#URN"> 

            <providerID/> 

        </providerIdentifier> 

        <operationIdentifier 

operationIDType="urn:oasis:names:tc:SPML:1:0#GenericString"> 

            <operationID>'''User-SyncWithRolesAddAccounts'''</operationID> 

        </operationIdentifier> 

        <identifier type="urn:oasis:names:tc:SPML:1:0#DN"> 

            <id>'''User=user3,Domain=YOUR_USER_DOMAIN,Server=Server'''</id> 

        </identifier> 

        <attributes/> 

    </extendedRequest> 

    <addRequest requestID="batchAdd1"> 

        <identifier type="urn:oasis:names:tc:SPML:1:0#DN"> 

            <id>User=user4,Domain=YOUR_USER_DOMAIN,Server=Server</id> 

        </identifier> 
 



SPML Service Configuration 
 

100  Provisioning Reference Guide 
 

        <attributes> 

            <attr name="accountId"> 

                <ns4:value 

xmlns:ns4="urn:oasis:names:tc:DSML:2:0:core">user4</ns4:value> 

            </attr> 

            <attr name="roleHandles"> 

                <ns5:value 

xmlns:ns5="urn:oasis:names:tc:DSML:2:0:core">Role=ntRole,Domain=YOUR_USER_DOM

AIN,Server=Server</ns5:value> 

            </attr> 

            <attr name="enableDate"> 

                <ns6:value 

xmlns:ns6="urn:oasis:names:tc:DSML:2:0:core">'''2010-10-05T0:0:0'''</ns6:valu

e> 

            </attr> 

        </attributes> 

    </addRequest> 

</batchRequest> 
 

Retrying SPML Requests 

You can configure certain requests to be retried on failure. Request retrying is 
attempted if all of the following are true: 

■ The request is flagged for asynchronous execution. 

■ The object on which the request is acting at the time of failure resides on a remote 
endpoint system, such as an account/container/native group.  

 

■ The request is causing a change and not a query. 
 

■ The failure occurs after a request has reached the Provisioning Server. It is the 
client's responsibility to retry if either: 

■ The communication channels between the client and the web server on which 
the SPML server is executing is broken. 

■ The communication channel between the SPML server and Provisioning Server 
is broken.  

■ The failure is a soft failure between the Provisioning Server and the targeted 
endpoint system.  

Note: Batch requests will not support retrying on their constituent sub-requests. 
 



SPML Service Configuration 

 

Chapter 3: SPML Service  101  
 

On successful completion or hard failure, the standard SPML success/failure conditions 
are returned in the status response's result.  

The SPML server is involved in the configuration of the retry persistence mechanism in 
JIAM but only JIAM actually adds and deletes records from it. 

 
 

Retry Architecture 

You can configure the SPML service to retry asynchronous requests that act on objects 
residing on Endpoint Systems which cannot be contacted due to a transient failure.  The 
flow of retries follows the standard asynchronous request processing in SPML. 

■ The client submits an asynchronous request to the SPML server with an additional 
operational attribute indicating that retries should be attempted on failure. 

■ If the request is processed without error, the request is marked as successfully 
processed. 

■ If the request's processing terminates with a hard failure, or its target object is not 
considered retriable by JIAM,  an immediate failure results. 

 

■ If the request's processing terminates with a soft failure and the client has flagged 
the request as retriable, JIAM stores the request in the retry database and attempts 
to process it again after a configured interval. Prior to storage the current operation 
is simplified by removing any sub-operations which succeeded, so that only the 
sub-operations which failed due to soft failures will be retried. 

■ If a request has been retried a configured maximum number of times, then it is 
considered to have suffered a hard failure and JIAM discontinues the retries. 

 



SPML Service Configuration 
 

102  Provisioning Reference Guide 
 

The following diagram gives an overview of the components of the retries: 

Client

SPML

Server

Web

Server

JIAM

Admin

OptionsOpt1 Opt2

EPS 1 EPS 2

Retry

DB

Configure

 

Note that the SPML server is involved in the configuration of the retry persistence 
mechanism in JIAM but only JIAM actually adds and deletes records from it. 

 
 

Retry Configuration Files 

Interface 

Two operational attributes control the SPML retry capability: 

■ caIamRetry can be passed in with an asynchronous request, requesting that retry 
functionality is activated where supported by JIAM.  caIamRetry is operational 
attribute and its value can be true or false. 

■ caIamRetryDetails is returned when an SPML status request targeting a retried 
request is received. It provides status information to the user. 

For an example of a request flagged for retry, see the appendix “Sample SPML 
Requests.” 

 



SPML Service Configuration 

 

Chapter 3: SPML Service  103  
 

Hivemodule-plugin-deploy.xml 

The file hivemodule-plugin-deploy.xml  in the SPML deployment directory includes 
configuration items: 

■ A new database called db_spml_retry configured by the retryBasicDataSource 
service-point, and advertised to JIAM via the retryPersister service-point. This 
database (as well as the pre-existing db_qrtz and db_delegate) should not grow and 
shrink as requests are processed and time out.  

If a problem occurs in this area, the databases can be truncated by shutting down 
the SPML server and simply deleting their directories (the SPML server will 
automatically create new blank directories on start-up). 

■ The retryMaximumCount and retryDelayMinutes settings which control the JIAM 
retry behavior using the JIAMService class, which is also provided with the 
retryPersister. 

retryMaximumCount tells the SPML server the maximum number of times it should 
retry an operation before giving up and returning an error. When a retry is needed, 
the SPML server waits before doing the retry, to give the network or server failure a 
chance to correct itself. The time it waits before retrying is controlled by the 
retryDelayMinutes setting. 

■ The scheduledHoldingIntervalMinutes setting dictates the time that status requests 
targeting an asynchronous request can be submitted after its processing is 
completed, and consequently applies to retried requests too. 

 

Any manual changes made to a hivemodule-plugin-deploy.xml file from a previous 
release will need to be reapplied to the file for this release. 

To cancel a retried request, submit a SPML cancel request referring to its identifier.  If a 
retry attempt has begun, it will continue, but no further retry attempts will be made. 

Note: Retry functionality is not supported on SPML modify requests that change an 
object's Distinguished Name (DN). 

 

Access Credentials 

Access credentials for the databases used by the SPML server are stored in the 
spml_quartz.properties and hivemodule-plugin-deploy.xml  configuration files. Each 
database supports two different styles of URLs in their datasources:  

■ jdbc:hsqldb:file:<dir>\<db>\<db> : databases can only be accessed by the SPML 
server process itself (the default). 

■ jdbc:hsqldb:hsql://localhost/<db> : allows SQL access to the database by other 
processes. 

 
 



SPML Service Configuration 
 

104  Provisioning Reference Guide 
 

Configure Retry for a Request 

The process of configuring an SPML request to be retried is the following: 

1. In the SPML Manager or Command-line RA, you submit a request for asynchronous 
execution including the caIamRetry operational attribute. This attribute can be 
referenced in Java as  com.ca.commons.spml.IAMSpmlUtil.CA_IAM_ATTR_RETRY. 

2. The SPML server schedules the request for immediate execution. If the processing is 
completely successful or any sub-operation fails with a hard failure, a success or 
failure SPML response is stored.  

Otherwise if one or more sub-operations fail with a soft failure, the SPML server will 
return true from the actionFailed() method of the 
com.ca.iam.spml.ProcessingDetails instance assigned as the IAMCommitObserver 
for the current session, which informs JIAM that there is an interest in retrying.  

 

3. You can track processing of an asynchronous request by submitting an SPML status 
request quoting the request ID. The status eventually changes to complete, 
signifying either complete success or a non-retriable failure. The non-retriable state 
could be due to the retry limit being exhausted as set by retryMaximumCount in 
hivemodule-plugin-deploy.xml.  

a. Results for asynchronous  requests are cached for a configurable period after 
their processing completes (refer scheduledHoldingIntervalMinutes in 
hivemodule-plugin-deploy.xml) 

b. When the status of a request which is being, or has been, retried is queried, the 
operational attribute caIamRetryDetails appears in its operational attributes 
and provides a rough summary of progress suitable for a human reader. 

 

4. JIAM then analyses the operation that failed and determines if it does indeed 
support retrying for it. If retrying is supported, JIAM will remove any successful 
sub-operations and use the HSQLDBPersister configured by the SPML server to save 
the retry operation to the database named db_spml_retry. The 
IAMSession.commit() call then completes and a pending SPML response is returned 
to the RA that submitted the request. 

 



SPML Service Configuration 

 

Chapter 3: SPML Service  105  
 

5. The JIAM retry subsystem periodically retries the request based on the 
retryDelayMinutes setting in hivemodule-plugin-deploy.xml. assuming 
retryMaximumCount limit is not exhausted. 

a. If a soft failure is encountered, the retry process repeats at step 4. 

b. If a hard failure is encountered or the limit is exhausted,  the retry sequence 
terminates and the SPML server is informed via the failed() method of the 
registered QueueObserver. Future status requests targeting the retried request 
will report failure. 

c. If no failures are encountered, JIAM informs the SPML server that the request 
was processed successfully via the completed() method of the registered 
QueueObserver. Future status requests targeting the retried request will report 
success. 

  

 
 





 

Chapter 4: Sample SPML Requests  107  
 

Chapter 4: Sample SPML Requests 
 

This appendix describes the sample SPML requests that a Requesting Authority can use 
to send provisioning requests to the SPML Service. 

For a detailed description of the format of these requests, see the SPML v1.0 
specification at: 

http://www.oasis-open.org/committees/download.php/3032/cs-pstc-spml-core-1.0.pdf 

This section contains the following topics: 

Request Execution Types (see page 107) 
Request Types (see page 108) 
Global Settings (see page 120) 
Account Containers (see page 122) 
Complex Attributes (see page 124) 
Request Retries (see page 126) 
Propagate Global User Changes (see page 126) 
Escaping Special Characters in Object Identifiers (see page 128) 
Escaping Special Characters in Search Filters (see page 128) 

 

Request Execution Types 

The Identity Manager SPML Service supports both synchronous and asynchronous 
request models.  

By default if no execution attribute is set with a request to the SPML Service the request 
will be treated as having a synchronous execution mode.  

 

If synchronous is specified, any request that you send must be completed and a 
response sent back before the next request can be sent. This can sometimes cause 
delays.  

If asynchronous is specified as the execution mode, the SPML Service will schedule the 
request to be executed asynchronously and return immediately with a unique request 
ID. The Requesting Authority can later look up the corresponding result of the request 
by specifying the request ID in a Status Request.  Any pending asynchronous request can 
be canceled by specifying the request ID from the asynchronous request in a Cancel 
Request. 

 

http://www.oasis-open.org/committees/download.php/3032/cs-pstc-spml-core-1.0.pdf


Request Types 
 

108  Provisioning Reference Guide 
 

Request Types 

Add Request 

The add request is used by a Requesting Authority to create new entity instances such 
as User, Role, Group, Profile, Policy, EndPoint, or Account objects. 

 

Fields in an Add Request 

Objects may contain mandatory fields that must be populated in order for the object to 
be created. 

An add request contains the following fields: 

identifier 

Specifies the ID of the new object to be created 

attributes 

(Optional) Specifies initial values for some of the attributes as appropriate 
 

Example of an Add Request 

The following request creates a new User object with the unique identifier 
User=_spml_user,Domain=EXAMPLE_DOMAIN,Server=Server: 

<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 

<addRequest xmlns="urn:oasis:names:tc:SPML:1:0" 

xmlns:dsml="urn:oasis:names:tc:DSML:2:0:core"> 

    <identifier type="urn:oasis:names:tc:SPML:1:0#DN"> 

        <id>User=_spml_user,Domain=EXAMPLE_DOMAIN,Server=Server</id> 

    </identifier> 

    <attributes> 

        <attr name="accountId"> 

            <dsml:value>_spml_user</dsml:value> 

        </attr> 

        <attr name="suspended"> 

            <dsml:value>true</dsml:value> 

        </attr> 

    </attributes> 

</addRequest> 
 

Batch Request 

The batch request collates multiple SPML operations into a single request. 
 



Request Types 

 

Chapter 4: Sample SPML Requests  109  
 

Example of a Batch Request 

The following batch request executes these SPML operations in this order: 

■ Adds the user _spml_user 

■ Modifies _spml_user to update the comments attribute 

■ Deletes the _spml_user object 

■ Performs a CheckSync operation on the user administrator 
 

<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 

<batchRequest execution="urn:oasis:names:tc:SPML:1:0#synchronous" 

onError="urn:oasis:names:tc:SPML:1:0#resume" 

processing="urn:oasis:names:tc:SPML:1:0#sequential" 

xmlns="urn:oasis:names:tc:SPML:1:0" 

xmlns:dsml="urn:oasis:names:tc:DSML:2:0:core"> 

    <addRequest requestID="batchAdd"> 

        <identifier type="urn:oasis:names:tc:SPML:1:0#DN"> 

            <id>User=_spml_user,Domain=EXAMPLE_DOMAIN,Server=Server</id> 

        </identifier> 

        <attributes> 

            <attr name="accountId"> 

                <dsml:value>_spml_user</dsml:value> 

            </attr> 

        </attributes> 

    </addRequest> 
 

   <modifyRequest requestID="batchModify"> 

        <identifier type="urn:oasis:names:tc:SPML:1:0#DN"> 

            <id>User=_spml_user,Domain=EXAMPLE_DOMAIN,Server=Server</id> 

        </identifier> 

        <modifications> 

            <modification name="comments" operation="replace"> 

                <dsml:value>new comments</dsml:value> 

            </modification> 

        </modifications> 

    </modifyRequest> 

    <deleteRequest requestID="batchDelete"> 

        <identifier type="urn:oasis:names:tc:SPML:1:0#DN"> 

            <id>User=_spml_user,Domain=EXAMPLE_DOMAIN,Server=Server</id> 

        </identifier> 

    </deleteRequest> 
 



Request Types 
 

110  Provisioning Reference Guide 
 

   <extendedRequest requestID="batchExtended"> 

        <providerIdentifier providerIDType="urn:oasis:names:tc:SPML:1:0#URN"> 

            <providerID>urn:ca.com:etrust:iam</providerID> 

        </providerIdentifier> 

        <operationIdentifier 

operationIDType="urn:oasis:names:tc:SPML:1:0#GenericString"> 

            <operationID>User-CheckSync</operationID> 

        </operationIdentifier> 

        <attributes> 

            <attr name="IAMUser"> 

 <dsml:value>User=administrator,Domain=EXAMPLE_DOMAIN,Server=Server</dsml:value> 

            </attr> 

        </attributes> 

    </extendedRequest> 

</batchRequest> 
 

Cancel Request 

The cancel request allows a client to request the cancellation of an asynchronous 
request from the SPML Service. 

 

Example of a Cancel Request 

For example, a previously-sent asynchronous with the request ID A4DF567HGD can be 
cancelled with the following request: 

<cancelRequest requestID="A4DF567HGD" xmlns="urn:oasis:names:tc:SPML:1:0" 

xmlns:dsml="urn:oasis:names:tc:DSML:2:0:core"/> 
 

Delete Request 

Use the delete request to delete any object that is available through the Provisioning 
Server, except a domain or namespace object. Domain and namespace objects cannot 
be created or deleted through SPML requests. 

 

Fields in a Delete Request 

A delete request contains only one field: 

identifier 

Specifies the ID of the object to be deleted 
 



Request Types 

 

Chapter 4: Sample SPML Requests  111  
 

Example of a Delete Request 

The following request deletes the _spml_user object from the Provisioning Server: 

<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 

<deleteRequest xmlns="urn:oasis:names:tc:SPML:1:0"> 

    <identifier type="urn:oasis:names:tc:SPML:1:0#DN"> 

        <id>User=_spml_user,Domain=EXAMPLE_DOMAIN,Server=Server</id> 

    </identifier> 

</deleteRequest> 
 

Extended Request 

Use the extended request to perform actions that are unique to the Provisioning Server, 
such as explore, correlate, sync, and checkSync. 

 

Fields in an Extended Request 

An extended request contains the following fields: 

operationIdentifier 

Specifies the type of the extended operation performed. 

identifier 

Identifies the object that the extended operation is to be applied to. 

attributes 

Passes parameters specific to the extended operation. The parameters required by 
an extended operation are in the core Schema Response. 

 

Example of an Extended Request 

<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 

<extendedRequest xmlns="urn:oasis:names:tc:SPML:1:0" 

xmlns:dsml="urn:oasis:names:tc:DSML:2:0:core"> 

    <providerIdentifier providerIDType="urn:oasis:names:tc:SPML:1:0#URN"> 

        <providerID></providerID> 

    </providerIdentifier> 

    <operationIdentifier 

operationIDType="urn:oasis:names:tc:SPML:1:0#GenericString"> 

        <operationID>User-CheckSync</operationID> 

    </operationIdentifier> 

    <identifier type="urn:oasis:names:tc:SPML:1:0#DN"> 

        <id>User=Administrator,Domain=EXAMPLE_DOMAIN,Server=Server</id> 

    </identifier> 

    <attributes></attributes> 

</extendedRequest> 
 



Request Types 
 

112  Provisioning Reference Guide 
 

Extended Request Types 

 

Request Type Function 

Account-CheckSync Check an account against its assigned policies for 
out-of-sync attributes. 

Account-ForcedDelete Delete this account and clear all references to it. 

Account-Relocate Move the selected account to the correct container as 
specified by a given policy. 

Account-SyncWithPolicies Synchronize an account with its assigned policies. 

Container-CheckAccountS

ync 

Check whether the accounts in a container need to be 

synchronized with associated policies. 

Container-Correlate Perform a correlation on an endpoint or on a container of 
a hierarchical endpoint. 

Scope 
The search scope. ONELEVEL_SCOPE is represented by the 
integer 1 and SUBTREE_SCOPE is represented by the 

integer 2. 

ONELEVEL_SCOPE 
Correlates one level the managed accounts on an end 

point system with the Global Users. 

SUBTREE_SCOPE 
Correlates all managed accounts on an end point system 

with Global Users. 

CreateUserAsNeeded  
Use “true” to create Global Users as needed. 

Container-Explore Perform an explore operation on an endpoint or a 
container of a hierarchical endpoint. 

Scope 
The search scope.  ONELEVEL_SCOPE is represented by 
the integer 1 and SUBTREE_SCOPE is represented by the 

integer 2. 

ONELEVEL_SCOPE 
Searches one level for managed objects on the given 
Container. 

SUBTREE_SCOPE 
Searches for all managed objects on the given Container. 

Container-SyncAccountsW
ithPolicies 

Synchronize the accounts in a container with their 
assigned policies. 



Request Types 

 

Chapter 4: Sample SPML Requests  113  
 

Request Type Function 

Container-UpdateUserFiel
ds 

Update the global users' attributes with their correlated 
accounts' attributes, according to the attribute mappings 
defined in the defaultUserUpdateMap field of the 

container object. 

Scope 
The search scope.  ONELEVEL_SCOPE is represented by 
the integer 1 and SUBTREE_SCOPE is represented by the 

integer 2. 

ONELEVEL_SCOPE 
Performs the updateUserFields operation for the accounts 
directly below the given container. 

SUBTREE_SCOPE 
Performs the updateUserFields operation for all accounts 

of the given container. 

EndPoint-IncludeContainer Bring a top-level container into the database (but not its 
contents). This is required for the exploration operation to 
work on some hierarchical endpoints such as ADS 
endpoints where the normal ONELEVEL exploration does 
not add the top-level container to the provisioning 
direcotry. This is also useful to manage only a portion of 
the hierarchical endpoint with the Provisioning Server 
while the remaining portion is completely hidden to 

Provisioning Server users. 

ContainerName 

The name of the container to include. 

ContainerType 
Option-specific types of containers.  See the JIAM 
OptionDescriptor Javadoc for available container types for 

each option 



Request Types 
 

114  Provisioning Reference Guide 
 

Request Type Function 

Group-ListMembers Search for Global Users that are members of this Group. 

Scope 
The search scope.  ONELEVEL_SCOPE is represented by 
the integer 1 and SUBTREE_SCOPE is represented by the 

integer 2. 

ONELEVEL_SCOPE 

Searches one level for group members. 

SUBTREE_SCOPE 
Searches recursively through all nested child groups for 
members. 

UserNameMatchString 
The string to match the user name against. Use null to 

return all the users of this group. 

CountLim 
The maximum number of users to return. If 0, return all 

entries that satisfy the above matching expression. 

Policy-CheckAccountSync Check the accounts against a given policy. 

Policy-ForcedDelete Delete this policy and clear all references to it. 

Policy-RelocateAccounts Move the accounts associated with a policy to the correct 

containers. 

Policy-SyncAccounts Synchronize the accounts associated with a policy. 

Role-CheckAccountSync Check whether the accounts of multiple users need to be 
synchronized against the policies assigned to this role. 

Role-CheckUserSync Check whether the users of a role need to be 
synchronized with their associated policies. 

Role-DeleteWithPolicies Delete the role and all associated policies. 

ForcedDelete 
Set to true to delete the role and clear all references to it 
as well as associated Policies. 

 

Role-ForcedDelete Delete this role and clear all references to it. 

Role-SyncAccountsWithPol

icies 

Synchronize the accounts of multiple users against the 

policies assigned to a role. 

Role-SyncUsers Synchronize the users of a role with all assigned policies. 

User-CheckAccountSync Check whether the accounts of a user need to be 
synchronized with associated policies. 

User-CheckSync Check whether the user requires synchronization with 
associated Roles. 



Request Types 

 

Chapter 4: Sample SPML Requests  115  
 

Request Type Function 

User-DeleteWithAccounts Delete the user and all associated accounts. 

ForcedDelete 
Set to true to delete the user and clear all references to it 

as well as associated accounts. 

User-ForcedDelete Delete this user and clear all references to it. 

User-GeneratePassword Generate a random password that conforms to the 

password quality rules for a global user. 

User-RequestPasswordRes
et 

Register a user's password reset request. 

User-SyncAccountsWithPo
licies 

Synchronize the accounts of a user with their assigned 
policies. 

User-SyncWithRolesAddAc
counts 

Synchronize a user with roles and create accounts. 

User-SyncWithRolesDelete
Accounts 

Synchronize a user with roles and delete accounts. 

 

Modify Request 

Use the modify request to update all objects provisioned by the SPML server including 
the namespace and domain objects. 

 

Fields in a Modify Request 

A modify request contains the following fields: 

identifier 

Identifies the object to be modified 

modifications 

Lists the attributes to be modified. Attribute values can be added, deleted, or 
replaced as specified in the operation flag. 

 



Request Types 
 

116  Provisioning Reference Guide 
 

Example of a Modify Request 

The following request sets the comments attribute of User _spml_user to the string new 
comment. 

<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 

<modifyRequest xmlns="urn:oasis:names:tc:SPML:1:0" 

xmlns:dsml="urn:oasis:names:tc:DSML:2:0:core"> 

    <identifier type="urn:oasis:names:tc:SPML:1:0#DN"> 

        <id>User=_spml_user,Domain=EXAMPLE_DOMAIN,Server=Server</id> 

    </identifier> 

    <modifications> 

        <modification name="comments" operation="replace"> 

            <dsml:value>new comment</dsml:value> 

        </modification> 

    </modifications> 

</modifyRequest> 

 
 

Propagate Global User Changes 

Modifications made to global user attributes can be propagated to the global user's 
accounts, by adding syncAccounts attribute to the modify request and setting it to true. 
The same rule applies if you modify global user complex attributes such as address. 

Note: By default the SPML manager does not display the syncAccounts attribute in the 
Modify tab for any object except from the global user. To propagate changes made to 
global users complex attributes, add a field by clicking New Modification.  Then, specify 
the name of the field to be syncAccounts and set it to true. 

 
 



Request Types 

 

Chapter 4: Sample SPML Requests  117  
 

Example of a Modify/Propagate Request 
<?xml version="1.0" encoding="UTF-8"?> 

<modifyRequest xmlns="urn:oasis:names:tc:SPML:1:0" 

xmlns:dsml="urn:oasis:names:tc:DSML:2:0:core"> 

<operationalAttributes></operationalAttributes> 

<identifier type="urn:oasis:names:tc:SPML:1:0#DN"> 

<id>User=_spml_user,Domain=EXAMPLE_DOMAIN,Server=Server</id> 

</identifier> 

<modifications> 

<modification name="comments" operation="replace"> 

<dsml:value>new comment</dsml:value> 

</modification> 

<modification name="syncAccounts" operation="replace"> 

<dsml:value>true</dsml:value> 

</modification> 

</modifications> 

</modifyRequest> 

Example of a Modify/Propagate Complex Attribute Request 

<?xml version="1.0" encoding="UTF-8"?> 

<modifyRequest xmlns="urn:oasis:names:tc:SPML:1:0" 

xmlns:dsml="urn:oasis:names:tc:DSML:2:0:core"> 

<operationalAttributes></operationalAttributes> 

<identifier type="urn:oasis:names:tc:SPML:1:0#DN"> 

<id>address@User=_spml_user,Domain=EXAMPLE_DOMAIN,Server=Server</id> 

</identifier> 

<modifications> 

<modification name="city" operation="replace"> 

<dsml:value>new city</dsml:value> 

</modification> 

<modification name="syncAccounts" operation="replace"> 

<dsml:value>true</dsml:value> 

</modification> 

</modifications> 

</modifyRequest> 

 
 

Schema Request 

Use the schema request to exchange provisioning schema between the Requesting 
Authority and SPML Service. 

The schema request is used by the Requesting Authority to determine the specific data 
structures and extended operations that the SPML Service provides access to. 

The core eTrust SPML Service schema is identified by the provider identifier 
urn:ca.com:etrust:iam and schema identifier core. 

 



Request Types 
 

118  Provisioning Reference Guide 
 

Example of a Schema Request 

<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 

<schemaRequest xmlns="urn:oasis:names:tc:SPML:1:0"> 

    <providerIdentifier providerIDType="urn:oasis:names:tc:SPML:1:0#OID"> 

        <providerID>urn:ca.com:etrust:iam</providerID> 

    </providerIdentifier> 

    <schemaIdentifier schemaIDType="urn:oasis:names:tc:SPML:1:0#GenericString"> 

        <schemaID>core</schemaID> 

    </schemaIdentifier> 

</schemaRequest> 
 

Search Request 

Use the search request to read the attributes of objects provisioned by the Provisioning 
Server. 

Each object is uniquely identified by an ID, which is similar to an LDAP distinguished 
name. For example, the following identifier is the unique identifier representing the 
EXAMPLE_DOMAIN domain: 

"Domain=EXAMPLE_DOMAIN,Server=Server" 

The following identifies the user Administrator in this domain: 

"User=Administrator,Domain=EXAMPLE_DOMAIN,Server=Server" . 
 

A search request allows you to look up objects in a container. In particular, a domain can 
contain the following objects: 

■ User 

■ Group 

■ Dynamic Group 

■ Profile 

■ Password Profile 

■ Role 

■ Child Domain 

■ Namespace 

A namespace contains policies and end points, and an end point contains accounts 
and account containers. 

 



Request Types 

 

Chapter 4: Sample SPML Requests  119  
 

Search Filters 

Use an LDAP filter in the search request to identify the objects that you wish to return. 

For example, "(name=*)" would list all the objects in this domain. 

You can combine several expressions to form a sophisticated filter such as 
"(&(name=admin*)(role=*newrole*))" in accordance with the LDAP filter search 
described in RFC 2254. 

 

Fields in a Search Request 

A search request contains the following fields: 

searchBase 

Specifies the starting point for the search operation using the ID string of the 
container object 

filter 

Specifies the search criteria 

attributes 

Lists the attributes to be returned in the search response  
 

Example of a Search Request 

The following search request queries the EXAMPLE_DOMAIN to list all objects and 
return the name and description attributes for all of these objects: 

<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 

<searchRequest xmlns="urn:oasis:names:tc:SPML:1:0" 

xmlns:dsml="urn:oasis:names:tc:DSML:2:0:core"> 

    <searchBase type="urn:oasis:names:tc:SPML:1:0#DN"> 

        <id>Domain=EXAMPLE_DOMAIN,Server=Server</id> 

    </searchBase> 

    <filter> 

        <dsml:equalityMatch name="name"> 

            <dsml:value>*</dsml:value> 

        </dsml:equalityMatch> 

    </filter> 

    <attributes> 

        <dsml:attribute name="name"></dsml:attribute> 

        <dsml:attribute name="description"></dsml:attribute> 

    </attributes> 

</searchRequest> 
 



Global Settings 
 

120  Provisioning Reference Guide 
 

Status Request 

The Requesting Authority uses a Status Request to query the processing status of an 
asynchronous operation. 

 

Example of a Status Request 

The example below is for requesting the status of a previously-sent asynchronous with 
the request ID “A4DF567HGD”. 

<statusRequest requestID="A4DF567HGD" xmlns="urn:oasis:names:tc:SPML:1:0" 
xmlns:dsml="urn:oasis:names:tc:DSML:2:0:core"/> 

 

Global Settings 

Global settings are settings that affect the Provisioning Server Domain. Global settings 
are changed at the corporate level for entire company. Some of the properties that can 
be defined in global settings include 

■ Enabling and disabling self-authentication preferences 

■ Setting the number of questions 

■ Setting the number of optional fields 

In Provisioning Manager, these settings can be seen from the System (task frame),  
Global Properties. 

 



Global Settings 

 

Chapter 4: Sample SPML Requests  121  
 

Example: Search for Attributes Defined in Global Settings 

Here is an example of how to search for attributes defined in global settings. 

<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 

<searchRequest xmlns="urn:oasis:names:tc:SPML:1:0" 

xmlns:dsml="urn:oasis:names:tc:DSML:2:0:core"> 

    <searchBase type="urn:oasis:names:tc:SPML:1:0#DN"> 

        <id></id> 

    </searchBase> 

    <filter> 

        <dsml:equalityMatch name="name"> 

            <dsml:value>*</dsml:value> 

        </dsml:equalityMatch> 

    </filter> 

    <attributes> 

        <dsml:attribute name="selfAuthEnabled"></dsml:attribute> 

        <dsml:attribute name="numberSelfAuthQuestions"></dsml:attribute> 

        <dsml:attribute name="numberOptionalSelfAuthProperties"></dsml:attribute> 

    </attributes> 

</searchRequest> 

Note: You should not specify a value for the searchBase field. If you are doing this 
search from the SPML Manager you will need to leave the searchBase field empty.  

 



Account Containers 
 

122  Provisioning Reference Guide 
 

Example: Modify Attributes in Global Settings 

Here is an example of how to modify attributes defined in global settings. Note that the 
ID string “Server=Server” identifies the global settings object. 

<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 

<modifyRequest xmlns="urn:oasis:names:tc:SPML:1:0" 

xmlns:dsml="urn:oasis:names:tc:DSML:2:0:core"> 

    <identifier type="urn:oasis:names:tc:SPML:1:0#DN"> 

        <id>Server=Server</id> 

    </identifier> 

    <modifications> 

        <modification name="autoGenerateUIDs" operation="replace"> 

            <dsml:value>true</dsml:value> 

        </modification> 

        <modification name="autoGenerateUIDsForNewUsers" operation="replace"> 

            <dsml:value>true</dsml:value> 

        </modification> 

        <modification name="numberOptionalSelfAuthProperties" operation="replace"> 

            <dsml:value>5</dsml:value> 

        </modification> 

        <modification name="numberSelfAuthQuestions" operation="replace"> 

            <dsml:value>4</dsml:value> 

        </modification> 

        <modification name="selfAuthEnabled" operation="replace"> 

            <dsml:value>1</dsml:value> 

        </modification> 

    </modifications> 

</modifyRequest> 
 

Account Containers 

Hierarchical namespace accounts, such as ADS, LDAP, eWac, NDS, and PLS (CA SSO WAC 
Namespace), are stored in containers. 

An account object in a hierarchical namespace is identified by the following ID string: 

Account=xyzaccount,Container=ChildContainer,Container=ParentContainer,EndPoint=EX

AMPLE_ENDPOINT,Namespace=EXAMPLE_NAMESPACE,Domain=EXAMPLE_DOMAIN,Server=Server 

If there is more than one container type in the endpoint, specify “Container.type=” 
instead of just “Container=” in the ID string. Container types are set to be the same as 
the LDAP objectClass of the container entry. 

 



Account Containers 

 

Chapter 4: Sample SPML Requests  123  
 

Example: Create an Account Container 

The following example creates an account container on an ADS endpoint system of type 
ADSOrgUnit: 

<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 

<addRequest xmlns="urn:oasis:names:tc:SPML:1:0"> 

    <identifier type="urn:oasis:names:tc:SPML:1:0#DN"> 

<id>Container.ADSOrgUnit=ADSSubContainer,Container.ADSOrgUnit=ADSContainer,EndPoi

nt=EXAMPLE_ADS_ENDPOINT,Namespace=ActiveDirectory,Domain=EXAMPLE_DOMAIN,Server=Se

rver</id> 

    </identifier> 

    <attributes/> 

</addRequest> 
 

Example: Create an Account within a Sub-Container 

The following example creates an account on an ADS endpoint system within an existing 
sub-container: 

<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 

<addRequest xmlns="urn:oasis:names:tc:SPML:1:0" 

xmlns:dsml="urn:oasis:names:tc:DSML:2:0:core"> 

    <operationalAttributes></operationalAttributes> 

    <identifier type="urn:oasis:names:tc:SPML:1:0#DN"> 

<id>Account=EXAMPLE_ACCOUNT,Container.ADSOrgUnit=ADSSubContainer,Container.ADSOrg

Unit=ADSContainer,EndPoint=EXAMPLE_ADS_ENDPOINT,Namespace=ActiveDirectory,Domain=

EXAMPLE_DOMAIN,Server=Server </id> 

    </identifier> 

    <attributes> 

        <attr name="objectClass"> 

            <dsml:value>user</dsml:value> 

        </attr> 

        <attr name="password"> 

            <dsml:value>test123</dsml:value> 

        </attr> 

        <attr name="NT_AccountID"> 

            <dsml:value>egaccount</dsml:value> 

        </attr> 

    </attributes> 

</addRequest> 
 



Complex Attributes 
 

124  Provisioning Reference Guide 
 

Complex Attributes 

Objects, such as User, have attributes. Most attributes are of simple types like string, 
integer, or Boolean. The “address” or “createStatistics” attributes, however, are of 
complex types as they contain nested elements. For example “street," “city," “country," 
“state” and “postcode” are nested fields of an “address” attribute.  When you add a 
complex attribute, the Identifier of the complex attribute has the following special 
format: 

attributeName@ID_Of_The_Actual_Object 
 

Some complex attributes are multi-valued, such as the list of self authentication 
questions and answers for a Global User. 

For multi-valued complex attributes, the Identifier format is as follows, with the #index 
to indicate the index of the attribute value. The index always start from 0: 

attributeName#index@ID_Of_The_Actual_Object 
 

Simple attributes can be populated when you add an object: 

<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 

<addRequest xmlns="urn:oasis:names:tc:SPML:1:0" 

xmlns:dsml="urn:oasis:names:tc:DSML:2:0:core"> 

    <identifier type="urn:oasis:names:tc:SPML:1:0#DN"> 

        <id>User=new_global_user,Domain=EXAMPLE_DOMAIN,Server=Server</id> 

    </identifier> 

    <attributes> 

        <attr name="accountId"> 

            <dsml:value>new_global_user</dsml:value> 

        </attr> 

        <attr name="firstName"> 

            <dsml:value>new_global_user</dsml:value> 

        </attr> 

    </attributes> 

</addRequest> 

But complex attributes must be populated afterwards in a separate AddRequest. 
 



Complex Attributes 

 

Chapter 4: Sample SPML Requests  125  
 

Example: Add a Single-Valued Complex Attribute 

<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 

<addRequest xmlns="urn:oasis:names:tc:SPML:1:0" 

xmlns:dsml="urn:oasis:names:tc:DSML:2:0:core"> 

    <identifier type="urn:oasis:names:tc:SPML:1:0#DN"> 

        <id>address@User=new_global_user,Domain=EXAMPLE_DOMAIN,Server=Server</id> 

    </identifier> 

    <attributes> 

        <attr name="street"> 

            <dsml:value>123 Church St </dsml:value> 

        </attr> 

        <attr name="postcode"> 

            <dsml:value>3121</dsml:value> 

        </attr> 

    </attributes> 

</addRequest> 
 

Example: Add a Multivalued Complex Attribute 

<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 

<addRequest xmlns="urn:oasis:names:tc:SPML:1:0" 

xmlns:dsml="urn:oasis:names:tc:DSML:2:0:core"> 

    <operationalAttributes></operationalAttributes> 

    <identifier type="urn:oasis:names:tc:SPML:1:0#DN"> 

        

<id>selfAuthQA#0@User=new_global_user,Domain=EXAMPLE_DOMAIN,Server=Server</id> 

    </identifier> 

    <attributes> 

        <attr name="answer"> 

            <dsml:value>Sample Answer</dsml:value> 

        </attr> 

        <attr name="question"> 

            <dsml:value>Sample Question</dsml:value> 

        </attr> 

    </attributes> 

</addRequest> 

When you search for an object, asking about a complex attribute, the attribute value 
returned is a special attribute Identifier that refers to the real attribute value stored in a 
separate search result entry. 

 



Request Retries 
 

126  Provisioning Reference Guide 
 

Request Retries 

SPML requests, such as add, modify, delete and rename, can be flagged for retry.  The 
request should be asynchronous and should be given a unique requestID. In addition, 
operational attribute caIamRetry should be set to true. 

For more information about operation retries, see the chapter “SPML Service.” 
 

Example: N16 Account-Add Request Flagged for Retry 

<?xml version="1.0" encoding="UTF-8"?> 

<addRequest execution="urn:oasis:names:tc:SPML:1:0#asynchronous" 

requestID="AddN16Account" xmlns="urn:oasis:names:tc:SPML:1:0" 

xmlns:dsml="urn:oasis:names:tc:DSML:2:0:core"> 

   <operationalAttributes> 

       <attr name="caIamRetry"> 

           <dsml:value>true</dsml:value> 

       </attr> 

   </operationalAttributes> 

   <identifier type="urn:oasis:names:tc:SPML:1:0#DN"> 

       <id>Account=new_account,EndPoint=LocalHost,Namespace=Windows 

                NT,Domain=EXAMPLE_DOMAIN,Server=Server</id> 

   </identifier> 

   <attributes> 

       <attr name="password"> 

           <dsml:value>myPassword</dsml:value> 

       </attr> 

   </attributes> 

</addRequest> 
 

Propagate Global User Changes 

Modifications made to global user attributes can be propagated to the global user's 
accounts, by setting the "syncAccounts" attribute to "true" in the modification request. 

 



Propagate Global User Changes 

 

Chapter 4: Sample SPML Requests  127  
 

Example: Modify a Global User and Propagate Changes to Associated Accounts 

<?xml version="1.0" encoding="UTF-8"?> 

<modifyRequest xmlns="urn:oasis:names:tc:SPML:1:0" 

xmlns:dsml="urn:oasis:names:tc:DSML:2:0:core"> 

    <operationalAttributes></operationalAttributes> 

    <identifier type="urn:oasis:names:tc:SPML:1:0#DN"> 

        <id>User=_spml_user,Domain=EXAMPLE_DOMAIN,Server=Server</id> 

    </identifier> 

    <modifications> 

        <modification name="comments" operation="replace"> 

            <dsml:value>new comment</dsml:value> 

        </modification> 

        <modification name="syncAccounts" operation="replace"> 

            <dsml:value>true</dsml:value> 

        </modification> 

    </modifications> 

</modifyRequest> 
 

But because the SPML Manager doesn't display "syncAccounts" attribute in the 
"Modify" tab for any object apart from the Global User. So, to propagate changes made 
to Global Users' complex attributes like "address", the user will have to manually add 
the operational attribute "syncAccounts" to the modification request. This is done by 
pressing the "Show Hidden Attributes" button then select "New Operational Attribute". 
Once the new field is added, specify the name of the field to be "syncAccounts" and set 
it to true. 

 

Example: Modify Complex Attribute and Propagate Changes to Accounts 

<?xml version="1.0" encoding="UTF-8"?> 

<modifyRequest xmlns="urn:oasis:names:tc:SPML:1:0" 

xmlns:dsml="urn:oasis:names:tc:DSML:2:0:core"> 

    <operationalAttributes> 

        <attr name="syncAccounts"> 

            <dsml:value>true</dsml:value> 

        </attr> 

    </operationalAttributes> 

    <identifier type="urn:oasis:names:tc:SPML:1:0#DN"> 

        <id>address@User=_spml_user,Domain=EXAMPLE_DOMAIN,Server=Server</id> 

    </identifier> 

    <modifications> 

        <modification name="city" operation="replace"> 

            <dsml:value>new city</dsml:value> 

        </modification> 

    </modifications> 

</modifyRequest> 
 



Escaping Special Characters in Object Identifiers 
 

128  Provisioning Reference Guide 
 

Escaping Special Characters in Object Identifiers 

There are two special characters in the Provisioning Server object ID that need to be 
escaped when using SPML. If there is a comma character in the object name then you 
will have to use a backward slash to escape the comma. If there is a backward slash in 
the name then you have to escape it by another backward slash. 

For example the identifier 
"User=\\new\,user,Domain=EXAMPLE_DOMAIN,Server=Server" identifies the user by 
the name "\new,user" inside the domain EXAMPLE_DOMAIN. 

 

Escaping Special Characters in Search Filters 

If you need to search for a pattern that includes a special character *, ), (, \ or NULL, it 
must be escaped using the format '\code' (the code is actually the 2 hexadecimal 
characters representing the ASCII character) as follows:  

■ \2a replaces or escapes * 

■ \28 replaces or escapes ( 

■ \29 replaces or escapes ) 

■ \5c replaces or escapes \ 

■ \00 replaces or escapes NULL 
 

Escaped Search Examples 

(name=*\2a*)                 # searches for * anywhere in the name 

(file=d:\5cmyfile.html)     # searches for d:\myfile 

(description=*\28*\29)    # searches for both ( and ) anywhere and in that order 

(bin=\5b\04)                   # searches for binary values (or unicode characters) 5b04 

 
 



 

Chapter 5: etautil Batch Utility  129  
 

Chapter 5: etautil Batch Utility 
 

You use the etautil batch utility to perform the same tasks as you do with the 
Provisioning Manager, but from a command line interface. This utility is especially useful 
for performing repetitive and time-consuming tasks. This chapter explains etautil and 
provides examples of its use.  

Note: etautil sometimes uses the original terminology associated with eTrust Admin, 
such as namespace and policy, instead of endpoint type and account template. This 
occurs when you use actual LDAP schema items (object class names, attribute names, 
attribute values) which retain the original terminology for backwards compatibility. 
However, etautil also allows the use of user-friendly attribute names as specified in 
parser tables. These names use the new Identity Manager terminology. 

This section contains the following topics: 

Tasks You Can Perform (see page 129) 
etautil Syntax (see page 130) 
Use DeletePending (see page 137) 
Common Error Messages (see page 138) 
Obtain Operation Details (see page 139) 
DOS Output from etautil (see page 140) 

 

Tasks You Can Perform 

You can use etautil to maintain property sheets and inclusion pages for Provisioning 
Manager objects. The following are tasks you can perform with the Batch Utility: 

■ Create a batch file to explore and correlate endpoint accounts 

■ Synchronize several accounts with the account template to which they are assigned 

■ Search and replace attribute values for a large set of objects 

For more information about the rules for control statements to use with etautil, see the 
Provisioning Manager help. For details on using etautil with a specific connector, see the 
Connectors Guide. 

 



etautil Syntax 
 

130  Provisioning Reference Guide 
 

etautil Syntax 

This is the generalized syntax of etautil. For an explanation of the syntax and use of 
etautil, see the Provisioning Manager help. 

etautil [-n] [-d domain] [-u user [-p password]] [-y password-file] [options] 

control_statements 

Note: Using an input file provides better performance.  A single bind executes all 
commands in the file. 

-n 

Verifies the syntax of the command you entered, without executing the command. 

-d domain 

Specifies the name of the provisioning domain. 
 

-u user 

Specifies the global user name for authentication. 
 

-p password 

Specifies the password of the named global user for authentication. 

Cannot be specified with –y password_file option 
 

-y password-file 

Specifies a file name that contains a global user password. Cannot be specified with 
–p password option. Please see the "Important" section below for more 
information. 

 

options 

Includes any of the following: 

-f filename 
Reads the control statements in the indicated file and executes them. Use 
semicolons (;) to delimit multiple control statements. 

-i 
Invokes the etautil interactive mode, which lets you enter control statements at the 
prompt. (Use <Ctrl+D> or <Enter> to terminate the interactive mode). 

-o 
Displays operation details to stdout. See the section Obtain Operation Details. 

-h 
Displays etautil help. 

control statements 

For more information about control statements, see etautil Control Statements.  
 



etautil Syntax 

 

Chapter 5: etautil Batch Utility  131  
 

Important: Enter all DNs in the same case as stored in the provisioning directory. DNs 
are strings that etautil often requires in your commands. In most cases, an 
incorrect-case DN supplied to the Provisioning Server is processed as is. Authorization 
errors are common as most permission checking is done by a case-sensitive comparison 
of the DN of an object being operated upon with the DN specified in a privilege. Copying 
DN strings from logs or the JXplorer utility ensures the DN is in the correct case. 

On UNIX, we strongly recommended you include the -y password-file option to specify 
an authentication password. For example, if “$HOME/.pwdfile” contains myglobaluser’s 
password, then you  can use etautil command as follows: 

$ etautil –u myglobaluser –y “$HOME/.pwdfile” <other-options> 

The command disregards any newline character if one exists at the end of the password 
file, but it uses the rest of the content as the authentication password. 

 

etautil Control Statements 

Control statements tell etautil the procedures to carry out; this is the request that is 
sent to the Provisioning Server. Use semicolons to delimit multiple control statements in 
a single etautil command. 

Each statement must begin with a verb followed by a base distinguished name (base 
dn), an object's class name, and the object's operands. 

verb  basedn  classname  operands 

Note: For more information about control statements see the Provisioning Manager 
help. For endpoint type-specific details, see the Connectors Guide. 

 

The following are examples of the etautil control statements: 
 



etautil Syntax 
 

132  Provisioning Reference Guide 
 

ADD 

The following example creates role-based accounts for a user: 

add 'eTGlobalUserContainerName=Global  Users,eTNamespaceName=CommonObjects'  

    eTGlobalUser globalusername=denro01 in 

'eTRoleContainerName=Roles,eTNamespaceName=CommonObjects'  eTRole  

RoleName=TeamManager 

The following example register a UNIX endpoint: 

add  'eTNamespaceName=UNIX - etc' eTETCDirectory name=hpdevsrv 

eTETCHost=hpdevsrv  eTETCUnicenterSec=0  eTETCUnicenterUser=0 

The following example creates a global user named HAAS14 and assigns the values of 
myvalue1 and myvalue2 to the custom fields with the IDs of 01 and 02. 

etautil -u etaadmin -p super**s add 'eTGlobalUserContainerName=Global 

Users,eTNamespaceName=CommonObjects' 

GlobalUserName=user14 eTCustomField01=myvalue1 eTCustomField02=myvalue2 

eTPassword=super**s eTUserId=user14 
 

Note: You cannot use the ADD statement to add mainframe endpoints to the 
Provisioning Server. 

 

 

COPY/COPYALL 

Copy creates a new global user with the same properties as an existing global user, 
including the same roles. 

Copyall performs the same function as Copy but also copies the existing user's 
relationships (inclusions) to the new global user. 

Syntax: 

copy|copyall 'eTGlobalUserContainerName=Global 

Users,eTNamespaceName=CommonObjects'  eTGlobalUser 

globalusername=existing_user[.domain] to 

globalusername=new_user eTFullName='new fullname' 

  [property1=value property2=value … propertyn=value] 

Example: 

copyall  'eTGlobalUserContainerName=Global  Users,eTNamespaceName=CommonObjects'  

eTGlobalUser  globalusername=user01  to  globalusername=user12  FullName='John Doe'  

  Password=password  EmailAddress=JohnDoe@mycompany.com 
 



etautil Syntax 

 

Chapter 5: etautil Batch Utility  133  
 

DELETE 

Deletes a global user and its relationships from an endpoint.To delete an object and its 
inclusion objects, the syntax is: 

delete basedn classname namingattribute=value 

To delete an inclusion object, the syntax is: 

delete childbasedn childclass childnamingattribute=value in parentbasedn 

parentclass parentnamingattribute=value [relationship=rel] 

Note: The deletion of a global user and its accounts can be done using the Update 
control statement described later in this chapter. 

 

EXPLORE 

Finds objects in a registered endpoint and stores them in the provisioning directory. 
Optionally, correlates or creates a global user in the Provisioning Server for the person 
associated with each account in the endpoint. 

Syntax: 

To explore an entire endpoint, the syntax is: 

explore dirbasedn dirclassname dirnamingattribute=value list [explore options] 

To explore only a specific container, the syntax is: 

explore base_dn_container_class_name name=container_name [scope=value] list 

explore_options 
 

The explore_options include the following: 

■ ExploreUpdateEtrust-Retrieves all managed objects. 

■ ExploreCorrelateUsers-Correlates accounts with global users using existing ones. 

■ ExploreCreateUsers-Creates global users as needed during the correlation. 
ExploreUpdateUsers-Sets/refreshes the global user attributes using account 
attribute values. 

Note: Combining explore, correlate, and update actions into a single request is not 
supported. 

 



etautil Syntax 
 

134  Provisioning Reference Guide 
 

Examples: 

To explore and correlate an entire UNIX endpoint using existing global users: 

explore 'eTNamespaceName=UNIX - etc' eTETCDirectory 

name= hpserv01 list eTExploreUpdateEtrust 

explore 'eTNamespaceName=UNIX - etc' eTETCDirectory 

name= hpserv01 list eTExploreCorrelateUsers 

To explore a specific NDS container: 

explore 'eTNDSOrganizationName=Org1,eTNDSTreeName=SampleTree,eTNamespaceName=NDS 

Servers'  

eTNDSOrgUnit name=OrgUnit1 scope=1  

list ExploreUpdateEtrust 
 

MASSCHANGE 

Sets the same attribute values on a set of objects or searches and replaces attribute 
values on a set of objects. 

Syntax: 

masschange basedn class criteria [scope=value] to property0=value 

[property1=value… propertyn=value] 

where: 

criteria-Is the filter for selected target objects. 

Scope-Specifies the scope of the search operation (1 for 1-level, 2 for sub-tree level; 
the default is 1). 

propertyn=value-Specifies the attribute to be updated and its new value. 
 

Example: 

This example replaces the string (310) with (424) in the eTTelephone value and sets the 
eTStreetAddress to 15 Software Street for the global users who have eTCity equal to 
Santa Monica and a name beginning with u: 

masschange 'eTGlobalUserContainerName=Global Users, eTNamespaceName=CommonObjects' 

eTGlobalUser City='Santa Monica'  GlobalUserName=u* to Telephone=#sp(310)p(424) 

StreetAddress='15 Software Street' 
 



etautil Syntax 

 

Chapter 5: etautil Batch Utility  135  
 

REPORT 

Use REPORT to check account or user synchronization. For more information, see Report 
Accounts that Do Not Comply with Account Templates. 

Syntax: 

report basedn class namingattr=value list reporting_attribute 

reporting_attribute-Must be eTSyncAccounts, eTSyncUsers, or eTSyncDelete. 

Example: 

This example reports all existing accounts that do not comply with the account 
templates to which they are assigned for the global user ayrton02: 

report  'eTGlobalUserContainerName=Global Users, 

eTNamespaceName=CommonObjects'  eTGlobalUser  globalusername= user02 list  

eTSyncAccounts 
 

UPDATE 

Use the Update control statement to do the following: 

■ Synchronize accounts with account templates. 

■ Suspend and resume a global user. You can specify that all accounts associated with 
the global user are also suspended or resumed. 

■ Change the attributes of an account template and apply those changes to the 
associated accounts. To propagate those changes to each account assigned to the 
account template, specify the phrase eTSyncAccounts=1. 

■ Delete a global user, its relationships, and its accounts. 

■ Update the attributes values of an existing object. 

Syntax: 

update basedn class namingattribute=value to entries 
 



etautil Syntax 
 

136  Provisioning Reference Guide 
 

Examples: 

To synchronize an account synchronization for a role: 

update  'eTRoleContainerName=Roles, 

eTNamespaceName=CommonObjects'  

eTRole RoleName=F1Drivers to eTSyncAccounts=1 

To delete a global user and its accounts: 

update 'eTGlobalUserContainerName=Global  Users,eTNamespaceName=CommonObjects'  

eTGlobalUser  globalusername=user02  to  DeleteUserAndAccounts=1 

To remove a value of a multivalued attribute such as eTRoleDN: 

update 'eTGlobalUserContainerName=GlobalUsers,eTNamespaceName=CommonObjects' 

GlobalUser GlobalUserName=y272705 to -eTRoleDN= 

'eTRoleName=LNDSuspended,eTRoleContainerName=Roles,eTNamespaceName= 

CommonObjects,yourdomainsuffix' 

This command example uses a plus (+) or minus (-) sign operator in the update section 
to add or remove values of a multivalued attribute. In this example, there is a minus sign 
(-) operator before the eTRoleDN attribute to delete an association between Global 
User and Role. 

 

Multivalued Attributes 

Each provisioning role, account template, and global user is an object. Each object has 
attributes, some of which are multivalued. For example, a Global User may belong to 
multiple Roles. You may need to update or delete the values for these attributes using 
plus sign (+) or minus sign (-) operators with the UPDATE command using the following 
syntax: 

+attribute_name=attribute_value for adding a value 

-attribute_name=attribute_value for removing a value 

attribute_name=attribute_value for replacing existing value(s) by a new one 

attribute_name='' for clearing existing value(s) 
 



Use DeletePending 

 

Chapter 5: etautil Batch Utility  137  
 

Multivalued attributes include the following: 

■ Account Objects 

– eTPolicyDN (the list of account templates assigned to an account) 

– endpoint type-specific group membership attributes 

■ Account Template Objects 

– endpoint type-specific group membership attributes 

■ Global Users Objects 

– eTUserAdminProfile (the list of assigned admin profiles) 

– eTCustomField01 through eTCustomField99 (all global user custom attributes 
are multivalued) 

– eTAccessControlList (the list of privileges the global user has) 

Note: For more information about multivalued attributes, see the Connectors Guide. 
 

Use DeletePending 

To designate an account as DeletePending, you set two endpoint attributes: 

eTAccountDeletable  

controls what action the Provisioning Server performs when accounts on an 
endpoint are deleted. The values are: 

0--Enable DeletePending to suspend an account and mark it for later deletion. 

1--Disable DeletePending and physically delete the account from the managed 
endpoint. This is the default value. 

2--Enable an alternate delete behavior to remove an account from the 
Provisioning Server but leave the account unchanged on the managed 
endpoint. 

 

eTAccountForcedDeletable  

controls whether or not an account marked for DeletePending can be deleted 
through the Forced Delete operation. Use these values: 

0--Disable ForcedDelete on DeletePending accounts. This is the default. 

1--Enable ForcedDelete on DeletePending accounts. 
 



Common Error Messages 
 

138  Provisioning Reference Guide 
 

To track accounts that have been suspended or are in a DeletePending state, use these 
attributes: 

■ eTSuspendedDate is the date the account was suspended using the Provisioning 
Server. 

■ eTSuspendedTime is the time the account was suspended using the Provisioning 
Server. 

■ eTSuspendedReason is either DeletePending or AdminSuspended. 

Note: These attributes are only set when an account is suspended using the Provisioning 
Server. If an account is acted upon by the native endpoint type tools, these attribute 
values will be stale. If you are taking action based on these attributes, use eTSuspended 
to confirm whether an account is actually suspended. 

 

Common Error Messages 

The following are some common error messages associated with etautil: 
 

Unknown error nnn opening Common Object Repository 

This message appears when the authentication to the Provisioning Server fails. If the 
nnn value in the message is: 

102, the user/password is wrong (-u/-p). 

96, the domain is wrong (-d). 
 

End of file reached while expecting an operator 

Etautil cannot parse the control statements correctly. This message appears when the 
grammatical syntax is not respected. 

 

Object 'XXXX' operation failed: DB operation failed: Target DN not found. 

The target object cannot be reached. This message appears when the base dn is not 
correct (wrong value for the components of the dn). 

 

Object 'XXXX' operation failed: No server plug-in found for operation 

The Provisioning Server is not able to find the connector server corresponding to XXXX. 
This message appears when XXXX is not correct. 

 



Obtain Operation Details 

 

Chapter 5: etautil Batch Utility  139  
 

Class 'classname' is not a valid class name 

The LDAP name or user-friendly name class name is not defined in the corresponding 
endpoint type. 

 

Could not find keyword xxxxx for class classname 

The LDAP name or user-friendly name xxxxx does NOT correspond to an attribute 
defined in the class classname. The problem is on 'xxxxx', not on classname. 

 

Obtain Operation Details 

You can use the following methods to obtain operation details: 

■ Specify the -o argument with etautil to display operational details to your standard 
output device (stdout). 

■ Specify the OpDetail attribute to control operation detail on a 
command-by-command basis. By setting this attribute to 0 or 1 you can determine 
the commands for which you receive operation details. For SELECT and EXPLORE 
commands, you must set OpDetail in the filter, for example: 

explore 'eTNamespaceName=Windows NT' eTN16Directory name='My NT Directory' 

OpDetail=1 List eTExploreUpdateEtrust 
 

For other commands such as UPDATE, you must set OpDetail in the attribute list, for 
example: 

update 'eTGlobalUserContainerName=Global Users,eTNamespaceName=CommonObjects' 

eTGlobalUser GlobalUserName=gluser01 to 

LastName='gluser01 lastname' OpDetail=1 eTSyncAccounts=1 
 

Note: You can combine both methods to obtain operation details for only some of the 
commands defined in an input file. 

 



DOS Output from etautil 
 

140  Provisioning Reference Guide 
 

This example makes use of a batch input file to run multiple commands that explore a 
Windows NT endpoint and update a global user name: 

etautil -o -u etaadmin -p password -f myinputfile 

where myinputfile contains the following syntax: 

explore 'eTNamespaceName=Windows NT' eTN16Directory name=My NT Directory OpDetail=0 

List eTExploreUpdateEtrust; 

update 'eTGlobalUserContainerName=Global Users,eTNamespaceName=CommonObjects'  

eTGlobalUser GlobalUserName=gluser01  to  LastName='gluser01 lastname' 

eTSyncAccounts=1 

Note: This example makes use of the -o flag to display operation details to stdout. To 
control the amount of information displayed, use the OpDetail attribute. In this 
example, by setting OpDetail=0 in the Explore command, only the details of the Update 
command are displayed. 

 

DOS Output from etautil 

When commands are issued directly from the DOS command prompt, non-ASCII 7-bit 
(ENU) characters are not converted correctly in etautil. This problem occurs because the 
character set used by DOS (EOM) and Windows (ANSI) are different. The following is a 
workaround: 

■ For single-byte non-ASCII (ENU) characters, redirect the output of the etautil 
command to a text file. 

etautil [-d DomainName] -u UserName -p Password control statement > Output.txt 

■ For multi-byte non-ASCII (ENU) characters, use an input file that contains etautil 
control statements you want to execute. Also, redirect the output to a text file. 

etautil [-d DomainName] -u UserName -p Password -f Input.txt > Output.txt 

 



 

Chapter 6: Provisioning Servers on UNIX  141  
 

Chapter 6: Provisioning Servers on UNIX 
 

The Provisioning Server, the C++ Connector (SuperAgent) Server and various utilities 
that work with these servers can run on either Windows or UNIX platforms. For the 
most part the servers and utilities behave the same and therefore are documented with 
a single description. This appendix describes the major differences based on the 
operating system. 

This section contains the following topics: 

No UNIX GUI Clients or Utilities (see page 141) 
Command Line Examples (see page 142) 
Libraries and Executables (see page 142) 
Registry Access (see page 143) 
Parser Tables (see page 144) 
UNIX Services for Provisioning (see page 144) 
Working with Hung or Crashed Servers (see page 144) 
Scheduling Periodic Actions (see page 145) 
Passwords on Command Lines (see page 145) 
Server Event Logging Destinations (see page 145) 
Program Exit Definitions (see page 146) 
C++ Connector Server on Solaris (see page 146) 

 

No UNIX GUI Clients or Utilities 

Other than installation and web clients, no graphical user interface (GUI) clients or 
utilities exist on UNIX. For example, Provisioning  Manager (etadmin.exe) with its 
endpoint type-specific GUI plug-ins run only on a Windows system and access the UNIX 
Provisioning Server remotely.  Also, the pwdmgr utility has a different format on UNIX, 
without a GUI, and must be run from Windows. 

 



Command Line Examples 
 

142  Provisioning Reference Guide 
 

Command Line Examples 

The Identity Manager documentation includes examples of invoking commands from a 
command prompt. On Windows, this prompt is a Command (DOS) Window; on UNIX, 
the prompt use one of various shells. Except where noted, you can assume the 
examples are for Windows. You can understand the environment variables and path 
separators that would be necessary to use a given commands on UNIX by replacing 
Windows pathnames such as 

%VARNAME%\data\im_ps.conf 

with 

$VARNAME/data/im_ps.conf 
 

Also, on UNIX nearly all directories (folders) and file names are in lower-case. Since case 
is significant in file names on UNIX but insignificant on Windows, some examples in the 
documentation that refer PSHOME\Data function correctly on Windows, even though 
new installations name that folder data instead of Data. If you are unsure about the case 
used for a directory on UNIX, use the ls command to locate the exact directory name. 

 

When UNIX examples are given, they apply to any command shell, but were specifically 
tested to work with the Bourne shell (/bin/sh). 

Also, note that quoting rules are different in Windows and UNIX command interpreters. 
Consult the respective interpreter documentation for how to quote or escape data that 
requires quoting or escaping. 

 

Libraries and Executables 

Libraries and executables differ on UNIX and Windows as follows: 

Windows UNIX 

Libraries are named LibraryName.DLL 
(mixed-case and dll suffix) and typically 
installed into a folder such as 
PSHOME\bin. 

Libraries are named liblibraryname.so 
(lower-case, lib prefix and so suffix) and 
installed into a directory such as 
$PSHOME/lib. 

Executable programs are called 
ProgramName.EXE (mixed-case, exe 
suffix) and installed into PSHOME\bin. 

Executable programs are called 
programname (lower-case, no suffix) and 
installed into $PSHOME/bin. 

Scripts are named Script.bat (mixed-case, 
bat suffix). 

Scripts are named script or script.sh 
(lower-case, optional sh suffix).  

Message files are named FileName.DLL 
(mixed-case and dll suffix) and installed in 
PSHOME\bin. 

Message catalogs are named filename.res 
(lower-case and res suffix) and installed in 
PSHOME\data. 

 



Registry Access 

 

Chapter 6: Provisioning Servers on UNIX  143  
 

Registry Access 

On Windows, configuration information is stored in the Windows registry and edited 
with a native Windows utility such as regedt32 or regedit.On UNIX, the registry is 
emulated as files in the file system 
(/opt/CA/SharedComponents/EnterpriseCommonServices/registry). Protect these files 
as you would the contents of other configuration files. Installation will protect the 
Identity Manager keys by default. Only imps group users can read them and only the 
imps user can write them. 

To dump out the entire registry, you can use the command eCSoption /r. To view, 
modify or delete specific registry settings that are specific to Identity Manager, use the 
Identity Manager utility eta-env. 

 

For example to view a registry setting, you could use these commands: 

eta-env action=get name=”etrust_bindtodb_need_tls” type=int 

eta-env action=get name="logging/caldap_client_logfile"eta-env action=get 

name="/enterprise_common_services/installpath" 

and to set a registry value 

eta-env action=set name=”etrust_bindtodb_need_tls” value=1 type=int 

eta-env action=set name="logging/caldap_client_logfile" value=my_file_name 

Names that begin with / (slash), are relative to:  

[HKEY_LOCAL_SYSTEM]\SOFTWARE\ComputerAssociates 

Simple names, without a / (slash), are relative to:  

[HKEY_LOCAL_SYSTEM]\SOFTWARE\ComputerAssociates\Identity Manager\Provisioning 

Server 

Consequently, these two command invocations 

eta-env action=get name=”/Identity Manager\Provisioning 

Manager/etrust_bindtodb_need_tls” type=int 

eta-env action=get name=”etrust_bindtodb_need_tls” type=int 

refer the same configuration parameter. 
 

Note: The registry path of “Identity Manager\Provisioning Server” is set in the  
$ETAHOME/data/reg_path.conf.file.  The preceding eta-env commands are valid on 
UNIX and Windows; however, Windows has multiple eta-env.exe commands installed.  
If you run the eta-env.exe command from the provisioning server installation, it consults 
the reg_path.conf file from that installation and the registry keys and values are as 
shown in this section with UNIX.  However, if you run the eta-env.exe command that is 
installed with the provisioning manager installation, it consults the reg_path.conf file 
from that installation and the registry keys and values being accessed are those under 
“Identity Manager\Provisioning Manager” instead. 

 



Parser Tables 
 

144  Provisioning Reference Guide 
 

Parser Tables 

Parser table files are compiled files with suffix ptt that are installed in PSHOME\data on 
Windows ($PSHOME/data on UNIX). They are read by the Provisioning Server and 
various utilities, such as dumpptt, etautil, showpttdit, and schemagen. The format is a 
platform-neutral format so that it can be freely copied between Windows and UNIX 
systems. 

 

UNIX Services for Provisioning 

The Provisioning Server (im_ps.exe) and C++ Connector Server (im_ccs.exe) are typically 
run as services on Windows. Thus you would typically start and stop them on Windows 
by going to the Services application. Alternatively you could start and stop them from 
the command line with commands such as  net start im_ps and net stop im_ccs. 

On UNIX, the Provisioning Server executable is called slapd and both servers normally 
start automatically through control files installed in /etc/rc*.d. To view, start, and stop 
the services manually, you can use commands such as imps status,  imps start im_ps, 
and imps stop im_ccs. The command “imps” is also available as the command “eta” for 
backwards compatibility with prior eTrust Admin installations.  

 

Working with Hung or Crashed Servers 

On Windows, a crashed server may cause information to be written to the system’s 
drwtsn32.log file,  a file that CA Customer Support may ask you to send to help analyze 
the problem. 

On UNIX, a crashed server creates a core file in $PSHOME/bin unless you have 
configured your server not to generate core files. If a core file is generated, please do 
not send it to CA unless instructed to do so. Instead, run the command pstack core > 
pstack.txt to capture the stack traces of all threads running within the crashed 
application. This output is valuable in diagnosing the failure. 

 

On Windows, a hung server (one where one or more requests did not run to 
completion) can generally only be debugged using the provisioning server trace log 
(PSHOME\logs\etatranyyyymmdd-hhmm.log) in conjunction with the analyzelog utility. 
You will generally be asked to capture the provisioning server trace log (at logging level 
7 if at all possible) and CA will use “analyzelog” to locate operations that have not yet 
completed. The C++ Connector Server trace log (satransyyyymmdd-hhmm.log) and 
sometimes other logs are also useful to collect. 

 



Scheduling Periodic Actions 

 

Chapter 6: Provisioning Servers on UNIX  145  
 

On UNIX, capturing the provisioning server trace log and running analyzelog is still 
useful. But another option that often provides additional information is once again the 
pstack command. Locate the process ID (pid) of the hung service by reading the 
contents of the file $PSHOME/data/pid/servicename.pid, and then issue the command 
pstack pid > pstack.txt to capture the stack traces of all active threads within the 
running process. Please include this output file along with the provisioning server trace 
logs. 

 

Scheduling Periodic Actions 

The UNIX cron command is useful for scheduling periodic tasks such as script 
invocations. This includes invocations of etautil commands (for checking or performing 
synchronization of accounts or users or performing refresh explore or correlate 
operations) and invocations of other utilities, such as etadailybatch and 
etacreateouglobalgroups. However, using etautil for invoking period explore or 
correlate operations is no longer recommended. Instead you can configure 
explore/correlate tasks directly within Identity Manager. 

 

Passwords on Command Lines 

In UNIX, command-line arguments are public to anyone who can use the ps command 
on the UNIX system. Therefore, you should never supply a password or other sensitive 
information as a command-line argument. Each Identity Manager command accepts 
input from a file so you can avoid entering data on the command line. Often, the 
command-line parameter is still allowed for backwards compatibility with Windows.  

 

Server Event Logging Destinations 

Some of the server event logging destinations behave differently on UNIX from how 
they behave on Windows. In particular, the System log destination logs to syslogd on 
UNIX and to the Windows Event Viewer on Windows. Also, the eTrust Log destination 
should be avoided on UNIX. It logs to a local file that cannot be viewed locally since 
there is no UNIX version of the eCS Log Viewer utility. It is not recommended that you 
run the eCS Log Daemon on UNIX to export the log contents to a remote Windows 
system because you cannot control who can view the log remotely. These same logging 
destinations also apply to directory-level logging. 

 



Program Exit Definitions 
 

146  Provisioning Reference Guide 
 

Program Exit Definitions 

When defining a common program exit, you enter fields that are interpreted by the 
Provisioning Server, which invokes the program exit routine. In entering these fields, 
consider the operating system (Windows or UNIX) of that domain’s Provisioning Servers 
so that these fields work on that operating system. If the domain includes Windows and 
UNIX Provisioning Servers, be sure that these fields work on both operating systems. 

For SOAP program exits, the WSDL can be specified by a URI or its fully qualified name 
as seen from the Provisioning Server or by a pathname relative to PSHOME\bin 
($PSHOME/bin on UNIX), which is the current working directory of the Provisioning 
Server. 

 

For DLL program exits, the library name can be a fully qualified name or it can be a 
common name with or without the lib prefix or the .dll or .so suffix. When only one 
Provisioning Server exists for a domain, no restrictions exist for how you specify the 
library name. But when a domain has multiple servers, the library name must be valid 
for all the servers and since UNIX and Windows have different path syntaxes, files 
systems, prefixes, and suffixes, the library name should be defined as a common name 
without any prefix or suffix.  

Thus the preferred way to define a program exit object for the CommonExit sample exit 
is to enter the string CommonExit for library name (in this exact case). The UNIX server 
will search LD_LIBRARY_PATH for a library named libCommonExit.so. On Windows, this 
will locate CommonExit.dll by searching the PATH environment variable. 

 

C++ Connector Server on Solaris 

The C++ Connector Server installed on Solaris can manage only Solaris UNIX ETC and 
ACC endpoints. For all other Connectors, install the C++ Connector Server on a Windows 
system and register it with the Provisioning Server installed on Solaris. During 
installation, specify that this Connector Server is your default C++ Connector Server.  
 



 

Chapter 7: Program Exits  147  
 

Chapter 7: Program Exits 
 

This section contains the following topics: 

Program Exits Overview (see page 147) 
Ordering of Program Exit Invocations (see page 148) 
Basic Structure of Program Exits (see page 150) 
Define Common Exits in the Provisioning Manager (see page 150) 

 

Program Exits Overview 

Program exits let you write software that executes during certain 
Provisioning Server actions. Program exits let you reference custom 
code from in the Provisioning Server process flow, extending the 
framework of the Provisioning Server to allow additional functionality 
that changes or augments standard behavior. Numerous exit points 
are available where custom code can be referenced, depending on the 
type of object. For example, you may want to install some files on a 
system every time a UNIX account is created. You could write a 
program exit that performs the file creations, and specify that it be run 
whenever a UNIX account is created. 

 

There are two types of program exits: 

■ Common Exits are executed from the Provisioning Server core 
infrastructure. 

■ Native Exits are executed from the managed endpoint types. 

The type of program exit is determined by where it is handled, not 
where it is referenced. 

Note: For information about native exits, see the endpoint 
type-specific Connector Guide. 

 



Ordering of Program Exit Invocations 
 

148  Provisioning Reference Guide 
 

Program exits are implemented as separate objects, allowing you to 
define the necessary exits and associate them at the points where 
they need to be referenced. The following objects reference program 
exits: 

■ Common Configuration Objects 

■ Provisioning Roles 

■ Account Templates 

■ Endpoints 

Each of these objects can reference multiple program exits, including 
multiple exits of the same type. For example, a directory can reference 
two exits that handle routines to be executed before creating an 
account. 

 

Ordering of Program Exit Invocations 

A single request processed by the Provisioning Server may make 
multiple program exit invocations. The order in which these program 
exits are invoked depends on: 

■ The type of program exit 

■ The location of the program exit reference 

■ The priority number assigned to the program exit reference 
 

Each program exit type identifies a place in the Provisioning Server’s 
control flow where that particular type of program exits gets a chance 
to affect the Provisioning Server’s behavior. Therefore, to understand 
the order in which different program exit types are invoked requires 
understanding how requests are processed.  

For instance, a single request to the Provisioning Server might change 
a global user password and then propagate that password to one or 
more of that user’s accounts. The processing of this request is done as 
a high-level global user operation that spawns separate account 
operations.  

 



Ordering of Program Exit Invocations 

 

Chapter 7: Program Exits  149  
 

This results in invoking program exits in the following order: 

1. PRE_CHANGE_GLOBAL_USER_PWD 

2. PRE_CHANGE_ACCOUNT_PASSWORD 

3. POST_CHANGE_ACCOUNT_PASSWORD 

4. PRE_CHANGE_ACCOUNT_PASSWORD 

5. POST_CHANGE_ACCOUNT_PASSWORD 

6. POST_CHANGE_GLOBAL_USER_PWD 
 

In some cases, multiple program exit types apply to the same object 
class (PRE_CHANGE_GLOBAL_USER_PWD and 
PRE_MODIFY_GLOBAL_USER) and could potentially be applicable to 
the same request (a single global user modification that changes both 
the password and full name, say). In such a case, all exits of one of 
these exit types will be called before all exits of another of these exit 
types. But the order is unspecified and you shouldn’t assume that the 
ordering will remain unchanged in future versions of the Provisioning 
Server. 

 

For a single exit type, sometimes you have a choice as to the class of 
object on which you define the program exit reference. In particular, 
references to some exit types that affect global users can be defined 
on a provisioning role (affecting only users in that role) or on the 
common configuration object (affecting all users in the domain). If you 
define exit references on both kinds of objects, then the Provisioning 
Server invokes the ones defined on the provisioning roles before 
invoking the ones that are defined on the common configuration 
object. 

 



Basic Structure of Program Exits 
 

150  Provisioning Reference Guide 
 

Similarly, references to some exit types that affect accounts can be 
defined on an account template (affecting only accounts assigned to 
that account template) or on the endpoint (affecting all accounts in 
the endpoint). If you define exit references on both kinds of objects, 
then the Provisioning Server invokes the ones defined on the account 
templates before invoking the ones that are defined on the endpoint. 

Finally, exit references of the same type and defined on the same class 
of object are invoked in priority order using the priority number you 
assigned when you created the program exit reference, such as 
priority 1 first, priority 2 second, and so on. Two program exit 
references of the same priority are invoked in unspecified order. 

 

Basic Structure of Program Exits 

Program exits are referred to as pre-operation or post-operation (that 
is, some operation that Provisioning Manager is used to performing). 
Program exits have a single common interface for their calling 
structure. This interface consists of a single argument and a single 
return value. The single argument is an XML buffer representation, 
encoded in Unicode Transformation Format 8 (UTF-8), of the object 
being acted upon combined with any custom information from the 
definition of the exit. The return value is status information about the 
result of the program exit execution as well as any documented 
custom information that is required for a particular exit. 

 

Define Common Exits in the Provisioning Manager 

You can define a common exit that will be executed in the Provisioning 
Server core infrastructure by using the Program Exit property sheet.  

Note: To define a Native Exit to be executed in a managed endpoint 
type, see the specific Connector Guide. 

 



Define Common Exits in the Provisioning Manager 

 

Chapter 7: Program Exits  151  
 

To define a common program exit 

1. Click Endpoints. 

2. Select Common Program Exit from the drop-down list in the 
Object Type field. 

3. Click New. The Common Program Exit dialog appears. 
 

4. Fill in the name and description of the exit to be invoked on the 
Program Exit tab. If the Disabled box is selected, the program exit 
will not be invoked, even if it is referenced in another object. 

 

5. Specify whether the Provisioning Server uses the Simple Object 
Access Protocol (SOAP) or a Dynamic Link Library (DLL) file to 
invoke the exit on the Common Parameters tab. You can specify 
that the information be sent securely by selecting SSL Enabled. 

 

6. Enter the path that points to the DLL file or the address of the 
SOAP service in the Location field. In the Method field, provide 
the name of the exported function in the DLL file or the name of 
the function defined by the SOAP service. 

For DLL program exits, you can enter for location either a full 
path, such as: 

c:\yourfolder\yourlibrary.dll 

or you can enter just the common name of the library 

yourlibrary 
 

If you enter just the common name, you can have more than one 
Provisioning Server for the domain, where the library does not 
have to appear at exactly the same path. This is important if the 
domain has a mix of Solaris and Windows servers, because these 
operating systems have different pathname syntax. 

 



Define Common Exits in the Provisioning Manager 
 

152  Provisioning Reference Guide 
 

If you provide just a common name (yourlibrary), the Provisioning 
Server will locate the library in the following way: 

■ For Windows, locate yourlibrary.dll file on the Provisioning 
Server service’s execution path as defined by the PATH 
environment variable. We recommend that you place the 
library in the PSHOME\bin folder which is known to already 
be on PATH. 

■ For Solaris, locate the libyourlibrary.so file on the Provisioning 
Server service’s library path as defined by the 
LD_LIBRARY_PATH environment variable. We recommend 
that you place the library into the $PSHOME/lib directory 
which is known to already be on LD_LIBRARY_PATH. 

 

7. Select an Authentication Type to provide information for 
authentication data to be passed to the invoked program exit on 
the Authentication tab: 

■ Select None to pass no authentication data to the exit. 

■ Select Current User to pass the authentication data of the 
global user who is logged on at the time the exit is invoked. 

■ Select Proxy User to select a specific global user that will be 
used for authorization of the operations. 

Note: When you select Proxy User, the information you provide 
must be that of a valid global user. 

■ Select Other to enable the Authentication Details group field, 
which lets you select an arbitrary name and password. The 
exit code uses this information for authentication. 

8. Click OK to complete the definition of the common exit. 
 



 

Chapter 8: Common Program Exit Reference  153  
 

Chapter 8: Common Program Exit Reference 
 

Common program exits let you write software to run during certain Provisioning Server 
actions, thereby extending the framework of the Provisioning Server with added 
functionality. Common program exits are called by the Provisioning Server during 
processing of user-provisioning operations.  

Native program exits are optional exits that may be present in some connectors where 
such facilities are available and their use is warranted (for example the OS400 
connector). Native exits are called from their respective connector plug-in running 
under the C++ Connector Server. 

This section contains the following topics: 

Program Exit Architecture (see page 153) 
Program Exit Hierarchy and Order (see page 154) 
Common Program Exit Structure (see page 155) 
eTExitType (see page 162) 
Custom Function Program Exits (see page 171) 
Sample Flow/Execution Diagram (see page 174) 
Code Examples (see page 174) 

 

Program Exit Architecture 

Program exits let you reference custom code from the Provisioning Server process flow. 
Many entry points are available where custom code can be referenced. In addition, you 
can invoke program exits as custom functions during policy rule evaluation so you can 
write custom logic to compute account attribute values. For example, to install some 
files on a system every time a UNIX account is created, you can write a program exit that 
creates the file, and indicate that the program exit be run whenever a UNIX account is 
created. 

 

Program exists belong to the following types: 

■ Common exits are executed in the Provisioning Server core infrastructure. 

■ Native exits are executed in the managed endpoints. For more information about 
native exits, see the connector guide for the specific endpoint. 

 

Where the program exit is handled determines which type of exit it is, not where the 
exit is referenced. Program exits are implemented as separate objects in the endpoint 
and are referenced in these objects, allowing you to define only the exits that are 
necessary and associate them where they need to be referenced.  

 



Program Exit Hierarchy and Order 
 

154  Provisioning Reference Guide 
 

The following objects reference program exits: 

■ Common configuration objects 

■ Provisioning roles 

■ Account templates 

■ Endpoints 

Each object can reference multiple program exits, including multiple exits of the same 
type. For example, an endpoint can reference two PRE_CREATE_ACCOUNT exits. 

 

Program Exit Hierarchy and Order 

Program exits are serialized in the Provisioning Server process flow and are both 
hierarchical and ordered, as described below: 

■ In terms of hierarchy, the exits are called as referenced from the following objects 
in the following order:  

– Common configuration objects 

– Provisioning roles 

– Account templates 

– Endpoints 

■ In terms of order, in a given hierarchy exits are called in a specified order. 
 

An operation on a global user checks for exits to be invoked in the common object and 
all roles to which the global user belongs. Exits referenced by the common object are 
invoked before exits referenced by the provisioning role. Similarly, an operation on an 
account checks the account templates and the endponts to which the account belongs 
for exits to be invoked. Exits referenced by the account templates are invoked before 
exits referenced by the endpoint. 

 



Common Program Exit Structure 

 

Chapter 8: Common Program Exit Reference  155  
 

Common Program Exit Structure 

Common program exits are referred to in terms of “pre” or “post” in relation to an 
operation that the Provisioning Server commonly performs. Program exits have a single 
common interface for their calling structure. This interface consists of a single argument 
and a single return value. The input argument is an XML buffer representation, encoded 
in UTF-8, of the object being acted upon combined with any custom information from 
the definition of the exit. The return value is status information on the result of the 
program exit execution as well as any documented custom information that is required 
for a particular exit. 

There are two types of common exits: 

■ DLL deployed 

■ SOAP executable 
 

Program Exit Input Argument 

Program exits have a single interface consisting of a single input argument, which is an 
XML buffer. All program exits are passed to the XML buffer with the following format: 

<eTExitInvoke eTExitType={one of the exit types}> 

   <{the objectclass of the object being processed}> 

   <dn>{the full DN of the object}</dn> 

   <name>{the name, that is, RDN value, of the object}</name> 

   <{attribute type}>{attribute value}</{attribute type}> 

   ... 

   </{the objectclass of the object being processed}> 

   <Authentication> 

      <Type> </Type> 

      <User> </User> 

      <Password> </Password> 

   </Authentication> 

</eTExitInvoke> 
 



Common Program Exit Structure 
 

156  Provisioning Reference Guide 
 

For example: 

<eTExitInvoke eTExitType=PRE_ADD_ACCOUNT> 

   <eTSDKAccount> 

      <dn>eTSDKAccountName=test1, eTSDKAccountContainerName=SDK Accounts,      

         eTSDKDirectoryName=Team1, dc=Dev</dn> 

      <name>test1</name> 

      <eTSDKCity>Renton</eTSDKCity> 

   </eTSDKAccount> 

   <Authentication> 

      <Type>GLOBAL_USER</Type> 

      <User>{the DN of the global user}</User> 

      <Password>{the password of the global user}</Password} 

   </Authentication> 

</eTExitInvoke> 
 

For modify operations, the modify mode is specific in each tag. The possible modify 
modes are ADD, DELETE, and REPLACE. For example: 

<eTExitInvoke eTExitType=PRE_MOIDFY_ACCOUNT> 

   <eTSDKAccount> 

      <dn>eTSDKAccountName=test1, eTSDKAccountContainerName=SDK Accounts,     

         eTSDKDirectoryName=Team1, dc=Dev</dn> 

      <name>test1</name> 

      <eTSDKCity modify-mode=”replace”>Kirkland</eTSDKCity> 

      <eTSDKDescription modify-mode=”delete” 

         Old description</eTSDKDescription> 

   </eTSDKAccount> 

</eTExitInvoke> 

The program exit parses this input argument to get the data it needs to perform its 
specific task. 

If a program exit is defined to handle only a specific type of exit, it should check the 
eTExitType to make sure that it can handle that specific type. For example, if a program 
exit is designed to handle exit type PRE_ADD_ACCOUNT, it should check eTExitType and 
perform only its task, if the exit type is correct. If the exit type is not handled by the 
program exit, it should do nothing and return a warning. 

 

Input XML Buffer Authentication Type 

Each input XML buffer may contain an optional authentication XML block. The format of 
the authentication XML block is always defined as follows. 

<Authentication> 

   <Type> </Type> 

   <User> </User> 

   <Password> </Password> 

</Authentication> 
 



Common Program Exit Structure 

 

Chapter 8: Common Program Exit Reference  157  
 

The data in the authentication XML block depends on the type of authentication defined 
for the program exit. The following are the possible authentication types: 

NONE 

No credentials are passed to the method being invoked. Thus, the input XML buffer 
does not contain an authentication block. 

GLOBAL_USER 

The credentials of the currently logged on global user are passed to the program 
exit being invoked. The <User> tag contains the DN of the global user. The 
<Password> tag contains the password for that global user. 

Note: The password is not encrypted. 
 

 PROXY 

The credentials of a specific global user are passed to the program exit being 
invoked. The <User> tag contains the DN of the specific global user. The 
<Password> tag contains the password for that global user. 

Note: The password is not encrypted. 

OTHER 

Indicates that the <User> and <Password> tags are program-exit specific. The 
<User> and <Password> tags can be any free form text. It is up to the program exits 
to define what these fields mean. 

 

Program Exit Return Value 

Program exits have a single return value, which is an XML buffer. Program exits must 
return an XML buffer, which has the following format: 

<eTExitReturn> 

   <eTExitReturnCategory> </eTExitReturnCategory> 

   <eTExitReturnNative> </eTExitReturnNative> 

   <eTExitLogMsg> </eTExitLogMsg> 

   <eTExitContinue> </eTExitContinue> 

   <eTExitCustom> </eTExitCustom> 

   <eTPersistentFailure> </eTPersistentFailure> 

</eTExitReturn> 
 



Common Program Exit Structure 
 

158  Provisioning Reference Guide 
 

eTExitReturnCategory XML 

Requirement 

This value is not required. 

Purpose 

Groups various native return codes into one of three categories for the purpose 
of simplifying process flow. 

Valid Values 

SUCCESS 

WARNING 

FAILURE 

Default Values 

If no value is specified, SUCCESS is assumed. 
 

eTExitReturnNative XML  

Requirement 

This value is not required. 

Purpose 

Specifies the return value from the native program exit call.  

Valid Values 

This value is a string representation of what occurred. 

Default Values 

None. 
 



Common Program Exit Structure 

 

Chapter 8: Common Program Exit Reference  159  
 

eTExitLogMsg XML 

Requirement 

This value is not required. It is, however, highly recommended to enter a value 
for failure or warning responses: 

■ Without eTExitLogMsg value, the server will send the eTExitReturnNative 
code for logging.  

■ Without eTExitLogMsg and etExitReturnNative values, the server will make 
up a generic message indicating no message present and that there was an 
error/ warning. 

Purpose 

Specifies a string value that the native program exit wants the server to log. 

Valid Values 

This value will be a UTF-8 string. 

Default Values 

None. 
 

eTExitContinue XML 

Requirement 

This value is not required. 

Purpose 

Specifies whether to continue the process flow after the return from the 
program exit. This value overrides the default behavior. See Default Values. 

Valid Values 

TRUE - Continue Execution. 

FALSE - Stop Execution. 

Default Values 

The default values are based on the eTExitReturnCategory attribute. 

TRUE - If eTExitReturnCategory is SUCCESS or WARNING. 

FALSE - If eTExitReturnCategory is FAILURE. 
 



Common Program Exit Structure 
 

160  Provisioning Reference Guide 
 

eTExitCustom XML  

Requirement 

This value is not required. 

Purpose 

For common program exits, this value is reserved for future use. 

For native exits, this value is connector-specific. 

Valid Values 

Any valid XML document. 

Default Values 

None. 

The program exit parses this input argument to get the data it needs to 
perform its specific task. 

 

eTPersistentFailure 

Requirement 

This value is not required. 

Purpose 

Used only in responses from IMS Notifications, which share with program exits 
the same XML buffers for encoding requests and responses. A persistent failure 
is a notification that is rejected based on a problem in the content (likely a 
programming error) rather than based on some retry-able situation. 

Valid Values 

TRUE - Indicates a persistent failure. 

FALSE - Indicates a transient failure, one that might succeed later if retried. 

Default Values  

FALSE 
 

Common Exits DLL Interface 

DLL deployed program exits must export the function with the following prototype: 

int function_name( 

   char Input_XML, 

   char * Return_XML, 

   int * Return_Buffer_Length) 
 



Common Program Exit Structure 

 

Chapter 8: Common Program Exit Reference  161  
 

The following list describes the parameters for the DLL deployed program exit 
prototype: 

function_name 

Name of the program exit. One DLL can export multiple program exits, where each 
program exit is an exported function with the prototype defined above. 

InputXML 

Character buffer in UTF-8 format.It contains the XML buffer that the Provisioning 
Server passes to the program exit. 

 

ReturnXML 

Character buffer in UTF-8 format.,Iit is an empty buffer that the Provisioning Server 
passes to the program exit for it to send a return value back to the Provisioning 
Server. The size of the buffer is passed to the program exit is the 
Return_Buffer_Length parameter. 

 

Return_Buffer_Length 

Both an input and output parameter: 

■ On input, Return_Buffer_Length indicates the maximum length, in characters, 
that the Return_XML buffer can contain. The program exits must not exceed 
this length when building the return XML buffer.  

■ On output, Return_Buffer_Length contains the actual length of the return XML 
buffer the program exit built. That is, after the program exit builds the return 
XML buffer, it sets Return_Buffer_Length to the actual length of the buffer 
being returned. 

 

Common Exits SOAP Interface 

SOAP-deployed program exits must present an external interface like the following 
prototype: 

char * function_name ( char * Input_XML ) 

The following list describes the parameters for the SOAP-deployed program exit 
prototype: 

function_name 

Name of the program exit. The Web Services Description Language (WSDL) file that 
describes the program exit contains a definition of the function_name. This is also 
the name of the character buffer in UTF-8 format that is returned. This buffer is 
allocated by the referenced program, but must be cleared from the calling program. 

Input_XML 

Character buffer in UTF-8 format. Input_XML contains the XML buffer the 
Provisioning Server passes to the program exit. 

 



eTExitType 
 

162  Provisioning Reference Guide 
 

The definition of this interface needs to be presented in the following ways: 

■ A way that the SOAP client can understand. 

■ A way that the SOAP server can understand. 

The SOAP client relies upon WSDL to specify the interface. For a description of WSDL, 
see http://www.w3.org/tr/wsdl.html. 

 

The SOAP server described here is the Apache SOAP server. The Apache SOAP server 
requires an XML document known as a Deployment Descriptor. The Deployment 
Descriptor indicates to the SOAP server what the interface to the SOAP program is. For a 
more complete description of deployment descriptors, see the Deployment Descriptors 
section in the User Guide at http://ws.apache.org/soap/docs/index.html. 

An example of a SOAP exit can be found in the following folder: 

Samples/ProgramExitSOAP 
 

eTExitType 

Exit types determine the circumstances under which an exit is called. A value is entered 
for eTExitType, in the input XML buffer passed to the program exit.  

The exit types with ACCOUNT in their names can be common or native exits, meaning 
that common code and connector code can be triggered to process them.  

 

All other exit types, however, must be common exits. It should also be noted that not all 
program exit types are referenced from the various object types. 

 

Notes: 

■ In all cases, the name of the object being passed is sent. This is formatted in both 
DN and Common Name format. 

■ To have complete control over passwords, either at the global user or the account 
levels, you must provide exits both for create user/account and for change 
password user/account. In other words, for new global users (accounts), the change 
password exit is not called. For new global users (accounts), the password is passed 
in as part of the attribute for the create exit (for example, 
PRE_CREATE_GLOBAL_USER). 

More information: 

Valid Values for eTExitType (see page 163) 
 

http://www.w3.org/tr/wsdl.html
http://ws.apache.org/soap/docs/index.html


eTExitType 

 

Chapter 8: Common Program Exit Reference  163  
 

Valid Values for eTExitType 

The following values are valid for eTExitType: 

PRE_ADD_ACCOUNT 

The account information that is being passed to the create account request is also 
passed to this program. Unlike the Modify operation, the password is passed to the 
Create operation as part of the account information. 

 

POST_ADD_ACCOUNT 

The account information that is being passed to the create account request is also 
passed to this program. Unlike the Modify operation, the password is passed to the 
Create operation as part of the account information. 

 

PRE_MODIFY_ACCOUNT 

The account information that is being passed to the modify account request is also 
passed to this program. The only exclusion to this is the password attribute. 

 

POST_MODIFY_ACCOUNT 

The account information that is being passed to the modify account request is also 
passed to this program. The only exclusion to this is the password attribute. 

 

PRE_CHANGE_ACCOUNT_PASSWORD 

A special case of MODIFY. This exit is triggered when the password attribute for the 
account changes. If the password attribute is the only change, the other modify 
code is not triggered. If other attributes change, this code is triggered. The account 
name and the password attributes contain the only information available to this 
program exit. 

 

POST_CHANGE_ACCOUNT_PASSWORD 

A special case of MODIFY. This exit is triggered when the password attribute for the 
account changes. If the password attribute is the only change, the other modify 
code is not triggered. If other attributes change, this code is triggered. The account 
name and the password attribute contain the only information available to this 
program exit. 

 

PRE_ENABLE_ACCOUNT 

A special case of MODIFY. This exit is triggered when the enable attribute for the 
account changes. If the enable”attribute is the only change, the other modify code 
is not triggered. If other attributes change, this is triggered. The account name is 
the only account attribute available to this exit. 

 

POST_ENABLE_ACCOUNT 

A special case of MODIFY. This exit is triggered when the enable attribute for the 
account changes. If the enable attribute is the only change, the other modify code is 
not triggered. If other attributes change, this is triggered. The account name is the 
only account attribute available to this exit. 

 



eTExitType 
 

164  Provisioning Reference Guide 
 

PRE_DISABLE_ACCOUNT 

A special case of MODIFY. This exit is triggered when the disable attribute for the 
account changes. If the disable attribute is the only change, the other modify code 
is not triggered. If other attributes change, this is triggered. The account name is 
the only account attribute available to this exit. 

 

POST_DISABLE_ACCOUNT 

A special case of MODIFY. This exit is triggered when the disable attribute for the 
account changes. If the disable attribute is the only change, the other modify code 
is not triggered. If other attributes change, this is triggered. The account name is 
the only account attribute available to this exit. 

 

PRE_DELETE_ACCOUNT 

Triggered prior to a DELETE request. The account name is the only account attribute 
available to this exit. 

 

POST_DELETE_ACCOUNT 

Triggered after a DELETE request. The account name is the only account attribute 
available to this exit. 

 

PRE_ADD_GLOBAL_USER 

The global user information that is being passed to the create request is also passed 
to this program. 

 

POST_ADD_GLOBAL_USER 

The global user information that is being passed to the create request is also passed 
to this program. 

 

PRE_MODIFY_GLOBAL_USER 

The global user information that is being passed to the modify request is also 
passed to this program. The only exclusion to this is the password attribute. 

 

POST_MODIFY_GLOBAL_USER 

The global user information that is being passed to the modify request is also 
passed to this program. The only exclusion to this is the password attribute. 

 

PRE_CHANGE_GLOBAL_USER_PWD 

A special case of MODIFY. This exit is triggered when the password attribute for the 
global user changes. If the password attribute is the only change, the other modify 
code is not triggered. If other attributes change, this code is triggered. The global 
user name, the password, and optionally the password clue attributes are the only 
information available to this program exit. 

 



eTExitType 

 

Chapter 8: Common Program Exit Reference  165  
 

POST_CHANGE_GLOBAL_USER_PWD 

A special case of MODIFY. This exit is triggered when the password attribute for the 
global user changes. If the password attribute is the only change, the other modify 
code is not triggered. If other attributes change, this code is triggered. The global 
user name, the password, and optionally the password clue attributes are the only 
information available to this program exit. 

 

PRE_ENABLE_GLOBAL_USER 

A special case of MODIFY. This exit is triggered when the enable attribute for the 
global user changes. If the enable attribute is the only change, the other modify 
code is not triggered. If other attributes change, this code is triggered. The global 
user name is the only attribute available to this exit. 

 

POST_ENABLE_GLOBAL_USER 

A special case of MODIFY. This exit is triggered when the enable attribute for the 
global user changes. If the enable attribute is the only change, the other modify 
code is not triggered. If other attributes change, this code is triggered. The global 
user name is the only attribute available to this exit. 

 

PRE_DISABLE_GLOBAL_USER 

A special case of MODIFY. This exit is triggered when the disable attribute for the 
global user changes. If the disable attribute is the only change, the other modify 
code is not triggered. If other attributes change, this code is triggered. The global 
user name is the only attribute available to this exit. 

 

POST_DISABLE_GLOBAL_USER 

A special case of MODIFY. This exit is triggered when the disable attribute for the 
global user changes. If the disable attribute is the only change, the other modify 
code is not triggered. If other attributes change, this code is triggered. The global 
user name is the only attribute available to this exit. 

 

PRE_DELETE_GLOBAL_USER 

Triggered prior to a DELETE request. The global user name is the only attribute 
available to this exit. 

 

POST_DELETE_GLOBAL_USER 

Triggered after a DELETE request. The global user name is the only attribute 
available to this exit. 

 

PRE_ASSOCIATE_ROLE 

Refers to the changing of provisioning role membership in the Provisioning Server, 
regardless of what happens at the account level. The global user name and the 
provisioning role name is the only information available to this program exit.  

 



eTExitType 
 

166  Provisioning Reference Guide 
 

POST_ASSOCIATE_ROLE 

Refers to the changing of provisioning role membership in  the Provisioning Server, 
regardless of what happens at the account level. The global user name and the 
provisioning role name is the only information available to this program exit.  

 

PRE_DISASSOCIATE_ROLE 

Refers to the changing of provisioning role membership in the Provisioning Server, 
regardless of what happens at the account level. The global user name and the 
provisioning role name are the only information available to this program exit.  

Note: This value is called only for incremental provisioning role changes. If you use 
a replace-mode modification of global user's provisioning roles to replace one set of 
provisioning roles with another, this value calls the associate-role exits only. The 
exit would not read the database to find out which provisioning roles were 
previously included to see which were being set that were previously set and which 
were being removed. 

 

POST_DISASSOCIATE_ROLE 

Refers to the changing of provisioning role membership in the Provisioning Server, 
regardless of what happens at the account level. The global user name and the 
provisioning role name are the only information that is available to this program 
exit. 

Note: This value is called only for incremental provisioning role changes. If one uses 
a replace-mode modification of global user's provisioning roles to replace one set of 
provisioning roles with another, this value calls the associate-role exits only. The 
exit would not read the database to find out which provisioning roles were 
previously included to see which were being set that were previously set and which 
were being removed. 

 

PRE_ADD_GLOBAL_GROUP  

The global group information that is being passed to the add request is also passed 
to this program. 

 

POST_ADD_GLOBAL_GROUP 

The global group information that is being passed to the add request is also passed 
to this program. 

 

PRE_MODIFY_GLOBAL_GROUP  

The global group information that is being passed to the modify request is also 
passed to this program. 

 

POST_MODIFY_GLOBAL_GROUP  

The global group information that is being passed to the modify request is also 
passed to this program. 

 



eTExitType 

 

Chapter 8: Common Program Exit Reference  167  
 

PRE_DELETE_GLOBAL_GROUP  

Triggered prior to a delete request. The global group name is the only attribute 
available to this exit. 

 

POST_DELETE_GLOBAL_GROUP  

Triggered after a delete request. The global group name is the only attribute 
available to this exit. 

 

PRE_ADD_ROLE  

The provisioning role information that is being passed to the add request is also 
passed to this program. 

 

POST_ADD_ROLE  

The provisioning role information that is being passed to the add request is also 
passed to this program. 

 

PRE_MODIFY_ROLE  

The provisioning role information that is being passed to the modify request is also 
passed to this program. 

 

POST_MODIFY_ROLE  

The provisioning role information that is being passed to the modify request is also 
passed to this program. 

 

PRE_DELETE_ROLE  

Triggered prior to a delete request. The provisioning role name is the only attribute 
available to this exit. 

 

POST_DELETE_ROLE  

Triggered after a delete request. The provisioning role name is the only attribute 
available to this exit. 

 

CUSTOM_FUNCTION 

Triggered when a program exit is invoked though a policy rule expression such as 
%$funcname(%UN%,%AC%)%. 

 

Containment 

Containment refers to the allowed combination of objects and program reference type, 
and not to  X.500 containment.  

 



eTExitType 
 

168  Provisioning Reference Guide 
 

Common Configuration Object 

The Common Configuration Object is used to assign program exits for the global user, 
global user group, or provisioning role object classes. For example, if certain program 
exits should be called when global users are processed, the common configuration 
object should reference those exits. In addition, the common configuration object is 
needed to provide a way to call exits during the add operation. 

■ PRE_ADD_GLOBAL_USER 

■ POST_ADD_GLOBAL_USER 
 

■ PRE_MODIFY_GLOBAL_USER 

■ POST_MODIFY_GLOBAL_USER 
 

■ PRE_CHANGE_GLOBAL_USER_PWD 

■ POST_CHANGE_GLOBAL_USER_PWD 
 

■ PRE_ENABLE_GLOBAL_USER 

■ POST_ENABLE_GLOBAL_USER 
 

■ PRE_DISABLE_GLOBAL_USER 

■ POST_DISABLE_GLOBAL_USER 
 

■ PRE_DELETE_GLOBAL_USER 

■ POST_DELETE_GLOBAL_USER 
 

■ PRE_ADD_GLOBAL_GROUP 

■ POST_ADD_GLOBAL_GROUP 
 

■ PRE_MODIFY_GLOBAL_GROUP 

■ POST_MODIFY_GLOBAL_GROUP 
 

■ PRE_DELETE_GLOBAL_GROUP 

■ POST_DELETE_GLOBAL_GROUP 
 

■ PRE_ADD_ROLE 

■ POST_ADD_ROLE 
 

■ PRE_MODIFY_ROLE 

■ POST_MODIFY_ROLE 
 

■ PRE_DELETE_ROLE 

■ POST_DELETE_ROLE 
 



eTExitType 

 

Chapter 8: Common Program Exit Reference  169  
 

Provisioning Roles 

A role object can reference program exits to assign the exits that are invoked for various 
operations on global users associated with that provisioning role. If a provisioning role 
references a program exit, those exits are called in addition to the exits referenced by 
the Common Configuration Object. The exits defined on the common configuration 
object are invoked before exits defined on the provisioning role (hierarchy order). 

 

When adding a global user (PRE_ADD_GLOBAL_USER and POST_ADD_GLOBAL_USER 
exit types), program exits are invoked based on the initial set of provisioning roles being 
assigned to the user. 

 

When associating or disassociating a provisioning role with a global user 
(PRE_ASSOCIATE_ROLE, POST_ASSOCIATE_ROLE, PRE_DISASSOCIATE_ROLE and 
POST_DISASSOCIATE_ROLE exit types), the program exits referenced by the provisioning 
roles being associated or disassociated are invoked. 

 

When modifying an existing global user in other ways (using the exit types listed below), 
all provisioning roles to which the global user belongs are consulted to identify program 
exits to invoke. 

 

Other Exit Types 

The common configuration object handles add exits for a global user. 

■ PRE_ADD_GLOBAL_USER 

■ POST_ADD_GLOBAL_USER 

■ PRE_ASSOCIATE_ROLE 

■ POST_ASSOCIATE_ROLE 
 

■ PRE_DISASSOCIATE_ROLE 

■ POST_DISASSOCIATE_ROLE 
 

■ PRE_MODIFY_GLOBAL_USER 

■ POST_MODIFY_GLOBAL_USER 
 

■ PRE_CHANGE_GLOBAL_USER_PWD 

■ POST_CHANGE_GLOBAL_USER_PWD 
 

■ PRE_ENABLE_GLOBAL_USER 

■ POST_ENABLE_GLOBAL_USER 
 

■ PRE_DISABLE_GLOBAL_USER 

■ POST_DISABLE_GLOBAL_USER 

■ PRE_DELETE_GLOBAL_USER 

■ POST_DELETE_GLOBAL_USER 
 



eTExitType 
 

170  Provisioning Reference Guide 
 

Account Templates 

An account template object can reference program exits to affect the accounts 
associated with that template. 

If an account template references program exits, these exits are called in addition to the 
exits that are referenced by the endpoint to which the account belongs. The exits 
defined on the account template are invoked before the exits on the endpoint 
(hierarchy order). 

 

If an account is being created from one or more account templates 
(PRE_ADD_ACCOUNT and POST_ADD_ACCOUNT exit types), those template exits are 
called. 

 

When working with an existing account, whether the current set of assigned account 
templates is being adjusted or not, it is the initial set of assigned templates whose 
program exits are invoked. 

■ PRE_ADD_ACCOUNT 

■ POST_ADD_ACCOUNT 
 

■ PRE_MODIFY_ACCOUNT 

■ POST_MODIFY_ACCOUNT 
 

■ PRE_CHANGE_ACCOUNT_PASSWORD 

■ POST_CHANGE_ACCOUNT_PASSWORD 
 

■ PRE_ENABLE_ACCOUNT 

■ POST_ENABLE_ACCOUNT 
 

■ PRE_DISABLE_ACCOUNT 

■ POST_DISABLE_ACCOUNT 

■ PRE_DELETE_ACCOUNT 

■ POST_DELETE_ACCOUNT 
 



Custom Function Program Exits 

 

Chapter 8: Common Program Exit Reference  171  
 

Endpoints 

Endpoint objects are used to assign program exits to accounts. For example, if certain 
program exits should be called when accounts are processed, the endpoint objects 
should reference those exits. 

In addition, endpoint objects are needed to provide a way to call exits during an add 
operation. 

■ PRE_ADD_ACCOUNT 

■ POST_ADD_ACCOUNT 

■ PRE_MODIFY_ACCOUNT 

■ POST_MODIFY_ACCOUNT 
 

■ PRE_CHANGE_ACCOUNT_PASSWORD 

■ POST_CHANGE_ACCOUNT_PASSWORD 
 

■ PRE_ENABLE_ACCOUNT 

■ POST_ENABLE_ACCOUNT 
 

■ PRE_DISABLE_ACCOUNT 

■ POST_DISABLE_ACCOUNT 

■ PRE_DELETE_ACCOUNT 

■ POST_DELETE_ACCOUNT 
 

Custom Function Program Exits 

A custom function program exit is invoked from an account template rule expression. 
Custom function program exits share the following characteristics: 

■ The exit type is always CUSTOM_FUNCTION. There are no PRE or POST variants. 

■ The exit must be a common program exit (DLL or SOAP). Native exits cannot be 
used to compute the custom function. 

 

■ The exit must be registered in the same domain as the account being created or 
updated from the policy. The reference to a custom function program exit 
(%$funcname(…)%) contains the name of the exit (funcname), but there is no rule 
string syntax to let you specify the domain of the program exit so it is always 
presumed to be in the domain of the account. 

■ The input to the program exit includes zero or more single- or multi-valued 
parameters.  

 



Custom Function Program Exits 
 

172  Provisioning Reference Guide 
 

For example, if the global user for the account being created or updated has the 
following attribute settings: 

eTCustomField01:  { value1a, value1b }      (that is, two values assigned) 

eTCustomField02:  value2 

the %*$FuncName(%*UCU01%, %UCU02%)% rule expression is evaluated. 
 

The input XML passes all values of eTCustomField01 and the value of eTCustomField02 
as follows: 

<eTExitInvoke eTExitType=CUSTOM_FUNCTION> 

   <eTFunction> 

      <eTFuncParam1>value1a</eTFuncParam1> 

      <eTFuncParam1>value1b</eTFuncParam1> 

      <eTFuncParam2>value2</eTFuncParam2> 

   </eTFunction> 

   <Authentication> 

      <Type>GLOBAL_USER</Type> 

      <User>{the DN of the global user}</User> 

      <Password>{the password of the global user}</Password} 

   </Authentication> 

</eTExitInvoke> 
 

The output from the program exit can indicate an error (as with any other program exit) 
so that the creation or update of the account is not attempted, or can contain a single- 
or multi-valued output parameter. For example, a program exit could return the 
following XML block to indicate two values (ReturnValue1 and ReturnValue2) to set for 
the corresponding account attribute: 

<eTExitReturn> 

   <eTExitReturnCategory>SUCCESS</eTExitReturnCategory> 

   <eTExitReturnNative>0</eTExitReturnNative> 

   <eTExitContinue>TRUE</eTExitContinue> 

   <eTExitCustom> 

      <eTFuncReturn>ReturnValue1</eTFuncReturn> 

      <eTFuncReturn>ReturnValue2</eTFuncReturn> 

   </eTExitCustom> 

</eTExitReturn> 
 

The function rule expression controls the number of values to set as follows:  

■ If the $FuncName in the rule expression is preceded by * (asterisk) as in the 
example above, this will set 0 or more values of the attribute depending on what is 
included in the output XML document. 

■ If the function rule expression does not have the * preceding $FuncName, only the 
first value returned is relevant. Additional values are ignored. 

 
 



Custom Function Program Exits 

 

Chapter 8: Common Program Exit Reference  173  
 

Obscured Returned Values 

The program exit returns information inside the eTFuncReturn XML block, for example: 

<eTFuncReturn>Returned value from program exit</eTFuncReturn> 

If logging is enabled, then this XML block can be read.  
 

However, if the program exit returns information like a password, then you may not 
want the information to be logged. In this case, you can flag the returned value as 
obscured to prevent it from being logged. 

 

The format of the obscured value is: 

<eTFuncReturn obscured="yes">MyPassword</eTFuncReturn> 
 

This tells the Provisioning Server to replace the value with the string ** NOT SHOWN ** 
as it does for attribute names that are recognized as storing sensitive attributes. For 
example:  

<eTFuncReturn obscured="yes">** NOT SHOWN **</eTFuncReturn> 

Note: The obscured attribute is case-sensitive. For example, the result will not be 
replaced correctly if the attribute is set to "YES". 

 



Sample Flow/Execution Diagram 
 

174  Provisioning Reference Guide 
 

Sample Flow/Execution Diagram 

The following illustration provides a sample flowchart of the execution logic of a 
program exit. 

 
 

Code Examples 

Use the code examples located in the following directory as a guide when coding your 
Common Program Exits: 

Samples\ProgramExits 

Samples\ProgramExitSOAP 

 



 

Chapter 9: Program Exits In Connectors  175  
 

Chapter 9: Program Exits In Connectors 
 

This chapter covers information about supporting program exits you have created in the 
eTrust Admin SDK for the connectors you have created. 

This section contains the following topics: 

Execution Flow (Logic) (see page 175) 
Support for Common Exits (see page 176) 
Support for Native Exits (see page 177) 
Exit Types (see page 181) 
Code Examples for Program Exits in Options (see page 181) 

 

Execution Flow (Logic) 

Program exits are referred to as either pre-exits or post-exits, depending on the 
operation that the Provisioning Server performs. 

 

Pre-Exits 

The Provisioning Server framework invokes a pre-exit before executing a particular 
operation. For common exits, the Provisioning Server framework interprets the return 
XML buffer to determine whether to continue execution of the particular operation. For 
native exits, the agent plug-in must interpret the return XML buffer.  

If the agent plug-in returns a success status code (LDAP_SUCCESS), the Provisioning 
Server continues to perform the operation. If the agent plug-in returns an error code, 
the operation is aborted. 

 

Note: For native program exits, your custom connector agent plug-in must interpret the 
return XML buffer. Furthermore, your agent plug-in must return either success or failure 
to the Provisioning Server framework. Success lets the operation continue. Failure 
aborts the operation. 

If one pre-exit fails, the operation will be aborted even if other pre-exits let the 
operation continue. In addition, as soon as a pre-exit aborts the operation, other 
pre-exits (with the same or lower priority) will not be called. 

 



Support for Common Exits 
 

176  Provisioning Reference Guide 
 

Priority of Pre-Exits 

Pre-exits are called in order of hierarchy and priority. If two program exits are 
referenced with the same priority, the order in which they are called is undefined. 
Priority guarantees only that higher priority exits are called before lower priority exits. 
The highest priority is “1” and the larger the number, the lower its priority. 

More information: 

Program Exit Hierarchy and Order (see page 154) 
 

Operation 

Once the Provisioning Server framework has invoked all pre-exits associated with the 
operation and each pre-exit lets the operation continue, the Provisioning Server 
framework executes the operation. Execution of the operation may result in another 
request to your agent plug-in. 

Note: The agent plug-in receives multiple requests: one for the pre-exit, one for the 
operation, and one for the post-exit. 

 

Post-Exit 

Once the operation is completed successfully, the Provisioning Server framework 
invokes the post-exits referenced for that operation. Post-exits should be handled the 
same way as pre-exits. Your agent plug-in should not differentiate between a pre-exit 
and a post-exit, and you can use the exact same code to handle pre- and post-exits. 

 

Priority of Post-Exits 

Post-exits are called in order of hierarchy and priority. If two program exits are 
referenced with the same priority, the order in which the exits are called is not 
guaranteed. Priority only guarantees that higher priority exits are called before lower 
priority exits. The highest priority is “1” and the larger the number, the lower its priority. 

More information: 

Program Exit Hierarchy and Order (see page 154) 
 

Support for Common Exits 

Common exits are processed by the Provisioning Server framework. Thus, supporting 
common exits requires minimal changes. You only need to enhance your GUI plug-in. No 
agent plug-in change is needed. 

 



Support for Native Exits 

 

Chapter 9: Program Exits In Connectors  177  
 

Parser Table Enhancement 

The parser table files already define new attributes for exit reference. Option parser 
table files include these parser table files, so you do not need to make any changes to 
your parser table. 

 

GUI Plug-In Enhancement 

Provisioning Manager provides a standard property page for referencing program exits. 
To support common exits, you only need to add this property page to your account and 
endpoint property sheets. This enables your account and endpoint objects to reference 
program exits. 

The standard exit reference property page is managed by the CosExitRefPage class in 
the COS module. For example, to add the property page to your account and directory 
property sheets, add the following line to your property sheet code: 

propertyPages->AddTail(new CosExitRefPage(this)); 
 

Agent Plug-In Enhancement 

No agent plug-in change is needed to support common exits. 
 

Support for Native Exits 

Native exits are processed by the endpoint. Thus, to support native exits, the endpoint 
must enhance both its GUI plug-in and agent plug-in. 

 

Parser Table Enhancement 

The parser table files already define new attributes for exit reference. Parser table files 
include these parser table files, so you do not need to make any changes to your parser 
table. 

 

Since you are providing native program exits, you need to define your custom program 
exit object in the parser table. The exit object must have the following CLASS definition 
line: 

CLASS Exit.<exit class name>,eTExit.<exit class name>,etavlcor,secobjar 
 



Support for Native Exits 
 

178  Provisioning Reference Guide 
 

For example, the SDK defines the exit object class as follows: 

CLASS Exit.SDKExit,eTExit.eTSDKExit,etavlcor,secobjar 

For a complete example of how to define an exit object, see the SDK sdkparse.pty 
sample file, which is provided with the SDK. 

 

GUI Plug-In Enhancement 

Exit Reference 

The Provisioning Server GUI framework provides a standard property page for 
referencing program exits. To support common exits, you need to add the property 
page to your account and directory property sheets. This lets your account and endpoint 
objects reference program exits. 

 

The standard exit reference property page is managed by the CosExitRefPage class in 
the COS module. 

 

For example, to add CosExitRefPage to your account and directory property sheets, add 
the following line to your property sheet code: 

propertyPages->AddTail(new CosExitRefPage(this)); 
 

Exit Definition 

A property sheet must be provided to define a native program exit. This 
endpoint-specific exit definition property sheet is used to enter specific information that 
will be passed to the agent plug-in during exit invocation.  

Your endpoint must define an XML format for this data, which is stored as an XML buffer 
in the eTExitPayload attribute in the custom program exit object. When an exit is 
invoked, the Provisioning Server framework sends this data to the agent plug-in. The 
agent plug-in parses the eTExitPayload attribute to get the data it needs to invoke the 
program exit. 

 

Agent Plug-in Enhancement 

Program Exit Invocation Request 

The Provisioning Server framework sends all native program exit invocation requests to 
the endpoint. Even if the exit is referenced by an account object, the invocation request 
is sent to the code that manages the endpoint modify operation. Specifically, the 
directory DEmodify() function is called. 

 



Support for Native Exits 

 

Chapter 9: Program Exits In Connectors  179  
 

On a program exit invocation request, the Provisioning Server framework includes the 
eTExitPayload and eTExitInvoke attributes. 

 

eTExitPayload contains the data regarding the definition of the exit. The value of 
eTExitPayload is the XML buffer stored in the program exit object that was defined by 
the program exit definition property sheet that you added to your GUI plug-in. 

 

eTExitInvoke is an XML buffer. This data should be passed to the program exit, which 
needs to process it. The agent plug-in can process this information; however, often it 
does not need to do so. 

  

The agent plug-in must be enhanced for performing the following tasks to support the 
program exit: 

1. Determine whether an operation is an exit invocation request. 

2. Invoke the program exit. 

3. Interpret the result from the program exit. 

More information: 

Program Exit Input Argument (see page 155) 
 

Determine Exit Invocation Request 

Typically, the directory DEmodify() function processes requests to change values in the 
directory object. To support native program exits, you must enhance the directory 
DEmodify() function to also handle native exit invocation. 

 

For a program exit invocation request, the Provisioning Server framework sends the 
eTExitInvoke attribute as part of the modify operation. The presence of the eTExitInvoke 
attribute is an indication that the request is an exit invocation request and not a normal 
modify request, as shown in the following example: 

 

/* 

|| The special attribute UTFEXITINVOKE indicates a request to invoke a  

|| program exit. 

 */ 

if (pMods->find_mod(UTFEXITINVOKE)) { 

// Invoke the exit. 

} 

else { 

// Normal directory modify request. 

} 
 



Support for Native Exits 
 

180  Provisioning Reference Guide 
 

Invoke the Program Exits 

You must define how your custom connector agent plug-in invokes the program exit.  

The common exit has the following invocation methods: 

■ Through the DLL function call  

■ Through the SOAP method invocation  
 

Your agent plug-in will probably define some other form of program exit invocation. 
That data is passed to the agent plug-in in the eTExitPayload attribute, which is an XML 
buffer. 

 

The method of invoking program exits is to execute a command line utility. Thus the 
only information it needs is the utility name (including the path). You can define the SDK 
exit object as having a payload that only contains the full path to the utility. 

The sample SDK exit payload is the following: 

<eTSDKExit> 

     <Program>program to execute</Program> 

</eTSDKExit> 
 

Interpret the Result from the Program Exit 

Each program exit must return an XML buffer.  

The agent plug-in must interpret this return XML buffer and return an appropriate 
status code to the Provisioning Server framework. For pre-exits, returning a success 
status to the Provisioning Server framework lets the operation continue. Returning a 
failure status will abort the operation. 

 

Note: If the operation has multiple pre-exits, one pre-exit might return a success, which 
would let the operation continue; but another pre-exit could return failure, thus 
aborting the operation. If one pre-exit aborts the operation, it is aborted, even if other 
pre-exits let the operation continue. In addition, as soon as a pre-exit aborts the 
operation, other pre-exits with the same or lower priority will not be called. 

More information: 

Program Exit Return Value (see page 157) 
 



Exit Types 

 

Chapter 9: Program Exits In Connectors  181  
 

Exit Types 

The Provisioning Server framework only sends an exit invocation request to the agent 
plug-in if the exit type is one that can be handled by the agent plug-in. In general, your 
agent plug-in does not need to handle exit types. However, if your custom connector 
only permits certain program exit types, it must check the eTExitType tag attribute in 
the eTExitInvoke attribute. 

 

Exit Type Functionality 

Exit type is a value that determines the circumstances under which an exit is called. One 
of the  types of exits is entered for eTExitType (in the input XML buffer passed to the 
program exit). The first 12 exit types (values) can be common or native exits, that is, 
common code and namespace (connector) code can be triggered to process them. The 
remaining exit types, however, can be common exits only. It should be noted that not all 
program exit types are referenced from various object types. 

 

Notes: In all cases the name of the object being passed is sent. This is formatted in both 
DN and Common Name format.  

To have complete control over passwords (either at the global user or the account 
levels), you must provide exits both for create user/account and for change password 
user/account. In other words, for new global users (accounts), the change password exit 
is not called. For new global users (accounts), the password is passed in as part of the 
attribute for the create exit (for example, PRE_CREATE_GLOBAL_USER). 

More information: 

Valid Values for Exit Types (see page 163) 
 

Code Examples for Program Exits in Options 

See the SDK sample connector. The exit handling code is in the SDKDirectory.cpp file.  

The method SDKDirectory::DEmodify() determines whether a request is an exit 
invocation request,and if it is, calls the SDKDirectory::InvokeExit() method. 
 





 

Chapter 10: Provisioning Maintenance  183  
 

Chapter 10: Provisioning Maintenance 
 

This section contains the following topics: 

Back Up and Restore CA Directory (see page 183) 
Shut Down the Provisioning Server service (see page 183) 
View and Maintain Log Files (see page 184) 
Provisioning Directory Monitoring (see page 190) 

 

Back Up and Restore CA Directory 

To ensure that data is coherent across your entire organization, regular backups should 
be done. Regular backups of CA Directory prevent data loss and damage caused by 
network disasters and failures. CA Directory provides an online backup utility (and the 
dxdumpdb and dxloaddb utilities for offline backup) to back up and restore CA 
Directory.  

Note: For information about these utilities, see the CA Directory Administrator Guide.  

 
 

Shut Down the Provisioning Server service 

If the Provisioning Server service does not shut down, you can manually shut it down as 
follows: 

1. Open a command prompt and enter the following command: 

net stop im_ps 

2. If Services indicates that the Provisioning Server service is still in the stopping state, 
issue the following commands: 

net start im_ps 

net stop im_ps 

A similar procedure can be used to manually shut down the Provisioning Connector 
Server service, whose service name is im-ccs. 

If the service still does not stop, open the Task Manager, select im_ps.exe (or 
im_ccs.exe) on the Processes tab, and click End Process. 

 



View and Maintain Log Files 
 

184  Provisioning Reference Guide 
 

View and Maintain Log Files 

The provisioning components (Provisioning Server, Connector Servers, Provisioning 
Manager) can be configured to log information about all transactions that they process. 
You can use this information to predict and identify the sources of system or security 
problems. For example, if the warning messages in log files show that some accounts on 
an endpoint could not be explored, you can use the logged information to investigate 
those accounts and determine why they were not explored. Use a text editor to view 
and edit provisioning log files. 

 

Server Event logs track messages generated by the Provisioning Server. You can log 
messages to several optional destinations, including CA Audit. 

 

The provisioning components provide other types of logging to diagnose specific 
problems. Other than the provisioning server trace log, these logs are usually not 
enabled unless you need them to trace a particular event. They include provisioning 
server logs, slapd logs, and C++ Connector Server logs. You can also diagnose problems 
that occur when communicating with the provisioning server by enabling Provisioning 
Manager logging.  

 

Messages from all logs are written to text files in the PSHOME\Logs directory and are 
named accordingly: 

■ Provisioning Server Event Log — etayyyymmdd.log 

■ Provisioning Server Trace Log — etatransyyyymmdd-hhmm.log 

■ Provisioning Server IMS Notification Log — etanotifyyyyymmdd-hhmm.log 

■ Provisioning Server SLAPD Log — im_ps.log 

■ Provisioning Manager Log — etaclientyyyymmdd.log 

■ C++ Connector Server Endpoint Log — sayyyymmdd.log 

■ C++ Connector Server Trace Log — satransyyyymmdd-hhmm.log 

■ C++ Connector Server SLAPD Log — im_ccs.log 
 

Server Event Logging 

Server Event logs record important events generated from the Provisioning Server. 
These events consist of all severity levels (success, information, warning, fatal, and 
error). The logs record every client-initiated operation and its success or failure, 
including generated sub-operations.  

In the System Task frame of the Provisioning Manager, under Global Properties, use the 
Logging tab to configure Server Event logging. Server Event logs typically only need to be 
configured once.  

 



View and Maintain Log Files 

 

Chapter 10: Provisioning Maintenance  185  
 

In some cases, you can turn logging on or off, or you can configure the severity levels of 
the messages logged. Thus, this Server Event logging can serve to audit the activities 
that are taking place within the Provisioning Server. However, the preferred auditing of 
provisioning activity is to enable the IMS Notifications features. The IMS Notifications 
feature sends detailed audit records to the IMS server for inclusion in the full audit 
record of Identity Manager activity. The notification records sent to the IMS can also 
trigger events for additional Identity Manager Server processing. 

 

Endpoint Logging 

In the Endpoint Task frame, you can configure endpoint-specific logging. Endpoint logs 
track messages that a connector generates when it processes requests for objects 
residing in that endpoint. Each endpoint can be configured separately so you can turn 
logging on or off for just the endpoints where you need to learn additional information 
to diagnose problems. 

You can also specify the severity (success, information, warning, fatal, and error) of the 
messages that get logged. 

 

To turn logging on or off and to set the logging destinations and the severity levels of 
the messages logged for each directory, use the Logging tab of the endpoint's property 
sheet in the Provisioning Manager. For detailed instructions, see Setting Endpoint 
Logging in the Provisioning Manager help. 

 

Endpoint logging is sent to a log file for the connector server in which the connector for 
the endpoint runs. For C++ connectors, the default log file name is 
PSHOME\Logs\saYYYYMMDD.log. The C++ connector server also adds some additional 
messages to this log. You control the log file name in the im_ccs.conf using the 
BaseLogFileName parameter. And you control which severities of these other messages 
are logged in the same conf file using the LogSeverities parameter. 

Endpoint logging from connectors which run directly within the provisioning server (for 
example, the CA ACF2 connector) log to the provisioning server’s event log which has 
the default name of PSHOME\Logs\etaYYYYMMDD.log. 

 

Diagnostic Logging 

To diagnose specific problems, you can enable the provisioning server trace log, slapd 
logs, or C++ Connector Server logs. These are typically not enabled unless you need 
them to trace a specific type of event. Provisioning Manager logging also is used for 
diagnosing problems in the Provisioning Manager or client utilities.  

 



View and Maintain Log Files 
 

186  Provisioning Reference Guide 
 

Provisioning Server Trace Log 

Enable this logging component to generate a special transaction log file that records the 
details of every transaction processed by the Provisioning Server. You can choose from 
several logging levels to match the level of logging detail you prefer using the domain 
configuration parameter Transaction Log/Level.  

 

The Provisioning Server trace log writes messages to 
PSHOME\Logs\etaTransyyyymmdd-hhmm.log. To change the base part of the file name 
(the part before the date) or to relocate this log file to another drive, modify the domain 
configuration parameter Transaction Log/File name. For more information about the 
etaTransyyyymmdd.log file, see the Provisioning Manager help. 

Note: Unlike most logging which is turned off by default, Provisioning Server logging is 
fully enabled as the component is installed. If you choose not to run with maximum 
trace logging of the provisioning server, you need to change the domain configuration 
parameters that control this logging. These parameter are located in the “Transaction 
Log” parameter folder in the Provisioning Manager on the System task under Domain 
Configuration. 

 

Provisioning Server IMS Notification Log 

The Provisioning Server is typically configured to send notifications (global user and 
other object change records) to the Identity Manager Server for integration with the 
IMS event system and audit data base. A notification thread running within the 
Provisioning Server reads notification records from the local notify DB and transmits 
them to the IMS. This activity is captured in the IMS Notification log, whose name is 
PSHOME\Logs\etanotifyyyyymmdd-hhmm.log. 

 

You configure the severity of log messages included in this log on the Identity Manager 
Setup screen in the System Task of Provisioning Manager. 

The format of this log is similar to the Provisioning Server and Connector Server trace 
logs. 

 



View and Maintain Log Files 

 

Chapter 10: Provisioning Maintenance  187  
 

SLAPD and C++ Connector Server Logs 

On Windows, you can enable SLAPD logging for advanced debugging tasks such as LDAP 
protocol packet handling and search-filter processing. You can set the log level in the 
Windows registry by assigning a value to the DebugLevel key. There are two registry 
keys, each controlling the logging for one of the services:  

HKEY_LOCAL_MACHINE\SOFTWARE\ComputerAssociates\slapd\im_ps\CurrentVersio
n\DebugLevel 

The im_ps registry key controls logging for im_ps.exe, run by the Provisioning 
Server service. 

HKEY_LOCAL_MACHINE\SOFTWARE\ComputerAssociates\slapd\im_ccs\CurrentVersi
on\DebugLevel 

The im_ccs registry key controls logging for im_ccs.exe, run by the Connector Server 
service. 

 

Important! The preferred method for enabling SLAPD logging is by setting the loglevel 
parameter in im_ps.conf or im_ccs.conf, for both Windows and Solaris.  Each file 
contains configuration instructions. 

 

The DebugLevel registry key or loglevel configuration file parameter specifies the 
amount of information the server writes to its log file, which is one of the following, 
depending upon your type of slapd service: 

■ PSHOME\Logs\im_ps.log 

■ PSHOME\Logs\im_ccs.log 
 

Note: A "TLS: can't accept" error message may appear in the im_ps.log file when 
running in FIPS mode due to a low-level initialization problem that clears up after the 
first connection from a client. Since clients retry connections, you can ignore this 
message. 

You can select a debug level to match the type of debugging you want to perform. The 
debug levels are listed in the following table: 

 

Value Debug Information 

1 Trace function calls 

2 Debug packet handling 

4 Heavy trace debugging 

8 Connection management 

16 Print out packets sent and received 

32 Search filter processing 



View and Maintain Log Files 
 

188  Provisioning Reference Guide 
 

Value Debug Information 

64 Configuration file processing 

128 Access control list processing 

256 Stats log connections/operations/results 

512 Stats log entries sent 

1024 Print communication with shell back-ends 

2048 Entry parsing 

65535 All tracing 
 

C++ Connector Server Trace Logging 

C++ Connector Server Trace Logs record the activity of the C++ Connector Server, which 
is a module used to help manage many endpoint types. This log performs the following 
functions: 

■ Logs trace and debug messages for the C++ Connector Server. 

■ Monitors all statuses returned by its connectors. For example, if a connector 
returns fatal LDAP errors, the C++ Connector Server logs these errors with severity 
LOG_FATAL. 

To set the log file name and logging levels in im_ccs.conf set the SATransLog and 
SATransLogLevel parameters. The supported logging levels are 0 (for off) and 1 (for on). 
The default is 0. These parameters must exist in the file after the database superagent 
line. 

 

Provisioning Manager Logging 

To diagnose problems communicating with the server, you can set logging to record 
events that transpire between the Provisioning Manager and the Provisioning Server to 
which it is connected. Use the Logging tab under File, Preferences to trace all requests 
sent to any server from the Provisioning Manager.  

This logging is actually logging within the C/C++ client library used by the Provisioning 
Manager and some other clients (batch utility, password manager, csfconfig, bindeta, 
pingeta). Once logging is enabled and configured using Provisioning Manager, those log 
settings apply for these other clients as well. Each client logs its command name as it 
logs messages so you can identify which log messages are specific to which client. 

 



View and Maintain Log Files 

 

Chapter 10: Provisioning Maintenance  189  
 

However, for this to work the client being run must reside in same file system folder as 
the Provisioning Manager’s etadmin.exe program. When this is not the case (such as 
when running on Solaris where there is no Provisioning Manager install, or even on 
Windows when you run utilities from the Provisioning Server’s installation), the client 
library consults registry settings specific to the Provisioning Server instead of specific to 
the Provisioning Manager. Set these other registry settings by running these eta-env 
commands using the eta-env program included in the Provisioning Server installation: 

 

eta-env 

    action=set 

    name=Manager/LogMaster 

    type=int 

    value=1 

 

eta-env 

    action=set 

    name=Manager/LogDestinations 

    type=int 

    value=16 

 

eta-env 

    action=set 

    name=Manager/LogSevFile 

    type=int 

    value=31 
 

These have the effect of configuring the C/C++ client library for the provisioning server’s 
installation, setting the destination to “text file” and logging all message severities. 

Finally, the csfconfig command has a “debug=yes” command-line parameter you can 
specify to turn this logging on for one command invocation overriding any registry 
settings configured with Provisioning Manager or eta-env. 

 

Use AnalyzeLog 

The command line utility, AnalyzeLog, takes as input a Provisioning Server trace log 
(etatransyyyymmdd-hhmm.log) and produces different views of the information 
depending on what options you set. You can use this information to diagnose functional 
or performance problems reported by users. 

Note: For more details on this utility, see the Provisioning Manager online help. 
 



Provisioning Directory Monitoring 
 

190  Provisioning Reference Guide 
 

Log Files for High Availability 

To ensure proper operation of your high-availability configuration, you should monitor 
the following log files: 

■ Alarm 

■ Warn 

■ Stats 

■ Diag 

■ Summary 

■ Trace 

All logs can be flushed through the DXserver console. Only the SUMMARY and TRACE 
logs can be closed from the console. 

 

Provisioning Directory Monitoring 

Monitor Thresholds 

Monitoring is one of the most significant activities as part of the system availability and 
security. Monitoring is needed to determine the source of performance problems, fault 
detection, and to take corrective action. 

Important! Regular monitoring of the multiwrite queue is highly recommended. For 
more information on using multiwrite, see the information on replication in CA Directory 
Administrator Guide. 

 

CA Directory can provide SNMP counters to an SNMP-aware Enterprise Management 
Application. CA Directory can also provide SNMP traps under the following conditions: 

■ Authentication Failure  

■ Alarms  

■ Directory Updates  

You can also use the CA Directory Statistics logs to gauge application load over time. 
This can be invaluable in providing data to both measure and show the growth of the 
new service. 

 



Provisioning Directory Monitoring 

 

Chapter 10: Provisioning Maintenance  191  
 

Observe Router Traffic 

CA Directory includes the DXconsole utilility, which you use to monitor the network 
traffic going through an CA Directory router.  

The router knowledge files, such as imps_router.dxc, define the console port for a 
router. You can adjust the console port number to satisfy your enterprise needs. To 
monitor traffic sent through a router, start up DXconsole and connect it to the localhost 
with the port number defined in the router knowledge file. 

 

Note: Because the Provisioning Server uses LDAP for communication between various 
components, you can set the trace level to ldap. For more information, see the CA 
Directory Administrator Guide. 

 

Enable SSL Encryption 

CA Directory includes a dxcertgen.exe utility, which you can use to generate certificates 
and personality files. Using this utility is the recommended method for enabling 
encryption for high availability solutions.  

For more information, see the CA Directory Administrator Guide. 
 





 

Index  193  
 

Index 
 

A 

Account Containers • 121 
Account Templates • 170 
Add a New SPML Service • 80 
Add Request • 108 
Admin Profile Privilege Cache • 23 
Admin Profiles • 13 
Administrator Authentication • 12 
Administrator Authorization • 13 
Administrator Login • 12 
Advanced Configuration Options • 15 
Advanced Configuration Options Overview • 15 
Agent Plug-in Enhancement • 178 
Agent Plug-In Enhancement • 177 
Authentication Parameters • 20 
Authentication/Disable Maintenance User • 20 
Authorization Parameters • 21 
Authorization/Check Owner Access on Indirect 

Privileges • 21 

B 

Back Up and Restore CA Directory • 183 
Basic Structure of Program Exits • 150 
Batch Request • 108 
Benefits of Using SPML • 71 

C 

C++ Connector Server on Solaris • 146 
C++ Connector Server Trace Logging • 188 
CA Technologies Product References • 3 
Cache Parameters • 21 
Cancel Request • 110 
Class 'classname' is not a valid class name • 139 
CMDRA Command Options • 85 
CMDRA Commands • 85 
CMDRA Examples • 87 
Code Examples • 174 
Code Examples for Program Exits in Options • 181 
Command Line Examples • 142 
Command Line Requesting Authority (CMDRA) • 74 
Common Configuration Object • 168 
Common Error Messages • 138 
Common Exits DLL Interface • 160 
Common Exits SOAP Interface • 161 

Common Program Exit Reference • 153 
Common Program Exit Structure • 155 
Compatibility Parameters • 27 
Complex Attributes • 123 
Configuration Setup Parameters • 29 
Configure Retry for a Request • 104 
Configure SPML Client Computer to Support SSL 

Security • 84 
Configure SSL Support for Tomcat Servers • 82 
Connections Parameters • 29 
Connections/CS Pool Maximum Size • 30 
Connections/CS Pool Minimum Size • 30 
Connections/DB Pool Maximum Size • 30 
Connections/DB Pool Minimum Size • 30 
Connections/Expiration Time • 31 
Connections/Other Pool Maximum Size • 31 
Connections/Other Pool Minimum Size • 31 
Connections/Refresh Time • 31 
Connector Server Cache • 27 
Contact CA Technologies • 3 
Containment • 167 
Could not find keyword xxxxx for class classname • 

139 
Create an SPML Template Request • 94 
Custom Function Program Exits • 171 

D 

Data Transformations • 96 
Default Admin Profiles • 14 
Define Common Exits in the Provisioning Manager • 

150 
Delete an Existing Service • 81 
Delete Request • 110 
Determine Exit Invocation Request • 179 
Diagnostic Logging • 185 
Domain Cache • 23 
Domain Configuration • 17 
DOS Output from etautil • 140 
Download the SPML Manager • 93 

E 

Enable Operation Details • 28 
Enable SSL Encryption • 191 
End of file reached while expecting an operator • 

138 



 
 

194  Provisioning Reference Guide 
 

Endpoint Logging • 185 
Endpoint Parameters • 32 
Endpoint/Check Account Passwords • 33 
Endpoint/Check Empty Account Passwords • 34 
Endpoint/Use Account Template Status • 34 
Endpoint/Validate Endpoint Credentials • 35 
Endpoints • 171 
Escaping Special Characters in Object Identifiers • 

127 
Escaping Special Characters in Search Filters • 127 
etautil Batch Utility • 129 
etautil Control Statements • 131 
etautil Syntax • 130 
eTExitType • 162 
Example 

Add a Multivalued Complex Attribute • 124 
Add a Single-Valued Complex Attribute • 124 
Create an Account Container • 122 
Create an Account within a Sub-Container • 122 
Modify a Global User and Propagate Changes to 

Associated Accounts • 126 
Modify Attributes in Global Settings • 121 
Modify Complex Attribute and Propagate 

Changes to Accounts • 126 
Search for Attributes Defined in Global Settings • 

120 
Example Data Transformation • 96 
Example of a Batch Request • 109 
Example of a Cancel Request • 110 
Example of a Delete Request • 111 
Example of a Modify Request • 115 
Example of a Modify/Propagate Request • 116 
Example of a Schema Request • 117 
Example of a Search Request • 118 
Example of a Status Request • 119 
Example of an Add Request • 108 
Example of an Extended Request • 111 
Execution Flow (Logic) • 175 
Exit Definition • 178 
Exit Reference • 178 
Exit Type Functionality • 181 
Exit Types • 181 
Explore and Correlate Parameters • 35 
Explore and Correlate/Correlation Attribute • 36 
Explore and Correlate/Correlation Domain • 39 
Explore and Correlate/Create Users Default 

Attributes • 39 
Explore and Correlate/Create Users Domain • 40 

Explore and Correlate/Create Users Verify Not 
Correlated • 40 

Explore and Correlate/Explore Compare in Memory 
• 42 

Explore and Correlate/Map User ID to Lowercase • 
41 

Extended Request • 111 
Extended Request Types • 112 

F 

Fields in a Delete Request • 110 
Fields in a Modify Request • 115 
Fields in a Search Request • 118 
Fields in an Add Request • 108 
Fields in an Extended Request • 111 
Flow of the SPML Feed Command • 92 

G 

Global Properties • 16 
Global Settings • 119 
Global User Group Privilege Cache • 24 
Global User Privilege Cache • 24 
GUI Plug-In Enhancement • 177, 178 

H 

How the SPML Service Works • 75 

I 

Identity Manager Server Parameters • 43 
Identity Manager Server/Enable Corporate User 

Access • 43 
Identity Manager Server/Enable Notification • 43 
Identity Manager Server/Notify Batch Size • 44 
Identity Manager Server/Notify Retry Time • 44 
Identity Manager Server/Notify Timeout • 44 
Identity Manager Server/Use External Password 

Policies • 45 
Input XML Buffer Authentication Type • 156 
Install SPML • 77 
Interpret the Result from the Program Exit • 180 
Invoke the Program Exits • 180 

L 

Libraries and Executables • 142 
List Templating Variables • 95 
Log Files for High Availability • 190 
Log On to the SPML Configuration Application • 79 



 

 

Index  195  
 

Log user-friendly Attribute and Object Class Names • 
69 

M 

Modify an Existing Service • 80 
Modify Request • 114 
Monitor Thresholds • 190 
Multivalued Attributes • 136 

N 

No UNIX GUI Clients or Utilities • 141 
Notification Config Cache • 25 

O 

Object 'XXXX' operation failed 
DB operation failed 

Target DN not found. • 138 
No server plug-in found for operation • 138 

Obscured Returned Values • 173 
Observe Router Traffic • 191 
Obtain Operation Details • 139 
Operation • 176 
Operation Cache • 26 
Operation Details Parameters • 46 
Operation Details/Maximum Operation Detail • 46 
Operation Details/Operation Details Expiration Time 

• 47 
Operation Details/Operations Folder • 47 
Ordering of Program Exit Invocations • 148 

P 

Parser Table Enhancement • 177 
Parser Tables • 144 
Password Parameters • 50 
Password Profile Cache • 26 
Password Synchronization Parameters • 48 
Password Synchronization/Agent Response 

Threshold • 49 
Password Synchronization/Update Only Global User 

• 50 
Passwords on Command Lines • 145 
Passwords/Enforce Synchronized Account Passwords 

• 51 
Passwords/Pre-expire Passwords • 51 
Passwords/Store User Passwords • 53 
Post-Exit • 176 
Pre-Exits • 175 
Priority of Post-Exits • 176 

Priority of Pre-Exits • 176 
Processes Parameters • 53 
Processes/Catch Program Exit Exceptions • 54 
Processes/Child Operation Thread Pool Size • 54 
Processes/Parallel Propagation • 55 
Processor Parameters • 55 
Processor/Process Affinity Mask • 56 
Processor/Process Priority • 56 
Program Exit Architecture • 153 
Program Exit Definitions • 146 
Program Exit Hierarchy and Order • 154 
Program Exit Input Argument • 155 
Program Exit Invocation Request • 178 
Program Exit Return Value • 157 
Program Exits • 147 
Program Exits In Connectors • 175 
Program Exits Overview • 147 
Propagate Global User Changes • 115, 125 
Provisioning Directory Monitoring • 190 
Provisioning Directory Parameters • 20 
Provisioning Directory/Entry Count Attribute • 20 
Provisioning Maintenance • 183 
Provisioning Manager • 11 
Provisioning Manager Logging • 188 
Provisioning Roles • 169 
Provisioning Server • 11 
Provisioning Server IMS Notification Log • 186 
Provisioning Server Trace Log • 186 
Provisioning Servers on UNIX • 141 

R 

Registry Access • 143 
Relax Self Q&A Reads • 28 
Rename an Existing Service • 81 
Request Execution Types • 107 
Request Retries • 125 
Request Types • 108 
Requesting Authorities • 77 
Retry Architecture • 101 
Retry Configuration Files • 102 
Retrying SPML Requests • 100 

S 

Sample Flow/Execution Diagram • 174 
Sample SPML Requests • 107 
Scheduling Periodic Actions • 145 
Schema Request • 116 
Search Filters • 118 



 
 

196  Provisioning Reference Guide 
 

Search Parameters • 56 
Search Request • 117 
Search/Allow Partial Results • 57 
Search/Max Scope Filter Objects • 58 
Search/Search Size Limit • 58 
Server Event Logging • 184 
Server Event Logging Destinations • 145 
Servers Parameters • 60 
Shut Down the Provisioning Server service • 183 
SLAPD and C++ Connector Server Logs • 187 
SPML Architectural Diagram • 73 
SPML Architecture • 72 
SPML Configuration Application • 74 
SPML Feed • 88 
SPML Feed Command Options • 90 
SPML Integration • 76 
SPML Manager • 74 
SPML Overview • 71 
SPML Service • 71, 73 
SPML Service Configuration • 79 
SPML Support for FIPS 140-2 • 78 
SPML Templates • 76 
Statistics Parameters • 61 
Statistics/Enabled • 61 
Statistics/Node Stats from Connection • 62 
Status Request • 119 
Support for Common Exits • 176 
Support for Native Exits • 177 
Synchronization Parameters • 63 
Synchronization/Automatic Correlation • 63 
Synchronization/Remove Account Template Values 

from Accounts • 63 
Synchronization/Use Existing Accounts • 64 

T 

Tasks You Can Perform • 129 
Transaction Log Parameters • 66 
Transaction Log/Enable • 66 
Transaction Log/Enable/Configuration • 66 
Transaction Log/Enable/Connector Server 

Framework • 66 
Transaction Log/Enable/LDAP • 67 
Transaction Log/File Name • 67 
Transaction Log/Level • 68 

U 

Uninstall the SPML Service • 78 
UNIX Services for Provisioning • 144 

Unknown error nnn opening Common Object 
Repository • 138 

Use AnalyzeLog • 189 
Use DeletePending • 137 
User Interface for Provisioning • 11 
Using the SPML Manager's Templating Functionality 

• 93 
Using Velocity Templates • 95 

V 

Valid Values for eTExitType • 163 
View and Maintain Log Files • 184 

W 

When You Would Use the SPML Service • 72 
Working with Hung or Crashed Servers • 144 
WS Mapper • 76 

 


	CA Identity Manager Provisioning Reference Guide
	Contents
	1: Provisioning Manager
	User Interface for Provisioning
	Provisioning Server
	Administrator Authentication
	Administrator Login
	Administrator Authorization
	Admin Profiles
	Default Admin Profiles



	2: Advanced Configuration Options
	Advanced Configuration Options Overview
	Global Properties
	Domain Configuration
	Provisioning Directory Parameters
	Provisioning Directory/Entry Count Attribute

	Authentication Parameters
	Authentication/Disable Maintenance User

	Authorization Parameters
	Authorization/Check Owner Access on Indirect Privileges

	Cache Parameters
	Admin Profile Privilege Cache
	Domain Cache
	Global User Group Privilege Cache
	Global User Privilege Cache
	Notification Config Cache
	Operation Cache
	Password Profile Cache
	Connector Server Cache

	Compatibility Parameters
	Enable Operation Details
	Relax Self Q&A Reads

	Configuration Setup Parameters
	Connections Parameters
	Connections/CS Pool Maximum Size
	Connections/CS Pool Minimum Size
	Connections/DB Pool Maximum Size
	Connections/DB Pool Minimum Size
	Connections/Expiration Time
	Connections/Other Pool Maximum Size
	Connections/Other Pool Minimum Size
	Connections/Refresh Time

	Endpoint Parameters
	Endpoint/Check Account Passwords
	Endpoint/Check Empty Account Passwords
	Endpoint/Use Account Template Status
	Endpoint/Validate Endpoint Credentials

	Explore and Correlate Parameters
	Explore and Correlate/Correlation Attribute
	Explore and Correlate/Correlation Domain
	Explore and Correlate/Create Users Default Attributes
	Explore and Correlate/Create Users Domain
	Explore and Correlate/Create Users Verify Not Correlated
	Explore and Correlate/Map User ID to Lowercase
	Explore and Correlate/Explore Compare in Memory

	Identity Manager Server Parameters
	Identity Manager Server/Enable Corporate User Access
	Identity Manager Server/Enable Notification
	Identity Manager Server/Notify Batch Size
	Identity Manager Server/Notify Retry Time
	Identity Manager Server/Notify Timeout
	Identity Manager Server/Use External Password Policies

	Operation Details Parameters
	Operation Details/Maximum Operation Detail
	Operation Details/Operation Details Expiration Time
	Operation Details/Operations Folder

	Password Synchronization Parameters
	Password Synchronization/Agent Response Threshold
	Password Synchronization/Update Only Global User

	Password Parameters
	Passwords/Enforce Synchronized Account Passwords
	Passwords/Pre-expire Passwords
	Passwords/Store User Passwords

	Processes Parameters
	Processes/Catch Program Exit Exceptions
	Processes/Child Operation Thread Pool Size
	Processes/Parallel Propagation

	Processor Parameters
	Processor/Process Affinity Mask
	Processor/Process Priority

	Search Parameters
	Search/Allow Partial Results
	Search/Max Scope Filter Objects
	Search/Search Size Limit

	Servers Parameters
	Statistics Parameters
	Statistics/Enabled
	Statistics/Node Stats from Connection

	Synchronization Parameters
	Synchronization/Automatic Correlation
	Synchronization/Remove Account Template Values from Accounts
	Synchronization/Use Existing Accounts

	Transaction Log Parameters
	Transaction Log/Enable
	Transaction Log/Enable/Configuration
	Transaction Log/Enable/Connector Server Framework
	Transaction Log/Enable/LDAP
	Transaction Log/File Name
	Transaction Log/Level
	Log user-friendly Attribute and Object Class Names



	3: SPML Service
	SPML Overview
	Benefits of Using SPML
	When You Would Use the SPML Service
	SPML Architecture
	SPML Architectural Diagram
	SPML Service
	SPML Configuration Application
	Command Line Requesting Authority (CMDRA)
	SPML Manager
	How the SPML Service Works

	SPML Integration
	SPML Templates
	WS Mapper
	Requesting Authorities


	Install SPML
	SPML Support for FIPS 140-2
	Uninstall the SPML Service
	SPML Service Configuration
	Log On to the SPML Configuration Application
	Add a New SPML Service
	Modify an Existing Service
	Rename an Existing Service
	Delete an Existing Service
	Configure SSL Support for Tomcat Servers
	Configure SPML Client Computer to Support SSL Security
	CMDRA Commands
	CMDRA Command Options
	CMDRA Examples

	SPML Feed
	SPML Feed Command Options
	Property File Only

	Flow of the SPML Feed Command

	Using the SPML Manager's Templating Functionality
	Download the SPML Manager
	Create an SPML Template Request

	Using Velocity Templates
	List Templating Variables
	Data Transformations
	Example Data Transformation

	Retrying SPML Requests
	Retry Architecture
	Retry Configuration Files
	Interface
	Hivemodule-plugin-deploy.xml
	Access Credentials

	Configure Retry for a Request



	4: Sample SPML Requests
	Request Execution Types
	Request Types
	Add Request
	Fields in an Add Request
	Example of an Add Request

	Batch Request
	Example of a Batch Request

	Cancel Request
	Example of a Cancel Request

	Delete Request
	Fields in a Delete Request
	Example of a Delete Request

	Extended Request
	Fields in an Extended Request
	Example of an Extended Request
	Extended Request Types

	Modify Request
	Fields in a Modify Request
	Example of a Modify Request

	Propagate Global User Changes
	Example of a Modify/Propagate Request

	Schema Request
	Example of a Schema Request

	Search Request
	Search Filters
	Fields in a Search Request
	Example of a Search Request

	Status Request
	Example of a Status Request


	Global Settings
	Example: Search for Attributes Defined in Global Settings
	Example: Modify Attributes in Global Settings

	Account Containers
	Example: Create an Account Container
	Example: Create an Account within a Sub-Container

	Complex Attributes
	Example: Add a Single-Valued Complex Attribute
	Example: Add a Multivalued Complex Attribute

	Request Retries
	Example: N16 Account-Add Request Flagged for Retry

	Propagate Global User Changes
	Example: Modify a Global User and Propagate Changes to Associated Accounts
	Example: Modify Complex Attribute and Propagate Changes to Accounts

	Escaping Special Characters in Object Identifiers
	Escaping Special Characters in Search Filters
	Escaped Search Examples


	5: etautil Batch Utility
	Tasks You Can Perform
	etautil Syntax
	etautil Control Statements
	ADD
	COPY/COPYALL
	DELETE
	EXPLORE
	MASSCHANGE
	REPORT
	UPDATE

	Multivalued Attributes

	Use DeletePending
	Common Error Messages
	Unknown error nnn opening Common Object Repository
	End of file reached while expecting an operator
	Object 'XXXX' operation failed: DB operation failed: Target DN not found.
	Object 'XXXX' operation failed: No server plug-in found for operation
	Class 'classname' is not a valid class name
	Could not find keyword xxxxx for class classname

	Obtain Operation Details
	DOS Output from etautil

	6: Provisioning Servers on UNIX
	No UNIX GUI Clients or Utilities
	Command Line Examples
	Libraries and Executables
	Registry Access
	Parser Tables
	UNIX Services for Provisioning
	Working with Hung or Crashed Servers
	Scheduling Periodic Actions
	Passwords on Command Lines
	Server Event Logging Destinations
	Program Exit Definitions
	C++ Connector Server on Solaris

	7: Program Exits
	Program Exits Overview
	Ordering of Program Exit Invocations
	Basic Structure of Program Exits
	Define Common Exits in the Provisioning Manager

	8: Common Program Exit Reference
	Program Exit Architecture
	Program Exit Hierarchy and Order
	Common Program Exit Structure
	Program Exit Input Argument
	Input XML Buffer Authentication Type

	Program Exit Return Value
	Common Exits DLL Interface
	Common Exits SOAP Interface

	eTExitType
	Valid Values for eTExitType
	Containment
	Common Configuration Object
	Provisioning Roles
	Other Exit Types

	Account Templates
	Endpoints


	Custom Function Program Exits
	Obscured Returned Values

	Sample Flow/Execution Diagram
	Code Examples

	9: Program Exits In Connectors
	Execution Flow (Logic)
	Pre-Exits
	Priority of Pre-Exits

	Operation
	Post-Exit
	Priority of Post-Exits


	Support for Common Exits
	Parser Table Enhancement
	GUI Plug-In Enhancement
	Agent Plug-In Enhancement

	Support for Native Exits
	Parser Table Enhancement
	GUI Plug-In Enhancement
	Exit Reference
	Exit Definition

	Agent Plug-in Enhancement
	Program Exit Invocation Request
	Determine Exit Invocation Request
	Invoke the Program Exits
	Interpret the Result from the Program Exit


	Exit Types
	Exit Type Functionality

	Code Examples for Program Exits in Options

	10: Provisioning Maintenance
	Back Up and Restore CA Directory
	Shut Down the Provisioning Server service
	View and Maintain Log Files
	Server Event Logging
	Endpoint Logging

	Diagnostic Logging
	Provisioning Server Trace Log
	Provisioning Server IMS Notification Log
	SLAPD and C++ Connector Server Logs
	C++ Connector Server Trace Logging
	Provisioning Manager Logging
	Use AnalyzeLog

	Log Files for High Availability

	Provisioning Directory Monitoring
	Monitor Thresholds
	Observe Router Traffic
	Enable SSL Encryption


	Index


