

Creating Programs Guide
Version 14.02

This Documentation, which includes embedded help systems and electronically distributed materials (hereinafter referred to as
the “Documentation”), is for your informational purposes only and is subject to change or withdrawal by CA at any time.

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part, without
the prior written consent of CA. This Documentation is confidential and proprietary information of CA and may not be disclosed
by you or used for any purpose other than as may be permitted in (i) a separate agreement between you and CA governing
your use of the CA software to which the Documentation relates; or (ii) a separate confidentiality agreement between you and
CA.

Notwithstanding the foregoing, if you are a licensed user of the software product(s) addressed in the Documentation, you may
print or otherwise make available a reasonable number of copies of the Documentation for internal use by you and your
employees in connection with that software, provided that all CA copyright notices and legends are affixed to each reproduced
copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable
license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to
certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such
license agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2015 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

CA Technologies Product References

This document references the following CA products:

■ CA Datacom® CICS Services

■ CA Datacom®/DB

■ CA Datacom® SQL

■ CA Ideal™ for Datacom® (CA Ideal)

■ CA Ideal™ for DB2

■ CA Ideal™ for VSAM

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

■ Online and telephone contact information for technical assistance and customer
services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

To provide feedback about CA Technologies product documentation, complete our
short customer survey which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://ca.com/docs
http://ca.com/docs

Contents 5

Contents

Chapter 1: Defining a Program 11

Programming Capabilities .. 11

Components of a Program Definition Under CA Ideal .. 12

Accessing Program Definition Functions ... 12

Program Function Key Assignments .. 13

Creating a New Program Definition ... 14

Identifying the Program .. 14

Defining Program Resources ... 17

Defining Working Data .. 21

Defining Parameters Used as Input... 33

Defining the Environment for SQL Access ... 43

Entering the Procedure Definition .. 48

Displaying and Editing a Program... 49

Duplicating a Program to a New Name .. 49

Deleting a Program... 50

Printing a Program ... 50

Listing an Index of Defined Programs... 50

Displaying the Index .. 51

Printing the Index .. 51

Chapter 2: Reading and Writing Data 53

Introduction to the Database ... 53

Basic Database Structure .. 53

Using Dataviews to Access the Database .. 54

Using Multiple Dataviews for One Table ... 55

Additional Information .. 55

Accessing Data from a Table or File ... 55

Selecting and Processing Rows ... 56

Processing Rows with Implicit Iteration .. 56

Using $COUNT To Obtain Total of Accessed Rows.. 57

Selecting Rows .. 57

Sequencing the Set of Rows .. 60

Limiting the Number of Rows ... 62

Accessing Data from a Panel .. 68

Displaying Data from a Table or File .. 68

Using the Message Line... 69

6 Creating Programs Guide

Using an Output File .. 69

Using a Panel for Display ... 70

Displaying One Row at a Time ... 70

Displaying Multiple Rows at a Time .. 71

Updating a Table or File ... 71

Modifying Rows... 71

Deleting Rows ... 73

Adding Rows .. 75

Committing the Changes ... 77

Chapter 3: Subprograms 83

Calling a Subprogram ... 83

Passing Data to a Subprogram ... 84

Executing a Subprogram Asynchronously ... 85

Requirements for Subprograms ... 86

Parameter Matching for CA Ideal Subprograms .. 87

Dynamic Matching .. 87

Identical Matching .. 87

Linkage Conventions for CA Ideal Subprograms .. 88

Parameter Rules .. 88

Defining Non-Ideal Subprograms ... 89

Identical Parameter Matching .. 90

Linkage Conventions for Non-Ideal Subprograms .. 90

Parameter Rules .. 93

Passing Parameters to Non-Ideal Subprograms .. 94

Calling Non-Ideal Subprograms that Access CA Datacom/DB .. 95

Guidelines for Batch Programs ... 96

Guidelines for CICS Programs .. 96

Accessing Same Tables in CA Ideal and Non-Ideal Programs .. 97

AMODE/RMODE Considerations for Non-Ideal Subprograms ... 97

Guidelines for Batch and Online Non-Ideal Subprograms ... 97

Online Non-Ideal Subprograms ... 98

Calling a CICS Subprogram .. 99

CICS Subprogram ... 100

Batch Non-Ideal Subprograms .. 102

Calling COBOL in z/OS Batch .. 103

Calling COBOL in VSE Batch ... 104

Calling a PL/I Subprogram ... 105

Chapter 4: Performing Calculations 107

Introduction ... 107

Contents 7

Optimizing Arithmetic in CA Ideal .. 107

Chapter 5: Using Functions 111

Date Functions ... 111

Error Functions ... 111

Numeric Functions ... 111

Panel Functions .. 112

String Functions .. 112

System Functions ... 112

Chapter 6: Error Handling 113

Preventing Errors ... 113

Using $RC in Error Procedures ... 114

Handling Runtime Errors .. 114

Default Error Procedure .. 115

Coding an Error Procedure .. 115

Common Error Subroutines ... 118

Detecting the Severity of the Error Using $RC .. 119

Using $RC in Batch .. 119

Coding for Multiple Errors ... 120

Evaluating Specific Errors .. 120

Coding for Dataview Errors ... 121

Handling Numeric Errors ... 122

Executing the Error Procedure for User-Determined Errors ... 123

Using SQLCA for SQL ... 123

Locating the Error in the Code .. 124

Chapter 7: Processing Programs 125

Compiling a Program .. 125

Using the COMPILE Command .. 126

Executing a Program .. 134

Using the RUN Command.. 134

Altering the Runtime Environment ... 135

Directing the Outputs of a Run ... 138

Running a CA Ideal Application Online .. 139

Batch CA Ideal and Running a Batch Application .. 139

Terminating a RUN .. 140

How to Debug a Program ... 141

8 Creating Programs Guide

Chapter 8: Symbolic Debugger 143

Debug Concepts ... 143

Breakpoints .. 143

Commands .. 144

Debug Components... 146

Sample Debug Session .. 147

Setting Breakpoints .. 149

Specifying Breakpoints .. 150

Subprograms ... 150

Labels .. 151

Restrictions ... 151

Stopping After a Statement .. 152

Sample Session .. 153

Examining Data Values ... 156

Display ... 156

List ... 157

Echo ... 157

Changing Data Values ... 157

Sample Session .. 158

Attaching Commands to a Breakpoint ... 160

Attaching to a User-Defined Breakpoint ... 161

Attaching to ERROR or QUIT Breakpoint ... 161

Commands You Can Use ... 162

Sample Session .. 163

Processing Without Terminal Interaction ... 166

Controlling Breakpoints .. 169

Temporarily Bypassing Breakpoints .. 169

Bypassing All Breakpoints (QUIT DEBUG) ... 170

Deleting Breakpoints ... 170

Bypassing the Initial Breakpoint .. 170

Using Command Members ... 171

Specifying a Command Member ... 171

Editing a Command Member .. 172

Batch Considerations ... 172

Batch Sample 1 .. 173

Batch Sample 2 .. 175

Debug with DB2, VSAM, or SQL ... 176

Suppressing Terminal Interaction ... 177

Updateable Dataviews .. 177

Program Function Key Assignments ... 178

Contents 9

Appendix A: Database Dependent Facilities 181

Adaptable Facilities .. 181

Specific Facilities .. 181

Naming Conventions .. 182

Comparing Multiple Values .. 182

Comparing Masked Values ... 182

WHERE Clause .. 183

FOR Construct .. 184

Chapter 1: Defining a Program 11

Chapter 1: Defining a Program

This guide provides information about creating a CA Ideal program with CA Ideal.

Programming Capabilities

The Creating Programs Guide introduces you to the CA Ideal program definition facility,
integrating all aspects of creating a program in CA Ideal. It is organized according to
functionality, presenting explanations of both the fill-in screens and the Program
Definition Language (PDL) necessary to create the various parts of a program. You can
learn how to create a program in CA Ideal from this guide. Once you learn the basics,
you can use the Programming Reference Guide as a reference to the PDL programming
language.

This chapter describes the Program Definition Facility that defines and maintains CA
Ideal program definitions. This chapter includes the following topics:

■ Creating a new program and its components

■ Displaying and editing a program

■ Duplicating a program to new name

■ Deleting a program

■ Printing a program

■ Listing the programs that were already defined

Programs that CA Ideal uses can be either CA Ideal programs or programs written in the
COBOL, PL/I, or Assembler language. CA Ideal defines and maintains CA Ideal programs.
The CA Ideal programs are the ideal subprograms. The components of a CA Ideal
program definition are explained in the following sections.

COBOL, PL/I, and Assembler programs are written and maintained outside of CA Ideal.
You can use these non-Ideal programs only as subprograms of CA Ideal programs.
Non-Ideal subprograms must be made known to CA Ideal by defining the program
identification and parameter definition components in CA Ideal.

Programming Capabilities

12 Creating Programs Guide

Components of a Program Definition Under CA Ideal

A CA Ideal program definition uses the following components:

■ A program identification fill-in creates a program definition and provides descriptive
information about it.

■ A program resources fill-in specifies the dataviews to use, panels to transmit,
reports to generate, and any subprograms called or initiated by this program.

■ A working data definition fill-in that is used as a temporary “scratch pad” for local
data.

■ A parameter definition fill-in describes data passed to this program from a calling
program.

■ An environment definition fill-in specifies access plan (SQL precompile) options
required for programs that use SQL to access CA Datacom/DB.

■ A procedure definition fill-in enters PDL statements to express the logic,
computations, report production, panel processing, database retrieval, or database
maintenance procedures that make up the CA Ideal program. For information on
PDL statements, refer to the Programming Reference Guide.

A COBOL, PL/I, or Assembler program definition uses only two components-the program
identification and the parameter definition.

Accessing Program Definition Functions

The functions that CA Ideal provides define and maintain program definitions as
presented in the Program Maintenance menu. To access this menu, select option 1 from
the Main Menu.

 =>

 IDEAL: PROGRAM MAINTENANCE (001) TEST SYS: DOC MENU

 Enter desired option number ===> There are 7 options in this menu:

 1. EDIT/DISPLAY - Edit or display a program
 2. CREATE - Create a program
 3. PRINT - Print a program
 4. DELETE - Delete a program
 5. MARK STATUS - Mark program status to production or history
 6. DUPLICATE - Duplicate program to new name
 7. DISPLAY INDEX - Display index of program names in a system

The Command Reference Guide describes the syntax for the command equivalent to
each menu selection.

Programming Capabilities

Chapter 1: Defining a Program 13

When a fill-in is complete, press the Enter key or a function key to apply the modified
data. Pressing the Enter key applies the data, but leaves the current fill-in displayed. To
continue, enter the appropriate command or press the appropriate function key.
Pressing the PF2 (RETURN) key returns the session to the CA Ideal Main Menu without
applying the modified data (except in certain cases with RUN). Pressing the PA1 or PA2
key also ignores modified data. The PA1 key redisplays the panel with all fields blanked
out (RESHOW). The PA2 key displays current function key assignments.

For more information about the CA Ideal environment, see the Working in the
Environment Guide.

Program Function Key Assignments

The following functions are assigned to the PF keys in the Program Definition Facility.
Commands shown below are assignments consistent throughout all CA Ideal facilities.
The Command Reference Guide contains a complete description of all CA Ideal editing
commands.

HELP (PF1)

Displays a panel or series of panels that contains information explaining how to
complete the current function.

RETURN (PF2)

Returns from a help panel to the program component display or from the program
to the menu that selects the program.

PRINT SCREEN (PF3)

Generates a printout of the current screen contents.

PROCEDURE (PF4)

Positions to the program procedure.

WORK (PF5)

Positions to the program's working data fill-in.

PARAMETER (PF6)

Positions to the program's parameter data fill-in.

SCROLL BACKWARD (PF7)

Displays the previous frame in the current component.

SCROLL FORWARD (PF8)

Displays the next frame in the current component.

FIND (PF9)

Finds the next occurrence of an alphanumeric literal previously specified in a full
FIND command.

Creating a New Program Definition

14 Creating Programs Guide

SCROLL TOP (PF10)

Positions to the first line of the component.

SCROLL BOTTOM (PF11)

Positions to the bottom of the component.

INPUT (PF12)

Opens a window of null lines preceding the first line of the component or at the
current cursor position. Unused null lines in the window are deleted when you
press the Enter key after INPUT.

Creating a New Program Definition

To create a new program definition, enter the CREATE PROGRAM command and fill in
the required program definition panels to define the components of the program
definition. As soon as you enter a name for the program on the command line or on the
identification fill-in, an entity-occurrence is added to the dictionary for the new
program. You can define the remaining components later on an as-needed basis.

The CREATE PROGRAM command and identification fill-in also identify a subprogram to
CA Ideal.

The system's protection against editing CA Ideal production status programs does not
apply to non-Ideal programs since they are not maintained in CA Ideal.

The following section describes how to define each component, whether the program is
written in CA Ideal or in COBOL, PL/I, or Assembler.

Identifying the Program

The CREATE PROGRAM command initiates the creation process. After the CREATE
command is executed, the program identification fill-in presented, and a program name
entered, the new program definition becomes the current definition.

Creating a New Program Definition

Chapter 1: Defining a Program 15

Version Number

CREATE PROGRAM creates the first version of a program definition. CA Ideal assigns a
version number of 1 to a newly created program definition. This version of the definition
is in TEST status. You can edit it as long as it remains in TEST status. After it is marked to
PROD (production) status, you cannot edit it.

To mark a program to PROD status, enter the MARK STATUS command or select option
5 from the Program Maintenance Menu.

Note: The program must be successfully compiled before you can mark it to production
status.

Program Identification Fill-in

The program identification fill-in enters descriptive information about the program
when the program definition is initially created or when it is subsequently modified. All
information entered into the program identification fill-in is stored in the
Datadictionary. The following screen shows a completed fill-in.

When creating a program definition, the Identification fill-in automatically displays first.
When editing an existing program definition, you must issue the IDENTIFICATION (IDE)
command to display the Identification fill-in.

 =>

 IDEAL: PGM IDENTIFICATION PGM ADRMRPT (001) TEST SYS: DOC FILL-IN
PROGRAM ADRMRPT

 Created 12/14/94 By JAEGER
 Last Modified 12/14/94 at 16:56 By JAEGER
 Last Compiled 12/18/94 at 16:50
 Run Status: Private
 Short Description: Pgm for IDEAL reports
 Language: IDEAL Target Date __ __ __ Actual Date __ __ __
 Description:
 __

The fields on the program identification fill-in are as follows:

PROGRAM

Displays the one- to eight-character name assigned to the program definition. CA
Ideal initializes the program name to the name entered in the CREATE command or
prompter if a name is supplied.

Created... By

Identifies the initial creation date of the program definition and the user ID of the
creator. This information appears only after the program name was entered and
accepted. CA Ideal maintains this date.

Creating a New Program Definition

16 Creating Programs Guide

Last Modified ...at ...By

Identifies the date, time, and user ID of the last edit access. The field is blank until
the program definition or an EDIT PGM command accesses it. The information
appears only after the program name was entered and accepted. CA Ideal
maintains this data.

Last Compiled at

Identifies the date and time of the last program compilation.

Run Status

For a CA Ideal program only, an indication of how the program is retained in
memory while it is running. Possible values are SHARED, PRIVATE, or RESIDENT. The
CA Ideal administrator determines the Run Status of a program. The default for
newly created programs is PRIVATE. This line is omitted for non-Ideal programs.
This does not apply to programs in load module format. For more information, see
the Administration Guide.

Short Description (Optional)

Displays a brief description of the program definition the user entered. This is
always in mixed case, regardless of the SET EDIT case specification.

New Copy on Call?

For a non-Ideal subprogram only, indicates whether to release the subprogram and
load a new copy each time the subprogram is called in batch. When a new copy is
loaded, the local data in the non-Ideal subprogram is reset to initial values on each
call.

Enter Y for a new copy or N for no new copy. The default is N (do not release the
program after each call). If you change this option, you must recompile all calling
programs before they can run. This line is omitted for CA Ideal programs.

Update DB|Access DB2 (Non-Ideal subprograms only)

Indicates whether the subprogram performs database additions, changes, or
deletions for CA Datacom/DB or any SQL access for DB2. Enter Y or N.

CA Ideal uses this information for CHECKPOINT/ROLLBACK processing and, for DB2,
for dynamic plan allocation processing.

Creating a New Program Definition

Chapter 1: Defining a Program 17

Language

Displays the language used in the program.

CA Ideal is the default and is used when the program is written in CA Ideal/PDL. The
following designations are used:

ASM

Specifies Assembler programs.

PLI

Specifies PL/1 programs.

COBOL

Specifies COBOL programs.

You must identify a non-Ideal program to CA Ideal with a CA Ideal fill-in. If it is
intended to receive parameters, it must have a CA Ideal parameter definition.
However, all other coding and maintenance of a non-Ideal program must be
performed outside of CA Ideal.

Target Date

Displays the date planned for the application to complete.

Actual Date

Displays the date when the application is actually completed.

Description

(Optional) Displays full description of the program definition, up to five lines long.

Defining Program Resources

The program resources fill-in specifies the resources the application uses. These
resources can include dataviews, panels, reports, and subprograms.

When a CA Ideal user enters the Resource Editor, the related entities from
Datadictionary are copied into a VLS member. At the end of the edit, Datadictionary is
updated and the VLS member is deleted.

If there are errors, the CA Ideal user is notified and cannot leave edit until he fixes the
errors or presses the Clear key to abandon the change completely.

To access the resources fill-in for the current program definition, issue the RESOURCES
(RES) command.

After resources are specified, the next time the fill-in displays, the entries are ordered
alphabetically by entity type. In each entity type, the entries are ordered
alphanumerically by name.

Creating a New Program Definition

18 Creating Programs Guide

The information that identifies program resources is stored in the Datadictionary. CA
Ideal uses it for reports and to ensure that the program uses only resources for which it
is authorized.

The resources of a program do not have to exist when they are entered in the resource
fill-in. When these resources eventually are created, they automatically are associated
with all programs that have named them as resources.

After the production version of a CA Ideal subprogram is specified as a resource of a
program, the program always uses the production version of that subprogram-even if a
different version becomes the production version.

You can use a test version of a subprogram in place of a production subprogram when
running a production application by using the ASSIGN PROGRAM VERSION command.
For more information about ASSIGN PROGRAM VERSION command, see the
Programming Reference Guide.

■ The definition of a non-Ideal subprogram describes the number of parameters the
CA Ideal calling program passes and their structure and data types. This information
becomes bound into the CA Ideal calling program during a compilation. If a new
version of the subprogram definition is marked to PROD, existing PROD CA Ideal
programs are not affected. They still call the
non-Ideal program with the old parameter list format. To change a CA Ideal
program to use the new parameter list format, duplicate it to a new TEST version,
change the RESOURCE table to indicate the correct subprogram version, compile,
and mark PROD.

■ You can access additional lines for up to 99 entries for each type of resource by
scrolling forward.

■ You can use the CHECKPOINT and ROLLBACK commands during your editing session
to set and return to a stable point in the definition of the program resources.

The following screen shows the program resources fill-in. A completed fill-in follows the
description of the individual fields.

 =>

 IDEAL: Resource Edit Panel PGM TEST (001) TEST SYS: DOC FILL-IN
 Command Type Name of DVW/PGM/PNL or RPT Version System Qual?
 ====== === ========== T O P =============== ==== === =

 ====== === ======= B O T T O M ============ ==== === =

Creating a New Program Definition

Chapter 1: Defining a Program 19

The components of the program resources fill-in are:

Type

Displays the type of resource. Valid entries are DVW, PNL, PGM, and RPT.

Name

Displays the 1- to 32-character name of a dataview or the one- to eight-character
name of a program, panel, or report. If the resource is a dataview, you can specify
the authorization ID with the object name, for example, IDEALDS.CUSTOMER.

Version

Identifies the one- to four-character version of the resource. You can specify
versions as follows:

PROD

Specifies the production version of the resource.

nnn

Specifies the version number assigned to the resource when it was defined

Tnnn

Specifies the test status version number assigned to the dataview in the
Datadictionary for modeled dataviews in TEST status.

If version is not specified for a dataview, the current setting of the SET DATAVIEW
VERSION command determines the version used when the program is compiled.

System

The one- to three-character system ID for the system where the panel, report, or
program belongs. If the system is not entered, the current system (the system of
the program being defined) is used.

Qual (for SQL Dataviews)

Y (Default)-Qualify the SQL object name associated with this dataview using the
authorization ID specified in the Name field. The object name is qualified in:

■ All SQL statements generated by FOR constructs for this dataview

■ Embedded SQL statements specifying the object with an unqualified name

N-Generate the SQL object name without qualification. This option lets you access
an SQL object other than the one used to catalog the dataview by giving both
objects the same table and view name, but different qualifiers. The tables should
have the same structure.

SQL objects can be explicitly qualified in embedded SQL. An explicit qualifier is used
even if N is specified here. An ASSIGN AUTHORIZATION command can override the
authorization ID specified here.

Creating a New Program Definition

20 Creating Programs Guide

For more information about embedded SQL and the ASSIGN AUTHORIZATION
command, see the Programming Reference Guide.

 =>

 IDEAL: Resource Edit Panel PGM TEST (001) TEST SYS: DOC FILL-IN
 Command Type Name of DVW/PGM/PNL or RPT Version System Qual?
 ====== === ========== T O P =============== ==== === =
 DVW IDEALDS.CUSTOMER Y
 PNL CUSTPNL 001 CUS
 PGM STDERROR PROD $ID
 RPT CUSTLIST 002
 ====== === ======= B O T T O M ============ ==== === =

Displaying Program Resource Indexes

The DISPLAY INDEX PROGRAM command or equivalent DISPLAY INDEX prompter
displays the names and status of all occurrences of program definitions in the current
system. To display an index of program resources, use the RELATED TO clause of the
DISPLAY INDEX command, as follows:

■ To display the names and status of all program definitions related to a specified
program, enter the command DISPLAY INDEX PROGRAM name RELATED TO
PROGRAM command. The resulting display shows all programs called or initiated by
the specified program and all programs that call the specified program.

■ To display the names and status of all dataview definitions related to programs in
the current system, enter the DISPLAY INDEX DATAVIEW RELATED TO PROGRAM
command.

■ To display the names and status of all panel definitions related to programs in the
current system, enter the DISPLAY INDEX PANEL RELATED TO PROGRAM command.

■ To display the names and status of all report definitions related to programs in the
current system, enter the DISPLAY INDEX REPORT RELATED TO PROGRAM
command.

For the complete syntax of the DISPLAY INDEX command, see the Command Reference
Guide.

Displaying the Procedure Definition Panel

The PROCEDURE command or equivalent PF key displays the program procedure for the
current program definition. If you enter this command before the procedure is defined,
a blank screen appears that is ready for PDL statements. If you enter this command after
a procedure is defined, then as many lines of the procedure (from the top) as fit in the
region display.

Creating a New Program Definition

Chapter 1: Defining a Program 21

Defining Working Data

The WORK command or equivalent function key displays the working data definition
fill-in for the current program definition.

The working data definition fill-in names and describes data local to the application.

Working data is defined and maintained using the following fill-in.

=>

 IDEAL: WORKING DATA DEFN. PGM ADRMRPT SYS: DOC FILL
 Command Level Field Name T I Ch/Dg Occur Value/Comments/Clauses
 ====== ===== ====== T O P ====== = = ===== ===== =============================

......
......
......
......
......
====== ===== === B O T T O M === = = ===== ===== =============================

The fields on the working data definition fill-in are:

Command

Designates an area where you can specify line commands.

Level

Specifies the number that hierarchically ranks fields. Elementary field names must
be unique to the highest level (level-1) group name. Simple fields not in a group
(level-1 names by themselves) must be unique to the program, and do not require a
level number.

Creating a New Program Definition

22 Creating Programs Guide

Field Name

Contains one of the following:

■ A valid name for an elementary item (numeric field, date field, alphanumeric
fixed or variable length field, or flag) or for a group item (including a copied
dataview or SQLCA).

You can continue the field name on a second line by including a semicolon (;) as
the last character on the first line. You can break the field name at any
character. You can specify the level number and the attributes T, I, Ch/Dg, and
Occur on the first line only.

■ A condition name for a condition name definition. Conditions can be continued.

■ A valid subscript of the form (n), (n,o), or (n,o,p) for an initial value of a specific
occurring item.

■ A filler, an unnamed field of nulls, or blanks to reserve space. The other entries
(for example, Level, Type, CH/DG, and so on) are blank.

This entry is blank when the Value/Comments/Clauses column contains a
continuation line or a comment or when the rest of the line is blank.

T (Type)

Specifies the field type. Type defaults to N if the internal representation is specified.
Type must be blank for a group item, continuation lines, and subscript initial values.
Any types that can hold null values must be defined as nullable, which is identified
with the keywords WITH IND in the Value/... column. The following are the valid
entries:

X

Specifies an alphanumeric field. The value of the field can be any alphabetic,
numeric, or special character, or the null value.

V

Specifies a variable length alphanumeric field. The value of the field can be any
alphabetic, numeric, or special character or the null value.

N

Specifies a signed numeric field. The value of the field can be 0-9, a minus sign,
or decimal symbol, or the null value.

U

Specifies a unsigned numeric field. The value of the field can be 0-9 or decimal
symbol, or the null value.

Creating a New Program Definition

Chapter 1: Defining a Program 23

D

Specifies a date field. This type is a numeric field containing an integer number,
reflecting the number of days, plus or minus, from December 31, 1900 (day
zero), or the null value.

C

Specifies a condition name assigned to a specific value of a field.

F

Specifies a flag that signifies a condition. The only valid values for a flag are
TRUE and FALSE.

I (Internal Representation)

Specifies the internal representation of numeric (signed and unsigned) and date
type fields:

P

Specifies a packed decimal field.

Z

Specifies a zoned decimal field.

B

Specifies a binary field.

Note: Internal representation must be blank unless the type is N, U, or D. P is the
default.

Creating a New Program Definition

24 Creating Programs Guide

Ch/Dg (Characters/Digits)

Specifies the length of the field value. Either the number of alphanumeric
characters or the number of integers, a period, and the number of decimal places in
a numeric or date field value. For a variable length alphanumeric field, the
maximum number of alphanumeric characters. Date fields cannot have decimal
places.

You must specify the characters and digits for all elementary field types except
dates and flags. The default for date fields is 7. The minimum length for date fields
is 5. For numeric and date fields, the maximum is 31 for packed and zoned, and 9
for binary.

A non-date entry with no type or length information is assumed to be a group name
and must have subordinate fields following it.

For example, in the following table, 42 in the Ch/Dg column for the first
alphanumeric field (Type X) indicates a length of 42 characters. The value 16 for the
variable length field indicates a maximum length of 16 characters. A numeric field
(Type N) with 7 specified in the Ch/Dg column indicates a seven-digit field with 7
integer positions. The next numeric field, with 10.3 specified in the Ch/Dg column,
indicates a 13-digit field with 10 integer positions and 3 decimal places. A date field
(Type D) with 5 in the Ch/Dg column can hold an internal five-integer date value of
up to 273 years from the base year.

Type Ch/Dg

X 42

V 16

N 7

N 10.3

D 5

Creating a New Program Definition

Chapter 1: Defining a Program 25

Occur (Number of Occurrences)

Specifies the number of times a group or field occurs.

When a group or field repeats a fixed number of times, enter the number of
occurrences in this column.

Occurring fields (elementary items) can optionally have initial values specified in the
Value column. Enter these values on each successive line in the Value column. Enter
a valid subscript number (of the form (n), (n,o), or (n,o,p)) on the corresponding line
in the Field Name column.

You cannot specify initial values for repeating groups. However, specify initial
values for individual occurrences by placing the subscript in Field Name.

A group or field can also occur a variable number of times that depends on the
value of another field known as the Depending on field. In this case, the Occur
column contains the maximum number of occurrences. The Depending on field
name is specified in the Value/... column by using the phrase DEP ON field-name.
Only one group or field is permitted in any level-01 group. It must be at the end of
the level-01 group.

Value/Comments/ Clauses

Specifies one of the following: A value for the occurrence of the field, a
REDEFINITION or REDEF keyword, a DEP ON clause, a WITH INDICATOR or WITH IND
clause, a COPY DATAVIEW or COPY DVW clause, or a COPY SQLCA clause. You can
specify a descriptive comment about the field alone or with any of the others.

Note: The case of the data entered in this column as CA Ideal retains it depends on
the setting that was determined for case by default or with a SET EDIT CASE
command. Keywords and identifier references must be in uppercase for compiling
and editing.

Creating a New Program Definition

26 Creating Programs Guide

Value

Specifies a specific value assigned to an occurrence of a field.

You can assign an elementary field a value in the Value/... column. This value can be
a numeric or alphanumeric literal, depending on the type of the elementary field.

You must enclose alphanumeric literals in delimiters (“ or '). If an alphanumeric
literal is longer than the space provided, continue the alphanumeric literal on the
next line of the same column surrounded by a new pair of delimiters. Leave all
other columns on the continuation line blank. Two or more delimited alphanumeric
literals continued in this fashion are concatenated and treated as one.

The default value of a nullable field defined as WITH IND is null, regardless of type.
Otherwise, the default value for a numeric field is zero. For a fixed alphanumeric
field, it is spaces. For a variable length alphanumeric field, it is the empty string of
zero length.

In the case of an occurring field, the Value column is left blank on the line that
contains the field name. The following lines can contain occurrence subscripts.

You can assign a variable length field with a value of an alphanumeric literal
enclosed in delimiters. The length of this literal is the initial length of the field. It
must not exceed the maximum length specified in the Ch/Dg column.

A flag can have an initial value of either TRUE (or T) or FALSE (or F). The default is
FALSE.

You cannot assign an initial value to a date field. The initial value is always zero.

If you omit the length for a character field, but provide a literal value, CA Ideal will
set the field length to the length of the literal.

A value of CRLF (without quotes) represents the carriage return/line feed
combination used in HTML and XML documents.

If you omit the length for a character field, but provide a literal value, CA Ideal will
set the field length to the length of the literal.

A value of CRLF (without quotes) represents the carriage return/line feed
combination used in HTML and XML documents.

Comments

Contains useful information about the field. A preceding colon (:) indicates a
comment in this column. For more information about how to specify and use
comments, refer to the Programming Reference Guide.

To continue a comment over multiple lines, start each line of the column with a
colon. The other columns can be blank or the continuation of a field name.

Creating a New Program Definition

Chapter 1: Defining a Program 27

REDEF

The keyword REDEFINITION (or REDEF) in this column indicates that this working
data item is another view of the closest previously defined item at the same level
that is not itself a redefinition.

This item cannot be larger than the item that defines it. The two items can be
different types (such as alphanumeric and numeric), but neither item can be a
variable length field or a nullable field. Neither item can be a group containing a
variable length field or a nullable field.

CA Ideal determines the data type of the REDEF working data item by using the
Type specified for the item it redefines. Types explicitly specified with the REDEF
working data item are ignored. If the REDEF data item is a group, the data types in
its subordinate field do not affect whether the group is alpha or non-alpha. Rather,
the item that it redefines determines whether it is an alpha or non-alpha group.

An item with a REDEF cannot have an initial value. If a group has a REDEF, none of
its subordinate fields can have initial values. However, the item that defines it can
have an initial value.

DEP ON

Designates a field as a counter to limit the number of occurrences of a field that
was defined as occurring a variable number of times. Field-name must be an
elementary numeric field that appears previously in the same level-1 structure. The
field must be defined with zero decimal places and cannot be specified with an
Occur value. It cannot be a date field. You can specify an initial value for the field.

The keywords DEP and ON can be split over two consecutive lines without a
continuation character. To continue a field name onto a second line, specify a
semicolon (;) as the last character of the first line. You can break the field name at
any character. Leading blanks on the continuation are stripped.

COPY DATAVIEW

Automatically copies the entire structure of a dataview into a working data
definition.

■ Enter a level-1 name in the Field Name column.

■ Enter COPY DATAVIEW dvwname in the Value/Comments/Clauses column.

■ The keywords COPY and DATAVIEW can be split from the dataview name over
two consecutive lines without a continuation character.

To continue a dataview name onto a second line, specify a semicolon (;) as the last
character of the first line. You can break the name at any character.

References to field names in a copied dataview must be qualified with the level-1
data name, even if they are the only references to the names. This distinguishes the
copied fields from the dataview fields.

CA Ideal performs the copy when the program is compiled. To see the dataview
structure, enter the DISPLAY DATAVIEW command or turn the EXD compiler option
on. The dataview structure is never expanded in working data.

Creating a New Program Definition

28 Creating Programs Guide

COPY SQLCA (SQL access only)

Automatically copies the entire structure of the SQLCA work area into a working
data definition. The SQLCA contains information about the last SQL statement
processed by this program. COPY SQLCA is not needed when using $SQL functions.
To use this clause:

■ Enter a level-1 data name in the Field Name column.

■ Enter COPY SQLCA in the Value/Comments/Clauses column. You can split the
keywords COPY and SQLCA over consecutive lines without a continuation
character.

You can define only one SQLCA group in working data for each database
management system that can be accessed using SQL. The level-1 data name cannot
be DB-SQLCA, the name CA Ideal uses. The subordinate fields of each group are the
SQLCA fields.

For a list of the SQLCA fields, refer to the $SQL functions in the Programming
Reference Guide and to the SQL reference guide for the appropriate database
management system.

If the resource table includes an SQL dataview or the EXD compiler listing option is
turned on, the SQLCA structure is listed following the WOR/PAR sections in the
compiler listing.

CA Ideal performs the copy when the program is compiled.

If you have both CA Datacom SQL and DB2 SQL:

■ You can define two SQLCA groups, one for each type of database.

■ You can specify which SQLCA to copy by indicating the type of database with
the COPY clause. That is:

COPY DB SQLCA or COPY DB2 SQLCA

■ If you do not specify a database type, the COPY defaults to the current primary
database as defined in the program environment fill-in.

WITH INDICATOR

Indicates (WITH INDICATOR or WITH IND, or IND) that this elementary field is
nullable; that is, that it can receive null values. You can specify this clause with
alphanumeric, variable length, numeric, date fields, and condition names. You can
also specify an initial value but, if you do not, the null value is the default.

NULL

You can specify a nullable field with an initial null value with the keyword NULL in
this column. In this case, WITH INDICATOR is optional.

Creating a New Program Definition

Chapter 1: Defining a Program 29

Example

The following example shows the various types of data structures that you can define
using the working data definition fill-in. The components of this example apply equally
to the record structures of a CA Datacom/DB database as defined through the
dictionary. Dataview definitions from the dictionary, as the CA Ideal user sees them,
closely resemble the PDL working data structure, as does the definition of parameter
data.

The example uses a working data definition fill-in to show how numeric and
alphanumeric fields, groups, alpha-groups, and repeating groups are specified.

The following two screens show sample definitions of a flag, an alphanumeric group,
and a non-alphanumeric group. ADDRESS, in the second fill-in, is the name of a
non-alpha group.

 =>

 IDEAL: WORKING DATA DEFN. PGM JEPDX1 (001) TEST SYS: DOC DISPLAY
Command Level Field Name T I Ch/Dg Occur Value/Comments/Clauses
 ------ ----- ------------------- - - ----- ----- -----------------------------
 ====== ===== ====== T O P ====== = = ===== ===== =============================
 000100 1 PART-NAME X 16 'SAMPLE-PART-NAME' : DEFAULT
 000200 : PART NAME
 000300 1 PART-NUMBER N 9 999999999 : DEFAULT PART NUM
 000400 1 IN-STOCK F FALSE : PART NOT FOUND
 ====== ===== === B O T T O M === = = ===== ===== =============================

=>

 IDEAL: WORKING DATA DEFN. PGM JEPDX3 (001) TEST SYS: DOC DISPLAY
 Command Level Field Name T I Ch/Dg Occur Value/Comments/Clauses
 ------ ----- ------------------- - - ----- ----- -----------------------------
 ====== ===== ====== T O P ====== = = ===== ==================================
 000100 1 EMPLOYEE-NAME : THIS GROUP NAME CAN BE USED
 000200 : WHEN FULL NAME IS NEEDED
 000300 2 LAST-NAME X 15 : USE FOR LAST NAME ONLY
 000400 2 MIDDLE-INITIAL X 1
 000500 2 FIRST-NAME X 10 : USE FOR FIRST NAME ONLY
 000600 :
 000700 1 ADDRESS : THIS GROUP NAME CAN BE USED
 000800 : WHEN FULL ADDRESS IS NEEDED
 000900 2 STREET X 20 : STREET NUMBER AND NAME
 001000 2 CITY X 15
 001100 2 STATE X 2 : 2-CHARACTER ABBREVIATION
 001200 2 ZIP-CODE N 9 : SPACE FOR NEW 9-DIGIT CODE
 ====== ===== === B O T T O M === = = ===== ===== ============================

Creating a New Program Definition

30 Creating Programs Guide

The next screen shows an example of a repeating field with initial values in the form of a
table of months:

 =>

 IDEAL: WORKING DATA DEFN. PGM JEPDX2 (001) TEST SYS: DOC DISPLAY
 Command Level Field Name T I Ch/Dg Occur Value/Comments/Clauses
 ------ ----- ------------------- - - ----- ----- -----------------------------
 ====== ===== ====== T O P ====== = = ===== ===== ============================
 000100 1 MONTH-TABLE X 9 12
 000200 (1) 'JANUARY'
 000300 (2) 'FEBRUARY'
 000400 (3) 'MARCH'
 000500 (4) 'APRIL'
 000600 (5) 'MAY'
 000700 (6) 'JUNE'
 000800 (7) 'JULY'
 000900 (8) 'AUGUST'
 001000 (9) 'SEPTEMBER'
 001100 (10) 'OCTOBER'
 001200 (11) 'NOVEMBER'
 001300 (12) 'DECEMBER'
 ====== ===== === B O T T O M === = = ===== ==================================

The next screen shows how to define several data types:

■ Alphanumeric (LAST-NAME, MIDDLE-INITIAL, and so on).

■ Signed numeric in packed internal format (EMPLOYEE-NUMBER and #DEPENDENTS)
and unsigned numeric in zoned internal format (ZIP-CODE).

■ Variable length (COM-ADDRESS) that holds a complete address.

It also shows several types of data structures:

■ A repeating group (DEPENDENT) that derives its number of occurrences from
another field (#DEPENDENTS).

■ A field (MARITAL-STATUS) for which a series of condition names was specified.

■ Two examples of alpha groups (EMPLOYEE-NAME and FULL-NAME).

■ A non-alpha group (ADDRESS). This group includes an alphanumeric field
(ZIP-CODE-ALT) that redefines a numeric field (ZIP-CODE). If the order of these two
fields were reversed (if ZIP-CODE redefined ZIP-CODE-ALT), ADDRESS would then be
an alpha group since the type of the field with the Redefines does not affect the
group type.

Creating a New Program Definition

Chapter 1: Defining a Program 31

 =>

 IDEAL: WORKING DATA DEFN. PGM JEPDX4 (001) TEST SYS: DOC DISPLAY
Command Level Field Name T I Ch/Dg Occur Value/Comments/Clauses
 ------ ----- ------------------- - - ----- ----- -----------------------------
 ====== ===== ====== T O P ====== = = ===== ===== ============================
 000100 1 EMPLOYEE-NAME
 000200
 000300 2 LAST-NAME X 15
 000400 2 MIDDLE-INITIAL X 1
 000500 2 FIRST-NAME X 10
 000600
 000601 1 EMPLOYEE-NUMBER N P 7
 000602
 000700 1 ADDRESS
 000800
 000900 2 STREET X 20
 001000 2 CITY X 15
 001100 2 STATE X 2
 001200 2 ZIP-CODE U Z 9
 001201 2 ZIP-CODE-ALT X 9 REDEF
 001202
 001203 1 COM-ADDRESS V 46
 001300
 001400 1 MARITAL-STATUS X 1
 001500 MARRIED C 'M'
 001600 SINGLE C 'S'
 001700 DIVORCED C 'D'
 001800 WIDOWED C 'W'
 001900 SEPARATED C 'E'
 002000
 002100 1 DEPENDENTS
 002200 2 #DEPENDENTS N P 2 : NUMBER OF DEPENDENTS
 002300 2 DEPENDENT 12 DEP ON #DEPENDENTS
 002400 3 FULL-NAME
 002500 4 GIVEN X 10 : DEPENDENT'S FIRST NAME
 002600 4 MIDDLE X 1
 002700 4 LAST X 15 : IF DIFFERENT FROM EMPLOYEE
 002800 3 BIRTH-DATE D 5
 ====== ===== === B O T T O M === = = ===== ===== ============================

The following screen defines a working data field used as a report summary line. The
multiple consecutive lines of values are concatenated into a single alphanumeric literal.

 =>

 IDEAL: WORKING DATA DEFN. PGM JEPDX6 (001) TEST SYS: DOC DISPLAY
Command Level Field Name T I Ch/Dg Occur Value/Comments/Clauses
 ------ ----- ------------------- - - ----- ----- -----------------------------
 ====== ===== ====== T O P ====== = = ===== ===== ============================
 000100 1 RPT-LITERAL X 44 '**** This Is the Last Line '
 000200 'of the Report ****'
 ====== ===== === B O T T O M === = = ===== ===== ============================

Creating a New Program Definition

32 Creating Programs Guide

The following screen shows the definition of a two-dimensional array (ROWS,RANKS)
representing the squares on a chess board. The initial values show the deployment of
pieces at the start of a game.

 =>

 IDEAL: WORKING DATA DEFN. PGM JEPDX5 (001) TEST SYS: DOC DISPLAY
Command Level Field Name T I Ch/Dg Occur Value/Comments/Clauses
 ------ ----- ------------------- - - ----- ----- -----------------------------
 ====== ===== ====== T O P ====== = = ===== ===== ============================
 000100 1 CHESS-BOARD
 000200 2 ROW 8
 000300 3 RANK X 9 8
 000400 (1,1) 'WH-ROOK'
 000500 (1,2) 'WH-KNIGHT'
 000600 (1,3) 'WH-BISHOP'
 000700 (1,4) 'WH-KING'
 000800 (1,5) 'WH-QUEEN'
 000900 (1,6) 'WH-BISHOP'
 001000 (1,7) 'WH-KNIGHT'
 001100 (1,8) 'WH-ROOK'
 001101 (2,1) 'WH-PAWN'
 001102 (2,2) 'WH-PAWN'
 001103 (2,3) 'WH-PAWN'
 001104 (2,4) 'WH-PAWN'
 001105 (2,5) 'WH-PAWN'
 001106 (2,6) 'WH-PAWN'
 001107 (2,7) 'WH-PAWN'
 001108 (2,8) 'WH-PAWN'
 001114 (7,1) 'BL-PAWN'
 001115 (7,2) 'BL-PAWN'
 001116 (7,3) 'BL-PAWN'
 001117 (7,4) 'BL-PAWN'
 001118 (7,5) 'BL-PAWN'
 001119 (7,6) 'BL-PAWN'
 001120 (7,7) 'BL-PAWN'
 001121 (7,8) 'BL-PAWN'
 001200 (8,1) 'BL-ROOK'
 001300 (8,2) 'BL-KNIGHT'
 001400 (8,3) 'BL-BISHOP'
 001500 (8,4) 'BL-KING'
 001600 (8,5) 'BL-QUEEN'
 001700 (8,6) 'BL-BISHOP'
 001800 (8,7) 'BL-KNIGHT'
 001900 (8,8) 'BL-ROOK'
 ====== ===== === B O T T O M === = = ===== ===== ============================

Creating a New Program Definition

Chapter 1: Defining a Program 33

Defining Parameters Used as Input

Parameter data consists of the names and descriptions of data items to pass to this
program from a calling program or to this program using a RUN command. Parameter
data is specified for the called subprogram on the parameter definition fill-in, shown in
the following screen.

 =>

 IDEAL: PARAMETER DEFINITION PGM ADRMRPT (001) TEST SYS: DOC FILL-IN
 Command Level Field Name T I Ch/Dg Occur U M Comments/Dep on/Copy
 ====== ===== ====== T O P ====== = = ===== ===== = = =======================

......
......
......

......
......
====== ===== === B O T T O M === = = ===== ===== ============================

Creating a New Program Definition

34 Creating Programs Guide

The following pages describe the components of the parameter definition fill-in.
Parameter data is specified in much the same way as working data, as you can see from
the similarities between the fill-ins. However, the specification of parameter data differs
in several ways from the definition of working data:

■ Two columns on the parameter definition fill-in are not on the working data
definition fill-in: U (update intent) and M (matching).

■ You do not need to specify all attributes for a parameter for a called CA Ideal
subprogram with dynamic parameter matching.

Level

Specifies the number that hierarchically ranks fields. Elementary field names must
be unique to the highest level (level-1) group name. Elementary fields not in a
group (level-1 names by themselves) must be unique to the program. All level-1
names must be unique to the program.

Field Name

A valid field name for a parameter that corresponds to the data item in the CALL
statement. This name in the called program can be the same as or a different from
the name of the data item in the calling program.

You can continue the field name on a second line by including a semicolon (;) as the
last character on the first line. You can break the field name at any character.
Leading blank characters on a continued line are stripped.

You can specify the level number and the attributes T, I, Ch/Dg, and Occur on the
first line only.

– A condition name.

– A filler, an unnamed field of nulls or blanks that reserves space. The other
entries (for example, Level, Type, CH/DG, etc.) are blank.

– Blanks when the Comment/Dep on/Copy column contains a continuation line
or when the rest of the line is blank.

Creating a New Program Definition

Chapter 1: Defining a Program 35

T (Type)

Specifies the parameter type.

Note: For non-Ideal subprograms, you must specify type X, N, or U. For a detailed
explanation of each field type and its characteristics, see the Programming
Reference Guide.

The types are as follows:

X

Specifies an alphanumeric field. The value of the field can be any alphabetic,
numeric, or special character, or the null value.

V

Specifies a variable length alphanumeric field. The value of the field can be any
alphabetic, numeric, or special character or the null value.

N

Specifies a signed numeric field. The value of the field can be 0-9, a minus sign,
or decimal symbol, or the null value.

U

Specifies a unsigned numeric field. The value of the field can be 0-9 or decimal
symbol, or the null value.

D

Specifies a date field. This type is a numeric field containing an integer number,
reflecting the number of days, plus or minus, from December 31, 1900 (day
zero), or the null value.

C

Specifies a condition name assigned to a specific value of a field.

F

Specifies a flag that signifies a condition. The only valid values for a flag are
TRUE and FALSE.

Creating a New Program Definition

36 Creating Programs Guide

I (Internal Representation)

Specifies the internal representation of numeric (signed and unsigned) and date
type fields:

P

Specifies a packed decimal field.

Z

Specifies a zoned decimal field.

B

Specifies a binary field.

Note: Internal representation must be blank unless the type is N, U, or D. P is the
default.

For CA Ideal subprograms, use the following:

■ With dynamic parameter matching, the internal representation must be blank.

■ With identical parameter matching, the internal representation is required for
D, N, and U type fields.

For non-Ideal subprograms, the internal representation is required for N and U type
fields.

Ch/Dg (Characters/Digits)

Specifies the length of the field value. Either the number of alphanumeric
characters or the number of integers, a period, and the number of decimal places in
a numeric or date field value For a variable length alphanumeric field, the
maximum number of alphanumeric characters. Date fields cannot have decimal
places.

You must specify the characters and digits for all elementary field types except
dates and flags. The default for date fields is 7. The minimum length for date fields
is 5. For numeric and date fields, the maximum is 31 for packed and zoned, and 9
for binary.

A non-date entry with no type or length information is assumed to be a group name
and must have subordinate fields following it.

Creating a New Program Definition

Chapter 1: Defining a Program 37

For example, in the following table, 42 in the Ch/Dg column for the first
alphanumeric field (Type X) indicates a length of 42 characters. The value 16 for the
variable length field indicates a maximum length of 16 characters. A numeric field
(Type N) with 7 specified in the Ch/Dg column indicates a seven-digit field with 7
integer positions. The next numeric field, with 10.3 specified in the Ch/Dg column,
indicates a 13-digit field with 10 integer positions and 3 decimal places. A date field
(Type D) with 5 in the Ch/Dg column can hold an internal five-integer date value of
up to 273 years from the base year.

Type Ch/Dg

X 42

V 16

N 7

N 10.3

D 5

For CA Ideal subprograms with dynamic parameter matching, this specification is
required for type X and V parameters and optional for types N, U, and D.

For type X parameters and for type V parameters passed with dynamic parameter
matching and Input update intent, the length of the Characters/Digits of the
subprogram parameter must be greater than or equal to the Characters/Digits
specified in the calling program.

For type V parameters passed with dynamic parameter matching and Update
intent, the characters/digits must match the specification in the calling program.

Numeric and date parameters do not require a characters/digits specification,
because they are automatically assigned the same logical attributes as the
corresponding data item in the calling program.

If you specify characters/digits, it must match the characters/digits of the
corresponding data item in the calling program.

With identical parameter matching, the character/digits specification is required for
all types. The characters/digits must match the characters/digits of the
corresponding data item in the calling program.

For non-Ideal subprograms, the characters/digits attribute is required for all types.

Also see the rules for calling subprograms described in Executing Nested Programs.

Creating a New Program Definition

38 Creating Programs Guide

Occur (Number of Occurrences)

Specifies the number of times a group or field occurs (or the maximum for dynamic
parameters).

When a group or field occur a fixed number of times, the number of occurrences is
entered in this column.

A group or field also occur a variable number of times, depending on the count in
another field known as the Depending on field. In this case, the Occur column
contains the maximum number of occurrences. The Depending on field name is
specified in the Comments/Dep on/Copy column by using the phrase DEP ON field
name. Only one such variably repeating group is permitted in any structure. It must
be at the end of the structure. For dynamic parameters, this is the maximum
number of occurrences that you can specify for the corresponding field in the
calling program.

Note: You cannot specify initial values for repeating fields in parameter data. You
cannot specify an Occur value for a level-1 parameter.

U (Update Intent)

Specifies the kind of parameter. This attribute is specified only for a level-1 item,
never for subordinate fields of a group.

U

Specifies an update parameter, that is, one that the program can modify.

I

Specifies an input parameter, that is, one that the program cannot modify.

M (Parameter Matching)

(For CA Ideal subprograms only.) Specifies whether attributes are dynamically
copied into the parameter from the corresponding data item in the calling program
and only match the general type or must be completely specified and match exactly
the corresponding data item in the calling program. Specify this attribute only for
level-1 parameters. It applies only to that field or group.

D (Default)

Specifies dynamic matching. Attributes for this data item are copied from the
calling program.

I

Specifies identical matching. Attributes must be completely specified and
match those of the calling program data item. Identical parameter matching
generates more efficient code since all attributes are known at compile time.

Creating a New Program Definition

Chapter 1: Defining a Program 39

Comments/Dep on/Copy (Comment, Redefinition, Depending on field name, COPY
dataview or SQLCA, or WITH INDICATOR)

The case of the text entered in this column as CA Ideal retains it is determined by
default or with a SET EDIT CASE command. You can specify a descriptive comment
about the field alone or with any of the others. The keywords and field names must
be uppercase.

Comments

Specifies useful information about the field. A comment is indicated in this
column by a preceding colon (:).

To continue a comment over multiple lines, start each line of the column with a
colon. The other columns can be blank or the continuation of a field name.

REDEF

Indicates with the keyword REDEFINITION (or REDEF) in this column that this
parameter item is another view of the closest previously defined item at the
same level that is not itself a redefinition.

This item cannot be larger than the item that defined it. The two items can be
different types (such as alphanumeric and numeric), but neither item can be a
variable length field or a nullable field. None of the items can be a group
containing neither a variable length field nor a nullable field.

If a parameter field with a REDEF is a subordinate field, its Type does not affect
whether the group is alpha or non-alpha, nor types of the subordinate fields in
the group. CA Ideal uses the type of the item that defined it. For an example,
refer to the definition of alpha groups in the Programming Reference Guide.

Redefinitions are not allowed for level-1 parameters and are not allowed for
non-Ideal subprograms.

DEP ON

Specifies a DEP ON field-name clause. This clause designates a field as a
counter to limit the number of occurrences of a field that was defined as
occurring a variable number of times. Field name must be an elementary
numeric field that appears previously in the same level-1 structure. The
field-name field must be defined with zero decimal places and cannot be
specified with an Occur value. It cannot be a date field. You can specify an
initial value for the field-name field.

You can split the keywords DEP and ON over two consecutive lines without a
continuation character. To continue a field name onto a second line, specify a
semicolon (;) as the last character of the first line. You can break the field name
at any character. The other columns can be blank or the continuation of a field
name.

Creating a New Program Definition

40 Creating Programs Guide

COPY DATAVIEW

Specifies to automatically copy the entire structure of a dataview into a
parameter definition. To use this clause:

■ Enter a level-1 name in the Field Name column.

■ Enter COPY DATAVIEW dvwname in the Comments/Dep On/Copy column.

■ To continue a dataview name onto a second line, specify a semicolon (;) as
the last character of the first line. You can break the name at any
character.

The dataview being copied must be a cataloged dataview and must be specified
as a resource of the program.

CA Ideal performs the copy when the program is compiled. To see the dataview
structure, enter the DISPLAY DATAVIEW command. The structure is not shown
in the parameter data. This is included in the compile listing if the EXD compiler
option is on.

Note: You must include the dataview in the resources of the program even
though there might not be any FOR construct in the procedure.

Creating a New Program Definition

Chapter 1: Defining a Program 41

COPY SQLCA (SQL only)

Automatically copies the entire structure of the SQLCA work area into the
parameter definition. The SQLCA contains information about the last SQL
statement this program processed. COPY SQLCA is not needed if you use $SQL
functions. To use this clause:

■ Enter a level-1 data name in the Field Name column.

■ Enter COPY SQLCA in the Comments/Dep On/Copy column. You can split
the keywords COPY and SQLCA over consecutive lines without a
continuation character.

You can define only one SQLCA group in parameter data for each database
management system that SQL can access. The level-1 data name cannot be
DB-SQLCA, the name CA Ideal uses. The subordinate fields of each group are
the SQLCA fields.

For a list of the SQLCA fields, refer to the $SQL functions in the Programming
Reference Guide and to the SQL reference guide for the appropriate database
management system.

If the resource table includes an SQL dataview, the SQLCA structure is listed
following the WOR/PAR sections in the compiler listing.

If the EXD compiler listing option is turned on, the SQLCA structure is listed
following the WOR/PAR sections.

CA Ideal performs the copy when the program is compiled.

If you have both CA Datacom SQL and DB2 SQL, you can define two SQLCA
groups, one for each type of database.

You can specify which SQLCA to copy by indicating the type of database with
the COPY clause. That is COPY DB SQLCA or COPY DB2 SQLCA.

If you do not specify a database type, the COPY defaults to the current primary
DBMS defined in the program environment fill-in.

WITH INDICATOR

Specifies with the clause WITH INDICATOR (or WITH IND, or IND) in this column
that this field is nullable; that is, it can receive null values. You can specify this
clause with alphanumeric, variable length, numeric, date fields, and with
condition names.

You must define a parameter field as nullable if the corresponding field in the
calling program is nullable, regardless of its value or matching selection.

Creating a New Program Definition

42 Creating Programs Guide

The following screen shows how you can use these parameters:

■ A numeric field (YTD-WAGES) defined as updateable with dynamic parameter
matching.

■ A non-alpha group (ADDRESS) with identical parameter matching and all attributes
specified. You can use this group in group moves and all other non-alpha group
capacities.

■ An alphanumeric parameter (ZIP-ALPHA) in this group redefines an unsigned
numeric field (ZIP).

If the order of these two fields were reversed (if ZIP redefined ZIP-ALPHA), ADDRESS
would then be an alpha group since the type of the field with the Redefines does
not affect the group type.

The following screen also shows these forms of parameter definition:

■ A date field (HIRE-DATE) with packed internal type.

■ A variable length field (NAME) with a maximum size of 20 characters, the update
intent is input, and identical parameter matching.

■ Two signed numeric fields with identical parameter matching:

– NUMBER with packed internal type

– WAGES with zoned internal type

 =>

 IDEAL: PARAMETER DEFINITION PGM JEUPPER (001) TEST SYS: DOC DISPLAY
Command Level Field Name T I Ch/Dg Occur U M Comments/Dep on/Copy
 ------ ----- ------------------- - - ----- ----- - - -----------------------
 ====== ===== ====== T O P ====== = = ===== ===== = = =======================
 000100 1 HIRE-DATE D P 6 I I
 000200 1 NAME V 20 I I
 000300 1 NUMBER N P 7 I I
 000400 1 WAGES N Z 4.2 U I
 000500 1 YTD-WAGES N U D
 000600 1 ADDRESS I I
 000700 2 STREET X 20
 000800 2 CITY X 20
 000900 2 STATE X 2
 001000 2 ZIP U Z 9
 001100 2 ZIP-ALPHA X 9 REDEF
 ====== ===== === B O T T O M === = = ===== ===== = = =======================

In addition to the parameter definition fill-in, CA Ideal subprograms permit dynamic and
identical parameter matching, while enforcing certain linkage conventions. See Calling a
Subprogram section for an explanation of these processes.

Creating a New Program Definition

Chapter 1: Defining a Program 43

Defining the Environment for SQL Access

Environment options are needed for any program that accesses CA Datacom/DB using
SQL. They include SQL access plan options and the database for this program.

CA Datacom SQL Access Plan Options

CA Ideal uses the CA Datacom SQL access plan options to build the CA Datacom/DB
access plan for the program during program compilation. These plan options are
described in the CA Datacom/DB Database SQL User Guide.

For mixed sites, the CA Datacom/DB access plan options do not affect DB2 application
plans.

The plan options are specified on the environment definition fill-in. You can use the SET
DBSQL command to specify default values for the fill-in.

To display or edit the plan options, select option 1 from the Program Maintenance
menu. Fill in field 1 and field 2 as appropriate. Specify env for field 3 and press the Enter
key. The plan options fill-in displays.

Primary Database

For sites using both CA Datacom SQL and DB2 SQL, the primary database is the database
management system SQL statements access, such as GRANT and REVOKE, which might
apply to either database management system. These SQL statements do not reference
an object associated with a dataview.

SQL DML statements such as INSERT do not use the primary database. They must
reference an object associated with a dataview that specifies the database management
system. You can have INSERTs against multiple SQL database management systems in
one program, but you cannot mix dataviews for different database systems in one
statement.

The SQL statements COMMIT and ROLLBACK apply to all databases that the program
accesses. The WHENEVER statement applies to all SQL database management systems.

On the other hand, GRANT, REVOKE, and all similar SQL statements can access only one
database management system per program-the primary database.

The primary database is specified on the environment definition fill-in. Use the SET
ENVIRONMENT SQL command to specify a default value.

Creating a New Program Definition

44 Creating Programs Guide

To access the environment definition fill-in, use the ENVIRONMENT option with the
DISPLAY or EDIT command or, while the program is displayed, use the ENVIRONMENT
command.

 =>

 IDEAL: PGM ENVIRONMENT PGM TEST (001) TEST SYS: DOC FILL-IN

 Primary SQL database: DB (DB or DB2)
 DB/SQL options
 Default Auth-id............ X
 SQL Mode................... ANSI86 (ANSI86, DATACOM, or FIPS)
 Cursor Isolation Level..... C (U=User, C=Cursor, R=Repeatable)
 Optimization Mode.......... M (M=Manual,P=Preptime,E=Exectime)
 Date Format................ USA (DB, ISO, USA, EUR, JIS)
 Time Format................ USA (DB, ISO, USA, EUR, JIS)
 CBSIO...................... 524286 (0-524287)
 Priority................... 15 (1-15)
 Wait Time.................. 030 (1-120)
 S (M=Minutes, S=Seconds)
 Preptime optimization msgs. N (N=None,D=Detail,S=Summary)
 Exectime optimization msgs. N (N=None,D=Detail,S=Summary)
 DB/SQL Workspace........... 0000 (0-128)
 Decimal Point.............. P (P=Period, C=Comma)
 String Delimiter........... A (A=Apostrophe, Q=Quote)

Primary SQL DBMS (Mixed SQL Sites Only)

For sites with both CA Datacom SQL and DB2 SQL, the database to access by SQL
statements that does not reference a dataview.

DB

Specifies the CA Datacom SQL.

DB2

Specifies the IBM DB2 SQL.

Default Auth-ID

Specifies the one- to eight-character authorization ID for the program's CA
Datacom/DB plan.

SQL Mode

Specifies the mode in which CA Datacom/DB processes the program. The following
are valid entries:

■ ANSI86

■ DATACOM

■ FIPS

Creating a New Program Definition

Chapter 1: Defining a Program 45

Cursor Isolation Level

Specifies the degree to which a unit of recovery is isolated from the updating
operations of other units of recovery.

U

Specifies no locks are acquired.

C

Specifies cursor stability (required for updates, deletes, or inserts).

R

Specifies repeatable read.

Optimization Mode

Specifies the mode in which CA Datacom/DB optimizes table joins.

P

Specifies preptime, that is, order joins during bind processing (CA Ideal
Compile). This is the default.

M

Specifies manual, that is, order joins as specified in FROM clauses.

E

Specifies exectime, that is, order joins at execution time.

Date Format

Specifies the display format for SQL date type items.

DB

Specifies to use the CA Datacom/DB default. In CA Datacom/DB, the date can
be set to ISO, USA, EUR, or JIS formats.

ISO

Specifies the International Standards Organization format: yyyy-mm-dd.

USA

Specifies the U.S. standard format: mm/dd/yyyy.

EUR

Specifies the European standard format: dd.mm.yyyy.

JIS9

Specifies the Japanese Industrial Standard format: yyyy-mm-dd.

Creating a New Program Definition

46 Creating Programs Guide

Time Format

Specifies the display format for SQL time type items.

DB

Specifies to use the CA Datacom/DB default. In CA Datacom/DB, the date can
be set to ISO, USA, EUR, or JIS formats.

ISO

Specifies the International Standards Organization format: hh.mm.ss

USA

Specifies the U.S. standard format: hh:mm AM or PM

EUR

Specifies the European standard format: hh.mm.ss

JIS

Specifies the Japanese Industrial Standard format: hh:mm:ss

CBSIO

Specifies the I/O limit interrupt value for SQL statements that creates a set.

Priority

Specifies the priority of the SQL requests. The lowest priority is 1. The highest
priority is 15.

Wait Time

Specifies the exclusive control wait limit. Enter a number from 1 through 120, then
indicate on the next line the unit of measure, for example, S for seconds or M for
minutes.

Preptime Optimization Msgs

Specifies the type of optimization messages CA Datacom/DB produces during bind
processing.

N

Specifies no messages. This is the default.

D

Specifies detailed messages.

S

Specifies a summary of the messages.

Creating a New Program Definition

Chapter 1: Defining a Program 47

Exectime Optimization Msgs

Specifies the type of optimization messages CA Datacom/DB produces at runtime.

N

Specifies no messages. This is the default.

D

Specifies detailed messages.

S

Specifies a summary of the messages.

DB/SQL Workspace

Specifies the amount of work space available at plan execution time used for error
correction. Enter a number from 0 through 1024.

Decimal Point

Specifies the character used as the decimal point when data displays. This has no
effect on how the data is stored.

P

Specifies to use the period (.) as the decimal point. The comma (,) is used as the
digit separator. This is the default.

C

Specifies to use the comma (,) as the decimal point. The period (.) is used as the
digit separator.

String Delimiter

Specifies the character that delimits string values in all SQL statements.

A

Specifies to use the apostrophe (') as the delimiter. This is the default.

Q

Specifies to use the quotation mark (") as the delimiter.

Creating a New Program Definition

48 Creating Programs Guide

Entering the Procedure Definition

The PROCEDURE command or equivalent function key displays the program procedure
for the current program definition. If you enter this command before you define the
procedure, a blank screen appears, ready for PDL statements as shown in the following
screen. If you enter this command after you define a procedure, then as many lines of
the procedure (from the top) as fit in the region display.

 =>

 IDEAL: PROCEDURE DEFINITION PGM ADRMRPT (001) TEST SYS: DOC FILL-IN

 Command........1........2........3........4........5........6........7..
 ====== ================================ T O P =================================
 .
 .
 .
 ====== ============================= B O T T O M ==============================

The SET EDIT CASE command establishes the case of the text entered in the procedure
fill-in. You must enter reserved words and identifier references in uppercase.

The remaining chapters of this guide explain how to use the CA Ideal Procedure
Definition Language to read and write data, control the sequence of processing, perform
calculations, use functions, and terminate processing. For more information about the
syntax of the PDL statements, see the Programming Reference Guide. For information
about the editing facilities available for the procedure fill-in, see the Command
Reference Guide.

Displaying and Editing a Program

Chapter 1: Defining a Program 49

Displaying and Editing a Program

There are three ways to display or edit the components that make up a program. Use
the display methods when you do not intend to make any changes to the program. Use
the edit methods when you want to make changes to the program.

■ Enter the following command on the command line to display the component:

DISPLAY PROGRAM program-name component-name

Enter the following command on the command line to edit the component:

EDIT PROGRAM program-name component-name

If you do not include a program name or component name, a prompter displays.
Enter the missing program name or component name on the prompter to complete
the command.

■ Select option 1, DISPLAY/EDIT, from the Program Maintenance menu. This displays
a prompter. You must specify not only the program name and component name,
but also whether you want to display or edit the component.

■ From the DISPLAY INDEX PROGRAM line command field, enter the line command
DIS next to the program you want to display or enter EDI next to the program you
want to edit. The procedure component of the program displays. To edit or display
another component, such as RES, enter RES on the command line before pressing
Enter.

For more information about these commands, see the Command Reference Guide.

Duplicating a Program to a New Name

There are two ways to duplicate a program to a new name. When a program is
duplicated, the entire program definition with all of its components is duplicated to the
new name or new version.

■ Enter the following command on the command line to duplicate the program:

DUPLICATE PROGRAM program-name TO NEWNAME new-program-name

If you do not include the originating program name or the new program name, a
prompter displays. Enter the missing program name on the prompter to complete
the command.

■ Select option 6, DUPLICATE, from the Program Maintenance menu. This displays a
prompter. You must specify the originating program name and new program name.

Deleting a Program

50 Creating Programs Guide

Deleting a Program

There are three ways to delete a program. When a program is deleted, the entire
program definition with all of its components is deleted.

■ Enter the following command on the command line to delete the program:

DELETE PROGRAM program-name VERSION ver

If you do not include the program name and version, a prompter displays. Enter the
missing program name on the prompter to complete the command.

■ Select option 4, DELETE, from the Program Maintenance menu. This displays a
prompter. You must specify the program name.

■ From the DISPLAY INDEX PROGRAM line command field, enter the line command
DEL next to the program you want to delete.

Printing a Program

The PRINT command or equivalent PRINT prompter prints a specific program definition.
There are three ways to print a program. When a program is printed, the entire program
definition with all of its components prints.

■ Enter the following command on the command line to print the program:

PRINT PROGRAM program-name

If you do not include the program name, a prompter displays. Enter the missing
program name on the prompter to complete the command.

■ Select option 3, PRINT, from the Program Maintenance menu. This displays a
prompter. You must specify the program name.

■ From the DISPLAY INDEX PROGRAM line command field, enter the line command
PRI next to the program you want to print.

Listing an Index of Defined Programs

You can display or print an index of defined programs in a CA Ideal system. The list
shows the names of all programs in the specified system, the language used to create
each program, a short description of each program, the date each program was created,
and the date each program was last updated.

Listing an Index of Defined Programs

Chapter 1: Defining a Program 51

Displaying the Index

There are two ways to display the list of programs in a system.

■ Enter the following command on the command line to print the list of programs.

DISPLAY INDEX PROGRAM

■ Select option 7, DISPLAY INDEX, from the Program Maintenance menu. This displays
a prompter. You must type PGM in the field labeled (1) to complete the command.

You can initiate activities against any of the programs listed on the display by entering
line commands in the Command field. See the Command Reference Guide for complete
information about the DISPLAY INDEX command and the line commands that you can
use on the display.

Printing the Index

To print the list of programs in a system, enter the following command on the command
line:

PRINT INDEX PROGRAM

Chapter 2: Reading and Writing Data 53

Chapter 2: Reading and Writing Data

Introduction to the Database

A CA Ideal accesses the relational database of CA Datacom/DB. To understand how CA
Ideal handles the access, a basic description of the database terminology is helpful.

Basic Database Structure

The data in the database is organized into a series of logical collections called tables. For
example, all customer information can be defined in a customer table; all order
information in an order table; and so on. In each table, all of the data associated with an
individual occurrence is a row. For example, all information about a single customer
comprises one row.

The data in each table is further defined by type and function into columns. Each
column is assigned a name and various attributes. For example, the customer name is
defined in the column named CUSTNAME and the ZIP code in the column named ZIP.
The data in the column CUSTNAME is alphanumeric and the data in ZIP is numeric.

The power of a relational database lies in the fact that data can be accessed without
first predetermining any access paths. For example, it is very straightforward to ask for
the set of customers whose last name was Brown and lived in Ohio. No additional work
other than describing the layout of the table is needed to access it.

Introduction to the Database

54 Creating Programs Guide

Using Dataviews to Access the Database

In CA Ideal, a dataview is a logical view of external data that lets you make requests
independent of the external storage mechanism. Dataviews can represent sequential
files, VSAM files, CA Datacom/DB tables (for native command access or SQL access),
views, and synonyms (for SQL access or DB2 tables and views). Regardless of the
underlying table, file, or view, the programmer sees the definition presented in a
consistent way and uses the same language statements to access the data.

Before CA Ideal can use a dataview, the table, view, or synonym must be defined in the
database management system. Then, in CA Ideal, an authorized user must catalog the
dataview to CA Ideal. The catalog function locates the database management system's
definition and makes it accessible to CA Ideal. Any CA Ideal program can then access the
dataview, provided that the program is in a system authorized to access the dataview.

a CA Datacom/DB table is defined using the dictionary facilities of Datadictionary. After
the required entries are processed, the DBA (database administrator) creates a
dataview entity occurrence in the Datadictionary and relates it to the appropriate
database elements. a CA Datacom/DB native access dataview can include any subset of
fields in the database record, including the entire record, but the fields can only be
included from one record. SQL table or view is created with an SQL CREATE statement in
a program and supports joins and projections for views. No further action is required
before cataloging the table or view to CA Ideal.

Dataviews for unmodeled sequential files and VSAM files are created in CA Ideal and
then cataloged.

When a dataview is included in the resource definition of a CA Ideal program, it serves
two functions:

■ It documents the fact that this program uses this dataview.

■ It records the relationship in the Datadictionary.

■ The dataview serves as a copybook for the CA Ideal program. CA Ideal automatically
generates a list of host variables in the program, with names identical to the
columns or fields in the original table or view. In this sense, the dataview layout
defines a buffer to contain the current row.

Accessing Data from a Table or File

Chapter 2: Reading and Writing Data 55

Using Multiple Dataviews for One Table

Multiple dataviews can be created for a single table to provide flexibility. A program can
contain one or more of these dataviews as needed.

In CA Datacom/DB, you can define native dataviews directly from the elements of the
table. You can create one or more dataviews to contain any combination of these
elements.

In SQL, you can define a dataview based on a table. This dataview contains all of the
columns in the table. You can create only one dataview directly from the table. You
must use a view to define multiple dataviews for a single table. You can specify the view
to contain any of the columns in the table. In fact, views can contain columns from one
or more tables. You can use a dataview cataloged on a joined view for read-only
purposes.

Additional Information

For more information about the creation and maintenance of dataviews, see the
Creating Dataviews Guide. The remainder of this chapter focuses on using CA Ideal to
access and manipulate the data in the database. It is applicable to databases for CA
Datacom/DB and DB2 databases. The programs written based on this general
information about the FOR construct are portable between databases.

For more information about accessing sequential and VSAM files, see the FOR construct
in the Programming Reference Guide.

Accessing Data from a Table or File

A CA Ideal PDL, Program Definition Language, provides the FOR construct to access the
data in the database. There are several variations of the FOR construct. With any
variation, a dataview is named to specify which data to obtain. An ENDFOR statement
terminates the construct.

FOR ... dataview-name

 : statements

ENDFOR

Accessing Data from a Table or File

56 Creating Programs Guide

Selecting and Processing Rows

Basically, the FOR statement selects the rows to process. Each row in the selected set is
accessed individually and processed according to the statements specified between the
FOR and ENDFOR statements.

The simplest FOR construct, FOR EACH, accesses every row in the table based on the
named dataview. For example, the following FOR construct accesses all rows in the
CUSTOMER table using the CUSTOMER dataview:

FOR EACH CUSTOMER :select

 : statements :process

ENDFOR :end^sprocess

Processing Rows with Implicit Iteration

The FOR EACH construct implicitly iterates. That is, it loops through the selected set,
processing one row at a time. For example, the FOR EACH construct can produce a list of
customers from the CUSTOMER table, as follows:

FOR EACH CUSTOMER :select

 LIST CUSTNAME :list customer name

ENDFOR :end process

This produces:

custA

custB

custC

. . . and so on

To include a count with this list, the counter TX-COUNT is defined in working data and
then incremented as each row is accessed. The value of the counter is written, along
with the customer name, using the LIST statement:

SET TX-COUNT = 0

FOR EACH CUSTOMER

 ADD 1 TO TX-COUNT

 LIST TX-COUNT, CUSTNAME

 : statements

ENDFOR

The counter TX-COUNT is defined in working data as a numeric variable. TX-COUNT is
initialized to 0 before the FOR construct. The FOR construct then accesses every row in
the table. Each row is processed in turn by the statements in the construct. After all of
the rows are accessed and processed, the FOR construct terminates.

Accessing Data from a Table or File

Chapter 2: Reading and Writing Data 57

Using $COUNT To Obtain Total of Accessed Rows

Since the task of counting the number of accessed rows is so commonly performed, PDL
provides a function, $COUNT, to return the total number of rows:

<<CUST>>

FOR EACH CUSTOMER

 : statements

MOVE $COUNT(CUST) TO WCOUNT

LIST WCOUNT 'CUSTOMER RECORDS READ'

ENDFOR

For more information about using $COUNT, see the Programming Reference Guide.

Selecting Rows

Assume that all rows in the table are accessed and processed, but only certain rows are
counted and listed based on specific conditions. The conditions are defined in the FOR
construct. For example, if a column named STATE is provided in the CUSTOMER table,
you can include an IF construct in the FOR construct to count only those customers in
Texas, while still processing all of the customers in the table:

SET TX-COUNT = 0

FOR EACH CUSTOMER

 IF STATE EQ 'TX'

 ADD 1 TO TX-COUNT

 LIST TX-COUNT, CUSTNAME

 ENDIF

 : statements

ENDFOR

The counter reflects only the number of customers in Texas.

Several sets of criteria can be evaluated in a single FOR construct by using the SELECT
construct. For example, SELECT can process the number of customers in each state. The
entire table is accessed through a single execution of the FOR construct, but the
customer rows are processed based on the value in the STATE column. In this example,
50 counters were defined in working data to contain the number of customers in each
state. The counters were named using the two-character state abbreviations.

Accessing Data from a Table or File

58 Creating Programs Guide

The code could be:

SET AL = 0

SET AR = 0

SET AZ = 0

. . .

SET WY = 0

FOR EACH CUSTOMER

 SELECT FIRST

 WHEN STATE EQ 'AL'

 ADD 1 TO AL

 WHEN STATE EQ 'AR'

 ADD 1 TO AR

 WHEN STATE EQ 'AZ'

 ADD 1 TO AZ

 . . .

 WHEN STATE EQ 'WY'

 ADD 1 TO WY

 ENDSEL

 : statements

ENDFOR

LIST AL AR AZ . . . WY

The processing initializes the counters, increments the appropriate state counter,
performs the other statements, and, after the ENDFOR, displays the values.

Selecting a Set of Rows

You can select a set of rows from the entire table by coding IF or SELECT in a FOR
construct. In this way, you can apply functions to specific rows in a table. This works well
if it is necessary to access every row in the table. The selection criteria are specified on
the FOR construct using the WHERE clause to limit the number of rows that are
accessed.

You should code a WHERE clause when a specific set of rows is processed. It provides
clear information on the set of rows being accessed. It is more efficient to have the
database access only the rows, rather than access the entire table and code the
selection process in the FOR construct. Not only is the access faster, but it limits the
possibility of contention for data across applications. It is essential, when designing an
application, to minimize the number of rows being accessed at any one time and the
length of time those rows are held.

Accessing Data from a Table or File

Chapter 2: Reading and Writing Data 59

For example, to process only the customers in Texas, you can specify a FOR EACH
construct with a WHERE clause. This code clearly reflects the function and the set of
rows to access:

FOR EACH CUSTOMER

 WHERE STATE EQ 'TX'

 : statements

ENDFOR

Using Compound Selection Criteria

The WHERE clause can contain compound specifications. For example, to obtain only
the rows of customers that are in Texas and have an outstanding balance greater than
$500, specify:

FOR EACH CUSTOMER

 WHERE STATE EQ 'TX'

 AND OPEN$ GT 500

 : statements

ENDFOR

You can add further qualifications. Assume that CHECKDATE is a working data variable
defined to contain a date value specified at runtime.

FOR EACH CUSTOMER

 WHERE STATE EQ 'TX'

 AND OPEN$ GT 500

 AND ACTDT LT CHECKDATE

 : statements

ENDFOR

CA Datacom/DB and DB2 handle data types differently. For more information about the
data-dependent facilities, see the Programming Reference Guide.

Using a Variable as Selection Criteria

You can specify a variable, instead of a literal, as the selection criterion. The following
example uses a variable for the selection specification and maintains a single FOR EACH
construct to obtain the rows. Since the program prompts for the state and places the
user response in a variable (working data or parameter data is valid) named STNAME,
you can write the FOR construct to access all customers in the specified state:

FOR EACH CUSTOMER

 WHERE STATE EQ STNAME

 : statements

ENDFOR

Accessing Data from a Table or File

60 Creating Programs Guide

Relational Operators and Conditionals

The WHERE clause can be very powerful not only because it can contain compound
specifications and variables to note the selection criteria, but because a wide variety of
relational operators are available. They include:

= EQ EQUAL

¬= NE NOT EQUAL NOT=

 GT GREATER [THAN]

>= GE NOT LESS NOT< ¬<

< LT LESS [THAN]

<= LE NOT GREATER NOT> ¬>

Valid conditionals include:

AND &

OR |

NOT ¬

Note: Avoiding ambiguity caused by same names. Frequently, a column in one dataview
has the same name as a column in another dataview, field, or variable. To avoid any
ambiguity, use the fully qualified name. For example, the CUSTOMER dataview contains
a column named STATE and the panel PROMPT contains a field named STATE:

FOR EACH CUSTOMER

 WHERE CUSTOMER.STATE EQ PROMPT.STATE

 : statements

ENDFOR

Note: Index or key columns speed access. Columns specified with the WHERE clause, do
not have to be key columns. The program is usually faster and more efficient when the
columns specified in the WHERE clause are key columns. There are instances when it is
not necessary. If the occurrence of a column is in a non-critical program or the particular
FOR construct is used infrequently, it might be preferable to retain that column as a
non-key column since each key does require storage resources and maintenance.

Sequencing the Set of Rows

Once a set of rows is obtained from the database, the sequence in which the rows are
processed can be important. For example, the sequence is important when displaying an
alphabetical list of the customers in Texas. To retrieve the rows in a specific sequence,
use the ORDERED BY clause. If you omit the ORDER BY clause, the order is undefined
and the row sequence could vary over time due to either database design changes or
changes in the data itself.

Accessing Data from a Table or File

Chapter 2: Reading and Writing Data 61

Ordering Based on One Column

Assuming that CUSTNAME is the column containing the customer name, you can use the
ORDERED BY clause to order all of the customers in Texas alphabetically by name:

FOR EACH CUSTOMER

 WHERE STATE EQ 'TX'

 ORDERED BY CUSTNAME

 : statements

ENDFOR

Ordering Based on Multiple Columns

You can include additional column names for a more specific sequence. You can code
the FOR EACH construct to order the customers in Texas by city and then by name in
each city, as shown in the code below. List the column names in the order of
precedence. Above, the high-order column, CITY, is named first.

FOR EACH CUSTOMER

 WHERE STATE EQ 'TX'

 ORDERED BY CITY, CUSTNAME

 : statements

ENDFOR

Ordering in Ascending or Descending Sequence

You can order the rows in ascending or descending sequence. The default sequence is
ascending order. You can specify it as DESCENDING or, when you specify several
columns, a combination of ASCENDING and DESCENDING. You can modify the previous
example to sort by activity date (ACTDT column) in descending sequence (oldest first,
rather than most recent first):

FOR EACH CUSTOMER

 WHERE STATE EQ 'TX'

 ORDERED BY DESCENDING ACTDT, ASCENDING CUSTNAME

 : statements

ENDFOR

It is necessary to specify the keyword ASCENDING for the column CUSTNAME because it
follows DESCENDING ACTDT. If you did not specify ASCENDING here, CUSTNAME would
be sorted in descending order.

Accessing Data from a Table or File

62 Creating Programs Guide

Note: Indexes facilitate sequencing. As with the WHERE clause, it is usually fastest and
most efficient to sequence the rows based on key columns. After careful consideration,
it might be necessary to request new keys to suit program requirements. Since keys
require storage and maintenance, you should probably not define columns specified on
infrequently used ORDERED BY clauses or in non-critical programs as keys. If a column
specified on the ORDERED BY clause is a component of more than one key, it might be
more efficient to specify all of the component columns of the key. In all cases, the
database determines which key to use at runtime.

Limiting the Number of Rows

The FOR EACH statement accesses every row that satisfies the specified criteria. FOR
FIRST accesses a specified number of rows starting with the first one retrieved.

Obtaining a Specific Number of Rows

Since the FOR FIRST construct, like the FOR EACH construct, is a form of the FOR
construct, the WHERE and ORDERED BY clauses specify the selection criteria and the
row sequencing. A simple example can demonstrate the difference between FOR FIRST
and FOR EACH. Rather than selecting every customer from Texas through FOR EACH,
you can use FOR FIRST to access only the first ten customers from Texas.

FOR EACH CUSTOMER FOR FIRST 10 CUSTOMER

 WHERE STATE EQ 'TX' WHERE STATE EQ 'TX'

 : statements : statements

ENDFOR ENDFOR

Sequencing the Rows

The sequence in which the rows are accessed can be extremely important when
selecting a limited number of rows. A very different set of rows could be accessed from
one execution to the next. The ORDERED BY clause ensures the sequence. The ten rows
are obtained from all customers in Texas based on the sequence specified in the
ORDERED BY clause. The resulting ten rows could, for example, contain the customers
whose names start with A, then with B, and so on until ten customers are obtained.

FOR FIRST 10 CUSTOMER

 WHERE STATE EQ 'TX'

 ORDERED BY CUSTNAME

 : statements

ENDFOR

You can specify any number of rows. If there are not a sufficient number of rows to
satisfy the specified value, only the available rows are accessed. No error occurs.

Accessing Data from a Table or File

Chapter 2: Reading and Writing Data 63

Using a Variable to Specify the Number of Rows

You can specify an operand to specify the number of rows as a numeric value or a valid
numeric variable. By using a variable to specify the number of rows, you can include the
preceding example in a program that prompts for the number of rows to obtain. The
returned value can be used as an operand instead of the numeric literal. Assume that
NUMROWS is defined as a working data numeric variable:

FOR FIRST NUMROWS CUSTOMER

 WHERE STATE EQ 'TX'

 ORDERED BY CUSTNAME

 : statements

ENDFOR

Accessing One Row

Frequently, it is necessary to access a single row from the database. This is done so
routinely that when a number of rows is not specified on the FOR FIRST construct, 1 is
assumed, as in the following, which accesses the first customer in Texas alphabetically.

FOR FIRST CUSTOMER

 WHERE STATE EQ 'TX'

 ORDERED BY CUSTNAME

 : statements

ENDFOR

The first customer can change from one execution to the next since new customers can
be added.

Accessing One Unique Row

Usually a single specific row, in this case a unique customer, is accessed regardless of its
relative position alphabetically or otherwise in the table. This is accomplished by the
selection conditions. In other words, if the CUSTNAME column was defined to contain
unique data for each row, specifying that column on the WHERE clause always retrieves
the same row:

FOR FIRST CUSTOMER

 WHERE CUSTNAME EQ 'ANACONDA'

 : statements

ENDFOR

Since only one row can satisfy this WHERE criteria, an ORDERED BY clause is not
included. The WHERE clause does not need to specify any other criteria in this situation.
Using the same WHERE clause, the FOR EACH construct retrieves the same single row
only because the column value is unique. But with the FOR FIRST construct, it is obvious
that a single row is accessed.

Accessing Data from a Table or File

64 Creating Programs Guide

No Rows Satisfy Criteria

When coding a FOR construct, consider the possibility that a row is not located to satisfy
the selection criteria. If a row is not obtained, processing continues but, unless the
program provides for this condition, the user is not notified. If processing depends upon
accessing data from the database, unexpected results can occur. The WHEN NONE
clause allows the program to handle this situation. For example, when attempting to
obtain a single row, you can code the WHEN NONE clause to generate a message if that
row is not located:

FOR FIRST CUSTOMER

 WHERE CUSTNAME EQ 'ANACONDA'

 : statements

WHEN NONE

 :issue message

 NOTIFY 'No customer named ANACONDA'

ENDFOR

Looping to Reprompt

Frequently a program has a FOR construct in a loop to reprompt the user for selection
criteria and re-execute the FOR construct. For example, the previous FOR construct
could specify a variable rather than a literal and prompt for the criteria. In the following
example, the panel is named PROMPT. The panel fields, CUSTNAME and MSG, are fully
qualified to enhance readability:

LOOP

 DO GET-REQST

UNTIL FINISHED

 SET PROMPT.MSG = $SPACES

 FOR FIRST CUSTOMER

 WHERE CUSTOMER.CUSTNAME EQ PROMPT.CUSTNAME

 : statements

 WHEN NONE

 SET PROMPT.MSG = 'Customer not found'

 ENDFOR

ENDLOOP

This code segment demonstrates using WHEN NONE and reprompting. The variable
named FINISHED is an example of a flag to terminate the LOOP construct. For more
information about coding LOOP, see the Programming Reference Guide. The
subprocedure, GET-REQST, controls the input and output functions.

Accessing Data from a Table or File

Chapter 2: Reading and Writing Data 65

Note: Include the WHEN NONE clause with every use of the FOR construct, even when it
is highly unlikely that it will execute (that is, no rows satisfy the selection criteria). A
comment in the clause can note that the clause is currently not required:

FOR EACH CUSTOMER

 : statements

WHEN NONE

 : currently not required

ENDFOR

If the criteria on the FOR construct ever change, the WHEN NONE clause can become
important. If the clause is always provided, it is more likely to be specified appropriately
when the FOR construct is modified. The presence of the WHEN NONE acts as a
reminder to code it.

If the code in the WHEN NONE clause is designed to terminate the run, the program
should provide a message to the end user and perform cleanup to prevent confusion.

Handling Runtime Errors in Selection

The WHEN NONE clause only executes when there are no rows that satisfy the specified
criteria. If, in fact, an error exists in specifying the criteria such that the data type does
not conform to the comparison column, a runtime error occurs. For more information
about dealing with runtime errors, see the "Error Handling" chapter.

Accessing Rows from Multiple Tables

In a relational database, it is important to be able to access multiple tables
simultaneously. You can nest FOR constructs to do this as long as each FOR construct
specifies a different cataloged dataview. You can nest any combination of FOR EACH and
FOR FIRST. You can also nest FOR NEW. For information about FOR NEW, see Adding
Rows. In SQL, dataviews can be defined to contain columns from more than one table. A
dataview defined in this manner effectively joins the tables. You can use these
dataviews on a read-only basis.

Accessing Data from a Table or File

66 Creating Programs Guide

Joining Based on Common Columns

Tables are joined based on common columns. For example, assume two tables exist, a
CUSTOMER table and an ORDER table. Each order is associated with a single customer.
Each customer can have none, one, or more than one order. The tables are constructed
such that they are joined by a common column, CUSTID, containing the customer
identification number. This could be shown as:

CUSTID CUSTNAME | CUSTID ORDID

B1000 SMITH | B3000 X1234

B2000 JONES | B1000 X1222

B3000 GREEN | B3000 X1422

The previous example shows that customer B1000 has one order, customer B3000 has
two orders, and customer B2000 does not have any orders.

To access every order of a specific customer as named in the variable
PROMPT.CUSTNAME, specify:

FOR FIRST CUSTOMER

 WHERE CUSTOMER.CUSTNAME EQ PROMPT.CUSTNAME

 FOR EACH ORDER

 WHERE ORDER.CUSTID EQ CUSTOMER.CUSTID

 ORDERED BY ORDID

 : statements

 WHEN NONE

 NOTIFY 'Customer has no orders'

 ENDFOR

WHEN NONE

 NOTIFY 'No customer found'

ENDFOR

The WHERE clause on the inner FOR locates all of the orders for the customer. In this
example, CUSTID is the column that joins the tables. This one column is defined in both
tables to contain the customer ID. The column names are qualified to prevent any
ambiguity.

Each FOR construct has its own WHERE clause and a WHEN NONE clause and ENDFOR
statement to terminate the construct. The inner construct terminates first. Indentation
is especially important with nested FOR constructs. Without it, the code becomes
confusing. Indentation clarifies at a glance the boundaries of the FOR constructs and the
relative nested position of each construct.

Whenever coding nested FOR constructs, without a WHERE clause to limit the set
selection of the inner FOR, all rows of the table are read for each row in the outer FOR
construct.

Accessing Data from a Table or File

Chapter 2: Reading and Writing Data 67

Note: Subprocedures promote modularity. To promote structured programming, you
can code the FOR constructs in subprocedures. This is especially useful when complex
evaluation or multi-level nesting is required. The resulting performance of this segment
is the same as if coded in a linear manner:

FOR FIRST CUSTOMER

 WHERE CUSTOMER.CUSTNAME EQ PROMPT.CUSTNAME

 DO GETORDS

 : statements

ENDFOR

. . .

<<GETORDS>> PROCEDURE

 FOR EACH ORDER

 WHERE ORDER.CUSTID EQ CUSTOMER.CUSTID

 DO GETDTLS

 : statements

 ENDFOR

ENDPROC

<<GETDTLS>> PROCEDURE

 FOR EACH DETAIL

 WHERE DETAIL.ORDID EQ ORDER.ORDID

 : statements

 ENDFOR

ENDPROC

Each subprocedure reflects a level of the FOR construct nesting. This code is generally
easier to read and maintain. The evaluations pertinent to each level of the nest are
separated into their respective set of rows.

Accessing Multiple Rows from One Table

The dataviews must be unique when nesting FOR constructs, but you can define several
dataviews to access the same table. These dataviews can then be used in nested FOR
constructs to access more than one row from a single table.

Accessing Data from a Panel

68 Creating Programs Guide

For example, while processing an order, it might be necessary to find out if another
order exists for the customer. The following code segment requires two dataviews,
PROCORD and OTHERORD, for the same table, ORDER. The dataviews need not specify
the same columns or have the same attributes.

FOR FIRST PROCORD

 WHERE PROCORD.ORDID EQ PROMPT.ORDID

 FOR EACH OTHERORD

 WHERE OTHERORD.CUSTID EQ PROCORD.CUSTID

 AND OTHERORD.ORDID NE PROCORD.ORDID

 : statements

 WHEN NONE

 : statements

 ENDFOR

ENDFOR

The ORDID column retrieves the unique row in the FOR FIRST PROCORD construct and
skips the unique row on the FOR EACH OTHERORD construct. The additional
qualification on the FOR EACH OTHERORD WHERE clause selects only those orders
associated with the customer identified for the unique order in PROCORD.CUSTID.

Accessing Data from a Panel

For more information about this topic, see the Programming Reference Guide.

Statements Functions

TRANSMIT $CURSOR

MOVE $EMPTY

REFRESH $KEY

RESET $PANEL-ERROR

SET ATTRIBUTE $PANEL-FIELD-ERROR
$PANEL-GROUP-OCCURS
$PF
$RECEIVED

Displaying Data from a Table or File

Once the set of rows is obtained, you can display the data on the screen. The NOTIFY
statement, the LIST statement, and the TRANSMIT statement provide the facilities for
writing to the screen. This section does not describe how to define panels, but rather
how to display the panels that were defined.

Displaying Data from a Table or File

Chapter 2: Reading and Writing Data 69

Using the Message Line

The NOTIFY statement is an easy way to display the value of a column at the screen. The
data is written to the message line. This provides a means of displaying messages at the
screen during runtime without coding a message area in a panel. It does, however, limit
the total length of the message to 79 characters.

The NOTIFY text displays when a panel is transmitted or when a run is terminated.
NOTIFY can be useful when testing a program or when evaluating user input. For
example, NOTIFY CUSTOMER.CUSTNAME displays the contents of the column on the
message line. You could use the following segment during testing to ensure that the
requested row is accessed:

FOR FIRST CUSTOMER

 WHERE CUSTOMER.CUSTNAME EQ PROMPT.CUSTNAME

 NOTIFY CUSTOMER.CUSTNAME ' found'

WHEN NONE

 NOTIFY PROMPT.CUSTNAME ' not found'

ENDFOR

Using an Output File

The LIST statement can write the contents of one or more columns to an output file.
This file can then display online after the program terminates. The following example
writes the customer identification number and name to the output file.

FOR FIRST CUSTOMER

 WHERE CUSTOMER.CUSTNAME EQ PROMPT.CUSTNAME

 LIST CUSTOMER.CUSTID CUSTOMER.CUSTNAME

WHEN NONE

 NOTIFY PROMPT.CUSTNAME ' not found'

ENDFOR

LIST can also write the contents of a panel to an output file. In other words, you can
assign the column values in a row to the appropriate panel fields, and using LIST, write
the entire panel contents to an output file. You can then view the file online or print it.

Displaying Data from a Table or File

70 Creating Programs Guide

In the following example, the FOR construct accesses each row of data from the
CUSTOMER table. The row is moved to the panel fields by the MOVE BY NAME
statement. A panel, named CUSTPNL, was defined to contain the data:

FOR FIRST CUSTOMER

 WHERE CUSTOMER.CUSTNAME EQ PROMPT.CUSTNAME

 MOVE CUSTOMER TO CUSTPNL BY NAME

 LIST CUSTPNL

WHEN NONE

 NOTIFY PROMPT.CUSTNAME ' not found'

ENDFOR

For more information about using LIST to generate output, see the Generating Reports
Guide.

Using a Panel for Display

Usually a panel is sent to the screen to display one or more rows of data in a
preformatted manner and, optionally, to return data the user typed.

The TRANSMIT statement sends or transmits the panel to the screen. It also pause
program execution while waiting for user input. Once the user signals an end to input by
pressing a program function key or Enter, CA Ideal returns control to the program at the
statement coded directly after TRANSMIT. CA Ideal handles the transaction boundary
processing inherent in executing the TRANSMIT statement and restores all current
program values. The user input is available as data in panel fields or by evaluating the
panel terminating key.

TRANSMIT is important in updating the database. It is explained in Updating a Table or
File.

Displaying One Row at a Time

The following segment displays one row from the CUSTOMER table in a panel named
CUSTPNL. The MOVE statement is necessary to assign the column values to the panel
fields before performing the TRANSMIT for the panel.

FOR FIRST CUSTOMER

 WHERE CUSTOMER.CUSTNAME EQ PROMPT.CUSTNAME

 MOVE CUSTOMER TO CUSTPNL BY NAME

WHEN NONE

 NOTIFY PROMPT.CUSTNAME ' not found'

ENDFOR

TRANSMIT CUSTPNL

Updating a Table or File

Chapter 2: Reading and Writing Data 71

Displaying Multiple Rows at a Time

To display multiple rows of data in a single panel, the panel is populated in the FOR
construct and transmitted outside of the FOR construct to ensure that the panel
contains the data from all of the rows before the actual display.

In the following example, the panel CUSTPNL was defined to contain a repeating group,
CUSTDATA. Each occurrence of the group is assigned the values in one row accessed
from the table. A variable, PNLINDX, was defined in working data to act as an index to
increment through the repeating group in the panel as the assignment proceeds row by
row in the FOR construct:

SET PNLINDX = 0

FOR FIRST 10 CUSTOMER

 ORDERED BY CUSTNAME

 SET PNLINDX = PNLINDX 1

 MOVE CUSTOMER TO CUSTPNL.CUSTDATA(PNLINDX) BY NAME

 ENDFOR

 TRANSMIT CUSTPNL

This example assumes that the number of rows retrieved does not exceed the size of
the panel. Examples are provided in Appendix D, which uses the
$PANEL-GROUP-OCCURS function to limit the number of rows retrieved to the actual
size of the panel.

Updating a Table or File

Data maintenance includes three basic functions: Modifying existing data, deleting data,
and adding data. The performance of these functions is linked to CA Ideal transaction
handling.

Modifying Rows

You can only modify existing rows explicitly; that is, by direct assignment. There are
several statements that you can use. The following are all valid:

SET ACTDT = $TODAY

MOVE PROMPT.CUSTNAME TO CUSTOMER.CUSTNAME

ADD 10 TO OPEN$

SUBTRACT 100 FROM OPEN$

You must make all modifications to the database in the scope of a FOR construct.
Additionally, in CA Datacom/DB, the native dataview must be defined as updateable.

Updating a Table or File

72 Creating Programs Guide

To understand how the updates are made in the FOR construct, review the following
example. All customers in Texas are assigned to a new salesman. This example selects all
customers in Texas as the set, accesses each row, one at a time, and assigns the new
salesman ID value to the column SALESMAN in each row. The ENDFOR statement
denotes the end of processing for the current row when the database is updated.

FOR EACH CUSTOMER

 WHERE CUSTOMER.STATE EQ 'TX'

 SET CUSTOMER.SALESMAN = NEWID

...

ENDFOR

Controlling Updates

You can code the FOR construct to contain the evaluation that limits which retrieved
rows are updated. In the following example, an IF construct is used. The update to the
current row only occurs if the city is Amarillo.

FOR EACH CUSTOMER

 WHERE CUSTOMER.STATE EQ 'TX'

 IF CITY EQ 'AMARILLO'

 SET CUSTOMER.SALESMAN = NEWID

 ENDIF

...

ENDFOR

Abandoning an Update

The modifications are applied to the database when the ENDFOR statement is reached.
Before the ENDFOR is executed, you can abandon changes by exiting or quitting the FOR
construct.

When QUIT is coded in a FOR construct, the update to the current row and any
subsequent rows does not occur. The QUIT statement exits the FOR construct.
Therefore, the ENDFOR statement is never reached to apply the changes to the current
row in the database and the subsequent rows are never processed. The database still
contains the changes made to previous rows processed before the QUIT statement
executed.

You can also code a PROCESS NEXT statement in a FOR construct. This statement
abandons the current update, but processin continues with the next iteration of the FOR
construct allowing subsequent updates to take place.

Updating a Table or File

Chapter 2: Reading and Writing Data 73

Abandoning Multiple Changes

You can also abandon changes to rows in nested FOR constructs. Notice the use of a
label to identify which FOR construct is the object of the QUIT.

<<CUST>>

 FOR FIRST CUSTOMER

 WHERE CUSTOMER.CUSTNAME EQ PROMPT.CUSTNAME

 : statements

 <<ORD>>

 FOR FIRST ORDER

 WHERE ORDER.CUSTID EQ CUSTOMER.CUSTID

 : statements

 IF condition1

 QUIT ORD

 ENDIF

 IF condition2

 QUIT CUST

 ENDIF

 ENDFOR

 IF condition3

 QUIT CUST

 ENDIF

ENDFOR

In this example, the changes to the current ORDER row are bypassed if condition1 is
true. Changes to the current ORDER row and the CUSTOMER row are ignored if
condition2 is true. Changes to the CUSTOMER row are aborted if condition3 is true. A
label is not required on the QUIT statement of the current FOR construct used in the IF
construct for condition1 and condition3; however, the program is clearer and easier to
maintain if labels are specified.

Deleting Rows

Deleting rows from a table is an integral part of database maintenance. Unlike
modifying the row, deleting the row takes place immediately. The entire row is deleted,
regardless of the columns specified in the dataview. In other words, when modifying the
contents of a row, only the columns specified on the dataview are available. The system
evaluates the actual modifications and performs them at the ENDFOR. The DELETE
statement is executed immediately, not at the ENDFOR.

Updating a Table or File

74 Creating Programs Guide

In the following example, the DELETE statement is used. Assume a specific row is
deleted if the user presses F4. Otherwise, the subprocedure EVALINP evaluates the row.

FOR FIRST CUSTOMER

 WHERE CUSTOMER.CUSTNAME EQ PROMPT.CUSTNAME

 MOVE CUSTOMER TO CUSTPNL BY NAME

 IF $PF4

 DELETE CUSTOMER

 NOTIFY 'DELETE successful'

 ELSE

 DO EVALINP

 ENDIF

WHEN NONE

 NOTIFY PROMPT.CUSTOMER 'not found'

ENDFOR

Since DELETE is a destructive statement, code it carefully. For example, the previous
example displays the row and only executes the DELETE if you press a specific key. You
can include a message to indicate that the function was successfully performed.

Restoring a Deleted Row

The BACKOUT statement, since it restores the database to the previous CHECKPOINT or
stable condition, restores the deleted row if an intervening CHECKPOINT or TRANSMIT
statement with implicit CHECKPOINT was not executed.

Updating a Table or File

Chapter 2: Reading and Writing Data 75

Adding Rows

The FOR NEW construct adds new rows to a table. Unlike the other FOR constructs, FOR
NEW does not iterate. You can code a FOR NEW construct in a LOOP construct to iterate
adding rows to a table. Then evaluation is coded in the LOOP to terminate it. For
example, in the following code, a subprocedure GETDATA obtains the information for
the row and evaluates that information before executing FOR NEW. The subprocedure
also sets the flag FINISHED to TRUE based on user input (the user presses a function key)
to terminate the loop.

LOOP

 DO GETDATA

UNTIL FINISHED

 FOR NEW CUSTOMER

 MOVE CUSTPNL TO CUSTOMER BY NAME

 ENDFOR

ENDLOOP

The new row is added to the database at the ENDFOR. Before the ENDFOR, you can
make any modifications to the table without directly impacting the database. Also, you
can code QUIT to bypass adding the row.

Maintaining Unique Data

When the ENDFOR statement executes, the new row is evaluated and an attempt is
made to insert it into the database. If the database table was set up to not allow
duplicates, a runtime error occurs if adding the row results in a duplicate. A runtime
error causes CA Ideal to display a message on the message line and terminate the run.
To avoid this, the WHEN DUPLICATE clause allows the program to recover from the
error. Although the error cannot be corrected in the program, the program does not
terminate. For example, in the following code segment, a message displays. The LOOP
construct prompts the user to re-enter the information for the new row:

LOOP

 DO GETDATA

UNTIL FINISHED

 FOR NEW CUSTOMER

 MOVE CUSTPNL TO CUSTOMER BY NAME

 WHEN DUPLICATE

 NOTIFY 'Duplicate Row, Respecify'

 ENDFOR

ENDLOOP

Updating a Table or File

76 Creating Programs Guide

Note: When using FOR NEW in a LOOP construct, you might want to keep track of the
number of rows that are added. You can include a counter in the FOR construct to
perform this function. Assume that a variable named CTR was defined in working data
and is used in the following example to accumulate the number of new rows:

FOR NEW CUSTOMER

 MOVE CUSTPNL TO CUSTOMER BY NAME

 ADD 1 TO CTR

WHEN DUPLICATE

 NOTIFY 'Duplicate Value, Please Respecify'

 SUBTRACT 1 FROM CTR

ENDFOR

CTR is decremented if the WHEN DUPLICATE clause is executed. This is necessary. The
value of the variable is incremented in the FOR construct, regardless of whether the row
is successfully added to the database. Since rows are evaluated and added to the
database at the end of the FOR construct, a duplicate row is not encountered before the
ENDFOR statement. If the row is a duplicate and not added to the database, the CTR
must be decremented in the WHEN DUPLICATE clause to maintain an accurate value in
the counter.

Transmitting in FOR NEW

You can code TRANSMIT in the FOR NEW construct. Although a TRANSMIT performs a
CHECKPOINT, the current new row is not included since the new row is not written to
the database until the ENDFOR. A TRANSMIT after the ENDFOR commits the new row.

Note: When adding rows to the database, use a dataview containing all of the columns
in the table. That way, the columns are initialized either explicitly by the program or
implicitly by the default values as specified for the columns.

When default values are not specified for the columns included in the dataview, values
are defined based on the data type. Numeric data is set to zero and alphanumeric data
is set to blank. Nullable columns are set to NULL. All time, date, and timestamp columns
are set to the respective current value at the time the row is added.

Any columns not included in the dataview must also be initialized when the row is
added to the database, otherwise, a runtime error can occur because CA Datacom/DB
initializes the column to blank regardless of data type, unless Datadictionary field
attribute, DBEDITS, is specified as Y. To avoid initialization errors in CA Ideal, use a
dataview that includes all of the columns in the row or specify Datadictionary field
attribute DBEDITS=Y. For more information, see the [set the ddb variable for your book]
Datadictionary Attribute Reference Guide.

Updating a Table or File

Chapter 2: Reading and Writing Data 77

Committing the Changes

You can modify and commit the changes to the database. The following section explains
it in detail.

Updating and Committing

You modify and formally commit the changes to the database in two separate steps.
That is, changes to the database are evaluated and applied to each row in the FOR
construct when the ENDFOR statement is reached. You can include code in the FOR
construct to control the actual changes. This is distinct from committing the changes.

A checkpoint is required to commit the changes to the database. A checkpoint
establishes the current stable state of the database. Any changes to the database
become permanent or a part of the current stable state. A checkpoint can occur
explicitly using the CHECKPOINT statement or implicitly using the TRANSMIT statement.

Before a checkpoint, either implicit or explicit, you can remove or back out the updates
from the database through the BACKOUT statement. As a safeguard, BACKOUT is
automatically executed when a program abends. You can code it in a program to ensure
that changes are not committed for a set of rows when some function cannot complete.

Explicit CHECKPOINT

In the following example, the CHECKPOINT statement commits the changes to the
database.

FOR FIRST CUSTOMER : access the row

 WHERE CUSTOMER.CUSTNAME EQ PROMPT.CUSTNAME

 : statements : modify the row

ENDFOR : apply the changes

 : to the database

CHECKPOINT : changes committed

In this example, a single customer row is accessed and processed using the statements.
The changes are made to the database at the ENDFOR. The CHECKPOINT outside of the
FOR construct formally commits those changes. Once checkpointed, the changes cannot
be lost or backed out of the database.

Updating a Table or File

78 Creating Programs Guide

When a FOR EACH or FIRST construct accesses and modifies several rows, the
CHECKPOINT commits the changes made to all of those rows. For example, all of the
customers in Texas are accessed and assigned to a new salesman. Although each row is
processed individually and the database updated one row at a time, the CHECKPOINT
statement outside of the construct commits all of the rows at the same time:

FOR EACH CUSTOMER : access the row

 SET CUSTOMER.SALESMAN = NEWID : modify the row

ENDFOR : apply the change

 : to the database

CHECKPOINT : all rows committed

Removing Changes from the Database

The BACKOUT statement removes all of the updates to the database that were made
since the last CHECKPOINT. BACKOUT returns the database to the most recent stable
state. For example:

CHECKPOINT : changes committed

FOR EACH CUSTOMER : access the row

 SET CUSTOMER.SALESMAN = NEWID : modify the row

ENDFOR : apply the changes

 : to the database

BACKOUT : changes backed out

 : to checkpoint

In the previous example, modifications are made to the row in the FOR construct. The
BACKOUT statement following the FOR construct, however, removes those changes and
returns the database to the previous CHECKPOINT state.

Note: You can specify CHECKPOINT or BACKOUT in the FOR construct. Be aware though,
that CHECKPOINT in the FOR construct does not include the current row. The
modifications to the current row are not applied to the database until the ENDFOR
statement is executed. Similarly, BACKOUT does not affect the current row since the
changes are not yet in the database. A CHECKPOINT or BACKOUT statement following
ENDFOR includes the last accessed row.

CHECKPOINT and BACKOUT release exclusive control of the current row. For further
information, see the CA Datacom/DB documentation.

TRANSMIT with CHECKPOINT

When you use mainframe CA Ideal in a CICS environment, executing a TRANSMIT
statement always performs a CHECKPOINT. This ends the current transaction and
protects modifications against loss if the system abnormally terminates during
TRANSMIT.

The TRANSMIT statement causes a CHECKPOINT.

Updating a Table or File

Chapter 2: Reading and Writing Data 79

The following shows the sequence of events that occurs when the program is updating a
row and TRANSMIT (with a CHECKPOINT) is executed in the FOR construct:

FOR FIRST CUSTOMER : access the row

 WHERE CUSTOMER.CUSTNAME EQ PROMPT.CUSTNAME

 : statements : modify the row

 TRANSMIT CUSTPNL : commit previous row

ENDFOR : apply the changes

 : to the database

The CHECKPOINT action of the TRANSMIT commits any changes made to the database
before the current iteration of the FOR construct. Any changes made to the current row
are not applied to the database because ENDFOR was not executed for the current row.
A TRANSMIT or CHECKPOINT following ENDFOR commits the current modifications.

For online applications, terminal I/O causes a database checkpoint to occur. Because
user input at the terminal can be time-consuming and has the potential to obtain
control of multiple rows for indefinite periods of time, the TRANSMIT statement causes
a CHECKPOINT.

In other words, with CA Datacom/DB, control is not maintained across CICS transaction
boundaries. Each TRANSMIT is considered a CICS transaction. With DB2 and DBSQL ANSI
mode, the database cursor is released when any checkpoint occurs.

Checkpointing while Updating

More than likely, an online application transmits a panel containing the data to update.
Just as with display, the data is moved to the panel fields before the TRANSMIT
statement is executed. The user then modifies the data displayed on the panel. When
the user returns control to the program, the data in the panel fields must then be
assigned or moved to the dataview. The actual update to the dataview can be
performed based on the evaluation of some condition before executing the MOVE
statement. For example, assume that if the user presses PF4, the changes are applied.
You can code the program as:

FOR FIRST CUSTOMER

 WHERE CUSTOMER.CUSTNAME EQ PROMPT.CUSTNAME

 MOVE CUSTOMER TO CUSTPNL BY NAME

 TRANSMIT CUSTPNL

 IF $KEY EQ 'PF4'

 MOVE CUSTPNL TO CUSTOMER BY NAME

 ENDIF

ENDFOR

Updating a Table or File

80 Creating Programs Guide

CA Ideal ensures that the modified row has not changed from the initial access to the
point of update. An error condition occurs if an attempt is made to apply changes to a
row that was modified between the time it was accessed and the time of the actual
update to the row. If the checkpoint occurs outside of the FOR construct, there should
be no conflict. Access is maintained for the update. However, if you code TRANSMIT in
the FOR construct, it causes an automatic checkpoint and the row is released. Another
user can access and modify the row between the time of access and time of actual
update. If the row was changed from the original, control passes to the error procedure.
You can design a program-defined error procedure to handle this situation by
re-accessing the row or bypassing the changes. For more information, see the "Error
Handling" chapter.

A CHECKPOINT is automatically issued when an application terminates successfully. A
BACKOUT is issued when an application terminates abnormally due to a system error. In
all other cases, a BACKOUT is only issued if coded in the program.

Updating a Table or File

Chapter 2: Reading and Writing Data 81

Multi-User Considerations

It is important to consider database access and row availability in a multi-user system.
The row is not updated in the database until the ENDFOR when accessing data from a
CA Datacom/DB CBS database or a DB2 database. The control of the row from retrieval
to release is different in these databases. In either, a CHECKPOINT, TRANSMIT, or
BACKOUT releases the row.

CA Datacom/DB CBS

There are two levels of exclusive control: Primary and secondary. In the FOR
construct, the row currently updated is held with primary exclusive control. Once
ENDFOR is reached, the updates are applied to the database and the row is held
with secondary exclusive control. Primary exclusive control indicates the current
row, secondary exclusive control indicates the updated rows that were not
checkpointed. All control is released when a checkpoint is performed. This is
demonstrated by an example:

FOR ... : access with exclusive control

 SET or MOVE : update dataview

ENDFOR : update database row and downgrade

 : to secondary control

CHECKPOINT : release all control

The program that controls the row can access any row, even those held with
primary and secondary exclusive control. Another user cannot update rows held
under any level of control.

DB2

There is one level of access in a program. DB2 supports table level locking and page
level locking for all releases. With Release 4, DB2 also supports row level locking, if
implemented, and the no lock isolation level. When a row is locked with update
intent, no other users can access that row until it is released. The updates are
performed at the ENDFOR. When page or table level locking is used, a CHECKPOINT
is required to release the lock. When row level locking is used, the lock is released
when another row is read from the same set.

If the flag is on, the buffer image of the originally accessed row held in a dataview
buffer is compared to the dataview on the FOR construct. If these match, the data
has not changed and no update is necessary. If they do not match, an update is
being performed. The exact image is then compared to the row currently in the
database. If these match, the row is accessed and updated. If they do not match,
the row has been modified by another user between the time of the original access
and the attempt to apply the updates. An error condition occurs.

The error condition is identified by evaluating $ERROR-DVW-STATUS for 'I3' for CA
Datacom/DB and $ERROR-TYPE 'D72' for DB2. For more information about
handling this error condition, see the
chapter 6, "Error Handling".

Updating a Table or File

82 Creating Programs Guide

CHECKPOINT in FOR EACH

Thus far, the examples using TRANSMIT have modified a single row. When accessing a
CA Datacom/DB native dataview, you can issue TRANSMIT in the FOR EACH construct.
Even though the accessed rows are released when a TRANSMIT with implicit
CHECKPOINT, CHECKPOINT, or BACKOUT statement is executed, the set definition and
current position in the set are not lost. This means that you can code these statements
in any FOR construct.

The following example shows changes were not made to the current row. The
TRANSMIT statement commits the previous row. A CHECKPOINT or TRANSMIT
statement outside of the FOR construct is needed to commit the last row accessed.

FOR EACH CUSTOMER : access the row

 MOVE CUSTOMER TO CUSTPNL BY NAME : fill panel

 TRANSMIT CUSTPNL : transmit panel

 MOVE CUSTPNL TO CUSTOMER BY NAME : update row

ENDFOR : apply the change

 : to the database

CHECKPOINT : commit last row

DB2 Considerations

In DB2, you cannot update multiple rows using TRANSMIT or CHECKPOINT in the FOR
construct. The database cursor is released along with the accessed rows when
TRANSMIT, CHECKPOINT, or BACKOUT is executed. CA Ideal is only able to locate the
current unique row and cannot locate the current row in a multi-row set. For that
reason, you can only specify TRANSMIT, CHECKPOINT, and BACKOUT in a FOR FIRST 1
construct that accesses a unique row.

Accessing Released Dataview Data

Once the dataview is released by a TRANSMIT with implicit CHECKPOINT, CHECKPOINT,
or BACKOUT statement, the dataview fields of the last accessed row are still accessible
but not modifiable. For example, as part of an error processing routine, BACKOUT can
be followed by a LIST statement to output the dataview fields.

Additionally, the data in the last accessed dataview row is available outside of the FOR
construct on a read-only basis. Updates can only occur in the FOR construct.

Chapter 3: Subprograms 83

Chapter 3: Subprograms

A subprogram is any program that another program calls. CA Ideal can pass data
between a CA Ideal calling program and a subprogram. The subprogram may be another
CA Ideal program or a non-Ideal program written in COBOL, PL/I, or assembler.

Calling a Subprogram

A CALL statement passes control from a CA Ideal program to a subprogram, and,
optionally, passes data (in the form of input or update data items) between the two.
After the called program terminates, control is returned to the calling program at the
next sequential statement in the calling procedure.

In the following example, the MAINMENU panel is transmitted and then, depending on
the selection entered, one of the update programs is invoked. When the update
program terminates, control returns to the NOTIFY statement in the calling program.

LOOP

 TRANSMIT MAINMENU

 UNTIL $PF3

 SELECT FIRST ACTION

 WHEN SELECTION='1'

 CALL CUSTUPDT

 NOTIFY 'Customer updates completed. Press PF3 to quit.'

 WHEN SELECTION='2'

 CALL ORDUPDAT

 NOTIFY 'Order updates completed. Press PF3 to quit.'

 WHEN SELECTION='3'

 CALL INVENUPD

 NOTIFY 'Inventory updates completed. Press PF3 to quit.'

 WHEN OTHER

 NOTIFY 'Select option 1, 2, or 3, or press PF3 to quit.'

 ENDSEL

ENDLOOP

Passing Data to a Subprogram

84 Creating Programs Guide

Passing Data to a Subprogram

Subprograms let CA Ideal access external routines and share procedures among several
applications. The calling program references data items with a CALL statement. A data
item can be the name of an elementary field, the name of a group, or a literal. The
subprogram includes parameter definitions that describe these data items. CA Ideal
manages the logical connections between the two.

In the following example, the program CHK-BACK determines whether the item entered
is back-ordered. The ITEM-ID from the panel is passed to the CHK-BACK program as
input. The working data field ANSWER receives the response from the CHK-BACK
program.

<<UPDATE-ITEM>> PROCEDURE

 FOR FIRST ITEM

 WHERE ITEM.ITMID EQ INCOMING.ITMID

 MOVE INCOMING TO ITEM BY NAME

 CALL CHK-BACK USING INPUT INCOMING.ITMID UPDATE ANSWER

 IF ANSWER = 'YES'

 NOTIFY 'Press PF5 for a report on back-ordered item.'

 ENDIF

 WHEN NONE

 DO ADD-ITEM

 ENDFOR

ENDPROC

You must define ITEM-ID and ANSWER as parameters for the CHK-BACK subprogram,
although they need not have the same names.

Passing Data to a Subprogram

Chapter 3: Subprograms 85

Executing a Subprogram Asynchronously

In the previous example, the user was notified to press PF5 for a report. Producing
reports can be a time-consuming task, and you might want to run the report program
asynchronously. This way, the user can proceed to other tasks online while the report is
produced. To execute a subprogram asynchronously, use the INITIATE statement
instead of the CALL statement.

In the next example, the PF5 key prints the report of outstanding orders for a
back-ordered product.

<<PROCESS-INCOMNG>> PROCEDURE

 TRANSMIT INCOMING

 SELECT FIRST ACTION

 WHEN $PF3

 QUIT PROCEDURE

 WHEN $PF5

 INITIATE PRNT-ORD USING INPUT INCOMING.ITEM-ID

 WHEN $ENTER-KEY

 DO UPDATE-ITEM

 WHEN NONE

 DO BAD-KEY

 ENDSEL

ENDPROC

The PRNT-ORD program uses the ITEM-ID entered on the panel INCOMING to find the
orders that could not be filled because they included that item. Meanwhile, the user can
continue with the next incoming item.

Requirements for Subprograms

86 Creating Programs Guide

Requirements for Subprograms

Any subprogram called by a CA Ideal program must follow certain conventions.

■ You must define the subprogram to CA Ideal using the program definition
identification fill-in. For CA Ideal subprograms, any parameters passed to the
subprogram from the calling program must be defined on the program
identification fill-in. For non-Ideal subprograms, any parameters passed to the
subprogram from the calling program must be defined in the program identification
fill-in and the subprograms linkage section. When defining the parameters, keep
the following in mind:

– Include the descriptions of each data item expected from the calling program.

– Specify level-1 parameter definitions in the same order as the corresponding
data items are specified in the CALL statement of the calling program. Each
data item in the CALL statement is matched, in order, with a level-1 parameter
in the called program.

– The passed data item and the corresponding level-1 parameter can have
subordinate fields. However, the data types and structures of the passed data
items must match that of the receiving data items.

– The names assigned to parameters in a subprogram need not be the same as
the names of the data items referenced in the CALL statement.

■ The calling program must include the subprogram as a resource on the program
resource fill-in.

■ Make a distinction between programs run online or in batch. A CA Ideal program
run online can call a CA Ideal subprogram, a non-Ideal online subprogram or initiate
an asynchronous run of a CA Ideal program. A CA Ideal program run in batch can
CALL any CA Ideal subprogram that does not contain a TRANSMIT or a non-Ideal
batch subprogram.

Beyond these facts, there are a number of significant differences between the
requirements for the design and use of CA Ideal subprograms and of non-Ideal
subprograms. For example, when the subprogram is coded in COBOL, PL/I, or
Assembler, it is written and maintained outside of CA Ideal. When the subprogram
executes, CA Ideal relinquishes control to the subprogram.

You should be careful that the non-Ideal subprogram does not modify the CA Ideal
environment. When a CA Ideal subprogram executes, CA Ideal maintains control of the
environment. Due to this major difference, the remainder of this section is divided into
two parts: Calling CA Ideal Subprograms and Calling non-Ideal Subprograms.

Note: CA Ideal programs cannot be called as subprograms by programs written in other
languages when executing in batch. Online, a CICS command level program can invoke a
CA Ideal session by using the EXEC CICS START command to start a CA Ideal transparent
sign-on. For more information about transparent sign-on, see the Administration Guide.

Parameter Matching for CA Ideal Subprograms

Chapter 3: Subprograms 87

Parameter Matching for CA Ideal Subprograms

When a CA Ideal program calls a CA Ideal subprogram, CA Ideal can make certain
assumptions and accommodate some differences in attributes that might exist at
runtime. This is because CA Ideal controls the runtime environments of both programs.

Since CA Ideal controls the runtime environment, you can define one of the two
methods of parameter matching-dynamic or identical-for each level-1 parameter.

Dynamic Matching

With dynamic matching, you must specify only the type and, for alphanumeric and
variable length types, the length of the parameter. CA Ideal copies the remaining
attributes from the corresponding item in the calling program. For example, if the
parameter is simply defined as signed numeric with dynamic matching, on one call, the
parameter might be packed; on the next call, it might be binary.

The rules for characters/digits specification for the parameter depend on the field type.
For more information about specifying parameters, see the chapter “Reading and
Writing Data.”

The flexibility provided by dynamic matching carries a cost in overhead. It limits how
you can use some kinds of parameters. For this reason, you can define parameters with
identical matching.

Identical Matching

With identical matching, you must specify the attributes needed to define the
parameter (at least Type, Internal Type for numeric and date, and Characters/Digits). CA
Ideal checks that the corresponding data item in the calling program has the same
attributes.

Identical matching allows CA Ideal to generate more efficient code at compile time
because the field attributes are already known. In addition, you must define group
parameters with identical matching to use in several CA Ideal contexts. See the MOVE
and SET statements and conditional expressions.

Linkage Conventions for CA Ideal Subprograms

88 Creating Programs Guide

Linkage Conventions for CA Ideal Subprograms

CA Ideal passes the address of each data item in the CALL statement. When the CA Ideal
subprogram refers to a parameter, whether as a source or target, the subprogram is
actually referring directly to the corresponding data item in the calling program.

Since CA Ideal controls the entire runtime environment, any attempt to modify the
value of an update parameter that corresponds to a data item that was named in the
CALL statement as an input data item results in a runtime error.

Parameter Rules

The following rules apply to defining parameters in a CA Ideal subprogram:

■ You must specify a parameter in the subprogram for each data item to pass. The
parameter definitions must match the type of each data item.

■ The following restrictions apply to specific attributes:

– alphanumeric

 fixed length-If you are using dynamic matching, then the length must be
equal to or greater than the actual passed data item. The Characters
attribute specifies the maximum length of the data item. If the item length
is less when passed, then the actual length is the length assigned to the
parameter.

 If you are using identical matching, the length must be the same.

 variable length-If you are using dynamic matching with update intent,
length must be equal to or greater than actual passed data item.

 If you are not using matching with update intent, whether dynamic or
identical matching, length must be the same.

– Numeric-If dynamic matching, the internal type is taken from the data item in
the calling program. Digit values, if specified, for integer and decimal places on
parameter must match data item. Otherwise, it is taken from data item.

If you are using identical matching, internal type and digits values must match.

– date-Same as numeric.

– flag-No restrictions.

– group name-The structures must be compatible using the tests for the MOVE
BY POSITION command.

– condition name-Although a passed group field can contain a condition name, it
cannot be passed as an elementary data item.

Defining Non-Ideal Subprograms

Chapter 3: Subprograms 89

– occur value with DEP ON clause-If dynamic matching, the object of the DEP ON
clause must match. The object is the field that determines the number of
occurrences. If identical matching, the Occur and DEP ON clauses must match.
The subscripted name of an occurrence is treated as an elementary data item.

– occur value without DEP ON clause-If dynamic matching, value must be equal
to or greater than data item. If the value specifies the maximum number
occurrences, then the actual number passed is assigned to the parameter. If
identical matching, the Occur and DEP ON clauses must match. The subscripted
name of an occurrence is treated as an elementary data item.

– Redefines-If not defined on the parameter, it is ignored. If specified on the
parameter but not on the data item, a runtime error occurs.

– Nullable fields (defined using WITH IND)-If passed by the calling program, it
must be defined using WITH IND in the called subprogram.

■ A panel passed as a group must be dynamic.

■ A CA Ideal program cannot be called recursively; that is, a program cannot call itself
or call a program that is already active in the current CA Ideal run-unit.

■ A runtime error occurs if a CALL statement passes more data items than the
number of level-1 parameters defined for the called subprogram. However, if a
CALL statement passes fewer data items than the number of level-1 parameters
defined for the called subprogram, no runtime error occurs unless the subprogram
attempts to reference a parameter for which no data item was passed. Since
parameters are passed and referenced positionally, you can omit parameters from
the end of the CALL statement list without affecting the other parameters. You
cannot omit values from the list. The $RECEIVED function can determine which
level-1 parameters were actually passed.

Defining Non-Ideal Subprograms

To create, compile, and call a non-Ideal subprogram, complete the following steps:

1. On the CA Ideal command line, issue a CREATE PGM command for the subprogram.
Use the same name as the subprogram.

2. On the IDENTIFICATION panel, change the language prompt from IDEAL to one of
the following:

■ COBOL

■ PLI

■ ASM

3. On the PARAMETER panel, fill in all parameters passed to and from the non-Ideal
subprogram.

4. On the CA Ideal command line, issue an EDIT PGM programname command, where
programname is the name of the calling program.

Linkage Conventions for Non-Ideal Subprograms

90 Creating Programs Guide

5. Define the subprogram as a RESOURCE of the calling program.

6. To call the subprogram, code an IDEAL CALL statement in the calling program. You
can pass a maximum of 16 parameters.

7. Compile the main program.

8. Compile and link the subprogram. For instructions to compile, refer to the
documentation for your compiler. For instructions to link, see Linkage Conventions
for Non-Ideal Subprograms.

9. Run the main program. When you run the calling program, CA Ideal calls the
subprogram and passes the proper parameters to it. In addition, CA Ideal
automatically performs any internal data-type conversions.

CA Ideal does not control the runtime environment of a non-Ideal subprogram;
therefore, certain situations are handled with less flexibility than when both programs
are CA Ideal.

Identical Parameter Matching

Non-Ideal subprograms always use identical parameter matching and must specify the
Type, Internal Type for numeric parameters, and characters/digits. You can specify only
alphanumeric, numeric signed, and numeric unsigned types.

Linkage Conventions for Non-Ideal Subprograms

Each time a non-Ideal subprogram is called online, CICS determines whether the
program is reloaded. CICS requires all programs to be at least
quasi-reentrant. You can, however, specify that non-Ideal subprograms called in batch,
which may be only reusable and not reentrant, remain in memory for the entire run or
until they are explicitly released (by a RELEASE PROGRAM statement). The New Copy on
Call specification is part of the program identification for non-Ideal subprograms.

If the Digits specification contains any decimal (fraction) places, CA Ideal aligns the
numeric value according to the Digits specification, but you must design the non-Ideal
subprogram to account for the implied position of the decimal point. For example, if the
Digits specification is 3.2 and the value to pass is 123.45 in packed decimal format, the
internal value is X'12345C'. You must design the non-Ideal subprogram to expect the
implied decimal point to be between the third and fourth digits.

To be flexible with other language conventions, CA Ideal does not align binary operands
in non-Ideal subprogram parameter definitions. For example, if the SYNC option is not
used in COBOL, binary fields are not aligned. If CA Ideal always forced alignment, it
might be impossible to pass a group data item that contained one or more binary fields
to a COBOL subprogram that does not use the SYNC option.

Linkage Conventions for Non-Ideal Subprograms

Chapter 3: Subprograms 91

If the COBOL subprogram does use the SYNC option or if the Assembler subprogram
defines the binary fields with the H (halfword) or F (fullword) attribute, the CA Ideal
programmer should insert the appropriate filler items in the non-Ideal subprogram
parameter definition. For example, if the COBOL description is:

001000 LINKAGE SECTION.

001010 01 GROUP-ITEM.

001020 02 ALPHA-1 PIC X(1).

001030* NOTE: COBOL INSERTS A "SLACK" BYTE HERE

001040 02 BINARY-2 PIC S9(4) COMP SYNC.

It is equivalent to the Assembler description:

 DS 0D

GROUPITM DS 0XL4

ALPHA1 DS CL1

NOTE: ASSEMBLER INSERTS A "SLACK" BYTE HERE

BINARY2 DS H

The following is an example of a non-Ideal subprogram parameter definition:

1 GROUP-ITEM

2 ALPHA-1 X 1

2 SLACK-1 X 1

2 BINARY-2 B 4

CA Ideal does not support binary numbers larger than nine decimal (base-10) digits. If it
is necessary to pass a larger number to a non-Ideal subprogram, pass it as a zoned
decimal or packed decimal field. If the field passed is a binary field larger than four bytes
in a dataview, see the summary of storage requirements for each internal type in the
concepts section of the Programming Reference Guide.

To determine what specification for the CA Ideal Characters/Digits column (number of
decimal, or base-10, digits) is needed for a given number of bytes of storage for a
non-Ideal subprogram, see the summary of storage requirements for each internal type
in the concepts section of the Programming Reference Guide.

CA Ideal applications that access SQL databases might need to define fields that can
receive null values. Every parameter field declared as a nullable field (WITH IND) passed
as a parameter to a non-Ideal subprogram generates a two-byte NULL indicator field.
For each parameter passed, the indicator fields are located following all the fields in the
actual data structure passed to a non-Ideal subprogram. The location corresponds to the
order in which the nullable parameters in the parameter data definition panel are
defined.

Linkage Conventions for Non-Ideal Subprograms

92 Creating Programs Guide

If a parameter field is the object of OCCURs, then as many indicator fields are generated
as there are occurrences of the parameter field. For example, given the following
parameter data structure:

01 PARM-1

 02 A . . . WITH IND

 02 B . . . OCCUR 3

 03 C . . . WITH IND

 03 D . . . OCCUR 3 WITH IND

The following null indicator fields are generated:

■ One indicator for A

■ Three indicators for C

■ Nine indicators for D in the following order:

D(1,1), D(1,2), D(1,3)

D(2,1), D(2,2), D(2,3)

 D(3,1), D(3,2), D(3,3)

The COBOL description is:

01 PARM-1

 02 A . . .

 02 B OCCURS 3 TIMES . . .

 03 C . . .

 03 D OCCURS 3 TIMES . . .

 02 A-IND PIC S9(4) COMP.

 02 C-IND OCCURS 3 TIMES PIC S9(4) COMP.

 02 D-IND OCCURS 9 TIMES PIC S9(4) COMP.

Linkage Conventions for Non-Ideal Subprograms

Chapter 3: Subprograms 93

Parameter Rules

The following rules apply when a CA Ideal program calls a non-Ideal subprogram:

■ The name of the called program must be in the resource table of the calling
program and must conform to CA Ideal naming conventions, with the additional
restriction that the name cannot contain hyphens (due to operating system
requirements).

■ You must specify a parameter in the subprogram for each data item to pass. The
parameter definitions must match the type of each data item.

You can pass a maximum of 16 data items from a CA Ideal program to a non-Ideal
subprogram.

A compile-time error occurs if a CALL statement attempts to pass more data items
than the number of level-1 parameters defined for the subprogram.

Unpredictable results occur when a subprogram references a parameter that
corresponds to a data item that was not passed.

■ The following restrictions apply to specific attributes:

– alphanumeric-The corresponding parameter must be alphanumeric. When the
program is called, a MOVE BY POSITION is performed. When the length of the
data item is not the same as the parameter, the data is padded or truncated as
required to fit.

– numeric-The corresponding parameter must be defined as a packed decimal,
zoned decimal, or binary. When the program is called, a MOVE BY POSITION is
performed. The data item can be converted and decimal aligned.

– date-Same as numeric.

– flag-Not allowed.

– group name-The structures must be compatible using the tests for the MOVE
BY POSITION command.

– condition name-Not allowed.

– redefines-Ignored.

■ The parameter definitions of a non-Ideal subprogram actually become part of the
calling program. Therefore, you must define parameter data for the non-Ideal
subprogram before the calling program is compiled. The calling program must be
recompiled if the subprogram's parameter data changes.

■ The parameters for non-Ideal programs are linked as follows:

– In batch (z/OS and VSE), standard linkage is used (R1 points to a parameter list)

– In CICS (z/OS and VSE), the address list for the parameters is stored in the
beginning of the TWA (Transaction Work Area).

Linkage Conventions for Non-Ideal Subprograms

94 Creating Programs Guide

■ The designation of the parameters on the CALL statement should match the
parameter definition. When the designation of a data item as UPDATE or INPUT in
the CALL statement does not match the parameter definition of U or I for the called
program, the following applies:

– If the parameter is defined as I-input and sent as U-update on the CALL
statement, an error does not occur as long as the called program only
references the parameter. If the non-Ideal subprogram attempts to update the
parameter, the passed data item is not updated.

– If the parameter is defined as U-update and sent as I-input, a compile error
occurs regardless of whether the subprogram attempts to modify the data
item.

Passing Parameters to Non-Ideal Subprograms

When calling non-Ideal subprograms, CA Ideal does not have control over the entire
runtime environment, but only over the way the subprogram is called. For example, if
the user coded the following and described an input (I) parameter in the non-Ideal
subprogram definition for the subprogram COBOL1 to correspond to the data item
named ALPHA, the COBOL subprogram could actually modify the contents of the data
item outside the CA Ideal environment.

CALL COBOL1 USING INPUT ALPHA

To protect the integrity of the CA Ideal environment, CA Ideal uses the following
technique: When a CA Ideal program calls a non-Ideal subprogram, the parameter
definition for the non-Ideal subprogram constructs an intermediate data storage area
with the defined characteristics contained in the CA Ideal calling program. For this
reason, the non-Ideal subprogram definition must actually exist when the calling
program is compiled.

Data items in the intermediate storage area are not aligned. Any alignment required for
correct function of the non-Ideal subprogram is the responsibility of the programmer.
You can establish this alignment by inserting the appropriate FILLER items in the
non-Ideal subprogram parameter definition fill-in.

The field names in the non-Ideal subprogram parameter definition are internally
prefixed with a percent sign (%) to avoid duplicate naming problems between the main
program and the called program. However, two non-Ideal subprograms called by the
same CA Ideal calling program should not have duplicate parameter field names
because at compile time, if there is an error on one of the duplicate fields, you might
not be able to tell which subprogram contains the error.

Calling Non-Ideal Subprograms that Access CA Datacom/DB

Chapter 3: Subprograms 95

When the calling program CALL statement executes, CA Ideal moves the data from the
data items named in the USING clause to the intermediate data storage area, using the
rules for MOVE BY POSITION, and carrying out any necessary conversion. CA Ideal
internal numeric format is converted to zoned decimal, packed decimal, or binary,
depending on the non-Ideal subprogram parameter definition.

The addresses of the intermediate storage area data items are passed to the
subprogram instead of the original CALL statement data items. Any reference in the
non-Ideal subprogram to a parameter is actually a reference to a data item in the
intermediate storage area.

When control returns from the called non-Ideal subprogram, CA Ideal then moves only
those data items defined as UPDATE from the intermediate data storage area back to
the original data items named in the USING clause. In this way, CA Ideal ensures that CA
Ideal rules for linkage are observed.

As a result, any data items described as INPUT in the CALL statement cannot be
modified by the CALL to the non-Ideal subprogram, even if the non-Ideal subprogram
modified its copy of the data item. This also means that a called subprogram cannot
alter the address of any updateable intermediate storage area.

The area containing the parameters is not necessarily at the same address each time the
subprogram is called. Subprograms should not store the address of any parameter data
between calls, as these addresses will be invalid in future calls. If a non-Ideal
subprogram requires a workarea for re-entrancy, then fields within the workarea should
be addressed relative to the workarea address, storing offsets rather than addresses, or
relocating any pointers on each call.

Calling Non-Ideal Subprograms that Access CA Datacom/DB

This section describes how to call non-Ideal subprograms that access CA Datacom/DB.

Calling Non-Ideal Subprograms that Access CA Datacom/DB

96 Creating Programs Guide

Guidelines for Batch Programs

To indicate that the non-Ideal subprogram is mainline and CA Datacom/DB is a
subroutine of the program, link edit the non-Ideal subprogram with ENTRY pgm-name.

In the User Requirements Table (URT) for the non-Ideal subprogram, specify
OPEN=USER in the DBURINF macro.

If you are not sharing the URT, include OPEN and CLOSE logic in the non-Ideal
subprogram. Execute the OPEN and CLOSE logic in the non-Ideal subprogram only once
during the application run to reduce overhead. You can do this by including a parameter
on the CALL statement in the CA Ideal program that invokes the non-Ideal subprogram.
This parameter indicates whether to open, close, or update the tables in the non-Ideal
subprogram. The call using the OPEN parameter is done at the beginning of the CA Ideal
program. The CALL using CLOSE executes upon ending the CA Ideal program.

This type of logic makes it very easy to adapt existing COBOL programs to use with CA
Ideal, although it is only one example of how you can control the OPEN and CLOSE logic.

Using IDENTIFY in z/OS Batch

A CA Ideal batch job must specify PARM='IDENTIFY' in order for the non-Ideal program
to use the same DB URT and therefore a single DB task for the CA Ideal batch job.

The non-Ideal subprogram must be linked AMODE(31) and must call DBNTRY
dynamically (compile option DYNAM). The CA Ideal calling program must access at least
one CA Datacom/DB dataview. The SET RUN URT statement for the batch RUN must
include the table to be accessed in the non-Ideal subprogram.

The following is sample JCL for the CA Ideal batch execution:

//xxxx JOB xxxxxx

//PROC JCLLIB ORDER=xxxx.proclib

//xxxx EXEC idlbatch,PARM='IDENTIFY'

//SYSIN DD *

SEL SYS xxx

SET RUN URT dburtxxx

RUN idlpgmx

Guidelines for CICS Programs

It is not necessary to open and close any of the URTs in CICS programs because CA
Datacom/DB Option for CICS Services takes care of this.

AMODE/RMODE Considerations for Non-Ideal Subprograms

Chapter 3: Subprograms 97

Accessing Same Tables in CA Ideal and Non-Ideal Programs

Accessing the same CA Datacom/DB table in a non-Ideal subprogram and the FOR
construct in which the subprogram was called can have serious consequences. If both
the CA Ideal calling program and the non-Ideal subprogram try to read the same set of
records for update, a “deadly embrace” occurs and the job must be purged.

To access the record, the subprogram must wait until the CA Ideal calling program
releases exclusive control before it can access the same record with exclusive control.
But the CA Ideal program does not release exclusive control until the ENDFOR
statement, which cannot execute until the call to the subprogram is complete and
control returns to CA Ideal. The same situation online can result in the non-Ideal
subprogram getting an CA Datacom/DB return code 18-EXCLUSIVE CONTROL
DUPLICATE.

However, as long as one of the programs, either the CA Ideal calling program or the
non-Ideal subprogram, is doing read-only access or each program is accessing a different
table, the call can be made successfully from the CA Ideal FOR construct.

AMODE/RMODE Considerations for Non-Ideal Subprograms

Non-Ideal subprograms can be linked AMODE=31,RMODE=ANY or
AMODE=24,RMODE=24.

Guidelines for Batch and Online Non-Ideal Subprograms

Since CICS linkage conventions differ from batch linkage conventions, a CA Ideal
program running in CICS cannot call the same non-Ideal subprogram designed to run in
batch. Likewise, a CA Ideal program running in batch cannot call a non-Ideal subprogram
designed to run in CICS.

The following guidelines are separated into online and batch.

Guidelines for Batch and Online Non-Ideal Subprograms

98 Creating Programs Guide

Online Non-Ideal Subprograms

COBOL, PL/I, and Assembler subprograms called by an online CA Ideal application must
follow certain guidelines.

The program must be assembled or compiled in accordance with the requirements of
CICS.

■ Define the program name in CICS.

■ In z/OS, the load library where the subprogram is located must appear in one of the
DFHRPL statements.

■ In VSE, the name of the core image library where the subprogram is located must
appear in one of the LIBDEF PHASE,SEARCH= statements.

The following are prohibited:

■ Terminal I/O.

Note: CA Ideal loses the last message on the message line at the top of the CA Ideal
screen when control returns from the non-Ideal subprogram.

■ Freeing, releasing, or modifying any resource, including temporary storage that CA
Ideal allocated.

■ If the subprogram is called in the scope of an updated CA Ideal FOR construct, the
non-Ideal subprogram cannot access the same set of CA Datacom/DB CBS, DB2, or
VSAM records with update intent.

■ Any scheduled abend.

■ In z/OS: Any SPIE or (E)STAE macro.

■ In VSE: Any STXIT macro.

■ Enqueuing or dequeuing on a CA Ideal internal (system) name. See the CA Ideal
Problem Determination Guide for information on CA Ideal internal names.

■ In CICS, accessing a temporary storage area that has a name starting with X'5B'.

■ In CICS, any return other than a normal EXEC CICS RETURN. COBOL programs
cannot use STOP RUN, EXIT PROGRAM, or GOBACK.

■ When passing return codes back to the main CA Ideal program, use the data area.
If a non-Ideal subprogram returns to CA Ideal with Register 15 set to 1, 2, or 3, a
runtime error with a misleading message occurs.

Note: Non-Ideal programs developed for CICS do not work in batch. Non-Ideal programs
developed for batch do not work in CICS.

In addition, see the sections on restrictions for COBOL and Assembler programs in the
IBM CICS Application Programmers Reference Manual for the appropriate environment.

Guidelines for Batch and Online Non-Ideal Subprograms

Chapter 3: Subprograms 99

Calling a CICS Subprogram

The following example illustrates how a CA Ideal program passes parameters to a CICS
non-Ideal subprogram and how the subprogram, handles these parameters.

For example, a CA Ideal program defines the following fields in working data:

■ ALPHA (four-character alphanumeric)

■ BETA (nine-digit numeric)

The program's procedure definition includes the following CALL statement:

CALL COBSUB USING ALPHA,BETA

The COBOL subprogram's program definition includes the following parameter
definition.

=>

=>

=>

--

IDEAL: PARAMETER DEFINITION PGM COBSUB (001) TEST SYS: DOC DISPLAY

Level Field Name T I Ch/Dg Occur U Comments/Dep on/Copy Command

----- --------------------------- - - ----- ----- - ----------------------- ------

===== ==============TOP========== = = ===== ===== = ======================= ======

1 PAR-1 X 4 U :4 BYTES ALPHANUMERIC 000100

1 PAR-1 U B 9 U :BINARY FULLWORD 000200

===== =============BOTTOM ======= = = ===== ===== = ======================= ======

Guidelines for Batch and Online Non-Ideal Subprograms

100 Creating Programs Guide

CICS Subprogram

When calling a non-Ideal subprogram, CA Ideal places the parameter list into the TWA
before the call. To access the parameters, you must establish addressability to the data
with the COBOL subprogram.

The following command-level CICS COBOL II subprogram uses two parameters:

IDENTIFICATION DIVISION.

 PROGRAM-ID. COB2PGM.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 SOURCE-COMPUTER. IBM-370.

 OBJECT-COMPUTER. IBM-370.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 LINKAGE SECTION.

 01 TWA-LAYOUT.

 02 TWA-ADDR-1 USAGE IS POINTER.

 02 TWA-ADDR-2 USAGE IS POINTER.

 01 FIRST-PARM PIC X(20).

 01 SECOND-PARM.

 02 ZONED-UNSIGNED PIC 99.

 02 ZONED-SIGNED PIC S99.

 02 PACKED-SIGNED PIC S9(4) COMP-3.

 02 BINARY-SIGNED PIC S9 COMP.

 PROCEDURE DIVISION.

 ADDRESS-TWA.

 EXEC CICS

 ADDRESS TWA(ADDRESS OF TWA-LAYOUT)

 END-EXEC.

 SET ADDRESS OF FIRST-PARM TO TWA-ADDR-1.

 SET ADDRESS OF SECOND-PARM TO TWA-ADDR-2.

 SET-PARM-VALUES.

 MOVE 'FROM COBOL II ' TO FIRST-PARM.

 MOVE 22 TO ZONED-UNSIGNED.

 MOVE 33 TO ZONED-SIGNED.

 MOVE 4444 TO PACKED-SIGNED.

 MOVE 1 TO BINARY-SIGNED.

 RETURN-TO-IDEAL.

 EXEC CICS

 RETURN

 END-EXEC.

The following illustration shows program parameter definitions for COBOL II
subprogram:

IDEAL: PARAMETER DEFINITION PGM COB2PGM (001) TEST

COMMAND LEVEL FIELD NAME T I CH/DG OCCUR U

------ ----- ------------------- - - ----- ----- -

====== ===== ======= TOP ======= = = ===== ===== =

000100 1 COB-PARM1 X 20 U

000200 1 COB-PARM2 U

000300 2 COB-ZONE-U U Z 2

000400 2 COB-ZONE-SIGN N Z 2

000500 2 COB-PACKED N P 4

000600 2 COB-BINARY N B 1

====== ===== ===== BOTTOM ====== = = ===== ===== =

Guidelines for Batch and Online Non-Ideal Subprograms

Chapter 3: Subprograms 101

The following illustration shows command-level CICS Assembler subprogram, two
parameters:

SAMPASM DFHEIENT CODEREG= (12),DATAREG=(13),EIBREG=(11)

 B SAMPEP

 DC AL1(*-SAMPEP)

 DC CÆSAMPLE CMD LEVEL ASSEMBLERÆ

--

* This is a sample assembler application that could be called from CA Ideal. *

* It passes two 01 level parameters. The first parameter contains two numeric *

* fields that will be added together and passed back in the second parameter. *

* *

* REGISTER USAGE: *

* 1 - INCOMING PARAMETER LIST *

* 5 - BASE FOR FIRST PARAMETER *

* 6 - BASE FOR SECOND PARAMETER *

* 12 - BASE FOR THIS CODE *

* 13 - CALLER'S SAVE AREA *

* 14 - RETURN ADDRESS *

--

SAMPEP DS OH

 EXEC CICS ASSIGN TWALENG(TWALENG)

 CLC TWALENG,=H'O'

 BE RETURN

 EXEC CICS ADDRESS TWA(1)

* Two parameters passed, two addresses in the TWA *

--

 LM 5,6,0(1)

 USING PARAM1,5 Establish addressability to parms

 USING PARAM2,6

--

* The following code should be replaced with your own *

--

 ZAP SUM,ADD1

 AP SUM,ADD2

--

* Return control to CA Ideal *

--

RETURN DS OH

 EXEC CICS RETURN

--

* PARAMETER DSECTS *

* The following DSECT maps the first parameter *

--

PARAM1 DSECT

ADD1 DS PL3

ADD2 DS PL3

--

* The following DSECT maps the second parameter *

--

PARAM2 DSECT

SUM DS PL4

--

* The following DSECT is the program's local storage *

--

DFHEISTG DSECT

TWALENG DS H

 END

Guidelines for Batch and Online Non-Ideal Subprograms

102 Creating Programs Guide

The following shows a non-Ideal subprogram parameter definition:

IDEAL: PARAMETER DEFINITION PGM SAMPASM (001) TEST SYS: $ID DISPLAY

Level Field Name T I Ch/Dg Occur U Comments/Dep on/Copy Command

===== ======= TOP ======= = = ===== ===== = ======================== =======

1 ADDENDS 000100

 2 FIRST_ADDEND N P 5 :DS PL3 ASSEMBLER 000200

 2 SECOND_ADDEND N P 5 :DS PL3 ASSEMBLER 000300

1 RESULT N P 6 U :DS PL4 ASSEMBLER 000400

===== ===== BOTTOM ====== = = ===== ===== = ==================== =======

Batch Non-Ideal Subprograms

COBOL, PL/I, and Assembler subprograms that a CA Ideal application running in batch
calls must follow these guidelines.

■ z/OS-The load library where the subprogram is located must appear in one of the
STEPLIB statements.

■ COBOL-Specify the NOENDJOB compiler option.

■ VSE-The name of the core image library where the subprogram is located must
appear in one of the LIBDEF PHASE,SEARCH= statements.

The following are prohibited:

■ Terminal I/O.

■ Freeing, releasing, or modifying any resource that CA Ideal allocated.

■ If the subprogram is called in the scope of an updated FOR construct, the non-Ideal
subprogram cannot access the same set of CA Datacom/DB CBS, DB2, or VSAM
records with update intent.

■ Enqueuing or dequeuing on a CA Ideal internal system name. For more information
about CA Ideal internal names, see the Problem Determination Guide.

■ Any return other than a normal return. COBOL programs must use GOBACK.
Assembler programs must branch to the address contained in R14 at entry. In VSE,
you cannot use the EOJ macro.

■ In z/OS-Any SPIE or (E) STAE macro

■ In VSE-Any STXIT macro.

– Any scheduled abend

– Attempting to read the primary input file:

In z/OS, SYSIN

In VSE, SYSIPT

Calling COBOL in z/OS Batch

Chapter 3: Subprograms 103

Calling COBOL in z/OS Batch

The following sample z/OS JCL sets the COBOL II runtime option RTEREUS, which
improves the performance of COBOL II programs that CA Ideal batch calls and preserves
the working storage between calls of the COBOL II subprogram.

//jobname JOB

//* -- *

//* JCL TO ASSEMBLE THE COBOL II RUNTIME OPTION MODULE FOR *

//* USE WITH IDEAL/COBOL II BATCH SUBPROGRAMS. *

//* ---*

//ASSEMBLE EXEC PGM=IFOX00,PARM='DECK',COND=(0,NE),

 // REGION=1024K

//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR

// DD DSN=MVSSYS.COB2.V1R4MO.COB2LSRC,DISP=SHR

//SYSUT1 DD DSN=&&SYSUT1,UNIT=VIO,SPACE=(1700,(600,100))

 //SYSUT2 DD DSN=&&SYSUT2,UNIT=VIO,SPACE=(1700,(300,50))

 //SYSUT3 DD DSN=&&SYSUT3,UNIT=VIO,SPACE=(1700,(300,50))

 //SYSPRINT DD SYSOUT=*,DCB=BLKSIZE=1089

//SYSPUNCH DD DSN=object.library.name(IGZEOPT),DISP=SHR

//SYSIN DD *

 IGZOPT SYSTYPE=OS,RTEREUS=YES

 END

/*

//jobname JOB ...

//* -- *

//* JCL TO COMPILE & LINK EDIT A COBOL II PROGRAM WHICH IS *

//* TO BE CALLED BY A CA Ideal BATCH PROGRAM. *

//* NOTE THE COBOL II AND LINK-EDIT PARAMETERS AND THE *

//* LINK-EDIT INCLUDE STATEMENT FOR IGZEOPT (WHICH MUST *

//* BE ASSEMBLED WITH RTEREUS=YES) *

//* -- *

//COB EXEC PGM=IGYCRCTL,

 // PARM='APOST,NOOPT,RES,LIB,DATA(24),RENT'

//STEPLIB DD DSNAME=MVSSYS.COB2.V1R4M0.COB2COMP,DISP=SHR

//SYSLIB DD DSN=program.source.library,DISP=SHR

//SYSLIN DD DISP=(,PASS),

 // UNIT=SYSDA,SPACE=(TRK,(5,5))

 //SYSPRINT DD SYSOUT=*

//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,5))

 //SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(1,5))

 //SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(1,5))

 //SYSUT4 DD UNIT=SYSDA,SPACE=(CYL,(1,5))

 //SYSUT5 DD UNIT=SYSDA,SPACE=(CYL,(1,5))

 //SYSUT6 DD UNIT=SYSDA,SPACE=(CYL,(1,5))

 //SYSUT7 DD UNIT=SYSDA,SPACE=(CYL,(1,5))

 //COB.SYSIN DD *

INC cobol2pg

/*

//* -- *

//LKED EXEC PGM=IEWL,

 // COND=(5,LT),

 // PARM='AMODE(24) RMODE(24) MAP'

//SYSPRINT DD SYSOUT=*

//SYSLIB DD DSN=MVSSYS.COB2.V1R4M0.COB2LIB,DISP=SHR

//OBJLIB DD DSN=object.library.name,DISP=SHR

//SYSLMOD DD DSN=target.library(cobol2pg),DISP=SHR

//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

 //SYSLIN DD DDNAME=SYSIN

//SYSIPT DD DSN=*.COB.SYSLIN,DISP=(OLD,PASS)

 //SYSIN DD *

 INCLUDE OBJLIB (IGZEOPT)

 INCLUDE SYSIPT

 NAME cobol2pg(R)

Calling COBOL in z/OS Batch

104 Creating Programs Guide

Calling COBOL in VSE Batch

The following sample VSE JCL sets the COBOL II runtime option RTEREUS, which
improves the performance of COBOL II programs that CA Ideal batch calls and preserves
the working storage between calls of the COBOL II subprogram.

* $$ JOB JNM=IDLCOBII,CLASS=B,PRI=6,DISP=D

* $$ LST DISP=D,CLASS=L

// JOB IDLCOBII

// OPTION CATAL

 PHASE IDLCOBII,*

// EXEC IGYCRCTL,SIZE=256K

 CBL LIB,RENT,RES,NODYNAM

.... COBOL II SOURCE GOES HERE.

/*

// EXEC ASSEMBLY

 IGZOPTV RTEREUS=YES

 END

/*

// LIBDEF PHASE,CATALOG=CAI.USER

// EXEC LNKEDT

/&

* $$ EOJ

Make sure that the phase is available to your CA Ideal batch JCL LIBDEF statement. You
can now call the program directly from a CA Ideal batch program.

Calling COBOL in z/OS Batch

Chapter 3: Subprograms 105

Calling a PL/I Subprogram

A PL/I subprogram is called from an Assembler program so the normal parameter lists
are not constructed.

PL/I subprograms that a CA Ideal application calls must follow these guidelines:

■ You must identify PL/I non-Ideal subprograms with a language of PL/I, PLI, PL/1, or
PL1 on the program IDEntification screen.

■ If you specify OPTIONS(MAIN), you must use entry point PLICALLA. If program is
not MAIN, you must link edit to it and call it from MAIN program.

■ The parameters passed to the PL/I program from CA Ideal follow assembler linkage,
not PL/I. The PL/I programs should code the parameters as follows. You can
reference them. Arrays make no difference in the way the variables are coded.

Character String/Structures-The following coding allows access. You must refer to the
structure as a based variable, but any data type is allowed in the structure.

USERPGM: PROCEDURE (P1,P2)REORDER;

DCL P1 FIXED BIN(31);

DCL P2 FIXED BIN(31);

DCL PTR1 PTR;

DCL PTR2 PTR;

 PTR1 = ADDR(P1);

 PTR2 = ADDR(P2);

DCL PARM1 CHAR(xx) BASED(PTR1); /* Character String */

DCL1 PARM2 BASED(PTR2), /* Structure */

 3 NAME CHAR(xx),

 3 SSN FIXED DEC(x)

 3 EMPLOYE# FIXED BIN(31);

Numeric-The following coding allows access for the numeric types of half and fullword
binary, fixed decimal, and zoned decimal.

USERPGM: PROCEDURE (FIX_BIN,FIX_DEC,ZONED) REORDER;

DCL FIX_BIN FIXED BIN(xx); /* Half of Fullword Binary */

DCL FIX_DEC FIXED DEC(x); /* Fixed Decimal */

DCL ZONED PIC '(x)9'; /* Zoned Decimal */

Chapter 4: Performing Calculations 107

Chapter 4: Performing Calculations

Introduction

For information about performing calculations on ADD, SUBTRACT, and SET statements,
see the Programming Reference Guide.

Statements Functions

ADD $ABS

SUBTRACT $NUMBER

SET $NUMERIC
$REMAINDER
$ROUND
$SQRT

In addition, see the topics Condition and Arithmetic Expression in the Programming
Reference Guide.

Optimizing Arithmetic in CA Ideal

By far, the largest proportion of a typical business application is spent in database
retrieval and formatting data for screens and reports. However, if you are doing a great
deal of computation in an application, you want to make sure that it is done in the most
efficient way possible.

Here are some things you can do to optimize arithmetic in CA Ideal:

■ Use packed decimal format. This is the CA Ideal default and, as the test results
show, the most efficient for CA Ideal computations.

■ Where possible, make sure operands in complex and frequently used arithmetic
expressions have the same decimal alignment (the same number of decimal
positions). Adding two numbers with Char/Digits of 5.2 is faster than adding a
number with 5.1 to a number with 5.2.

Optimizing Arithmetic in CA Ideal

108 Creating Programs Guide

■ When you use dataview fields (columns) repeatedly in calculations, move them to
working data first and do the computations from there. This is because CA Ideal
continually checks the dataview fields to ensure that they are actually numeric
(since the values are not guaranteed correct), whereas CA Ideal knows that working
data fields are always valid and does not keep checking. When you move the
dataview fields to working data, the validity check is done just once, so it really does
not save anything if you only reference a given dataview field once per record.

You can use the COPY DATAVIEW clause in working data to define a structure that
matches the dataview. Then use a MOVE...BY NAME statement to move the
dataview fields.

■ If you use a subscripted field repeatedly in a calculation, move it to a separate
non-occurring work field in working data and use it in the computation. This is a
standard source optimization technique. It applies to any language, not just to CA
Ideal.

■ Ensure that computations are not done superfluously in a loop. If a computation is
in a loop, make sure that it really needs to be there. Otherwise, move it outside the
loop. Again, this is a standard optimization technique.

■ If a parameter field is defined as dynamic and is used repeatedly in a computation,
move it to working data first.

■ If a field is redefined or is itself a redefinition and is used repeatedly in a
computation, move it to a separate working data field first. This is because
REDEFINES means that the contents of either field-the REDEFINES subject or
object-can be made invalid by an operation on the other, so CA Ideal always
validates REDEFINES subjects and objects before computations.

■ In general, CA Ideal arithmetic is most efficient when the fields are in working data,
unsubscripted, not part of a redefinition, are packed decimal format, and have
identical decimal alignment. If a given field that is used more than once in a
computation fails one of these criteria, then moving it to a separate work field that
does comply probably improves efficiency. However, if the field is only used once,
it is probably better to let CA Ideal handle the conversion internally.

■ To the extent that you have the choice, external data (dataview fields) benefit from
following these guidelines too-but not at the expense of good database design.

For example, if you have a field that is a database key and you have to choose
between the best format for database retrieval or for internal computation, choose
the best database retrieval format (although this might depend on the specific
case).

■ In certain cases, where you have a really heavy-duty computation (for example, you
are generating a mortgage rate book and calculating monthly payment amount for
each combination of sale price, interest rate, and number of payments), you might
consider calling a COBOL or Assembler subroutine to do the calculation. Carefully
evaluate the overhead since you must weigh the overhead of calling the subroutine
against whatever arithmetic overhead you would save.

Optimizing Arithmetic in CA Ideal

Chapter 4: Performing Calculations 109

A word, finally, about some additional features of arithmetic processing in CA Ideal.

■ CA Ideal ensures that abends do not occur. For example, a SOC7 abend cannot
occur.

■ CA Ideal checks for overflow and subscript range automatically.

■ Programming arithmetic computations using CA Ideal saves debugging and dump
reading time and the time spent in programming and maintenance.

Chapter 5: Using Functions 111

Chapter 5: Using Functions

This chapter presents lists of functions. For information about the specific functions, see
the Programming Reference Guide.

Date Functions

The following functions are date functions:

$DATE
$DAY
$INTERNAL-DATE
$MONTH
$TIME

$TODAY
$VERIFY-DATE
$WEEKDAY
$YEAR

Error Functions

The following functions are error functions:

$ERROR-CLASS
$ERROR-CONSTRAINT-NAME
$ERROR-DESCRIPTION
$ERROR-DVW-DBID
$ERROR-DVW-INTERNAL-STATUS
$ERROR-DVW-STATUS
$ERROR-NAME
$ERROR-PGM
$ERROR-PROC

$ERROR-STMT
$ERROR-SUBSCRIPT
$ERROR-TYPE
$ERROR-VALUE
$PANEL-ERROR
$PANEL-FIELD-ERROR
$RETURN CODE
$SUBSCRIPT-POSITION

Numeric Functions

The following functions are numeric functions:

$ABS
$NUMBER
$REMAINDER
$SQRT

$COUNT
$NUMERIC
$ROUND

Panel Functions

112 Creating Programs Guide

Panel Functions

The following functions are panel functions:

$CURSOR
$KEY
$PANEL-FIELD-ERROR
$PF

$EMPTY
$PANEL-ERROR
$PANEL-GROUP-OCCURS
$RECEIVED

String Functions

The following functions are string functions:

$ALPHABETIC
$EDIT
$FIXED-MASK
$HIGH
$LENGTH
$LOW
$SPACES
$SUBSTR
$TRIM

$CHAR-TO-HEX
$EMPTY
$HEX-TO-CHAR
$INDEX
$PAD
$STRING
$TRANSLATE
$VERIFY

System Functions

The following functions are system functions:

$ACCOUNT-ID
$ENTER-KEY
$FINAL-ID
$NETWORK-ID
$PLAN
$RECEIVED
$TERMINAL-ID
$USER-ID

$CURRENT-TRAN-ID
$ENVIRONMENT
$INIT-TRAN-ID
$OP-SYSTEM
$PACKAGESET
$SQL
$TRANSACTION-ID
$USER-NAME

Chapter 6: Error Handling 113

Chapter 6: Error Handling

This chapter presents information about handling errors. CA Ideal provides facilities for
evaluating and resolving runtime errors. There are two main categories of errors:

■ Errors due to code that does not process the data properly

■ Errors caused by unpredictable conditions at runtime

Unpredictable errors cause an application to abend. This is somewhat different from
logic errors that generally cause unexpected results, although those results can lead to
an abend. The following section assumes that logic errors are handled by good design
and adequate testing.

Preventing Errors

Code all programs with careful consideration to potential runtime errors. The errors
most frequently encountered involve improper handling of data. These errors are
attempts to assign a value that is of an inappropriate data type, format, or size to a
column or field. You can test the values thoroughly and manipulate them before making
an assignment using the comprehensive set of functions in the CA Ideal Procedure
Definition Language (PDL).

The following are simple examples of functions that ensure that the data assigned to a
column conforms to the column attributes:

The $ROUND function assigns a numeric value with two decimal positions to the field
OPEN$:

SET OPEN$ = $ROUND(value,FACTOR = .01)

■ The $SUBSTR function assigns a two-character fixed-length value to STATE:

SET STATE = $SUBSTR(value,START = 1,LENGTH = 2)

■ The $VERIFY function tests a value to ensure that the value assigned to CUSTID is an
alphanumeric value containing only uppercase alphanumeric characters and all
digits. In this code segment, the subprocedure BADVALUE executes when another
character is encountered.

IF $VERIFY(value,AGAINST = (UCALPHA,NUMERIC))

 SET CUSTID = value

ELSE

 DO BADVALUE

ENDIF

Using $RC in Error Procedures

114 Creating Programs Guide

■ The $DATE function formats the current date value contained in the $TODAY
function to the format required for ACTDT. The function $TODAY returns the
current date as mmddyy, thus the $DATE function reformats the date value.

SET ACTDT = $DATE('YYMMDD',DATE = $TODAY)

For more information about CA Ideal functions, see the Programming Reference Guide.

Using $RC in Error Procedures

The CA Ideal system does not set $RC for the current error. If you do not code an error
procedure, the default error procedure ensures that $RC is at least a value of 12. A user
coded error procedure needs to set $RC to ensure a non-zero return code upon
completion of the RUN. Setting $RC is optional. Whether it is set in an error procedure
or not, the CA Ideal system does not alter it.

$RC typically tests the completion status after a run. Therefore, it is most useful for
batch jobs, where the execution of one run depends on the successful execution of a
previous one. For more information about using $RC to control batch runs, see the
section, Using CA Ideal Commands in Batch, in the Working in the Environment Guide.

Handling Runtime Errors

You cannot prevent certain runtime error conditions, but you can detect them during
execution. CA Ideal provides two facilities for handling runtime errors:

■ The error procedure executes automatically when an error is encountered. You can
use the default error procedure that CA Ideal provides or you can code your own
error procedure. However, you can include only one error procedure in any
program.

■ The WHEN ERROR clause in the FOR construct executes automatically when a
dataview error ($ERROR-CLASS of DVW) is encountered while processing the FOR
construct.

The $ERROR functions are only available in the scope of the error procedure or the
WHEN ERROR clause.

Handling Runtime Errors

Chapter 6: Error Handling 115

Default Error Procedure

By default, CA Ideal provides the following error procedure. It executes when a runtime
error is encountered. This procedure includes:

<<ERROR>> PROCEDURE

 IF $RC LT 12

 SET $RC EQ 12

 ENDIF

 LIST ERROR

 BACKOUT

 QUIT RUN

ENDPROC

In other words:

SET $RC EQ 12 Sets the return code to specify a fatal error.

LIST ERROR Transmits the type of error to output file.

BACKOUT Ensures that possibly incomplete updates due to the error are not
applied.

QUIT RUN Terminates the application.

The LIST ERROR statement writes the values of the functions $ERROR-TYPE,
$ERROR-CLASS, $ERROR-DVW-STATUS, and $ERROR-DVW-INTERNAL-STATUS and the
statement number to an external file. The various $ERROR functions return the value to
help to identify the specific error.

By default, a message displays at the screen when a run is terminated. This message
states:

RUN completed, RC = nn

The value of nn specifies the return code value.

Coding an Error Procedure

Errors are not always fatal. They can provide information about the error. In certain
instances, the program can recover from the error and continue processing. To handle
these situations, you can code an error procedure in the program.

You must name the coded error procedure ERROR. The DO statement can invoke it;
however, it cannot be the object of a QUIT or PROCESS NEXT statement. The coded
error procedure automatically executes when an error occurs. If the coded error
procedure itself contains an error, the default error procedure executes. If a fatal error
occurs, the coded procedure is ignored and the default error procedure executes.

Handling Runtime Errors

116 Creating Programs Guide

A coded error procedure can take advantage of PDL statements to inform you of an
error and maintain control. The NOTIFY statement can override the default termination
message and provide a more informative message. The NOTIFY message displays with
the next panel that is transmitted or at the termination of the run. Rather than
terminate an entire run, the coded procedure can terminate just the current program.

For example, an error procedure can send an informative message to the screen and to
the output file:

<<ERROR>> PROCEDURE

 LIST ERROR

 BACKOUT

 SET $RC = 12

 SET WOR-NUM = $RC

 NOTIFY 'PROGRAM ABENDING - ' WOR-NUM

 QUIT PROGRAM

 ENDPROC

You can create a panel to provide more detailed error information. The panel can
include explanatory text, remedial information, and the $RC value.

When a user-defined error procedure is invoked, you can set the value of the return
code in that error procedure. The system does not reset the value.

At the end of the run, the value of $RC displays. This way, even a run that terminates
normally can indicate an error during processing.

Handling Runtime Errors

Chapter 6: Error Handling 117

Categorizing Errors

Functions are available to determine the category of the error that was encountered.
For example, $ERROR-CLASS returns the classification of the error, such as NUM for
numeric, DVW for dataview, PGM for program, SYS for system, and FTL for fatal. SYS
(system) and FTL (fatal) errors always execute the default error procedure and
terminate the run.

The following example tests $ERROR-CLASS for NUM. NUM is set when a numeric field
contains an invalid numeric value. If $ERROR-CLASS is NUM, the return code is set to 8.
Since recovery is possible, the program continues with the next iteration of a processing
loop.

<<ERROR>> PROCEDURE

 SELECT $ERROR-CLASS

 WHEN 'NUM'

 SET $RC = 8

 PROCESS NEXT MAIN-LOOP

 WHEN OTHER

 SET $RC = 12

 ENDSELECT

 LIST ERROR

 BACKOUT

 QUIT RUN

ENDPROC

Common Error Subroutines

118 Creating Programs Guide

Common Error Subroutines

Most CA Ideal programmers are familiar with the <<ERROR>> procedure as a means of
producing information for the end-user when a processing error occurs. A large number
of sites have attempted to standardize this processing by using a common subprogram
to display and record the error information.

There are two problems that generally arise from the use of a common subprogram:

■ First, by simply being a common subprogram, it participates in a very high number
of PGM-PGM-CALL relationships in CA-DataDictionary. Changes to the common
program result in a very large number of dictionary calls when you issue a CA Ideal
DUPLICATE or MARK STATUS command. This can make it necessary to run overnight
batch jobs to do the DUPLICATE or MARK when you change the common
subprogram.

■ Second, the subprogram is usually called directly from the <<ERROR>> procedure,
which can cause anomalies in its processing. When the <<ERROR>> procedure is
entered, CA Ideal processes all subsequent statements in an error mode until the
QUIT or PROCESS NEXT that leaves the scope of the procedure. A DO or CALL to a
subordinate procedure or program is still in error mode. This prevents error
recursion, where errors in the <<ERROR>> procedure could make the application
loop endlessly. The effects of being in this error mode are often subtle, but an
obvious one is that a called subprogram cannot handle errors in its own code. This
means, for example, that a common error subprogram that reads message text
from a database table cannot handle database errors.

There is a single solution to both problems: A horizontal calling structure, where a
dispatcher program calls all the processing programs according to the value of a control
variable. The same dispatcher can invoke the common error subprogram with the
following advantages:

■ The <<ERROR>> procedure of the failing program sets return variables to describe
the error and quits the program. This leaves error mode and allows the error
handler full recovery of its own errors.

■ The error subprogram is called only by dispatcher programs, which are much fewer
in number and eliminate the overworking of the relationship file in the dictionary.
The nesting depth of the application is reduced by one, which saves storage and
reduces the complexity of the calling structure.

Common Error Subroutines

Chapter 6: Error Handling 119

Detecting the Severity of the Error Using $RC

In most cases, the execution of CA Ideal commands sets $RC to a specific value. The CA
Ideal system sets $RC, except when a RUN command is invoked. When the CA Ideal
system determines it, $RC reflects the highest severity of errors in a session as follows:

Error Type Return Code Value

No error 0

Advisory or warning 4

Error 8

Fatal error 12 or more

The value of $RC is transmitted to the output file at the end of every run. You can
evaluate this value to determine the outcome of the run. The default error procedure
sets the value of $RC to 12. A coded error procedure can set the value of $RC as
appropriate. To determine what value to assign to $RC, several functions are available.
You can use these functions to define category, type, and severity of the error.

During online execution, the value of $RC should be initialized to 0 when an application
is invoked.

Using $RC in Batch

During online execution, the value of $RC should be initialized to 0 when an application
is invoked. Batch execution is different. Frequently, the execution of one program is
based on the successful execution of another. In that case, the value of $RC should be
retained from one run to the next. The SET command controls whether the value of $RC
is retained. This command must execute before invoking the application.

SET RUN $RC ZERO return code reset to 0 at start of a run

SET RUN $RC KEEP return code retained

When executing batch programs, you can test the return code in the job stream using
CA Ideal IF, ELSE, and ENDIF commands.

Common Error Subroutines

120 Creating Programs Guide

Coding for Multiple Errors

Although you can code only one error procedure in the program, that single procedure
can evaluate and handle several types of errors. The following code segment uses a
SELECT construct to distinguish error handling for several errors:

<<ERROR>> PROCEDURE

 SELECT $ERROR-CLASS

 WHEN 'DVW'

 SET $RC = 1660

 LIST $ERROR-DVW-DBID

 LIST $ERROR-DVW-STATUS

 LIST $ERROR-DVW-INTERNAL-STATUS

 WHEN 'NUM'

 SET $RC = 8

 PROCESS NEXT MAIN-LOOP

 WHEN OTHER

 SET $RC = 12

 ENDSELECT

 SET WOR-NUM = $RC

 NOTIFY 'Program Abending - ' WOR-NUM

 LIST ERROR

 BACKOUT

 QUIT RUN

 ENDPROC

In this example, if $ERROR-CLASS is NUM, the program can recover; otherwise, the
program terminates. The value of the $RC is either 1660, indicating a dataview error, or
12, indicating some other error. By testing for other $ERROR-CLASS values, you can set
the $RC to reflect the error condition encountered.

Evaluating Specific Errors

You can evaluate errors even further. For example, $ERROR-CLASS of DVW results when
a dataview access error occurs. The $ERROR-TYPE function returns more specific
information. For example, a $ERROR-TYPE value of DVW reflects an error in accessing
CA Datacom/DB.

The $ERROR-DVW-STATUS function returns a value only when the $ERROR-TYPE is
DVW; offering more information on the type of error in a CA Datacom/DB environment.
For example, I3 indicates that a row integrity error occurred. Another user modified the
row being processed.

Common Error Subroutines

Chapter 6: Error Handling 121

Coding for Dataview Errors

You can detect dataview errors and perform troubleshooting error procefures to detect
it.

Handling Errors in the FOR Construct

You can detect dataview errors and perform error processing in the FOR construct by
coding a WHEN ERROR clause. Statements specified in the WHEN ERROR clause can
access $ERROR functions and should resolve the error with a PROCESS NEXT or DO
ERROR statement. If processing falls through to the ENDFOR, the $ERROR functions are
no longer available.

In the following example, the WHEN ERROR statement evaluates the error condition
when a dataview error occurs.

FOR FIRST CUSTOMER

 WHERE CUSTID = PNL-CUST

 DELETE CUSTOMER

WHEN NONE

 NOTIFY 'NO CUSTOMERS FOUND'

WHEN ERROR

 SELECT FIRST ACTION

 WHEN $ERROR-DVW-STATUS = 94 AND

 $ERROR-INTERNAL DVW-STATUS = 31

 LIST 'Constraint Error: ' $ERROR-CONSTRAINT-NAME

 NOTIFY 'Customer ' CUSTID 'has open orders and cannot be deleted'

 WHEN $ERROR-DVW-STATUS = 36

 NOTIFY 'Contact Database Administrator with error information'

 WHEN OTHER

 DO ERROR

 ENDSEL

ENDFOR

The values of the $ERROR functions contain different values, depending on the type of
error and the type of dataview. For more information about $ERROR functions, see the
Programming Reference Guide.

Common Error Subroutines

122 Creating Programs Guide

Handling Numeric Errors

PDL error handling functions return data identifying the cause of a runtime error in an
error procedure. If you use an error handling function other than in an error procedure,
N/A is returned.

When an application moves non-numeric data into a numeric field, a numeric error
occurs. $ERROR-CLASS and $ERROR-TYPE return the value NUM. $ERROR-NAME returns
the name of the sending field in the MOVE. There are several ways to determine the
value of the field.

$ERROR-VALUE returns a string showing the value of the field. A question mark (?)
marks each byte containing non-numeric data.

For example, if the string 12A45B was moved into a numeric field and the error
procedure was invoked, then $ERROR-VALUE contains 12?45?, indicating the positions
of the letters A and B.

For a program to see what the actual data was, you can use the $CHAR-TO-HEX function
on the sending field in error. For example:

<<ERROR>> PROCEDURE

IF $ERROR-TYPE = 'NUM'

 SELECT $ERROR-NAME

 WHEN 'field-name-1'

 SET VAR1 = $CHAR-TO-HEX(field-name-1)

 WHEN 'field-name-2'

 SET VAR2 = $CHAR-TO-HEX(field-name-2)

 ENDSEL

ENDIF

ENDPROC

You must include a WHEN clause for every possible sending field. You can directly list
the contents without using an intermediate field, for example:

LIST $CHAR-TO-HEX(field-name-1)

You can also issue a LIST ERROR statement in the scope of the error procedure. The
resulting listing displays the contents of the field in error in hex, although the results are
not of use in the error procedure.

You can help prevent numeric runtime errors by using the $VERIFY function to make
sure that each sending field is numeric before doing a move.

Common Error Subroutines

Chapter 6: Error Handling 123

Executing the Error Procedure for User-Determined Errors

You can execute the error procedure when program code determines that an error
condition exists, even if the condition is not one that would cause a fatal error. To
execute the error procedure, enter the statement DO ERROR.

The following example shows an error procedure being invoked:

<<COLOR_CHECK>> PROCEDURE

 SELECT WOR-COLOR

 WHEN 'BLUE'

 DO PROCESS-BLUE

 WHEN 'RED'

 DO PROCESS-RED

 WHEN 'YELLOW'

 DO PROCESS-YELLOW

 WHEN OTHER

 DO ERROR

 ENDSEL

ENDPROC

Using SQLCA for SQL

When the FOR construct accesses SQL objects, the CA Ideal error procedure processing
is invoked. If the $ERROR-TYPE value is DB2 or SQL, you can evaluate the SQLCODE from
the SQLCA with the CA Ideal error procedure. For example, an error procedure for DB2
can contain:

SELECT $ERROR-TYPE

 WHEN 'DB2'

 SET $RC = $SQLCODE

 LIST ERROR

 LIST $SQL-LAST-STMT

 BACKOUT

 QUIT RUN

 . . .

$SQL-LAST-STMT returns the statement number and program name of the last
statement executed.

Common Error Subroutines

124 Creating Programs Guide

When using SQL to access the database, be aware that errors encountered in SQL do not
invoke execution of the CA Ideal error procedures. Code the necessary SQL, as in:

EXEC SQL

 WHENEVER SQLERROR DO SQL-ERROR

END-EXEC

You can code the error procedure named SQL-ERROR as:

<<SQL-ERROR>> PROCEDURE

 SET $RC = $SQLCODE

 LIST $SQL-LAST-STMT

 BACKOUT

 QUIT RUN

ENDPROC

Locating the Error in the Code

The following $ERROR functions are particularly useful in an error procedure designed
to process all of the errors in an application. These $ERROR functions pinpoint the
location of the error:

■ $ERROR-NAME Name of error field

■ $ERROR-PGM Name of program containing error

■ $ERROR-PROC Name of procedure containing error

■ $ERROR-STMT Sequence number of statement containing error

Chapter 7: Processing Programs 125

Chapter 7: Processing Programs

This chapter describes the facilities of CA Ideal available for processing a program. The
PROCESS option of the Main Menu takes you directly to the Process Program menu,
where six options-COMPILE, RUN, DEBUG, SUBMIT, EXECUTE, and PRODUCE-are
available.

 =>

 IDEAL: PROCESS PROGRAM (001) TEST SYS: DOC MENU

 Enter desired option number ===> There are 6 options in this menu:

 1. COMPILE - Compile a program
 2. RUN - Run a program online
 3. DEBUG - Debug a program online
 4. SUBMIT - Submit a member containing a batch jobstream
 5. EXECUTE - Execute a member containing IDEAL commands
 6. PRODUCE - Produce a report facsimile

Compiling a Program

Compiling a program results in a form of the program ready for execution (object form)
and a compilation listing.

You can compile a program by issuing a COMPILE command in the command area during
an online session or by submitting a member containing a batch job stream. This job
stream can contain a COMPILE command. You can submit it during an online session.

You can direct the output of an online compilation, the compilation listing, to the output
library for browsing online or to a system printer. You can also direct an online
compilation to a network printer. This chapter describes how to compile a program
online.

Note: When you recompile a program, only the working data, parameters, and panels
that were changed since the program was last compiled are recompiled.

Compiling a Program

126 Creating Programs Guide

Using the COMPILE Command

Use the CA Ideal COMPILE command to compile a program. To access the COMPILE
prompter, select option 1 on the Process Program menu or enter an incomplete
COMPILE command. COMPILE * compiles the current program.

You can compile only test programs in the current system. If you enter the COMPILE
command for a production program, PROD status, the program is not recompiled, but a
compilation listing is generated.

When you enter a COMPILE command from CA Ideal, a message COMPILATION
INITIATED appears. You can proceed with other activities at the terminal while the
program is compiling. CA Ideal allows a maximum of 16 compilations to be in progress
simultaneously for a user. For your system, an installation parameter determines the
number of compilations that can execute simultaneously. If the limit is reached, new
compilation requests are entered into a queue and then compiled. For more
information, see the Installation Guide.

Issuing a COMPILE Command in CICS

A compile initiated in CICS can produce a compilation listing directed to the output
library or to a system or network printer. The default destination for output from an
online compilation is the output library, where you can browse the output before you
print it. Since online compilation of large applications (those with many report or panel
definitions or a large procedure) could tie up much of the available resources, consider
submitting compilations in batch with the compilation listing directed to the output
library. For more information, see Batch Compilation.

One of the following messages informs you when compilation ends:

COMPILATION SUCCESSFUL

COMPILATION UNSUCCESSFUL, PROGRAM HAS ERRORS

COMPILE HAS FAILED

If the compilation was successful, the compilation produces a form of the program
ready for execution, known as the object program, and a compilation listing. At this
point, the program can run. For more information, see the Executing a Program.

If the compilation is unsuccessful, you can display either the compilation errors listing,
including the errors listed at the end, or the procedure definition, with highlighted
errors as an optional feature. Keep in mind, however, that there could be errors in any
component of an application program, not just in the procedure. It is also possible to
view both the compilation listing and the procedure definition by using a split screen.
For more information on displaying output and splitting the screen, see the Working in
the Environment Guide.

Compiling a Program

Chapter 7: Processing Programs 127

Example

To compile program DEMO1, enter:

COMPILE DEMO1

Assume that the compilation was unsuccessful and the message indicating that the
program has errors appears. You can display the output and edit the corresponding
section of the procedure definition by entering the following CA Ideal commands:

SPLIT

1 EDIT PROGRAM DEMO1 PROCEDURE

2 DISPLAY OUTPUT DEMO1

Then scroll to the errors given at the bottom of the compilation listing.

In the second region of the screen, the errors noted in the compilation listing are shown,
while in the first region, the corresponding procedure statements are shown. Splitting
the screen this way lets you proceed with:

1 EDIT *

.

.

.

1 COMPILE *

1 RUN *

Batch Compilation

In batch, compilation occurs when a COMPILE command is invoked. In CA Ideal, job
streams are stored. You can submit them from a member containing the JCL for batch
CA Ideal. Submitting a batch job stream is described in the Working in the Environment
Guide. The procedure name IDBATCH can change from site to site. See your CA Ideal
administrator for procedure names at your site.

The following are sample job streams for compiling a program in Z/OS and VSE:

z/OS Job Stream

//COMP1 JOB . . .

//BATCH EXEC IDLBATCH,PARM='NOPRINT'

//IDEAL.COMPLIST DD SYSOUT=A

//IDEAL.SYSIN DD *

PERSON userid PASSWORD password

SELECT SYSTEM DOC

 { LIB }

COMPILE COMP1 VERSION 1 DESTINATION { SYS name }

 { }

OFF

Compiling a Program

128 Creating Programs Guide

VSE Job Stream

* $$ JOB JNM=IDBATCH,PRI=n,USER='username',DISP=D

* $$ LST DISP=x,CLASS=x,LST=cuu...

// JOB IDBATCH

// OPTION LOG,NODUMP

// EXEC PROC=IDLPROC,PARM='NOPRINT'

*

// EXEC IDBATCH,SIZE=80K

PERSON userid PASSWORD password

SELECT SYSTEM DOC

 { LIB }

COMPILE COMP1 VERSION 1 DESTINATION { SYS name }

OFF { }

/*

// EXEC LISTLOG

/*

/&

* $$ EOJ

Note: JCL statements for work files and sort work files are necessary for compiles
executed with the XREF=FULL or SHORT options.

In the job stream examples above, the DESTINATION clause of the COMPILE command is
the output library or a system printer. You can monitor the status of a compilation
directed to the output library by displaying the output library. As soon as the compile
starts to execute, its status in the library is CRTIN. When the status is READY, the
compile has finished executing.

How to Read a Compilation Listing

The information in the compilation listing is output in the sequence listed below. For
more information and a complete example, see the Sample List appendix.

Compile Options in Effect

Displays available compile options for processing and listings. For each option, Yes
signifies that the option is on, No signifies that the option is off. For more
information, see the description of the SET COMPILE command in the Command
Reference Guide.

Program Identification Display

Displays descriptive information about the program's creation, last edit access, and
last compilation. The run status and a short description of the program also display.
For more information, see Creating a New Program Definition.

Resource Listing

Lists all external components accessed by the procedure, namely dataviews, panels,
reports, and other called programs. For more information, see Defining Program
Resources.

Compiling a Program

Chapter 7: Processing Programs 129

Dataview Listing

Displays the components of each dataview accessed by the procedure. For more
information, see the Creating Dataviews Guide.

Panel Identification

Displays descriptive information about the panel's creation and last edit access. A
short description of the panel also displays. For more information, see the Creating
Panel Definitions Guide.

Panel Layout

Displays a panel representation. For more information, see the Creating Panel
Definitions Guide.

Panel Facsimile

Displays a panel as it appears when a program is run. The symbols described in
Panel Layout do not appear on this screen. For more information, see the Creating
Panel Definitions Guide.

Field Summary Table

Displays a table that describes each field identified on the panel. For more
information, see the Creating Panel Definitions Guide.

Panel Parameters

Displays input and output fill characters, panels used as help, prefix or suffix panels,
and other general options for panel definition. For more information, see the
Creating Panel Definitions Guide.

Input Rules

Displays a table that describes the input each field accepts. This information is also
found in the Extended Field Definition. For more information, see the Creating
Panel Definitions Guide.

Output Rules

Displays a table that describes the output each field displays. This information is
also found in the Extended Field Definition. For more information, see the Creating
Panel Definitions Guide.

Working Data

Displays data that is local to the program. For more information, see Defining
Working Data.

Parameters

Displays a listing of names and descriptions of data items that are passed to the
program from the calling program. You can also define a parameter in a main
(calling) program if it is issued in a RUN command for that program. For more
information, see Defining Parameters Used as Input.

Compiling a Program

130 Creating Programs Guide

Report Identification

Displays descriptive information about the report's creation and last edit access. A
short description of the report also displays. For more information, see the
Generating Reports Guide.

Report Parameter

Displays report layout options such as a report's length and width on a page, the
spacing between lines and columns, column headings and how they are highlighted,
control breaks, group continuation indication, heading definitions, summary
information, and date and page specification. For more information, see the
Generating Reports Guide.

Report Page Heading Definition

Displays the page heading used in the report. The position or location of the page
heading is specified. You can use field names, literals, functions, and arithmetic
expressions as part of a page heading. For more information, refer the Generating
Reports Guide.

Report Detail Definition

Displays the fields to appear in each detail line of the body of the report and
specifies sorting, control breaks, summary functions, and so on for these fields. For
more information, see the Generating Reports Guide.

Procedure

Displays a listing of program logic for the application. For complete syntax of all the
PDL statements, see the Programming Reference Guide.

SQL Generated Listing

Displays SQL generated to support FOR constructs for the current compile. For
more information on the SET COMPILE LSQL command, see the Command
Reference Guide.

Cross Reference Listing (Batch)

Displays a listing in ascending sequence of the symbols from components the
procedure accesses. This listing appears when it is the site default or when the SET
COMPILE REF command equals FULL (this is the default). For more information, see
the next section.

Compiling a Program

Chapter 7: Processing Programs 131

Compile Cross Reference (Batch)

The compile cross reference listing displays the symbols accessed in the procedure. It is
included in batch compilation output when it is the site default or when the command
SET COMPILE REF is FULL or SHORT. For an example, see appendix Sample Lists.

The following information displays in the compile cross reference listing:

■ symbol Any name that is identified in the procedure or resource fill-in of the
program or defined in working data, parameter data, or panels the program
accesses.

■ For CA Datacom SQL access, the name of a table or view. They can be used
explicitly in embedded SQL or generated from a FOR construct.

■ For DB2 SQL access, the name of a table, view, or column, or a correlation name.
They can be used explicitly in embedded SQL or generated from a FOR construct.

■ qualifier Any group, panel, or dataview name that qualifies the symbol if there is a
qualifier. This is left blank for level-1 items, report names, subprogram names,
dataview names, and panel names.

For DB2 columns, any table or view name that qualifies a column name. For DB2
correlation names, the DB2 qualification (auth-id.table-name).

■ (ENT) symbol entity The entity type of a symbol. There are eight symbol entity
types:

– COR SQL correlation name

– DVW Dataview

– PAR Parameters

– PGM Program

– PNL Panel

– PRC Procedure

– RPT Report

– WOR Working data

The entity type PRC is always given to labels.

Compiling a Program

132 Creating Programs Guide

■ (T) Type The data type of the symbol where applicable. Valid types are:

– C Condition

– D Date field

– F Flag (T or F)

– G Group

– L Label or procedure name

– N Signed numeric

– U Unsigned numeric

– V Variable length field

– X Alphanumeric

This column is blank for subprogram names, report names, pseudo functions, and
fields in error.

■ (I) Internal Representation Valid internal numeric representation types are as
follows:

– Z Zoned decimal

– P Packed decimal

– B Binary

This column contains a value only when type is N, U, or D. For non-numeric data
types, this column is blank.

■ (CH/DG) Characters or Digits The number of characters or digits that the symbol
contains including decimal places. Digits are denoted in format dd.nn, where dd
shows the integer positions and nn shows the decimal positions.

This column is blank for subprogram names, report names, pseudo functions, and
fields in error.

■ (DEFN) Definition The sequence number of the line in working data or parameter
data where the symbol name is defined. This column is blank for program names,
report names, literals, figurative constants, pseudo functions, and correlation
names.

Compiling a Program

Chapter 7: Processing Programs 133

■ References The statement numbers in the PDL procedure or report where the
symbol name is referenced. A -U appears after the statement number if the symbol
is updated in that statement. For example, the following statement number means
that the symbol is a sending field on line 200 and a receiving field on line 300:

200, 300-U

You can reference identifiers, literals, pseudo-functions, and figurative constants in
reports and in the procedure. You can reference condition names and labels only in
procedures. Symbol names that are referenced in a report have an indicator RPT in
front of all references in that entity.

References in the procedure appear first, followed by references in a report. For
example:

Symbol References

FIELDX 200 300-U 400 RPT RPTX 200

The value of FIELDX is referenced at statement numbers 200, 300, and 400 in the
procedure. FIELDX is also referenced at sequence number 200 in report RPTX.

The program lists:

■ For SQL tables and views, the statement number of each FOR construct and
each SQL statement referenced.

■ For DB2 columns, each explicit reference to the column name with the
appropriate update indicator, and separately after all other entity types
correlation names.

Executing a Program

134 Creating Programs Guide

Executing a Program

The RUN command initiates execution of a program by a user or by an application
developer during the testing of an application. A program cannot run after an EDIT
change until it is successfully compiled. For more information, see Compiling a Program.

You can run a program by issuing a RUN command in the command area during a
session. See Running a CA Ideal Application Online. You can also submit a member
containing a RUN command in a batch job stream. See the Batch CA Ideal and Running
Batch Applications.

You can direct the output of a run-any generated reports-to the output library (for
browsing online), to a system or network printer, or to a CA-eMail ID.

Determine the destination of a report in one of the following ways:

■ Issue the RUN command without the destination clause. All output generated
during the run are directed to the destination determined by the default
destination clause values for the current session.

■ Use the destination clause of the RUN command to specify where all reports
generated by the application are directed. The destination clause information
supplied in a RUN command overrides the default destination clause values for the
current session.

■ The ASSIGN REPORT statement can change the destination of a report during a run.

Using the RUN Command

To execute a program, enter the RUN command or select option 2 from the Program
Maintenance Menu. If you enter the RUN command with no operands or select the RUN
option from the menu, a prompter that provides the complete syntax displays. Fill in the
required values and press the Enter key to enter the RUN command.

RUN * executes the current program.

Passing DATA to Programs through a RUN Statement

A parameter string in the RUN command can supply data for the first level-1 data item
of the program's parameter section. For more information about RUN command, see
the Command Reference Guide.

Executing a Program

Chapter 7: Processing Programs 135

Passing DATA to an Application through Transparent Signon

In a CICS environment, you can call a non-Ideal subprogram to read the terminal
input/output area (TIOA). You can pass the data entered on the screen after the CA
Ideal Transparent Signon transaction ID to the CA Ideal calling program before any
TRANSMITs execute. The CA Ideal Administration Guide describes how to define and use
a transparent signon.

Altering the Runtime Environment

CA Ideal allows the resources an application uses to change based on the environment
where the application is run. You can set these changes to apply to all users and
applications running at a particular site, for a particular user for applications run during
a session, or they can be determined dynamically by the application based on the
environment where the application runs. You can make these changes without changing
the application, recompiling the program, or changing the status of the application.

The modifications that you can make are:

■ You can run CA Datacom/DB native dataviews against different databases than
those assigned when the dataviews were cataloged.

■ You can assign sequential dataviews in VSE a different device, block size, and file
name.

■ You can assign the reports an application generates to different printers than the
printers established in the RUN command or as the default session or site printers.
You can also give reports a different page size.

■ You can substitute subprograms in test status for production status subprograms
without recompiling the calling program.

■ You can change the authorization ID for SQL objects a program accesses at runtime.

In most instances, you can accomplish these changes in three ways:

■ The CA Ideal administrator can modify the object code for the application to reflect
the change. This is done with ALTER commands, which are described in the
Command Reference Guide.

■ You can specify ASSIGN commands to modify the run environment for the current
session. This section describes the ASSIGN commands. You can display all ASSIGN
commands in effect by issuing the DISPLAY SESSION OPTIONS command.

■ You can select some environment options dynamically using the PDL statements
ASSIGN REPORT and ASSIGN DATAVIEW. The PDL statements are fully described in
the Programming Reference Guide.

Executing a Program

136 Creating Programs Guide

Assigning Dataviews to a Different Database

Initially, a dataview acquires the DBID of the corresponding DATABASE entity
occurrence (identified in the dataview display as DBID nnn). A program using this
dataview is then associated with the same database. Once a program is compiled with a
dataview specified as a resource, this association with a DBID becomes part of the
object code for the application.

An ASSIGN statement in PDL lets an application dynamically select a DBID for a specified
dataview to run against. This statement is described in the Programming Reference
Guide.

The ASSIGN command selects a DBID for a specified dataview for the current session.
This lets the dataview run against a different DBID than the one associated with the
dataview when the application was compiled.

Specify this command before the application runs. It is in effect for the duration of a
session. This affects all applications using that dataview run during the session.

See the RESET command in the Command Reference Guide to revert a dataview back to
the database it referenced when the application was compiled.

The ASSIGN DVW command takes precedence over the ASSIGN DBID command. The
DBID is changed first, then the dataview.

For example, if your application programs were compiled using a test database (DBID
024) for all dataviews and you want to test those programs using a production database
(DBID 025) for all dataviews except the PAYROLL dataview, you could enter the
following commands:

ASSIGN DVW PAYROLL DBID 024

ASSIGN DBID 024 DBID 025

If several ASSIGN commands are made for the same dataview, only the last command in
the sequence is in effect. For example:

ASSIGN DVW PAYROLL DBID 035

RUN PAY1

.

.

.

ASSIGN DVW PAYROLL DBID 036

RUN PAY1

.

.

.

Executing a Program

Chapter 7: Processing Programs 137

Assigning Dataviews to a Different Table Partition

An ASSIGN statement in PDL lets an application dynamically select ANY or an individual
child table of a CA-Datacom/DB partitioned table. For more information about the
ASSIGN statement, see the Programming Reference Guide.

The ASSIGN command selects ANY or an individual child table of a
CA-Datacom/DB partitioned table for a specified dataview for the current session.

Specify this command before the application runs. It is in effect for the duration of a
session. This affects all applications using that dataview run during the session.

For more information about reverting a dataview back to the parent URT, see the RESET
command in the Command Reference Guide.

Assigning a Global Substitute for a Database

Using the ASSIGN DBID command, you can substitute one database for another
database during a session. This means you can direct any dataviews cataloged to run
against a specific database or assigned to run against a specific database to a different
database during the current session without making any changes to the dataviews.

This command remains in effect from the time you specify it until the end of a session or
until a RESET command or another ASSIGN command is issued. It affects all references
to the specified database ID. See the RESET command in the Programming Reference
Guide to revert a database back to the database originally referenced by the
applications.

The ASSIGN DVW command takes precedence over the ASSIGN DBID command.
Regardless of the order in which the commands are entered, the DBID is changed first,
then the dataview.

The ASSIGN command acts on the DBID identified in the program object code.
Therefore, you cannot chain the assignment of databases with multiple ASSIGN
commands. For example, the following commands are not equal to the command
ASSIGN DBID 024 DBID 524, since only the DBID 024 is found in the program object
code:

ASSIGN DBID 024 DBID 324

ASSIGN DBID 324 DBID 524

Substituting Subprograms for a Run

You can substitute a test version of a CA Ideal subprogram for the production or another
test-status version of that program during a run using the ASSIGN PROGRAM command.
This lets you test a subprogram with the production version application without
replacing the production version subprogram or creating a test version of the entire
application. This command only affects applications for the current CA Ideal session.

Executing a Program

138 Creating Programs Guide

Changing the Authorization ID for SQL Access

For programs that access SQL objects, you can change the authorization ID at runtime.
Using the ASSIGN AUTHORIZATION command, you can override the authorization ID
specified in the plan or package resource table for a DB2 object or in the environment
fill-in of a program that accesses an CA Datacom SQL object.

For CA Datacom SQL access, the ASSIGN AUTHORIZATION command is entered before
running a program to select an alternate plan at runtime. As a result, the statements in
the new plan execute instead of the statements in the default plan.

For DB2 access, the ASSIGN AUTHORIZATION command is entered before running a
program in dynamic mode or before generating the plan for a program that runs in
static mode. This command changes the authorization ID that qualifies the DB2 objects
without changing the program.

For more information on the ASSIGN AUTHORIZATION command, see the Command
Reference Guide.

Directing the Outputs of a Run

You can specify the destination of each report with the ASSIGN REPORT command. This
command is issued before a run and is in effect for the duration of the current session.
As many ASSIGN REPORT commands as there are reports generated can be active, to a
maximum of 20 per user during one run.

The parameters specified in the ASSIGN REPORT command override the corresponding
parameters specified in the RUN command. Parameters specified in an ASSIGN REPORT
command override any corresponding parameters specified in the previous ASSIGN
REPORT command.

The following table shows the default destinations (the batch file names) for some of
the standard reports:

Default Destination Report

AUXPRINT Reports that are not otherwise assigned to external files.

COMPLIST All batch compiler listings.

RUNLIST All LIST statements produced by an application RUN
(including LIST ERROR). You can only alter the RUNLIST
destination.

For more information on the ASSIGN REPORT command, see the Command Reference
Guide.

Executing a Program

Chapter 7: Processing Programs 139

Resetting the Elements of a Run Environment

You can reset the assignment of a report, dataview, or program to the original or default
assignment using the RESET command. However, if the original assignment was changed
with the ALTER command, the RESET command cannot reset the assignment to the
original or default assignment.

For more information on the RESET and RUN commands, see the Command Reference
Guide.

Running a CA Ideal Application Online

You can run an application by issuing a RUN command in the command area during an
online session or by submitting a member that contains a batch job stream. This job
stream can contain a RUN command and can be submitted during an online session.

You must run applications that transmit panels online. You cannot run applications that
contain sorted reports under CICS. All other applications can run online or in batch.
Applications that produce reports can direct the reports to the output library, to a
system printer, to a network printer (online only), or a CA-eMail ID.

Batch CA Ideal and Running a Batch Application

Batch CA Ideal can perform any CA Ideal service that is initiated by a command and that
does not require interaction with the user. They include:

■ Setting options. SET commands are described in the Working in the Environment
Guide.

■ Running utilities. See the Working in the Environment Guide.

■ Managing entities, such as deleting, marking status, printing, and so on.

■ Cataloging dataviews. See the Creating Dataviews Guide.

■ Compiling programs. See Compiling a Program.

■ Running batch programs. See the Working in the Environment Guide.

■ Creating sorted reports. See the Generating Reports Guide.

Services that require interaction with a user cannot run in batch. For example, the
following command has insufficient syntax to complete the DUPLICATE command and
returns a prompter:

DUPLICATE

Executing a Program

140 Creating Programs Guide

In batch, the DUPLICATE command terminates at this point since information cannot be
entered into the prompter and the next CA Ideal command in the job stream executes.
However, the following command works successfully in any environment, provided the
entity exists:

DUPLICATE PANEL ORDFRM VERSION 2 NEXT VERSION

In addition, a program with any panel-processing PDL statements, such as TRANSMIT,
cannot run in batch and terminates the run. If a DISPLAY command is used for index,
session, or dataview option display, the command is treated like a PRINT command.

Note: Printing to a network printer (DESTINATION NET) is not allowed in batch.

Terminating a RUN

The RUN command, issued online or in batch, terminates upon successful completion of
the executed program, upon encountering abnormal conditions, or by encountering
online interruptions.

Successful completion of a run

A run terminates when program execution is successfully completed (when a QUIT
RUN statement in any program or subprogram or a QUIT PROGRAM statement in
the main program is encountered, or when the main program falls through to the
end without an explicit QUIT RUN).

Abnormal termination of a run

A run terminates when CA Ideal does not give control to the ERROR PROCEDURE,
such as when an environmental or system error occurs (for example, MAXLINES are
exceeded). An error message is issued.

A run terminates when an execution error occurs and there is no ERROR
PROCEDURE in the program. A default ERROR PROCEDURE that lists the error,
performs a BACKOUT, issues a message, and quits the program is used. See the
section Error Procedure in the Programming Reference Guide.

Online interruption of a run

A run terminates when a panel is on the screen and a command or function key
initiates a new activity, such as Clear, Return, Edit, Display, or Delete.

At the end of a run, the message RUN completed, RC=nn appears. The RC=nn is the
value of the return code at the end of the run. Each system message has a message level
with an associated return code. The program can also explicitly set the return code to
any value.

How to Debug a Program

Chapter 7: Processing Programs 141

When an internal system error is detected in the run, $RC is set to 12. See also the $RC
function in the Programming Reference Guide.

Message Level Return-Code

A - Advisory 4

C - Conditional 16

D - Disaster 16

E - Error 8

F - Fatal error 12 or greater

I - Information 0

T - Terminal 16

W - Warning 4

How to Debug a Program

The DEBUG command executes a program under the control of the debugger. You can
interrupt program execution, display data values, and modify data without altering the
source program and without recompiling. Before you can execute a program with the
DEBUG command, it must be successfully compiled. If you edited the program since the
last successful compile, you must recompile the program before you can execute it with
the DEBUG command.

To debug a program during an online session, you can issue a DEBUG command in the
command area or select option 3 of the Process Program Menu. If you enter the DEBUG
command with no operands or select option 3 from the Process Program Menu, a
prompter displays for the missing information. To debug a program in batch, you can
submit a member that contains a DEBUG command in a batch job stream.

You can direct reports generated during a debug run to the output library (for browsing
online), to a system or network printer, or to a CA-eMail ID, just as they can during a
normal run. The destination of a report is determined in the same way for a debug run
as for a normal run. See the Working in the Environment Guide for details on redirecting
output.

You can alter the destination of DBUGLIST, which is the file that contains the output
from all LIST commands during a debug session, in the same way as RUNLIST.

How to Debug a Program

142 Creating Programs Guide

To terminate a debug session, you can allow the run to end in the same way that it
normally ends or you can enter a QUIT RUN debug command. The return code for the
debug session is the same as it would be if you ran the program with a RUN command.

For more information on debugging programs, see the chapter "Symbolic Debugger."
For complete details on the DEBUG command, see the Programming Reference Guide.

Chapter 8: Symbolic Debugger 143

Chapter 8: Symbolic Debugger

This chapter describes the CA Ideal Symbolic Debugger. It begins with basic concepts
and includes information on:

■ Setting breakpoints

■ Examining and changing data values

■ Attaching commands to a breakpoint

■ Controlling breakpoints

■ Using command members, batch considerations

■ Using the debug command with DB2, VSAM, or the CA-Datacom SQL

Debug Concepts

The CA Ideal debugger is a flexible tool for debugging programs. It lets you follow
program logic and display the values of data items at crucial locations in the program.
You can specify debugging commands, like CA Ideal commands, online or in batch.

The traditional method for debugging programs requires changing source code and
recompiling the program. The CA Ideal debugger lets you perform debugging tasks
separately from the source program. This means you can interrupt program execution,
display data values, and modify data without altering the source program and without
recompiling.

Breakpoints

A debug run is interrupted at breakpoints in the program where you can perform
debugging tasks. There are four types of breakpoints:

BREAK

Assigned by the user at a statement in the program.

INIT

 Assigned automatically at the start of the RUN.

QUIT

Assigned automatically at the end of the RUN.

ERROR

Assigned automatically when a fatal error occurs.

Breakpoints

144 Creating Programs Guide

Breakpoints always occur at the beginning and end of a run and when an error that the
error procedure cannot correct occurs. You can also set breakpoints at the beginning of
as many program statements as required.

At a breakpoint, you can perform the following tasks:

■ Display, print or modify data

■ Display the source program

■ Add, display, disable, or enable breakpoints

■ Attach debug commands to execute at breakpoints

■ Resume or quit the debug session

Commands

The following command starts a CA Ideal debug session:

DEBUG program

The DEBUG command lets you specify the same options that run the program with a
RUN command.

Note: You must have DEBUG-TEST authorization to start the debugger. When you use
DEBUG on a production program or subprogram, you must also have DEBUG-PROD
authorization.

Online, you can issue DEBUG commands interactively or you can attach commands to
breakpoints. When a particular breakpoint is reached, the DEBUG commands associated
with the breakpoint execute. This is described fully in the section titled Attaching
Commands to a Breakpoint later in this chapter.

In batch, all DEBUG commands are available that are typical for a batch environment.

You can issue the DEBUG commands in the following table at any breakpoint during a
DEBUG run-unit.

Command Meaning

AT Specifies the location of a breakpoint.

COMMANDS Switches to a fill-in screen containing the current debug
commands or the debug commands contained in a specified
member.

DATA Displays data for the current debug breakpoint.

DELETE Deletes breakpoints.

Breakpoints

Chapter 8: Symbolic Debugger 145

Command Meaning

DISABLE Temporarily disables breakpoints.

DISPLAY Produces a formatted data display.

ECHO Controls whether to write debug commands, output from
DISPLAY and LIST commands, and breakpoint headers to the
debug print file.

ENABLE Enables breakpoints.

EQUATE Defines abbreviations for the names of groups, fields, or
parameters.

GO Resumes processing of an application after a breakpoint.

LIST Writes data displays to the debug print file.

MOVE Modifies data.

PROC Displays the procedure for a program.

QUIT Turns off debugging.

Note: Use DEBUG commands only during a debugging session and only at
breakpoints-not when application panels are transmitted.

In addition, you can issue the following CA Ideal commands at a breakpoint during a
debug run.

■ @I$TRACE

■ END

■ HELP/RETURN

■ INCLUDE/EXCLUDE

■ PRINT OUTPUT

■ PRINT SCREEN

■ SCROLL/POSITION

■ FIND/RENUMBER/CHANGE/INPUT

Breakpoints

146 Creating Programs Guide

■ SET COMMAND

■ SET EDIT

■ SPLIT/OFF/COMBINE/REFORMAT

CA Ideal saves debug commands in a CA Ideal member. Online, this member is saved
between debug sessions and can be used again with another session. The default name
for this member is uuu.DEBUG, where uuu is your CA Ideal user ID. In batch, a unique
name is generated for each run. For information on members for debugging batch
programs, see the Using Command Members section in this chapter.

Debug Components

A debug session is a controlled run of a program; that is, the entire run is under the
control of the debugger. At each breakpoint, you are shown one of the debug
components:

■ The commands fill-in

■ The data display

■ The procedure display

The following table shows what you can do in each component, what command
accesses the component, and what kind of breakpoint automatically places you there.

Component Function Command When Accessed
Automatically

Commands Display/edit breakpoints CMD At INIT breakpoint and
attached commands

Data Display data values DATA At breakpoint with
attached commands

Procedure Display procedure and set
breakpoints

PROC At breakpoint with no
attached commands

You can perform the functions available in a component, issue commands to switch to
another component, or resume or quit the debug session. These components are
illustrated in the following sample session.

Breakpoints

Chapter 8: Symbolic Debugger 147

Sample Debug Session

The following session uses the default breakpoints to find what is wrong with program
DBSAMP. It uses the GO command to proceed from breakpoint to breakpoint, the PROC
command to display the program procedure, and the DISPLAY WORK command to
display working data.

1. The DEBUG command starts a CA Ideal debugging session. So to debug program
DBSAMP, enter:

DEBUG DBSAMP

2. CA Ideal responds with the next display, the Initial breakpoint.

The Initial breakpoint shows the contents of the DEBUG command member. Since
this is the first debug run in the sample session, the command member is empty.

The session automatically provides at least one command line.

=> GO
=>
=>

IDEAL: Debugger INIT At Pgm DOC.DBSAMP
IDSDBUGP53I - Type any Debugger command. Use "GO" to start application.
 ===
COMMAND Display for Current Debugger Commands in Member SFT.DEBUG
......
......
......
......
......
......
......
 ====== ============================= B O T T O M ==============================

You can customize a DEBUG command member by using the CMD operand of the
DEBUG command. In the member DBSAMP1, a previous DEBUG session's
commands were saved at the end of the run. The following command lets you
begin editing commands saved from that session at the INIT breakpoint:

DEBUG DBSAMP CMD DBSAMP1

When you complete your tasks at a breakpoint, type the command GO to proceed
to the next breakpoint. You can include the GO command as one of the commands
saved in the DEBUG command member for any breakpoint except the INIT
breakpoint. There is no way to attach commands to the INIT breakpoint.

Breakpoints

148 Creating Programs Guide

3. Because the program has an error, CA Ideal initiates the ERROR breakpoint. This
screen indicates that the value of the subscript WT-LINE is incorrect. To determine
which line of code caused the error, note the procedure name and statement
number provided on the status line in the following figure.

=> PROC
=>
=>

IDEAL: Debugger ERROR At Pgm DOC.DBSAMP Proc MAIN Stmt 000800
DESCRIPTION: 1-IDAETERR13E - Invalid subscript
===
IDSDBUGP59I - Additional Error Information follows:
 FATAL ERROR OCCURRED
CLASS=SUB TYPE=SUB RETURN CODE=12
DESCRIPTION: 1-IDAETERR13E - Invalid subscript
NAME: WT-WORK-TEXT-DATA.WT-LINE
VALUE: TYPE=P, HEX=00000C
SUBSCRIPT 1
Level Field Name Value (Offset) Typ,Len (Occ)
 ====== ============================= B O T T O M ==============================

You can display the source line that caused the error by issuing the PROC command.
If the error occurred in a subprogram, you would have to enter the following
command:

PROC pgmname VER version SYS sys

Note: You cannot edit the procedure during a debug run.

4. The result is the Procedure screen that follows. To display the value of WT-LINE
and other working data at the time of the error, enter:

=> DISPLAY WOR
=>
=>

IDEAL: Debugger ERROR At Pgm DOC.DBSAMP Proc MAIN Stmt 000800
DESCRIPTION: 1-IDAETERR13E - Invalid subscript
===
PROCEDURE Display for Program DOC.DBSAMP Version 001
<<MAIN>> PROCEDURE

<<TEXT_REC>>
 FOR FIRST TXT-REC
 LOOP
 VARYING WT-LINE
 FROM WT-MAX BY WT-STEP DOWN THRU WT-MIN
>ERROR IF TEXT-LINE(WT-LINE) NOT EQ $SPACES
 SET NUM-LINE-IN-REC =
 $EDIT (WT-LINE,PIC='99')
 PROCESS NEXT TEXT_REC
 ENDIF
 ENDLOOP
 ENDFOR
ENDPROC

Setting Breakpoints

Chapter 8: Symbolic Debugger 149

5. The display of working data in the following screen shows that the value of WT-LINE
is zero, which is invalid for a subscript. End the error breakpoint with GO. This also
terminates the DEBUG run-unit.

=> GO
=>
=>

IDEAL: Debugger ERROR At Pgm DOC.DBSAMP Proc MAIN Stmt 000800
DESCRIPTION: 1-IDAETERR13E - Invalid subscript
===
=> DIS WOR
1 WT-WORK-TEXT-DATA
 2 WT-MAX 0 NP,3
 2 WT-MIN 0 NP,3
 2 WT-STEP -1 NP,1
 2 WT-LINE 0 NP,5
====== ============================= B O T T O M ==============================

As shown in step 4, the value of WT-LINE is set by the LOOP varying statement using
WT-MAX and WT-MIN as the upper and lower bounds of the loop. The value of both
WT-MAX and WT-MIN is zero. Either could cause WT-LINE to contain an invalid value.

To investigate the cause of the incorrect WT-MAX and WT-MIN values further, you can
display these values before the error is detected and at the first iteration of the loop. Do
this by inserting a breakpoint at line 800, the location in the program where the error
occurs.

Setting Breakpoints

From any CA Ideal program, you can set breakpoints for that program or for any other
CA Ideal program for which you have debug authority. By default, breakpoints are set
for the current program or procedure, but you can specify another procedure in the
current program or another program. By setting breakpoints, you can interrupt the
debugging run at points other than the default breakpoints. You can specify a
breakpoint at the statement number of any executable statement or procedure header,
and you can specify a breakpoint in an error procedure.

The breakpoint takes effect immediately before the statement executes (before the first
verb in the statement executes if there is more than one verb).

Setting Breakpoints

150 Creating Programs Guide

Specifying Breakpoints

Use any of the following DEBUG commands to specify the locations of breakpoints:

■ AT primary command (at any breakpoint)

■ <label> line command (in PROC mode)

■ AT line command (in PROC mode)

Use the AT primary command in the command area of any debug component or in the
display area of the commands fill-in.

Use the AT and <label> line commands in the sequence number field of the procedure
display. This AT line command specifies a break at line 300:

000200 ...

AT0300 IF TEXT-LINE(WT-LINE) NOT EQ $SPACES

This provides a breakpoint labeled <$nn>.

Subprograms

To set a breakpoint in a CA Ideal subprogram, use the procedures explained above, but
specify the name of the subprogram. For example, to set a breakpoint at statement 100
of the subprogram B in system DYB, enter the following command while you are running
the calling program in DEBUG mode:

AT STMT 100 IN DYB.B

Another way to do this is to display the Procedure Section by issuing the following
command from the calling program:

PROC DYB.B

Then, when the Procedure Section of DYB.B displays, you can determine which
statements require breakpoints.

Note: You cannot set a breakpoint for a non-Ideal subprogram.

Setting Breakpoints

Chapter 8: Symbolic Debugger 151

Labels

Each user-defined breakpoint has a label associated with it. The label identifies the
breakpoint and lets you specify commands to execute at the break. Each label in a run
must be unique.

The format of a label is:

<xyz>

The value of xyz is any set of one to three letters, numbers, or national characters,
except ALL.

For example:

<BK1> <AA> <$BK> <$01>

You can specify labels when you set breakpoints, using meaningful tags and making
certain that each label is unique. Or you can leave it to CA Ideal to assign a unique label
to each breakpoint in the form <$01>, <$02>, <$03>, and so on.

Restrictions

Breakpoints entered at the following points are ignored:

■ Non-executable statements, such as a comment line or ENDPROC.

■ Non-existent statement numbers, such as 101, when statements are numbered
100, 200, and so on.

Breakpoints entered at the following statements cause the following actions:

Statement Action

LOOP Stop execution only once at the start of the first iteration.

ENDLOOP Stop execution only once at the end of the last iteration.

WHILE or UNTIL Stop execution at each iteration when the respective test is
made.

FOR Stop execution only once, at the start, before data is accessible.

ENDFOR Stop execution only once, at the end, after all rows and records
are processed. The last record is accessible, if any.

WHEN NONE Stop execution if the clause is executed (that is, now rows are
found).

IF Stop execution before the IF condition is evaluated.

Setting Breakpoints

152 Creating Programs Guide

Statement Action

ELSE Stop execution at the beginning of the ELSE path. The IF
condition is false.

ENDIF Stop execution at the end of the construct. The IF condition can
be true or false.

WHEN Stop execution if the WHEN clause has an expression or a
condition that performs a test, and the test is performed. That
is, if execution of a SELECT construct reaches a WHEN clause,
the breakpoint takes effect whether the WHEN tests true or
false.

For example, in the following SELECT FIRST construct, a
breakpoint entered at statement 30 stops execution when AMT
equals 500, 1,500, or 2,000. It does not stop execution if
AMT=1,000 because after WHEN AMT=1000 control passes
immediately to WHEN ANY and ENDSEL during SELECT EVERY
logic.

10 SELECT FIRST ACTION

20 WHEN AMT = 1000

30 WHEN AMT = 2000 ...

If statement 10 is replaced by SELECT EVERY ACTION, a
breakpoint set at statement 30 stops in EVERY case.

WHEN NONE, WHEN
ALL, WHEN ANY

Stop execution only if the clause is, in fact, executed. In the
following example, a breakpoint entered on the WHEN ANY
stops execution only if statement 20 or 30 is executed.

10 SELECT FIRST ACTION

20 WHEN AMT =1000

30 WHEN AMT = 2000 ...

40 WHEN ANY

Stopping After a Statement

Breakpoints stop execution immediately before the selected statement. To stop
execution immediately after a statement and before the next statement, you might
have to introduce a dummy statement that has no effect on execution.

For example, a breakpoint entered at an ELSE stops execution at the beginning of the
ELSE path. To stop execution immediately before the ELSE, you can enter a statement
before the ELSE and assign it a breakpoint. To stop execution after the statement at line
20 in the following example, assign a breakpoint to the statement at line 30:

10 IF A = B

20 statement

30 MOVE W TO W

40 ELSE...

Setting Breakpoints

Chapter 8: Symbolic Debugger 153

Sample Session

This sample runs the debugger with the same program from the previous sample,
DBSAMP, setting a breakpoint.

1. Type the following command to debug the current program:

==> DEBUG *

2. CA Ideal displays the commands fill-in. You can also display the commands fill-in by
entering COMMAND at any breakpoint.

To create a breakpoint labeled <BR1> at line 800 in program DBSAMP, enter the
following AT command in the commands fill-in:

<BR1> AT 800

The full range of editing commands, including scrolling commands, are available in
the commands fill-in.

You can see the breakpoint in a display of the program procedure by typing the
command PROC. For a program other than the current program, type PROC
program-name:

=> PROC
=>
=>

 IDEAL: Debugger INIT At Pgm DOC.DBSAMP
 IDSDBUGP53I - Type any Debugger command. Use "GO" to start application.
 ===
 COMMAND Display for Current Debugger Commands in Member SFT.DEBUG
 <BR1> AT 800

 =================================== B O T T O M ==============================

Setting Breakpoints

154 Creating Programs Guide

3. In the program procedure in the following screen, note the breakpoint labeled
<BR1>. If the AT command in the previous step did not specify a label, CA Ideal
assigns the label <$01>.

You can edit the Procedure display using all editing commands available when you
edit a program definition display.

To continue execution, issue the GO command.

=> GO
=>
=>

 IDEAL: Debugger INIT At Pgm DOC.DBSAMP
 IDSDBUGP53I - Type any Debugger command. Use "GO" to start application.
 ===
 PROCEDURE Display for Program DOC.DBSAMP Version 001
 000100 <<MAIN>> PROCEDURE
 000200
 000300 <<TEXT_REC>>
 000400 FOR FIRST TXT-REC
 000500 LOOP
 000600 VARYING WT-LINE
 000700 FROM WT-MAX BY WT-STEP DOWN THRU WT-MIN
 <BR1> IF TEXT-LINE(WT-LINE) NOT EQ $SPACES
 000900 SET NUM-LINE-IN-REC =
 001000 $EDIT (WT-LINE,PIC='99')
 001100 PROCESS NEXT TEXT_REC
 001200 ENDIF
 001300 ENDLOOP
 001400 ENDFOR
 001500 ENDPROC

Setting Breakpoints

Chapter 8: Symbolic Debugger 155

4. Execution stops at the breakpoint at line 800.

To proceed, enter the GO command.

=> GO
=>
=>

 IDEAL: Debugger BREAK At Pgm DOC.DBSAMP Proc MAIN Stmt 000800
 IDSDBUGP54I - Breakpoint cmd = <BR1> AT STMT 000800 IN DOC.DBSAMP
 ===
 PROCEDURE Display for Program DOC.DBSAMP Version 001
 000100 <<MAIN>> PROCEDURE
 000200
 000300 <<TEXT_REC>>
 000400 FOR FIRST TXT-REC
 000500 LOOP
 000600 VARYING WT-LINE
 000700 FROM WT-MAX BY WT-STEP DOWN THRU WT-MIN
 <BR1> IF TEXT-LINE(WT-LINE) NOT EQ $SPACES
 000900 SET NUM-LINE-IN-REC =
 001000 $EDIT (WT-LINE,PIC='99')
 001100 PROCESS NEXT TEXT_REC
 001200 ENDIF
 001300 ENDLOOP
 001400 ENDFOR
 001500 ENDPROC

Since the error was not corrected, the error breakpoint displays.

5. To end the session, enter QUIT DEBUG.

=> QUIT DEBUG
=>
=>

 IDEAL: Debugger ERROR At Pgm DOC.DBSAMP Proc MAIN Stmt 000800
 DESCRIPTION: 1-IDAETERR13E - Invalid subscript
 ===
 IDSDBUGP59I - Additional Error Information follows:
 000001 FATAL ERROR OCCURRED
 000002 CLASS=SUB TYPE=SUB RETURN CODE=12
 000003 DESCRIPTION: 1-IDAETERR13E - Invalid subscript
 000004 NAME: WT-WORK-TEXT-DATA.WT-LINE
 000005 VALUE: TYPE=P, HEX=00000C
 000006 SUBSCRIPT 1
 000007 Level Field Name Value (Offset) Typ,Len (Occ)
 =================================== B O T T O M ==============================

Examining Data Values

156 Creating Programs Guide

It is important to be aware of the fact that a breakpoint issues a checkpoint. Do not
place your breakpoints anywhere you do not want a checkpoint issued. A few general
rules are:

■ If your program updates multiple DB records and you want all your changes backed
out if an error occurs, do not place your breakpoint in the FOR construct.

■ Do not place breakpoints in DB2 FOR constructs. The transmit of the debug screen
causes a checkpoint and drops the DB2 cursor. A -501 results.

■ Do not place a breakpoint between a Delete statement and an ENDFOR. An 'I3'
error results.

■ Do not code a breakpoint between two ESI calls.

Examining Data Values

At any breakpoint, you can examine the values of data items defined in working data,
parameter data, panels, or dataviews that are defined in the current run-unit or that are
resources of any program in the current run-unit.

To display values on the terminal, use DISPLAY. To list them in the debug print file, use
LIST. In either case, the output is a formatted display that includes the debug DISPLAY
and LIST commands used.

Online, you can issue the DISPLAY and LIST commands at any breakpoint or specify that
they execute at any breakpoints.

Display

Online, a DISPLAY command produces a formatted display for the breakpoint. This
screen shows when the DISPLAY is issued. You can access it by typing DATA. You can
scroll the display, but not modify it. A sample is included in Changing Data Values later
in this chapter. The DISPLAY command causes a syncpoint online.

In batch, DISPLAY is treated as a LIST.

Changing Data Values

Chapter 8: Symbolic Debugger 157

List

The LIST command produces a formatted display for the breakpoint in the report
DBUGLIST. When CA Ideal is delivered, the destination for DBUGLIST is the output
library. The output number displays when debug terminates. You can display it by using
the DIS OUT STATUS command. After debug terminates, use DISPLAY OUT or PRINT OUT
to look at listing output.

You can also use the CA Ideal command ASSIGN REPORT DBUGLIST to assign the
ddname or logical unit of a printer to the output to print the listing directly.

Note: DBUGLIST is subject to the restrictions imposed on print files, such as the limit of
16 simultaneous print files (15 unsorted reports and RUNLIST).

Echo

To list all debug commands issued and all breakpoints reached and to display output in
the listing, issue the ECHO ON command at a breakpoint. From that point until an ECHO
OFF executes, CA Ideal writes a complete record of the session to the DBUGLIST print
file.

Changing Data Values

You can use the debug MOVE command to assign values to elementary data items
during the debug session.

Changing Data Values

158 Creating Programs Guide

Sample Session

This sample runs the debugger with the current program, DBSAMP. It initializes
WT-MAX and WT-MIN and, at the first break, displays the dataview TXT-REC and
working data.

1. Type the following command to debug the current program:

==> DEBUG *

2. As the following commands fill-in shows, the debugger retains the breakpoint set in
the previous session (see the section titled Setting Breakpoints earlier in this
chapter), which is saved in the member DEBUG. The DEBUG INIT breakpoint sets
initial values for WT-MAX and WT-MIN. The primary commands typed in this
session are inserted at the bottom of the current DEBUG command member.

 => MOVE 2 TO WT-MAX
 => MOVE 1 TO WT-MIN
 => GO

 IDEAL: Debugger INIT At Pgm DOC.DBSAMP
 IDSDBUGP53I - Type any Debugger command. Use "GO" to start application.
 ===
 COMMAND Display for Current Debugger Commands in Member SFT.DEBUG
 000100 <BR1> AT STMT 000800 IN DOC.DBSAMP
 ==================================== B O T T O M ==============================

Changing Data Values

Chapter 8: Symbolic Debugger 159

3. CA Ideal stops at breakpoint <BR1> and displays the program procedure. You can
also display the procedure by entering PROC at any breakpoint.

Enter the following debug command to display the values in the dataview TXT-REC:

DISPLAY TXT-REC

=> DISPLAY TXT-REC
=>
=>

 IDEAL: Debugger BREAK At Pgm DOC.DBSAMP Proc MAIN Stmt 000800
 IDSDBUGP54I - Breakpoint cmd = <BR1> AT STMT 000800 IN DOC.DBSAMP
 ===
 PROCEDURE Display for Program DOC.DBSAMP Version 001
 000100 <<MAIN>> PROCEDURE
 000200
 000300 <<TEXT_REC>>
 000400 FOR FIRST TXT-REC
 000500 LOOP
 000600 VARYING WT-LINE
 000700 FROM WT-MAX BY WT-STEP DOWN THRU WT-MIN
 <BR1> IF TEXT-LINE(WT-LINE) NOT EQ $SPACES
 000900 SET NUM-LINE-IN-REC =
 001000 $EDIT (WT-LINE,PIC='99')
 001100 PROCESS NEXT TEXT_REC
 001200 ENDIF
 001300 ENDLOOP
 001400 ENDFOR
 001500 ENDPROC

The command is logged in DBUGLIST and the dataview displays.

Attaching Commands to a Breakpoint

160 Creating Programs Guide

4. To verify that the values of WT-MAX and WT-MIN are correct, display the working
data at the breakpoint by entering the debug command DISPLAY WOR.

=> DISPLAY WOR
=>
=>

 IDEAL: Debugger BREAK At Pgm DOC.DBSAMP Proc MAIN Stmt 000800
 IDSDBUGP54I - Breakpoint cmd = <BR1> AT STMT 000800 IN DOC.DBSAMP
 ===
 Level Field Name Value (Offset) Typ,Len (Occ)
 000001 => DISPLAY TXT-REC
 000002 1 TXT-REC
 000003 2 USE-CODE W X,1
 000004 2 WO-NUM
 000005 3 PRODUCT-CODE E X,1
 000006 3 ORDER-CLASS D X,1
 000007 3 META-NUM
 000008 4 META-YR 00 X,2
 000009 4 META-NO 001 X,3
 000010 3 ORD-SUB-CODE X,1
 000011 2 REC-SEQ-NUM X,3
 000012 2 NUM-LINE-IN-REC 3 X,2
 000013 2 TEXT-LINE X,72 (25)
 000014 (1) This will allow the user to se
 000015 2 EXTRA-SPACE X,30

This reaffirms that the WT-MAX and WT-MIN have correct initial values. You could
also display individual fields or parameter data with the DISPLAY command.

5. Complete the run with a QUIT RUN command.

=> QUIT RUN
=>
=>

 IDEAL: Debugger BREAK At Pgm DOC.DBSAMP Proc MAIN Stmt 000800
 IDSDBUGP54I - Breakpoint cmd = <BR1> AT STMT 000800 IN DOC.DBSAMP
 ===
 0000016 => DISPLAY WOR
 000017 1 WT-WORK-TEXT-DATA
 000018 2 WT-MAX 2 NP,3
 000019 2 WT-MIN 1 NP,3
 000020 2 WT-STEP -1 NP,1
 000021 2 WT-LINE 2 NP,5
 ============================= B O T T O M ====================================

Attaching Commands to a Breakpoint

You must retype the debug commands you enter interactively at a breakpoint each time
that breakpoint occurs. To display the same data values, for example, you must retype
the same DISPLAY commands. This section describes how to specify debug commands
that execute automatically each time the program reaches a particular breakpoint.

Attaching Commands to a Breakpoint

Chapter 8: Symbolic Debugger 161

Attaching to a User-Defined Breakpoint

To specify a command to execute at a user-defined breakpoint, first define the
breakpoint:

==> <BK1> AT 800

Then you can attach debug commands to the breakpoint. There are two ways to do this.

■ From the command line on any debug component, enter:

<label> command

 <label> is the label of the breakpoint. For example, the following specifies two
commands for breakpoint <BR1>:

==> <BR1> MOVE TRUE TO FLAG

==> <BR1> DISPLAY WOR

■ In the commands fill-in, you can type the commands on the lines following the
breakpoint assignment.

<BR1> AT100

MOVE TRUE TO FLAG

DISPLAY WOR

Attaching to ERROR or QUIT Breakpoint

To specify a command to execute at an ERROR or QUIT breakpoint, you first have to
associate a label with the breakpoint. For example, the following specifies the label
<QUI> for the QUIT breakpoint. You can you use any legal label-QUI is simply an
example.

==> <QUI> AT QUIT

Then you can associate debug commands with the breakpoint's label as described
above. For example:

==> <QUI> DIS WOR

Attaching Commands to a Breakpoint

162 Creating Programs Guide

Commands You Can Use

You cannot attach all debug commands to breakpoints. For example, you cannot set a
breakpoint from another breakpoint. The commands you can specify are:

■ DELETE

■ DISABLE

■ DISPLAY

■ ENABLE

■ GO

■ LIST

■ MOVE

■ QUIT

Deleting, enabling, and disabling are described later.

Attaching Commands to a Breakpoint

Chapter 8: Symbolic Debugger 163

Sample Session

The following debug session attaches commands to the previously set breakpoint and to
a new breakpoint at the top of the program.

1. Type the following to debug the current program:

==> DEBUG *

2. The commands fill-in at the Init breakpoint shows the <BR1> breakpoint from the
previous session.

Edit the fill-in, inserting a DISPLAY WOR statement at <BR1> and new breakpoint
<BR0> at line 100 with attached commands:

MOVE 1 TO WT-MIN

MOVE 2 TO WT-MAX

Use the PROC command to see that these breakpoints were inserted where you
intended as follows:

=> PROC
=>
=>

 IDEAL: Debugger INIT At Pgm DOC.DBSAMP
 IDSDBUGP53I - Type any Debugger command. Use "GO" to start application.
 ===
 COMMAND Display for Current Debugger Commands in Member SFT.DEBUG
 000100 <BR1> AT STMT 000800 IN DOC.DBSAMP
 DISPLAY WOR
 <BR0> AT 100
 MOVE 1 TO WT-MIN
 MOVE 2 TO WT-MAX
 ==================================== B O T T O M ==============================

Attaching Commands to a Breakpoint

164 Creating Programs Guide

3. Proceed with the run by typing the command GO.

=> GO
=>
=>

 IDEAL: Debugger INIT At Pgm DOC.DBSAMP
 IDSDBUGP53I - Type any Debugger command. Use "GO" to start application.
 ===
 PROCEDURE Display for Program DOC.DBSAMP Version 001
 <BR0> <<MAIN>> PROCEDURE
 000200
 000300 <<TEXT_REC>>
 000400 FOR FIRST TXT-REC
 000500 LOOP
 000600 VARYING WT-LINE
 000700 FROM WT-MAX BY WT-STEP DOWN THRU WT-MIN
 <BR1> IF TEXT-LINE(WT-LINE) NOT EQ $SPACES
 000900 SET NUM-LINE-IN-REC =
 001000 $EDIT (WT-LINE,PIC='99')
 001100 PROCESS NEXT TEXT_REC
 001200 ENDIF
 001300 ENDLOOP
 001400 ENDFOR
 001500 ENDPROC

4. At the breakpoint <BR0>, the Data display shows the attached commands. Proceed
with the run by typing the command GO.

=> GO
=>
=>

 IDEAL: Debugger BREAK At Pgm DOC.DBSAMP Proc MAIN Stmt 000100
 IDSDBUGP54I - Breakpoint cmd = <BR0> AT STMT 000100 IN DOC.DBSAMP
 ===
 Level Field Name Value (Offset) Typ,Len (Occ)
 000001 => MOVE 1 TO WT-MIN
 000002 => MOVE 2 TO WT-MAX
 ====== ============================= B O T T O M ==============================

Attaching Commands to a Breakpoint

Chapter 8: Symbolic Debugger 165

5. At the breakpoint <BR1>, the Data display shows the working data fields. Proceed
with the run by typing the command GO.

=> GO
=>
=>

 IDEAL: Debugger BREAK At Pgm DOC.DBSAMP Proc MAIN Stmt 000800
 IDSDBUGP54I - Breakpoint cmd = <BR1> AT STMT 000800 IN DOC.DBSAMP
 ===
 Level Field Name Value (Offset) Typ,Len (Occ)
 000001 => DISPLAY WOR
 000002 1 WT-WORK-TEXT-DATA
 000003 2 WT-MAX 2 NP,3
 000004 2 WT-MIN 1 NP,3
 000005 2 WT-STEP -1 NP,1
 000006 2 WT-LINE 2 NP,5
 =================================== B O T T O M ==============================

6. Proceed with the run by typing the command GO. The run completes successfully
without an ERROR stop. You should make appropriate changes to working data so
the program proceeds properly under RUN instead of DEBUG.

Attaching Commands to a Breakpoint

166 Creating Programs Guide

Processing Without Terminal Interaction

To have debug commands execute at a breakpoint without stopping for terminal
display, specify a GO command as the last command of the breakpoint.

The following sample session sets two breakpoints. At each breakpoint, any output data
is listed to the print file without stopping for terminal interaction. The DEBUG session
produces two outputs: The output of the DEBUG LIST commands, identified as
DBUGLIST in the output library; and the output of the program's LIST statements,
identified by the program name in the output library.

1. Begin the debug run. Type:

==> DEBUG DBGDEMO2

2. At the Init breakpoint in the commands fill-in, enter the AT, LIST, and GO commands
for each breakpoint. Proceed by typing the GO command.

=> GO
=>
=>

 IDEAL: Debugger INIT At Pgm DOC.DBGDEMO2
 IDSDBUGP53I - Type any Debugger command. Use "GO" to start application.
 ===
 COMMAND Display for Current Debugger Commands in Member TOI.DEMOLIST
 000100 <L2> AT STMT 000400 IN DOC.DBGDEMO2
 000200 LIST WORK
 000300 LIST LONG-NAME LONG
 000400 GO
 000500 <L1> AT STMT 000300 IN DOC.DBGDEMO2
 000600 LIST SHORT-NAME GOT-THERE
 000700 GO
 =================================== B O T T O M ==============================

Attaching Commands to a Breakpoint

Chapter 8: Symbolic Debugger 167

3. At the Quit breakpoint, the procedure displays. End the session with a GO
command.

=> GO
=>
=>

 IDEAL: Debugger QUIT At Pgm DOC.DBGDEMO2
 IDSDBUGP55I - At normal end of application. Use "GO" to complete application.
 ===
 PROCEDURE Display for Program DOC.DBGDEMO2 Version 001
 000100 <<MAIN>> PROCEDURE
 000200 SET SHORT-NAME = 'SHORT'
 <L1> SET LONG-NAME = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789'
 <L2> SET SUM = 0
 000500 LOOP VARYING I FROM 1 THRU 3
 000600 ADD 1 TO SUM
 000700 IF I EQ 2
 000800 SET GOT-THERE = TRUE
 000900 ENDIF
 001000 ENDLOOP
 001100 LIST SUM GOT-THERE SHORT-NAME LONG-NAME
 001200 ENDPROC
 ==================================== B O T T O M =============================

4. At the end of the run, CA Ideal displays a return code and the numbers of the
outputs from the run. In this case, the outputs are 499 (the DBUGLIST) and 500 (the
LIST statement output). To view a listing, type the DISPLAY OUTPUT command.

=> DISPLAY OUTPUT 499
=>
=>

 1-IDADRUNP04I - Run completed, RC = 0, OUTPUT = 499,500

 IDEAL: MAIN MENU PGM DBGDEMO2 (001) TEST SYS: DOC MENU
 Enter desired option number ===> There are 11 options in this menu:
 1. PROGRAM Define and maintain programs
 2. DATAVIEW Display dataview definitions
 3. PANEL Panel Definition Facility
 4. REPORT Report Definition Facility
 5. PLAN Application Plan Maintenance
 6. PROCESS Compile, Run, Submit
 7. DISPLAY Display Entities
 8. PRINT Print Entities
 9. ADMINISTRATION Administration functions
 10. HELP Overview of HELP facilities
 11. OFF End IDEAL Session

Attaching Commands to a Breakpoint

168 Creating Programs Guide

5. The following screen shows output 499, the DBUGLIST, which is the listing produced
by the debug LIST command at each breakpoint. DBUGLIST contains a log of
debugger activity since DEBUG was first issued. Each breakpoint is labeled and data
LIST and DISPLAY images are recorded. DBUGLIST output is produced only in
DEBUG.

DIS OUT 500
=>
=>
 --- >>>
 IDEAL DISPLAY OUTPUT OUT DBUGLIST (00499) DISPLAY
 ================================ T O P =====================================
 IDEAL 11.0 DEBUGGER PRINTOUT March 1, 2006 11:32:11

 IDEAL: Debugger BREAK At Pgm DOC.DBGDEMO2 Proc MAIN Stmt 000300
 IDSDBUGP54I - Breakpoint cmd = <L1> AT STMT 000300 IN DOC.DBGDEMO2
 ===
 Level Field Name Value (Offset) Typ,Len (Occ)
 => LIST SHORT-NAME GOT-THERE
 1 SHORT-NAME SHORT X,5
 1 GOT-THERE F F

 IDEAL: Debugger BREAK At Pgm DOC.DBGDEMO2 Proc MAIN Stmt 000400
 IDSDBUGP54I - Breakpoint cmd = <L2> AT STMT 000400 IN DOC.DBGDEMO2
 ===
 Level Field Name Value (Offset) Typ,Len (Occ)
 => LIST WORK
 1 SUM 0 NP,1
 1 I 0 NP,1
 1 GOT-THERE F F
 1 LONG-NAME ABCDEFGHIJKLMNOPQRSTUVWXYZ0123 X,36
 1 SHORT-NAME SHORT X,5
 => LIST LONG-NAME LONG
 1 LONG-NAME ABCDEFGHIJKLMNOPQRST (0000) X,36
 UVWXYZ0123456789 (0020)
 ============================== B O T T O M ==================================

6. LIST PDS statements continue to generate RUNLIST output.

=>
=>
=>
--- >>>
 IDEAL DISPLAY OUTPUT OUT DBGDEMO2 (00500) DISPLAY
 ================================ T O P ======================================
 3 T SHORT ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
 ============================== B O T T O M ==================================

Controlling Breakpoints

Chapter 8: Symbolic Debugger 169

Controlling Breakpoints

Having defined breakpoints and attaching commands to them, you can control which
breakpoints are active during a run. This section describes:

■ Temporarily bypassing breakpoints

■ Bypassing all breakpoints (QUIT DEBUG)

■ Deleting breakpoints

■ Bypassing the initial breakpoint

Temporarily Bypassing Breakpoints

There are two ways to temporarily deactivate breakpoints.

1. You can use the debug DISABLE command to deactivate one or all breakpoints.
DISABLE does not remove a breakpoint from the final commands member. Use
DELETE to remove breakpoints.

Breakpoints that were disabled are left in the procedure display and commands
fill-in. They are marked with a not-sign (Ø). On some terminals, this is an up-arrow
^. For example, in the commands fill-in:

==>DISABLE <BR1>

The result is:

<BR1>AT STMT 000800 IN DOC.DBSAMP

 DISPLAY WOR

<BR0> AT STMT 000100 IN DOC.DBSAMP

 MOVE 1 TO WT-MIN

 MOVE 2 TO WT-MAX

2. You can produce the same result by entering a not-sign to the right of the
breakpoint's label in the procedure display or commands fill-in.

When you disable a breakpoint, any attached commands are also disabled.

You can use the ENABLE command to reactivate disabled breakpoints or delete the
not-signs in the procedure display or commands fill-in.

The DEBUG commands DISABLE and ENABLE are useful both online and in batch. These
commands let you increase or decrease the level of detail in terms of the number of
breakpoints and the amount of information received.

Controlling Breakpoints

170 Creating Programs Guide

Bypassing All Breakpoints (QUIT DEBUG)

At any breakpoint, you can terminate the debug session but continue program
execution. The program no longer stops at breakpoints or executes attached
commands. Enter:

==>QUIT DEBUG

This has the effect of disabling all breakpoints including ERROR and QUIT.

Deleting Breakpoints

There are several ways to permanently delete breakpoints.

■ You can use the debug DELETE command. You can issue this command from the
command area at any breakpoint. It is particularly useful for deleting all
breakpoints in one command. For example:

==>DELETE ALL

■ You can also attach DELETE to a breakpoint.

■ You can delete breakpoints by deleting the appropriate labels in the procedure
display or by deleting the appropriate lines in the Commands fill-in.

■ You can specify an empty command member (see the section titled Using
Command Members later in this chapter) by deleting all breakpoints previously
entered.

Bypassing the Initial Breakpoint

At the Initial breakpoint, debug pauses to display the current command member. To
bypass this breakpoint, issue the GO command with the DEBUG command. For example:

==>DEBUG DEMO1;GO

The semicolon (;) is the currently defined command delimiter.

Using Command Members

Chapter 8: Symbolic Debugger 171

Using Command Members

Debug commands entered in one session are saved in a CA Ideal member and can be
used in subsequent sessions. The commands fill-in shows the contents of this member.

You do not have to specify a member name. Online, the default member name is
DEBUG, belonging to the current user. In batch, a unique member name is generated for
each session. In either case, unless you specify another member, debug uses this
member, applying the commands in the member to the session and updating the
member during the session.

In a debug session, the following are saved in the current command member:

■ ECHO commands

■ EQUATE commands

■ AT commands

■ Commands attached to breakpoints

Any other commands (such as DISPLAY, MOVE, and DELETE) are only saved if they are
attached to a breakpoint. Deleted commands are removed at the end of the run.

In a command member used with multiple programs, the breakpoints and any attached
commands are associated with their programs. EQUATE and ECHO commands affect all
commands in the member.

The DEBUG member is like any other CA Ideal member-you can delete it, duplicate it,
display it, and so on. CA Ideal creates it and updates it when you run debug, so you do
not have to create or edit it, though you can.

Specifying a Command Member

You can specify separate command members for different programs by specifying the
member name with the DEBUG command. For example:

==>DEBUG DEMO1 COMMANDS DEMO1

This uses member DEMO1 or creates a new member if DEMO1 does not exist. The
debug commands from the current session are saved in DEMO1.

If you complete a debug run with the default member, you can still save the settings in
another member for another debug run by duplicating the DEBUG member to another
name. For example:

==>DUPLICATE MEMBER DEBUG NEWNAME DEMO1

You can then delete the default DEBUG member to start the next debug run fresh.

Batch Considerations

172 Creating Programs Guide

Later, whenever you want to debug a program, specify the command member
associated with the program. For example:

DEBUG DEMO1 COMMANDS DEMO1

All of the breakpoints, attached commands, and so on are in place.

You can also switch command members during a debug run using the debug command
COMMANDS with a member name. For example:

==> COMMANDS DEMO1

This command makes DEMO1 the current command member.

Editing a Command Member

You can edit a command member in a CA Ideal edit session or in a debug session using
the commands fill-in following these rules:

■ Only AT, EQUATE, ECHO, and attached commands are allowed.

■ The commands must be in the sequence: ECHO, EQUATEs, ATs.

■ Labels are optional on AT commands.

■ Attached commands follow their AT commands. The attached commands do not
have labels.

■ Not-signs (Ø) denote disabled AT commands and their attached commands.

■ A single continuation line is permitted on an attached command or an EQUATE. A
trailing semicolon (;) indicates that the line is continued.

Note: To use another user's command member requires EDIT-MEMBER-ACROSS-USER
authorization. Specifying another user's command member that does not exist requires
CREATE-MEMBER-ACROSS-USER authorization.

Batch Considerations

In batch, you must enter any debug commands immediately following the DEBUG
command. The last command must be GO.

When a breakpoint occurs, any attached commands execute and processing continues.
Since there is no stop for terminal interaction, you do not need to attach a GO to each
breakpoint.

Output similar to the online debug screens is written to the print file.

In batch, a DISPLAY command is treated as a LIST.

Batch Considerations

Chapter 8: Symbolic Debugger 173

Batch Sample 1

This sample sets two breakpoints. The first breakpoint, labeled <1>, displays the value
of a counter I. The second breakpoint, which has the default label <$01>, sets a
breakpoint at line 800. The sample also displays working data when it reaches either
the Error or the Quit breakpoint.

Batch Jobstream

DEBUG DBGDEMO2 VER 1

<1> AT 700

<1> D I

AT 800

<QUI> AT QUIT

<QUI> DISPLAY WOR

<ERR> AT ERROR

<ERR> DIS WOR

GO

RUNLIST Output

3 T SHORT ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789

Batch Considerations

174 Creating Programs Guide

DEBUGLIST Output

IDEAL 11.0 DEBUGGER PRINTOUT March 1, 2006 12:53:26

IDEAL: Debugger INIT At Pgm WET.DBGDEMO2
IDSDBUGP53I - Type any Debugger command. Use "GO" to start application.
 ===
=> <1> AT 700
=> <1> D I
=> AT 800
=> <QUI> AT QUIT
=> <QUI> DISPLAY WOR
=> <ERR> AT ERROR
=> <ERR> DIS WOR

IDEAL: Debugger BREAK At Pgm WET.DBGDEMO2 Proc MAIN Stmt 000700
IDSDBUGP54I - Breakpoint cmd = <1> AT STMT 000700 IN WET.DBGDEMO2
===
Level Field Name Value (Offset) Typ,Len (Occ)
 => D I
1 I 1 NP,1

IDEAL: Debugger BREAK At Pgm WET.DBGDEMO2 Proc MAIN Stmt 000700
IDSDBUGP54I - Breakpoint cmd = <1> AT STMT 000700 IN WET.DBGDEMO2
===
Level Field Name Value (Offset) Typ,Len (Occ)
 => D I
1 I 2 NP,1

IDEAL: Debugger BREAK At Pgm WET.DBGDEMO2 Proc MAIN Stmt 000800
IDSDBUGP54I - Breakpoint cmd = <$01> AT STMT 000800 IN WET.DBGDEMO2
===

IDEAL: Debugger BREAK At Pgm WET.DBGDEMO2 Proc MAIN Stmt 000700
IDSDBUGP54I - Breakpoint cmd = <1> AT STMT 000700 IN WET.DBGDEMO2
===
Level Field Name Value (Offset) Typ,Len (Occ)
 => D I
1 I 3 NP,1

IDEAL: Debugger QUIT At Pgm WET.DBGDEMO2
IDSDBUGP55I - At normal end of application. Use "GO" to complete application.
 ===
Level Field Name Value (Offset) Typ,Len (Occ)
 => DISPLAY WOR
1 SUM 3 NP,1
1 I 4 NP,1
1 GOT-THERE T F
1 LONG-NAME ABCDEFGHIJKLMNOPQRSTUVWXYZ0123 X,36
1 SHORT-NAME SHORT X,5

Batch Considerations

Chapter 8: Symbolic Debugger 175

Batch Sample 2

The following sample sets two breakpoints. The first breakpoint, labeled <1>, displays
the value of a counter I. It is immediately disabled and does not begin displaying the
counter until control reaches the second breakpoint, which enables breakpoint <1>. The
sample also displays working data when it reaches either the error or the QUIT
breakpoint.

Batch Jobstream

DEBUG DBGDEMO2 VER 1

<1> AT 700

<1> D I

DISABLE 1

<ON> AT 800

<ON> ENABLE 1

<QUI> AT QUIT

<QUI> DISPLAY WOR

<ERR> AT ERROR

<ERR> DIS WOR

GO

RUNLIST Output

3 T SHORT ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789

Debug with DB2, VSAM, or SQL

176 Creating Programs Guide

DBUGLIST Output

IDEAL 11.0 DEBUGGER PRINTOUT March 1, 2006 13:04:43

IDEAL: Debugger INIT At Pgm WET.DBGDEMO2
IDSDBUGP53I - Type any Debugger command. Use "GO" to start application.
 ===
=> <1> AT 700
=> <1> D I
=> DISABLE 1
=> <ON> AT 800
=> <ON> ENABLE 1
=> <QUI> AT QUIT
=> <QUI> DISPLAY WOR
=> <ERR> AT ERROR
=> <ERR> DIS WOR

IDEAL: Debugger BREAK At Pgm WET.DBGDEMO2 Proc MAIN Stmt 000800
IDSDBUGP54I - Breakpoint cmd = <ON> AT STMT 000800 IN WET.DBGDEMO2
===
Level Field Name Value (Offset) Typ,Len (Occ)
 => ENABLE 1

IDEAL: Debugger BREAK At Pgm WET.DBGDEMO2 Proc MAIN Stmt 000700
IDSDBUGP54I - Breakpoint cmd = <1> AT STMT 000700 IN WET.DBGDEMO2
===
Level Field Name Value (Offset) Typ,Len (Occ)
 => D I
1 I 3 NP,1

IDEAL: Debugger QUIT At Pgm WET.DBGDEMO2
IDSDBUGP55I - At normal end of application. Use "GO" to complete application.
 ===
Level Field Name Value (Offset) Typ,Len (Occ)
 => DISPLAY WOR
1 SUM 3 NP,1
1 I 4 NP,1
1 GOT-THERE T F
1 LONG-NAME ABCDEFGHIJKLMNOPQRSTUVWXYZ0123 X,36
1 SHORT-NAME SHORT X,5

Debug with DB2, VSAM, or SQL

You can adopt the following methods to debug with the dataviews.

Debug with DB2, VSAM, or SQL

Chapter 8: Symbolic Debugger 177

Suppressing Terminal Interaction

Dataviews for SQL and VSAM SQL have restrictions on retaining sets or record
positioning across transaction boundaries. In the case of the debug session, this is when
a run stops to interact with the terminal.

For SQL dataviews, this is equivalent to releasing a set. Refer to the notes for the FOR
statement for SQL dataviews in the Programming Reference Guide.

For VSAM dataviews, this applies to the use of non-unique alternate indexes. For
information on the notes for the FOR statement for VSAM, see the Programming
Reference Guide.

In any case, the problem does not arise if you suppress the interaction with the terminal
by not attaching any DISPLAY commands and attaching a GO command to any
breakpoints. Data can still be captured in the DBUGLIST print file using the LIST
command.

Updateable Dataviews

A debug MOVE command in a FOR construct for an updateable dataview can update
fields in that dataview. However, if a FOR construct for a DB2 dataview did not perform
any updates when the program was compiled, a debug MOVE command causes a
runtime error.

Program Function Key Assignments

178 Creating Programs Guide

Program Function Key Assignments

The following program function key assignments are in effect while using the debug
facility.

 PF1/13 HELP

 PF2/14 RETURN

 PF3/15 PRINT SCREEN

 PF4/16 PROCEDURE

 PF5/17 DATA

 PF6/18 COMMANDS

 PF7/19 SCROLL BACKWARD

 PF8/20 SCROLL FORWARD

 PF9/21 GO

 PF10/22 SCROLL TOP

 PF11/23 SCROLL BOTTOM

 PF12/24 INPUT

HELP

Displays a panel or series of panels that contain information to explain how to
complete the current function.

RETURN

Returns from a help panel to the component display or from the function to the
menu that selects the function.

PRINT SCREEN

Generates a hardcopy printout of the current screen contents.

PROCEDURE

Positions to the program procedure where the error occurred for an error
breakpoint; otherwise, positions to the main program.

DATA

Positions to the Debug Data display.

COMMANDS

Positions to the debug commands fill-in.

SCROLL BACKWARD

Displays the previous frame in the current component.

Program Function Key Assignments

Chapter 8: Symbolic Debugger 179

SCROLL FORWARD

Displays the next frame in the current component.

GO

Proceeds to the next breakpoint.

SCROLL TOP

Positions to the first line of the component.

SCROLL BOTTOM

Positions to the bottom of the component.

INPUT

Opens a window of null lines preceding the first line of the component or at the
current cursor position. Unused null lines in the window are deleted when you
press the Enter key after INPUT.

Appendix A: Database Dependent Facilities 181

Appendix A: Database Dependent Facilities

This appendix presents information about facilities that are database dependent. You
can use several of these facilities in a way that is acceptable to both CA Datacom/DB
native access and SQL. You can use others only for a specific database access.

Adaptable Facilities

To ensure maximum portability in adaptable facilities, you must satisfy the conventions
for both environments. For example, a convention in CA Ideal for CA Datacom/DB native
access requires that the left operand of the WHERE clause specify a column in the
dataview and the right operand represent a valid value for the data type. CA Ideal SQL
access lets you specify the values on either side of the relational operator, but does
require that column names be qualified. If portability is important, always specify the
fully qualified column name on the left, satisfying the requirements of both databases.

Take care when specifying arithmetic functions on the WHERE clause since CA
Datacom/DB native access and SQL evaluate differently. CA Datacom/DB native access
receives the value as CA Ideal evaluates it. SQL performs the evaluation. In some
instances, the value CA Ideal evaluated can be truncated during processing to conform
to the format CA Ideal specifies.

Dates are handled differently. CA Datacom/DB native access stores dates as a numeric
value, while SQL dates are defined as alphanumeric.

IS NULL evaluates whether a nullable column contains a value. If the column is null, the
row is selected, as in:

FOR EACH CUSTOMER

 WHERE SALESMAN IS NULL

 . . .

This locates all customers that currently are not assigned to a salesman because the
column contains null. IS NOT NULL is true when the column does contain a value.

Specific Facilities

There are facilities specific to CA Datacom/DB native access and to SQL that you should
use when a program is applied to a specific database only. The following pages list those
facilities.

Naming Conventions

182 Creating Programs Guide

Naming Conventions
CA Datacom/DB native access

The naming conventions allow the use of the hyphen as in:

act-dt and open-$

SQL

 Naming conventions let you use the underscore as in:

act_dt and open_$

Comparing Multiple Values
CA Datacom/DB native access

Operands can be implied as in the following to access every customer in Texas,
Louisiana, or New Mexico:

FOR EACH CUSTOMER

WHERE STATE EQ 'TX' OR 'LA' OR 'NM'

. . .

SQL

You can use IN to designate more than one valid value for a specific column as in
the following to access every customer in Texas, Louisiana, or New Mexico:

FOR EACH CUSTOMER

 WHERE STATE IN ('TX', 'LA', 'NM')

. . .

Comparing Masked Values
CA Datacom/DB native access

The CONTAINS/NOT CONTAINS relational operator is allowed for CA Datacom/DB
native access requests as in the following to access the customers in all states
whose two-character code begins with an A:

FOR EACH CUSTOMER

 WHERE STATE

 CONTAINS 'A*'

. . .

The asterisk represents any single character.

WHERE Clause

Appendix A: Database Dependent Facilities 183

SQL

LIKE compares the alphanumeric value of a column with a string containing one or
more mask characters as in the following to locate the customers in all the states
whose two-character code begins with A:

FOR EACH CUSTOMER

 WHERE STATE LIKE ('A_')

. . .

You can specify multiple characters as in the following to locate all customers
whose name begins with A, contains B as the third character, and Z as the last
character:

FOR EACH CUSTOMER

 WHERE CUSTNAME

 LIKE ('A_B%Z')

. . .

The underscore (_) represents any single character. The percent sign (%) represents
zero or more characters.

WHERE Clause
CA Datacom/DB native access

CA Datacom/DB native access allows the right operand of the WHERE clause to be
any valid expression. This includes using CA Ideal/PDL functions. For example, the
following accesses the customers in the state indicated by the two characters
returned through the $SUBSTR function:

FOR EACH CUSTOMER

 WHERE STATE EQ

 $SUBSTR(variable,

 START=1,LENGTH=2)

. . .

For more information on using functions, see the section on evaluating user input.
For details on each function, see the Programming Reference Guide.

CA Datacom/DB native access lets you specify subscripted alphanumeric columns in
the WHERE clause. This is done when an alphanumeric group is defined in the
dataview. Since using group occurrences is not a recommended practice in a
relational database and reflects poor design, an example is not provided here.

FOR Construct

184 Creating Programs Guide

SQL

You can use BETWEEN to specify a valid range for a specific column as in the
following that accesses all customers with an outstanding balance between $100
and $500, inclusive:

FOR EACH CUSTOMER

 WHERE OPEN$

 BETWEEN 100 AND 500

. . .

FOR Construct
CA Datacom/DB native access

You can use the FOR ANY form of the FOR construct. In addition, you can replace
the FOR construct with SQL queries to the database. A single program can contain
both FOR constructs and SQL queries. You can nest constructs and queries
interchangeably, but SQL subqueries are not permitted on a FOR construct.

SQL

You can replace the FOR construct with SQL queries to the database. A single
program can contain both FOR constructs and SQL queries. You can nest constructs
and queries interchangeably, but SQL subqueries are not permitted on a FOR
construct.

	CA Ideal for CA Datacom Creating Programs Guide
	CA Technologies Product References
	Contact CA Technologies
	Contents
	1: Defining a Program
	Programming Capabilities
	Components of a Program Definition Under CA Ideal
	Accessing Program Definition Functions
	Program Function Key Assignments

	Creating a New Program Definition
	Identifying the Program
	Version Number
	Program Identification Fill-in

	Defining Program Resources
	Displaying Program Resource Indexes
	Displaying the Procedure Definition Panel

	Defining Working Data
	Defining Parameters Used as Input
	Defining the Environment for SQL Access
	CA Datacom SQL Access Plan Options
	Primary Database

	Entering the Procedure Definition

	Displaying and Editing a Program
	Duplicating a Program to a New Name
	Deleting a Program
	Printing a Program
	Listing an Index of Defined Programs
	Displaying the Index
	Printing the Index

	2: Reading and Writing Data
	Introduction to the Database
	Basic Database Structure
	Using Dataviews to Access the Database
	Using Multiple Dataviews for One Table
	Additional Information

	Accessing Data from a Table or File
	Selecting and Processing Rows
	Processing Rows with Implicit Iteration
	Using $COUNT To Obtain Total of Accessed Rows
	Selecting Rows
	Selecting a Set of Rows
	Using Compound Selection Criteria
	Using a Variable as Selection Criteria
	Relational Operators and Conditionals

	Sequencing the Set of Rows
	Ordering Based on One Column
	Ordering Based on Multiple Columns
	Ordering in Ascending or Descending Sequence

	Limiting the Number of Rows
	Obtaining a Specific Number of Rows
	Sequencing the Rows
	Using a Variable to Specify the Number of Rows
	Accessing One Row
	Accessing One Unique Row
	No Rows Satisfy Criteria
	Looping to Reprompt
	Handling Runtime Errors in Selection
	Accessing Rows from Multiple Tables
	Joining Based on Common Columns
	Accessing Multiple Rows from One Table

	Accessing Data from a Panel
	Displaying Data from a Table or File
	Using the Message Line
	Using an Output File
	Using a Panel for Display
	Displaying One Row at a Time
	Displaying Multiple Rows at a Time

	Updating a Table or File
	Modifying Rows
	Controlling Updates
	Abandoning an Update
	Abandoning Multiple Changes

	Deleting Rows
	Restoring a Deleted Row

	Adding Rows
	Maintaining Unique Data
	Transmitting in FOR NEW

	Committing the Changes
	Updating and Committing
	Explicit CHECKPOINT
	Removing Changes from the Database
	TRANSMIT with CHECKPOINT
	Checkpointing while Updating
	Multi-User Considerations
	CHECKPOINT in FOR EACH
	DB2 Considerations
	Accessing Released Dataview Data

	3: Subprograms
	Calling a Subprogram
	Passing Data to a Subprogram
	Executing a Subprogram Asynchronously

	Requirements for Subprograms
	Parameter Matching for CA Ideal Subprograms
	Dynamic Matching
	Identical Matching

	Linkage Conventions for CA Ideal Subprograms
	Parameter Rules

	Defining Non-Ideal Subprograms
	Identical Parameter Matching

	Linkage Conventions for Non-Ideal Subprograms
	Parameter Rules
	Passing Parameters to Non-Ideal Subprograms

	Calling Non-Ideal Subprograms that Access CA Datacom/DB
	Guidelines for Batch Programs
	Guidelines for CICS Programs
	Accessing Same Tables in CA Ideal and Non-Ideal Programs

	AMODE/RMODE Considerations for Non-Ideal Subprograms
	Guidelines for Batch and Online Non-Ideal Subprograms
	Online Non-Ideal Subprograms
	Calling a CICS Subprogram
	CICS Subprogram
	Batch Non-Ideal Subprograms

	Calling COBOL in z/OS Batch
	Calling COBOL in VSE Batch
	Calling a PL/I Subprogram

	4: Performing Calculations
	Introduction
	Optimizing Arithmetic in CA Ideal

	5: Using Functions
	Date Functions
	Error Functions
	Numeric Functions
	Panel Functions
	String Functions
	System Functions

	6: Error Handling
	Preventing Errors
	Using $RC in Error Procedures
	Handling Runtime Errors
	Default Error Procedure
	Coding an Error Procedure
	Categorizing Errors

	Common Error Subroutines
	Detecting the Severity of the Error Using $RC
	Using $RC in Batch
	Coding for Multiple Errors
	Evaluating Specific Errors
	Coding for Dataview Errors
	Handling Errors in the FOR Construct

	Handling Numeric Errors
	Executing the Error Procedure for User-Determined Errors
	Using SQLCA for SQL
	Locating the Error in the Code

	7: Processing Programs
	Compiling a Program
	Using the COMPILE Command
	Issuing a COMPILE Command in CICS
	Batch Compilation
	How to Read a Compilation Listing
	Compile Cross Reference (Batch)

	Executing a Program
	Using the RUN Command
	Passing DATA to Programs through a RUN Statement
	Passing DATA to an Application through Transparent Signon

	Altering the Runtime Environment
	Assigning Dataviews to a Different Database
	Assigning Dataviews to a Different Table Partition
	Assigning a Global Substitute for a Database
	Substituting Subprograms for a Run
	Changing the Authorization ID for SQL Access

	Directing the Outputs of a Run
	Resetting the Elements of a Run Environment

	Running a CA Ideal Application Online
	Batch CA Ideal and Running a Batch Application
	Terminating a RUN

	How to Debug a Program

	8: Symbolic Debugger
	Debug Concepts
	Breakpoints
	Commands
	Debug Components
	Sample Debug Session

	Setting Breakpoints
	Specifying Breakpoints
	Subprograms
	Labels
	Restrictions
	Stopping After a Statement
	Sample Session

	Examining Data Values
	Display
	List
	Echo

	Changing Data Values
	Sample Session

	Attaching Commands to a Breakpoint
	Attaching to a User-Defined Breakpoint
	Attaching to ERROR or QUIT Breakpoint
	Commands You Can Use
	Sample Session
	Processing Without Terminal Interaction

	Controlling Breakpoints
	Temporarily Bypassing Breakpoints
	Bypassing All Breakpoints (QUIT DEBUG)
	Deleting Breakpoints
	Bypassing the Initial Breakpoint

	Using Command Members
	Specifying a Command Member
	Editing a Command Member

	Batch Considerations
	Batch Sample 1
	Batch Sample 2

	Debug with DB2, VSAM, or SQL
	Suppressing Terminal Interaction
	Updateable Dataviews

	Program Function Key Assignments

	A: Database Dependent Facilities
	Adaptable Facilities
	Specific Facilities
	Naming Conventions
	Comparing Multiple Values
	Comparing Masked Values
	WHERE Clause
	FOR Construct

