

Administration Guide
Version 14.02

This Documentation, which includes embedded help systems and electronically distributed materials (hereinafter referred to as
the “Documentation”), is for your informational purposes only and is subject to change or withdrawal by CA at any time.

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part, without
the prior written consent of CA. This Documentation is confidential and proprietary information of CA and may not be disclosed
by you or used for any purpose other than as may be permitted in (i) a separate agreement between you and CA governing
your use of the CA software to which the Documentation relates; or (ii) a separate confidentiality agreement between you and
CA.

Notwithstanding the foregoing, if you are a licensed user of the software product(s) addressed in the Documentation, you may
print or otherwise make available a reasonable number of copies of the Documentation for internal use by you and your
employees in connection with that software, provided that all CA copyright notices and legends are affixed to each reproduced
copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable
license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to
certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such
license agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2015 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

CA Technologies Product References

This document references the following CA products:

■ CA Datacom®/DB

■ CA Datacom® CICS Services

■ CA Datacom® SQL

■ CA Dataquery™ for Datacom®

■ CA eMail+

■ CA Ideal™ for Datacom® (CA Ideal)

■ CA Ideal™ for DB2

■ CA Ideal™ for VSAM

■ CA Librarian® for z/VSE

■ CA Dynam®/T Tape Management for z/VSE

■ CA CICSORT™

■ CA Sort®

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

■ Online and telephone contact information for technical assistance and customer
services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

To provide feedback about CA Technologies product documentation, complete our
short customer survey which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://ca.com/docs
http://ca.com/docs

Contents 5

Contents

Chapter 1: Preliminary Concepts 13

CA Ideal Overview .. 13

Components of a CA Ideal Application ... 13

Dataview Definition .. 14

Program Definition .. 14

Panel Definition ... 15

Report Definition ... 15

Plan or Package Definition (DB2 Only) .. 15

Entities and Version Management ... 15

Entity ... 15

Entity Type .. 16

Entity Occurrence .. 16

Definition .. 16

Name ... 16

Version .. 16

Status .. 17

MARK STATUS Considerations .. 19

How to Modify or Delete a Production Version .. 19

How to Set a Default Version .. 20

CA Ideal Users and Systems ... 21

Users ... 21

Systems ... 22

Defaults and Abbreviations .. 24

Defaults in CA Ideal ... 24

Use of Abbreviations in CA Ideal Commands .. 25

Main Menu ... 26

Administrative Functions ... 27

Chapter 2: System Overview 29

CA Datacom/DB Environment .. 29

Environment with DB2 Option ... 29

CA Ideal Environment Components ... 29

CA Datacom/DB and Datadictionary Components ... 30

Datadictionary Considerations for CA Ideal .. 31

CA Common Services for z/OS.. 33

CA IPC (CA Inter-Product Components) ... 33

6 Administration Guide

CA Ideal Internals ... 34

CA Ideal Modules .. 35

Application Components, VLS, and the Dictionary Facility ... 35

How CA Ideal Stores Application Components ... 36

CA Ideal VLS Operations .. 37

Compilation and VLS Object Modules ... 41

Processing the Field Attribute and Symbol Tables .. 41

Application Load Modules (Phases) .. 42

Execution of CA Ideal Applications in a CICS Environment ... 43

Execution and the Dictionary Facility .. 43

Chapter 3: Defining and Maintaining CA Ideal Users 45

Creating and Maintaining User Definitions .. 45

Creating a CA Ideal User Definition .. 46

Maintaining User Definitions Online .. 51

Creating CA Ideal Users in Batch .. 53

Using Batch to Maintain CA Ideal User Definitions .. 55

Adding Aliases ... 55

Adding Systems ... 55

Updating System Authorizations ... 56

Chapter 4: Defining and Maintaining Systems 57

Creating a CA Ideal System ... 57

Maintaining System Definitions ... 61

Using Batch to Create CA Ideal System Definitions .. 62

Chapter 5: Preparing and Maintaining VLS Libraries in CA Ideal 63

Library Maintenance Under z/OS or VSE.. 63

Allocating and Initializing a VLS Library ... 64

Adding VLS Library JCL .. 65

Adding a VLS Library to the CICS FCT .. 65

Adding a VLS Library to the CA Ideal Batch User File Table .. 66

Backing Up and Restoring a VLS Library .. 67

Routine CA Ideal System BACKUP and RESTORE ... 69

Increasing the Space in a VLS File.. 72

Restoring Deleted Entities .. 72

Resource Section Considerations .. 73

VLSUTIL Considerations ... 73

Restoration Procedures .. 74

What to Do When the Library Is Full .. 76

Contents 7

Removing Entities in History Status .. 77

Correcting Inefficient Block Size .. 78

Creating New Libraries for Existing Systems ... 78

Splitting One System into Separate Systems .. 78

Library Integrity Utility ... 79

Sample JCL ... 80

Chapter 6: Considerations for CA Datacom/DB Native Access 83

Index-Only Processing .. 83

Designing Keys for Index-Only Processing .. 83

Sequential Processing .. 84

Test and Prod Data in Datadictionary and CA Ideal ... 86

BACKOUT Statement Considerations ... 88

INCLUDE-NIL-KEY .. 88

Chapter 7: Maintaining Plans for CA Datacom SQL Access 91

Generating CA Datacom SQL Access Plans ... 91

Generating the Default Plan.. 92

Setting Plan Options .. 93

Maintaining Access Plans for the Run-Time Environment ... 96

Changing the Access Plan .. 96

Creating an Alternate Plan .. 98

Selecting an Alternate Plan at Runtime .. 99

Chapter 8: Preparing DB2 Application Plans 101

Program Modes .. 101

PF Key Assignments for the Plan and Package Editors .. 102

Defining Application Plans.. 103

Components of a CA Ideal Plan Definition for DB2 ... 103

How to Create a New Plan Definition ... 104

Generating Application Plans ... 111

Plan Generation JCL .. 114

CA Ideal Static I/O Modules .. 114

CA Ideal Plan Tables .. 115

Impact Report ... 115

Defining Packages .. 118

Components of a Package Definition .. 118

Creating a Package Definition ... 118

Generating Packages .. 124

Package Generation JCL .. 126

8 Administration Guide

CA Ideal Static I/O Modules .. 126

CA Ideal Plan Tables .. 126

Impact Report ... 127

Connecting Plans to Applications ... 130

Dynamic Mode .. 130

Static Mode ... 130

Associating Plans Directly with Transaction-IDs in CICS .. 130

Specifying Plans Independently of Transaction-IDs in CICS .. 132

Specifying Plans in Batch ... 136

Plan Name Exit .. 137

Requiring the Use of Static SQL ... 139

Chapter 9: Establishing Signon Processing 141

Defining Signon Requirements ... 141

CA Ideal Environment Functionality .. 141

Establishing CA Ideal Signon Transactions ... 144

General Transaction Types .. 144

SCF Transaction Table (SC00TRAN) ... 146

CICS PCT Definitions .. 148

Startup Member .. 149

Signon Exit Program .. 151

Signon Processing Execution Flow ... 152

Establishing the Signon Transaction (SC00INIT and SC00TRAN) ... 152

Identifying the TP Monitor User (SC00INIT and SC00OPTS) ... 153

Signing On in Batch ... 154

Checking for Duplicate Users .. 155

Establishing the Resource Class Entity Name.. 156

Determining Alias or Group User Definition ... 158

Processing Default Users ... 158

Considerations and Examples .. 159

IDOPTSCB Macros for Security: Samples... 160

Enabling External Security .. 161

CA Common Services Requirements ... 162

Security Product Definitions ... 162

CA Ideal Specifications .. 163

Chapter 10: Customizing the CA Ideal Environment 165

SET SITE Commands ... 165

Session Control Facility Options .. 166

Site Options for Output ... 169

Site Control of Wide Panel Support .. 175

Contents 9

Setting a Loop Limit ... 176

Setting Environment Options ... 176

ACCOUNT-ID Specification (CICS Only) ... 176

Customizing the End of a CA Ideal Session ... 177

Selecting an Alternate Currency Symbol ... 178

Selecting an Alternate Date Format .. 178

Selecting an Alternate Decimal Symbol .. 178

Automatic Off .. 178

User Defined Signoff Panels .. 179

Setting an Action for the CLEAR Key ... 179

Customizing the CA Ideal Options Block Using IDOPTSCB ... 179

Maintaining Authorizations .. 183

IDOPTSCB Macro for Authorization .. 184

Modifying Existing Authorizations .. 187

Specifying User Exits ... 188

Authorization Exit Programs ... 188

Managing and Administering Print Services .. 194

Defining Printer Destinations .. 194

Network Printer Definition Considerations ... 195

Print Service Administration Commands .. 198

System Printer Considerations ... 199

Editing a Jobcard z/OS ... 200

Batch Output Procedure ... 200

BLOCKSIZE (z/OS Only) .. 200

Creating User-Defined HELP Members .. 201

Adding New Help Members .. 201

Displaying the HELP Member Index .. 202

CICS Requirements ... 202

Case Translation .. 202

Operating System Requirements ... 202

CA Ideal Batch File Table ... 203

Changing the CA Ideal File Batch Table ... 206

CA Ideal System Files ... 206

CA IPC VLS Files ... 206

Application VLS Files ... 207

PSS Files ... 207

VSE Report Work Files ... 208

Requirements for a Single z/OS System .. 209

Chapter 11: Optimizing Storage Management 211

Enhancing User Storage Management ... 211

10 Administration Guide

Load Module Format ... 211

Programs in VLS Format .. 211

Recommendations .. 212

CICS Storage Use .. 212

Temporary Storage ... 213

Dynamic Storage Area (DSA) ... 216

Performance Considerations .. 217

Application Design .. 218

Tuning Storage .. 218

Session Storage Cleanup .. 219

RELEASE PROGRAM ... 219

Timeouts and Disconnections ... 221

Node Error Recovery ... 222

PURGE term-id .. 223

VSE GETVIS Considerations .. 224

Chapter 12: Establishing Multiple Environments 225

Composite Entities ... 225

Enqueuing .. 226

Transporting Entities .. 226

DB2 Plans and Packages ... 227

CA Ideal and CA IPC Libraries ... 227

Chapter 13: Module Format for Programs and Panels 229

Module Definition .. 229

Module Format ... 229

Creating Modules .. 230

RMODE Parameter .. 235

Deleting Modules .. 236

Identifying Modules .. 236

DISPLAY/PRINT INDEX MODULE Command .. 237

Module Runtime Considerations ... 237

Building the In-Core Load Module Table ... 237

Displaying the In-Core Load Module Table ... 239

Tailoring the LMT .. 239

CICS Considerations .. 245

PPT Entries .. 246

Loading the Modules at Startup .. 246

Updating the In-Core LMT-REFRESHing Modules Online ... 247

Contents 11

Chapter 14: Application Migration Considerations 249

Development Considerations ... 249

Testing Programs Before Marking Them to Prod .. 249

Mark Programs to Prod Status .. 250

Application Migration Considerations.. 250

Runtime Configurations .. 251

Application Migration Processes ... 252

Replacing Online Applications ... 255

Upgrading from an Earlier Version ... 260

Chapter 15: Asynchronous Execution 263

Setting Up an Asynchronous Execution ... 263

Sample Application... 265

Appendix A: SYSADR Table Declarations for DB2 267

SYSADR.APTAB Table .. 267

SYSADR.APRES Table .. 267

SYSADR.APAUT Table ... 268

SYSADR Indexes .. 269

Appendix B: Double-Byte Character Set Support 271

Panel Definition Facility (PDF) .. 272

Program Definition Language (PDL) ... 273

String Functions .. 273

Data Manipulation ... 274

Alphanumeric Literals .. 275

Report Definition Facility.. 276

Session Control Facility... 276

Dataviews ... 276

Print Subsystem (PSS) ... 277

Installation Considerations ... 277

Miscellaneous... 277

Appendix C: Authorization Table 279

Keywords .. 279

Chapter 1: Preliminary Concepts 13

Chapter 1: Preliminary Concepts

This document explains the administrative functions the CA Ideal site administrator
performs. These functions include creating and maintaining CA Ideal systems and users,
maintaining the CA Ideal environment, and creating and maintaining a production
environment.

This chapter contains basic information that is necessary for an understanding of what
CA Ideal is and how to use it. You need to read this chapter before you begin using this
guide. You should also be familiar with the basic concepts for using CA Ideal, explained
in the Working in the Environment Guide.

CA Ideal Overview

CA Ideal is an application development system that provides an interactive environment
for the development, maintenance, and execution of complete, integrated applications.
A CA Ideal application consists of the resources (dataviews, panels, report definitions,
programs, and subprograms) needed to perform a wide variety of online database and
business applications.

A CA Ideal application is developed by defining a series of components using the
following:

■ Special-purpose, fill-in-the-blank panels that display online and are processed
interactively for program, dataview, report, and panel definitions, and for DB2 plan
definitions

■ A structured, high-level language for the application procedure

CA Ideal runs in both batch and online environments under the z/OS and VSE operating
systems. CA Ideal is an "Interactive Development Environment for an Application
Lifecycle." Most commands will be executed online. Although some can also be issued
from batch, all editing must be done online. A few commands, such as CREATE MODULE,
can only be issued in batch.

CA Ideal can access data stored in a CA Datacom/DB, a DB2 database, a sequential file,
or a VSAM file. Your CA Ideal environment can include CA Datacom/DB, DB2, or both (a
dual database environment). The CA Ideal application model is stored and maintained in
Datadictionary. For DB2 only sites, the Datadictionary is maintained in CA Datacom/AD.

Components of a CA Ideal Application

The following sections describe the components of a CA Ideal application.

Components of a CA Ideal Application

14 Administration Guide

Dataview Definition

A dataview is a logical view of data that lets you make requests of the data
independently of the storage structure.

Dataview definitions for accessing CA Datacom/DB tables using native command access
are created and maintained in the Datadictionary.

CA Ideal maintains dataview definitions for SQL access, both for CA Datacom/DB objects
and DB2 objects, in the dictionary facility. The CA Datacom/DB tables, views, and
synonyms are created and maintained in the Datadictionary. The DB2 tables and views
are created and maintained in the DB2 catalog.

There are two types of dataview definitions for sequential files:

■ CA Datacom/DB sites create and maintain modeled sequential file dataviews in
Datadictionary.

■ Unmodeled sequential file dataview definitions are created and maintained in the
Virtual Library System (VLS) and the dictionary facility. CA Datacom/DB and DB2
sites can use them.

CA Ideal treats modeled and unmodeled dataview definitions for sequential files
identically once they are cataloged.

Like dataview definitions for unmodeled sequential files, dataview definitions for VSAM
files are created and maintained in the Virtual Library System (VLS) and the dictionary
facility.

Program Definition

Several facilities are provided for defining a CA Ideal program:

■ The Program Identification Panel lets the application developer initiate the creation
of a program and provide descriptive commentary about the program.

■ The Program Resources Panel specifies the authorized resources a program uses.

■ The Parameter Definition Panel describes and names data used as input parameters
to a program. Parameters are only defined if the program requires them.

■ The Working Data Definition Panel names and describes data items that are local to
each program. This facility is used only when working data items must be defined
for the program.

■ The Procedure Definition Language (PDL) is a high-level language that defines
procedures. It includes an integrated database sub-language, facilities for
modularization, structured design and development, arithmetic capability, report
production, transaction and panel processing, built-in functions, and error handling.

Entities and Version Management

Chapter 1: Preliminary Concepts 15

■ The Procedure Definition Panel lets you enter the PDL statements. The Procedure
Definition Panel provides a powerful editor that lets the programmer work in the
same editing environment across all operating systems, and provides templates
that help to ensure structured code. All other panels used in CA Ideal provide some
subset of these editing capabilities.

■ For sites that have the CA Datacom Database SQL Option, the Environment Panel
specifies SQL precompiler options for the program.

For complete information about the program definition panels, see the Creating
Programs Guide. For complete descriptions of PDL statements and functions, see
the Programming Reference Guide.

Panel Definition

The CA Ideal Panel Definition Facility (PDF) provides the facilities for creating and
maintaining panel definitions that transmit data between the user and the application
program. After they are created, you can print, test, and edit panel layouts and
definitions online for immediate use. For information about defining panels, see the
Creating Panel Definitions Guide.

Report Definition

The CA Ideal Report Definition Facility (RDF) creates, maintains, and tests report
definitions. RDF lets the CA Ideal user define online each report's layout, parameters,
fields, column headings, and other options. For information about defining report
layouts, see the Generating Reports Guide.

Plan or Package Definition (DB2 Only)

CA Ideal provides a means for creating, maintaining, and binding plans for DB2
applications. See the chapter “Preparing DB2 Application Plans.”

Entities and Version Management

CA Ideal uses a number of special terms to describe the organization of the data the
application developer uses during the creation of an application. The following sections
explain these terms, and their relationship to CA Ideal.

Entity

An entity is a set of rules that governs the data structures that CA Ideal uses.

Entities and Version Management

16 Administration Guide

Entity Type

An entity type is the classification of an entity according to its function. CA Ideal uses six
entity types: system entities, user entities, dataview entities, program entities, panel
entities, and report entities.

Entity Occurrence

An entity occurrence is a uniquely identified instance of a particular entity type.

Definition

In CA Ideal, each entity occurrence has a corresponding definition. There are six types of
definitions that correspond to the six entity types: system definitions, user definitions,
dataview definitions, program definitions, panel definitions, and report definitions.

Note: In the remainder of this document, the CA Ideal term definition is used in place of
the term entity occurrence.

Name

Each definition must have a name to distinguish it from other definitions of the same
type. The application developer assigns a name to a definition when the definition is
created. For more information about naming conventions, see the Programming
Reference Guide.

Version

For all entity types except modeled and SQL dataviews

Each named definition of a given type can exist in one or more forms, called
versions, each of which is identified by a number that CA Ideal assigns. There can be
as many as 999 versions with the same name. CA Ideal assigns numbers to versions
sequentially as they are created, starting with number 1. The application developer
cannot modify version numbers.

For CA Datacom/DB CBS dataviews and sequential file dataviews modeled in the
dictionary

CA Ideal assigns numbers to test versions separately from production and history
versions. Test versions are identified as T1 through T999. Production and history

Entities and Version Management

Chapter 1: Preliminary Concepts 17

For SQL dataviews

Only one version is assigned; version 1 in production status. CA Ideal generally does
not display this version number or status, or require the user to specify it.

Editing a definition has no effect on the version number. No matter how many changes
are made, the version number remains the same. You can only create new versions with
the same name by using the DUPLICATE...NEXT VERSION command. This command
makes a copy of an existing version. CA Ideal assigns each new version of a definition
the next higher number than the highest previously assigned number. When a version is
deleted from the system, unless it was the highest, its number is never reassigned to
another version with the same name.

Each definition is uniquely identified by the combination of its type, name, and version
number. You can always reference it by this combination.

There are two cases when you can reference a particular definition without using the
version number:

■ You can reference the production status version of a definition by replacing the
version number with the term PROD (since there can be only one production
version at a time).

■ For any type of definition except for an SQL dataview definition, you can reference
the most recently created version of a definition by replacing the version number
with the term LAST.

The version clause is optional when specifying PROD or LAST. For example, if the
production version of a report definition named SALARIES is version 5, you can
reference it as REPORT SALARIES VERSION 5 or as REPORT SALARIES VERSION PROD. If
there are seven versions of a program named UPDATE (numbered 1 through 7), you can
reference the most recently created version as PROGRAM UPDATE VERSION 7 or as
PROGRAM UPDATE VERSION LAST.

Status

Each version is assigned to a category that is based on the stage it reached in the
production process. This category is called the status of the version. A version can be in
test status, production status, or history status. Except for dataview entity types, you
can change the status of a version with the MARK STATUS command.

Entities and Version Management

18 Administration Guide

The following is a list of status types and the rules that apply to each.

Test

All entity types except modeled and SQL dataviews-When a version is created in
CA Ideal by the CREATE or DUPLICATE command, the version is in test status. You
can modify a version as long as it remains in test status. There can be many versions
in test status at a time. If you edit a dataview, you must recatalog it before you can
use it.

CA Datacom/DB CBS dataviews and sequential file dataviews modeled in the
dictionary-Test versions are created and maintained in the dictionary. There can be
up to 999 test versions at a time.

For SQL-Only one version is assigned; version 1 in production status.

Production

When a version was created, edited, and tested, and is ready for use in an
application, it is marked to production and becomes the production version. Only
one version of a definition can be in production status at a time. A production
application must consist of components that are also in production status. This
serves to protect its integrity.

■ For all entity types except modeled and SQL dataviews-You cannot edit or
delete the production version. If a production version of a program is compiled,
a compilation listing is produced; a new object program is not created.

■ For SQL dataviews-There can be only one version of a definition at a time;
version 1 in production status. The CA Ideal CATALOG command creates SQL
dataviews. You can delete them unless they are resources of production
programs. You cannot edit them.

History

History versions of a definition are former production versions of that definition.

■ For all entity types except modeled and SQL dataviews-Marking a test version
to production automatically retires the existing production version, if any, to
history status.

■ For CA Datacom/DB CBS dataviews and sequential file dataviews modeled in
the dictionary-The maximum number of history status versions that you can
save is recorded in the dictionary (as the ENTY-HIST-VER attribute of the FILE
entity in the DATA-DICT database). When this number is exceeded, the oldest
history versions are automatically deleted. You can modify the installed default
of three history versions.

Entities and Version Management

Chapter 1: Preliminary Concepts 19

MARK STATUS Considerations

The MARK STATUS command changes the status of a program, panel, report, user, or
system definition from test to production, or from production to history. A definition is
marked from test to production when the decision is made that no further testing is
necessary, and the definition is ready to be used in a production application. Production
versions are subject to the following rules:

■ You cannot mark a production version of a definition that was named as a resource
of a production program to history without first replacing it with a new production
version.

■ You can mark the production version of a definition that was not named as a
resource of a production program directly to history.

■ Marking another test version to production automatically retires any existing
production version to history status. For example, if in the following list of versions,
the fifth version's status was marked to production, the status of the fourth version
is automatically changed to history:

Version Status

 1 HISTORY

 2 TEST

 3 HISTORY

 4 PRODUCTION

 5 TEST

Marking version 2 to production also marks version 4 to history.

■ If a subprogram or unmodeled dataview in production status is listed in the
resource fill-in of a program in production status, and a new version of the
subprogram or dataview becomes the production version, the resource fill-in of the
calling program is automatically changed to reflect the new production version.
However, to provide an audit trail, the history version of the subprogram is still
included in the program-to-program relationship for the calling program. Consider
this relationship when you execute the source transport utility. If you do not want
to transport history versions, include the command SET EXPORT RESOURCE
HISTORY NO in the transport command member.

How to Modify or Delete a Production Version

Because you cannot modify or delete a version that is in production status directly, you
must use the following procedures to modify or delete the production version of a
definition for all entity types except dataviews.

Entities and Version Management

20 Administration Guide

Modify a Production Version

1. Enter the following command to make a duplicate copy of the production version:

DUPLICATE entity-type name NEXT VER

The next version of the definition is in test status.

2. Make the changes to the new version.

3. Make the new version the current production version as follows:

MARK STATUS entity-type name TO PROD

4. This statement also marks the current production version to history.

Delete a Production Version

1. Enter the following command to retire the production version to history:

MARK STATUS entity-type name TO HIST

2. Delete the history version using the DELETE command:

DELETE entity-type name version

A version's status usually is marked from production to history just before it is deleted.
If a production occurrence is replaced with a new production version, it is not necessary
to first mark the current production version to history.

How to Set a Default Version

The version of a program, panel or report to use when no version clause is specified in a
command or when the version entry is omitted in a prompter, is determined as follows:

■ As the site administrator, you can establish a default version for the site by using
the SET SITE VERSION command or by accepting the installed default version of 001.

■ An application developer can use the SET VERSION command to override the site
default to establish which version is selected for commands and prompters during
the session. This is often done using a SIGNON member. It affects only the user who
entered the command.

Note: Some commands (such as DELETE) require a version clause.

■ For CA Datacom native access dataviews and sequential and VSAM file
dataviews-The default version of a dataview used as a program resource is
determined by a SET [SITE] DATAVIEW VERSION command, which usually sets PROD
as the default. The default version of a dataview specified by commands such as
EDIT, DISPLAY, and PRINT, is specified by the SET [SITE] VERSION command, which
usually sets LAST as the default.

■ For SQL dataviews-Only one version is assigned; version 1 in production status. You
cannot set the default version.

CA Ideal Users and Systems

Chapter 1: Preliminary Concepts 21

CA Ideal Users and Systems

There are many kinds of CA Ideal users. Anyone who uses CA Ideal, from the
administrator who defines CA Ideal systems and users, to the data-entry person who
runs the production version of a completed application, is a CA Ideal user. Each type of
user has a different set of needs and responsibilities in CA Ideal. Each user is defined on
the basis of these needs and responsibilities. The CA Ideal administrator (or a user with
CA Ideal administrator authorization) must define a user in CA Ideal.

Users

When you define a user, you establish the user's privileges. User privileges define the
general type of privilege a user has to perform activities that affect the global
environment where CA Ideal functions. You must define at least one privilege for a user.

Some privileges imply other privileges. The following table illustrates the lesser
privileges implied by the selection of a specified privilege.

Specified Privilege IDEAL
Admin

PRINT Admin DVW
Admin

IDEAL User

IDEAL Administrator X X X X

PRINT Administrator X X

DVW Administrator X X

IDEAL User X

The following list provides an explanation of the terms in the preceding table:

IDEAL Administrator

The highest authorization given to a user of CA Ideal. A CA Ideal administrator can
perform any command or service, including all services governed by all other
privileges. This authorization is the only one that does not restrict the user to any
specified system.

PRINT Administrator

Authorizes control over the print environment. This can allow the use of privileged
commands that manage outputs.

CA Ideal Users and Systems

22 Administration Guide

DVW Administrator

Authorizes the use of functions such as executing the CATALOG dataview
command.

IDEAL User

Authorizes the user to sign on to CA Ideal and to use those commands that require
the minimum privilege for a user of CA Ideal. Generally, a CA Ideal user can execute
only those commands that affect the current session.

Systems

A system is a collection of applications with their associated developers and users, as
defined by a CA Ideal administrator. The system definition provides the name and
description of the system. It also identifies the files the system uses for storing
definitions and object code.

The CA Ideal administrator (or a user with CA Ideal administrator authorization)
establishes a user's activity (authorization) in a system through the User Definition fill-in.
System authorizations must be established for each system the user is allowed to
access.

One system authorization can imply other authorizations. The following table illustrates
how the assignment of an authorization in a system extends to commands and services
governed by a lesser authorization.

Specified Privilege CONTROL UPDATE UPD-PNL UPD-RPT READ RUN-PROD

CONTROL X X X X X

UPDATE X X X X

UPDATE-PNL X X

UPD-RPT X X

READ X

RUN-PROD X

The administrator defines specific functions included in each authorization for each site.
The administrator can assign different authorizations to all CA Ideal commands and to
all options in commands. You can display the authorization levels in effect with the
DISPLAY AUTHORIZATION OPTIONS (D ATZ OPT) command.

CA Ideal Users and Systems

Chapter 1: Preliminary Concepts 23

The following list provides an explanation of the terms in the preceding table:

CONTROL

Authorizes a user to create, establish, and edit program resources; delete, mark
status, and update identification fill-ins; and otherwise control all program, panel,
and report definitions in a specific system.

UPDATE

Authorizes a user to update all the program, panel, and report definitions (except a
program resource fill-in and any identification fill-ins) or display all the program,
panel, and report definitions in a specific system.

READ

Authorizes a user to display and print the report, panel, and program definitions in
a specific system.

UPD-PNL (Update panel)

Authorizes a user to update panel definitions in a system.

UPD-RPT (Update report)

Authorizes a user to update report definitions within a system.

RUN-PROD (Run production)

Authorizes a user to run production programs in a system.

You receive an error message if you try to execute a command or option for which you
are not authorized.

When signon occurs, a user is automatically associated with a CA Ideal system. If the
user is authorized to use more than one system, the first system (alphabetically by
collating sequence) is selected as the current system at signon (unless the user
established a different system as the default current system in his signon procedure).

A user can only display, edit, run (and so on), programs, panels, and reports in the
current system. Dataviews, users, and members do not belong to a system.

Naming Conventions in Systems

Names of programs, panels, and reports need be unique only in a system. In addition,
for each system, a name must be unique only in entity type. For programs and panels
converted to load module format, the module name must be unique for the entire site
(see the “Module Format for Program and Panels” chapter for more information).

For example, there can be a report definition and a program definition both of which
are named EX1, but two different report definitions or two different program definitions
in the same system cannot be named EX1.

Defaults and Abbreviations

24 Administration Guide

Defaults and Abbreviations

This section explains how defaults and abbreviations are used in CA Ideal.

Defaults in CA Ideal

When this document makes reference to defaults, in most cases no actual default value
is mentioned because defaults CA Ideal uses are established in a number of ways, and
are often specific to the site, or even to the individual user.

CA Ideal is delivered with default values for all options. You can change some of these
defaults.

Defaults that cannot be changed

Some defaults are for certain choices in CA Ideal commands and fill-ins, and cannot be
changed. This type of default is underlined in the command syntax examples in this
guide.

An example of this type of default is the following command, which defaults to the
procedure component of the program definition.

 [IDENTIFICATION]

 [RESOURCES]

EDIT PGM name [PARAMETER]

 [WORK]

 [PROCEDURE]

Defaults that can be changed for the entire site

You can establish defaults for the entire site. You can change some site defaults only
during installation, and can reset them later only by rerunning installation jobs. An
example of a default in this category is a default library name.

You can reset other site defaults by using either the SET SITE commands or the fill-ins
provided for setting certain session control and print options. Any default that is reset
with either a SET SITE command or a site options fill-in becomes a new site default. It
remains in effect unless it is reset with another SET SITE command or fill-in.

Defaults and Abbreviations

Chapter 1: Preliminary Concepts 25

Defaults that can be set for an individual session

Finally, each CA Ideal user can set most of the defaults that can be set for the site for an
individual session, using SET commands or session options fill-ins. (See the Working in
the Environment Guide for a description of the SET commands and the session options
fill-ins. See the Command Reference Guide for the complete syntax of the SET
command.)

A default set with a SET command or session options fill-in is changed only for the user
who issued the command. It remains in effect only for the current session. The user has
the option of storing SET commands in a member called SIGNON. This executes the
commands automatically each time the user signs on, and works as if that user's default
settings were changed permanently.

For references to defaults in this document, see whatever default is currently in effect
for any given option. The actual default for any given option, for any given user, in any
given session, at any given site, depends on what choices for setting defaults were
made.

You can display or print the default option settings for the current session using the
following commands:

DISPLAY SESSION OPTIONS

PRINT SESSION OPTIONS

For a list and descriptions of all of the session options available under CA Ideal, see the
Working in the Environment Guide.

Use of Abbreviations in CA Ideal Commands

The following list provides an explanation of how abbreviations are used:

■ Standard-The standard abbreviation for a command is the first three characters of
the word. Abbreviations are not shown in the syntax illustrations in this guide.

■ Exceptions-There are a number of exceptions to the standard first three-character
abbreviation. These exceptions are abbreviations for command words whose first
three characters are not unique and, therefore, would conflict with an abbreviation
for another command. Other abbreviations (or no abbreviation at all) are used. For
a complete list of these abbreviations, see the Preliminary Concepts section of the
Command Reference Guide.

■ Alternates-CA Ideal also accepts alternate abbreviations. These alternate
abbreviations are included in the list of abbreviations in the Command Reference
Guide.

Main Menu

26 Administration Guide

Main Menu

The Main Menu is a panel that offers a selection of the CA Ideal major facilities and
functions. You can invoke the same facilities and functions by specifying the equivalent
commands in the command area.

 IDEAL: MAIN MENU SYS: DOC MENU

 Enter desired option number ===> There are 11 options in this menu:

 1. PROGRAM Define and maintain programs
 2. DATAVIEW Display dataview definitions
 3. PANEL Panel Definition Facility
 4. REPORT Report Definition Facility
 5. PLAN Application Plan/Package Maintenance
 6. PROCESS Compile, Run, Submit, Debug
 7. DISPLAY Display Entities
 8. PRINT Print Entities
 9. ADMINISTRATION Administration functions
 10. HELP Overview of HELP facilities
 11. OFF End IDEAL Session

The commands equivalent to each menu selection follow, with a description of each
selection and the name of the guide where the function is documented.

■ PROGRAM-How to define and maintain program definitions is described in the
Creating Programs Guide.

■ DATAVIEW-How to define, display, and print dataview definitions for CA
Datacom/DB tables, sequential files, VSAM files, and DB2 tables is described in the
Creating Dataviews Guide.

■ PANEL-The panel definition facility, PDF, is described in the Creating Panel
Definitions Guide.

■ REPORT-The report definition facility, RDF, is described in the Generating Reports
Guide.

■ PLAN (DB2 Only)-The DB2 Plan definition facility is described in the chapter
“Preparing DB2 Application Plans.”

■ PROCESS, DISPLAY, and PRINT-The PROCESS, DISPLAY, and PRINT functions are
described in the Working in the Environment Guide.

■ ADMINISTRATION-The functions of a CA Ideal administrator are described in this
guide.

■ HELP-The CA Ideal help facility is described in the Working in the Environment
Guide.

■ OFF-The command to end a CA Ideal session is described in the Working in the
Environment Guide.

Administrative Functions

Chapter 1: Preliminary Concepts 27

Administrative Functions

This is an overview of the functions required to maintain CA Ideal. You can categorize
these functions as CA Ideal administration, print administration, and dataview
administration.

Some of the functions typically performed by the different administrators are illustrated
in the CA Ideal Administration Maintenance Menu. To access this menu, enter the
number for the Administration option on the Main Menu or enter the command
ADMINISTRATION.

IDEAL: ADMINISTRATION MAINT SYS: DOC MENU

Enter desired option number ===> There are 6 options in this menu:

 1. USER - Define and maintain user definitions
 2. SYSTEM - Define and maintain system definitions
 3. DDOL - Enter DATADICTIONARY Online (for DD Maint.)
 4. DATAQUERY - Transfer to Dataquery
 5. CATALOG DATAVIEW - Catalog dataviews
 6. UTILITY - Miscellaneous utilities

Note: These functions are only available to users with the appropriate authorization. All
other users receive an error message. Each option on the Administration Maintenance
Menu is described fully in this guide. Options shown here that do not apply to your
environment do not display on your screen.

Selecting an option displays a fill-in panel. When a fill-in is completed, press the Enter
key or a PF key to apply the modified data. Pressing the Enter key applies the data, but
leaves the current fill-in displayed. To continue, enter the appropriate command or
press the appropriate PF key. Pressing the Clear key returns the session to the CA Ideal
Main Menu without applying the modified data (except in certain cases with RUN).
Pressing a PA key also ignores modified data. The PA1 key issues a RESHOW. The PA2
key displays current PF/PA key assignments.

In addition to the functions on the Administration Maintenance Menu, options to
various commands that are usually restricted to administrators are described in the
Command Reference Guide. Where appropriate, these administrative commands are
described in this guide.

Chapter 2: System Overview 29

Chapter 2: System Overview

This chapter describes the CA Ideal software environment, internal software modules,
and how CA Ideal application components are stored in the dictionary facility, VLS
libraries, and CICS load modules.

CA Datacom/DB Environment

CA Ideal with CA Datacom/DB runs in an online environment or as a batch process.
There can be a single region of each type or multiple CICS regions and multiple batch
regions. Each request for CA Datacom/DB service goes through a supervisor call (SVC)
that passes the request to the MUF. The SVC is used again to pass the results back.

Environment with DB2 Option

CA Ideal Option for DB2 runs under CICS or as a batch process. There might be a single
region of each type or multiple CICS regions and multiple batch regions. The CA
Datacom dictionary CA Ideal accesses must be allocated to a single, separate region
accessed using a single Multi-User Facility (MUF). The SVC is used again to pass the
results back. The DB2 databases that CA Ideal accesses are allocated to separate DB2
regions accessed using DB2 attach facilities. The tables for the dictionary facility are
accessed from the MUF region.

CA Ideal Environment Components

The following sections provide lists and explanations of the CA Ideal components.

CA Ideal Environment Components

30 Administration Guide

CA Datacom/DB and Datadictionary Components

The following is a list of the CA Datacom/DB and Datadictionary components:

■ MUF-Multi-User Facility (MUF) provides the ability to access and update databases
concurrently from multiple regions or partitions.

■ CA Datacom/DB-CA Datacom/DB includes all modules installed as the CA
Datacom/DB product. A DB Master List defines the operating environment to CA
Datacom/DB, including the number of CICS and batch tasks that are accessing the
databases.

■ CBS-Compound Boolean Selection (CBS) is the CA Datacom/DB access facility
required for processing CA Ideal FOR statements for CBS access. It analyzes complex
database requests and determines the best search strategy.

■ DB Tables-CA Datacom/DB databases that CA Ideal applications access, are
allocated to the MUF region.

■ DD Tables-Datadictionary tables are CA Datacom/DB databases allocated to the
MUF region.

■ SVC-A supervisor call (SVC) routine handles communication between the CICS and
batch CA Ideal regions and MUF.

■ CICS Service Facility-CICS Service Facility permits CA Ideal applications running
under CICS to issue requests to the database through the SVC.

■ DSF/DDOL-The Service Facility (DSF) for the Datadictionary component of CA
Datacom/DB is used whenever CA Ideal accesses the Datadictionary in MUF. DSF is
used in a CA Datacom/DB or mixed CA Datacom/DB and DB2 environment.

DDOL, the online Datadictionary component of CA Datacom/DB, is used in CICS.
DDOL provides interactive Datadictionary services, using DSF and the CICS Service
Facility.

CA Ideal Environment Components

Chapter 2: System Overview 31

Datadictionary Considerations for CA Ideal

Site administrators should use the following guidelines when using Datadictionary with
CA Ideal:

■ Avoid required relationship types.

We recommend that you do not define any relationship involving an entity-type
that CA Ideal maintains as required. When CA Ideal attempts to create a new
entity-occurrence, the required user-specified relationship occurrences cannot be
supplied since they are unknown to CA Ideal. No further processing is allowed until
the relationship is satisfied. The administrator can model user-defined relationship
types between entity-types in the dictionary, but must make them optional
(non-required) when they involve the entity-types SYSTEM, PROGRAM, PANEL,
REPORT, and PERSON.

■ Avoid using batch or online Datadictionary to maintain CA Ideal entity-occurrences.

Do not attempt to use Datadictionary (batch or online) to maintain
entity-occurrences or relationship occurrences that CA Ideal maintains; for
example, entity-occurrences SYSTEM, PROGRAM, PANEL, REPORT, and PERSON;
and relationship definitions PER-ATZ-AUTH, PER-SYS-ACCESS, SYS-LIB-RESIDE,
SYS-PGM-CONTAIN, PGM-DVW-USE, PGM-PNL-USE, PGM-RPT-PRODUCE, and
PGM-PGM-CALL. The administrator can maintain entity-occurrences using
Datadictionary, of any entity types that model other resources at the site, but the
administrator should never tamper with those occurrences that CA Ideal creates.

Also, the administrator should never tamper with relationship occurrences or with
intersection data between occurrences that CA Ideal creates since these often
contain CA Ideal control information.

Three exceptions are:

– Occurrences of PERSON and SYSTEM can be initially defined, if necessary, using
Datadictionary rather than using CA Ideal. However, to make such occurrences
valid for CA Ideal use, the CA Ideal administrator must EDIT SYSTEM and USER
(PERSON) definitions using CA Ideal commands to enter additional information
that CA Ideal requires.

– The administrator can use Datadictionary directly to maintain text records.

– Dataviews can be related to systems using the SYS-DVW-USE relationship.

CA Ideal Environment Components

32 Administration Guide

■ Avoid conflict with CA Ideal internal naming conventions.

When using Datadictionary (batch or online), avoid conflicts with CA Ideal internal
naming conventions. PROGRAM, PANEL, and REPORT entity-occurrences created by
CA Ideal begin with $I. Therefore, users are advised not to create any occurrences
beginning with a $I.

■ Use entity types consistently.

CA Ideal uses the entity types PROGRAM and SYSTEM with specific meanings: A
PROGRAM represents a compilable unit of an application that can run alone or can
call or be called by other programs (for example, a subprogram). A SYSTEM is a
collection of related application PROGRAMs and is also related to its USERs who are
developers, end users, and so on. There is no restriction on the use of these
entity-types elsewhere in the dictionary; however, be sure to consider their special
meaning to CA Ideal.

Note: CA Ideal does not use the Datadictionary entity types MEMBER and PLAN.

■ No entity-occurrence passwords.

Datadictionary allows any entity-occurrence to be assigned a password. Do not
specify entity-occurrence passwords (four-character PASSWORD attribute) for
entity-occurrences that CA Ideal is to access. For example, if you create PERSON
entity-occurrences with Datadictionary and assign them entity-occurrence
passwords, CA Ideal cannot access them. Do not confuse the restrictions of not
using entity-occurrence passwords with the 12-character signon password
(PASS-WORD attribute of the PERSON entity type) that CA Ideal supports, that is the
same attribute CA Ideal displays on the USER definition fill-in.

■ Do not change LOCK attribute on CA Ideal entity-occurrences.

All entity-occurrences that CA Ideal creates have a LOCK attribute value of 1. Do not
change this attribute.

DB2 Environment Components

The following DB2 and CA Datacom/AD components support a CA Ideal Option for DB2
environment.

■ DB2 Tables-The DB2 databases that CA Ideal applications access are allocated to
the DB2 region.

■ CA Datacom/AD-A subset of CA Datacom/DB, providing Datadictionary support in a
DB2 only environment.

■ CICS Attach Facility-The CICS DB2 Attach Facility permits CA Ideal applications
running under CICS to issue requests to DB2.

■ Call Attach Facility-The DB2 Call Attach Facility permits CA Ideal applications
running in batch to issue requests to DB2.

CA Common Services for z/OS

Chapter 2: System Overview 33

CA Common Services for z/OS

Relevant CA Common Services for z/OS (CA Common Services) are described as follows:

CAISSF

The CA Standard Security Facility (CAISSF) interfaces with external security systems,
such as CA Top Secret, CA ACF2, RACF, and other SAF-compatible products. The SSF
interface lets you use any of these security products in both online and batch
environments, independent of the CA Ideal code.

During signon, CA Ideal internal security checks to make sure that the user is
authorized to access CA Ideal. If external security is used, users must sign onto the
security system before signing onto CA Ideal. You can use any CA Ideal signon
transaction (standard, express, or transparent) with external security.

For more information about internal and external security, see the “Establishing Signon
Processing” chapter.

CA IPC (CA Inter-Product Components)

CA IPC provides common functions to CA Ideal and an interface between CA Ideal and
the external environment. These programs allow CA Ideal to process user requests and
to provide the services requested while remaining independent of the operating system
and teleprocessing monitor.

■ VPE-Virtual Processing Environment acts as a software interface between CA Ideal
and the teleprocessing monitor, operating system, and database. All external
services that CA Ideal requires are invoked through VPE. Other CA IPCs also use VPE
for their external services.

VPE handles requests for services such as memory management, program
management, resource management, I/O services, enqueue/dequeue, dynamic
batch job submission, and database accesses. It handles these requests for service
through macro calls and performs the functions according to the rules and syntax of
the host environment.

■ PDF-CA Ideal Panel Definition Facility processes the CA Ideal commands used to
define, print, and test panels interactively.

■ PSS-Print Subsystem processes, routes, and manages print requests. PSS handles CA
Ideal commands for maintaining the output library, browsing output, and
performing other print services.

■ PMS-Panel Management Services is a set of runtime services for acquiring, sending,
receiving, and managing 327x-type terminal messages. PMS validates date/time
stamps and checks input fields for violations of panel edit rules. PMS supports both
CA Ideal product panels and application panels developed using PDF.

CA Ideal Internals

34 Administration Guide

■ SCF-Session Control Facility handles user requests, whether from an online terminal
session or from a CA Ideal batch session. SCF provides CA Ideal signon processing,
handles asynchronous compiles and network printing, and processes commands
such as DISPLAY ERROR, SPLIT and COMBINE, SCROLL, and HELP, RETURN, and
CLARIFY.

SCF also acts as a command dispatcher, managing CA Ideal menus, commands, and
PF and PA keys, separating commands and passing commands to the appropriate
CA Ideal module for further analysis. In batch, SCF prints commands as though they
were entered in an online environment.

■ VLS-Virtual Library System uses the basic I/O services of VPE to store, retrieve, and
modify data in both online and batch environments.

– Two types of VLS library members are as follows:

– Record members: Store source data in source libraries and output in the
output library.

– Block data members: Store variable-length data in panel libraries or object
libraries.

Any number of VLS libraries can exist, but they cannot be concatenated. CA Ideal
requires at least eight VLS libraries:

– ADRLIB-CA Ideal control information, master JOBCARD, user JOBCARDS, and
system messages.

– ADRPNL-CA Ideal and CA IPC product panels and session options.

– ADROUT-The output library.

– IDDAT-Data member library.

– IDDVW-Dataview object library. For a DB2 site, plan definitions can be included
here or in a separate plan library.

User source, object, and panel libraries (defaults are: in z/OS, ID$IDSRC,
ID$IDOBJ, and ID$IDPNL; in VSE, IDLIDS, IDLIDO, IDL$IDP).

A site can define additional source, object, and panel libraries.

In addition to being used directly by CA Ideal and CA IPC, VLS has a batch utility for
library maintenance (VLSUTIL).

■ EDK-Editor Kernel maps fill-in panels to VLS members, providing editing commands
and checkpoint/rollback functions.

CA Ideal Internals

This section outlines the CA Ideal internal modules and describes how components of
CA Ideal applications are stored.

CA Ideal Internals

Chapter 2: System Overview 35

CA Ideal Modules

CA Ideal is comprised of a number of Assembler modules, falling into the following
categories:

■ Compiler-CA Ideal has its own compiler used both online and in batch to build
object modules of programs, panels, and reports.

■ Executor-Control the CA Ideal runtime environment.

■ Online Services-These panels and processors create and maintain user and system
definitions and to process commands such as DISPLAY INDEX, CREATE, DELETE,
DUPLICATE, MARK, PRINT, DISPLAY, CATALOG DATAVIEW, and SUBMIT.

■ Editors-There is a separate editor or processor in CA Ideal for each CA Ideal
application component.

■ Batch Utilities-The CA Ideal batch utilities are primarily used for site administration
functions.

For a list of individual CA Ideal internal modules as they relate to the CA Ideal Trace
Facility, see the “Dial Trace Codes” appendix in the Problem Determination Guide.

Application Components, VLS, and the Dictionary Facility

The following chart shows how CA Ideal application components (systems, users,
dataviews, data members, panels, reports, programs, and plans) are recorded in the
dictionary facility, stored on a VLS library, or both.

Component Dictionary Source Object Panel *IDDVW IDDAT

SYSTEM X

USER X

DATAVIEW X X

MEMBER X

PANEL IDENT X

PANEL LAY/SUM/ EXD, and
so on

 X X

REPORT IDENT X

REPORT PAR/HEA/DET/COL X

PROGRAM IDENT X

RESOURCE X

PARAMETER X X

CA Ideal Internals

36 Administration Guide

Component Dictionary Source Object Panel *IDDVW IDDAT

WORKING DATA X X

PRODECURE X X

*PLAN X

Note: * A DB2 site can define a separate plan library.

How CA Ideal Stores Application Components

Entries in the dictionary facility and VLS members for CA Ideal components are created
at various times during the application development process.

The first CA Ideal entity-occurrences are stored in the dictionary facility when CA Ideal is
installed. At that time, the first CA Ideal system and user are created, the appropriate
entity-occurrences are added to the dictionary facility, the VLS source library, object
library, and panel libraries are specified, and the appropriate relationships are created in
the dictionary facility.

When additional users and systems are defined, CA Ideal adds other entries to the
dictionary facility.

The database administrator defines modeled dataviews in the dictionary. In CA Ideal,
the CATALOG DVW command reads the dictionary tables and creates an object module
in the IDDVW VLS library.

Unmodeled dataviews

These are created in CA Ideal adding a source member to IDDVW and data to the
dictionary facility. The CATALOG DVW command accesses the source member and
the dictionary tables, and creates an object module in the IDDVW VLS library.
Unmodeled dataviews can be created for sequential files and VSAM files.

CA Ideal data members are stored in the VLS library IDDAT. They are not modeled in
the dictionary facility.

CA Ideal Internals

Chapter 2: System Overview 37

Panels and reports

Panels and reports are modeled in the dictionary facility and stored as VLS
members. A dictionary entity-occurrence is created when the panel or report
identification is entered. A single VLS member is added to the source library when
the report parameter, header, detail, and column sections are created. This
member contains all of these report components. A VLS member is added to the
panel library for the panel layout, summary data, extended field definitions, input
edit and validation rules, output edit rules, and facsimile. This member contains all
of these panel components.

Programs

Programs are also modeled in the dictionary facility. An entity-occurrence is created
in the dictionary when you enter the program identification. Relationship
occurrences are added when you enter the program resource table. Separate VLS
members are added to the source library for each program component. That is,
members are added for the program parameter data, working data, and procedure.
Each member is added when the corresponding component is first edited.

CA Ideal VLS Operations

This section describes how various CA Ideal commands affect VLS members.

CREATE

RPT

Creates a single member on the SOURCE library (type R). This member contains all
the components of the report (parameters, heading, detail, and column).

PNL

Creates a single member on the PANEL library (type U). This member contains all
the components of the panel (parameters, layout, summary, field, and facsimile).

PGM

CREATE PGM does not create any VLS members. See EDIT.

MEM

Creates a single member on the IDDAT library (type Z).

CA Ideal Internals

38 Administration Guide

EDIT

RPT

Makes a copy of the report member on the source library with an edit-indicator of
E. At normal end of EDIT, the E member is deleted.

PNL

Makes a copy of the panel member on the panel library with an edit-indicator of E.
At normal end of EDIT, the E member is deleted.

PGM

A single program can result in up to three separate source members on the source
library: procedure (type L), working data (type W), and parameter data (type P).
Each member is first created when the corresponding component is first edited. In
addition, any time an EDIT is issued for a given component (including when it is first
created), a copy of the member is made on the SOURCE library with an
edit-indicator of E. At normal end of EDIT, the E member is deleted. Deleting all of
the lines of a component does not delete the corresponding member.

MEM

Makes a copy of the data member on the IDDAT library with an edit-indicator of E.
At normal end of EDIT, the E member is deleted.

DUPLICATE

RPT

Makes a copy of the report member with the new name: For the NEXT option, the
version number is changed to one higher than the highest version number. For the
NEWNAME option, the report name is changed to the new report name, and the
version is changed to 001. The DUP command internally invokes an EDIT command
for the new report.

PNL

Makes a copy of the panel member with the new name: For the NEXT option, the
version number is changed to one higher than the highest version number. For the
NEWNAME option, the panel name is changed to the new name, and the version is
changed to 001. The DUP command internally invokes an EDIT command for the
new panel.

CA Ideal Internals

Chapter 2: System Overview 39

PGM

Makes a copy of any of the three possible program members that exist (work,
parameter, procedure), with the new name: For the NEXT option, the version
number is changed to one higher than the highest next version number. For the
NEWNAME option, the program name is changed to the new name, and the version
is changed to 001. The DUP command internally invokes an EDIT command for the
new program.

MEM

Makes a copy of the data member with the new name: For a different user, the
user ID is changed to the new user ID. The DUP command internally invokes an EDIT
command for the new member.

MARK STATUS

PGM is the only VLS members that the MARK STATUS command affects are program
object members. For the program executable object (type T) and symbol table (type J),
the members are renamed so that the version number is changed to PRD.

This enables the runtime executor to locate the appropriate members in a system that
was the target of the Transport Utility, when no Datadictionary entity-occurrence exists.
This is necessary to support the command RUN xxxxxxxx VER PROD, otherwise, CA Ideal
would have no means of determining which of the multiple versions of the object
members were the production versions.

Example

Suppose that in SYS ACC, PGM UPDATE VER 005 is currently in PROD status, VER 006 is
in TEST, and that VER 006 is to become the new PROD version. Before the MARK STATUS
command, the following members exist in the object library (if you run a VLSUTIL
LIBRARY listing, the member names are shown in strict collating sequence order, instead
of the following order):

ACCUPDATE PRDJA

ACCUPDATE PRDTA

ACCUPDATE PRDTB

ACCUPDATE 005VA

ACCUPDATE 006JA

ACCUPDATE 006TA

ACCUPDATE 006TB

ACCUPDATE 006VA

ACCUPDATE 007JA

ACCUPDATE 007TA

ACCUPDATE 007TB

ACCUPDATE 007VA

CA Ideal Internals

40 Administration Guide

This program contains working data but no parameter data. We can determine this
because there is a type V member (working data object) but no type Q member
(parameter object). Also, the original MARK command for VER 005 changed only the
names of the type J (symbol table) and T (executable object) members to reflect PRD
instead of 005: The type V member was never changed. (A type Q member would not
change either.)

In this example, only two members are shown for each executable object module, A and
B. There can be more members (C, D, E, and so forth), but two is the minimum.

The following is now executed:

MARK STATUS PGM UPDATE VER 6 TO PROD

CA Ideal determines that there is an existing previous PROD version of the program by
accessing the Datadictionary. After the above command is executed, the following
members exist on the object library (if you run a VLSUTIL LIBRARY listing, the member
names are shown in strict collating sequence order, instead of the following order):

ACCUPDATE PRDJA

ACCUPDATE PRDTA

ACCUPDATE PRDTB

ACCUPDATE 006VA

ACCUPDATE 007JA

ACCUPDATE 007TA

ACCUPDATE 007TB

ACCUPDATE 007VA

All members for the old PROD version 005 were deleted (since CA Ideal determined
from the Datadictionary that version 5 was the previous PROD version). The former 006
members were renamed to PRD since the command directed CA Ideal to mark version 6
to PROD status. Neither of the type V members (working data object) was affected by
the MARK STATUS command. These members are used only at compilation time.

DELETE

■ RPT-Report source member is deleted.

■ PNL-Panel source and object members are deleted.

■ PGM-All program source and object members are deleted.

■ MEM-Data member is deleted.

The DELETE command deletes all appropriate VLS members, even if the Datadictionary
entity-occurrence, or one or more of the VLS members themselves, is missing.

CA Ideal Internals

Chapter 2: System Overview 41

Compilation and VLS Object Modules

The following activities happen when the CA Ideal application is compiled for the first
time:

1. The program working data, parameter data, and the attributes of each panel are
compiled into separate object modules.

2. These objects, along with any panels and cataloged dataviews, are merged with
composite object modules.

3. The program procedure and report definitions are compiled and merged with the
composite object module into an executable object.

4. The program symbol table is also built at compile time.

Each time a program is recompiled, the program procedure and report definitions are
recompiled into the executable object module. The separate object modules for panel
attributes, program working data, and program parameter data only need to be
recompiled if they have changed since the last compile. Any that have not changed will
be merged directly into the executable object when recompiled.

Processing the Field Attribute and Symbol Tables

The maximum number of symbols-such as names and identifiers-in a CA Ideal
application depends greatly on the amount of storage CA Ideal has available for the
Field Attribute Table and the Symbol Table.

The Field Attribute Table, referred to here as the FAT, contains an entry for each
dataview, dataview field, panel, panel field, working data field, literal, and FOR
construct. Each entry is 20 bytes long and contains information such as the length, type,
displacement, and the offset into the Symbol Table.

The Symbol Table contains an entry for each dataview name, dataview field name, panel
name, panel field name, working data field name, report name, procedure name, and
label name. The length of these entries varies according to the length of the symbol.
Each entry contains information, such as the length of the symbol and the address of
the symbol in the FAT, and the literal that identifies the symbol.

During compilation, CA Ideal creates a variety of blocks. None of these blocks can
exceed 32 KB. If all the FAT or Symbol Table entries of a 01 level cannot fit in the
remaining space of the current block, a new block is started. No parent (01 level) is
separated from its children. The FAT and Symbol Table can span multiple blocks.

CA Ideal Internals

42 Administration Guide

A single data entity occurrence, (which means that a 01 level data item, dataview, or
panel), still cannot exceed the 32 KB limit.

This means that no 01 level can have more than 1,600 fields, or it exceeds the FAT table
limit. Also, the maximum that a 01 level can have is somewhere between 800 and 1,875
fields (depending on the size of the symbols), otherwise it exceeds the Symbol Table
limit. The compilation and execution process is shown in the following illustration.

DVW RPT PROC

DATA COMPILE

MERGE

COMPILE

EXE OBJ SYM TBL

RUN

WOR OBJ PAR OBJ PNL OBJ

WOR PAR PNL

DVW OBJ

CATALOG

Application Load Modules (Phases)

You can convert CA Ideal application programs and panels in Production status from VLS
members to z/OS load modules or to VSE phases. If a program is converted to load
module format, load modules are created for the executable object and the symbol
table. For each program, separate load modules are created for the reentrant and
non-reentrant data, respectively, and for the symbol table. If a panel is converted to
load module format, a single load module is created. The panel load module contains
the panel member from the panel library, comprising both reentrant and non-reentrant
data.

CA Ideal Internals

Chapter 2: System Overview 43

Even when VLS members are converted to load modules, the original object members
are retained and can be used again. MODULE entity occurrences in the dictionary facility
record which programs or panels were converted to load modules and which were
deleted as load modules. If an entity accessed from CA Ideal is not recorded as a load
module, CA Ideal retrieves it from the VLS library. For more information about VLS
Member Formats, see the CA Ideal Problem Determination Guide. For more information
about load module format, see the “Module Format for Programs and Panels” chapter
in this guide.

Execution of CA Ideal Applications in a CICS Environment

At runtime, for a single program, there are always three independent VLS object
members (or load modules)-one reentrant, one non-reentrant, and one for the symbol
table. There can be more VLS members depending on the size of the program.

The distinction between reentrant and non-reentrant is significant because the
execution of CA Ideal applications online takes place in pseudo-conversational mode. At
the end of each CICS transaction, some or all of the in-core resources are written to CICS
auxiliary temporary storage or CICS EDSA. Exactly what is written to auxiliary temporary
storage and what remains in core depends on the format of the program or panel.

If programs and panels were converted to load modules, they are controlled by CICS.
The CA Ideal program or panel run status has no effect on load module format.

The program symbol table is loaded only when a runtime error occurs.

In a DB2 environment, execution of programs containing SQL in static mode requires an
application plan. The “Preparing DB2 Application Plans” chapter describes how
application plans are generated and used at runtime.

In CA Datacom/DB, SQL access plans are built at compile time.

Execution and the Dictionary Facility

Exactly how the dictionary facility is used at runtime depends on the status of the
program.

■ If the program is in Test status when the program is run, the program
entity-occurrence is retrieved from the dictionary facility, and the date/time stamps
are checked.

■ The first time any related programs are called, the entity-occurrences of these
programs and of their resources must also be retrieved from the dictionary facility,
their date/time stamps checked, and table entries built.

CA Ideal Internals

44 Administration Guide

■ If the program is in Production status and the PROD keyword is specified with the
RUN command (for example, RUN MYPROG VER PROD) or specified as the default
(by SET VERSION PROD), no dictionary facility access takes place.

■ If the program is in Production status but the PROD keyword is not specified with
the RUN command or as the default, the program entity-occurrence needs to be
retrieved, but no date/time checking is performed. Since all related programs and
resources must also be in Production status, no further dictionary facility access is
needed.

Chapter 3: Defining and Maintaining CA Ideal Users 45

Chapter 3: Defining and Maintaining CA
Ideal Users

The user definition provides multiple levels of security for CA Ideal. It secures access to
CA Ideal to development and production systems in CA Ideal, and to specific activities in
each system. The user definition identifies each CA Ideal user, establishes the user
name, grants CA Ideal privileges, assigns the user to systems, and assigns authorization
levels in each system.

Creating and Maintaining User Definitions

You can define each user individually to CA Ideal or you can define one or more user
groups with access to common systems and appropriate authorizations in those
systems. This section explains how to create and maintain the user definitions.

You can define and maintain user definitions either directly through the commands
described in this section or by selecting options from the User Maintenance Menu. To
display the User Maintenance Menu, select option 1 on the Administration Maintenance
Menu or enter the CA Ideal command USER.

=>
=>
=>
--
IDEAL: USER MAINTENANCE USR SYS: DOC MENU

 Enter desired option number ===> There are 7 options in this menu:

 1. EDIT/DISPLAY - Edit or display a user definition
 2. CREATE - Create a user definition
 3. PRINT - Print a user definition
 4. DELETE - Delete a user definition
 5. MARK STATUS - Mark user status to production or history
 6. DUPLICATE - Duplicate user definition to next version
 7. DISPLAY INDEX - Display index of user definitions

Some of the options on the User Maintenance Menu display fill-in panels for data entry.

Creating a CA Ideal User Definition

46 Administration Guide

When a fill-in is complete, press Enter or a PF key to apply the modified data. Pressing
the Enter key applies the data, but leaves the current fill-in displayed. To continue, enter
the appropriate command or press the appropriate PF key. Pressing the Clear key
returns the session to the CA Ideal Main Menu without applying the modified data.
Pressing a PA key also ignores modified data. The PA1 key issues a RESHOW. The PA2
key displays current PF/PA key assignments.

For prompter panels, pressing Enter processes the command completed on the
prompter.

Creating a CA Ideal User Definition

To create the first version of a user definition, enter the command CREATE USER. The
CREATE USER command displays a blank user definition fill-in. The User Definition Fill-in
is a panel that establishes the user, assigns a user privilege, enters descriptive
information about the user, and establishes the user's authorization level in each
assigned system. If a user is already defined in the dictionary (for Datadictionary or CA
DataQuery, for example), duplicate the user to the next version and edit the new
version to define the user to CA Ideal.

A newly created user definition is assigned a version number of 1. This version of the
user definition is in test status. You can edit it at any subsequent session as long as it
remains in test status.

Note:

■ Before a user can sign on to CA Ideal, the user definition must be marked to
production status.

■ When you are using an external security system to control access to CA Ideal, you
must be sure that a user definition exists for the administrator before changing the
SC00OPTS table to include the option SECRTY=Y. If a user definition does not exist,
you cannot sign on to CA Ideal to create the remaining user definitions.

Creating a CA Ideal User Definition

Chapter 3: Defining and Maintaining CA Ideal Users 47

To display the User Definition Fill-in, enter the command CREATE USER or select Option
2, CREATE, from the User Maintenance Menu.

=>
=>
=>

IDEAL: USER DEFINITION USR (001) TEST SYS: DOC FILL-IN

Person name _______________ IDEAL user id ___
Description ____________________________________
Full name __
Password ____________ Re-enter to confirm pswd ____________
Identification _________ Title ____________________
Org. unit ______ Grade ______
Date created 2/17/06 Last modified at ..:..
IDEAL Privileges: Mark at least 1 with an “X” to enable IDEAL signon
 (_) IDEAL Administrator - May use any IDEAL facility
 (_) PRINT Administrator - Has control of Print facility
 (_) DVW Administrator - Catalogs DATAVIEW definitions
 (_) IDEAL User - May use all non-Administrator facilities

Assigned (Indicate at least 1 assigned SYSTEM):
SYSTEM(S) CONTROL UPDATE READ UPDATE-PNL UPDATE-RPT RUN-PROD
 ___ (_) (_) (_) (_) (_) (_)
 ___ (_) (_) (_) (_) (_) (_)
 ___ (_) (_) (_) (_) (_) (_)
 ___ (_) (_) (_) (_) (_) (_)
 ___ (_) (_) (_) (_) (_) (_)
 ___ (_) (_) (_) (_) (_) (_)
 ___ (_) (_) (_) (_) (_) (_)
 ___ (_) (_) (_) (_) (_) (_)
 ___ (_) (_) (_) (_) (_) (_)
 ___ (_) (_) (_) (_) (_) (_)

Note: Issue “MARK * PROD” or “MARK USER xxx VER n TO PROD” to enable signon

Creating a CA Ideal User Definition

48 Administration Guide

The fields on the User Definition Fill-in consist of:

■ Person name-One- to 15-character identification of the person (user) being defined.
This name must be unique at the site. CA Ideal initializes Person name to the name
entered in the CREATE command, if a name was supplied there. You cannot change
Person name once it is entered and accepted. If you want a new Person name, you
must delete the user definition and create a new one. The Person name can be one
to 15 non-blank characters and can be any combination of letters, digits, or national
characters except the first character cannot be a digit.

The Person Name does not have to be the same as the security ID or the monitor
op-ID used to logon if the UIDCHK parameter of the IDOPTSCB macro is set to NO.
However, unless a default user ID (DFLTUSR) is specified to determine the CA Ideal
authorizations, you must still define the security ID or op-ID as an alias for the
Person Name in the dictionary facility.

If DESTINATION MAIL is used, the Person Name must be a valid CA eMail+ signon or
alias.

■ IDEAL User ID-One- to three-character user identification. You must enter this user
ID to make the user valid for CA Ideal and it must be unique to the site. Once
defined in a User Definition Fill-in, you cannot change the CA Ideal user ID. If you
want a new CA Ideal user ID, delete the user definition and create a new one. The
user ID can be one to three non-blank characters and can be any combination of
letters, digits, or national characters. (This one- to three-character user
identification becomes an alias for the PERSON in the dictionary facility.)

Note: In CICS, the CA Ideal user ID must match the CICS op-ID unless either the
UIDCHK parameter of the IDOPTSCB macro is set to NO or security is enabled
(SECRTY=Y in the SC00OPTS table).

■ Description-Optional description of the user being defined.

■ Full name, Identification, Title, Org unit (organization unit), Grade-Descriptive
information or organizational identification of the user. These areas are for
documentation only and are optional.

■ Password-One- to 12-character string that the user must specify on the CA Ideal
signon screen. The contents of this field on the user definition panel display or are
invisible, depending on the value assigned to the IDOPTSCB parameter PSWDIS=.
(The user can modify this password without editing the user definition fill-in by
using the ALTER SIGNON PASSWORD command described in the Command
Reference Guide.)

■ Re-enter to confirm pswd-A prompt and the field that only appears when the
IDOPTSCB parameter PSWDIS=INVISIBLE, verifying the password field. For more
information, see Customizing the CA Ideal Options Block Using IDOPTSCB, in the
“Optimizing Storage Management” chapter.

■ Date created-Initial date of the user definition. The system supplies this date. It is
not modifiable.

Creating a CA Ideal User Definition

Chapter 3: Defining and Maintaining CA Ideal Users 49

■ Last modified at-Date and time when this user definition was last accessed in edit
mode. The system supplies the date. It is not modifiable. The system also supplies
the time in the format hh:mm. It is not modifiable.

■ IDEAL Privileges-Each user of CA Ideal is assigned (by marking with an x) one or
more levels of privileges that govern the commands and services available to that
user. You must select at least one privilege to make the user definition valid for
signing on to CA Ideal. (To disable an existing CA Ideal user, erase all CA Ideal
privileges and ignore the resulting error message.)

– IDEAL Administrator-Grants the user global authorization to perform any
command or service in all systems, including all services governed by all other
privileges.

– PRINT Administrator-Establishes a CA Ideal user with the authorization to
control the printing facility (which includes the ability to define and delete print
destinations).

– DVW Administrator-Establishes a CA Ideal user with the authorization to
catalog dataviews for CA Ideal.

– IDEAL User-Specifies that the user is authorized to use only commands that
affect the current session.

The following table illustrates how the selection of a privilege also implies
commands and services governed by other privileges.

Specified Privilege IDEAL Admin PRINT Admin DVW
Admin

IDEAL
User

IDEAL Administrator X X X X

PRINT Administrator X X

DVW Administrator X X

IDEAL User X

Creating a CA Ideal User Definition

50 Administration Guide

■ Assigned systems-Designates which CA Ideal systems this user is authorized to use
and the authorization level the user has for each system. To assign more than the
ten systems allowed on the panel, scroll forward using the PF8 key.

A user's access to a system and to the commands that can execute in a system is
controlled by the authorization specified here. The user must be assigned to at least
one CA Ideal system to successfully sign on to CA Ideal.

– CONTROL-Authorizes full control of the specified system, including the creation
and deletion of programs, panels, and reports; editing the identification fill-in
for programs, panels, and reports; and editing the resource fill-in of a program
definition. This authorization automatically implies all other levels in the
system, except running production programs (RUN-PROD) that must be
selected separately.

– UPDATE-Authorizes the user to update (edit) or read (display, print, and so on)
all programs, panels, and reports in the system (except the identification fill-in
and resource fill-in). This authorization automatically implies all levels in the
system except control (CONTROL) and running production programs
(RUN-PROD).

– READ-Authorizes the user to read (display, print, and so on) programs, report
definitions, and panel definitions in the system.

– UPDATE-PNL (update panel)-Authorizes the user to update panel definitions in
the system.

– UPDATE-RPT (update report)-Authorizes the user to update report definitions
in the system.

– RUN-PROD (run production)-Authorizes the user to run production programs
in this system.

The following table illustrates how the assignment of an authorization in a system
implies commands and services governed by a lesser authorization.

Specified Authorization CONTROL UPDATE UPD-PNL UPD-RPT READ RUN-PROD

CONTROL X X X X X

UPDATE X X X X

UPD-PNL X X

UPD-RPT X X

READ X

RUN-PROD X

Note: To enable the newly defined user to sign onto CA Ideal, issue the command MARK
* PROD or MARK USER xxx VER n TO PROD after defining the user.

Maintaining User Definitions Online

Chapter 3: Defining and Maintaining CA Ideal Users 51

Maintaining User Definitions Online

Use the following CA Ideal commands to display, maintain, copy, and list existing user
definitions. For more information about these commands, see the Command Reference
Guide.

CREATE USER

Displays a fill-in panel that creates a user definition in the dictionary.

EDIT/DISPLAY USER

Displays an existing user definition and makes it the current entity.

PRINT USER

Prints a specific user definition.

DELETE USER

Deletes a user definition that is in history or test status. User definitions in
production status must be marked to history before they can be deleted.

For important information about using the DELETE command to delete user
definitions, see the notes following this table.

MARK STATUS USER

Marks a user definition's status to production or history. A user definition must be
in production status before the user can sign onto CA Ideal.

DUPLICATE USER

Copies an existing user definition to the next version. The new definition becomes
the current user definition, and the user fill-in displays for modification. You can
modify the new user definition as long as the status is test. Until it is modified, the
newly created version is identical to the previous version, including the name.

Note: You cannot copy a user definition to a new name with the DUPLICATE USER
command.

DISPLAY/PRINT INDEX

Lists the name and status of each user definition currently in the dictionary. You can
request an index for one or all users, with or without listing the related systems.
Margin commands can be used to display, edit, delete, or mark the status of the
displayed user definitions.

Maintaining User Definitions Online

52 Administration Guide

Note: Before deleting a user definition, be sure to delete any data members that exist
for that user since the DELETE MEMBER command requires the Person Name or User ID
from the user definition. If the user definition is deleted before the members that
belong to that user are deleted, the members become impossible to delete with the CA
Ideal DELETE command.

To determine whether the user has members, use the command:

DISPLAY INDEX MEMBER USER username

Then enter the DELETE line command for each member displayed and press Enter. (You
could use the following command to delete a member but the DELETE MEMBER
command must be repeated for each member.)

DELETE MEMBER memname USER username

Marking a user definition to history and deleting it using this DELETE command also
removes the corresponding PERSON entity occurrence from the dictionary facility. If
that user was authorized for any other CA products, those authorizations are
automatically deleted.

To disable a user from CA Ideal without affecting that user's authorizations for other CA
products, follow this procedure:

1. Duplicate the existing production version of the user to NEXT VERSION. This displays
the next version of the user definition for editing.

2. While viewing the user definition fill-in for the new test-status version (in edit
mode), erase all CA Ideal privileges and press Enter.
The following message displays:

ADUEDP11 - Please enter CA Ideal privilege(s)

3. Ignore the preceding message and mark the new version of the user definition to
production. The CA Ideal editor does not allow the update unless there is at least
one SYSTEM related to the USER definition. Without any CA Ideal privileges, signon
to CA Ideal with this user ID results in the following error message:

IDADIDIN05E - USR xxx has no signon authorization for CA Ideal

The Datadictionary batch utility, DDUPDATE, also removes CA Ideal authorization
(transaction 1003 UNRL).

Creating CA Ideal Users in Batch

Chapter 3: Defining and Maintaining CA Ideal Users 53

Creating CA Ideal Users in Batch

The usual method to create CA Ideal users is to use the CREATE USER command.
However, adding large numbers of users this way can be a time-consuming process. CA
Ideal users can be created in batch using Datadictionary (DDUPDATE).

A valid CA Ideal user definition consists of the following Datadictionary
entity-occurrences:

■ A PERSON entity-occurrence

■ An ALIAS for the PERSON entity-occurrence that must match the PERSON userid
attribute

■ One or more RELATIONSHIP occurrences between the PERSON and the four CA
Ideal AUTHORIZATION profiles and (optionally) one of the DD AUTHORIZATION
profiles:

– $$ID-ADM IDEAL Administrator

– $$ID-DVW DVW Administrator

– $$PR-ADM PRINT Administrator

– $$ID-USE IDEAL User

■ One or more RELATIONSHIP occurrences between the PERSON and the defined CA
Ideal SYSTEM entity-occurrences. The intersection data (INTER-DATA) of this
relationship occurrence must contain the following information:

Pos Contents

1-3 $ID (constant)

4 One byte of bit settings for the authorization

level in the related system, as follows:

1... - Control

.1.. - Update

..1. - Read

...1 - Run-Prod

.... 1... - Not Used

.... .1.. - Not Used

.... ..1. - Update-Report

.... ...1 - Update-Panel

Creating CA Ideal Users in Batch

54 Administration Guide

Following is a sample set of DDUPDATE transactions to add a new user to CA Ideal:

 -ADD PERSON,long-user-name

 1003 RELT,SYSTEM,system-name(ver),PER-SYS-ACCESS

 1003 DATA,$IDx

 1010 ADD $$ID-ADM

 1010 ADD $$ID-DVW

 1010 ADD $$PR-ADM

 1010 ADD $$ID-USE

 1014 pppppppppppp uuu

 -END

 -UPD PERSON,long-user-name(001),PROD

 -END

■ The -ADD transaction is a header transaction. It adds the PERSON
entity-occurrence for user long-user-name (from 1 to 15 characters).

■ The 1003 RELT, SYSTEM transaction relates the user 'long-user-name' to the system
'system-name(ver)'. The new user can be related to a maximum of 99 SYSTEMs.

■ There must be a matching 1003, DATA transaction for each 1003 RELT, SYSTEM
transaction. The 1003 DATA transaction gives the user authorization within the
system specified in the corresponding 1003 RELT, SYSTEM transaction. The
authorization bit setting ('x') is determined using the following table:

/--- AUTH IN SYS: TYPE: HEX CHAR

| --------------- --- ----

| CTL + RUN-PROD F3 3

| CTL E3 T

| UPD + RUN-PROD 7B #

| UPD 6C %

| READ + RUN-PROD 30

| READ 20

| RUN-PROD 10

|

--

Using Batch to Maintain CA Ideal User Definitions

Chapter 3: Defining and Maintaining CA Ideal Users 55

■ The 1010 ADD transaction assigns the user a privilege title: {IDEAL-ADMIN,
DATAVIEW-ADMIN, PRINT-ADMIN, IDEAL-USER}.

For example, to define an IDEAL-USER, supply only the following transaction:

1010 ADD $$ID-USE

■ The 1014 transaction defines a password and the userid for the 'long-user-name'. If
a password is not desired, the 1014 transaction must still be included to add the
userid. Note that the userid MUST start in column 19.

■ The -END transaction marks the conclusion of each transaction group.

■ The -UPD transaction marks the 'long-user-name' definition to PROD status.

■ The -END transaction marks the conclusion of each transaction group.

When these transactions have been successfully executed, the new CA Ideal user is
ready to sign on.

Using Batch to Maintain CA Ideal User Definitions

It is possible to create, as well as update, CA Ideal users in batch through the
Datadictionary utility program DDUPDATE.

Adding Aliases

You may want to add aliases to existing user definitions on a large scale. The following
DDUPDATE transactions let you add an alias to existing users in batch:

+UPD PERSON,person1(PROD,,ovrd)

1103 ADD alias1

+END

+UPD PERSON,person2(PROD,,ovrd)

1103 ADD alias2

+END

Adding Systems

Changes to an existing user's SYSTEM authorization online require duplicating the user
to the next version, modifying the user definition, and then marking the new version to
PROD status. You can make the same changes in batch using DDUPDATE 1003
transactions to relate and unrelate systems to users. The following DDUPDATE
transactions let you add an additional system to an existing user in batch.

+UPD PERSON,person1(PROD,,ovrd)

1003 RELT,SYSTEM,long-system-nme(PROD),PER-SYS-ACCESS

1003 DATA,$IDx

+END

Using Batch to Maintain CA Ideal User Definitions

56 Administration Guide

 $ID is a constant and x is the authorization. The 1003 DATA statement is the
intersection data (INTER-DATA) for this RELATIONSHIP occurrence and must contain the
following information:

■ Positions 1 through 3 contain the $ID (constant)

■ Position 4 contains a one-byte value with the following bit-settings for the
authorization level in the related system:

0x80 = Control

0x40 = Update

0x20 = Read

0x10 = Run-Prod

0x08 = Not Used

0x04 = Not Used

0x02 = Update-Report

0x01 = Update-Panel

Updating System Authorizations

The following DDUPDATE transactions let you update the system authorization of a
production status CA Ideal user definition in batch.

+UPD PERSON,person1(PROD,,ovrd)

1003 UNRL,SYSTEM,long-system-nme(PROD),PER-SYS-ACCESS

1003 RELT,SYSTEM,long-system-nme(PROD),PER-SYS-ACCESS

1003 DATA,sidx

+END

Changing Passwords

If you need to change many CA Ideal user passwords, the easiest way in batch is to use a
1014 transaction in DDUPDATE for each user. You do not need to issue an ALTER
SIGNON PASSWORD command to change the CA Ideal password. When you change your
password in DDOL, you are also changing it for CA Ideal conversely.

In this case, using DDUPDATE is more efficient than using CA Ideal batch. One execution
of DDUPDATE with one 1014 transaction is required for each user, unlike CA Ideal batch,
which requires that you set up one batch job or one batch step for each user that
includes the SIGNON and ALTER SIGNON password transactions.

Also, remember that you need a -UPD PERSON transaction header for each user.

Chapter 4: Defining and Maintaining Systems 57

Chapter 4: Defining and Maintaining
Systems

In CA Ideal, a system is a collection of application programs and the developers and
users associated with them. The System Maintenance Menu that follows illustrates the
functions provided by CA Ideal for the definition and maintenance of system definitions.
To access this menu, select option 2, CREATE, on the CA Ideal Administration
Maintenance Menu or enter the SYSTEM command.

=>
=>
=>
--
IDEAL: SYSTEM MAINTENANCE SYS SYS: DOC MENU

 Enter desired option number ===> There are 7 options in this menu:

 1. EDIT/DISPLAY - Edit or display a system definition
 2. CREATE - Create a system definition
 3. PRINT - Print a system definition
 4. DELETE - Delete a system definition
 5. MARK STATUS - Mark system status to production or history
 6. DUPLICATE - Duplicate system definition to next version
 7. DISPLAY INDEX - Display index of system definitions

You can define and maintain system definitions either by selecting options from the
System Maintenance Menu or by entering the commands described in this section
directly from the command line.

Creating a CA Ideal System

To create the first version of a system definition, enter the command CREATE SYSTEM.
The CREATE SYSTEM command displays a blank system definition fill-in. This fill-in
establishes the system name, provides identification information about the system, and
provides the file names where the system libraries are stored.

A newly created system definition is assigned a version of 1 and is placed in test status.
You can edit the new system definition at any subsequent session as long as it remains
in test status. Once marked to production status, it is not modifiable.

Creating a CA Ideal System

58 Administration Guide

After the system definition fill-in is presented and you enter a system name, that system
becomes the current system definition.

Note: Once created, the system definition is in test status and must be marked to
production status before you can access the system.

To display the System Definition Fill-in, shown in the following illustration, enter the
command CREATE SYSTEM or select option 2, CREATE, from the System Maintenance
Menu.

=>
=>
=>
--
IDEAL: SYSTEM DEFN. SYS (001) TEST SYS: DOC FILL-IN

System name _______________
System short identifier ___
Description ____________________________________
System user _______________
Date designed __ __ __
Date implemented __ __ __
Application identification _______________

Date created 2/21/06 Last modified at ..:..

SYSTEM LIBRARIES:
 TYPE FILE NAME

 Source IDXXXSRC
 Object IDXXXOBJ
 Panels IDXXXPNL

Note: Issue “MARK * PROD” or “MARK SYS xxx VER n PROD” to enable SELECT SYSTEM.

The components of the System Definition Fill-in are as follows:

■ System name-One- to 15-character name of the system being defined. CA Ideal
initializes System name to the name entered on the CREATE command if you
entered a name. Once defined on the system definition fill-in, you cannot change
the System name. If you want a new System name, delete the system definition and
create a new one.

■ System short identifier-Three-character system identifier. This three-character
identifier becomes an alias for the system in the dictionary facility.

The System short identifier must be exactly three non-blank characters. The first
character must be a letter or national character. The other two characters can be
letters, digits, or national characters.

Creating a CA Ideal System

Chapter 4: Defining and Maintaining Systems 59

Note: Once defined on the system definition fill-in, you cannot change this identifier. If
you want a new System short identifier, delete the system definition and create a new
one.

■ Description (Optional)-Area where you can provide description of the system being
defined (documentation only).

■ System user-Area where you can identify the users of the system (documentation
only).

■ Date designed-Area where you can specify the date the system was designed
(documentation only).

■ Date implemented-Area where you can specify the date the system was
implemented (documentation only).

■ Application identification-Area where you can further define the system
(documentation only).

■ Date created-Initial date of the system definition. The system supplies this date.
You cannot modify it.

■ Last modified at-Date and time when this system definition was last accessed in
edit mode. The format of the time value is hh:mm. The system supplies the date
and time. You cannot modify them.

■ System libraries-Names of the libraries the system uses for storing source and
object modules. Each system can have its own set of libraries or multiple systems
can share one or more libraries.

– Type-Identifies the type of each library in the system as follows:

– Source libraries-Contain the source of program and report definitions.

– Object libraries-Contain the object form of program and panel definitions.

– Panel libraries-Contain panel definitions.

– File name-For each type, an area where you must supply the file name for each
library.

Creating a CA Ideal System

60 Administration Guide

When the System Definition Fill-in is presented as a result of the CREATE SYSTEM
command or prompter, CA Ideal provides default file names.

For z/OS, the default names are:

■ IDXXXSRC

■ IDXXXOBJ

■ IDXXXPNL

For VSE, the default names are:

■ IDLXXXS

■ IDLXXXO

■ IDLXXXP

Replace the XXX in each name with the system short identifier to relate the file names
to the system definition by convention.

Since each file name becomes a DD statement (in z/OS) or a DLBL statement (in VSE),
the names must conform to the rules for formation of ddnames or DLBL names. File
names in VSE cannot be longer than seven characters, even though the fill-in provides
eight positions (for compatibility with z/OS.)

The source, object, and panel libraries can be in separate files or any combination can
be on the same file. The maximum size of a VLS library member is 60,900 blocks
(regardless of the blocksize.) Consider this when planning libraries.

You can put each CA Ideal system in its own library or you can put any number of
systems in the same library, as shown in the following table.

Library Types Possible Library Names for
System INV

Possible Library Names for
System ACT

 IDALLSRC IDALLSRC

Source IDINVSRC IDACTSRC

 IDALL IDALL

 IDALLOBJ IDALLOBJ

Object IDINVOBJ IDACTOBJ

 IDALL IDALL

 IDALLPNL IDALLPNL

Panel IDINVPNL IDACTPNL

 IDALL IDALL

Maintaining System Definitions

Chapter 4: Defining and Maintaining Systems 61

There are other steps required to allocate, format, and establish new source, object, or
panel libraries for a CA Ideal system.

Note: To enable the SELECT SYSTEM command for the newly defined system, issue the
command MARK * PROD or MARK SYS xxx VER n PROD.

Maintaining System Definitions

Use the following CA Ideal commands to display, maintain, print, copy, and list existing
systems. For detailed information about these commands, see the Command Reference
Guide.

CREATE SYSTEM

Displays a fill-in panel that creates a system definition in the dictionary.

EDIT/DISPLAY SYSTEM

Displays an existing system definition and makes it the current CA Ideal entity.

PRINT SYSTEM

Prints a specific system definition.

DELETE SYSTEM

Deletes a system definition that is in history or test status. Production-status system
definitions must be marked to history status before they can be deleted.

MARK STATUS SYSTEM

Marks a system definition's status to production or history. A system definition
must be in production status before users can select it.

DUPLICATE SYSTEM

Copies an existing system definition to the next version. The new version of the
system definition becomes the current system definition. The system definition
fill-in displays for modification. You can modify the new system definitions long as
the status is test. Until the new definition is modified, the newly created version is
identical to the previous version, including the name.

Note: You cannot copy a system definition to a new name with the DUPLICATE
SYSTEM command.

DISPLAY INDEX SYSTEM

Lists the name and status of each system definition currently in the dictionary
facility. Optionally, the index can include occurrences of entity-types that are
related to a given system).

Note: Ignore system names that are prefixed with the characters DD-. They are not
available as CA Ideal systems.

Using Batch to Create CA Ideal System Definitions

62 Administration Guide

Using Batch to Create CA Ideal System Definitions

You can create systems in batch through the Datadictionary utility program, DDUPDATE.

Chapter 5: Preparing and Maintaining VLS Libraries in CA Ideal 63

Chapter 5: Preparing and Maintaining VLS
Libraries in CA Ideal

Each CA Ideal PROGRAM, PANEL, REPORT, and DATAVIEW entity consists of one or more
VLS library members and an entity-occurrence in the dictionary facility. (MEMBERS
consist of a VLS member only, not a dictionary facility entity-occurrence.) CA Ideal
requires that the environment (both VLS members and dictionary facility
entity-occurrences) be valid and consistent. If a discrepancy is found, CA Ideal issues an
internal error indication and terminates the operation.

The VLSUTIL utility manipulates VLS members to regain continuity between the VLS
libraries and the dictionary facility. For more information about VLSUTIL, see the CA IPC
Implementation Guide.

The CREATE SYSTEM command creates a new system. The resulting system definition
fill-in assigns the VLS libraries. The three libraries for applications in that system are the
program source library, the program object code library, and the panel library.

Any of the libraries can be shared across systems or in one system. The administrator
can use one library for all systems, one library per system, three individual libraries per
system, or any other combination.

This chapter describes the procedures to follow before CA Ideal can use a library (also
known as a VLS file).

Library Maintenance Under z/OS or VSE

This section describes the following procedures for creating and maintaining VLS files:

■ Allocating and initializing the library

■ Adding the library to the JCL procedures installed with CA Ideal

■ Adding the library to the CICS File Control Table for CICS

■ Adding the library to the VPE Batch File Table for Batch

This section also explains the following additional maintenance procedures:

■ Backing up and restoring a VLS file

■ Increasing the size of a VLS library

Library Maintenance Under z/OS or VSE

64 Administration Guide

Allocating and Initializing a VLS Library

A VLS file is organized logically as a collection of members. A member name identifies a
member. The following table shows the required name length (NAMELEN) for each CA
Ideal VLS file. The block size can be any size convenient to the device type, except that
each file type has a minimum block size. The data is actually stored in VLS internal
format in fixed length blocks. Default (installed) and minimum block sizes are shown in
the following table. Data compression and space recovery are automatic.

OS File Required
Namelen

Installed Blksize Minimum
Blksize

 IDAT 24 1960 960

 IDDVW 40 4000 4000

z/OS ICxxxSRC 24 1960 960

 IDxxxPNL 24 4000 4000

 IDxxxOBJ 24 4000 4000

VSE IDLxxxS 24 1960 960

 IDLxxxO 24 4000 4000

 IDLxxxP 24 4000 4000

The following files that CA Ideal uses are installed with CA IPC:

File Required Namelen Installed Blksize Minimum Blksize

ADRLIB 24 4000 4000

ADROUT 11 4000 4000

ADRPNL 24 4000 4000

z/OS JCL to Initialize the Library

//INITIAL EXEC PGM=VLSUTIL

//STEPLIB DD DSN=CA IPC.LOAD,DISP=SHR

//SYSPRINT DD SYSOUT=*

//VLSFILE DD DSN=library.name,DISP=(,CATLG),

// UNIT=xxxxx,VOL=SER=xxxxxx,SPACE=(CYL,n),

// DCB=DSORG=DA

//AUXPRINT DD SYSOUT=*

//SYSIN DD *

FORMAT BLKSIZE=nnnn,NAMELEN=nn

/*

//

Library Maintenance Under z/OS or VSE

Chapter 5: Preparing and Maintaining VLS Libraries in CA Ideal 65

VSE JCL to Initialize the Library

// DLBL IDLCL,'IDEAL.IDL.LOAD' *** CORE ***

// EXTENT ,IDL001

// LIBDEF PHASE,SEARCH=IDLCL.IPC

* *** INIT A NEW VLS LIBRARY

// ASSGN SYS004,DISK,VOL=IDL001,SHR

// DLBL VLSFILE,'IDEAL.NEW$PNL',,DA

// EXTENT SYS004,IDL001,1,0,1295,120

// EXEC VLSUTIL,SIZE=(AUTO,48K)

FORMAT BLKSIZE=nnnn,NAMELEN=nn

/*

Adding VLS Library JCL

z/OS

The name of the DD statement must be the same as the library name entered in the
system definition fill-in panel. You must add this statement to the CICS jobstream
and the CA Ideal batch jobstream. A sample JCL statement follows:

//ddname DD DSN=library.name,DISP=SHR

VSE

The name of the DLBL statement must be the same as the library name entered in
the system definition fill-in panel. You must add the following JCL statements to the
specified JCL procedures installed with CA Ideal, for a new library:

// DLBL dlbl-name,”dsn-name”...

// EXTENT, volume

The following are JCL procedures installed with CA Ideal that require the new JCL
statements:

IDLPROC

IDLCICS

IDLDB

Adding a VLS Library to the CICS FCT

The VLS file name used in the CICS FCT (File Control Table) entry must be the same as
the name in the DD or DLBL statement and the same as the name entered in the system
definition fill-in panel. The block size and access method parameters in the FCT must
match the block size and access method used when the file was initialized. The block
size and record length parameters must be equal, since the record format is F (fixed).

For sample FCT entries, check the entries created during the CA Ideal installation for the
default VLS libraries.

Note: You must recycle CICS before you can access a new VLS library online.

Library Maintenance Under z/OS or VSE

66 Administration Guide

Adding a VLS Library to the CA Ideal Batch User File Table

The Virtual Processing Environment (VPE) uses the VPE File Tables for batch to isolate
CA Ideal from differences between operating environments. For more information, see
CA Ideal File Table for VSE in the chapter “Optimizing Storage Management.”

z/OS

The following example shows how to add the appropriate entries to the IDUSRFT and
reassemble these tables:

IDSYSFT TITLE 'SCF - BATCH FILES FOR IDEAL'

*

* *

* FILES USED BY IDEAL SYSTEM BATCH JOBS *

* ===================================== *

* *

* ANY FILE USED BY AN IDEAL BATCH RUN MUST BE IN THIS *

* TABLE. THIS INCLUDES CATALOGED PROCEDURES IDLBATCH, *

* PSSUTIL, AND IDLXPRT. *

* *

* *

*

 .

 .

 .

*

* IDEAL USER SYSTEM FILES *

*

 .

 .

 .

*

ID$IDSRC ROSFD DDNAME=ID$IDSRC,ACCMETH=BDAM,RECFM=F,PRODUCT=IGN

ID$IDPNL ROSFD DDNAME=ID$IDPNL,ACCMETH=BDAM,RECFM=F,PRODUCT=IGN

ID$IDOBJ ROSFD DDNAME=ID$IDOBJ,ACCMETH=BDAM,RECFM=F,PRODUCT=IGN

 .

 .

 .

*

 END

This procedure makes the new file definitions available to the batch CA Ideal and CA
Datacom/DB MUF environments.

For more information about the parameters used in the ROSFD entry, see the section CA
Ideal File Table for VSE in the chapter, “Optimizing Storage Management.” The new
library is now usable.

Library Maintenance Under z/OS or VSE

Chapter 5: Preparing and Maintaining VLS Libraries in CA Ideal 67

VSE

For more information about maintaining a CA Ideal File Table under VSE, see CA Ideal
File Table for VSE in the chapter “Optimizing Storage Management.”

Backing Up and Restoring a VLS Library

The JCL step to add to the backup jobstream is shown as follows.

z/OS

//VLSBKUP EXEC PGM=VLSUTIL

//STEPLIB DD DSN=CA IPC.LOAD,DISP=SHR

//SYSPRINT DD SYSOUT=*

//AUXPRINT DD SYSOUT=*

//VLSFILE DD DSN=library.name,DISP=SHR

//VLSBKUP DD DSN=backup.name,UNIT=TAPE,

// DISP=(NEW,CATLG),VOL=SER=xxxxxx

//SYSUDUMP DD SYSOUT=*

//SYSIN DD *

BACKUP

/*

//

The JCL step added to the restore jobstream is shown as follows. The block size must
match the block size as specified in the list of block size values.

//VLSREST EXEC PGM=VLSUTIL

//STEPLIB DD DSN=CA IPC.LOAD,DISP=SHR

//SYSPRINT DD SYSOUT=*

//AUXPRINT DD SYSOUT=*

//VLSFILE DD DSN=library.name,DISP=SHR

//VLSBKUP DD DSN=backup.name,UNIT=TAPE,DISP=OLD

//SYSUDUMP DD SYSOUT=*

//SYSIN DD *

FORMAT BLKSIZE=nnnn,NAMELEN=nn

RESTORE

LIBRARY

/*

//

Library Maintenance Under z/OS or VSE

68 Administration Guide

VSE

/*

// PAUSE : PLEASE MOUNT "IDLBKP" TAPE ON UNIT=180

// ASSGN SYS010,180

// MTC REW,SYS010

// DLBL IDLCL,'CA IPC.IDL.LOAD' *** CORE ***

// EXTENT ,IDL001

// LIBDEF PHASE,SEARCH=IDLCL.IPC

* *** BACKUP FOR "NEW$OBJ" DSN=IDEAL.NEW$OBJ

// ASSGN SYS004,DISK,VOL=IDL001,SHR

// DLBL VLSFILE,'IDEAL.NEW$OBJ',,DA

// EXTENT SYS004,IDL001

// TLBL VLSBKUP,'NEW$OBJ',,IDLBKP,,1

// UPSI 00000011

// EXEC VLSUTIL,SIZE=(AUTO,64K)

LIBRARY

BACKUP

Note: UPSI switch values are documented in the CA IPC VSE Implementation Guide.

// PAUSE : PLEASE MOUNT “IDLBKP” TAPE ON UNIT=180

// ASSGN SYS010,180

// MTC REW,SYS010

// DLBL IDLCL,'CA IPC.IDL.LOAD' *** CORE ***

// EXTENT ,IDL001

// LIBDEF PHASE,SEARCH=IDLCL.IPC

* *** BACKUP FOR “NEW$OBJ” DSN=IDEAL.NEW$OBJ

// ASSGN SYS004,DISK,VOL=IDL001,SHR

// DLBL VLSFILE,'IDEAL.NEW$OBJ',,DA

// EXTENT SYS004,IDL001

// TLBL VLSBKUP,'NEW$OBJ',,IDLBKP,,1

// UPSI 00000011

// EXEC VLSUTIL,SIZE=(AUTO,64K)

FORMAT BLKSIZE=nnnn,NAMELEN=nn

RESTORE

LIBRARY

Library Maintenance Under z/OS or VSE

Chapter 5: Preparing and Maintaining VLS Libraries in CA Ideal 69

Routine CA Ideal System BACKUP and RESTORE

CA Ideal maintains information about various entities in both the dictionary and in the
various CA Ideal VLS files. This information is synchronized through internal date and
time stamps. Therefore, CA Ideal VLS files cannot, in general, be treated as independent
from the entire CA Ideal system or from the dictionary. You should schedule routine
backups of the entire system.

This should be a job that includes the BACKUP function of DBUTLTY for each dictionary
file (see the CA Datacom/DB z/OS Utility Reference for a description and sample JCL),
and one VLSUTIL BACKUP step for each of the following CA IPC and CA Ideal VLS files:

■ ADRLIB

■ ADROUT

■ ADRPNL

■ IDDAT

■ IDDVW

z/OS

■ IDxxxSRC (one for each separate source file)

■ IDxxxPNL (one for each separate panel file)

■ IDxxxOBJ (one for each separate object file)

VSE

■ IDLxxxS (one for each separate source file)

■ IDLxxxP (one for each separate panel file)

■ IDLxxxO (one for each separate object file)

CA Ideal generation includes the installation of a JCL stream to backup all CA Ideal files.
Tailor this JCL to your site standards and add it to your current dictionary backup job.

It is essential that you run the BACKUP function of DBUTLTY and CA Ideal VLSUTIL steps
at the same point (preferably as steps in one job) and that CA Ideal be completely
quiesced (including batch CA Ideal runs) before and during the backup.

Library Maintenance Under z/OS or VSE

70 Administration Guide

Sample Backup JCL

The following is sample JCL for backing up one of the CA Ideal files:

z/OS

//IDDVW EXEC PGM=VLSUTIL

//STEPLIB DD DSN=CA IPC.LOAD,DISP=SHR

//SYSPRINT DD SYSOUT=*

//AUXPRINT DD SYSOUT=*

//VLSBKUP DD (backup of IDDVW file)

//VLSFILE DD DSN=index.IDDVW,DISP=SHR

LIBRARY

BACKUP

VSE

/*

// PAUSE : PLEASE MOUNT “IDLBKP” TAPE ON UNIT=180

// ASSGN SYS010,180

// MTC REW,SYS010

// DLBL IDLCL,'CA IPC.IDL.LOAD' *** CORE ***

// EXTENT ,IDL001

// LIBDEF PHASE,SEARCH=IDLCL.IPC

* *** BACKUP FOR “NEW$OBJ” DSN=IDEAL.NEW$OBJ

// ASSGN SYS004,DISK,VOL=IDL001,SHR

// DLBL VLSFILE,'IDEAL.NEW$OBJ',,DA

// EXTENT SYS004,IDL001

// TLBL VLSBKUP,'NEW$OBJ',,IDLBKP,,1

// UPSI 00000011

// EXEC VLSUTIL,SIZE=(AUTO,48K)

LIBRARY

BACKUP

Sample Restore JCL

In some instances, it might be necessary to restore all of the Datadictionary, all CA IPC,
and CA Ideal VLS files to maintain synchronization of the definitions should any one of
the components become damaged. (Also refer to the following section on restoring
deleted entities.) You can restore these files by using the output of the previously
described full CA Ideal /DDOL system backup as input to a series of DBUTLTY LOAD steps
(one for each dictionary file) and VLSUTIL RESTORE steps. CA Ideal and DDOL must be
completely quiesced (including batch CA Ideal runs) before attempting the full system
restore.

Library Maintenance Under z/OS or VSE

Chapter 5: Preparing and Maintaining VLS Libraries in CA Ideal 71

The following is sample JCL for restoring a CA Ideal VLS file:

z/OS

//IDDVW EXEC PGM=VLSUTIL

//STEPLIB DD DSN=CA IPC.LOAD,DISP=SHR

//SYSPRINT DD SYSOUT=*

//AUXPRINT DD SYSOUT=*

//VLSBKUP DD (backup of IDDVW file)

//VLSFILE DD DSN=index.IDDVW,DISP=SHR

FORMAT BLKSIZE=4000,NAMELEN=40

RESTORE

LIBRARY

VSE

/*

// PAUSE : PLEASE MOUNT “IDLBKP” TAPE ON UNIT=180

// ASSGN SYS010,180

// MTC REW,SYS010

// DLBL IDLCL,'CA IPC.IDL.LOAD' *** CORE ***

// EXTENT ,IDL001

// LIBDEF PHASE,SEARCH=IDLCL.IPC

* *** BACKUP FOR 'NEW$OBJ' DSN=IDEAL.NEW$OBJ

// ASSGN SYS004,DISK,VOL=IDL001,SHR

// DLBL VLSFILE,'IDEAL.NEW$OBJ',,DA

// EXTENT SYS004,IDL001

// TLBL VLSBKUP,'NEW$OBJ',,IDLBKP,,1

// UPSI 00000011

// EXEC VLSUTIL,SIZE=(AUTO,48K)

FORMAT BLKSIZE=4000,NAMELEN=24

RESTORE

LIBRARY

/*

Restoring Deleted Entities

72 Administration Guide

Increasing the Space in a VLS File

To expand the size of a VLS file or to move it to a different device or device type, carry
out the following steps:

1. Make sure the VLS file is not being accessed:

In CICS-Shut down CICS. Under z/OS, you can deallocate the data set without
shutting down CICS; however, you then need to reallocate the data set before you
recycle CICS.

You also need to quiesce all CA Ideal batch activity.

2. Use the BACKUP function of VLSUTIL to create a backup (sequential) form of the VLS
library.

3. Delete the old VLS library and reallocate it (using IEFBR14) with the appropriate
characteristics. The VLS file can be allocated as part of the following RESTORE step.
For information regarding VLSUTIL LIBFMT=F option to format larger data sets, see
the CA IPC Implementation Guide.

4. Run VLSUTIL again with the backup (sequential) file as input (VLSBKUP), including
the following two control cards:

FORMAT NAMELEN=nn,BLKSIZE=bbbb

RESTORE

5. Restart CICS.

Restoring Deleted Entities

On occasion, a site might find itself in a situation where an entity was accidentally
deleted from the CA Ideal environment. If the CA Ideal program, panel, report,
sequential or VSAM dataview, or member exists in “external format” as a result of a
Source Transport Utility EXPORT job, then you can recover the entity (both dictionary
and VLS portions) using the IMPORT function of the CA Ideal Source Transport Utility.
See the Working in the Environment Guide for more information. Otherwise, you can
restore the entity if a VLS backup of the source is available. Each entity requires
information from both the Datadictionary and the VLS library.

To restore an entity

1. Populate the dictionary with information regarding the entity. This can be done
using either the CREATE, DUPLICATE, or the CA Ideal source transport utility. This
process adds the information found in the Identification section and, in the case of
programs, in the Resource section.

2. Restore the VLS library members using VLSUTIL.

Scenarios are provided below to assist in restoring your CA Ideal entities. The scenario
you decide to use depends on the existence of other versions of the same entity in the
system and what those versions are.

Restoring Deleted Entities

Chapter 5: Preparing and Maintaining VLS Libraries in CA Ideal 73

Resource Section Considerations

In many cases, you must update the resource section of your newly restored programs.
You might find missing resources or resources that do not reflect the appropriate
version.

VLSUTIL Considerations

1. The Dictionary entity must be present before VLSUTIL SELREST is run. This is
because the CA Ideal CREATE command creates empty VLS members. If the VLS
entities already exist during the create process, CA Ideal reinitializes them (or
empty them).

Note: For restoring PROGRAM entities, create the Working Data and Parameter
sections of the program (if they exist) before the corresponding members are
restored. If they are not, you must edit the sections (that is, overtype a single
character) before you can successfully compile the program. Datadictionary does
not know these sections exist until they are created or edited.

2. Remember to use the HEX x card to specify a hex delimiter for your member names
during VLSUTIL functions.

For example, to restore a program called DRIVER in system $ID, version 1, consisting
of a procedure, working data and parameter data section, use the following
VLSUTIL input statements. The H'40s represent blanks to pad the program name of
DRIVER to 15 characters.

HEX /

SELREST $IDDRIVER/404040404040404040/001L

SELREST $IDDRIVER/404040404040404040/001W

SELREST $IDDRIVER/404040404040404040/001P

See the CA IPC Implementation Guide for more information.

3. If you need to use the RENAME function of VLSUTIL, you need to RENAME each
member using two RENAME functions because you cannot fit the old and new
member name in the 80-character maximum.

For example, to rename a program called EMPLMENU in system $ID, currently in
version 22 to version 1:

HEX /

RENAME $IDEMPLMENU/40404040404040/022L,TEMP1

RENAME TEMP1,$IDEMPLMENU/40404040404040/001L

RENAME $IDEMPLMENU/40404040404040/022W,TEMP2

RENAME TEMP2,$IDEMPLMENU/40404040404040/001W

RENAME $IDEMPLMENU/40404040404040/022P,TEMP3

RENAME TEMP3,$IDEMPLMENU/40404040404040/001P

Restoring Deleted Entities

74 Administration Guide

Restoration Procedures

Scenario 1

An entity in version 1 was deleted and there are no other versions of that entity in
the system.

1. Create the entity in CA Ideal, filling in the identification section. If the entity is a
program, you must also fill in the resource
section.

2. Use the VLSUTIL SELREST function to restore all VLS source members for the
entity.

Scenario 2

An entity in a version other than version 1 was deleted, and there are no other
versions of that entity in the system. Plus, you want the entity returned with the
original version number.

1. Create the entity in CA Ideal, filling in the identification section. If the entity is a
program, you must also fill in the resource section.

2. Source transport the entity, first exporting it, then importing it back to the
original system using the command SET IMPORT NEW VERSION x, where x is
the version of the program you are going to restore from VLS.

3. Use the VLSUTIL SELREST function to restore all VLS source members for the
entity.

4. Delete Version 1 of the entity from CA Ideal.

Scenario 3

An entity in a version other than version 1 was deleted and there are no other
versions of that entity in the system. Plus, you want the entity returned in a version
that is different from the original.

Option 1

1. Create the entity in CA Ideal, filling in the identification section. If the entity is a
program, you must also fill in the resource section. If you want the entity
returned in a version other than 1, you must either use source transport to
create the correct version or duplicate the entity to the correct version.

2. Use the VLSUTIL SELREST function to restore all VLS source members for the
entity.

3. Use the VLSUTIL RENAME function to rename all VLS source members for the
entity from the original version to the new version.

4. Delete any unwanted versions of the entity from CA Ideal.

Restoring Deleted Entities

Chapter 5: Preparing and Maintaining VLS Libraries in CA Ideal 75

Option 2

1. Create the entity in CA Ideal, filling in the identification section. If the entity is a
program, you must also fill in the resource section.

2. Source transport the entity, first exporting it, then importing it back to the
original system using the command SET IMPORT NEW VERSION x, where x is
the version of the program you are going to restore from VLS.

3. Use the VLSUTIL SELREST function to restore all VLS source members for the
entity.

4. Source transport the entity, first exporting it, then importing it back to the
original system using the command SET IMPORT NEW VERSION x, where x is
the new version of the entity. Also, make sure that you use the command SET
IMPORT DUPLICATE REPLACE.

5. Delete any unwanted versions of the entity from CA Ideal.

Scenario 4

An entity was deleted and there are lower numbered versions of the entity on the
system. The entity is returned with the original version number.

Option 1

1. Source transport the entity, first exporting it, then importing it back to the
original system using the command SET IMPORT NEW VERSION x, where x is
the version of the program you are going to restore from VLS.

2. Use the VLSUTIL SELREST function to restore all VLS source members for the
entity.

Option 2

1. Use the CA Ideal DUPLICATE command to duplicate the entity to the version
you are going to restore.

2. Use the VLSUTIL SELREST function to restore all VLS source members for the
entity.

3. Use the CA Ideal DELETE command to delete unwanted versions of the entity.

Scenario 5

An entity was deleted and there are higher numbered versions of the entity on the
system. The entity is returned with the original version number.

1. Source transport the entity, first exporting it, then importing it back to the
original system using the command SET IMPORT NEW VERSION x, where x is
the version of the program you are going to restore from VLS.

2. Use the VLSUTIL SELREST function to restore all VLS source members for the
utility.

What to Do When the Library Is Full

76 Administration Guide

Example 1

Version 18 of program ABC in system $ID was accidentally deleted. Version 19 of the
same program exists in $ID. You want the program in its original version.

You follow Scenario 5 in this example. First export program ABC, version 19, then import
using the command SET IMPORT NEW VERSION 18. Next use VLSUTIL SELREST to restore
version 18 of the program to the source library.

Example 2

Version 6 of program TEST in system $ID was accidentally deleted. No other version of
the program exists in $ID. You want the program returned in version 3.

You follow Scenario 3 for this example. Create program TEST VER 1 in system $ID. Fill in
the identification and resource sections. Use source transport to export the program,
then import using SET IMPORT NEW VERSION 6. Use VLSUTIL SELREST to restore version
6 of the program to the VLS library. Use source transport again, exporting version 6,
then import using SET IMPORT NEW VERSION 3. You can then delete version 6 from CA
Ideal.

What to Do When the Library Is Full

A VLS library has a limit of 60,900 blocks with 2-byte block numbers. If the library
becomes full, you must determine why the library is full before you can correct the
problem. There are four possible reasons for the library to become full:

■ Library contains orphaned history members for entities that were removed from
the dictionary.

■ Defined block size for the VLS library is inefficient.

■ VLS library contains more than one system, and the total number of entities is too
large for the library.

■ VLS library contains only one system, and the total number of entities is too large
for the library.

The following sections describe each of these problems and the recommended
solutions.

What to Do When the Library Is Full

Chapter 5: Preparing and Maintaining VLS Libraries in CA Ideal 77

Removing Entities in History Status

VLS members in the source library can be orphaned when the number of history
versions for an entity occurrence exceeds the value of the Datadictionary parameter
ENTY-HIST-VERS, which is installed with a default value of 3 for all entities. When a
particular entity occurrence exceeds this value, the oldest history version is deleted
from the dictionary. However, because this is a dictionary function, and the dictionary is
not tied to the VLS library that CA Ideal uses, the VLS source member is not deleted.
Eventually this can fill the source library with members that no longer exist in the
dictionary. Delete these orphaned members to free up space in the VLS library.

To delete orphaned VLS source members

1. Run the IDUTILTY utility to determine which members do not have a corresponding
dictionary entry. This utility generates a report of all VLS members that do not have
a corresponding dictionary entry. See Library Integrity Utility in this chapter for
more information.

2. Use the CA Ideal DELETE command to delete those source members, on-line or in
batch, after you determine which members do not have a corresponding dictionary
entry. The DELETE command deletes the entity from VLS even when no
corresponding entry is found in the dictionary.

You can also use the VLSUTIL DELETE command to delete the VLS source members.

Other Members That Can Be Deleted

If your VLS library is still full, you can consider deleting other history status programs,
panels, and reports that are no longer needed. If you are concerned about losing
valuable but inactive versions of entities, you can save history status entities in external
source transport format. This keeps the entities available without filling up your VLS
library.

Note: History status programs do not have VLS object members. CA Ideal deletes the
VLS object when the program is marked to history status.

What to Do When the Library Is Full

78 Administration Guide

Correcting Inefficient Block Size

The most efficient block size for a VLS library depends on the size of the members
contained in the library. Therefore, it is a decision that you must make for each site and
for each library.

Most often a site exceeds the space of a source library. Every VLS member in a user
source library consists of at least two blocks, regardless of the actual size of the
member. Unless almost every member is over three blocks, increasing the block size
does not solve the problem on anything but a temporary basis, and increases the use of
DASD and DSA.

Creating New Libraries for Existing Systems

If the VLS library contains more than one CA Ideal system, you can create another set of
VLS libraries and separate the systems across the two sets of VLS libraries.

To migrate your systems with the least impact on your programmers

1. Back up the existing source, panel, and object libraries.

2. Create the new set of VLS libraries to contain source, panel, and object code.

3. Decide which systems should be moved to the new set of libraries.

4. Move all members associated with the selected systems into the new libraries and
delete them from the existing library. You can use the VLSUTIL SELREST and DELETE
cards to do this.

5. Update the CA Ideal system definitions to point to the new libraries.

6. Update the CICS JCL, the batch JCL, the FCT, and IDSYSFT to reflect the new libraries.

7. Recycle CICS.

This method has no impact on the existing programs. You do not need to edit or
recompile anything. The programmers are unaware of the change.

Splitting One System into Separate Systems

If a VLS library only has one system and that system is full, you can split the system into
separate systems. Before you do this you should:

■ Check whether there are orphan members that you can delete

■ Check whether changing the block size will prove beneficial

If either of the above suggestions does not provide a solution, create new CA Ideal
systems. After the new systems are created, you can move programs as necessary.

Library Integrity Utility

Chapter 5: Preparing and Maintaining VLS Libraries in CA Ideal 79

To create new systems and migrate the programs into the systems

1. Determine which programs belong together as part of an application. You can
identify programs that belong to one application, and common programs that are
called by many applications, by generating a report with the command

DISPLAY INDEX PROGRAM RELATED TO PROGRAM

You can also generate a path report from the dictionary.

2. When you determine which applications you have, you can create the CA Ideal
system definitions and the VLS libraries associated with those new systems. Be sure
to add the new VLS libraries to the CICS JCL, batch JCL, FCT and IDSYSFT.

3. Use the Source Transport Utility to export the programs, reports, and panels from
the existing system and import them into the new CA Ideal systems. Use the SET
IMPORT NEW SYSTEM source transport command to change the system for the
imported entities.

4. The entities are imported in test status and you must recompile the programs. You
must mark production entities to production status.

Note: The creation and compilation dates are changed to the date of import and
recompilation.

5. In the original system, use the CA Ideal DELETE command to delete the programs,
reports, and panels that were moved to the new system.

Library Integrity Utility

The Library Integrity Utility is a batch utility that reads the index of a VLS library and
checks its members against the dictionary facility to verify the member's consistency.

Use the following command in your batch job stream to access the utility:

VERIFY LIBRARY library-name

The value of library-name is the name of the VLS library to verify.

The utility verifies the type of each member against the dictionary facility to make sure
that the type can reside in that library.

The batch run produces a report identifying any members that do not match. For
information about message explanations, see the CA Ideal Messages and Codes Guide.
The library Integrity report is directed to UTLBCK (OS DDname or DOS DLBL) and will go
to AUXPRINT if UTLBCK is not in the JCL.

Note: For more information about messages, see the Messages and Codes Guide.

Library Integrity Utility

80 Administration Guide

Sample JCL

z/OS

//LIBINTEG EXEC IDLBATCH,PROG=IDUTILTY

//SYSIN DD *

VERIFY LIBRARY lib1

VERIFY LIBRARY lib2

/*

VSE

* $$ JOB JNM=LIBINTEG,USER='IDEAL',CLASS=0

* $$ LST CLASS=L,DISP=D

// JOB LIBINTEG

// OPTION LOG

// DLBL CAI,'NNNNNNNN'

// EXTENT ,XXXXXX

// LIBDEF *,SEARCH=(CAI.IDEAL,CAI.IPC,CAI.DB)

// EXEC PROC=IDLPROC

// EXEC IDUTILTY

VERIFY LIBRARY lib1

VERIFY LIBRARY lib2

...

/*

// EXEC LISTLOG

/*

/&

* $$ EOJ

Verification Considerations

You cannot verify the CA Ideal message library (default name ADRLIB), the CA Ideal
panel library (default name ADRPNL), or the Print Subsystem output library (default
name ADROUT). If you specify the above libraries, the command is rejected. You can
verify the Dataview, Plan, and Data Member libraries (IDDVW and IDDAT) and any user
Source, Object, or Panel libraries.

The checks that are made for a member depend on the type code, as shown in the
following. list:

■ Type B-PLAN. Can only be present on the Plan library as defined through the CA
Ideal Options block assembly. By default, this is IDDVW.

■ Types D and K-DATAVIEW object and source. Can only be present on the Dataview
library, defined in the CA Ideal Options block and defaulting to IDDVW. For these
types, a matching entity definition on the dictionary facility is required.

Library Integrity Utility

Chapter 5: Preparing and Maintaining VLS Libraries in CA Ideal 81

■ Types T and J-PROGRAM object required for RUN. For these types, a PROD status
system matching the system short id found in the member name must be present
on the dictionary. The object library for the system must be the one being verified.
The program name is checked in the dictionary, although where version is PRD, this
is not required (object-transported programs). Where applicable, the object
sequence codes are checked to ensure they are consecutive.

■ Type U-PANEL. This member is required for RUN. The system short ID in the
member name must match that of a system in PROD status in the dictionary. The
panel library for the system must be the one being verified. There need not be a
corresponding dictionary entity for a transported panel.

■ Types A, N, Q and V-Compiled object components. Used by the CA Ideal
incremental compilation process. The system short ID in the member name must
match a system in PROD status on the dictionary. The object library for that system
must be the one being verified. The program or panel must also be defined on the
dictionary.

■ Types L, P, R and W-Source components. The system short ID in the member name
must match a system in PROD status on the dictionary. The source library for that
system must be the one being verified. The program or report must also be defined
on the dictionary.

■ Type Z-Data Member. Can only be present on the data library defined in the CA
Ideal options block (default IDDAT). The user short ID in the member name must
match that of a user in PROD status on the dictionary.

Other types are either unrecognized or, as in the case of help members, on the wrong
library. (Help members reside on the message library, which is not eligible for
verification.)

If a non-Ideal member is added to a VLS library, it can cause internal errors in the utility.
These members can easily be recognized in a VLSUTIL LIBRARY listing. If you suspect that
a library is corrupt, check first using VLSUTIL delete illegally named members, and then
check for consistency with the dictionary, using IDUTILTY.

Chapter 6: Considerations for CA Datacom/DB Native Access 83

Chapter 6: Considerations for CA
Datacom/DB Native Access

This chapter details the considerations required for accessing CA Datacom/DB.

Index-Only Processing

Index-only processing means retrieving data from the permanent index without reading
the related record. Index-only is a decision that CBS makes when it can obtain all of the
information it needs from the index. There are several advantages to using index-only
processing:

■ CA Datacom/DB can scan the index without the I/O necessary read the data in the
associated rows (records).

■ CA Datacom/DB can perform partial key searches when only a high order portion of
the key value is known.

Designing Keys for Index-Only Processing

To gain performance improvements, design the keys so they can be used for index-only
processing. To take advantage of index-only retrieval when all of the data required by an
application is not defined in the key, consider adding the additional columns (fields) as
low-order columns of the key, especially if these columns are not updated frequently.
The following rules apply:

■ Dataview must consist of an element that equals a key.

■ Key must encompass all fields needed for the application.

■ Element must contain the key, meaning that all elements in the element list are
contained in the key.

■ Dataview or FOR construct must be read-only (NO UPDATE).

■ All fields in the WHERE and ORDERED BY clauses must reflect the key design.

■ Database cannot have multiple keys with the same key ID.

If the key does not include all needed fields, the data record might have to be accessed.
You can retrieve data rows anyway, to build a temporary index and evaluate predicates
in the CA Ideal WHERE clause. You can use the CBS Diagnostic Report ($$$) to determine
whether index-only processing was actually done. If no data records were read,
index-only is most likely used.

Sequential Processing

84 Administration Guide

Sequential Processing

CA Ideal invokes the CA Datacom/DB GETIT and GSETL commands for optimum batch
performance (GETIT and GSETL are not invoked for on-line processing) in instances
where this optional processing method is specified. Better performance is attributed to
optimized record retrieval due to the following conditions:

■ Multi-blocked read ahead if traversal is by key.

■ Blocked record transfer between Multi-User Facility (MUF) and the CA Ideal batch
application.

The following conditions must exist before GETIT and GSETL sequential processing is
invoked:

■ Traversal must be by a key that is no more than 90 bytes in length.

■ All records in the key range must satisfy the WHERE criteria.

■ Internal data retrieval order must match the default order or the order explicitly
specified in an ORDERED BY clause. You cannot specify UNIQUE in an ORDERED BY
clause. You cannot specify the DESCENDING keyword.

■ Record count in a FOR FIRST n statement must be greater than 10.

■ WHERE clause must not contain the clauses NOT EQUAL, CONTAINS, or OR.

■ Parameters in the active User Requirements Table (URT) required for GETIT are
listed on the following page.

CA Ideal can use the multi-block read sequential processing capabilities of CA
Datacom/DB if the data is organized where the nature key can retrieve records (the key
that determines the physical order of the data when the data was loaded). This type of
processing uses the CA Datacom/DB GSETL and GETIT commands. Processing is
restricted to a batch environment and limited to the prime data area (the area initially
written during the LOAD function). The GETIT command retrieves records sequentially,
starting from the record marked by the GSETL command. Multi-block reads greatly
reduce the number of EXCPs required to read a table. The following also impact
sequential processing:

■ GETIT and GSETL acquire locks on records by blocks. To release those locks, the
entire block must be processed. We recommend that you use this only with a FOR
EACH/ALL construct and that you do not include any QUIT statement in the FOR
construct. This is a problem only if the URT entry for the file specifies UPDATE=YES.

■ If an application has substantial add and delete activity, frequently reorganizing the
table keeps the data in native key sequence and maintains efficiency.

Sequential Processing

Chapter 6: Considerations for CA Datacom/DB Native Access 85

■ Examine the space management option specified for the data area against the
application processing requirements for the site. Option 0 and Option 2 are the
most efficient for GETIT processing. (The CA Datacom/DB Database and System
Administrator Guide fully describes the data area space management options.)

To implement sequential processing of a CA Datacom/DB database in CA Ideal running
under batch, an appropriate User Requirements Table (URT) is required.

The following DBURTBL macro parameters, required for sequential access, are described
in the CA Datacom/DB Database and System Administrator Guide.

■ ELMCHG=

■ GBMAXR=

■ GETBLK=

■ SEQBUFS= Number of data buffers the program can use for block read-ahead
sequential processing. Specify an even number of buffers.

■ UPDATE=YES Code this only if updates are required, since this causes CA
Datacom/DB to acquire locks on the records.

The following example illustrates the parameter values for a URT for a CA Ideal batch
job doing sequential processing:

TITLE 'URT FOR EMPLOYEE DVW FOR GSETL/GETIT'

DBURSTR

 CSECT=GETITURT,

 TXNUNDO=NO

DBURTBL

 DBID=1,

 SYNONYM=YES,

 ELMCHG=NO,

 SEQBUFS=8,

 GETBLK=12288,

 GBMAXR=160,

 TBLNAM=PMF,

 UPDATE=YES

DBUREND

 USRINFO=IDEAL-BATCH-URT

END

Test and Prod Data in Datadictionary and CA Ideal

86 Administration Guide

Before issuing the RUN command in CA Ideal batch, the following command is required:

SET RUN URT GETITURT

GETITURT is the value of the CSECT specified in the CSECT= parameter above. It must
match the load module name of the URT. See the Command Reference Guide for more
information about the SET RUN URT command.

To verify that GSETL/GETIT commands are used, trace the batch run using the CA Ideal
Dial Trace with code "V" and limit the run of a test program with SET RUN LOOPLIMIT 5
(enough to see several GETIT commands). The first request to the database is a SELFR
command. CA Datacom/DB sets a flag in the request area that tells CA Ideal whether
GSETL/GETIT commands can be used. If this occurs, dial trace output shows "GETIT
MODE ACCEPTED." For more information about using the trace facility, see the Problem
Determination Guide.

Test and Prod Data in Datadictionary and CA Ideal

It is possible to catalog a test status database structure into the CXX. You can restrict the
use of production status in Datadictionary to those versions that represent the
production or "live" implementation of the database. This means that at any stage in the
development of a database structure, the various versions of the database might be
alike.

You can catalog the Dataview entities representing the test status databases. You can
use multiple versions of a dataview with the same name, but any given program can
reference only one of them. Each dataview can represent a different DBID and can differ
in any other way. Since the names of the dataviews are the same, you can compile a
program to use any of these dataviews just by changing the version column in the
program resources table. If the different versions are incompatible, there can, of course,
be errors in some of the compilations.

Test and Prod Data in Datadictionary and CA Ideal

Chapter 6: Considerations for CA Datacom/DB Native Access 87

When a new version of a database structure is copied to production status, the existing
dataview entities in Prod are re-related to the new production elements. This can
require the dataview to be recataloged in CA Ideal to pick up the changes in the
underlying database. You should then recompile programs using the dataview. You do
not need to change the program source, even in the Resource Table, because the
dataview version is unchanged. If the dataview is not affected by the database changes,
no recompilation is needed.

You can avoid recompiling if the Production dataview and a Test dataview differ only in
the DBID being accessed. In that case, use the CA Ideal ASSIGN or ALTER commands in
the program when it is moved between database versions. For example, you can choose
to have a final-test database that is a duplicate of the live database. Programs tested
against that database can have their DVW DBIDs altered to run against the live copy
once the tests are complete, and the programs themselves promoted to production.
Alternatively, the programs can be compiled using the Production dataviews and
assigned to use the test DBID for development and final testing.

Note: Datadictionary lets you update any Test status entity, regardless of whether it is
part of a database definition that was cataloged into the CXX. You have no guarantee
that the definition in Datadictionary corresponds to the CXX, except for the Production
version. Datadictionary uses the ENABLED attribute to flag the usability of the definition.
CA Ideal checks this information when a Dataview is cataloged.

When any change is made to an entity through Datadictionary, Datadictionary
automatically disables that entity. Do not reENABLE until the new information is
transferred to the CXX and the new dataview information completed. ENABLE operates
on an entire BAS or DVW structure, so this is a quick and easy process.

Exercise additional care when using the ASSIGN command. For integrity reasons, this
should operate at a database level (ASSIGN DBID) and not table level (ASSIGN DVW) if
any updates are performed. Overall, you can compromise database integrity if you use
the ASSIGN DVW to point to the table that is in another copy of the database. In this
case, you could have partial updates in two different occurrences of the same database.
For example, Table A is updated in DB001 but Tables B and C are updated in DB100.

Use ASSIGN DVW for read-only dataviews, for example, allowing a test execution to
read live look-up tables that are essentially static.

BACKOUT Statement Considerations

88 Administration Guide

BACKOUT Statement Considerations

The following is a list of requirements that must exist to ensure that a table can
successfully back out any changes that were made to the data. These are CA
Datacom/DB requirements.

■ User-coded ERROR PROCEDURE must explicitly code the BACKOUT statement for
situations where backing out any updates is required.

■ TXNUNDO URT parameter. If TXNUNDO=YES for a given URT CA Datacom/DB file
and the other requirements for transaction backout were satisfied, the BACKOUT
statement functions as described. If TXNUNDO=NO, the BACKOUT statement has no
effect and no error message is issued.

■ Specify the RECOVERY attribute of the TABLE entity-occurrence in the dictionary as
Y (yes), indicating that CA Datacom/DB recovery facilities are used. You can print a
CXX report to verify that this attribute was specified correctly. If so, the CXX report
indicates RECOVER - YES.

■ Specify the LOGGING attribute of the TABLE entity-occurrence in the dictionary as Y
(yes), indicating that CA Datacom/DB logging is used. You can print a CXX report to
verify that this attribute was specified correctly. If so, the CXX report indicates
LOGGING - YES.

■ CA Datacom/DB logging must not be turned off. DBUTILTY allows logging to be
dynamically turned off and on, using the CXXMAINT ALTER LOGGING option. (You
must specify RECOVERY as Y for this option to be honored.) You can print a CXX
report to verify that logging is currently turned on.

■ CA Datacom/DB master list must specify all options that enable logging and
recovery. CA Ideal requires these capabilities. CA Ideal uses logging and transaction
backout internally, and the CHECKPOINT and BACKOUT commands.

The CA Datacom/DB Database and System Administrator Guide contains a chapter on
using the logging facility. It describes the log file in detail and how to set up the logging
facility, which is required for the CHECKPOINT and BACKOUT.

INCLUDE-NIL-KEY

When defining a key in CA Datacom/DB, there is a parameter called INCLUDE-NIL-KEY.
This nil value is not related to the null value. In most cases, you should define the
INCLUDE-NIL-KEY as YES. When this parameter is set to NO, an alphanumeric key value
of spaces or a numeric key value of binary zeroes is considered nil and is not included in
the index. Although CA Ideal has no control over the processing that takes place when
this parameter is used, its improper use can be the culprit of poor performance in CA
Ideal applications.

INCLUDE-NIL-KEY

Chapter 6: Considerations for CA Datacom/DB Native Access 89

You might assume that you should use INCLUDE-NIL-KEY=NO whenever keys have a high
occurrence of the nil value to free up index space. In fact, you should limit the use of
this parameter to specific situations:

■ Use INCLUDE-NIL-KEY when it is not necessary to access records that have an
alphanumeric key value of spaces or a numeric key value of binary zeroes.

■ Use two-byte binary key field designated as DAYS-LATE with
INCLUDE-NIL-KEY=NO. This keeps non-delinquent accounts with zero days late (a nil
value) from being indexed. If only a small portion of the table contains delinquent
accounts, a considerable savings results by eliminating both the cost of indexing
and storing index entries for non-delinquent accounts.

Be aware of the consequences when choosing to use the INCLUDE-NIL-KEY=NO with CA
Ideal. If the range of the search condition of a WHERE clause specifies the key field that
has INCLUDE-NIL-KEY=NO and that range includes the nil value, then Compound
Boolean Selection is forced to do a full file traversal to retrieve the data. You cannot use
the key for access because the key cannot access all possible rows that satisfy the
request.

Example

FOR ACCOUNTS

 WHERE DAYS-LATE LE 0

 . . .

ENDFOR

Because the nil value is included in the key range, CBS cannot use this key to access the
data records. All records must be read to return the correct data to the program.

Adding a non-keyed field to the WHERE causes the construction of a temporary index
for the same reason-you cannot use the key because it does not point to all possible
records that could contain the non-key value.

If you define a key as INCLUDE-NIL-KEY=NO, be sure that it reflects the way the data is
accessed and that the CA Ideal programmer is aware of this key and the proper coding
techniques.

Chapter 7: Maintaining Plans for CA Datacom SQL Access 91

Chapter 7: Maintaining Plans for CA
Datacom SQL Access

Access plans for programs that access CA Datacom SQL dataviews are generated
automatically when you compile the program. You can set plan options, such as the
cursor isolation level, date and time format, and the ordering of table joins, in the
Environment fill-in of the program definition. Or you can allow them to default to site or
session DBSQL options.

The plan options are included in the program object and are stored as intersection data
in the PGM-PLN-USES relationship in the dictionary. The plan entity is stored in the PLAN
table in the dictionary. You can change these options in the program object by
specifying the ALTER PROGRAM ENVIRONMENT command, but to include those changes
in the plan itself, you must rebind the plan.

You can define multiple plans for a program by defining additional authorization IDs for
the program. You can then select the plan dynamically by assigning the authorization ID
at runtime.

Note: DB2 plans are generated and maintained differently. For more information, see
the “Preparing DB2 Application Plans” chapter.

Generating CA Datacom SQL Access Plans

For CA Datacom SQL access, a program can run under its own default-plan or under
another assigned plan. The default plan is generated automatically when you compile
the program, using the plan options set in either the Environment fill-in of the program
definition or the site and session DBSQL options. You can also create alternate plans for
a program by entering the DEFINE AUTHORIZATION command.

The plan name is composed of the authorization ID and the program name in the
following format:

authid-$Ivvvsssprogram

Generating CA Datacom SQL Access Plans

92 Administration Guide

authid

Authorization ID specified in either the Environment fill-in or the DEFINE
AUTHORIZATION command.

$I

Supplied by the system, it indicates that the plan is for a CA Ideal program.

vvv

Version of the program.

sss

System where the program resides.

program

Name of the program.

When the plan is generated, it is stored as an entity in the PLAN table in the dictionary.
The plan options are stored as intersection data in the PGM-PLN-USES relationship in
the dictionary. (The program object also includes the plan options.) To change the plan,
you must either recompile the program or rebind the plan. When you create an
alternate plan for the program with the DEFINE AUTHORIZATION command, the plan
options are copied from the PGM-PLN-USES relationship. For more information about
creating alternate plans, see Maintaining Access Plans for the Runtime Environment in
this chapter.

Generating the Default Plan

When you compile a program that accesses a CA Datacom SQL dataview, the default
plan is generated automatically. If any plans already exist for the program, they are
deleted. Deleted plans are listed in the compilation listing. After the existing plans are
deleted, the default plan is regenerated for the program.

Note: No matter how many plans existed for a program, only one plan, the default plan,
exists for that program after it is recompiled. If you require alternate plans for the
program, you must define those plans again yourself.

If a program has several alternate plans or if an alternate plan has many plan options
that differ from the default plan, you might want to create a member containing all of
the commands required to generate the alternate plans for that program. You can
execute this member after the program is recompiled. This protects you from
inadvertently leaving out one of the required plan definitions after recompiling the
program.

Generating CA Datacom SQL Access Plans

Chapter 7: Maintaining Plans for CA Datacom SQL Access 93

Setting Plan Options

The programmer can set plan options in the Environment fill-in of the program
definition or by changing the session options with the SET DBSQL command. As the site
administrator, you can set DBSQL options for the site using the SET SITE DBSQL
command. However, the session options override the site options and the options set in
the Environment fill-in override both site and session options.

You can also change the plan options for a specified program after it is compiled with
the ALTER PROGRAM ENVIRONMENT command (see Changing the Access Plan in this
chapter). However, to incorporate those changes into the plan, you must rebind the
plan.

You can set the following plan options in the program Environment fill-in. The
equivalent SET command that you can use to set the option for the session or site is
shown after each option.

Default Auth-ID

One- to eight-character authorization ID that identifies the program's access plan.

You can also set this option with the following command:

SET [SITE] DBSQL AUTH auth-id

SQL Mode

The mode in which CA Datacom processes the program. The values can be any of
the following:

– ANSI86-SQL must follow ANSI86 standards

– Datacom-SQL must follow CA Datacom standards

– FIPS-SQL must follow FIPS standards

– DB2-SQL must follow DB2 standards (this supports CA Datacom Database
Transparency Option for DB2)

You can also set this option with the following command:

SET [SITE] DBSQL MODE sqlmode

For more information about definitions of the SQL modes, see the CA Datacom SQL
Programming and Reference Guide.

Generating CA Datacom SQL Access Plans

94 Administration Guide

Cursor Isolation Level

Degree to which a unit of recovery is isolated from the updating operations of other
units of recovery. Cursor stability is required for updates, deletes, or inserts:

– U-No locks are acquired

– C-Cursor stability

– R-Repeatable read (CA Datacom Release 8.1 only)

You can also set this option with the following command:

SET [SITE] DBSQL ISOLATION-LEVEL level

Optimization Mode

The mode in which CA Datacom optimizes table joins:

– Preptime-(Default) Order joins during bind processing

– Manual-Order joins as specified in FROM clauses

– Exectime-Order joins at execution time. (See the CA Datacom/DB
documentation for more information).

You can also set this option with the following command:

SET [SITE] DBSQL OPTMODE optmode

Date Format

Display format for SQL date type items:

– DB-CA Datacom default. The CA Datacom site administrator can set it to ISO,
USA, EUR, or JIS.

– ISO-International Standards Organization yyyy-mm-dd

– USA-U.S. standard mm/dd/yyyy

– EUR-European standard dd.mm.yyyy

– JIS-Japanese Industrial Standard yyyy-mm-dd

You can also set this option with the following command:

SET [SITE] DBSQL DATE date-format

Generating CA Datacom SQL Access Plans

Chapter 7: Maintaining Plans for CA Datacom SQL Access 95

Time Format

Display format for SQL time type items:

– DB-CA Datacom default. The CA Datacom site administrator can set it to ISO,
USA, EUR, or JIS.

– ISO-International Standards Organization hh.mm.ss

– USA-U.S. standard hh:mm AM or PM

– EUR-European standard hh.mm.ss

– JIS-Japanese Industrial Standard hh:mm:ss

You can also set this option with the following command:

SET [SITE] DBSQL TIME time-format

CBSIO

I/O limit interrupt value for SQL statements that creates a set.

You can also set this option with the following command:

SET [SITE] DBSQL CBSIO nnn

Priority

Priority of the SQL requests:

– 1-15-The lowest priority is 1 and the highest priority is 15.

You can also set this option with the following command:

SET [SITE] DBSQL PRIORITY nn

Wait Time

Exclusive control wait limit.

– 1-120-Number of seconds or minutes

– unit-S for seconds or M for minutes.

You can also set this option with the following command:

SET [SITE] DBSQL WAIT nnn unit

Preptime Optimization Messages

Type of optimization messages CA Datacom produces during bind processing.

– N-None (default)

– D-Detail

– S-Summary

You can also set this option with the following command:

SET [SITE] DBSQL OPTMSGS PREP type

Maintaining Access Plans for the Run-Time Environment

96 Administration Guide

Exectime Optimization Messages

Type of optimization messages CA Datacom produces at runtime.

– N-None (default)

– D-Detail

– S-Summary

You can also set this option with the following command:

SET [SITE] DBSQL OPTMSGS EXEC type

DB/SQL Workspace

Amount of workspace available at plan execution time. (Used for error correction.)
This value is multiplied by 1024 to determine the number of bytes to allocate.

– 0-128-0 to 128 bytes, inclusive.

You cannot set this option with a SET DBSQL command. However, you can change it
with the ALTER PROGRAM ENVIRONMENT command.

Maintaining Access Plans for the Run-Time Environment

When you are ready to move a program that accesses a CA Datacom SQL dataview into
the production environment, you might want to change some of the plan options. You
can do this without recompiling the program by entering the ALTER PROGRAM
ENVIRONMENT command. You can then rebind the plan with the REBIND command to
change the default plan.

If you want to be able to select a different plan dynamically at runtime, you need to
create the alternate plan with the DEFINE AUTHORIZATION command. You can then
enter the ALTER PROGRAM ENVIRONMENT command to change the plan options the
program uses and enter the REBIND command with the new authorization ID to rebind
the new plan.

To select the plan at runtime, use the ASSIGN AUTH command before running the
program.

The following sections explain each of these commands.

Changing the Access Plan

To change the access plan, you need to perform the following activities.

Maintaining Access Plans for the Run-Time Environment

Chapter 7: Maintaining Plans for CA Datacom SQL Access 97

Changing Plan Options

To change the plan options in the program object without editing and recompiling the
program, you can enter the ALTER PROGRAM ENVIRONMENT command with the
appropriate option.

The format of the ALTER PROGRAM ENVIRONMENT command is:

ALTER PROGRAM name [VERSION ver] ENVIRONMENT [option]

For a complete explanation of the ALTER PROGRAM ENVIRONMENT syntax, see the
Command Reference Guide.

You can change all of the options listed in Setting Plan Options earlier in this chapter
with this command, except for the authorization ID and the SQL mode. You can also
specify the CLOSE option on the ALTER PROGRAM ENVIRONMENT command to
determine when to close the plan. Values that you can enter for the CLOSE option
follow:

RUN

Closes the plan at the end of the run-unit or CICS job. CA does not recommend it for
online programs since you cannot recompile the program until the plan is closed.

TRAN

Closes the plan after each database transaction.

If you want to change more than one option, you can enter the ALTER PROGRAM
ENVIRONMENT command without specifying any options. This displays a fill-in showing
the current options from the program object and the CLOSE option. The current
authorization ID and SQL mode also display, but you cannot change it.

Note: Do not execute this command for a program that was the object of a CREATE
MODULE command. If you need to alter the plan options for a program that is executed
from a load module, you must enter the ALTER PROGRAM ENVIRONMENT command
before creating the load module. You can rebind the plan after you create the load
module.

Rebinding the Plan

If you changed the plan options with the ALTER PROGRAM ENVIRONMENT command,
you must rebind the plan to regenerate the plan using the changed options. If you need
to change an alternate plan or regenerate the default plan without recompiling (for
example, in a production environment where you do not have the program source), you
must use the REBIND command.

The format of the REBIND command is:

 { * }

REBIND {PROGRAM name [VERSION ver] }{FOR AUTHORIZATION AUTHORIZATION}

Maintaining Access Plans for the Run-Time Environment

98 Administration Guide

If you do not specify AUTHORIZATION, the authorization ID of the default plan (stored in
the program object) is used. For a complete explanation of the REBIND command
syntax, see the Command Reference Guide.

The REBIND command only affects the plan identified with the specified (or implied
default) authorization ID, version, and program name. If you issue an ALTER PROGRAM
ENVIRONMENT command against a program associated with more than one plan, you
must issue the REBIND command for each plan that requires the changed plan options.

Note: If the specified program was converted to load module format, the REBIND
command uses the load module. To change plan options without recompiling the
program, you must enter the ALTER PROGRAM ENVIRONMENT command before
creating the load module. You can enter the REBIND command after the CREATE
MODULE command to regenerate the plan.

Creating an Alternate Plan

To create an alternate plan, use the DEFINE AUTHORIZATION command. The format of
the DEFINE AUTHORIZATION command is:

DEFINE AUTHORIZATION authid FOR PROGRAM name VERSION ver

For a complete explanation of the DEFINE AUTHORIZATION syntax, see the Command
Reference Guide.

The DEFINE AUTHORIZATION command creates a new plan using the authorization ID,
program name, and version specified in the command to create the new plan name. You
must enter the command from the system that contains the program object. This
system name is used in the new plan name.

The only thing that changes for the new plan is the authorization ID. The SQL statements
are extracted from the existing program object. In the new plan, statements that
reference resources defined in the program resource fill-in as QUAL=N are referenced
with the authorization ID specified in the DEFINE AUTHORIZATION command. All other
references in the new plan remain the same as in the original plan.

Note: The statement-IDs for each statement must match in every plan associated with
the program or a runtime error occurs. This type of error can happen if the CA Datacom
utility DDTRSLM exports a plan without its associated program or if a program object is
transported without its associated plan.

Maintaining Access Plans for the Run-Time Environment

Chapter 7: Maintaining Plans for CA Datacom SQL Access 99

If a plan already exists with the same name (including the authorization ID), that plan is
deleted before the new plan is created. The new plan then takes the place of the old
one.

If you need to change plan options for the new plan, use the ALTER PROGRAM
ENVIRONMENT command to change the program object after creating the new plan.
Then enter the REBIND command, specifying the authorization ID of the new plan on
the REBIND command.

Selecting an Alternate Plan at Runtime

If a program was defined with more than one plan, you can select the appropriate plan
dynamically at runtime by entering the ASSIGN AUTH command before executing the
program.

The format of the ASSIGN AUTH command is:

ASSIGN AUTH authid1 NEW authid2

■ authid1-Authorization ID of the default plan.

■ authid2-Authorization ID of the alternate plan. This authorization ID is sent with the
program name, version, and system to identify the required plan when the SQLCA is
passed to CA Datacom. As a result, the statements in the alternate plan execute
instead of the statements in the default plan.

Note: The plan identified with the specified authorization ID must exist in the current
dictionary for the program to run with that plan.

Chapter 8: Preparing DB2 Application Plans 101

Chapter 8: Preparing DB2 Application Plans

You can optimize the execution of SQL in CA Ideal applications, either embedded SQL or
SQL generated by FOR constructs, by using an application plan that can execute the SQL
in static mode. You can execute SQL not executed as part of an application plan in CA
Ideal in dynamic mode. Generally, a program is tested in dynamic mode and, when it is
ready for performance testing or production, it is moved into static mode.

Program Modes

To run a program in dynamic mode, first compile the program like any other CA Ideal
program and then run it. CA Ideal runs the program under its own default plan, typically
IDP140DV.

To run a program in static mode, DB2 requires that you prepare an application plan that
defines the program's authorizations and access paths. You can prepare the application
plan from both packages and DBRMs (Database Request Modules). A package contains
SQL statements that were already bound. A DBRM contains SQL statements that were
not bound. If you prepare the plan from DBRMs only, you must rebind the plan when
you change any program that is included in the plan. This can be extremely resource
consumptive. If you prepare the plan from packages, you need only rebind the
associated package when you change a program. You do not need to rebind the plan.
This minimizes the impact of the bind since fewer resources are tied up during the bind.

To run in static mode, compile the CA Ideal program like any other CA Ideal program.
Then complete the following steps to prepare the program for execution in static mode
and bind a plan.

1. Create a package definition, if appropriate

CA Ideal provides fill-ins and commands for creating and maintaining package
definitions.

2. Generate the package

A batch command, GENERATE PACKAGE, automatically prepares the program for
execution in static mode and invokes the DB2 BIND command. This procedure
includes preparing one CA Ideal SQL module (an Assembler program containing the
SQL for the DB2 precompile) and performing the DB2 precompile, assembly,
link-edit, and bind.

3. Create the application plan definition

CA Ideal provides fill-ins and commands for creating and maintaining application
plan definitions.

Program Modes

102 Administration Guide

4. Generate the application plan

A batch command, GENERATE PLAN, automatically prepares any programs included
in the plan for execution in static mode and invokes the DB2 BIND command. This
procedure includes preparing one or more CA Ideal SQL modules (assembler
programs containing the SQL for the DB2 precompile) and performing the DB2
precompile, assembly, link-edit, and bind. If the plan includes packages, they are
included only in the bind.

5. Connect the application plan to the application for the CICS environment

In CA Ideal, you can specify which plan an application uses. This connection must
also be made using DB2TRAN and DB2ENTRY elements in CICS.

Before you run an application, you can specify whether you require all programs to
run in static mode or allow programs to run in dynamic mode. Use the SET RUN SQL
command to do this.

PF Key Assignments for the Plan and Package Editors

The following table shows the PF key assignments in effect when defining plans and
packages. The following commands are assignments consistent throughout all facilities
of CA Ideal.

HELP (PF1/13)

Displays a panel or series of panels that contain information that explains how to
complete the current function.

RETURN (PF2/14)

Returns from a help panel to the plan component display or from the plan to the
menu used to select the plan.

PRINT SCREEN (PF3/15)

Generates a hardcopy printout of the current screen contents.

PARAMETER (PF4/16)

Positions to the plan's parameter fill-in.

RESOURCES (PF5/17)

Positions to the plan's resources fill-in.

DBRM (PF6/18)

Positions to the plan's DBRM fill-in.

SCROLL BACKWARD (PF7/19)

Displays the previous frame in the current component.

Defining Application Plans

Chapter 8: Preparing DB2 Application Plans 103

SCROLL FORWARD (PF8/20)

Displays the next frame in the current component.

FIND (PF9/21)

Finds the next occurrence of an alphanumeric literal previously specified in a full
FIND command.

SCROLL TOP (PF10/22)

Positions to the first line of the component.

SCROLL BOTTOM (PF11/23)

Positions to the bottom of the component.

INPUT (PF12/24)

Opens a window of null lines preceding the first line of the component or at the
current cursor position. Unused null lines in the window are deleted when you
press the Enter key after INPUT.

Defining Application Plans

This section describes the fill-ins and commands for creating and maintaining
application plans.

Components of a CA Ideal Plan Definition for DB2

Each application plan definition includes:

■ Plan identification fill-in that creates the plan definition and provides it with
identification information

■ Plan parameters fill-in that specifies DB2 BIND command options

■ Plan resources fill-in that specifies the CA Ideal programs directly included in the
plan

■ Package list fill-in for programs that have been bound individually as packages (see
later in this section)

■ DBRM fill-in that specifies DBRMs for non-Ideal programs

The CREATE PLAN command creates the components of the application plan definition.
The EDIT PLAN command updates the components. You can also use the commands
DISPLAY, PRINT, DUPLICATE, and DELETE with plan definitions. For complete syntax, see
the Command Reference Guide.

This section contains explanations of how to complete the fill-ins that construct each
component of a plan definition presented in the Plan Menu.

Defining Application Plans

104 Administration Guide

The Plan Menu describes the functions that CA Ideal provides to define and maintain
plan definitions. To access this menu, select option 5 on the Main Menu or enter the
PLAN command as follows:

=>
=>
=>
--
IDEAL: PLAN MAINTENANCE PLA SYS: DOC MENU
 Enter desired option number===> There are 6 options in this menu:
 1. EDIT/DISPLAY - Edit or display a plan
 2. CREATE - Create a plan
 3. PRINT - Print a plan
 4. DELETE - Delete a plan
 5. DUPLICATE - Duplicate a plan to new name
 6. DISPLAY INDEX - Display index of plan names in system

The batch command GENERATE PLAN generates the plan and prepares the program for
execution. You can use the REFRESH PLAN command in the CICS environment after a
plan was regenerated to make the plan available to the CICS environment. For details,
see the Generating Application Plans topic in this chapter.

How to Create a New Plan Definition

To create a new plan definition, issue the CREATE PLAN command and complete the
plan identification fill-in. Until the plan is named either in the command or in the fill-in,
the new definition does not exist.

Identification Fill-in

On the plan identification fill-in screen, enter descriptive information about the plan
when you create or modify the plan definition.

=>
=>
=>
--
IDEAL: PLAN IDENTIFICATION PLA IQPLANA SYS: DOC DISPLA

PLAN IQPLANA

Created: 12/10/04 By MARCHAND
Last Modified: 01/21/05 at 13:11 By MARCHAND

Short Description: Static QA

Description:
 __
 __
 __
 __

Defining Application Plans

Chapter 8: Preparing DB2 Application Plans 105

The following list provides an explanation of the fields on the preceding screen:

■ PLAN name-The one- to seven-character name assigned to the plan definition.

■ Created ... By-The initial creation date of the plan definition and the user ID of the
creator. This is blank until the definition is accessed in edit mode. The system
supplies this information. The user cannot modify it.

■ Last Modified ... at ... By-The date, time, and user ID of the last edit access. This is
blank until the definition is accessed in edit mode. The system supplies this
information. The user cannot modify it.

■ Short Description-An area where the user can supply a description of the plan
definition. This description is limited to 24 characters.

■ Description-An area where the user can supply a longer description of the plan
definition. This description is limited to 5 lines.

Plan Resources Fill-in

To specify the CA Ideal programs that are included in the plan definition, issue the
RESOURCE command or press the PF5/17 key. The following plan resources fill-in screen
appears.

=>
=>
=>

IDEAL: PLAN RESOURCES PLA IQPLANA SYS: DOC FILL-IN

Specify the programs, system, version and type that the Plan includes.

Command Program Sys Type Comments
------- -------- --- ---- -------------------------------------
====== ======== === === ======= T O P =======================
000010 MAINAP ARI APP ______________________________________
000011 SQLFET ARI APP ______________________________________
000012 REPORT1 ARI PGM ______________________________________
====== ======== === === ==== B O T T O M ====================

Defining Application Plans

106 Administration Guide

The following list provides an explanation of the fields on the preceding screen:

Program

Identifies the name of a CA Ideal program. Non-ideal programs are specified on the
DBRM fill-in.

Sys (Optional)

Identifies the three-character CA Ideal system ID. (Defaults to the current system.)

Type

Specifies whether the plan includes just the program or the program and all of its
CA Ideal subprograms that issue SQL statements.

– PGM-Includes the specified program only. (Any subprograms that perform DB2
access must be named separately in the fill-in, be part of a different application
plan, be non-Ideal, or run dynamic SQL.)

– APP-Includes all CA Ideal subprograms of the specified program. (DBRMs for
non-Ideal subprograms must be specified on the DBRM fill-in.)

Comments

Information displayed with the plan definition. It has no effect on the plan
generation or on the resulting plan.

Packlist Fill-in

Issue the PACKLIST command (or PKL) to display the PACKLIST fill-information for the
current plan. The packlist fill-in specifies the CA Ideal packages that are included in the
plan definition.

=>
=>
=>

IDEAL: PLAN PACKLIST PLA PL#2806 SYS: $ID DISPLAY

 Specify the packages and collections that this plan includes.

Command I Package Collection Comments
------- - -------- ------------------ ------------------------------
====== = ======== ================== ===== T O P ==================
001400 I SQL2806 __________________ ______________________________
001500 I PK#2806 PK#COLLECTION ______________________________
001600 _ COB#2806 COBOL#COLLECTION ______________________________
====== = ======== ================== === B O T T O M ==============

Defining Application Plans

Chapter 8: Preparing DB2 Application Plans 107

The following list provides an explanation of the fields on the preceding screen:

I

Enter I for CA Ideal or any other character for a non-Ideal package.

Package

Enter the one- to seven-character name of the CA Ideal package or the one- to
eight-character name of the non-Ideal package/DBRM. To include all packages in a
collection, specify “*”.

Collection

The 1- to 18-character name of the collection. This is required for a
non-Ideal package but is optional for CA Ideal. Must be supplied if the package was
not already successfully generated.

Comments

Any comments to appear on the plan listing. Data entered here does not affect plan
generation.

Plan DBRM Fill-in

Issue the DBRM command or press PF6/18 to display the DBRM fill-in for the current
plan. This fill-in lets you specify DBRMs for non-Ideal programs that are included in the
plan definition.

=>
=>
=>
--
IDEAL: PLAN DBRM PLA IQPLANA SYS: DOC FILL-IN

Specify the external (non-Ideal) DBRM names that this plan includes.
Command DBRM Comments
------- -------- ---
====== ======== ===
000100 BATCH Optional for batch runs
====== ======== ===

The following list provides an explanation of the fields on the preceding screen:

DBRM

The name of a DBRM for a non-Ideal program included in this plan. Include the
name of the DBRM for every non-Ideal subprogram that contains SQL and is
included in this plan.

Comments

Information displayed with the plan definition. It has no effect on the plan
generation or on the resulting plan. You can continue comments longer than 30
characters on the next line by ending the current line with a continuation character.
The comment can be up to 52 characters long.

Defining Application Plans

108 Administration Guide

Parameters Fill-in

Issue the PARAMETERS command or press PF4/16 to display the parameters fill-in for
the current plan. This fill-in lets you set DB2 BIND command options and allows
programs in this plan to execute SQL in dynamic mode. The current settings display as
one-character codes that you can change by overtyping.

=>
=>
=>
--
IDEAL: PLAN PARAMETERS PLA IQPLANA SYS: DOC FILL-IN
 PLAN PARAMETERS

Dynamic SQL? Y (Y=Yes, N=No)

Bind Options:
Name: IQPLANA
Owner: ________ Qualifier: ________

Action: R (R=Replace, A=Add)
Retain: Y (Y=Yes, N=No)
Validate: R (R=Run, B=Bind)
Isolation: R (R=Repeatable Read, C=Cursor Stability)
Flag: I (I=InformationalWarningErrorCompletion,
 W=WarningErrorCompletion, E=ErrorCompletion,
 C=Completion only)
Acquire U (U=Use, A=Allocate)
Release C (C=Commit, D=Deallocate)
Explain N (Y=YES, N=NO)
Prepare: _ (NODefer or Defer)

Cachesize: ____ (0 - 4096)
Currentdata: _ (Yes or No)
Currentserver: ________ (Location name)
Enable/Disable:

Defining Application Plans

Chapter 8: Preparing DB2 Application Plans 109

The following list provides an explanation of the fields on the preceding screen:

Dynamic SQL?

Specifies whether this plan includes any programs executing SQL in dynamic mode.
(This is a CA Ideal setting, where all other settings on this fill-in are DB2 BIND
command options.)

– N-Application cannot execute SQL in dynamic mode.

– Y-Application can execute SQL in dynamic mode.

Note: It is suggested that you set this option to Y, which allows dynamic SQL to
change and test one program using dynamic SQL as part of an otherwise static
application without having to rebind the plan.

Setting this option to Y includes the DBRM provided with CA Ideal to handle SQL in
dynamic mode.

If you specify that the plan includes dynamic SQL in this fill-in, you can override this
and require that all programs be static by using the SET RUN SQL STATIC command.
See the Command Reference Guide for complete syntax.

Name

Specifies name of the plan in plan identification fill-in screen.

Owner

Specifies authorization ID of the owner of the plan. The owner must have the
privileges required to execute the statements contained in the plan.

Qualifier

Specifies the authorization ID, which is the qualifier for all unqualified DB2 objects
accessed by this plan. An authorization ID specified at runtime can override this
value in an ASSIGN AUTH command.

Action

Specifies whether this application plan is new or replaces an old plan.

– R-Replace old plan

– A-Add new plan

Retain

Indicates whether those users with authority to bind or execute the existing plan
keep that authority over the replaced plan.

– Y-Retain authority

– N-Do not retain authority

Defining Application Plans

110 Administration Guide

Validate

Indicates when full validity checking is performed.

– R-At runtime

– B-At bind time

Isolation

Specifies the isolation of this application from others.

– R-Repeatable read

– C-Cursor stability

Flag

Indicates the lowest le4vel of messages to show.

– I- Informational, warning, error, and completion

– W-Warning, error, and completion

– E-Error and completion

– C-Completion only

Acquire

Indicates when you want the system to acquire the resources that your program
used.

– U-Open table spaces and acquire locks when your application first accesses
them.

– A-Acquire them when the application plan is allocated.

Release

Indicates when you want the system to release the resources that your program
used.

– C-Release resources at each commit point.

– D-Release them when the application terminates.

Explain

Indicates whether to include the explain option.

– Y-Include the explain option.

– N-Do not include the explain option.

Generating Application Plans

Chapter 8: Preparing DB2 Application Plans 111

Prepare

Specifies when the PREPARE for an SQL statement that refers to a remote object
takes place.

– N-PREPARE takes place in real time.

– D-PREPARE occurs when the first EXECUTE, OPEN, or DESCRIBE for the
statement is issued.

Cachesize

Indicates the size of the authorization cache to acquire for the plan. The
authorization cache is used at runtime to store the names of users authorized to
run the plan.

– 0-4096-Size in bytes for the authorization cache.

Currentdata

Specifies the data currency required for ambiguous cursors opened at remote
locations. Data is considered current if the data in your host structure is identical to
the data in the base table.

– Y-Data currency is required for ambiguous cursors.

– N-Data currency is not required for ambiguous cursors.

Currentserver

Specifies a connection to a location before the plan is run. The specified location
receives all SQL requests until the application issues the SQL statement CONNECT
TO or CONNECT RESET.

Enable/Disable

These keywords are mutually exclusive. ENABLE lists the system connection types
that are enabled to use the plan. DISABLE lists the connection types that are
disabled for the plan. You can use one to three lines to enter the value for this
parameter.

Generating Application Plans

The application plan definition generates the plan and prepares applications for
execution. If you recompile a program that is included directly in the plan, not in a
package, and want it to run in static mode, you must regenerate the plan. If the program
is included in a package, you must regenerate the package, but it is not necessary to
regenerate the plan.

If you regenerate a plan while CICS is active, use the REFRESH PLAN command to make a
new copy of the CA Ideal Static I/O modules available to CICS.

For information about the syntax of these commands, see the Command Reference
Guide.

Generating Application Plans

112 Administration Guide

Issue the GENERATE PLAN command in batch. The JCL needed for plan generation is in
the procedure IDPLAN, which you can use to generate both plans and packages. You
must specify the library containing any
non-Ideal DBRMs in the JCL. Following is a sample jobstream:

//name EXEC IDPLAN

//SYSIN DD *

GENERATE PLAN AP3

/*

//

The IDPLAN procedure performs the following steps:

1. Generates CA Ideal Static I/O modules.

2. Precompiles DB2 SQL.

3. Assembles.

4. Link-edits.

5. DB2 BINDs.

If the plan contains any packages, the header information for the package static I/O
modules is placed in the first static I/O module generated for the plan. You can bind the
plan, even if packages included in the plan were not bound.

If a plan contains only packages, one static I/O module is created for the plan, but it
contains only header information for the package static I/O modules, and the global
COMMIT, ROLLBACK and SET CURRENT USER statements. The BIND command is
generated based on the resources of the plan.

You can transport DB2 applications, package definitions, and plan definitions from the
development site to the production site using the CA Ideal transport utilities (see the
Working in the Environment Guide). You can transport DBRMs using IBM utilities.

Generating Application Plans

Chapter 8: Preparing DB2 Application Plans 113

The following diagram illustrates the plan preparation process.

Note: If dynamic SQL is allowed on the plan parameters fill-in, an application or program
that would normally run in static mode runs in dynamic mode in the following
circumstances:

■ When an application with static SQL is executed, it runs in dynamic mode if its plan
was not generated using the GENERATE command or the CA Ideal Static I/O
modules cannot be loaded.

■ If a program from an application with a generated plan is recompiled without
re-executing the GENERATE command, that program runs in dynamic mode while
the rest of the application runs in static mode.

Generating Application Plans

114 Administration Guide

Plan Generation JCL

The JCL required by the GENERATE PLAN command is included in the IDPLAN procedure.
You can modify it for your site. The statements are grouped by the process they perform
such as, precompiler, assembler, link-edit, terminal monitor. Statements you might
need to modify are:

■ SQLMOD-Data sets where source for the Static I/O modules is placed.

■ IDUDBRM-Specifies the data set containing all user DBRMs (CA Ideal and
non-Ideal).

■ ADRDBRM-The DSN where the DBRMs CA Ideal supplies are located. These DBRMs
include the dynamic SQL DBRM.

■ SYSLMOD-The load library containing the CA Ideal SQL load modules.

CA Ideal Static I/O Modules

The Static I/O Modules, created as part of the CA Ideal GENERATE PLAN procedure, are
Assembler subprograms that CA Ideal calls during static execution of SQL. These
subprograms, which contain the SQL statements from the programs specified in the plan
resource definition, are passed to the DB2 precompiler.

The GENERATE PLAN command creates up to 10 Static I/O Modules. At one time the
DB2 precompiler imposed a limit on the number of source lines that could be processed,
so CA Ideal provided a facility to limit the number of SQL statements that would be used
to generate each module. When the SQL content of the next program would exceed this
maximum, another module is created. This facility still serves a purpose in limiting the
size of the static I/O Static I/O Modules. To enable this process, use the SET PLAN
MAXSQL command. This command sets the maximum number of SQL statements
allowed in each module

Note: Since the static I/O module for a package is created during a package generation,
not a plan generation, any MAXSQL value specified for the GENERATE PLAN does not
affect the package static I/O module, only the modules created for the plan.

The name of each Static I/O module is the one- to seven-character plan name, with an
eighth character of 0 for the first module, and 1-9 for the second through tenth
modules.

If the plan includes any packages, the first static I/O module contains header
information for the static I/O modules for the packages. If the plan includes only
packages, the (single) static I/O module contains only the global COMMIT, ROLLBACK,
and SET CURRENT USER statements.

Note: The load library that the GENERATE PLAN procedure uses as SYSLMOD must be
available to any CICS partition DFHRPL or batch STEPLIB where the applications
associated with the plan are expected to execute in static mode.

Generating Application Plans

Chapter 8: Preparing DB2 Application Plans 115

CA Ideal Plan Tables

Another output of the GENERATE command are updates to three DB2 tables. The rows
in these tables record all programs participating in the plan and any changes made by
the ASSIGN AUTHID command. You can query these tables using SQL (in the same way
that you query other tables) to answer questions such as, "Which plan does program x
participate in?"

The "SYSADR Table Declarations for DB2" appendix illustrates the layout of these tables,
named SYSADR.APTAB, SYSADR.APRES, and SYSADR.APAUT, respectively.

Impact Report

The report that the generation process produces has three parts.

■ The components of the plan definition and the programs involved in the plan.

■ The generated BIND command text, including all DBRMs.

■ Error and completion messages.

You can produce this report without actually doing the BIND or updating the plan tables
by using the VERIFY option on the PRINT PLAN command. For information about the
complete syntax, see the Command Reference Guide.

The first section of the report shows the plan information entered in the plan definition.
It is identical to the information a PRINT PLAN command produces.

Generating Application Plans

116 Administration Guide

 IDEAL APPLICATION PLAN/PKG REPORT

 RELEASE: 14 DATE: March 10, 2010 TIME: 15:27:49

 GENERATE APPLICATION PLAN/PKG DB2PLN

 IDEAL Application Plan/Pkg DB2PLN March 10, 2010 15:27:49

PLAN: DB2PLN ________

 PLAN DB2PLN

 Created: 11/01/08 By $ID

 Last Modified: 03/10/09 at 15:01 By $ID

 Short Description: uses a package

 Description:

IDEAL Application Plan/Pkg DB2PLN March 10, 2010 15:27:49

PLAN: DB2PLN ________

 Dynamic SQL? N (Y=Yes, N=No)

 Bind Options:

 Owner: WESJO01 Qualifier:

 Action: R (R=Replace, A=Add)

 Retain: Y (Y=Yes, N=No)

 Validate: R (R=Run, B=Bind)

 Isolation: R (R=Repeatable Read, C=Cursor Stability)

 Flag: I (I=InformationalWarningErrorCompletion,

 W=WarningErrorCompletion, E=ErrorComple

 C=Completion only)

 Acquire U (U=Use, A=Allocate)

 Release C (C=Commit, D=Deallocate)

 Explain N (Y=Yes, N=No)

 Prepare N (N=Nodefer, D=Defer)

 Cachesize: 0512 (0 - 4096)

 Currentdata: Y (Y=Yes, N=No)

 Currentserver: (Location Name)

 Enable/Disable:

 IDEAL Application Plan/Pkg DB2PLN March 10, 2010 15:27:49

PLAN: DB2PLN ________

 ------ -------- ---- --- ---- -------------------

 SEQ PROGRAM VER SYS TYPE COMMENTS

 ------ -------- ---- --- ---- -------------------

 001200 TABSPACE 0001 $ID PGM

 PLAN: DB2PLN

 ------ - -------- --------------- -----------------

 SEQ I PACKAGE COLLECTION COMMENTS

 ------ - -------- --------------- -----------------

 001300 I DB2PKG IDEAL package

 IDEAL Application Plan/Pkg DB2PLN March 10, 2010 15:27:49

PLAN: DB2PLN ________

 ------ -------- -------------------------------

 SEQ DBRM COMMENTS

 ------ -------- -------------------------------

 NO DBRM LINES FOR THIS PLAN

IDEAL Application Plan/Pkg DB2PLN March 10, 2010 15:27:49

 Application Plan/Pkg Impact Report

SQL MOD PROGRAM SYS VER TYPE LANG SQL STMTS STATUS ERROR IND

-------- -------- --- ---- ---- ------ --------- ------ -----------

DB2PLN0 TABSPACE $ID 001 PROG IDEAL 0003

Impact Report Abbreviations:

TYPE: APPL - Application (program with all its subprograms)

 PROG - Program without its subprograms

 SPGM - Subprogram belonging to an above application

Application Plan/Pkg Statistics:

Maximum number of SQL statements in effect: 0200

01 SQL modules are included in this Plan/Pkg

001 Programs are included in this Plan/Pkg

000003 SQL statements are in this Plan/Pkg

IDEAL Application Plan/Pkg DB2PLN March 10, 2010 15:27:49

 Authorization ID Assignment Report

 No Authorization ID Assignments are in effect for this Plan/Pkg

Generating Application Plans

Chapter 8: Preparing DB2 Application Plans 117

The list of programs is shown by Static I/O module name and includes the following:

■ Program name

■ System ID

■ Program version

■ Type (application, program, or subprogram)

■ Program language

■ Number of SQL statements in the program

■ Resource status (the first three are warnings; the rest are fatal errors that terminate
the process):

– DUPLIC-Program already included in the plan

– NOSQL-Program does not contain any SQL

– EXCLIM-Number of SQL statements exceeds the maximum

– NOTFND-Program not found (for example, not compiled or not defined to the
dictionary)

– NOTAVL-Program not available (busy)

– DIFVER-Program already included with a different version

– HIST-Program in history status

– INCREL-Program compiled with an incompatible (higher) CA Ideal release

The second section of the report shows the generated BIND command text. It displays
all DB2 BIND options selected. The MEMBER list includes the system DBRMs that CA
Ideal requires, the DBRMs the plan generation generates, and non-Ideal DBRMs
specified in the plan definition. The PKLIST includes all the packages specified in the plan
definition.

IDEAL Application Plan/Pkg DB2PLN March 10, 2010 15:27:49

 Application Plan/Pkg BIND command

DSN SYS (D310)

BIND PLAN (DB2PLN) OWNER (WESJO01) MEMBER (DB2PLN0) LIBRARY ('IDLD.DB23-

10.DBRMLIB','IDLD.V2R1.DBRM') PKLIST (JWCOLL.DB2PKG@). AC-

TION (REPLACE) RETAIN VALIDATE (RUN) ISOLATION (RR) FLAG (I) ACQUIRE (USE)

RELEASE (COMMIT) EXPLAIN (NO) CURRENTDATA (YES)

Application Plan Summary Messages:

001201 1-IDADPLAG02I - Plan or Package DB2PLN existed before and has been replaced

001201 1-IDADPLAG05I - Generation successfully executed

End of Plan/Package Generation Report_

Note: The preceding summary message shows that CA Ideal's generation process is
complete. It does not show the status of the DB2 BIND.

Defining Packages

118 Administration Guide

Defining Packages

A package is an SQL object that contains a set of SQL statements that were bound and
are available for processing. Before an application statically run as a Package, that
Package must be bound into a Plan. To define a package for a CA Ideal program or
application, you must first create the package definition and then generate the package.
This section explains how to use CA Ideal fill-ins to create the package definition. For
information about generating the package, see the Generating Packages topic in this
chapter.

Components of a Package Definition

Each package definition includes the following:

■ A package identification fill-in that creates the entry in the dictionary for the
package and provides the dictionary with identification information

■ A package parameter fill-in that specifies DB2 BIND command options

■ A package resource fill-in that specifies the CA Ideal programs included in the
package

You cannot include non-Ideal DBRMs in CA Ideal packages. Therefore, there is no DBRM
fill-in for packages.

The CREATE PACKAGE command creates package definitions. The EDIT PACKAGE
command can update them. You can also use the commands DISPLAY, PRINT,
DUPLICATE, and DELETE with package definitions. For information about the complete
syntax, see the Command Reference Guide.

The functions CA Ideal provides to define and maintain package definitions are
presented in the Plan Maintenance menu. To access this menu, select option 5 on the
Main Menu or enter the PLAN command.

Creating a Package Definition

To create a new package definition, issue the CREATE PACKAGE command and complete
the package identification fill-in. An entry for the package definition is added to the
dictionary as soon as the package is named, either in the command or in the fill-in. The
editors are the same as are used for Plans, but will perform their validation based on
editing a Package.

Note that the name used for a Package must be the same as is used for the Module
associated with the program. This common identity is used to load the correct I/O
module when the application is run.

Defining Packages

Chapter 8: Preparing DB2 Application Plans 119

Identification Fill-in

The package identification fill-in enters descriptive information about the package when
the package definition is created or when it is modified.

=>
=>
=>
--
IDEAL: PACKAGE IDENTIFICATION PAC RATEPKG SYS: DOC FILL-IN

PACKAGE RATEPKG

Created: 09/02/04 By MARCH
Last Modified: 10/10/04 at 13:11 By MARCH

Short Description: Rate Table Package

Description:
 Package for the Rate Table program set, a subset of the Health___
 Benefits application.__

The following list provides an explanation of the fields on the preceding screen:

PACKAGE name

Specifies the one- to seven-character name assigned to the package definition.

Created ... By

Specifies the initial creation date of the package definition and the user ID of the
creator. This is blank when Identification fill-in is first displayed during package
creation. The system supplies the information. It displays if you return to this fill-in.
The user cannot modify it.

Last Modified ... at ... By

Specifies the date, time, and user ID of the last edit access. This is blank when the
Identification fill-in is first displayed during package creation. The system supplies
this information. The user cannot modify it.

Short Description

Displays an area where the user can supply a description of the package definition.

Limit: 24 characters

Description

Displays an area where the user can supply a longer description of the package
definition.

Limit: 5 lines

Defining Packages

120 Administration Guide

Package Resources Fill-in

To specify the CA Ideal program that is included in the package definition, issue the
RESOURCE command or press the PF5/17 key. This displays the package resources fill-in.

=>
=>
=>
--
IDEAL: PACKAGE RESOURCES PAC RATEPKG SYS: DOC FILL-IN

Specify the programs, system, version and type that the Package includes.

Command Program Ver Sys Type Comments
------- -------- ---- --- ---- -------------------------------------
====== ======== ==== === === ======= T O P =======================
000010 LSTRATES 0001 HBE PGM ______________________________________
====== ======== ==== === === ==== B O T T O M ====================

The following list provides an explanation of the fields on the preceding screen:

Program

Specifies the name of a CA Ideal program. (You cannot specify non-Ideal programs
for a CA Ideal package.)

Ver (Optional)

The one- to three-digit version number or PROD. If you specify PROD, a version
number is not substituted.

Default: 1

Sys (Optional)

The three-character CA Ideal system ID. Defaults to the current system.

Type

Not applicable to packages.

Default: PGM

Comments

Information displayed with the package definition. It has no effect on the package
generation or on the resulting package.

Defining Packages

Chapter 8: Preparing DB2 Application Plans 121

Package Parameters Fill-in

Issue the PARAMETERS command or press PF4/16 to display the package parameters
fill-in. This fill-in lets you set DB2 BIND options for the package and specify whether
programs in this package can execute SQL in dynamic mode. The current settings display
as one-character codes that you can change by overtyping.

=>
=>
=>
--
IDEAL: PACKAGE PARAMETERS PAC RATEPKG SYS: DOC FILL-IN

Bind Options:
Collection id: ___________________________
Name: RATEPKG Location: ________
Owner: ________ Qualifier: ________

Action: R (R=Replace, A=Add)
Retain: Y (Y=Yes, N=No)
Validate: R (R=Run, B=Bind)
Isolation: R (R=Repeatable Read, C=Cursor Stability)
Flag: I (I=InformationalWarningErrorCompletion,
 W=WarningErrorCompletion, E=ErrorCompletion,
 C=Completion only)
Acquire: U (U=Use, A=Allocate)
Release: C (C=Commit, D=Deallocate)
Explain: N (Y=Yes, N=No)

Prepare: _ (N=NODefer, D=Defer)
Currentdata: _ (Y=Yes, N=No)
SQLError: _ (N=NoPackage or C=Continue)
Enable/Disable:
__

The following list provides an explanation of the fields on the preceding screen:

Collection ID

Identifies the collection where the package belongs. This name is used as the
high-order qualifier of the package name.

Name

Specifies the name of the package supplied from the Identification fill-in.

Location

Specifies the location of the DBMS where the package is bound.

Owner

Specifies the authorization ID of the package owner.

Defining Packages

122 Administration Guide

Qualifier

Specifies the authorization ID that qualifies any unqualified SQL objects accessed in
this package. An authorization ID specified in an ASSIGN AUTH command can
override this value at runtime.

Action

Specifies whether this application package is new or replaces an old package.

– R-Replace old package

– A-Add new package

Retain

Indicates whether those users with authority to bind or execute the existing
package keep that authority over the replaced package.

– Y-Retain authority

– N-Do not retain authority

Validate

Indicates when full validity checking is performed.

– R-At runtime

– B-At bind time

Isolation

Specifies the isolation of this application from others.

– R-Repeatable read

– C-Cursor stability

Flag

Indicates the level of messages to show.

– I- Informational, warning, error, and completion

– W- Warning, error, and completion

– E-Error and completion

– C- Completion only

Acquire

Indicates when you want the system to acquire the resources your program uses.

– U-Open table spaces and acquire locks when your application first accesses
them

– A-Acquire them when the application package is allocated

Defining Packages

Chapter 8: Preparing DB2 Application Plans 123

Release

Indicates when you want the system to release the resources your program used.

– C-Release resources at each commit point

– D-Release them when the application terminates

Explain

Indicates whether to include the explain option.

– Y-Include the explain option

– N-Do not include the explain option

Currentdata

Specifies the data currency required for ambiguous cursors opened at remote
locations. Data is considered current if the data in your host structure is identical to
the data in the base table.

– Y-Data currency is required for ambiguous cursors

– N-Data currency is not required for ambiguous cursors

SQLError

Indicates whether you want to continue the package bind if SQL errors are detected
during the package generation.

– N-Do not bind the package if SQL errors are detected

– C-Continue with the bind regardless of any SQL errors detected

Enable/Disable

These keywords are mutually exclusive. ENABLE lists the system connection types
that are enabled to use the package. DISABLE lists the connection types that are
disabled for the package. You can use one to three lines to enter the value for this
parameter.

Generating Packages

124 Administration Guide

Generating Packages

The package definition generates the package and prepares applications for inclusion in
a plan. When the plan is generated, the application is ready for execution in static
mode. If you recompile a program and want it to run in static mode, you must
regenerate the package, but you do not need to regenerate the plan. The package
preparation process is illustrated in the following diagram:

Advantage CA-Ideal

Source
Compile

VLS Member

Package Definition

Object Module

Generate Package

SQL Module

DB2 PrecompileDBRM

DB2 BIND
Assemble

Link Edit

DB2 Package Static I/O Module

Generating Packages

Chapter 8: Preparing DB2 Application Plans 125

Note: When an application with static SQL is executed, the application or a program in
the application runs in dynamic mode if dynamic SQL was allowed on the plan
parameters fill-in. One of the following is true:

■ The package was not generated or the CA Ideal static I/O module cannot be loaded.

■ A program in the application was recompiled without regenerating the package,
resulting in a mismatch between the program and the I/O module.

■ In either case, the affected program only runs in dynamic mode while the rest of
the application runs in static mode.

If you regenerate a package while CICS is active, use the REFRESH PACKAGE command to
make a new copy of the CA Ideal static I/O module available to CICS.

You can transport DB2 applications and package definitions from the development site
to the production site using the CA Ideal transport utilities (see the Working in the
Environment Guide).

Issue the GENERATE PACKAGE command in batch, as shown in the following sample
jobstream. The JCL needed for package generation is in the procedure IDPLAN, which
you can use for both plan and package generation.

//name EXEC IDPLAN

//SYSIN DD *

PERSON ...

.

.

.

GENERATE PACKAGE AP3

OFF

/*

//

For more information about syntax of these commands, see the Command Reference
Guide.

The IDPLAN procedure performs the following steps:

1. Generation of CA Ideal static I/O module

2. DB2 precompile

3. Assembly

4. Link-edit

5. DB2 BIND

Note: If you specify COPY in the package parameter fill-in, the static I/O module for the
original package is relinked with the name of the new package. Because the original
static I/O module was already precompiled and assembled, steps 1 through 3 are not
performed before the link edit, but the BIND is still performed as the last step.

Generating Packages

126 Administration Guide

Package Generation JCL

The JCL that the GENERATE PACKAGE command requires is included in the IDPLAN
procedure. You can modify it for your site. The statements are grouped by the process
they perform (precompiler, assembler, link-edit, terminal monitor). Statements you
might need to modify are:

■ SQLMOD -Data set where source for the static I/O module is placed.

■ IDUDBRM-Specifies the data set to contain the DBRM that the precompiler
produces.

■ SYSLMOD-Load library containing the CA Ideal static I/O module.

CA Ideal Static I/O Modules

A static I/O module is created as part of the CA Ideal GENERATE PACKAGE procedure. CA
Ideal calls this static I/O module in an assembler subprogram during static execution of
SQL. This subprogram, which contains the SQL statements from the programs specified
in the package resource definition, is passed to the DB2 precompiler.

The GENERATE PACKAGE command creates only one SQL module. The name of the
static I/O module is the one- to seven-character package name, with an eighth character
of @.

Note: The load library that the GENERATE PACKAGE procedure uses as SYSLMOD must
be available to any CICS partition, DFHRPL, or batch STEPLIB, where the applications
associated with the package are expected to execute in static mode.

CA Ideal Plan Tables

The GENERATE PACKAGE command also updates three DB2 plan tables. The rows in
these tables record all programs participating in the package and any changes by the
ASSIGN AUTHID command. You can query these tables using SQL (in the same way that
you query other tables) to answer questions such as, “Which package does program x
participate in?”

"SYSADR Table Declarations for DB2" appendix illustrates the layout of these tables,
named SYSADR.APTAB, SYSADR.APRES, and SYSADR.APAUT, respectively.

Generating Packages

Chapter 8: Preparing DB2 Application Plans 127

Impact Report

The report produced by the generation process has three parts:

■ The components of the package definition and the programs involved in the
package.

■ The generated BIND command text, including the DBRM.

■ Error and completion messages.

You can produce this report without actually doing the BIND or updating the plan tables
by using the VERIFY option on the PRINT PACKAGE command. (For the complete syntax,
see the Command Reference Guide.)

Generating Packages

128 Administration Guide

The first section of the report shows the package information entered in the package
definition. It is identical to the information produced by a PRINT PACKAGE command.

IDEAL APPLICATION PLAN/PKG REPORT

 RELEASE: 11 DATE: March 9, 2006 TIME: 17:11:00

 GENERATE APPLICATION PLAN/PKG DB2PKG

 IDEAL Application Plan/Pkg DB2PKG March 9, 2006 17:11:00

 DB2PKG ________ VERSION: __ STATUS: PROD

 PKG DB2PKG

 Created: 09/29/04 By $ID

 Last Modified: 11/01/04 at 09:29 By $ID

 Short Description: test

 Description:

 __

 __

 IDEAL Application Plan/Pkg DB2PKG March 9, 2006 17:11:00

 DB2PKG ________ VERSION: __ STATUS: PROD

 Collection Id: COLLID

 Bind Options:

 Owner: TESTID Qualifier: Location: _____

 Action: R (R=Replace, A=Add) Replver: ______________

 Retain: Y (Y=Yes, N=No)

 Validate: R (R=Run, B=Bind)

 Isolation: C (R=Repeatable Read, C=Cursor Stability)

 Flag: I (I=InformationalWarningErrorCompletion,

 W=WarningErrorCompletion, E=ErrorCompletion

 C=Completion only)

 Acquire U (U=Use, A=Allocate)

 Release C (C=Commit, D=Deallocate)

 Explain N (Y=Yes, N=No)

 Prepare N (N=Nodefer, D=Defer)

 Currentdata: Y (Y=Yes, N=No)

 SQLerror: N (N=NoPackage, C=Continue)

 Enable/Disable:

 DISABLE (IMS,BATCH,DLIBATCH)

 IDEAL Application Plan/Pkg DB2PKG March 9, 2006 17:11:00

 DB2PKG ________ VERSION: __ STATUS: PROD

 ------ -------- ---- --- ---- -------------------

 SEQ PROGRAM VER SYS TYPE COMMENTS

 ------ -------- ---- --- ---- -------------------

 001200 TABSPACE 0001 $ID PGM

DEAL Application Plan/Pkg DB2PKG March 9, 2006 17:11:00

 Application Plan/Pkg Impact Report

SQL MOD PROGRAM SYS VER TYPE LANG SQL STMTS STATUS ERROR IND

-------- -------- --- ---- ---- ------ --------- ------ -----------

Impact Report Abbreviations:

TYPE: APPL - Application (program with all its subprograms)

 PROG - Program without its subprograms

 SPGM - Subprogram belonging to an above application

Application Plan/Pkg Statistics:

01 SQL modules are included in this Plan/Pkg

001 Programs are included in this Plan/Pkg

000003 SQL statements are in this Plan/Pkg

IDEAL Application Plan/Pkg DB2PKG March 9, 2006 17:11:00

 Authorization ID Assignment Report

 No Authorization ID Assignments are in effect for this Plan/Pkg

Generating Packages

Chapter 8: Preparing DB2 Application Plans 129

The list of programs is shown under the static I/O module name and includes:

■ Program name

■ System ID

■ Program version

■ Type (application, program, or subprogram)

■ Program language

■ Number of SQL statements in the program

■ Resource status (the first three are warnings; the rest are fatal errors that terminate
the process):

– DUPLIC-Program already included in the package

– NOSQL-Program does not contain any SQL

– EXCLIM-Number of SQL statements exceeds the maximum

– NOTFND-Program not found (for example, not compiled or not defined to the
dictionary)

– NOTAVL-Program not available (busy)

– DIFVER-Program already included with a different version

– HIST-Program in history status

– INCREL-Program compiled with an incompatible (higher) CA Ideal release

The second section of the report shows the generated BIND command text. It displays
all DB2 BIND options selected. The MEMBER list includes the DBRM generated by
package generation.

IDEAL Application Plan/Pkg DB2PKG March 9, 2006 17:11:00

 Application Plan/Pkg BIND command

DSN SYS (DEVL)

BIND PACKAGE (COLLID) OWNER (TESTID) MEMBER (DB2PKG@) LIBRARY ('IDLD.D-

B2.DBRMLIB') ACTION (REPLACE) VALIDATE (RUN) ISOLATION (CS) FLAG (I)-

RELEASE (COMMIT) EXPLAIN (NO) CURRENTDATA (YES) DISABLE (IMS,BATCH,DLI-

BATCH)

End of Application Plan/Pkg Generation Report

Note: The summary message shows that CA Ideal's package generation process is
complete. It does not show the status of the DB2 BIND.

Connecting Plans to Applications

130 Administration Guide

Connecting Plans to Applications

This section describes how to specify the application plans to use when executing SQL in
CA Ideal applications, and how to make plans known to the CICS attach facility or to the
IBM Call Attach Facility in batch.

Dynamic Mode

To run in dynamic mode only, your application can run under the default transaction-ID
SCFD. As part of the CA Ideal installation, CA Ideal provides a CICS RCT table entry for
this transaction-ID with its associated plan name. CA Ideal's installed default plan name
is IDP140DV.

 The SCFD entry, or a copy with a different name, is needed to run in dynamic mode. CA
Ideal uses it to support the development environment.

Static Mode

To run a CA Ideal application in static mode, you can select the application plans in the
following ways:

■ Under CICS, run the application under a CICS transaction-ID associated with the
plan. This means that the plan must include all SQL to run under that transaction.
To change plans, you must change transactions.

■ Or, run under any transaction-ID associated with the RCT exit program that CA Ideal
provides, and set the initial plan in CA Ideal. You can set the plan for an entire run
or change plans between or in transactions.

In batch, set the plan in CA Ideal. You can set the plan for an entire run or change
plans during the run.

Associating Plans Directly with Transaction-IDs in CICS

You can associate a plan name directly with one or more transaction-IDs in the RCT,
using the DB2TRAN and DB2ENTRY resources. To run using that plan, you must run
under a transaction-ID associated with the plan. To select the plan in CA Ideal, you must
assign a CA Ideal account-ID that is the same as the CICS transaction-ID and change
transactions. It is also necessary to inform CA Ideal which plan to use through the SET
RUN PLAN command.

Connecting Plans to Applications

Chapter 8: Preparing DB2 Application Plans 131

You can assign the CA Ideal account-ID in any of the following ways:

■ At the terminal by entering the SET ENVIRONMENT ACCOUNT-ID command before
running the application. Press Enter, to start a new transaction before the change
takes place.

■ In PDL using the SET $ACCOUNT-ID statement followed by a TRANSMIT statement.
The change in transaction-ID takes place after the TRANSMIT starts a new
transaction. You cannot execute any static SQL using the plan before these
statements are executed.

■ Using transparent signon to enter CA Ideal with a transaction-ID you defined in the
CICS PCT and a signon member that contains a SET ENVIRONMENT ACCOUNT-ID
command to specify the transaction-ID you run under. The signon member might
contain:

SET ENV ACCOUNT-ID PAY

SET RUN PLAN PAYPLAN

SET RUN SQL STATIC

RUN COM-DUE

In this example, you must define transaction-ID PAY to CICS, using the plan name
PAYPLAN. Changing to transaction-ID PAY does not take place until a TRANSMIT is
executed in the COM-DUE program. If any SQL statements in this program are to be
static and they are executed before the first transmit, they must be part of a plan
associated with the previous transaction-ID.

For example, if you sign on under transaction-ID EMP using the sample member, the
SQL statements in program COM-DUE executed before the TRANSMIT must be part of
the plan for EMP. Thus, both transaction-IDs, EMP and PAY, must be defined as using
the same plan.

Connecting Plans to Applications

132 Administration Guide

An entry can associate multiple transaction-IDs with the one plan or you can have
multiple entries each specifying a transaction-ID with its own plan. But you cannot
associate the same transaction-ID to different plans.

For details on RDO for DB2 requirements, see the appropriate DB2 administration
documentation.

Specifying Plans Independently of Transaction-IDs in CICS

CA Ideal gives you the option to switch plans in a CICS transaction. You must specify the
exit that CA Ideal supplies in the entry for the transaction.

You then have several ways to select plans in CA Ideal. They are described next in
reverse order of precedence; that is, the plan specified by each method overrides the
plans specified by the methods described before it.

Connecting Plans to Applications

Chapter 8: Preparing DB2 Application Plans 133

Specifying Plans as Session Options

The following CA Ideal command specifies a plan name for a session or run:

SET RUN PLAN plan-name

This name is used unless it is superseded by a new plan name specified in a CA Ideal
application or a CA Ideal plan name exit program (see the Specifying Plans with a CA
Ideal Plan Name Exit topic). You can include the command in your jobstream or signon
member or issue it at the terminal before running an application. The following
command resumes using the installed default, IDP140DV:

SET RUN PLAN DEFAULT

Specifying Plans in an Application

In a CA Ideal application, you can set a new plan name in place of the default plan name.
The PDL function $PLAN sets a plan name or returns the plan name most recently set in
the application.

If a plan name was not set in the application, the function returns the name set for the
session. If a name was not set for the session, the function returns IDP140DV. It does
not return a value set in a plan name exit (described next).

You can use $PLAN with a SET statement to set a new CA Ideal plan name for the
application, for example:

SET $PLAN = 'INVPLAN'

Note: You can execute the SET $PLAN statement only before the first SQL statement in a
logical unit of work. That is, executing SET $PLAN at any point except before the first
SQL statement at the beginning of a CICS transaction or following a database Commit
causes a runtime error.

The first SQL statement can be embedded SQL, SQL generated by a FOR construct for a
DB2 dataview, or SQL in a non-Ideal subprogram. A Commit can be a CHECKPOINT, a
BACKOUT statement, or an SQL COMMIT or ROLLBACK statement.

Connecting Plans to Applications

134 Administration Guide

The new plan takes effect when the exit is called at the next SQL statement. For more
information about $PLAN, see the Programming Reference Guide.

The following procedure saves the plan name that was selected in a previous procedure
in a Working Data field SAV-PLAN. It sets GETPLAN as the plan name to use with the FOR
construct that follows it, commits its database modifications, and resets the plan name
before returning.

<<GET>> PROCEDURE

 SET SAV-PLAN = $PLAN

 SET $PLAN = GETPLAN

 FOR EACH DB2-DVW

 ...

 ENDFOR

 CHECKPOINT

 SET $PLAN = SAV-PLAN

ENDPROC

Specifying Plans with a CA Ideal Plan Name Exit

In addition to the exit required for plan switching, CA Ideal lets you specify a plan name
exit program. CA Ideal passes parameters to the plan name exit, including the current
installed default plan name, the session default, or the name set in the application. The
exit can modify it, pass it on unchanged, or ignore it and select a new plan name.

The use of a plan name exit is optional. To use one, enter the following command in
your signon member, jobstream, or at the terminal:

SET [SITE] ENVIRONMENT DB2PLAN-EXIT exit-name

You can also use the command to disable the exit:

SET [SITE] ENVIRONMENT DB2PLAN-EXIT NONE

If the plan name exit is enabled, CA Ideal calls it before the first SQL statement in a
logical unit of work. That is, it is called before the first SQL statement at the beginning of
each CICS transaction and before the first SQL statement following each database
commit.

Note: The first SQL statement can be embedded SQL or SQL generated by a FOR
construct for a DB2 dataview or in a non-Ideal subprogram. A Commit can be a
CHECKPOINT or BACKOUT statement, or an SQL COMMIT or ROLLBACK statement.

Connecting Plans to Applications

Chapter 8: Preparing DB2 Application Plans 135

Specifying @IADRCTX as the PLANEXIT

CA Ideal delivers an exit program, @IADRCTX. To allow the application to change plans
in a transaction, you must specify this name in the DB2ENTRY for the transaction.

DB2ENTRY (name) ... PLANEXITNAME(@IADRCTX) ...

These entries are DB2 requirements described in the appropriate database
administration documentation.

DB2ENTRY PLANEXIT Versus Plan Name Exit

In summary, two types of exits are involved in plan switching in CA Ideal.

CA Ideal supplies the Planexit named @IADRCTX for use in the CICS environment. You
cannot modify it. The CICS attach facility calls it when the first SQL statement is
executed in a logical unit of work. The DB2ENTRY for this transaction-ID specifies
PLNEXITNAME=@IADRCTX.

The plan name exit is available under CICS. The user supplies it as needed. (You can use
the sample exits described in previous pages.) CA Ideal calls it at the point when CA
Ideal is about to call the CICS attach facility with the first SQL statement in a logical unit
of work. This exit can also modify the plan name to use. Under CICS, CA Ideal stores its
plan name in a CICS temporary storage record for later access by the exit. (The exit in
turn provides the plan name to the DB2 attach facility.)

When you use a plan name exit to modify the plan name or select a new plan name, the
new value is not available to the $PLAN function. This means that the plan DB2 uses
might not be the same as the plan the $PLAN function returned. The plan that DB2
actually uses can display in an Error Procedure as the value of the function
$ERROR-DB2-PLAN.

If an application calls a non-Ideal subprogram that executes SQL statements and if that
SQL might be the first in a logical unit of work, then you must specify Y (yes) for the
Update DB2? field on the non-Ideal program IDE panel, even if the SQL in the
subprogram does not actually update DB2.

If an application calls a non-Ideal subprogram that is identified as containing SQL, CA
Ideal assumes that the SQL is executed. Therefore, if the call is detected in a new logical
unit of work before the first SQL statement in CA Ideal, it is assumed to be the first SQL
request in the new logical unit of work. The CA Ideal plan name exit, if enabled, is
invoked before calling the non-Ideal subprogram. The non-Ideal subprogram is
identified in the plan name exit's parameter list as PLAN-SUB-PROGRAM.

Connecting Plans to Applications

136 Administration Guide

Example

Consider the following scenarios to understand better.

You can use the SET $PLAN PDL statement to optionally specify a logical identifier for
the next plan to use. This logical identifier is not necessarily the actual plan name. This
level of indirection lets you avoid hard coding actual plan names in your programs
(which require compilation for any change to plan names). This is useful, for example, if
the plan name at a satellite location is slightly different from the plan name used at the
development site. Since the program specifies a logical identifier, you can choose the
actual plan name outside the PDL code based on site considerations. But the CA Ideal
plan name exit can base the choice of actual plan name on any available criteria. Use of
SET $PLAN is entirely optional.

1. At customer site ABC, program names are always six characters long. Each program
has its own plan. In the Development environment, plan names are formed by
prefixing a D before the program name and in production, by prefixing a P. In this
example, the SET $PLAN statement is not used. The CA Ideal plan name exit
program simply checks for the current program name and generates the
appropriate plan name.

2. At customer site XYZ, plan names are generated by a more complex algorithm. The
program can generate a character string at the start of any logical unit of work. The
letter X is prefixed to form the actual plan name. In this case, the SET $PLAN
statement specifies the generated string, for example, SET $PLAN = 'PLAN03'. The
plan name exit then prefixes an X, resulting in an actual plan name of XPLAN03.

3. At customer site PQR, plan names are actually hard coded in the program. In this
case, the program specifies SET $PLAN = 'xxxx', and there is no CA Ideal plan name
exit. The string specified as xxxx becomes the actual plan name.

Specifying Plans in Batch

Any of the three methods for selecting plans (see the descriptions in Specifying Plans
Independently of Transaction-IDs in this chapter) are available in batch without using an
RCT exit. Plans can be selected as follows:

■ As a session option.

■ Specified in an application.

■ In a CA Ideal plan name exit. In batch, CA Ideal passes the plan name to the IBM Call
Attach Facility.

Connecting Plans to Applications

Chapter 8: Preparing DB2 Application Plans 137

Plan Name Exit

The following procedure describes how to establish a plan name exit program.

1. Compile and link-edit the plan name exit program into your load library as a load
module

See the specifications that follow.

2. (CICS Only) Add a PPT entry for the program and, if necessary, restart CICS

Make sure that the language parameter for the program is correct. If this module is
heavily used, it may be useful to make it resident.

3. Specify the SET [SITE] ENVIRONMENT DB2PLAN-EXIT command to establish the
name of the plan name exit program

Since the CICS and non-CICS exit programs are specific to their respective
environments, take care when specifying a site option. You can link-edit both
versions as modules with the same name in separate libraries provided that CICS
and non-CICS JCL each use the appropriate library.

CA Ideal passes to the plan name exit the following information.

Parameters Common to Other CA Ideal Exits

01 ID-PARM-1.

 05 ID-EXIT-TYPE PIC X.

 05 ID-SYNC PIC X(03).

 05 ID-RELEASE-LEVEL PIC X(04).

 05 ID-USER-SHORT-ID PIC X(03).

 05 ID-USER-NAME PIC X(32).

 05 ID-TERMINAL-ID PIC X(04).

 05 ID-TRANSACTION-ID PIC X(04).

 05 ID-TP-MONITOR-CODE PIC X(01).

 05 ID-OPERATING-SYSTEM-CODE PIC X(01).

 05 ID-NETWORK-ID PIC X(8).

Plan-Specific Parameters

01 ID-PARM-2.

 05 FILLER PIC X(08)

 05 PLA-RUN-SYSTEM PIC X(03).

 05 PLA-RUN-PROGRAM PIC X(08).

 05 PLA-SUB-SYSTEM PIC X(03).

 05 PLA-SUB-PROGRAM PIC X(08).

 05 PLA-SUB-TYPE PIC X(01).

 05 PLA-SET-PLAN PIC X(08).

 05 PLA-DB2-PLAN-NAME PIC X(08).

 05 FILLER PIC X(16)

Connecting Plans to Applications

138 Administration Guide

The sample plan name exit programs contain 88-level names with appropriate values for
fields containing CA Ideal's internal codes.

ID-EXIT-TYPE

 Type of exit invoked for this command. A 3 indicates that a plan exit is invoked.

ID-SYNC

 Reserved.

ID-RELEASE-LEVEL

 CA Ideal Release level (for example 1400 for Version 14.0).

ID-USER-SHORT-ID

 One- to three-character CA Ideal user short ID defined for the user who is
executing the command.

ID-USER-NAME

 Name of the CA Ideal user who is executing the command.

ID-TERMINAL-ID

■ In CICS-CICS ID of the terminal from which the command is executed.

■ In batch-Hex zeros.

ID-TRANSACTION-ID

■ In CICS-CICS signon transaction-ID.

■ In batch-IDEA.

ID-TP-MONITOR-CODE

■ C-Represents CICS.

■ Y-Represents batch.

ID-OPERATING-SYSTEM-CODE

■ O-Represents z/OS.

ID-NETWORK-ID

In CICS- VTAM LU name. If the terminal is VTAM, the system ID and terminal ID of
the Terminal Owning Region (TOR). If the terminal is MRO but not VTAM, low values
under any other circumstances.

PLA-RUN-SYSTEM (Input)

System of the main program (named in the RUN command).

PLA-RUN-PROGRAM (Input)

Name of the main program (named in the RUN command).

PLA-SUB-SYSTEM (Input)

System of the current subprogram.

Connecting Plans to Applications

Chapter 8: Preparing DB2 Application Plans 139

PLA-SUB-PROGRAM (Input)

Name of the current subprogram.

PLA-SUB-TYPE (Input)

An indicator of the subprogram type:

■ I (CA Ideal)-SQL to execute is in a CA Ideal module.

■ N (Non-Ideal)-CA Ideal is about to call the program PLA-SUB-PROGRAM. (See
the Note at end of this section.)

PLA-SET-PLAN (Input)

Value of the most recent SET $PLAN statement. It is set initially to the value of the
SET RUN PLAN command or to the default plan name established at installation.
(This is the plan that supports CA Ideal's development environment.)

PLA-DB2-PLAN-NAME (Update)

Value returned to CA Ideal. CA Ideal passes this value to DB2 as the actual plan
name. If SPACES or LOW-VALUES is returned to CA Ideal, the installation default
plan is selected. The exit is free to return any value in the PLA-DB2-PLAN-NAME
field. However, invalid plan names can result in runtime errors.

Note: Non-ideal subprograms can use a plan name with up to eight characters. CA
Ideal application plans are a maximum of seven characters long.

Requiring the Use of Static SQL

You can override a specification of dynamic SQL in the plan parameters fill-in, and
require that all programs run in static mode, by using the SET RUN SQL STATIC
command.

Chapter 9: Establishing Signon Processing 141

Chapter 9: Establishing Signon Processing

This chapter includes the following topics:

■ Defining signon requirements by establishing the objective of the environment

■ Explanation of the types of signon transactions, including transaction selection
criteria, definition in CA Ideal, and identification to CICS

■ Setting up transactions (usually used in a production environment) that
automatically run a CA Ideal application

■ Establishing an optional signon exit

■ How signon processing actually works, specifically with and without an external
security package

■ The CA IPC and CA Ideal options that control customization of signon processing

■ Development and production considerations that can impact user definition and
signon processing setup

■ Step-by-step instructions for enabling an environment to interface with external
security

CA Ideal uses the CA Standard Security Facility (CAISSF) to interface with external
security products such as CA Top Secret, CA ACF2, RACF, and other SAF-compatible
products. This lets you use any of these security products, in both online and batch
environments, to interface TP monitor signon with CA Ideal signon.

Defining Signon Requirements

There are many different options available to provide you with the method of signon
that fits your processing needs. First, it is important to define those needs.

CA Ideal Environment Functionality

First you must consider the functionality of the environment for which you are setting
up signon procedures. Ask yourself the following questions:

■ Is this a development environment, a QA environment, an end-user production
environment?

■ What is the nature of the users?

■ Is there a need to identify each user uniquely in the CICS and CA Ideal environment
as is usually desirable in a development environment?

Defining Signon Requirements

142 Administration Guide

■ Is there a group of individuals that share information for read-only purposes in a
single company or department?

■ Do I want to be able to uniquely track each of those users as individuals or as a
group?

■ Is this a public access system where it does not matter who gets into a group of
read-only applications?

■ Does your signon needs depend on the nature of the environment and the
applications that runs?

Following are some areas to consider. There might be other areas that you need to
examine when devising signon procedures.

TP Monitor Signon

How do the users identify themselves to CICS? Is the TP monitor identity important to
the processing that takes place? CICS Transaction Server requires a security package for
signon.

Using a Security Package

You can signon to CICS using an external security package such as CA Top Secret, CA
ACF2, or RACF. In each security package, you can customize how this process is carried
out. For instance, you can require that each user actually signon to the security package
or you can set up a default user for the environment or a particular transaction. You can
also let a group of users share the same TP monitor definition.

Using the TP Monitor ID

Based on the information you gather regarding the nature of the region, you can decide
whether you want individual users to have their own CICS signons, have a group of users
share CICS signons, or whether you want to define a default signon for transactions,
terminal, region, and so on.

You want to provide individual CICS accounts when individuality matters in the CICS
environment:

■ Transaction security based on user ID

■ Chargeback based on CICS user ID

Defining Signon Requirements

Chapter 9: Establishing Signon Processing 143

CA Ideal User Definition

The next step in the process is to determine the most efficient way to define your CA
Ideal users. This step requires steps that are similar to the TP monitor signon.

When you define the user signon procedures, ask yourself the following:

■ Do you care who the individual CA Ideal user is?

■ Do you want to enable a group of users to share a single CICS user definition and
also enable multiple CICS users to share?

■ Do you want to enable a single CA Ideal user definition or for each of them to have
their own definition, allowing individuals to set up a default user for a transaction
or an environment that anyone can use?

For example, in a development environment, it is usually very important that each
person be assigned his own TP monitor user definition and CA Ideal user definition.
Because a programmer is updating entities in CA Ideal, you want to be able to identify
the actual person who is signed on and what entities he last updated and compiled.
Whereas, if a group definition or default user was set up, some of these items would no
longer be distinguishable.

It is more likely that in a production environment, where it is not important to know the
exact identity of a user who is signed on, that you share CICS and CA Ideal user
definitions. An example might be a read-only application of non-confidential data. On
the other hand, a production application that is allowing updating of more secured data
is more likely to require that the exact identity of the user be known.

Region Considerations

When you make your region considerations, ask yourself the following:

■ What are your security needs?

■ Do you have several CA Ideal regions sharing a common security environment and
want to allow or deny access to CA Ideal on an environmental basis?

■ Do you want to secure particular transactions?

■ Do you want to allow access only at certain times of the day, to certain terminals,
and so on?

Establishing CA Ideal Signon Transactions

144 Administration Guide

All of the following options are possible with or without an external security package
(although the external security package makes some options simpler to implement). The
most important thing is to define your needs.

1. Interface CA Ideal signon with signon to the TP monitor.

Establish a link between a security package signon-id or TP monitor ID and the CA
Ideal user definition.

2. Secure each CA Ideal environment on a user basis.

Through an interface with an external security package, you can assign a name to
each CA Ideal environment or a group of environments and grant access to the
environment on an individual basis. Without a security package, you need to secure
CA Ideal transactions.

3. Define group definitions.

You can create a CA Ideal user definition that behaves like a profile and you can add
aliases for each TP monitor user. With this method, any time a change occurs, you
only need to modify one user definition.

4. Define default users.

You can assign a CA Ideal user definition to use with a particular CA Ideal
transaction or for the entire CA Ideal environment in the event that an undefined
user tries to signon.

5. Limit users to a single session.

You can allow or deny the TP monitor user access to multiple CA Ideal sessions
under a single region through the external security package or in CA Ideal.

The remainder of this chapter contains information about the options and features
available to allow you to fulfill your requirements.

Establishing CA Ideal Signon Transactions

CA Ideal recognizes a signon transaction by the transaction-ID it uses. There are three
basic types of CA Ideal signon transactions. However, there can be any number of
signon transactions. To establish a signon transaction, you must make an entry for that
transaction in the CA IPC SCF Transaction Table (SC00TRAN). For information, see the CA
IPC Implementation Guide. The transaction also needs to be defined to CICS. For more
information about JCL, see the CA IPC Implementation Guide.

General Transaction Types

CA Ideal facilities allow for some flexibility in the procedure necessary for a user to sign
on to CA Ideal. You can institute signon procedures to provide the following methods of
signing on to CA Ideal.

Establishing CA Ideal Signon Transactions

Chapter 9: Establishing Signon Processing 145

Standard

The standard signon signs a user on to CA Ideal from CICS using the CA Ideal signon
screen where the user provides the CA Ideal signon-ID and password and executes the
user's member named SIGNON, if one exists. This method is most often used in a
development environment.

“IDEA” is the sample standard signon transaction ID provided with the CA Ideal
installation under CICS.

Express

An express signon transaction that automatically signs a user on to CA Ideal from CICS
bypasses the CA Ideal signon-screen and executes the user's member named SIGNON, if
one exists. This method is most often used in a development environment.

“IDLX” is the sample express signon transaction provided with the CA Ideal installation.
Under CICS the user enters an express signon transaction ID instead of entering the IDEA
transaction. This transaction ID bypasses the CA Ideal signon screen and executes the
user's SIGNON member, if one exists.

Transparent

In a production environment, a transparent signon is one that signs a user on to CA Ideal
automatically from CICS and invokes a CA Ideal application through the execution of a
common member identified in the SC00TRAN. This setup establishes an environment
where the end user can enter an application with no knowledge of CA Ideal.

Additionally, with this method, an end user can be transferred into a CA Ideal
application from another CA Ideal application, from CICS, or from a program in CICS. For
example, from a menu driven by a native application, the user can select an entry that
automatically initiates CA Ideal and an application.

External security packages can provide additional functionality to the signon process; for
example, limiting the transactions a user can access, what time of day the transactions
can execute, and many others.

The CA Ideal express and transparent signon facilities also allow sites with special
processing or security needs additional control during the signon process. For example,
you could use the signon exit to override the signon member that gets executed based
on a criterion such as the term ID. A signon exit program provides this control.

Establishing CA Ideal Signon Transactions

146 Administration Guide

SCF Transaction Table (SC00TRAN)

For all online environments, all transaction IDs used at a site with SCF-based products
must be defined in the SCF Transaction Table (member SC00TRAN in the IPC/IDEAL
library). The entries for the standard signon transaction (IDEA) and one express signon
transaction (IDLX) are provided in the installation SC00TRAN member. To add any
additional signon transactions, either express or transparent, create the entries in the
member USRTRANS. When this member is assembled and linked, these entries are
added to the SC00TRAN load module. Since this table is searched top down, add new
transactions in order of frequency used, following the IDEA and IDLX transactions.

The following sample SCF Transaction Table. It includes the entries required for each
type of CA Ideal signon.

SC00TRAN SCTRANTB TYPE=INITIAL

 SCTRANTB TYPE=ENTRY,TRANID=IDEA,PROD=IDL, (STANDARD) X

 OPTIONS=(DD,PS), X

 IDENT='IDEAL:', X

 XFERCMD=IDEAL

 SCTRANTB TYPE=ENTRY,TRANID=IDLX,PROD=IDL, (EXPRESS) X

 OPTIONS=(DD,EX,PS), X

 IDENT='IDEAL:', X

 XFERCMD=IDEAL

 SCTRANTB TYPE=ENTRY,TRANID=QPAY,PROD=IDL, X

 OPTIONS=(DD,EX,PS), X

 IDENT='QPAY:', X

 DFLTUSR=PAY, X

 TRNDATA='N$IDQSTARTUP', X

 XFERCMD=IDEAL

 SCTRANTB TYPE=ENTRY,TRANID=QUIK,PROD=IDL, X

 OPTIONS=(DD,EX,PS), X

 IDENT='QUIK:', X

 XFERCMD=IDEAL

 SCTRANTB TYPE=ENTRY,TRANID=DDOL,PROD=DDO, X

 OPTIONS=(DD), X

 IDENT='DDOL:', X

 XFERCMD=DDOL

 SCTRANTB TYPE=FINAL

 END

Establishing CA Ideal Signon Transactions

Chapter 9: Establishing Signon Processing 147

The table entry for a CA Ideal signon transaction contains the following parameters:

TRANID

Identifies the four-character transaction identifier. In CICS, the TRANSID parameter
value is in the CICS PCT entry.

PROD

Identifies the current CA product. In this example, IDL refers to CA Ideal.

OPTIONS

Establishes the options currently available. These options include:

– DD-Initializes Datadictionary access.

– EX-Invokes express signon.

– PS-Enables the print subsystem.

IDENT

The 1- to 12-character product identification displayed in the upper left-hand
corner of each SCF and PSS panel. This entry must be delimited by single quotes (').

DFLTUSR

Establishes a default user ID for this transaction and can be one of the following:

– xxx-Indicates that the authorizations specified in User Definition xxx is used for
all users executing this signon transaction who are not otherwise defined in the
dictionary. The value of xxx must be the three-character user ID of a valid CA
Ideal user definition.

If a default user is also specified in the IDOPTS table, the transaction-based default
user overrides the one specified in IDOPTS.

– NONE-Indicates that no default is used for this transaction. You can still specify
a generic default in the IDOPTS table. It is used for this transaction if the
operator ID, terminal ID, or security ID of the user executing this transaction
does not match a valid CA Ideal user definition.

If you do not specify this parameter, no default user definition is used for this
transaction unless a default is specified in the IDOPTS table.

Establishing CA Ideal Signon Transactions

148 Administration Guide

TRNDATA='xyyyzzzzzzzz'-(For transparent signon only)

An optional 12-character field that passes data to the initialization routine. The data
must be delimited by single quotes (') for CA Ideal and must contain the following
values:

– x

■ Y-If the site-supplied signon exit is called.

■ N-If no signon exit is called.

– yyy-The CA Ideal user-ID of the user whose member is executed at signon.

– zzzzzzzz-The one- to eight-character name of the member to execute at signon.
This member contains a RUN command to initiate the appropriate application.

Note: If no name is specified in the TRNDATA parameter of the SCF Transaction
Table entry and the signon exit program does not specify a user name and member
name, no SIGNON member is executed.

If the TRNDATA parameter is set to Y but you did not specify SET SITE
ENVIRONMENT SIGNON-EXIT, neither the member specified for TRNDATA nor the
user's signon member is executed. The CA Ideal Main Menu displays when the
signon is complete.

XFERCMD=

The command that, when issued in another product session, results in transfer to
this product. The value of this parameter must be IDEAL.

If the SCF Transaction Table is updated, you must reassemble and link it to create a
new SC00TRAN load module. (For details, see the CA IPC Installation Guide.)

CICS PCT Definitions

For CICS, an entry must be present in the PCT for each signon transaction. The entries
that establish a standard CA Ideal signon and an express signon are automatically
provided during the installation of CA Ideal. Add one additional entry for each additional
express signon transaction ID and for each transparent signon transaction ID.

The following entry is for the standard CA Ideal signon transaction.

DEFINE TRANSACTION(IDEA) PROGRAM(SC00INIT)

 GROUP(IL11GRP) TWASIZE(64) PROFILE(IL11PRF) SPURGE(YES)

Except for the TRANSACTION value, the CICS PCT entry is the same for all CA Ideal
signon transactions. The value specified for TRANSACTION must match the value for the
TRANID in the SCF Transaction Table. The TWASIZE must be 64 for all SCF transactions.

To determine which PCT entries reference SC00INIT, SC00DISP, and SC00SAST, and to
see what type of entry the transaction is, enter the command DISPLAY PCT.

Establishing CA Ideal Signon Transactions

Chapter 9: Establishing Signon Processing 149

The DISPLAY PCT in CA Ideal command displays the following information:

TRAN INITIAL TYPE OF TWA PRD
ID PROGRAM ENTRY SIZE
CWBA DFHWBA WEB INTF. 0 Transaction not in SCWBTRAN
DDOL SC00INIT 12 DDO
IDEA SC00INIT 64 IDL
IDLX SC00INIT FINAL-ID 64 IDL
IDW2 DFHWBA WEB INTF. 64 WWW.WEBDEMO2(001)
IDW3 DFHWBA WEB INTF. 64 WWW.WEBDEMO3(001)
IPCV SC00INIT 64 IPC
JULA SC00NATD ASYNC 64 JUL.ASYNC000(1N)
SAST SC00SAST COMP/PRINT 64
SCFD SC00DISP ACCOUNT-ID 64
SCF2 SC00DISP ACCOUNT-ID 64
SPQR SC00INIT FINAL-ID 64 IDL $ID.STARTUP

Startup Member

The key to a production environment is a startup member that is executed when a user
signs on to CA Ideal. It contains the SET and RUN commands necessary to run the
production application in a sheltered environment. You can establish this environment
so that there is no CA Ideal command area (see the following example) and so that CA
Ideal is totally transparent to the end user. The startup member is associated with the
transaction ID and is specified in the TRNDATA= parameter of the SCF Transaction Table
entry.

It executes for any user who specifies that transaction ID. The startup member overrides
any signon member that can exist for a user who signs on to CA Ideal using the
transparent signon.

The following example illustrates a production environment startup member for CICS:

MEM PROD

MEMBER:

 SEQ DATA

 000100 SEL SYS ORD

 000200 SET CMD LINES 0

 000300 SET CMD SEP N

 000400 SET ENV ACCOUNT-ID ORDS

 000500 SET RUN QUITIDEAL YES

 000600 SET ENV FINAL-ID NONE

 000700 SET RUN CLEAR RESHOW

 000800 RUN ORDERS PROD

Establishing CA Ideal Signon Transactions

150 Administration Guide

The commands are as follows:

SEQ 100

Indicates that the ORD system is selected.

SEQ 200

Suppresses the command region by specifying 0 command lines. This prevents the
user from issuing any CA Ideal commands.

SEQ 300

Suppresses the line that separates the command and message area from the
display area. In addition to restricting the user from using CA Ideal commands,
these two commands increase the screen size available for running production
applications.

SEQ 400

ORDS is designated as the transaction for which statistics are recorded (instead of
SCFD, which is the default when IDLX is invoked). There must be a PCT entry for the
ORDS transaction. You can model this entry from the SCFD PCT entry. (For tuning
purposes, the priority assigned to ORDS can be higher or lower than SCFD.)

Note: This command is designed for use in CICS. It can be issued in batch, or it is
ignored.

SEQ 500

Issues an automatic OFF when the current RUN ends.

SEQ 600

Does not schedule a CICS transaction when CA Ideal is signed off. This returns
control directly to CICS and displays a blank screen.

Note: You can issue this command in batch but it is ignored.

Establishing CA Ideal Signon Transactions

Chapter 9: Establishing Signon Processing 151

SEQ 700

The CLEAR key refreshes the current panel (instead of ending the RUN).

SEQ 800

The ORDERS program is invoked with a RUN command. This eliminates the need for
the end user to know the name of the program or the format of the RUN command.
This also places the presentation area under the control of the application at the
beginning of the session. Also, since only the PROD versions of programs,
subprograms, and dataviews are run in this example, you can use it in a transported
environment.

When the first user signs on using a transparent signon-ID, the start-up member is
read from the IDDAT member library. The member is then compressed. Leading and
trailing blanks are compressed from the member. All comments are dropped.
However, multiple blanks between command words are not removed.

Some tips for making the most of this optimization are:

■ Use the short version of the command syntax.

■ Examine your site options to determine if changing them eliminates the need
to specify some commands in start-up members.

■ Ensure that you use only one blank between command words

If the compressed member is less than 800 bytes, a CICS GETMAIN is issued for CICS.
This eliminates I/O for subsequent transparent signons using that start-up member. To
change the member, edit or delete it on the same CICS where the change is needed.

If the compressed member is more than 800 bytes, it is not built in core. If the member
name is SIGNON and the user ID is the same as the user signing on, the member is not
loaded into global storage.

Signon Exit Program

A site-written program that is called during signon processing can further control the
form of transparent signon that enters the user into an application. The signon exit
continues to be supported, although its use is not recommended. The signon exit was
provided in an early release CA Ideal as a means to provide signon features that have
since become part of the base product or have been provided by an external security
system.

Signon Processing Execution Flow

152 Administration Guide

Signon Processing Execution Flow

The signon process controls the first level of security. During signon, either CA Ideal or
an external security system checks to make sure that the user is authorized to access CA
Ideal. In general, the CA Ideal signon process works as follows:

1. You sign on to the teleprocessing monitor system. If a security system is used, the
teleprocessing monitor system passes control to the security system, which
determines whether you are allowed to sign on. It then returns your security ID to
the teleprocessing monitor system.

2. You sign on to CA Ideal. The signon command or transaction you enter invokes an
initialization procedure, which:

■ Loads the SC00TRAN table and checks for the signon transaction.

■ Loads the SC00OPTS table to determine how to get the identity of the
operator.

■ Optionally, checks to make sure you are not already signed on to CA Ideal
somewhere else.

■ Loads the IDOPTS table.

■ Checks your external security resource class to make sure you can access the
product.

■ Checks for the user ID in the dictionary (User Definition).

■ Executes the signon exit (if necessary).

You can use a default user definition when the user's signon-id is not found in the
dictionary.

When you use an external security package to control access to CA Ideal, the security ID
identifies the user instead of an operator ID or a terminal ID. There are differences in
the parameter values in the SC00TRAN and IDOPTS tables, the site options have
different settings, and the security ID finds the user definition in the dictionary.

Establishing the Signon Transaction (SC00INIT and SC00TRAN)

To establish a signon transaction, you must make an entry for that transaction in the SCF
Transaction Table (SC00TRAN). In a CICS environment, an entry is also required in the
CICS PCT (Program Control Table).

Signon transactions execute the program SC00INIT, which in turn consults the
SC00TRAN table for information about how to process this transaction.

Signon Processing Execution Flow

Chapter 9: Establishing Signon Processing 153

By specifying PROD=IDL in SC00TRAN, you invoke the CA Ideal version of SCF-based
signon processing. This option controls which product's signon and signoff panels you
see and what signon specific product module (SC00xxIN) executes. For CA Ideal, this
module is called SC00IDIN. It processes the signon functions customized for CA Ideal, for
example, processing the transparent signon member specified in TRNDATA.

SC00TRAN contains information about whether a signon transaction is a standard,
express, or transparent signon. The OPTIONS parameter controls this. When OPTIONS =
DD,PS the transaction is a standard signon. When OPTIONS=DD,PS,EX the transaction is
an express signon or a transparent signon if the TRNDATA parameter is also specified.

Identifying the TP Monitor User (SC00INIT and SC00OPTS)

SC00INIT consults the site assembled table SC00OPTS to determine how the TP monitor
is retrieved. The SC00OPTS table SECRTY option affects how the identity of the TP
monitor user is determined.

SECRTY Option

The SECRTY option determines whether external security controls access to CA Ideal
during signon. The format of this option is:

 {Y}

SECRTY= {N}

SECRTY=Y-Specifies that an external security system controls access to CA Ideal (and any
other SCF-based products using the same copy of SC00OPTS). If you do not specify this
parameter, this option is the default.

A call to CAISSF (CA Common Services component) is invoked, determines what external
security package is installed, and returns the external security ID that was used to
signon to the TP monitor.

When you enter the standard signon transaction, the CA Ideal signon screen displays
with the security ID in the User ID field. (If the security ID is not the same as the CA Ideal
Person Name, you must define the security ID in the dictionary as an alias for the Person
Name.) The User ID and Password fields on the signon screen are protected, so users
cannot enter another name or password.

The external security systems that CA Ideal supports can prevent signon if the security
system is unavailable or when a user is not defined to the security system. When the
external security system is not set up to prevent signon in these circumstances (as
frequently happens during initial security implementation), CA Ideal continues the
signon process as if security were not enabled. In this case, the CA Ideal signon screen
can display with the User ID and Password fields unprotected.

Signon Processing Execution Flow

154 Administration Guide

When you enter an express or transparent signon transaction, the security ID must
match a Person Name or an alias for a Person Name in a CA Ideal User Definition. If the
signon fails because the security system is not available or the user is not defined to the
security system, the CA Ideal signon screen can display with the Person Name and
Password fields unprotected. If this happens, CA Ideal security facilities control signon
access.

A call to CAISSF is invoked to ensure the CICS user has access to the CA Ideal
environment. This process is related to the SECPRFX option in IDOPTS described in the
section titled Securing User Access by Region in this chapter.

SECRTY=N-Specifies that only internal CA Ideal security features control access to CA
Ideal.

This option is a static option in the SC00OPTS module, which you can maintain in a
protected data set. You can enter the options in any order. To change the SC00OPTS
module, enter the values in the SCBOPTCB macro. If you change the SCBOPTCB macro,
you must reassemble and link the SC00OPTS module and, in CICS, recycle CICS to enable
the changes.

It is possible to signon to the TP monitor through a security package and still set
SECRTY=N. This is not recommended. However, if configured in this fashion, it does
require that the security package or other program propagate the TP monitor data CA
Ideal requires.

When you enter a standard signon transaction, the CA Ideal signon screen displays with
the TP monitor ID in the user ID. See the following chart for the particular TP monitor
you are using. The User ID can be optionally protected through SCF option.

When you enter an express or transparent signon, the TP monitor ID is assumed to be
the same as the Person name or user ID unless a default CA Ideal definition or alias is
allowed.

Signing On in Batch

When you use CA Ideal security facilities to control access to CA Ideal, the SIGNON card,
which contains the PERSON and PASSWORD (or PSW) operands, it controls batch access.
The SIGNON card is the first input card after the EXEC IDBATCH card in VSE and after the
EXEC IDLBATCH card in z/OS. For information about batch jobstreams, see the Working
in the Environment Guide.

When you use an external security package to control access to CA Ideal, remove the
SIGNON card. The user ID is passed to the external security package in the JCL. For
example, in z/OS, CA Top Secret and CA ACF2 get the user ID from the USER=parameter
on the JOB card.

Signon Processing Execution Flow

Chapter 9: Establishing Signon Processing 155

Checking for Duplicate Users

The SET SITE CHECK DUPLICATE USER command controls whether duplicate signons are
allowed. You can also set this option through the command SET COMMAND SITE
OPTIONS, which displays a fill-in screen (see Setting Site Options). The format of the SET
SITE CHECK DUPLICATE command is as follows:

 {YES}

 {NO }

SET SITE CHECK DUPLICATE USER {ON }

 {OFF}

YES or ON

Specifies that multiple sessions for the same user ID are allowed. A second signon
to CA Ideal by the same user ID is successful, terminating the original session.

Note: This is only effective within a single CICS region. YES is not recommended for
a MRO environment with multiple Application Owning Regions. External security
software can be used to ensure unique CICS users.

NO or OFF

Specifies that CA Ideal allows duplicate signons. If your external security system
ensures unique signons, you should set the CHECK DUPLICATE option (SET SITE
CHECK DUPLICATE USER) to NO or OFF.

Securing User Access by Region (IDOPTS SECPRFX = processing when SECRTY=Y)

There are four parameters in the IDOPTS table that affect how signon security is
implemented for CA Ideal:

SECPRFX

Establishes the resource class signon entity name used for CA Ideal.

UIDCHK

Determines whether the signon user ID must match the CA Ideal Person Name or
User ID.

Signon Processing Execution Flow

156 Administration Guide

DFLTUSR

Establishes a default User Definition to use if a match is not found for the signon
user ID.

Enter all these options on the FUNC=START statement in the IDOPTSCB macro,
which produces the @IIDOPTS load module.

Note: The IDOPTSCB macro specifies site options related to security; therefore,
keep the IDOPTSCB macro in a secure location. This macro produces a complete
replacement for the site options load module @IIDOPTS.

If you change the IDOPTSCB macro, you must reassemble the source member
IDOPTS and link edit @IIDOPTS to implement the changes. (In CICS, you must
recycle CICS to implement the changes.)

Establishing the Resource Class Entity Name

The following section details the information about defining specific entities to specific
resource classes in the security system.

SECPRFX

In the external security system, users are defined with access to specific entities in
specific resource classes. When a user signs on to CA Ideal, the resource class for that
user ID is checked to determine whether the user can access the signon entity for CA
Ideal. Normally for CA Ideal, the signon entity name is $ISIGNON. However, you can
change the name of the signon entity by including the SECPRFX parameter in the IDOPTS
table. This lets you restrict access to CA Ideal systems in different CICS regions through
the resource class definitions in your security system, based on the signon entities
defined for each region with a different @IIDOPTS load module. See the section titled
Enabling External Security in this chapter for specific information about external
security.

Note: This option is used only with external security systems.

The format of the SECPRFX option is:

SECPRFX=xx

The value of xx is a two-character value used as the prefix to the value SIGNON to create
a resource class member name for the CA Ideal environment controlled by this
@IIDOPTS load module. If you do not specify this parameter, the prefix is $I.

Signon Processing Execution Flow

Chapter 9: Establishing Signon Processing 157

In a production environment that uses transparent signon, users do not normally see
the CA Ideal signon screen. This provides an extra measure of security for the
production environment. However, the CA Ideal signon screen displays if an undefined
user tries to signon and your external security system does not reject undefined users.
To prevent this from happening:

■ Define all users of the CA Ideal production environment to the security system, with
the appropriate resource class (CACMD) and signon entity.

■ Set up the security system so that a resource check prevents signon when a user is
not defined or the security system is not active.

If your production region uses a separate @IIDOPTS load module, you can also use the
resource class entity names to enhance security for production systems. To use the
resource class as an additional security measure for your production region, use the
SECPRFX parameter in the IDOPTS table to establish different resource entity names for
each CICS region that has a separate @IIDOPTS load module. Then you can define your
user groups in the security system with separate CACMD entity names, restricting their
access to a specific CICS region.

For example, if you have separate development and production environments, you can
set the SECPRFX parameter to two different values, one in each version of the @IIDOPTS
load module. If the SECPRFX parameter for the development system is DI and the
SECPRFX parameter for the production system is PI, you could then define two or more
user groups with access to these different resource class signon entities.

In the following table, three user groups are defined:

■ Developers (DEV1)-Access only to the development system

■ Quality assurance people (QA)-Access to the development system for testing, and
to the production system for upgrading with approved changes

■ Production system users (PROD)-Access only to the production system

User Name Resource Class Signon Entity

DEV1 CACMD DISIGNON

QA CACMD DISIGNON

PISIGNON

PROD CACMD PISIGNON

The resource class name is not CACMD for all security products. The value set by the
SECPRFX parameter is prefixed to the value SIGNON to create the resource class signon
entity name. Specific examples for different security products are shown in the
upcoming section titled Enabling External Security.

Signon Processing Execution Flow

158 Administration Guide

Determining Alias or Group User Definition

When SC00OPTS SECRTY=N, the UIDCHK option determines whether the TP monitor ID
must match the CA Ideal Person Name for User ID.

The format for the UIDCHK parameter is:

 {NO }

UIDCHK={YES}

NO

Specifies that the TP monitor ID does not have to match the CA Ideal Person Name
or user ID. It lets you define a single or multiple TP monitor under a single CA Ideal
user definition by adding one or more aliases to the CA Ideal user definition.

YES

Specifies that the TP monitor ID must match the CA Ideal Person Name or User ID.
An alias does not satisfy this integrity check. If you do not specify UIDCHK, YES is the
default. UIDCHK=YES is ignored when SC00OPTS SECRTY=Y.

Processing Default Users

You can establish a default user definition for all users not specifically defined to CA
Ideal by including the DFLTUSR parameter in the IDOPTS table. The format of this
parameter is:

 {default-id}

DFLTUSR={NONE }

default-id

Identifies the three-character CA Ideal user ID that identifies the user definition
used as the default. The authorizations specified in this user definition are used for
all users not otherwise defined in the dictionary. The user definition identified by
default-ID must be defined in the dictionary, but no aliases are required to access
the default user definition.

NONE

Indicates that no default is used. If an operator ID, terminal ID, or security ID used
to sign on does not match a user ID, person name, or alias in the dictionary, the
signon fails.

Considerations and Examples

Chapter 9: Establishing Signon Processing 159

Note:

■ If a default user is specified in the signon transaction entry in the SCF Transaction
Table, it overrides any default user specified in the IDOPTS table.

■ If you specify a default user when UIDCHK has a value of YES, the default user
person name or user ID does not have to match the signon-ID (operator ID, terminal
ID, or security ID), but any non-default user IDs are checked.

Considerations and Examples

Keep in mind the following:

■ The password in the User definition is not referenced when the external security
system controls signon authorization. However, if external signon fails and CA Ideal
security facilities are used, the password is required.

■ The security ID must be defined as either a CA Ideal Person Name or alias for a
Person Name. The signon-process is more efficient when the SECURITY-ID is defined
as a Person Name rather than an alias for the Person Name.

■ It is not necessary to define CA Ideal users to an external security system if you are
not using one to control access to CA Ideal.

■ When you define CA Ideal users to the external security systems, define them with
the same name as the Person Name of the CA Ideal User Definition.

■ If you do not use an external security to control access to CA Ideal, UIDCHK should
equal YES.

■ When UIDCHK has a value of NO and no default user (DFLTUSR) is specified, you
must define the security ID or the TP monitor ID in the dictionary as a Person Name
or an alias for a Person Name to retrieve a User Definition for CA Ideal
authorizations.

■ For greatest efficiency, define the security ID as an alias when UIDCHK has a value
of NO, and as the Person Name when UIDCHK has a value of YES.

■ If you specify a default user when UIDCHK has a value of YES, the default user
Person Name or User ID does not have to match the signon-ID (operator ID,
terminal ID, or security ID), but any non-default user IDs are checked.

■ If a user signs on under an alias or with a default user ID, the functions
$USER-NAME and $USER-ID return the CA Ideal person name and user ID associated
with the alias or default user ID. In addition, that same person name and user ID are
placed in the Created by, Last Modified by, and Compiled by fields for any entities
created, modified, or compiled by that user.

Considerations and Examples

160 Administration Guide

The SC00OPTS SECRTY parameter affects signon processing as follows:

Signon-ID source

If SC00OPTS SECRTY=Y, then Signon-ID source is the Security ID. If SC00OPTS
SECRTY=N, then Signon-ID source is the TP Monitor ID CICS: TCTTEOI (OPERID).

SECRPFX= (IDOPTS)

Secures individual access to different regions.

UIDCHK= (IDOPTS)

If SC00OPTS SECRTY=Y, then UIDCHK assumes a value of NO: Aliases allowed.

If SC00OPTS SECRTY=N, then if UIDCHK is YES: the CA Ideal person name and user ID
are valid only. If UIDCHK is NO: then aliases are allowed.

DFLTUSR= (IDOPTS)

Specify a default CA Ideal user ID to assign when the signon ID is not defined.

DFLTUSR= (SC00TRAN)

Specify a default CA Ideal user ID for a particular transaction to assign when the
signon ID is not defined. It overrides the DFLTUSR defined in IDOPTS, if one exists.

SET CHECK DUPLICATE USER

Enables or disables the check for duplicate signon IDs. Replaces old session with
new session when duplicate monitor ID is found.

IDOPTSCB Macros for Security: Samples

The following IDOPTSCB macro is a sample of how you might set up a production system
using external security to control access to CA Ideal. For this region, the SCBOPTCB
macro contains the parameters SECRTY=Y.

IDOPTS CSECT

 IDOPTSCB FUNC=START, X

 TYPE=DC, X

 UIDCHK=NO, X

 SECPRFX=IP, X

 DFLTUSR=NONE, X

 ATZEXIT=USERPGM1

 IDOPTSCB FUNC=ATZ, X

 .

 .

 .

 IDOPTSCB FUNC=END

Enabling External Security

Chapter 9: Establishing Signon Processing 161

The following parameters were set in the IDOPTSCB macro:

■ The UIDCHK parameter was set to bypass the operator or monitor ID check since
the security system performs integrity checks. Your security IDs do not have to
match a Person Name or User ID in a valid CA Ideal User Definition. You can use an
alias to obtain the CA Ideal authorizations.

■ The SECPRFX parameter was set to IP to create a resource signon entity named
IPSIGNON. Production users must be defined to the security system with the
resource class CACMD and signon entity IPSIGNON.

■ The DFLTUSR parameter was set to NONE, which means that users cannot sign on
to CA Ideal if their security ID does not match the Person Name or an alias for the
Person Name of a valid CA Ideal User Definition.

If your site does not use external security to control access to CA Ideal, the SCBOPTCB
macro must specify that SECRTY=N. The IDOPTSCB macro might use the following
parameters:

IDOPTS CSECT

 IDOPTSCB FUNC=START, X

 TYPE=DC, X

 UIDCHK=YES, X

 DFLTUSR=DEF, X

 ATZEXIT=USERPGM1

 IDOPTSCB FUNC=ATZ, X

 .

 .

 .

 IDOPTSCB FUNC=END

Since external security is not used to check CA Ideal integrity, the UIDCHK parameter is
set to YES. This requires the signon-ID to match the Person Name or User ID of a valid
User Definition. If the signon-ID does not match the Person Name or User ID of a valid
User Definition, the default User Definition specified on the DFLTUSR parameter is used.
For this sample, a User Definition must be present with the User ID DEF. You should set
it up to provide the minimum CA Ideal authorizations.

Enabling External Security

The following are the items to consider when enabling external security for CA Ideal.
Sites using an external security product to signon to the TP monitor should implement
this method that extracts the security-id and removes dependencies on TP monitor-IDs.

Enabling External Security

162 Administration Guide

CA Common Services Requirements

Install the CA Common Services component, CAISSF.

For more information, see the CA Common Services for z/OS Services Installation and
Maintenance Guide.

You must assemble CAS9SAFC with CICS=YES.

RACF users must pay special attention to the section titled Customize CAISSF for RACF
and RACF-Compatible Products.

Security Product Definitions

Authorize the user for access to the CACMD signon resource.

For CA ACF2 and CA Top Secret, the resource class should already be present. RACF
users should have added the resource class in during the installation of CAISSF.

The syntax of the CA Command resource class name is as follows:

CA Top Secret: CACMD

CA ACF2: CAC

RACF: CA@MD

For CA Ideal, security users require access to CACMD value spSIGNON, where sp is the
two-character SECPRFX assigned in IDOPTS.

For examples of security product definitions and more information about other
SCF-based product requirements, see the CA IPC Implementation Guide.

Enabling External Security

Chapter 9: Establishing Signon Processing 163

CA Ideal Specifications

You need to:

■ Establish a link between the security ID and a CA Ideal user definition using one of
the following methods.

■ CA Ideal user name can match security-id. If this is not already true, you can modify
existing user definitions by changing long names to match security-id names using
DDUPDATE. However, it does require that you delete all test and history PERSON
(USERS) occurrences first.

To change the actual person names, you can simply run the following transactions
in a single DDUPDATE batch job. Use a set of these transactions for each person
name you want to change. Given a table of existing and new names, you can easily
write a program to generate the transactions.

 -UPD PERSON,old-name(PROD,,ovrd)

 1000 NEWNAME,new-name

 -END

This method also modifies the DD user signon definition, but not the DQ user in
entirety.

■ If CA Ideal users are already defined and the security-id does not match the current
user-id, add a dictionary alias to the person equal to the security-id. You can easily
add aliases in a single batch job executing DDUPDATE. You can update the prod
version occurrences.

■ Use the DFLTUSR option in SC00TRAN on a transaction basis or in IDOPTS as an
environment option. If you specify a default user for the transaction, it takes
precedence over a default user specified in IDOPTS. This is only a viable alternative
if the CA Ideal user definition used to signon does not need to be distinguishable in
CA Ideal.

■ Reassemble a separate copy of IDOPTS for each region where you want a different
SECPRFX or DFLTUSR. Set UIDCHK=NO.

■ The CA Ideal SIGNON statement no longer determines the identity of a batch user
since the user ID is passed to the external security package in the JCL. Each security
product can function differently, depending on the security inheritance mechanisms
in place. Security inheritance becomes an issue when batch jobs are submitted from
online.

Enabling External Security

164 Administration Guide

■ Reassemble SC00OPTS with parameter SECRTY=YES. For details on maintaining
SC00OPTS, see the CA IPC Implementation Guide.

■ If you want unique signons, implement using the security product where possible. It
is also possible to establish this functionality in CA Ideal by issuing the CA IPC SCF
command SET COMMAND SITE OPTIONS and specifying “Check duplicate user:” as
Y. This allows each security user a single session in the CA Ideal region.

■ To suppress compile messages, issue the CA IPC SCF command SET COMMAND SITE
OPTIONS and specify “Asynchronous messages:” as N (None).

■ To suppress network print messages, issue the CA IPC PSS command SET OUTPUT
SITE OPTIONS and specify “Post successful message:” as N (No).

Programming Considerations

$USER Functions

The $USER-NAME and $USER-ID PDL functions used in CA Ideal programs return the
long name and short-id of the CA Ideal user definition accessed for signon. You
must consider these functions when implementing the external security product
interface during CA Ideal signon processing, or more simply put, when SC00OPTS
parameter SECRTY is set to YES.

If the security-ID already matches the 1-15 character CA Ideal user name, it is
unlikely that these functions have any impact on existing applications. You should
also consider the impact of DFLTUSRs on $USER-NAME and $USER-ID if DFLTUSR is
being investigated as a viable option for user definition.

Determine the results for these functions:

– Does the value of $USER-NAME match the security-ID of the user signed on?

– Does the current value of $USER-NAME or $USER-ID have a relationship to any
other code or tables?

– Are unique values expected for the $USER-NAME and $USER-ID functions?

The answers to these and other similar questions can influence the type of
modifications that you need to make to existing CA Ideal user definitions or existing
CA Ideal code.

Submission Utilities

When external security is enabled in the CA Ideal environment, batch signon no
longer processes the SIGNON command, but instead uses the JOBCARD USER
assignment as the CA Ideal signon-ID. CA Ideal supports utility programs (@I$EXEC1
and pre-r2.2 @I$SUBMT) that submit batch jobs from CA Ideal programs. If
programs exist that use this functionality, it is possible you need to modify the
programs, depending on the way the JCL input is generated in the code.

Chapter 10: Customizing the CA Ideal Environment 165

Chapter 10: Customizing the CA Ideal
Environment

SET SITE commands establish and change default values for an entire site. Any default
value set with a SET SITE command becomes the site default and remains in effect until
another SET SITE command resets it or until an individual user temporarily overrides it
with a SET command.

SET SITE Commands

Each CA Ideal SET option is installed with a default that the CA Ideal Administrator can
override using a SET SITE command. The result becomes the site default. Individual
commands can set some site options. Others are changed by changing a value on a
fill-in.

For consistency, you can keep and execute a member containing all the current site
options after an upgrade.

For each upgrade to a CA Ideal system, the default site options are reinstalled. Rather
than resetting your options manually each time there is a new release of CA Ideal or
trying to remember which options were set with your last release, an alternative is
available.

Create a member that contains SET SITE commands to set default site options for your
production environment. The next time you upgrade to a new release of CA Ideal, sign
on to CA Ideal and execute your SET SITE member. The following is an example of a SET
SITE member:

SET SITE VERSION LAST

SET SITE EDIT MARGIN LEFT

SET SITE EDIT MULTIPLIER RIGHT

SET SITE RUN LOOPLIMIT 5000

After an upgrade to a new release of CA IPC or an increase in the size of your ADROUT
library, the output destination commands are also reinstalled.

For a complete description of each SET SITE command's syntax, see the Command
Reference Guide.

SET SITE Commands

166 Administration Guide

Session Control Facility Options

You can set the Session Control Facility options using a fill-in. The CA Ideal Administrator
accesses this fill-in with the following command:

SET COMMAND SITE [OPTIONS]

The following illustration reflects how the fill-in appears when CA Ideal is first installed.
Changes to these options take effect immediately.

=>

 IDEAL: SCF option block SCF#OPTIONS FILL-IN

 Set SCF “site” options

 Command “comment” character: :
 Command “delimiter” character: ;
 Command “repeat” character: -
 Command “reshow” character:
 Number of command lines: 3 (0-5)
 Decimal symbol: . (. ,)
 Currency symbol: $
 Date format: A (A, E, I)
 Region separator: - (N=none, G=grid, other=itself)
 Asynchronous messages: U (U=User, N=None)
 Command reshow? N (Y/N)
 UPPER CASE PANELS AND MESSAGES? N (Y/N)
 Translate to upper case in batch? N (Y/N)
 Maximum number of regions : 4 (1-4)
 Maximum number of PF keys : 48 (0-48)
 Maximum number of PA keys : 4 (0-4)
 Size of the working buffer: 4000 (4000 - 64000)
 Log file name : ADRL
 Trace file name : ADRT
 Check duplicate user: N (Y/N)

SET SITE Commands

Chapter 10: Customizing the CA Ideal Environment 167

The following list provides an explanation of the fields in the previous screen shown:

Command “comment” character

Establishes the default command comment character. This character marks the
beginning of a comment in the command area. You can specify any special
character (except underscore). (You can use command comments to defer
execution of commands online until the comment character is removed or for
commands in batch.)

Note: In a CA Ideal member, the colon (:) is the only comment character
recognized, regardless of the SCF option setting.

Command “delimiter” character

Establishes the default command delimiter that separates multiple commands
entered on a single command line. Specify any non-national special character
(except underscore). Each user can specify a different command delimiter
character. The command delimiter is valid only for screen input online.

Command “repeat” character

Establishes the default command repeat character. You can enter this character to
cause re-execute the most recently executed command. Specify any special
character (except underscore).

Command “reshow” character

Establishes the default command reshow character. This character causes all
subsequent commands to remain in the command area after execution. Specify any
special character (except underscore).

Number of command lines

Establishes the default number of command lines reserved in the command region.

Limit: 0 to 5

Decimal symbol

Establishes the default decimal symbol. The digit separator character defaults to the
opposite of this decimal symbol. Valid values are as follows:

– . Period

– , Comma

Currency symbol

Establishes the default currency symbol. You can specify any character. The
installation default is a hex '5B', which displays as a dollar sign on United States
English terminals.

SET SITE Commands

168 Administration Guide

Date format

Establishes the default date format. Valid values are as follows:

– A-American (MM/DD/YY)

– E-European (DD/MM/YY)

– I-International (YY/MM/DD)

Region separator

Establishes the default command region separator character. A separator line
consists of this character, repeated across the screen, to distinguish between the
command area and the execution regions. Valid values are:

– N-None (blanks)

– G-Grid (a formatted scale line)

– Any special character

Asynchronous messages

Establishes whether asynchronous messages, such as print and compile completion
messages, display during the session by default. Valid values are:

– U-All asynchronous messages for a signed-on user display during the session.
Undisplayed messages from a previous session display at signon.

– N-No asynchronous messages display.

You can set this option to NONE to prevent users from receiving someone else's
messages from a previous session on the same terminal.

Command reshow

Establishes the default action for commands. Yes retains all commands in the
command region after execution. No erases all successfully executed commands
from the command area after execution.

UPPER CASE PANELS AND MESSAGES

Establishes the default system panels as uppercase panels and displays all messages
in uppercase as the default.

Translate to upper case in batch

Indicates whether text submitted for printing in batch is converted to uppercase.
Enter Y (yes) for translation to uppercase or N (no) for no translation.

Maximum number of regions

Establishes the maximum number of regions a user can specify.

Limit: 1 to 4

The command region (region number 0) and product region (region number 1)
count as 2, therefore specify 3 or 4 to allow SPLIT to start a second or third session.

SET SITE Commands

Chapter 10: Customizing the CA Ideal Environment 169

Maximum number of PF keys

Establishes a limit on the number of PF keys supported.

Limit: 0 to 48

Maximum number of PA keys

Establishes a limit on the number of PA keys supported.

Limit: 0 to 4

Size of the working buffer

Establishes the size of the buffer CA Ideal editors use for global editing. A larger
value speeds up editing at the expense of main memory.

Limit: 4000 to 64000

Log file name

Establishes the CICS TDQueue name of the Log File. Specify one to four characters.
The first character must be an alphabetic or national character. The rest can be
alphabetic, national, or digits. This name must be the same as the name specified
for the IPC DCT entries in CA Ideal's IDSYSFT and IDLCICS and in the procedure that
executes IDBATCH.

Trace file name

The CICS TDQueue name of the Trace File. Specify one to four characters. The first
must be an alphabetic or national character. The rest can be alphabetic, national, or
digits. This name must be the same as the name specified for the CA IPC DCT entries
in CA Ideal's IDSYSFT, IDLCICS, and in the procedure that executes IDBATCH.

Check duplicate user

Establishes whether duplicate signons are allowed. Specify Y to prevent users from
signing on when they are already signed on with the same host user definition
somewhere else. Specify N if your external security system ensures unique signons
or if you want to allow duplicate signons.

Note: To check for duplicate user IDs at signon when SC00PTS SECRTY=N, CICS sites
must provide a CICS op-ID in the TCTTEOI.

Site Options for Output

To change any of the PSS site options, sign in to CA Ideal and issue one of the following
commands:

SET OUTPUT SITE OPTIONS

Or

SET OUT SITE

SET SITE Commands

170 Administration Guide

This command retrieves the current set of PSS site option values and displays them in
the following panel:

=>

 IDEAL: SET OUT OPT (PSS) PSS#OPTIONS FILL-IN

 Set PSS "site" options

 Spool name: ADROUT
 Maximum number of lines: 64000 (1-64K)
 Default retention period: 02 (1-99)
 Default number of copies: 01 (1-99)
 Default print status: RELEASE (Release/Hold/Keep)
 Default output width: 120 (1-240)
 Default network printer width: 132 (0-240)
 Post successful msg: Y (y/n)
 Name of the batch JCL proc: PSSUTIL
 Default destination
 Type: LIBRARY (LIBrary/NETwork/SYStem/MAIl)
 Name ___

 Date format A (A, E or I)
 Directory name: $PSSDIR$
 Destination table name: $PSSDST$
 System name: PSS
 Prefix name: PSS#
 Suppress non-display characters N (y/n)
 Maximum retention period: 03 (1-99)
 Maximum number of output members: 0500 (10-9999)
 Percent full occupancy warning: 99 (1-99)
 Multiple CPU environment: N (y/n)

To display this panel, you must have Print Administrator authorization. If you must
change a PSS site option, and you do not have proper authorization, contact your site
coordinator.

To modify a PSS site option, overtype a field entry and press Enter. Each change is
stored in the PSS and remains in effect until it is modified again.

If you change the value of any of these options, the change affects all of the people
using CA Ideal print files. Changes only take effect in sessions that begin after you
specify new site options. A person who is using CA Ideal as you specify site options must
sign out and then sign in to have the new options take effect.

SET SITE Commands

Chapter 10: Customizing the CA Ideal Environment 171

A subset of the options that are contained on this fill-in is available to CA Ideal users, so
that you can override some site options for the current session. The fill-in containing
these session options is accessed with the SET OUTPUT SESSION OPTIONS command.
For more information, see the Working in the Environment Guide.

Spool name

Specify a valid file name. Specifies the ddname of the output library. Before you
modify this value, see How to Change Default File Names in the IPC Implementation
Guide for z/OS.

Maximum number of lines

Specifies the maximum number of lines a report can contain when an output
member is generated on-line. The valid values are numbers from 1 through 64000.
However, the session option value cannot be greater than the site option value.
There is no limit to the length of an output member that is generated in batch.

The following syntax shows the command to set this option:

 ►►─ SET ─┬─ OUTPUT ─┬── MAXLINES ─ nnnnn ─────────────►◄

 └─ OUT ────┘

Default retention period

Specifies the number of days an output is retained in the output library before it is
automatically removed. The valid values are numbers from 1 through 99; however,
the session option value cannot be greater than the site option value.

The following syntax shows the command to set this option:

 ►►─ SET ─┬─ OUTPUT ─┬─┬─ RETENTION ─┬─ nn ──────────────►◄

 └─ OUT ────┘ └─ RET ───────┘

Default number of copies

Specifies the number of copies to print if COPIES=nn is not specified in the
DESTINATION clause of a PRINT command. The valid values are numbers from 1
through 99.

The following syntax shows the command to set this option:

 ►►─ SET ─┬─ OUTPUT ─┬─ COPIES ─ nn ──────────────►◄

 └─ OUT ────┘

SET SITE Commands

172 Administration Guide

Default print status

Specifies the default status that is assigned to all generated outputs. Specify one of
the following statuses:

■ HOL|HOLD retains the print member on the spool until the print status is
changed to RELEASE or KEEP.

■ REL|RELEASE releases the print member after it prints.

■ KEE|KEEP keeps the print member on the spool after it prints.

The following syntax shows the command to set this option:

 ►►─ SET ─┬─ OUTPUT ─┬─┬─ DISPOSITION ─┬─┬─ HOLD ─────┬───────────────►◄
 └─ OUT ────┘ └─ DISP ────────┘ ├─ HOL ──────┤
 ├─ RELEASE ──┤
 ├─ REL ──────┤
 ├─ KEEP ─────┤
 └─ KEE ──────┘

Default output width

Specifies the default width for all generated outputs. The valid values are numbers
from 1 through 240.

The following syntax shows the command to set this option:

 ►►─ SET ─┬─ OUTPUT ─┬─ WIDTH ─ nn ──────────────►◄

 └─ OUT ────┘

Note: CA Ideal always overrides the default width internally with the actual report
width.

Default network printer width

Specifies the default network printer width for all outputs. The valid values are
numbers from 0 through 240.

When an output is routed to a network printer, the printer width is determined in
the following manner:

■ The value is taken from the BLK/WIDTH column (associated with the network
printer) of the destination table (DIS OUT DEST).

■ If the value in the BLK/WIDTH column is blank, then the value is taken from the
Default network printer width session setting.

■ If the value in the Default network printer width option is zero, then the value
is taken from the CICS TCT definition.

Post successful msg

Specifies if the user receives the informational message ICPSMSGS31I - Command
successfully processed OUTPUT NUMBER=nnn when a print request is processed.

Y - Post the message.

N - Most likely used in an application environment when the requester does not
need to know the output number.

SET SITE Commands

Chapter 10: Customizing the CA Ideal Environment 173

Name of the batch JCL proc

Specifies the procedure that contains the JCL for processing batch PSS system
prints.

The following syntax shows the command to set this option:

 ►►─ SET ─┬─ OUTPUT ─┬─┬─ PROCEDURE ─┬─ procname ───────►◄

 └─ OUT ────┘ └─ PROC ──────┘

Note: This procedure must be defined with COPIES=nn and DEST=dest-id
statements. These statements are included in the EXEC SCPSUTIL statement that is
generated internally when PSS processes system print requests.

Default destination type

Specifies the printout destination type as one of the following. You enter the name
for the system or network name, or CA eMail+ recipient.

SYS|SYSTEM - System printer

NET|NETWORK - Network printer

LIB|LIBRARY - Output library

MAI - CA eMail+

The following syntax shows the command to set this option:

 ►►─ SET ─┬─ OUTPUT ─┬─┬─ DESTINATION ─┬─┬─ SYSTEM ─ name ─────┬───────────────►◄
 └─ OUT ────┘ └─ DEST ────────┘ ├─ SYS ─ name ────────┤
 ├─ NETWORK ─ name ────┤
 ├─ NET ─ name ────────┤
 ├─ LIBRARY ───────────┤
 ├─ LIB ───────────────┤
 └─ MAI ─ /recipient/ ─┘

Note: Notice that you must use slashes as delimiters in the MAI keyword.

Default destination name

Specifies the name of the SYSTEM or NETWORK printer or CA eMail+ recipient that
is used as the default print destination. Specify a valid system, network name, or CA
eMail+ recipient.

The following syntax shows the command to set this option:

 ►►─ SET ─┬─ OUTPUT ─┬─┬─ DESTINATION ─┬─┬─ SYSTEM ─ name ─────┬───────────────►◄
 └─ OUT ────┘ └─ DEST ────────┘ ├─ SYS ─ name ────────┤
 ├─ NETWORK ─ name ────┤
 ├─ NET ─ name ────────┤
 ├─ LIBRARY ───────────┤
 ├─ LIB ───────────────┤
 └─ MAI ─ /recipient/ ─┘

Note: Notice that you must use slashes as delimiters in the MAI keyword.

SET SITE Commands

174 Administration Guide

Date format

Specifies the default date format PSS uses. This value is used during RECOVERY
processing. At that time, the Julian date is calculated to determine which outputs
exist beyond their retention period. The valid values are:

A - American, date format: mmddyy

E - European, date format: ddmmyy

I - International, date format: yymmdd

Where:

mm Is the month

dd Is the day of the month

yy is the year

Directory name

Specifies the name of the directory that contains a list of all items in the output
library. When this entry is changed to an existing name of a directory member
name, this member closes and a directory of the same name is reopened. When a
directory of the same name is reopened, it is not reinitialized. When this entry is
changed to a new directory name, a new spool directory of this name is created and
initialized for further processing.

Destination table name

Specifies the name of the table that contains all valid destinations that are defined
in the print environment. If you change this name, the existing destination table is
released from global storage and then reinitialized on the next destination table
access. Also, you lose all output in the destination file.

System name

Specifies a three-character prefix that builds the internal name of each output in
the output library, the directory name, and the destination table name. If you
change this name, the PSS entities are internally named and referenced differently.
Therefore, changing this value has the same effect as changing the destination table
name or directory name. After you change this value, reinitialize ADROUT.

Prefix name

Specifies the four-character prefix for all print members. After you change this
value, reinitialize ADROUT. This value should be unique for each ADROUT to avoid
enqueuing conflicts between members.

SET SITE Commands

Chapter 10: Customizing the CA Ideal Environment 175

Suppress non-display characters

Specifies whether to suppress non-display characters. Set this value to N if
unprintable content is needed in control streams that are sent as part of the data,
such as escape sequences. With this value set to Y, the data content sent to the
printer has any undisplayable characters translated out. For most current printers,
the control data is displayable characters. For information on non-display
characters, see the IPC Implementation Guide for z/OS, How to Modify the PMS
Conversion Tables (PMSTRUC, PMSTRND, and PMSTRNDK).

Maximum retention period

Specifies the maximum number of days that an output can be retained. Each user
can set a different retention period for each output that is less than or equal to the
default. However, this value must be greater than or equal to the value specified as
the default retention period. A valid value is a number from 1 through 99.

Maximum number of output members

Specifies the maximum number of outputs that can exist on the output library
simultaneously. A valid value is a number from 10 through 9999. This value is used
when a directory is initialized to specify the maximum number of entries to create
in the PSS directory. You can change this value only if the named directory does not
already exist. Changing this value creates a directory in the spool with the number
of entries specified.

Percent full occupancy warning

Specifies when PSS issues a library full message. A valid value is a number from 1
through 99. This value determines the point that PSS prevents more outputs from
being created, so that it has enough space for outputs in progress to be completed.

Multiple CPU environment

Specifies the processor environment. If you have multiple processors with shared
DASD, specify Y (yes). PSS generates a /*JOBPARM SYSAFF=* for batch jobs that are
submitted to process PRINT commands directed to a system printer. Otherwise,
specify N (no).

Site Control of Wide Panel Support

Wide panel support allows applications to define panels 80 to 256 characters wide. You
can make it the site standard, in which case users can disable this support for their
session or across sessions. You can also disable wide panel support at a site as the
default. Users can then enable wide panel support for a session or the user can modify
his SIGNON member to enable wide panel support across sessions for that user.

When wide panel support is disabled, the options for wide panel support on the panel
parameters and layout fill-ins are suppressed, which makes the wide panel support
transparent.

Setting Environment Options

176 Administration Guide

Enabling or Disabling Wide Panel Support

The command for enabling or disabling wide panel support for a site is:

SET SITE PANEL WIDEOPTION ON/OFF

Setting a Default Panel Width

You can use the SET SITE PANEL WIDTH command to set the default width for panels
created and displayed at the site.

Panels created after this command is issued contain the number of columns specified by
the command. However, to change the width of existing panels, you must change the
panel parameters fill-in for each panel you want to reflect the new width.

Setting a Loop Limit

The SET SITE RUN LOOPLIMIT command establishes a site maximum for the number of
times test-status program loops through a PDL FOR or LOOP construct in a test
environment. A runtime error occurs if this limit is exceeded. A user can override this
command for the current session.

Setting Environment Options

You can control various characteristics of CA Ideal's environment during a session. They
are described in this section. For information about the syntax of the commands
described in this section, see the Command Reference Guide.

ACCOUNT-ID Specification (CICS Only)

CA Ideal provides the ability to assign different development or production activities to
separate user-specified CICS transactions. This allows CICS performance analysis
packages or transaction accounting packages to isolate transactions for charge back and
resource consumption analysis.

The CA Ideal command SET ENVIRONMENT ACCOUNT-ID establishes the transaction ID
under which statistics for the current session is logged.

Each ACCOUNT-ID specified in a SET ENVIRONMENT command must also be defined in
CICS as a TRANSACTION invoking program SC00DISP, similar to the CICS TRANSACTION
definition for SCFD. In addition, the ACCOUNT-ID can be embedded in an application
and can be determined dynamically. IBM standards recommend that transaction IDs not
begin with the letter C.

Setting Environment Options

Chapter 10: Customizing the CA Ideal Environment 177

Customizing the End of a CA Ideal Session

FINAL-IDs may be designated as the next transaction to execute at the end of a CA Ideal
session. A FINAL-ID can be any valid CICS synchronous transaction, and could also be
invoked directly from the terminal. Using FINAL-IDs within a CA Ideal application enables
a smooth transition from one CA Ideal application to another, and for COBOL and
assembler CICS applications.

FINAL-IDs that invoke CA Ideal applications must be Transparent Signon transactions
that invoke the SCF initialization program, SC00INIT. Transparent Signons must have an
entry in the SCF Transaction Table, SC00TRAN, which are defined to CICS as a
TRANSACTION invoking the program SC00INIT.

The following rules apply to FINAL-IDs:

■ A FINAL-ID can never be a transaction which invokes SC00DISP, (for example, SCFD
or an ACCOUNT-ID.)

■ A FINAL-ID is always a terminal-based transaction that does not require input
parameters.

■ A FINAL-ID can only be invoked from a terminal-based CA Ideal session.

■ Using SET $FINAL-ID from within a CA Ideal program that has been invoked by the
INITIATE statement to run asynchronously is not valid.

A FINAL-ID can be designated using the following command:

SET ENVIRONMENT FINAL-ID xxxx

This command can be executed from the command line or a startup MEMBER.

Like ACCOUNT-ID, there is also a PDL statement that is used to schedule the next
transaction after a CA Ideal session:

SET $FINAL-ID = 'xxxx'

When a CA Ideal session ends, either at the end of a RUN with the command SET RUN
QUITIDEAL YES in effect or when OFF has been entered from the command line, the
FINAL-ID transaction will be started at the current terminal.

A FINAL-ID may also be set to the keyword NONE that provides a blank screen at the
end of a CA Ideal session, instead of the CA Ideal Signoff panel.

Note: FINAL-ID and ACCOUNT-ID transactions can be lowercase characters
corresponding to valid CICS Transaction Definitions. Lowercase FINAL-ID and
ACCOUNT-ID transactions can be set in a startup MEMBER or using the PDL statement in
a program, but cannot be executed from the command line. The special case of FINAL-ID
NONE is only valid in uppercase characters.

Setting Environment Options

178 Administration Guide

Selecting an Alternate Currency Symbol

The SET ENVIRONMENT CURRENCY command displays an alternate currency symbol in
panels and prints in reports generated by an application during the current session. This
command does not affect the currency symbol as it is specified in the edit pattern of a
report definition or panel field definition or in a $EDIT function in the procedure of a CA
Ideal program.

Selecting an Alternate Date Format

The SET ENVIRONMENT DATEFOR command allows an alternate date format for the
date in the heading of a CA Ideal generated listing (for example, a compile listing or print
listing).

You can change date formats for a report at run time with the SET REPORT DATEFOR
command, not the SET ENVIRONMENT DATEFOR command.

Selecting an Alternate Decimal Symbol

The SET ENVIRONMENT DECIMAL command lets you use an alternate convention for the
digit separator and decimal point when displayed in panels or printed in reports
generated by an application running during the current session. This command does not
affect the decimal symbol as it is specified in the edit pattern of a report definition or
panel field definition or in a $EDIT function in the procedure of a CA Ideal program.

The decimal symbol can only be one of the following:

■ . (Period)-The decimal symbol is a period, and the digit separator is a comma.

■ , (Comma)-The decimal symbol is a comma, and the digit separator is a period.

For example, if the decimal symbol is set to a comma, a value set with the following
edit pattern displays at runtime:

SET ENVIRONMENT DECIMAL ,

SET X = $EDIT(N, PIC='ZZZ,ZZZ.99')

2.345,00

Automatic Off

Specify the SET RUN QUITIDEAL command in the startup member of an application using
transparent signon to automatically sign off of CA Ideal when the application completes
execution, without displaying the CA Ideal sign-off panel.

Customizing the CA Ideal Options Block Using IDOPTSCB

Chapter 10: Customizing the CA Ideal Environment 179

User Defined Signoff Panels

When SET RUN QUITIDEAL YES is specified, the SET RUN ERROR-PNL command specifies
a panel to display in the event of a fatal CA Ideal internal error during a run. You must
specify the panel name, version number, and system.

Setting an Action for the CLEAR Key

The SET RUN CLEAR command determines the action to take if you press the Clear key
when a program transmits a panel. This command is only in effect while a CA Ideal
application is running. During CA Ideal activities other than RUN, the Clear key continues
to return the Main Menu.

Customizing the CA Ideal Options Block Using IDOPTSCB

To change the CA Ideal Options, you must use the IDOPTSCB macro to reassemble the
source member IDOPTS, and then link edit @IIDOPTS to implement the changes. (In
CICS, you must recycle CICS to implement the changes.) The CA Ideal install job for
custom assemblies contains a model of the IDOPTS table that can be used to modify the
distributed default values. It also contains JCL that can be used to assemble and link edit
the IDOPTS table into @IIDOPTS.

For VSE, the IDOPTS.A book, in the distribution library, contains a model of the IDOPTS
table that can be used to modify the distributed default values. The IDOPTASM.Z book,
in the distribution library, is the sample for assembling and link editing the IDOPTS table
into phase @IIDOPTS.

The IDOPTSCB macro with an explanation of all the parameters that are applicable to
FUNC=START is shown following. See Maintaining Authorizations in this chapter for
information about parameters specified for FUNC=ATZ. The IDOPTSCB macro contains
default values as shown.

IDOPTSCB FUNC=, X

 ATZEXIT=, Optional Global Auth Exit Name X

 COMMAND=, Functional Authorization Name X

 DB2PLAN=IDP140DV, Default DB2 Application Plan X

 DB2SYS=DSN, Default DB2 Subsystem ID X

 DFLTUSR=NONE, Default IDEAL Signon User-ID X

 DVWLIB=IDDVW, Dataview Library X

Customizing the CA Ideal Options Block Using IDOPTSCB

180 Administration Guide

 IDENT=IDEAL, Product Panel Identifier X

 LEVEL=, Minimum Level Of Authorization X

 LMTBLD=DD, Build Load Module Table? X

 MEMLIB=IDDAT, Member Library X

 OBJLIB=IDXXXOBJ, IDEAL Object Library Default X

 PLALIB=IDDVW, Application Plan Library X

 PLTID=IDPI, Transaction ID For PLT X

 PLTLOAD=NO, Load Modules At PLT X

 PNLLIB=IDXXXPNL, IDEAL Panel Library Default X

 PSWDIS=VISIBLE, VISIBLE|INVISIBLE In DIS USR X

 SECPRFX=$I, Security Prefix For Resource Chks X

 SORTLIB=, VLS libs for sort work areas X

 SORTMS=IDSORTMS, TRAN ID For Build Messages X

 SORTSZ=200704, TRAN ID For Build Size Parm X

 SORTWK=IDSORT01, Batch Report Sort Work Area X

 SORTWP=, Batch Report DOS WORK= Parm X

 SORTRC=10000000, On-line Sort Max Number Recs X

 SRCLIB=IDXXXSRC, IDEAL Source Library Default X

 TYPE=DC, X

 UIDCHK=YES USER-ID Integrity Check Option

At a minimum, you must code the IDOPTSCB macro twice with FUNC=START and
FUNC=END. To alter the command authorization levels, code one or more FUNC=ATZ
macros.

FUNC=

■ START-Creates the beginning of the IDOPTSCB table and the default command
authorization levels. It must be the first in a series of IDOPTSCB macros and can be
coded only once.

■ ATZ-Updates any corresponding entry in the table of command (or functional)
authorizations. It is optional and should only be coded when you need to modify
the default authorization level for a command (or Functional Authorization) or to
invoke a user coded exit routine.

It must be preceded by a FUNC=START and must not follow a FUNC=END. It can be
coded any number of times.

■ On the FUNC=ATZ the following parameter is required:

COMMAND=

■ The following parameters are optional:

– ATZEXIT=

– LEVEL=

Note: The preceding parameters for changing the authorization levels are described
in detail in the Maintaining Authorizations section in this chapter.

Customizing the CA Ideal Options Block Using IDOPTSCB

Chapter 10: Customizing the CA Ideal Environment 181

■ END- Completes the table. It must be preceded by a FUNC=START and all FUNC=ATZ
(if any). There are no other parameters for FUNC=END.

■ HELP-Generates a print of the IDOPTSCB macro descriptions.

■ ATZEXIT=Specifies the name of an optional user-coded exit module to receive
control during the authorization processing of the functions listed under
COMMAND=.

When coded with FUNC=START, it becomes the exit for all listed COMMANDS.
However when coded with FUNC=ATZ, the module is invoked only for that
COMMAND. The FUNC=ATZ takes precedence over FUNC=START.

ATZEXIT must be one to eight characters and follow normal load module naming
conventions. See the section titled Maintaining Authorizations in this chapter for
further details.

■ COMMAND= Specifies the Functional Authorization to update. You must code it
with FUNC=ATZ. See the Maintaining Authorizations section in this chapter.

■ DB2PLAN=For sites with DB2 support, this defines the default application plan name
CA Ideal uses when no other name is available. This can be any valid DB2 plan
name. The default is release specific (IDPrrrDV).

■ DB2SYS=For sites with DB2 support, this defines the default Subsystem ID CA Ideal
uses to connect to DB2. This can be any valid DB2 Subsystem ID. It is padded with
spaces to a length of four characters. The default is DSN.

■ DFLTUSR=A three-character short ID of an existing CA Ideal user definition. This
parameter specifies a default user ID for CA Ideal signons. During signon, if CA Ideal
does not find a dictionary entity occurrence or alias for the supplied user ID,
another signon attempt is then made with this three-character short ID. When
NONE is specified, no further attempt is done if the original signon fails. The default
is NONE.

■ DVWLIB=A one- to eight-character name for the CA Ideal Dataview library. The
default is IDDVW.

■ IDENT=A five-character value that is placed on all of CA Ideal's product panels.
Panels of the Inter-Product Components do not use this value nor do customer
application panels. If the value CUA is supplied, CA Ideal uses the internal
four-character panel name of each panel displayed. The default is IDEAL.

■ LEVEL=Specifies the minimum level of authorization required for a given
COMMAND=. See the section titled Maintaining Authorizations in this chapter for
further explanations.

■ LMTBLD= Specifies how the in-core load module table (LMT) is built. The default,
DD, specifies that the LMT is built using @ILMLIST and the dictionary module
entries. NO specifies that CA Ideal only processes @ILMLIST entries for this region.
For more information, see the “Module Format for Programs and Panels” chapter.

■ MEMLIB=A one- to eight-character name for the CA Ideal Member Library. The
default is IDDAT.

Customizing the CA Ideal Options Block Using IDOPTSCB

182 Administration Guide

■ OBJLIB= A one- to eight-character name for the CA Ideal PDL Object library that
appears on the System fill-in panel. The default is IDXXXOBJ.

■ PNLLIB= A 1-8 character name for the CA Ideal PDF Panel library that appears on the
System fill-in panel. The default is IDXXXPNL.

■ PLALIB=A one- to eight-character name for the CA Ideal DB2 Application Plans
library. The default is IDDVW.

■ PLTID= Identifies the CICS transaction that initializes a control table to manage the
optional use of load modules for PDL programs. The default is IDPI.

■ PLTLOAD= (CICS only) A YES value indicates user load modules are loaded during
the building of the LMT. A NO value bypasses the loading of the modules during the
building of the LMT. The verification is done at the time each module is first used.
The default is NO.

■ PRINT= Controls the printing of the resulting assembler listing. You can use any
value supported by the assembler (for example, ON, OFF, GEN, NOGEN). The
default is ON.

■ PSWDIS= Controls an option to make the PASSWORD field of the User Definition
fill-in invisible. The keywords supported are VISIBLE and INVISIBLE. Specifying
INVISIBLE also results in an additional field on the User Definition fill-in as a means
of verifying the password entered. The default is INVISIBLE. See Creating a CA Ideal
User Definition in this guide for more information.

■ SECPRFX= A two-character prefix for the CA Ideal security resource checks. This
prefix is used during signon to determine whether the user can sign on to CA Ideal.
It is also used in front of all resource entity names that CA Ideal performs resource
checks on. The default is $I.

■ SORTLIB= Specifies the VLS library that contains members used as sort work areas
for on-line sorted reports. You can use any one- to eight-character VLS library
name. If a value is not specified, the value supplied for MEMLIB is used.

■ SORTMS= (z/OS only) A one- to eight-character name for batch sort utility messages
for compiles with cross-reference and programs run with sorted reports. The
default is IDSORTMS.

■ SORTRC= Maximum number of records that can be sorted on-line. If this value is
exceeded, a runtime error occurs before the sort begins. The default is 10000000.

■ SORTSZ= Core size parameter for the execution of a sort report. The default is
200704.

■ SORTWK= A one- to eight-character name for the batch report sort work area. The
default is IDSORT01.

■ SORTWP= For DOS only, you can specify a value for the SORT WORK= parameter.

Maintaining Authorizations

Chapter 10: Customizing the CA Ideal Environment 183

■ SRCLIB= A one- to eight-character name for the PDL Source library that appears on
the System fill-in panel. The default is IDXXXSRC.

■ UIDCHK= When NO, this parameter enables the signon user ID to be different from
either the CA Ideal person name or short ID that is found in the dictionary. This
associates different operator IDs with a common user ID for group signons. It also
lets a security ID be different from a CA Ideal person in a security signon. A value of
YES requires that the user ID match either the person name or short ID of an
existing CA Ideal user. The default is YES.

Example

IDOPTS CSECT

 IDOPTSCB FUNC=START, X

 PSWDIS=INVISIBLE, X

 TYPE=DC

 IDOPTSCB FUNC=ATZ,COMMAND=RUN, X

 ATZEXIT=RUNCHECK

 IDOPTSCB FUNC=ATZ,COMMAND=CREATE-PGM, X

 LEVEL=UPDATE

 IDOPTSCB FUNC=ATZ,COMMAND=DEQUEUE, X

 LEVEL=DISABLE

 IDOPTSCB FUNC=ATZ,COMMAND=COPY-PGM-ACR-SYS, X

 LEVEL=(UPDATE,CONTROL), X

 ATZEXIT=MYPROG

 IDOPTSCB FUNC=END

END

Maintaining Authorizations

Part of the processing of commands entered in CA Ideal is to verify that the user has the
proper authorization to execute the command. Each command has a minimum level of
authorization required to execute it, and each user is assigned a level of authorization. A
table of the currently assigned command authorizations is contained in the @IIDOPTS
load module.

Not all command authorizations are controlled using @IIDOPTS. See the “Authorization
Table” appendix for a complete list of those that are. In some cases, the CREATE
command automatically invokes the EDIT command. Therefore, authorization for the
CREATE and EDIT commands for a single entity should be the same or the EDIT-entity
command should have a lower level of authorization than the corresponding
CREATE-entity command.

Maintaining Authorizations

184 Administration Guide

The authorization required for CA Ideal commands is defined in the following ways:

■ You can leave the default authorizations delivered by CA Ideal unchanged. You can
list the delivered authorizations by assembling the IDOPTS source member. You can
get additional information by including the FUNC= parameter of the IDOPTSCB
macro.

■ You can change the defaults during installation or later by modifying the
parameters to the IDOPTSCB macro and then reassembling the IDOPTS source
member.

■ You can also write exit programs for additional authorization checking.
Authorization exits are defined to CA Ideal by modifying the parameters to the
IDOPTSCB macro and reassembling it..

You can specify a user exit as global or local. A local exit is executed for a particular
command. A global exit is invoked for all commands that do not have local exits
specified.

After CA Ideal performs its authorization checking, the exit is passed information
about the user, the current site authorization level for the command, and the
service requested. The exit then determines whether to allow the command to
execute.

The syntax of the IDOPTSCB macro is described in the section titled IDOPTSCB Macro for
Authorization. Modifying the authorization scheme with the IDOPTSCB macro during
installation or after is described in the section titled Modifying Existing Authorizations in
this chapter. User exits are described in the section titled Authorization Exit Programs,
also found in this chapter.

IDOPTSCB Macro for Authorization

To change the @IIDOPTS load module, which contains the current command
authorizations, modify the IDOPTSCB macro. (This macro is also used for other functions
and contains parameters not described here. A full description is contained in the z/OS
Installation and Maintenance Guide.)

The following syntax is used for authorization changes in the IDOPTSCB macro.

IDOPTSCB FUNC=START,TYPE=DC[,ATZEXIT=exit-pgm]

 place other site options here

FUNC=START

Required preceding any command authorization macros.

TYPE=DC

Required.

Maintaining Authorizations

Chapter 10: Customizing the CA Ideal Environment 185

ATZEXIT=exit-pgm(Optional)

Specifies a user-written global exit program to receive control each time a
command is invoked. You can use this exit to override the action determined by CA
Ideal. It does not override any local exits specified in the ATZEXIT parameters.

IDOPTSCB FUNC=END

FUNC=END

Required following all authorization macros.

IDOPTSCB FUNC=HELP

FUNC=HELP

Generates a printout of parameter documentation.

IDOPTSCB FUNC=ATZ,

COMMAND=function-keyword,

LEVEL= {level }

 {(subject-level,object-level)}

[,ATZEXIT=exit-pgm]

FUNC=ATZ

ATZ is required for each command authorization.

COMMAND=function-keyword

Specifies a functional command. This description is limited to word identifying the
command that the parameters of this macro apply to. "Authorization Table"
appendix relates all commands and their functional keywords.

LEVEL= {level }

 {subject-level,object-level}

The minimum level of authorization that is required to execute the command identified
in COMMAND=. If a command refers to a system other than the current system, you
must specify a subject level (for the current system) and an object level (for the system
the command refers to). "Authorization Table" appendix indicates the functional
keywords that have subject and object levels with asterisks. You can specify the
following values:

ADMIN

Requires a CA Ideal Administrator privilege.

BYPASS

Prevents CA Ideal from checking the level, giving authorization to all users. If a
user-written exit is provided, it gets control after BYPASS and can override it.

CONTROL

Requires Control authorization in the current system.

Maintaining Authorizations

186 Administration Guide

DATAVIEW-ADMIN

Requires a Dataview Administrator privilege.

DISABLE

Disables a function. However, even with DISABLE specified, a user-written exit gets
control after the DISABLE and can override it.

PRINT-ADMIN

Requires a Print Administrator privilege.

READ

Requires Read authorization in the current system.

RUN-PROD

Requires Run Prod authorization in the current system.

UPDATE

Requires Update authorization in the current system.

UPDATE-PANEL

Requires Update Panel authorization in the current system.

UPDATE-REPORT

Requires Update Report authorization in the current system.

Some levels automatically include others. The levels implied by each privilege and
authorization are described in "Defining and Maintaining CA Ideal."

ATZEXIT=exit-pgm(Optional)

The name of a user-written program to receive control each time this command is
invoked. You can use this exit to override the action determined by CA Ideal. It is
called instead of the global exit, if any, specified in the FUNC=START parameter. The
next section describes requirements for exit programs.

Note: If you use a separate @IIDOPTS load module for each environment, you can
put all of your authorization exit programs in one library, provided that each exit
program has a different name. If you use one @IIDOPTS load module for both
online and batch processing, two copies of the authorization exit program are
needed in separate libraries, one for batch and one for CICS.

Example

The following example:

■ Defines the storage type as DC (required to generate the options block), enforces
the user ID integrity check, and specifies a global exit program USERPGM1.

■ Disables online compiles for all authorization levels and specifies an exit program
USERPGM2 (for example, to enforce a more precise level of authorization).

Maintaining Authorizations

Chapter 10: Customizing the CA Ideal Environment 187

■ For a COPY of a program across systems, requires CONTROL authorization in the
current system, but only READ authorization in the system containing the program.

■ Requires Administrator privilege for all DUPLICATE PROGRAM commands across
systems.

■ Requires CONTROL authorization for all batch compiles.

IDOPTS CSECT

 IDOPTSCB FUNC=START, X

 TYPE=DC, X

 UIDCHK=YES, X

 ATZEXIT=USERPGM1

 IDOPTSCB FUNC=ATZ, X

 COMMAND=COMPILE-ONLINE, X

 ATZEXIT=USERPGM2, X

 LEVEL=DISABLE

 IDOPTSCB FUNC=ATZ, X

 COMMAND=COPY-PROGRAM-ACROSS-SYSTEM, X

 LEVEL=(CONTROL,READ)

 IDOPTSCB FUNC=ATZ, X

 COMMAND=DUPLICATE-PROGRAM-ACROSS-SYSTEM, X

 LEVEL=ADMIN

 IDOPTSCB FUNC=ATZ, X

 COMMAND=COMPILE-BATCH, X

 LEVEL=CONTROL

 IDOPTSCB FUNC=END

Note: Follow correct assembler syntax. (For example, a non-blank column 72 indicates
that the statement is continued on the next line starting in column 16.) If conventions
are not followed, other macros might not generate what was requested, even though
they do not produce error messages.

Modifying Existing Authorizations

The IDOPTSCB macro produces the @IIDOPTS load module. This procedure is described
next. The previous section describes the macro.

1. Code an IDOPTSCB macro with a FUNC=START parameter. (TYPE=DC and any site
options not related to authorizations are required with FUNC=START.)

2. Code an IDOPTSCB macro with a FUNC=ATZ parameter for each command that
requires an authorization other than the default. Keep them in a separate source
module (named USERATZ), which is copied into the IDOPTS source member.

3. Code an IDOPTSCB macro with a FUNC=END parameter.

4. Assemble the source member IDOPTS and link edit @IIDOPTS.

Member IDOPTASM in the SOURCE library on the installation tape contains either
JCL (for z/OS or VSE) that you can use as an example for assembly and link edit.

Maintaining Authorizations

188 Administration Guide

Note: The IDOPTSCB macro specifies site options related to security; therefore, keep the
IDOPTSCB macro in a secure location. This macro produces a complete replacement for
the site options load module @IIDOPTS.

Under z/OS or VSE: If authorization exits are specified, different versions of @IIDOPTS
might be required for CICS and batch. When you change authorizations, take the
appropriate action to recognize the new authorizations:

■ In CICS-Recycle CICS to recognize the new authorizations. Using the NEWCOPY
function of CICS on the options block causes unpredictable results.

■ In batch-Place the new authorizations in the correct load library before executing
the CA Ideal batch job.

Specifying User Exits

Exit programs written outside of CA Ideal must be identified using the IDOPTSCB macro.
The section titled Authorization Exit Programs below describes authorization exits.

■ Local User Exits-To add a user exit program for a particular command, code an
IDOPTSCB FUNC=ATZ macro with an ATZEXIT parameter for the command.

■ Global User Exits-To add an exit program for all commands not governed by local
exits, code an IDOPTSCB FUNC=START macro with an ATZEXIT parameter. (TYPE=DC
is required with FUNC=START.)

Authorization Exit Programs

A user-written exit can provide an additional layer of authorization to the use of any
commands in CA Ideal. When you enter a command, CA Ideal's internal authorization
service checks the site option table for the authorization level, for the function, and for
the presence of a user exit. If an exit is found, it is called, and the result of CA Ideal's
check is passed to the exit.

You must write an authorization exit program following the rules for
non-Ideal subprograms (described in the Creating Programs Guide and with the CALL
statement in the Programming Reference Guide).

Under CICS

Because batch and CICS environments use different program linkages, you must create
separate programs for batch and on-line or have different option blocks for batch and
on-line. In either case, you must maintain separate LOAD/CORE-IMAGE libraries for each
environment.

Since an authorization exit is executed frequently, consider performance implications
carefully.

Maintaining Authorizations

Chapter 10: Customizing the CA Ideal Environment 189

CA Ideal passes the exit program the information shown in the following illustration.
(The sample programs contain 88-level names with appropriate values for fields
containing CA Ideal's internal codes.)

 01 ID-PARM-1.

 05 ID-EXIT-TYPE PIC X.

 05 ID-SYNC PIC X(03).

 05 ID-RELEASE-LEVEL PIC X(04).

 05 ID-USER-SHORT-ID PIC X(03).

 05 ID-USER-NAME PIC X(32).

 05 ID-TERMINAL-ID PIC X(04).

 05 ID-TRANSACTION-ID PIC X(04).

 05 ID-TP-MONITOR-CODE PIC X(01).

 05 ID-OPERATING-SYSTEM-CODE PIC X(01).

 05 ID-NETWORK-ID PIC X(8).

 01 ID-PARM-2.

 05 ATZ-RESULT PIC S9(04) COMP.

 05 FUNC-ATZ-CODE PIC S9(04) COMP.

 05 REQUIRED-SUBJECT-LEVEL PIC S9(04) COMP.

 05 REQUIRED-OBJECT-LEVEL PIC S9(04) COMP.

 05 USER-ATZ-DATA.

 10 GLOBAL-ATZ.

 15 FILLER PIC X(03).

 15 IDL-ADM PIC X.

 15 FILLER PIC X.

 15 IDL-USR PIC X.

 15 PRT-ADM PIC X.

 15 DVW-ADM PIC X.

 10 SUBJECT-ATZ.

 15 SUBJECT-SYSTEM PIC X(3).

 15 CONTROL-ATZ PIC X.

 15 UPDATE-ATZ PIC X.

 15 READ-ATZ PIC X.

 15 RUN-PROD PIC X.

 15 FILLER PIC X.

 15 FILLER PIC X.

 15 UPDATE-REPORT PIC X.

 15 UPDATE-PANEL PIC X.

 10 OBJECT-ATZ.

 15 OBJECT-SYSTEM PIC X(3).

 15 CONTROL-ATZ PIC X.

 15 UPDATE-ATZ PIC X.

 15 READ-ATZ PIC X.

 15 RUN-PROD PIC X.

 15 FILLER PIC X.

 15 FILLER PIC X.

 15 UPDATE-REPORT PIC X.

 15 UPDATE-PANEL PIC X.

Maintaining Authorizations

190 Administration Guide

 05 SUBJECT-ENTITY-DATA.

 10 ENTITY-TYPE PIC X(03).

 10 ENTITY-OCCUR-NAME PIC X(32).

 10 ENTITY-OCCUR-VERSION PIC X(03).

 10 ENTITY-OCCUR-STATUS PIC X(04).

 05 OBJECT-ENTITY-DATA.

 10 ENTITY-TYPE PIC X(03).

 10 ENTITY-OCCUR-NAME PIC X(32).

 10 ENTITY-OCCUR-VERSION PIC X(03).

 10 ENTITY-OCCUR-STATUS PIC X(04).

 05 REJECT-MESSAGE PIC X(70).

ID-EXIT-TYPE

Specifies the type of exit that is invoked for this command. A 1 indicates that an
authorization exit is invoked. Other values are reserved for future use.

ID-USER-SHORT-ID

The one- to three-character CA Ideal user short ID defined for the user who is
executing the command.

ID-USER-NAME

The name of the CA Ideal user who is executing the command.

ID-TERMINAL-ID

– In CICS-The CICS ID of the terminal where the command is executed.

– In batch-Hex zeros.

ID-TRANSACTION-ID

– In CICS-The CICS signon transaction ID.

– In batch-The value IDEA.

ID-TP-MONITOR-CODE

– C-Represents CICS.

– Y-Represents batch.

ID-OPERATING-SYSTEM-CODE

– O-Represents z/OS.

– D-Represents DOS/VSE.

ID-NETWORK-ID

In CICS, the VTAM LU name, if the terminal is VTAM. The system ID and terminal ID
of the Terminal Owning Region (TOR), if the terminal is MRO but not VTAM; low
values in all other cases.

Maintaining Authorizations

Chapter 10: Customizing the CA Ideal Environment 191

ATZ-RESULT

This field is passed to the exit program. The exit program can modify it. Possible
values are:

– 0-The command is accepted.

– 4-The command is denied.

– 6-The command was disabled.

Any other values returned to CA Ideal are ignored.

FUNC-ATZ-CODE

A numeric value representing a functional keyword. "Authorization Table" appendix
contains all functions and their associated values.

REQUIRED-SUBJECT-LEVEL

A numeric value representing the authorization necessary in the current system.
The possible values and their respective authorization levels follow:

– 254-BYPASS

– 255-DISABLE

– 1-DATAVIEW-ADMIN

– 3-PRINT-ADMIN

– 4-RUN-PROD

– 5-CONTROL

– 6-UPDATE

– 7-READ

– 8-UPDATE-RPT

– 9-UPDATE-PNL

Maintaining Authorizations

192 Administration Guide

REQUIRED-OBJECT-LEVEL

A numeric value representing the authorization necessary in the object system. The
possible values and their respective authorization levels are:

– 1-ADMIN

– 2-DATAVIEW-ADMIN

– 3-PRINT-ADMIN

– 4-RUN-PROD

– 5-CONTROL

– 6-UPDATE

– 7-READ

– 8-UPDATE-RPT

– 9-UPDATE-PNL

USER-ATZ-DATA

Specifies whether the user has each global privilege and authorization level in the
current and object (if needed) systems.

– IDL-ADM-CA Ideal Administrator (Y or N)

– IDL-USR-CA Ideal User (Y or N)

– PRT-ADM-Print Administrator (Y or N)

– DVW-ADM-Dataview Administrator (Y or N)

– SUBJECT-SYSTEM-Subject System Name

– OBJECT-SYSTEM-Object System Name

– CONTROL-ATZ-Control Authorization (Y or N)

– UPDATE-ATZ-Update Authorization (Y or N)

– READ-ATZ-Read Authorization (Y or N)

– UPDATE-REPORT-Update Report Authorization (Y or N)

– UPDATE-PANEL-Update Panel Authorization (Y or N)

SUBJECT-ENTITY-DATA

Information about the subject entity that is passed to the exit for certain functions.

– ENTITY-TYPE-Type of entity

– ENTITY-OCCUR-NAME-Name of the entity

– ENTITY-OCCUR-VERSION-Version of the entity. For all entities in Production
status except panels, this is blank.

ENTITY-OCCUR-STATUS-Production (P) or Test (T) status of the entity. For panels,
this is blank.

Maintaining Authorizations

Chapter 10: Customizing the CA Ideal Environment 193

The data passed to exit programs by each function is shown in the following table.

Functional Keyword Subject Data Object Data

ALTER-PROGRAM Program/Panel None

CATALOG-DATABIEW Dataview None

RUN Main Program None

RUN-PROD Main Program None

RUN-PROD-USING-PANEL Main Program None

RUN-PROD-USING-PROGRAM Main Program Program

Note: For functions RUN-PROD-USING-PANEL and RUN-PROD-USING-PROGRAM, the
subject entity is the program specified on the RUN command. The authorization applies
only if the main program is in Production status.

OBJECT-ENTITY-DATA

Information about the object entity passed to the exit program for certain
functions. Entries are the same as for SUBJECT-ENTITY-DATA.

REJECT-MESSAGE

A 70-byte field where the user exit program can specify a message that CA Ideal
displays in the message line if the function is denied or disabled.

Defining a CICS Exit Program

The following procedure describes how to establish a CICS exit program. (A sample CICS
COBOL authorization program called ATZCBON is available for download from the CA
Support website.)

1. Define the program to CICS if CICS Program Autoinstall is not active.

2. Assemble (or compile) and link edit the exit program. Place it in a load library n the
DFHRPL or Core Image Library (CIL) in the search chain.

Defining a z/OS or VSE Non-CICS Exit Program

For batch, the exit program only needs to be assembled (or compiled) and link edited
into the load library or Core Image Library (CIL) for the job. An exit created for batch
does not work in CICS, nor does a CICS exit work in batch.

Managing and Administering Print Services

194 Administration Guide

Managing and Administering Print Services

This section describes how to establish and manage the CA Ideal print environment (also
called the Print Subsystem or PSS) and the administration of print services. The print
environment includes the facilities to process, route, and manage outputs.

Commands for using the print facilities of CA Ideal include:

■ Commands to initiate output requests.

■ Command to display the status of an output request.

■ Command to delete an output.

■ Command to display output destinations.

■ Commands to perform many of the above functions for other users' outputs.

■ Commands to define or alter print destinations.

■ Commands to set options for the print environment.

■ Command to define the master or another user's JOBCARD.

Output destination definitions are stored in a member in ADROUT, which is used to
create an on-line destination table. When CICS is started, PSS checks for the destination
table. If it does not exist, the table is created from the destination definitions stored in
ADROUT. To enter destination definitions in the ADROUT member, use the DEFINE
OUTPUT DESTINATION command.

Defining Printer Destinations

The printer destination table resides in the ADROUT library. Keep the following facts in
mind:

■ Each system and network printer must be defined using the DEFINE OUTPUT
DESTINATION command.

■ You can modify network printers using the ALTER OUTPUT DESTINATION NETWORK
command once they are defined.

■ LIBRARY is already defined as an output destination when CA IPC PSS component is
installed and ADROUT is initialized.

Managing and Administering Print Services

Chapter 10: Customizing the CA Ideal Environment 195

■ You do not need to define CA eMail+ destinations. They are defined using CA
eMail+ facilities.

■ You can define a printer as either a SYSTEM or NETWORK destination. Prints to
NETWORK destinations run synchronously. Prints to SYSTEM destinations submit
batch print jobs.

■ CA IPC PSS supports network printers that are 328x-compatible.

■ All TCT entries should exist in the CICS regions sharing an ADROUT library. For more
information regarding multiple environments and the considerations for sharing
ADROUT, see the “Module Format for Programs and Panels” chapter.

Network Printer Definition Considerations

When defining network printers, you can specify additional characteristics and
hardware overrides. These characteristics include:

■ Formfeed control

■ Header and trailer pages

■ Print line width

An output printed at a network printer can be logically viewed as five separate
components, four of which are optional.

1. Initial Formfeed

2. Header Section

a. Header Text

b. Header Formfeed

3. Output

4. Trailer Section

a. Trailer Formfeed

b. Trailer Text

5. Final Formfeed

<<Formfeed>>

Initial Formfeed generated if FF=YES or FF=HEADER

Managing and Administering Print Services

196 Administration Guide

Header Section printed if HEADER = YES

**

*

*

* Start of output listing on printer PR17, Date 06/27/04 at 12:06:11

*

* User name $IDEAL User ID $ID

*

* Output name WORDNUHS Output number 0192

*

* Output destination NETWORK PR17 Originating terminal 0008

*

* Output description LIST STATEMENT OUTPUT

*

*

**

Output * (always printed)

<<Formfeed>>

 (BEGINNING OF OUTPUT

 .

 .

 .

 (END OF OUTPUT)

Trailer Section printed if TRAILER=YES

<<Formfeed>>

* End of output listing on printer PR17, Date 06/27/04 at 12:006:13

*

**

<<Formfeed>>

Final Formfeed generated if FF=YES or FF=TRAILER

The following is a detailed explanation of some of the options used when defining or
modifying network printer definitions. The commands that use these options are DEFINE
OUTPUT DESTINATION NETWORK and ALTER OUTPUT DESTINATION. For more
information about these commands, see the Command Reference Guide.

 {YES }

FF {NO }

 {HEADER }

 {TRAILER}

Managing and Administering Print Services

Chapter 10: Customizing the CA Ideal Environment 197

Controls the PSS generated formfeeds at the beginning and end of an output routed to a
network printer.

FF

– YES-A formfeed is issued at the start and end of the print by PSS. This option
results in blank pages between PSS outputs printed consecutively. Use this
option when non-PSS outputs printed to the same printer do not generate
consistent formfeed control.

– NO-No formfeeds are issued at the start or end of the print by PSS. This option
prints outputs on the same page between PSS outputs printed consecutively.
Use this option when the printer does not have a fixed page size, such as rolled
paper.

– HEADER-A formfeed is issued at the beginning of each new print. This insures
that each PSS print starts at the beginning of a new page. Use this option to
provide compatibility with the workings of non-PSS output that can also print
to the same printer.

– TRAILER-A formfeed is issued at the completion of each print. This option
places the printer at the top of a blank page after each PSS print is complete.
Use this option to remove the printed output from the printer when it is
complete without having to wait for the next printout to start or manually
intervening with the printer.

 The values HEADER and TRAILER associated with the FF parameter are
 independent from the HEADER and TRAILER parameters.

PERTASK nnn

Determines how many outputs can process during one print transaction for a
specified printer. If the network printer is dedicated to a single CICS region, define
this option as 0 to allow the minimum initialization and termination overhead. Set a
number greater than 0 to reduce the amount of time PSS can monopolize a printer
after a printer is disabled because of physical attributes associated with the printer
or the termination of the region.

WIDTH

If greater than 0, the value determines the default width of the printer. If 0, the site
option Default network printer width on SET OUT SITE is used. If the Default
network printer width is also defined as 0, the TCT definition for the network
printer determines the printer width.

Managing and Administering Print Services

198 Administration Guide

Print Service Administration Commands

You can set the print environment site options from a fill-in CA Ideal provides. This fill-in
is accessed by issuing the command SET OUTPUT SITE OPTIONS. The section titled Site
Options for Output earlier in this chapter describes the print environment site options
and the fill-in used to set them.

You can use the following commands to control the disposition, the number of copies,
the retention time, and the destination of output. In this table, the abbreviation OUT is
used for OUTPUT. For more information about these commands, see the Command
Reference Guide.

DEFINE OUT DESTINATION

Establishes the output destination of either a system (SYSTEM) or network
(NETWORK) printer or the output library (LIBRARY). In the case of a system or
network printer, you must also specify the name of the printer. (See Note following
this table.)

DELETE OUT DESTINATION

Removes the output destination of either a system (SYSTEM) or network
(NETWORK) printer or the output library (LIBRARY). In the case of a system or
network printer, you must also specify the name of the printer.

DISPLAY OUT

Displays a specific output from the output library.

PRINT OUT

Prints a specific output from the output library.

ALTER OUT DISPOSITION

Changes the disposition of a specified output.

ALTER OUT COPIES

Changes the number of copies of the specified output to print.

ALTER OUT RETENTION

Changes the number of days the specified output is retained. This value cannot
exceed the maximum set for the site.

ALTER OUT DESTINATION

Changes the destination of the specified output.

System Printer Considerations

Chapter 10: Customizing the CA Ideal Environment 199

ALTER OUT DEST DISP

Changes the disposition of all the outputs going to a specific destination or to all
outputs regardless of the destination.

ALTER OUT DEST NETWORK

Changes one of the following characteristics for the specified network printer:

■ Formfeed control

■ Whether a header and trailer page is printed

■ The width of the printer's print line

DELETE OUT

Removes an output from the output library.

LIBRARY is already defined as an output destination when CA Ideal is first installed.

You do not need to define CA eMail+ destinations to CA Ideal. They are defined using CA
eMail+ facilities.

CA Ideal supports network printers that are 328x-compatible.

When defining a network printer, you can also specify the following characteristics to
override the hardware specifications:

■ Whether a header and trailer page is printed.

■ The width of the printer's print line.

System Printer Considerations

The following considerations are to be taken while submitting a batch job to the system
printer.

System Printer Considerations

200 Administration Guide

Editing a Jobcard z/OS

To satisfy output requests with a destination of a system printer, the CA Ideal print
environment submits a batch job to the host operating system. The CA Ideal print
environment provides resources to store a jobcard for each user ID and a MASTER
jobcard. The MASTER jobcard is used when the current user has no jobcard. The
MASTER jobcard is also used as the initial model for editing when a user first issues the
EDIT JOBCARD command (to create a user jobcard). If a CA Ideal user submits a member
without a jobcard, CA Ideal uses this same user jobcard or MASTER jobcard.

The PRINT Administrator can display or edit any user jobcard or the MASTER jobcard
with the command:

{DISPLAY} [USER user-id]

{EDIT } JOBCARD [MASTER]

A jobcard fill-in consists of five 71-column lines. You can enter any JCL statements that
are valid as the first one to five statements in a batch job stream. For more information
about the DISPLAY and EDIT JOBCARD commands, see the Command Reference Guide.

Batch Output Procedure

The rest of the JCL to carry out the batch print request is identified on the SET OUTPUT
SITE or SESSION panel as Name of the batch JCL proc.

BLOCKSIZE (z/OS Only)

This affects the blocksize assigned to the AUXPRINT file assigned to the batch output
procedure. It is most likely that this option is used when AUXPRINT is defined as a data
set rather than a SYSOUT file in the batch output procedure.

Creating User-Defined HELP Members

Chapter 10: Customizing the CA Ideal Environment 201

Creating User-Defined HELP Members

This section explains how to add your own HELP members to use in CA Ideal, how to
disable and enable an active on-line application so you can apply changes, how to
duplicate an entity across systems, and how to dequeue an entity that is erroneously
enqueued.

You can extend the CA Ideal HELP system by adding your own HELP information.

You can create or edit help members outside of CA Ideal and import them into CA Ideal
using the Source Transport Utility (IDUTSTRN). You can add or replace user-defined help
members. You can also replace the CA Ideal help SITE member. (It contains an index into
other help members that were added.) You cannot replace other CA Ideal system help
members.

Adding New Help Members

To add a list of help members, follow the steps:

1. Create a sequential 80-byte input file containing one or more help members. For
example:

->HELP MYHELP

DESC 'User defined HELP member'

->HELP-DATA

Help me if you can I'm feeling sad.

->END-HELP

The control cards beginning with -> must start in column 1. The DESC is optional
and cannot exceed 24 characters. When a help member displays, any text lines that
begin with an equal sign (=) are highlighted.

The end of a help member is recognized by ->END-HELP beginning in column 1, by
->HELP beginning in column 1 (which starts a new help member), or by the end of
the input data set.

2. Use Source Transport to import the help member.

3. In CA Ideal, type HELP HELPNAME to display the member. For example, the
following displays the member MYHELP.

HELP MYHELP

The format of help members and the use of the Source Transport Utility are described in
the Working in the Environment Guide.

CICS Requirements

202 Administration Guide

Displaying the HELP Member Index

User-defined HELP members are stored in the VLS library ADRLIB. The member name
consists of the prefix USR, the help name you defined, and an H in column 21. For
example:

USRMYHELP H

USRSITE H

CA Ideal system HELP members start with the prefix HLP.

You can display an index of all members in ADRLIB using the command:

DISPLAY INDEX MEMBER USER @I$ADRLIB

CICS Requirements

Case Translation

To enable case translation in CICS the following changes must be made:

■ On the TYPETERM definitions UCTRAN must be set to TRANID. Specifying
TYPETERM UCTRAN(TRANID) causes the transaction ID to be translated to
uppercase; other input is translated according to what is specified for PROFILE
UCTRAN.

■ On the profile definition associated with SCF-based transactions (IDEA, DDOL)
UCTRAN should be set to NO. This allows the terminal to run in mixed case mode.
Transactions that require uppercase should be associated with a profile that has
UCTRAN set to YES. CICS supplied transactions such as CEDA, CEMT, CECI, etc. are
an example. IBM distributes the profile associated with those transactions with the
parameter UCTRAN=NO. If uppercase translation is desired on those transactions,
then the UCTRAN parameter should be changed to YES.

See the IBM documentation for more information regarding UCTRAN.

Operating System Requirements

Administrative tasks can differ, depending on the operating system. These tasks are
described in this section.

Operating System Requirements

Chapter 10: Customizing the CA Ideal Environment 203

CA Ideal Batch File Table

Files accessed by CA Ideal batch that are not CA Datacom/DB files require entries in the
CA Ideal File Table just as libraries accessed by CA Ideal application developers (source,
object, and panel libraries) require CA Ideal File Table entries. The CA Ideal File Table is
used for CA Ideal batch jobs. It is effectively a collection of DCBs DTFs for accessing any
non-CA Datacom/DB files that the job needs. A file table is generated during installation
with all the necessary entries for batch processing. This section describes how to add to
or change the file table to provide additional site system libraries (source, panel, and
object) for application developers and to support sequential file dataviews for CA Ideal
batch applications.

Note: Since non-system VSAM files do not require any file table entries, it is not
necessary to change the file table to support VSAM file dataviews.

The CA Ideal Batch File Table is a series of assembler macro invocations. Each entry calls
the macro ROSFD and describes one file. To change the CA Ideal File Table, add the
appropriate entries and reassemble. Then, execute a standalone link-edit with a phase
name of @IIDSYSF with the object code in a core image library available at runtime. No
other link-edits are required since the file table is dynamically loaded at runtime.

ROSFD Entry

You can specify the following parameters for a ROSFD entry:

ACCMETH= BDAM|SEQ

Identifies the type of access. You must specify BDAM for VLS files. All others must
be SEQ.

ADDRESS=RELTRK

Indicates that BDAM VLS entries use relative track addressing.

BLKSIZE=nnnnn

Specifies the block size for the file. For sequential dataviews, see the Creating
Dataviews Guide for details on how this value is overridden.

Operating System Requirements

204 Administration Guide

CTLCHR=ASA

Identifies ASCII control characters for printer files.

DDNAME|DTFNAME=xxxxxxx

For z/OS sequential file entries, DDNAME identifies the ddname of the file. For VSE
BDAM, sequential DISK, and sequential tape entries, DTFNAME identifies the DLBL
or TLBL name. For information about how CA Ideal dynamically changes this name
to the actual MONITOR-NAME specified in the dictionary, see the chapter on
sequential file dataviews in the Creating Dataviews Guide.

DEVADDR=SYSxxx-(VSE only)

Identifies the logical unit assignment for this file. It only has meaning for card input,
printer, punch, and tape entries. Sequential disk and BDAM entries all use SYS000,
which you can override with JCL.

DEVICE=nnnn (VSE only)

Identifies the device type such as 3390. The device must only be of the correct
type, not necessarily the actual unit where it runs.

DTFTYPE=DTFPR|DTFCDP|DTFSD|DTFMT (VSE only)

Indicates the DTF type as printer (DTFPR), punch (DTFCDP), sequential disk (DTFSD),
and magnetic tape (DTFMT) entries, respectively.

FILABL=STD|NO

Identifies whether a tape file has standard labels or no labels.

IBLKSZ=nnnnn

Parameter used for sequential disk dataviews. Identifies the maximum input block
size. For more details about sequential dataviews, see the Creating Dataviews
Guide.

LRECL=nnnnn

Specifies the record size for the file. For sequential dataviews, see the Creating
Dataviews Guide for details on how this value is overridden.

OBLKSZ=nnnnn

Parameter used for sequential disk dataviews identifies the maximum output block
size. It must be eight greater than the IBLKSZ for the same ROSFD entry. For more
details, see the chapter on sequential file dataviews in the Creating Dataviews
Guide.

OPSYS=DOS|VSE (VSE only)

Identifies VSE as the operating system. This is a required parameter, since if
omitted the default is to generate entries for z/OS.

PRODUCT=

Obsolete.

Operating System Requirements

Chapter 10: Customizing the CA Ideal Environment 205

RECFM=F|FB|FBA|FA

Identifies whether a file has fixed (F), blocked (B), or fixed block (FB) format, and
whether control characters are ANSI characters (A).

 Examples: VSE

The following is a sample printer entry:

SYSPRINT ROSFD ACCMETH=SEQ, X

 DTFTYPE=DTFPR, X

 DEVICE=1403, X

 DEVADDR=SYS041, X

 RECFM=F, X

 BLKSIZE=133, X

 CTLCHR=ASA, X

 OPSYS=VSE

SYSIN and SYSPRINT are the logical names CA Ideal uses to access these entries.

Note: When creating or modifying CA Ideal system definitions, you must specify the
name of the source, object, and panel library names residing on VLS (Virtual Library
System). You must describe each VLS library specified in this way with an entry in the
IDSYSFT. The following is a sample VLS BDAM entry:

IDL$IDS ROSFD ACCMETH=BDAM, X

 DEVICE=3390, X

 DEVADDR=SYS000, X

 DTFNAME=SRC$ID, X

 ADDRESS=RELTRK, X

 RECFM=F, X

 BLKSIZE=1960, X

 OPSYS=VSE

IDL$IDS is the name of a library the user defined when doing SYSTEM definition. SRC$ID
is the DLBL name to use in the JCL to define this file. You must override SYS000 in the
JCL to assign the file to the correct unit.

Operating System Requirements

206 Administration Guide

Changing the CA Ideal File Batch Table

Certain changes to the CA Ideal environment require reassembling the CA Ideal Batch
File Table. They include:

■ Adding new source, panel, and object libraries for new application systems.

■ Changing block sizes of VLS libraries.

■ Changing or adding entries for sequential file dataviews processed by CA Ideal
batch applications (see the Creating Dataviews Guide).

■ For VSE, changing the logical unit assignments for unit record and tape files. During
installation, the initial file table is generated based on installation parameters. The
Site Administrator can change them further as long as no logical unit conflicts are
introduced. Notify CA Ideal application developers of these assignments since their
JCL for batch applications can depend on them, especially for report output files
and sequential dataview files.

The following are the installed file table entries (except sequential dataviews, which are
described in the next section). Each entry includes a brief description of what it is and
what can be changed.

CA Ideal System Files

Do not change anything in this group (except the logical unit assignments for VSE).

■ ADRL-Log file for internal errors

■ ADRT-Internal trace file for CA support and diagnostic purposes

■ AUXPRINT-Output for prints submitted from on-line to a system printer or batch
reports if external files are not assigned

■ SYSIN-Command card input

■ SYSDIAL-Internal debugging print file for CA support and diagnostic purposes

■ SYSPRINT-Standard listing file

■ XPRT-Tape file for importing/exporting programs

CA IPC VLS Files
■ ADRLIB-SCF and PSS (internal CA components) control information and jobcards

■ ADRPNL-CA Ideal system panels

Operating System Requirements

Chapter 10: Customizing the CA Ideal Environment 207

Application VLS Files

VSE

 Block sizes can change for these entries. You can also modify DTFNAME to change the
DLBL name. You can also add new entries for new source, panel, and object system
libraries.

■ ADROUT-Print Subsystem (PSS) library

■ IDDAT-Member library

■ IDDVW-Dataview object library

■ IDL$IDS-Installed $ID system source library

■ IDL$IDP-Installed $ID system panel library

■ IDL$IDO-Installed $ID system object library

Z/OS

Block sizes can change for these entries. You can also modify the ROSFD DDNAME
parameter to change the JCL DD name. You can also add new entries for new source,
panel, and object system libraries.

■ ADROUT-Print Subsystem (PSS) library

■ IDDAT-Member library

■ IDDVW-Dataview object library

■ ID$IDSRC-Installed $ID system source library

■ ID$IDPNL - Installed $ID system panel library

■ ID$IDOBJ- Installed $ID system object library

PSS Files

You can only change logical unit assignments. The entries PSSPRT01 through PSSPRT15
are used for CA Ideal report output, LIST statement output, and PRINT command
output.

Operating System Requirements

208 Administration Guide

VSE Report Work Files

Do not change the entries IDRWK01 through IDRWK15. RDF uses them internally when
processing sorted reports. They are not SORT work files.

■ Block size-Physical block length. This information is obtained from
the dictionary when the dataview is cataloged. You can override it with an ALTER
PROGRAM command or ASSIGN DATAVIEW command before the run. At runtime,
the block size is stored into the ROSFD entry before opening the file.

The block size specified in the ROSFD is the maximum block size that you can use. If
a dataview is opened with a larger block size than the maximum specified, a
runtime error occurs with an I7 dataview status code.

For tape, print, and punch files use the BLKSIZE parameter. For disk files, use the
IBLKSZ and OBLKSZ parameters. IBLKSZ is the maximum block size. OBLKSZ is the
maximum block size plus eight.

■ Filename-The DLBL for disk files and TLBL for standard-label tape files is obtained
from the dictionary when the dataview is cataloged. This name overrides the
DTFNAME parameter on the ROSFD before opening the file.

■ Logical Unit Assignment- For standard-label tape (SLTAPE),
non-labeled tape (NLTAPE), printer (PRT), and punch (PUNCH) files, the default
assignment comes from the ROSFD entry. You can override it with an ASSIGN
DATAVIEW before the RUN command (see the Creating Dataviews Guide) or with
an ASSIGN statement executed before the first FOR construct referencing the
dataview.

The logical assignments for disk files are made entirely with the JCL.

If a run needs to access more than one sequential file dataview of the same type (for
example, two disk or three standard-label tape files), then you must add new IDSYSFT
entries. To add a new entry, make a copy of an existing entry of the same type. Change
the ROSFD label from Ixxxx1 to Ixxxxn where xxxx is DISK, SLTAPE, NLTAPE, PRT, or
PUNCH and n is the next available number for that device type, in hexadecimal
sequence (1-9, A-G). For SLTAPE, NLTAPE, PRT, and PUNCH entries, change the logical
unit assignment to something that does not conflict with any other ROSFD entry in the
file table. Optionally, adjust the block size parameter as previously described.

If multiple sequential files of the same type in the same run are referenced and there
are not enough file table entries defined, a dataview runtime error occurs with an 'I8'
status code.

Operating System Requirements

Chapter 10: Customizing the CA Ideal Environment 209

Requirements for a Single z/OS System

All CA Ideal tasks must run on a single z/OS system because the IBM z/OS operating
system does not provide cross-system protection from concurrent destructive updates,
except through the RESERVE macro. VLS (Virtual Library System) uses an ENQ macro to
protect against concurrent destructive updates on a single system, but does not issue a
RESERVE to avoid causing indefinite waits in the teleprocessing monitor. Therefore, it is
imperative that any site using CA Ideal ensure that all CA Ideal tasks are run on the same
system by taking the following actions:

1. Ensure that multiple teleprocessing monitors supporting CA Ideal run on the same
system.

2. Ensure that all PRINT commands where the destination is a system printer direct
the resulting batch print job to the same system where the teleprocessing monitor
is running. For JES2 only, if you specify MCPU=YES in the session control options
block (see CA Ideal installation procedures for z/OS), CA Ideal automatically
generates the following statement:

/*JOBPARM S=*

3. Ensure that all other batch jobs, including CA Ideal batch (the IDBATCH proc), VLS
utility runs (VLSUTIL proc), and CA Ideal Transport Utility runs (IDLXPRT proc) run on
the same system as the teleprocessing monitor. Use one or more of the following
methods to ensure that batch jobs are all on the correct system:

a. Specify a job class known only on that system for CA Ideal runs.

b. Enforce the use of a /*JOBPARM (JES2) or //*MAIN (JES3) statement.

c. Catalog at least one CA Ideal file only on the master catalog for the system.

Chapter 11: Optimizing Storage Management 211

Chapter 11: Optimizing Storage
Management

The information contained in this chapter is intended to help you understand and
optimize storage management in your CA Ideal regions. The following items are
covered:

■ User application storage-how to decide what format, load modules or VLS format, is
best for performance.

■ CICS storage use-how CA Ideal uses DSA, above-the-line storage, and temporary
storage under CICS

■ Releasing session storage-how to effectively free up unneeded storage through
coding practices and node error recovery procedures.

Enhancing User Storage Management

A CA Ideal program or panel produces the same results regardless of its format. This
includes load module and VLS object, but performance (runtime, response time,
memory required) varies depending on the format that is chosen.

Load Module Format

For optimal performance in a CICS production environment, convert CA Ideal user
programs and panels to load module format. Load modules provide performance
benefits and a means of monitoring and tuning your environment that VLS format does
not.

For more information about load modules, see the “Module Format for Programs and
Panels” chapter.

Programs in VLS Format

For CA Ideal programs that run as VLS objects in a CICS environment, each user
concurrently running the program has a separate copy of the entire object program. The
updateable part is written and accessed in the EDSA, CICS Extended Dynamic Storage
Area. At the end of each transaction, the readonly portion of the program is written to
CICS temporary storage. When the next transaction for that program is executed, the
object program is reloaded from CICS temporary storage.

CICS Storage Use

212 Administration Guide

Panels in VLS Format

Under CICS, the panel buffer is always written to temporary storage at the end of the
transaction and reloaded into DSA when the next transaction for that panel is executed.
Each panel has one member in load module or VLS format. However, at runtime, when a
panel is loaded, two portions of the panel are built:

■ The reentrant portion (non-updateable) that contains the Panel Control Block (PCB).

■ The non-reentrant portion (updateable) that contains the Panel Buffer (PBF). Under
CICS, the panel buffer is always written to temporary storage at the end of the
transaction and reloaded into DSA when the next transaction for that panel is
executed.

Each user concurrently running the panel has a separate copy of the entire panel. The
panel is written to CICS temporary storage at the end of each transaction. When the
next transaction for that panel is executed, the panel is reloaded from CICS temporary
storage

Recommendations

Programs and panels executing in a production runtime environment should be in load
module format for optimal performance.

CICS Storage Use

CA Ideal was designed as a pseudo-conversational system under CICS. From the
database environment, the DBMS CICS interface issues a checkpoint at the end of a CICS
transaction, dropping all locks, that is, when CA Ideal issues a TRANSMIT. CICS virtual
storage resources must also be freed at task termination and saved on some storage
medium.

The point of a pseudo-conversational system is to free resources at the termination of
each task to allow other tasks to acquire those resources without contention. This
allows more transactions to process without requiring exponentially more resources.

CICS Storage Use

Chapter 11: Optimizing Storage Management 213

CA Ideal uses three basic types of CICS storage:

■ Auxiliary Temporary Storage

■ Extended Dynamic Storage Area (EDSA)

■ Dynamic Storage Area (DSA)

In general, with the exception of certain global control blocks, CA Ideal will release DSA
at the end of a task. Storage acquired from EDSA and Temporary Storage make up the
CA Ideal session, which is released at the end of a session.

For more information about determining the effects that are specific to your CICS
release, see the IBM CICS documentation.

Temporary Storage

Because CA Ideal executes in pseudo-conversational mode, there is significant use of
CICS auxiliary temporary storage. You can define CICS auxiliary temporary storage to
reside on a VSAM data set or be diverted to CICS main temporary storage. See IBM
documentation for more information regarding CICS temporary storage use and its
location.

Consider a user session to be the processing that occurs from the time signon to an
SCF-based transaction occurs until signoff is complete. A series of control blocks keep
track of each user's session.

Many of these control blocks are written to CICS temporary storage at transaction
termination and retrieved into temporary storage buffers that reside in DSA at
transaction initiation. In an attempt to minimize the number of writes to temporary
storage, these control blocks comprise a single temporary storage record that can be as
large as 32 KB.

The most significant of these control blocks include:

■ SCB (Session Control Block)

■ RCB (Run Control Block)

■ Updateable user code copies

Important! Never modify or delete any CA temporary storage queues. This would very
likely cause storage violations in CICS. See Session Storage Cleanup in this chapter for
information regarding the PURGE termid command and VPE code invoked through NEP.

CICS Storage Use

214 Administration Guide

SCB (Session Control Block)

This piece of storage keeps track of what is occurring in an SCF-based session. This data
consists of a single temporary storage record allocated during signon to an SCF-based
session. Some of the information contained in this data follows:

■ Products active, IDEAL, DDOL, IPCV, …

■ Current panels:

– Command line and message line is a panel.

– User's panel is a panel.

■ User's SCF session options:

– All SET command settings.

■ SCF CVT (Communication Vector Table):

– A directory of other control blocks.

■ PMS control blocks that control presentation area parameters such as:

– How many lines are in each region

– How wide is the screen

– Where is the current scroll position

■ Can contain RCB if a CA Ideal run is active, if room permits; otherwise, becomes its
own control block (described in the next section).

RCB (Run Control Block)

For each session that runs a program, the RCB (Run Control Block) keeps track of the
processing occurring for the executing application. The run control block contains:

■ Current position in the application:

– Procedure block

– Current instruction (t-code)

– Compilation release

■ Executor work areas

■ Updateable code pointers

■ A list of all programs and panels that were accessed in the current execution of the
application

Updateable User Code Copies

Temporary storage stores the updateable portions of an application's active user panels
for each user's session between transactions.

CICS Storage Use

Chapter 11: Optimizing Storage Management 215

Temporary Storage Record Naming Conventions

Assuming the following:

tttt-CICS terminal-ID

?-Product generated character

!xx!-Hex characters

uid-CA Ideal short-ID user definition

sys-CA Ideal short-ID system definition

Most of CA Ideal Temporary Storage records are built using the following naming
convention:

$t?ttt??

There are two other types of records you find that do not follow this naming
convention. These two types of records represent the CA Ideal users and CA Ideal
systems.

User Records

Most of these records have a length of 2048 bytes.

When SECRTY=YES: ??????!6200!

When SECRTY=NO: $I?uid!6200!

The records are not deleted even after the user signs off CA Ideal. These records
eliminate the need to re-access the dictionary for signon information, thereby
improving signon performance for subsequent signons to CA Ideal for manual
signon or transactions invoked by $FINAL-ID.

CICS Storage Use

216 Administration Guide

System Records

A temporary storage record is explicitly written to main temporary storage normally
consisting of 90 bytes for each CA Ideal system that was accessed in the particular
CICS region.

Its naming convention is: $I!00!sys!6100!

These records are not deleted from temporary storage unless the CA Ideal system
definition is updated in the CICS region. The presence of these records improves
performance by eliminating the need to access the dictionary each time a system is
accessed in the region.

VPE writes the following two types of temporary storage records:

A Temporary Storage record for each terminal session called the VPE Session Anchor
Block (VSAB). It contains a list of all of the active control blocks, Temporary Storage
records, addresses to EDSA for the user's session. Its naming convention is VSABtttt.

A Temporary Storage record with the naming convention:

$VPtttt?.

Datadictionary also builds some temporary storage records to maintain information
across transaction boundaries that it needs. These records are named as follows:

#tttt???

Dynamic Storage Area (DSA)

CICS normally classifies storage in the DSA into different storage types. For consistency
sake, the storage CA Ideal is acquiring is classified into ISOLATED, SHARED, and
PROGRAM storage.

Isolated Storage

Isolated storage is allocated during the task and released when the task is complete.

The temporary storage records that were identified are brought into DSA during active
transactions in temporary storage buffers in this type of storage.

Isolated storage is also acquired and released in a single transaction for internal work
areas that CA Ideal might need to acquire during a task for internal processing.

Shared Storage

Shared storage is also used for system control blocks such as the in-core Load Module
Table, the Network Print Table, the SCF Signon Table, the SCF Transaction Table, and
TRNDATA members.

Performance Considerations

Chapter 11: Optimizing Storage Management 217

Program Storage

Most of the CA Ideal, CA IPC, and Datadictionary system modules and all 24-bit CA Ideal
user programs and panel load modules that are not marked as resident are loaded into
DSA program storage.

The updateable copies of program storage are freed:

■ When a RELEASE PROGRAM statement is issued

■ When the application ends

■ When VPUR is invoked

Extended Dynamic Storage Area

Upon initial access by a user to a CA Ideal program, a copy is made of the updateable
portion of the program. VPE issues a CICS GETMAIN request for storage above the line
and stores the updateable application code. This storage is freed at the end of the run.

CA Ideal Control Blocks Written to Temporary Storage

The CVT (Communication Vector Table), the Dataview Stack, the SCB (Session
Control Block), the Assign Area, and (space permitting) the RCB (Run Control Block)
comprise a single temporary storage record that can be as large as 32 KB. Some
sites might find that a CISIZE of 32 KB gives them optimal performance. You can
start at a lower CISIZE, such as 22 KB, and monitor the CICS temporary storage
statistics for the WRITES GREATER THAN CI. For optimal performance, this value
should be zero or a very low number to avoid excessive CICS record splitting.

31-Bit RMODE(ANY) User Program Load Modules

Load modules are generated when the CREATE MODULE ... FOR PROGRAM ...
statement is issued. The objects are created in 31-bit mode.

User Panel Load Modules and RMODE

Only 24-bit (RMODE=24) is supported for user panel load modules. The CA Ideal
CREATE MODULE ... FOR PANEL ... creates all panels in 24-bit mode. If a panel load
module was created in 31-bit mode, it would be loaded above the line and would
be inaccessible to CA IPC component PMS, which can only handle 24-bit addresses
at this time.

Performance Considerations

This section details the performance considerations.

Performance Considerations

218 Administration Guide

Application Design

CA Ideal will request EDSA whenever possible, but CICS above the line storage is not
limitless. Programs that are no longer needed should free the storage they are no longer
using. It is important to recognize, however, exactly what is meant by the term no
longer needed. An example of a program that is no longer needed is an initialization
program. This type of program is called at the beginning of a run and never called again.
Another example is the leg of an application.

For instance, if you have a menu program that calls programs that are considered
applications and if users spend a long period of time in one application before moving to
another piece of the menu, you might consider using RELEASE PROGRAM statements on
the programs belonging to the application. This type of application can also lend itself to
setting up each leg of the application as its own transaction and using FINAL-ID to invoke
the transaction. The invoked transaction can then invoke the menu transaction when it
is complete. This frees up all resources because you ended the CA Ideal run.

Important! Do not follow CALL program PDL statements with RELEASE PROGRAM
statements as a general rule.

Tuning Storage

Depending on the requirement, you need more XA storage than recommended.

Unused storage

CA Ideal applications should release programs that are no longer used, however,
use care to not misuse the function. You do not want to sacrifice performance.

Timeouts and Line Drops

Timeouts and line drops are probably the leading cause of unused CA Ideal storage.

See information about timeouts, line drops, and VPE Node Error Program in this
guide.

Session Storage Cleanup

Chapter 11: Optimizing Storage Management 219

VLS object format

In a production environment, if programs are running in VLS object format instead
of load module format, more storage than necessary is being used. This storage
most definitely is DSA and extended storage if auxiliary temporary storage is
defined to main storage.

Unused load modules

User load modules are loaded in extended storage. If CICS is brought up with
PLTLOAD=YES, all modules are loaded and released at startup, regardless of
whether they are ever used in the region. This includes all symbol table portions of
every program load module, which are only referenced during error processing.
Setting PLTLOAD=NO eliminates this additional processing.

If you are using storage efficiently and are still experiencing a storage shortage, you may
need to increase the amount of EDSA in the region.

Session Storage Cleanup

This section presents the different ways that are available to improve performance,
enforce security, and purge a session or storage.

RELEASE PROGRAM

The RELEASE PROGRAM statement can be useful and can help improve performance. If
used inappropriately, however, its use can significantly increase I/O, resulting in
performance degradation that can be dramatic. A standard that includes coding a
RELEASE PROGRAM each time after a program is called is not a good standard. Although
it controls the amount of temporary and above-the-line storage that is present at any
one time, it significantly increases CPU and I/O costs.

RELEASE allows you to free a resource that is no longer needed in a CA Ideal program.
Regardless of whether a program is in VLS format or load module format, the RELEASE
PROGRAM statement frees the storage that is attributed to the updateable portion of a
CA Ideal program.

Session Storage Cleanup

220 Administration Guide

It also marks the area in the Run Control Block (RCB) used for this program so that it is
reused during the run. However, it does not reduce the size of the RCB. CA Ideal
enlarges the RCB in increments of 4 KB as needed.

The following are good candidates for the RELEASE PROGRAM statement:

■ Initialization programs.

You should release any program that is called at the beginning of a run and never
called again.

■ The leg of an application called from a CA Ideal menu program.

If you have a menu program that calls programs that are considered applications
and if users spend a long period of time in one application before moving to
another piece of the menu, you might consider using the RELEASE PROGRAM
statement on the “application” program.

This type of application can also lend itself to setting up each leg as its own
transaction and using CA Ideal FINAL-ID to invoke the transaction. The invoked
transaction can then invoke the menu transaction when it is complete. This frees up
all resources because you ended the CA Ideal run.

Misusing RELEASE PROGRAM can increase I/Os, resulting in significant performance
degradation.

For example, if you release a program in VLS format and then reuse the program, the
updateable portion must be retrieved from the VLS library so that a copy can be made.
The readonly portion of the program will also be read from VLS. Likewise, when a
program in load module format is released and then reused, the updateable portion of
the program must be retrieved from the load module library, unless it is in core because
CICS has not yet released it or because it was made resident. In all situations, the
existing copy of the data is deleted and then reallocated. The RELEASE statement has no
effect on the CICS load module that contains the shareable portion of the code. CICS
handles that storage as usual at the end of the transaction boundary.

Because the RELEASE PROGRAM statement also reinitializes the working data and
parameter sections, some programmers use it for this purpose. This might not be a good
practice. It can be more efficient to execute a few SET statements to reinitialize only
those fields that need to be initialized.

Doing block SETS can be even more efficient: Set up a 01-level group in working data
that contains all the working data fields that need to be initialized. Set the group equal
to $SPACES or, for non-alpha groups or alpha groups that need to be initialized to
something other than blanks, equate the group to another group containing the same
setup using MOVE BY POSITION.

Session Storage Cleanup

Chapter 11: Optimizing Storage Management 221

Timeouts and Disconnections

Coding a timeout parameter for VTAM, CICS, or a security package, can help you to
enforce security. For example, it can reduce the chances of an unauthorized user taking
over a session at an unattended terminal that is still signed on.

A disconnection can result because of a network problem or if the user simply closes the
3270 emulator window.

Important! Session storage is only deleted after a timeout or disconnection if the VPE
Purge Invocation code has been invoked.

If the VPE Purge Invocation Code (VPUR) is not executed after a timeout or
disconnection, you can expect the following to remain:

■ User session Temporary Storage records allocated by CA IPC, Datadictionary, and
CA Ideal.

■ EDSA acquired for the updateable copy of the application program

■ Use counts and enqueues performed on VLS entities.

■ Storage allocated by Datadictionary for each terminal accessing DD.

If any of the preceding situations happen, it is because VPE has not been returned
control, which allows it to clean up the session. Without invoking the VPE Purge
Invocation code, this data can only be released if another
VPE-based transaction uses the same terminal or CICS is recycled.

VPUR

If a CA Ideal session is aborted and VPE does not regain control and perform a session
clean up, you can start a VPUR transaction that initiates a clean up process. Typically,
this happens when a 327x terminal disappears and the CICS Node Error Program
(DFHZNEP) is automatically enabled to handle the situation. To start VPUR, the VTAM
codes are checked to ensure that the conditions are appropriate. VPUR invokes the VPE
module VPEPURGE, and uses the input data from the CICS terminal ID that has been
abnormally terminated. Using the TERMID, VPEPURGE finds the VPE Session Anchor
Block (VSAB) and deletes all of the storage acquired by GETMAIN in various DSAs and
Temporary Storage records that make up a CA Ideal user session. VPEPURGE will also
dequeue any enqueues that have been issued for the session.

Session Storage Cleanup

222 Administration Guide

When VPUR is started, it is only known that the terminal where a CA Ideal task is
executing has ceased to exist in the CICS environment. VPUR is invoked with the input
data of the four-character CICS TERMID. Sometimes the task continues to execute the
application, even though the TERMID has ceased to exist in CICS. If VPUR has been
started, VPUR releases the storage that belonged to the task, the task is still executing
and tries use its old session storage, which could by this time be reallocated by CICS to
another task, resulting in abends or storage violations. Because of this potential
problem, it is important to determine how VPUR should be implemented to be most
effective based on a site's particular environment. For example, if long running tasks
are the norm, it may be critical to first determine that the task has ended for a TERMID
by querying CICS before invoking VPUR. VPUR could be invoked from the CICS NEP or
the CICS terminal autoinstall exit.

Node Error Recovery

You can purge a session by invoking the VPE purge storage function from a Node Error
Program (NEP). If available, CICS invokes a NEP when VTAM notifies it that a terminal
was lost (LOSTERM notification). The NEP schedules a transaction that issues the purge
storage function on behalf of the lost terminal.

To invoke the purge storage function from a NEP, first customize and then add the
following statements to your site's CICS Node Error Program:

NEP0AF DS OH @BD5021A

-----------------BEGINNING OF SUGGESTED VPE PURGE INVOCATION CODE----

 CLI TWAEC,TCZxxxx ERROR?

 BE PURGEIT

 CLI TWAEC,TCZxxxx ERROR?

 BE PURGEIT

 CLI TWAEC,TCZxxxx ERROR?

 B GO_ON NO; ELSE...

PURGEIT DS OH

 EXEC CICS START TRANSID('VPUR') LENGTH(4) FROM(TWANID)

GO-ON DS 0H

-----------------END OF SUGGESTED VPE PURGE INVOCATION CODE----------

In the preceding illustration, 'xxxx' represents the error code you intend to trap.
Commonly trapped error codes include TCZTXCU (node unrecoverable), TCZNSP01
(network error 1) and TCZNSP02 (network error 2). The values that need to be trapped
will depend on your network configuration. See the DFHZEQU macro for specific error
code definitions. Also see the CICS Customization Guide for more information about
Node Error Program processing.

Session Storage Cleanup

Chapter 11: Optimizing Storage Management 223

PURGE term-id

You might need to purge storage for a CA Ideal session that is abruptly ended in CICS.
For example, if a transaction is canceled, Virtual Processing Environment (VPE) can have
storage areas and control blocks still allocated on behalf of the terminal. If the session is
not purged, these storage areas could be allocated indefinitely since the random
terminal-ID assignment of AUTOINSTALL cannot reuse the original terminal ID. The
PURGE command cleans up these storage areas.

Format

PURGE termid

termid-The four-character terminal ID. You must type this value exactly as generated by
the AUTOINSTALL routine since term-ID is case sensitive.

When the session is purged, the following message displays:

Terminal 'termid' purge complete

If the value supplied for termid is not a defined terminal ID, the following message
displays:

Terminal 'termid' not found

Check to be sure you entered the terminal ID in the correct case, exactly as the
AUTOINSTALL routine generated it.

VSE GETVIS Considerations

224 Administration Guide

VSE GETVIS Considerations

When you run applications in a VSE environment, having enough space is critical. CA
Ideal under VSE is no exception.

Try some of the following suggestions if you encounter space issues:

■ You might want to try decreasing the BUFSPACE parameter on your VSAM files. This
degrades performance but it frees up GETVIS. It also requires that you redefine the
file (you cannot change it dynamically).

■ If you have several regions accessing CA Ideal, you might consider putting heavily
used CA Ideal modules in the SVA. The module @IAETINT is a good candidate for
moving to the SVA. It is frequently used and is approximately 100 KB in size.

If you allow both on-line and batch compiles, the compiler modules are also a good
choice. Moving those modules can save you GETVIS and free up DSA in CICS if the
space in SVA is available.

To determine which CA Ideal modules are used for compiles, compile a program
using the CA Ideal Trace facility:

@I$TRACE TRACE ON LOCAL

COMPILE pgmname

@I$TRACE PRINT FUNC VPE STATISTICS

■ In batch, you might consider decreasing the size of your VPE file table (@IIDSYSF).

One way to do this is to eliminate old and unused ROSFD entries for your VLS
libraries. Another thing to look at is your ROSFD entries for sequential files. The
blocksize parameter on those entries represents a maximum blocksize. The macro is
expanded to include the space needed for that blocksize. For example, if you
change the blocksize parameter on the ISLTAPE1 ROSFD entry from 4 KB to 10 KB,
the size of @IIDSYSF increases by 6 KB. If you know that the largest blocksize you
ever need is 4 KB, you have 6 KB of wasted space.

■ Another thing to look at is your partition size. There are instances where your
partition simply is not large enough.

For batch, make sure that your SIZE= parameter is correct for the type of function
you are trying to perform. If you are trying to compile a program and you are
getting insufficient GETVIS messages, check if you are producing a cross-reference.
If you really do not need one, SET COM XREF=NO. This frees up more GETVIS for the
compile.

Chapter 12: Establishing Multiple Environments 225

Chapter 12: Establishing Multiple
Environments

The most common reasons for setting up multiple environments include:

■ Change management

■ Security

■ Performance

Almost all users set up a production environment for use only by their end-users to run
production applications. This separates development and production activity, which
shelters and secures the production environment from a heavily used development
environment. This separation also allows optimal performance for production
applications.

This chapter tries to address some of the questions and concerns regarding the
implementation of multiple environments. Topics covered include the following:

■ DBMS regions

■ Sharing libraries

■ Enqueuing considerations

■ Application migration

■ Security and customization

■ Installation

Composite Entities

The most important concept that must be considered when establishing multiple
environments is that most CA Ideal entities are not simple library members, but
composites of multiple members and Datadictionary entries that must be kept together.

■ Program source is a composite of a Datadictionary entry and members for
Procedure, Working data, and Parameter data.

■ Program object is a composite of multiple members and includes the Datadictionary
entry for non-Production programs.

■ Panels are composites of a Datadictionary entry and Panel library members.

■ Systems are composites of Datadictionary entries and VLS files.

Enqueuing

226 Administration Guide

■ Members (for example, express signon) are composites of the Datadictionary
entries defining the user and the VLS members themselves.

■ Program or Panel Load Modules are composites of Datadictionary entries and the
(multiple) executable members. If Application Module Tables are used, these can
take the place of the dictionary entries.

■ Regions that share these entities must therefore share the entire set of storage for
them. You must consider a Datadictionary and the VLS files and load modules it
describes as a unit for sharing.

■ If, for example, a development environment and a production environment do not
share the dictionary, they must not share the other files, and the Ideal entities must
be transported between them using the appropriate utilities to ensure that all
components are present and matched.

Enqueuing

CA Ideal will issue a single enqueue to cover all parts of a composite entity. Because
entities transported between dictionaries have the same name in the sending and
receiving environments, an additional component must be added to the entity name to
provide a unique queue name in each. This one-byte value is obtained from the QCODE
value specified as a parameter of the SC00OPTS module. It is important that all
regions/partitions sharing a dictionary have the same value specified for QCODE.
Conversely, regions/partitions accessing different dictionaries require different QCODE
values.

Transporting Entities

There are three mechanisms used for transporting CA Ideal entities between
environments.

■ Source transport-Used to move programs, panels, reports, unmodeled dataviews
and members. It creates (or updates) dictionary entries at the receiving end.

■ Object transport-Used to move programs and their corresponding panels between
environments. The programs must be in PROD status. It does not update the
dictionary.

■ Load modules may also be moved and identified to the dictionary in the receiving
environment.

DB2 Plans and Packages

Chapter 12: Establishing Multiple Environments 227

■ Panels are both source and object, so they can be moved by both Source and Object
transport; it is important to note the differences between the two methods. When
a panel is used in a RUN, the date is checked against the value compiled into the
program using it, and a discrepancy will end the run immediately. This is done to
prevent buffer overruns which could result from the panel size changing.

■ Source transport creates a new panel on the target environment, with a changed
date of last modification. Object transport creates an exact copy of the panel,
retaining the original date of last modification. This means that a panel transported
as source cannot be used until the program is recompiled, so if both source and
object transport are used, either the panels should only be included in the object
transport, or the object should be transported after the source.

■ Note: HELP panels may remain in TEST status for the convenience of future text
updates. Use Source Transport instead of Object Transport to move TEST status
HELP panels into production environments. The HELP panels left in TEST status
must remain in VLS format even if the rest of the production application is in load
module format.

DB2 Plans and Packages

The source of a Plan or Package for DB2 is kept on a VLS library-the default is
IDDVW-but a separate file can be used by specifying a new name in IDOPTS. There is no
dictionary entry for either entity.

Because Object Transport is most often used to move applications from development
environments to production, it was decided that the plan and package members should
also be included in the scope of this utility, even though they are considered source, in
order for the transfer to use a single file. Plans and Packages must be rebound in the
target DB2 subsystem, and the simplest mechanism is to regenerate from the
plan/package source.

DB2 sites will therefore typically use a separate plan library for each DB2 subsystem.

CA Ideal and CA IPC Libraries

ADRPNL is used to hold the updatable SET SITE values for CA Ideal and
CA IPC. A separate instance of this library is therefore needed for each environment
where different settings are used. These include the PSS settings, so ADROUT and
ADRPNL must be considered a pair for sharing purposes.

ADRLIB contains user jobcards; IDDAT contains all other user-related members. IDDVW
contains all dataview information, so it too is specific to a dictionary. These three
libraries should be kept with their related dictionaries for sharing.

CA Ideal and CA IPC Libraries

228 Administration Guide

CUSLIBs or VSE sub-libraries will also hold the assembled static options:

@IIDOPTS

The CA Ideal options. This includes such settings as whether to use load modules
(typically NO for development regions and YES for production) which may differ
between regions accessing the same dictionary.

@IIDSYSF

The batch file table. May differ between regions.

SC00TRAN, SCASTRAN, SCWBTRAN

Transaction tables for terminal, asynchronous, and Web applications. There is
typically one for each CICS region.

SC00OPTS

The SCF options. Contains QCODE and other potentially region-specific settings.
Multiple instances of this module will use the same QCODE value if the regions
access the same dictionary.

@ILMLIST and @ILMTxxx

The list of application module tables and the tables themselves. These options are
region-specific.

Chapter 13: Module Format for Programs and Panels 229

Chapter 13: Module Format for Programs
and Panels

This chapter describes the functions associated with converting application programs
and panels to load module format.

Module Definition

You should convert production status online application programs and panels from VLS
format to a standard z/OS load module or a VSE phase format. In this section, the term
module refers to CA Ideal programs and panels in this format. Performance is the
primary reason to convert to module format.

Module Format

Module format provides significant performance benefits. In all environments, loading a
module is more efficient than loading the corresponding VLS object member. Under
CICS, the reentrant portion of a program or panel is loaded and released by each CA
Ideal transaction that needs it. This allows CICS to optimize the use of CICS storage. CICS
keeps modules specified as non-resident (CICS) with a use count of 0 in storage (DSA)
only if CICS is not constrained for storage. Since CICS is in control of the whole region or
partition (while CA Ideal is not), decisions about when to retain modules and when to
swap them out can be made more effectively at the CICS level.

Application program load modules can be linked in 31-bit mode allowing the reentrant
and non-updateable modules to reside in CICS extended storage. This decreases I/O to
the libraries the modules reside in and the DSA it requires to load them.

Because CICS is managing the storage used for programs and panels, the CA Ideal
RUN-STATUS of PRIVATE, SHARED, or RESIDENT is ignored for programs and panels in
module format.

In addition, module format provides the following benefits:

■ Module format facilitates bringing in a new version of a program or panel while
CICS is up and running. The amount of time a load module application is not useable
during the update process is very short compared to VLS format.

■ Module format allows systems programmers to use standard monitoring and tuning
tools to monitor program usage. This can result in better system tuning.

■ Module format allows the use of standard IBM utilities for library maintenance,
backup, and transport.

Module Definition

230 Administration Guide

The application programs and panels cannot run outside the CA Ideal environment. If
attempted, an S0C3 (z/OS) or Execute Exception (VSE) occurs. To execute a module
format application, the user must still sign on to CA Ideal and execute a RUN command.

At transaction boundaries, a copy of the updateable portion of a program or panel is
saved in extended storage. The original module remains in extended storage (RDSA)

The following sections describe the preceding issues in detail.

Creating Modules

Use the CREATE MODULE command to create the module form of a program or panel.
This batch-only command is used the first time you convert a program or panel to
module format. You also use it when you convert a new PROD version of the same
program or panel to module format. As long as you use the same one- to
seven-character module name, the CREATE MODULE command replaces the old
module. However, if the module name for the program or panel changes, you must first
delete the old module with the DELETE MODULE command.

The primary output of a CREATE MODULE command is a set of IBM-format object decks
with appropriate Linkage Editor control statements, written to a sequential file (three
object decks per CA Ideal program and one object deck per panel). This file is used as
input to the IBM Linkage Editor. Regardless of the number of VLS object entities, there is
always one object deck (module) created for each of the reentrant, non-reentrant
(updateable), and symbol table portions of each CA Ideal program.

For example, a VLS object library listing can contain the following entries:

$IDDEMOPGM5 PRDJA

$IDDEMOPGM5 PRDJB

$IDDEMOPGM5 PRDTA

$IDDEMOPGM5 PRDTB

$IDDEMOPGM5 PRDTC

Module Definition

Chapter 13: Module Format for Programs and Panels 231

The VLS panel library listing can contain the following entry:

$IDDEMOPNL5 001U

■ $ID- CA Ideal system name

■ DEMOPGM5-CA Ideal program name

■ DEMOPNL5-CA Ideal panel name

■ PRD-Program status as production

■ JA,JB-Two members for the program symbol table (used only when a runtime error
occurs)

■ TA,TB,TC-Three executable object members, two for the updateable portion and
one for the non-updateable portion of the program

■ 001-Panel version as 1

■ U-Panel VLS member

If you specify the following commands to convert the CA Ideal application to module
format, the following modules are created as shown in the following table:

CREATE MODULE DEMPGM5 FROM PGM DEMOPGM5

CREATE MODULE DEMPNL5 FROM PNL DEMOPNL5 VERSION 1

VLS Object Members Object Deck
Member

Link edited Load Module
Member

$IDDEMOPGM5 PRDJA

$IDDEMOPGM5 PRDJB

DEMPGM5S DEMPGM5S

$IDDEMOPGM5 PRDTA

$IDDEMOPGM5 PRDTB

DEMPGM5U DEMPGM5U

$IDDEMOPGM5 PRDTC DEMPGM5R DEMPGM5R

$IDDEMOPNL5 OO1U DEMPNL5P DEMPNL5P

Note how the multiple VLS object members for the program symbol table (PRDJA and
PRDJB) were combined into one load module as were the multiple VLS members for the
updateable portion of the program (PRDTA and PRDTB). The non-updateable portion of
the program (PRDTC) is stored in a separate load module.

Three separate modules are created for each program:

■ One for the reentrant portion of the program

■ One for the updateable portion of the program

■ One for the program symbol table

Module Definition

232 Administration Guide

Only one module is created for each panel for the Panel Control Block (PCB), the
reentrant portion of a panel.

The names of the created modules are the one- to seven-character modname with a
one-character suffix. The suffixes are:

R-Reentrant (non-updateable) part of a program

U-Updateable (non-reentrant) part of a program

S-Symbol table of a program

P-Reentrant part of a panel

Use these suffixes in the following cases:

■ The user wants to add CICS Program Definitions in order to specify RESIDENT=YES.
CICS Transaction Server option for program autoinstall adds the CICS program
definitions when the modules are loaded for the RUN of a CA Ideal application
program. CTS PAIPGM adds the definitions with default values (RES=NO). For
details, see the IBM documentation.

■ The user wants to use a standard IBM utility to move, delete, and so on, the
modules in the system libraries.

■ The user wants to obtain performance monitor data about the use of modules in
the system; for example, CICS shutdown statistics that show how many times a
module is used.

■ The user wants to use standard CICS services to disable, NEWCOPY, and enable the
modules associated with programs and panels. There is also a CA Ideal REFRESH
command to perform these same services that does not require the knowledge of
the module naming conventions.

When dealing with non-Ideal services, the user must account for all three program
modules and must specify the appropriate module suffix for each of these parts and for
any panel modules.

You can specify many CREATE MODULE commands in the same CA Ideal batch run. The
resultant object decks and appropriate Linkage Editor control statements are
concatenated into the same sequential output data set. The user must specify a job step
following the CA Ideal batch step to execute the Linkage Editor and read that sequential
file as its input.

Execute a SELECT SYSTEM command before the CREATE MODULE command to identify
the CA Ideal system that contains the program. Do not execute RUN commands in the
same CA Ideal job step as CREATE MODULE commands or the results can be
unpredictable.

Module Definition

Chapter 13: Module Format for Programs and Panels 233

If you need to modify the database ID associated with the program, use an ALTER
PROGRAM DBID command before the CREATE MODULE, not after.

The secondary output of the CREATE MODULE command is a new or updated MODULE
entity occurrence in Datadictionary. The entity name is a concatenation of the following:

'$I' 'PGM' modname

'$I' 'PNL' modname

The attributes maintained for the MODULE entity include the module name, version
(always version 1), the date and time the module was created, entity information about
the original program or panel, type, system, name, version, date and time of program
compilation. In addition, the name of the user executing the CREATE command is placed
in the author and controller attributes.

An alias is also created for the MODULE entity occurrence identifying the corresponding
program or panel. It is a concatenation of the following:

'$I' 'P' sss pgm-name

'$I' 'M' sss pnl-name

■ sss-System ID of the program or panel

■ P-For program

■ M-For panel

■ pgm-name-Program name

■ pnl-name-Panel name

If you are creating a module for a new version of a program or panel to which a module
was previously created, then the previous MODULE entity occurrence and its related
information is replaced in the dictionary. If a module is created for a program or panel
and a program or panel with a different name or from a different system was already
converted with the same module name, an error message is issued and the CREATE
MODULE is aborted. Choose a new name or delete the old module.

The syntax of the CREATE MODULE command is described in the Command Reference
Guide.

The program or panel must be in production status to be converted. If there are
multiple versions, the one that is in production status is the one that is converted.

Production programs and panels that were transported with the CA Ideal Object
Transport Utility can be converted to a module format even though there is no
production program or panel dictionary facility entity occurrence for them. In this case,
you must specify the panel's version number (you cannot specify PROD instead of the
version number).

Module Definition

234 Administration Guide

Sample JCL

For z/OS:

//IDLMODS JOB . . .

//*

//* EXECUTE CREATE COMMAND IN IDEAL. *

//*

//BATCH EXEC IDLBATCH

//OBJECT DD DSN=&&TEMP,UNIT=SYSDA,DISP=(MOD,PASS,DELETE),

// SPACE=(CYL,(2,2))

//SYSIN DD *

PERSON $IDEAL PSW $IDEAL

SEL SYS $ID

CREATE MODULE DEMPGM5 FROM PGM DEMOPGM5

CREATE MODULE DEMPNL5 FROM PNL DEMOPNL5 VERSION 1

OFF

//*

//* LINKEDIT MVS OBJECT DECKS PRODUCED BY CREATE. *

//*

//LKED EXEC PGM=IEWL,COND=(0,NE,BATCH),

// PARM='RENT,XREF,MAP,LIST'

//*

//SYSPRINT DD SYSOUT=*

//SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(50,20))

//SYSLMOD DD DSN=IDEAL.APPLIC.LOAD,DISP=SHR

//SYSLIN DD DSN=&&TEMP,DISP=(OLD,DELETE)

/*

Note: DCB information is taken from the OBJECT entry in the CA Ideal System File Table
(@IIDSYSF).

Module Definition

Chapter 13: Module Format for Programs and Panels 235

For VSE:

* $$ JOB JNM=IDLMODS,CLASS=0,DISP=D

* $$ LST DISP=D,CLASS=R,JSEP=0

// JOB IDLMODS

// OPTION LOG,NODUMP

// DLBL IDLPROC,'Ideal.Proclib'

// EXTENT ,vse004

// LIBDEF *,SEARCH=(IDLPROC.Sublib)

// ASSGN SYS000,DISK,VOL=vse004,SHR

// DLBL OBJECT,'Ideal.test.object',0

// EXTENT SYS000,vse004,,,76636,200

// EXEC PROC=IDLBATCH

// EXEC IDBATCH,SIZE=128K

PERSON $IDEAL PSW $IDEAL

SEL SYS $ID

CREATE MODULE DEMPGM5 FROM PGM DEMOPGM5

CREATE MODULE DEMPNL5 FROM PNL DEMOPNL5 VERSION 1

OFF

/*

// OPTION CATAL

// DLBL IJSYSIN,'Ideal.test.object'

// EXTENT SYSIPT,vse004

 ASSGN SYSIPT,DISK,VOL=vse004,SHR

// DLBL 'Ideal.sp.library'

// EXTENT ,vse004

// LIBDEF *,SEARCH=(Ideal.sublib), catalog=Ideal.sublib

 INCLUDE

// EXEC LNKEDT

/*

 CLOSE SYSIPT,05c

/&

* $$ EOJ

RMODE Parameter

Specification of RMODE in the parameter list of the z/OS LKED EXEC or VSE LINKEDT
statements is not required. CA Ideal handles the residency mode automatically.

CA Ideal always automatically links panels with the specification RMODE 24. If RMODE
ANY is hardcoded in the JCL, panels are placed above the line where CA Ideal cannot
access them, therefore leading to abnormal terminations.

Programs are automatically linked with a specification RMODE ANY.

Module Definition

236 Administration Guide

Deleting Modules

The DELETE MODULE command (on-line or batch) deletes the MODULE entity
occurrence and alias occurrence that correspond to the specified program or panel from
the dictionary only. The DELETE MODULE command does not delete the generated
modules from any system module libraries. That is the user's responsibility. Be sure to
delete all three generated parts of a CA Ideal program module.

Execute a SELECT SYSTEM command before the DELETE MODULE command to identify
the CA Ideal system that contains the program. The syntax of the command is described
in the Command Reference Guide.

Identifying Modules

The IDENTIFY MODULE command (batch) updates the MODULE entity occurrence and
ALIAS occurrence of the specified program or panel in the dictionary. The IDENTIFY
command is used after the module format of the program or panel is moved to the
receiving environment.

Execute the IDENTIFY command in batch and only after a program or panel module was
moved through an IBM utility. It makes the module known to CA Ideal at the receiving
site. One IDENTIFY command is sufficient for all load modules associated with the
specified program or panel.

The program or panel name specifies the entity to which the module corresponds. A
SELECT SYSTEM command executed before the IDENTIFY command indicates the CA
Ideal system that contains the entity.

The IDENTIFY MODULE command performs the following steps in batch:

1. It attempts to load the module by executing a load service call to the appropriate
z/OS or VSE facility. Consequently, the module must be in the appropriate z/OS
joblib or steplib or VSE core image library.

2. It verifies that the loaded module corresponds to the specified program or panel.

3. It creates or updates the MODULE dictionary entity occurrence corresponding to
the module name specified on the IDENTIFY command.

The syntax of the IDENTIFY command is described in the Command Reference Guide.

Module Runtime Considerations

Chapter 13: Module Format for Programs and Panels 237

DISPLAY/PRINT INDEX MODULE Command

The DISPLAY/PRINT INDEX MODULE command displays a list of programs and panels
that have module entity occurrences in the dictionary. You can also specify an optional
WITH VERIFICATION clause to verify that the modules are really in the module library
and represent the appropriate application program. The syntax for the command is
described in the Command Reference Guide.

The module name, the corresponding application program or panel identification, and
the date/time of program compilation are displayed. The entries are in alphabetical
order by module name with all program modules first, followed by panel modules.

The WITH VERIFICATION option attempts to load each module or set of module, to
determine whether the correct modules are available to the environment. The entity
type, system ID, entity name, version number, and date/time stamp in the MODULE
dictionary entity are compared with the information found in the loaded module. Any
discrepancies are noted.

This command does not display any modules that do not have corresponding dictionary
entries in the module table.

Module Runtime Considerations

This section details the considerations of module for the runtime environment.

Building the In-Core Load Module Table

The in-core load module table (LMT) identifies the application programs and panels that
are in load module format and provides their module names for the runtime
environment. Whenever an application RUN loads a production program or panel for
the first time or after it is reaccessed after a RELEASE statement, CA Ideal determines
whether the entity is in load module format. If an entry is found, standard operating
system service calls are issued, depending on the environment. If an entry is not found,
a load of the program or panel is requested from the appropriate VLS library.

Module Runtime Considerations

238 Administration Guide

The contents of the LMT can be built using two sources of input:

■ By scanning the MODULE dictionary entities for entries that correspond to CA Ideal
application programs and panels. For each program or panel MODULE DD entity, an
entry is added to the in-core LMT that identifies the program or panel name and its
corresponding module name.

■ By using site-maintained tables to control the contents of the LMT. This option
provides two structures with CA Ideal are analogous to the CICS RDO LIST/GROUP
structures.

■ Application Module Table (AMT): Application Module Tables (AMTs) are physical
modules/phases containing entries of programs and panels and their corresponding
load module prefix. Each program and panel defined in an AMT adds an entry to the
in-core LMT without requiring the presence of a module entity occurrence in the
dictionary. There can be multiple AMTs in a single region. AMTs are assembled and
linked with macros that CA Ideal provides. They have a naming convention of
@ILMTxxx, where xxx is a name the user provides.

■ @ILMLIST: @ILMLIST is a module that contains the list of AMTs to process when
building the in-core LMT. @ILMLIST is assembled and linked with macros CA Ideal
provides. Each region (batch or on-line) can have a separate copy of @ILMLIST,
thereby allowing each region to tailor the load modules it runs.

The section following describes these two structures in more detail.

For batch, the in-core LMT is built when the first RUN command is issued. Under CICS
environments, the in-core LMT is built when CICS starts, provided the program
@IADPLTI was included in the PLT program startup list. If @IADPLTI is not in the PLT or
in the unlikely event that the task is not successful, the user issuing the first RUN
command invokes the processing to build the in-core LMT.

You can control which sources build the LMT by setting the LMTBLD parameter of the
IDOPTSCB macro in the IDOPTS source (which produces the @IIDOPTS load module that
controls CA Ideal site options). Enter the LMTBLD parameter on the FUNC=START
statement in the IDOPTSCB macro. You can assign the following values to the LMTBLD
parameter:

■ DD-Builds the in-core LMT using entries from the @ILMLIST module and entries
found in the dictionary module table.

■ NO-Builds the in-core LMT from processing @ILMLIST only.

The building of the in-core LMT in all environments begins with the loading of
@ILMLIST. If @ILMLIST contains entries, the in-core LMT is built based on the contents
of each AMT table specified in @ILMLIST. If @ILMLIST is empty, the in-core LMT is
empty at this point.

Under CICS, if LMTBLD=DD has been specified, the in-core table will be updated to
include any module entries in the dictionary that do not exist in the in-core LMT.

Module Runtime Considerations

Chapter 13: Module Format for Programs and Panels 239

In batch where LMTBLD=DD, each time a program or panel is accessed and is not found
in the in-core LMT, the dictionary is accessed to determine if a module occurrence is
present. If a module occurrence is found, it is added to the in-core LMT.

The in-core LMT is always built, but can be empty. An empty in-core LMT is built when
@ILMLIST is empty and either LMTBLD=NO or there are no module entity occurrences in
the dictionary. When both of these conditions are true, CA Ideal uses only VLS members
in the environment.

Displaying the In-Core Load Module Table

With the introduction of AMT processing and the elimination of the requirement for
creating load module entries in the dictionary, the DISPLAY INDEX MODULE command
does not necessarily reflect an accurate picture of the in-core LMT. The following
command produces a display of the current contents of the in-core LMT in the region
the command is issued.

DISPLAY LMT

It does not produce an alphabetical listing. You can use FIND and INCLUDE commands to
locate specific entries. For additional information regarding this command, see the
Command Reference Guide.

Tailoring the LMT

The introduction of site-defined AMTs and @ILMLIST let you designate the exact
contents of the in-core LMT. This can be useful in a variety of situations:

■ Multiple CICS regions sharing a single dictionary and each of those CICS regions run
different programs

■ Creating separate AMTs for batch only applications

■ Simplification of processing

AMT processing removes the PPT and LMT entries for load modules that are not run in a
specified CICS region.

Module Runtime Considerations

240 Administration Guide

AMT processing can also simplify the processing that must otherwise execute at the
receiving site of migrated applications. You can do this by simply supplying the load
modules and AMTs to the receiving site. In some cases, you can also supply @ILMLIST.
In other cases, the receiving site executes the steps necessary to update, reassemble,
and link @ILMLIST.

Sites using AMT processing should be aware of the following restrictions. For more
information see the “Application Migration Considerations” chapter.

■ REFRESH command deletes the LMT entry if no dictionary module entry is present.
Execute the CICS NEWCOPY command to refresh an existing program.

■ Modifications to @ILMLIST and AMTs require recycling. CICS NEWCOPY commands
do not affect the contents of the LMT once CICS is active.

■ New subprograms require you add additional entries to the corresponding AMT.
You must either recycle CICS or issue the IDENTIFY MODULE command before a
REFRESH command so that the LMT can be updated. CICS NEWCOPY commands do
not make the module known to the CA Ideal LMT.

Preparing Application Module Tables (AMTs)

The following is the format of an AMT. Specify each program or panel module entry on a
single line.

AMT TITLE 'title'

 LMHDR TABLEID=xxx

modname LMDEF ent,sys,entname,ver

modname LMDEF ent,sys,entname,ver

 .

 .

 .

 TITLE 'title'

modname LMDEF ent,sys,entname,ver

modname LMDEF ent,sys,entname,ver

 .

 .

 .

 END

■ TABLEID-Three-character literal that distinguishes the application LMT and builds a
header in the application LMT.

■ modname-One- to seven-character module prefix identifier.

■ ent-Literal PGM for programs and PNL for panels.

■ sys-Three-character system name of the program or panel.

■ entname-One- to eight-character program or panel name.

■ ver-Literal PRD for programs and the explicit version number for panels.

Module Runtime Considerations

Chapter 13: Module Format for Programs and Panels 241

The following is an example of entries and JCL that assemble and link an AMT.

z/OS

//IDLMTXXX JOB ...

//ASMOPT EXEC PGM=IEV90,PARM=(DECK,NOOBJ),REGION=500K

//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR

// DD DSN=Ideal.maclib,DISP=SHR

//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(10,5))

//SYSPRINT DD SYSOUT=*

//SYSPUNCH DD DSN=Ideal.objlib(LMTXXX),DISP=SHR

//SYSIN DD *

**** SAMPLE INPUT ****

AMT TITLE 'Sample Application LMT: Application 1'

 LMHDR TABLEID=999

MODNAM1 LMDEF PGM,$ID,PROGRAM1,PRD

MODNAM2 LMDEF PGM,$ID,PROGRAM2,PRD

MODNAM3 LMDEF PGM,$ID,PROGRAM3,PRD

MODNAM4 LMDEF PGM,$ID,PROGRAM4,PRD

MODNAM5 LMDEF PNL,$ID,PANEL1,001

 END

//LNKOPT EXEC PGM=IEWL,PARM=(RENT,XREF,LIST,NCAL),COND=(4,LT)

//SYSLMOD DD DSN=loadmod.lib,DISP=SHR

//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(10,5))

//SYSPRINT DD SYSOUT=*

//OBJLIB DD DSN=Ideal.objlib,DISP=SHR

//SYSLIN DD *

 INCLUDE OBJLIB(LMTxxx)

 NAME @ILMT999(R)

/*

Module Runtime Considerations

242 Administration Guide

VSE

* $$ JOB JNM=@ILMT$ID,CLASS=A,LDEST=(*,VMUID)

* $$ LST CLASS=R

// JOB @ILMT$ID

// ON $RC>0 GOTO $EOJ

// LIBDEF *,SEARCH=(CAI.IDEAL,CAI.IPC),CATALOG=CAI.USER

// OPTION CATAL

 PHASE @ILMTxxx

// EXEC ASSEMBLY

 PRINT NOGEN

LMT TITLE 'LOAD MODULE DEFINITIONS FOR $ID SYSTEM'

 LMHDR TABLEID=$ID

MODNAM1 LMDEF PGM,$ID,PROGRAM1,PRD

MODNAM2 LMDEF PGM,$ID,PROGRAM2,PRD

MODNAM3 LMDEF PGM,$ID,PROGRAM3,PRD

MODNAM4 LMDEF PGM,$ID,PROGRAM4,PRD

MODPNL1 LMDEF PNL,$ID,PANEL1,001

 END

/*

// EXEC LNKEDT

/*

/&

* $$ EOJ

Note: In both z/OS and VSE, a CICS PPT entry is required for the @ILMTxxx module or
phase, where xxx is $ID by default. You can change it as long as the PPT name
corresponds to (is the same as) the module or phase name.

Establishing @ILMLIST AMT Lists

The following is the input for the assembly of @ILMLIST. Specify on the LMTGEN macro
TABLEID parameter the list of AMT tableids that reflect the contents for @ILMLIST.

LMLIST TITLE '@ILMLIST Application LMTs'

 LMTGEN TABLEID=(tid,tid,...)

 END

Tid

Represents the list of AMT tableids. All @ILMTsss modules and the @ILMLIST module
must be in a library accessible to the CICS or batch region.

To produce an empty @ILMLIST, specify the following for the assembly input:

LMLIST TITLE '@ILMLIST Application LMTs'

 LMTGEN TYPE=DUMMY

 END

Module Runtime Considerations

Chapter 13: Module Format for Programs and Panels 243

The following is an example of entries and JCL that assemble and link @ILMLIST.

z/OS

//IDLMLIST JOB ...

//ASMOPT EXEC PGM=IEV90,PARM=(DECK,NOOBJ),REGION=500K

//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR

// DD DSN=Ideal.maclib,DISP=SHR

//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(10,5))

//SYSPRINT DD SYSOUT=*

//SYSPUNCH DD DSN=Ideal.objlib(LMLIST),DISP=SHR

//SYSIN DD *

LMLIST TITLE '@ILMLIST Application LMTs'

 LMTGEN TABLEID=(000,999,DRA)

 END

//LNKOPT EXEC PGM=IEWL,PARM=(RENT,XREF,LIST,NCAL), COND=(4,LT)

//SYSLMOD DD DSN=Ideal.cailib,DISP=SHR

//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(10,5))

//SYSPRINT DD SYSOUT=*

//OBJLIB DD DSN=Ideal.objlib,DISP=SHR

//SYSLIN DD *

 INCLUDE OBJLIB(LMLIST)

 NAME @ILMLIST(R)

//

VSE

* $$ JOB JNM=@ILMLIST,CLASS=A,LDEST=(*,VMUID)

* $$ LST CLASS=R

// JOB @ILMLIST

// ON $RC>0 GOTO $EOJ

// LIBDEF *,SEARCH=(CAI.IDEAL,CAI.IPC),CATALOG=CAI.USER

// OPTION CATAL

 PHASE @ILMLIST

// EXEC ASSEMBLY,PARM='VSE'

 TITLE '@ILMLIST APPLICATION LMTS'

 PRINT NOGEN

 LMTGEN TABLEID=($ID,DRA)

 END

/*

// EXEC LNKEDT

/*

/&

* $$ EOJ

Note: A CICS PPT entry is required for the @ILMLIST phase.

Module Runtime Considerations

244 Administration Guide

Automating AMT Generation

You can generate an AMT manually or automatically. AMTGEN is a sample CA Ideal
program available from the CA Support website. This program generates an AMT that
includes an entry for each production program and panel in a system that you specify.
You can modify this program to meet other specifications you might want to adopt at
your site or you can use an entirely different program that generates this data.

The program AMTGEN is provided in external source format. You must use the CA Ideal
source transport utility to import this application.

You can automate the generation of an AMT. CA Ideal distributed a sample application
to generate AMTs for all the programs and panels in an entire CA Ideal system
definition. CA Ideal member AMTGEN contains JCL to run the application.

Execute the CA Ideal program, AMTGEN, passing the name of the selected system as a
parameter to the AMTGEN program, as shown in the following RUN command:

RUN AMTGEN VERSION PROD PARM '@IC'

The AMTGEN program produces the following output:

■ A list of all program and panel module entries in the dictionary that are in the
specified system.

 09/29/94 AMTGEN Audit Listing PAGE 1
 AMT and PPT Source Generator for System: HBS
 SEQUENCE OUTPUT MODULE
 NUMBER GENERATED NOT FOUND
 ________ _________ _________
 1 ADDEMPL
 2 ADDHMOS
 3 CHGCARR
 4 RATTGEN
 5 RATTUPD
 6 UPDEMPL
 .
 .
 .
 23 ADDEMPL
 Total Entities Encountered: 23
 Entities Processed 15
 Module-Not-Found Entities 8

CICS Considerations

Chapter 13: Module Format for Programs and Panels 245

■ You can use card-image files to assemble and link the list of module entries into an
application module table.

AMT TITLE 'LOAD MODULE DEFINITIONS FOR AMT: PROGRAMS' 00000001
 LMHDR TABLEID=@IC 00000002
RATTGEN LMDEF PGM,@IC,RATTGEN,PRD 00000003
RATTUPD LMDEF PGM,@IC,RATTUPD,PRD 00000004
UPDEMPL LMDEF PGM,@IC,UPDEMPL,PRD 00000005
ADDEMPL LMDEF PGM,@IC,ADDEMPL,PRD 00000006
 .
 .
 .
 TITLE 'LOAD MODULE DEFINITIONS FOR AMT: PANELS' 00000012
ADDEMPL LMDEF PNL,HBO,ADDEMPL,0001 00000013
 .
 .
 .
 END 00000019
 NAME @ILMT@IC(R) 00000001

To assemble the load module table @ILMLIST, perform the following tasks:

■ Assemble the card-image file of module entries produced in Step 1 to create the
AMT (application module table). The application module table is named @ILMTsss,
where sss is the system ID of the program specified to the AMTGEN program. To
specify a different suffix, set the parameter to the appropriate three-character
name on the control card for the AMTGEN program.

■ Repeat steps 1 and 2 for each application in the CICS region.

■ Edit the LMTGEN statement in the jobstream in source member LMLSTASM to
include the three-character suffixes of the application load module tables and then
submit the member LMTASM to assemble the load module table @ILMLIST.

Notes:

■ All @ILMTsss modules and the @ILMLIST module must be in a library accessible to
the CICS or batch region.

■ If your site has CA Datacom Database Resource Analyzer Option, the Application
Module Table @ILMTDRA must be an entry in @ILMLIST.

■ For ease of maintenance, each application LMT should match one RDO group for
PPT entries which lets you isolate changes and group them easily.

CICS Considerations

This section details the CICS considerations as follows.

CICS Considerations

246 Administration Guide

PPT Entries

The CICS system initialization parameter PGAIPGM must specify active. This lets the
program autoinstall function so that CICS dynamically adds PPT entries for the CA Ideal
application load MODULEs. For more information, see IBM documentation.

Loading the Modules at Startup

You can control whether all the load modules are loaded when the in-core LMT is built
at PLT startup by setting the PLTLOAD parameter of the IDOPTSCB macro in the IDOPTS
source.

You can assign the following values to the PLTLOAD parameter.

■ YES-Determines whether the load modules associated with an entry added to the
in-core LMT during CICS PLT processing are loaded into CICS. An error message will
be issued for any missing or invalid modules.

■ NO-Bypasses the loading of the modules when the entry is added to the in-core
LMT during CICS PLT processing.

In most instances, you want to set the PLTLOAD parameter to NO. Because it bypasses
the loading of the user program and panel load modules, it significantly reduces the
amount of time CICS becomes available to your users after startup. A value of NO does
not affect how the in-core LMT is built or the PPT entries.

If PLTLOAD=YES, all program modules, including the symbol table of every program that
is only loaded in the case of a runtime error, remains resident in RDSA . This could
amount to a lot of storage never accessed by the environment.

Updating the In-Core LMT-REFRESHing Modules Online

Chapter 13: Module Format for Programs and Panels 247

Updating the In-Core LMT-REFRESHing Modules Online

Changes to MODULE entity occurrences in the dictionary after the in-core LMT is built
do not affect the in-core LMT. CREATE MODULE, DELETE MODULE, and IDENTIFY
MODULE commands consequently do NOT modify the in-core LMT.

The REFRESH command updates the in-core LMT and synchronizes it with the dictionary
entity occurrence as follows:

■ When a module entity for the specified program or panel is found in the dictionary:

 If an in-core LMT entry exists, it is updated; otherwise, an entry is added. In a
CICS environment, if PPT entries do not exist, they are added and a CICS DISABLE,
NEWCOPY, and ENABLE for each module associated with the program or panel, is
performed.

■ When a module entity for the specified program or panel is not found in the
dictionary:

If an in-core LMT entry exists, it is deleted; otherwise, an error message is issued.

A SELECT SYSTEM command executed before the REFRESH command identifies the CA
Ideal system that contains the program or panel. The syntax of the REFRESH command is
described in the Command Reference Guide.

Execute the REFRESH command for each program or panel that was replaced. You
should also execute it in each environment using the replaced program or panel.

Carry out this process with standard CICS commands. However, using the CA Ideal
REFRESH command with the program name means that all three modules are refreshed
for application programs; you do not need to remember the proper module suffixes,
and you do not need to remember the seven-character module name.

If a CICS NEWCOPY service fails because the module is still in use, CA Ideal waits five
seconds and tries again. If it still fails, CA Ideal continues waiting and tries again in one
minute. If, after a minute, the NEWCOPY still fails, the load modules are left disabled
and a message indicating the problem is sent to the user. This usually implies that the
CA Ideal DISABLE or ENABLE command was not correctly issued or that the ENABLE
command was issued before the REFRESH command. For more information about the
REFRESH command, see the "Application Migration Considerations" chapter.

Chapter 14: Application Migration Considerations 249

Chapter 14: Application Migration
Considerations

This chapter describes the methods available for moving application programs and
panels from the development center to the production center. Each method has certain
advantages and disadvantages. For each site, determine the best method that suits its
specific needs.

Although it is not required, you should convert all programs and panels to load module
format at the production center for optimal performance.

Development Considerations

When you are ready to release an application to the end users:

1. All programs and their resources should be in production status.

2. Move the programs from the development center to the production center.

3. Add or update the application at the production center.

Testing Programs Before Marking Them to Prod

After the application is initially marked to prod, you can modify one or more programs
in the application.

You can modify the application by first duplicating the programs that require
modification to the next version in the development environment and making the
necessary changes. When the TEST status programs are ready to test, you can run them
with the unchanged PROD status programs by issuing the command:

ASSIGN PROGRAM pgm-name VER test-version

You should then issue the RUN statement for the current production application. (For
the command syntax, see the Command Reference Guide.)

After the program is tested with the new TEST versions of the modified programs and
the results are correct, you can MARK these programs to Prod status. The current Prod
status calling programs are automatically related to the new production versions. No
change or recompile is necessary for the calling programs.

When issuing the MARK STATUS command, you can receive the error message
IDADXSSP24 “PROD” program in use, please try later. This can happen if the SCOOPTS
QCODE parameter is not properly set.

Application Migration Considerations

250 Administration Guide

Mark Programs to Prod Status

The CA Ideal MARK STATUS command changes the status of an entity. For information
about entity status and version, see Preliminary Concepts in the Programming
Reference Guide. The MARK STATUS command is documented in the Command
Reference Guide.

Putting an application in Prod status cuts down processing at runtime. When you run a
program that is in Test status, CA Ideal checks the dictionary and verifies that:

■ The program entity occurrence exists.

■ The program's procedure, working data, and parameter sections were not edited
since it was last successfully compiled.

■ The resources of the program were not modified since the last successful compile.

When you run a program that is in Prod status, the dictionary checking is minimal
because:

■ Moving the program to Prod status ensures that all of the program's resources must
exist and are in Prod status.

■ The edit dates must be in sync because you cannot edit the program.

When VER PROD is specified on the RUN command, CA Ideal goes directly to the object
code and does not check the dictionary at all. PROD status is a requirement for the
Object Transport Utility and the CREATE MODULE facility.

Application Migration Considerations

The first decision that you need to make for the production environment is the format
under which the applications run. Load modules are highly recommended in a CICS
production environment over VLS format.

Application Migration Considerations

Chapter 14: Application Migration Considerations 251

Runtime Configurations

When load modules are the format of choice, you must also decide what sources to use
to build the in-core LMT. You can find more information about the in-core LMT in the
“Module Format for Programs and Panels” chapter.

There are three choices for building the in-core LMT:

■ You can build the contents of the in-core LMT by extracting the data found only in
the dictionary MODULE table. To implement this method, all modules must be
created or identified. Specify IDOPTS LMTBLD=DD and the @ILMLIST must be
empty.

Advantages:

DIS INDEX [ALL] MODULE is an accurate list of the programs and panels running in
load module format.

Disadvantages:

If running multiple CICS regions against the same dictionary, LMT entries are built
for programs and panels in all regions regardless of whether they run there.

■ You can build the contents of the LMT by extracting the data only from the AMTs
listed in the @ILMLIST. To implement this method, specify IDOPTS LMTBLD=NO.
Dictionary entries might exist, but they are ignored when the LMT is initially built.

Advantages:

– You can customize the contents of the LMT to include only the programs and
panels accessed in a particular region. This can be especially useful when
multiple CICS regions run different sets of programs but share the same
dictionary.

– This method results in the quickest processing time to build the LMT because
there is only access to the AMT modules, therefore access to the MODULE
dictionary table was eliminated.

– Minimal work is executed at each production center. You can create the
modules in the development region along with an AMT and move it to the
production center. This can be a very useful method of distributing programs in
a vendor situation.

– IDENTIFYs are optional.

Disadvantages:

– DIS INDEX MODULE is not an accurate list of the programs and panels running
in load module format because it only references dictionary and not the LMT.

– You cannot execute the REFRESH command if no dictionary module occurrence
exists. The LMT entry is deleted.

Application Migration Considerations

252 Administration Guide

■ The contents of the LMT are built from both the programs found in the AMTs and
the dictionary. Duplicates are allowed. However, they incur additional overhead
when the in-core LMT is built. To implement this method, IDOPTS LMTBLD=DD and
the @ILMLIST should not be empty.

Advantages:

– You can define applications common to all CICS regions in the dictionary.

– You can define applications executed in one CICS region using an AMT.

Disadvantages:

– DIS INDEX MODULE is not an accurate list of the programs and panels running
in load module format because it only references dictionary and not the LMT.

– You cannot execute the REFRESH command if a dictionary module occurrence
does not exist. The LMT entry is deleted.

– Using the two methods together can be a source of confusion.

Application Migration Processes

You can use a variety of methods to move the application programs and panels from the
development center to the production center.

Using the Object Transport Utility with Load Modules

One possible method of migrating an application is to first use the CA Ideal Object
Transport Utility to move the program and panel object modules in VLS format to the
production center. After this is done, use the CREATE MODULE command in the
production environment to convert the VLS object members to module format. There
are several advantages to using the Object Transport Utility approach:

■ You can easily unload and load related collections of programs and panels with just
a few commands.

■ The Object Transport Utility output identifies all the programs and panels that were
loaded. This provides a list for determining which programs and panels are
converted to module format.

■ If any ALTER PROGRAM commands are required at a later time, the transported VLS
object modules are available to ALTER. Then new load modules created from them
without having to retransport. ALTER PROGRAM has no effect on module format
applications.

■ You are not required to be aware of module suffixes for the three modules per
program.

■ If a subset of all programs and panels is converted to module format, the Object
Transport Utility is still needed to move those that still execute in VLS format. It is,
therefore, advisable to move the whole application and then convert those
programs and panels as needed to module format.

Application Migration Considerations

Chapter 14: Application Migration Considerations 253

Using the CA Ideal Source Transport Utility with Load Modules

Sites can use the source transport utility to move an application. Some sites like to have
the source available in case of an emergency change and the sending and target sites
are not connected. It might also be possible that the target site needs to make
modifications to the source.

Once the application is source transported, compile and mark the entities to production
before load modules are created.

EXPGEN Sample Application

CA Ideal distributes a sample application that is called EXPGEN that generates all the
entity EXPORT statements in the application substructure of the specified high-level
program. Use this application as delivered or customize it according to individual
requirements. Sample code can be downloaded from the CA Support website.

Source Transport Commands

There are several commands of the CA Ideal Source Transport Utility that you should
carefully consider when using the source transport for production application migration.
You can find these commands in Working in the Environment Guide. The most helpful of
these commands for application migration include:

■ SET IMPORT RESOURCE

Overrides the versions specified for the resources of a program at import time
without having to modify the external source.

■ SET IMPORT DUPLICATE

Specifies the action to take when an imported entity already exists.

■ SET IMPORT NEW VERSION

Specifies the version for the entities created during the import process.

Application Migration Considerations

254 Administration Guide

Important! If you are using the source transport utility to migrate applications to a
production environment, do not use it with the object transport utility. Panels can cause
problems.

CA Ideal application panels are stored in two parts: the layout is stored in a source
member in the panel library and the compiled attributes are stored in each program's
object.

Both parts are used at runtime. The object transport utility moves both parts because
they are both needed at runtime. The object transport copies the source and object
members “as is” into the receiving region. The date/time stamps showing the last
modification to the panel are not changed.

The source transport, however, moves just the source member. It changes the
date/time stamp of the transported member to the date/time of the actual transport
because the source transport is in effect creating a new entity at the receiving site.

At runtime, CA Ideal compares the date/time of the last edit of the panel (as it was
recorded in the program object at compile time) to the edit date found in the panel
source member to make sure that the panel was not modified since the last compile. In
this scenario, the panel date/time stamp is later than the compile date/time because
the source transport overlaid the panel source and changed the date. The runtime
processor assumes that this panel was modified and issues the PANEL MODIFIED
message.

The best thing to do if you want to shelter the source code is to export it using source
transport and save it in external source format using CA Librarian (or another library
management system) or a data set.

If you want to maintain both the source and object code for panels in a production
region, do one of the following:

■ Maintain separate system IDs for source and object so that there is no chance of
overlaying the panels.

■ Use the source transport only and recompile everything in the production region.

Using Utilities to Move Load Modules

The last option requires the least amount of processing in the production center. You
can move whole libraries containing CA Ideal user program and panel load modules to
the production center. CA Ideal IDENTIFY commands are optional if an application
module table (AMT) is available to define the entities to the LMT. For additional
information regarding this process, see the “Module Format for Programs and Panels”
chapter.

Application Migration Considerations

Chapter 14: Application Migration Considerations 255

Replacing Online Applications

The basic requirement of any online line application system is the ability to install new
application software or replace existing applications with updated software while the
online line environment is running. These steps differ slightly based on whether you are
running VLS or load module format.

Using load module/phase format:

1. Migrate the application using one of several methods resulting in load modules
available to the production environment.

2. Use the DISABLE RUN command to force active users off the affected application
and suppress potential users from gaining access while you are installing the
application.

3. REFRESH the load modules.

4. Use the ENABLE RUN command to allow users to start running their applications
again.

With load modules, you can execute Step 1 only and wait until CICS is recycled to bring
in the new versions of the application programs.

Using VLS format:

1. Use the DISABLE RUN command to force active users off the affected application
and suppress potential users from gaining access while you are installing the
application.

2. Transport the application using the object transport utility.

3. Use the ENABLE RUN command to allow users to start running their applications
again.

If there is a mixture of load modules and VLS format for a single application, it is still
necessary to execute the object transport utility for VLS run programs between the
DISABLE and ENABLE of the application and panels in VLS format.

Disabling and Enabling an Active Online Application

You can use the DISABLE and ENABLE commands to force active users to exit from an
active application to import a new version of that application by using the transport
utility or by creating a new version of a load module. You can use the DISABLE command
against applications that are in VLS object format or load module format.

The syntax of these commands is described in the Command Reference Guide.

The DISABLE command forces users to exit from an application. The DISABLE command
must specify the highest level of an application (that program executed by a RUN
command). It has no effect if issued for a subprogram. Precede the DISABLE command
with the appropriate SELECT SYSTEM command.

Application Migration Considerations

256 Administration Guide

Important Considerations

The following considerations while disabling an active online application are:

■ If the application to disable is running in multiple CICS regions or partitions, execute
the DISABLE command in each region. This is true for each standalone CICS region
and each AOR region in an MRO environment.

■ When the DISABLE time arrives, the users running the specified application are not
immediately purged. Their runs are aborted at the next transaction boundary (when
the user presses a PF key or the Enter key or when a panel is transmitted) after the
disable time arrives. For programs and panels in VLS format, the enqueues on those
programs and panels are not released until the run is actually aborted. If a user left
the terminal before the disable time arrives, those enqueues are not released until
the user returns and presses the Enter key or a PF key.

These enqueues prevent the transport utility from running or a new version of a
program from being marked to PROD status since an exclusive enqueue on those
programs and panels is requested from the operating system. In this case,
eliminating these enqueues requires a DEQUEUE command be issued for each
program and panel enqueued before running the object transport utility or issuing
the MARK STATUS command. This is not a problem for application programs and
panels in load module format since the runtime executor uses no enqueues in this
case.

■ It is not possible to disable a particular subprogram or portion of a
run-unit. Specifying a subprogram name instead of the main program name is
ineffective. The program name specified in the DISABLE command must be the
same program name specified in the RUN command.

■ If a new version of a program is replaced and multiple applications use it, each of
those applications must be disabled.

■ If a new version of a program is replaced without issuing a DISABLE command or in
some way making sure that all users are off the application, different kinds of
internal errors can occur. The most common error, “IDADOMLD07 - Global storage
DT discrepancy for PGM pgm-name VER ver found” indicates that the updateable
and reentrant portion of a program is not synchronized. If the updateable portion
of a program is in CICS temporary storage while the reentrant portion of the
program is replaced, this synchronization error is detected the next time the
reentrant part of the program is loaded into memory.

■ The DISABLE command stays in effect until it is explicitly released with the ENABLE
command or until CICS is shut down and restarted.

Application Migration Considerations

Chapter 14: Application Migration Considerations 257

The ENABLE RUN command allows users to start running applications that were
previously disabled.

If DISABLE and ENABLE commands are executed after an end user left an active run of
that application, the run still aborts when the user returns to continue the run. This is
true even if the application was enabled before the session was continued. This is
because the user was running a program that is replaced and the updateable portion of
the program is from the old version of the program while the reentrant portion of the
program is from the NEWCOPY copy. To synchronize all program components, the run
must still be aborted and the user must restart the application.

Replacing Programs and Panels in an Active Online Environment

You can choose among five basic configurations options to process a single
environment.

Option 1: Load Modules - LMTBLD=DD with empty @ILMLIST

This represents the traditional method used in past releases of CA Ideal before AMTs
became available with CA Ideal 2.2. Using this option requires that the modules be
defined to the dictionary. You can do this by CREATing the modules in the production
center from the VLS object or moving the modules and issuing an IDENTIFY command
for each program or panel.

The syntax of the CREATE and IDENTIFY command are described in the Command
Reference Guide. You must execute the commands in batch.

Since the CREATE and IDENTIFY commands do not update any in-core module table, the
new or updated modules are not known to any online line CA Ideal environments in
operation when the commands are executed. After the load modules and dictionary
entries are defined to the region, you can disable the application and refresh each of the
new or replaced programs and panels before they are disabled. Waiting to recycle the
region is also an optional means of bringing in the new application.

Option 2: Load Modules - LMTBLD=NO, without dictionary entries

This setup means the LMT is built only from the entries pointed to by @ILMLIST. By
including an AMT in the same library as the application load modules, it is only
necessary that the target site include the name of the AMT in the @ILMLIST module.

This method requires careful consideration when you attempt to replace modules in an
active online environment. Because there are no MODULE dictionary entries for any of
the programs or panels when using this method, the REFRESH command deletes the
LMT entry and does not perform the NEWCOPY.

Application Migration Considerations

258 Administration Guide

If it is necessary to bring in new programs, panels, or applications, you can issue
IDENTIFY commands in batch for each of the entities that need to be activated. Once
that is complete, you can REFRESH each entity so that the LMT entries are built. You can
then DELETE each module. Be sure to make the necessary modification to the AMT and
@ILMLIST so that the LMT is built correctly when CICS is recycled at a later time.

Existing programs and panels in load module format can be CICS NEWCOPIED to bring in
new versions. Always remember to NEWCOPY all three modules associated with a
program if you select this method. You can also IDENTIFY and REFRESH the modules if
you do not want to use the CICS NEWCOPY commands and optionally DELETE the
modules, depending on whether you want to maintain any module entries in the
dictionary.

If it is not necessary to add a new program, panel, or application to the environment
while CICS is up; consider disabling the REFRESH command to avoid LMT entries from
accidental deletion. Disabling the REFRESH command eliminates the ability to add a new
program or panel to the environment while CICS is active. Any new programs and panels
must be added to an AMT. You must add new AMT names to @ILMLIST. A recycle of
CICS must be performed for the changes to become active. NEWCOPYing an AMT and
@ILMLIST has no effect on the in-core LMT while CICS is up.

If the REFRESH command is erroneously executed, it can delete the program or panel
from the LMT. If this occurs, execute the IDENTIFY command in batch and the affected
application is disabled before the REFRESH is executed again. Although you are
executing load modules in this environment, DISPLAY INDEX MODULE does not return
an index of modules. Remember that this command is a listing according to the
dictionary.

Option 3: Load Modules - LMTBLD=DD and entries in @ILMLIST

This setup builds the LMT from two sources. It is important to only issue REFRESH
commands for those entities that exist in the dictionary. Programs and panels that are
only defined to an AMT are deleted.

Option 4: Load Modules - LMTBLD=NO with dictionary entries

This setup implies that you are building the in-core module table from the entries
pointed to by @ILMLIST, but still maintaining the dictionary MODULE occurrences. The
dictionary entries let you execute the REFRESH command in CA Ideal without having the
adverse effect of deleting the LMT entry.

Option 5: VLS format only or with load modules

You can run load modules with one of the four options previously mentioned and you
can run some of your programs in VLS format.

You should be aware of the following enqueuing considerations if you plan to replace
VLS format programs in an active online environment.

Application Migration Considerations

Chapter 14: Application Migration Considerations 259

Enqueuing Considerations

■ An enqueue remains active against a program in VLS format from the time the
program is first called until the RUN of the application that accessed the program
terminates.

■ The object transport utility LOAD obtains exclusive enqueues against the portions of
the programs loaded into the VLS libraries.

■ The DISABLE RUN command forces users off an active application only after the
transaction boundary following the disable time. This means some programs could
still remain enqueued even after the disable time arrives. Review Disabling and
Enabling an Active Online Application earlier in this chapter.

■ Another CICS region running VLS programs and panels of the same name in
physically different VLS libraries can lead to failure of the object transport utility
ADXSSP24 'PROD' program in use. Please try later. This happens when the
SC00OPTS QCODE parameters in each region are not properly set.

■ If you replace active programs and panels without disabling the application first, the
results can be unpredictable. Under most circumstances, you receive IDADOMLD07
- Global storage DT discrepancy for PGM pgm-name VER ver found, however, other
messages are possible.

It is also possible that the transport or mark status fails if a physically different program
of the exact same name is running in another region and both regions have the same
QCODE setting. For more information about enqueuing considerations for multiple
regions, see the “Establishing Multiple Environments” chapter.

Upgrading from an Earlier Version

260 Administration Guide

Upgrading from an Earlier Version

CA Ideal is "upwardly compatible" meaning that a program that is compiled with an
earlier release can still run in the most current release of CA Ideal. However, programs
compiled with a higher release of CA Ideal cannot run in a CA Ideal environment at
lower release. Therefore, the programs that are updated in your newly upgraded
development environment can be re-compiled in batch with the old, lower version of CA
Ideal to run in these environments until the production environment is upgraded.

Note: Always upgrade and test a development environment before upgrading your
production environment.

Use the following procedure for running and testing programs in a development
environment on a new release of CA Ideal and running the same programs in your
current production environment that uses a different release of CA Ideal.

■ Save your current release installed software load libraries for continued use by
production. Save the ADRLIB, ADRPNL, and ADROUT data sets used by the current
release development environment for the batch procedure.

■ Upgrade the development system to the new release. Plan for an interim period
with the new release in development and the current release in production.

■ Developers can continue development with the following warning: During the
interim period, ongoing maintenance of production applications should not use any
new release features. These features would not be recognized in the current
release production environment. New applications that are moved into production
after the interim test period can use new release features. This should thoroughly
test the new release code in the development environment.

■ For any maintained programs that must be moved from development to production
during the interim period, the following steps should be followed:

1. Develop the changes to the application on the new release development system.

2. Run a CA Ideal batch job to compile the application program(s) and mark status to
production.

This batch job must use the load libraries of the current release and ADRLIB,
ADRPNL, and ADROUT data sets. Ensure that the new release development source,
object, and panel VLS libraries are included.

3. Run the CA Ideal object transport utility unload next or as the second step of the
batch compile and mark. The new release load library for the object transport
should be used for the unload process and the current release load library should
be used for the loading of the application into the current release production
environment.

This loads the application into the current release production environment.

Upgrading from an Earlier Version

Chapter 14: Application Migration Considerations 261

Note: If the QCODE value in the SCF Options Block (SC00OPTS) was changed in the
current release development environment to modify the enqueue names, the same
value must be used for the new release development environment. When transporting,
ensure that the correct load library is supplied so that the enqueue names match the
system with which they are running.

Chapter 15: Asynchronous Execution 263

Chapter 15: Asynchronous Execution

This chapter describes how a CA Ideal application can execute as an asynchronous task
in CICS using the Session Control Facility (SCF) module SC00NATD. A program can call a
subprogram to execute as an asynchronous task using the PDL statement, INITIATE.

An asynchronous transaction does not require user interaction to complete. All or most
resources are released at the end of the task. All database updates are fully committed
or rolled back at the completion of the asynchronous process.

An asynchronous execution using SC00NATD combines the functions of SC00SAST,
which is used for asynchronous compiles, and SC00INIT, the terminal-based driver, to
provide a true asynchronous run of a CA Ideal program in CICS. A CICS Command Level
program (assembler, COBOL, or PL/I) starts the transaction that runs the application
program asynchronously.

Setting Up an Asynchronous Execution

To use the SCASTRAN feature, the SCF Asynchronous Transaction Table must be
assembled and linked. The entries in SCASTRAN specify the CA Ideal program to be run.

An entry in SCASTRAN is defined using the following parameters:

■ TRANID=xxxx

– xxxx-Four-character transaction-id defined in CICS with TWASIZE=64 to invoke
program SC00NATD.

■ TRNDATA=sssppppppppvvvvx

– sss-Three-character SYSTEM name where the program resides.

– pppppppp-Eight-character program name. The name must be padded with
blanks if less than eight characters.

– vvvv-Four-digit version number or PROD for production status programs.

– x- Code N indicates that the RUN PARAMETER clause is not used when the RUN
command for the program is executed, even if data is specified in the FROM
option of the EXEC CICS START command invoking the asynchronous run (for
example, when starting a process from MQSeries). The default value is Y.

Note: If no FROM data is specified in the EXEC CICS START command, no run
parameter data is expected.

Setting Up an Asynchronous Execution

264 Administration Guide

■ DFLTUSR=uuu

– uuu-Three-character user ID that runs the program. This user ID must be
defined with specific authorization for the system specified in the TRNDATA
parameter. This applies even if the user ID has ADMINISTRATOR authority. If a
user has a SIGNON member, it is executed prior to the RUN. This allows SET
RUN commands to be processed for the environment.

A CICS transaction definition must be added for the transaction defined in the
SCASTRAN entry. Transaction definitions must specify PROGRAM(SC00NATD) and
TWASIZE(64). The command DISPLAY PCT will verify if the transaction has a CICS
definition and the corresponding SCASTRAN entry.

Any messages other than internal errors (which are always logged in ADRLOG) are not
available for an asynchronous run. If there are errors in a user signon member that fail
before the program executes, there is no place to send an error or informational
message since there is no terminal. Programs that run asynchronously are not attached
to a terminal; therefore any TRANSMIT or NOTIFY statements are invalid for this type of
run.

RUNLIST and REPORT output directed to destination LIBRARY will be routed to the
user-id specified by the DFLTUSR parameter in the SCASTRAN entry.

This asynchronous run is similar to a run started within CA Ideal by the INITIATE
statement. A single 01-level run parameter can be passed to the program (a group field
cannot be passed). The run parameter is limited to a maximum of 43 characters.
Internally, the RUN command is executed with the parameter option, which leaves a
maximum of 43 characters for the actual run parameter data.

To start a transaction that executes SC00NATD, the CICS 'FROM' option on the EXEC CICS
START command can be used to specify the data for the CA Ideal run parameter. If the
length of this data is more than 43 characters, the option to ignore the run parameter
can be specified in the SCASTRAN entry (TRNDATA='sssppppppppvvvvN').

The QUITIDEAL option may not be used for asynchronous runs. If the QUITIDEAL option
has been set to YES for the site, then there must be a SIGNON member for the DFLTUSR
user-id that contains SET RUN QUITIDEAL NO. The command DISPLAY SESSION RUN will
show the QUITIDEAL option.

Sample Application

Chapter 15: Asynchronous Execution 265

Sample Application

An example of how this feature might be used would be in a CA Ideal program to
produce a report. The program CUSTLIST produces a report of all CUSTOMER rows for a
particular state determined by the RUN parameter. To run CUSTLIST asynchronously,
under the CUST transaction invoked from a COBOL application, perform the following
tasks:

1. Define the CUST transaction in CICS with TWASIZE=64 and PROGRAM=SC00NATD.

2. Assemble SCASTRAN.

SCASYNTB TYPE=INITIAL

 SCASYNTB TYPE=ENTRY,

 TRANID=CUST,

 TRNDATA='ORDCUSTLIST0001Y',

 DFLTUSR=ASY

 SCASYNTB TYPE=FINAL

The CUSTLIST program version 1 in the system ORD expects a RUN parameter. The
ASY user ID must be defined with specific authorization to run a program in system
ORD, even if the ASY user ID has been defined with administrator authority.
Note: Continuation characters must be in column 72.

3. Start transaction CUST and provide a RUN parameter from a COBOL CICS Command
Level program.

 ...

 DATA DIVISION.

 WORKING-DATA SECTION.

 01 WOR-DATA PIC X(2) VALUE 'TX'.

 PROCEDURE DIVISION.

 ...

 START-IDEAL.

 EXEC CICS START

 TRANSID('CUST')

 FROM(WOR-DATA)

 LENGTH(+2)

 END-EXEC.

 ...

If the report output was directed to DEST LIB, it would be under the ASY user ID as
specified by the DFLTUSR parameter in the SCASTRAN entry.

Appendix A: SYSADR Table Declarations for DB2 267

Appendix A: SYSADR Table Declarations for
DB2

The appendix describes about the resources of SYSADR table for DB2.

SYSADR.APTAB Table

The SYSADR.APTAB table contains an entry for every generated application plan.

EXEC SQL DECLARE SYSADR.APTAB TABLE

 (APNAME CHAR(7) NOT NULL,

 DTSTAMP CHAR(12) NOT NULL,

 MODNUM SMALLINT NOT NULL,

 PGMNUM SMALLINT NOT NULL,

 TOTSQL INTEGER NOT NULL)

The SYSADR.APTAB table has the following columns:

■ APNAME-Application plan name

■ DTSTAMP-Date and time of the plan generation

■ MODNUM-Number of static I/O modules comprising the plan

■ PGMNUM-Total number of programs in the plan

■ TOTSQL-Total number of SQL statements in the plan

SYSADR.APRES Table

The SYSADR.APRES table presents the resources included in the application plan. It
contains an entry for every program participating in the application plan.

EXEC SQL DECLARE SYSADR.APRES TABLE

 (APNAME CHAR(7) NOT NULL,

 SQLMOD CHAR(8) NOT NULL,

 SYSID CHAR(3) NOT NULL,

 PGMNAME CHAR(8) NOT NULL,

 PGMVER CHAR(4) NOT NULL,

 RESTYP CHAR(4) NOT NULL,

 PGMLAN CHAR(6) NOT NULL,

 PGMOCC SMALLINT NOT NULL,

 SQLNUM SMALLINT NOT NULL,

 COLLID CHAR(18) NOT NULL)

SYSADR.APAUT Table

268 Administration Guide

The SYSADR.APRES table has the following columns:

■ APNAME-Application plan name

■ SQLMOD-Name of the static I/O module or package containing the program

■ SYSID-Program system ID

■ PGMNAME-Program name

■ PGMVER-Program version (nnn or PROD)

■ RESTYP-Resource type (APPL, PROG, or SPGM)

■ PGMLAN-Program language (IDEAL or NONID)

■ PGMOCC-Number of times the program occurs in the plan

■ SQLNUM-Number of SQL statements in the program

■ COLLID-Collection ID of the package

SYSADR.APAUT Table

The SYSADR.APAUT table contains the DB2 table authorization IDs that were replaced by
the assigned authorization IDs during the generation process. There is an entry for each
assigned ID in the plan.

EXEC SQL DECLARE SYSADR.APAUT TABLE

 (APNAME CHAR(7) NOT NULL,

 PGMAUTH CHAR(8) NOT NULL,

 PLANAUTH CHAR(8) NOT NULL)

 The SYSADR.APAUT table has the following columns:

■ APNAME-Application plan name

■ PGMAUTH-Authorization ID as it appears in the program

■ PLANAUTH-New authorization ID superseding the program authorization ID

SYSADR Indexes

Appendix A: SYSADR Table Declarations for DB2 269

SYSADR Indexes

The SYSADR plan tables are indexed by some of their columns. The SYSADR.APTAB table
is indexed by APNAME and the index is unique. The SYSADR.APRES table is indexed by
APNAME, SYSID, and PGMNAME. The SYSADR.APAUTH table is indexed by APNAME. The
index names coincide with the table names.

CREATE UNIQUE INDEX SYSADR.APTAB ON SYSADR.APTAB

 (APNAME)

CREATE INDEX SYSADR.APRES ON SYSADR.APRES

 (APNAME,SYSID,PGMNAME)

CREATE SYSADR.APAUT ON SYSADR.APAUT

 (APNAME)

Appendix B: Double-Byte Character Set Support 271

Appendix B: Double-Byte Character Set
Support

This appendix describes double-byte character set and 5550 terminal support
implemented by CA Ideal and the related CA IPC.

The CICS specification of the SOSI feature in the CICS Terminal Control Table (TCT)
provides recognition of the IBM 5550 terminal and network printer.

Failure to specify SOSI in the TCT displays normal characters on the 5550, but DBCS data
displays as question marks (?) on the 5550 network printer.

To allow expansion to languages that support a double-byte representation of symbols,
CA Ideal requires a level of sensitivity to the way in which you define double-byte
character set data. This document uses the following terms to describe double-byte
character set data.

DBCS

Double-byte character set.

S/D

Shift to double character (hex 'OE') that precedes DBCS data (on a 5550, known as
the shift-out character, where shift-out means shift out of EBCDIC mode).

S/S

Shift to single character (hex 'OF') that follows DBCS data (on a 5550, known as the
shift-in character, where shift-in means shift into EBCDIC mode).

I-DBCS

Implicit DBCS, DBCS data without S/D and S/S characters.

E-DBCS

Explicit DBCS, DBCS data with S/D and S/S characters.

Panel Definition Facility (PDF)

272 Administration Guide

The following areas were changed in CA Ideal to accommodate DBCS data:

■ The Panel Definition Facility (PDF) extends to display and enter DBCS data in panel
fields.

■ Panel Definition Language (PDL) adds new string functions for handling DBCS data.

■ A new compiler option makes the compiler sensitive to DBCS data when it is moved
between fields.

■ The Report Definition Facility (RDF) allows DBCS data in certain areas.

■ CA Ideal now supports user exits for modifying DBCS data before it is output on a
system printer. The CA IPC Installation Guide documents this PSS user exit.

■ A new CA IPC SCF option displays all CA Ideal system panels and messages in
uppercase since the lowercase keyboard positions are used for native character-set
support (for example, Katakana in Japan).

■ A new CA IPC PMS translate table, PMSTRNDK, was added to the system. It
translates non-displayable characters on a 5550. It differs from the regular PMS
translate table, PMSTRND, in that the 5550 has a different set of accepted terminal
values.

Panel Definition Facility (PDF)

The basic extension to PDF displays and enters DBCS data in Type X panel fields. A Type
X panel field can contain DBCS data from any one of the following sources:

■ Initial DBCS data defined during editing of the panel layout

■ DBCS data entered by the application user

■ DBCS data entered or modified through PDL statements in the application program

Important! If a statement in the PDL program modifies a panel field, it is the
responsibility of the application program to guarantee that the DBCS data is surrounded
with S/D and S/S characters as appropriate.

PDF prevents DBCS data in panel defined fields from accidentally displaying and
modifying on non-5550 terminals by first translating the DBCS data to question marks
(?). However, the DBCS data is properly preserved in the panel definition, and you can
modify it on a 5550 terminal.

Program Definition Language (PDL)

Appendix B: Double-Byte Character Set Support 273

Program Definition Language (PDL)

The primary impact on PDL for the handling of DBCS data is that it is the application's
responsibility to be aware of and to manipulate the S/D and S/S characters.

For example, if DBCS data is stored in a dataview field without the S/D and S/S
characters (implicit-DBCS or I-DBCS) and that field is moved to a panel field, the
application program must surround the DBCS data with S/D and S/S characters
(explicit-DBCS or E-DBCS).

CA Ideal provides special string functions to facilitate this operation, but the application
must instruct PDL to do it. A reverse operation must then be done when the panel field
is moved back to the dataview field.

String Functions
$DBCS-ATTACH(alpha-field or 'literal')

This function converts I-DBCS data to E-DBCS data. It builds a temporary string value
by concatenating an S/D character, the contents of the referenced alpha field or
literal (ignoring any trailing spaces), and an S/S character. You can use the function
in any context where you can use a $STRING function. Some examples are:

SET A = $DBCS-ATTACH(B)

IF A = $DBCS-ATTACH(B)

LIST $DBCS-ATTACH(B)

$DBCS-DETACH(alphanumeric-field or 'literal')

This function converts E-DBCS data to I-DBCS data. It builds a temporary string value
by removing the S/D character at the left (ignoring leading spaces), removing any
trailing spaces, and then removing the S/S character. A runtime error occurs if the
S/D and S/S characters are not found when this function is used or if there are any
S/D or S/S characters remaining. You can use an alpha-literal as an operand instead
of an alpha-field. You can use the function in any context where you can use a
$STRING function, however, it cannot have other functions imbedded in the $DBCS
functions.

For $DBCS-DETACH to work successfully, at least one DBCS character must appear
between the S/D and S/S characters and only spaces can follow the S/S character.
For this reason, do not specify LOW VALUES as an INPUT FILL character for panel
fields that have $DBCS-DETACH applied to them.

Data Manipulation

274 Administration Guide

$DBCS-TYPE(alpha-field)

This string function returns a one-byte code to indicate whether a field is E-DBCS.
The codes indicate:

– ' '-There is no S/D character in the field.

– 'L'-There is an S/D character on the left, an S/S character on the right (ignoring
right blanks), and no other S/D or S/S characters.

– 'E'-Anything else that implies DBCS and non-DBCS data.

For the $DBCS-TYPE function to return an L, at least one DBCS character must
appear between the S/D and S/S characters and only spaces can follow the S/S
character. For this reason, do not specify LOW VALUES as an INPUT FILL character
for panel fields that the $DBCS-TYPE function tests. You can use this function
anywhere you can use a $STRING function. For example:

IF $DBCS-TYPE(A) = 'L'

$CHAR-TO-HEX(alpha-field)

This string function returns the hexadecimal value of the specified field's contents.
The length of the receiving field should be twice the size of the sending field to
avoid truncation. An example follows:

X = ABCD

SET Y = $CHAR-TO-HEX(X)

Y = C1C2C3C4

If X was defined in working data as a 5-byte field, the value of Y is C1C2C3C440.

Data Manipulation

The following rules apply when one Type X field is moved to another under normal PDL
processing (with non-DBCS data):

■ When the fields are the same length, the data is moved with no inspection of the
data values.

■ When the sending field is shorter than the receiving field, the sending field is left
justified in the receiving field and padded with spaces on the right.

■ If the sending field is longer than the receiving field, the sending field is truncated
on the right.

Alphanumeric Literals

Appendix B: Double-Byte Character Set Support 275

The normal PDL rules for comparing Type X fields also applies to Type X fields that
contain DBCS data without regard for the value of the SET COMPILE DBCS command.

The manipulation of DBCS data, however, requires an added level of sensitivity. To
truncate DBCS data without removing necessary S/D and S/S characters and without
leaving half of a double-byte character, you can use a new option during a compile that
makes CA Ideal sensitive to DBCS data. The option for a session is:

 {YES|Y}

SET COMPILE DBCS {NO |N}

The option for a site is:

 {YES|Y}

SET SITE COMPILE DBCS {NO |N}

When you specify YES, the data contents are examined to determine if a S/S character
was removed; leaving an unmatched S/D character. If this occurs, further truncation is
performed to add the S/S character to the end of the field. CA Ideal also keeps an even
number of bytes between the S/D and S/S characters (this ensures that only complete
DBCS characters are removed).

When you specify NO, Type X data fields are moved under the normal PDL rules without
regard for S/D, S/S, or DBCS characters.

Alphanumeric Literals

You can define alpha-literals containing DBCS data either in the PDL source or as initial
values in working data. The form of the literals must be an EBCDIC quote or apostrophe,
followed by any number of DBCS characters (surrounded by S/D and S/S characters) or
non-DBCS characters, followed by a matching EBCDIC quote or apostrophe. The literal
value is everything between the matching EBCDIC quotes or apostrophes, including any
S/D or S/S characters. If the application wants to move to or compare with a field that
contains implicit DBCS, you must use the $DBCS-DETACH function.

Example

SET A = $DBCS-DETACH('dbcs data surrounded by S/D and S/S')

IF A = $DBCS-DETACH('dbcs data surrounded by S/D and S/S')

There is no way to put implicit DBCS initial values into working data. They must be
initialized through SET statements.

Report Definition Facility

276 Administration Guide

Report Definition Facility

Explicit DBCS data can appear in the following places in the report definition:

■ Report title on the parameter fill-in.

■ Report page on the parameter fill-in.

■ You can specify alphanumeric fields, string expressions, and alpha-literals that
contain DBCS data in the Field definitions for headings and detail. The DBCS data
must be surrounded by S/D and S/S characters (E- DBCS) or specified with
$DBCS-ATTACH functions.

■ The column definition for the detail definition.

Session Control Facility

You are required to specify a SCF option to display all CA Ideal system panels and
messages in upper-case and to reserve the lower-case keyboard positions for native
character set support. You can specify this option in two ways:

■ With the following set command:

 {UPC }

SET COMMAND {UPPERCASE} ON

■ With the site option:

UPPER CASE PANELS AND MESSAGES ON

This option appears on the Set SCF site options fill-in that is accessed by specifying
the command:

SET COMMAND SITE [OPTIONS]

Dataviews

If a field is found with a type code of K or Y (which implies I-DBCS data) during a
CATALOG DATAVIEW, CA Ideal treats it as if there was an X type code. Although
Datadictionary supports types K and Y for DBCS data, the CA Ideal dataview compiler
does not support these types. They are translated to type X. It is up to the application
program to ensure that the data is I-DBCS.

Print Subsystem (PSS)

Appendix B: Double-Byte Character Set Support 277

Print Subsystem (PSS)

CA Ideal provides a user exit capability that lets you tailor certain Print Subsystem (PSS)
functions in an individualized manner, such as the printing of DBCS data on a system
printer. For more information, see the
CA IPC Installation Guide.

Installation Considerations
Increasing the size of ADRPNL

When you specify the SET COMMAND UPPERCASE command, a set of upper-case CA
Ideal system panels appears. This additional set of panels is loaded into ADRPNL during
installation.

Miscellaneous
■ CA Ideal lets you enter DBCS data into:

– CA Ideal data members that are not executed

– Short descriptions and text for CA Ideal report, program, and panel
identification fill-ins

■ CA Ideal does not let you enter DBCS data into:

– CA Ideal data members that are executed

– Command area (this implies no DBCS in CHANGE and FIND commands)

– Any identifiers (names) for fields, programs, reports, panels, systems, users,
and so on

– Other panel fields where DBCS data is not reasonable or where system-defined
edits preclude the use of DBCS data

■ If DBCS data is entered when editing a report, working data, program parameter
data, procedures, or members, use the SET EDIT CASE MIXED command. If you
specify UPPER, the DBCS characters are shifted. However, you can use SET PANEL
LAYOUTCASE UPPER when editing a panel layout without shifting DBCS characters
to upper case.

■ Use SET SITE ENVIRONMENT DATEFOR 'MONTH DD, YEAR' instead of the default
LCMONTH DD, YEAR.

■ Do not use DBCS data in the edit pattern specified in a $EDIT function.

■ When using the $SUBSTR function with DBCS data, use caution to ensure that the
resulting string contains S/D and S/S characters.

Appendix C: Authorization Table 279

Appendix C: Authorization Table

The following table contains all functions, their associated values, and the numeric value
representing a functional keyword that is used in CA Ideal.

Keywords

Functional Keywords and Synonyms FUNC-ATZ-CODE CA Ideal Commands

ALTER-PROGRAM

 ALTER-PGM

1 ALTER PROGRAM and ALTER PANEL
commands

ALTER-SIGNON-PANEL

 ALT-SIGNON-PNL

 ALT-SIG-PNL

73 ALTER SIGNON PANEL command

CATALOG-DATAVIEW

 CATALOG_DVW

5 CATALOG DVW command

COMPILE-BATCH 7 COMPILE command, batch

COMPILE-ONLINE 6 COMPILE command on-line

COMPILE-SYNC 82 COMPILE command, synchronous

COPY-MEM-ACROSS-USER

 COPY-MEM-ACROSS-USR

 COPY-MEM-ACR-USR

9 COPY/DUP MEMBER xxxxxxx USER yyy
commands

COPY-PGM-ACROSS-SYSTEM*

 COPY-PGM-ACROSS-SYS

 COPY-PGM-ACR-SYS

8 COPY PROGRAM xxxxxxx

SYSTEM yyy COMMAND

CREATE-DATAVIEW 93 CREATE DATAVIEW command

CREATE-EDIT-SYSTEM

 CREATE-EDIT-SYS

10 CREATE SYSTEM or EDIT SYSTEM
commands

CREATE-EDIT-USER

 CREATE-EDIT-USR

11 CRE USER or EDIT USER commands

CREATE-MEM-ACROSS-USR

 CREATE-MEM-ACR-USR

12 CREATE MEMBER xxxxxxx USER yyy
command

CREATE-MODULE

 CREATE-MOD

13 CREATE MODULE command

Keywords

280 Administration Guide

Functional Keywords and Synonyms FUNC-ATZ-CODE CA Ideal Commands

CREATE PACKAGE

 CREATE-PKG

 CRE-PKG

124 CREATE PACKAGE command

CREATE-PANEL

 CREATE-PNL

15 CREATE PANEL command

CREATE-PLAN 84 CREATE PLAN command

CREATE-PROGRAM

 CREATE-PGM

14 CREATE PROGRAM command

CREATE-REPORT

 CREATE-RPT

16 CREATE REPORT command

DEBUG-TEST 160 DEBUG program command (for test
programs)

DEBUG-PROD 109 DEBUG program command (for PROD
programs)

DELETE-DATAVIEW

 DEL-DVW

94 DELETE DATAVIEW command

DELETE-MEMBER-ACROSS-USER

 DELETE-MEM-ACR-USR

79 DELETE MEMBER xxxxxxx USER yyy
command

DELETE-MODULE

 DELETE-MOD

17 DELETE MODULE command

DELETE-PACKAGE

 DELETE-PKG

 DEL-PKG

125 DELETE PACKAGE command

DELETE-PANEL

 DELETE-PNL

19 DELETE PANEL command

DELETE-PLAN

 DELETE-PLA

87 DELETE PLAN command

DELETE-PROGRAM

 DELETE-PGM

18 DELETE PROGRAM command

DELETE-REPORT

 DELETE-RPT

20 DELETE REPORT command

DELETE-SYSTEM

 DELETE-SYS

21 DELETE SYSTEM command

Keywords

Appendix C: Authorization Table 281

Functional Keywords and Synonyms FUNC-ATZ-CODE CA Ideal Commands

DELETE-USER

 DELETE-USR

22 DELETE USER command

DEQUEUE

 DEQUE

23 DEQUEUE command

DISPLAY-AUTHORIZATIONS

 DISPLAY-ATZ

 DIS-ATZ

28 DISPLAY ATZ OPTIONS

DISPLAY-DATAVIEW

 DIS-DATAVIEW

 DISPLAY-DVW

 DIS-DVW

27 DIS DATAVIEW command

DISPLAY-INDEX-ALL-MODULE

 DIS-IND-ALL-MODULE

 DIS-IND-ALL-MOD

24 DIS INEX ALL MODULE command

DISPLAY-INDEX-ALL-PROGRAM

 DIS-IND-ALL-PROGRAM

 DIS-IND-ALL-PGM

111 DIS IND ALL PGM command

DIS-INDEX-MEM-ACROSS-USER

 DIS-IND-MEM-ACROSS-USR

 DIS-IND-MEM-ACR-USER

 DIS-IND-ACR-USR

25 DISPLAY INDEX MEMBER USER yyy
command

DISPLAY-INDEX-RELATED

 DIS-INDEX-RELATED

 DIS-IND-REALTED

 DIS-IND-REL

26 DISPLAY INDEX with RELATED clause
command

DISPLAY-MEMBER-ACROSS-USER

 DISPLAY-MEM-ACROSS-USER

 DISPLAY-MEM-ACR-USR

 DIS-MEMBER-ACROSS-USER

 DIS-MEM-ACROSS-USER

 DIS-MEM-ACR-USR

29 DISPLAY MEMBER xxxxxxx USER yyy
command

DISPLAY-OUTPUT-ACROSS-USER

 DIS-OUT-ACR-USR

113 DISPLAY OUTOUT nnn

 produced by another user
(output remains on ADROUT)

Keywords

282 Administration Guide

Functional Keywords and Synonyms FUNC-ATZ-CODE CA Ideal Commands

DISPLAY-PACKAGE

 DISPLAY-PKG

 DIS-PKG

126 DISPLAY PACKAGE command

DISPLAY-PANEL

 DISPLAY-PNL

 DIS-PNL

31 DISPLAY PANEL command

DISPLAY-PLAN

 DIS-PLA

86 DISPLAY PLAN command

DISPLAY-PROGRAM

 DISPLAY-PGM

 DIS-PGM

30 DISPLAY PROGRAM command

DISPLAY-USER

 DISPLAY-USR

 DIS-USR

34 DISPLAY USER command (your own
definition)

DISPLAY-REPORT

 DISPLAY-RPT

 DIS-RPT

32 DISPLA Y REPORT command

DISPLAY-SYSTEM

 DISPLAY-SYS

 DIS-SYS

33 DISPLAY SYSTEM command

DISPLAY-USER-ACROSS-USER

 DISPLAY-USR-ACROSS-USR

 DISPLAY-USR-ACR-USR

 DIS-USR-ACR-USR

35 DISPLAY USER command (other than your
own definition)

DUPLICATE-DATAVIEW

 DUPLICATE-DVW

 DUP-DVW

95 DUP DATAVIEW command

DUPLICATE-MEMBER-ACROSS-USER

 DUPLICATE-MEM-ACROSS-USR

 DUPLICATE-MEM-ACR-USR

 DUP-MEM-ACR-USR

83 DUP MEMBER xxxxxx USER uuu command

DUPLICATE-PACKAGE

 DUPLICATE-PKG

 DUP-PKG

128 DUPLICATE PACKAGE command

Keywords

Appendix C: Authorization Table 283

Functional Keywords and Synonyms FUNC-ATZ-CODE CA Ideal Commands

DUPLICATE-PANEL

 DUPLICATE-PNL

 DUP-PNL

38 DUPLICATE PANEL command

DUPLICATE-PANEL-ACROSS-SYSTEM

 DUPLICATE-PNL-ACROSS-SYS

 DUPLICATE-PNL-ACR-SYS

 DUP-PNL-ACR-SYS

39 DUP PANEL xxxxxxx SYSTEM yyy
command

DUPLICATE-PLAN

 DUP-PLA

89 DUPLICATE PLAN command

DUPLICATE-PROGRAM

 DUPLICATE-PMG

 DUP-PGM

36 DUP PROGRAM command

DISPLAY-PLAN

 DIS-PLA

86 DISPLAY PLAN command

DISPLAY-PROGRAM

 DISPLAY-PGM

 DIS-PGM

30 DISPLAY PROGRAM command

DUPLICATE-PROGRAM-ACROSS-SYSTEM

 DUPLICATE-PGM-ACROSS-SYS

 DUPLICATE-PGM-ACR-SYS

 *DUP-PGM-ACR-SYS

37 DUP PROGRAM xxxxxxx SYSTEM yyy
command

DUPLICATE-REPORT

 DUPLICATE-RPT

 DUP-RPT

40 DUPLICATE REPORT command

DUPLICATE-REPORT-ACROSS-SYSTEM

 DUPLICATE-RPT-ACROSS-SYS

 DUPLICATE-RPT-ACR-SYS

 DUP-RPT-ACR-SYS

41 DUP REPORT xxxxxxx SYSTEM yyy
command

DUPLICATE-SYSTEM

 DUPLICATE-SYS

 DUP-SYS

42 DUP SYSTEM command

DUPLICATE-USER

 DUPLICATE-USR

 DUP-USR

80 DUPLICATE USER command

Keywords

284 Administration Guide

Functional Keywords and Synonyms FUNC-ATZ-CODE CA Ideal Commands

EDIT-DATAVIEW

 EDIT-DVW

96 EDIT DATAVIEW command

EDIT-MEMBER-ACROSS-USER

 EDIT-MEM-ACROSS-USR

 EDIT-MEM-ACR-USR

43 EDIT MEMBER xxxxxxx USER yyy
command

EDIT-PACKAGE

 EDIT-PKG

 EDI-PKG

128 EDIT PACKAGE command

EDIT-PANEL

 EDIT-PNL

49 EDIT PANEL command

EDIT-PLAN

 EDIT-PLA

85 EDIT PLAN command

EDIT-PROGRAM

 EDIT-PGM

45 EDIT PROGRAM command

EDIT-PROGRAM-IDE

 EDIT-PGM-IDE

44 EDIT PROGRAM IDENTIFICATION
command

EDIT-PROGRAM-RES

 EDIT-PGM-RES

46 EDIT PROGRAM RESOURCE command

*EDIT-PROGRAM-RES-SUBPGM

 EDIT-PRG-RES-SUBPGM

 EDIT-PRG-RES-SUB

47 EDIT PROGRAM RESOURCE (for specifying
subprograms to be called)

EDIT-REPORT

 EDIT-RPT

48 EDIT REPORT command

ENABLE-DISABLE-RUN

 ENA-DIS-RUN

50 ENABLE RUN and DISABLE RUN
commands

EXPLAIN-PLAN

 EXP-PLA

92 EXPLAIN PLAN command

EXPORT DATAVIEW 107 EXPORT DATAVIEW command

EXPORT-MEMBER 105 EXPORT MEMBER command

EXPORT-PANEL 101 EXPORT PANEL command

EXPORT-PROGRAM 99 EXPORT PROGRAM command

EXPORT-REPORT 103 EXPORT REPORT command

Keywords

Appendix C: Authorization Table 285

Functional Keywords and Synonyms FUNC-ATZ-CODE CA Ideal Commands

GENERATE-PACKAGE

 GENERATE-PKG

 GEN-PKG

129 GENERATE PACKAGE command

GENERATE-PLAN

 GEN-PLA

88 GENERATE PLAN command

IDENTIFY-MODULE

 IDENTIFY-MOD

51 IDENTIFY MODULE command

IMPORT-DATAVIEW 106 IMPORT DATAVIEW command

IMPORT-HELP 108 IMPORT HELP command

IMPORT-MEMBER 104 IMPORT MEMBER command

IMPORT-PANEL 100 IMPORT PANEL command

IMPORT-PROGRAM 98 IMPORT PROGRAM command

IMPORT-REPORT 102 IMPORT REPORT command

MARK-STATUS-DATAVIEW

 MARK-STATUS-DVW

 MARK-DATAVIEW

 MARK-DVW

97 MARK STATUS DATAVIEW command

MARK-STATUS-PANEL

 MARK-STATUS-PNL

 MARK-PANEL

 MARK-PNL

53 MARK STATUS PNL command

MARK-STATUS-PROGRAM

 MARK-STATUS-PGM

 MARK-PROGRAM

 MARK-PGM

52 MARK STATUS PROGRAM command

MARK-STATUS-REPORT

 MARK-STATUS-RPT

 MARK-REPORT

 MARK-RPT

54 MARK STATUS REPORT command

MARK-STATUS-SYSTEM

 MARK-STATUS-SYS

 MARK-SYSTEM

 MARK-SYS

55 MARK STATUS SYSTEM command

Keywords

286 Administration Guide

Functional Keywords and Synonyms FUNC-ATZ-CODE CA Ideal Commands

MARK-STATUS-USER

 MARK-STATUS-USR

 MARK-USER

 MARK-USR

56 MARK STATUS USR command

PRINT-DATAVIEW

 PRINT-DVW

 PRI-DVW

57 PRINT DATAVIEW command

PRINT-INDEX-ALL-MODULE

 PRI-IND-ALL-MODULE

 PRI-IND-ALL-MOD

77 PRINT INDEX ALL MODULE command

PRINT-INDEX-ALL-PROGRAM

 PRINT-IND-ALL PROGRAM

 PRI-IND-ALL-PGM

112 PRINT INDEX MEMBER USER xxx
command

PRINT-INDEX-MEM-ACROSS-USER

 PRINT-IND-MEM-ACR-USR

 PRI-IND-MEM-ACR-USR

64 PRI INDEX with RELATED clause command

PRINT-INDEX-RELATED

 PRINT-IND-RELATED

 PRINT-INDEX-REL

 PRINT-IND-REL

66 PRINT MEMBER (your own members)

PRINT-MEMBER

 PRINT-MEM

 PRI-MEM

58 PRINT MEMBER (your own members)

PRINT-MEMBER-ACROSS-USER

 PRINT-MEM-ACROSS-USER

 PRINT-MEM-ACR-USR

 PRI-MEMBER-ACROSS-USER

 PRI-MEM-ACROSS-USER

 PRI-MEM-ACR-USR

81 PRINT MEMBER xxxxxxxx

USER yyy command

 PRINT-OUTPUT-ACROSS-USER

 PRINT-OUT-ACR-USR

114 PRINT OUTPUT nnn

produced by another user
(output remains on ADROUT
in LEAVE status)

Keywords

Appendix C: Authorization Table 287

Functional Keywords and Synonyms FUNC-ATZ-CODE CA Ideal Commands

PRINT-PACKAGE

 PRINT-PKG

 PRI-PKG

130 PRINT PACKAGE command

PRINT-PROGRAM

 PRINT-PGM

 PRI-PGM

59 PRINT PROGRAM command

PRINT-PANEL

 PRINT-PNL

 PRI-PNL

60 PRINT PANEL command

PRINT-PLAN

 PRI-PLA

91 PRINT PLAN command

PRINT-REPORT

 PRINT-RPT

 PRI-RPT

61 PRINT REPORT command

PRINT-SYSTEM

 PRINT-SYS

 PRI-SYS

62 PRINT SYSTEM command

PRINT-USER

 PRINT-USR

 PRI-USR

65 PRINT USER (your own definitions)

PRINT-USER-ACROSS-USER

 PRINT-USR-ACR-USR

 PRI-USR-ACR-USR

63 PRIT USER (definition of another user)

REBIND

 REB

74 REBIND command

REFRESH 78 REFRESH command

RUN 67 RUN (test version)

RUN-PROD

 RUN-PRD

68 RUN (production version)

RUN-PROD-USING-PANEL*

 RUN-PROD-USE-PNL

 RUN-PRD-USE-PGM

69 RUN (production program when a panel
is accessed)

Keywords

288 Administration Guide

Functional Keywords and Synonyms FUNC-ATZ-CODE CA Ideal Commands

RUN-PROD-USING-PROGRAM*

 RUN-PROD-USE-PGM

 RUN-PRD-USE-PGM

70 RUN (production program when a
subprogram is called)

SELEECT-SYSTEM

 SELECT-SYS

 SEL-SYS

71 SELECT SYSTEM command

SET-SITE-OPTIONS

 SET-SITE-OPTS

 SET-SITE-OPT

 SET-SITE

72 SET SITE commands

SUBMIT-MEMBER

 SUBMIT-MEM

75 SUBMIT (your own members)

SUBMIT-MEMBER-ACROSS-USER

 SUBMIT-MEM-ACROSS-USR

76 SUBMMIT (another user's members)

	CA Ideal for CA Datacom Administration Guide
	CA Technologies Product References
	Contact CA Technologies
	Contents
	1: Preliminary Concepts
	CA Ideal Overview
	Components of a CA Ideal Application
	Dataview Definition
	Program Definition
	Panel Definition
	Report Definition
	Plan or Package Definition (DB2 Only)

	Entities and Version Management
	Entity
	Entity Type
	Entity Occurrence
	Definition
	Name
	Version
	Status
	MARK STATUS Considerations
	How to Modify or Delete a Production Version
	Modify a Production Version
	Delete a Production Version

	How to Set a Default Version

	CA Ideal Users and Systems
	Users
	Systems
	Naming Conventions in Systems

	Defaults and Abbreviations
	Defaults in CA Ideal
	Defaults that cannot be changed
	Defaults that can be changed for the entire site
	Defaults that can be set for an individual session

	Use of Abbreviations in CA Ideal Commands

	Main Menu
	Administrative Functions

	2: System Overview
	CA Datacom/DB Environment
	Environment with DB2 Option
	CA Ideal Environment Components
	CA Datacom/DB and Datadictionary Components
	Datadictionary Considerations for CA Ideal
	DB2 Environment Components

	CA Common Services for z/OS
	CA IPC (CA Inter-Product Components)
	CA Ideal Internals
	CA Ideal Modules
	Application Components, VLS, and the Dictionary Facility
	How CA Ideal Stores Application Components
	CA Ideal VLS Operations
	CREATE
	EDIT
	DUPLICATE
	MARK STATUS
	DELETE

	Compilation and VLS Object Modules
	Processing the Field Attribute and Symbol Tables
	Application Load Modules (Phases)
	Execution of CA Ideal Applications in a CICS Environment
	Execution and the Dictionary Facility

	3: Defining and Maintaining CA Ideal Users
	Creating and Maintaining User Definitions
	Creating a CA Ideal User Definition
	Maintaining User Definitions Online
	Creating CA Ideal Users in Batch
	Using Batch to Maintain CA Ideal User Definitions
	Adding Aliases
	Adding Systems
	Updating System Authorizations
	Changing Passwords

	4: Defining and Maintaining Systems
	Creating a CA Ideal System
	Maintaining System Definitions
	Using Batch to Create CA Ideal System Definitions

	5: Preparing and Maintaining VLS Libraries in CA Ideal
	Library Maintenance Under z/OS or VSE
	Allocating and Initializing a VLS Library
	Adding VLS Library JCL
	Adding a VLS Library to the CICS FCT
	Adding a VLS Library to the CA Ideal Batch User File Table
	z/OS
	VSE

	Backing Up and Restoring a VLS Library
	Routine CA Ideal System BACKUP and RESTORE
	Sample Backup JCL
	Sample Restore JCL

	Increasing the Space in a VLS File

	Restoring Deleted Entities
	Resource Section Considerations
	VLSUTIL Considerations
	Restoration Procedures

	What to Do When the Library Is Full
	Removing Entities in History Status
	Other Members That Can Be Deleted

	Correcting Inefficient Block Size
	Creating New Libraries for Existing Systems
	Splitting One System into Separate Systems

	Library Integrity Utility
	Sample JCL
	Verification Considerations

	6: Considerations for CA Datacom/DB Native Access
	Index-Only Processing
	Designing Keys for Index-Only Processing

	Sequential Processing
	Test and Prod Data in Datadictionary and CA Ideal
	BACKOUT Statement Considerations
	INCLUDE-NIL-KEY

	7: Maintaining Plans for CA Datacom SQL Access
	Generating CA Datacom SQL Access Plans
	Generating the Default Plan
	Setting Plan Options

	Maintaining Access Plans for the Run-Time Environment
	Changing the Access Plan
	Changing Plan Options
	Rebinding the Plan

	Creating an Alternate Plan
	Selecting an Alternate Plan at Runtime

	8: Preparing DB2 Application Plans
	Program Modes
	PF Key Assignments for the Plan and Package Editors

	Defining Application Plans
	Components of a CA Ideal Plan Definition for DB2
	How to Create a New Plan Definition
	Identification Fill-in
	Plan Resources Fill-in
	Packlist Fill-in
	Plan DBRM Fill-in
	Parameters Fill-in

	Generating Application Plans
	Plan Generation JCL
	CA Ideal Static I/O Modules
	CA Ideal Plan Tables
	Impact Report

	Defining Packages
	Components of a Package Definition
	Creating a Package Definition
	Identification Fill-in
	Package Resources Fill-in
	Package Parameters Fill-in

	Generating Packages
	Package Generation JCL
	CA Ideal Static I/O Modules
	CA Ideal Plan Tables
	Impact Report

	Connecting Plans to Applications
	Dynamic Mode
	Static Mode
	Associating Plans Directly with Transaction-IDs in CICS
	Specifying Plans Independently of Transaction-IDs in CICS
	Specifying Plans as Session Options
	Specifying Plans in an Application
	Specifying Plans with a CA Ideal Plan Name Exit
	Specifying @IADRCTX as the PLANEXIT
	DB2ENTRY PLANEXIT Versus Plan Name Exit

	Specifying Plans in Batch
	Plan Name Exit
	Parameters Common to Other CA Ideal Exits
	Plan-Specific Parameters

	Requiring the Use of Static SQL

	9: Establishing Signon Processing
	Defining Signon Requirements
	CA Ideal Environment Functionality
	TP Monitor Signon
	Using a Security Package
	Using the TP Monitor ID
	CA Ideal User Definition
	Region Considerations

	Establishing CA Ideal Signon Transactions
	General Transaction Types
	Standard
	Express
	Transparent

	SCF Transaction Table (SC00TRAN)
	CICS PCT Definitions
	Startup Member
	Signon Exit Program

	Signon Processing Execution Flow
	Establishing the Signon Transaction (SC00INIT and SC00TRAN)
	Identifying the TP Monitor User (SC00INIT and SC00OPTS)
	SECRTY Option

	Signing On in Batch
	Checking for Duplicate Users
	Securing User Access by Region (IDOPTS SECPRFX = processing when SECRTY=Y)

	Establishing the Resource Class Entity Name
	SECPRFX

	Determining Alias or Group User Definition
	Processing Default Users

	Considerations and Examples
	IDOPTSCB Macros for Security: Samples

	Enabling External Security
	CA Common Services Requirements
	Security Product Definitions
	CA Ideal Specifications
	Programming Considerations

	10: Customizing the CA Ideal Environment
	SET SITE Commands
	Session Control Facility Options
	Site Options for Output
	Site Control of Wide Panel Support
	Enabling or Disabling Wide Panel Support
	Setting a Default Panel Width

	Setting a Loop Limit

	Setting Environment Options
	ACCOUNT-ID Specification (CICS Only)
	Customizing the End of a CA Ideal Session
	Selecting an Alternate Currency Symbol
	Selecting an Alternate Date Format
	Selecting an Alternate Decimal Symbol
	Automatic Off
	User Defined Signoff Panels
	Setting an Action for the CLEAR Key

	Customizing the CA Ideal Options Block Using IDOPTSCB
	Maintaining Authorizations
	IDOPTSCB Macro for Authorization
	Modifying Existing Authorizations
	Specifying User Exits
	Authorization Exit Programs
	Under CICS
	Defining a CICS Exit Program
	Defining a z/OS or VSE Non-CICS Exit Program

	Managing and Administering Print Services
	Defining Printer Destinations
	Network Printer Definition Considerations
	Print Service Administration Commands

	System Printer Considerations
	Editing a Jobcard z/OS
	Batch Output Procedure
	BLOCKSIZE (z/OS Only)

	Creating User-Defined HELP Members
	Adding New Help Members
	Displaying the HELP Member Index

	CICS Requirements
	Case Translation

	Operating System Requirements
	CA Ideal Batch File Table
	ROSFD Entry

	Changing the CA Ideal File Batch Table
	CA Ideal System Files
	CA IPC VLS Files
	Application VLS Files
	VSE
	Z/OS

	PSS Files
	VSE Report Work Files
	Requirements for a Single z/OS System

	11: Optimizing Storage Management
	Enhancing User Storage Management
	Load Module Format
	Programs in VLS Format
	Panels in VLS Format

	Recommendations

	CICS Storage Use
	Temporary Storage
	SCB (Session Control Block)
	RCB (Run Control Block)
	Updateable User Code Copies
	Temporary Storage Record Naming Conventions

	Dynamic Storage Area (DSA)
	Isolated Storage
	Shared Storage
	Program Storage
	Extended Dynamic Storage Area

	Performance Considerations
	Application Design
	Tuning Storage

	Session Storage Cleanup
	RELEASE PROGRAM
	Timeouts and Disconnections
	VPUR

	Node Error Recovery
	PURGE term-id
	Format

	VSE GETVIS Considerations

	12: Establishing Multiple Environments
	Composite Entities
	Enqueuing
	Transporting Entities
	DB2 Plans and Packages
	CA Ideal and CA IPC Libraries

	13: Module Format for Programs and Panels
	Module Definition
	Module Format
	Creating Modules
	Sample JCL

	RMODE Parameter
	Deleting Modules
	Identifying Modules
	DISPLAY/PRINT INDEX MODULE Command

	Module Runtime Considerations
	Building the In-Core Load Module Table
	Displaying the In-Core Load Module Table
	Tailoring the LMT
	Preparing Application Module Tables (AMTs)
	Establishing @ILMLIST AMT Lists
	Automating AMT Generation

	CICS Considerations
	PPT Entries
	Loading the Modules at Startup

	Updating the In-Core LMT-REFRESHing Modules Online

	14: Application Migration Considerations
	Development Considerations
	Testing Programs Before Marking Them to Prod
	Mark Programs to Prod Status

	Application Migration Considerations
	Runtime Configurations
	Application Migration Processes
	Using the Object Transport Utility with Load Modules
	Using the CA Ideal Source Transport Utility with Load Modules
	EXPGEN Sample Application
	Source Transport Commands
	Using Utilities to Move Load Modules

	Replacing Online Applications
	Disabling and Enabling an Active Online Application
	Important Considerations
	Replacing Programs and Panels in an Active Online Environment
	Enqueuing Considerations

	Upgrading from an Earlier Version

	15: Asynchronous Execution
	Setting Up an Asynchronous Execution
	Sample Application

	A: SYSADR Table Declarations for DB2
	SYSADR.APTAB Table
	SYSADR.APRES Table
	SYSADR.APAUT Table
	SYSADR Indexes

	B: Double-Byte Character Set Support
	Panel Definition Facility (PDF)
	Program Definition Language (PDL)
	String Functions
	Data Manipulation
	Alphanumeric Literals
	Report Definition Facility
	Session Control Facility
	Dataviews
	Print Subsystem (PSS)
	Installation Considerations
	Miscellaneous

	C: Authorization Table
	Keywords

