

SQL Reference Guide
Release 18.5.00, 2nd Edition

CA IDMS™ SQL

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time. This
Documentation is proprietary information of CA and may not be copied, transferred, reproduced, disclosed, modified or
duplicated, in whole or in part, without the prior written consent of CA.

If you are a licensed user of the software product(s) addressed in the Documentation, you may print or otherwise make
available a reasonable number of copies of the Documentation for internal use by you and your employees in connection with
that software, provided that all CA copyright notices and legends are affixed to each reproduced copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable
license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to
certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such
license agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2014 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

CA Technologies Product References

This document references the following CA Technologies products:

■ CA IDMS™/DB

■ CA IDMS™ Presspack

■ CA IDMS™ SQL

■ CA IDMS™ Server

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

■ Online and telephone contact information for technical assistance and customer
services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

To provide feedback about CA Technologies product documentation, complete our
short customer survey which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://ca.com/docs
http://ca.com/docs

Documentation Changes

The following documentation updates were made for the 18.5.00, 2nd Edition release of
this documentation:

■ CA IDMS Scalar Functions (see page 124)—Updated the syntax diagram for the
TRIM function.

■ Third-Party Acknowledgement (see page 853)—Updated the copyright year.

The following documentation updates were made for the 18.5.00 release of this
documentation:

■ CA ADS, COBOL, PL/I Data Types (see page 849)—The information in this new
appendix was previously available in the SQL Quick Reference Guide.

■ SQL Communication Area (see page 675)—The following new subsections were
added to this chapter from the SQL Quick Reference Guide:

■ COBOL/CA ADS SQLCA (see page 683)

■ PL/I SQLCA (see page 684)

■ SQLCODE and SQLCNRP Values (see page 681)

Contents 5

Contents

Chapter 1: Coding Considerations 15

Definitions .. 15

Using SQL Statements .. 16

SQL Comments ... 18

Syntax Diagram Conventions ... 19

Chapter 2: Identifiers 23

About Identifiers .. 24

Expansion of Authorization-identifier .. 27

Expansion of Procedure-reference... 28

Expansion of Table-procedure-reference .. 32

Expansion of Table-name ... 35

Expansion of Table-reference .. 37

Expansion of Joined-table .. 39

Identifying Entities in Schemas .. 42

Expansion of Cursor-name ... 45

Expansion of Statement-name ... 48

Chapter 3: Data Types and Null Values 53

Data Types .. 53

Expansion of Data-type .. 55

Representation of Date/Time Values ... 63

Comparison, Assignment, Arithmetic, and Concatenation Operations ... 66

Null Values.. 73

Chapter 4: Values and Value Expressions 75

Literals .. 75

Expansion of Literal .. 75

Host Variables .. 77

Expansion of Host-variable ... 79

Local Variables .. 81

Expansion of Local-variable .. 81

Routine Parameters ... 84

Expansion of Routine-parameter ... 85

Dynamic Parameters .. 87

6 SQL Reference Guide

Expansion of Dynamic-parameter-marker ... 92

Special Registers ... 93

Expansion of Special-register ... 93

ROWID Pseudo-column .. 95

Expansion of rowid-pseudo-column .. 96

Expansion of Value-expression .. 101

Durations .. 107

Expansion of Labeled-duration .. 107

Date/time Arithmetic ... 110

Expansion of XML-value-expression... 116

Chapter 5: Functions 117

Aggregate-function .. 117

Expansion of Aggregate-function .. 117

Scalar Function ... 121

Expansion of Scalar-function ... 122

CA IDMS Scalar Functions ... 124

Expansion of User-defined-function .. 179

Expansion of XML-value-function .. 181

XML Value Functions .. 181

Chapter 6: Predicates and Search Condition 207

Overview .. 207

Expansion of Between-predicate ... 207

Expansion of Comparison-predicate .. 209

Expansion of Exists-predicate ... 210

Expansion of In-predicate .. 211

Expansion of Like-predicate ... 214

Expansion of Null-predicate ... 219

Expansion of Quantified-predicate .. 220

Expansion of Search-condition ... 223

Chapter 7: Query Specifications, Subqueries, Query Expressions, and Cursor
Specifications 231

Query Specifications ... 231

Expansion of Query-specification ... 231

Subqueries .. 238

Expansion of Subquery ... 239

Query Expressions .. 240

Expansion of Query-expression .. 241

Contents 7

Expansion of Cursor-specification .. 244

Chapter 8: Statements 249

Statement Categories ... 251

ALLOCATE CURSOR ... 258

ALTER ACCESS MODULE ... 261

ALTER CATALOG ... 269

ALTER CONSTRAINT .. 270

ALTER FUNCTION.. 272

ALTER INDEX ... 277

ALTER PROCEDURE ... 279

ALTER SCHEMA ... 285

ALTER TABLE ... 290

ALTER TABLE PROCEDURE .. 300

BEGIN DECLARE SECTION ... 305

CALL .. 306

CLOSE ... 313

COMMIT ... 315

CONNECT .. 317

CREATE ACCESS MODULE ... 320

CREATE CALC .. 333

CREATE CONSTRAINT ... 334

CREATE FUNCTION ... 341

CREATE INDEX .. 352

CREATE KEY .. 357

CREATE PROCEDURE .. 361

CREATE SCHEMA .. 373

CREATE TABLE .. 378

CREATE TABLE PROCEDURE ... 387

CREATE TEMPORARY TABLE ... 392

CREATE VIEW .. 394

DEALLOCATE PREPARE ... 401

DECLARE CURSOR ... 402

DECLARE EXTERNAL CURSOR ... 406

DELETE .. 408

DESCRIBE .. 413

DESCRIBE CURSOR .. 416

DROP ACCESS MODULE .. 418

DROP CALC ... 420

DROP CONSTRAINT .. 421

DROP FUNCTION .. 423

8 SQL Reference Guide

DROP INDEX ... 424

DROP KEY ... 426

DROP PROCEDURE ... 427

DROP SCHEMA ... 428

DROP TABLE ... 430

DROP TABLE PROCEDURE... 432

DROP VIEW ... 433

END DECLARE SECTION .. 434

EXECUTE ... 435

EXECUTE IMMEDIATE ... 439

EXPLAIN .. 441

FETCH ... 449

GET DIAGNOSTICS .. 456

GET STATISTICS ... 463

GRANT Access Module Execution Privilege .. 467

GRANT Definition Privileges ... 470

GRANT Table Access Privileges... 474

INCLUDE ... 479

INSERT .. 487

OPEN .. 494

PREPARE ... 497

RELEASE .. 501

RESUME SESSION ... 502

REVOKE All Table Privileges .. 503

REVOKE SQL Definition Privileges .. 506

REVOKE Execution Privilege ... 510

REVOKE Table Access Privileges ... 512

ROLLBACK ... 516

SELECT .. 518

SET ACCESS MODULE ... 534

SET host-variable Assignment .. 535

SET SESSION ... 536

SET TRANSACTION .. 542

SUSPEND SESSION .. 544

TRANSFER OWNERSHIP .. 545

UPDATE .. 546

WHENEVER ... 556

Chapter 9: Control Statements 559

Overview .. 559

SQL Control Statements ... 560

Contents 9

CALL .. 561

CASE ... 562

Compound Statement .. 566

EXEC ADS .. 573

IF ... 577

ITERATE .. 580

LEAVE ... 583

LOOP ... 585

REPEAT ... 587

RESIGNAL .. 589

RETURN .. 591

SET Assignment .. 592

SIGNAL .. 594

WHILE ... 597

Chapter 10: Accessing Non-SQL-Defined Databases 599

Correspondence between SQL and Non-SQL-defined Entities .. 599

SQL Schema Considerations ... 604

SQL DML Statements Operating on Non-SQL-defined Records ... 606

SQL Access to Non-SQL Databases ... 609

Expansion of Extended-search Condition... 613

Expansion of Set-specification Statement .. 613

Chapter 11: Defining and Using Table Procedures 617

When to Use a Table Procedure .. 617

Defining a Table Procedure .. 618

Accessing a Table Procedure .. 618

Table Procedure Parameters .. 619

Writing a Table Procedure ... 622

Chapter 12: Defining and Using Procedures 629

When to Use a Procedure .. 629

Defining a Procedure .. 630

Invoking a Procedure.. 631

Procedure Parameters ... 631

Writing an External Procedure in COBOL, PL/I or Assembler ... 634

Writing External Procedures as CA ADS Mapless Dialogs .. 636

10 SQL Reference Guide

Chapter 13: Defining and Using Functions 639

When to Use a User-Defined Function ... 639

Defining a Function .. 640

Invoking a Function .. 641

Writing an External Function in COBOL, PL/I, or Assembler .. 641

Writing External Functions as CA ADS Mapless Dialogs ... 644

Chapter 14: Considerations for SQL-invoked External Routines 647

Special Considerations for SQL-invoked External Routines ... 647

Debugging Procedures ... 653

Database Name Inheritance ... 653

Transaction Sharing .. 654

Chapter 15: XML Publishing Using SQL 655

XML Publishing ... 655

Mapping Plain Text SQL to XML .. 658

XMLSLICE Table Procedure ... 663

Appendix A: Summary Comparison to SQL Standard 667

SQL Standard Basis ... 667

Appendix B: Summary of Limits 671

Logical Data Limits .. 671

Data Type Limits ... 671

Host Variable Limits ... 672

Syntactic Limits ... 673

Appendix C: SQL Communication Area 675

SQLCA ... 675

SQLSTATE ... 676

SQLSTATE Values .. 676

SQLCODE .. 681

SQLCODE Error Values .. 681

SQLCODE and SQLCNRP Values .. 681

COBOL/CA ADS SQLCA.. 683

PL/I SQLCA .. 684

Contents 11

Appendix D: SQL Descriptor Area 685

SQLDA ... 685

SQLLEN ... 686

SQLTYPE .. 687

SQLSCALE .. 688

SQLPRECISION .. 688

SQLALN and SQLNALN .. 689

SQLNULL ... 689

Appendix E: SYSTEM Tables and SYSCA Views 691

Overview .. 691

SYSTEM.AM .. 691

SYSTEM.AMDEP .. 692

SYSTEM.AREA ... 692

SYSTEM.BUFFER ... 694

SYSTEM.COLUMN ... 695

SYSTEM.CONSTKEY ... 697

SYSTEM.CONSTRAINT ... 698

SYSTEM.DBNAME ... 704

SYSTEM.DBSEGMENT ... 706

SYSTEM.DBSSC ... 706

SYSTEM.DBTABLE ... 707

SYSTEM.DMCL .. 708

SYSTEM.DMCLAREA ... 709

SYSTEM.DMCLFILE .. 711

SYSTEM.DMCLSEGMENT .. 713

SYSTEM.FILE ... 714

SYSTEM.FILEMAP .. 716

SYSTEM.INDEX .. 717

SYSTEM.INDEXKEY .. 725

SYSTEM.JOURNAL ... 726

SYSTEM.LOADHDR .. 728

SYSTEM.ORDERKEY .. 729

SYSTEM.SCHEMA .. 730

SYSTEM.SECTION .. 732

SYSTEM.SEGMENT .. 733

SYSTEM.SYMBOL .. 734

SYSTEM.SYNTAX ... 736

SYSTEM.TABLE .. 737

SYSTEM.VIEWDEP ... 742

SYSCA Objects .. 743

12 SQL Reference Guide

Example ... 745

Appendix F: Index Calculations 747

INDEX BLOCK CONTAINS .. 748

DISPLACEMENT .. 749

Appendix G: Sample COBOL Table Procedure 751

Sample Table Procedure Definition.. 751

Sample Table Procedure Program .. 752

Appendix H: DISPLAY and PUNCH Syntax 769

DISPLAY and PUNCH Syntax ... 769

DISPLAY and PUNCH Operations .. 770

DISPLAY/PUNCH ALL Statement ... 770

DISPLAY/PUNCH ACCESS MODULE ... 781

DISPLAY/PUNCH CALC KEY ... 784

DISPLAY/PUNCH CONSTRAINT ... 786

DISPLAY/PUNCH FUNCTION ... 788

DISPLAY/PUNCH INDEX .. 791

DISPLAY/PUNCH KEY .. 793

DISPLAY/PUNCH PROCEDURE .. 794

DISPLAY/PUNCH SCHEMA .. 796

DISPLAY/PUNCH TABLE .. 800

DISPLAY/PUNCH TABLE PROCEDURE ... 805

DISPLAY/PUNCH VIEW ... 808

Appendix I: Sample COBOL Procedure 813

Sample Procedure Definition ... 813

Sample Procedure Program ... 814

Sample of Procedure Invocation .. 816

Appendix J: CA IDMS Scalar Functions 817

Overview .. 817

Functions .. 817

Appendix K: Sample COBOL Function 823

Sample Function Definition .. 823

Sample Function Program .. 824

Contents 13

Function Invocation .. 825

Appendix L: Sample CA ADS Procedure 827

SQL Procedure Example ... 827

Work Records ... 827

Premap Process .. 828

Procedure Invocation ... 829

Appendix M: Sample CA ADS Function 831

SQL Function Example .. 831

Work Records ... 831

Premap Process .. 832

Function Invocation .. 832

Appendix N: SQL Cache Tables 833

Overview .. 833

Tables for Viewing, Monitoring, and Controlling the Cache .. 833

Examples of Displaying and Controlling the Cache .. 838

Secure the Display and Changes .. 842

Appendix O: Enhancing the Presentation of Access Strategy Information 843

Overview .. 843

Contents of EXPLDDL .. 844

Appendix P: SQL Reserved Words 847

Appendix Q: CA ADS, COBOL, PL/I Data Types 849

Appendix R: Third-Party Acknowledgment 853

Index 855

Chapter 1: Coding Considerations 15

Chapter 1: Coding Considerations

This section contains the following topics:

Definitions (see page 15)
Using SQL Statements (see page 16)
SQL Comments (see page 18)
Syntax Diagram Conventions (see page 19)

Definitions

Most of the definitions and entities used in this guide are intuitively understood and
generally used. With the introduction of SQL procedural language support it became
necessary to more formally define a number of SQL routine-like objects. The following
definitions are based on the definitions used in the SQL standard.

SQL-invoked routine

Specifies a routine that is allowed to be invoked only from within SQL. An
SQL-invoked routine can be defined in the SQL catalog as a procedure, function, or
table procedure.

SQL-invoked procedure

Specifies an SQL-invoked routine defined as a procedure in the SQL catalog.

SQL-invoked function

Specifies an SQL-invoked routine defined as a function in the SQL catalog.

SQL routine

Specifies an SQL-invoked routine whose language attribute is SQL. Because table
procedures can not be written in the SQL language, an SQL routine is necessarily
defined as a procedure or a function.

SQL procedure

Specifies an SQL routine defined in the SQL catalog as a procedure with language
attribute SQL.

SQL function

Specifies an SQL routine defined in the SQL catalog as a function with language
attribute SQL.

Using SQL Statements

16 SQL Reference Guide

Using SQL Statements

You can submit SQL statements to CA IDMS by:

■ Using the CA IDMS online command facility (that is, interactively)

■ Using the CA IDMS batch command facility

■ Embedding the statements in an application program (that is, programmatically)

■ Using tools and facilities, (such as, CA IDMS Visual DBA, CA Visual Express) that
submit SQL statements through CA IDMS Server

The same syntax applies no matter how you submit the statements. However, there are
some statements that are only programmatic. Chapter 9, "Statements" indicates those
statements that you submit only in SQL that is embedded in a program.

Statement Components

Keywords, Values, and Separators

SQL statements consist of:

■ Keywords that:

– Identify the action requested by the statement (for example, CREATE or
SELECT)

– Specify the type of entity (for example, TABLE or INDEX) that is the object of
the requested action

– Place qualifications on the requested action, either by themselves (for example,
NOT NULL or DISTINCT) or in conjunction with user-supplied values (for
example, ORDER BY EMPLOYEE_LNAME)

■ User-supplied values that:

– Identify specific occurrences of entities (for example, the EMPLOYEE table or
user EKJ)

– Specify data values (for example, 983 or 'Boston')

■ Separators that separate keywords and user-supplied values from one another. A
separator can be a space, a comment, a new-line character, or the end of the line.

Where Separators Are Not Required

Separators are not required before or after a character string literal or any of the
following symbols:

* Asterisk

: Colon

Using SQL Statements

Chapter 1: Coding Considerations 17

, Comma

= Equal sign

¬= Not equal sign

>= Greater than or equal to sign

> Greater than sign

¬> Not greater than sign

(and) Left and right parentheses

<= Less than or equal to sign

< Less than sign

¬< Not less than sign

- Minus sign

<> Not equal sign

. Period

+ Plus sign

; Semicolon

/ Slash

|| Concatenation sign

Uppercase and Lowercase

You can use both uppercase and lowercase to enter keywords and user-supplied values
in SQL statements. CA IDMS converts lowercase letters to uppercase in keywords and in
user-supplied values that are not enclosed in quotation marks.

Delimiting and Continuing Statements

Statement Delimiter for the Command Facility

When you use the command facility to submit SQL statements, you must terminate
each statement with a command delimiter, which is by default a semicolon (;). You can
enter the command delimiter either on the same line as the rest of the statement or on
a separate line. For example, the following two statements are equivalent:

select * from employee;

select * from employee

;

SQL Comments

18 SQL Reference Guide

Continuing Statements

You can code SQL statements on one or more lines. No special character is required to
indicate that a statement continues on the next line.

Embedded SQL Delimiters

When you embed SQL statements in an application program or a CA ADS process
module, you must delimit each statement both at the beginning and at the end. The
requirements for delimiting embedded SQL statements vary according to the program
language.

Note: For more information about delimiting embedded SQL statements, see the CA
IDMS SQL Programming Guide.

SQL Comments

How to Embed SQL Comments

You can embed an SQL comment within an SQL statement. SQL comments may be used
in both interactive and embedded SQL statements.

An SQL comment:

■ Begins with two consecutive hyphens (--)

■ Consists of any combination of numbers, letters, spaces, and other characters

■ Ends at the end of the line

Bracketed comment:

■ A bracketed comment starts with the bracket introducer string '/*' and ends with
the bracket terminator string '*/'.

■ Bracketed comments can span multiple lines.

■ The bracket introducer and terminator strings can not split over two lines.

■ Can be used whenever a separator or space is allowed.

■ Bracketed comments are only allowed in the routine body of an SQL-routine. They
are not recognized by the command facility outside this context.

Syntax Diagram Conventions

Chapter 1: Coding Considerations 19

Note: When defining an SQL routine using the command facility tools OCF, IDMSBCF, or
using an OCF console in CA IDMS Visual DBA, the comment introducer '/*' must not be
placed in column 1, because '/*' is interpreted as an end of file on input by the
command facility.

Sample SQL Comments

The following example shows SQL comments with an embedded SQL statement:

select
 emp_id, emp_lname, dept_id ── Columns to be selected
 from employee ── Tables containing the data
 where dept_id = 1234; ── Selection criterion

Syntax Diagram Conventions

The syntax diagrams presented in this guide use the following notation conventions:

UPPERCASE OR SPECIAL CHARACTERS

Represents a required keyword, partial keyword, character, or symbol that must be
entered completely as shown.

lowercase

Represents an optional keyword or partial keyword that, if used, must be entered
completely as shown.

italicized lowercase

Represents a value that you supply.

lowercase bold

Represents a portion of the syntax shown in greater detail at the end of the syntax
or elsewhere in the document.

◄─

Points to the default in a list of choices.

►►────────────────────

Indicates the beginning of a complete piece of syntax.

────────────────────►◄

Indicates the end of a complete piece of syntax.

─────────────────────►

Indicates that the syntax continues on the next line.

►─────────────────────

Syntax Diagram Conventions

20 SQL Reference Guide

Indicates that the syntax continues on this line.

────────────────────►─

Indicates that the parameter continues on the next line.

─►────────────────────

Indicates that a parameter continues on this line.

►── parameter ─────────►

Indicates a required parameter.

►──┬─ parameter ─┬─────►
 └─ parameter ─┘

Indicates a choice of required parameters. You must select one.

►──┬─────────────┬─────►
 └─ parameter ─┘

Indicates an optional parameter.

►──┬─────────────┬─────►
 ├─ parameter ─┤
 └─ parameter ─┘

Indicates a choice of optional parameters. Select one or none.

 ┌─────────────┐
►─▼─ parameter ─┴──────►

Indicates that you can repeat the parameter or specify more than one parameter.

 ┌─── , ─────────┐
►─▼─ parameter ───┴──────►

Indicates that you must enter a comma between repetitions of the parameter.

Syntax Diagram Conventions

Chapter 1: Coding Considerations 21

Sample Syntax Diagram

The following sample explains how the notation conventions are used:

Chapter 2: Identifiers 23

Chapter 2: Identifiers

This section contains the following topics:

About Identifiers (see page 24)
Expansion of Authorization-identifier (see page 27)
Expansion of Procedure-reference (see page 28)
Expansion of Table-procedure-reference (see page 32)
Expansion of Table-name (see page 35)
Expansion of Table-reference (see page 37)
Expansion of Joined-table (see page 39)
Identifying Entities in Schemas (see page 42)
Expansion of Cursor-name (see page 45)
Expansion of Statement-name (see page 48)

About Identifiers

24 SQL Reference Guide

About Identifiers

Identifiers are the smallest lexical units used in entity names.

The following entities referenced in SQL statements have identifiers:

■ Access modules

■ Areas

■ Columns

■ Constraints

■ Cursors

■ Groups

■ Indexes

■ Keys

■ Procedures

■ RCMs (SQL statement modules)

■ Referential constraints

■ Schemas

■ Segments

■ Statement names

■ Tables

■ Table procedures

■ User-defined functions

■ Users

■ Views

Qualifying Identifiers

Identifiers for some entities can be qualified by other identifiers. For example, table
identifiers can be qualified by schema names.

Sometimes an identifier by itself does not uniquely identify an entity. For instance, a
SELECT statement may include two columns with the same identifier, each from a
different table. To uniquely identify each of these columns, you must qualify each
column identifier with the associated table name or alias.

About Identifiers

Chapter 2: Identifiers 25

To qualify an identifier, specify the qualifier first, followed by a period (.), followed by
the identifier you are qualifying. The qualified identifier in the following example
identifies the EMPLOYEE table associated with the DEMOEMPL schema:

demoempl.employee

Authorization-identifier and table-name

Authorization-identifier and table-name are syntactic elements representing identifiers
that occur in multiple SQL statements. For expanded syntax for these elements, see
Expansion of Authorization-identifier and Expansion of Table-name.

Forming Identifiers

Valid characters

An identifier consists of a combination of:

■ Letters (A through Z and a through z)

■ Digits (0 through 9)

■ At sign (@)

■ Dollar sign ($)

■ Pound sign (#)

■ Underscore (_)

The first character of an identifier must be a letter, @, $, or #.

Maximum length

Identifiers for all entities except columns, access modules, segments, RCMs, and
external names of SQL-invoked routines can be as many as 18-characters long.

Identifiers for access modules, segments, RCMs, and external names of SQL-invoked
routines can be as many as eight-characters long.

An identifier for a column can be as many as 32-characters long.

About Identifiers

26 SQL Reference Guide

Delimited Identifiers

Why delimit identifiers

You can delimit an identifier in double quotation marks to:

■ Allow the use of special characters and blanks. An identifier enclosed in quotation
marks can consist of any combination of characters. For example, the following is a
valid identifier:

"&ATM*F(0517). MA"

To include a double quotation mark as part of the identifier itself, use two
consecutive double quotation marks. For example:

"M1K""L9&ZZ".

■ Make case significant. When you enclose an identifier in quotation marks, CA IDMS
does not convert lowercase letters to uppercase.

Lowercase letters in quotation marks are not equal to uppercase letters or to
lowercase letters that are not in quotation marks. In the example below, the
identifiers on the left all identify the same table; the identifier on the right identifies
a different table:

employee "employee"

EMPLOYEE

"EMPLOYEE"

Placement of quotation marks

If one or more parts of a qualified identifier require quotation marks, place the
quotation marks only around the individual parts. Do not include two identifiers in one
set of quotation marks. For example, both parts of the following qualified identifier
require quotation marks:

"temp-tab-1"."Commission to Date"

When you calculate the length of an identifier, do not include delimiting quotation
marks.

Avoiding Keywords as Identifiers

Eliminating ambiguity

You should avoid issuing an SQL statement which specifies an identifier that matches a
keyword in the syntax for the statement. This eliminates potential ambiguity that could
cause CA IDMS to read the statement in a way that is not meant.

If you must use a keyword as an identifier, delimit the identifier with double quotation
marks as described in Delimited Identifiers.

Expansion of Authorization-identifier

Chapter 2: Identifiers 27

Recognizing keywords

The syntax diagrams in this guide present keywords in roman (that is, nonitalicized)
type.

For example, in the following syntax for CREATE VIEW, the keywords are CREATE VIEW,
AS, and WITH CHECK OPTION:

►►─── CREATE VIEW ─┬────────────────┬─ view-identifier ───────────────────────►
 └─ schema-name. ─┘

 ►─┬────────────────────────────────┬───►
 │ ┌──────── , ─────────┐ │
 └─ (─▼─ view-column-name ─┴─) ─┘

 ►─── AS query-specification ───►

 ►─┬──────────────────────────┬───►
 └─ order-by-specification ─┘

 ►─┬─────────────────────┬──►◄
 └─ WITH CHECK OPTION ─┘

Delimited example identifier

If it were necessary to create a view called AS, you should identify the view as follows:

create view "AS" (col1, col2, col3) as (select...

Expansion of Authorization-identifier

The expanded parameters of authorization-identifier represent user identifiers or group
identifiers in an SQL authorization statement.

Syntax

Expansion of authorization-identifier

►►─┬─ user-identifier ──┬───►◄
 └─ group-identifier ─┘

Expansion of Procedure-reference

28 SQL Reference Guide

Parameters

user-identifier

Identifies a user defined to the security system.

group-identifier

Identifies a group defined to the security system.

Examples

Authorizing a User to Update a Table

In the following GRANT statement, the authorization identifier is the user identifier RES:

grant update

 on table employee

 to res;

Revoking Execute Privileges from a Group

In the following REVOKE statement, the authorization identifier is the group identifier
ACCT_GRP_1:

revoke execute

 on access module am88pr08

 from acct_grp_1;

Expansion of Procedure-reference

The expanded parameters of procedure-reference represent qualified or unqualified
procedure identifiers together with an optional set of parameter values.

If an SQL CALL or an SQL SELECT statement that is embedded in an application program
or SQL routine contains the procedure reference, then the procedure reference also
identifies the target host variables, local variables, or routine parameters into which the
output parameter values return.

Expansion of Procedure-reference

Chapter 2: Identifiers 29

Syntax

Expansion of procedure-reference

►►────┬────────────────┬─ procedure-identifier ──────────────────────────────►
 └─ schema-name. ─┘

►►─┬───┬─────────►◄
 │ ┌───────────── , ─────────────┐ │
 └─ (─▼── parameter-specification ──┴─) ─────────────────────┘

Expansion of parameter-specification

►►────┬───────────────────────┬─ value-expression ────────────────────────────►◄
 └─ parameter-name ── = ─┘

Parameters

schema-name

Specifies the schema with which the procedure identified by procedure-identifier is
associated.

Note: For more information about using a schema name to qualify a procedure, see
Identifying Entities in Schemas.

procedure-identifier

Identifies a procedure defined in the dictionary.

parameter-specification

Specifies a value assigned to a parameter of a procedure. If an SQL CALL or an SQL
SELECT statement that is embedded in an application program contains the
procedure and the value-expression is a host-variable, then the output value of the
parameter returns into the specified host-variable. If the SQL CALL or SQL SELECT
statement is embedded in an SQL routine and the value-expression is a local
variable or a routine parameter then the output value of the parameter returns into
the specified local variable or routine parameter.

You can use both the positional (with NO parameter-name) and the non-positional
(with parameter-name) forms of parameter specification in a single procedure
reference. If you use a non-positional parameter specification, then all remaining
parameter specifications in the parameter list MUST be non-positional. Positional
parameter specifications are assumed to correspond to the declared parameters of
a procedure in the sequence of their declaration.

parameter-name

Specifies the name of a parameter associated with the procedure.

value-expression

Specifies the input value to assign to the parameter. In addition, any host-variable,
local variable, or routine parameter specified as value-expression receives the
output value of the parameter returned by the invoked procedure. See Expansion
of Value-expression for more information.

Expansion of Procedure-reference

30 SQL Reference Guide

Usage

Referencing Procedures

You can code references to SQL procedures in an SQL CALL statement.

During SQL CALL processing, CA IDMS issues a call to the corresponding routines. The
output parameter values return as a result set.

You can also reference a procedure in the FROM clause of a query-specification or
SELECT statement, in the same manner as references to SQL tables, views, and table
procedures.

If you reference a procedure in a FROM clause, then the parameters of the procedure
act as columns in an SQL table or view. You can reference them in SELECT list
expressions and WHERE clauses. A procedure returns exactly one row of output or no
output.

Assigning Parameter Values with the WHERE Clause

You can use the WHERE clause as an alternative method for assigning values to
parameters of procedures. An expression of the form parameter name = value
specification coded in the WHERE clause is considered to be equivalent to a parameter
assignment using procedure reference syntax. This allows you to code procedure
references without a parenthesized parameter list, just like standard table, view or table
procedures references.

This method is useful particularly if you are coding SQL statements in generic SQL
environments, such as CA Visual Express, which do not support the SQL CALL statement
and the specification of parameters in the procedure reference.

When you use the WHERE clause to assign parameter values, you must meet the
following conditions in order to assign the parameter a value:

■ It must appear in an "=" comparison, not, for example, with >, <, >=. or <=.

■ You can combine the "=" comparison in which the parameter appears only with
other factors in the WHERE clause using an AND operator. Use of an OR operator
or preceding the "=" comparison with the NOT keyword means that no value is
assigned to the parameter.

Note: For more information about assignment of values to procedure parameters, see
Procedure Parameters.

Expansion of Procedure-reference

Chapter 2: Identifiers 31

Examples

Qualified Procedure Reference through the CALL Statement

In the following CALL statement, the procedure reference is qualified and one
parameter value is supplied as a positional parameter for the first parameter of the
procedure get_bonus:

call emp.get_bonus (127);

Procedure Reference with Keyword Parameter Values

In the following CALL statement, a value is supplied for the EMP_ID parameter using
keyword notation:

call get_bonus (emp_id=127);

Procedure Reference through the SELECT Statement

In the following SELECT statement, a value is supplied for the first parameter associated
with the GET_BONUS procedure:

select * from get_bonus (7);

Procedure Reference through the SELECT Statement with Parameter Values Specified
in the WHERE Clause;

In the following SELECT statement, parameter values are supplied through the WHERE
clause. This example is identical to the example above that uses keyword notation:

select * from get_bonus

 where emp_id=127;

Note: For more information about defining procedures, see CREATE PROCEDURE and
Defining and Using Procedures.

More information

Procedure Parameters (see page 631)

More information:

CREATE PROCEDURE (see page 361)
Defining and Using Procedures (see page 629)

Expansion of Table-procedure-reference

32 SQL Reference Guide

More information

CREATE TABLE PROCEDURE (see page 387)
Defining and Using Table Procedures (see page 617)

Expansion of Table-procedure-reference

The expanded parameters of table-procedure-reference represent qualified or
unqualified table procedure identifiers together with an optional set of parameter
values.

Syntax

Expansion of table-procedure-reference

►►────┬────────────────┬─ table-procedure-identifier ─────────────────────────►
 └─ schema-name. ─┘

►►─┬──┬─────────►◄
 │ ┌───────────── , ─────────────┐ │
 └─ (─▼── parameter-specification ──┴─) ────────────────────────┘

Expansion of parameter-specification

►►────┬───────────────────────┬─ value-expression ────────────────────────────►◄
 └─ parameter-name ── = ─┘

Parameters

schema-name

Specifies the schema with which the table procedure identified by
table-procedure-identifier is associated.

Note: For more information about using a schema name to qualify a table procedure,
see Identifying Entities in Schemas.

table-procedure-identifier

Identifies a table procedure defined in the dictionary.

Expansion of Table-procedure-reference

Chapter 2: Identifiers 33

parameter-specification

Assigns a value to a parameter in a table procedure reference. You can use both the
positional (with NO parameter name) and the non-positional (with parameter
name) forms of parameter specification in a single table procedure reference. If you
use a non-positional parameter specification, all remaining parameter specifications
in the parameter list MUST be non-positional. Positional parameter specifications
are assumed to correspond to the declared parameters of a table procedure, in the
sequence of their declaration.

parameter-name

Specifies the name of a parameter associated with the table procedure.

value-expression

Specifies the value to assign to the parameter. See Expansion of Value-expression
for more information.

Usage

Referencing Table Procedures

You can code references to SQL table procedures in SQL SELECT, INSERT, UPDATE, and
DELETE statements in the same manner as references to SQL tables and views. The
parameters of such table procedures act as columns in an SQL table or view. You can
reference them in SELECT list expressions, WHERE clauses, UPDATE statement SET
clauses, and the column list of the INSERT statement. You can also reference table
procedures in the SQL CALL statement. The output parameter values return as a result
set.

During SQL DML processing, CA IDMS issues calls to the corresponding external routines
at the same time at which it would perform database access to satisfy standard table
references. This permits the simulation of SQL DML activity on external data storage
structures (for example, non-SQL-defined CA IDMS databases or VSAM file systems)
managed by the table procedures.

Assigning Parameter Values with the WHERE Clause

An alternative method for assigning values to parameters of table procedures is through
the WHERE clause. An expression of the form parameter name = value specification
coded in the WHERE clause is considered to be equivalent to a parameter assignment
using table procedure reference syntax. This allows table procedure references to be
coded without a parenthesized parameter list, just like standard table or view
references.

This method is useful particularly if you are coding SQL statements in generic SQL
environments, such as CA Visual Express, which do not support CA IDMS SQL extensions,
such as table procedures.

Expansion of Table-procedure-reference

34 SQL Reference Guide

When you use the WHERE clause to assign parameter values, the following conditions
must be met for the parameter to be assigned a value:

■ It must appear in an "=" comparison, not, for example, with >, <, >=. or <=.

■ The "=" comparison in which the parameter appears can be combined only with
other factors in the WHERE clause using an AND operator. Use of an OR operator or
preceding the "=" comparison with the NOT keyword means that no value is
assigned to the parameter.

Note: For more information about assignment of values to table procedure parameters,
see Table Procedure Parameters.

Examples

Qualified Table Procedure Reference

In the following SELECT statement, the table procedure reference is qualified:

select * from emp.org;

Table Procedure Reference with Keyword Parameter Values

In the following SELECT statement, values are supplied for the EMP_ID and MGR_ID
parameters using keyword notation:

select * from org (emp_id=127, mgr_id=7);

Table Procedure Reference with Positional Parameter Values

In the following SELECT statement, a value is supplied for the first parameter associated
with the ORG table procedure:

select * from org (7);

Table Procedure Reference with Parameter Values Specified in the WHERE Clause

In the following SELECT statement, parameter values are supplied through the WHERE
clause. This example is identical to the example above that uses keyword notation.

select * from org .

 where emp_id=127 and mgr_id=7;

Note: For more information about defining table procedures, see CREATE TABLE
PROCEDURE and Defining and Using Table Procedures.

Expansion of Table-name

Chapter 2: Identifiers 35

More information:

Table Procedure Parameters (see page 619)

Expansion of Table-name

The expanded parameters of table-name represent qualified or unqualified tables,
views, procedures, or table procedure identifiers in an SQL statement.

Syntax

Expansion of table-name

►►──┬────────────────┬─┬─ table-identifier ────────────┬──────────────────────►◄
 └─ schema-name. ─┘ ├─ view-identifier ─────────────┤
 ├─ procedure-identifier ────────┤
 └─ table-procedure-identifier ──┘

Parameters

schema-name

Specifies the schema with which the table, view, procedure, or table procedure
identified by table-identifier, view-identifier, procedure-identifier or
table-procedure-identifier is associated.

Note: For more information about using a schema name to qualify a table, view,
procedure, or table procedure identifier, see Identifying Entities in Schemas. (see
page 42)

table-identifier

Identifies either a base table defined in the dictionary or a temporary table defined
during the current transaction.

view-identifier

Identifies a view defined in the dictionary.

procedure-identifier

Identifies a procedure defined in the dictionary.

table-procedure-identifier

Identifies a table procedure defined in the dictionary.

Expansion of Table-name

36 SQL Reference Guide

Examples

A Qualified Table Identifier

In the following INSERT statement, the table name is a qualified table identifier:

insert into demoempl.employee values (1,'John', 'Smith');

An Unqualified Table Identifier

In the following INSERT statement, the table name is an unqualified table identifier. If no
temporary table named EMPLOYEE has been defined during the current transaction, CA
IDMS assumes the table is qualified with the current schema in effect for the SQL
session.

insert into employee values (1,'John', 'Smith');

More Information

■ For more information about defining base tables, see CREATE TABLE, ALTER TABLE
and DROP TABLE.

■ For more information about defining temporary tables, see CREATE TEMPORARY
TABLE.

■ For more information about defining procedures, see CREATE PROCEDURE and
Defining and Using Procedures.

■ For more information about defining table procedures, see CREATE TABLE
PROCEDURE and Defining and Using Table Procedures.

■ For more information about defining views, see CREATE VIEW and DROP VIEW (see
page 433).

■ For more information about establishing a current schema, see SET SESSION.

More information:

ALTER TABLE (see page 290)
CREATE PROCEDURE (see page 361)
CREATE TABLE (see page 378)
CREATE TEMPORARY TABLE (see page 392)
CREATE VIEW (see page 394)
Defining and Using Table Procedures (see page 617)
DROP TABLE (see page 430)
DROP VIEW (see page 433)
SET SESSION (see page 536)

Expansion of Table-reference

Chapter 2: Identifiers 37

Expansion of Table-reference

The expanded parameters of table-reference represent qualified or unqualified tables,
view identifiers, joined tables, or a reference to a procedure or a table procedure in an
SQL statement.

Syntax

Expansion of table-reference

►►──┬────────────────┬─┬─ table-identifier ──┬┬───────────────────────────────►◄
 ├─ schema-name. ─┘ └─ view-identifier ───┘│
 ├─ procedure-reference ───────────────────┤
 ├─ table-procedure-reference ─────────────┤
 ├─ joined-table ──────────────────────────┤
 └─ (joined-table) ──────────────────────┘

Parameters

schema-name

Specifies the schema with which the table or view identified by table-identifier or
view-identifier is associated.

Note: For more information about using a schema name to qualify a table or view
identifier, see Identifying Entities in Schemas. (see page 42)

table-identifier

Identifies either a base table defined in the dictionary or a temporary table defined
during the current transaction.

view-identifier

Identifies a view defined in the dictionary.

procedure-reference

Identifies a procedure defined in the dictionary and optionally supplies parameter
values to be passed to the procedure.

Note: For more information about the expansion of procedure-reference, see
Expansion of Procedure-reference (see page 28).

table-procedure-reference

Identifies a table procedure defined in the dictionary and optionally supplies
parameter values to be passed to the table procedure.

Note: For more information about the expansion of table-procedure-reference,
see Expansion of Table-procedure-reference (see page 32).

joined-table

Identifies a table that is derived from joining two specified tables.

Note: For more information about the expansion of joined-table, see Expansion of
Joined-table. (see page 39)

Expansion of Table-reference

38 SQL Reference Guide

Examples

A Qualified Table Identifier

In the following SELECT statement, the table reference is a qualified table identifier:

select * from demoempl.employee;

An Unqualified Table Identifier

In the following SELECT statement, the table reference is an unqualified table identifier.
If no temporary table named EMPLOYEE has been defined during the current
transaction, CA IDMS assumes the table is qualified with the current schema in effect for
the SQL session.

select * from employee;

Table Procedure Reference with Keyword Parameter Values

In the following SELECT statement, the table reference is a table procedure reference
where values are supplied for the EMP_ID and MGR_ID parameters using keyword
notation:

select * from org (emp_id=127, mgr_id=7);

More Information

■ For more information about defining base tables, see CREATE TABLE, ALTER TABLE
and DROP TABLE.

■ For more information about defining temporary tables, see CREATE TEMPORARY
TABLE.

■ For more information about defining procedures, see CREATE PROCEDURE and
Defining and Using Procedures.

■ For more information about defining table procedures, see CREATE TABLE
PROCEDURE and Defining and Using Table Procedures.

■ For more information about defining views, see CREATE VIEW and DROP VIEW.

■ For more information about establishing a current schema, see SET SESSION.

Expansion of Joined-table

Chapter 2: Identifiers 39

Expansion of Joined-table

The expanded parameters of joined-table represent a table that is derived from joining
two specified tables. A join operation on two tables is the result of the cross product of
the two tables. A qualified join is followed by a filter operation. The cross or Cartesian
product of two tables, left and right, is the result of extending each row of the left table
with every row of the right table. The different types of join operations are specified
through the following join types:

■ CROSS

■ UNION

■ INNER

■ LEFT OUTER

■ RIGHT OUTER

■ FULL OUTER

Syntax

►──────┬─ unqualified-joined-table ─┬───►◄
 └─ qualified-joined-table ───┘

Expansion of unqualified-joined-table

►─── table-reference ─┬────────────────────┬──┬─ CROSS ──┬───────────── JOIN ──►
 └┬──────┬── alias-l ─┘ └─ UNION ──┘
 └─ AS ─┘
►─── table-reference ─┬────────────────────┬──────────────────────────────────►◄
 └┬──────┬── alias-r ─┘
 └─ AS ─┘

Expansion of qualified-joined-table

►─── table-reference ─┬────────────────────┬─┬──────────────────────┬─ JOIN ───►
 └┬──────┬── alias-l ─┘ ├───── INNER ──────────┤
 └─ AS ─┘ ├─ LEFT ───┬┬─────────┬┘
 ├─ RIGHT ──┤└─ OUTER ─┘
 └─ FULL ───┘

►─── table-reference ─┬────────────────────┬──── ON ─ join-condition ─────────►◄
 └┬──────┬── alias-r ─┘
 └─ AS ─┘

Expansion of join-condition

►──┬─ search-condition ──┬───┬──────────────────────────────────┬─────────────►◄
 └─ set-specification ─┘ │ ┌──────────────────────────────┐│
 └──▼─ AND ─┬─ search-condition ──┬┴┘
 └─ set-specification ─┘

Expansion of Joined-table

40 SQL Reference Guide

Parameters

unqualified-joined-table

Specifies a joined-table where the join operation is a cross or union.

qualified-joined-table

Specifies a joined-table where the join operation is an inner, left outer, right outer,
or full outer.

table-reference

Represents a table-like object. In a joined-table specification, a left and a right
table-reference are required to define the left and right components of the join
operation.

AS alias-l

Defines a new name used to identify the left table-like object within the
joined-table specification. Alias-l must be a 1-through 18-character name that
follows the conventions for SQL identifiers.

AS alias-r

Defines a new name used to identify the right table-like object within the
joined-table specification. Alias-r must be a 1-through 18-character name that
follows the conventions for SQL identifiers.

CROSS

Specifies a cross join. A cross join is the cross product of the left and right table.

UNION

Specifies a union join. A union join is equivalent to a full outer join where the
join-condition always evaluates to false.

INNER

Specifies an inner join. In an inner join, the cross product of the left and right
table-like objects is made, and only the rows for which join-condition evaluates to
true are kept in the result. This is the default.

LEFT/LEFT OUTER

Specifies a left outer join. In a left outer join, the cross product of the left and right
table-like objects is made, and the rows for which join-condition evaluates to true
are kept. The result is extended with all the missing rows from the left table, and
the values of the columns in the result row, derived from the right table, are set to
NULL.

Expansion of Joined-table

Chapter 2: Identifiers 41

RIGHT/RIGHT OUTER

Specifies a right outer join. In a right outer join, the cross product of the left and
right table-like objects is made, and the rows for which join-condition evaluates to
true are kept. The result is extended with all the missing rows from the right table,
and the values of the columns in the result row, derived from the left table, are set
to NULL.

FULL/FULL OUTER

Specifies a full outer join. In a full outer join, the cross product of the left and right
table-like objects is made, and the rows for which join-condition evaluates to true
are kept. The result is extended with all the missing rows from the left table, and
the values of the columns in the result row, derived from the right table, are set to
NULL. The result is further extended with all the missing rows from the right table,
and the values of the columns in the result row, derived from the left table, are set
to NULL.

join-condition

Represents the truth condition for joining two table-like objects. Expanded syntax
for join-condition appears immediately after the joined-table syntax. If
join-condition contains a set-specification both the left and the right
table-reference must specify base tables of a non-SQL-defined database that
identify the owner and member of the non-SQL set.

Usage

■ If a join type is not specified, INNER is assumed.

■ Joined-tables can be nested. Evaluation is from left to right.

■ It is advisable to use parenthesis when nesting joins.

■ In a nested joined-table, only the join-condition of the inner most join can contain a
set-specification because a set-specification requires that the left and right
table-reference are base tables of a non-SQL-defined database.

■ A query-expression that contains a joined-table is not updateable.

Examples

Selecting all Departments and Employees in Department

The following examples list all the departments and the employees of the department.
The two statements give identical results.

select d.*, e.*

 from DEMOEMPL.DEPARTMENT d left join DEMOEMPL.EMPLOYEE e

 on d.dept_id = e.dept_id

select d.*, e.*

 from DEMOEMPL.EMPLOYEE e right join DEMOEMPL.DEPARTMENT d

 on d.dept_id = e.dept_id

Identifying Entities in Schemas

42 SQL Reference Guide

Selecting all Depts./Empls. in Dept. with or without Position

The following examples show nesting of joined tables. The two statements give identical
results.

select d.*, e.*, p.*

 from DEMOEMPL.DEPARTMENT d left join

 (DEMOEMPL.EMPLOYEE e left join DEMOEMPL.POSITION p

 on p.EMP_ID = e.EMP_ID)

 on e.DEPT_ID = d.DEPT_ID;

select d.*, e.*, p.*

 from DEMOEMPL.DEPARTMENT d left join

 (DEMOEMPL.POSITION p right join DEMOEMPL.EMPLOYEE e

 on p.EMP_ID = e.EMP_ID)

 on e.DEPT_ID = d.DEPT_ID;

Note: For more information about expansion of table-reference, see Expansion of
Table-reference.

More information:

Expansion of Table-reference (see page 37)

Identifying Entities in Schemas

Access modules, referential constraints, tables, views, table procedures, procedures,
and user-defined functions are all associated with schemas. However, when you name
one of these entities in an SQL statement, specification of the schema name is optional.
The schema CA IDMS uses when processing the statement depends on the following:

■ Type of entity

■ Presence or absence of the schema name in the entity reference

■ Statement where the reference to the entity occurs

■ Method you use to submit the statement to CA IDMS (for example, through the
online command facility or embedded in an application program)

Identifying Entities in Schemas

Chapter 2: Identifiers 43

Resolving References to Entities in Schemas

Interactive and dynamic SQL

When compiling a statement using interactive or dynamic SQL, or when using the
EXPLAIN statement to determine the access strategy to be used for an SQL statement,
CA IDMS resolves references to entities in schemas as follows:

■ For each entity qualified by a schema name, CA IDMS uses the named schema.

■ For each unqualified table, view or table procedure in a SELECT, INSERT, UPDATE,
and DELETE statement, or one of them in an EXPLAIN statement:

– CA IDMS looks for the definition of a temporary table created during the
current database transaction whose name matches the specified identifier. If a
match is found, CA IDMS assumes that the reference is to the temporary table.

– If a matching temporary table name is not found, CA IDMS uses the current
schema in effect for the SQL session.

■ For all other unqualified references, CA IDMS uses the current schema in effect for
the SQL session

Creating or altering an access module

When creating or altering an access module, the user can change the names of schemas
in table, view, table procedure, procedure, and user-defined function references in SQL
data manipulation statements. The user does this by specifying one or more schema
mapping rules, each of which supplies a replacement for a schema name. This facility
allows a single program (and its associated RCM) to reference one set of tables when it
is included in one access module, and another set of tables when it is included in
another access module with different schema mapping rules.

Identifying Entities in Schemas

44 SQL Reference Guide

When compiling an SQL statement during the creation or alteration of an access
module, CA IDMS resolves schema names as follows:

1. For qualified references to schema entities in non-data manipulation statements, it
uses the schema name specified.

2. For each qualified table, view, table procedure, procedure, or user-defined function
reference in a data manipulation statement, CA IDMS uses the replacement schema
name as specified in the schema mapping rules. If no replacement has been
specified, it uses the schema name specified in the table, view, procedure, or
user-defined function reference.

3. For unqualified references to schema entities in data description statements, it uses
the schema name of the access module being created or altered.

4. For each unqualified table, view, table procedure, procedure, or user-defined
function reference in a data manipulation, CA IDMS uses the replacement schema
name for the NULL entry in the schema mapping rules. If no such entry is found, it
uses the schema name of the access module being created or altered.

5. For all unqualified references to schema entities, CA IDMS uses the current schema
associated with your SQL session.

After resolving the schema names according to the above rules, if CA IDMS cannot find
the definition of a table, view, table procedure, procedure, or user-defined function
referenced in a data manipulation statement, the statement remains uncompiled and a
warning is issued. CA IDMS attempts to recompile the statement at runtime because the
table-like object may have been created since compile time.

Automatic access module recreation

CA IDMS automatically recreates an access module at runtime if:

■ CA IDMS encounters a statement that was not previously compiled

■ The AUTO RECREATE option for the access module is ON and:

– CA IDMS encounters a statement that refers to a table, view, table procedure,
procedure, or user-defined function whose definition has changed since the
access module was created or last altered

– The application program has been recompiled since the access module was
created or last altered

Expansion of Cursor-name

Chapter 2: Identifiers 45

When it automatically recreates an access module, CA IDMS resolves references to
schemas using the same rules as were used when the access module was created or last
altered except in dealing with unqualified table, view, table procedure, procedure or
user-defined function references in data manipulation and EXPLAIN statements:

■ If the table, view, or table procedure reference is unqualified, CA IDMS first looks
for the definition of a temporary table created within the current transaction whose
name matches the specified table identifier. If one is found, the reference is
assumed to be a reference to that temporary table.

■ If no temporary table with the same name is found, then CA IDMS uses the schema
mapping rules associated with the access module to resolve table, view, and table
procedure references as described above in Creating or altering an access module.

Note: For more information about automatic access module re-creation, see CREATE
ACCESS MODULE (see page 320) or the CA IDMS SQL Programming Guide.

Expansion of Cursor-name

The expanded parameters of cursor-name represent a cursor.

Syntax

Expansion of cursor-name

►►──┬─ static-cursor-name ───┬───►◄
 └─ extended-cursor-name ─┘

Expansion of static-cursor-name

►►── cursor-name ──►◄

Expansion of extended-cursor-name

►►──┬─────────────┬───┬─ 'cursor-name' ────┬─────────────────────────────────►◄
 ├─── LOCAL ◄ ─┤ ├─ :host-variable ───┤
 └─── GLOBAL ──┘ ├─ local-variable ───┤
 └─ routine-parameter ┘

Parameters

cursor-name

Specifies the name of the cursor as an identifier.

'cursor-name'

Specifies the name of the cursor as a literal whose value must conform to the rules
for an identifier.

:host-variable

Specifies the name of the cursor as a host-variable whose value must conform to
the rules for an identifier.

Expansion of Cursor-name

46 SQL Reference Guide

local-variable

Specifies the name of the cursor as a local-variable whose value must conform to
the rules for an identifier.

routine-parameter

Specifies the name of the cursor as a routine-parameter whose value must conform
to the rules for an identifier.

LOCAL/GLOBAL

Specifies the scope of the associated cursor name:

■ LOCAL indicates that the cursor can be referenced only from within the
program where it is defined.

■ GLOBAL indicates that the cursor can be referenced from any program
executing within the same SQL transaction.

Default: LOCAL

Usage

Static Versus Extended Cursor Names

A static cursor name is one coded as a simple identifier. The following DECLARE CURSOR
statement assigns the static name "cursor1" to the cursor being defined:

DECLARE cursor1 CURSOR FOR select1

Cursors defined by a DECLARE CURSOR statement always have static names. Such
cursors may either be dynamic or static, depending on whether the DECLARE CURSOR
statement references a dynamically prepared SQL statement, as in the example above,
or directly includes a cursor-specification.

An extended cursor name is one coded either as a literal, a host variable, a
local-variable, or a routine-parameter. The following ALLOCATE CURSOR statement
assigns the extended name "cursor1" to the cursor being defined:

MOVE 'cursor1' to cursor-nam

ALLOCATE :cursor-nam CURSOR FOR :statement-nam

Cursors created by an ALLOCATE CURSOR statement always have extended names and
are always dynamic.

If a cursor is defined using a static name, it must be referenced using a static name. If it
is defined using an extended name, it must be referenced using an extended name that
has the same scope option as specified on the definition.

Expansion of Cursor-name

Chapter 2: Identifiers 47

An exception to this rule occurs when identifying a cursor within a dynamically prepared
UPDATE or DELETE statement.

Note: For more information about the UPDATE and DELETE statements, see UPDATE
(see page 546) and DELETE. (see page 408)

Uniqueness of Cursor Names

Static and extended cursor names do not have to be unique with respect to each other.
If two cursors are assigned the same value for a name, they are considered two
separate cursors provided that either:

■ One of the names is static while the other is extended

■ Both of the names are extended, but they have different scopes, as indicated by
their LOCAL/GLOBAL parameter.

Example

Example of Cursor-name

The following DECLARE CURSOR statement defines a dynamic cursor using a static
cursor name of C1. It is referenced within the subsequent OPEN statement:

EXEC SQL

 DECLARE C1 CURSOR FOR S1

END-EXEC

EXEC SQL

 OPEN C1

END-EXEC

Example of Extended-cursor-name

The following ALLOCATE CURSOR statement defines a local cursor using an extended
cursor name of C1. It is then referenced in the subsequent OPEN statement:

EXEC SQL

 ALLOCATE 'C1' CURSOR FOR 'S1'

END-EXEC

EXEC SQL

 OPEN 'C1'

END-EXEC

Expansion of Statement-name

48 SQL Reference Guide

Note: Even though C1 is used as the cursor name in both of the above examples, two
separate cursors are created: one with a static name of C1 and one with an extended
name of C1.

Global Extended-cursor-name

The following ALLOCATE CURSOR statement defines a global cursor using an extended
cursor name whose value is not known until runtime. In this case, the value 'C2' is
moved to the host variable before the statement is executed and will be the name of
the cursor created:

 move 'C2' to :cname

EXEC SQL

 ALLOCATE GLOBAL :CNAME CURSOR FOR :SNAME

END-EXEC

Since this is a global cursor, it can be referenced in a different program than the one
where the ALLOCATE CURSOR statement appears. For example, the following OPEN
statement might be contained in a different program:

EXEC SQL

 OPEN GLOBAL 'C2'

END-EXEC

Note: It does not matter that in one case the name of the cursor is supplied through a
host-variable and in the other it is specified as a literal. They both refer to the global
cursor C2.

More information:

Defining and Using Functions (see page 639)
Identifying Entities in Schemas (see page 42)

Expansion of Statement-name

The expanded parameters of statement-name represent a dynamically-prepared
statement.

Syntax

Expansion of statement-name

►►──┬── static-statement-name ────┬───►◄
 └── extended-statement-name ──┘

Expansion of static-statement-name

►►── statement-name ──►◄

Expansion of Statement-name

Chapter 2: Identifiers 49

Expansion of extended-statement-name

►►──┬─────────────┬───┬─ 'cursor-name' ────┬──────────────────────────────────►◄
 ├─── LOCAL ◄ ─┤ ├─ :host-variable ───┤
 └─── GLOBAL ──┘ ├─ local-variable ───┤
 └─ routine-parameter ┘

Parameters

statement-name

Specifies the name of the statement as an identifier.

'statement-name'

Specifies the name of the statement as a literal whose value must conform to the
rules for an identifier.

:host-variable

Specifies the name of the statement as a host-variable whose value must conform
to the rules for an identifier.

local-variable

Specifies the name of the statement as a local-variable whose value must conform
to the rules for an identifier.

routine-parameter

Specifies the name of the statement as a routine-parameter whose value must
conform to the rules for an identifier.

LOCAL/GLOBAL

Specifies the scope of the associated statement name:

■ LOCAL indicates that the statement can be referenced only from within the
program where it is prepared.

■ GLOBAL indicates that the statement can be referenced from any program
executing within the same SQL transaction.

The default is LOCAL.

Expansion of Statement-name

50 SQL Reference Guide

Usage

Static Versus Extended Statement Names

A static statement name is one coded as a simple identifier. The following PREPARE
statement assigns the static name "select1" to the statement being prepared:

PREPARE select1 from :select1-text

An extended statement name is one coded either as a literal, a host-variable, a
local-variable, or a routine-parameter.

MOVE 'SELECT1' to statement-nam

PREPARE :statement-nam FROM :select1-text

If a statement is prepared using a static name, it must be referenced using a static
name; similarly, if it is prepared using an extended name, it must be referenced using an
extended name that has the same scope option.

Uniqueness of Statement Names

Static and extended names do not have to be unique with respect to each other. If two
statements are assigned the same value for a name, they are considered two separate
statements provided that either:

■ One of the names is static while the other is extended.

■ Both of the names are extended, but they have different scopes, as indicated by
their LOCAL/GLOBAL parameter.

Expansion of Statement-name

Chapter 2: Identifiers 51

Example

Static-statement-name

The following PREPARE statement creates a statement using a static statement name of
S1. It is referenced within the subsequent DESCRIBE statement:

EXEC SQL

 PREPARE S1 FROM :TEXT

END-EXEC

EXEC SQL

 DESCRIBE S1 USING DESCRIPTOR SQLDA

END-EXEC

Extended-statement-name

The following PREPARE statement creates a local statement using an extended
statement name of S1. It is then referenced in the subsequent DESCRIBE statement:

EXEC SQL

 PREPARE 'S1' FROM :TEXT

END-EXEC

EXEC SQL

 DESCRIBE 'S1' USING DESCRIPTOR SQLDA

END-EXEC

Note: Even though S1 is used as the statement name in both of the above examples,
two separate statements are created: one with a static name of S1 and one with an
extended name of S1.

Global Extended-statement-name

The following PREPARE statement creates a global statement using an extended
statement name whose value is not known until runtime. In this case, the value 'S2' is
moved to the host variable before the statement is executed and will be the name of
the statement created:

MOVE 'S2' TO :SNAME

EXEC SQL

 PREPARE GLOBAL :SNAME FROM :TEXT

END-EXEC

Expansion of Statement-name

52 SQL Reference Guide

Since this is a global statement, it can be referenced in a different program than the one
where the PREPARE statement appears. For example, the following DESCRIBE statement
might be contained in a different program:

EXEC SQL

 DESCRIBE GLOBAL 'S2'

END-EXEC

Note: It does not matter that in one case the name of the statement is supplied through
a host-variable and in the other it is specified as a literal. They both refer to the global
statement S2.

Chapter 3: Data Types and Null Values 53

Chapter 3: Data Types and Null Values

This section contains the following topics:

Data Types (see page 53)
Expansion of Data-type (see page 55)
Representation of Date/Time Values (see page 63)
Comparison, Assignment, Arithmetic, and Concatenation Operations (see page 66)
Null Values (see page 73)

Data Types

A data type is a set of values that share processing characteristics. For example, the set
of all integers is a data type. Every column, local variable, parameter, and host variable
has an associated data type.

Data Types and Value Sets

The data type limits the set of values that can occur in the column, local variable,
parameter, or host variable. The data type also determines the operations that can be
performed on values in the column, local variable, parameter, or host variable.

You associate a data type with the following:

■ A column when you define the column

■ An SQL routine local variable when you define the local variable

■ An SQL-invoked routine parameter when you define the parameter

■ A host variable when you declare the host variable

More Information

■ For more information about defining columns, see CREATE TABLE and ALTER TABLE.

■ For more information about declaring host variables, see Host Variables.

■ For more information about declaring local variables, see Local Variables.

■ For more information about declaring routine-parameters, see Routine Parameters.

Data Types

54 SQL Reference Guide

Categories of Data Types

CA IDMS supports the following data types:

Category Data types

Approximate numeric DOUBLE PRECISION

FLOAT

REAL

Binary BINARY

Character string CHARACTER

VARCHAR (or CHAR VARYING)

Date/time DATE

TIME

TIMESTAMP

Exact numeric DECIMAL

INTEGER

LONGINT (or BIGINT)

NUMERIC

SMALLINT

UNSIGNED DECIMAL

UNSIGNED NUMERIC

Graphics character string GRAPHIC

VARGRAPHIC

XML data XML

More Information

■ For more information about a description of the XML data type, see XML Data Type
and XML Values.

■ For more information about a description of all the other data types, see Expansion
of Data-type.

Expansion of Data-type

Chapter 3: Data Types and Null Values 55

Determining the Data Type of a Value

The data type of a value in a column, host variable, local variable, or parameter is the
data type of the column, host variable, local variable or routine parameter. For example,
every value in a column with a data type of INTEGER has a data type INTEGER.

The literal used to represent a value must be appropriate for the data type of the value.
For example, 983 represents a numeric value; '983' represents a character value.

Note: For more information about literals, see Literals (see page 75).

Data Types Effect on Processing

The data type of a value determines:

■ Columns, local variables, parameters, and host variables to which it can be assigned

■ Values with which it can be compared

■ Operations where it can be used

■ Results of operations where it is combined with values of other data types

■ Its internal representation and storage requirements

More information:

ALTER TABLE (see page 290)
CREATE TABLE (see page 378)
Local Variables (see page 81)
Expansion of Data-type (see page 55)
Host Variables (see page 77)
Routine Parameters (see page 84)

Expansion of Data-type

The expanded parameters of data-type specify data types in an SQL data description
statement.

Expansion of Data-type

56 SQL Reference Guide

Syntax

Expansion of data-type

►►─┬─ BINary ─┬──────────────────────┬─────────────────────────┬──────────────►◄
 │ └─ (─── length ───) ─┘ │
 ├─ CHARacter ─┬──────────────────────┬──────────────────────┤
 │ └─ (─── length ───) ─┘ │
 ├─ DATE ──┤
 ├─ DECimal ─┬───┬───┤
 │ └─ (─── precision ───┬────────────────┬) ─┘ │
 │ └─ , ─── scale ──┘ │
 ├─ DOUBLE PRECISION ──┤
 ├─ FLOAT ─┬─────────────────────────┬───────────────────────┤
 │ └─ (─── precision ───) ─┘ │
 ├─ GRAPHIC ─┬──────────────────────┬────────────────────────┤
 │ └─ (─── length ───) ─┘ │
 ├─ INTeger ───┤
 ├┬─ LONGINT ─┬──┤
 │└─ BIGINT ──┘ │
 ├─ NUMeric ─┬───┬───┤
 │ └ (─── precision ───┬────────────────┬─) ─┘ │
 │ └─ , ─── scale ──┘ │
 ├─ REAL ──┤
 ├─ SMALLINT ──┤
 ├─ TIME ──┤
 ├─ TIMESTAMP ───┤
 ├─ UNSIGNED DECimal─┬───────────────────────────────────┬───┤
 │ └─ (- precision ─┬────────────┬) ─┘ │
 │ └ , - scale ─┘ │
 ├─ UNSIGNED NUMeric ─┬──────────────────────────────────┬───┤
 │ └ (- precision ─┬────────────┬) ─┘ │
 │ └ , - scale ─┘ │
 ├┬─ VARCHAR ───────────┬─┬──────────────────────┬───────────┤
 │└─ CHARacter VARYING ─┘ └─ (─── length ───) ─┘ │
 └─ VARGRAPHIC ─┬──────────────────────┬─────────────────────┘
 └─ (─── length ───) ─┘

Parameters

BINARY

Identifies a set of values that are fixed-length bit strings. BINARY values are
represented by hexadecimal literals (for example, X'12A5E978').

length

Specifies the number of eight-bit bytes in a BINARY value. Length must be an
integer in the range 1 through 32,760. The default is 1.

The maximum length of a column with a data type of BINARY is limited by page
size and the total length of other columns in the table.

Note: For more information about the length of a BINARY value, see CREATE
TABLE. (see page 378)

Expansion of Data-type

Chapter 3: Data Types and Null Values 57

CHARacter

Identifies a set of values that are fixed-length single-byte character strings.
CHARACTER values are represented by character string literals (for example, 'Past
due').

length

Specifies the number of bytes in a CHARACTER value. Length must be an
integer in the range 1 through 32,760. The default is 1.

The maximum length of a column with a data type of CHARACTER is limited by
page size and the total length of other columns in the table.

Note: For more information about the length of a CHARACTER value, see
CREATE TABLE. (see page 378)

DATE

Identifies the set of values that represent valid dates from January 1, 0001, through
December 31, 9999. DATE values are represented by character string literals (for
example, '1999-07-22').

The maximum length of a DATE value is 10 bytes. Internally, the length of a DATE
value is always eight bytes.

DECimal

Identifies a set of fixed-point, signed packed decimal values. DECIMAL values are
represented by exact numeric literals (for example, 17.23).

The range of values included in the set is determined by the precision and scale

specified for the data type. The largest possible DECIMAL value is 1031-1. The

smallest possible DECIMAL value is -(1031-1).

precision

Specifies the number of digits in a DECIMAL value. Precision must be an integer
in the range 1 through 56. The default is 56.

The length of a DECIMAL value is equal to the precision plus 1, divided by 2.

scale

Specifies the number of digits to the right of the decimal point in a DECIMAL
value. Scale must be an integer in the range 0 through the precision of the
DECIMAL value. The default is 0.

Expansion of Data-type

58 SQL Reference Guide

DOUBLE PRECISION

Identifies the set of 64-bit (long) floating-point values with a seven-bit exponent
and a binary precision of 56. DOUBLE PRECISION values are represented by
approximate numeric literals (for example, 0.1E-16).

The magnitude that can be represented by a positive DOUBLE PRECISION value
ranges from approximately 5.4E-79 to approximately 7.2E+75. The magnitude that
can be represented by a negative DOUBLE PRECISION value ranges from
approximately -5.4E-79 to approximately -7.2E+75.

The length of a DOUBLE PRECISION value is eight bytes.

FLOAT

Identifies a set of floating-point values with a seven-bit exponent and a
user-specified precision. FLOAT values are represented by approximate numeric
literals (for example, -1.4E9).

The magnitude that can be represented by a positive FLOAT value ranges from
approximately 5.4E-79 to approximately 7.2E+75. The magnitude that can be
represented by a negative FLOAT value ranges from approximately -5.4E-79 to
approximately -7.2E+75.

precision

Specifies the binary precision of a FLOAT value. Precision must be an integer in
the range 1 through 56. The default is 24.

If precision is less than or equal to 24, the length of a FLOAT value is four bytes.
If precision is greater than 24, the length of a FLOAT value is eight bytes.

GRAPHIC

Identifies a set of values that are fixed-length double-byte character strings.
GRAPHIC values are represented by double-byte character string literals (for
example, G'<####>', where < and > represent the shift-out and shift-in characters
and # represents a double-byte character).

The GRAPHIC data type is a CA IDMS extension of the SQL standard.

length

Specifies the number of characters in a GRAPHIC value. The length in bytes of a
GRAPHIC value is equal to the number of bytes in one character times the
number of characters.

Length must be an integer in the range 1 through 16,380. The default is 1.

The maximum length of a column with a data type of GRAPHIC is limited by
page size and the total length of other columns in the table.

Note: For more information about the length of a GRAPHIC value, see CREATE
TABLE (see page 378).

Expansion of Data-type

Chapter 3: Data Types and Null Values 59

INTeger

Identifies the set of values that are 31-bit signed integers in the range
-2,147,483,648 through 2,147,483,647. INTEGER values are represented by exact
numeric literals (for example, -2874).

The length of an INTEGER value is four bytes.

BIGINT (or LONGINT)

Identifies the set of values that are 63-bit signed integers in the range
-9,223,372,036,854,775,808 through 9,223,372,036,854,775,807. BIGINT values are
represented by exact numeric literals (for example, 2187168).

The length of a BIGINT value is eight bytes. The keyword LONGINT can be used as a
synonym for BIGINT but this is a CA IDMS extension of the SQL standard.

NUMeric

Identifies a set of fixed-point, signed zoned decimal values. NUMERIC values are
represented by exact numeric literals (for example, -4.7). The use of NUM as a
synonym for NUMERIC is a CA IDMS extension of the SQL standard.

The range of values included in the set is determined by the precision and scale

specified for the data type. The largest possible NUMERIC value is 1031-1. The

smallest possible NUMERIC value is -(1031-1).

precision

Specifies the number of digits in a NUMERIC value. Precision must be an integer
in the range 1 through 31. The default is 1.

The length in bytes of a NUMERIC value is equal to the precision.

scale

Specifies the number of digits to the right of the decimal point in a NUMERIC
value. Scale must be an integer in the range 0 through the precision of the
NUMERIC value. The default is 0.

Expansion of Data-type

60 SQL Reference Guide

REAL

Identifies the set of 32-bit (short) floating-point values with a seven-bit exponent
and a binary precision of 24. REAL values are represented by approximate numeric
literals (for example, 0.4E52).

The magnitude that can be represented by a positive REAL value ranges from
approximately 5.4E-79 to approximately 7.2E+75. The magnitude that can be
represented by a negative REAL value ranges from approximately -5.4E-79 to
approximately -7.2E+75.

The length of a REAL value is four bytes.

SMALLINT

Identifies the set of values that are 15-bit signed integers in the range -32,768
through 32,767. SMALLINT values are represented by exact numeric literals (for
example, 16433).

The length of a SMALLINT value is two bytes.

TIME

Identifies the set of values that represent valid times from 00.00.00 through
23.59.59.

TIME values are represented by character string literals (for example, '13.42.59').

The maximum length of a TIME value is eight bytes. Internally, the length of a TIME
value is always eight bytes.

Note: A TIME value of 24.00.00 is accepted and treated as 00.00.00.

TIMESTAMP

Identifies the set of values that represent valid date/time combinations with a
precision of millionths of a second. Valid dates range from January 1, 0001, through
December 31, 9999. Valid times range from 00.00.00.000000 through
23.59.59.999999.

TIMESTAMP values are represented by character string literals (for example,
'1999-05-02-09.46.39.738294').

The maximum length of a TIMESTAMP value is 26 bytes. Internally, the length of a
TIMESTAMP value is always eight bytes.

Expansion of Data-type

Chapter 3: Data Types and Null Values 61

UNSIGNED DECIMAL

Identifies a set of fixed-point, unsigned packed decimal values. UNSIGNED DECIMAL
values are represented by exact numeric literals (for example, 17.23).

The range of values included in the set is determined by the precision and scale
specified for the data type. The largest possible UNSIGNED DECIMAL value is

1031-1. The smallest possible DECIMAL value is 0.

The UNSIGNED DECIMAL data type is a CA IDMS extension of the SQL standard.

precision

Specifies the number of digits in an UNSIGNED DECIMAL value. Precision must
be an integer in the range 1 through 31. The default is 1.

The length of an UNSIGNED DECIMAL value is equal to the precision plus 1,
divided by 2.

scale

Specifies the number of digits to the right of the decimal point in an UNSIGNED
DECIMAL value. Scale must be an integer in the range 0 through the precision
of the UNSIGNED DECIMAL value. The default is 0.

UNSIGNED NUMERIC

Identifies a set of fixed-point, unsigned zoned decimal values. UNSIGNED NUMERIC
values are represented by exact numeric literals (for example, 4.7).

The range of values included in the set is determined by the precision and scale
specified for the data type. The largest possible UNSIGNED NUMERIC value is

1031-1. The smallest possible NUMERIC value is 0.

The UNSIGNED NUMERIC data type is a CA IDMS extension of the SQL standard.

precision

Specifies the number of digits in an UNSIGNED NUMERIC value. Precision must
be an integer in the range 1 through 31. The default is 1.

The length in bytes of an UNSIGNED NUMERIC value is equal to the precision.

scale

Specifies the number of digits to the right of the decimal point in an UNSIGNED
NUMERIC value. Scale must be an integer in the range 0 through the precision
of the NUMERIC value. The default is 0.

Expansion of Data-type

62 SQL Reference Guide

VARCHAR (or CHAR VARYING)

Identifies a set of values that are variable-length single-byte character strings.
VARCHAR values are represented by character string literals (for example,
'Customer address needs to be verified').

length

Specifies the maximum number of characters in a VARCHAR value. Length must
be an integer in the range 1 through 32,758. The default is 1.

The length of a VARCHAR value is the number of characters in the value. The
number of bytes reserved for a VARCHAR value is always the same; the
maximum length, plus 2 regardless of the length of the VARCHAR value. A
VARCHAR value is preceded by a 2-byte binary length of the value.

The maximum length of a column with a data type of VARCHAR is limited by
page size, the total length of other columns in the table, and other factors.

Note: For more information about the length of a VARCHAR value, see CREATE
TABLE. (see page 378)

VARGRAPHIC

Identifies a set of values that are variable-length double-byte character strings.
VARGRAPHIC values are represented by double-byte character string literals (for
example, G'<####>', where < and > represent the shift-out and shift-in characters
and # represents a double-byte character).

The VARGRAPHIC data type is a CA IDMS extension of the SQL standard.

length

Specifies the maximum number of characters in a VARGRAPHIC value. Length
must be an integer in the range 1 through 16,379. The default is 1.

The length of a VARGRAPHIC value is the number of characters in the value.
The numbeCREATE TABLEr of bytes reserved for a VARGRAPHIC value is the
maximum length times the number of bytes for one character, plus 2. A
VARGRAPHIC value is preceded by a 2-byte binary length of the value.

The maximum length of a column with a data type of VARGRAPHIC is limited by
page size and the total length of other columns in the table.

Note: For more information about the length of a VARGRAPHIC value, see
CREATE TABLE. (see page 378)

Usage

Graphics Data

The use of graphics data requires the installation of CA IDMS DBCS.

Representation of Date/Time Values

Chapter 3: Data Types and Null Values 63

Example

Defining Table Columns

The following CREATE TABLE statement creates a table with ten columns. Each column is
associated with a data type. The data type specification determines the set of values
that can occur in the column.

create table job

 (job_id integer not null,

 job_title character(20) not null,

 job_desc_line_1 varchar(60),

 job_desc_line_2 varchar(60),

 min_rate decimal(8,2),

 max_rate decimal(8,2),

 salary_ind character(1),

 num_of_positions smallint,

 num_open smallint,

 eff_date date);

Representation of Date/Time Values

Values whose data types are DATE, TIME, or TIMESTAMP are represented internally as
binary numbers and externally as character strings.

Internal Representation

Date/time values are represented internally by 64-bit binary numbers. The bits,
numbered from the left starting with 0, have the following meaning:

Bits Meaning

Bits 0 through 26 Number of days since January 1, 0001

Bits 27 through 43 Number of seconds in the day since midnight

Bits 44 through 63 Number of microseconds since the last second

Representation of Date/Time Values

64 SQL Reference Guide

External Representations

Date/time Representations

CA IDMS provides four standard external representations for a date/time value:

■ International Standards Organization (ISO)

■ IBM USA standard (USA)

■ IBM European standard (EUR)

■ Japanese Industrial Standard Christian Era (JIS)

You can reference the abbreviation associated with the external representation (for
example, ISO) when you use the CHAR function.

Note: For more information about the CHAR function, see CA IDMS Scalar Functions.
(see page 124)

Date Values

The external representation of a date value is a character string which begins with a
digit and must be at least five characters. The representation of a date value can:

■ Omit leading zeros from the month, day, and year portions

■ Include trailing blanks

The following table describes the external representations of a date value:

Standard Format Example

ISO yyyy-mm-dd 1990-12-15

USA mm/dd/yyyy 12/15/1990

EUR dd.mm.yyyy 15.12.1990

JIS yyyy-mm-dd 1990-12-15

Representation of Date/Time Values

Chapter 3: Data Types and Null Values 65

External Representations of Time Values

The external representation of a time value is a character string which begins with a
digit and must be at least five characters. The representation of a time value may omit a
leading zero from the hours, minutes, and seconds portions and may include trailing
blanks.

The following table describes the external representations of a time value:

Standard Format Example

ISO hh.mm.ss 16.43.17

USA hh:mm AM

hh:mm PM

4:43 PM

EUR hh.mm.ss 16.43.17

JIS hh:mm:ss 16:43:17

External Representations of Timestamps

The external representation of a timestamp is a character string which begins with a
digit and must be at least 11 characters. The timestamp format is:

yyyy-mm-dd-hh.mm.ss.nnnnnn

With the representation of a timestamp value may:

■ Omit leading zeros from the year, month, day, hours, minutes, and second portions

■ Truncate or omit microseconds entirely (any digit of microseconds that is omitted is
assumed to be zero)

■ Include trailing blanks

Comparison, Assignment, Arithmetic, and Concatenation Operations

66 SQL Reference Guide

Entering and Retrieving Date/Time Values

When you enter date/time values into the database or use them in predicates, you can
use any of the formats documented above. CA IDMS determines the format by
examining the value.

When you retrieve date/time values from the database, the format in which the value is
retrieved depends on how the SQL statement is issued:

■ If the statement is embedded in a program, the format is determined by the DATE
and TIME precompiler options, if specified, or by the installation default.

■ If the statement is submitted through the Command Facility, all date/time values
are returned in ISO format.

Note: For more information about precompiler options, see the CA IDMS SQL
Programming Guide.

Comparison, Assignment, Arithmetic, and Concatenation
Operations

The data type, length, and magnitude of a value determine how CA IDMS handles the
value during comparison, assignment, arithmetic, and concatenation operations. The
same factors also affect the outcome of these operations.

For example:

■ Padding can occur during comparisons of values of unequal length.

■ Overflow occurs when the magnitude of a numeric value is greater than the largest
magnitude represented by the data type of the construct to which the value is
assigned.

■ Underflow occurs when the magnitude of an approximate numeric value is smaller
than the smallest magnitude represented by the data type of the construct to which
the value is assigned.

■ Truncation can occur when a binary, graphic, or character value is assigned to a
construct that is not big enough to hold the value.

■ Rounding can occur as a result of truncation during assignment and arithmetic
operations.

Comparison, Assignment, Arithmetic, and Concatenation Operations

Chapter 3: Data Types and Null Values 67

Binary Values

Comparison

Binary values can be compared to the following:

■ Other binary values. When comparing binary values of different lengths, CA IDMS
pads the shorter value with binary zeros on the right to make the lengths equal.

■ Date/time values. Provided the binary value has a length of 8.

■ Character values. If the binary and character values are of different lengths, CA
IDMS pads the shorter value with spaces on the right to make the lengths equal.

Assignment

Binary values can be assigned to the following:

■ Binary constructs (for example, a column with a data type of BINARY):

– If the binary value is shorter than the construct, CA IDMS pads the value with
binary zeros on the right to make the value as long as the construct.

– If the binary value is longer than the construct and the construct is a column
(for example, in an INSERT or UPDATE operation), CA IDMS truncates the value
on the right if the portion to be truncated contains only binary zeros. If
nonzero bits would be truncated, CA IDMS generates an exception and no
assignment occurs.

– If the binary value is longer than the construct and the construct is a host
variable (for example, in a FETCH or SELECT operation), CA IDMS truncates the
value on the right.

■ Date/time constructs (for example, a column with a data type of TIMESTAMP),
provided the binary value has a length of 8 and conforms to the internal
representation of a valid date/time value.

■ Character constructs (for example, a column with a data type of CHARACTER). The
rules for assigning a binary value to a character construct are the same as those for
assigning a character value to a character construct. If padding is necessary, it is
done with blanks instead of binary zeros.

Arithmetic

You cannot use binary values in arithmetic operations.

Concatenation

Binary values can be concatenated with other binary values and with character values.
For the purposes of concatenation, binary values are treated as character values, and
the result of a concatenation operation is a character value.

Comparison, Assignment, Arithmetic, and Concatenation Operations

68 SQL Reference Guide

Character Values

Comparison

Character values can be compared to the following:

■ Other character values. When comparing character values of different lengths, CA
IDMS pads the shorter value with blanks on the right to make the lengths equal.

■ Date/time values, provided the character value has the format of a date/time value
of the same data type as the date/time value used in the comparison.

■ Binary values. The binary value is treated as a character value and padded with
blanks, if necessary, before the comparison is made.

Assignment

Character values can be assigned to the following:

■ Character constructs (for example, a column with a data type of CHARACTER or
VARCHAR). If the character value is:

– Shorter than the construct, and the construct has a data type of CHARACTER,
CA IDMS pads the value with blanks on the right to make the value as long as
the construct. If the construct has a data type of VARCHAR, no padding takes
place.

– Longer than the construct and the construct is a column (for example, in an
INSERT or UPDATE operation), CA IDMS truncates the value on the right if all
the characters to be truncated are blanks. If nonblank characters would be
truncated, CA IDMS generates an exception and no assignment occurs.

– Longer than the construct and the construct is a host variable, a local variable,
or a parameter (for example, in a FETCH, SELECT, or a SET operation), CA IDMS
truncates the value on the right and an SQL warning condition is issued.

■ Date/time constructs (for example, a column with a data type of TIMESTAMP),
provided the character value has the format of a date/time value of the same data
type as the construct to which the value is being assigned.

■ Binary constructs (for example, a column with a data type of BINARY). The rules for
assigning a character value to a binary construct are identical to those for assigning
a binary value to a binary construct. If padding is necessary, it is done with binary
zeros instead of blanks.

Comparison, Assignment, Arithmetic, and Concatenation Operations

Chapter 3: Data Types and Null Values 69

Arithmetic

You cannot use character values in arithmetic operations.

Concatenation

Character values can be concatenated with other character values.

If one value in the concatenation:

■ Has a data type of VARCHAR, the result has a data type of VARCHAR. Otherwise, the
result has a data type of CHARACTER.

■ Is null, the result is null. Otherwise, the length of the result is the sum of the lengths
of the two values that are concatenated. The length of the result cannot exceed
32,760.

A character value and a binary value can be concatenated. The binary value is treated as
a character value for the purpose of concatenation.

Date/time Values

Comparison

Date/time values can be compared to:

■ Other date/time values of the same data type

■ Binary values, provided the binary value has a length of 8

■ Character values, provided the character value has the format of a date/time value
of the same data type as the date/time value used in the comparison

Assignment

Date/time values can be assigned to the following:

■ Date/time constructs of the same data type. For example, a value with a data type
of TIMESTAMP can be assigned to a column with a data type of TIMESTAMP.

■ Binary constructs with a length of 8.

■ Character constructs long enough to contain the date/time value

If the date/time value is:

– Shorter than the character construct, CA IDMS pads the value with blanks on
the right to make the value as long as the construct

– Longer than the character construct, CA IDMS generates an exception and does
not perform the assignment

Comparison, Assignment, Arithmetic, and Concatenation Operations

70 SQL Reference Guide

Arithmetic

You can use date/time values only in addition and subtraction. Special rules govern
date/time arithmetic.

Note: For information about date/time arithmetic, see Date/time Arithmetic. (see
page 110)

Concatenation

You can concatenate a date value and a time value using the TIMESTAMP function.

Note: For more information about the TIMESTAMP function, see CA IDMS Scalar
Functions (see page 124).

Comparison, Assignment, Arithmetic, and Concatenation Operations

Chapter 3: Data Types and Null Values 71

Graphics Character Values

Comparison

Graphics character values can be compared to other graphics character values. When
comparing graphics character values of different lengths, CA IDMS pads the shorter
value with double-byte blank characters on the right to make the lengths equal.

Assignment

Graphics character values can be assigned to graphics character constructs (for example,
to a column with a data type of GRAPHIC or VARGRAPHIC): If the graphics character
value is:

■ Shorter than the construct, and the construct has a data type of GRAPHIC, CA IDMS
pads the value with double-byte blank characters on the right to make the value as
long as the construct. If the construct has a data type of VARGRAPHIC, no padding
takes place.

■ Longer than the construct and the construct is a column (for example, in an INSERT
or UPDATE operation), CA IDMS truncates the value on the right if the portion to be
truncated contains only double-byte blank characters. If nonblank characters
would be truncated, CA IDMS generates an exception and no truncation occurs.

■ Longer than the construct and the construct is a host variable (for example, in a
FETCH or SELECT operation), CA IDMS truncates the value on the right.

Arithmetic

You cannot use graphics character values in arithmetic operations.

Concatenation

Graphics character values can be concatenated with other graphics character values.

If one of the values has a data type of VARGRAPHIC, the result has a data type of
VARGRAPHIC. Otherwise, the result has a data type of GRAPHIC.

If one value in the concatenation is null, the result is null. Otherwise, the length of the
result is the sum of the lengths of the two values that are concatenated. The length of
the result cannot exceed 32,760.

Usage

The use of graphics data requires the installation of CA IDMS DBCS.

Comparison, Assignment, Arithmetic, and Concatenation Operations

72 SQL Reference Guide

Numeric Values

Comparison

Numeric values can be compared only to other numeric values.

Assignment

Numeric values can be assigned only to numeric constructs (for example, to a column
with a data type of DECIMAL).

When assigning a value of one numeric data type to a construct of a different numeric
data type, CA IDMS converts the value to the data type of the construct:

■ If the conversion results in overflow or underflow, CA IDMS generates an exception
and does not perform the assignment.

■ If the conversion results in the loss of digits to the right of the decimal point in an
exact numeric value or least significant digits in the mantissa of an approximate
numeric value, CA IDMS rounds the value and does not generate an exception.

Arithmetic

You can use values of all numeric data types (both approximate and exact) in arithmetic
operations. Additionally, a single arithmetic expression can include values of more than
one numeric data type.

Data Type Conversion for Comparison and Arithmetic

When a comparison or arithmetic operation involves two values of different numeric
data types, CA IDMS determines which data type has higher precedence. CA IDMS then
converts both values to a common data type based on the data type of higher
precedence:

Data type of highest precedence Common data type for

conversion

Highest

DOUBLE PRECISION

FLOAT

REAL

DOUBLE PRECISION

 DECIMAL

NUMERIC

DECIMAL

 LONGINT LONGINT

Null Values

Chapter 3: Data Types and Null Values 73

Data type of highest precedence Common data type for

conversion

Lowest INTEGER

SMALLINT

INTEGER

Precision of the Result

The precision of the result of comparison or arithmetic operation when a conversion
involves a decimal data type is:

■ The maximum number of digits to the left of the decimal in the source operands
plus the result scale plus 1, if the operation is addition or subtraction (The result
scale is the maximum of the source scales)

For example, the precision of the result of 45673 + 5.398 is 9.

■ The sum of the precision of the first value and the second value, if the operation is
multiplication or division

For example, the precision of the result of 45 x 367 is 5.

Examples of Data Type Conversion

For example, to add a NUMERIC value to an INTEGER value, CA IDMS converts both
values to DECIMAL. To compare a FLOAT value to a REAL value, CA IDMS converts both
values to DOUBLE PRECISION.

Null Values

A null value is a placeholder that indicates the absence of a value. Null values exist for all
data types. The null value of a given data type is different from all non-null values of the
same data type.

By default, any column can contain null values. You can use either the NOT NULL or the
CHECK parameter in a column definition to disallow null values in the column.

Parameters and local variable of SQL-invoked routines can always contain null values.
However, it is possible to define initial values.

Host variables can also represent null values. You use an indicator variable with a host
variable to indicate whether the host variable represents a null value.

Null Values

74 SQL Reference Guide

How You Specify a Null Value

You use the keyword NULL to indicate a null value. For example, the following INSERT
statement inserts a new row into the DEPARTMENT table. The department number and
name and the division code are known, but the department head has not been
appointed yet. A null value is used as a placeholder in the DEPT_HEAD_ID column.

insert into department

 (dept_id, dept_name, div_code, dept_head_id)

 values (4040, 'Audit', 'D09', null);

Null Values in Comparison and Arithmetic Operations

Null values have the following effect in comparison and arithmetic operations:

■ The result of a comparison operation involving one or more null values is always
unknown

■ The result of an arithmetic operation involving one or more null values is always a
null value

Null Values in Sort Operations

In a sort operation, a null value is a high value. Thus, a null is placed at the end of an
ascending sort sequence.

More Information

■ For more information about defining columns, see CREATE TABLE or CREATE
TEMPORARY TABLE.

■ For more information about CREATE FUNCTION, CREATE PROCEDURE, and
compound statements, see Statements.

■ For more information about indicator variables, see Indicator Variables.

More information:

CREATE FUNCTION (see page 341)
CREATE PROCEDURE (see page 361)
CREATE TABLE (see page 378)
CREATE TEMPORARY TABLE (see page 392)
Statements (see page 249)

Chapter 4: Values and Value Expressions 75

Chapter 4: Values and Value Expressions

This section contains the following topics:

Literals (see page 75)
Expansion of Literal (see page 75)
Host Variables (see page 77)
Expansion of Host-variable (see page 79)
Local Variables (see page 81)
Expansion of Local-variable (see page 81)
Routine Parameters (see page 84)
Expansion of Routine-parameter (see page 85)
Dynamic Parameters (see page 87)
Expansion of Dynamic-parameter-marker (see page 92)
Special Registers (see page 93)
Expansion of Special-register (see page 93)
ROWID Pseudo-column (see page 95)
Expansion of rowid-pseudo-column (see page 96)
Expansion of Value-expression (see page 101)
Durations (see page 107)
Expansion of Labeled-duration (see page 107)
Date/time Arithmetic (see page 110)
Expansion of XML-value-expression (see page 116)

Literals

A literal directly represents a specific value. CA IDMS uses several types of literals. Each
type of literal represents values of one or more data types. For example, a character
string literal represents either a CHARACTER value or a VARCHAR value.

Note: For more information about data types, see Values and Value Expressions.

More information:

Values and Value Expressions (see page 75)

Expansion of Literal

The expanded parameters of literal represent specific data values in an SQL statement.

Expansion of Literal

76 SQL Reference Guide

Syntax

Expansion of literal

►►─┬─ 'character-string-literal' ──────────────┬──────────────────────────────►◄
 ├─ G'double-byte-character-string-literal' ─┤
 ├─ X'hexadecimal-literal' ──────────────────┤
 ├─ exact-numeric-literal ───────────────────┤
 └─ approximate-numeric-literal ─────────────┘

Parameters

'character-string-literal'

Represents a character value as a string of single-byte characters (for example, '79
High Street').

A character string literal can consist of any combination of letters, digits, and special
characters (including blanks). Lowercase letters are not equal to uppercase letters
in a character string literal (for example, 'Boston' is not equal to 'BOSTON').

Character string literals must be enclosed in single quotation marks. To include a
single quotation mark as part of the character string itself, code two consecutive
single quotation marks (for example, 'Carol''s job').

G'double-byte-character-string-literal'

Represents a character value as a string of double-byte characters. Within a
double-byte character string literal, a sequence of one or more double-byte
characters must be preceded by the shift-out character and followed by the shift-in
character (for example, G'<####>', where < and > represent the shift-out and
shift-in characters and # represents a double-byte character). The shift characters
are not part of the data value.

A double-byte character string literal can consist of any combination of characters
in the double-byte character set (including the double-byte blank character). The
entire sequence of characters, including the shift-out and shift-in characters, must
be enclosed in single quotation marks.

Note: Certain hardware configurations do not require the use of shift characters in
double-byte character string literals.

Note: 'SQL Standard Compatibility'. Double-byte character string literals are a CA
IDMS extension of the SQL standard.

Host Variables

Chapter 4: Values and Value Expressions 77

X'hexadecimal-literal'

Represents a binary value as a sequence of an even number of hexadecimal digits
(for example, X'01F27A'). Hexadecimal literals must be enclosed in single quotation
marks.

Case is not significant in hexadecimal literals. You can use either uppercase or
lowercase for the digits A through F.

exact-numeric-literal

Represents a signed or unsigned fixed-point decimal number. The decimal point in
an exact numeric literal can be either explicit (for example, 39523.142) or implicit
after the rightmost digit (for example, -2834).

approximate-numeric-literal

Represents a floating point number. Approximate numeric literals have the form
mantissaEexponent (for example, 3.45E-2), where:

■ Mantissa is an exact numeric literal

■ Exponent is a signed or unsigned integer

Example

Specifying Values for a New Row

The INSERT statement below inserts a new row into the COVERAGE table. The values in
the row are represented by the following types of literals: character string (first
column), exact numeric (second and fourth columns), and date (third column).

insert into coverage (plan_code, emp_id, selection_date, num_dependents)

 values ('002', 2538, '1989-05-11', 3);

Host Variables

A host variable is a variable that is referenced in an SQL statement embedded in an
application program. You use host variables to:

■ Make data in the CA IDMS database available for processing by an application
program

■ Make data from sources other than the database (for example, from a sequential
file) available for processing by SQL statements

Host variables are not used in SQL statements submitted through the command facility.

Note: An INTO clause is required for SQL SELECT statements embedded in host
programs.

Host Variables

78 SQL Reference Guide

Indicator Variables

An indicator variable is a host variable used to indicate whether the value in another
host variable represents a null or truncated value. The use of indicator variables is
optional. You can reference a host variable in an SQL statement with or without naming
an associated indicator variable. However, if a SELECT or FETCH statement causes a null
value to be assigned to a host variable without an associated indicator variable, CA IDMS
returns an error.

Indicator Variable Values

When assigning a value to a host variable, CA IDMS sets the associated indicator
variable as follows:

Indicator variable Meaning

-1 The value assigned to the host variable was null. The
contents of the host variable are unchanged.

0 The host variable contains a non-null value that has
not been truncated.

1 or greater The host variable contains a truncated value. The value
in the indicator variable is the length in bytes of the
original untruncated value.

Declaring Host Variables

Before you execute an SQL statement that references a host variable, you must declare
the variable to CA IDMS:

■ Explicitly in an SQL declaration section

■ Implicitly with an INCLUDE statement

A single application program can include both explicit and implicit host variable
declarations.

Note: For more information about using the INCLUDE statement to declare host
variables, see INCLUDE. (see page 479)

Expansion of Host-variable

Chapter 4: Values and Value Expressions 79

SQL Declaration Section

In an explicit host variable declaration, you specify the name and data type of the
variable. Depending on the program language, additional information about the variable
may also be required (for example, the COBOL level number).

Host variable names must conform to language-specific rules for forming variable
names.

Note: For more information about language-specific instructions for declaring host
variables in an SQL declaration section, see the CA IDMS SQL Programming Guide.

More information:

INCLUDE (see page 479)

Expansion of Host-variable

The expanded parameters of host-variable identify declared program variables.

Syntax

Expansion of host-variable

►►─── :host-variable-name ─┬──────────────────────────────────────┬───────────►◄
 └─ indicator :indicator-variable-name ─┘

Parameters

:host-variable-name

Identifies the name of a host variable previously declared to the program.

indicator :indicator-variable

Identifies the name of a host variable previously declared to the program to serve
as an indicator variable.

Indicator-variable must reference a variable that was declared with a numeric data
type.

Expansion of Host-variable

80 SQL Reference Guide

Usage

A Colon Must Precede the Variable Name

When you reference a host variable in an SQL statement, you must precede the variable
name with a colon (:).

No Comma Between Host and Indicator Variables

There is no required separator between a host variable and its associated indicator
variable when they are referenced in an SQL statement. The only valid separator is the
optional keyword indicator.

Non-bulk Structure in COBOL

In certain SQL statements embedded in a COBOL application program, host-variable
may refer to a non-bulk structure defined in the host program.

Note: For more information about commas as separators, see the CA IDMS SQL
Programming Guide.

Example

The following SELECT statement retrieves data into host variables. BIRTH-DATE-I is an
indicator variable that is associated with BIRTH-DATE-HOST because the BIRTH_DATE
column may contain null values.

EXEC SQL

 SELECT DEPT_ID, DEPT_NAME, EMP_ID

 INTO :DEPT-ID-HOST,

 :DEPT-NAME-HOST,

 :EMP-ID-HOST,

 :BIRTH-DATE-HOST :BIRTH-DATE-I

 FROM DEPARTMENT D, EMPLOYEE E

 WHERE D.DEPT_ID = E.DEPT_ID

END-EXEC

Local Variables

Chapter 4: Values and Value Expressions 81

Local Variables

A local variable is a variable that is defined in an SQL routine. You use local variables to
temporarily store and retrieve values as needed in the logic of the routine. Local
variables are used for such things as:

■ Retrieving data from a CA IDMS database by specifying them on the INTO clause of
a SELECT statement

■ Passing data to and from other SQL-invoked routines by specifying them as
arguments on the routine invocation

■ Holding computational values by specifying them as a target of a SET statement or
as values within expressions.

Local variables can only be referenced within the body of the SQL routine in which they
are defined.

Declaring Local Variables

A local variable is defined by a variable-declaration statement that is included in a
compound statement within an SQL routine body. The declaration of a local variable
consists of the specification of its name, data type, and optionally its initial value.

Note: For more information about declaring local variables, see Compound Statement.
(see page 566)

More information:

Compound Statement (see page 566)

Expansion of Local-variable

The expanded parameters of local-variable identify program variables declared in a
compound statement.

Syntax

Expansion of local-variable

►─────────┬──────────────────────┬── local-variable-name ─────────────────────►◄
 └── cmp-stmnt-label. ──┘

Expansion of Local-variable

82 SQL Reference Guide

Parameters

cmp-stmnt-label

Specifies the label of the compound statement that contains the definition of
local-variable.

local-variable-name

Identifies the local variable of an SQL routine.

Usage

Referencing Local Variables

A local variable can only be referenced from within the compound statement that
contains its declaration or from within a compound statement contained in the
compound statement that contains its declaration.

Avoiding Ambiguous References

The name of a local variable of an SQL routine can be the same as the name of another
local variable, a routine parameter, a column, or another schema-defined entity such as
a table. To avoid ambiguity when referencing these objects, qualification can be used as
follows:

■ A local variable can be qualified with the label of the compound statement in which
it is declared.

■ A routine parameter can be qualified with its associated schema and routine name.

■ A column can be qualified with its schema and table name.

■ Other schema-defined objects can be qualified with the name of the schema in
which they are defined.

Expansion of Local-variable

Chapter 4: Values and Value Expressions 83

Resolving Ambiguous References

If a name is not qualified and more than one object has the specified name, CA IDMS
uses the following precedence rules to resolve the ambiguous reference:

■ If a local variable with a matching name has been declared within the compound
statement in which the reference occurs, the reference is to the local variable. If
more than one such variable is declared, the reference is to the variable declared in
the innermost compound statement containing the reference.

■ If a parameter of the routine in which the reference occurs has a matching name,
the reference is to the routine parameter.

■ Otherwise, the reference is treated as a reference to a schema-defined object.

Note: For more information about how such a reference is resolved, see Resolving
References to Entities in Schemas.

In the SQL standard, an unqualified reference would be to the object with innermost
scope.

Routine Parameters

84 SQL Reference Guide

Example

In the following SQL procedure, two local variables, FNAME and LNAME are defined. The
references are qualified in the SELECT statement with the label of the compound
statement that holds the definition of the local variables. The SET statement uses
unqualified references.

set options command delimiter '++';

create procedure SQLROUT.LOCALVAR

 (TITLE varchar(10) with default

 , P_EMP_ID NUMERIC(4)

 , P_NAME varchar(25)

)

 external name LOCALVAR language SQL

L_MAIN: begin not atomic

 /*

** Count number of employees with equal Firstname using REPEAT

*/

 declare FNAME char(20);

 declare LNAME varchar(20);

 select EMP_FNAME, EMP_LNAME

 into L_MAIN.FNAME, L_MAIN.LNAME

 from DEMOEMPL.EMPLOYEE

 where EMP_ID = P_EMP_ID;

 set P_NAME = FNAME || LNAME;

end L_MAIN

++

*+ TITLE P_EMP_ID P_NAME

call SQLROUT.LOCALVAR('LOCALVAR',2010)++

*+

*+ ----- -------- -------------

*+ LOCALVAR 2010 Cora Parke

Routine Parameters

A routine parameter is a parameter of an SQL routine. You use routine parameters to
perform the following:

■ Pass values to and from the SQL routine

■ Store and retrieve values as needed by the routine logic

■ Pass values to other SQL-invoked routines

Routine parameters can only be referenced within the body of the SQL routine in which
they are defined.

Expansion of Routine-parameter

Chapter 4: Values and Value Expressions 85

Defining Routine Parameters

A routine parameter is defined through a parameter-definition clause of the CREATE
PROCEDURE or CREATE FUNCTION statements. The definition includes the specification
of the name, the data type and optional WITH DEFAULT attribute.

Note: For more information about defining routine parameters, see CREATE
PROCEDURE (see page 361) and CREATE FUNCTION. (see page 341)

More information:

CREATE FUNCTION (see page 341)
CREATE PROCEDURE (see page 361)

Expansion of Routine-parameter

The expanded parameters of routine-parameter identify routine parameters of an SQL
routine.

Syntax

Expansion of routine-parameter

►─┬──┬── parameter-name ──────────►◄
 └─┬───────────────────┬─────── routine-name. ──┘
 └─ schema. ─────────┘

Parameters

schema

Specifies the schema with which the SQL routine identified by routine-name is
associated.

routine-name

Specifies the name of the SQL routine in which the routine parameter identified by
routine-parameter is defined.

parameter-name

Identifies a parameter of an SQL routine.

Expansion of Routine-parameter

86 SQL Reference Guide

Usage

Referencing Routine Parameters

Routine parameters can only be referenced within the body of the SQL routine in which
they are defined. A routine parameter is global to the SQL routine. It can be referenced
anywhere in the body of the routine.

Avoiding Ambiguous References

The name of a routine parameter can be the same as the name of a local variable, a
column, or another schema-defined entity such as a table. To avoid ambiguity when
referencing these objects, qualification can be used as follows:

■ A local variable can be qualified with the label of the compound statement in which
it is declared.

■ A routine parameter can be qualified with its associated schema and routine name.

■ A column can be qualified with its schema and table name.

■ Other schema-defined objects can be qualified with the name of the schema in
which they are defined.

Resolving Ambiguous References

If a name is not qualified and more than one object has the specified name, CA IDMS
uses the following precedence rules to resolve the ambiguous reference:

■ If a local variable with a matching name has been declared within the compound
statement in which the reference occurs, the reference is to the local variable. If
more than one such variable is declared, the reference is to the variable declared in
the innermost compound statement containing the reference.

■ If a parameter of the routine in which the reference occurs has a matching name,
the reference is to the routine parameter.

■ Otherwise, the reference is treated as a reference to a schema-defined object. For
information about how such a reference is resolved, see Resolving References to
Entities in Schemas.

Note: In the SQL standard, an unqualified reference would be to the object with
innermost scope.

Dynamic Parameters

Chapter 4: Values and Value Expressions 87

Example

In the following SQL procedure, three routine parameters, TITLE, P_EMP_ID, and
P_LAST_NAME are defined. The references to P_EMP_ID and P_LAST_NAME in the
SELECT statement are qualified. The SET statement uses an unqualified reference to
TITLE.

 set options command delimiter '++';

 create procedure SQLROUT.GETLNAME

 (TITLE varchar(10) with default

 , P_EMP_ID NUMERIC(4)

 , P_LAST_NAME varchar(25)

)

 external name GETLNAME language SQL

 L_MAIN: begin not atomic

 select EMP_FNAME

 into SQLROUT.GETLNAME.P_LAST_NAME

 from DEMOEMPL.EMPLOYEE

 where EMP_ID = GETLNAME.P_EMP_ID;

 set TITLE = 'Success';

 end L_MAIN

 ++

 call SQLROUT.GETLNAME ('?',2010)++

 *+

 *+ TITL:EP_EMP_ID P_LAST_NAME

 *+ ----- -------- -----------

 *+ Success 2010 Cora

Dynamic Parameters

A dynamic parameter is a value supplied during the execution of a dynamic SQL
statement. It allows a statement, such as an UPDATE or INSERT statement, to be
prepared once but executed multiple times with different input values for each
execution. It also allows a SELECT statement to be prepared once but be used with
different selection criteria to retrieve different rows.

Dynamic Parameters

88 SQL Reference Guide

Using Dynamic Parameters

You indicate the presence of a dynamic parameter by specifying a dynamic parameter
marker within the text of the SQL statement being prepared. A dynamic parameter
marker is the question mark ("?") symbol. It can be specified anywhere that an input
host variable can be specified, except as noted below.

When executing an SQL statement that contains one or more dynamic parameter
markers, you supply values to be substituted in place of the markers through the USING
clause on the EXECUTE statement. If the prepared SQL statement is a SELECT, the
substitution values are supplied through the USING clause on the OPEN statement.

Parameter Data Types

When a statement containing a dynamic parameter marker is prepared, CA IDMS infers
the data type of the substitution value by examining the context where the dynamic
parameter marker appears. You may use the DESCRIBE statement (or the DESCRIBE
option on the PREPARE statement) to determine the assumptions that CA IDMS has
made about the data types of the dynamic parameters.

The data types of the actual substitution values do not need to be the same as those
assumed by CA IDMS. However, they must be compatible with respect to the
assignment operator. That is, the value passed at the time the statement is executed
must be capable of being assigned to a variable of the data type assumed by CA IDMS.

Note: For more information about the assignment operation, see Comparison,
Assignment, Arithmetic, and Concatenation Operations. (see page 66)

The following table outlines how CA IDMS infers the data type of a dynamic parameter
from the context in which it is used.

Context data type of dynamic parameter

Date-time value expressions

? + date or date + ? Date duration (DECIMAL(8,0))

? + time or time + ? Time duration (DECIMAL(6,0))

? + timestamp or timestamp + ? Time duration (DECIMAL(6,0))

date - ? Date duration (DECIMAL(8,0))

time - ? Time duration (DECIMAL(6,0))

timestamp - ? Time duration (DECIMAL(6,0))

? - date DATE

? - time TIME

Dynamic Parameters

Chapter 4: Values and Value Expressions 89

Context data type of dynamic parameter

? + labeled duration or

? - labeled duration

DATE if duration is DAY, MONTH,
YEAR; TIME if duration is HOUR,
MINUTE, SECOND

v + ? DAY/MONTH/YEAR/
HOUR/MINUTE/SECOND

DECIMAL(31,6)

Other value expressions

? arithmetic-operator v or

v arithmetic-operator ?

Same as v

? || v or v || ? VARCHAR (256)

Scalar functions

CAST (? AS data-type) data-type

CHAR_LENGTH (?) VARCHAR (256)

CHARACTER_LENGTH (?) VARCHAR (256)

COALESCE (v,...?,...) Same as v (The first entry in the list
cannot be a dynamic parameter)

CONCAT (?,?) First and second VARCHAR (256)

CONVERT(?, data-type) data-type

FLOAT (?) DOUBLE PRECISION

HEX (?) VARCHAR (256)

IFNULL(v,?) Same as v (The first entry in the list
cannot be a dynamic parameter)

INTEGER (?) INTEGER

LCASE(?) VARCHAR (256)

LEFT (?, ?) First is VARCHAR (256); second is
INTEGER

LENGTH (?) VARCHAR (256)

LOCATE (?, ?, ?) First and second are VARCHAR (256);
third is INTEGER

LOWER (?) VARCHAR (256)

LTRIM (?) VARCHAR (256)

POSITION (? IN ?) Both are VARCHAR (256)

PROFILE (?) VARCHAR (256)

RTRIM (?) VARCHAR (256)

Dynamic Parameters

90 SQL Reference Guide

Context data type of dynamic parameter

SUBSTR (?, ?, ?) or

SUBSTRING (? FROM ? FOR ?)

First is VARCHAR (256); second and
third are INTEGER

TRIM (? FROM ?) Both are VARCHAR (256)

UCASE (?) VARCHAR (256)

UPPER (?) VARCHAR (256)

VALUE (v,...,?,...) Same as v (The first entry in the list
cannot be a dynamic parameter)

VARGRAPHIC (?) VARCHAR (256)

Predicates

? comparison-operator v or

v comparison-operator ?

Same as v

? LIKE ? ESCAPE ? All are VARCHAR (256)

? BETWEEN v1 AND v2 Same as v1

v BETWEEN ? AND ? Both same as v

v1 IN (v2,...,?,...) Same as v1

? IN (v1, v2, ...) Same as v1

? comparison-operator ANY/ALL (subquery) Same data type as result of subquery.

? comparison-operator (subquery) Same data type as result of subquery.

Update values

UPDATE ... SET column = ? Same as column.

INSERT ... VALUES (...,?,...) Same as target column.

Note: Dynamic parameters are always nullable.

Dynamic Parameters

Chapter 4: Values and Value Expressions 91

Data Type Conversion Considerations

CA IDMS uses the rules in the previous table to infer a data type for a dynamic
parameter. The actual value of the parameter may have a different data type provided
the two are compatible with regard to the assignment operator. However, in certain
cases, compatibility may not be sufficient. For example, if you wish to supply a very long
character string as an input value and CA IDMS has inferred a data type of
VARCHAR(256), the input value is truncated to a length of 256. To circumvent this, you
can use the CAST function to override the default data type, as in the next example:

UPDATE MY.TEXT

 SET STRING =

 CHAR(CURRENT TIMESTAMP) || '**' || CAST (? AS VARCHAR(1000))

 WHERE ...

As an operand of a concatenate symbol, CA IDMS would normally assign VARCHAR (256)
as the data type for the dynamic parameter. However, by using a CAST function, the
parameter is instead assigned a data type of VARCHAR (1000).

Restrictions in the Use of Dynamic Parameters

Dynamic parameter markers may not be used in the following contexts:

■ Following a unary + or - operator

■ By itself as an entry in the select-list of a query expression

■ As both operands of a dyadic operator (except for the concatenation operator)

■ As the first entry in the operand list of the COALESCE and VALUE functions

■ As both the first and second or first and third operands of a BETWEEN predicate

■ As both the first operand and any entry in the second operand of the IN predicate

■ As the operand in the following functions: CHAR, DATE, DAY, DAYS, DECIMAL,
DIGITS, MINUTE, MONTH, MICROSECOND, OCTET_LENGTH, SECOND, TIME,
TIMESTAMP, YEAR

Note: The CAST function may be used to assign a data type to a parameter that
otherwise would not be allowed within the desired context. For example, if you want to
use a dynamic parameter as the first operand in the VALUE function, you may embed
the parameter in a CAST function to assign a default data type.

Expansion of Dynamic-parameter-marker

92 SQL Reference Guide

Statement Options

For more information, refer to the options that make use of dynamic parameters on the
following statements:

■ DESCRIBE

■ EXECUTE

■ OPEN

■ PREPARE

Expansion of Dynamic-parameter-marker

The expanded parameters of dynamic-parameter-marker indicate the use of a dynamic
parameter.

Syntax

Expansion of dynamic-parameter-marker

►►── ? ───►◄

Parameters

?

Indicates that a dynamic parameter is used to supply a value when the statement is
executed.

Usage

Dynamic SQL Only

Dynamic parameter markers may appear only within the text of an SQL statement which
is compiled dynamically using the PREPARE statement. They may not be used in
statements compiled through an EXECUTE IMMEDIATE statement nor in statements
embedded in a host application program.

Note: For more information about the use of dynamic parameters, see Dynamic
Parameters.

Special Registers

Chapter 4: Values and Value Expressions 93

Example

The following INSERT statement contains dynamic parameter markers to indicate that
values for the associated dynamic parameters are supplied when the statement is
executed. The EXECUTE statement that follows, supplies those values through the use of
host variables.

insert into coverage (plan_code, emp_id, selection_date,

 num_dependents)

 values (?, ?, current date, ?)

execute dyninsert using

 :wk-plan, :wk-emp, :wk-deps indicator :wk-deps-i

Special Registers

A special register is a system-supplied variable defined by CA IDMS. At any given time,
the value of a special register depends upon the context of the current user session.

Usage

You use special registers in place of literals primarily in SQL data manipulation
statements. For example, in the following SELECT statement, the special register
CURRENT DATE specifies the end of a range of dates used as a selection criterion:

select emp_id, emp_lname

 from employee

 where start_date between '1989-01-01' and current date;

Expansion of Special-register

The expanded parameters of special-register identify system-supplied variables whose
value is determined when the SQL statement in which they appear is executed.

Syntax

Expansion of special-register

►►─┬─ USER ──────────────┬──►◄
 ├─ GROUP ─────────────┤
 ├─ CURRENT DATE ──────┤
 ├─ CURRENT TIME ──────┤
 ├─ CURRENT TIMESTAMP ─┤
 ├─ CURRENT TIMEZONE ──┤
 ├─ CURRENT DATABASE ──┤
 ├─ CURRENT SCHEMA ────┤
 └─ CURRENT SQLID ─────┘

Expansion of Special-register

94 SQL Reference Guide

Note: SQL Standard Compatibility. All special registers except USER are CA IDMS
extensions of the SQL standard.

Parameters

USER

Contains the authorization identifier of the user executing the SQL session.

This value is established when the user signs on to the teleprocessing monitor or
when the batch application is started by the operating system.

If no user has been established, the value of USER is blanks.

GROUP

Contains the default group identifier associated with the executing user as defined
to the security facility.

If no user has been established or if the user has not been assigned a default group,
the value of GROUP is blank.

CURRENT DATE

Contains the current date when the SQL statement is executed.

CURRENT TIME

Contains the current time when the SQL statement is executed.

CURRENT TIMESTAMP

Contains the current date and time when the SQL statement is executed with a
precision of millionths of a second.

CURRENT TIMEZONE

Contains the difference between current time and Greenwich Mean Time expressed
as a time duration.

This value is calculated from operating system values.

CURRENT DATABASE

Contains the name of the database to which the SQL session is connected.

CURRENT SCHEMA

Contains the current schema identifier associated with the SQL session.

This value is established in the CURRENT SCHEMA parameter of a SET SESSION
statement. If the SET SESSION statement has not been issued, it is the value of the
SCHEMA profile variable associated with the user session.

If no value has been established, the value of CURRENT SCHEMA is blanks.

CURRENT SQLID

Is a synonym for CURRENT SCHEMA.

ROWID Pseudo-column

Chapter 4: Values and Value Expressions 95

Usage

Values in CURRENT DATE, TIME, and TIMESTAMP

All occurrences of CURRENT DATE, CURRENT TIME, and CURRENT TIMESTAMP
appearing within a single SQL statement are effectively evaluated at the same time.

Data Types and Equivalent Scalar Functions of Special Register Variables

This table gives the data types of CA IDMS special registers and the equivalent scalar
function invocation:

Special register Data type Equivalent Scalar
Function

USER CHARACTER(18) USER()

GROUP CHARACTER(18)

CURRENT DATE DATE CURDATE()

CURRENT TIME TIME CURTIME()

CURRENT TIMESTAMP TIMESTAMP NOW()

CURRENT TIMEZONE DECIMAL (6,0)

CURRENT SCHEMA CHARACTER (18)

CURRENT SQLID CHARACTER (18)

CURRENT DATABASE CHARACTER (8) DATABASE()

ROWID Pseudo-column

A pseudo-column is a column automatically associated by CA IDMS with each table or
view. Pseudo-columns are not part of the definition of a table or a view and thus do not
show up as rows from the SYSTEM.COLUMN catalog table, nor will they be part of a
SELECT * list.

ROWID has a special data type TID (Tuple ID) with a fixed length of 8 bytes. For any
practical considerations, the TID data type can be considered equivalent to BIN(8). The
ROWID contains information about the storage location of the row in the database.
Internally the ROWID is made up of the DBKEY of the underlying database record (first 4
bytes). The last 4 bytes are currently ignored, but may be used in the future.

The value of ROWID is unique for each row of a base table; however, you cannot
consider it to be a table's primary key because its value can change over the lifetime of
the database. This could happen, for example, after an UNLOAD/RELOAD operation.

Expansion of rowid-pseudo-column

96 SQL Reference Guide

The ROWID provides unique access and the fastest access to a row of a table, no matter
if the table is SQL- or non-SQL-defined.

The ROWID value is not persistent for the life of the database, but it never changes
within a transaction or other controlled processes, if the row is not deleted, of course.

The value of ROWID can be null (for example, as the result of an outer join operation).

A ROWID pseudo-column cannot be updated or inserted.

Views also have an associated ROWID pseudo-column. The value of a view's ROWID is
the ROWID of the first base table in the decomposition of the view from left to right.
The ROWID values of a view are not necessarily unique.

The ROWID pseudo-column is a CA IDMS extension of the SQL standard.

When to Use ROWID

Although ROWID can be used for SQL-defined tables, it is most useful for updating
non-SQL-defined databases. Since such databases tend to have record types with no
primary or foreign keys, identifying a specific row to be updated or deleted is often
difficult. For such record types, it was often necessary to implement a table procedure
to perform the update or deletion. The presence of ROWID pseudo-column makes the
table procedure unnecessary, because it uniquely identifies each row of any
non-SQL-defined table.

Expansion of rowid-pseudo-column

The expanded parameters of rowid-pseudo-column request the ROWID values to be
determined when the SQL statement in which they appear is executed.

Syntax

Expansion of rowid-pseudo-column

►►─┬──┬───┬──── ROWID ────────────────►◄
 ├──┬──────────────┬┬─ table-identifier. ───┤ │
 │ └ schema-name. ┘└── view-identifier. ───┘ │
 └──────────────── alias. ──────────────────────┘

Expansion of rowid-pseudo-column

Chapter 4: Values and Value Expressions 97

Parameters

schema-name

Specifies the schema with which the table or view identified by table-identifier or
view-identifier is associated.

Note: For more information about using a schema name to qualify a table or view
identifier, see Identifying Entities in Schemas.

table-identifier

Identifies a base table defined in the dictionary.

view-identifier

Identifies a view defined in the dictionary.

alias

Specifies the alias associated with the table or view to which the ROWID
pseudo-column refers. The alias must be defined in the FROM parameter of the
subquery, query specification, or SELECT statement that includes the ROWID.

Usage

Because the pseudo-column ROWID obviously becomes easily ambiguous when multiple
tables or views are involved in an SQL statement, qualification is required in most, but
the simplest statements.

Note: ROWID can generally also be used for tables associated with native VSAM files.
However for KSDS native VSAM files ROWID cannot be used to directly access a KSDS
record.

Expansion of rowid-pseudo-column

98 SQL Reference Guide

Examples

Using ROWID in a Simple SELECT Statement

SELECT ROWID, OFFICE_CODE_0450, OFFICE_CITY_0450

 FROM EMPSCHM.OFFICE;

*+

*+ ROWID OFFICE_CODE_0450 OFFICE_CITY_0450

*+ -------- ---------------- ----------------

*+ X'01259701' 002 BOSTON

*+ X'0125A001' 001 SPRINGFIELD

*+ X'0125A301' 005 GLASSTER

*+ X'0125A601' 012 CAMBRIDGE

*+ X'0125A901' 008 WESTON

The values of ROWID are displayed as hexadecimal values, which in this case are also
the values of the DBKEY for the OFFICE record in the non-SQL-defined schema
EMPSCHM VERSION 100 of the demo employee database.

Using ROWID in the WHERE clause of a Searched UPDATE Statement

UPDATE EMPSCHM.EMPLOYEE SET EMP_CITY = 'BRUSSELS'

 WHERE ROWID = X'0124FF01';

The column EMP_CITY of the EMPLOYEE record in the non-SQL schema EMPSCHM
VERSION 100 is updated for the record whose DBKEY is X'0124FF01'.

Using ROWID in a JOIN of a Base Table and a View

Both examples use DEFJE01.EMPLOYEEV which is defined as follows:

CREATE VIEW DEFJE01.EMPLOYEEV

 AS SELECT * FROM EMPSCHM.EMPLOYEE;

In the first example DEFJE01.EMPOFFV is defined as follows:

CREATE VIEW DEFJE01.EMPOFFV

 AS SELECT EV.*, O.*

 FROM EMPSCHM.OFFICE O, DEFJE01.EMPLOYEEV EV

 WHERE "OFFICE-EMPLOYEE";

Expansion of rowid-pseudo-column

Chapter 4: Values and Value Expressions 99

The returned ROWID for the view is the ROWID of the EMPSCHM.OFFICE base table:

SELECT EOV.ROWID, D.ROWID, D.*, EMP_ID, OFFICE_CODE_0450

 FROM DEFJE01.EMPOFFV EOV, EMPSCHM.DEPARTMENT D

 WHERE "DEPT-EMPLOYEE" AND EMP_ID < 5;

*+

*+ ROWID ROWID DEPT_ID_0410

*+ -------- -------- ------------

*+ X'0125A001' X'0125BD01' 100

*+ X'0125A001' X'0125BC01' 3100

*+ X'0125A001' X'0125AB01' 3200

*+

*+ DEPT_NAME_0410 DEPT_HEAD_ID_0410 EMP_ID

*+ ---------- ----------------- ------

*+ EXECUTIVE ADMINISTRATION 30 1

*+ INTERNAL SOFTWARE 3 3

*+ COMPUTER OPERATIONS 4 4

*+

*+ OFFICE_CODE_0450

*+ ----------------

*+ 001

*+ 001

*+ 001

Expansion of rowid-pseudo-column

100 SQL Reference Guide

In the second example, DEFJE01.EMPOFFV is defined as follows:

CREATE VIEW DEFJE01.EMPOFFV

 AS SELECT EV.*, O.*

 FROM DEFJE01.EMPLOYEEV EV, EMPSCHM.OFFICE O

 WHERE "OFFICE-EMPLOYEE";

The returned ROWID for the view is the ROWID of the EMPSCHM.EMPLOYEE base table,
which is the first base table in the view EMPLOYEEV.

SELECT EOV.ROWID, D.ROWID, D.*, EMP_ID, OFFICE_CODE_0450

 FROM DEFJE01.EMPOFFV EOV, EMPSCHM.DEPARTMENT D

 WHERE "DEPT-EMPLOYEE" AND EMP_ID < 5;

*+

*+ ROWID ROWID DEPT_ID_0410

*+ -------- -------- ------------

*+ X'01252801' X'0125BD01' 100

*+ X'01253B01' X'0125BC01' 3100

*+ X'01255301' X'0125AB01' 3200

*+

*+ DEPT_NAME_0410 DEPT_HEAD_ID_0410 EMP_ID

*+ -------------- ----------------- ------

*+ EXECUTIVE ADMINISTRATION 30 1

*+ INTERNAL SOFTWARE 3 3

*+ COMPUTER OPERATIONS 4 4

*+

*+ OFFICE_CODE_0450

*+ ----------------

*+ 001

*+ 001

*+ 001

Expansion of Value-expression

Chapter 4: Values and Value Expressions 101

Searched Update of Records Without Primary Key

This example updates all the COVERAGE records of the employee with EMP_ID=23:

UPDATE EMPSCHM.COVERAGE C

 SET SELECTION_YEAR_0400 = 20

 WHERE C.ROWID IN (

 SELECT CI.ROWID

 FROM EMPSCHM.EMPLOYEE E, EMPSCHM.COVERAGE CI

 WHERE "EMP-COVERAGE"

 AND EMP_ID = 23);

*+ Status = 0 SQLSTATE = 00000

*+ 2 rows processed

Searched Delete of Records Without Primary Key

This example deletes all the COVERAGE records of the employee with EMP_ID=23:

DELETE FROM EMPSCHM.COVERAGE C

 WHERE C.ROWID IN (

 SELECT CI.ROWID

 FROM EMPSCHM.EMPLOYEE E, EMPSCHM.COVERAGE CI

 WHERE "EMP-COVERAGE"

 AND EMP_ID = 23);

*+ Status = 0 SQLSTATE = 00000

*+ 2 rows processed

Expansion of Value-expression

The expanded parameters of value-expression represent a single data value or a set of
one or more data values in an SQL statement.

Expansion of Value-expression

102 SQL Reference Guide

Syntax

Expansion of value-expression

►►─┬───────┬─┬─ aggregate-function ───────────────┬───────────────────────────►
 ├─ + ◄──┤ ├─ scalar-function ──────────────────┤
 └─ - ───┘ ├─┬───────────────┬─── column-name ──┤
 │ ├─ table-name. ─┤ │
 │ └─ alias. ──────┘ │
 ├─ literal ──────────────────────────┤
 ├─ host-variable ────────────────────┤
 ├─ special-register ─────────────────┤
 ├─ (value-expression) ─────────────┤
 ├─ labeled-duration ─────────────────┤
 ├─ dynamic-parameter-marker ─────────┤
 ├─ rowid-pseudo-column ──────────────┤
 ├─ routine-parameter ────────────────┤
 └─ local-variable ───────────────────┘

 ►─┬──┬───────────►◄
 │ ┌──┐ │
 └─▼─┬─ * ──┬─┬───────┬─┬─ aggregate-function ───────────────┬┴─┘
 ├─ / ──┤ ├─ + ◄──┤ ├─ scalar-function ──────────────────┤
 ├─ + ──┤ └─ - ───┘ ├─┬───────────────┬─── column-name ──┤
 ├─ - ──┤ │ ├─ table-name. ─┤ │
 └─ ││ ─┘ │ └─ alias. ──────┘ │
 ├─ literal ──────────────────────────┤
 ├─ host-variable ────────────────────┤
 ├─ special-register ─────────────────┤
 ├─ (value-expression) ─────────────┤
 ├─ labeled-duration ─────────────────┤
 ├─ dynamic-parameter-marker──────────┤
 ├─ rowid-pseudo-column ──────────────┤
 ├─ routine-parameter ────────────────┤
 └─ local-variable ───────────────────┘

Parameters

+, -

Specifies the unary arithmetic operation to be performed on the operand that
follows:

■ + leaves the sign of the operand unchanged. A positive value remains positive.
A negative value remains negative.

■ - reverses the sign of the operand. A positive value becomes negative. A
negative value becomes positive.

The default is +.

You can specify unary arithmetic operators with numeric operands only.

aggregate-function

Specifies an aggregate function to be used as an operand in the value expression.
For expanded aggregate-function syntax, see Aggregate-function.

scalar-function

Specifies a scalar function to be used as an operand in the value expression. For
expanded scalar-function syntax, see Expansion of Scalar-function.

Expansion of Value-expression

Chapter 4: Values and Value Expressions 103

column-name

Specifies a column to be used as an operand in the value expression. The expression
is evaluated once for each value in the named column.

table-name.

Specifies the table, view, procedure or table procedure that includes the
named column. For expanded table-name syntax, see Expansion of
Table-name.

alias.

Specifies the alias associated with the table, view, procedure or table
procedure that includes the named column. The alias must be defined in the
FROM parameter of the subquery, query specification, or SELECT statement
that includes the value expression.

literal

Specifies a literal to be used as a single operand in the value expression. For
expanded literal syntax, see Expansion of Literal.

host-variable

Specifies a host variable to be used as a single operand in the value expression. For
expanded host-variable syntax, see Expansion of Host-variable.

special-register

Specifies a special register to be used as a single operand in the value expression.
For expanded special-register syntax, see Expansion of Special-register.

(value-expression)

Specifies another value expression to be used as a single operand in the value
expression. To be manipulated as a single operand, the value expression must be
enclosed in parentheses.

labeled-duration

Specifies a labeled duration to be used as an operand in the value expression. For
expanded labeled-duration syntax, see Expansion of Labeled-duration.

dynamic-parameter-marker

Specifies a dynamic parameter to be used as a single operand in the value
expression. For expanded dynamic-parameter-marker syntax, see Expansion of
Dynamic-parameter-marker.

rowid-pseudo-column

Requests the ROWID value to be determined when the SQL statement in which it
appears is executed.

Expansion of Value-expression

104 SQL Reference Guide

routine-parameter

Specifies a routine parameter to be used as a single operand in the value
expression.

Note: For more information about expanded routine-parameter syntax, see
Expansion of Routine-parameter.

local-variable

Specifies a local variable to be used as a single operand in the value expression.

Note: For more information about expanded local-variable, see Local Variables.
(see page 81)

*, /, +, -, ||

Specifies the binary arithmetic operation or concatenation operation to be
performed on the operands preceding and following the operator.

Binary arithmetic operators are:

■ * multiplies the first operand by the second operand

■ / divides the first operand by the second operand

■ + adds the second operand to the first operand

■ - subtracts the second operand from the first operand

You can specify binary arithmetic operators with numeric operands only.

The concatenation operator is:

■ || concatenates the second operand to the first operand

You can specify the concatenation operator with binary operands, character
operands, or graphics operands.

Expansion of Value-expression

Chapter 4: Values and Value Expressions 105

Usage

Order of Evaluation

After evaluating the individual operands, CA IDMS performs the operations in a value
expression in the following order:

1. Unary operations from left to right.

2. Multiplication and division from left to right.

3. Addition and subtraction from left to right.

You can use parentheses to override the default order of evaluation. Operations in
parentheses are performed first.

For example, the result of the following value expression is 19:

10 * 2 - 1

When the subtraction operation is enclosed in parentheses, the result of the expression
is 10:

10 * (2 - 1)

Unary Operators With Signed Numeric Literals

If the operand following a unary operator is a numeric literal that includes a plus or
minus sign, the literal must be enclosed in parentheses.

Null Values in a Value Expression

If the value of any of the operands in a value expression is null, the result of the
expression is a null value.

Data Type of the Result

The data type of the result of a value expression with one operand is the data type of
the operand.

The data type of the result of a numeric value expression with multiple operands is the
common data type corresponding to the data type of highest precedence in the
expression, as determined by the rules for data type conversion in arithmetic
operations.

Expansion of Value-expression

106 SQL Reference Guide

This table shows the data type of the result of a concatenation operation for each
allowable combination of operands:

Operand Operand Result

CHARACTER CHARACTER CHARACTER

CHARACTER VARCHAR VARCHAR

VARCHAR VARCHAR VARCHAR

BINARY BINARY CHARACTER

BINARY CHARACTER CHARACTER

BINARY VARCHAR CHARACTER

GRAPHIC GRAPHIC GRAPHIC

GRAPHIC VARGRAPHIC GRAPHIC

VARGRAPHIC VARGRAPHIC VARGRAPHIC

Note: For more information about data type conversion, see Comparison, Assignment,
Arithmetic, and Concatenation Operations.

Examples

A Single Operand

In the SELECT statement below, the value expressions that identify the data to be
selected each consist of a single operand. The first is a column, and the second two are
aggregate functions.

select proj_leader_id, count(proj_id), avg(est_man_hours)

 from project

 group by proj_leader_id;

Multiple Operands

In the UPDATE statement below, the value expression that specifies the new value for
SALARY_AMOUNT includes multiple operands. CA IDMS computes the new value by
multiplying the value in the SALARY_AMOUNT column by .06, adding the result to the
original value in SALARY_AMOUNT, and then adding the value in :MERIT_AMT to the
result of the first addition.

EXEC SQL

UPDATE POSITION

 SET SALARY_AMOUNT = SALARY_AMOUNT + (SALARY_AMOUNT * .06)

 + :MERIT_AMT

 WHERE EMP_ID = :EMPLOYEE-ID

END-EXEC

Durations

Chapter 4: Values and Value Expressions 107

Durations

A duration is a value that represents a time interval. There are three kinds of duration:

■ Labeled duration

■ Date duration

■ Time duration

Labeled Durations

A labeled duration represents a specific unit of time as expressed by a value expression
followed by a duration keyword. Labeled duration appears in syntax as
labeled-duration. For expanded labeled-duration syntax, see Expansion of
Labeled-duration.

These are examples of labeled durations:

■ 10 MINUTES

■ :HV-INPUT YEARS

■ SUM (HOURS_WORKED) HOURS

Date Duration

A date duration is a value of data type DECIMAL(8,0) that represents an interval of
years, months, and days. The value must have the format yyyymmdd where yyyy
represents the number of years, mm the number of months, and dd the number of
days.

For example, the date duration 41027 represents 4 years, 10 months, and 27 days.

Time Duration

A time duration is a value of data type DECIMAL(6,0) that represents an interval of
hours, minutes, and seconds. The value must have the format hhmmss where hh
represents the number of hours, mm the number of minutes, and ss the number of
seconds.

For example, the time duration 173306 represents 17 hours, 33 minutes, and 6 seconds.

Expansion of Labeled-duration

The expanded parameters of labeled-duration specify an interval of time in a unit of
measure ranging from microseconds to years.

Expansion of Labeled-duration

108 SQL Reference Guide

Syntax

Expansion of labeled-duration

►►─┬─ aggregate-function ────────────┬───┬─ YEAR ─────────┬───────────────────►◄
 ├─┬───────────────┬─ column-name ─┤ ├─ YEARS ────────┤
 │ ├─ table-name. ─┤ │ ├─ MONTH ────────┤
 │ └─ alias. ──────┘ │ ├─ MONTHS ───────┤
 ├─ literal ───────────────────────┤ ├─ DAY ──────────┤
 ├─ host-variable ─────────────────┤ ├─ DAYS ─────────┤
 ├─ value-expression ──────────────┤ ├─ HOUR ─────────┤
 └─ dynamic-parameter-marker ──────┘ ├─ HOURS ────────┤
 ├─ MINUTE ───────┤
 ├─ MINUTES ──────┤
 ├─ SECOND ───────┤
 ├─ SECONDS ──────┤
 ├─ MICROSECOND ──┤
 └─ MICROSECONDS ─┘

Parameters

aggregate-function

Specifies the aggregate function that represents the value in the labeled duration.
For expanded aggregate-function syntax, see Aggregate-function.

column-name

Specifies the column that represents the value in the labeled duration.

table-name.

Specifies the table, view, procedure or table procedure that includes the named
column. For expanded table-name syntax, see Expansion of Table-name.

alias.

Specifies the alias for the table, view, procedure or table procedure that includes
the named column.

literal

Specifies the literal that represents the value in the labeled duration. For expanded
literal syntax, see Expansion of Literal.

host-variable

Specifies the host variable that contains the value in the labeled duration. For
expanded host-variable syntax, see Expansion of Host-variable.

value-expression

Specifies the value expression that represents the value in the labeled duration. For
expanded value-expression syntax, see Expansion of Value-expression.

Expansion of Labeled-duration

Chapter 4: Values and Value Expressions 109

dynamic-parameter-marker

Specifies that the value in the labeled-duration statement is supplied as a dynamic
parameter. For expanded dynamic-parameter-marker syntax, see Expansion of
Dynamic-parameter-marker.

YEAR / YEARS

Indicates that the unit of measure of the duration is years.

MONTH / MONTHS

Indicates that the unit of measure of the duration is months.

DAY / DAYS

Indicates that the unit of measure of the duration is days.

HOUR / HOURS

Indicates that the unit of measure of the duration is hours.

MINUTE / MINUTES

Indicates that the unit of measure of the duration is minutes.

SECOND / SECONDS

Indicates that the unit of measure of the duration is seconds.

MICROSECOND / MICROSECONDS

Indicates that the unit of measure of the duration is microseconds.

Date/time Arithmetic

110 SQL Reference Guide

Date/time Arithmetic

The only arithmetic operations that can be performed on date/time values are addition
and subtraction.

Date/time Addition

If a date/time value is the operand of addition, the other operand must be a duration.
These rules govern the use of the addition operator with date/time values:

■ If one operand is a date, the other operand must be a date duration or labeled
duration of years, months, or days

■ If one operand is a time, the other operand must be a time duration or a labeled
duration of hours, minutes, or seconds

■ If one operand is a timestamp, the other operand must be a duration

Date/time Subtraction

The rules for the use of the subtraction operator on date/time values differ from those
for addition. The tables below describe the rules for using the subtraction operator with
date/time values.

Note: The second operand cannot be a timestamp.

First Operand Rules

If the first operand is The second operand must be

A date ■ A date

■ A date duration

■ A string representation of a date

■ A labeled duration of years, months
or days

A time ■ A time

■ A time duration

■ A string representation of a time

■ A labeled duration of hours, minutes,
or seconds

A timestamp A duration

Date/time Arithmetic

Chapter 4: Values and Value Expressions 111

Second Operand Rules

If the second operand is The first operand must be

A date ■ A date

■ A string representation of a date

A time ■ A time

■ A string representation of a time

Date Arithmetic

Dates can be subtracted, incremented, or decremented.

Subtracting Dates

The result of subtracting one date from another date is a date duration in the form
yyyymmdd that specifies the number of years, months, and days between the two
dates. The data type of the result is DECIMAL(8,0).

In the expression D1 - D2, where D1 and D2 are date values:

If D1 is greater than or equal to D2,

D2 is subtracted from D1

If D1 is less than D2,

D1 is subtracted from D2, and the sign of the result is made negative

Date/time Arithmetic

112 SQL Reference Guide

Date Subtraction Procedures

These are the procedures used to obtain a result R in the expression R = D1 - D2 where
D1 and D2 are date values:

If DAY(D2) < = DAY(D1),

then DAY(R) = DAY(D1) - DAY(D2).

If DAY(D2) > DAY(D1),

then DAY(R) = N + DAY(D1) - DAY(D2)

where N = the last day of MONTH(D2).

MONTH(D2) is then incremented by 1.

If MONTH(D2) < = MONTH(D1),

then MONTH(R) = MONTH(D1) - MONTH(D2).

If MONTH(D2) > MONTH(D1),

then MONTH(R) = 12 + MONTH(D1) - MONTH(D2).

YEAR(D2) is then incremented by 1.

YEAR(R) = YEAR(D1) - YEAR(D2).

Example of Subtracting Dates

The result of DATE('12/31/2000') - DATE('8/10/1999') is 10421, representing a duration
of 1 year, 4 months, and 21 days.

Arithmetic with a Date and a Duration

What You Can Do

The result of adding a duration to a date or subtracting a duration from a date is a date.
The result must fall in the range of dates from January 1, 0001 to December 31, 9999.

:warning. If an invalid date is calculated during an UPDATE STATEMENT, the target
column remains unchanged. An invalid date can be calculated during "Operations with a
Duration of Years" or "Operations with a Duration or Months."

Operations with a Duration of Years

Adding or subtracting a duration of years affects the year of the resulting date but does
not affect the month or day unless the result is February 29 of a non-leap year. In this
case, the day portion is set to 28. When this adjustment is required, a warning message
is issued.

For example, the result of DATE('5/1/1998') + 3 YEARS is '5/1/2001'.

Date/time Arithmetic

Chapter 4: Values and Value Expressions 113

Operations with a Duration of Months

Adding or subtracting a duration of months affects the month and potentially the year
of the resulting date. The day portion of the date is unchanged unless the result is an
invalid date, such as June 31. When an invalid date is calculated, CA IDMS returns a
warning message. If the invalid date is calculated during a SELECT statement, the date is
set to the last day of the month.

For example, the result of DATE ('10/31/2001') - 1 MONTH is '9/30/2001'.

Operations with a Duration of Days

Adding or subtracting a duration of days affects the day of the resulting date and
potentially the month and year.

For example, the result of DATE ('12/15/2000') + 45 DAYS is '1/29/2001'.

Operations with Date Durations

Date durations of data type DECIMAL (8,0) in the form yyyymmdd may also be added to
and subtracted from dates. The date duration may be a positive or negative value.

The result is a date that has been incremented or decremented by the specified number
of years, months, and days, respectively. Thus, D1 + N, where N is a positive date
duration, is equivalent to this expression:

D1 + YEAR(N) YEARS + MONTH(N) MONTHS + DAY(N) DAYS

For example, the result of DATE('4/13/2001') + 101 is '5/14/2001'.

Note: Leading zeros are dropped. Therefore, 101 is the same as 00000101.

Reversing Operations with Date Durations

If you add duration 100 (one month) to date D1, obtaining result R, R - 100 may not
necessarily equal D1 because the operation D1 + 100 may require an end-of-the-month
adjustment. For example:

DATE('8/31/2001') + 100 = '9/30/2001'

However:

DATE('9/30/2001') - 100 = '8/30/2001'

Date/time Arithmetic

114 SQL Reference Guide

Time Arithmetic

Times can be subtracted, incremented, or decremented.

Subtracting Times

The result of subtracting one time (T2) from another (T1) is a time duration in the form
hhmmss that specifies the number of hours, minutes, and seconds between the two
times. The data type of the result is DECIMAL (6,0).

In the expression T1 - T2, where T1 and T2 are time values:

If T1 is greater than or equal to T2,

T2 is subtracted from T1

If T1 is less than T2,

T1 is subtracted from T2, and the sign of the result is made negative

Time Subtraction Procedures

These are the procedures used to obtain a result R in the expression R = T1 - T2 where
T1 and T2 are time values:

SECOND(T2) < = SECOND(T1),

then SECOND(R) = SECOND(T1) - SECOND(T2).

If SECOND(T2) > SECOND(T1),

then SECOND(R) = 60 + SECOND(T1) - SECOND(T2).

MINUTE(D2) is then incremented by 1.

If MINUTE(T2) < = MINUTE(T1),

then MINUTE(R) = MINUTE(T1) - MINUTE(T2).

If MINUTE(T2) > MINUTE(T1),

then MINUTE(R) = 60 + MINUTE(T1) - MINUTE(T2).

HOUR(T2) is then incremented by 1.

HOUR(R) = HOUR(T1) - HOUR(T2).

For example, the result of TIME ('16:43:17') - TIME('14:30:00') is 21317, representing a
duration of 2 hours, 13 minutes and 17 seconds.

Date/time Arithmetic

Chapter 4: Values and Value Expressions 115

Arithmetic with a Duration and a Time

What is the Result?

The result of adding a duration to a time, or of subtracting a duration from a time, is a
time.

Operations With a Duration of Hours

Adding or subtracting a duration of hours affects the hours of the resulting time. The
minutes and seconds are unchanged.

For example, the result of TIME ('16:43:17') + 3 HOURS is '19:43:17'.

Operations With a Duration of Minutes

Adding or subtracting a duration of minutes affects the minutes and potentially the
hours of the resulting time. The second's portion of the time is unchanged.

For example, the result of TIME ('16:43:17') + 30 MINUTES is '17:13:17'.

Operations With a Duration of Seconds

Adding or subtracting a duration of seconds affects the seconds and potentially the
minutes and hours of the resulting time.

For example, the result of TIME ('16:43:17') + 51 SECONDS is '16:44:08'.

Note: In arithmetic with a time and a duration, overflow or underflow ofhours is
discarded.

Operations With Time Durations

Time durations of a data type DECIMAL(6,0) may also be added to and subtracted from
times. The time duration may be a positive or negative value.

The result is a time that has been incremented or decremented by the specified number
of hours, minutes, and seconds, respectively. Thus, T1 + N, where N is a positive time
duration, is equivalent to this expression:

T1 + HOUR(N) HOURS + MINUTE(N) MINUTES + SECONDS(N) SECONDS

For example, the result of TIME ('16:43:17') + 32114 is '20:08:31'.

Expansion of XML-value-expression

116 SQL Reference Guide

Timestamp Arithmetic

Timestamps can be incremented, or decremented. The result of adding a duration to a
timestamp, or of subtracting a duration from a timestamp, is a timestamp.

Timestamp arithmetic is performed as described for date and time arithmetic except
that an overflow or underflow of hours is carried into the date part of the result.

Precedence of Operations

Expressions within parentheses are evaluated first. When the order of evaluation is not
specified by parentheses:

■ Prefix operators are applied before multiplication and division

■ Multiplication and division are applied before addition and subtraction

■ Operators at the same precedence level are applied from left to right

Expansion of XML-value-expression

The expanded parameters of XML-value-expression specify XML values.

Note: For more information about XML values, see XML Data Type and XML Values.

Syntax

Expansion of XML-value-expression

►──────┬── XML-value-function ──┬─────────────────────────────►◄
 └── subquery ────────────┘

Parameters

XML-value-function

Specifies an XML-value-function that returns an XML value. See Expansion of
XML-value-function, for more information.

subquery

Specifies a subquery that must return a single XML value or the NULL value. See
Subqueries, for more information.

Chapter 5: Functions 117

Chapter 5: Functions

This section contains the following topics:

Aggregate-function (see page 117)
Scalar Function (see page 121)
CA IDMS Scalar Functions (see page 124)
Expansion of User-defined-function (see page 179)
Expansion of XML-value-function (see page 181)
XML Value Functions (see page 181)

Aggregate-function

An aggregate function is a function whose argument includes one or more columns and
which operates on one or more rows. The result of an aggregate function is a single
value. This value is derived from the sets of values in the columns named in the
argument.

The set of values is derived from the result table or from each group of results if the
associated query contains a GROUP BY.

Expansion of Aggregate-function

The expanded parameters of aggregate-function represent an aggregate function in an
SQL statement.

Syntax

Expansion of aggregate-function

►►─┬─┬─ AVG ─┬─ (─┬─┬────────────┬─┬───────────────┬─── column-name ──┬─)─┬─►◄
 │ ├─ MAX ─┤ │ └─ DISTINCT ─┘ ├─ table-name. ─┤ │ │
 │ ├─ MIN ─┤ │ └─ alias. ──────┘ │ │
 │ └─ SUM ─┘ └─ all value-expression ────────────────────────────┘ │
 └─ COUNT (─┬─ * ───┬─) ────┘
 └─┬────────────┬─┬───────────────┬─── column-name ──┘
 └─ DISTINCT ─┘ ├─ table-name. ─┤
 └─ alias. ──────┘

Aggregate-function

118 SQL Reference Guide

Parameters

AVG

Computes the arithmetic mean of the non-null values specified by the argument.

If no rows are found for the function, or if all rows found contain null values, the
result of the function is null.

MAX

Finds the largest of the non-null values specified by the argument.

If no rows are found for the function, or if all rows found contain null values, the
result of the function is null.

MIN

Finds the smallest of the non-null values specified by the argument.

If no rows are found for the function, or if all rows found contain null values, the
result of the function is null.

SUM

Computes the total of the non-null values specified by the argument.

If no rows are found for the function, or if all rows found contain null values, the
result of the function is null.

DISTINCT

Directs CA IDMS to exclude both duplicate values and null values from the set of
values identified by column-name before evaluating the function.

If you do not specify DISTINCT, CA IDMS excludes only null values.

column-name

Specifies the set of values in the named column. CA IDMS excludes null values from
the set before evaluating the function.

For AVG and SUM, the named column must have an approximate or exact numeric
data type.

table-name

Specifies the table, view, procedure or table procedure that includes the
named column. For expanded table-name syntax, see Expansion of
Table-name.

alias

Specifies the alias associated with the table, view, procedure or table
procedure that includes the named column. The alias must be defined in the
FROM parameter of the subquery, query specification, or SELECT statement
that includes the aggregate function.

Aggregate-function

Chapter 5: Functions 119

all value-expression

Specifies the set of values derived from the evaluation of a value expression. Null
values are excluded from the set before the function is evaluated.

When used as the argument of an aggregate function, value-expression:

■ Must include at least one column reference

■ Cannot include another aggregate function (that is, you cannot nest aggregate
functions)

■ Cannot include both arithmetic operators and outer references

Note: For more information about outer references, see Subqueries. (see
page 238)

For AVG and SUM, the values in the set must have an approximate or exact numeric
data type.

The keyword ALL is optional and does not affect the evaluation of the function. For
expanded value-expression syntax, see Expansion of Value-expression.

COUNT

Counts the number of rows where the column identified by the argument contains
non-null values.

If no rows are found for the function, or if all rows found contain null values, the
result of the function is 0.

*

Counts the rows in the requested grouping, if any, of the result table.

Usage

The DISTINCT and ALL Parameters with MAX and MIN

When the argument of the MAX or MIN function is a single column, the result of the
function is the same whether you use the DISTINCT parameter. However, CA IDMS
evaluates the function more efficiently when you omit DISTINCT.

Aggregate Functions with Grouped Tables

When used in a subquery, query-specification, or SELECT statement that includes the
GROUP BY parameter, aggregate functions are evaluated once for each group in the
table.

If there is no GROUP BY parameter, aggregate functions are evaluated once for the
entire result table.

Aggregate-function

120 SQL Reference Guide

Data Types of Function Results

Function Data type of the value returned

AVG Determined by the rules for data type conversion in arithmetic
operations

COUNT INTEGER

MAX Same as the data type of the values specified by the argument

MIN Same as the data type of the values specified by the argument

SUM Determined by the rules for data type conversion in arithmetic
operations

Note: For more information about data type conversion, see Comparison, Assignment,
Arithmetic, and Concatenation Operations. (see page 66)

Examples

Finding an Average

The following SELECT statement returns the average number of days employees took as
vacation time or sick time in the 1989 fiscal year:

select avg(vac_taken + sick_taken)

 from benefits

 where fiscal_year = '89';

Counting Rows that Satisfy a Condition

The following SELECT statement counts the insurance plans not currently used by any
employees:

select count(*)

 from insurance_plan

 where plan_code not in

 (select plan_code

 from coverage);

Scalar Function

Chapter 5: Functions 121

Counting Rows in Table Groupings

The following SELECT statement counts the number of different jobs in each
department:

select d.dept_id, d.dept_name, count(distinct p.job_id)

 from department d, employee e, position p

 where d.dept_id = e.dept_id

 and e.emp_id = p.emp_id

 group by d.dept_id, d.dept_name;

Selecting the Largest Value

The following SELECT statement identifies the jobs that have the largest number of
positions open:

select job_id, job_title, num_open

 from job

 where num_open =

 (select max(num_open)

 from job);

More Information

■ For more information about subqueries and query specifications, see Query
Specifications, Subqueries, Query Expressions, and Cursor Specifications.

■ For more information about the SELECT statement, see SELECT.

More Information:

Query Specifications, Subqueries, Query Expressions, and Cursor Specifications (see
page 231)
SELECT (see page 518)

Scalar Function

A scalar function is a function that operates on 0 or more value expressions and returns
a single value. This value is derived from the expression or expressions named in the
function arguments.

Scalar functions can be user-defined or built-in. User-defined functions are defined
using a CREATE FUNCTION statement. Built-in functions are known to the DBMS but are
not explicitly defined. All built-in functions are provided as part of CA IDMS SQL. During
the installation of CA IDMS, a large number of generally useful user-defined functions is
defined into the SYSCA schema. For detailed descriptions of the CA-supplied scalar
functions, see CA IDMS Scalar Functions.

Scalar Function

122 SQL Reference Guide

Expansion of Scalar-function

A scalar function operates on 0 or more value expressions, resulting in a single value.

Syntax

Expansion of scalar-function

►►─┬──user-defined-function ────────────────────┬─────────────────────────────►◄
 ├─ ABS-function ─────────────────────────────┤
 ├─ ACOS-function ────────────────────────────┤
 ├─ ASIN-function ────────────────────────────┤
 ├─ ATAN-function ────────────────────────────┤
 ├─ ATAN2-function ───────────────────────────┤
 ├─ CAST-function ────────────────────────────┤
 ├─ CEIL-function ────────────────────────────┤
 ├─ CEILING-function ─────────────────────────┤
 ├─ CHAR-function ────────────────────────────┤
 ├─ CHAR_LENGTH-function ─────────────────────┤
 ├─ CHARACTER_LENGTH-function ────────────────┤
 ├─ COALESCE-function ────────────────────────┤
 ├─ CONCAT-function ──────────────────────────┤
 ├─ CONVERT-function ─────────────────────────┤
 ├─ COS-function ─────────────────────────────┤
 ├─ COSH-function ────────────────────────────┤
 ├─ COT-function ─────────────────────────────┤
 ├─ CURDATE-function ─────────────────────────┤
 ├─ CURTIME-function ─────────────────────────┤
 ├─ DATABASE-function ────────────────────────┤
 ├─ DATE-function ────────────────────────────┤
 ├─ DAY-function ─────────────────────────────┤
 ├─ DAYNAME-function ─────────────────────────┤
 ├─ DAYOFMONTH-function ──────────────────────┤
 ├─ DAYOFWEEK-function ───────────────────────┤
 ├─ DAYOFYEAR-function ───────────────────────┤
 ├─ DAYS-function ────────────────────────────┤
 ├─ DECIMAL-function ─────────────────────────┤
 ├─ DEGREES-function ─────────────────────────┤
 ├─ DIGITS-function ──────────────────────────┤
 ├─ EXP-function ─────────────────────────────┤
 ├─ FLOAT-function ───────────────────────────┤
 ├─ FLOOR-function ───────────────────────────┤
 ├─ HEX-function ─────────────────────────────┤
 ├─ HOUR-function ────────────────────────────┤
 ├─ IFNULL-function ──────────────────────────┤
 ├─ INSERT-function ──────────────────────────┤
 ├─ INTEGER-function──────────────────────────┤
 ├─ LCASE-function ──────────────────────────┤
 ├─ LEFT-function ──────────────────────────┤
 ├─ LENGTH-function ──────────────────────────┤
 ├─ LOCATE-function ──────────────────────────┤
 ├─ LOG-function ──────────────────────────┤
 ├─ LOG10-function ──────────────────────────┤
 ├─ LOWER-function ──────────────────────────┤
 ├─ LTRIM-function ──────────────────────────┤
 ├─ MICROSECOND-function──────────────────────┤
 ├─ MINUTE-function───────────────────────────┤
 ├─ MOD-function ───────────────────────────┤
 ├─ MONTH-function ───────────────────────────┤
 ├─ MONTHNAME-function ───────────────────────┤
 ├─ NOW-function ─────────────────────────────┤
 ├─ OCTET_LENGTH-function ────────────────────┤
 ├─ PI-function ─────────────────────────────┤
 ├─ POSITION-function ───────────────────────┤
 ├─ POWER-function ──────────────────────────┤
 ├─ PROFILE-function──────────────────────────┤
 ├─ QUARTER-function──────────────────────────┤

Scalar Function

Chapter 5: Functions 123

 ├─ RADIANS-function──────────────────────────┤
 ├─ RAND-function─────────────────────────────┤
 ├─ REPEAT-function───────────────────────────┤
 ├─ REPLACE-function──────────────────────────┤
 ├─ RIGHT-function ──────────────────────────┤
 ├─ ROUND-function ──────────────────────────┤
 ├─ RTRIM-function ──────────────────────────┤
 ├─ SECOND-function ──────────────────────────┤
 ├─ SIGN-function ──────────────────────────┤
 ├─ SIN-function ──────────────────────────┤
 ├─ SINH-function ──────────────────────────┤
 ├─ SPACE-function ──────────────────────────┤
 ├─ SQRT-function ──────────────────────────┤
 ├─ SUBSTR-function ──────────────────────────┤
 ├─ SUBSTRING-function ───────────────────────┤
 ├─ TAN-function ─────────────────────────────┤
 ├─ TANH-function ────────────────────────────┤
 ├─ TIME-function ────────────────────────────┤
 ├─ TIMESTAMP-function ───────────────────────┤
 ├─ TRIM-function ────────────────────────────┤
 ├─ TRUNCATE-function─────────────────────────┤
 ├─ UCASE-function ───────────────────────────┤
 ├─ UPPER-function ───────────────────────────┤
 ├─ USER-function ────────────────────────────┤
 ├─ VALUE-function ───────────────────────────┤
 ├─ VARGRAPHIC-function───────────────────────┤
 ├─ WEEK-function ────────────────────────────┤
 ├─ XMLPOINTER-function───────────────────────┤
 ├─ XMLSERIALIZE-function─────────────────────┤
 └─ YEAR-function ────────────────────────────┘

Parameters

user-defined-function

Specifies to invoke a user-defined function. See Expansion of User-defined-function,
for more information about expanded user-defined-function syntax.

The remaining parameters are used to invoke a CA IDMS scalar function.

Note: For more information about the CA-supplied scalar functions, see CA IDMS Scalar
Functions (see page 124).

Usage

Built-in Versus User-Defined Functions

The scalar functions that are provided by CA IDMS are implemented as built-in functions
or user-defined functions. Built-in functions are not defined in the dictionary. The
user-defined functions provided by CA IDMS are defined in the SYSCA schema during
installation.

CA IDMS Scalar Functions

124 SQL Reference Guide

How a function is implemented is significant for two reasons:

■ User-defined functions cannot be referenced in a table's check constraint

■ The number of user-defined functions that can be referenced in an SQL statement is
limited

Note: For more information about how to determine the implementation of a CA IDMS
supplied scalar function, see CA IDMS Scalar Functions (see page 124).

More information:

CA IDMS Scalar Functions (see page 124)

CA IDMS Scalar Functions

This section describes the scalar functions provided by CA IDMS including their purpose,
syntax, parameters, usage considerations, and examples.

ABS-function

Syntax

►►─ ABS (value-expression) ────────►◄

ABS returns the absolute value of the value-expression, which must have a numeric data
type.

The result has the same data type as the value-expression. If the value-expression is
null, the result is the null value. If a data error occurs, an exception is raised.

Example The following statement returns 125:

SELECT ABS(-125)

 FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

ACOS-function

Syntax

►►─ ACOS (value-expression) ────────►◄

CA IDMS Scalar Functions

Chapter 5: Functions 125

ACOS returns the arccosine of the value-expression as an angle expressed in radians.
ACOS is the inverse function of the COS function.

The value-expression must be of any numeric data type and must have a value in the
range of -1 to 1. It is converted to a double precision floating-point number for
processing by this function.

The result of the function is a double precision floating-point number. If the
value-expression is null, the result is the null value. If a data error occurs, an exception is
raised.

Example

The following statement returns 7.9539883018414370E-01:

SELECT ACOS(0.7)

 FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

ASIN-function

Syntax

►►─ ASIN (value-expression) ────────►◄

ASIN returns the arcsine of the value-expression as an angle expressed in radians ASIN is
the inverse function of the SIN function.

The value-expression must be of any numeric type and must have a value in the range
of -1 to 1. It is converted to a double precision floating-point number for processing by
this function.

The result of the function is a double precision floating-point number. If the
value-expression is null, the result is the null value. If a data error occurs, an exception is
raised.

Example The following statement returns 1.5707963267948966E+00:

SELECT ASIN(1)

 FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

ATAN-function

Syntax

►►─ ATAN (value-expression) ────────►◄

CA IDMS Scalar Functions

126 SQL Reference Guide

ATAN returns the arctangent of the value-expression as an angle expressed in radians.
ATAN is the inverse function of the TAN function.

The value-expression must be of any numeric data type. It is converted to a double
precision floating-point number for processing by this function.

The result of the function is a double precision floating-point number. If the
value-expression is null, the result is the null value. If a data error occurs, an exception is
raised.

Example The following statement returns 1.2490457723982544E+00

SELECT ATAN(3)

 FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

ATAN2-function

Syntax

►►─ ATAN2 (value-expression1, value-expression2) ────────►◄

Parameters

value-expression1

Specifies a numeric value-expression. See Expansion of Value-expression.

value-expression2

Specifies a numeric value-expression. See Expansion of Value-expression.

ATAN2 returns the arctangent of x and y coordinates, given by value-expression1 and
value-expression2 respectively, as an angle expressed in radians.

Both value-expressions must be of any numeric data type and cannot both be 0. They
are converted to double precision floating-point numbers for processing by this
function.

The result of the function is a double precision floating-point number. If the
value-expression is null, the result is the null value. If a data error occurs, an exception is
raised.

Example: The following statement returns 1.2490457723982544E+00

SELECT ATAN2(1,3)

 FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

CAST-function

Syntax

►►── CAST (─┬─ value-expression ─┬─ AS data-type) ────►◄
 └── NULL ────────────┘

CA IDMS Scalar Functions

Chapter 5: Functions 127

The CAST function forces conversion of the value-expression to a specified data type.

CAST allows:

■ All conversions that can be made without the CAST function

■ A numeric value to character value conversion, which creates a display version of
the numeric data type and follows truncation rules for the numeric data type

When an approximate numeric value is cast to a character value, the value is converted
to an external floating point representation. Trailing zeros removed from the mantissa
except in the first place to the right of the decimal point.

The maximum number of digits in the mantissa is 6 for a REAL value and 13 for a
DOUBLE PRECISION value. The exponent is an integer value with at least one digit. A
negative value in either the mantissa or the exponent is preceded by a sign character.

These are examples of casting REAL data values to character values:

REAL data value Character value through CAST

1.0098999E+02 1.009899E2

1.9899997E+00 1.989999E0

0.0000000E+00 0.0E0

9.9999964E-02 9.999996E-2

When an exact numeric value is cast to a character value, the numeric value is
left-justified, with leading zeros removed except in the first place to the left of the
decimal point and trailing zeros removed except in the first place to the right of the
decimal point. Negative values are preceded by a sign character.

These are examples of casting exact numeric values:

Exact numeric value Character value through CAST

001234.56 1234.56

00.123456 0.123456

-6.7000 -6.7

666.0000 666.0

666 666

CA IDMS Scalar Functions

128 SQL Reference Guide

A character value to numeric value conversion extracts the numeric value from the
string in either decimal or floating point notation. The character value can have leading
or trailing blanks but cannot have extraneous characters (for example, more than one
sign or more than one decimal point).

A character value to graphics value conversion converts the character string to its DBCS
equivalent and truncates or pads the result to conform to the length in the data type
specification.

Note: For more information about assignment rules in conversions, see Comparison,
Assignment, Arithmetic, and Concatenation Operations. (see page 66)

Parameters

NULL

Forces conversion of a null value to a specified data type.

AS data-type

Identifies the data type to which the value-expression or null value is to be
converted. Expansion of data-type is presented under Expansion of Data-type.

CEIL or CEILING-function

Syntax

►►─┬─ CEIL ─────┬─ (value-expression) ────►◄
 └─ CEILING ──┘

CEILING returns the smallest integer value that is greater than or equal to the
value-expression. CEIL and CEILING are identical.

The value-expression must be of any numeric data type.

The result of the function has the same data type as the value-expression except that
the scale is 0 if the value-expression is of type (UNSIGNED) DECIMAL or (UNSIGNED)
NUMERIC. For example, a value-expression with a data type of NUMERIC(3,2) results in
NUMERIC(3,0). If the value-expression is null, the result is the null value. If a data error
occurs, an exception is raised.

Example

The following statement returns: 13 2.0000000000000000E+00 -12

SELECT CEILING(12.55), CEILING(123.1E-2), CEILING (-12.55)

 FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

CA IDMS Scalar Functions

Chapter 5: Functions 129

CHAR-function

Syntax

►►─ CHAR (value-expression ─┬───────────────────────────────┬─) ─►◄
 ├─ , ── ISO ────────────────────┤
 ├─ , ── USA ────────────────────┤
 ├─ , ── EUR ────────────────────┤
 ├─ , ── JIS ────────────────────┤
 └─ , ── exact-numeric-literal ──┘

CHAR obtains a character string representation from the value in value-expression. The
syntax and semantics for the CHAR function depends on the data type of
value-expression.

■ Data type of value-expression is an exact numeric data: INTEGER, SMALLINT, OR
LONGINT.

■ CHAR returns a fixed-length character string representation of the exact numeric
value of value-expression. Specifying a second parameter is not allowed. The result
is left-justified and contains n characters corresponding to the digits of the value of
value-expression with a preceding minus sign if the value-expression is negative.
The length of the returned string depends on the data type of value-expression. A
SMALLINT data type has a result length of 6. An INTEGER has a result length of 11
and a LONGINT has a result length of 20.

■ Example:

 SELECT CHAR(FIXLENGTH), LENGTH(CHAR(FIXLENGTH)) AS LEN_SMALLINT

 , CHAR(NUMROWS) , LENGTH(CHAR(NUMROWS)) AS LEN_INTEGER

 FROM SYSTEM.TABLE WHERE NAME = 'TABLE';

 *+ CHAR(FUNCTION) LEN_SMALLINT CHAR(FUNCTION) LEN_INTEGER

 *+ -------------- ------------ -------------- -----------

 *+ 256 6 33 11

 *+ 0 6 0 11

■ Data type of value-expression is a fixed point, packed or zoned decimal:
(UNSIGNED) DECIMAL, (UNSIGNED) NUMERIC.

■ CHAR returns a fixed-length character string representation of the value of
value-expression. Specifying a second parameter is not allowed. If value-expression
has a precision of p and a scale of s, the result contains p+2 characters as follows: a
blank or minus sign, depending on the sign of value-expression, p-s digits followed
by a period and finally s digits. The result is left-justified.

CA IDMS Scalar Functions

130 SQL Reference Guide

■ Example:

SELECT VAC_TIME, CHAR(-VAC_TIME)

 , LENGTH(CHAR(VAC_TIME))

 FROM DEMOEMPL.EMP_VACATION WHERE VAC_TIME > 300

*+

*+ VAC_TIME CHAR(FUNCTION) (CONST)

*+ -------- -------------- -------

*+ 340.00 -340.0 33

*+ 396.00 -396.0 33

*+ 484.00 -484.0 33

*+

■ Data type of value-expression is a floating-point data type: REAL, FLOAT or DOUBLE
PRECISION

■ CHAR returns a fixed-length character string representation of the floating point
value of value-expression. Specifying a second parameter is not allowed. The result
is left justified and contains 24 characters.

■ Example:

SELECT AVGROWLENGTH, CHAR(AVGROWLENGTH)

 , LENGTH(CHAR(AVGROWLENGTH)) AS L24

 FROM SYSTEM.TABLE WHERE NAME = 'TABLE';

*+

*+ AVGROWLENGTH CHAR(FUNCTION) L24

*+ ------------ -------------- ---

*+ 2.5600000E+02 2.56E2 24

*+ 0.0000000E+00 0.0E0 24

■ Data type of value-expression is a character data type CHAR, VARCHAR.

■ CHAR returns a fixed-length character string representation of the value of
value-expression. An exact-numeric-literal can be specified as a second parameter,
in which case it defines the length of the result. The value of exact-numeric-literal
must be in the range 0-255. If the length of value-expression is lower than
exact-numeric-literal the result will be padded with blanks on the right, else if the
length is larger, truncation will occur and, if nonblank characters are truncated, a
warning message is issued.

CA IDMS Scalar Functions

Chapter 5: Functions 131

■ Example:

SELECT CHAR(NAME,4), LENGTH(CHAR(NAME, 4)) AS LEN

 FROM SYSTEM.TABLE WHERE NAME = 'TABLE';

*+ DB001043 T375 C1M322: String truncation

*+ DB001043 T375 C1M322: String truncation

*+

*+ CHAR(FUNCTION) LEN

*+ -------------- ---

*+ TABL 4

*+ TABL 4

■ Data type of value-expression is DATE, TIME, or TIMESTAMP.

If no format (ISO, USA, EUR, JIS) is specified for the character string, the result is
returned in ISO format or, if the SQL statement is embedded in a program, the format
specified in a precompiler option.

Note: For information about specifying precompiler options, see the CA IDMS SQL
Programming Guide.

Parameters

ISO

Specifies that the format of the result should comply with the standard of the
International Standards Organization (ISO). Formats used when ISO is specified are:

Data type Format Example

DATE yyyy-mm-dd 1990-12-15

TIME hh.mm.ss 16.43.17

TIMESTAMP yyyy-mm-dd-hh.mm.ss.nnnnnn 1990-12-15-16.43.17.1234
56

USA

Specifies that the format of the result should comply with the standard of the IBM
USA standard. Formats used when USA is specified are:

Data type Format Example

DATE mm/dd/yyyy 12/15/1990

TIME hh:mm AM

hh:mm PM

4:43 PM

TIMESTAMP yyyy-mm-dd-hh.mm.ss.nnnnnn 1990-12-15-16.43.17.1234
56

CA IDMS Scalar Functions

132 SQL Reference Guide

EUR

Specifies that the format of the result should comply with the standard of the IBM
European standard. Formats used when EUR is specified are:

Data type Format Example

DATE dd.mm.yyyy 15.12.1990

TIME hh.mm.ss 16.43.17

TIMESTAMP yyyy-mm-dd-hh.mm.ss.nnnnnn 1990-12-15-16.43.17.1234
56

JIS

Specifies that the format of the result should comply with the standard of the
Japanese Industrial Standard Christian Era. Formats used when JIS is specified are:

Data type Format Example

DATE yyyy-mm-dd 1990-12-15

TIME hh:mm:ss 16:43:17

TIMESTAMP yyyy-mm-dd-hh.mm.ss.nnnnnn 1990-12-15-16.43.17.1234
56

CHAR_LENGTH or CHARACTER_LENGTH-functions

Syntax

►►─┬─ CHAR_LENGTH ───────┬─ (value-expression) ────►◄
 └─ CHARACTER_LENGTH ──┘

CHAR_LENGTH (or CHARACTER_LENGTH) obtains the length of the value in
value-expression.

The result of the CHAR_LENGTH (or CHARACTER_LENGTH) function is an integer.

The length of a value depends on its data type:

Data type Length

BINARY The number of bytes which contain the value

CHARACTER

VARCHAR

The actual number of characters in the string,
including blanks

GRAPHIC

VARGRAPHIC

The number of DBCS characters

CA IDMS Scalar Functions

Chapter 5: Functions 133

COALESCE-function

The COALESCE scalar function is identical to the VALUE scalar function, so they are listed
together. See VALUE or COALESCE-function for more information.

CONCAT-function

Syntax

►►─ CONCAT (value-expression1, value-expression2) ────────►◄

Parameters

value-expression1

Specifies a character string value-expression. See Expansion of Value-expression for
more information.

value-expression2

Specifies a character string value-expression. See Expansion of Value-expression for
more information.

CONCAT (value-expression1, value-expression2) is equivalent to value-expression1 ||
value-expression2. '||' is the concatenation operator and concatenates the
value-expression2 to value-expression1.

value-expression1 and value-expression2 can be of BINARY, CHARACTER, VARCHAR,
GRAPHICS, or VARGRAPHIC data type.

If any of the value-expressions are null, the result is the null value.

Example

The following statement returns 'A1B2C3':

SELECT CONCAT(CONCAT('A1', 'B2'), 'C3')

 FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

CONVERT-function

Syntax

►►─ CONVERT (value-expression, data-type) ────────►◄

CA IDMS Scalar Functions

134 SQL Reference Guide

CONVERT is semantically equivalent with CAST. See CAST-function for more information.

Example

The following statement returns 1.1999999999999999E+00:

SELECT CONVERT (1.2, DOUBLE PRECISION)

 FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

COS-function

Syntax

►►─ COS (value-expression) ────────►◄

COS returns the cosine of the value-expression, which must be an angle expressed in
radians. COS is the inverse function of the ACOS function.

The value-expression must be of any numeric data type. It is converted to a double
precision floating-point number for processing by this function.

The result of the function is a double precision floating-point number. If the
value-expression is null, the result is the null value. If a data error occurs, an exception is
raised.

Example

The following statement returns 7.0000000000000037E-01

SELECT COS(7.9539883018414370E-01)

 FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

COSH-function

Syntax

►►─ COSH(value-expression) ────────►◄

CA IDMS Scalar Functions

Chapter 5: Functions 135

COSH returns the hyperbolic cosine of the value-expression, which must be an angle
expressed in radians.

The value-expression must be of any numeric data type. It is converted to a double
precision floating-point number for processing by this function.

The result of the function is a double precision floating-point number. If the
value-expression is null, the result is the null value. If a data error occurs, an exception is
raised.

Example

The following statement returns 1.5430806348152437E+00:

SELECT COSH (1)

 FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

COT-function

Syntax

►►─ COT (value-expression) ────────►◄

COT returns the cotangent of the value-expression, which must be an angle expressed in
radians.

The value-expression must be of any numeric data type. It is converted to a double
precision floating-point number for processing by this function.

The result of the function is a double precision floating-point number. If the
value-expression is null, the result is the null value. If a data error occurs, an exception is
raised.

Example

The following statement returns 1.0000000000000000E+00:

SELECT COT(PI() / 4)

 FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

CURDATE-function

Syntax

►►─ CURDATE () ────────►◄

CA IDMS Scalar Functions

136 SQL Reference Guide

CURDATE is equivalent to the special-register CURRENT DATE. See Expansion of
Special-register for more information.

Example

The following statement returns the current date two times:

SELECT CURDATE(), CURRENT DATE

 FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

CURTIME-function

Syntax

►►─ CURTIME () ───────►◄

CURTIME is equivalent to the special-register CURRENT TIME. See Expansion of
Special-register for more information.

Example

The following statement returns the current time two times:

SELECT CURTIME() , CURRENT TIME

 FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

DATABASE-function

Syntax

►►─ DATABASE () ────────►◄

DATABASE is equivalent to the special-register CURRENT DATABASE. See Expansion of
Special-register for more information.

Example

The following statement returns the current database 'SYSDICT':

SELECT DATABASE()

 FROM SYSTEM.SCHEMA WHERE NAME='SYSTEM';

DATE-function

Syntax

►►─ DATE (value-expression) ────────►◄

CA IDMS Scalar Functions

Chapter 5: Functions 137

DATE obtains the date from the value in value-expression.

The result of the DATE function depends on the type of value in value-expression:

Value-expression Result

TIMESTAMP value The date part of the timestamp

DATE value The date

Numeric value The date that is n-1 days after January 1, 0001, where
n is the number that would result if the INTEGER
function were applied to value-expression

Character string in the form
yyyynnn where yyyy denotes
a year and nnn is in the range
001 to 366 denoting a day of
that year

The date represented by the character string

DAY or DAYOFMONTH-function

Syntax

►►─┬─ DAY ─────────┬ (value-expression) ────────►◄
 └─ DAYOFMONTH ──┘

DAY obtains the day part of the value in value-expression.

Value-expression must be a date, timestamp, or date duration.

The result of the DAY function is an integer, as shown in the next table.

Value-expression Result

TIMESTAMP value 1 to 31 (the day part of the timestamp)

DATE value 1 to 31 (the day part of the date)

Date duration The day part of the value (an integer in the range -99
to 99 with the same sign as value-expression if the
result is not 0)

Example

The following statement returns 25:

SELECT DAYOFMONTH ('2002-12-25')

 FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

CA IDMS Scalar Functions

138 SQL Reference Guide

DAYNAME-function

Syntax

►►─ DAYNAME (value-expression) ────────►◄

DAYNAME returns a character string containing the English name of the day specified by
value-expression.

value-expression must be a DATE or TIMESTAMP data type or must be a CHARACTER or
VARCHAR data type and represent a valid string representation of a date or timestamp.

The result is of CHARACTER(12) data type.

The result is null if value-expression is null.

Example

The following statement returns the names of all days from now to now + 6 days
"Tuesday Wednesday Thursday Friday Saturday Sunday Monday:"

SELECT DAYNAME(NOW() + 0 DAY),

 DAYNAME(NOW() + 1 DAY),

 DAYNAME(NOW() + 2 DAY),

 DAYNAME(NOW() + 3 DAY),

 DAYNAME(NOW() + 4 DAY),

 DAYNAME(NOW() + 5 DAY),

 DAYNAME(NOW() + 6 DAY)

FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

DAYOFWEEK-function

Syntax

►►─ DAYOFWEEK (value-expression) ────────►◄

CA IDMS Scalar Functions

Chapter 5: Functions 139

DAYOFWEEK returns the day of the week where 1 is Sunday and 7 is Saturday.

value-expression must be a DATE or TIMESTAMP data type or must be a CHARACTER or
VARCHAR data type and represent a valid string representation of a date or timestamp.

The result is an INTEGER data type.

The result is null if value-expression is null.

Example

The following statement returns 4, which represents Wednesday:

SELECT DAYOFWEEK ('2002-12-25')

 FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

DAYOFYEAR-function

Syntax

►►─ DAYOFYEAR (value-expression) ────────►◄

DAYOFYEAR returns the day of the year where 1 is January 1.

value-expression must be a DATE or TIMESTAMP data type or must be a CHARACTER or
VARCHAR data type and represent a valid string representation of a date or timestamp.

The result is an INTEGER data type and in the range of 1 to 366.

The result is null if value-expression is null.

Example

The following statement returns 365:

SELECT DAYOFYEAR ('2002-12-31')

 FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

DAYS-function

Syntax

►►─ DAYS (value-expression) ────────►◄

CA IDMS Scalar Functions

140 SQL Reference Guide

DAYS obtains an integer representation of the date in value-expression.

Value-expression must be a date, timestamp, or valid character string representation of
a date.

The result of the DAYS function is d + 1 days from January 1, 0001, where d is the date
that would result if the DATE function were applied to value-expression.

DECIMAL-function

Syntax

►►─ DECIMAL (value-expression ─┬──────────────────────────────────┬──────►◄
 └─ , ─── precision ┬───────────────┤
 └─ , ── scale ──┘

DECIMAL obtains a decimal representation of the value in value-expression.

Value-expression must be numeric.

The result of the DECIMAL function is a decimal number. The following table shows the
default precision and scale of the result if precision is not specified.

Value-expression data type Default precision Default scale

LONGINT 19 0

INTEGER 10 0

SMALLINT 5 0

Other numeric data types Same as
value-expression

Same as
value-expression

Parameters

precision

Specifies the number of digits in the result. Precision must be an integer in the
range of 1 to 31.

scale

Specifies the number of digits to the right of the decimal point in the result. Scale
must be an integer in the range of 0 to the value of precision.

DEGREES-function

Syntax

►►─ DEGREES (value-expression) ────────►◄

CA IDMS Scalar Functions

Chapter 5: Functions 141

DEGREES returns the number of degrees calculated from the value-expression
expressed in radians. The value-expression must be of any numeric data type. It is
converted to a double precision floating-point number for processing by this function.

The result of the function is a double precision floating-point number.

If the value-expression is null, the result is the null value. If a data error occurs, an
exception is raised.

Example

The following statement returns 8.9999999999999985E+01:

SELECT DEGREES(PI() / 2)

 FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

DIGITS-function

Syntax

►►─ DIGITS (value-expression) ────────►◄

DIGITS obtains a character string representation of the value in value-expression.

Value-expression must be an integer or decimal number.

The result of the DIGITS function is a fixed-length string of digits that represents the
absolute value of value-expression and ignores scale. Thus, the result has no sign and
no decimal point. The result includes leading zeros.

The length of the result is:

■ 5 if value-expression has a data type of SMALLINT

■ 10 if value-expression has a data type of INTEGER

■ 19 if value-expression has a data type of LONGINT

■ The precision of value-expression if it contains a decimal number

EXP-function

Syntax

►►─ EXP (value-expression) ─────────►◄

CA IDMS Scalar Functions

142 SQL Reference Guide

EXP returns a value that is calculated as the base of the natural logarithm (e), raised to a
power specified by the value-expression. EXP is the inverse function of LOG.

The value-expression must be of any numeric data type. It is converted to a double
precision floating-point number for processing by this function.

The result of the function is a double precision floating-point number. If the
value-expression is null, the result is the null value. If a data error occurs, an exception is
raised.

Example

The following statement returns 2.7182818284590451E+00:

SELECT EXP (1)

 FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

FLOAT-function

Syntax

►►─ FLOAT (value-expression) ─────────►◄

FLOAT obtains a floating-point representation of the value in value-expression.

Value-expression must be a number.

The result of the FLOAT function is a double precision floating-point number. It is the
same number that would result if value-expression were assigned to a column with a
data type of DOUBLE PRECISION.

FLOOR-function

Syntax

►►─ FLOOR (value-expression) ─────────►◄

CA IDMS Scalar Functions

Chapter 5: Functions 143

FLOOR returns the largest integer value that is less than or equal to the
value-expression.

The value-expression must be of any numeric data type.

The result of the function has the same data type as the value-expression except that
the scale is 0 if the value-expression is of type (UNSIGNED) DECIMAL or (UNSIGNED)
NUMERIC. For example, a value-expression with a data type of NUMERIC (3,2) results in
NUMERIC(3,0). If the value-expression is null, the result is the null value. If a data error
occurs, an exception is raised.

Example

The following statement returns 12 1.0000000000000000E+00 -13

SELECT FLOOR (12.55), FLOOR (123.1E-2), FLOOR (-12.55)

 FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

HEX-function

Syntax

►►─ HEX (value-expression) ─────────►◄

HEX obtains a hexadecimal representation of the value in value-expression.

The result of the HEX function is a character string of hexadecimal digits. The resulting
value and length of the result field depend on the data-type of value-expression. For a
character operand, the first two digits represent the first byte of value-expression, the
next two digits represent the second byte of value-expression, and so on.

The length of the result is limited to 32,767 digits.

If value-expression is a numeric character string, its length will vary as noted below. If it
is neither a numeric nor a graphic character string, the length of the result is twice the
length of value-expression (as defined by the length function) or twice the maximum
length of a varying-length string. If value-expression is a graphic character string, the
length of the result is four times the length of value-expression (four times the
maximum length of a varying-length string)

If value-expression is a fixed-length string, and the length of the result is less than 255,
the result is a fixed-length string. Otherwise, the result is a varying-length string with a
maximum length equal to:

■ Twice the fixed or maximum length.

■ Four times the fixed or maximum length

CA IDMS Scalar Functions

144 SQL Reference Guide

If value-expression is some kind of numeric data-type, the length of the resulting
character string depends on the data-type in the following way:

■ BINARY—twice the length of value-expression.

■ (UNSIGNED) DECIMAL—twice the length of the (UNSIGNED) DECIMAL value (The
length of an (UNSIGNED) DECIMAL value is equal to precision plus 1, divided by 2).

■ DOUBLE PRECISION—twice the length of the DOUBLE PRECISION value (16 bytes,
for example).

■ FLOAT—twice the length of the FLOAT value (If precision is less than or equal to 24,
the length of a FLOAT value is 4 bytes. If precision is greater than 24, the length of a
FLOAT value is 8 bytes).

■ SMALLINT—twice the length of a SMALLINT value (4 bytes, for example).

■ INTEGER—twice the length of an INTEGER value (8 bytes, for example).

■ LONGINT/BIGINT—twice the length of a LONGINT/BIGINT value (16 bytes, for
example).

■ (UNSIGNED) NUMERIC—twice the length of the (UNSIGNED) NUMERIC value (The
length of an (UNSIGNED) NUMERIC value is equal to the precision).

■ REAL—twice the length of the REAL value (8 bytes, for example).

If value-expression is a numeric constant, the following rules apply:

■ If the value-expression is less than or equal to the maximum positive number that
can be stored in a fullword (2147483647), the result will always be an 8 character
hex string

Example: HEX(2147483647) will display as 7FFFFFFF

■ All other numeric constants will be displayed as packed decimal, like for the
DECIMAL data-type

Example: HEX(2147483648) will display as 02147483648C

Note: Since HEX(00000000) will return 00000000, it will never match a value of
HEX(decimal-field), even if the value of that decimal field is 0. In this case, one should
use the CAST on the numeric constant so that the value types are consistent

Example: Suppose the decimal-field is defined as DECIMAL(8) and contains 0, the
following WHERE clause will include the row in the result table:

SELECT decimal-field, HEX(decimal-field) FROM rec-name

WHERE HEX(decimal-field) = HEX(CAST(0 AS DECIMAL(8)));

HOUR-function

Syntax

►►─ HOUR (value-expression) ─────────►◄

CA IDMS Scalar Functions

Chapter 5: Functions 145

HOUR obtains the hours part of the value in value-expression.

Value-expression must be a time, timestamp, or time duration

The result of the HOUR function is an integer, as shown in the following table.

Value-expression Result

TIMESTAMP value 0 to 24 (the hours part of the timestamp)

TIME value 0 to 24 (the hours part of the time)

Time duration The time part of the value (an integer in the range -99
to 99 with the same sign as value-expression if the
result is not 0)

IFNULL-function

Syntax

►►─ IFNULL (value-expression1, value-expression2) ─────────►◄

Parameters

value-expression1

Specifies a value-expression. See Expansion of Value-expression.

value-expression2

Specifies a value-expression. See Expansion of Value-expression.

IFNULL returns the first value-expression that is not null. IFNULL is similar to the VALUE
and COALESCE scalar functions with the exception that IFNULL is limited to only two
value-expressions instead of multiple value-expressions.

Note: For more information, see VALUE or COALESCE-function.

Example

The following statement will show '**NULL**' for any row with a null value for
SEGMENT, otherwise the name of the segment will be shown:

SELECT SCHEMA, NAME, IFNULL (SEGMENT, '**NULL**')

 FROM SYSTEM.TABLE

INSERT-function

Syntax

►►─ INSERT (value-expression1, start, length, value-expression2) ─────────►◄

CA IDMS Scalar Functions

146 SQL Reference Guide

Parameters

value-expression1

Specifies a character string value-expression. See Expansion of Value-expression.

value-expression2

Specifies a character string value-expression. See Expansion of Value-expression.

start

Specifies a numeric value-expression. See Expansion of Value-expression.

length

Specifies a numeric value-expression. See Expansion of Value-expression.

INSERT returns a string constructed from value-expression1, where beginning at start,
length characters have been deleted and value-expression2 has been inserted.

value-expression1 specifies the source string and must be a CHARACTER or VARCHAR
data type. If the length of value-expression1 is 0, the result the null value.

Start must be of any numeric data type, but only the integer part is considered. The
integer part of start specifies the starting point within value-expression1 where the
deletion of characters and the insertion of value-expression2 is to begin. The integer
part of start must be in the range of 1 to the length of value-expression1 plus one.

Length must be of any numeric data type, but only the integer part is considered. The
integer part of length specifies the number of characters that are to be deleted from
value-expression1, starting at start. The integer part of length must be in the range of 0
to the length of value-expression1.

value-expression2 specifies the string to be inserted into value-expression1, starting at
start. The string to be inserted must be a CHARACTER or VARCHAR data type.

The result is always of VARCHAR data type.

The length of the result is given by the following formula:

 LENGTH(value-expression1) + LENGTH(value-expression2)

- min(length, LENGTH(value-expression1) - start + 1)

If both start and length are constants, the maximum length of the result is calculated
during compilation of the INSERT invocation using the above formula, otherwise the
maximum length is 8000.

The result is null if either value-expression1 or value-expression2 is null. If the insert
cannot be done, because of invalid parameters, an exception is raised.

CA IDMS Scalar Functions

Chapter 5: Functions 147

Example 1

The following statement appends the string 'DEF' to the string 'ABC' giving 'ABCDEF':

SELECT INSERT ('ABC', 4 , 0,'DEF')

 FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

Because both the start and length parameters of the INSERT function are constants, the
maximum length of the result VARCHAR string is 6.

Example 2

The following statement prefixes the string 'DEF' with the string 'ABC' giving 'ABCDEF':

SELECT SUBSTR(INSERT ('DEF', 1 * 1 , 0,'ABC'), 1, 20)

 FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

Because the start position is not a constant, but an expression, the maximum length of
the result VARCHAR string of INSERT is 8000. The SUBSTR function is used to limit the
final result to 20 characters.

Example 3

The following statement replaces the character at position 3 in string 'ABCDEF' with the
string 'XYZ' returning 'ABXYZDEF':

SELECT INSERT ('ABCDEF',3 , 1,'XYZ')

 FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

Because both the start and length parameters of the INSERT function are constants, the
maximum length of the result VARCHAR string is 8.

INTEGER-function

Syntax

►►─ INTEGER (value-expression) ─────────►◄

INTEGER obtains an integer representation of the value in value-expression.

Value-expression must be a number. The whole number part of value-expression must
be in the range of integers.

The result of the INTEGER function is the same number that would result if
value-expression were assigned to a column with a data type of INTEGER.

CA IDMS Scalar Functions

148 SQL Reference Guide

LEFT-function

Syntax

►►─ LEFT (value-expression, length) ─────────►◄

Parameters

value-expression

Specifies a character string value-expression. See Expansion of Value-expression.

length

Specifies a numeric value-expression. See Expansion of Value-expression.

LEFT obtains a substring of the value in value-expression, starting with character
position 1.

Value-expression must be a character or graphics string.

The result of the LEFT function is a character string when value-expression is a character
string; the result is a graphics string when value-expression is a graphics string.

Length is a value expression that must be an integer not less than 1, and must not
exceed the length of the string in value-expression. (The length of a value with a data
type of VARCHAR or VARGRAPHIC is its maximum length.)

If the substring is less than the specified length, CA IDMS pads the result with blanks.

If length is not specified, the substring begins at start and ends at the end of the string.

If length is null, the result of the function is null.

LEFT (value-expression, length) is equivalent to SUBSTR (value-expression, 1, length).

LENGTH-function

Syntax

►►─ LENGTH (value-expression) ─────────►◄

LENGTH obtains the length of the value in value-expression.

The result of the LENGTH function is an integer.

The length of a value depends on its data type, as shown in the following table.

Data type Length

DOUBLE PRECISION 8 bytes

CA IDMS Scalar Functions

Chapter 5: Functions 149

Data type Length

FLOAT 4 bytes if precision <= 24

8 bytes if precision > 24

REAL 4 bytes

BINARY The number of bytes containing the value

CHARACTER

VARCHAR

The actual number of characters in the string,
including blanks

DATE 10 bytes

TIME 8 bytes

TIMESTAMP 26 bytes

DECIMAL The number of bytes containing the value

INTEGER 4 bytes

LONGINT 8 bytes

NUMERIC The number of bytes containing the value

SMALLINT 2 bytes

UNSIGNED DECIMAL The number of bytes containing the value

UNSIGNED NUMERIC The number of bytes containing the value

GRAPHIC

VARGRAPHIC

The number of DBCS characters

LOCATE-function

Syntax

►►─ LOCATE (value-expression1, value-expression2 ┬─────────────┬──────) ────►◄
 └ , ─ start ──┘

CA IDMS Scalar Functions

150 SQL Reference Guide

Parameters

value-expression1

Specifies a character string value-expression. See Expansion of Value-expression.

value-expression2

Specifies a character string value-expression. See Expansion of Value-expression.

start

Specifies a numeric value-expression. See Expansion of Value-expression.

LOCATE returns an integer value representing the location of the first value expression
within the second value expression. The value expressions must each be either
CHARACTER or VARCHAR. If the first value expression does not appear in the second
value expression, the result of LOCATE is 0. Otherwise, the result of LOCATE is the byte
position of the first matching character within the second string.

Start specifies the character position within the second value-expression at which the
search for the first value-expression is to start.

Start is a value-expression that must be an integer not greater than the length of the
string in the value-expression2.

LOG-function

Syntax

►►─ LOG (value-expression) ─────────►◄

LOG returns a value that is calculated as the natural logarithm of value-expression. LOG
is the inverse function of EXP.

The value-expression must be of any numeric data type. It is converted to a double
precision floating-point number for processing by this function.

The result of the function is a double precision floating-point number. If the
value-expression is null, the result is the null value. If a data error occurs, an exception is
raised.

Example

The following statement returns 1.0986122886681095E+00:

SELECT LOG (3)

 FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM'

CA IDMS Scalar Functions

Chapter 5: Functions 151

LOG10-function

Syntax

►►─ LOG10 (value-expression) ─────────►◄

LOG10 returns a value that is calculated as the base 10 logarithm of value-expression.

The value-expression must be of any numeric data type. It is converted to a double
precision floating-point number for processing by this function.

The result of the function is a double precision floating-point number. If the
value-expression is null, the result is the null value. If a data error occurs, an exception is
issued.

Example

The following statement returns 3.0000000000000000E+00:

SELECT LOG (1000)

 FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM'

LOWER or LCASE-function

Syntax

►►─┬─ LOWER ─┬─ (value-expression) ─────────►◄
 └─ LCASE ──┘

LOWER operates on CHARACTER or VARCHAR value-expressions. The result is a string of
equal length where all upper case characters have been folded into lower case.

Example

The following statement returns 'joe carpenter':

SELECT LCASE('JOE CARPENTER')

 FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

LTRIM-function

Syntax

►►─ LTRIM (value-expression) ─────────►◄

LTRIM removes leading blanks from value-expression.

Value-expression must be a character string. It is the equivalent of TRIM (leading FROM
value-expression).

CA IDMS Scalar Functions

152 SQL Reference Guide

MICROSECOND-function

Syntax

►►─ MICROSECOND (value-expression) ─────────►◄

MICROSECOND obtains the microsecond part of the value in value-expression.

Value-expression must be a timestamp.

The result of the MICROSECOND function is an integer in the range 0 to 999999,
representing the microsecond part of the timestamp.

MINUTE-function

Syntax

►►─ MINUTE (value-expression) ─────────►◄

MINUTE obtains the minutes part of the value in value-expression.

Value-expression must be a time, timestamp, or time duration.

The result of the MINUTE function is an integer, as shown in the following table.

Value-expression Result

TIMESTAMP value 0 to 59 (the minutes part of the timestamp)

TIME value 0 to 59 (the minutes part of the time)

Time duration The minute part of the value (an integer in the range
-99 to 99 with the same sign as value-expression if the
result is not 0)

MOD-function

Syntax

►►─ MOD (value-expression1, value-expression2) ─────────►◄

CA IDMS Scalar Functions

Chapter 5: Functions 153

Parameters

value-expression1

Specifies a numeric value-expression. See Expansion of Value-expression.

value-expression2

Specifies a numeric value-expression. See Expansion of Value-expression.

MOD returns the remainder of dividing value-expression1 by value-expression2 using
the formula:

MOD(v1, v2) = v1 - Truncated_Integer(v1/v2) * v2

with Truncated_Integer(v1 / v2) the truncated integer result of the division.

Both value-expressions must be of any numeric data type. The second value-expression
cannot be zero.

If the value-expression is null, the result is the null value. If a data error occurs, an
exception is issued.

The data type of the result follows these rules:

■ If both value-expressions are INTEGER or SMALLINT, the data type of the result is
INTEGER.

■ If one of the value-expressions is LONGINT, and the other is INTEGER, SMALLINT, or
LONGINT, the data type of the result is also LONGINT.

■ If one value-expression is an INTEGER, SMALLINT, or LONGINT and the other is an
(UNSIGNED) DECIMAL or (UNSIGNED) NUMERIC, the data type of the result is
(UNSIGNED) DECIMAL or (UNSIGNED) NUMERIC with the same precision and scale
as the (UNSIGNED) DECIMAL or (UNSIGNED) NUMERIC value-expression.

■ If both value-expressions are (UNSIGNED) DECIMAL or (UNSIGNED) NUMERIC, the
data type of the result is equal to the data type of value-expression1. The precision
and scale of the result are given by the following formulas:

Prec. result = min(prec.1-scale.1, prec.2-scale.2) + max(scale.1, scale.2)

 Scale.result = max(scale1, scale2)

■ If either value-expression is a floating-point number, REAL, FLOAT, or DOUBLE
PRECISION, the data type of the result is double precision floating-point.

The processing of this function is always done in floating-point. Both value-expressions
are converted to double precision floating-point numbers.

CA IDMS Scalar Functions

154 SQL Reference Guide

Example 1

The following statement returns 1:

SELECT MOD(10, 3)

 FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

Example 2

The following statement returns 1.0000000000000000E+00:

SELECT MOD(10E0, 3)

 FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

Example 3

The following statement returns 1.0:

SELECT MOD(10.0, 3)

 FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

Example 4

The following statement returns 1.00:

SELECT MOD(10.00 , 3)

 FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

MONTH-function

Syntax

►►─ MONTH (value-expression) ─────────►◄

MONTH obtains the month part of the value in value-expression.

Value-expression must be a date, timestamp, or date duration.

The result of the MONTH function is an integer, as shown in the following table.

Value-expression Result

TIMESTAMP value 1 to 12 (the month part of the timestamp)

DATE value 1 to 12 (the month part of the date)

Date duration The date part of the value (an integer in the range -99
to 99 with the same sign as value-expression if the
result is not 0)

CA IDMS Scalar Functions

Chapter 5: Functions 155

MONTHNAME-function

Syntax

►►─ MONTHNAME (value-expression) ─────────►◄

MONTHNAME returns a character string containing the English name of the month
specified by value-expression.

value-expression must be a DATE or TIMESTAMP data type or must be a CHARACTER or
VARCHAR data type and represent a valid string representation of a date or timestamp.

The result is of CHARACTER(12) data type.

The result is null if value-expression is null.

Example

The following statement returns the names of all months from now to now + 11 months
"January February March April May June July August September October November
December:"

SELECT MONTHNAME(NOW() + 0 MONTH),

 MONTHNAME(NOW() + 1 MONTH),

 MONTHNAME(NOW() + 2 MONTH),

 MONTHNAME(NOW() + 3 MONTH),

 MONTHNAME(NOW() + 4 MONTH),

 MONTHNAME(NOW() + 5 MONTH),

 MONTHNAME(NOW() + 6 MONTH),

 MONTHNAME(NOW() + 7 MONTH),

 MONTHNAME(NOW() + 8 MONTH),

 MONTHNAME(NOW() + 9 MONTH),

 MONTHNAME(NOW() + 10 MONTH),

 MONTHNAME(NOW() + 11 MONTH),

 MONTHNAME(NOW() + 12 MONTH)

FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM'

NOW-function

Syntax

►►─ NOW () ─────────►◄

CA IDMS Scalar Functions

156 SQL Reference Guide

NOW is equivalent to the special-register CURRENT TIMESTAMP. See Expansion of
Special-register for more information.

Example

The following statement returns the current date and time two times:

SELECT NOW(), CURRENT TIMESTAMP

 FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

OCTET_LENGTH-function

Syntax

►►─ OCTET_LENGTH (value-expression) ─────────►◄

OCTET_LENGTH obtains the length in bytes of the value in value-expression.

The result of the OCTET_LENGTH function is an integer.

The length of a value depends on its data type:

Data type Length

DOUBLE PRECISION 8

FLOAT 4 if precision <= 24

8 if precision > 24

REAL 4

BINARY The number of bytes which contain the value

CHARACTER

VARCHAR

The actual number of bytes in the string, including
blanks

DATE 10

TIME 8

TIMESTAMP 26

DECIMAL The number of bytes which contain the value

INTEGER 4

LONGINT 8

NUMERIC The number of bytes which contain the value

SMALLINT 2

UNSIGNED DECIMAL The number of bytes which contain the value

CA IDMS Scalar Functions

Chapter 5: Functions 157

Data type Length

UNSIGNED NUMERIC The number of bytes which contain the value

GRAPHIC

VARGRAPHIC

Two times the number of DBCS characters

PI-function

Syntax

►►─ PI () ─────────────────►◄

PI returns the constant value of pi as a floating point value. The value returned is
3.141592653589793238.

Example

The following statement returns 3.1415926535897933E+00:

SELECT PI()

 FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

POSITION-function

Syntax

►►─ POSITION (value-expression IN value-expression) ─────────►◄

POSITION returns an integer value representing the location of the first value expression
within the second value expression. The value expressions must each be either
CHARACTER or VARCHAR. If the first value expression does not appear in the second
value expression, the result of POSITION is 0. Otherwise, the result of POSITION is the
byte position of the first matching character within the second string.

It is the equivalent of LOCATE (value-expression, value-expression, 1).

POWER-function

Syntax

►►─ POWER (value-expression1, value-expression2) ─────────►◄

CA IDMS Scalar Functions

158 SQL Reference Guide

Parameters

value-expression1

Specifies a numeric value-expression. See Expansion of Value-expression.

value-expression2

Specifies a numeric value-expression. See Expansion of Value-expression.

POWER returns the value of value-expression1 to the power of value-expression2.

The data types of value-expression1 and value-expression2 must be numeric data types.
The internal processing of this function is done using double precision floating-point
arithmetic.

The data type of the result of the function depends on the data types of
value-expression1 and value-expression2:

The result is of INTEGER type if value-expression1 and value-expression2 are SMALLINT
or INTEGER. The result is LONGINT if one of the value-expressions is LONGINT and the
other LONGINT, INTEGER or SMALLINT, otherwise, the result is DOUBLE PRECISION.

The result is null if either value-expression1 or value-expression2 is null. If the
calculation resulted in a data error, an exception is raised.

Example 1

The following statement returns the value 625:

SELECT POWER(25,2)

 FROM SYSTEM.TABLE WHERE NAME = 'SCHEMA'

Example 2

The following SELECT returns the value 6.2500000000000000E+02:

SELECT POWER(25.0,2)

 FROM SYSTEM.TABLE WHERE NAME = 'SCHEMA'

PROFILE-function

Syntax

►►─ PROFILE (value-expression) ─────────►◄

CA IDMS Scalar Functions

Chapter 5: Functions 159

PROFILE obtains the value associated with an attribute of the current user session.

Value-expression must be a character string.

The result of the PROFILE function is a CHARACTER value with a length of 32. If
value-expression does not correspond to an attribute keyword for the session, the
function returns a null value.

Note: For more information about attributes of a user session, see the discussion of
system profiles in CA IDMS System Tasks and Operator Commands Guide.

QUARTER-function

Syntax

►►─ QUARTER (value-expression) ─────────►◄

QUARTER returns the quarter of the year in which the date, specified by
value-expression, occurs.

value-expression must be a DATE or TIMESTAMP data type or must be a CHARACTER or
VARCHAR data type and represent a valid string representation of a date or timestamp.

The result is an INTEGER data type and is in the range of 1 to 4.

The result is null if value-expression is null.

Example

The following statement returns 4 because December is in the last quarter of the year:

SELECT QUARTER('2002-12-31')

 FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM'

RADIANS-function

Syntax

►►─ RADIANS (value-expression) ─────────►◄

CA IDMS Scalar Functions

160 SQL Reference Guide

RADIANS returns the number of radians corresponding to the number of degrees
specified by value-expression.

The value-expression must be of any numeric data type. It is converted to a double
precision floating-point number for processing by this function.

The result of the function is a double precision floating-point number.

If the value-expression is null, the result is the null value. If a data error occurs, an
exception is raised.

Example

The following statement returns 3.1415926535897931E+00, which is an approximate
value of PI:

SELECT RADIANS(180)

 FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

RAND-function

Syntax

►►─ RAND (┬──────────────────┬) ──────────►◄
 └ value-expression ┘

RAND returns a random floating-point value between 0 and 1. value-expression is
optional and specifies a seed value. If no seed value is specified, 1 will be used as seed
value.

If specified, the value-expression must be of any numeric data type. It is converted to
an INTEGER number for processing by this function.

The result of the function is a double precision floating-point number.

If a data error occurs, an exception is raised.

Within the context of an IDMS task, the optional seed value is only evaluated once
during the very first call of the random generator with a seed value. The series of
generated random numbers will be equal for equal seed values when executed under
different IDMS tasks.

Example

The following statement returns random floating-point numbers between 0 and 1:

SELECT RAND (200), RAND()

 FROM SYSTEM.SCHEMA;-- WHERE NAME = 'SYSTEM';

CA IDMS Scalar Functions

Chapter 5: Functions 161

REPEAT-function

Syntax

►►─ REPEAT (value-expression, count) ─────────►◄

REPEAT returns a string constructed as count times value-expression repeated.

Parameters

value-expression

Specifies the string to be repeated and must be a CHARACTER or CHAR data type.

count

Specifies an expression of any numeric data type, but only the integer part is
considered. The integer part of count specifies the number of times to repeat
value-expression.

The result of the function is VARCHAR.

The length of the result is the length of expression times count. If the actual length of
the result string exceeds the maximum for the return type, an error occurs.

If count is a constant, the maximum length of the result is calculated during compilation
of the REPEAT function invocation, otherwise the maximum is 16000.

The result is null if either value-expression or count is null. If the repeat cannot be done
because of invalid parameters, an exception is raised.

Example 1

The following statement returns 'ABCDABCDABCDABCD':

SELECT REPEAT('ABCD', 4)

 FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

Example 2

The following statement returns a string with length 0:

SELECT REPEAT('ABCD', 0)

 FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

Example 3

The following statement returns <null> because count is negative:

SELECT REPEAT('ABCD', -2)

 FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

CA IDMS Scalar Functions

162 SQL Reference Guide

REPLACE-function

Syntax

►►─ REPLACE (value-expression1, value-expression2, value-expression3) ──────►◄

Parameters

value-expression1

Specifies a character string value-expression. See Expansion of Value-expression.

value-expression2

Specifies a character string value-expression. See Expansion of Value-expression.

value-expression3

Specifies a character string value expression. See Expansion of Value-expression.

REPLACE replaces all occurrences of value-expression2 in value-expression1 with
value-expression3. If value-expression2 was not found in value-expression1,
value-expression1 is returned unchanged.

value-expression1 is a non-null expression that specifies the source string.

value-expression2 is a non-null expression that specifies the string to be replaced in the
source string.

value-expression3 is an expression that specifies the replacement string. A null value
will cause value-expression1 to be returned unchanged. The arguments must all have
data types that are compatible with VARCHAR, that is CHARACTER or VARCHAR. The
actual length of each string must be less than or equal to 8000. The data type of the
result is VARCHAR and the resulting length must be less than or equal to 8000. The
length of the result is given by the following formula, where n is the number of
occurrences of value-expression2 in value-expression1:

 LENGTH(value-expression1)

+ (n * (LENGTH(value-expression3) - LENGTH(value-expression2)))

The result is null if either value-expression1, value-expression2, or value-expression3 is
null. If the replace cannot be done because of invalid parameters, that is, in case one or
more of the lengths exceed the limit, an exception is raised.

CA IDMS Scalar Functions

Chapter 5: Functions 163

Example 1

In this example, the result is '$$$$123.0$$$$99'.

Replace all characters '*' in the string '**123.0**99' with '$$'.

SELECT REPLACE('**123.0**99', '*', '$$')

 FROM SYSTEM.SCHEMA WHERE NAME ='SYSTEM'

Example 2

List the departments of the EMPSCHM.DEPARTMENT table in alphabetical order, but
ignore any spaces when sorting. The REPLACE function removes all spaces in the
SORT_NAME column of the result.

SELECT *, REPLACE (DEPT_NAME_0410, ' ', '') SORT_NAME

 FROM EMPSCHM.DEPARTMENT

 ORDER BY SORT_NAME;

Example 3

In this example, the result is 'LOTS OF **FOO**LISH TALK'.

Replace string 'FOO' in the string 'LOTS OF FOOLISH TALK' with '**FOO**'.

SELECT REPLACE('LOTS OF FOOLISH TALK', 'FOO', '**FOO**')

 FROM SYSTEM.SCHEMA WHERE NAME ='SYSTEM'

RIGHT-function

Syntax

►►─ RIGHT (value-expression, count) ─────────►◄

RIGHT returns a string constructed from the specified number of rightmost count
characters of value-expression.

Parameters

value-expression

Specifies the string from which the result is constructed and must be a CHARACTER
or VARCHAR data type.

count

Specifies of any numeric data type, but only the integer part is considered. The
integer part of count specifies the length of the result. The integer part of count
must be an integer between 0 and n, where n is the length of value-expression.

CA IDMS Scalar Functions

164 SQL Reference Guide

The result is null if either value-expression1 or count is null. If count is larger than the
length of value-expression1, or if an error occurs, an exception is raised.

Example 1

The following statement returns the string 'CD':

SELECT RIGHT ('ABCD', 2)

 FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

Example 2

The following statement returns a string with length 0:

SELECT RIGHT ('ABCD', 0)

 FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

ROUND-function

Syntax

►►─ ROUND (value-expression1, value-expression2) ─────────►◄

Parameters

value-expression1

Specifies a numeric value-expression. See Expansion of Value-expression.

value-expression2

Specifies a numeric value-expression. See Expansion of Value-expression.

ROUND returns value-expression1 rounded to value-expression2 places to the right of
the decimal point if value-expression2 is positive, or, to the left of the decimal point if
value-expression2 is zero or negative.

The value-expression1 must be of any numeric data type.

CA IDMS Scalar Functions

Chapter 5: Functions 165

The value-expression2 must be of any numeric data type but will be converted
internally to INTEGER. The integer value of value-expression2 specifies the number of
places to the right of the decimal point for the result if value-expression2 is not
negative. If value-expression2 is negative, value-expression1 is rounded to 1 + the
absolute integer value of value-expression2 number of places to the left of the decimal
point. If the absolute integer value of value-expression2 is larger than the number of
digits to the left of the decimal point, the result is 0.

If value-expression1 is positive, rounding is to the next higher positive number. If
value-expression1 is negative, rounding is to the next lower negative number.

The result of the function has the same data type and attributes as the
value-expression1 except that the precision is increased by one if the value-expression
is of (UNSIGNED) DECIMAL or (UNSIGNED) NUMERIC data type and the precision is less
than 31.

If any of the value-expressions are null, the result is the null value. If a data error occurs,
an exception is raised.

Example 1

The following statement returns 627.46380 627.46400 627.46000 50000
627.00000 630.00000 600.00000: 1000.00000 0.00000:

SELECT ROUND(627.46381, 4) ,

 ROUND(627.46381, 3) ,

 ROUND(627.46381, 2) ,

 ROUND(627.46381, 1) ,

 ROUND(627.46381, 0) ,

 ROUND(627.46381,-1) ,

 ROUND(627.46381,-2) ,

 ROUND(627.46381,-3) ,

 ROUND(627.46381,-4)

FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

Example 2

The following statement returns -627.46380 -627.46400 -627.46000
-627.50000 -627.00000 -630.00000 -600.00000 :

SELECT ROUND(-627.46381, 4) ,

 ROUND(-627.46381, 3) ,

 ROUND(-627.46381, 2) ,

 ROUND(-627.46381, 1) ,

 ROUND(-627.46381, 0) ,

 ROUND(-627.46381,-1) ,

 ROUND(-627.46381,-2)

FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

CA IDMS Scalar Functions

166 SQL Reference Guide

RTRIM-function

Syntax

►►─ RTRIM (value-expression) ─────────►◄

RTRIM removes trailing blanks from value-expression. Value-expression must be a
character string. It is the equivalent of TRIM (trailing FROM value-expression).

SECOND-function

Syntax

►►─ SECOND (value-expression) ─────────►◄

SECOND obtains the seconds part of the value in value-expression.

Value-expression must be a time, timestamp, or time duration.

The result of the SECOND function is an integer, as shown in the following table.

Value-expression Result

TIMESTAMP value 0 to 59 (the seconds part of the timestamp)

TIME value 0 to 59 (the seconds part of the time)

Time duration The time part of the value (an integer in the range -99
to 99 with the same sign as value-expression if the
result is not 0)

SIGN-function

Syntax

►►─ SIGN (value-expression) ─────────►◄

CA IDMS Scalar Functions

Chapter 5: Functions 167

SIGN returns an indicator of the sign of value-expression. The possible values for the
indicator are:

■ -1 if value-expression is less than zero

■ 0 if value-expression is zero

■ 1 if value-expression is greater than zero

value-expression must be of any numeric data type except (UNSIGNED) DECIMAL or
(UNSIGNED) NUMERIC with a scale and precision of 31. The data type and attributes of
the result of the function are the same as the value-expression except when the
value-expression is (UNSIGNED) DECIMAL or (UNSIGNED) NUMERIC. The precision is
incremented if the value-expression's precision and scale are equal. This is to allow for
the return values of the function.

If the value-expression is null, the result is the null value. If a data error occurs, an
exception is raised.

Example

The following statement returns -1 0 1:

SELECT SIGN (1 - 10), SIGN (0), SIGN (1 +10)

 FROM SYSTEM.TABLE WHERE NAME = 'SYSTEM'

SIN-function

Syntax

►►─ SIN (value-expression) ─────────►◄

SIN returns the sine of the value-expression, which must be an angle expressed in
radians. SIN is the inverse function of the ASIN function.

The value-expression must be of any numeric data type. It is converted to a double
precision floating-point number for processing by this function.

The result of the function is a double precision floating-point number. If the
value-expression is null, the result is the null value. If a data error occurs, an exception is
raised.

Example

The following statement returns 1.0000000000000000E+00:

SELECT SIN(PI() / 2)

 FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

CA IDMS Scalar Functions

168 SQL Reference Guide

SINH-function

Syntax

►►─ SINH (value-expression) ─────────►◄

SINH returns the hyperbolic sine of the value-expression, which must be an angle
expressed in radians.

The value-expression must be of any numeric data type. It is converted to a double
precision floating-point number for processing by this function.

The result of the function is a double precision floating-point number. If the
value-expression is null, the result is the null value. If a data error occurs, an exception is
raised.

Example

The following statement returns 1.1548739357257750E+01:

SELECT SIN(PI())

 FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

SPACE-function

Syntax

►►─ SPACE (value-expression) ─────────►◄

SPACE returns a character string that consists of value-expression number of blanks.
value-expression is of any numeric data type, but only the integer part is considered.
The integer part specifies the number of blanks that makes up the result, and it must be
between 0 and 30000.

The result is of VARCHAR data type. The length of the result is the integer part of
value-expression.

If value-expression is a constant, the maximum length of the result is calculated during
compilation of the SPACE function invocation, otherwise the maximum is 30000.

The result is null if value-expression is null. An error occurs if value-expression is larger
than 30000.

Example

The following statement returns 10 blanks:

SELECT SPACE (10)

 FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

CA IDMS Scalar Functions

Chapter 5: Functions 169

SQRT-function

Syntax

►►─ SQRT (value-expression) ─────────►◄

SQRT returns the square root of the value-expression. The value-expression must be of
any numeric data type. It is converted to a double precision floating-point number for
processing by this function.

The result of the function is a double precision floating-point number. If the
value-expression is null, the result is the null value. If a data error occurs, an exception is
raised.

Example 1

The following statement returns 4.0000000000000000E+00:

SELECT SQRT(16)

 FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

Example 2

The following statement returns <null> because the square root of a negative number
does not exist:

SELECT SQRT(-16)

 FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

SUBSTR or SUBSTRING-function

Syntax

►►┬ SUBSTR ────┬(value-expression,start ─┬────────────────┬────────►◄
 └ SUBSTRING ─┘ └── , ── length ─┘

►►─ SUBSTRING (value-expression FROM start ─┬────────────────┬) ───►◄
 └── FOR length ──┘

SUBSTR or SUBSTRING obtains a substring of the value in value-expression.

Value-expression must be a character or graphics string.

The result of the SUBSTR function is a character string when value-expression is a
character string; the result is a graphics string when value-expression is a graphics
string.

CA IDMS Scalar Functions

170 SQL Reference Guide

Parameters

start

Specifies the position of the first character of the result.

Start is a value expression that must be an integer less than or equal to the length
of the string in value-expression.

If start is null, the result of the function is null.

length

Specifies the length of the result.

Length is a value expression that must be an integer not less than one. The sum of
length and start must not exceed 1 + the length of the string in value-expression.
(The length of a value with a data type of VARCHAR or VARGRAPHIC is its maximum
length.)

If the substring is less than the specified length, CA IDMS pads the result with
blanks.

If length is not specified, the substring begins at start and ends at the end of the
string.

If length is null, the result of the function is null.

TAN-function

Syntax

►►─ TAN (value-expression) ─────────►◄

TAN returns the tangent of the value-expression, which must be an angle expressed in
radians. TAN is the inverse function of the ATAN function.

The value-expression must be of any numeric data type. It is converted to a double
precision floating-point number for processing by this function.

The result of the function is a double precision floating-point number. If the
value-expression is null, the result is the null value. If a data error occurs, an exception is
raised.

Example

The following statement returns 1.0000000000000000E+00:

SELECT TAN (PI()/4)

 FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

CA IDMS Scalar Functions

Chapter 5: Functions 171

TANH-function

Syntax

►►─ TANH (value-expression) ─────────►◄

TANH returns the hyperbolic tangent of the value-expression, which must be an angle
expressed in radians.

The value-expression must be of any numeric data type. It is converted to a double
precision floating-point number for processing by this function.

The result of the function is a double precision floating-point number. If the
value-expression is null, the result is the null value. If a data error occurs, an exception is
raised.

Example

The following statement returns 6.5579420263267255E-01:

SELECT TANH (PI()/4)

 FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

TIME-function

Syntax

►►─ TIME (value-expression) ─────────►◄

TIME obtains the time from the value in value-expression.

Value-expression must be a timestamp, time, or character string.

The result of the TIME function is a time:

Value-expression Result

TIMESTAMP value The time part of the timestamp

TIME value That time

CHARACTER value in a valid
time format

The time represented by the character string

TIMESTAMP-function

Syntax

►►─ TIMESTAMP (┬ value-expression ─────┬) ─────────►◄
 └─ , ─ value-expression─┘

CA IDMS Scalar Functions

172 SQL Reference Guide

TIMESTAMP obtains a timestamp from a value or pair of values.

If one value expression is specified, it must be:

■ A value with the TIMESTAMP data type

■ A valid character string representation of a timestamp

■ An eight-character string in the form of a System/370 Store Clock value

■ A 14-character string in the form yyyymmddhhnnss where yyyy is the year, mm is
the month, dd is the day, hh is the hour, nn is the minutes, and ss is the seconds

Note: A timestamp represented by a 14-character string has a microsecond part of
zero. The interpretation of an eight-character string is a timestamp, as discussed
under Store Clock value in IBM System/370 Principles of Operations.

If two value expressions are specified, the first value-expression must be a date or valid
character string representation of a date, and the second value-expression must be a
time or valid character string representation of a time.

The result of the function is a value with the TIMESTAMP data type:

■ If two value expressions are specified, the result is a timestamp with the date
specified in the first value and the time specified in the second value

■ If one value expression is specified and it is a character string, the result is the
timestamp represented by the character string

TRIM-function

Syntax

►►─ TRIM (┬──┬─ value-expression-2 ──) ─►◄
 ├─────────────┬─ value-expression-1 FROM ┘
 ├─ LEADING ──┤
 ├─ TRAILING ──┤
 └─ BOTH ──────┘

TRIM removes leading or trailing (or both) pad characters to be removed from a
CHARACTER or VARCHAR value-expression.

The optional value expression defines the pad character to be removed. It must specify
a one-character value. In the absence of a trim specifier, BOTH is assumed. In the
absence of an explicit pad character, BLANK is assumed.

CA IDMS Scalar Functions

Chapter 5: Functions 173

Parameters

leading

Indicates the orientation of the TRIM function.

trailing

Indicates the orientation of the TRIM function.

both

Indicates the orientation of the TRIM function.

TRUNCATE-function

Syntax

►►─ TRUNCATE (value-expression1, value-expression2) ─────────►◄

Parameters

value-expression1

Specifies a numeric value-expression. See Expansion of Value-expression.

value-expression2

Specifies a numeric value-expression. See Expansion of Value-expression.

TRUNCATE returns value-expression1 truncated to value-expression2 places to the right
of the decimal point if value-expression2 is positive or 0. If value-expression2 is
negative, value-expression1 is truncated to the absolute value of value-expression2
places to the left of the decimal point. If the absolute value of value-expression2 is not
smaller than the number of digits to the left of the decimal point, the result is 0.

value-expression1 must be of any numeric data type.

value-expression2 must be of any numeric data type but will be internally converted to
INTEGER.

The result of the function has the same data type and attributes as value-expression1.

If any of the value-expressions are null, the result is the null value. If a data error occurs,
an exception is raised.

CA IDMS Scalar Functions

174 SQL Reference Guide

Example

The following statement returns 627.46380 627.46300 627.46000 627.40000
627.00000 620.00000 600.00000 0.00000 0.00000:

SELECT TRUNCATE(627.46381, 4) ,

 TRUNCATE(627.46381, 3) ,

 TRUNCATE(627.46381, 2) ,

 TRUNCATE(627.46381, 1) ,

 TRUNCATE(627.46381, 0) ,

 TRUNCATE(627.46381,-1) ,

 TRUNCATE(627.46381,-2) ,

 TRUNCATE(627.46381,-3) ,

 TRUNCATE(627.46381,-4)

FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

UCASE or UPPER-function

Syntax

►►─┬─ UCASE ─────┬─ (value-expression) ────►◄
 └─ UPPER ─────┘

UCASE (or UPPER) operates on CHARACTER or VARCHAR value-expressions. The result is
a string of equal length where all lower case characters have been folded into upper
case.

USER-function

Syntax

►►─ USER () ───────────►◄

USER is equivalent to the special-register USER. See Expansion of Special-register for
more information.

Example

The following statement returns ABCDE01, user executing the SELECT statement:

SELECT USER()

 FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

VALUE or COALESCE-function

Syntax

 ┌────────── , ─────────┐
►►┬ VALUE ────┬ (─▼── value-expression ──┴) ─────────►◄
 └ COALESCE ─┘

CA IDMS Scalar Functions

Chapter 5: Functions 175

The VALUE scalar function is used to substitute a value for the null value.

The data types of the value-expressions must be compatible. Character strings are not
converted to date/time values. Therefore, if any value-expression is a date, each
value-expression must be a date, if any value-expression is a time, each
value-expression must be a time, if any value-expression is a timestamp, each
value-expression must be a timestamp, and if any value-expression is a character
string, each value-expression must be a character string.

The value-expressions are evaluated in the order they are specified, and the result of
the function is equal to the first value-expression that is not null. The result can be null
only if all value-expressions are null.

The result is defined as "equal to" a value-expression because that value-expression is
converted or extended, if necessary, to conform to the data type of the function. The
data type of the result is derived from the data types of the specified value-expressions
as follows:

Strings: If any value-expression is a varying length string, the result is a varying length
string whose maximum length is equal to the longest string that can result from the
application of the function.

If all value-expressions are fixed length strings, the result is a fixed length string whose
length is equal to the longest string that can result from the application of the function.

Date/time values: If the value-expressions are dates, the result is a date. If the
value-expressions are times, the result is a time. If the value-expressions are
timestamps, the result is a timestamp.

Numbers: If the value-expressions are numbers, the result is the numeric data type
that would occur if all value-expressions were part of a single arithmetic expression. If
that data type is decimal or numeric, it has precision of p and scale of s so s is the largest
result scale of any value-expression, and p is s + n, where n is the largest integral part of
any value-expression. Conversion errors are possible if s + n is greater than 31.

VARGRAPHIC-function

Syntax

►►─ VARGRAPHIC (value-expression) ───────────►◄

CA IDMS Scalar Functions

176 SQL Reference Guide

The VARGRAPHIC function is supported only in active DBCS environments.

The VARGRAPHIC function is used to obtain a graphic string representation of a
character string. Value-expression must be a binary or character string. If it is binary,
the value is treated as graphic, and no data conversion takes place.

If the value-expression must be a character string, the characters are converted to their
DBCS equivalent. If the string contains shift-in and shift-out characters, they must be
properly paired under the rules for mixed data.

The result of the function is a varying length graphic string. If the value-expression can
be null, the result can be null; if the value-expression is null, the result is the null value.

If value-expression is character, it is interpreted as a mixed data string. The result
includes all DBCS characters of the value-expression and the DBCS equivalent of all
single byte characters of the value-expression. The first character of the result is the
first logical character of the value-expression, the second character of the result is the
second logical character of the value-expression, and so forth. The result does not
include shift-in and shift-out characters.

The length of the result depends on the number of logical characters in the
value-expression. If the length or maximum length of the value-expression is n bytes,
the maximum length of the result is n (DBCS characters).

WEEK-function

Syntax

►►─ WEEK (value-expression) ───────────►◄

WEEK returns the week of the year for the specified value-expression. The function uses
the ISO definition: a week starts with Monday and comprises 7 days. Week 1 is the first
week of the year that contains a Thursday (or the first week that contains January 4).

value-expression must be a DATE or TIMESTAMP data type or must be a CHARACTER or
VARCHAR data type and represent a valid string representation of a date or timestamp.

The result is an INTEGER data type and is in the range of 1 to 53.

The result is null if value-expression is null.

Example

The following statement returns 52 1:

SELECT WEEK ('2000-01-01'), WEEK('2000-01-03')

 FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM'

CA IDMS Scalar Functions

Chapter 5: Functions 177

XMLPOINTER-function

Returns a BINARY(4) value that is a pointer to a LOB (Large Object) that holds the
serialized value of XML-value-expression.

The XMLPOINTER function is used in programs that need to process serialized XML
values. The structure of the LOB is a variable-length storage object. It starts with a
signed integer of 32 bit and contains the LOB data length (max 2 GB), followed by the
LOB data.

Syntax

►►─ XMLPOINTER ─── (─── XML-value-expression ───) ────────────────►◄

Notes:

■ If XML-value-expression is NULL or empty, XMLPOINTER returns a NULL value.

■ The storage object of the LOB is allocated from a CA IDMS CV storage pool or from
the batch address space for local mode programs. The storage object is only
addressable in client programs that run in the same CA IDMS CV as the database
server or in batch local mode programs.

■ The program invoking the XMLPOINTER function must free the storage of the LOB
when it is no longer needed. If no free storage is done, the storage associated with
the LOB is freed at task termination.

■ Client programs that cannot access the LOB returned by XMLPOINTER can use
XMLSERIALIZE (returns a maximum of 30,000 characters) or the table procedure
SYSCA.XMLSLICE to process XML values.

■ XMLPOINTER is not part of the SQL standard. It is a CA IDMS extension to facilitate
access to XML LOBs.

Example

The following statement returns pointers to XML LOB objects:

SELECT XMLPOINTER(XMLFOREST(NAME as "Name"

 , SCHEMA as "Schema")

) AS "PointerToLob"

 FROM SYSTEM.TABLE

where schema = 'DEMOPROJ'

The result is similar to the following:

*+

*+ PointerToLob

*+ ------------

*+ 20003008

*+ 20003088

CA IDMS Scalar Functions

178 SQL Reference Guide

XMLSERIALIZE-function

Returns a value of character string or binary string. Serialization is an operation on an
XML value that transforms the XML value in a continuous character string
representation. Serialization is the inverse operation of parsing.

Syntax

►►─ XMLSERIALIZE ─── (───┬── CONTENT ──┬────────────────────────►
 └── DOCUMENT ─┘

 ►──── XML-value-expression ── AS string-data-type ───) ────────►◄

Parameters

string-data-type

Must be one of the character data types of data type: CHAR(n), CHARACTER(n),
VARCHAR(n), CHAR VARYING(n).

Note: The DOCUMENT option is not functional in this feature. Therefore, CONTENT
should always be specified.

Example

Use of XMLSERIALIZE to serialize an XML value as a character string of 50 characters.

 SELECT NAME

 , XMLSERIALIZE(CONTENT

 XMLELEMENT(NAME "Schema"

 , XMLATTRIBUTES (NAME AS "Name"

 , CUSER AS "User"))

 AS CHAR(50)) AS "Serialized XML"

 FROM SYSTEM.SCHEMA WHERE NAME IN ('SYSTEM', 'SYSDICT') ;

NAME Serialized XML

---- --------------

SYSTEM <Schema Name="SYSTEM" User="ABCDE01"</Schema>

SYSDICT <Schema Name="SYSDICT" User="VWXYZ01"</Schema>

YEAR-function

Syntax

►►─ YEAR (value-expression) ───────────►◄

Expansion of User-defined-function

Chapter 5: Functions 179

YEAR obtains the year part of the value in value-expression.

value-expression must be a date, timestamp, or date duration.

The result of the YEAR function is an integer, as shown in the following table.

Value-expression Result

TIMESTAMP value 1 to 9999 (the year part of the timestamp)

DATE value 1 to 9999 (the year part of the date)

Date duration The year part of the value (an integer in the range
-9999 to 9999 with the same sign as value-expression
if the result is not 0)

Expansion of User-defined-function

This section describes how user-defined functions are invoked, including the purpose,
syntax, parameters, usage considerations, and examples.

A user-defined function is invoked through a qualified or unqualified function identifier
together with an optional set of parameter values and returns a single value. To invoke
a user-defined function, you must either own or hold the SELECT privilege on the named
function.

Syntax

Expansion of user-defined-function

►►─┬────────────┬──────function-identifier────────────────────────────────────►
 └schema-name.┘

 ►─ (─┬───────────────────────────────┬─) ──────────────────────────────────►◄
 │ ┌──────────── , ───────────┐ │
 └─▼─ parameter-specification─┴──┘

Expansion of parameter-specification

►►────┬───────────────────────┬─ value-expression ────────────────────────────►◄
 └─ parameter-name ── = ─┘

Expansion of User-defined-function

180 SQL Reference Guide

Parameters

schema-name

Specifies the schema with which the function identified by function-identifier is
associated.

Note: For more information about using a schema name to qualify a function, see
Identifying Entities in Schemas. (see page 42)

function-identifier

Identifies a function defined in the dictionary.

parameter-specification

Specifies a value to be assigned to a parameter of a function. Both the positional
(with NO parameter-name) and the non-positional (with parameter-name) forms of
parameter specification can be used in a single function invocation. If a
non-positional parameter specification is used, all remaining parameter
specifications in the parameter list MUST be non-positional. Positional parameter
specifications are assumed to correspond to the declared parameters of a function
in the sequence of their declaration.

parameter-name

Specifies the name of a parameter associated with the function.

value-expression

Specifies a value-expression. See Expansion of Value-expression.

Usage

Passing and Returning Values to a Function: During SQL function processing, CA IDMS
issues a call to the corresponding SQL-invoked routine with the values supplied in the
function invocation. Before returning control, the SQL-invoked routine must set a value
for the implicitly defined output parameter USER_FUNC; this then becomes the function
return value.

Usage Restriction: You cannot reference a user-defined function within the search
condition of a table's check constraint.

Examples

The invocation of the function UDF_FUNBOUS, defined in the schema FIN, causes the
external program FUNBONUS to be called by CA IDMS with two parameters. The first
parameter contains the value for EMP_ID, the second is the implicitly defined parameter
USER_FUNC, which needs to be given a value by FUNBONUS before returning control to
CA IDMS.

SELECT EMP_ID, FUN.UDF_FUNBONUS(EMP_ID) FROM DEMOEMPL.EMPLOYEE;

Expansion of XML-value-function

Chapter 5: Functions 181

More Information

■ For more information about assignment of values to function parameters, see
Defining and Using Functions.

■ For more information about using a schema name to qualify a function, see
Identifying Entities in Schemas.

More information:

Defining and Using Functions (see page 639)
Identifying Entities in Schemas (see page 42)

Expansion of XML-value-function

The expanded parameters of XML-value-function represent the invocation of an
XML-value-function.

Syntax

Expansion of XML-value-function

►──────┬── XMLAGG-function ─────────┬─────────────────────────►◄
 ├── XMLCOMMENT-function ─────┤
 ├── XMLCONCAT-function ──────┤
 ├── XMLELEMENT-function ─────┤
 ├── XMLFOREST-function ──────┤
 ├── XMLPARSE-function ───────┤
 ├── XMLPI-function ──────────┤
 └── XMLROOT-function ────────┘

Parameters

Specifies the XML-value-function to be invoked. For detailed descriptions of the XML
value functions, see XML Value Functions.

XML Value Functions

This section describes the XML value functions including their purpose, syntax,
parameters, and examples.

XMLAGG-function

Returns an XML value that is computed from a collection of rows. The result is the XML
concatenation of a list of XML elements, aggregated in the statement containing the
XMLAGG-function.

XML Value Functions

182 SQL Reference Guide

Syntax

XMLAGG ─── (─── XML-value-expression ─────────────────────────►

►─┬───┬─)──►◄
 │ ┌─────────────────── , ──────────────────┐ │
 └─ ORDER BY ─▼─┬─┬─────────────┬─col-nm ─┬─┬────────┬─┴─┘
 │ ├ table-name. ┤ │ ├─ ASC ◄─┤
 │ └ alias. ─────┘ │ └─ DESC ─┘
 └─ column-number ─────────┘

Parameters

ORDER BY

Before the aggregation takes place, the XML elements, specified by
XML-value-expression, are sorted in ascending or descending order by the values in
the specified columns. XML elements are ordered first by the first column specified,
then by the second column specified within the ordering established by the first
column, then by the third column specified, and so on.

col-nm

Specifies the name of column.

table-name.

Specifies the table, view, procedure, or table procedure that includes the
named column. For expanded table-name syntax, see Expansion of
Table-name.

alias

Specifies the alias associated with the table, view, procedure, or table
procedure that includes the named column. The alias must be defined in the
FROM parameter of the subquery, query specification, or SELECT statement
that includes the XMLAGG function.

column-number

Specifies a column number. You can specify from 1 through 254 columns.
Multiple columns must be separated by commas.

XML Value Functions

Chapter 5: Functions 183

Examples

Example 1

Use of the XMLAGG function to display all employees belonging to each department.

SELECT XMLSERIALIZE(CONTENT

 XMLELEMENT(NAME "dept",

 XMLATTRIBUTES(e.DEPT_ID AS "id"),

 XMLAGG(XMLELEMENT(NAME "lname",

 e.EMP_LNAME)))

 AS VARCHAR(256)) AS "EMP_NAME_COL"

 FROM DEMOEMPL.EMPLOYEE e GROUP BY DEPT_ID ;

The result is similar to the following. Note that the content of the EMP_NAME_COL
column has been formatted for convenience.

EMP_NAME_COL

<dept id="1100">

 <lname>Fordman</lname>

 <lname>Halloran</lname>

 <lname>Hamel</lname>

</dept>

<dept id="1110">

 <lname>Widman</lname>

 <lname>Alexander</lname>

</dept>

<dept id="1120">

 <lname>Umidy</lname>

 <lname>White</lname>

 <lname>Johnson</lname>

</dept>

Example 2

Use of the XMLAGG function to display all employees belonging to each department. For
each employee, the positions and jobs are included. This example shows that the use of
the XMLAGG function together with the ability to specify subqueries as arguments for
the SQL/XML functions allows creating very complex XML structures.

XML Value Functions

184 SQL Reference Guide

select xmlpointer (

 xmlelement

 (Name "Employees"

 , xmlagg

 (xmlelement

 (NAME "Department"

 , xmlattributes(DEPT_ID as "DeptId")

 , xmlelement

 (NAME "EmployeesInDepartment"

 , select xmlagg

 (xmlelement

 (name "Employee"

 , xmlattributes(EMP_ID as "EmpId")

 , EMP_FNAME

 , EMP_LNAME

 , xmlelement

 (name "Address"

 , XMLFOREST

 (e.STREET as "Street"

 , e.CITY as "City"

 , e.STATE as "State"

)

)

 , xmlelement

 (name "Positions"

 , select xmlagg

 (xmlelement

 (name "Position"

 , xmlattributes

 (p.JOB_ID as "JobId")

 , JOB_TITLE

 , SALARY_AMOUNT

 , BONUS_PERCENT

)

)

 from DEMOEMPL.POSITION p, DEMOEMPL.JOB j

 where p.EMP_ID = e.EMP_ID

 and p.JOB_ID = j.JOB_ID

)

)

)

 from DEMOEMPL.EMPLOYEE e

 where d.DEPT_ID = e.DEPT_ID

)

)

)

)

)from DEMOEMPL.DEPARTMENT d

XML Value Functions

Chapter 5: Functions 185

The result is similar to the following. It has been formatted and displayed with an
"XML-enabled" Web browser that allows collapsing and expanding XML elements in an
XML tree.

- <Employees>

+ <Department DeptId=">1120">

- <Department DeptId="5000">

- <EmployeesInDepartment>

- <Employee EmpId="3449">

 Cynthia Taylor

- <Address>

 <Street>201 Washington St</Street>

 <City>Concord</City>

 <State>MA</State>

 </Address>

- <Positions>

 <Position JobId="4023">Accountant 74776.0</Position>

 </Positions>

 </Employee>

+ <Employee EmpId="5103">

&invellip.

 </EmployeesInDepartment>

 </Department>

+ <Department DeptId="4500">

 </Employees>

XML Value Functions

186 SQL Reference Guide

Example 3

Use of the XMLAGG function and subqueries to display part of an SQL catalog as an XML
document.

select xmlpointer (

 xmlelement

 (Name "Catalog"

 , xmlagg

 (xmlelement

 (Name "Schema"

 , xmlattributes

 (s.NAME as "Name"

 , s.TYPE as "Type"

)

 , 'Referencing SQL Schema:'

 , s.REFDSQLSCHEMA

 , 'Referencing Non SQL Schema:'

 , s.NTWKSCHEMA

 , select

 xmlagg

 (xmlelement

 (Name "TablesInSchema"

 , xmlattributes

 (t.NAME as "Name"

 , t.TYPE as "Type"

 , t.LENGTH as "Length"

)

 , SEGMENT

 , '.'

 , 'AREA'

 , xmlelement

 (Name "TableStats"

 , xmlattributes

 (t.NUMCOLS as "NumCols"

 , t.NUMINDEXES as "NumIndexes"

 , t.NUMREFERENCING as "NumReferencing"

 , t.NUMROWS as "NumRows"

 , t.NUMPAGES as "NumPages"

 , t.NUMSYNTAX as "NumSyntax"

 , t.ESTROWS as "EstRows"

)

)

 , select

 xmlagg

 (xmlelement

 (Name "ColumnsInTable"

 , xmlattributes

 (c.NAME as "Name"

 , c.NUMBER as "Nr"

XML Value Functions

Chapter 5: Functions 187

)

 , TYPE

 , xmlelement

 (Name "DataTypeDetails"

 , xmlattributes

 (c.TYPECODE as "Code"

 , c.PRECISION as "Precision"

 , c.SCALE as "Scale"

)

)

 , xmlelement

 (Name "OtherDetails"

 , xmlattributes

 (c.NULLS as "Null"

 , c.DEFAULT as "Default"

 , c.VOFFSET as "VOffset"

 , c.VLENGTH as "VLength"

 , c.NOFFSET as "NOffset"

 , c.NLENGTH as "NLength"

 , c.NUMVALUES as "NumValues"

)

)

)

)

 from SYSTEM.COLUMN c

 where c.TABLE = t.NAME

 and c.SCHEMA = t.SCHEMA

)

)

 from SYSTEM.TABLE t

 where t.SCHEMA = s.NAME

 and TYPE = 'T'

)

)

)

)from SYSTEM.SCHEMA s

XML Value Functions

188 SQL Reference Guide

The result is similar to the following. It has been formatted and displayed with an
"XML-enabled" Web browser that allows collapsing and expanding XML elements in an
XML tree.

- <Catalog>

 <Schema Name="EMPSCHM" Type="N">

 Referencing SQL Schema: Referencing Non SQL Schema:EMPSCHM</Schema>

- <Schema Name="DEMOEMPL" Type="R">

 Referencing SQL Schema:Referencing Non SQL Schema:

+ <TablesInSchema Name="DEPARTMENT" Type="T" Length="68">

+ <TablesInSchema Name="DIVISION" Type="T" Length="56">

+ <TablesInSchema Name="EMPL_MANAGER_INFO" Type="T" Length="56">

+ <TablesInSchema Name="EMPLOYEE" Type="T" Length="204">

 SQLDEMO .AREA

 <TableStats NumCols="15" NumIndexes="4" NumReferencing="2" NumRows="55"

 NumPages="40" NumSyntax="1" EstRows="0" />

- <ColumnsInTable Name="DEPT_ID" Nr="5">

 UNSIGNED NUMERIC

 <DataTypeDetails Code="128" Precision="4" Scale="0" />

 <OtherDetails Null="N" Default="N" VOffset="49" VLength="4" NOffset="0"

 NLength="0" NumValues="14" />

 </ColumnsInTable>

- <ColumnsInTable Name="EMP_FNAME" Nr="3">

 CHARACTER

 <DataTypeDetails Code="1" Precision="0" Scale="0" />

 <OtherDetails Null="N" Default="N" VOffset="9" VLength="20" NOffset="0"

 NLength="0" NumValues="0" />

 </ColumnsInTable>

- <ColumnsInTable Name="EMP_ID" Nr="1">

 UNSIGNED NUMERIC

 <DataTypeDetails Code="128" Precision="4" Scale="0" />

 <OtherDetails Null="N" Default="N" VOffset="0" VLength="4" NOffset="0"

 NLength="0" NumValues="0" />

 </ColumnsInTable>

 &invellip.

 </TablesInSchema>

 &invellip.

+ <TablesInSchema Name="INSURANCE_PLAN" Type="T" Length="168">

+ <TablesInSchema Name="JOB" Type="T" Length="188">

+ <TablesInSchema Name="POSITION" Type="T" Length="64">

 </Schema>

 &invellip.

 </Catalog>

XML Value Functions

Chapter 5: Functions 189

XMLCOMMENT-function

Returns an XML value that is an XML comment, generated from string-value-expression.
The XML value consists of an XML root information item with one child, an XML
comment information item whose [content] property is string-value-expression.

Syntax

XMLCOMMENT ─── (── string-value-expression ──) ─────────────►◄

Parameters

string-value-expression

Specifies a character string value-expression, that is a value-expression that
returns a value of type character.

If string-value-expression is NULL, XMLCOMMENT returns a NULL value.
string-value-expression cannot contain a hyphen (--) sequence of characters and
cannot end with a hyphen (-) character.

Example

The following statement returns a single XML comment:

SELECT XMLSERIALIZE(CONTENT XMLCOMMENT('My personal opinion')

 AS CHAR(80)) as "Comment Only"

 FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

The result is similar to the following:

Comment Only

<!--My personal opinion-->

XMLCONCAT-function

Returns an XML value that is the concatenation of all the XML-value-expressions. If all
the XML-value-expressions are NULL or empty, a NULL value is returned.

Syntax

XMLCONCAT ── (XML-value-expression ────────────────────────────►

 ┌───────────────────────────────┐
►──────▼─,── XML-value-expression ─────┴──) ───────────────────►◄

XML Value Functions

190 SQL Reference Guide

Example

Use of the XMLCONCAT function to concatenate two XML elements defined using the
XMLELEMENT function.

SELECT e.EMP_ID,

 XMLSERIALIZE(CONTENT

 XMLCONCAT(XMLELEMENT(NAME "fname",

 e.EMP_FNAME),

 XMLELEMENT(NAME "lname",

 e.EMP_LNAME))

 AS VARCHAR(64)) AS "EMP_NAME_COL"

 FROM DEMOEMPL.EMPLOYEE e WHERE EMP_ID < 1500 ;

The result is similar to the following:

EMP_ID EMP_NAME_COL

------ ------------

 1003 <fname>James</fname><lname>Baldwin</lname>

 1034 <fname>James</fname><lname>Gallway</lname>

 1234 <fname>Thomas</fname><lname>Mills</lname>

XMLELEMENT-function

Returns an XML value that is a single XML element information item as a child of its XML
root information. Provided are an XML element name, an optional list of XML
namespace declarations, an optional list of attributes, and an optional list of values as
the content of the new element.

The XMLATTRIBUTES pseudo function can be used to specify XML attributes in an XML
element. The XMLNAMESPACES pseudo function can be used to declare XML
namespace in an XML element.

Syntax

XMLELEMENT ───(NAME ── XML-element-name ───────────────────────►

►─┬────────────────────────────────┬───┬─────────────────────┬─►
 └─ , XML-namespace-declaration ──┘ └─ , XML-attributes ──┘

►─┬──┬─►◄
 │ ┌───────── , ─────────┐ │
 └,─▼ XML-content-val-exp ┴─┬──────────────────────────────┬┘
 └─ OPTION ┬ NULL ON NULL ─────┬┘
 ├ EMPTY ON NULL ◄───┤
 ├ ABSENT ON NULL ───┤
 ├ NIL ON NULL ──────┤
 └ NIL ON NO CONTENT ┘

Expansion of XML-namespace-declaration

 ┌───────────── , ──────────────────┐
XMLNAMESPACES ──(─▼─ XML-namespace-declaration-item ─┴─)──────►◄

XML Value Functions

Chapter 5: Functions 191

Expansion of XML-namespace-declaration-item

►─┬ XML-namespace-URI-char-lit ─ AS ─ XML-namespace-prefix-id ┬►◄
 │ │
 ├── DEFAULT ── XML-namespace-URI-char-lit ──────────────────┤
 │ │
 └── NO DEFAULT ───┘

Expansion of XML-attributes

 ┌─────────────────── , ──────────────────┐
XMLATTRIBUTES ─(─▼─ XML-att-val-exp ─┬───────────────────┬┴─)─►◄
 └ AS ─ XML-att-name ┘

Parameters

XML-element-name

Specifies an identifier that is used as an XML element name. This name must be an
XML QName. If the name is qualified, the namespace prefix must be declared within
the scope. The maximum length of the identifier is 128 characters.

XML-content-val-exp

Specifies a value-expression or an XML-value-expression that after mapping
according to Mapping SQL Data Type Values to XML Schema Data Type Values, is
used as the content of the generated XML element.

XML-namespace-URI-char-lit

Specifies a character string literal of an XML namespace through a URI. For
example, http://www.w3.org/2001/XMLSchema. This character string literal can be
empty when used with the DEFAULT option only.

XML Value Functions

192 SQL Reference Guide

XML-namespace-prefix-id

Specifies an identifier that is used as a namespace prefix that is bound to the XML
namespace given by XML-namespace-URI-char-lit. The maximum length of the
identifier is 128 characters.

This identifier must be an XML NCName. It cannot be equal to "xml" or "xmlns", and
it cannot start with the characters "xml" (in any combination). Be sure that no
duplicate namespace prefixes are declared in the same XMLNAMESPACES function
call.

XML-att-name

Specifies an identifier that is used as the XML attribute name. The maximum length
of the identifier is 128 characters. The attribute name must be an XML QName. It
cannot be equal to "xmlns" or start with "xmlns:". Be sure that no duplicate
attribute names are declared in the same XMLATTRIBUTES function call.

XML-att-val-exp

Specifies a value-expression that is used as the value of the XML attribute. The
value-expression can be of any type except GRAPHIC or VARGRAPHIC. The length of
the value is limited to 512 characters.

If XML-att-name is not specified, the attribute name is derived from the
XML-att-val-exp value. The XML-att-val-exp value must be a valid SQL column
name, optionally qualified with table-name or alias. The fully escaped mapping is
applied on the SQL column name to create the attribute name.

OPTION

Specifies the processing of null values for XML-content-val-exp as follows:

ABSENT ON NULL

The returned value is never null, but element is completely absent when all
XML-content-val-exp are NULL.

EMPTY ON NULL

The returned value is never null. Element has no content for each NULL value
of XML-content-val-exp that is NULL. This is the default.

NIL ON NO CONTENT

The returned value is not null. When the [children] property of the element
does not contain at least one XML element information item or at least one
XML character information item, the element is:

<XML-element-name xsi:nil="true"/>

XML Value Functions

Chapter 5: Functions 193

NIL ON NULL

The returned value is not null, but when all XML-content-val-exp are NULL,
element is

<XML-element-name xsi:nil="true"/>

with implicit xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance.

NULL ON NULL

The returned value is NULL when all XML-content-val-exp are NULL.

Notes:

■ XMLATTRIBUTES look like any other SQL/XML function, but it is not an SQL function.
It is a function-like construct that can only be used in an XMLELEMENT invocation.

■ An XML-namespace-declaration can have only one
XML-namespace-declaration-item containing the literal DEFAULT or NO DEFAULT.

■ XML-element-name is an identifier in the SQL language. Some valid XML names,
that is, all XML QNames with a non-null prefix, require this identifier to be delimited
by double quotes.

Examples

Example 1

The following SELECT statement produces a row for each employee with one column
representing an 'emp' XML element containing the employee's last name. The data type
of the result column is VARCHAR(64).

SELECT XMLSERIALIZE(CONTENT

 XMLELEMENT(NAME "emp", EMP_LNAME)

 AS VARCHAR(64)) AS "EMP_NAME_COL"

 FROM DEMOEMPL.EMPLOYEE ;

The result is similar to the following:

EMP_NAME_COL

<emp>Baldwin</emp>

<emp>Gallway</emp>

<emp>Mills</emp>

XML Value Functions

194 SQL Reference Guide

Example 2

Same as Example 1, but this example includes a first column containing the employee
ID, which uses the "e" alias for the table name and a WHERE clause on the SELECT
statement.

SELECT e.EMP_ID,

 XMLSERIALIZE(CONTENT

 XMLELEMENT(NAME "emp", e.EMP_LNAME)

 AS VARCHAR(64)) AS "EMP_NAME_COL"

 FROM DEMOEMPL.EMPLOYEE e WHERE EMP_ID < 1500 ;

The result is similar to the following:

EMP_ID EMP_NAME_COL

------ ------------

 1003 <emp>Baldwin</emp>

 1034 <emp>Gallway</emp>

 1234 <emp>Mills</emp>

Example 3

Same as Example 2, but this example also includes the employee ID as an attribute
within the <emp> tag.

SELECT e.EMP_ID,

 XMLSERIALIZE(CONTENT

 XMLELEMENT(NAME "emp",

 XMLATTRIBUTES(e.EMP_ID AS "id"),

 e.EMP_LNAME)

 AS VARCHAR(64)) AS "EMP_NAME_COL"

 FROM DEMOEMPL.EMPLOYEE e WHERE EMP_ID < 1500 ;

The result is similar to the following:

EMP_ID EMP_NAME_COL

------ ------------

 1003 <emp id="1003">Baldwin</emp>

 1034 <emp id="1034">Gallway</emp>

 1234 <emp id="1234">Mills</emp>

XML Value Functions

Chapter 5: Functions 195

Example 4

Same as Example 3, but this example includes a second attribute within the <emp> tag
with the employee's first name.

SELECT e.EMP_ID,

 XMLSERIALIZE(CONTENT

 XMLELEMENT(NAME "emp",

 XMLATTRIBUTES(e.EMP_ID AS "id",

 e.EMP_FNAME AS "fname"),

 e.EMP_LNAME)

 AS VARCHAR(64)) AS "EMP_NAME_COL"

 FROM DEMOEMPL.EMPLOYEE e WHERE EMP_ID < 1500 ;

The result is similar to the following. Note that the content of the EMP_NAME_COL
column has been formatted for convenience.

EMP_ID EMP_NAME_COL

------ ------------

 1003 <emp id="1003" fname="James">Baldwin</emp>

 1034 <emp id="1034" fname="James">Gallway</emp>

 1234 <emp id="1234" fname="Thomas">Mills</emp>

XML Value Functions

196 SQL Reference Guide

Example 5

Same as Example 4, but this example removes the attributes and uses the employee's
first name and last name as sub-elements of <emp>.

SELECT e.EMP_ID,

 XMLSERIALIZE(CONTENT

 XMLELEMENT(NAME "emp",

 XMLELEMENT(NAME "fname", e.EMP_FNAME),

 XMLELEMENT(NAME "lname", e.EMP_LNAME))

 AS VARCHAR(64)) AS "EMP_NAME_COL"

 FROM DEMOEMPL.EMPLOYEE e WHERE EMP_ID < 1500 ;

The result is similar to the following. Note that the content of the EMP_NAME_COL
column has been formatted for convenience.

EMP_ID EMP_NAME_COL

------ ------------

 1003 <emp>

 <fname>James</fname>

 <lname>Baldwin</lname>

 </emp>

 1034 <emp>

 <fname>James</fname>

 <lname>Gallway</lname>

 </emp>

 1234 <emp>

 <fname>Thomas</fname>

 <lname>Mills</lname>

 </emp>

XML Value Functions

Chapter 5: Functions 197

Example 6

Same as Example 5, but this example concatenates the employee's first name and last
name into one sub-element of <emp>.

SELECT e.EMP_ID,

 XMLSERIALIZE(CONTENT

 XMLELEMENT(NAME "emp",

 XMLELEMENT(NAME "name",

 e.EMP_FNAME ||' '|| e.EMP_LNAME))

 AS VARCHAR(64)) AS "EMP_NAME_COL"

 FROM DEMOEMPL.EMPLOYEE e WHERE EMP_ID < 1500 ;

The result is similar to the following. Note that the content of the EMP_NAME_COL
column has been formatted for convenience.

EMP_ID EMP_NAME_COL

------ ------------

 1003 <emp>

 <name>James Baldwin</name>

 </emp>

 1034 <emp>

 <name>James Gallway</name>

 </emp>

 1234 <emp>

 <name>Thomas Mills</name>

 </emp>

XML Value Functions

198 SQL Reference Guide

Example 7

Same as Example 6, but this example uses XMLNAMESPACES.

SELECT e.EMP_ID,

 XMLSERIALIZE(CONTENT

 XMLELEMENT(NAME "emp",

 XMLNAMESPACES(

 DEFAULT 'http://ca.com/hr/globalxml',

 'http://ca.com/hr/frenchxml' AS "fr"),

 XMLELEMENT(NAME "fr:nom",

 e.EMP_FNAME ||' '|| e.EMP_LNAME))

 AS VARCHAR(64)) AS "EMP_NAME_COL"

 FROM DEMOEMPL.EMPLOYEE e WHERE EMP_ID < 1500 ;

The result is similar to the following. Note that the content of the EMP_NAME_COL
column has been formatted for convenience.

EMP_ID EMP_NAME_COL

------ ------------

1003 <emp xmlns="http://ca.com/hr/globalxml"

 xmlns:fr="http://ca.com/hr/frenchxml">

 <fr:nom>James Baldwin</fr:nom>

 </emp>

1034 <emp xmlns="http://ca.com/hr/globalxml"

 xmlns:fr="http://ca.com/hr/frenchxml">

 <fr:nom>James Gallway</fr:nom>

 </emp>

1234 <emp xmlns="http://ca.com/hr/globalxml"

 xmlns:fr="http://ca.com/hr/frenchxml">

 <fr:nom>Thomas Mills</fr:nom>

 </emp>

XML Value Functions

Chapter 5: Functions 199

Example 8

This example illustrates the use of a subquery as an argument of XMLELEMENT.

SELECT

 XMLSERIALIZE

 (CONTENT

 XMLELEMENT

 (NAME "Employee"

 ,XMLATTRIBUTES(e.EMP_ID as "Id")

 , e.EMP_FNAME

 , e.EMP_LNAME

 , SELECT

 XMLELEMENT

 (NAME "Manager"

 , XMLATTRIBUTES(m.EMP_ID as "MgrId")

 , m.EMP_FNAME || m.EMP_LNAME

)

 FROM DEMOEMPL.employee m

 WHERE e.MANAGER_ID = m.EMP_ID

) AS VARCHAR(120)) AS "EmployeeManager"

FROM DEMOEMPL.EMPLOYEE e

The result is similar to the following:

EmployeeManager

<Employee Id="5008">Timothy Fordman

 <Manager MgrId="2246">Marylou Hamel</Manager></Employee>

<Employee Id="4703">Martin Halloran

 <Manager MgrId="2246">Marylou Hamel</Manager></Employee>

XML Value Functions

200 SQL Reference Guide

XMLFOREST-function

Returns an XML value that is a list of XML element information items as the children of
its XML root information. An XML element is produced from each XML-forest-val-exp,
using the column name or, if provided, the XML-forest-elem-ident as the XML element
name and the XML-forest-val-exp as the element content. The value of
XML-forest-val-exp can be any value that has a mapping to an XML value.

The XMLNAMESPACES pseudo function can be used to declare XML namespace in an
XML element.

Syntax

XMLFOREST─── (──┬──────────────────────────────────┬──────────►
 └─ XML-namespace-declaration ─ , ──┘

 ┌───────────────────────── , ────────────────────────────┐
►──▼── XML-forest-val-exp ──┬──────────────────────────────┬┴──►
 └─ AS ─ XML-forest-elem-ident ─┘

►────┬───┬──────)────────►◄
 └── OPTION ───┬── NULL ON NULL ◄─────┬────┘
 ├── EMPTY ON NULL ─────┤
 ├── ABSENT ON NULL ────┤
 ├── NIL ON NULL ───────┤
 └── NIL ON NO CONTENT ─┘

Note: For more information about the expansion of XML-namespace-declaration, see
XMLELEMENT-function.

Parameters

XML-forest-elem-ident

Specifies an identifier that is used as an XML element name. The identifier must be
an XML QName. If a namespace prefix is used, it must have been declared in the
scope of the element. The maximum length of the identifier is 128 characters.

XML-forest-val-exp

Specifies a value-expression that is used as the element content of an XML element.
If XML-forest-elem-ident is not specified, the forest element name is derived from
the XML-forest-val-exp value. The XML-forest-val-exp value must be a valid SQL
column name, optionally qualified with table-name or alias. The fully escaped
mapping is applied on the SQL column name to create the forest element name.

XML Value Functions

Chapter 5: Functions 201

OPTION

Specifies the processing of null values for XML-forest-val-exp as follows:

ABSENT ON NULL

The returned value is never null, but element is completely absent from the list
when XML-forest-val-exp is NULL.

EMPTY ON NULL

The returned value is never null. Element has no content for each NULL value
of XML-forest-val-exp.

NIL ON NO CONTENT

The returned value is not null. When the [children] property of element does
not contain at least one XML element information item or at least one XML
character information item, the element is:

<XML-forest-element-name xsi:nil="true"/>.

NIL ON NULL

The returned value is not null, but when an XML-forest-val-exp is NULL,
element becomes

<XML-forest-element-name xsi:nil="true"/>

with implicit xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance.

NULL ON NULL

The returned value is NULL when all XML-forest-val-exp are NULL. This is the
default.

Note: XML-element-name is an identifier in the SQL language. Some valid XML names,
that is, all XML QNames with non-null namespace prefix, requires this identifier to be
delimited by double quotes.

XML Value Functions

202 SQL Reference Guide

Example

Similar to Example 5 of the XMLELEMENT function, but the use of two XMLELEMENT
invocations to declare two sub-elements of <emp> is replaced by a single XMLFOREST
invocation.

SELECT e.EMP_ID,

 XMLSERIALIZE(CONTENT

 XMLELEMENT(NAME "emp",

 XMLFOREST(e.EMP_FNAME AS "fname",

 e.EMP_LNAME AS "lname"))

 AS VARCHAR(64)) AS "EMP_NAME_COL"

 FROM DEMOEMPL.EMPLOYEE e WHERE EMP_ID < 1500 ;

The result is similar to the following. Note that the content of the EMP_NAME_COL
column has been formatted for convenience.

EMP_ID EMP_NAME_COL

------ ------------

 1003 <emp>

 <fname>James</fname>

 <lname>Baldwin</lname>

 </emp>

 1034 <emp>

 <fname>James</fname>

 <lname>Gallway</lname>

 </emp>

 1234 <emp>

 <fname>Thomas</fname>

 <lname>Mills</lname>

 </emp>

XMLPARSE-function

Returns an XML value as the result of performing a non-validating parse of a character
string. Parsing is the inverse operation of serializing.

Syntax

XMLPARSE ── (─┬─ CONTENT ─┬── string-value-expression ──────►
 └─ DOCUMENT ──┘
►───────────────┬───────────────────────────────────┬─────)────►◄
 └──┬── STRIP ─────┬── WHITESPACE ◄──┘
 └── PRESERVE ──┘

XML Value Functions

Chapter 5: Functions 203

Parameters

string-value-expression

Specifies a character string value-expression, that is a value-expression that
returns a value of type character. If string-value-expression is NULL, XMLPARSE
returns a NULL value.

Note: The DOCUMENT and STRIP WHITESPACEoptions are not functional in this feature.
Therefore, CONTENT and PRESERVE WHITESPACE should always be specified.

Example

The following statement causes an SQL statement exception because the XML is not
completely serialized. The serialization is truncated after 20 characters.

SELECT

 XMLPARSE

 (CONTENT

 XMLSERIALIZE

 (CONTENT

 XMLELEMENT

 (NAME "EMP", EMP_LNAME

) AS CHAR(20)

)

)

 FROM DEMOEMPL.EMPLOYEE ;

*+ Status = -4 SQLSTATE = 38000 Messages follow:

*+ DB001075 C-4M321: Procedure IDMSQFUX exception 38000 XMLPARSE: Premature end

*+ of data in tag EMP line 1

XMLPI-function

Returns an XML value that is an XML processing instruction (PI). The XML value consists
of:

■ An XML root information item with one child

■ An XML processing information item whose [target] property is the partially
escaped mapping of identifier to an XML Name, and whose [content] property is
string-value-expression, trimmed of leading blanks.

Syntax

XMLPI ── (NAME ── identifier ─┬─────────────────────────────┬─) ─►◄
 └─ , string-value-expression ─┘

XML Value Functions

204 SQL Reference Guide

Parameters

Identifier

Specifies the target in the processing instruction. It must be a valid NCName. The
maximum length of the identifier is 128 characters.

string-value-expression

Specifies a character string value-expression, that is a value-expression that
returns a value of type character. It can be NULL or empty, but if present, it cannot
contain the "?>" sequence.

A processing instruction takes the following syntactical form in XML 1.0:

<?target data?>

Processing instructions instruct applications to perform some type of extra processing
on a given document.

An example of a processing instruction, which is supported by most Web browsers is:

<?xml-stylesheet href="mystyle.xsl" type="text/xsl"?>

When the browser loads an XML document and recognizes the processing instruction, it
performs a transformation using the specified XSLT file and displays the result of the
transformation instead of the raw XML file. This processing instruction has been
accepted as a W3C recommendation. For more information, see
http://www.w3.org/TR/xml-stylesheet.

Another example of a processing instruction accepted as a W3C recommendation is the
use of the XML declaration:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

The pseudo-attribute version currently must have value "1.0". The pseudo-attribute
standalone specifies whether any markup declarations are defined in separate
documents. Finally, the pseudo-attribute encoding specifies the encoding of the XML
document. XML parsers are required to support at least encoding UTF-8 and UTF-16.

XML Value Functions

Chapter 5: Functions 205

Example

The following statement returns only a single processing instruction:

SELECT XMLSERIALIZE(CONTENT XMLPI (NAME "xml" ,

 ' version="1.0" encoding="UTF-8" standalone="yes"')

 AS CHAR(80)) as "PI Instruction"

 FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

The result is similar to the following:

PI Instruction

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

XMLROOT-function

Returns an XML value by modifying the properties of the XML root information item of
another XML value.

All XML documents must have at least one well-formed root element. The root element,
often called the document tag, must follow the prolog (XML declaration plus DTD) and
must be a non-empty tag that encompasses the entire document.

Notes:

■ The Encoding property cannot be specified in the XMLROOT function. However, the
XMLROOT function sets the value of the property by using the value from the XML
ENCODING parameter in the SQL SET SESSION statement, unless the given XML
value already has a non-null value for its Encoding property.

■ If the input XML-value-expression is NULL or empty, XMLROOT returns a NULL
value.

Syntax

XMLROOT ───(── XML-value-expression ───────────────────────────►

►───────── , ── VERSION ──┬── string-value-expression ──┬───────►
 └── NO VALUE ─────────────────┘

►───────┬──┬──────)─────►◄
 └─ , ── STANDALONE ──┬── YES ──────┬───────┘
 ├── NO ───────┤
 └── NO VALUE ─┘

Parameters

string-value-expression

Specifies a character string value-expression, that is a value-expression that
returns a value of type character.

XML Value Functions

206 SQL Reference Guide

Example

Use of the XMLROOT function to generate the XML declaration in an XML document.

set session XML ENCODING UTF8;

select

 XMLSERIALIZE(CONTENT

 XMLROOT(

 XMLELEMENT(NAME "Employee",

 XMLATTRIBUTES(EMP_ID AS "Id",

 DEPT_ID AS "DeptId",

 MANAGER_ID AS "MgrId"),

 TRIM(EMP_FNAME)||' '||trim(EMP_LNAME),

 ' from ', CITY),

 VERSION '1.0', STANDALONE YES)

 AS VARCHAR(256)) AS "EmployeeData"

 from DEMOEMPL.EMPLOYEE where EMP_ID = 1003;

The result is similar to the following. Note that the content of the EmployeeData column
has been formatted for convenience:

*+ EmployeeData

*+ ------------

*+ <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<Employee Id="1003" DeptId="6200">James Baldwin from Boston </Employee>

Chapter 6: Predicates and Search Condition 207

Chapter 6: Predicates and Search Condition

This section contains the following topics:

Overview (see page 207)
Expansion of Between-predicate (see page 207)
Expansion of Comparison-predicate (see page 209)
Expansion of Exists-predicate (see page 210)
Expansion of In-predicate (see page 211)
Expansion of Like-predicate (see page 214)
Expansion of Null-predicate (see page 219)
Expansion of Quantified-predicate (see page 220)
Expansion of Search-condition (see page 223)

Overview

This chapter presents expanded syntax for each predicate that can be used in a search
condition. It concludes with expanded syntax for search-condition.

What is a Predicate?

A predicate is an operand of a search condition. It expresses or implies a comparison
operation.

What is a Search Condition?

A search condition is a Boolean expression that yields a truth value. The operands of a
search condition are predicates, and the operators are the logical operators AND, OR,
and NOT.

A search condition establishes a criterion for selecting rows from a table.

More information:

ALTER TABLE (see page 290)
CREATE TABLE (see page 378)
Expansion of Search-condition (see page 223)

Expansion of Between-predicate

The between-predicate tests whether a value is within a range of values.

Expansion of Between-predicate

208 SQL Reference Guide

Usage

Comparable Data Types

The data types of the values specified in a between-predicate must be comparable.

Note: For information about comparing values of different data types, see Comparison,
Assignment, Arithmetic, and Concatenation Operations. (see page 66)

Truth Value of a BETWEEN Predicate without NOT

The result of a BETWEEN predicate that does not include NOT is:

■ True when value being tested is greater than or equal to the starting value of the
test range and less than or equal to the ending value of the test range

■ False when the value being tested is less than the starting value of the test range or
greater than the ending value of the test range

■ Unknown when one or more of the values specified in the predicate are null

Truth Value of a BETWEEN predicate with NOT

The result of a BETWEEN predicate that includes NOT is:

■ True when value being tested is less than the starting value of the test range or
greater than the ending value of the test range

■ False when the value being tested is greater than or equal to the starting value of
the test range and less than or equal to the ending value of the test range

■ Unknown when one or more of the values specified in the predicate are null

Rounded Values

The BETWEEN predicate is useful for testing values derived from value expressions that
may have been affected by rounding.

Example

As the Search Condition in a CHECK Parameter

The following CREATE TABLE statement defines the EXPERTISE table with four columns.
The CHECK parameter defines a restriction on the data that can be stored in the
SKILL_LEVEL column.

create table expertise

 (emp_id integer not null,

 skill_id integer not null,

 skill_level character(2),

 exp_date date,

 check (skill_level between '01' and '04');

Expansion of Comparison-predicate

Chapter 6: Predicates and Search Condition 209

More Information

■ For more information about search conditions, see Expansion of Search-condition.

■ For more information about the CHECK parameter, see CREATE TABLE.

■ For more information about the ADD CHECK parameter, see ALTER TABLE.

Expansion of Comparison-predicate

The comparison-predicate tests whether a value is less than, equal to, or greater than
another value.

Syntax

Expansion of comparison-predicate

►►─── value-expression comparison-operator ─┬─ value-expression ─┬───────────►◄
 └─ (subquery) ─────┘

Parameters

value-expression

Specifies a value to be used in the comparison. For expanded value-expression
syntax, see Expansion of Value-expression.

comparison-operator

Specifies the comparison operator to be used in the test. Valid values for
comparison-operator are:

Comparison operator Meaning

= Equal to

¬=

<>

Not equal to

< Less than

¬< Not less than

<= Less than or equal to

> Greater than

¬> Not greater than

>= Greater than or equal to

Expansion of Exists-predicate

210 SQL Reference Guide

 (subquery)

Specifies a subquery that returns no more than one row and whose result table
consists of a single column.

Note: For more information about expanded subquery syntax, see Expansion of
Subquery. (see page 239)

Usage

Comparable Data Types

The data types of the values being compared must be comparable.

Note: For information about comparing values of different data types, see Comparison,
Assignment, Arithmetic, and Concatenation Operations. (see page 66)

Truth Value of a Comparison Predicate

The result of a comparison predicate is:

■ True when the first value relates to the second value in the way specified by the
comparison operator

■ False when the first value does not relate to the second value in the way specified
by the comparison operator

■ Unknown when one or both of the values being compared are null or when the
result of the subquery is an empty set

Example

As the Search Condition in a WHERE Parameter

The following DELETE statement deletes rows in the EXPERTISE table for employees who
were terminated before January 1, 2006. The search condition in the WHERE parameter
of the subquery consists of a single comparison predicate.

delete from expertise

 where emp_id in

 (select emp_id

 from employee

 where termination_date <'2006-01-01');

Expansion of Exists-predicate

The exists-predicate tests for the existence of data meeting criteria specified in a
subquery.

Expansion of In-predicate

Chapter 6: Predicates and Search Condition 211

Syntax

Expansion of exists-predicate

►►─── EXISTS (subquery) ──►◄

Parameters

(subquery)

Specifies a subquery that returns a set of zero or more rows. For expanded
subquery syntax, see Expansion of Subquery.

Usage

Truth Value of an EXISTS Predicate

The result of an EXISTS predicate is:

■ True when the result of the subquery is a set containing one or more rows

■ False when the result of the subquery is an empty set

Example

With the Unary Operator NOT in a WHERE Parameter

The following SELECT statement identifies employees for whom no expertise
information has been stored in the database.

select e1.emp_id

 from employee e1

 where not exists

 (select * from expertise e2

 where e1.emp_id = e2.emp_id);

Note: For more information about search conditions, see Expansion of
Search-condition.

More information:

Expansion of Search-condition (see page 223)

Expansion of In-predicate

The in-predicate tests whether a value occurs in a specified set of values.

Expansion of In-predicate

212 SQL Reference Guide

Syntax

Expansion of in-predicate

►►─── value-expression ─┬───────┬─ IN ──►
 └─ NOT ─┘

 ┌───────── , ────────┐
 ►─┬─ (─┬─▼─ value-expression ─┴─┬─) ─┬─────────────────────────────────────►◄
 │ └─ subquery ─────────────┘ │
 │ │
 └─ value-expression ─────────────────┘

Parameters

value-expression

Specifies the value to be compared to the set of values identified by the IN
parameter. For expanded value-expression syntax, see Expansion of
Value-expression.

NOT

Reverses the test. NOT directs CA IDMS to test whether a value is not in the
specified set of values.

IN

Identifies the set of values to which the value being tested is compared.

value-expression

Specifies a value that is a member of the set of test values.

Value-expression may be enclosed in parentheses. Multiple occurrences of
value-expression must be separated by commas and enclosed in parentheses.

subquery

Specifies a subquery that returns zero or more rows and whose result table consists
of a single column. The column values are members of the set of test values. For
expanded subquery syntax, see Expansion of Subquery.

Expansion of In-predicate

Chapter 6: Predicates and Search Condition 213

Usage

Equivalence

Value-expression IN value-expression is equivalent to a comparison predicate in the
form value-expression = value-expression.

Value-expression IN (subquery) is equivalent to a quantified predicate in the form
value-expression = ANY (subquery).

Comparable Data Types

The data types of the values in an IN predicate must be comparable.

Note: For more information about comparing values of different data types, see
Comparison, Assignment, Arithmetic, and Concatenation Operations. (see page 66)

Truth Value of an IN Predicate without NOT

The result of an IN predicate that does not include NOT is:

■ True when the value being tested is equal to at least one of the values in the test
set

■ False when the value being tested is not equal to any of the values in the test set or
when the result of the subquery is an empty set

■ Unknown when the value being tested is null or when values in the test set are a
combination of null value and values not equal to the value being tested

This table presents examples of results of IN predicates without NOT:

Predicate Result

'A' IN ('A','B') True

'A' IN ('B') False

'A' IN (null-value) Unknown

'A' IN ('A',null-value) True

'A' IN ('B',null-value) Unknown

Expansion of Like-predicate

214 SQL Reference Guide

Truth Value of an IN Predicate with NOT

The result of an IN predicate that includes NOT is:

■ True when the value being tested is not equal to any of the values in the test set or
when the result of the subquery is an empty set

■ False when the value being tested is equal to at least one of the values in the test
set

■ Unknown when the value being tested is null or values in the test set are a
combination of null value and values not equal to the value being tested

This table presents examples of results of IN predicates with NOT:

Predicate Result

'A' NOT IN ('A','B') False

'A' NOT IN ('B') True

'A' NOT IN (null-value) Unknown

'A' NOT IN ('A',null-value) False

'A' NOT IN ('B',null-value) Unknown

Example

As the Search Condition in a WHERE Parameter

The following SELECT statement identifies employees who live in one of four specified
cities:

select emp_fname, emp_lname, dept_id

 from employee

 where emp_city in ('Newton','Wellesley','Natick','Wayland');

Expansion of Like-predicate

The like-predicate tests whether a character value matches the pattern of another
character value.

Expansion of Like-predicate

Chapter 6: Predicates and Search Condition 215

Syntax

Expansion of like-predicate

►►─── value-expression ───►

 ►─┬───────┬─ LIKE ─┬─ 'pattern' ────────────────────────────────┬────────────►
 └─ NOT ─┘ ├─ G 'graphics pattern' ─────────────────────┤
 ├─ host-variable ────────────────────────────┤
 ├─ special-register ─────────────────────────┤
 ├─ dynamic-parameter-marker ─────────────────┤
 ├─ routine-parameter ────────────────────────┤
 └─ local-variable ───────────────────────────┘

 ►─┬──┬───────────────────────────►◄
 └─ ESCAPE ─┬─ 'escape-character' ────────────┬─┘
 ├─ host-variable ─────────────────┤
 ├─ dynamic-parameter-marker ──────┤
 ├─ routine-parameter ─────────────┤
 └─ local-variable ────────────────┘

Parameters

value-expression

Specifies a value to be tested against a pattern or other value.

Value-expression must have a data type of CHARACTER, VARCHAR, BINARY,
GRAPHIC, or VARGRAPHIC.

NOT

Reverses the test. NOT directs CA IDMS to test whether a specified value does not
match the specified pattern.

LIKE

Identifies the pattern to which the value being tested is compared.

'pattern'

Specifies a character string literal to be used as the test pattern.

A test pattern can include wildcard characters:

Character Meaning

_ (underscore) Represents any single character

% (percent sign) Represents any string of zero or more characters

Wildcard characters can be used in any combination and any number of times in a
test pattern.

G'graphics-pattern'

Specifies a double-byte character literal to be used as a test pattern.

Wildcard characters can be used as described for pattern except that the wildcard
characters are the double-byte equivalents of the characters shown in the table
above, and they are used to represent double-byte characters.

Expansion of Like-predicate

216 SQL Reference Guide

host-variable

Identifies a host variable that contains the character value to be used as the test
pattern. The host variable must have been declared in an SQL declaration section
and must be an elementary item instead of a group field.

special-register

Identifies a special register that contains the value to which the value being tested
is compared.

CURRENT TIMEZONE may not be specified for special-register. For expanded
special-register syntax, see Expansion of Special-register.

dynamic-parameter-marker

Indicates that a dynamic parameter is used to contain the character value for the
test pattern.

host-variable

Identifies a local variable that contains the character value to be used as the test
pattern. The local variable must have been declared in an SQL declaration
statement.

routine-parameter

Identifies a routine parameter that contains the character value to be used as the
test pattern. The routine parameter must have been defined in the
parameter-definition of the SQL routine.

local-variable

Specifies a local variable to be used in the value-expression.

ESCAPE

The ESCAPE option allows the designation of an escape character for the pattern.
The option must specify a one byte character value. If it appears in the pattern
string, the escape character must be immediately followed by either a wildcard
character or by another instance of the escape character. When this happens, the
leading escape character is dropped from the match and the following character
(wildcard or escape) is treated at face value instead of as a special character. For
example, LIKE 'A_%' matches all values beginning with A, while LIKE 'AZ_%' ESCAPE
'Z' matches all values beginning with A_.

Important! Escape characters are not supported in installations with active DBCS
support.

'escape character'

Specifies the character to be used as the escape character. Escape-character must
be a one-byte character value.

host-variable

Specifies the character to be used as the escape character. Escape-character must
be a one-byte character field.

Expansion of Like-predicate

Chapter 6: Predicates and Search Condition 217

dynamic-parameter-marker

Specifies that the one-byte escape character is supplied through a dynamic
parameter.

routine-parameter

Specifies the character to be used as the escape character. Escape-character must
be a one-byte character field.

local-variable

Specifies the character to be used as the escape character. Escape-character must
be a one-byte character field.

Usage

Truth Value of a LIKE Predicate without NOT

The result of a LIKE predicate that does not include NOT is:

■ True when the value being tested matches the test pattern

■ False when the value being tested does not match the test pattern

■ Unknown when either the value being tested or the test pattern is null

Truth Value of a LIKE Predicate with NOT

The result of a LIKE predicate that includes NOT is:

■ True when the value being tested does not match the test pattern

■ False when the value being tested matches the test pattern

■ Unknown when either the value being tested or the test pattern is null

Equivalence

If 'pattern' contains no wildcard character, the LIKE predicate is the equivalent of a
comparison predicate using an equal sign, with the restriction that the lengths of the
two values being compared must be identical. This restriction distinguishes a test for a
match from a test for equality.

Expansion of Like-predicate

218 SQL Reference Guide

Evaluation of Trailing Blanks

If value-expression containing a character string with trailing blanks is compared to the
same character string without trailing blanks in a LIKE predicate, the result is false. For
example, 'ABC ' is not like 'ABC'. Similarly, 'ABC' is not like 'ABC '.

Graphics and Character Values

If value-expression is a character value, then the search pattern must also be a
character value. If value-expression is a graphics value, then the search pattern must
also be a graphics value.

Using Host Variables and Dynamic Parameters As Test Patterns

The value of the test pattern can be supplied through a host variable or a dynamic
parameter. The value of the variable or parameter can include wildcard characters as
described above. For example, assume you code the following:

02 PATTERN PIC X(10).

MOVE '%ABC%' TO PATTERN.

SELECT WHERE LIKE :PATTERN;

The pattern being used is '%ABC% ', which means 0 to n of anything followed by ABC,
followed by 0 to n of anything, followed by 5 spaces. This doesn't yield the same result
as:

SELECT WHERE LIKE '%ABC%';

which means 0 to n of anything, followed by ABC, followed by 0 to n of anything.

Expansion of Null-predicate

Chapter 6: Predicates and Search Condition 219

Examples

Using the Underscore in a Pattern

The following SELECT statement identifies the consultants working on projects with
four-character identifiers where the middle two characters are 2 and 0:

select con_id, con_lname

 from consultant

 where proj_id like '_20_';

Using the Percent Sign in a Pattern

The following SELECT statement identifies all employees whose last names begin with A
or B:

select emp_fname, emp_lname, dept_id

 from employee

 where emp_lname like 'A%'

 or emp_lname like 'B%';

More Information

■ For more information about character string literals, see Literals.

■ For more information about host variables, see Host Variables.

■ For more information about declaring local variables, see Local Variables.

■ For more information about declaring routine-parameters, see Routine Parameters.

More information:

Local Variables (see page 81)
Host Variables (see page 77)
Literals (see page 75)
Routine Parameters (see page 84)

Expansion of Null-predicate

The null-predicate tests whether a value in a column is null.

Syntax

Expansion of null-predicate

►►── value-expression ── IS ─┬───────┬─ NULL ─────────────────────────────────►◄
 └─ NOT ─┘

Expansion of Quantified-predicate

220 SQL Reference Guide

Parameters

value-expression

Specifies the value to be tested.

IS NULL

Directs CA IDMS to test for the presence of a null value.

NOT

Reverses the test. NOT directs CA IDMS to test for the presence of a non-null value.

Usage

Truth Value of a NULL Predicate without NOT

The result of a NULL predicate that does not include NOT is:

■ True when the value being tested is null

■ False when the value being tested is not null

Truth Value of a NULL Predicate with NOT

The result of a NULL predicate that includes NOT is:

■ True when the value being tested is not null

■ False when the value being tested is null

Example

As the Search Condition in a WHERE Parameter

The following SELECT statement identifies employees for whom no telephone number
has been stored in the database:

select emp_id

 from employee

 where phone is null;

Note: For more information about search conditions, see Expansion of Search-condition.
(see page 223)

Expansion of Quantified-predicate

The quantified-predicate tests the comparison of a value to either some or all the values
in a specified set.

Expansion of Quantified-predicate

Chapter 6: Predicates and Search Condition 221

Syntax

Expansion of quantified-predicate

►►─── value-expression ───►

 ►─── comparison-operator ─┬─ ALL ──────┬─ (subquery) ──────────────────────►◄
 └─┬─ SOME ─┬─┘
 └─ ANY ──┘

Parameters

value-expression

Specifies a value to be compared to the set of values. For expanded
value-expression syntax, see Expansion of Value-expression.

comparison-operator

Specifies the comparison operator to be used in the test. Valid values for
comparison-operator are:

Comparison operator Meaning

= Equal to

¬=

<>

Not equal to

< Less than

¬< Not less than

<= Less than or equal to

> Greater than

¬> Not greater than

>= Greater than or equal to

ALL

Directs CA IDMS to test whether the specified value relates to all the values in the
test set in the way specified by the comparison operator.

SOME/ANY

Directs CA IDMS to test whether the specified value relates to at least one value in
the test set in the way specified by the comparison operator.

SOME and ANY are synonyms.

(subquery)

Specifies a subquery that returns zero or more rows and whose result table consists
of a single column. For expanded subquery syntax, see Expansion of Subquery.

Expansion of Quantified-predicate

222 SQL Reference Guide

Usage

Comparable Data Types

The data types of the values being compared must be comparable.

Note: For more information about comparing values of different data types, see
Comparison, Assignment, Arithmetic, and Concatenation Operations.

Truth Table for a Quantified Predicate with ALL

The result of a quantified predicate that includes ALL is:

■ True when the value being tested relates to every value in the test set in the way
specified by the comparison operator or when the result of the subquery is an
empty set

■ False when the value being tested does not relate to at least one value in the test
set in the way specified by the comparison operator

■ Unknown when the value being tested is null or when at least one value in the test
set is null and the value being tested relates to all other values in the test set in the
way specified by the comparison operator

Truth Table for a Quantified Predicate with SOME or ANY

The result of a quantified predicate that includes SOME or ANY is:

■ True when the value being tested relates to at least one value in the test set in the
way specified by the comparison operator

■ False when the value being tested does not relate to any value in the test set in the
way specified by the comparison operator or when the result of the subquery is an
empty set

■ Unknown when the value being tested is null or when at least one value in the test
set is null and the value being tested does not relate to any value in the test set in
the way specified by the comparison operator

Expansion of Search-condition

Chapter 6: Predicates and Search Condition 223

Examples

Using ALL

The following SELECT statement identifies the employees whose percent of salary
increase at their 1999 review was greater than their percent of salary increase in any
other year:

select emp_id

 from benefits b1

 where fiscal_year = '99'

 and review_percent > all

 (select review_percent

 from benefits b2

 where b1.emp_id = b2.emp_id

 and fiscal_year <> '99');

Using ANY

The following SELECT statement identifies employees who earned more in commission
in the 1999 fiscal year than they did in salary in at least one fiscal year:

select s.emp_id

 from sales s, position p1

 where s.emp_id = p1.emp_id

 and s.fiscal_year = '99'

 and comm_percent * sales_to_date > any

 (select salary_amount

 from position p2

 where s.emp_id = p2.emp_id);

Expansion of Search-condition

The search-condition represents a truth value in an SQL statement.

Expansion of Search-condition

224 SQL Reference Guide

Syntax

Expansion of search-condition

►►─┬───────┬─┬─ between-predicate ────┬───────────────────────────────────────►
 └─ NOT ─┘ ├─ comparison-predicate ─┤
 ├─ exists-predicate ─────┤
 ├─ in-predicate ─────────┤
 ├─ like-predicate ───────┤
 ├─ null-predicate ───────┤
 ├─ quantified-predicate ─┤
 └─ (search-condition) ─┘

 ►─┬──┬─────────────────────►◄
 │ ┌──┐ │
 └─▼─┬─ AND ─┬─┬───────┬─┬─ between-predicate ────┬─┴─┘
 └─ OR ──┘ └─ NOT ─┘ ├─ comparison-predicate ─┤
 ├─ exists-predicate ─────┤
 ├─ in-predicate ─────────┤
 ├─ like-predicate ───────┤
 ├─ null-predicate ───────┤
 ├─ quantified-predicate ─┤
 └─ (search-condition) ─┘

Parameters

NOT

Reverses the truth value, if known, of the operand that follows; that is:

■ A true value becomes false

■ A false value becomes true

■ An unknown value remains unknown

between-predicate

Represents the truth value resulting from the evaluation of a BETWEEN predicate.
For expanded between-predicate syntax, see Expansion of Between-predicate.

comparison-predicate

Represents the truth value resulting from the evaluation of a comparison predicate.
For expanded comparison-predicate syntax, see Expansion of
Comparison-predicate.

exists-predicate

Represents the truth value resulting from the evaluation of an EXISTS predicate. For
expanded exists-predicate syntax, see Expansion of Exists-predicate.

in-predicate

Represents the truth value resulting from the evaluation of an IN predicate. For
expanded in-predicate syntax, see Expansion of In-predicate.

like-predicate

Represents the truth value resulting from the evaluation of a LIKE predicate. For
expanded like-predicate syntax, see Expansion of Like-predicate.

Expansion of Search-condition

Chapter 6: Predicates and Search Condition 225

null-predicate

Represents the truth value resulting from the evaluation of a NULL predicate. For
expanded null-predicate syntax, see Expansion of Null-predicate.

quantified-predicate

Represents the truth value resulting from the evaluation of a quantified predicate.
For expanded quantified-predicate syntax, see Expansion of Quantified-predicate.

(search-condition)

Specifies another search condition to be used as a single operand in the search
condition. To be manipulated as a single operand, the search condition must be
enclosed in parentheses.

AND

Specifies that both the operand preceding the operator and the operand following
the operator must be true for the search condition to be true.

OR

Specifies that either the operand preceding the operator, the operand following the
operator, or both operands must be true for the search condition to be true.

Usage

A search condition in an SQL statement specifies criteria used to restrict the data
processed by the statement:

■ In a WHERE parameter, the search condition restricts the rows processed by the
statement.

The WHERE parameter occurs in query-specification and in the DELETE, SELECT,
and UPDATE statements.

■ In a HAVING parameter, the search condition restricts the table groupings
processed by the statement.

The HAVING parameter occurs in query-specification and the SELECT statement.

■ In a CHECK or ADD CHECK parameter, the search condition restricts the data that
can be stored in a table. A search condition in a CHECK or ADD CHECK parameter is
also called a check constraint.

The CHECK parameter occurs in the CREATE TABLE statement. The ADD CHECK
parameter occurs in the ALTER TABLE statement.

Expansion of Search-condition

226 SQL Reference Guide

Restrictions on search-condition in a CHECK or ADD CHECK Parameter

In the CHECK parameter of the CREATE TABLE statement or the ADD CHECK parameter
of the ALTER TABLE statement:

■ The search condition cannot include any host variables, routine parameters, local
variables, user-defined-functions, aggregate functions, EXISTS predicates, quantified
predicates, subqueries, or dynamic parameter markers.

■ Column references in the search condition must identify columns in the table being
created or altered.

Truth Values

The result of a search condition is one of three possible truth values: true, false, or
unknown. The unknown value occurs only when the search condition includes one or
more null values.

CA IDMS obtains the result by evaluating the search condition for a particular row in a
table or a particular table grouping. Processing occurs according to the results, as
described in the following table:

If the result is: CA IDMS:

True Continues processing the statement for the row or
group

False CA IDMS does not process the statement for the
row or group

Unknown

■ Does not process the row when the search

condition occurs in the WHERE or HAVING
parameters of a SELECT, UPDATE, or DELETE
statement, or query specification

■ Processes the row when the search condition
occurs in a CHECK clause that is tested during
an INSERT or UPDATE operation

Truth Table for AND

The result of the AND operation for each possible combination of operands is given by
the following truth table:

AND True False Unknown

True True False Unknown

False False False False

Expansion of Search-condition

Chapter 6: Predicates and Search Condition 227

AND True False Unknown

Unknown Unknown False Unknown

Truth Table for OR

The result of the OR operation for each possible combination of operands is given by the
following truth table:

OR True False Unknown

True True True True

False True False Unknown

Unknown True Unknown Unknown

Order of Evaluation

After evaluating the individual operands, CA IDMS performs the operations in a search
condition in the following order:

1. The unary operation NOT from left to right

2. AND from left to right

3. OR from left to right

You can use parentheses to override the default order of evaluation. Operations in
parentheses are performed first.

For example, assuming the value in :SALARY is 35,000, the result of the following search
condition is true:

:salary > 20000 or :salary = 0 and :salary < 30,000

When the OR operation is enclosed in parentheses, the result of the expression is false:

(:salary > 20000 or :salary = 0) and :salary < 30,000

Expansion of Search-condition

228 SQL Reference Guide

Examples

A Single Operand

The following ALTER TABLE statement directs CA IDMS to store only values less than or
equal to 10 in the BONUS_PERCENT column of the POSITION table. The search condition
in the ADD CHECK parameter consists of a single operand (a comparison predicate).

alter table position

 add check (bonus_percent <= 10);

Two Operands with OR

The following SELECT statement returns the number of employees in each department
that has either five or more employees or no employees:

select dept_id, count(emp_id)

 from employee

 group by dept_id

 having count(emp_id) >= 5

 or count(emp_id) = 0;

Multiple Operands

The following SELECT statement identifies the project leaders of projects that were
scheduled to have started by now but have not and that have no assigned employees.
The search condition in the first WHERE parameter includes three operands. The first is
a comparison predicate, the second is a NULL predicate, and the third is an EXISTS
predicate with the unary operator NOT.

select proj_leader_id

 from project p

 where est_start_date < current date

 and act_start_date is null

 and not exists

 (select emp_id

 from employee e

 where e.proj_id = p.proj_id);

Expansion of Search-condition

Chapter 6: Predicates and Search Condition 229

More Information

■ For more information about the WHERE parameter, see:

– Expansion of Subquery

– Expansion of Query-specification

– DELETE, SELECT, UPDATE

■ For more information about the HAVING parameter, see:

– Expansion of Subquery

– Expansion of Query-specification

– SELECT or UPDATE

■ For more information about the CHECK parameter, see CREATE TABLE.

■ For more information about the ADD CHECK parameter, see ALTER TABLE.

Chapter 7: Query Specifications, Subqueries, Query Expressions, and Cursor Specifications 231

Chapter 7: Query Specifications,
Subqueries, Query Expressions, and Cursor
Specifications

This section contains the following topics:

Query Specifications (see page 231)
Expansion of Query-specification (see page 231)
Subqueries (see page 238)
Expansion of Subquery (see page 239)
Query Expressions (see page 240)
Expansion of Query-expression (see page 241)
Expansion of Cursor-specification (see page 244)

Query Specifications

A query specification is the form of the SELECT statement used to represent a table of
values in an SQL statement. The values represented by a query specification are derived
from the tables, views, procedures and table procedures named in the FROM parameter
of the query specification.

Expansion of Query-specification

The expansion of query-specification represents a table to be used in the evaluation of
an SQL statement.

Syntax

Expansion of query-specification

►►─── SELECT ─┬────────────┬──►
 ├─ ALL ◄ ───┤
 └─ DISTINCT ─┘

 ►─┬─ * ──┬───────────────►
 │ ┌─────────────────────── , ───────────────────────────┐ │
 └─▼─┬── value-expression ──┬──────────────────────────┬─┴──┤
 │ └─┬──────┬───result-name ──┘ │
 │ └─ AS ─┘ │
 ├─ table-name.* ───────────────────────────────────────┤
 └─ alias.* ──┘

 ┌────────────────── , ──────────────────────────────┐
 ►─── FROM ─▼─┬─ table-reference─────┬─┬──────────┬─────────┬───┴─────────────►
 └─ (query-expression) ─┘ └─┬──────┬─┴─ alias ─┘
 └─ AS ─┘

Expansion of Query-specification

232 SQL Reference Guide

 ►─┬───┬────────────────────────────────►
 └─ WHERE ─┬─ search-condition ──────────┬─┘
 └─ extended-search-condition ─┘

 ►─┬──────────────────────────────┬───►
 └─ PRESERVE ─┬─ table-name ──┬─┘
 └─ alias ───────┘

 ►─┬──┬─────────────────────────►
 │ ┌────────────── , ────────────────┐ │
 └─ GROUP BY ─▼┬┬───────────────┬─ column-name ─┴─┤
 │├─ table-name. ─┤ │
 │└─ alias. ──────┘ │
 └── rowid-pseudo-column ───────────┘

 ►─┬───────────────────────────┬──►
 └─ HAVING search-condition ─┘

 ►─┬─────────────────────────────┬──►◄
 └─ OPTIMIZE FOR literal ROWS ─┘

Parameters

ALL

Directs CA IDMS to return all the rows, including duplicates, in the requested result
table. ALL is the default when you specify neither ALL nor DISTINCT.

DISTINCT

Directs CA IDMS to eliminate duplicate rows from the result table of the query
specification.

*

Specifies that the result table is to include all columns in the tables, views,
procedures and table procedures named in the FROM parameter of the query
specification. The columns in the tables, views, procedures and table procedures
are concatenated in the order in which the tables and views are specified in the
FROM parameter.

value-expression

Identifies the values to be included in a result column. Typically, value-expression
includes a column reference.

Each column reference in value-expression must identify a column in a table named
in the FROM parameter of the query specification.

The number of columns in a result table is the same as the number of value
expressions in the query specification defining the result table. For expanded
value-expression syntax, see Expansion of Value-expression.

AS result-name

Specifies a name for the result column identified by value-expression. Result-name
must be a 1- through 32-character name that follows the conventions for SQL
identifiers.

Expansion of Query-specification

Chapter 7: Query Specifications, Subqueries, Query Expressions, and Cursor Specifications 233

table-name.*

Specifies that the result table is to include all columns in the table identified by
table-name.

Table-name must match an occurrence of table-name in the FROM parameter.

alias.*

Specifies that the result table is to include all columns in the table identified by
alias.

Alias must match an occurrence of alias in the FROM parameter.

FROM table-reference

Identifies one or more tables, views, procedures or table procedures from which
the result table is to be derived. For expanded table-reference syntax, see
Expansion of Table-reference.

(query-expression)

Represents a table to be used in the evaluation of an SQL statement.

AS alias

Defines a new name to be used to identify the table, view, procedure or table
procedure within the query specification. Alias must be a 1- through 18-character
name that follows the conventions for SQL identifiers.

WHERE

Introduces criteria that a row must meet to be included in the result table.

search-condition

Specifies the set of values against which a row is tested:

■ When the value of search-condition is true, the row is included in the
result table

■ When the value of search-condition is false or unknown, the row is not
included in the result table

For expanded search-condition syntax, see Expansion of Search-condition.

extended-search-condition

Specifies a search condition that includes a set specification. For expanded
extended-search-condition syntax, see Expansion of Extended-search
Condition.

Expansion of Query-specification

234 SQL Reference Guide

PRESERVE

Requests an outer join on the specified table, view, or table procedure. The
PRESERVE parameter is a CA IDMS extension of the SQL standard.

To specify a more powerful outer join that is compatible with the SQL standard, use
the joined-table construct as table-reference.

table-name

Specifies by name the table, view, procedure or table procedure to be
preserved in an outer join. For expanded table-name syntax, see Expansion of
Table-name.

alias

Specifies the table, view, procedure or table procedure to be preserved in an
outer join by the alias defined for the table, view, procedure or table procedure
in the FROM parameter of the query specification.

GROUP BY column-name

Groups the rows in the table defined by the FROM and WHERE parameters by the
values in the specified columns. Rows with the same value in each grouping column
are grouped together.

Column-name must identify a column in a table, view, procedure or table procedure
named in the FROM parameter of the query specification. Multiple column names
must be separated by commas.

table-name

Specifies the table, view, procedure or table procedure includes the named
column. For expanded table-name syntax, see Expansion of Table-name.

alias

Specifies the alias associated with the table, view, procedure or table
procedure that includes the named column. Alias must be defined in the FROM
parameter of the query specification.

rowid-pseudo-column

Specifies a pseudo-column ROWID to be used as a grouping column. See
Expansion of rowid-pseudo-column for more information.

Expansion of Query-specification

Chapter 7: Query Specifications, Subqueries, Query Expressions, and Cursor Specifications 235

HAVING search-condition

Specifies criteria a group must meet to be included in the result table:

■ When the value of search-condition is true, the group is included in the result
table

■ When the value of search-condition is false or unknown, the group is not
included in the result table

For expanded search-condition syntax, see Expansion of Search-condition.

OPTIMIZE FOR literal ROWS

Specifies the expected number of output rows from this query-specification. It is
used by the optimizer to generate the best possible access strategy for satisfying
query-expression. The string literal is an integer constant. The OPTIMIZE FOR
parameter is a CA IDMS extension of the SQL standard.

Usage

Outer Join Using PRESERVE

Within query-specification, PRESERVE can be used to request an outer join on one of
the tables, views, procedures or table procedures named in the FROM parameter. If
PRESERVE is specified, the result table includes rows of the preserved table for which no
matching row exists in the other tables used in the join operation.

If no matching row exists, the corresponding columns in the result table are set to null.
Predicates in the WHERE clause other than those used to perform the outer join are
evaluated before determining whether a matching row exists.

The following statement returns the names of all active employees. The name of the
employee's spouse is also returned if found. The logic of the statement is that the result
table includes the name of each active employee, and whether the employee has a
spouse:

select e.first_name, e.last_name,

 s.first_name, s.last_name

 from employee e, relation s

 where e.empid=s.empid

 and e.status='A' -- active employee

 and s.relationship='S' -- employee's spouse

 preserve e ;

Expansion of Query-specification

236 SQL Reference Guide

Note: Outer join and many other join types can be specified to be compatible with the
SQL standard using the joined-table construct in table-reference. See Expansion of
Table-reference, for more information.

PRESERVE and Column Order

When using PRESERVE and specifying "*" as the result column list, the order of the
columns in the result table depend on which table is being preserved. The columns of
the preserved table are always first.

Value Expressions without Column References

If the value expression that identifies a result column does not include any column
references, the result column contains the same value in each row. This value is derived
directly from the value expression without reference to the table defined by the FROM
parameter of the query specification.

Uniqueness of Table References

Each alias and each table reference without an associated alias must be unique within
the FROM parameter of a query specification.

Column References in the WHERE Parameter

Each column reference directly included in the search condition in the WHERE
parameter of a query specification must unambiguously identify a column in a table,
view, procedure or table procedure specified in the FROM parameter of the query
specification, or must be an outer reference.

Note: For information about outer references, see Subqueries.

GROUP BY Parameter Requirements

When a query specification includes the GROUP BY parameter, each column reference
in the value expressions that identify the result columns must either identify a column
specified in the GROUP BY parameter or occur only in the argument of an aggregate
function. If the result columns are identified by an asterisk (*), the GROUP BY parameter
must include all the columns in the tables, views, and table procedures specified in the
FROM parameter.

Query Specifications without the GROUP BY Parameter

If a query specification does not include the GROUP BY parameter and any column
reference in a value expression that identifies a result column is included in the
argument of an aggregate function:

■ All column references in all the value expressions must be in aggregate functions

■ The entire table defined by the FROM and WHERE parameters is treated as a single
group

Expansion of Query-specification

Chapter 7: Query Specifications, Subqueries, Query Expressions, and Cursor Specifications 237

Column References in the HAVING Parameter

Each column reference included in the search condition in the HAVING parameter of a
query specification must either identify a column specified in the GROUP BY parameter
of the query specification, occur in the argument of an aggregate function, or be an
outer reference.

When to Use OPTIMIZE FOR Literal ROWS

Under some circumstances, the SQL optimizer may choose a less than optimal access
strategy to satisfy a query expression. This typically happens with host program
embedded SQL statements which contain WHERE clauses with host variable references,
rather than explicit constants. For example, a BETWEEN clause involving host variables
may induce the optimizer to assume many rows will be retrieved, causing it to choose
an area sweep to satisfy the request. Without knowing the underlying values of the
host variables, the optimizer cannot know if the BETWEEN will always qualify a small
number of rows, thus possibly making an index retrieval much more efficient. The
OPTIMIZE FOR literal ROWS clause is used to override the number of expected rows
deduced by the optimizer. This allows it to generate better access strategies.

Examples

In a CREATE VIEW Statement

The following CREATE VIEW statement defines a view derived from three tables:

create view former_employee

 as select e.emp_id, emp_fname, emp_lname,

 job_title, start_date, finish_date

 from employee e, job j, position p

 where e.emp_id = j.emp_id

 and e.emp_id = p.emp_id

 and finish_date is not null;

In an INSERT Statement

The following INSERT statement inserts rows into the TEMP_EMP_SKILL table.

insert into temp_emp_skill

 select emp.emp_id, dept_id, skill_name, skill_level

 from employee emp, expertise exp, skill s

 where emp.emp_id = exp.emp_id

 and exp.skill_id = s.skill_id;

Subqueries

238 SQL Reference Guide

Subqueries

A subquery is a query specification used in predicates or in the SET clause of the UPDATE
statement or in XML-value-expression. Each subquery in a predicate represents a set of
zero or more values to be used in the test specified by the predicate. A subquery used in
the SET clause of the UPDATE statement or in XML-value-expression represents either
the NULL value or a single value. The values represented by a subquery are derived from
the query specification of the subquery.

Subqueries are always enclosed in parentheses, except when used as
XML-value-expression

Nesting Subqueries

You can nest subqueries in an SQL statement. For example, a subquery in the WHERE
parameter of a SELECT statement can include another subquery in its own WHERE or
HAVING parameter:

select ... where ... (select ... where ... (select ...));
 └─────┬────┘
 Subquery 2
 └─────────────────┬────────────────┘
 Subquery 1
└────────────────────────────┬───────────────────────────┘
 SELECT statement

Outer References

An outer reference is a reference to a column named in an outer subquery, an outer
query specification, or the SELECT statement where the subquery occurs.

For example, with reference to the illustration above:

■ If Subquery 2 contains a reference to a column named in Subquery 1, it is an outer
reference

■ If Subquery 2 contains a reference to a column named in the SELECT statement, it is
an outer reference

■ If Subquery 1 contains a reference to a column named in the SELECT statement, it is
an outer reference

Expansion of Subquery

Chapter 7: Query Specifications, Subqueries, Query Expressions, and Cursor Specifications 239

Correlated Subqueries

A correlated subquery is a subquery that contains an outer reference.

CA IDMS must evaluate a correlated subquery once for each value in the
outer-reference column. The result of the evaluation differs depending on the value in
the outer-reference column.

In contrast, CA IDMS must evaluate a subquery that does not include any outer
references only once.

For an example of a correlated subquery, see A Correlated Subquery in a Comparison
Predicate.

Expansion of Subquery

The expansion of subquery specifies a set of values to be used in the evaluation of a
predicate or the SET clause of an UPDATE statement.

Syntax

Expansion of subquery

►►─── query-specification ──►◄

Parameters

query-specification

Specifies the query specification that comprises the subquery. For expanded
query-specification syntax, see Expansion of Query-specification.

Usage

Restriction on DISTINCT

You can specify DISTINCT only once in a subquery (not counting occurrences in nested
subqueries). For example, if the value expression that identifies the result column
includes an aggregate function with the keyword DISTINCT, you cannot specify DISTINCT
either before the value expression or with any other aggregate function.

Column References in the WHERE parameter

Each column that the query specification of a subquery references must identify a
column of a table, view, procedure or table procedure named in the FROM clause of the
query specification or be an outer reference.

Query Expressions

240 SQL Reference Guide

Examples

A Subquery Without Correlation in an IN Predicate

The following SELECT statement returns the name and department identifier of each
employee who has more than 80 hours of outstanding vacation time. The set of values
returned by the subquery consists of the identifiers of all employees with more than 80
hours of outstanding vacation time.

select emp_fname, emp_lname, dept_id

 from employee

 where emp_id in

 (select emp_id

 from benefits

 group by emp_id

 having sum(vac_accrued) - sum(vac_taken) > 80);

A Correlated Subquery in a Comparison Predicate

The following SELECT statement identifies employees who earn more than their
managers. The subquery is evaluated once for each value in the EMP_ID column of the
EMPLOYEE table named in the outer SELECT statement.

select e1.emp_id

 from employee e1, position p1

 where e1.emp_id = p1.emp_id

 and p1.salary_amount >

 (select p2.salary_amount

 from employee e2, position p2

 where e1.manager_id = e2.emp_id

 and e2.emp_id = p2.emp_id);

More Information

■ For more information about aggregate functions in subqueries, see
Aggregate-function.

■ For more information about subqueries in comparison predicates, see Expansion of
Comparison-predicate.

Query Expressions

A query expression is an expression used to represent a table of values in an SQL
statement. The operands in a query expression are tables represented by query
specifications. A query expression can include one or more query specifications. Each
query specification is linked to the next by the UNION operator. The data lengths of the
unioned columns must be identical.

Expansion of Query-expression

Chapter 7: Query Specifications, Subqueries, Query Expressions, and Cursor Specifications 241

Result of a Query Expression

The table resulting from the evaluation of a query expression is derived from the
concatenation of the rows in the tables defined by the operands.

Note: For more information about other types of expressions, see Values and Value
Expressions.

Expansion of Query-expression

The expanded parameters of query-expression represent a table to be used in the
evaluation of an SQL statement.

Syntax

Expansion of query-expression

►►─┬─ query-specification ─┬──►
 └─ (query-expression) ──┘

 ►─┬──┬───────────────────────►◄
 │ ┌──┐ │
 └─▼─ UNION ─┬───────┬──┬─ query-specification ─┬─┴─┘
 └─ ALL ─┘ └─ (query-expression) ──┘

Parameters

query-specification

Represents a table resulting from the evaluation of a query specification. For
expanded query-specification syntax, see Expansion of Query-specification.

(query-expression)

Specifies another query expression to be used as a single operand in the query
expression.

UNION all

Specifies that:

■ The result table is to include the rows from the table represented by the
operand preceding the UNION operator and the rows from the table
represented by the operand following the UNION operator

■ Duplicate rows are eliminated from the table resulting from the UNION
operation, unless the ALL keyword is present.

The data types and lengths of unioned columns must be compatible. Detailed
information is presented under "Usage".

ALL

Specifies that all rows from the UNION operation are retained; duplicates are not
discarded.

Expansion of Query-expression

242 SQL Reference Guide

Usage

Result Data Type

This matrix shows the data type that results when a UNION operation is performed on
columns of compatible data types.

 I2 I4 I8 R4 R8 PD ZD UP UZ CH VC BI DT GR VG TI DI

 --

I2 I2 I4 I8 R4 R8 PD ZD PD ZD - - - - - - TI DI

I4 I4 I4 I8 R4 R8 PD ZD PD ZD - - - - - - TI DI

I8 I8 I8 I8 R4 R8 PD ZD PD ZD - - - - - - TI DI

R4 R4 R4 R4 R4 R8 R4 R4 R4 R4 - - - - - - TI DI

R8 R8 R8 R8 R8 R8 R8 R8 R8 R8 - - - - - - TI DI

PD PD PD PD R4 R8 PD PD PD PD - - - - - - TI DI

ZD ZD ZD ZD R4 R8 PD ZD PD ZD - - - - - - TI DI

UP PD PD PD R4 R8 PD ZD UP UZ - - - - - - TI DI

UZ ZD ZD ZD R4 R8 PD ZD UP UZ - - - - - - TI DI

CH - - - - - - - - - CH VC CH - GR VG - -

VC - - - - - - - - - VC VC VC - VG VG - -

BI - - - - - - - - - CH VC BI - GR VG - -

DT - - - - - - - - - - - - DT - - - -

GR - - - - - - - - - CH VC BI - GR VG - -

VG - - - - - - - - - VC VC BI - VG VG - -

TI TI TI TI TI TI TI TI TI TI - - - - - - TI -

DI DI DI DI DI DI DI DI DI DI - - - - - - - DI

Key:

I2—Small integer BI—Binary

I4—Integer DT—Date/time

I8—Long integer UP—Unsigned decimal

R4—Real UZ—Unsigned numeric

R8—Double precision GR—Graphic

PD—Decimal VG—Vargraphic

ZD—Numeric TI—Time interval

CH—Character DI—Date interval

VC—Varchar -—Incompatible types

Expansion of Query-expression

Chapter 7: Query Specifications, Subqueries, Query Expressions, and Cursor Specifications 243

Nullable Columns

If both columns in a UNION operation are not nullable, the result is not nullable;
otherwise the result is nullable.

Result Precision

The result precision of decimal, numeric, char, varchar, graphic, vargraphic, and binary is
always large enough to hold the larger of the source columns in a UNION operation.

Restrictions on Multiple Query Specifications

If a query expression includes more than one query specification:

■ Result tables returned by the query specifications must all have the same number
of columns

■ Columns in any given position in the result tables returned by the query
specifications must be compatible for assignment

Updateable Query Expressions

A query expression is updateable under the following conditions:

■ The expression consists of a single query specification (that is, the query expression
does not include the UNION operator)

■ The FROM parameter in the query specification specifies only one table, view,
procedure or table procedure

■ If a view is named in the FROM parameter, it is updateable

■ The query specification does not contain DISTINCT, PRESERVE, GROUP BY, or
HAVING parameters, nor is an aggregate function used in the specification of a
result column

Note: For more information about usage considerations for query expressions, see
"Usage" under Expansion of Query-specification

Expansion of Cursor-specification

244 SQL Reference Guide

Example

In a DECLARE CURSOR Statement

The following DECLARE CURSOR statement creates a cursor for the table resulting from
the UNION of two query specifications. The four result columns identified by the second
query specification have the same data types, lengths, and null specifications as the four
result columns identified by the first query specification.

declare all_curr_emp cursor

 for select emp_id, emp_fname, emp_lname, dept_id

 from employee

 where status <> 'T'

 union select con_id, con_fname, con_lname, dept_id

 from consultant

 where proj_id is not null

 order by 4, 1, 2, 3;

Expansion of Cursor-specification

The expanded parameters of cursor-specification represent the body of a cursor
definition.

Syntax

Expansion of cursor-specification

►►── query-expression ──┬────────────────────────────┬────────────────────────►
 └── order-by-specification ──┘

 ►──────────────────────┬───┬─────►◄
 └── FOR ─┬─ READ ONLY ──────────────────────────┤
 └─ UPDATE ─┬───────────────────────────┤
 │ ┌────── , ───────┐ │
 └── OF ─▼── column-name ─┴──┘

Expansion of order-by-specification

 ┌─────────────────────── , ───────────────────────────┐
►►── ORDER BY ─▼─┬─┬───────────────┬─ column-name ─┬───┬──────────┬──┴────────►◄
 │ ├─ table-name. ─┤ │ ├─ ASC ◄───┤
 │ └─ alias. ──────┘ │ └─ DESC ───┘
 ├─ column-number ─────────────────┤
 ├─ result-name ───────────────────┤
 └─ rowid-pseudo-column ───────────┘

Expansion of Cursor-specification

Chapter 7: Query Specifications, Subqueries, Query Expressions, and Cursor Specifications 245

Parameters

Expansion of cursor-specification

query-expression

Represents a table resulting from the evaluation of a query-expression. For
expanded syntax, see Expansion of Query-expression.

order-by-specification

Specifies a sort order for the rows in the result table defined by query-expression.
Expanded syntax for order-by-specification is shown above, immediately following
the cursor-specification syntax.

FOR READ ONLY

Specifies the cursor associated with this cursor-expression is used for retrieval
operations only. If specified, it prohibits the execution of both positioned UPDATEs
and DELETEs that reference the cursor.

FOR UPDATE

Specifies that the cursor is used for positioned UPDATE operations.

OF column-name

Identifies a column that may be updated through positioned UPDATE
statements. If no columns are specified, then all columns in the table may be
updated.

Expansion of order-by-specification

ORDER BY

Sorts the rows in the result table defined by query-expression in ascending or
descending order by the values in the specified columns. Rows are ordered first by
the first column specified, then by the second column specified with the ordering
established by the first column, then by the third column specified, and so on.

column-name

Specifies a sort column by name. Column-name must identify a column in the result
table of the query expression.

table-name

Specifies the table, view, procedure or table procedure that includes the
named column. For Expansion of Table-name expanded table-name syntax, see
Identifying Entities in Schemas (see page 42).

alias

Specifies the alias associated with the table, view, procedure or table
procedure that includes the named column. Alias must be defined in the FROM
parameter of the query specification that makes up the query expression.

Expansion of Cursor-specification

246 SQL Reference Guide

column-number

Specifies a sort column by the position of the column in the result table. The first
result column is in position 1.

Column-number must be an integer in the range 1 through the number of columns
in the result table.

result-name

Specifies the sort column by the result name specified in the AS parameter of the
query expression.

rowid-pseudo-column

Specifies the sort column as a ROWID pseudo-column. For expanded syntax, see
Expansion of rowid-pseudo-column.

ASC

Indicates that the values in the specified column are to be sorted in ascending
order. ASC is the default.

DESC

Indicates that the values in the specified column are to be sorted in descending
order.

Usage

Updateable cursors

A cursor defined by a cursor specification is updateable if the cursor specification:

■ Contains an updateable query-expression

■ Does not contain an ORDER BY clause

■ Does not contain a FOR READ ONLY clause

Updateable cursors may be referenced in positioned DELETE statements.

To reference a cursor in a positioned UPDATE statement, it must be updateable and the
FOR UPDATE clause must be specified within the cursor specification.

Note: To ensure optimal performance when processing a cursor that is referenced in a
positioned UPDATE statement, you should explicitly identify the columns to be updated
rather than specifying FOR UPDATE without naming the columns.

Expansion of Cursor-specification

Chapter 7: Query Specifications, Subqueries, Query Expressions, and Cursor Specifications 247

Example

Defining a Cursor for retrieval-only

The following DECLARE CURSOR statement defines a static cursor by including a
cursor-specification directly. In this case, the cursor being defined can only be used to
retrieve rows from the database. By coding the FOR READ ONLY option, you ensure that
neither positioned UPDATEs nor DELETEs are allowed against the cursor:

EXEC SQL

 DECLARE EMP_CURSOR CURSOR FOR

 SELECT EMP_ID, DEPT_ID, EMP_LNAME

 FROM EMPLOYEE

 FOR READ ONLY

END-EXEC

Defining a Dynamic Cursor for UPDATE Operations

The following set of code defines a dynamic cursor to be used to update the DEPT_ID
column of the EMPLOYEE table. The cursor-specification containing the FOR UPDATE
clause is first prepared and then an ALLOCATE CURSOR statement is used to create the
cursor:

MOVE 'SELECT *

 FROM EMPLOYEE FOR UPDATE OF DEPT_ID'

 TO ST-TEXT.

EXEC SQL

 PREPARE 'EMP-STATEMENT' FROM :ST-TEXT

END-EXEC

EXEC SQL

 ALLOCATE 'EMP-CURSOR' CURSOR FOR 'EMP-STATEMENT'

END-EXEC

Chapter 8: Statements 249

Chapter 8: Statements

Expansion of Cursor-specification

250 SQL Reference Guide

This section contains the following topics:

Statement Categories (see page 251)
ALLOCATE CURSOR (see page 258)
ALTER ACCESS MODULE (see page 261)
ALTER CATALOG (see page 269)
ALTER CONSTRAINT (see page 270)
ALTER FUNCTION (see page 272)
ALTER INDEX (see page 277)
ALTER PROCEDURE (see page 279)
ALTER SCHEMA (see page 285)
ALTER TABLE (see page 290)
ALTER TABLE PROCEDURE (see page 300)
BEGIN DECLARE SECTION (see page 305)
CALL (see page 306)
CLOSE (see page 313)
COMMIT (see page 315)
CONNECT (see page 317)
CREATE ACCESS MODULE (see page 320)
CREATE CALC (see page 333)
CREATE CONSTRAINT (see page 334)
CREATE FUNCTION (see page 341)
CREATE INDEX (see page 352)
CREATE KEY (see page 357)
CREATE PROCEDURE (see page 361)
CREATE SCHEMA (see page 373)
CREATE TABLE (see page 378)
CREATE TABLE PROCEDURE (see page 387)
CREATE TEMPORARY TABLE (see page 392)
CREATE VIEW (see page 394)
DEALLOCATE PREPARE (see page 401)
DECLARE CURSOR (see page 402)
DECLARE EXTERNAL CURSOR (see page 406)
DELETE (see page 408)
DESCRIBE (see page 413)
DESCRIBE CURSOR (see page 416)
DROP ACCESS MODULE (see page 418)
DROP CALC (see page 420)
DROP CONSTRAINT (see page 421)
DROP FUNCTION (see page 423)
DROP INDEX (see page 424)
DROP KEY (see page 426)
DROP PROCEDURE (see page 427)
DROP SCHEMA (see page 428)
DROP TABLE (see page 430)
DROP TABLE PROCEDURE (see page 432)
DROP VIEW (see page 433)
END DECLARE SECTION (see page 434)
EXECUTE (see page 435)

Statement Categories

Chapter 8: Statements 251

EXECUTE IMMEDIATE (see page 439)
EXPLAIN (see page 441)
FETCH (see page 449)
GET DIAGNOSTICS (see page 456)
GET STATISTICS (see page 463)
GRANT Access Module Execution Privilege (see page 467)
GRANT Definition Privileges (see page 470)
GRANT Table Access Privileges (see page 474)
INCLUDE (see page 479)
INSERT (see page 487)
OPEN (see page 494)
PREPARE (see page 497)
RELEASE (see page 501)
RESUME SESSION (see page 502)
REVOKE All Table Privileges (see page 503)
REVOKE SQL Definition Privileges (see page 506)
REVOKE Execution Privilege (see page 510)
REVOKE Table Access Privileges (see page 512)
ROLLBACK (see page 516)
SELECT (see page 518)
SET ACCESS MODULE (see page 534)
SET host-variable Assignment (see page 535)
SET SESSION (see page 536)
SET TRANSACTION (see page 542)
SUSPEND SESSION (see page 544)
TRANSFER OWNERSHIP (see page 545)
UPDATE (see page 546)
WHENEVER (see page 556)

Statement Categories

CA IDMS SQL statements fall into the following categories:

Category Description

Access module management Control the creation and characteristics of
access modules

Authorization Control access to and ownership of database
entities

Control Define the flow of control in an SQL routine
and assign values from expressions to routine
parameters or local variables

Data description Control the creation and characteristics of
logical database entities

Statement Categories

252 SQL Reference Guide

Category Description

Data manipulation Retrieve and update data in the database

Diagnostics & Statistics Diagnose the execution of SQL statements
and return statistical information of the
current transaction.

Dynamic compilation Control the run-time compilation and
execution of SQL statements

Precompiler directives Instruct the precompiler to include specified
data structures and to generate specified
error-processing code

Session management Establish and control the characteristics of
SQL sessions

Transaction management Establish and control the characteristics of CA
IDMS database transactions

Access Module Management Statements

Statement Purpose

ALTER ACCESS MODULE Modifies an access module in the dictionary

CREATE ACCESS MODULE Creates an access module from one or more
SQL statement modules (RCMs)

DROP ACCESS MODULE Deletes an access module and its definition
from the dictionary

EXPLAIN Describes the strategy used to access data for
a DELETE, INSERT, SELECT, or UPDATE
statement

Authorization Statements

Statement Purpose

GRANT definition privileges Gives one or more users the privilege of
performing selected actions on a specified
schema, access module, table, or view

GRANT execution privilege Gives one or more users the privilege of
executing a specified access module

GRANT all privileges Gives one or more users all definition and
access privileges on a specified table or view

Statement Categories

Chapter 8: Statements 253

Statement Purpose

GRANT table access privileges Gives one or more users the privilege of
performing selected actions on a specified
table or view

REVOKE definition privileges Removes from one or more users the
privilege of performing selected actions on a
specified schema, access module, table, or
view

REVOKE execution privilege Removes from one or more users the
privilege of executing a specified access
module

REVOKE all privileges Removes from one or more users all
definition and access privileges on a specified
table or view

REVOKE table access privileges Removes from one or more users the
privilege of performing selected actions on a
specified table or view

TRANSFER OWNERSHIP Passes ownership of a schema from one user
or group of users to another

Control Statements

The CA IDMS SQL Control statements allow you to define the flow of control in an SQL
routine and assign values to routine parameters or local variables. These statements are
used primarily by the following:

■ Developers of SQL routines

■ Programmers developing SQL application programs

■ Users of interactive SQL tools

Note: For more information about the individual Control statements, see Control
Statements.

Data Description Statements

Statement Purpose

ALTER CATALOG Supports the correct sorting of additional
national characters for specific languages
(used by the alternate character set feature)

ALTER FUNCTION Modifies the definition of a function in the
dictionary

Statement Categories

254 SQL Reference Guide

Statement Purpose

ALTER INDEX Enables the maximum number of entries to
be changed without affecting the existing
index structure

ALTER PROCEDURE Modifies the definition of a procedure in the
dictionary

ALTER TABLE PROCEDURE Modifies the definition of a table procedure in
the dictionary

ALTER SCHEMA Modifies the definition of a schema in the
dictionary

ALTER TABLE Modifies the definition of a base table in the
dictionary

CREATE CALC Defines a CALC key on a base table

CREATE CONSTRAINT Defines a constraint in the dictionary

CREATE FUNCTION Defines a function in the dictionary

CREATE INDEX Defines an index on a base table

CREATE PROCEDURE Defines a procedure in the dictionary

CREATE SCHEMA Defines a schema in the dictionary

CREATE TABLE Defines a table in the dictionary

CREATE TABLE PROCEDURE Defines a table procedure in the dictionary

CREATE TEMPORARY TABLE Defines a temporary table

CREATE VIEW Defines a view in the dictionary

DROP CONSTRAINT Deletes the definition of a constraint from the
dictionary

DROP CALC Deletes the definition of a CALC key from the
dictionary

DROP FUNCTION Deletes the definition of a function from the
dictionary

DROP INDEX Deletes the definition of an index from the
dictionary

DROP PROCEDURE Deletes the definition of a procedure in the
dictionary

DROP SCHEMA Deletes the definition of a schema from the
dictionary

DROP TABLE Deletes the definition of a base table from the
dictionary

Statement Categories

Chapter 8: Statements 255

Statement Purpose

DROP TABLE PROCEDURE Deletes the definition of a table procedure in
the dictionary

DROP VIEW Deletes the definition of a view from the
dictionary

Data Manipulation Statements

Statement Purpose

CLOSE* Places a specified cursor in the closed state

DECLARE CURSOR* Defines a cursor for a specified result table

DECLARE EXTERNAL CURSOR* Identifies an externally defined global cursor
to be used by the application program

DELETE Deletes one or more rows from a table

FETCH* Retrieves values from the result table
associated with a cursor

INSERT Adds one or more new rows to a table

OPEN* Places a specified cursor in the open state

SELECT Retrieves values from one or more tables and
views

UPDATE Modifies the values in one or more rows of a
table

*Programmatic only

Diagnostics and Statistics Statements

The SQL Diagnostic statements category is used for diagnosing the execution of SQL
statements and for returning statistical information for the current transaction.

Note: These statements can be used as embedded SQL, including embedding in an
SQL-invoked routine. The GET STATISTICS statement can also be used in the SQL
command facility and the CA IDMS Visual DBA command console.

Statement Purpose

GET DIAGNOSTICS* Diagnoses the execution of the last executed SQL
statement.

Statement Categories

256 SQL Reference Guide

Statement Purpose

GET STATISTICS Returns statistical information for the current
transaction.

*Programmatic only

Dynamic Compilation Statements

Statement Purpose

ALLOCATE CURSOR* Defines a cursor for a dynamically-prepared
statement

DEALLOCATE PREPARE* Destroys a dynamically-compiled statement
and all other dynamically-compiled
statements that directly or indirectly
reference it.

DESCRIBE* Directs CA IDMS to return information about
a dynamically-compiled SQL statement in an
SQL descriptor area

EXECUTE* Executes a dynamically-compiled SQL
statement

EXECUTE IMMEDIATE* Dynamically compiles and executes an SQL
statement

PREPARE* Dynamically compiles an SQL statement for
later execution in the application program

*Programmatic only

Precompiler-directive Statements

Statement Purpose

BEGIN DECLARE SECTION* Notifies the precompiler that a host variable
definition is beginning.

END DECLARE SECTION* Notifies the precompiler that a host variable
definition has ended.

INCLUDE* Directs the precompiler to create host
variable definitions for a specified structure or
table in the application program

Statement Categories

Chapter 8: Statements 257

Statement Purpose

WHENEVER* Specifies an action to be taken when the
execution of an SQL statement results in a
nonzero SQLCODE value

*Programmatic only

Session Management Statements

Statement Purpose

CONNECT Establishes a connection to a CA IDMS
dictionary and begins an SQL session

RELEASE Releases a connection to a CA IDMS dictionary
and ends the SQL session

RESUME SESSION Resumes a suspended SQL session

SET SESSION Establishes SQL session characteristics

SUSPEND SESSION Suspends an SQL session and any transaction
currently active within the session

Transaction Management Statements

Statement Purpose

COMMIT Makes permanent the changes to the
database made during the current transaction
and optionally ends the transaction

ROLLBACK Cancels changes made to the database during
the current transaction and ends the
transaction

SET ACCESS MODULE* Identifies the access module to be used by a
transaction

SET TRANSACTION Overrides access module defaults for
conditions under which a transaction
executes

*Programmatic only

ALLOCATE CURSOR

258 SQL Reference Guide

ALLOCATE CURSOR

The ALLOCATE CURSOR statement defines a cursor for a dynamically-prepared
statement or for a result set returned from a previously invoked procedure.

Syntax

►►──── ALLOCATE extended-cursor-name ──►

 ►┬─ CURSOR ──────┬─────────────────┬─ FOR extended-statement-name ────────┬───►◄
 │ ├ WITH RETURN ────┤ │
 │ └ WITHOUT RETURN ◄┘ │
 └┬──────────┬─ FOR PROCEDURE SPECIFIC PROCEDURE spec-routine-designator ─┘
 └─ CURSOR ─┘

Parameters

extended-cursor-name

Identifies the name of the cursor being defined. The name must conform to the
rules for an identifier and must be unique within the specified scope.

extended-statement-name

Identifies the name of the statement for which the cursor is being defined. A
statement with this name and scope must have been prepared within the same SQL
transaction as that in which the ALLOCATE CURSOR statement is being executed.

WITH RETURN

Defines the cursor as a returnable cursor. If a returnable cursor is allocated in an
SQL-invoked procedure and is in the open state when the procedure terminates, a
result set is returned to the caller.

WITHOUT RETURN

Specifies that the cursor is not a returnable cursor. This is the default.

FOR PROCEDURE SPECIFIC PROCEDURE

Specifies that the cursor is to be allocated for a result set returned by the invocation
of the identified procedure. This type of cursor is called a received cursor.

spec-routine-designator

Identifies the SQL-invoked procedure.

Parameters for Expansion of spec-routine-designator

schema-name

Specifies the schema with which the procedure identified by procedure-identifier is
associated.

procedure-identifier

Identifies a procedure defined in the dictionary.

ALLOCATE CURSOR

Chapter 8: Statements 259

host-variable

Identifies a host variable containing the name of the previously invoked procedure.

routine-parameter

Identifies a routine parameter containing the name of the previously invoked
procedure.

local-variable

Identifies a local variable containing the name of the previously invoked procedure.

SCHEMA

Qualifies the procedure name with the name of the schema with which it is
associated. This option is an extension to the SQL standard.

schema-name

Specifies the schema with which the procedure is associated.

host-variable

Identifies a host variable containing the name of the schema with which the
previously invoked procedure is associated.

routine-parameter

Identifies a routine parameter containing the name of the schema with which the
previously invoked procedure is associated.

local-variable

Identifies a local variable containing the name of the schema with which the
previously invoked procedure is associated.

Note: For more information about using a schema name to qualify a procedure, see
Identifying Entities in Schemas.

Usage

Updateable Cursors

The PREPAREd statement referenced in the ALLOCATE CURSOR statement must be a
cursor-specification. The cursor created as a result of the ALLOCATE CURSOR statement,
is updateable, if the cursor-specification is updateable.

Allocating a Received Cursor for a Result Set

If the ALLOCATE statement is used for a result set, then the procedure identified by
spec-routine-designator must have been previously invoked by an SQL CALL or SELECT
statement in the same transaction as that in which the ALLOCATE CURSOR statement is
executed.

ALLOCATE CURSOR

260 SQL Reference Guide

The result sets that the SQL-invoked procedure returns, form a list ordered in the
sequence in which the cursors were opened by the procedure. When a received cursor
is allocated, the following actions are taken:

■ The new cursor is associated with the first result set in the list of returned result
sets.

■ The result set is removed from the list.

■ The cursor is placed in the open state.

■ The cursor is positioned at the same point at which the corresponding returnable
cursor was left by the procedure.

If an SQL-invoked procedure has started multiple sessions, the sequence of returned
result sets is by session, in the order in which the sessions were connected. Within each
session, the result sets are sequenced by the order in which their cursors were opened.

A received cursor cannot be used to return a result set nor can it be referenced in a
positioned update or delete statement.

Note: For more information about updateable cursors, see DESCRIBE.

Examples

Creating a Local Cursor

The following ALLOCATE CURSOR statement creates a local cursor called C1 and
associates it with the local statement whose name is passed in :sname:

EXEC SQL

 ALLOCATE 'C1' CURSOR FOR :SNAME

END-EXEC

Creating a Global Cursor

The following ALLOCATE CURSOR statement creates a global cursor whose name is
passed in :CNAME and associates it with the global statement whose name is passed in
:SNAME:

EXEC SQL

 ALLOCATE GLOBAL :CNAME CURSOR FOR :SNAME

END-EXEC

ALTER ACCESS MODULE

Chapter 8: Statements 261

Sharing a Statement Definition

The following two ALLOCATE CURSOR statements create two cursors, one of which is
local and one of which is global. They are both associated with the same local
statement:

EXEC SQL

 ALLOCATE 'C1' CURSOR FOR 'S1'

END-EXEC

EXEC SQL

 ALLOCATE GLOBAL CURSOR 'G1' FOR 'S1'

END-EXEC

Allocating a Received Cursor for a Result Set

exec sql

 call GET_EMPLOYEE_INFO(1003)

end-exec

exec sql

 allocate 'RECEIVED_CURSOR_GET_EMPG' for procedure specific

 procedure GET_EMPLOYEE_INFO

end-exec

ALTER ACCESS MODULE

The ALTER ACCESS MODULE access module management statement modifies an access
module in the dictionary. It is a CA IDMS extension of the SQL standard.

Authorization

To issue an ALTER ACCESS MODULE statement, you must hold the ALTER privilege on or
own the access module named in the statement.

In addition to enforcing this authorization requirement, CA IDMS validates the access
module owner's authority to execute each DML statement if the dictionary to which the
SQL session is connected is controlled by CA IDMS internal security.

If the access module owner does not hold the authority to execute a DML statement in
the access module, when the access module is altered, a warning is issued. If the owner
still lacks a necessary authority when the access module is executed, an error is
returned.

ALTER ACCESS MODULE

262 SQL Reference Guide

Syntax

►►─── ALTER ACCESS MODULE ─┬────────────────┬─ access-module-name ────────────►
 └─ schema-name. ─┘

 ►─┬─────────────────────────────┬──►
 └─ VERSION am-version-number ─┘

 ►─┬───────────────────────────────┬──►
 │ ┌───────── , ─────────┐ │
 └─ ADD ─▼─ rcm-specification ─┴─┘

 ►─┬─────────────────────────┬──►
 │ ┌───── , ─────┐ │
 └─ DROP ─▼─ rcm-name ──┴──┘

 ►─┬──┬─►
 │ ┌───────── , ─────────┐ │
 └─ REPLACE ─┬─▼─ rcm-specification ─┴──────────────────────────────────┬─┘
 ├─ CHANGED ──┤
 └─ ALL ┬───┬─┘
 │ ┌───────────────── , ───────────────────┐ │
 └ MAP ─▼─┬ schema-name-1 ┬ TO - schema-name-2 ─┴──┘
 └ NULL ─────────┘

 ►─┬───────────────────────────┬──►
 └─ AUTO RECREATE ─┬─ ON ──┬─┘
 └─ OFF ─┘

 ►─┬───────────────────────────────┬──►
 └─ VALIDATE ─┬─ BY STATEMENT ─┬─┘
 ├─ BY MODULE ────┤
 └─ ALL ──────────┘

 ►─┬──────────────┬───►
 ├─ READ ONLY ──┤
 └─ READ WRITE ─┘

 ►─┬──┬───────────────────────────────►
 └─ DEFAULT ISOLATION ─┬─ CURSOR STABILITY ─┤
 └─ TRANSIENT READ ───┘

 ►─┬───┬────────────────►◄
 │ ┌────────────────── , ────────────────────┐ │
 └─ READY ─┬─▼─ segment-name.area-name ready-options ──┴─┬─┘
 └─ ALL ready-options ─────────────────────────┘

Expansion of rcm-specification

►►─┬────────────────────┬─ rcm-name ─┬──────────────────────────────┬─────────►◄
 └─ dictionary-name. ─┘ └─ VERSION rcm-version-number ─┘

Expansion of ready-options

►►─┬───────────────────────┬──►
 ├─ SHARED RETRIEVAL ────┤
 ├─ SHARED UPDATE ───────┤
 ├─ PROTECTED RETRIEVAL ─┤
 ├─ PROTECTED UPDATE ────┤
 └─ EXCLUSIVE ───────────┘

 ►─┬───────────────┬──►◄
 ├─ INCREMENTAL ─┤
 └─ PRECLAIM ────┘

ALTER ACCESS MODULE

Chapter 8: Statements 263

Parameters

access-module-name

Specifies the name of the access module being modified. Access-module-name must
identify an access module defined and stored in the dictionary.

schema-name

Specifies the schema associated with the access module. Schema-name must
identify the schema associated with the version of the access module being
modified.

If you do not specify schema-name, the value used by CA IDMS is the current
schema for your SQL session.

am-version-number

Specifies the version of the access module to be modified.

If you do not specify am-version-number, the version number is set to that found as
a result of loading the access module from the dictionary. This depends on the test
version number and the loadlist in effect for your user session.

ADD rcm-specification

Specifies one or more RCMs to be added to the access module.

Expanded syntax for rcm-specification appears at the end of the statement syntax.
Descriptions for these parameters are located at the end of this section.

DROP rcm-name

Specifies one or more RCMs to be deleted from the access module.

REPLACE rcm-specification

Directs CA IDMS to replace one or more RCMs in the access module with the most
recent copies from the dictionary.

Expanded syntax for rcm-specification appears at the end of the statement syntax.
Descriptions for these parameters are located at the end of this section.

ALTER ACCESS MODULE

264 SQL Reference Guide

CHANGED

Directs CA IDMS to replace all RCMs whose definition timestamp in the access
module does not match the definition timestamp in the RCM load module.

ALL

Directs CA IDMS to recompile all RCMs in the access module.

MAP

Specifies one or more mappings for schema names that qualify table and view
identifiers in data manipulation statements. MAP can be specified only with
REPLACE ALL.

If you specify MAP, you must supply all schema mappings because existing rules are
deleted from the access module.

If you do not specify MAP, schema-name mappings in the existing access module
remain in effect.

schema-name-1

Directs CA IDMS to replace occurrences of the specified schema name with the
schema name specified in the TO parameter.

NULL

Directs CA IDMS to use the schema name specified in the TO parameter as the
qualifier for unqualified table and view identifiers.

TO schema-name-2

Directs CA IDMS to use the specified schema name as the replacement for
schema-name-1 or as the qualifier for unqualified table and view identifiers.

AUTO RECREATE

Specifies whether CA IDMS is to re-create the access module after detecting any of
the following at runtime:

■ An attempt to execute an uncompiled statement

■ A change to the definition of a table referenced in the access module

■ The execution of a program that has been recompiled since its RCM was
included in the access module

CA IDMS identifies the above conditions by comparing definition timestamps in the
access module to corresponding timestamps in the database and the host program.

If AUTO RECREATE is not specified, the existing AUTO RECREATE specification for
the access module remains in effect.

Note: For more information about the ON and OFF options of AUTO RECREATE, see
CREATE ACCESS MODULE.

ALTER ACCESS MODULE

Chapter 8: Statements 265

VALIDATE

Indicates when CA IDMS is to check the definition timestamps of tables in the
access module to ensure that the definition has not changed since the access
module was created or last altered.

If VALIDATE is not specified, the existing VALIDATE specification for the access
module remains in effect.

Note: For more information about the BY STATEMENT, BY MODULE, and ALL
options of VALIDATE, see CREATE ACCESS MODULE.

READ ONLY

Specifies transactions started by the access module that do not execute a SET
TRANSACTION statement specifying READ WRITE can retrieve data but cannot
update the database.

READ WRITE

Specifies transactions started by the access module that do not execute a SET
TRANSACTION statement specifying READ ONLY can retrieve data and update the
database.

Note: For more information about the READ ONLY and READ WRITE transaction
states, see CREATE ACCESS MODULE.

DEFAULT ISOLATION

Specifies the isolation level of transactions started by the access module that do not
execute a SET TRANSACTION statement specifying an isolation level.

At runtime, the isolation level of a transaction determines the length of time
retrieval locks are held for the purpose of insulating the transaction from the effects
of other concurrent transactions. (Update locks are always held until a transaction
is committed or rolled back.)

Note: For more information about the CURSOR STABILITY, and TRANSIENT READ
DEFAULT ISOLATION options, see CREATE ACCESS MODULE.

ALTER ACCESS MODULE

266 SQL Reference Guide

READY

Specifies a ready mode for one or more areas accessed through the access module,
and specifies when the ready occurs.

The ready mode associated with an area determines:

■ Under the central version, the ready mode in which transactions access the
area. (The ready mode determines the types of area and row locks CA IDMS
places for a transaction.)

■ In local mode, the type of physical lock CA IDMS places on the area.

If READY is not specified, the default ready options for areas used by the access
module are:

■ The existing specifications for areas included in the existing access module

■ SHARED UPDATE and INCREMENTAL for areas added as a result of new or
replaced RCMs

Parameters for Expansion of rcm-specification

dictionary-name

Identifies the dictionary in which the named RCM is located.

If you do not specify dictionary-name, it is set to the name of the dictionary to
which your SQL session is connected.

rcm-name

Identifies the RCM.

Rcm-name must identify an RCM stored in the dictionary and must be unique within
the list of RCM names.

rcm-version-number

Identifies the version of the RCM.

If you do not specify rcm-version-number:

1. CA IDMS looks for an RCM with a version number that matches
am-version-number

2. If no such RCM is found, CA IDMS looks for version 1

3. If CA IDMS does not find a match, it issues a warning

Parameters for Expansion of ready-options

Note: For more information about ready-options, see CREATE ACCESS MODULE.

ALTER ACCESS MODULE

Chapter 8: Statements 267

Usage

Defaulting the Access Module Version Number

If the version of an access module is not specified, it defaults to the version located as a
result of a load operation. This is the same version that would be loaded as a result of
executing a program associated with the access module.

For example, assume you have set a test version of 10 and you are using the default
loadlist that CA IDMS supplied. CA IDMS loads version 10 of the access module if it
exists; otherwise, it loads version 1.

Replacing All or Changed RCMs

When replacing all RCMs in an access module or replacing all RCMs which have been
changed since being included in the access module, CA IDMS locates the replacement
RCM using the same rules as when the RCM was added to (or explicitly replaced in) the
access module. Specifically:

■ The dictionary name is the name of the dictionary from which the RCM was
previously loaded

■ The version is that specified when the RCM was included in the access module, or, if
not specified, CA IDMS first looks for an RCM whose version is the same as that of
the access module being altered (and if that version is not found, then version 1 of
the RCM).

ALTER ACCESS MODULE

268 SQL Reference Guide

Dropping RCMs

When dropping RCMs from an access module, the newly generated access module has a
less than optimal structure unless the ALTER statement contains the REPLACE ALL
clause. All RCMs need processing to determine the minimum set of control blocks in the
access module.

Avoiding Deadlocks

If you use the access module of an ALTER ACCESS MODULE statement in other SQL
statements in the same session, the ALTER should immediately be followed implicitly or
explicitly by a COMMIT. This allows the new copy of the access module to load. Without
the COMMIT, a deadlock may occur, even if the two SQL statements refer to different
access modules.

Transaction State and Isolation Level

If you specify neither transaction state nor DEFAULT ISOLATION on an ALTER ACCESS
MODULE statement, the existing values remain in effect. If either is specified, it also
establishes a value for the other, as follows:

■ If READ WRITE or READ ONLY are specified, CURSOR STABILITY is assumed

■ If TRANSIENT READ is specified, READ ONLY is assumed

■ If CURSOR STABILITY is specified, READ WRITE is assumed

Examples

Replacing Changed RCMs

The following ALTER ACCESS MODULE statement replaces any changed RCMs in access
module EMPAM001 with the most recent copies from the dictionary:

alter access module hrprod.empam001

 replace changed;

Adding New RCMs

The following ALTER ACCESS MODULE statement adds two new RCMs to the SALES001
access module. The statement also changes the lock options for two areas.

alter access module prod.sales001

 add sales.bdgt_001,

 add sales.comm_003

 ready

 salesseg.sales_area shared update incremental

 demoseg.emp_area shared retrieval preclaim;

ALTER CATALOG

Chapter 8: Statements 269

More Information

■ For more information about access modules, see CREATE ACCESS MODULE and
DROP ACCESS MODULE (see page 418) or see the CA IDMS Database Administration
Guide.

■ For more information about schema-name mappings, see Identifying Entities in
Schemas.

■ For more information about isolation levels, see CREATE ACCESS MODULE.

■ For more information about ready modes, see the CA IDMS Database
Administration Guide.

ALTER CATALOG

The ALTER CATALOG statement establishes the character set for character columns of
the tables defined within the current dictionary. The character set is used to correctly
sort additional national characters for the named language. It is also a CA IDMS
extension of the SQL standard.

Authorization

To issue an ALTER CATALOG statement, you must have DBADMIN authority, and ALTER
authority for the SYSTEM schema.

Note: This statement must be executed immediately following the execution of the
TABLEDDL file that records the definition of the catalog tables themselves. The
statement must precede the definition of any user SQL tables in that catalog.

Syntax

►►─── ALTER CATALOG DEFAULT CHARACTER SET alternate-character-set-name ───────►◄

Parameters

alternate-character-set-name

Identifies the character set whose collating scheme is to be used for the CHAR and
VARCHAR columns defined in the catalog. Currently-supported values for
alternate-character-set-name are DENMARK, FINLAND, NORWAY, and SWEDEN.

ALTER CONSTRAINT

270 SQL Reference Guide

Usage

The ALTER CATALOG DEFAULT CHARACTER SET statement changes the collating
sequence for all CHAR and VARCHAR columns defined in user tables in the dictionary,
including non-SQL defined tables. It does not affect columns in the SYSTEM tables.

Swedish and Finnish

The additional national characters, the uppercase forms of which are represented by the
symbols $, #, and &theta., sort at the end of the standard alphabet. The accented E and
U sort the same as their unaccented equivalents, and are returned to application
programs as their unaccented equivalents.

Norwegian and Danish

The additional national characters, the uppercase form of which is represented by the
symbols #, &theta., and $, sort at the end of the standard alphabet. The accented U
sort in the same sequence as its unaccented equivalent and are returned to application
programs as an unaccented U.

Example

The following statement causes the data values of all CHAR and VARCHAR columns to
collate according to the conventions of the Finnish alphabet.

alter catalog default character set FINLAND

ALTER CONSTRAINT

The ALTER CONSTRAINT statement changes the characteristics of an existing referential
constraint. This statement is a CA IDMS extension to the SQL standard.

Authorization

To issue an ALTER CONSTRAINT statement, you must:

■ Either hold the ALTER privilege on or own the referencing table in the constraint
being altered

■ Hold the REFERENCES privilege on the referenced table in the constraint being
altered

Note: To issue an ALTER CONSTRAINT statement you must own or hold the ALTER
privilege on the table on which the constraint is defined.

ALTER CONSTRAINT

Chapter 8: Statements 271

Syntax: ALTER CONSTRAINT

►►─ ALTER CONSTRAINT constraint-name ON ───────────────────────────►

 ►───────────┬────────────────┬─ referencing-table ────────────────►
 └─ schema-name. ─┘

 ┌───┐
 ►─▼─┬─ INDEX BLOCK CONTAINS key-count KEYS ─┬─┴───────────────────►◄
 ├─ DISPLACEMENT IS page-count PAGES ────┤
 └─┬───────┬─ UNIQUE ────────────────────┘
 └─ NOT ─┘

ALTER CONSTRAINT Parameters

This section describes the ALTER CONSTRAINT parameters:

constraint-name

Identifies the referential constraint to be changed. Constraint-name must be the
name of a constraint on the table identified in the ON clause.

referencing-table

Specifies the name of the referencing table in the constraint to be changed.

schema-name

Identifies the schema associated with the referencing table.

Default: The default varies depending on where the statement is encountered.

If you do not specify schema-name, it defaults to:

■ The current schema associated with your SQL session when the statement is
entered through the Command Facility or executed dynamically.

■ The schema associated with the access module used at runtime when the
statement is embedded in an application program.

key-count KEYs

Establishes a new value for the maximum number of entries in each internal index
record (SR8 system record).

Limits: Key-count must be an unsigned integer in the range 3 through 8180.

page-count PAGES

Specifies how far away from the referenced row the bottom-level index records are
stored.

If the value of page-count is zero (0), the bottom-level internal index records are
not displaced from the referenced row.

Limits: Page-count must be an unsigned integer in the range 0 through 32,767.

ALTER FUNCTION

272 SQL Reference Guide

UNIQUE

Specifies that the sort-key value in any given row of the referencing table must be
different from the sort-key value in all other rows that have the same non-null
referencing key value.

NOT UNIQUE

Removes the restriction that all values of the sort-key with the same non-null
foreign key value must be unique.

Example: Alter the DEPT_EMPL Constraint

In this example, the physical characteristics of the DEPT_EMPL constraint are changed.
Each internal index record will have a maximum of 10 keys and the bottom level index
records will be displaced 50 pages from the associated referenced row:

alter constraint dept_empl on emp.empl

 displacement is 50 pages

 index block contains 10 keys;

ALTER FUNCTION

The ALTER FUNCTION data description statement modifies the definition of a function in
the dictionary.

Using the ALTER FUNCTION statement, you can:

■ Revise the estimated row and I/O counts

■ Change the external name of the function

■ Change the size and characteristics of the work areas passed to the function

■ Change the execution mode of the function

■ Change the protocol

■ Change the language of the function

■ Change the timestamp

■ Change the default database

■ Change the transaction sharing mode

The ability to change attributes other than language and external name is a CA IDMS
extension of the SQL standard.

Authorization

To issue an ALTER FUNCTION statement, you must either own or hold the ALTER
privilege on the function named in the statement.

ALTER FUNCTION

Chapter 8: Statements 273

Syntax

►►─ ALTER FUNCTION ─┬────────────────┬─ function-identifier ──────────────────►
 └─ schema-name. ─┘

 ►─┬─ EXTERNAL NAME external-routine name ─────────────────┬──────────────────►◄
 ├─ ESTIMATED ROWS row-count ────────────────────────────┤
 ├─ ESTIMATED IOS io-count ──────────────────────────────┤
 ├─ LOCAL WORK AREA local-stge-size ─────────────────────┤
 ├─ GLOBAL WORK AREA global-stge-size ─┬────────────────┬┤
 │ └─ KEY ┬ key-ID ┬┘│
 │ └─ NULL .┘ │
 ├─ USER MODE ───┤
 ├─ SYSTEM MODE ───┤
 ├─ PROTOCOL ───────────────────────┬─── IDMS ──────┬────┤
 │ └─── ADS ───────┘ │
 ├─ language-clause ─────────────────────────────────────┤
 ├─ TIMESTAMP timestamp-value ───────────────────────────┤
 ├─ DEFAULT DATABASE ───────────────┬─── NULL ──────┬────┤
 │ └─── CURRENT ───┘ │
 └─ TRANSACTION SHARING ─────────────┬── ON ────────┬────┘
 ├── OFF ───────┤
 └── DEFAULT ───┘

Expansion of language-clause

►►─── LANGUAGE ────────────────────┬─ ADS ──────────┬──────────────────────────►◄
 ├─ ASSEMBLER ────┤
 ├─ COBOL ────────┤
 ├─ PLI ──────────┤
 └─ SQL ──────────┘

Parameters

function-identifier

Specifies the name of the function being modified. Function-identifier must identify
a function defined in the dictionary.

schema-name

Identifies the schema associated with the named function.

If you do not specify a schema-name, the default value is:

■ The current schema associated with your SQL session, if the statement is
entered through the Command Facility or executed dynamically.

■ The SQL schema associated with the access module used at runtime, if the
statement is embedded in an application program.

external-routine-name

Specifies the one- to eight-character name of the program which CA IDMS calls to
process function invocations.

ALTER FUNCTION

274 SQL Reference Guide

row-count

Specifies an integer value, in the range of 0 through 2,147,483,647, which
represents the average number of rows that the CA IDMS optimizer uses for cost
calculation of the function invocation.

io-count

Specifies an integer value, in the range of 0 through 2,147,483,647, which
represents the average number of disk accesses that the function generates for a
given set of input parameters.

local-stge-size

Specifies an integer, in the range of 0 through 32767, which represents the size, in
bytes, of a local storage area that CA IDMS allocates at runtime and passes to the
function on each invocation.

CA IDMS allocates a local storage area on the first call to a function.

global-stge-size

Specifies an integer, in the range of 0 through 32767, which represents the size, in
bytes, of a global storage area that CA IDMS allocates at runtime and passes to the
function on each invocation.

CA IDMS allocates a global storage area once within a transaction and retains it
until the transaction terminates.

key-id

Specifies the one- to four-character identifier for the global storage area. CA IDMS
passes the same piece of global storage within a transaction to all routines that
have the same global storage key.

If you do not specify a storage key, its value remains unchanged. To remove a
storage key, specify NULL as the key.

USER MODE

Specifies that the function should execute as a user-mode application program
within CA IDMS. Do not specify user mode for functions specified with protocol
ADS, such as is the case with functions written as CA ADS mapless dialogs or written
in SQL.

SYSTEM MODE

Specifies that the procedure should execute as a system-mode application program.
To execute as a system mode application, the program must be fully reentrant and
written in either:

■ ADS as a mapless dialog

■ SQL

■ Assembler using DC calling conventions

■ COBOL or PL/I and compiled with an LE-compliant compiler

ALTER FUNCTION

Chapter 8: Statements 275

PROTOCOL

Specifies the environment.

IDMS

Use IDMS for SQL-invoked functions that are written in COBOL, PL/I, or
Assembler.

ADS

Use ADS for SQL-invoked functions that are written in SQL or CA ADS. The name
of the dialog that will be loaded and run when the SQL function is invoked is
given by the external-routine-name in the EXTERNAL NAME clause. Setting the
protocol to ADS, requires the function to have its mode set to system.

language-clause

Specifies the programming language of the function.

timestamp-value

Specifies the value of the synchronization stamp to be assigned to the function.
Timestamp-value must be a valid external representation of a timestamp.

DEFAULT DATABASE

Specifies whether a default database should be established for database sessions
started by the function.

NULL

Specifies that no default database should be established.

CURRENT

Specifies that the database to which the SQL session is connected should
become the default for any database session started by the function.

TRANSACTION SHARING

Specifies whether to enable transaction sharing for database sessions started by the
function. If transaction sharing is enabled for a function's database session, it will
share the current SQL session's transaction.

ON

Specifies to enable transaction sharing.

OFF

Specifies to disable transaction sharing.

DEFAULT

Specifies to retain the transaction sharing setting that is in effect when the
function is invoked.

ALTER FUNCTION

276 SQL Reference Guide

Parameters for Expansion of language-clause

ADS

Specifies that the SQL routine is written in the CA ADS language.

ASSEMBLER

Specifies that the SQL routine is written in the assembler language.

COBOL

Specifies that the SQL routine is written in the COBOL language.

PLI

Specifies that the SQL routine is written in the PL/I language.

SQL

Specifies that the SQL routine is written in the SQL language.

Note: The ability to specify ADS or ASSEMBLER as a language is a CA IDMS extension.

Usage

Changing the language of a function

A function with language SQL cannot be changed to any other language and a function
whose language is not SQL cannot be changed to language SQL.

Specifying a Synchronization Stamp

When defining or altering a function, you can specify a value for its synchronization
stamp. You should use care when doing so because the purpose of the stamp is to
enable the detection of discrepancies between an entity and its definition. If explicitly
specified, you must set the synchronization stamp to a new value following a change so
that the change is detectable by the runtime system.

If not specified, the synchronization stamp is automatically set to the current date and
time.

Note: For more information about creating a function, see CREATE FUNCTION.

Example

The following example shows the use of ALTER FUNCTION to change the external name
of a function.

alter function fin.udf_funbonus external name funbon09;

ALTER INDEX

Chapter 8: Statements 277

ALTER INDEX

The ALTER INDEX statement alters the characteristics of an existing index. It is also a CA
IDMS extension of the SQL standard. You can change the structure and location of an
index through the modification of the following attributes:

■ Key count

■ Displacement

■ Uniqueness

■ Area association

Authorization

To issue an ALTER INDEX statement, you must have the ALTER privilege on or own the
table on which the index is defined.

Syntax

►►─ ALTER INDEX index-name ON ┬────────────────┬ table-identifier ────►
 └─ schema-name. ─┘

 ┌───┐
 ►─▼─┬─ INDEX BLOCK CONTAINS key-count KEYS ─┬─┴──────────────────────►◄
 ├─ DISPLACEMENT IS page-count PAGES ────┤
 ├─┬───────┬─ UNIQUE ────────────────────┤
 │ └─ NOT ─┘ │
 └─ IN segment-name.area-name ───────────┘

Parameters

This section describes the parameters for the ALTER INDEX statement:

page-count PAGES

Specifies how far away from the index owner the bottom-level index records are
stored.

If the value of page-count is zero (0), the bottom-level internal index records are
not displaced from the index owner.

Limit: An unsigned integer from 0–32,767.

UNIQUE

Specifies that the index-key value in any given row of the table on which the index
is defined must be different from the index-key value in all other rows of the table.
The table cannot contain any duplicate index-key values.

If you specify UNIQUE and the table contains duplicate index-key values, the alter
statement will fail.

ALTER INDEX

278 SQL Reference Guide

NOT UNIQUE

Removes the restriction that all values of the index-key within the table must be
unique.

When the UNIQUE restriction is used to ensure uniqueness of a referenced key in
some constraint, you cannot remove it from an index unless another index or CALC
key can be used in its place.

IN

Requests a change in the location of the named index.

area-name

Identifies a new area with which the index is to be associated. Area-name must
identify an area defined in the dictionary.

segment-name

Identifies the segment associated with the area.

Usage

System tables

You cannot alter an index defined on a table in the SYSTEM schema.

Changing the Number of Entries in an SR8

It is sometimes desirable to change the number of entries in an SR8 system record after
an index has been loaded. The ALTER INDEX statement enables the maximum number
of entries to be changed without affecting the existing index structure.

Note: For more information about index structure and design considerations, see the CA
IDMS Database Administration Guide.

Example

In this example, the EMP_LNAME index is moved from its current location to the
DEMO.EMPAREA area. Each internal index record will have a maximum of 30 keys and
the bottom-level index records will be displaced 40 pages from the top of the index.

alter index emp_lname (last_name) on emp.benefits

 displacement is 40 pages

 index block contains 30 keys

 in area demo.emparea;

ALTER PROCEDURE

Chapter 8: Statements 279

ALTER PROCEDURE

The ALTER PROCEDURE data description statement modifies the definition of a
procedure in the dictionary. Using the ALTER PROCEDURE statement, you can:

■ Add a new parameter to a procedure

■ Revise the estimated row and I/O counts

■ Change the external name of the procedure

■ Change the size and characteristics of the work areas passed to the procedure

■ Change the execution mode of the procedure

■ Change the language of the procedure

■ Update the timestamp

■ Change the default database option

■ Change the transaction sharing option

■ Change the protocol

■ Change the maximum number of dynamic result sets

The ability to change attributes other than language, external name, and the maximum
number of dynamic result sets is a CA IDMS extension of the SQL standard.

Authorization

To issue an ALTER PROCEDURE statement, you must either own or hold the ALTER
privilege on the procedure named in the statement.

Syntax

►►─── ALTER PROCEDURE ─┬──────────────────────┬─ procedure-identifier ────────►
 └─── schema-name. ─────┘

 ►─┬─ ADD parameter-definition ────────────────────────────┬──────────────────►◄
 │ ┌────────── , ───────────┐ │
 ├─ ADD (─▼─ parameter-definition ─┴─) ────────────────┤
 ├─ EXTERNAL NAME external-routine-name ─────────────────┤
 ├─ ESTIMATED ROWS row-count ────────────────────────────┤
 ├─ ESTIMATED IOS io-count ──────────────────────────────┤
 ├─ LOCAL WORK AREA local-stge-size ─────────────────────┤
 ├─ GLOBAL WORK AREA global-stge-size ─┬────────────────┬┤
 │ └─ KEY ┬ key-ID ┬┘│
 │ └─ NULL ─┘ │
 ├─ USER MODE ───┤
 ├─ SYSTEM MODE ───┤
 ├─ PROTOCOL ───────────────────────┬─── IDMS ──────┬────┤
 │ └─── ADS ───────┘ │
 ├─ language-clause ─────────────────────────────────────┤
 ├─ TIMESTAMP timestamp-value ───────────────────────────┤
 ├─ DEFAULT DATABASE ───────────────┬─── NULL ──────┬────┤
 │ └─── CURRENT ───┘ │
 ├─ TRANSACTION SHARING ─────────────┬── ON ────────┬────┤
 │ ├── OFF ───────┤ │
 │ └── DEFAULT ───┘ │
 └─ DYNAMIC RESULT SETS maximum-dynamic-result-sets ─────┘

ALTER PROCEDURE

280 SQL Reference Guide

Expansion of parameter-definition

►►─── parameter-name ── data-type ─┬────────────────┬─────────────────────────►◄
 └─ WITH DEFAULT ─┘

Expansion of language-clause

►►─── LANGUAGE ────────────────────┬─ ADS ──────────┬──────────────────────────►◄
 ├─ ASSEMBLER ────┤
 ├─ COBOL ────────┤
 ├─ PLI ──────────┤
 └─ SQL ──────────┘

Parameters

procedure-identifier

Specifies the name of the procedure being modified. Procedure-identifier must
identify a procedure defined in the dictionary.

schema-name

Identifies the schema associated with the named procedure. If you do not specify a
schema-name it defaults to:

■ The current schema associated with your SQL session, if you enter the
statement through the Command Facility or execute it dynamically

■ The schema associated with the access module used at runtime, if the
statement is embedded in an application program

parameter-definition

Defines one or more new parameters to be associated with the procedure. New
parameters are added, in the order specified, after the last existing parameter.

For a description of parameter-definition, see CREATE PROCEDURE. Descriptions for
the expansion parameters are located at the end of this section.

ALTER PROCEDURE

Chapter 8: Statements 281

external-routine-name

Specifies the one- to eight-character name of the program which CA IDMS calls to
process references to the procedure.

row-count

Specifies an integer value, in the range of 0 through 2,147,483,647, which
represents the average number of rows that the procedure returns for a given set
of input parameters.

io-count

Specifies an integer value, in the range of 0 through 2,147,483,647, which
represents the average number of disk accesses that the procedure generates for a
given set of input parameters.

local-stge-size

Specifies an integer, in the range of 0 through 32767, which represents the size, in
bytes, of a local storage area that CA IDMS allocates at runtime and passes to the
procedure on each invocation.

global-stge-size

Specifies an integer, in the range of 0 through 32767, which represents the size, in
bytes, of a global storage area that CA IDMS allocates at runtime and passes to the
procedure on each invocation.

CA IDMS allocates a global storage area once within a transaction and retains it
until the transaction terminates.

key-id

Specifies the one- to four-character identifier for the global storage area. CA IDMS
passes the same piece of global storage within a transaction to all routines that
have the same global storage key.

If you do not specify a storage key, its value remains unchanged. To remove a
storage key, specify NULL as the key.

ALTER PROCEDURE

282 SQL Reference Guide

USER MODE

Specifies that the procedure should execute as a user-mode application program
within CA IDMS. Do not specify user mode for procedures specified with protocol
ADS, such as is the case with procedures written as CA ADS mapless dialogs or
written in SQL.

SYSTEM MODE

Specifies that the procedure should execute as a system mode application program.
To execute as a system mode application, the program must be fully reentrant and
be written in either:

■ ADS as a mapless dialog

■ SQL

■ Assembler using DC calling conventions

■ COBOL or PL/I and compiled with an LE-compliant compiler

PROTOCOL

Specifies the environment.

IDMS

Use IDMS for SQL-invoked functions that are written in COBOL, PL/I, or
Assembler.

ADS

Use ADS for SQL-invoked functions that are written in SQL or CA ADS. The name
of the dialog that will be loaded and run when the SQL function is invoked is
given by the external-routine-name in the EXTERNAL NAME clause. Setting the
protocol to ADS, requires the function to have its mode set to system.

language-clause

Specifies the programming language of the procedure.

timestamp-value

Specifies the value of the synchronization stamp to be assigned to the procedure.
Timestamp-value must be a valid external representation of a timestamp.

DEFAULT DATABASE

Specifies whether a default database should be established for database sessions
started by the procedure.

NULL

Specifies that no default database should be established.

CURRENT

Specifies that the database to which the SQL session is connected should
become the default for any database session started by the procedure.

ALTER PROCEDURE

Chapter 8: Statements 283

TRANSACTION SHARING

Specifies whether transaction sharing should be enabled for database sessions
started by the procedure. If transaction sharing is enabled for a procedure's
database session, it will share the current SQL session's transaction.

ON

Specifies that transaction sharing should be enabled.

OFF

Specifies that transaction sharing should be disabled.

DEFAULT

Specifies that the transaction sharing setting that is in effect when the
procedure is invoked should be retained.

DYNAMIC RESULT SETS

Defines the maximum number of result sets that a procedure invocation can return
to its caller. A result set is a sequence of rows specified by a cursor-specification,
created by the opening of a cursor and ranged over that cursor.

maximum-dynamic-result-sets

Defines an integer in the range 0-32767 specifying the maximum number of result
sets a procedure can return.

Parameters for Expansion of parameter-definition

parameter-name

Specifies a 1- to 32-character name of a parameter to be passed to the table
procedure. Parameter-name must:

■ Be unique within the table procedure that you are defining

■ Follow the conventions for SQL identifiers

All parameters are implicitly nullable. Input parameters can be assigned NULL as a
parameter value and output parameters can return NULL.

data-type

Defines the data type for the named parameter. For expanded data-type syntax,
see Expansion of Data-type.

ALTER PROCEDURE

284 SQL Reference Guide

WITH DEFAULT

Directs CA IDMS to pass a default value for the named parameter if no value for the
parameter is specified.

The default value for a parameter is based on its data type:

Column data type Default value

CHARACTER Blanks

VARCHAR A character string literal with a length of zero (that is, '')

GRAPHIC Double-byte blanks

VARGRAPHIC A double-byte character string literal with a length of zero

DATE The value in the CURRENT DATE special register

TIME The value in the CURRENT TIME special register

TIMESTAMP The value in the CURRENT TIMESTAMP special register

All numeric data types 0 (zero)

Parameters for Expansion of language-clause

ADS

Specifies that the SQL routine is written in the CA ADS language.

ASSEMBLER

Specifies that the SQL routine is written in the assembler language.

COBOL

Specifies that the SQL routine is written in the COBOL language.

PLI

Specifies that the SQL routine is written in the PL/I language.

SQL

Specifies that the SQL routine is written in the SQL language.

Note: The ability to specify ADS or ASSEMBLER as a language is a CA IDMS extension.

ALTER SCHEMA

Chapter 8: Statements 285

Usage

Changing the language of a procedure

A procedure with language SQL cannot be changed to any other language, and a
procedure whose language is not SQL cannot be changed to language SQL.

Specifying a Synchronization Stamp

When defining or altering a procedure, you can specify a value for its synchronization
stamp. You should use care when doing so because the purpose of the stamp is to
enable the detection of discrepancies between an entity and its definition. If explicitly
specified, you must set the synchronization stamp to a new value following a change so
that the change is detectable by the runtime system.

If not specified, the synchronization stamp is automatically set to the current date and
time.

Note: For more information about creating a procedure, see CREATE PROCEDURE.

Examples

Adding Parameters to a Procedure

The following ALTER PROCEDURE statement adds two new parameters to the
EMP.GET_BONUS procedure:

alter procedure emp.get_bonus

 add (start_month char (2),

 start_year char (2));

ALTER SCHEMA

The ALTER SCHEMA data description statement that modifies the definition of a schema
in the dictionary. It is also a CA IDMS extension of the SQL standard.

Authorization

To issue an ALTER SCHEMA statement, you must hold the ALTER privilege on the schema
named in the statement.

If you specify FOR NONSQL SCHEMA, you must have the USE privilege on the non-SQL
schema.

If you specify DBNAME, you must have USE privilege on the database; if you do not
specify DBNAME or specify a value of NULL, you must have DBADMIN privilege on
DBNAME SYSTEM.

ALTER SCHEMA

286 SQL Reference Guide

Syntax

►►─── ALTER SCHEMA schema-name ───►

 ►─┬───┬────────────────────────►◄
 ├─ DEFAULT AREA ─┬─ segment-name.area-name ─┬─────┤
 │ └─ NULL ───────────────────┘ │
 ├─ DBNAME ─┬─ database-name ─┬────────────────────┤
 │ └─ NULL ──────────┘ │
 ├─ FOR NONSQL SCHEMA nonsql-schema-specification ─┤
 └─ FOR SQL SCHEMA sql-schema-specification ───────┘

Expansion of nonsql-schema-specification (ALTER SCHEMA)

►►─┬────────────────────┬─ nonsql-schema-name ─┬──────────────────────────┬───►
 └─ dictionary-name. ─┘ └─ VERSION version-number ─┘

 ►─┬──────────────────────────────┬───►◄
 └─ DBNAME ─┬─ database-name ─┬─┘
 └─ NULL ──────────┘

Expansion of sql-schema-specification (ALTER SCHEMA)

►►──────────────────────── sql-schema-name ───────────────────────────────────►

 ►─┬──────────────────────────────┬───►◄
 └─ DBNAME ─── database-name ───┘

Parameters

schema-name

Specifies the name of the schema being modified. Schema-name must identify a
schema defined in the dictionary.

DEFAULT AREA

Modifies the default area specification for the named schema. This parameter is
valid only for a schema that is not associated with a non-SQL-defined schema.

The named area is used by default for storing rows of tables subsequently defined
in the named schema. It replaces any previous default area specification for the
schema.

segment-name.area-name

Identifies the segment and area.

You do not need to define the named segment or area in the dictionary before
issuing the ALTER SCHEMA statement.

ALTER SCHEMA

Chapter 8: Statements 287

NULL

Removes any previous default area specification for the named schema.

If the default area specification is removed, all subsequent CREATE TABLE
statements that qualify the table name with the name of the schema being altered
must include the IN parameter.

DBNAME

If the schema has been associated with a non-SQL-defined schema, you can add or
change the specification of the database using this parameter.

Descriptions of the database-name and NULL parameters are presented under
nonsql-schema-specification.

nonsql-schema-specification

Identifies the non-SQL-defined schema to associate with the SQL schema.

Expanded syntax for nonsql-schema-specification appears immediately following
the statement syntax. Descriptions for these parameters are located at the end of
this section.

sql-schema-specification

Identifies an existing SQL-defined schema to which the new SQL schema refers.
Expanded syntax for sql-schema-specification appears immediately following the
statement syntax.

Parameters for Expansion of nonsql-schema-specification

dictionary-name.

Names the dictionary that contains the non-SQL-defined schema.

If you do not specify dictionary-name, it is set to the dictionary to which your SQL
session is connected.

nonsql-schema-name

Identifies the non-SQL-defined schema.

VERSION version-number

Identifies the version number of the non-SQL-defined schema. If VERSION
version-number is not specified, version-number defaults to 1.

ALTER SCHEMA

288 SQL Reference Guide

DBNAME

Specifies the database that the non-SQL-defined schema describes or removes a
database specification.

For considerations about whether to specify a database when you create a schema
for a non-SQL-defined schema, see the "Usage" section of CREATE SCHEMA.

database-name

Identifies one of the following:

■ The segment containing the areas described by the non-SQL-defined schema.

■ A database name that includes segments containing the areas described by the
non-SQL-defined schema.

At runtime CA IDMS accesses the segments associated with the database name
that contain areas with the same name as the areas in the non-SQL-defined
schema.

NULL

Initializes the database name for the non-SQL-defined schema to blanks.

If no database-name is specified in the schema definition, at runtime the database
name to which the SQL session is connected must include segments containing the
areas described by the non-SQL-defined schema.

Parameters for Expansion of sql-schema-specification

sql-schema-name

Names the referenced SQL-defined-schema. this named schema must not itself
reference another schema.

DBNAME database-name

Identifies the database containing the data described by the referenced
SQL-defined schema. Database-name must be a database name that is defined in
the database name table or a segment name defined in the DMCL.

ALTER SCHEMA

Chapter 8: Statements 289

Usage

System-owned Schema

You cannot modify the definition of the schema named SYSTEM.

Changing non-SQL-defined Schema Information

If you change the name or version number of the non-SQL defined schema associated
with an SQL-defined schema or if you change the database name associated with the
schema, you must recompile all affected access modules and drop and recreate all
affected views.

To determine which access modules are affected, use the DISPLAY ALL ACCESS MODULE
statement with the TABLE selection criteria.

To recompile an affected access module, use the ALTER ACCESS MODULE statement
with the REPLACE ALL option.

Views must be dropped and recreated if the structure of one or more referenced
records in the new non-SQL-defined schema is different than the structure at the time
the view was created. Views are also invalid if a referenced record has been deleted
from the non-SQL schema. To determine which views are affected, use the DISPLAY ALL
VIEW statement with the REFERENCEd selection criteria. Before dropping the view,
display its syntax by using the DISPLAY or PUNCH VIEW statement.

Restricted Changes

You cannot alter the type of a schema:

■ You cannot change a non-referencing schema to a referencing schema or a
referencing schema to a non-referencing schema.

■ You cannot change the type of schema being referenced from SQL to non-SQL or
from non-SQL to SQL.

Changing Referenced SQL Schema Information

If you change the name of the SQL schema that is referenced, you must drop and
recreate all views that reference tables in the referencing schema, for example, the
schema being altered. To determine which views are affected, use the DISPLAY ALL
VIEW statement with the REFERENCED selection criteria. Before dropping the view,
display its syntax by using the DISPLAY or PUNCH VIEW statement.

ALTER TABLE

290 SQL Reference Guide

Example

Removing the Default Area Specification

The following ALTER SCHEMA statement removes the default area specification from
the SALES schema:

alter schema sales

 default area null;

More Information

■ For more information about defining schemas, see CREATE SCHEMA and DROP
SCHEMA.

■ For more information about non-SQL schemas, see Accessing Non-SQL-Defined
Databases.

■ For more information about displaying access modules and views, see
DISPLAY/PUNCH ACCESS MODULE and DISPLAY/PUNCH VIEW.

ALTER TABLE

The ALTER TABLE data description statement modifies the definition of a base table in
the dictionary.

Using ALTER TABLE, you can perform the following tasks:

■ Add one or more columns to a table

■ Alter a column’s data type or null attribute

■ Drop or change a column’s default clause

■ Rename a column

■ Drop a column

■ Specify additional restrictions on the data that can be stored in a table

■ Remove all restrictions on the data that can be stored in a table

■ Add or delete the default index associated with a table

■ Revise the estimated row count for a table

■ Update the table's timestamp

The ability to revise the estimated row count and to update the table's timestamp is a
CA IDMS extension of the SQL standard.

ALTER TABLE

Chapter 8: Statements 291

Authorization

To issue an ALTER TABLE statement, you must hold the ALTER privilege on or own the
table named in the statement.

Syntax

►►─ ALTER TABLE ─┬─────────────────┬─ table-identifier ───────────────►
 └─ schema-name ─.─┘

 ►────┬─ ADD CHECK (search-condition) ─────────────────────┬────────►◄
 ├─ DROP CHECK ──┤
 ├─ ADD DEFAULT INDEX ──────────────────────────────────┤
 ├─ DROP DEFAULT INDEX ─────────────────────────────────┤
 ├─ ADD ───┬──────────┬─ column-definition ─────────────┤
 │ └─ COLUMN ─┘ │
 │ ┌──────── , ─────────┐ │
 ├─ ADD ───┬──────────┬─ (─▼─ column-definition ┴─)─────┤
 │ └─ COLUMN ─┘ │
 ├─ ALTER ─┬──────────┬─ column-alteration ─────────────┤
 │ └─ COLUMN ─┘ │
 ├─ DROP ──┬──────────┬─ column-name ─┬───────────┬─────┤
 │ └─ COLUMN ─┘ └─ CASCADE ─┘ │
 ├─ RENAME ┬──────────┬ column-name TO new-column-name ─┤
 │ └─ COLUMN ─┘ │
 ├─ ESTIMATED ROWS estimated-row-count ─────────────────┤
 └─ TIMESTAMP timestamp-value ──────────────────────────┘

Expansion of column-definition

►►────column-name data-type ──┬──────────────┬─┬──────────────────┬──►◄
 └── NOT NULL ──┘ └── WITH DEFAULT ──┘

Expansion of column-alteration

►►────column-name ───┬─ SET ─┬─ DATA TYPE ─ data-type ────┬───┬──────►◄
 │ ├─┬─ ALLOW ─┬── NULL ────────┤ │
 │ │ └─ NOT ───┘ │ │
 │ └─ WITH DEFAULT ─────────────┘ │
 └─ DROP DEFAULT ─────────────────────────┘

Parameters

table-identifier

Specifies the name of the table being modified. Table-identifier must identify a base
table defined in the dictionary.

schema-name

Identifies the schema associated with the named table.

If not specified, schema-name defaults to:

■ The current schema associated with your SQL session, if the statement is
entered through the Command Facility or executed dynamically

■ The schema associated with the access module used at runtime, if the
statement is embedded in an application program

ALTER TABLE

292 SQL Reference Guide

column-definition

Defines one or more new columns to be included in the table. New columns are
added after the last existing column.

Expanded syntax for column-definition is shown immediately following the ALTER
TABLE syntax. Descriptions of column-definition parameters follow description of
ALTER TABLE parameters.

ADD CHECK (search-condition)

Specifies additional restrictions on the data that can be stored in the table.

If the table definition already includes data restrictions in a search condition, CA
IDMS appends the search condition specified in the ADD CHECK parameter to the
existing search condition with the binary operator AND. CA IDMS stores a new row
in the table only if the value of the entire expression formed by the concatenation
of the search conditions is true.

Restrictions on the use of search-condition with ADD CHECK are discussed under
"Usage" following these parameter descriptions. For expanded search-condition
syntax, see Expansion of Search-condition.

DROP CHECK

Removes any existing restrictions on the data that can be stored in the table.

ADD DEFAULT INDEX

Creates a default index for the named table.

Note: The table must not have a default index already ssociated with it.

DROP DEFAULT INDEX

Deletes the default index associated with the table.

column-alteration

Specifies the changes to be made to the attributes of a column.

Note: The expanded syntax for column-alteration is shown after the ALTER TABLE
syntax. Descriptions of column-alteration parameters follow the description of
ALTER TABLE parameters.

DROP COLUMN column-name

Identifies the column to be removed from the table. Column-name must be the
name of a column in the table.

Note: You cannot drop columns that are part of a CALC key of a populated table or
that are named in a check constraint.

ALTER TABLE

Chapter 8: Statements 293

CASCADE

Drops the following entities:

■ The CALC key if it includes the column.

■ All referential constraints in which the named column is a referenced or a
foreign key column.

■ All linked constraints in which the named column is a sort column.

■ All indexes in which the named column is an indexed column.

■ All views in which the column is named.

Note: If CASCADE is not specified, the column must not participate in a referential
constraint or index, or be named in a view.

RENAME COLUMN column-name

Identifies the column name to be changed. Column-name must be the name of a
column in the table.

Note: You cannot rename a column if the column is named in a check constraint or
in a view.

TO new-column-name

Specifies the new name for the identified column.

Limit: 1–32 characters that follows the SQL identifier standard.

Note: The new column name must be distinct from the name of any existing
column in the table.

ESTIMATED ROWS estimated-row-count

Indicates the number of rows expected to be stored for the table.
Estimated-row-count must be an integer that does not exceed 16,777,214. The
specified value replaces any previous estimated row count for the table.

TIMESTAMP timestamp-value

Specifies the value of the synchronization stamp to be assigned to the table.
Timestamp-value must be a valid external representation of a timestamp.

Parameters for Expansion of column-definition

column-name

Specifies the name of a column to be included in the table being created.
Column-name must be a one- through 32-character name that follows the
conventions for SQL identifiers.

Column-name must be unique within the table being defined.

data-type

Defines the data type for the named column. For expanded data-type syntax, see
Expansion of Data-type.

ALTER TABLE

294 SQL Reference Guide

NOT NULL

Indicates that the column cannot contain null values.

If NOT NULL is specified without WITH DEFAULT, the table being altered must be
empty.

If NOT NULL is not specified, the column is defined to allow null values.

WITH DEFAULT

Directs CA IDMS to establish a default value for the column being added.

The default value is based on the data type of the column:

Column data type Default value

CHARACTER Blanks

VARCHAR A character string literal with a length of zero (that is, '')

GRAPHIC Double-byte blanks

VARGRAPHIC A double-byte character string literal with a length of zero

DATE '0001-01-01' for existing rows

The value in the CURRENT DATE special

register for newly inserted rows

TIME '00.00.00' for existing rows

The value in the CURRENT TIME special register

for newly inserted rows

TIMESTAMP '0001-01-01-00.00.00.000000' for existing rows

The value in the CURRENT TIMESTAMP special register for
newly inserted rows

All numeric data types 0 (zero)

If you do not specify WITH DEFAULT, then:

■ If you specify NOT NULL, the table must be empty

■ If you do not specify NOT NULL, the default value for the column is NULL

ALTER TABLE

Chapter 8: Statements 295

Parameters for Expansion of column-alteration

column-name

Identifies the column whose attributes are to be changed. Column-name must be
the name of a column in the table.

data-type

Defines the new data type for the named column. The specified data type must be
compatible for assignment with the column’s existing data type. For expanded
data-type syntax, see Expansion of Data-type.

You cannot change the data type of a column that is part of a CALC key of a
populated table or that is a referenced or foreign key column in a constraint.

ALLOW NULL

Indicates that the column can contain null values. You cannot change the null
attribute of a column that is part of a CALC key of a populated table or a referenced
key.

NOT NULL

Indicates that the column cannot contain null values. You cannot change the null
attribute of a column that is part of a CALC key of a populated table or a referenced
key.

WITH DEFAULT

Sets the column’s value to a default if no value for the column is specified when a
row is inserted.

DROP DEFAULT

Does not set the column’s value to a default when a row is inserted.

ALTER TABLE

296 SQL Reference Guide

Usage

Tables in System Schemas

You cannot modify the definition of a table in the SYSTEM schema.

Maximum Row Length

When adding a column to a table, you must ensure that the total number of bytes
required for all columns in the table does not exceed the maximum allowed.

Note: For more information about maximum row length, see CREATE TABLE.

Restrictions on search-condition

In the ADD CHECK parameter of an ALTER TABLE statement:

■ Search-condition cannot include any host variables, local variables, routine
parameters, aggregate or user-defined functions, EXISTS predicates, quantified
predicates, or subqueries

■ Each column reference in search condition must identify a column in the table
being modified

Modifying Tables that Contain Data

If the table specified in an ALTER TABLE statement contains one or more rows of data
(that is, the table is not empty), and the ALTER TABLE statement specifies:

■ ADD column-definition, you must supply a default value in the DEFAULT parameter
of the column definition if you specify NOT NULL

■ ADD CHECK, the value of the search condition specified in the ADD CHECK
parameter must be true for each existing row in the table

Add a Default to a Column

Allowing a column to have a default value affects only the table’s definition; existing
table rows are not affected.

ALTER TABLE

Chapter 8: Statements 297

Remove a Column’s Default

If the table is populated and the column does not allow null values, every existing row
must contain a value in the changed column. To ensure this, each row is accessed and
updated if it does not contain a value for the column.

Rename a Column

A column that is named in a check constraint or a view cannot be renamed.

The definition of all referential constraints, sort keys, CALC keys and indexes in which
the column participates are updated to show the new column name.

Drop a Column

Every row in the table is updated to remove the column value.

If a column is named in a check constraint or is part of the CALC key of a populated
table, you cannot drop the column.

If you do not specify CASCADE, the column must not be one of the following types of
columns:

■ A column in a CALC key

■ A referenced or foreign key column in a referential constraint

■ An indexed column

■ A sort column of a linked constraint

■ Named in a view

If you specify CASCADE, how the column is used determines what other items are
dropped:

■ Dropping a CALC key column also drops the CALC key

■ Dropping a referenced or foreign key column in a referential constraint also drops
the constraint

■ Dropping an indexed column also drops the index

■ Dropping a sort column of a linked constraint also drops the constraint

■ Dropping a column named in a view also drops the view

ALTER TABLE

298 SQL Reference Guide

Change a Column’s Null Attribute

The following situations apply when you change a column's null attribute:

■ When the column is part of a CALC key of a populated table, or is a referenced
column in a constraint, the ALTER statement fails.

■ When you change a null attribute, every row in the table is updated to add or
remove the null attribute byte for that column.

■ When the changed column is a sort column, every index and linked indexed
constraint is automatically rebuilt.

■ When disallowing nulls and the value of the column is null for a row in the table,
the ALTER statement fails.

Change a Column’s Data Type

The following situations apply when you change a column's data type:

■ When the column is part of a CALC key of a populated table, or is a referenced
column in a constraint, the ALTER statement fails.

■ When changing a column’s data type, the new data type you enter must be
compatible for assignment with the original data type.

■ Every row in the table is restructured to convert the column value to the new type.
This might involve increasing or decreasing the length of the row.

■ The ALTER statement will fail if a loss of data (such as truncation of a non-blank
character or numeric overflow) would occur as part of the conversion.

■ When you change data type, every index and linked indexed constraint in which the
column is a sort column is rebuilt.

Examining Check Constraints on a Table

You can examine the current check constraint on a table by using the DISPLAY TABLE
statement.

Examining existing check constraints is useful if you are planning to change a constraint
by dropping it and adding the changed constraint.

Adding Columns with Multiple ALTER TABLE Statements

When columns are added with the ALTER TABLE statement, the first column in the
column definition list is aligned on a full word boundary in the physical data structure
that represents table rows. Since each individual ALTER TABLE statement will cause
alignment, columns added in separated ALTERs versus one ALTER can result in different
row lengths and column offsets within the physical row data structure.

ALTER TABLE

Chapter 8: Statements 299

Specifying a Synchronization Stamp

When defining or altering a table, you can specify a value for its synchronization stamp.
You should use care when doing so because the purpose of the stamp is to enable the
detection of discrepancies between an entity and its definition. If explicitly specified,
you must set the synchronization stamp to a new value following a change so that the
change is detectable by the runtime system.

If not specified, the synchronization stamp is automatically set to the current date and
time.

Examples

Adding a Column to a Table

The following ALTER TABLE statement adds a new column, STATUS, to the CONSULTANT
table. The value of STATUS in all existing rows is blank because the statement specifies
WITH DEFAULT.

alter table consultant

 add status character(1) not null with default;

Further Restricting Data in a Table

The following ALTER TABLE statement defines an additional restriction on the data that
can be stored in the CONSULTANT table. CA IDMS adds the constraint only if each
existing row of the CONSULTANT table already has 'A' or 'I' in the STATUS column.

alter table consultant

 add check (status in ('A', 'I');

Change a column’s data type:

alter table demo.empl

 alter column city

 set data type varchar(20);

Drop a column using the CASCADE option:

alter table demo.empl

 drop column status cascade;

Rename a column:

alter table demo.empl

 rename column proj_id to project_id;

Adding a default index:

alter table emp.dept

 add default index;

ALTER TABLE PROCEDURE

300 SQL Reference Guide

More Information

■ For more information about defining tables, see CREATE TABLE and DROP TABLE.

■ For more information about implementing indexes, see the CA IDMS Database
Design Guide.

■ For more information about displaying a table, see DISPLAY/PUNCH TABLE.

ALTER TABLE PROCEDURE

The ALTER TABLE PROCEDURE data description statement modifies the definition of a
table procedure in the dictionary. It is also a CA IDMS extension of the SQL standard.
Using the ALTER TABLE PROCEDURE statement, you can:

■ Add a new parameter to a table procedure

■ Revise the estimated row and I/O counts

■ Change the external name of the procedure

■ Change the size and characteristics of the work areas passed to the procedure

■ Change the execution mode of the procedure

■ Update the table procedure's synchronization timestamp

■ Change the table procedure's default database option

■ Change the table procedure's transaction sharing option

Authorization

To issue an ALTER TABLE PROCEDURE statement, you must own or hold the ALTER
privilege on the table procedure named in the statement.

Syntax

►►─── ALTER TABLE PROCEDURE ─┬────────────────┬─ table-procedure-identifier ──►
 └─ schema-name. ─┘

 ►─┬─ ADD parameter-definition ────────────────────────────┬──────────────────►◄
 │ ┌────────── , ───────────┐ │
 ├─ ADD (─▼─ parameter-definition ─┴─) ────────────────┤
 ├─ EXTERNAL NAME external-routine-name ─────────────────┤
 ├──ESTIMATED ROWS row-count ────────────────────────────┤
 ├──ESTIMATED IOS io-count ──────────────────────────────┤
 ├──LOCAL WORK AREA local-stge-size ─────────────────────┤
 ├──GLOBAL WORK AREA global-stge-size ─┬────────────────┬┤
 │ └─ KEY ┬ key-ID ┬┘│
 │ └─ NULL .┘ │
 ├──USER MODE ───┤
 ├──SYSTEM MODE ───┤
 ├──TIMESTAMP timestamp-value ───────────────────────────┤
 ├──DEFAULT DATABASE ───────────────┬─── NULL ──────┬────┤
 │ └─── CURRENT ───┘ │
 └──TRANSACTION SHARING ─────────────┬── ON ────────┬────┘
 ├── OFF ───────┤
 └── DEFAULT ───┘

ALTER TABLE PROCEDURE

Chapter 8: Statements 301

Expansion of parameter-definition

►►─── parameter-name ── data-type ─┬────────────────┬─────────────────────────►◄
 └─ WITH DEFAULT ─┘

Parameters

table-procedure-identifier

Specifies the name of the table procedure being modified.
Table-procedure-identifier must identify a table procedure defined in the dictionary.

schema-name

Identifies the schema associated with the named table procedure. If you do not
specify a schema-name, it defaults to:

■ The current schema associated with your SQL session, if the statement is
entered through the Command Facility or executed dynamically

■ The schema associated with the access module used at runtime, if the
statement is embedded in an application program

parameter-definition

Defines one or more new parameters to be associated with the table procedure.
New parameters are added, in the order specified, after the last existing parameter.

For a description of parameter-definition, see CREATE TABLE PROCEDURE.

external-routine-name

Specifies the one- to eight-character name of the program which CA IDMS calls to
process references to the table procedure.

ALTER TABLE PROCEDURE

302 SQL Reference Guide

row-count

Specifies an integer value, in the range of 0 through 2,147,483,647, which
represents the average number of rows that the table procedure returns for a given
set of input parameters.

io-count

Specifies an integer value, in the range of 0 through 2,147,483,647, which
represents the average number of disk accesses that the table procedure generates
for a given set of input parameters.

local-stge-size

Specifies an integer, in the range of 0 through 32767, which represents the size, in
bytes, of a local storage area that CA IDMS allocates at runtime and passes to the
table procedure on each invocation.

CA IDMS allocates a local storage area on the first call to a table procedure for each
SQL statement within a transaction or for a set of SQL statements related through
reference to the same cursor. OPEN, CLOSE, FETCH, POSITIONED UPDATE and
POSITIONED DELETE statements are related through a cursor. CA IDMS passes the
same local storage area to the table procedure for all calls for one statement or
related statements. CA IDMS releases the local work area when the SQL statement
has completed execution or at the time the cursor is closed.

global-stge-size

Specifies an integer, in the range of 0 through 32767, which represents the size, in
bytes, of a global storage area that CA IDMS allocates at runtime and passes to the
table procedure on each invocation.

CA IDMS allocates a global storage area once within a transaction and retains it
until the transaction terminates.

key-id

Specifies the one- to four-character identifier for the global storage area. CA IDMS
passes the same piece of global storage within a transaction to all routines that
have the same global storage key.

If you do not specify a storage key, its value remains unchanged. To remove a
storage key, specify NULL as the key.

ALTER TABLE PROCEDURE

Chapter 8: Statements 303

USER MODE

Specifies the table procedure should execute as a user-mode application program
within CA IDMS.

SYSTEM MODE

Specifies the table procedure should execute as a system-mode application
program. To execute as a system mode application, the program must be fully
reentrant and be written in either:

■ Assembler using DC calling conventions

■ COBOL or PL/I and compiled with an LE-compliant compiler

timestamp-value

Specifies the value of the synchronization stamp to be assigned to the table
procedure. Timestamp-value must be a valid external representation of a
timestamp.

DEFAULT DATABASE

Specifies whether a default database should be established for database sessions
started by the table procedure.

NULL

Specifies that no default database should be established.

CURRENT

Specifies that the database to which the SQL session is connected should
become the default for any database session started by the table procedure.

TRANSACTION SHARING

Specifies whether transaction sharing should be enabled for database sessions
started by the table procedure. If transaction sharing is enabled for a table
procedure's database session, it will share the current SQL session's transaction.

ON

Specifies that transaction sharing should be enabled.

OFF

Specifies that transaction sharing should be disabled.

DEFAULT

Specifies that the transaction sharing setting that is in effect when the
procedure is invoked should be retained.

ALTER TABLE PROCEDURE

304 SQL Reference Guide

Parameters for Expansion of parameter-definition

parameter-name

Specifies a 1- to 32-character name of a parameter to be passed to the table
procedure. Parameter-name must:

■ Be unique within the table procedure that you are defining

■ Follow the conventions for SQL identifiers

All parameters are implicitly nullable. Input parameters can be assigned NULL as a
parameter value and output parameters can return NULL.

data-type

Defines the data type for the named parameter. For expanded data-type syntax,
see Expansion of Data-type.

WITH DEFAULT

Directs CA IDMS to pass a default value for the named parameter if no value for the
parameter is specified.

The default value for a parameter is based on its data type:

Column data type Default value

CHARACTER Blanks

VARCHAR A character string literal with a length of zero (that is, '')

GRAPHIC Double-byte blanks

VARGRAPHIC A double-byte character string literal with a length of zero

DATE The value in the CURRENT DATE special register

TIME The value in the CURRENT TIME special register

TIMESTAMP The value in the CURRENT TIMESTAMP special register

All numeric data types 0 (zero)

Usage

Specifying a Synchronization Stamp

When defining or altering a table procedure, you can specify a value for its
synchronization stamp. You should use care when doing so because the purpose of the
stamp is to enable the detection of discrepancies between an entity and its definition. If
explicitly specified, you must set the synchronization stamp to a new value following a
change so that the change is detectable by the runtime system.

If not specified, the synchronization stamp is automatically set to the current date and
time.

BEGIN DECLARE SECTION

Chapter 8: Statements 305

Examples

Adding Parameters to a Table Procedure

The following ALTER TABLE PROCEDURE statement adds two new parameters to the
EMP.ORG table procedure:

alter table procedure emp.org

 add (job_level decimal(1),

 job_title char(20));

BEGIN DECLARE SECTION

The BEGIN DECLARE SECTION statement notifies the precompiler that an SQL declare
section follows. You can use this statement only in SQL that is embedded in a program.

Authorization

None required.

Syntax

►►── BEGIN DECLARE SECTION ───►◄

Parameter

BEGIN DECLARE SECTION.

Notifies the precompiler that an SQL declare section follows. An SQL declare
section contains the definition of one or more host variables.

Usage

Declaring Host Variables

You can:

■ Place an SQL declare section in an application program wherever host language
rules allow variable declarations

■ Define any number of host variable declarations in an SQL declare section

■ Include any number of SQL declare sections in a single application program

CALL

306 SQL Reference Guide

Example

Beginning and Ending an SQL Declaration Section

In this COBOL example, BEGIN DECLARE SECTION begins an SQL declare section and END
DECLARE SECTION ends it. The SQL declare section contains the definition of five host
variables.

WORKING-STORAGE SECTION.

 .

 .

 .

 EXEC SQL BEGIN DECLARE SECTION END-EXEC

 01 HV-EMP-ID PIC S9(8) USAGE COMP.

 01 HV-EMP-LNAME PIC X(20).

 01 HV-SALARY-AMOUNT PIC S9(6)V(2) USAGE COMP-3.

 01 HV-PROMO-DATE PIC X(10).

 01 HV-PROMO-DATE-I PIC S9(4) USAGE COMP.

 EXEC SQL END DECLARE SECTION END-EXEC

More Information

■ For more information about ending an SQL declare section, see END DECLARE
SECTION.

■ For more information about declaring host variables, see Host Variables or the CA
IDMS SQL Programming Guide.

CALL

The CALL data manipulation statement executes a procedure or a table procedure. The
values of output parameters return in the form of 0 to 1 result row for the call of a
procedure and 0 to multiple rows for the call of a table procedure. When the CALL
statement is:

■ Submitted through the command facility, the values of all parameters are contained
in the result rows and displayed in tabular form.

■ Embedded in an application program, at most a single row can return and the
values in the result row are stored in host variables.

■ Dynamically prepared, the result rows must return through a cursor just as if the
prepared statement were a SELECT statement.

Authorization

To issue a CALL statement, you must either own or have the SELECT privilege on the
procedure or table procedure explicitly named in the statement.

CALL

Chapter 8: Statements 307

Syntax

►►─── CALL ───┬─ procedure-reference ───────┬─────────────────────────────────►◄
 └─ table-procedure-reference ─┘

Parameters

procedure-reference

Identifies the procedure that is invoked, the input values that pass to the procedure
and optionally the host.variables for passing and returning values of input/output
parameters.

table-procedure-reference

Identifies the table procedure that is invoked, the input values that pass to the table
procedure and optionally the host.variables for passing and returning values of
input/output parameters.

Usage

Embedding a CALL statement

When embedding a CALL statement in an application program, output values return
only for those parameters that you specify as host-variables, local variables, or routine
parameters.

call myproc (5, :wk-out)

If the procedure or table procedure updates the value of the first parameter and the
application program needs to see that value, then you must specify both parameters as
host-variables. You should set the first host-variable to 5 before executing the CALL
statement:

move 5 to wk-val

call myproc (:wk-val, :wk-out)

Initializing parameters

It is important to initialize all host-variables, local variables, and routine parameters that
you reference in a CALL statement prior to its execution. Since all such parameters are
treated as input values, failure to initialize such host-variables, local variables, or routine
parameters results in a data exception if its value does not conform to its data type. If
there is no value to pass, you should declare the host-variable with a null indicator with
a value set to -1 and set the local variables and routine parameters to null.

CALL

308 SQL Reference Guide

Dynamically executing a CALL statement

When describing the output from a dynamically prepared CALL statement, the SQLD
field of the SQLDA contains a count of the number of parameters for the procedure or
table procedure. The first SQLD entries within the SQLDA contain a description of those
parameters.

You must return the output parameter values of a dynamically prepared CALL statement
using a cursor. In other words, you must treat a dynamically prepared CALL statement as
a dynamically prepared SELECT statement.

Result Sets from SQL-invoked Procedures

An SQL-invoked procedure can return results to the caller by assigning values to one or
more parameters of the procedure. Using Dynamic Result Sets, an SQL-invoked
procedure can return result sets in the form of rows of result tables.

To exploit result sets returned by an SQL-invoked procedure, an application must consist
of at least an SQL-invoked procedure and a caller of that procedure. The caller can be an
SQL client program or another SQL-invoked routine. The SQL-invoked procedure that
returns the result sets can be an external procedure (COBOL, PL/I, Assembler or CA ADS)
or an internal SQL procedure written in SQL.

For an SQL-invoked procedure to return result sets to its caller, it must be defined with a
positive integer value for the new Dynamic Result Sets attribute.

A cursor declared or dynamically allocated in the SQL-invoked procedure becomes a
potential returned result set if its definition contains With Return as the value for the
new returnability attribute. Such a cursor is called a returnable cursor. It becomes a
returned result set if it is in the open state when the SQL-invoked procedure terminates.

An SQL-invoked procedure can return multiple result sets up to the number specified by
the Dynamic Result Sets attribute of the procedure. The list of returned result sets are
sequenced in the order of the open of the cursors. If the procedure starts multiple
sessions, then returned result sets are grouped by session and the sessions are
sequenced in the order of the connects. After a procedure CALL, the new SQLCA field
SQLCNRRS contains the number of result sets returned by the procedure.

CALL

Chapter 8: Statements 309

The caller of an SQL-invoked procedure accesses returned result sets by allocating a
dynamic cursor and associating it with the procedure through an ALLOCATE CURSOR
FOR PROCEDURE statement. Such a cursor is called a received cursor.

A successful ALLOCATE CURSOR FOR PROCEDURE statement associates the received
cursor with the first result set from the sequence of returned result sets and places the
cursor in the open state. The cursor position is the same as it was when the SQL-invoked
procedure terminated and the associated returned result set is removed from the list of
returned result sets.

The caller of the procedure can access the next in the sequence of returned result sets
by either allocating another cursor for the procedure or by closing the previously
allocated received cursor. If the close is successful and the list of remaining returned
result sets is not empty, the received cursor is automatically placed in the open state
and associated with the result set that is now first in the list. The newly associated result
set is also removed from the list. This process can be repeated until the list of returned
result sets is empty.

A new invocation of the SQL-invoked procedure automatically destroys all the returned
result sets from the previous invocation.

The received cursors, allocated by the caller and associated with returned result sets,
are necessarily dynamic. Unless the program knows the returned columns and their
data type, a DESCRIBE CURSOR statement is needed to retrieve the description of the
returned result set in an SQL descriptor area (SQLDA).

Only the immediate caller of an SQL-invoked procedure can process returned result
sets. There is no mechanism for the caller to return returned result sets to its caller.

CALL

310 SQL Reference Guide

Calling an SQL Procedure

An SQL procedure is an SQL-invoked procedure with language SQL. Any transaction
started by this procedure is shared with the transaction of the caller. After returning
from an SQL procedure, any session opened by the procedure is automatically released
except for sessions that have result sets. Such sessions are released when their last
result set has been processed and the associated received cursor has been closed.

Note: When calling an SQL procedure or table procedure, if error message DB001078
with condition 38999 is returned, it might indicate that a record associated with the
dialog was too large to fit into the buffer. If this occurs, see messages DC171027 and
DC466014 in the IDMS log for more information on the dialog and process causing this
problem and how to resolve it.

Calling an SQL-invoked Procedure Returning Result Sets

After a CALL of an SQL-invoked procedure that has been defined with a positive value
for the Dynamic Result Sets attribute the number of actual returned results sets is
available in the field SQLCNRRS of the SQLCA. The number of returned result sets can
also be determined by issuing a GET DIAGNOSTICS statement to retrieve the
IDMS_RETURNED_RESULT_SETS information item.

The successful execution of a CALL statement may result in one of two warning
conditions:

0100C SQL invoked procedure returned result sets

Indicates that the number of result sets returned by the procedure is less than or
equal to the value of the procedure's DYNAMIC RESULT SETS attribute.

0100E Attempt to return too many result sets

Indicates that the procedure attempted to return more result sets than permitted
by its DYNAMIC RESULT SETS attribute. The actual number of result sets is reduced
to the value of the DYNAMIC RESULT SETS attribute.

A call of a procedure destroys any result sets left over from a previous invocation of the
same procedure.

Example

The following example illustrates the basic coding techniques to use dynamic result sets
in an application. The SQL procedure, SQLROUT.PROCESSRESULTSET, calls the SQL
procedure SQLROUT.CREATERESULTSET and dynamically processes the returned results
sets. Included in the example are the definition of a table SQLROUT.RSTAB, the load of
this table, the definitions of the SQL procedures SQLROUT.CREATERESULTSET and
SQLROUT.PROCESSRESULTSET, and finally the CALL of SQLROUT.PROCESSRESULTSET.

CALL

Chapter 8: Statements 311

create table SQLROUT.RSTAB

 (ID integer,

 MES character(10)

) in PROJSEG.PROJAREA ++

insert into SQLROUT.RSTAB values (1, 'txt1')++

insert into SQLROUT.RSTAB values (2, 'txt2')++

insert into SQLROUT.RSTAB values (3, 'txt3')++

insert into SQLROUT.RSTAB values (4, 'txt4')++

insert into SQLROUT.RSTAB values (5, 'txt5')++

insert into SQLROUT.RSTAB values (6, 'txt6')++

commit++

create procedure SQLROUT.CREATERESULTSET

 (TITLE char(10) with default,

 P_ID integer with default,

 RESULT char(30) with default

)

 external name CRRESSET language SQL

 dynamic result sets 4

begin not atomic

 declare DYNST char(100);

 declare L_ID integer default 2;

 declare TEST_CUR2 cursor with return for

 select ID, MES from SQLROUT.RSTAB

 where ID >= P_ID;

 declare TEST_CUR4 cursor with return for

 select ID, MES from SQLROUT.RSTAB

 where ID < P_ID;

set DYNST = 'SELECT ID, MES FROM SQLROUT.RSTAB '

 || 'WHERE ID < CAST(? AS INTEGER)';

 prepare 'DYNSTMT1' FROM DYNST;

 allocate 'TEST_CUR1' cursor with return for 'DYNSTMT1';

 prepare 'DYNSTMT3' FROM DYNST;

 allocate 'TEST_CUR3' cursor with return for 'DYNSTMT3';

 open TEST_CUR4;

 open 'TEST_CUR3' using L_ID;

 set L_ID = L_ID + 1;

 open 'TEST_CUR1' using L_ID;

 open TEST_CUR2;

set RESULT = '4 RESULT SET RETURNED';

end

++

commit++

create procedure SQLROUT.PROCESSRESULTSET

 (TITLE character(10) with default,

 P_ID integer with default,

 CNT_RESULT_SETS integer,

 RESULT varchar(1024) with default,

CALL

312 SQL Reference Guide

 ERROR1 varchar(72) with default

)

 external name PRRESSET language SQL

begin not atomic

 declare L_MES char(20);

 declare L_ID integer;

 declare BINBUF binary(200);

 declare CNT integer;

 declare L_CNT_RESULT_SETS integer default 0;

 declare continue handler for SQLWARNING

 set RESULT = RESULT|| SQLSTATE|| ' ';

 declare exit handler for SQLEXCEPTION

 begin

 declare C_FUN CHAR(64);

 declare L_MES varchar(256);

 declare M_TEXT CHAR(256);

 get diagnostics C_FUN = COMMAND_FUNCTION;

 get diagnostics CONDITION 1 M_TEXT = MESSAGE_TEXT;

 set ERROR1 = TRIM(CHAR(CNT))|| ' ROWS FETCHED; '||

 TRIM(C_FUN)|| ' '|| TRIM(M_TEXT);

 get DIAGNOSTICS CONDITION 2 M_TEXT = MESSAGE_TEXT;

 set ERROR1 = ERROR1|| TRIM(M_TEXT);

 end;

 set RESULT = 'ROWS FETCHED: ';

 call SQLROUT.CREATERESULTSET(TITLE,P_ID, L_MES);

 get diagnostics CNT_RESULT_SETS = IDMS_RETURNED_RESULT_SETS;

 allocate 'CUR2' for procedure

 specific procedure SQLROUT.CREATERESULTSET;

 while (L_CNT_RESULT_SETS < CNT_RESULT_SETS)

 do

 set CNT = 0;

 describe cursor 'CUR2' structure using SQL descriptor SQLDA;

 fetch 'CUR2' into L_ID, L_MES;

 while (SQLSTATE = '00000')

 do

 set RESULT = RESULT|| '<'|| trim(L_MES)|| '>';

 set CNT = CNT + 1;

 fetch 'CUR2' into L_ID, L_MES;

 end while;

 close 'CUR2';

 set L_CNT_RESULT_SETS = L_CNT_RESULT_SETS + 1;

 set RESULT = RESULT|| '# '|| trim(char(CNT))|| '//';

 end while;

end

++

commit++

CLOSE

Chapter 8: Statements 313

call SQLROUT.PROCESSRESULTSET('T4',4)++

*+ TITLE P_ID CNT_RESULT_SETS

*+ ----- ---- ---------------

*+ T4 4 4

*+

*+ RESULT

*+ ------

*+ ROWS FETCHED: 0100C <txt1><txt2><txt3>0100D # 3//<txt1>0100D

*+ # 1//<txt1><txt2>0100D # 2//<txt4><txt5><txt6># 3//

*+ ERROR1

*+ ------

set options command delimiter default++

More Information

■ For more information about defining procedures, see CREATE PROCEDURE and
Defining and Using Procedures.

■ For more information about defining table procedures, see CREATE TABLE
PROCEDURE and Defining and Using Table Procedures.

■ For more information about writing procedures, see Writing an External Procedure
in COBOL, PL/I or Assembler.

■ For more information about writing table procedures, see Writing a Table
Procedure.

■ For more information about calling an SQL-invoked procedure returning result sets,
see ALLOCATE CURSOR.

■ For more information about GET DIAGNOSTICS, see GET DIAGNOSTICS.

■ For more information about ALLOCATE CURSOR, see ALLOCATE CURSOR.

■ For more information about DESCRIBE CURSOR, see DESCRIBE CURSOR.

CLOSE

The CLOSE statement places a specified cursor in the closed state or disassociates a
received cursor from the current returned result set and associates it with the next
result set returned by the procedure. Use this statement only in SQL that is embedded
in a program.

Authorization

None required.

Syntax

►►─── CLOSE cursor-name ──►◄

CLOSE

314 SQL Reference Guide

Parameter

cursor-name

Specifies the cursor to be closed. Cursor-name must identify a cursor previously
defined by a DECLARE CURSOR statement within the application program or by an
ALLOCATE CURSOR statement executed within the same SQL transaction.

Usage

Automatic Closing of Cursors

The COMMIT statement without the CONTINUE clause and the ROLLBACK statement
automatically close all open cursors used by the application program.

Closing Declared Global Cursors

Cursors declared with the GLOBAL option may be closed only within the same
application program in which the global cursor declaration was made. This restriction
does not apply to global cursors defined using an ALLOCATE CURSOR statement.

Closing a Received Cursor

A received cursor is a dynamically allocated cursor used to process one or more result
sets returned by an SQL-invoked procedure. Returned result sets are maintained in an
ordered list. An ALLOCATE CURSOR statement associates the cursor with the first result
set in the list and removes it from the list.

If the list of returned result sets is not empty when a received cursor is closed, the
CLOSE statement causes the following actions to be taken:

■ Disassociates the cursor from its current result set

■ Associates the cursor with the first result set in the list of returned result sets

■ Removes the result set from the list

■ Positions the cursor at the same point at which the corresponding returnable cursor
was left by the procedure

■ Returns a warning "Additional result sets returned" (SQLSTATE "0100D)

Closing the cursor associated with the last result set of a session started by the called
procedure, releases that session.

COMMIT

Chapter 8: Statements 315

Examples

Closing a Cursor

The following CLOSE statement places the cursor named ALL_EMP_CURSOR in the
closed state:

EXEC SQL

 CLOSE ALL_EMP_CURSOR

END-EXEC

Closing a Global Dynamic Cursor

The following statement closes the global cursor whose name is passed in :CNAME:

EXEC SQL

 CLOSE GLOBAL :CNAME

END-EXEC

More Information

■ For more information about defining and manipulating cursors, see DECLARE
CURSOR, FETCH, and OPEN.

■ For more information about using cursors in an application program, see the CA
IDMS SQL Programming Guide.

■ For more information about closing a received cursor, see ALLOCATE CURSOR.

COMMIT

The COMMIT transaction management statement requests that changes to the
database made by the SQL session be made permanent. Optionally, the SQL session
continues or terminates.

Authorization

None required.

Syntax

►►─── COMMIT work ─┬────────────┬───►◄
 ├─ CONTINUE ─┤
 └─ RELEASE ─┘

COMMIT

316 SQL Reference Guide

Parameters

CONTINUE

Directs CA IDMS to maintain the state of the SQL session after committing changes
to the database. This has the effect of maintaining the position of open cursors,
retaining temporary tables and associating a new transaction with the session after
terminating the current one.

If you do not specify CONTINUE, CA IDMS terminates the current transaction and
does not start a new one. It also closes all open cursors and drops all temporary
tables. The CONTINUE parameter is a CA IDMS extension of the SQL standard.

RELEASE

Directs CA IDMS to end the current SQL session as well as the current transaction
after committing the changes to the database. The RELEASE parameter is a CA IDMS
extension of the SQL standard.

Usage

Effect of a COMMIT on the SQL Session's Transaction

If the SQL session's database transaction is not shared, a COMMIT statement has the
following impact on its transaction:

■ Commits all changes made by the SQL session

■ Releases all exclusive locks

■ Terminates the transaction

■ Associates a new transaction with the SQL session if CONTINUE is specified

Effect of a COMMIT on an SQL Session

A COMMIT statement without the CONTINUE option has the following impact on the
SQL session:

■ Releases all locks used to protect cursor currencies

■ Closes all open cursors

■ Drops all temporary tables

■ Deletes all dynamically compiled statements

■ Replaces the access module in the dictionary if the module was recreated during
transaction execution

■ Terminates the SQL session if CA IDMS connected it automatically or if RELEASE is
specified

If CONTINUE is specified, the COMMIT statement impacts the SQL session's transaction
but has no impact on the session itself. Its state remains as it was before the COMMIT
statement was issued.

CONNECT

Chapter 8: Statements 317

Effect of Transaction Sharing

A COMMIT statement requests that changes made by an SQL session be committed.
However, if more than one database session is sharing the session's transaction, those
changes might not be committed immediately. All sharing sessions that have had
activity since the last commit, rollback or session start must signal their willingness to
commit by issuing a COMMIT statement before changes are actually made permanent.
The last one to do so causes the transaction to be committed.

A teleprocessing commit statement such as a COMMIT TASK can be used to cause the
immediate committing of a shared transaction, since it impacts all of the associated
sessions. A COMMIT issued by an encompassing session automatically commits all of its
subordinate sessions.

Example

Committing Changes to the Database

The following COMMIT statement commits changes made during the current
transaction to the database, but does not end the transaction:

EXEC SQL

 COMMIT CONTINUE

END-EXEC

More Information

■ For more information about ending a transaction without committing changes to
the database, see ROLLBACK.

■ For more information about ending an SQL session, see RELEASE.

■ For more information about managing transactions, see the CA IDMS SQL
Programming Guide.

■ For more information about establishing an SQL session, see CONNECT.

CONNECT

The CONNECT session management statement begins an SQL session by connecting to a
CA IDMS dictionary. The dictionary you specify must contain the definitions of the
database to be accessed during the session.

CONNECT

318 SQL Reference Guide

Authorization

To issue a CONNECT statement:

■ In central version, you must have the authority to sign on to the DC/UCF system
with which the dictionary is associated.

■ In local mode, no privileges are required.

Syntax

►►─── CONNECT TO ─┬─ dictionary-name ──────────────┬──────────────────────────►◄
 ├─ :dictionary-variable-name ────┤
 └─ dictionary-sqlvariable-name ──┘

Parameters

dictionary-name

Specifies the name of the dictionary to which the session is connected.

:dictionary-variable-name

Identifies a host variable containing the name of the dictionary to which the session
is connected. Dictionary-variable-name must be a host variable previously declared
in the application program.

dictionary-sqlvariable-name

Identifies a routine parameter or local variable containing the name of the
dictionary to which the session will be connected. Dictionary-sqlvariable-name must
be previously declared in the SQL routine.

You can specify :dictionary-variable-name or dictionary-sqlvariable-name only when you
embed the CONNECT statement in an application program or SQL routine.

CONNECT

Chapter 8: Statements 319

Usage

Ending an SQL Session

If you use the CONNECT statement to begin an SQL session, you must end the session
with one of the following statements:

■ RELEASE

■ COMMIT RELEASE

■ ROLLBACK RELEASE

Automatic Connection

The CONNECT statement is not required to establish a connection. CA IDMS
automatically attempts to establish a connection upon executing the first SQL
statement. When establishing an automatic connection, CA IDMS establishes a
connection to a default dictionary.

Specifying a Dictionary Name

The name specified on a CONNECT statement should be associated with a DDLDML
area, a DDLCAT area; or a DDLDML and a DDLCAT area. The name can represent:

■ A DBNAME that contains the appropriate segments

■ An individual segment

If you specify a DBNAME, it can include segments in addition to those for the dictionary
itself.

Examples

Specifying the Dictionary Name

The following CONNECT statement establishes a connection to the dictionary named
EMPDICT.

connect to empdict;

Using a Host Variable

The following CONNECT statement establishes a connection to the dictionary name
contained in the host variable :DICT-NAME:

EXEC SQL

 CONNECT TO :DICT-NAME

END-EXEC

CREATE ACCESS MODULE

320 SQL Reference Guide

More Information

■ For more information about releasing a connection and ending an SQL session, see
RELEASE.

■ For more information about user profiles, see the CA IDMS Security Administration
Guide.

■ For more information about system profiles and DCUF SET DICTNAME, see the CA
IDMS System Tasks and Operator Commands Guide.

■ For more information about host variables, see Host Variables.

■ For more information about managing SQL sessions, see the CA IDMS SQL
Programming Guide.

■ For more information about how the default dictionary is determined, see the CA
IDMS SQL Programming Guide.

■ For more information about the components of a dictionary, see the CA IDMS
Database Administration Guide.

CREATE ACCESS MODULE

The CREATE ACCESS MODULE statement creates an access module from one or more
RCMs. CA IDMS stores the access module definition and the access module itself in the
dictionary. It is also a CA IDMS extension of the SQL standard.

Authorization

To issue a CREATE ACCESS MODULE statement, you must own the schema with which
the access module is being associated or hold the CREATE privilege on the named access
module.

In addition to enforcing this authorization requirement, CA IDMS also validates the
access module owner's authority to execute every DML statement in the RCMs included
in the access module if the dictionary to which the SQL session is connected is
controlled by CA IDMS internal security.

If the access module owner does not hold the authority to execute a DML statement in
the access module, when the access module is created, a warning is issued. If the owner
still lacks a necessary authority when the access module is executed, an error is
returned.

CREATE ACCESS MODULE

Chapter 8: Statements 321

Syntax

►►─── CREATE ACCESS MODULE ─┬────────────────┬─ access-module-name ───────────►
 └─ schema-name. ─┘

 ►─┬──────────────────────────────┬───►
 └─ VERSION am-version-number ──┘

 ┌─────────────────────────── , ─────────────────────────────────┐
 ►── FROM ─▼─┬──────────────────┬ rcm-name ─┬─────────────────────────────┬┴──►
 └ dictionary-name. ┘ └ VERSION rcm-version-number ─┘

 ►─┬──┬─────────────────►
 │ ┌─────────────────────── , ────────────────────┐ │
 └─ MAP ─▼─┬─ schema-name-1 ─┬─ TO ─── schema-name-2 ───┴─┘
 └─ NULL ──────────┘

 ►─┬────────────────────────────┬───►
 └─ AUTO RECREATE ─┬─ ON ◄──┬─┘
 └─ OFF ──┘

 ►─┬───────────────────────────────┬──►
 └─ VALIDATE ─┬─ BY STATEMENT ─┬─┘
 ├─ BY MODULE ────┤
 └─ ALL ──────────┘

 ►─┬────────────────┬───►
 ├─ READ ONLY ────┤
 └─ READ WRITE ◄──┘

 ►─┬──┬───────────────────────────────►
 └─ DEFAULT ISOLATION ─┬─ CURSOR STABILITY ─┤
 └─ TRANSIENT READ ───┘

 ►─┬──┬─────────────────►◄
 │ ┌───────────────── , ────────────────────┐ │
 └─ READY ─┬─▼─ segment-name.area-name ready-options ─┴─┬─┘
 └─ ALL ready-options ────────────────────────┘

Expansion of ready-options

►►─┬───────────────────────┬──►
 ├─ SHARED RETRIEVAL ────┤
 ├─ SHARED UPDATE ───────┤
 ├─ PROTECTED RETRIEVAL ─┤
 ├─ PROTECTED UPDATE ────┤
 └─ EXCLUSIVE ───────────┘

 ►─┬───────────────┬──►◄
 ├─ INCREMENTAL ─┤
 └─ PRECLAIM ────┘

CREATE ACCESS MODULE

322 SQL Reference Guide

Parameters

access-module-name

Specifies the name of the access module being created. Access-module-name must
be a one- through eight-character name that follows the conventions for SQL
identifiers.

The combination of access-module-name and am-version-number must be unique
within the dictionary. Multiple access modules with the same access-module-name
can be associated with a given schema provided they have different version
numbers.

schema-name

Specifies the schema to be associated with the access module. Schema-name must
identify a schema defined in the dictionary.

The owner of the schema with which the access module is associated implicitly
becomes owner of the access module.

If you do not specify schema-name, CA IDMS uses the current schema in effect for
your SQL session.

am-version-number

Specifies the version number of the access module to be created.

If the specified version of the access module already exists, an error is returned.

If you do not specify VERSION, am-version-number is set to 1.

FROM rcm-name

Specifies one or more RCMs from which CA IDMS is to create the access module.
Rcm-name must identify an RCM stored in the dictionary and must be unique within
the list of RCM names.

dictionary-name

Identifies the dictionary in which the named RCM resides.

If you do not specify dictionary-name, it is set to the name of the dictionary to
which the SQL session is connected.

rcm-version-number

Specifies the version of the RCM to be included in the access module.

If you do not specify rcm-version-number:

1. CA IDMS looks for an RCM with a version number that matches
am-version-number

2. If no such RCM is found, CA IDMS looks for version 1

3. If CA IDMS does not find a match, it issues a warning

CREATE ACCESS MODULE

Chapter 8: Statements 323

MAP

Specifies one or more mappings for schema names that qualify table and view
identifiers in data manipulation statements.

If you do not specify MAP, table and view identifiers are not replaced. If a table or
view has no qualifier, CA IDMS uses the schema name of the access module as the
qualifier.

schema-name-1

Directs CA IDMS to replace occurrences of the specified schema name with the
schema name specified in the TO parameter.

NULL

Directs CA IDMS to use the schema name specified in the TO parameter as the
qualifier for unqualified table and view identifiers.

TO schema-name-2

Directs CA IDMS to use the specified schema name as the replacement for
schema-name-1 or as the qualifier for unqualified table and view identifiers.

AUTO RECREATE

Specifies whether CA IDMS is to re-create the access module after detecting any of
the following:

■ An attempt to execute an uncompiled statement

■ A change to the definition of a table referenced in the access module

■ The execution of a program that has been recompiled since its RCM was
included in the access module

CA IDMS identifies the above conditions by comparing definition timestamps in the
access module to corresponding timestamps in the database and the host program.

If you do not specify AUTO RECREATE, the default is ON.

ON

Directs CA IDMS to re-create the access module at runtime when timestamps do
not match. CA IDMS continues the current transaction with the re-created access
module but does not replace the access module in the dictionary until the
transaction terminates with a COMMIT statement.

OFF

Directs CA IDMS not to re-create the access module at runtime. If CA IDMS detects
a mismatch in timestamps, it returns an error and terminates the current
transaction.

CREATE ACCESS MODULE

324 SQL Reference Guide

VALIDATE

Indicates when CA IDMS is to check the definition timestamps of tables in the
access module to ensure that the definition has not changed since the access
module was created or last altered.

If you do not specify VALIDATE, the default is VALIDATE ALL.

BY STATEMENT

Directs CA IDMS to check the definition timestamp for a table immediately before
executing the first statement in the access module that references the table.

BY MODULE

Directs CA IDMS to check the definition timestamp for each table referenced by a
statement in an RCM immediately before executing the first statement in the RCM.

ALL

Directs CA IDMS to check the definition timestamp for each table in the access
module immediately before executing the first statement in the access module.

READ ONLY

Specifies transactions started by the access module that do not execute a SET
TRANSACTION statement can retrieve data but cannot update the database.

READ WRITE

Specifies transactions started by the access module that do not execute a SET
TRANSACTION statement can retrieve data and update the database.

CREATE ACCESS MODULE

Chapter 8: Statements 325

DEFAULT ISOLATION

Specifies the isolation level of transactions started by the access module that do not
execute a SET TRANSACTION statement.

At runtime, the isolation level of a transaction determines the length of time
retrieval locks are held for the purpose of insulating the transaction from the effects
of other concurrent transactions. (Update locks are always held until the
transaction is committed or rolled back.)

If you do not specify DEFAULT ISOLATION, the default is CURSOR STABILITY.

CURSOR STABILITY

Specifies the default isolation level for a transaction is cursor stability.

An isolation level of cursor stability guarantees read integrity. Read integrity
ensures that:

■ All data read by the transaction is in a committed state

■ The current row of an updateable cursor is protected from update by other
transactions while it remains current

TRANSIENT READ

Specifies the default isolation level for a transaction is transient read.

An isolation level of transient read provides no guarantees of read integrity. A
transaction executing under transient read cannot perform updates to the
database. CA IDMS does not maintain any locks for a transaction with an isolation
level of transient read.

The combination of TRANSIENT READ and a transaction state of READ WRITE is
invalid. Thus, if you specify TRANSIENT READ, CA IDMS assumes a transaction state
of READ ONLY.

READY

Specifies a ready mode for one or more areas accessed through the access module,
and specifies when the ready occurs.

The ready mode associated with an area determines:

■ Under the central version, the ready mode in which transactions access the
area. The ready mode determines the types of area and row locks CA IDMS
places for a transaction.

■ In local mode, the type of physical lock CA IDMS places on the area.

If you do not specify READY, the ready options for all areas used by the access
module are determined at runtime by:

■ The transaction state (READ WRITE or READ ONLY)

■ The isolation level

■ The availability of the area under the central version

Note: For more information, see "Usage," following these parameter descriptions.

CREATE ACCESS MODULE

326 SQL Reference Guide

segment-name

Identifies the segment associated with the area to which the following ready
options apply.

If the access module is used to access a non-SQL-defined database, segment-name
is optional. In this case, if you do not specify segment-name, CA IDMS accesses the
first segment for which it finds a match on area-name.

area-name

Specifies the name of the area to which the following ready options apply.
Area-name must identify an area used by the access module.

ALL

Specifies the following ready options apply to all areas in the access module.

Parameters for Expansion of ready-options

The ready-options are used for a specified area or for all areas in the access module.
Expanded syntax for ready-options is shown immediately following the CREATE ACCESS
MODULE syntax.

CREATE ACCESS MODULE

Chapter 8: Statements 327

SHARED RETRIEVAL

Specifies a transaction can retrieve, but not update, data in the area. Other
concurrent transactions can retrieve and update data in the area.

SHARED UPDATE

Specifies that:

■ Under the central version, transactions access the indicated areas in shared
update mode.

With access to an area in shared update mode, a transaction can retrieve and
update data in the area. Other concurrent central version transactions can also
both retrieve and update data in the area.

■ In local mode, CA IDMS first places a physical lock on the indicated areas.

With a physical lock on an area, a local mode transaction can retrieve and
update data in the area. Concurrent transactions executing in other address
spaces can retrieve but not update data in the area.

PROTECTED RETRIEVAL

Specifies that:

■ Under the central version, transactions access the indicated areas in protected
retrieval mode.

With access to an area in protected retrieval mode, a transaction can retrieve,
but not update, data in the area. Other concurrent central version transactions
can also retrieve, but not update, data in the area.

■ In local mode, a ready mode of PROTECTED RETRIEVAL is equivalent to a ready
mode of SHARED RETRIEVAL.

CREATE ACCESS MODULE

328 SQL Reference Guide

PROTECTED UPDATE

Specifies that:

■ Under the central version, transactions access the indicated areas in protected
update mode.

With access to an area in protected update mode, a transaction can retrieve
and update data in the area. Other concurrent central version transactions can
retrieve, but not update, data in the area.

■ In local mode, a ready mode of PROTECTED UPDATE is equivalent to a ready
mode of SHARED UPDATE.

EXCLUSIVE

Specifies that:

■ Under the central version, transactions access the indicated areas in exclusive
mode.

With access to an area in exclusive mode, a transaction can retrieve and update
data in the area. All other concurrent central version transactions can neither
retrieve nor update data in the area except transactions with an isolation level
of transient read, which can retrieve data in the area.

■ In local mode, a ready mode of EXCLUSIVE is equivalent to a ready mode of
SHARED UPDATE.

INCREMENTAL

Directs CA IDMS to defer the ready of each indicated area until execution of the
first statement in the access module that requires access to the area.

PRECLAIM

Directs CA IDMS to ready each indicated area when executing the first statement in
the access module that requires database or dictionary access.

CREATE ACCESS MODULE

Chapter 8: Statements 329

Usage

Automatic Access Module Recreation

An automatic recreation of the access module occurs when CA IDMS detects a change in
the definition of a table referenced in the access module.

The scope of what is recreated is limited by how you specify the VALIDATE option, as
described in the following table:

If validation is by CA IDMS recompiles

STATEMENT Only the statement just checked; other
statements which reference the same table
or another table with a changed definition
are recompiled as they are encountered

MODULE All statements in the current RCM that
reference tables with changed definitions
when the first such statement is
encountered

ALL All statements in the access module that
reference tables with changed definitions
when the first such statement is
encountered

Repeatability of Retrieval Operations

An isolation level of cursor stability assures that data currently being accessed by a
transaction is protected from update by other transactions. Cursor stability does not
protect data that was accessed previously by the transaction.

Therefore, a cursor might return six rows the first time it is opened and five rows the
second time, even though both operations are performed within the same transaction
and that transaction has not made intervening updates. The discrepancy would be
caused by updates by other transactions executing concurrently.

To completely isolate a transaction from the effects of other transactions, specify a
protected ready mode for the areas that the transaction accesses. A ready mode of
protected retrieval for retrieval applications and protected update for update
applications ensures the repeatability of retrieval operations.

CREATE ACCESS MODULE

330 SQL Reference Guide

Runtime Ready Modes

The ready mode in which an area is accessed at runtime depends on the requested
ready mode, the transaction state, the isolation level, and the area's availability:

■ If the transaction state and isolation level are READ ONLY and TRANSIENT READ, all
areas are accessed using transient retrieval mode, in which no row locks are placed.

■ If the transaction state and isolation level are READ ONLY and CURSOR STABILITY,
all areas are accessed using retrieval modes only.

If update modes were specified on the CREATE or ALTER ACCESS MODULE
statement, they are changed to shared retrieval, and if no ready option was
specified, the default is shared retrieval.

■ If the transaction state and isolation level are READ WRITE and CURSOR STABILITY,
all areas are accessed using the mode specified on the CREATE ACCESS MODULE.

If no mode was specified, the default is:

– Shared update under the central version if the area status is update

– Shared update in local and no other copy of IDMS has update control of the
area

– Shared retrieval under the central version if the area status is retrieval

– Shared update in local if another copy of IDMS has update control of the area

Under central version, if an area is being readied in a retrieval mode and the status of
the area is transient retrieval, the ready mode is changed to transient retrieval.

Ready Modes and Area Status Under the Central Version

The ready mode in which a central version transaction obtains access to an area must be
compatible with the status of the area within the DC/UCF system. If the area's status is:

■ Update, transactions executing under the system can obtain access to the area in
any ready mode

■ Retrieval or transient retrieval, transactions executing under the system can obtain
access to the area in a retrieval ready mode only

■ Offline to the system, transactions executing under the system cannot obtain
access to the area

CREATE ACCESS MODULE

Chapter 8: Statements 331

Shared, Protected, and Exclusive Ready Modes

In the shared ready modes (shared retrieval and shared update), CA IDMS provides
protection from the effects of other transactions at the row level. In the protected ready
modes (protected retrieval and protected update), CA IDMS provides protection at the
area level. The shared ready modes, therefore, allow for greater transaction
concurrency than the protected ready modes. The protected ready modes, on the other
hand, create less overhead than the shared ready modes and reduce the chances for
deadlocking.

In exclusive ready mode, as in the protected ready modes, CA IDMS provides protection
at the area level. However, exclusive ready mode prohibits other transactions from
retrieving data from the area.

Ready Modes and Later Modifications

The ready clause only affects areas accessed by statements compiled at the time the
CREATE ACCESS MODULE statement is issued. If new areas are added at a later time
because the access module is altered or because dynamic SQL accesses additional areas
at runtime, those areas are accessed using a ready mode determined by the above rules
as if no READY option had been specified (unless the READY option is repeated on the
ALTER ACCESS MODULE statement).

CREATE ACCESS MODULE

332 SQL Reference Guide

Example

Creating an Access Module

The following CREATE ACCESS MODULE statement creates an access module from seven
RCMs. The schema name EMP_TEST is replaced with EMP_PROD when it qualifies a
table or view name, and unqualified tables and views are assumed to be in the
EMP_PROD schema.

By default, CA IDMS performs the following tasks:

■ Checks the definition timestamps for all tables in the access module before
executing the first statement and automatically re-creates the access module if any
timestamps do not match

■ Places a shared update lock on each area in the access module at the time of the
first request for data in the area

The following example shows creating an access module.

create access module hrprod.empam001

 from emp_dict.empdsp01,

 emp_dict.empdsp02,

 emp_dict.empdsp03,

 emp_dict.empadd01,

 emp_dict.empupd01,

 emp_dict.empupd02,

 emp_dict.empdel01

 map emp_test to emp_prod,

 null to emp_prod;

More Information

■ For more information about ACCESS modules, see ALTER ACCESS MODULE and
DROP ACCESS MODULE (see page 418) or see the CA IDMS Database Administration
Guide.

■ For more information about schema-name mappings, see Identifying Entities in
Schemas.

■ For more information about specifying isolation level, see SET TRANSACTION or see
the CA IDMS SQL Programming Guide.

■ For more information about ready modes, see the CA IDMS Database
Administration Guide.

CREATE CALC

Chapter 8: Statements 333

CREATE CALC

The CREATE CALC data description statement defines a CALC key on a base table. The
CALC key definition is stored in the dictionary. It is also a CA IDMS extension of the SQL
standard. You can define only one CALC key on any given table.

Authorization

To issue a CREATE CALC statement, you must own or have the ALTER privilege on the
table on which the CALC key is being defined.

Syntax

►►─── CREATE ─┬──────────┬─ CALC key ───►
 └─ UNIQUE ─┘

 ►─── ON ─┬────────────────┬─ table-identifier ───────────────────────────────►
 └─ schema-name. ─┘

 ┌────── , ──────┐
 ►─── (─▼─ column-name ─┴─) ──►◄

Parameters

UNIQUE

Specifies the CALC key value in any given row of the table on which the CALC key is
being defined must be different from the CALC key value in any other row of the
table. A table with a unique CALC key cannot contain duplicate CALC key values.

table-identifier

Specifies the table on which the CALC key is being defined. Table-identifier must
identify a base table defined in the dictionary. The named table cannot:

■ Contain any data

■ Have a clustered index defined on it

■ Be the referencing table in a clustered referential constraint

schema-name

Identifies the schema associated with the named table.

If you do not specify schema-name, it defaults to:

■ The current schema associated with your SQL session, if the statement is
entered through the Command Facility or executed dynamically

■ The schema associated with the access module used at runtime, if the
statement is embedded in an application program

CREATE CONSTRAINT

334 SQL Reference Guide

(column-name)

Specifies one or more columns that make up the CALC key. Column-name must
identify a column in the table on which the CALC key is being created and must be
unique within the list of column names.

You can include from 1 through 32 columns in a CALC key.

Usage

SYSTEM tables

You cannot define a CALC key on a table in the SYSTEM schema.

Example

Defining a Unique CALC Key

The following CREATE CALC statement defines a unique CALC key on the COVERAGE
table. The CALC key consists of two columns: PLAN_CODE and EMP_ID.

create unique calc key

 on coverage

 (plan_code, emp_id);

Note: For more information about dropping CALC key definitions, see DROP CALC.

CREATE CONSTRAINT

The CREATE CONSTRAINT data description statement defines a referential constraint in
the dictionary. A referential constraint establishes a relationship between two tables.

Using the CREATE CONSTRAINT statement, you can also specify how the constraint is
implemented physically. It is also a CA IDMS extension of the SQL Standard.

Authorization

To issue a CREATE CONSTRAINT statement, you must:

■ Either hold the ALTER privilege on or own the referencing table in the constraint
being defined

■ Hold the REFERENCES privilege on the referenced table in the constraint being
defined

CREATE CONSTRAINT

Chapter 8: Statements 335

Syntax

►►─── CREATE CONSTRAINT constraint-name ──────────────────────────────────────►

 ┌────────── , ─────────┐
 ►─┬────────────────┬─ referencing-table (─▼─ foreign-key-column ─┴─) ──────►
 └─ schema-name. ─┘

 ►─── REFERENCES ─┬────────────────┬─ referenced-table ───────────────────────►
 └─ schema-name. ─┘

 ┌───────── , ─────────┐
 ►─── (─▼─ referenced-column ─┴─) ──►

 ►─┬────────────────────────────────────┬─────────────────────────────────────►◄
 ├─ LINKED linked-constraint-options ─┤
 └─ UNLINKED ◄──┬─────────────┬───────┘
 └─ CLUSTERED ─┘

Expansion of linked-constraint-options

►►─┬─ CLUSTERED ──┬───────────►
 └─ INDEX ─┬──────────────────┬─┬─────────────────────────────┬─┘
 ├─ COMPRESSED ─────┤ └─ index-block-specification ─┘
 └─ UNCOMPRESSED ◄ ─┘

 ►─┬───┬────────────►◄
 │ ┌──────────── , ────────────┐ │
 └─ ORDER BY (─▼─ sort-column ─┬─────────┬─┴─) ─┬──────────┬─┘
 ├─ ASC ◄ ─┤ └─ UNIQUE ─┘
 └─ DESC ─┘

Expansion of index-block-specification

►►─── INDEX BLOCK CONTAINS key-count KEYs ────────────────────────────────────►

 ►─┬─────────────────────────────────────┬────────────────────────────────────►◄
 └─ DISPLACEMENT IS page-count PAGES ──┘

Parameters

constraint-name

Specifies the name of the referential constraint being created. Constraint-name
must be a 1- through 18-character name that follows the conventions for SQL
identifiers.

Constraint-name must be unique for the schema of the referencing table.

referencing-table

Specifies the referencing table in the constraint. Referencing-table must identify a
base table defined in the dictionary.

If you specify CLUSTERED in the CREATE CONSTRAINT statement, referencing-table:

■ Cannot have a CALC key or clustered index defined on it

■ Cannot be the referencing table in another clustered constraint

If you specify LINKED in the CREATE CONSTRAINT statement, referencing-table:

■ Must be empty

■ Must not be the same table as referenced-table

CREATE CONSTRAINT

336 SQL Reference Guide

schema-name

Identifies the schema associated with the referencing table.

If you do not specify schema-name, it defaults to:

■ The current schema associated with your SQL session, if the statement is
entered through the Command Facility or executed dynamically

■ The schema associated with the access module used at runtime, if the
statement is embedded in an application program

(foreign-key-column)

Specifies one or more columns that make up the foreign key in the referencing
table. Foreign-key-column must identify a column in the referencing table and must
be unique within the list of column names.

If you specify UNLINKED in a CREATE CONSTRAINT statement (or accept UNLINKED
as the default), the foreign key must be a CALC key or an index key, as defined by a
CREATE CALC or CREATE INDEX statement.

You can include from 1 through 32 columns in a foreign key.

REFERENCES referenced-table

Specifies the referenced table in the constraint. Referenced-table must identify a
base table defined in the dictionary.

If you specify LINKED in a CREATE CONSTRAINT statement, referenced-table:

■ Must be empty

■ Must not be the same table as referencing-table

schema-name

Identifies the schema associated with the referenced table.

If you do not specify schema-name, it defaults to:

■ The current schema associated with your SQL session, if the statement is
entered through the Command Facility or executed dynamically

■ The schema associated with the access module used at runtime, if the
statement is embedded in an application program

CREATE CONSTRAINT

Chapter 8: Statements 337

(referenced-column)

Specifies one or more non-null columns that make up a unique key in the
referenced table, as defined by a CREATE CALC or CREATE INDEX statement.

Referenced-column must identify a column in the referenced table and must be
unique within the list of column names. The columns must be named in the CREATE
CONSTRAINT statement in the same order in which they are named in the CREATE
CALC or CREATE INDEX statement that defines the unique key.

You must specify the same number of referenced columns as the number of
columns included in the foreign key of the referencing table. The corresponding
referenced and foreign-key columns must have the same data type, length,
precision, and scale.

LINKED

Directs CA IDMS to maintain a physical linkage between the rows in the referenced
and referencing tables.

linked-constraint-options

Specifies additional characteristics of a linked constraint. Expanded syntax for
linked-constraint-options is shown immediately following the CREATE CONSTRAINT
syntax.

UNLINKED

Directs CA IDMS not to physically link the referenced and referencing tables.

If you specify UNLINKED, the referencing table must have a CALC key or index
defined on the foreign key and the order of columns of the CALC or index key must
match the order of columns of the foreign key. The index or CALC key on the foreign
key does not have to be unique.

A constraint in which a single table is the referencing table and the referenced table
must be unlinked.

UNLINKED is the default when you specify neither LINKED nor UNLINKED.

Note: If you are using an index, it can contain additional columns that are not part
of the foreign key. The foreign key columns must precede any additional columns in
the index key.

CLUSTERED

Specifies each row of the referencing table is to be stored close to other rows of the
referencing table that have the same non-null foreign-key value.

CREATE CONSTRAINT

338 SQL Reference Guide

Parameters for Expansion of linked-constraint-options

INDEX

Directs CA IDMS to create an index between the referenced and referencing tables.

COMPRESSED

Directs CA IDMS to maintain index entries in a compressed form in the database.

UNCOMPRESSED

Directs CA IDMS to maintain index entries in an uncompressed form in the
database.

UNCOMPRESSED is the default when you specify neither COMPRESSED nor
UNCOMPRESSED.

index-block-specification

Establishes characteristics of the index created between the referenced and
referencing tables.

Syntax for index-block-specification follows the syntax for
linked-constraint-options.

ORDER BY (sort-column)

Specifies one or more columns that make up a sort key for a linked constraint. CA
IDMS uses the sort key to determine the order in which the rows of the referencing
table are to be linked within the referential constraint. Rows are linked in ascending
or descending order, first by the first column specified, then by the second column
specified within the ordering established by the first column, then by the third
column specified, and so on.

Sort-column must identify a column in the referencing table and must be unique
within the list of column names.

If you specify the UNIQUE option of the ORDER BY parameter, each column
included in the sort key must be defined as NOT NULL.

You can specify a maximum of 32 sort columns.

ASC

Indicates that values in the named column are to be ordered in ascending
sequence. ASC is the default when you specify neither ASC nor DESC.

DESC

Indicates that values in the named column are to be ordered in descending
sequence.

CREATE CONSTRAINT

Chapter 8: Statements 339

UNIQUE

Specifies the sort-key value in any given row of the referencing table must be
different from the sort-key value in any other row of the table that has the same
non-null foreign-key value. A table with a unique sort key cannot contain duplicate
rows.

Parameters for Expansion of index-block-specification

key-count KEYs

Establishes the maximum number of entries in each internal index record (SR8
system record).

Key-count must be an unsigned integer in the range 3 through 8130.

If you do not specify KEYS, key-count defaults to 10.

page-count PAGES

Indicates how far away from the referenced row the bottom-level index records are
to be stored.

Page-count must be an unsigned integer in the range 0 through 32767.

If index-block-specification is omitted, the value of page-count is 0.

If the value of page-count is 0, the bottom-level internal index records cannot be
displaced from the referenced row with which they are associated.

Usage

System-owned Tables

You cannot define a referential constraint where the referencing table or the referenced
table is in the SYSTEM schema.

Specifying a Linked Constraint

A linked constraint (as opposed to an unlinked constraint) is used by the optimizer in
determining the most efficient access for an SQL DML statement. It does not affect
either the syntax or the semantics of the statement.

Dropping Tables

When you define a referential constraint, you restrict the conditions under which tables
can be dropped.

Mixed Page Group

A constraint defined as linked clustered can not span page groups. The referencing and
referenced tables of a constraint defined as linked clustered must be in the same page
group.

CREATE CONSTRAINT

340 SQL Reference Guide

Examples

Defining a self-referencing Constraint

The following CREATE CONSTRAINT statement defines a referential constraint in which
the EMPLOYEE table is the referencing and the referenced table. This constraint directs
CA IDMS to ensure that the value in the MANAGER_ID column in each row of the
EMPLOYEE table matches the value in the EMP_ID column in another row of the table.
By default, the constraint is unlinked. (Self-referencing constraints must be unlinked.)

create constraint manager_emp

 employee

 (manager_id)

 references employee

 (emp_id);

Defining a Linked Constraint

The following CREATE CONSTRAINT statement defines a referential constraint between
the BENEFITS table and the EMPLOYEE table. This constraint directs CA IDMS to ensure
that the value in the EMP_ID column in each row of the BENEFITS table matches the
value in the EMP_ID column in a row of the EMPLOYEE table. The referential constraint
is implemented with a linked index, with the index entries sorted in descending order by
the value in the FISCAL_YEAR column.

create constraint emp_benefits

 benefits

 (emp_id)

 references employee

 (emp_id)

 linked index

 order by (fiscal_year desc);

More Information

■ For more information about dropping referential constraints, see DROP
CONSTRAINT.

■ For more information about defining CALC keys, see CREATE CALC.

■ For more information about defining indexes, see CREATE INDEX.

■ For more information about implementing referential constraints, see the CA IDMS
Database Design Guide.

■ For more information about dropping tables, see DROP TABLE.

CREATE FUNCTION

Chapter 8: Statements 341

CREATE FUNCTION

The CREATE FUNCTION data description statement stores the definition of a function in
the SQL catalog. You can then invoke the function in any value-expression of an SQL
statement except in the search condition of a table's check constraint. The function
invocation results in CA IDMS calling the corresponding routine. Such routines can
perform any action and return a single scalar value. You use the formal parameters of a
function definition to specify the data type and format of the data to be passed to the
function. Similarly, the data type of the return value is specified in the function
definition.

Functions can be defined with a language of SQL, in which case, the routine actions
written as SQL statements are specified and stored together with the function definition
in the SQL catalog.

Authorization

To issue a CREATE FUNCTION statement, you must own the schema in which the
function is being defined or hold the CREATE privilege on the named function.

Syntax

►►─ CREATE FUNCTION ─┬──────────────────────────────┬─ function-identifier ──►
 └───── schema-name. ───────────┘

 ┌─────────── , ──────────┐
 ►─ (─▼─ parameter-definition ─┴) ── RETURNS ── data-type ────────────────────►

 ►─ EXTERNAL NAME external-routine-name ──────────────────────────────────────►

 ►───┬───────────────────┬───┬─────────────────────────────┬──────────────────►
 └─ language-clause ─┘ └── PROTOCOL ───┬── IDMS ──┬──┘
 └── ADS ───┘

 ►───┬────────────────────────────┬─┬──────────────────────────┬──────────────►
 └─ ESTIMATED ROWS row-count ─┘ └─ ESTIMATED IOS io-count ─┘

 ►───┬───────────────┬──►
 ├─ USER MODE ◄─┤
 └─ SYSTEM MODE ─┘

 ►───┬─────────────────────────────────────┬──────────────────────────────────►
 └── LOCAL WORK AREA local-stge-size ─┘

 ►───┬──┬─────────────►
 └─ GLOBAL WORK AREA ── global-stge-size ──┬────────────────┤
 └─ KEY key-id ───┘

CREATE FUNCTION

342 SQL Reference Guide

 ►───┬───┬────────────►
 └─ TRANSACTION SHARING ───────────────────┬─ ON ───────┬────┘
 ├─ OFF ──────┤
 └─ DEFAULT ◄─┘

 ►───┬───┬────────►
 └─ DEFAULT DATABASE ───────────────────┬─ NULL ◄───┬───────────┘
 └─ CURRENT ─┘

 ►───┬───┬────────────────────────────►
 └── TIMESTAMP timestamp-value ─────────────┘

 ►───┬───┬►◄
 └┬──┬ procedure-statement ──┘
 │ ┌──────────────────┐ │
 └ ADS COMPILE OPTION ─▼─ compile-option ─┴─ ; ─┘

Expansion of parameter-definition

►►─── parameter-name ── data-type ─┬────────────────┬─────────────────────────►◄
 └─ WITH DEFAULT ─┘

Expansion of language-clause

►►─── LANGUAGE ────────────────────┬─ ADS ──────────┬──────────────────────────►◄
 ├─ ASSEMBLER ────┤
 ├─ COBOL ────────┤
 ├─ PLI ──────────┤
 └─ SQL ──────────┘

Expansion of procedure-statement

 ►────┬── SQL-AM-mgmt-stmt ───────────┬──►◄
 ├── SQL-authorization-stmt ─────┤
 ├── SQL-Control-stmt ───────────┤
 ├── SQL-Diagnostics-stmt ───────┤
 ├── SQL-DDL-stmt ───────────────┤
 ├── SQL-DML-stmt ───────────────┤
 ├── SQL-session-mgmt-stmt ──────┤
 └── SQL-transaction-mgmt-stmt ──┘

Parameters

function-identifier

Specifies the 1- to 18-character name of the function you are creating.
Function-identifier must:

■ Be unique among the function, table, table procedure, procedure and view
identifiers within the schema associated with the function

■ Follow conventions for SQL identifiers

schema-name

Specifies the schema name qualifier to be associated with the function.
Schema-name must identify a schema defined in the dictionary. If you do not
specify a schema-name, it defaults to:

■ The current schema associated with your SQL session, if the statement is
specified through the Command Facility or executed dynamically

■ The schema associated with the access module used at runtime, if the
statement is embedded in an application program

CREATE FUNCTION

Chapter 8: Statements 343

parameter-definition

Defines a parameter to be associated with the function. Parameters pass to the
function in the order you specify them. You must enclose the list of parameters in
parentheses. You must separate multiple parameter definitions by commas.

Expanded syntax for parameter-definition is shown above immediately following
the CREATE FUNCTION syntax. Descriptions for these parameters are located at the
end of this section.

RETURNS data-type

Specifies the data type of the returned value. The returned value is implicitly
nullable and can be set to NULL in the external routine. The returned value is
accessible to the external routine as an extra parameter with the implicit name
USER_FUNC, which comes immediately after the function parameters.

external-routine-name

Specifies the one- to eight-character name of the program or mapless dialog that
CA IDMS calls to process function invocation.

For functions written in SQL, the external-routine-name should specify a name that
is unique within the dictionary that holds the function definition. In other words,
the name should be different from any other external name of any SQL-invoked
routine and from any CA ADS dialog, RCM, or AM name.

row-count

Specifies an integer value, in the range 0 through 2,147,483,647, representing the
average number of rows the CA IDMS optimizer uses for cost calculation of the
function invocation.

io-count

Specifies an integer value, in the range 0 through 2,147,483,647, representing the
average number of disk accesses generated by the function for a given set of input
parameters.

language-clause

Specifies the programming language of the function. This clause is required for
functions written in SQL. For others, it is documentational only. if the language is
not specified, it is treated as null. Expanded syntax for language-clause is shown
above immediately following the CREATE FUNCTION syntax. Descriptions for these
parameters are located at the end of this section.

CREATE FUNCTION

344 SQL Reference Guide

PROTOCOL

Specifies the protocol with which the function is invoked. This specification is
required except with language SQL. If LANGUAGE SQL is specified, PROTOCOL must
be ADS or the clause must not be specified.

IDMS

Use IDMS for functions that are written in COBOL, PL/I, or Assembler.

ADS

Use ADS for functions that are written in CA ADS. The name of the dialog that is
loaded and executed when the function is invoked is specified by the
external-routine-name in the EXTERNAL NAME clause. ADS is the default if
LANGUAGE SQL is specified.

USER MODE

Specifies that the function should execute as a user-mode application program
within CA IDMS. This cannot be specified with language SQL or protocol ADS. For
other languages and protocols, it is the default.

SYSTEM MODE

Specifies that the function should execute as a system-mode application program.
SYSTEM MODE is the default if language is SQL.

To execute as a system mode application, the program must be fully reentrant and
be written in either:

■ ADS as a mapless dialog

■ Assembler using DC calling conventions

■ COBOL or PL/I and compiled with an LE-compliant compiler.

Note: If protocol is set to ADS, you must specify MODE SYSTEM.

CREATE FUNCTION

Chapter 8: Statements 345

local-stge-size

Specifies an integer value, in the range 0 through 32767, representing the size, in
bytes, of a local storage area that CA IDMS allocates at runtime and passes to the
function on each invocation.

global-stge-size

Specifies an integer value, in the range 0 through 32767, representing the size, in
bytes, of the global storage area that CA IDMS allocates at runtime and passes to
the function on each invocation.

CA IDMS allocates a global storage area once within a transaction and retains it
until the transaction terminates.

key-id

Specifies the one- to four-character identifier for the global storage area. CA IDMS
passes the same piece of global storage within a transaction to all routines that
have the same global storage key.

If you do not specify a storage key, CA IDMS allocates each function its own global
storage area, which will not be used for any other routine within the transaction.

TRANSACTION SHARING

Specifies whether transaction sharing should be enabled for database sessions
started by the function. If transaction sharing is enabled for a function's database
session, it shares the current transaction of the SQL session. If language SQL is
specified, TRANSACTION SHARING must be ON or the clause must not be specified.

ON

Specifies that transaction sharing should be enabled. ON is the default if
language is SQL.

OFF

Specifies that transaction sharing should be disabled.

DEFAULT

Specifies that the transaction sharing setting in effect when the function is
invoked should be retained. DEFAULT is the default for languages other than
SQL.

CREATE FUNCTION

346 SQL Reference Guide

compile-option

Specifies a CA ADS option to be used when compiling the dialog associated with an
SQL function. The options that can be specified and the syntax to use are given in
the CA ADS Reference Guide, Appendix D.2.6 Dialog-expression. Compile-option can
be specified only if language is SQL.

Note: The ability to specify the ADS COMPILE OPTION clause is a CA IDMS
extension.

procedure-statement

Specifies the actions taken in the function. Procedure-statement is required if
language is SQL. It cannot be specified otherwise. Expanded syntax for
procedure-statement is shown above immediately following the CREATE FUNCTION
syntax. Descriptions for these parameters are located at the end of this section.

DEFAULT DATABASE

Specifies whether a default database should be established for database sessions
started by the function.

NULL

Specifies that no default database should be established.

CURRENT

Specifies that the database to which the SQL session is connected should
become the default for any database session started by the function.

timestamp-value

Specifies the value of the synchronization stamp to be assigned to the function.
Timestamp-value must be a valid external representation of a timestamp.

Parameters for Expansion of parameter-definition

parameter-name

Specifies a 1- to 32-character name of a parameter that passes to the function.
Parameter-name must:

■ Be unique within the function that you are defining

■ Follow the conventions for SQL identifiers

All parameters are implicitly nullable and thus can be assigned NULL as a parameter
value.

CREATE FUNCTION

Chapter 8: Statements 347

data-type

Defines the data type for the named parameter. For expanded data-type syntax,
see Expansion of Data-type.

WITH DEFAULT

Directs CA IDMS to pass a default value for the named parameter if you do not
specify a value for the function invocation.

The default value for a parameter is based on its data type:

Column data type Default value

CHARACTER Blanks

VARCHAR A character string literal with a length of zero (that is, '')

GRAPHIC Double-byte blanks

VARGRAPHIC A double-byte character string literal with a length of zero

DATE The value in the CURRENT DATE special register

TIME The value in the CURRENT TIME special register

TIMESTAMP The value in the CURRENT TIMESTAMP special register

All numeric data types 0 (zero)

Parameters for Expansion of language-clause

ADS

Specifies that the SQL routine is written in the CA ADS language.

ASSEMBLER

Specifies that the SQL routine is written in the assembler language.

COBOL

Specifies that the SQL routine is written in the COBOL language.

PLI

Specifies that the SQL routine is written in the PL/I language.

SQL

Specifies that the SQL routine is written in the SQL language.

Note: The ability to specify ADS or ASSEMBLER as a language is a CA IDMS extension.

CREATE FUNCTION

348 SQL Reference Guide

Parameters for Expansion of procedure-statement

SQL-AM-mgmt-stmt

Specifies a statement from the Access Module Management Statements category.

SQL-authorization-stmt

Specifies a statement from the Authorization Statements category.

SQL-Control-stmt

Specifies a statement from the Control Statements category.

SQL-Diagnostics-stmt

Specifies a statement from the Diagnostics Statements category.

SQL-DDL-stmt

Specifies a statement from the Data Description Statements category.

SQL-DML-stmt

Specifies a statement from the Data Manipulation Statements category.

SQL-session-mgmt-stmt

Specifies a statement from the Session Management Statements category.

Note: The ability to include a RELEASE, SUSPEND, or RESUME statement in an SQL
routine is a CA IDMS extension.

SQL-transaction-mgmt-stmt

Specifies a statement from the Transaction Management Statements category.

Note: The ability to include a COMMIT or ROLLBACK statement in an SQL routine is
a CA IDMS extension.

CREATE FUNCTION

Chapter 8: Statements 349

Usage

Coding functions with language SQL

The rules for coding the procedure body of an SQL function are given by
procedure-statement. A procedure body typically contains multiple SQL statements and
according to the SQL grammar, SQL statements are terminated by the semi-colon.
However, to define SQL routines, the Command Facility (OCF, IDMSBCF, or Visual DBA
OCF console) needs to be used. It also has the semi-colon as the default command
terminator. Before a new command can be specified, the CREATE FUNCTION needs to
be terminated by a semi-colon. Clearly, the semi-colon cannot concurrently be used as a
terminator by both the SQL procedure language and the Command Facility. Therefore,
when procedure-statement contains multiple SQL statements or when the ADS
COMPILE OPTION is specified, the Command Facility needs to use a terminator different
from the semi-colon. To accomplish this, a SET OPTIONS COMMAND DELIMITER
'delimiter-string' must be executed. Changing the terminator of the Command Facility
remains in effect until the end of the session or until a new SET OPTIONS COMMAND
DELIMITER is encountered. For more information about SET OPTIONS, see the
Command Facility chapter in the CA IDMS Common Facilities Guide.

Language SQL

If LANGUAGE SQL is specified, the following attribute settings are established by default
and must not be overridden to a different value:

■ Protocol is ADS

■ Mode is SYSTEM

■ Transaction sharing is ON

Functions whose language is SQL are implemented through an automatically generated
CA ADS dialog whose name is external-routine-name.

An error while parsing procedure-statement or an error while compiling the associated
CA ADS dialog causes termination of the CREATE FUNCTION statement with a warning
instead of a statement error. This allows the erroneous procedure-statement syntax to
be saved in the catalog for later correction using the DISPLAY FUNCTION command. The
CA ADS dialog and associated access module are not created.

Specifying CA ADS Compile Options

If LANGUAGE SQL is specified, you can specify one or more compile options to be used
when the associated dialog is compiled. Specifying compile options can be useful for
debugging purposes to enable tracing and the use of online debugging facilities. Compile
options can also be used to include additional work records and SQL tables which can be
referenced in native CA ADS code included in the routine body.

CREATE FUNCTION

350 SQL Reference Guide

Some useful compile options include:

■ SYMBOL TABLE IS YES - to allow the use of symbols by the TRACE command and the
online debug facilities

■ ADD RECORD record-name - to enable manipulation of elements from the specified
record

■ ADD SQL TABLE table-name - to enable manipulation of columns or parameters of
the specified SQL table-like object.

Specifying a Synchronization Stamp

When defining or altering a function, you can specify a value for its synchronization
stamp. You should use care when doing so because the purpose of the stamp is to
enable the detection of discrepancies between an entity and its definition. If explicitly
specified, you must set the synchronization stamp to a new value following a change so
that the change is detectable by the runtime system.

If not specified, the synchronization stamp is automatically set to the current date and
time.

Grouping Procedure Statements into a Single Statement

Multiple procedure statements can be grouped together as a compound statement. A
compound statement is a control statement and therefore it is also a procedure
statement.

CREATE FUNCTION

Chapter 8: Statements 351

Examples

Example for CREATE FUNCTION

CREATE FUNCTION FIN.UDF_FUNBONUS

 (F_EMP_ID DECIMAL(4))

 RETURNS DECIMAL(10)

 EXTERNAL NAME FUNBONUS PROTOCOL IDMS

 DEFAULT DATABASE CURRENT

 USER MODE

 LOCAL WORK AREA 0

 ;

Example for Language SQL

set options command delimiter '++';

drop function USER01.TCNTEQNAME++

commit++

create function USER01.TCNTEQNAME

 (TITLE varchar(40) with default

 , P_FNAME char(20)

 , P_COUNT integer

 , RESULT varchar(10)

) RETURNS varchar(20)

 EXTERNAL NAME TCNTEQN LANGUAGE SQL

Label_700:

begin not atomic

 /*

 ** Count number of employees with equal Firstname

 */

 declare FNAME char(20);

 declare LNAME varchar(20);

 declare P_COUNT_SAV integer default 0;

 declare EMP1 CURSOR FOR

 Select EMP_FNAME, EMP_LNAME

 From DEMOEMPL.EMPLOYEE

 where EMP_FNAME = P_FNAME;

 open EMP1;

 fetch EMP1 into FNAME, LNAME;

CREATE INDEX

352 SQL Reference Guide

 fetching_loop:

 loop

 if (SQLSTATE < > '00000')

 then leave fetching_loop;

 end if;

 set P_COUNT = P_COUNT + 1;

 fetch EMP1 into FNAME, LNAME;

 end loop fetching_loop;

 set RESULT = SQLSTATE;

 close EMP1;

 if (P_COUNT < = P_COUNT_SAV)

 then return null;

 else return 'Res: ' || cast(P_COUNT as char(5));

 end if;

end

++

More Information

■ For more information about coding the external routine, see Defining and Using
Procedures.

■ For more information about Control Statements, see Control Statements.

■ For more information about Diagnostics Statements see GET DIAGNOSTICS.

■ For more information about the other categories see Statement Categories.

■ For more information about the SET OPTIONS COMMAND DELIMITER, see the
"Using SET OPTIONS to Select Options" topic in the CA IDMS Common Facilities
Guide.

CREATE INDEX

The CREATE INDEX data description statement defines an index on a base table. The
index definition is stored in the dictionary. It is also a CA IDMS extension of the SQL
standard.

Authorization

To issue a CREATE INDEX statement, you must:

■ Hold the ALTER privilege on or own the table on which the index is being defined

■ Hold the USE privilege on the area where the named index is stored

CREATE INDEX

Chapter 8: Statements 353

Syntax

►►─── CREATE ─┬──────────┬─ INDEX index-name ─────────────────────────────────►
 └─ UNIQUE ─┘

 ►─── ON ─┬────────────────┬─ table-identifier ───────────────────────────────►
 └─ schema-name. ─┘

 ►─┬───────────────────────────────────────┬──────────────────────────────────►
 │ ┌──────────── , ────────────┐ │
 └─ (─▼─ column-name ─┬─────────┬─┴─) ─┘
 ├─ ASC ◄──┤
 └─ DESC ──┘

 ►─┬──────────────────┬───►
 ├─ COMPRESSED ─────┤
 └─ UNCOMPRESSED ◄──┘

 ►─┬─────────────────────────────┬─┬─────────────────────────────┬────────────►
 └─ IN segment-name.area-name ─┘ └─ index-block-specification ─┘

 ►─┬─────────────┬──►
 └─ CLUSTERED ─┘

 ►─┬────────────────────────────┬───►◄
 └─ INDEX ID index-id-number ─┘

Expansion of index-block-specification

►►─── INDEX BLOCK CONTAINS key-count KEYs ────────────────────────────────────►

 ►─┬─────────────────────────────────────┬────────────────────────────────────►◄
 └─ DISPLACEMENT IS page-count PAGES ──┘

Parameters

UNIQUE

Specifies that the index-key value in any given row of the table on which the index
is being defined must be different from the index-key value in any other row of the
table. A table with a unique index cannot contain duplicate index key values.

If you specify UNIQUE, and the table on which the index is being defined contains
duplicate rows, CA IDMS returns an error.

index-name

Specifies the name of the index being created. Index-name must be a 1- through
18-character name that follows the conventions for SQL identifiers.

Index-name must be unique for the table on which the index is defined.

ON table-identifier

Specifies the table on which the index is being defined. Table-identifier must
identify a base table defined in the dictionary.

If you specify CLUSTERED in a CREATE INDEX statement, the named table:

■ Cannot have a CALC key defined on it

■ Cannot have another clustered index defined on it

■ Cannot be the referencing table in a clustered referential constraint

CREATE INDEX

354 SQL Reference Guide

schema-name

Identifies the schema associated with the named table.

If you do not specify schema-name, it defaults to:

■ The current schema associated with your SQL session, if the statement is
entered through the Command Facility or executed dynamically

■ The schema associated with the access module used at runtime, if the
statement is embedded in an application program

(column-name)

Specifies one or more columns that make up the index key. CA IDMS maintains
index entries in ascending or descending order according to the values in the
specified columns. Entries are ordered first by the first column specified, then by
the second column specified within the ordering established by the first column,
then by the third column specified, and so on.

Column-name must identify a column in the table on which the index is being
created and must be unique within the list of column names.

You can include from 1 through 32 columns in an index key.

If no column name is specified, CA IDMS creates an index on the db-key sorted in
ascending order.

ASC

Indicates that values in the named column are to be sorted in ascending order. ASC
is the default when you specify neither ASC nor DESC.

DESC

Indicates that values in the named column are to be sorted in descending order.

COMPRESSED

Directs CA IDMS to maintain index entries in a compressed form in the database.

UNCOMPRESSED

Directs CA IDMS to maintain index entries in an uncompressed form in the
database.

UNCOMPRESSED is the default when you specify neither COMPRESSED nor
UNCOMPRESSED.

CREATE INDEX

Chapter 8: Statements 355

IN

Specifies the area to be used to store entries in the index.

If you do not associate an area with an index, CA IDMS uses the area associated
with the table on which the index is being defined.

segment-name

Identifies the segment associated with the area.

area-name

Identifies the area to be associated with the index. Area-name must identify an area
defined in the dictionary.

index-block-specification

Establishes characteristics of the index.

Syntax for index-block-specification immediately follows the syntax for CREATE
INDEX.

If index-block-specification is omitted, values for key-count and page-count are
calculated by CA IDMS using available information about actual or estimated row
count for the table on which the index is being defined.

CLUSTERED

Specifies that each row of the table on which the index is being defined is to be
stored as close as possible to the table row with the immediately preceding
index-key value.

INDEX ID index-id-number

Assigns an index ID value for the index being created. The index-id-number must be
in the range of 1 through 32767.

Parameters for Expansion of index-block-specification

key-count KEYs

Establishes the maximum number of entries in each internal index record (SR8
system record).

Key-count must be an unsigned integer in the range 3 through 8180.

page-count PAGES

Indicates how far away from the top of the index (the SR7 system record) the
bottom-level index records are to be stored.

Page-count must be an unsigned integer in the range 0 through 32767.

If the value of key-count is 0, the bottom-level internal index records are not
displaced from the SR7 record.

CREATE INDEX

356 SQL Reference Guide

Usage

Specifying an Index ID

When defining an index you can specify a value for its numeric index identifier. If
explicitly specified, it must be unique across all other indexes residing in the same
database area. If not specified, the index's numeric identifier is automatically set to the
next available number in the range 1 through 32,767.

SYSTEM Tables

You cannot define an index on a table in the SYSTEM schema.

SYSTEM Areas

You cannot associate an index with a system area supplied with CA IDMS.

Order of Null Values

If the value of an index key column is null, it is treated as higher than all non-null values.

Null Values in Unique Indexes

Nullable columns are allowed to be used in a UNIQUE index. Null values are treated like
any other value when the uniqueness of an index is evaluated. For example, a single
column index can only contain one null value.

Mixed Page Group

An index must reside in the same page group as the table on which the index is created.

CREATE KEY

Chapter 8: Statements 357

Example

Defining a Unique Index

The following CREATE INDEX statement defines a unique index on the JOB table. The
index key consists of two columns: JOB_ID and JOB_TITLE. The index entries are stored
in compressed form in the same area as the JOB table.

create unique index job_title_index

 on job

 (job_id, job_title)

 compressed;

Defining a Clustered Index

The following CREATE INDEX statement defines an index on the MONTHLY_BUDGET
table. The index key consists of two columns: FISCAL_YEAR and MONTH. The index
entries are stored in compressed form in the SALESSEG.SALES_X_AREA area. Rows of
the MONTHLY_BUDGET table that have consecutive index-key values are stored close to
each other.

create index budget_date_index

 on sales_sch.monthly_budget

 (fiscal_year desc, month)

 compressed

 in salesseg.sales_x_area

 clustered;

More Information

■ For more information about dropping indexes, see DROP INDEX.

■ For more information about implementing indexes, see the CA IDMS Database
Design Guide.

■ For more information about calculations, see Error! Reference source not found..

More information:

DROP INDEX (see page 424)

CREATE KEY

The CREATE KEY statement defines a key on a procedure or table procedure. The key
definition is stored in the dictionary. It is also a CA IDMS extension of the SQL standard.

CREATE KEY

358 SQL Reference Guide

Authorization

To issue a CREATE KEY statement, you must own or hold the ALTER privilege on the
procedure or table procedure on which the key is being defined.

Syntax

►►─── CREATE ─┬───────────┬── KEY key-name ───────────────────────────────────►
 ├─ UNIQUE ─┤
 └─ PRIMARY ─┘

 ►─── ON ──┬────────────────┬──┬─ procedure-identifier ───────┬───────────────►
 └─ schema-name. ─┘ └─ table-procedure-identifier ─┘

 ┌──────── , ────────┐
 ►── (─▼─ parameter-name. ─┴─) ─┬────────────────────────────┬──────────────►
 └─ ESTIMATED ROWS row-count ─┘

 ►─┬──────────────────────────┬───►◄
 └─ ESTIMATED IOS io-count ─┘

Parameters

UNIQUE

Specifies the key value is unique to a row that the procedure or table procedure
returns. CA IDMS does not enforce this restriction. The procedure or table
procedure itself must enforce uniqueness.

PRIMARY

Specifies the key is unique and that it is the most commonly-used key for identifying
specific rows returned by the procedure. While you can define several unique keys
for a procedure or table procedure, you can specify only one primary key.

key-name

Specifies the name of the key. The key-name must be:

■ A 1- to 18-character name that follows the conventions for SQL identifiers

■ Unique for the procedure or table procedure on which the key is defined

CREATE KEY

Chapter 8: Statements 359

ON table-procedure-identifier

Specifies the table procedure for which you are defining the key. The
table-procedure-identifier must identify a table procedure defined in the dictionary.

procedure-identifier

Specifies the procedure for which you define the key. The procedure-identifier
must identify a procedure defined in the dictionary.

schema-name

Identifies the schema associated with the procedure or table procedure.

If you do not specify a schema-name it defaults to:

■ The current schema associated with your SQL session, if the statement is
entered through the Command Facility or executed dynamically

■ The schema associated with the access module used at runtime, if the
statement is embedded in an application program

(parameter-name)

Specifies one or more procedure or table procedure parameters that form the
key. The parameter-name must:

■ Identify a parameter of the procedure or table procedure on which the key
is defined

■ Be unique within the list of parameter names

You can include as many as 32 parameters in a key.

row-count

Specifies an integer value, in the range of 0 through 2,147,483,647, which
represents the number of rows that the procedure or table procedure returns
when input values are provided for all the parameters in the key.

io-count

Specifies an integer value, in the range of 0 through 2,147,483,647, which
represents the number of disk accesses that the procedure or table procedure
generates while returning row-count rows when input values are provided for
all the parameters in the key.

CREATE KEY

360 SQL Reference Guide

Usage

Enforcing Uniqueness

It is the responsibility of the procedure or table procedure to enforce the uniqueness of
the procedure or table procedure keys; for example, on an INSERT into a table
procedure, CA IDMS makes no attempt to determine whether a duplicate row, with
respect to a unique table procedure key, exists. The table procedure, in conjunction
with database services it invokes, is responsible for ensuring uniqueness.

Influencing Join Strategies

CA IDMS uses procedure or table procedure key information when determining the best
approach to satisfy queries that join procedure or table procedures with other tables,
views, procedures or table procedures. Specifically, if the set of column values provided
on a particular call to the table procedure matches the columns defined in the table
procedure's KEY, the ESTIMATED ROWS and ESTIMATED I/Os for that KEY are used
during optimization. If these statistics are provided, and data is passed to the table
procedure's key by the WHERE clause during execution, the optimizer uses the
statistical information when the table procedure is joined with other tables or views.
Providing estimated-row and I/O counts, for the procedure or table procedure and for
each access key that the procedure uses, allows CA IDMS to select the optimal access
strategy.

Unique Keys for CA IDMS Server

If you define procedure or table procedure keys, CA IDMS Server reports this
information when processing an ODBC request to return key information for a
procedure. The ability to return key information is particularly important for certain
ODBC-based products which require a unique key to update and delete data.

Example

The following CREATE KEY statements define three keys on the EMP.ORG table
procedure. The first two keys are simple access keys; the third defines a primary key for
CA IDMS Server to use.

(1) CREATE KEY ORG1 ON EMP.ORG (EMP_ID)

 ESTIMATED ROWS 3

 ESTIMATED IOS 3;

(2) CREATE KEY ORG2 ON EMP.ORG (MGR_ID)

 ESTIMATED ROWS 5

 ESTIMATED IOS 5;

(3) CREATE PRIMARY KEY ORG3 ON EMP.ORG

 (MGR_ID, EMP_ID, START_DATE)

 ESTIMATED ROWS 1

 ESTIMATED IOS 3;

CREATE PROCEDURE

Chapter 8: Statements 361

More Information

■ For more information about influencing join strategies, see Defining and Using
Table Procedures.

■ For more information about defining table procedures, see CREATE TABLE
PROCEDURE.

■ For more information about dropping keys, see DROP KEY.

■ For more information about defining procedures, see CREATE PROCEDURE.

■ For more information about the WHERE clause, see WHERE Clause References.

CREATE PROCEDURE

The CREATE PROCEDURE data description statement stores the definition of a
procedure in the SQL catalog. You can refer to the procedure in an SQL CALL statement
or in an SQL SELECT statement just as you would a table procedure. These references
result in CA IDMS calls to the corresponding routine. Such routines can perform any
action, such as manipulating data stored in some other organization (for example, in a
non SQL-defined database or in a set of VSAM files). You can also use them to
implement business logic.

Procedures can be defined with a language of SQL. The routine actions, written as SQL
statements, are specified and stored together with the procedure definition in the SQL
catalog.

The formal parameters of a procedure definition can be used like columns of a table
during a procedure invocation to pass values to and from the procedure.

Authorization

To issue a CREATE PROCEDURE statement, you must own the schema in which the
procedure is being defined or hold the CREATE privilege on the named procedure.

Syntax

►►─ CREATE PROCEDURE ─┬──────────────────────────────┬─ procedure-identifier ─►
 └───── schema-name. ───────────┘

 ┌───────── , ────────┐
 ►─(▼parameter-definition┴) EXTERNAL NAME external-routine-name ──────────────►

 ►───┬───────────────────┬───┬─────────────────────────────┬──────────────────►
 └─ language-clause ─┘ └── PROTOCOL ───┬── IDMS ──┬──┘
 └── ADS ───┘

 ►───┬────────────────────────────────────┬─┬──────────────────────────┬──────►
 └─────── ESTIMATED ROWS row-count ───┘ └─ ESTIMATED IOS io-count ─┘

CREATE PROCEDURE

362 SQL Reference Guide

 ►────┬───────────────┬───►
 ├─ USER MODE ◄──┤
 └─ SYSTEM MODE ─┘

 ►────┬─────────────────────────────────────┬─────────────────────────────────►
 └── LOCAL WORK AREA local-stge-size ─┘

 ►────┬──┬──────────────►
 └─ GLOBAL WORK AREA ── global-stge-size ──┬──────────────┤
 └─ KEY key-id ─┘

 ►────┬───┬───────►
 └─ TRANSACTION SHARING ───────────────────┬─ ON ───────┬────────┘
 ├─ OFF ──────┤
 └─ DEFAULT ◄─┘

 ►────┬───┬───────►
 └─ DEFAULT DATABASE ────────────────────┬ NULL ◄───┬───────────┘
 └─CURRENT──┘

 ►────┬───┬───────────────────────────►
 └── TIMESTAMP timestamp-value ─────────────┘

 ►───┬───┬──────────────────►
 └── DYNAMIC RESULT SETS maximum-dynamic-result-sets ──┘

 ►──┬───┬─►◄
 └┬──┬ procedure-statement ──┘
 │ ┌──────────────────┐ │
 └ ADS COMPILE OPTION ─▼─ compile-option ─┴─ ; ─┘

Expansion of parameter-definition

►►─── parameter-name ── data-type ─┬────────────────┬─────────────────────────►◄
 └─ WITH DEFAULT ─┘

Expansion of language-clause

►►─── LANGUAGE ────────────────────┬─ ADS ──────────┬──────────────────────────►◄
 ├─ ASSEMBLER ────┤
 ├─ COBOL ────────┤
 ├─ PLI ──────────┤
 └─ SQL ──────────┘

Expansion of procedure-statement

 ►────┬── SQL-AM-mgmt-stmt ───────────┬──►◄
 ├── SQL-authorization-stmt ─────┤
 ├── SQL-Control-stmt ───────────┤
 ├── SQL-Diagnostics-stmt ───────┤
 ├── SQL-DDL-stmt ───────────────┤
 ├── SQL-DML-stmt ───────────────┤
 ├── SQL-session-mgmt-stmt ──────┤
 └── SQL-transaction-mgmt-stmt ──┘

CREATE PROCEDURE

Chapter 8: Statements 363

Parameters

procedure-identifier

Specifies the 1- to 18-character name of the procedure you are creating.
Procedure-identifier must:

■ Be unique among the function, procedure, table, table procedure and view
identifiers within the schema associated with the procedure

■ Follow conventions for SQL identifiers

schema-name

Specifies the schema name qualifier to be associated with the procedure.
Schema-name must identify a schema defined in the dictionary. If you do not
specify a schema-name, it defaults to:

■ The current schema associated with your SQL session, if the statement is
specified through the Command Facility or executed dynamically

■ The schema associated with the access module used at runtime, if the
statement is embedded in an application program

parameter-definition

Defines a parameter to be associated with the procedure. Parameters pass to the
procedure in the order you specify them. You must enclose the list of parameters
in parentheses. You must separate multiple parameter definitions by commas.

Expanded syntax for parameter-definition is shown above immediately following
the CREATE PROCEDURE syntax. Descriptions for these parameters are located at
the end of this section.

external-routine-name

Specifies the one- to eight-character name of the program which is called to process
references to the procedure.

For procedures written in SQL, the external-routine-name should specify a name
that is unique within the dictionary that holds the procedure definition. In other
words, the name should be different from any other external name of any
SQL-invoked routine and from any &U$IDCADS. dialog, RCM, or AM name.

language-clause

Specifies the programming language of the procedure. This clause is required for
procedures written in SQL. For others, it is documentational only. If the language is
not specified, it is treated as null.

PROTOCOL

Specifies the PROTOCOL with which the procedure is invoked. This specification is
required except with language SQL. If LANGUAGE SQL is specified, PROTOCOL must
be ADS or the clause must not be specified.

CREATE PROCEDURE

364 SQL Reference Guide

IDMS

Use IDMS for procedures that are written in COBOL, PL/I, or Assembler.

ADS

Use ADS for procedures that are written in CA ADS. The name of the dialog that
is loaded and executed when the procedure is invoked is specified by the
external-routine-name in the EXTERNAL NAME clause. ADS is the default if
LANGUAGE SQL is specified.

row-count

Specifies an integer value, in the range 0 through 2,147,483,647, representing the
average number of rows returned by the procedure for a given set of input
parameters.

io-count

Specifies an integer value, in the range 0 through 2,147,483,647, representing the
average number of disk accesses generated by the procedure for a given set of
input parameters.

USER MODE

Specifies that the procedure should execute as a user-mode application program
within CA IDMS. This can not be specified with language SQL or protocol ADS. For
other languages and protocols, it is the default.

SYSTEM MODE

Specifies that the procedure should execute as a system mode application program.
SYSTEM MODE is the default if language is SQL.

To execute as a system mode application, the program must be fully reentrant and
be written in either:

■ ADS as a mapless dialog

■ Assembler using DC calling conventions

■ COBOL or PL/I and compiled with an LE-compliant compiler

CREATE PROCEDURE

Chapter 8: Statements 365

local-stge-size

Specifies an integer, in the range 0 through 32767, which represents the size, in
bytes, of a local storage area which CA IDMS allocates at runtime and passes to the
procedure on each invocation.

Note: If you do not code a LOCAL WORK AREA clause, the default local storage size
is 1024 bytes.

global-stge-size

Specifies an integer, in the range 0 through 32767, representing the size, in bytes,
of the global storage area that CA IDMS allocates at runtime and passes to the
procedure on each invocation.

CA IDMS allocates a global storage area once within a transaction and retains it
until the transaction terminates.

key-id

Specifies the one- to four-character identifier for the global storage area. CA IDMS
passes the same piece of global storage within a transaction to all SQL routines that
have the same global storage key.

If you do not specify the storage key, CA IDMS allocates each procedure its own
global storage area, which is not used for any other routine within the transaction.

TRANSACTION SHARING

Specifies whether transaction sharing should be enabled for database sessions
started by the procedure. If transaction sharing is enabled for a procedure's
database session, it shares the current transaction of the SQL session. If language
SQL is specified, TRANSACTION SHARING must be ON or the clause must not be
specified.

ON

Specifies that transaction sharing should be enabled. ON is the default if
language is SQL.

OFF

Specifies that transaction sharing should be disabled.

DEFAULT

Specifies that the transaction sharing setting in effect when the procedure is
invoked should be retained. Default is the default for languages other than SQL.

CREATE PROCEDURE

366 SQL Reference Guide

compile-option

Specifies a CA ADS option to be used when compiling the dialog associated with an
SQL procedure. The options that can be specified and the syntax to use are given in
the CA ADS Reference Guide, Appendix D.2.6 Dialog-expression. Compile-option can
be specified only if language is SQL.

Note: The ability to specify the ADS COMPILE OPTION clause is a CA IDMS
extension.

procedure-statement

Specifies the actions taken in the procedure. Procedure-statement is required if
language is SQL. It cannot be specified otherwise.

Expanded syntax for procedure-statement is shown above immediately following
the CREATE PROCEDURE syntax. Descriptions for these parameters are located at
the end of this section.

DEFAULT DATABASE

Specifies whether a default database should be established for database sessions
started by the procedure.

NULL

Specifies that no default database should be established.

CURRENT

Specifies that the database to which the SQL session is connected should
become the default for any database session started by the procedure.

timestamp-value

Specifies the value of the synchronization stamp to be assigned to the procedure.
Timestamp-value must be a valid external representation of a timestamp.

DYNAMIC RESULT SETS

Defines the maximum number of result sets that a procedure invocation can return
to its caller. A result set is a sequence of rows specified by a cursor-specification,
created by the opening of a cursor and ranged over that cursor.

maximum-dynamic-result-sets

Defines an integer in the range 0-32767 specifying the maximum number of result
sets a procedure can return. The default is 0.

CREATE PROCEDURE

Chapter 8: Statements 367

Parameters for Expansion of parameter-definition

parameter-name

Specifies a 1- to 32-character name of a parameter to be passed to the table
procedure. Parameter-name must:

■ Be unique within the table procedure that you are defining

■ Follow the conventions for SQL identifiers

All parameters are implicitly nullable. Input parameters can be assigned NULL as a
parameter value and output parameters can return NULL.

data-type

Defines the data type for the named parameter. For expanded data-type syntax,
see Expansion of Data-type.

WITH DEFAULT

Directs CA IDMS to pass a default value for the named parameter if no value for the
parameter is specified.

The default value for a parameter is based on its data type:

Column data type Default value

CHARACTER Blanks

VARCHAR A character string literal with a length of zero (that is, '')

GRAPHIC Double-byte blanks

VARGRAPHIC A double-byte character string literal with a length of zero

DATE The value in the CURRENT DATE special register

TIME The value in the CURRENT TIME special register

TIMESTAMP The value in the CURRENT TIMESTAMP special register

All numeric data types 0 (zero)

CREATE PROCEDURE

368 SQL Reference Guide

Parameters for Expansion of language-clause

ADS

Specifies that the SQL routine is written in the CA ADS language.

ASSEMBLER

Specifies that the SQL routine is written in the assembler language.

COBOL

Specifies that the SQL routine is written in the COBOL language.

PLI

Specifies that the SQL routine is written in the PL/I language.

SQL

Specifies that the SQL routine is written in the SQL language.

Note: The ability to specify ADS or ASSEMBLER as a language is a CA IDMS extension.

Parameters for Expansion of procedure-statement

SQL-AM-mgmt-stmt

Specifies a statement from the Access Module Management Statements category.

SQL-authorization-stmt

Specifies a statement from the Authorization Statements category.

SQL-Control-stmt

Specifies a statement from the Control Statements category.

SQL-Diagnostics-stmt

Specifies a statement from the Diagnostics Statements category.

SQL-DDL-stmt

Specifies a statement from the Data Description Statements category.

SQL-DML-stmt

Specifies a statement from the Data Manipulation Statements category.

SQL-session-mgmt-stmt

Specifies a statement from the Session Management Statements category.

Note: The ability to include a RELEASE, SUSPEND, or RESUME statement in an SQL
routine is a CA IDMS extension.

SQL-transaction-mgmt-stmt

Specifies a statement from the Transaction Management Statements category.

Note: The ability to include a COMMIT or ROLLBACK statement in an SQL routine is
a CA IDMS extension.

CREATE PROCEDURE

Chapter 8: Statements 369

Usage

Influencing Join Strategies

CA IDMS uses estimated row and I/O counts in determining the cost of joining a
procedure with other tables, views, procedures or table procedure. To determine the
optimal access strategy, CA IDMS examines different sequences for retrieving
information. By providing the estimated row and I/O counts for both the procedure and
for each access key used by the procedure, CA IDMS can select the optimal access
strategy.

In determining the cost of a specific access strategy, CA IDMS uses estimates provided in
CREATE PROCEDURE unless input values are available for each of the parameters
included in a key. If values are available for each of these parameters, CA IDMS uses the
estimates specified in the CREATE KEY statement instead of those specified in CREATE
PROCEDURE.

Specifying a Synchronization Stamp

When defining or altering a procedure, you can specify a value for its synchronization
stamp. You should use care when doing so because the purpose of the stamp is to
enable the detection of discrepancies between an entity and its definition. If explicitly
specified, you must set the synchronization stamp to a new value following a change so
that the change is detectable by the runtime system.

If not specified, the synchronization stamp is automatically set to the current date and
time.

Coding procedures with language SQL

The rules for coding the procedure body of an SQL procedure are given by
procedure-statement. A procedure body typically contains multiple SQL statements and
according to the SQL grammar, SQL statements are terminated by the semi-colon.
However, to define SQL routines, the Command Facility (OCF, IDMSBCF, or Visual DBA
OCF console) needs to be used. It also has the semi-colon as the default command
terminator. Before a new command can be specified, the CREATE PROCEDURE needs to
be terminated by a semi-colon. Clearly, the semi-colon cannot concurrently be used as a
terminator by both the SQL procedure language and the Command Facility. Therefore,
when procedure-statement contains multiple SQL statements or when the ADS
COMPILE OPTION is specified, the Command Facility needs to use a terminator different
from the semi-colon. To accomplish this, a SET OPTIONS COMMAND DELIMITER
'delimiter-string' must be executed. Changing the terminator of the Command Facility
remains in effect until the end of the session or until a new SET OPTIONS COMMAND
DELIMITER is encountered. For more information about SET OPTIONS, see the
Command Facility chapter in the CA IDMS Common Facilities Guide.

CREATE PROCEDURE

370 SQL Reference Guide

Language SQL

If LANGUAGE SQL is specified, the following attribute settings are established by default
and must not be overridden to a different value:

■ Protocol is ADS

■ Mode is SYSTEM

■ Transaction sharing is ON

Procedures whose language is SQL are implemented through an automatically
generated CA ADS dialog whose name is external-routine-name.

An error while parsing procedure-statement or an error while compiling the associated
CA ADS dialog causes the CREATE PROCEDURE statement to terminate with a warning
instead of a statement error. This allows the erroneous procedure-statement syntax to
be saved in the catalog for later correction using the DISPLAY PROCEDURE command.
The CA ADS dialog and associated access module are not created.

Specifying CA ADS Compile Options

If LANGUAGE SQL is specified, you can specify one or more compile options to be used
when the associated dialog is compiled. Specifying compile options can be useful for
debugging purposes to enable tracing and the use of online debugging facilities. Compile
options can also be used to include additional work records and SQL tables which can be
referenced in native CA ADS code included in the routine body.

Some useful compile options include:

■ SYMBOL TABLE IS YES - to allow the use of symbols by the TRACE command and the
online debug facilities

■ ADD RECORD record-name - to enable manipulation of elements from the specified
record

■ ADD SQL TABLE table-name - to enable manipulation of columns or parameters of
the specified SQL table-like object

Grouping procedure statements into a single statement

Multiple procedure statements can be grouped together as a compound statement. A
compound statement is a control statement and therefore is also a procedure
statement.

Dynamic Result Sets

An SQL invoked procedure can return one or more result sets to its caller, up to the
maximum number specified by its dynamic result sets attribute. A result set is returned
for each returnable cursor that is still open when the procedure returns control to its
caller.

CREATE PROCEDURE

Chapter 8: Statements 371

Example

The following CREATE PROCEDURE statement defines a procedure.

create procedure emp.get_bonus

 (emp_id unsigned numeric(4) with default,

 bonus unsigned numeric(10) with default,

 currency_bonus char(3) with default)

 external name getbonus

 protocol idms;

The procedure USER01.TSELECT1 uses the given employee ID to retrieve the first and
last name. It returns the edited name in the RESULT parameter.

create procedure USER01.TSELECT1

 (TITLE varchar(10) with default

 , P_EMP_ID numeric(4)

 , RESULT varchar(20)

)

 EXTERNAL NAME TSELECT1 LANGUAGE SQL

 select trim(EMP_FNAME) || ' ' || trim(EMP_LNAME)

 into RESULT

 from DEMOEMPL.EMPLOYEE

 where EMP_ID = P_EMP_ID

;

call user01.tselect1('TSIGNAL3', 1003);

*+

*+ TITLE P_EMP_ID RESULT

*+ ----- -------- ------

*+ TSIGNAL3 1003 Jim Baldwin

CREATE PROCEDURE

372 SQL Reference Guide

The GET_EMPLOYEE_INFO procedure uses the given employee ID, to construct two
result set cursors:

■ A static declared cursor RET_COVERAGE returns a cursor with the data from the
COVERAGE table.

■ The allocated dynamic cursor RET_BENEFITS to return the data from the BENEFITS
data.

set options command delimiter '++';

create procedure SQLROUTE.GET_EMPLOYEE_INFO

 (TITLE varchar(10) with default

 , P_EMP_ID numeric(4)

 , RESULT varchar(20)

)

 EXTERNAL NAME GETEMPIN LANGUAGE SQL

 DYNAMIC RESULT SETS 2

begin not atomic

 declare STMNT_NAME char(10) default 'DYN_STMNT1';

 declare STMNT_BUF char(80) default ' ';

 declare RET_COVERAGE cursor with return for

 select * from DEMOEMPL.COVERAGE

 where EMP_ID = P_EMP_ID;

 open RET_COVERAGE;

 set STMNT_BUF = 'select * from DEMOEMPL.BENEFITS'

 || 'where EMP_ID = ' || P_EMP_ID;

 prepare STMT_NAME from STMT_BUF;

 allocate 'RET_BENEFITS' cursor with return for STMT_NAME;

 open 'RET_BENEFITS';

 set RESULT = '2 returned result sets';

end

set options command delimiter default ++

CREATE SCHEMA

Chapter 8: Statements 373

More Information

■ For more information about expanded procedure references, see Expansion of
Procedure-reference.

■ For more information about coding external routines, see Defining and Using
Procedures.

■ For more information about Control Statements, see Control Statements.

■ For more information about Diagnostics Statements, see GET DIAGNOSTICS.

■ For more information about the other categories, see Statement Categories.

■ For more information about defining a returnable cursor, see ALLOCATE CURSOR or
DECLARE CURSOR.

■ For more information about how the caller processes the returned result sets, see
ALLOCATE CURSOR.

■ For more information about CALL, see CALL.

■ For more information about DESCRIBE CURSOR, see DESCRIBE CURSOR.

■ For more information about CREATE KEY, see CREATE KEY.

■ For more information about the SET OPTIONS COMMAND DELIMITER, see the
"Using SET OPTIONS to Select Options" topic in the CA IDMS Common Facilities
Guide.

CREATE SCHEMA

The CREATE SCHEMA data description statement defines a schema in the dictionary.

Authorization

To issue a CREATE SCHEMA statement, you must have the CREATE privilege on the
schema named in the statement.

If you specify FOR NONSQL SCHEMA, you must have the USE privilege on the non-SQL
schema.

If you specify DBNAME, you must have USE privilege on the database; if you do not
specify DBNAME or specify a value of NULL, you must have DBADMIN privilege on
DBNAME SYSTEM.

CREATE SCHEMA

374 SQL Reference Guide

Syntax

►►─── CREATE SCHEMA schema-name ──►

 ►─┬───┬────────────────────────►◄
 ├─ DEFAULT AREA segment-name.area-name ───────────┤
 ├─ FOR NONSQL SCHEMA nonsql-schema-specification ─┤
 └─ FOR SQL SCHEMA sql-schema-specification ───────┘

Expansion of nonsql-schema-specification

►►─┬────────────────────┬─ nonsql-schema-name ─┬──────────────────────────┬───►
 └─ dictionary-name. ─┘ └─ VERSION version-number ─┘

 ►─┬───────────────────────────────┬──►◄
 └─ DBNAME nonsql-database-name ─┘

Expansion of sql-schema-specification

►►──────────────────────── sql-schema-name ───────────────────────────────────►

 ►─┬────────────────────────────┬───►◄
 └─ DBNAME sql-database-name ─┘

Parameters

schema-name

Specifies the name of the schema being created. Schema-name must be a 1-
through 18-character name that follows the conventions for SQL identifiers.
Schema-name must be unique within the dictionary.

DEFAULT AREA

Specifies the default area for storing rows of tables associated with the named
schema. This area is used for any such table that is not explicitly assigned an area in
the CREATE TABLE statement.

segment-name.area-name

Identifies the segment and area.

You do not need to define the named segment or area in the dictionary before
issuing the CREATE SCHEMA statement.

nonsql-schema specification

Identifies the nonSQL-defined schema to associate with the SQL schema.

Expanded syntax for nonsql-schema-specification appears immediately following
the statement syntax. Descriptions for these parameters are located at the end of
this section.

sql-schema-specification

Identifies an existing SQL-defined schema to which the new SQL schema refers.
Expanded syntax for sql-schema-specification appears immediately following the
statement syntax.

CREATE SCHEMA

Chapter 8: Statements 375

Parameters for Expansion of nonsql-schema-specification

nonsql-schema-name

Names the nonSQL-defined schema.

dictionary-name

Names the dictionary that contains the nonSQL-defined schema.

If you do not specify dictionary-name, it defaults to the dictionary to which the SQL
session is connected.

VERSION version-number

Identifies the version number of the nonSQL-defined schema. If VERSION
version-number is not specified, version-number defaults to 1.

DBNAME nonsql-database-name

Identifies the database containing the data described by the nonSQL-defined
schema. nonsql-database-name must be a segment name or a database name that
is defined in the database name table.

If you do not specify DBNAME, no database name is included in the definition of
schema-name. At runtime the database to which the SQL session is connected must
include segments containing the areas described by the non-SQL-defined schema.

For considerations about whether to specify the database when you create a
schema for a non-SQL-defined schema, see "Usage," later in this section.

Parameters for Expansion of sql-schema-specification

sql-schema-name

Names the referenced SQL-defined-schema. This named schema must not itself
reference another schema.

DBNAME sql-database-name

Identifies the database containing the data described by the referenced
SQL-defined schema. SQL-database-name must be a database name that is defined
in the database name table or a segment name defined in the DMCL.

If you do not specify DBNAME, no database name is included in the definition of
schema-name. At runtime, the database to which the SQL session is connected
must include segments containing the areas described by the referenced
SQL-defined schema.

CREATE SCHEMA

376 SQL Reference Guide

Usage

If You Omit DEFAULT AREA

If you do not associate a default area with the schema, you must assign an area to each
table that you associate with the schema in a CREATE TABLE statement. You use the IN
parameter of CREATE TABLE to assign an area to a table.

Creating a Referencing Schema

If either a FOR NONSQL SCHEMA or a FOR SQL SCHEMA clause is specified, then the new
SQL-defined schema that is being created is said to reference the specified schema and
itself becomes a referencing schema. If a non-SQL-defined schema is specified, then
creation of a referencing schema enables SQL access to a non-SQL-defined database
described by the referenced schema. Similarly, if the referenced schema is SQL-defined,
then the creation of a referencing schema enables SQL access to an SQL-defined
database described by the referenced schema.

In either case, if a DBNAME is specified, the referencing schema provides access to the
database instance identified by database-name. If no DBNAME is specified, the
referencing schema is unbound and the instance of the database to be accessed is
determined at runtime. Access modules that reference tables through an unbound
referencing schema can therefore be used to access more than one instance of a
database.

You cannot define either a table or a view in a referencing schema. However, you can
define a view in another schema that references a table through a referencing schema.

CREATE SCHEMA

Chapter 8: Statements 377

Specifying non-SQL-DBNAME

When you create a schema for a non-SQL-defined schema, you use the DBNAME
parameter to specify the name of the database containing the data. The name specified
can be the name of a segment or a database name defined in the database name table.

If you do not specify a database name, the database to which your SQL session is
connected when accessing the non-SQL-defined tables must include the segments
containing the data.

Note: For more information about defining a schema for a non-SQL-defined schema, see
SQL Schema Considerations.

Specifying SQL DBNAME

When you create a referencing schema, you use the DBNAME parameter to specify the
name of the database containing the data. The name specified can be either the name
of a database name defined in the database name table or the name of a segment
included in the DMCL.

If you do not specify a database name, the database to which your SQL session is
connected when accessing the data through the referencing schema must include the
segments containing the data.

Examples

Defining a Schema with a Default Area

The following CREATE SCHEMA statement defines the schema SALES. The default area
for the schema is SALES_SEG.SALES_AREA.

create schema sales

 default area sales_seg.sales_area;

Defining a Schema for a Non-SQL-defined Schema

In this example, the statement creates schema SALES for a non-SQL schema:

create schema sales

 for nonsql schema corpdict.sales version 100;

Defining a Schema for an SQL-defined Schema

The following CREATE SCHEMA statement defines a schema for an SQL-defined schema:

create schema any_sales for sql schema sales;

CREATE TABLE

378 SQL Reference Guide

More Information

■ For more information about defining schemas, see ALTER SCHEMA and DROP
SCHEMA (see page 428).

■ For more information about non-SQL-defined schemas, see the CA IDMS Database
Administration Guide.

CREATE TABLE

The CREATE TABLE data description statement defines a table in the dictionary. Tables
defined with the CREATE TABLE statement are called base tables.

Authorization

To issue a CREATE TABLE statement, you must:

■ Own the schema where the table is being defined or hold the CREATE privilege on
the named table

■ Hold the USE privilege on the area where rows of the named table are stored

Syntax

►►─── CREATE TABLE ─┬────────────────┬─ table-identifier ─────────────────────►
 └─ schema-name. ─┘

 ┌───────── , ─────────┐
 ►─── (─▼─ column-definition ─┴─┬───────────────────────────────┬─) ────────►
 └─ ,CHECK (search-condition) ─┘

 ►─┬─────────────────────────────┬──►
 └─ IN segment-name.area-name ─┘

 ►─┬───┬────────────►
 └─ COMPRESS ─┬──┬─┘
 └─ USING ─┬─ BUILTIN ────────────────────────┬─┘
 └─ data-characteristic-table-name ─┘

 ►─┬──────────────────────────────────────┬───────────────────────────────────►
 └─ ESTIMATED ROWS estimated-row-count ─┘

 ►─┬─────────────────────────────┬──►
 └─ TABLE ID table-id-number ──┘

 ►─┬─────────────────────────────┬──►
 └─ NO DEFAULT INDEX ──────────┘

 ►─┬─────────────────────────────┬──►◄
 └─ TIMESTAMP timestamp-value ─┘

Expansion of column-definition

►►─── column-name data-type ───►

 ►─┬────────────┬───►
 └─ NOT NULL ─┘

 ►─┬────────────────┬───►◄
 └─ WITH DEFAULT ─┘

CREATE TABLE

Chapter 8: Statements 379

Parameters

table-identifier

Specifies the name of the table being treated. Table-identifier must be a 1- through
18-character name that follows the conventions for SQL identifiers.

Table-identifier must be unique among the table, view, function, procedure and
table procedure identifiers within the schema associated with the table.

schema-name

Specifies the schema to be associated with the table. Schema-name must identify a
schema defined in the dictionary.

If you do not specify schema-name, it defaults to:

■ The current schema associated with your SQL session, if the statement is
entered through the Command Facility or executed dynamically

■ The schema associated with the access module used at runtime, if the
statement is embedded in an application program

column-definition

Defines a column to be included in the table.

Columns are included in the table in the order they are specified.

The list of column definitions together with the CHECK parameter (if specified) must
be enclosed in parentheses. Multiple column definitions must be separated by
commas.

Expanded syntax for column-definition is shown immediately following the CREATE
TABLE syntax. Descriptions for these parameters are located at the end of this
section.

CHECK (search-condition)

Specifies criteria to be used to restrict the data that can be stored in the table. CA
IDMS stores a new row in the table only if the value of search-condition is true for
the row.

For expanded search-condition syntax, see Expansion of Search-condition.
Restrictions on the use of search-condition in the CHECK parameter are discussed
in "Usage" later in this section.

CREATE TABLE

380 SQL Reference Guide

IN

Specifies the area to be used for storing rows of the table.

If you do not associate an area with a table, CA IDMS:

■ Uses the default area, if any, for the schema associated with the table

■ Returns an error if the schema does not have a default area

The IN parameter is a CA IDMS extension of the SQL standard.

segment-name

Identifies the segment associated with the named area.

area-name

Identifies the area to be associated with the table. Area-name must identify an area
defined in the dictionary.

COMPRESS

Specifies that data in the table is to be compressed before being stored in the
database.

The COMPRESS parameter is valid only if CA IDMS Presspack is installed at your site.

The COMPRESS parameter is a CA IDMS extension of the SQL standard.

USING data-characteristic-table-name

Specifies the data characteristic table CA IDMS Presspack is to use to compress data
in the table.

Data-characteristic-table must identify a data characteristic table created by CA
IDMS Presspack. If data-characteristic-table is not specified, the default, BUILTIN,
directs CA IDMS Presspack to use the data characteristic table supplied with the
product.

CREATE TABLE

Chapter 8: Statements 381

ESTIMATED ROWS estimated-row-count

Indicates the number of rows expected to be stored for the table.
Estimated-row-count must be an integer that does not exceed 16,777,214.

CA IDMS uses the estimated row count when determining default index
characteristics and estimating statistics.

The ESTIMATED ROWS parameter is a CA IDMS extension of the SQL standard.

TABLE ID table-id-number

Assigns a table ID value for the table being created. The table-id number must be in
the range of 1024 through 4095.

NO DEFAULT INDEX

Indicates that the TABLE will have no initially assigned default index. The default
index is an index sorted by DBKEY in ascending order in such a way that all TABLE
rows can be accessed with the minimum number of I/Os.

Note: For more information about retaining or dropping the default index, see the
Usage topic later in this section or the CA IDMS Database Design Guide.

TIMESTAMP timestamp-value

Specifies the value of the synchronization stamp to be assigned to the table.
Timestamp-value must be a valid external representation of a timestamp.

Parameters for Expansion of column-definition

column-name

Specifies the name of a column to be included in the table being created.
Column-name must be a 1- through 32-character name that follows the
conventions for SQL identifiers.

Column-name must be unique within the table being defined.

data-type

Defines the data type for the named column. For expanded data-type syntax, see
Expansion of Data-type.

NOT NULL

Indicates the column cannot contain null values.

If you do not specify NOT NULL, the column is defined to allow null values.

If you specify NOT NULL without WITH DEFAULT, an INSERT statement must specify
a value for the column.

CREATE TABLE

382 SQL Reference Guide

WITH DEFAULT

Directs CA IDMS to store the default value in the named column if no value for the
column is specified when a row is inserted.

The default value for a column is based on its data type:

Column data type Default value

CHARACTER Blanks

VARCHAR A character string literal with a length of zero (that is, '')

GRAPHIC Double-byte blanks

VARGRAPHIC A double-byte character string literal with a length of zero

DATE The value in the CURRENT DATE special register

TIME The value in the CURRENT TIME special register

TIMESTAMP The value in the CURRENT TIMESTAMP special register

All numeric data types 0 (zero)

CREATE TABLE

Chapter 8: Statements 383

Usage

Tables in the SYSTEM Schema

You cannot define a table in the SYSTEM schema.

Tables in System Areas

You cannot associate a table with a system area supplied with CA IDMS.

Maximum Row Length

When defining the columns in a table, you must ensure that the total number of bytes
required for all columns in the table does not exceed the maximum allowed.

The total number of bytes allowed for all columns included in a table defined with the
COMPRESS option is 32,760. If the table is defined without the COMPRESS option, the
total number of bytes allowed for all columns is limited by the database page size and
the size of the page reserve. The length of all columns must be less than or equal to
(page-size - page-reserve - 40).

The number of bytes used for each column is determined by the column data type.
Columns that allow null values take one additional byte each.

Each linked clustered referential constraint where the table is the referencing table
reduces the total number of bytes allowed for columns by 12. Each linked clustered
referential constraint in which the table is the referenced table or linked indexed
referential constraint where the table is the referencing or the referenced table reduces
the total by 8 bytes.

A CALC key defined on a table also reduces the total number of bytes allowed for
columns by 8.

CREATE TABLE

384 SQL Reference Guide

Recommended Row Length

The absolute maximum row length for an uncompressed table is (page-size -
page-reserve - 40). The recommended maximum row length is 30% of the absolute
maximum.

Restrictions on search-condition

In the CHECK parameter of a CREATE TABLE statement:

■ Search-condition cannot include any host variables, routine parameters, local
variables, aggregate or user-defined functions, EXISTS predicates, quantified
predicates, or subqueries

■ Each column reference in search condition must identify a column in the table
being defined

Default Indexes

The default index for a table is stored in the same area as the table. CA IDMS uses the
default index to cluster rows of the table when no other clustered index, CALC key, or
clustered referential constraint is defined for the table.

For such a table, the default index improves processing efficiency. CA IDMS uses the
default index instead of an area sweep to locate rows of the table for retrieval.

CREATE TABLE

Chapter 8: Statements 385

The ESTIMATED ROWS Parameter with Large Tables

To enable CA IDMS to choose optimal attributes for indexes on a large table, you should
supply an estimated number of rows in the table definition or specify index block
characteristics yourself.

If you do not specify ESTIMATED ROWS and if you do not update statistics after the
table has been loaded, CA IDMS calculates index characteristics using an estimated row
count of 1000.

Omitting NOT NULL and WITH DEFAULT

If you omit both NOT NULL nor WITH DEFAULT, the column is assigned a null value if no
value is specified for the column on an INSERT statement.

Specifying a Synchronization Stamp

When defining or altering a table, you can specify a value for its synchronization stamp.
You should use care when doing so because the purpose of the stamp is to enable the
detection of discrepancies between an entity and its definition. If explicitly specified,
you must set the synchronization stamp to a new value following a change so that the
change is detectable by the runtime system.

If not specified, the synchronization stamp is automatically set to the current date and
time.

CREATE TABLE

386 SQL Reference Guide

Example

Defining a Base Table

The following CREATE TABLE statement defines the EMPLOYEE table in the DEMO_LIB
schema. The table includes 16 columns. The CHECK parameter in the table definition
restricts the values that can be stored in the STATUS column. Data in the table is stored
in a compressed form in the EMP_SPACE area. The expected number of rows for the
table is 350.

create table demo_lib.employee

 (emp_id integer not null,

 manager_id integer,

 emp_fname varchar(20) not null,

 emp_lname varchar(20) not null,

 dept_id integer not null,

 proj_id varchar(10),

 street varchar(40) not null,

 city character(20) not null,

 state character(2) not null,

 zip_code character(9) not null,

 phone character(10),

 status character(1),

 ss_number integer not null,

 start_date date not null,

 termination_date date,

 birth_date date,

 check (status in ('A', 'S', 'L', 'T')))

 in demoseg.emp_space

 compress

 estimated rows 350;

More Information

■ For more information about defining tables, see ALTER TABLE and DROP TABLE.

■ For more information about implementing indexes, see the CA IDMS Database
Design Guide.

■ For more information about compressing data, see the CA IDMS Presspack User
Guide.

■ For more information about differences between the CREATE TABLE statement in
CA IDMS and the SQL standard CREATE TABLE statement.

CREATE TABLE PROCEDURE

Chapter 8: Statements 387

CREATE TABLE PROCEDURE

The CREATE TABLE PROCEDURE data description statement stores the definition of a
table procedure in the SQL catalog. You can refer to the table procedure in SQL SELECT,
INSERT, UPDATE and DELETE statements just as you would a table. These references
result in CA IDMS calls to the corresponding external routine. Although such routines
can perform any action, you use them typically to manipulate data stored in some other
organization (for example, in a non-SQL-defined database or in a set of VSAM files).

You use the formal parameters of a table procedure definition like the columns of a
table during a procedure invocation. You can input values in and return them from the
table procedure using column-like syntax.

The CREATE TABLE PROCEDURE statement is a CA IDMS extension of the SQL standard.

Authorization

To issue a CREATE TABLE PROCEDURE statement, you must own the schema in which
the table procedure is being defined or hold the CREATE privilege on the named table
procedure.

Syntax

►►─── CREATE TABLE PROCEDURE ─┬───────────────┬─ table-procedure-identifier ──►
 └─ schema-name. ┘

 ┌──────────── , ────────┐
 ►─── (─▼─ parameter-definition ┴) EXTERNAL NAME external-routine-name ─────►

 ►────┬─────────────────────────────────┬─┬──────────────────────────┬────────►
 └─── ESTIMATED ROWS row-count ────┘ └─ ESTIMATED IOS io-count ─┘

 ►────┬───────────────┬───►
 ├─ USER MODE ◄──┤
 └─ SYSTEM MODE ─┘

 ►────┬──────────────────────────────────────┬────────────────────────────────►
 └─ LOCAL WORK AREA ── local-stge-size ─┘

 ►────┬──┬──────────────►
 └─ GLOBAL WORK AREA ── global-stge-size ──┬──────────────┤
 └─ KEY key-id ─┘

 ►────┬───┬───────►
 └─ TRANSACTION SHARING ───────────────────┬─ ON ───────┬────────┘
 ├─ OFF ──────┤
 └─ DEFAULT ◄─┘

 ►────┬───┬───────►
 └─ DEFAULT DATABASE ────────────────────┬ NULL ◄───┬───────────┘
 └─CURRENT──┘

 ►────┬───┬───────────────────────────►◄
 └── TIMESTAMP timestamp-value ─────────────┘

Expansion of parameter-definition

►►─── parameter-name ── data-type ─┬────────────────┬─────────────────────────►◄
 └─ WITH DEFAULT ─┘

CREATE TABLE PROCEDURE

388 SQL Reference Guide

Parameters

table-procedure-identifier

Specifies the 1- to 18-character name of the table procedure you are creating.
table-procedure-identifier must:

■ Be unique among the table, view, function, procedure and table procedure
identifiers within the schema associated with the table procedure

■ Follow conventions for SQL identifiers

schema-name

Specifies the schema name qualifier to be associated with the table procedure.
Schema-name must identify a schema defined in the dictionary. If you do not
specify a schema-name, it defaults to:

■ The current schema associated with your SQL session, if the statement is
specified through the Command Facility or executed dynamically

■ The schema associated with the access module used at runtime, if the
statement is embedded in an application program

parameter-definition

Defines a parameter to be associated with the table procedure. Parameters are
passed to the table procedure in the order they are specified. The list of parameters
must be enclosed in parentheses. Multiple parameter definitions must be separated
by commas.

Expanded syntax for parameter-definition is shown immediately following the
CREATE TABLE PROCEDURE syntax. Descriptions for these parameters are located at
the end of this section.

external-routine-name

Specifies the one- to eight-character name of the program which is called to process
references to the table procedure.

row-count

Specifies an integer value, in the range 0 through 2,147,483,647, representing the
average number of rows returned by the table procedure for a given set of input
parameters.

io-count

Specifies an integer value, in the range 0 through 2,147,483,647, representing the
average number of disk accesses generated by the table procedure for a given set
of input parameters.

USER MODE

Specifies the table procedure should execute as a user-mode application program
within CA IDMS. This is the default value unless SYSTEM MODE is specified.

CREATE TABLE PROCEDURE

Chapter 8: Statements 389

SYSTEM MODE

Specifies the table procedure should execute as a system mode application
program. To execute in system mode, the program must be fully reentrant and be
written in either:

■ Assembler using DC calling conventions

■ COBOL or PL/I and compiled with an LE-compliant compiler

local-stge-size

Specifies an integer, in the range 0 through 32767, which represents the size, in
bytes, of a local storage area which is allocated by CA IDMS at runtime and passed
to the table procedure on each invocation.

CA IDMS allocates a local storage area on the first call to a table procedure for each
SQL statement within a transaction or for a set of SQL statements which are related
through reference to the same cursor (OPEN, FETCH, CLOSE, positioned UPDATE,
and DELETE statements are related through a cursor). The same local storage area is
passed to the table procedure for all calls for one statement or related statements.
When the SQL statement has completed execution or when the cursor is closed, the
local work area is released.

Note: If you do not code a LOCAL WORK AREA clause, the default local storage size
is 1024 bytes.

global-stge-size

Specifies an integer, in the range 0 through 32767, representing the size, in bytes,
of the global storage area that CA IDMS allocates at runtime and passes to the table
procedure on each invocation.

CA IDMS allocates a global storage area once within a transaction and retains it
until the transaction terminates.

key-id

Specifies the one- to four-character identifier for the global storage area. CA IDMS
passes the same piece of global storage within a transaction to all SQL routines that
have the same global storage key.

If you do not specify a storage key, CA IDMS allocates each table procedure its own
global storage area, which is not used for any other routine within the transaction.

CREATE TABLE PROCEDURE

390 SQL Reference Guide

TRANSACTION SHARING

Specifies whether transaction sharing should be enabled for database sessions
started by the table procedure. If transaction sharing is enabled for a procedure's
database session, it will share the current SQL session's transaction.

ON

Specifies that transaction sharing should be enabled

OFF

Specifies that transaction sharing should be disabled.

DEFAULT

Specifies that the transaction sharing setting that is in effect when the table
procedure is invoked should be retained.

DEFAULT DATABASE

Specifies whether a default database should be established for database sessions
started by the table procedure.

NULL

Specifies that no default database should be established.

CURRENT

Specifies that the database to which the SQL session is connected should
become the default for any database session started by the table procedure.

timestamp-value

Specifies the value of the synchronization stamp to be assigned to the table
procedure. Timestamp-value must be a valid external representation of a
timestamp.

Parameters for Expansion of parameter-definition

parameter-name

Specifies a 1- to 32-character name of a parameter to be passed to the table
procedure. Parameter-name must:

■ Be unique within the table procedure that you are defining

■ Follow the conventions for SQL identifiers

All parameters are implicitly nullable. Input parameters can be assigned NULL as a
parameter value and output parameters can return NULL.

data-type

Defines the data type for the named parameter. For expanded data-type syntax,
see Expansion of Data-type.

CREATE TABLE PROCEDURE

Chapter 8: Statements 391

WITH DEFAULT

Directs CA IDMS to pass a default value for the named parameter if no value for the
parameter is specified.

The default value for a parameter is based on its data type:

Column data type Default value

CHARACTER Blanks

VARCHAR A character string literal with a length of zero (that is, '')

GRAPHIC Double-byte blanks

VARGRAPHIC A double-byte character string literal with a length of zero

DATE The value in the CURRENT DATE special register

TIME The value in the CURRENT TIME special register

TIMESTAMP The value in the CURRENT TIMESTAMP special register

All numeric data types 0 (zero)

Usage

Influencing Join Strategies

CA IDMS uses estimated row and I/O counts in determining the cost of joining a table
procedure with other tables, views, or table procedures. To determine the optimal
access strategy, CA IDMS examines different sequences for retrieving information. By
providing the estimated row and I/O counts for the table procedure and for each access
key used by the table procedure, CA IDMS can select the optimal access strategy.

In determining the cost of a specific access strategy, CA IDMS uses estimates provided in
CREATE TABLE PROCEDURE unless input values are available for each of the parameters
included in a key. If values are available for each of these parameters, CA IDMS uses the
estimates specified in the CREATE KEY statement instead of those specified in CREATE
TABLE PROCEDURE.

Specifying a Synchronization Stamp

When defining or altering a table procedure, you can specify a value for its
synchronization stamp. You should use care when doing so because the purpose of the
stamp is to enable the detection of discrepancies between an entity and its definition. If
explicitly specified, you must set the synchronization stamp to a new value following a
change so that the change is detectable by the runtime system.

If not specified, the synchronization stamp is automatically set to the current date and
time.

CREATE TEMPORARY TABLE

392 SQL Reference Guide

Example

The following CREATE TABLE PROCEDURE statement defines a table procedure.

create table procedure emp.org

 (top_key unsigned numeric(4),

 level smallint,

 mgr_id unsigned numeric(4),

 mgr_lname char(25)

 emp_id unsigned numeric (4),

 emp_lname char(25)

 start_date DATE,

 structure_code char(2))

 external name procorgu

 local work area 800

 global work area 600 KEY EMP

 estimated rows 100

 estimated ios 50;

More Information

■ For more information about expanded table procedure references, see Expansion
of Table-procedure-reference.

■ For more information about coding the external routine, see Defining and Using
Table Procedures.

■ For more information about CREATE KEY, see CREATE KEY.

CREATE TEMPORARY TABLE

The CREATE TEMPORARY TABLE data description statement defines a temporary table.
A temporary table exists for the duration of the transaction in which the table is
created. When the transaction ends, CA IDMS deletes the definition of and the data
associated with the temporary table.

The CREATE TEMPORARY TABLE statement is a CA IDMS extension of the SQL standard.

Authorization

None required.

Syntax

►►─── CREATE TEMPORARY TABLE table-identifier ────────────────────────────────►

 ┌───────── , ─────────┐
 ►─── (─▼─ column-definition ─┴) ───►◄

CREATE TEMPORARY TABLE

Chapter 8: Statements 393

Expansion of column-definition

►►─── column-name data-type ───►

 ►─┬────────────┬───►
 └─ NOT NULL ─┘

 ►─┬────────────────┬───►◄
 └─ WITH DEFAULT ─┘

Parameters

table-identifier

Specifies the name of the temporary table being created. Table-identifier must be a
1- through 18-character name that follows the conventions for SQL identifiers.

Table-identifier must be unique within the transaction in which the temporary table
is defined. To prevent possible ambiguity, temporary table identifiers should differ
from the identifiers of any base tables and views defined in the dictionary.

column-definition

Defines a column to be included in the temporary table.

Columns are included in the table in the order they are specified.

The list of column definitions must be enclosed in parentheses. Multiple column
definitions must be separated by commas.

Expanded syntax for column-definition is shown immediately following the CREATE
TEMPORARY TABLE syntax. Descriptions for these parameters are located at the
end of this section.

Parameters for Expansion of column-definition

column-name

Specifies the name of a column to be included in the temporary table.
Column-name must be a 1- through 32-character name that follows the
conventions for SQL identifiers.

Column-name must be unique within the temporary table being defined.

data-type

Defines the data type for the named column. For expanded data-type syntax, see
Expansion of Data-type.

NOT NULL

Indicates that the column cannot contain null values.

If you specify NOT NULL without WITH DEFAULT, an INSERT statement must specify
a value for the column.

If you do not specify NOT NULL, the column is defined to allow null values.

CREATE VIEW

394 SQL Reference Guide

WITH DEFAULT

Directs CA IDMS to store the default value for the named data type in the named
column if no value for the column is specified when a new row is stored.

The default value for a column is based on its data type:

Column data type Default value

CHARACTER Blanks

VARCHAR A character string literal with a length of zero (that is, '')

GRAPHIC Double-byte blanks

VARGRAPHIC A double-byte character string literal with a length of zero

DATE The value in the CURRENT DATE special register

TIME The value in the CURRENT TIME special register

TIMESTAMP The value in the CURRENT TIMESTAMP special register

All numeric data types 0 (zero)

Usage

Maximum Row Length

The total number of bytes allowed for all columns included in a temporary table is
32,767. The number of bytes used for each column is determined by the column data
type. Columns that allow null values take one additional byte each.

Example

Defining a Temporary Table

The following CREATE TEMPORARY TABLE statement defines the temporary table
TEMP_BUDGET with two columns:

create temporary table temp_budget

 (dept_id integer not null,

 all_expenses decimal(9,2));

CREATE VIEW

The CREATE VIEW data description statement defines a view in the dictionary.

CREATE VIEW

Chapter 8: Statements 395

Authorization

To issue a CREATE VIEW statement, you must own the schema where the view is being
defined or hold the CREATE privilege on the named view.

Syntax

►►─── CREATE VIEW ─┬────────────────┬─ view-identifier ───────────────────────►
 └─ schema-name. ─┘

 ►─┬────────────────────────────────┬───►
 │ ┌──────── , ─────────┐ │
 └─ (─▼─ view-column-name ─┴─) ─┘

 ►─── AS query-expression ──►

 ►─┬──────────────────────────┬───►
 └─ order-by-specification ─┘

 ►─┬─────────────────────┬──►
 └─ WITH CHECK OPTION ─┘

 ►────┬───┬───────────────────────────►◄
 └── TIMESTAMP timestamp-value ─────────────┘

Expansion of order-by-specification

 ┌─────────────────────── , ───────────────────────────┐
►►── ORDER BY ─▼─┬─┬───────────────┬─ column-name ─┬───┬──────────┬──┴────────►◄
 │ ├─ table-name. ─┤ │ ├─ ASC ◄──┤
 │ └─ alias. ──────┘ │ └─ DESC ───┘
 ├─ column-number ─────────────────┤
 ├─ result-name ───────────────────┤
 └─ rowid-pseudo-column ───────────┘

CREATE VIEW

396 SQL Reference Guide

Parameters

view-identifier

Specifies the name of the view being created. View-identifier must be a 1- through
18-character name that follows the conventions for SQL identifiers.

View-identifier must be unique among the table, view, procedure and table
procedure identifiers within the schema associated with the view.

schema-name

Specifies the schema to be associated with the view. Schema-name must identify a
schema defined in the dictionary.

If you do not specify schema-name, it defaults to:

■ The current schema associated with your SQL session, if the statement is
entered through the Command Facility or executed dynamically

■ The schema associated with the access module used at runtime, if the
statement is embedded in an application program

(view-column-name)

Assigns names to the columns to be included in the view. The number of column
names must be the same as the number of columns in the result table represented
by query-expression. The first column name is assigned to the first column in the
result table, the second column name to the second result column, and so on.

Column-name must be a 1- through 32-character name that follows the
conventions for SQL identifiers and must be unique within the view being defined.

The list of column names must be enclosed in parentheses. Multiple column names
must be separated by commas.

If you do not specify any column names, CA IDMS assigns to the columns in the view
the same names as those of the result table of query-expression.

CREATE VIEW

Chapter 8: Statements 397

AS query-expression

Defines the columns to be included in the view. The first column in the result table
is the first column in the view, the second result column is the second column in the
view, and so on.

Note: For more information about expanded query-expression syntax, see
Expansion of Query-expression.

order-by-specification

Specifies a sort order for the rows in the result table defined by query-expression.
Expanded syntax for order-by-specification is shown immediately following the
CREATE VIEW syntax.

The use of the ORDER BY parameter in a CREATE VIEW statement is a CA IDMS
extension of the SQL standard.

WITH CHECK OPTION

Specifies that any row inserted or updated through the view must satisfy the search
condition of the WHERE clause in the query specification. This means you cannot
add data through a view that the view would prevent you from retrieving.

TIMESTAMP timestamp-value

specifies the value of the synchronization stamp to be assigned to the view.
Timestamp-value must be a valid external representation of a timestamp.

Parameters for Expansion of order-by-specification

ORDER BY

Sorts the rows in the result table defined by query-expression in ascending or
descending order by the values in the specified columns. Rows are ordered first by
the first column specified, then by the second column specified within the ordering
established by the first column, then by the third column specified, and so on.

You can specify from 1 through 254 columns in the ORDER BY parameter. Multiple
columns must be separated by commas.

column-name

Specifies a sort column by name. Column-name must identify a column in the result
table of the query expression.

table-name

Specifies the table, view, procedure or table procedure that includes the
named column. For expanded table-name syntax, see Identifying Entities in
Schemas.

alias

Specifies the alias associated with the table, view, procedure or table
procedure that includes the named column. Alias must be defined in the FROM
parameter of the query specification that makes up the query expression.

CREATE VIEW

398 SQL Reference Guide

column-number

Specifies a sort column by the position of the column in the result table defined by
query-expression. The first result column is in position 1.

Column-number must be an integer in the range 1 through the number of columns
in the result table.

result-name

Specifies the sort column by the result name specified in the AS parameter of
query-expression.

rowid-pseudo-column

Specifies a sort column as a ROWID pseudo-column. See Expansion of
rowid-pseudo-column.

ASC

Indicates that the values in the specified column are to be sorted in ascending
order. ASC is the default when you specify neither ASC nor DESC.

DESC

Indicates that the values in the specified column are to be sorted in descending
order.

Usage

Views on SYSTEM Tables

You can define a view on a table in the SYSTEM schema, but you cannot associate the
view with the SYSTEM schema.

Required Column Names

You must include column names in a CREATE VIEW statement when any one of the
following is true:

■ Two or more of the result columns specified in the query-expression have the same
name

■ One or more of the value expressions representing the columns in the result table
include a literal, an arithmetic operation (unary or binary), or an aggregate function

■ A column in the result table has been assigned an alias through the AS parameter of
the query specification

Restriction on query-expression

In a CREATE VIEW statement, query-expression cannot include:

■ Host variables, local variables, or routine parameters

■ References to temporary tables

CREATE VIEW

Chapter 8: Statements 399

Grouped Views

If the query-expression in a CREATE VIEW statement includes a GROUP BY or HAVING
parameter that is not contained in a subquery, the view defined by the statement is a
grouped view.

Updateable Views

For a view to be updateable:

■ The query-expression must be updateable

■ The view definition must not contain an ORDER BY clause

Result columns derived from a value expression other than a simple column reference
cannot be updated or inserted through a view.

Using WITH CHECK OPTION

WITH CHECK OPTION has meaning only if the view is updateable and cannot be
specified if the WHERE clause of the query expression contains a subquery.

When a view defined with WITH CHECK OPTION is referenced in the FROM clause of a
second view definition, the check criterion of the original view is applied to data
inserted or updated through the second view. If the second view is part of a third view
definition, the check criterion of the original view is applied to data inserted or updated
through the third view, and so on.

If a view defined without WITH CHECK OPTION is referenced in the FROM clause of a
second view that has a WITH CHECK OPTION, the search conditions in the WHERE clause
of both view definitions must be satisfied by an UPDATE or INSERT statement that
references the second view. This principle holds true regardless of the number of levels
of view references involved.

Once WITH CHECK OPTION is encountered in a view definition, all subordinate views
referenced by that view are treated as if their definitions also contain WITH CHECK
OPTION.

CREATE VIEW

400 SQL Reference Guide

Use of * in a View Definition

Avoid the use of * in the query expression to denote all columns of a table named in the
FROM parameter. If * is used and new columns are added to the table, the view
becomes invalid; it must be dropped and recreated.

Altering the definition of an underlying table does not impact the view if you explicitly
identify columns in the view definition.

Specifying a Synchronization Stamp

When defining a view, you can specify a value for its synchronization stamp. You should
use care when doing so because the purpose of the stamp is to enable the detection of
discrepancies between an entity and its definition. If explicitly specified, you must set
the synchronization stamp to a new value following a change so that the change is
detectable by the runtime system.

If not specified, the synchronization stamp is automatically set to the current date and
time.

Note: For more information about dropping view definitions, see DROP VIEW.

Examples

Specifying Column Names in a View Definition

The following CREATE VIEW statement defines a view with three columns derived from
two tables. The definition of the third column includes aggregate functions and a binary
arithmetic operation. Therefore, the CREATE VIEW statement must specify names for all
the columns in the view.

create view emp_vacation

 (emp_id, dept_id, vac_time)

 as select e.emp_id, dept_id, sum(vac_accrued) - sum(vac_taken)

 from employee e, benefits b

 where e.emp_id = b.emp_id

 group by dept_id, e.emp_id;

Defining an Updateable View

The following CREATE VIEW statement defines an updateable view:

create view emp_home_info

 as select emp_id, emp_lname, emp_fname, street, city, state,

 zip_code, phone

 from employee;

DEALLOCATE PREPARE

Chapter 8: Statements 401

DEALLOCATE PREPARE

The DEALLOCATE PREPARE statement destroys a dynamically-compiled statement and
all other dynamically-compiled statements that directly or indirectly reference it. You
can use this statement only in SQL embedded in an application program.

Authorization

None required.

Syntax

►►── DEALLOCATE PREPARE statement-name ───────────────────────────────────────►◄

Parameters

statement-name

Identifies the statement to be destroyed. It must identify a statement previously
created using a PREPARE statement.

Usage

Effect on Dependent Statements

Upon successful execution of a DEALLOCATE PREPARE statement, the following actions
have taken place:

■ The target statement is destroyed.

■ If the target statement was a cursor-specification, all cursors that reference the
target statement are destroyed. If the cursors were open at the time the
DEALLOCATE PREPARE statement was executed, they are first closed.

■ If any dynamically compiled positioned UPDATE or DELETE statements reference a
cursor being destroyed, they too are destroyed.

Examples

Destroying a Prepared Statement

The following statement destroys the local statement named S1 and any cursors that
reference the statement. It also destroys any statements that reference the cursors.

EXEC SQL

 DEALLOCATE PREPARE S1

END-EXEC

DECLARE CURSOR

402 SQL Reference Guide

DECLARE CURSOR

The DECLARE CURSOR data manipulation statement defines a cursor for a specified
result table. Use this statement only in SQL that is embedded in a program.

Authorization

To issue a DECLARE CURSOR statement that includes a cursor specification, you must
own or have the SELECT privilege on each table, view, table procedure, and function
explicitly named in the cursor specification. Authorization checking for cursors that
reference a statement is done during execution of the corresponding PREPARE
statement.

Additional authorization requirements apply to each view explicitly named in the cursor
specification, to each view explicitly named in the definition of such a view, to each view
explicitly named in the definition of those views, and so forth.

For any such view, the owner of the view must own or have the grantable SELECT
privilege on each table, view, table procedure, and function explicitly named in the view
definition.

Syntax

►►── cursor-declaration ──►◄

Expansion of cursor-declaration

►►── DECLARE static-cursor-name ─┬──────────┬─ CURSOR ─────────────────────────►
 └─ GLOBAL ─┘

 ►───┬───────────────────┬── FOR ──┬─ cursor-specification ──┬─────────────────►◄
 ├─ WITH RETURN ─────┤ └─ static-statement-name ─┘
 └─ WITHOUT RETURN ◄─┘

DECLARE CURSOR

Chapter 8: Statements 403

Parameters

Parameters for Expansion of cursor-declaration

static-cursor-name

Assigns a name to the cursor. Cursor-name must be a 1- through 18-character name
that follows the conventions for SQL identifiers.

GLOBAL

Specifies the cursor can be used by other application programs sharing the access
module that contains the cursor definition.

The GLOBAL parameter is not valid for cursors associated with result tables defined
by dynamically compiled SELECT statements.

The GLOBAL parameter is a CA IDMS extension of the SQL standard.

WITH RETURN

Defines the cursor as a returnable cursor. If a returnable cursor is declared in an
SQL-invoked procedure and is in the open state when the procedure returns to its
caller, a result set is returned to the caller.

WITHOUT RETURN

Specifies that the cursor is not a returnable cursor. This is the default.

FOR

Defines the result table associated with the cursor.

cursor-specification

Specifies the result table in the form of a cursor definition. For expanded
cursor-specification syntax, see Expansion of Cursor-specification.

static-statement-name

Specifies the result table in the form of a dynamically compiled SELECT statement.
Statement-name must identify a statement named in a PREPARE statement.

You cannot use a dynamically-compiled SELECT statement to define the result table
associated with a global cursor using the DECLARE CURSOR statement. This can be
achieved using an ALLOCATE CURSOR statement.

DECLARE CURSOR

404 SQL Reference Guide

Usage

Uniqueness of Cursor Names

Each cursor name must be unique within an application program. Global cursor names
must be unique within an access module.

Updateable Cursors

The cursor defined by a DECLARE CURSOR statement is updateable if the cursor
specification, contained in the DECLARE CURSOR statement or represented by the
static-statement-name is updateable.

Defining Returnable Cursors

While any cursor can be defined as a returnable cursor using WITH RETURN, it only
makes sense to do so in programs that are invoked as SQL-invoked procedures and that
are defined with a non-zero dynamic result set attribute.

The invoker must use the ALLOCATE CURSOR statement to associate returned result sets
with received cursors for further processing.

Note: For more information about how the caller processes returned result sets, see
ALLOCATE CURSOR (see page 258) and CALL (see page 306).

DECLARE CURSOR

Chapter 8: Statements 405

Examples

Declaring a Global Cursor with a Specified Row Order

The following DECLARE CURSOR statement defines a global cursor for a result table
containing information about all current employees and consultants. The rows in the
table are ordered first by last name, then by department, and then by employee
identifier.

EXEC SQL

 DECLARE ALL_EMP_CURSOR GLOBAL CURSOR

 FOR SELECT DEPT_ID, EMP_ID, 'EMPLOYEE', EMP_LNAME,

 EMP_FNAME, STREET, CITY, STATE, ZIP_CODE

 FROM EMPLOYEE

 WHERE STATUS IN ('A', 'L', 'S')

 UNION SELECT DEPT_ID, CON_ID, 'CONSULTANT', CON_LNAME,

 CON_FNAME, STREET, CITY, STATE, ZIP_CODE

 FROM CONSULTANT

 ORDER BY 4, 5, 1, 2

END-EXEC

Naming an Updateable Column

The following DECLARE CURSOR statement defines a cursor for a result table containing
fiscal year 1999 bonus information for each employee. The statement specifies that the
BONUS_AMOUNT column of the BENEFITS table can be updated through the cursor.

EXEC SQL

 DECLARE BONUS_CURSOR CURSOR

 FOR SELECT EMP_ID, BONUS_AMOUNT

 FROM BENEFITS

 WHERE FISCAL_YEAR = '99'

 FOR UPDATE OF BONUS_AMOUNT

END-EXEC

DECLARE EXTERNAL CURSOR

406 SQL Reference Guide

Associating a Cursor with a Dynamically Compiled SELECT Statement

The DECLARE CURSOR statement shown next, defines a cursor for the result table
derived from a dynamically compiled SELECT statement named DYN_PROJ_SELECT. The
application program must include a PREPARE statement for DYN_PROJ_SELECT.

EXEC SQL

DECLARE PROJECT_CURSOR CURSOR

 FOR DYN_PROJ_SELECT

END-EXEC

Defining Returnable Cursors

The following DECLARE CURSOR statement is specified in an SQL-invoked procedure
written in SQL. The cursor RET_COVERAGE returns a result set consisting of the rows of
the table DEMOEMPL.COVERAGE for which the column EMP_ID equals the value of the
parameter P_EMP_ID. To effectively return the result set, the cursor must be left open
on the return from the procedure.

declare RET_COVERAGE cursor with return for

 select * from DEMOEMPL.COVERAGE

 where EMP_ID = P_EMP_ID;

More Information

■ For more information about manipulating cursors, see CLOSE, FETCH, and OPEN
(see page 494).

■ For more information about sharing cursors within an access module, see DECLARE
EXTERNAL CURSOR.

■ For more information about the dynamic compilation of SQL statements, see
PREPARE or the CA IDMS SQL Programming Guide.

■ For more information about using cursors in an application program, see the CA
IDMS SQL Programming Guide.

DECLARE EXTERNAL CURSOR

The DECLARE EXTERNAL CURSOR data manipulation statement identifies an
externally-defined global cursor to be used by the application program. You can use this
statement only in SQL that is embedded in a program. The DECLARE EXTERNAL CURSOR
statement is a CA IDMS extension of the SQL standard.

Authorization

None required.

DECLARE EXTERNAL CURSOR

Chapter 8: Statements 407

Syntax

►►─── DECLARE static-cursor-name EXTERNAL CURSOR ─────────────────────────────►◄

Parameter

static-cursor-name

Specifies the name of a global cursor to be used by the application program.
Static-cursor-name must identify a cursor defined by a DECLARE CURSOR statement
with the GLOBAL option in another application program that shares an access
module with the program containing the DECLARE EXTERNAL CURSOR statement.

Usage

Sharing Cursors

For one program (program B) to use a cursor defined in another program (program A):

■ Program A must:

– Include a DECLARE CURSOR statement that defines the cursor as a global cursor

– Include an OPEN statement that opens the cursor

– Open the cursor before program B attempts to use the cursor

■ Program B must include a DECLARE EXTERNAL CURSOR statement that names the
cursor

■ The two programs must:

– Use the same access module

– Execute within the same transaction

Example

Identifying an Externally Defined Global Cursor

The following DECLARE EXTERNAL CURSOR statement identifies ALL_EMP_CURSOR as
an externally defined global cursor that is used in the application program:

EXEC SQL

 DECLARE ALL_EMP_CURSOR EXTERNAL CURSOR

END-EXEC

More Information

■ For more information about defining global cursors, see DECLARE CURSOR

■ For more information about using cursors in an application program, see the CA
IDMS SQL Programming Guide.

DELETE

408 SQL Reference Guide

DELETE

The DELETE data manipulation statement deletes one or more rows from a table.

Authorization

To issue a DELETE statement, you must:

■ Hold the DELETE privilege on or own the table, view, or table procedure named in
the FROM parameter

■ Hold the SELECT privilege on or own each table, view, and table procedure explicitly
named in a subquery in the search condition in the WHERE parameter

Additional authorization requirements apply to:

■ A view named in the FROM parameter, each view named in the FROM parameter of
such a view, each view named in the FROM parameters of those views, and so
forth.

For any such view, the owner of the view must hold the grantable DELETE privilege
on or own the table, view, or table procedure named in the FROM parameter of the
view definition.

■ Each view named in the FROM parameter of a subquery in the search condition,
each view named in the FROM parameter of such a view, each view named in the
FROM parameters of those views, and so forth.

For any such view, the owner of the view must hold the grantable SELECT privilege
on or own each table, view, and table procedure named in the FROM parameter of
the view definition.

Syntax

►►─── DELETE FROM table-reference ───┬─────────┬──────────────────────────────►
 └─ alias──┘

 ►─┬───┬────────────────────►◄
 └─ WHERE ─┬─ search-condition ──────────────────────┬─┘
 └─ CURRENT OF ─┬─ cursor-name ─────────┬──┘
 └─ dynamic-name-clause ─┘

Expansion of dynamic-name-clause

►►─┬─────────────┬─ cursor-name ──►◄
 ├─ LOCAL ◄ ─┬─┘
 └─ GLOBAL ──┘

DELETE

Chapter 8: Statements 409

Parameters

FROM table-reference

Specifies the table, view, or table procedure from which rows are to be deleted.
Table-reference must not specify a procedure or a joined table. If table-reference
identifies a view:

■ The view must be updateable

■ The applicable rows are deleted from the table from which the view is derived

For expanded table-reference syntax, see Expansion of Table-reference.

alias

Defines a new name to be used to identify the table, view, or table procedure
within the DELETE statement. Alias must be a 1- through 18-character name that
follows the conventions for SQL identifiers.

WHERE

Restricts the rows to be deleted. If the DELETE statement does not include the
WHERE parameter, CA IDMS deletes all rows from the specified table, view, or table
procedure.

search-condition

Specifies criteria a row must meet to be deleted:

■ When the value of search-condition is true, the row is deleted

■ When the value of search-condition is false or unknown, the row is not deleted

For expanded search-condition syntax, see Expansion of Search-condition.

CURRENT OF

Specifies only the row that corresponds to the current row of the named cursor is
to be deleted.

cursor-name

Identifies the cursor whose current row will be deleted. Cursor-name must identify
an open cursor previously defined by a DECLARE CURSOR statement within the
application program or by an ALLOCATE CURSOR statement executed within the
same SQL transaction.

Note: This option may only be used in a DELETE statement embedded in an
application program.

dynamic-name-clause

Identifies the cursor whose current row will be deleted.

Note: This option may only be used in a DELETE statement dynamically compiled
using a PREPARE or EXECUTE IMMEDIATE statement.

DELETE

410 SQL Reference Guide

Parameters for Expansion of dynamic-name-clause

LOCAL

Indicates the named cursor has a local scope and was defined using a DECLARE
CURSOR statement or an ALLOCATE CURSOR statement. The default is LOCAL.

GLOBAL

Indicates the named cursor was created by an ALLOCATE CURSOR statement and is
global in scope.

cursor-name

Specifies the name of the cursor as an identifier. Cursor-name must identify an
open cursor previously defined by a DECLARE CURSOR statement within the
application program or by an ALLOCATE CURSOR statement executed within the
same SQL transaction.

Usage

Searched Deletes

A DELETE statement that include the WHERE search-condition parameter or does not
include the WHERE parameter at all is called a searched delete. Searched deletes may
be entered through the Command Facility, executed dynamically, or embedded within
application programs.

Positioned Deletes

A DELETE statement that includes the WHERE CURRENT OF CURSOR parameter is called
a positioned delete. The cursor identified in the positioned delete statement must be
updateable. Positioned deletes are valid only from within an application program.

Dynamic Positioned Deletes

A dynamic positioned DELETE statement is one that references a dynamic cursor. Such a
DELETE statement may be embedded within an application program or created
dynamically using a PREPARE or EXECUTE IMMEDIATE statement.

A positioned DELETE statement embedded in an application program may reference a
static cursor or a dynamic cursor. A positioned DELETE statement created dynamically
using a PREPARE or EXECUTE IMMEDIATE statement can only reference a dynamic
cursor.

DELETE

Chapter 8: Statements 411

Ambiguous Cursor References

When a dynamic positioned DELETE statement is being created by a PREPARE or
EXECUTE IMMEDIATE statement, it is possible that CA IDMS may not be able to
determine which cursor is being referenced. This occurs if the application program
contains a DECLARE CURSOR statement that defines a cursor having the referenced
name and the program has also executed an ALLOCATE cursor statement that creates a
cursor with the same name and a local scope. Under these conditions, CA IDMS cannot
determine which of the two cursors is being referenced. To avoid such problems, it is
advisable to use different names for cursors that are declared from those that are
allocated with a local scope.

Restrictions on table-reference

In a searched delete, the table, view, or table procedure named in the FROM parameter
of the DELETE statement cannot also be named in the FROM parameter of any subquery
included in the specified search condition or, in the case of a view, in any search
condition used in the view definition. This means that you cannot delete data from a
table from which you select in a subquery.

In a positioned delete, the table, view, or table procedure named in the FROM
parameter of the DELETE statement must also be named in the FROM parameter of the
query specification used in the definition of the named cursor.

Restriction for Tables in Referential Constraints

If the table referenced in a DELETE statement is the referenced table in a referential
constraint, and the referencing table in the referential constraint includes one or more
rows whose key-column values match those of a row to be deleted, CA IDMS returns an
error and does not delete the row.

Cursor Position After a Positioned Delete

After a positioned delete, the position of the cursor named in the DELETE statement is
before the row that immediately followed the deleted row. If the deleted row was the
last row in the result table associated with the cursor, the position of the cursor is after
the last row.

Transaction State for the DELETE Statement

CA IDMS processes a DELETE statement only when the transaction state is read write.

Deleting Through a View

If you specify a view in the FROM clause of a DELETE statement, the view must be
updateable, and only rows that can be retrieved through the view can be deleted
through the view.

DELETE

412 SQL Reference Guide

Examples

Requesting a Searched Delete

The following DELETE statement deletes rows from the BENEFITS table for employees
that have been terminated (status T):

delete from benefits

 where emp_id in

 (select emp_id

 from employee

 where status = 'T');

Requesting a Positioned Delete

The following DELETE statement deletes the row of the EST_COST table that
corresponds to the current row of the EST_COST_CURSOR cursor:

EXEC SQL

 DELETE FROM EST_COST

 WHERE CURRENT OF EST_COST_CURSOR

END-EXEC

Deleting All Rows

The following DELETE statement deletes all rows from the PROPOSED_BUDGET table:

delete from proposed_budget;

A Positioned DELETE Referencing a DECLAREd Cursor

The following statement deletes the current row of the cursor C1. C1 may be a dynamic
or static cursor, and it must have been defined using a DECLARE CURSOR statement:

EXEC SQL

 DELETE FROM EMPLOYEE WHERE CURRENT OF C1

END-EXEC

A Positioned DELETE Referencing an ALLOCATEd Cursor

The following statement deletes the current row of a cursor whose name is specified in
the variable CNAME. The referenced cursor must have been defined using an ALLOCATE
CURSOR statement:

EXEC SQL

 DELETE FROM EMPLOYEE WHERE CURRENT OF :CNAME

END-EXEC

DESCRIBE

Chapter 8: Statements 413

A Dynamically-compiled Positioned DELETE Statement

The following statement deletes the current row of local cursor C1. C1 may have been
defined using a DECLARE CURSOR statement or an ALLOCATE CURSOR statement. In
either case, the cursor name in the DELETE statement is specified as an identifier rather
than as a literal or host variable:

EXEC SQL

 EXECUTE IMMEDIATE

 'DELETE FROM EMPLOYEE WHERE CURRENT OF LOCAL C1'

END-EXEC

Note: The keyword LOCAL is unnecessary since it is the default. Regardless of whether it
is specified, if two local cursors named C1 have been defined, one using a DECLARE
CURSOR statement and one using an ALLOCATE CURSOR statement, the EXECUTE
IMMEDIATE statement fails on an ambiguous cursor error.

More Information

■ For more information about updateable views, see CREATE VIEW.

■ For more information about defining and manipulating cursors, see CLOSE,
DECLARE CURSOR, FETCH, and OPEN (see page 494).

■ For more information about updateable result tables, see DECLARE CURSOR

DESCRIBE

The DESCRIBE data compilation statement directs CA IDMS to return information about
a dynamically-compiled SQL statement into an SQL descriptor area.

You can use this statement only in SQL that is embedded in a program.

Authorization

None required.

Syntax

►►─ DESCRIBE ─┬─ OUTPUT ◄──┬─ statement-name ─────────────────────────────────►
 └─ INPUT ────┘

 ►─ USING sql DESCRIPTOR descriptor-area-name1 ───────────────────────────────►

 ►─┬───┬────────────────►◄
 ├─ INPUT ──┬─ USING sql DESCRIPTOR descriptor-area-name2 ─┘
 └─ OUTPUT ─┘

DESCRIBE

414 SQL Reference Guide

Note: If DESCRIBE OUTPUT is specified or implied, you may only specify the INPUT
USING parameter; similarly, if DESCRIBE INPUT is specified, you may only specify the
OUTPUT USING parameter.

Note: For compatibility with earlier releases, you can specify "INTO sql descriptor"
in place of "USING sql DESCRIPTOR"; however, this is an extension to the SQL standard.

Parameters

INPUT/OUTPUT

Specifies the type of information to be returned in the associated descriptor area.
INPUT means that information about dynamic parameters is to be returned in the
SQL descriptor area. OUTPUT means that information about output values is to be
returned.

statement-name

Specifies the name of the statement being described.

Note: For more information about the expansion of statement-name, see
Expansion of Statement-name.

USING SQL DESCRIPTOR

Specifies the SQL descriptor area where CA IDMS is to return information about the
named statement.

descriptor-area-name1

Directs CA IDMS to use the named area as the descriptor area.
Descriptor-area-name1 must identify an SQL descriptor area.

INPUT/OUTPUT USING SQL DESCRIPTOR descriptor-area-name2

Specifies the type of information to be returned in the associated descriptor area.
INPUT means that information about dynamic parameters is to be returned in the
SQL descriptor area. OUTPUT means that information about output values is to be
returned.

Descriptor-area-name2 is the name of the SQL descriptor area.

Note: If DESCRIBE OUTPUT is specified or implied, you may only specify the INPUT
USING parameter; similarly, if DESCRIBE INPUT is specified, you may only specify the
OUTPUT USING parameter.

The ability to specify INPUT/OUTPUT USING SQL DESCRIPTOR descriptor-area-name2 is
a CA IDMS extension to the SQL standard.

DESCRIBE

Chapter 8: Statements 415

Usage

Describing Dynamic Parameters

The INPUT option is used to return information about dynamic parameters that may be
embedded in the SQL statement being described. The SQLD field of the descriptor area
indicates the number of dynamic parameters that appear in the statement. If no
dynamic parameters are used, this field is zero (0).

If dynamic parameters do appear in the statement, CA IDMS returns descriptions of the
parameters in the descriptor area. The data type information is derived from the
context in which the dynamic parameter appears.

Describing Output Values

The OUTPUT option is used to return information about values output from CA IDMS:

■ For a SELECT statement, CA IDMS returns a description of the result table defined
by the statement. The SQLD field of the descriptor area indicates the number of
columns in the result table.

■ For a statement other than SELECT, CA IDMS returns the value zero (0) in the SQLD
field of the descriptor area.

Specifying the Maximum Number of Column Entries

The application program must specify the maximum number of entries it can accept by
setting the value of the SQLN field of the descriptor area before issuing the DESCRIBE
statement. If the number of entries is insufficient to hold all the requested information,
CA IDMS returns the number of entries needed into the SQLD field but does not return
any descriptions.

Example

Describing a Dynamically Compiled Statement

The following DESCRIBE statement returns information about the result table of the
dynamically compiled statement named DYN_TEMP_SEL_1 in the descriptor area
named SQLDA:

EXEC SQL

 DESCRIBE DYN_TEMP_SEL_1

 USING DESCRIPTOR SQLDA

END-EXEC

More Information

■ For more information about the SQL descriptor area, see SQL Descriptor Area.

■ For more information about the dynamic compilation of SQL statements, see the CA
IDMS SQL Programming Guide.

DESCRIBE CURSOR

416 SQL Reference Guide

DESCRIBE CURSOR

The DESCRIBE CURSOR data manipulation statement directs CA IDMS to return
information about the result set associated with a received cursor into an SQL
descriptor area.

Use this statement only in SQL that is embedded in a program.

Syntax

Parameters

extended-cursor-name

Specifies the name of the cursor whose result set is to be described. The cursor
must have been previously associated with a returned result set using the
ALLOCATE CURSOR statement.

USING sql DESCRIPTOR

Specifies the SQL descriptor area where CA IDMS is to return information about the
result set with which the cursor is associated.

descriptor-area-name

Directs CA IDMS to use the named area as the descriptor area.
descriptor-area-name must identify an SQL descriptor area.

DESCRIBE CURSOR

Chapter 8: Statements 417

Example

The GET_EMPLOYEE_INFO procedure returns two result sets for a given EMP_ID:

■ One for COVERAGE info

■ One for BENEFITS info

Note: For more information about how to define this procedure, see the examples in
CREATE PROCEDURE.

* Invocation of the procedure GET_EMPLOYEE_INFO.

exec sql

 call GET_EMPLOYEE_INFO(1003)

end-exec

* The dynamic cursor 'RECEIVED_CURSOR' is associated with the first result set.

* The received cursor is in the open state.

exec sql

 allocate 'RECEIVED_CURSOR' for procedure specific procedure

 GET_EMPLOYEE_INFO

end-exec

* The 'RECEIVED_CURSOR' cursor info is being described

exec sql

 describe cursor 'RECEIVED_CURSOR' structure

 using sql descriptor SQLDA-AREA

end-exec

* The COVERAGE info is being processed.

* The statement is executed in a loop until the SQLSTATE indicates NO MORE DATA..

exec sql

 fetch 'RECEIVED_CURSOR' into :BUFFER-COVER

 using descriptor SQLDA-AREA

end-exec

* The dynamic cursor 'RECEIVED_CURSOR' is associated with the second result set.

* The received cursor is in the open state.

DROP ACCESS MODULE

418 SQL Reference Guide

exec sql

 close 'RECEIVED_CURSOR'

end-exec

. .

* The 'RECEIVED_CURSOR' info is being described

exec sql

 describe cursor 'RECEIVED_CURSOR' structure

 using sql descriptor SQLDA-AREA

end-exec

. . .

* The BENEFITS info is being processed

* The statement is executed in a loop until the SQLSTATE indicates NO MORE DATA

exec sql

 fetch 'RECEIVED_CURSOR' into :BUFFER-BENEF

 using descriptor SQLDA-AREA

end-exec

* Close the cursor

exec sql

 close 'RECEIVED_CURSOR'

end-exec

More Information

■ For more information about the SQL descriptor area, see SQL Descriptor Area.

■ For more information about calling procedures with dynamic results sets, see CALL.

■ For more information about allocating a cursor for a procedure, see ALLOCATE
CURSOR.

■ For more information about closing a received cursor, see CLOSE.

DROP ACCESS MODULE

The DROP ACCESS MODULE access module management statement deletes an access
module and its definition from the dictionary. It is also a CA IDMS extension of the SQL
standard.

Authorization

To issue a DROP ACCESS MODULE statement, you must hold the DROP privilege on or
own the access module named in the statement.

DROP ACCESS MODULE

Chapter 8: Statements 419

Syntax

►►─── DROP ACCESS MODULE ───►

 ►─┬────────────────┬─ access-module-name ────────────────────────────────────►
 └─ schema-name. ─┘

 ►─┬─────────────────────────────┬──►
 └─ VERSION am-version-number ─┘

 ►─┬────────────┬───►◄
 └─ PRESERVE ─┘

Parameters

access-module-name

Specifies the name of the access module being dropped. Access-module-name must
identify an access module defined and stored in the dictionary.

schema-name

Identifies the schema associated with the specified version of the named access
module.

If you do not specify schema-name, it defaults to the current schema associated
with your SQL session.

VERSION am-version-number

Specifies the version number of the access module being dropped.

If VERSION is not specified, am-version-number defaults to 1.

PRESERVE

Directs CA IDMS to retain privileges held on the access module being dropped. If
you subsequently create a new access module with the same name as the access
module being dropped, the preserved privileges will apply to the new access
module.

If you do not specify PRESERVE in a DROP ACCESS MODULE statement, CA IDMS
deletes all privileges held on the access module if CA IDMS internal security is in
effect.

Example

Dropping an Access Module

The following DROP ACCESS MODULE statement deletes version 1 of the SALES001
access module from the dictionary but retains privileges held on the access module:

drop access module test.sales001

 preserve;

DROP CALC

420 SQL Reference Guide

More Information

■ For more information about access modules, see ALTER ACCESS MODULE. and
CREATE ACCESS MODULE (see page 320) or see the CA IDMS Database
Administration Guide

■ For more information about CA IDMS internal security, see the CA IDMS Security
Administration Guide.

DROP CALC

The DROP CALC data description statement deletes the definition of a CALC key from
the dictionary. It is also a CA IDMS extension of the SQL standard.

Authorization

To issue a DROP CALC statement, you must own or have the ALTER privilege on the table
on which the CALC key is defined.

Syntax

►►─── DROP CALC key FROM ─┬────────────────┬─ table-identifier ───────────────►◄
 └─ schema-name. ─┘

Parameters

FROM table-identifier

Specifies the name of the table associated with the CALC key being dropped.
Table-identifier must identify a base table on which a CALC key has been defined in
the dictionary. The named table cannot contain any data (that is, the table must be
empty).

schema-name

Identifies the schema associated with the named table.

If you do not specify schema-name, it defaults to:

■ The current schema associated with your SQL session, if the statement is
entered through the Command Facility or executed dynamically

■ The schema associated with the access module used at runtime, if the
statement is embedded in an application program

DROP CONSTRAINT

Chapter 8: Statements 421

Usage

CALC Keys on Tables in the SYSTEM Schema

You cannot delete the definition of a CALC key on a table in the SYSTEM schema.

CALC Keys in the Implementation of Referential Constraints

You cannot drop a CALC key that is used in the implementation of a referential
constraint if no existing index can be used in place of the CALC key.

Example

Dropping a CALC Key

The following DROP CALC statement deletes the definition of the CALC key associated
with the COVERAGE table from the dictionary:

drop calc from coverage;

More Information

■ For more information about defining CALC keys, see CREATE CALC.

■ For more information about unlinked referential constraints, see CREATE
CONSTRAINT.

DROP CONSTRAINT

The DROP CONSTRAINT data description statement deletes the definition of a
referential constraint from the dictionary. It is also a CA IDMS extension of the SQL
standard.

Authorization

To issue a DROP CONSTRAINT statement, you must own or have the ALTER privilege on
the referencing table in the constraint named in the statement.

Syntax

►►─── DROP CONSTRAINT constraint-name ──►

 ►─── FROM ──┬────────────────┬── table-identifier ───────────────────────────►◄
 └─ schema-name. ─┘

DROP CONSTRAINT

422 SQL Reference Guide

Parameters

constraint-name

Specifies the name of the referential constraint being dropped. Constraint-name
must identify a referential constraint defined in the dictionary.

table-identifier

Specifies the referencing table in the constraint to be dropped.

schema-name

Identifies the schema with which the table is associated.

If you do not specify a schema-name, the default value is:

■ The current schema associated with your SQL session, if the statement is
entered through the Command Facility or executed dynamically

■ The schema associated with the access module used at runtime, if the
statement is embedded in an application program

Usage

Referential Constraints Involving SYSTEM Tables

You cannot delete a constraint involving a table in the SYSTEM schema.

Implicitly Dropped Constraints

When you issue a DROP TABLE statement with the CASCADE parameter, CA IDMS
deletes the definitions of all referential constraints in which the table being dropped is
the referencing table or the referenced table.

Linked Constraints

When dropping a linked constraint, CA IDMS updates every row in the referenced and
referencing tables to remove the physical links between the two tables.

Example

Dropping a Referential Constraint

The following DROP CONSTRAINT statement deletes the definition of the
OFFICE_POOL_EMP constraint from the dictionary:

drop constraint office_pool_emp;

DROP FUNCTION

Chapter 8: Statements 423

More Information

■ For more information about defining referential constraints, see CREATE
CONSTRAINT.

■ For more information about implicitly dropping referential constraints, see DROP
TABLE.

DROP FUNCTION

The DROP FUNCTION data description statement deletes the definition of the
referenced function from the dictionary. For functions with language SQL, the statement
removes the SQL routine body from the dictionary and the associated entities: access
module (AM), relational command module (RCM), ADS premap process code, and dialog
load module.

Authorization

To issue a DROP FUNCTION statement, you must own or have the DROP privilege on the
function named in the statement.

Syntax

►►─── DROP FUNCTION ┬───────────────┬─function-identifier ────────────────────►
 └─ schema-name. ┘

►───────┬───────────────┬───►◄
 └── CASCADE ────┘

Parameters

function-identifier

Specifies the name of the function to be dropped. Function-identifier must identify
a function defined in the dictionary.

schema-name

Identifies the schema associated with the specified function.

If you do not specify a schema-name, the default value is:

■ The current schema associated with your SQL session, if the statement is
entered through the Command Facility or executed dynamically

■ The schema associated with the access module used at runtime, if the
statement is embedded in an application program

CASCADE

Directs CA IDMS to delete any view definition that contains a reference to the
function, either directly or nested within some other view reference.

DROP INDEX

424 SQL Reference Guide

Example

The following DROP FUNCTION statement removes the FIN.UDF_FUNBONUS function
from the SQL catalog:

DROP FUNCTION FIN.UDF_FUNBONUS CASCADE;

More Information

■ For more information about syntax for creating functions, see CREATE FUNCTION.

■ For more information about using functions, see Expansion of
User-defined-function.

■ For more information about coding the external routines which process function
invocations, see Defining and Using Functions.

DROP INDEX

The DROP INDEX data description statement deletes the definition of an index from the
dictionary. It is also a CA IDMS extension of the SQL standard.

Authorization

To issue a DROP INDEX statement, you must own or have the ALTER privilege on the
table on which the index is defined.

Syntax

►►─── DROP INDEX index-name ──►

 ►─── FROM ─┬────────────────┬─ table-identifier ─────────────────────────────►◄
 └─ schema-name. ─┘

DROP INDEX

Chapter 8: Statements 425

Parameters

index-name

Specifies the name of the index being dropped. Index-name must identify an index
defined in the dictionary.

FROM table-identifier

Identifies the table on which the named index is defined.

schema-name

Identifies the schema associated with the named table.

If you do not specify a schema-name, the default value is:

■ The current schema associated with your SQL session, if the statement is
entered through the Command Facility or executed dynamically

■ The schema associated with the access module used at runtime, if the
statement is embedded in an application program

Usage

Indexes on Tables in the SYSTEM Schema

You cannot delete the definition of an index on a table in the SYSTEM schema.

Indexes Used in the Implementation of Referential Constraints

You cannot drop an index that is used in the implementation of a referential constraint
if no other existing index or CALC key can be used in place of the index.

Example

Dropping an Index

The following DROP INDEX statement deletes the definition of the
BUDGET_DATE_INDEX index from the dictionary:

drop index budget_date_index

 from sales.monthly_budget;

More Information

■ For more information about defining indexes, see CREATE INDEX.

■ For more information about unlinked referential constraints, see CREATE
CONSTRAINT.

DROP KEY

426 SQL Reference Guide

DROP KEY

The DROP KEY statement deletes the definition of a procedure or table procedure key
from the dictionary. It is also a CA IDMS extension of the SQL standard.

Authorization

To issue a DROP KEY statement, you must own or hold the ALTER privilege on the
procedure or table procedure from which the key is being dropped.

Syntax

►►─── DROP KEY key-name ──►

 ►─── FROM ─┬────────────────┬───┬─ procedure-identifier ───────┬─────────────►◄
 └─ schema-name. ─┘ └─ table-procedure-identifier ─┘

Parameters

key-name

Specifies the name of the key to be dropped. The key-name must identify a key
defined in the dictionary.

FROM table-procedure-identifier

Specifies the table procedure from which the key is dropped.

procedure-identifier

Specifies the procedure from which the key drops.

schema-name

Identifies the schema associated with the named procedure or table
procedure. If you do not specify a schema-name, it defaults to:

■ The current schema associated with your SQL session, if the statement is
entered through the Command Facility or executed dynamically

■ The schema associated with the access module used at runtime, if the
statement is embedded in an application program

Example

Dropping a Key

The following DROP KEY statement deletes the definition of the ORG1 key from the
dictionary:

drop key org1 from emp.org;

Note: For more information about defining keys, see CREATE KEY (see page 357).

DROP PROCEDURE

Chapter 8: Statements 427

DROP PROCEDURE

The DROP PROCEDURE data description statement deletes the definition of the
referenced procedure from the dictionary. For procedures with language SQL, the
statement removes the SQL routine body from the dictionary and the associated
entities: access module(AM), relational command module (RCM), ADS premap process
code, and dialog load module.

Authorization

To issue a DROP PROCEDURE statement, you must own or have the DROP privilege on
the procedure named in the statement.

Syntax

►►─── DROP PROCEDURE ───────┬──────────────────┬─ procedure-identifier ───────►
 └── schema-name.───┘

 ►────┬───────────┬───►◄
 └─ CASCADE ─┘

Parameters

procedure-identifier

Specifies the name of the procedure to be dropped. Procedure-identifier must
identify a procedure defined in the dictionary.

schema-name

Identifies the schema associated with the specified procedure. If you do not specify
a schema-name, the default value is:

■ The current schema associated with your SQL session, if you specify the
statement through the Command Facility or execute it dynamically

■ The schema associated with the access module used at runtime, if the
statement is embedded in an application program

CASCADE

Directs CA IDMS to delete any view definition that contains a reference to the
procedure, either directly or nested within some other view reference.

Example

The following DROP PROCEDURE statement example removes the EMP.GET_BONUS
procedure from the SQL catalog.

 drop procedure emp.get_bonus cascade

DROP SCHEMA

428 SQL Reference Guide

More Information

■ For more information about syntax for creating procedures, see CREATE
PROCEDURE.

■ For more information about defining and using procedures, see Defining and Using
Procedures.

■ For more information about coding the external routines which process procedure
references, see Defining and Using Procedures.

DROP SCHEMA

The DROP SCHEMA data description statement deletes a schema definition from the
dictionary.

Authorization

To issue a DROP SCHEMA statement, you must have the DROP privilege on the schema
named in the statement.

Note: You need no additional privileges to issue a DROP SCHEMA statement with the
CASCADE parameter.

Syntax

►►─── DROP SCHEMA schema-name ──┬───────────┬─────────────────────────────────►◄
 └─ CASCADE ─┘

Parameters

schema-name

Specifies the name of the schema being dropped. Schema-name must identify a
schema defined in the dictionary.

CASCADE

Directs CA IDMS to perform a DROP TABLE CASCADE, DROP VIEW CASCADE, DROP
PROCEDURE CASCADE , DROP TABLE PROCEDURE CASCADE, or a DROP FUNCTION
CASCADE for each table, view, procedure, table procedure and function associated
with the named schema.

If you do not specify CASCADE in a DROP SCHEMA statement, the schema named in
the statement cannot have any associated tables, views, functions, procedures and
table procedures.

DROP SCHEMA

Chapter 8: Statements 429

Usage

SYSTEM Schema

You cannot drop the SYSTEM schema.

Effect of the CASCADE Parameter

When you specify CASCADE in a DROP SCHEMA statement, CA IDMS deletes the
following:

■ The definition of each table, view, function, procedure and table procedure
associated with the named schema

■ The data stored in each table associated with the schema

■ The definition of each referential constraint, index, and CALC key defined on the
tables associated with the named schema

■ The view definition of each view derived from one or more of the tables, views,
functions, procedures or table procedures associated with the named schema

■ For functions and procedures with language SQL, the statement removes the SQL
routine body from the dictionary and the associated CA ADS entities and program
structures: access module(AM), relational command module (RCM), ADS premap
process code and dialog load module

Linked Constraints with Non-empty Tables in Other Schemas

If any tables in the schema to be dropped participate in linked referential constraints
with non-empty tables in other schemas, CA IDMS also updates rows of those tables to
remove the physical links with the tables being deleted.

Example

Dropping an Empty Schema

The following DROP SCHEMA statement deletes the definition of the SALES schema
from the dictionary only if the schema has no associated tables, views, functions,
procedures or table procedures:

drop schema sales;

Note: For more information about defining schemas, see ALTER SCHEMA and CREATE
SCHEMA (see page 373).

DROP TABLE

430 SQL Reference Guide

DROP TABLE

The DROP TABLE data description statement deletes the definition of a base table from
the dictionary.

When deleting a table definition, CA IDMS also deletes:

■ The data contained in the table

■ The CALC key, if any, defined on the table

■ Any indexes defined on the table

■ Optionally, referential constraints in which the table participates and views derived
from the table

Authorization

To issue a DROP TABLE statement, you must own or have the DROP privilege on the
table named in the statement.

Note: You need no additional privileges to issue a DROP TABLE statement with the
CASCADE parameter.

Syntax

►►─── DROP TABLE ─┬────────────────┬─ table-identifier ───────────────────────►
 └─ schema-name. ─┘

 ►─┬───────────┬──►◄
 └─ CASCADE ─┘

DROP TABLE

Chapter 8: Statements 431

Parameters

table-identifier

Specifies the name of the table being dropped. Table-identifier must identify a base
table defined in the dictionary.

schema-name

Identifies the schema associated with the named table.

If you do not specify a schema-name, the default value is:

■ The current schema associated with your SQL session, if the statement is
entered through the Command Facility or executed dynamically

■ The schema associated with the access module used at runtime, if the
statement is embedded in an application program

CASCADE

Directs CA IDMS to delete the definitions of:

■ All referential constraints where the named table is the referencing table or the
referenced table

■ All views derived from the named table

If you specify CASCADE in a DROP TABLE statement for a table that participates in a
linked referential constraint, CA IDMS updates the rows of the other table to
remove the physical links with the table being dropped.

Usage

Tables in the SYSTEM Schema

You cannot delete the definition of a table in the SYSTEM schema.

Tables in Views or Referential Constraints

If you do not specify CASCADE in a DROP TABLE statement, the table named in the
statement cannot participate in the definition of any view or referential constraint.

Example

Dropping a Table that Contains Data

The following DROP TABLE statement deletes the definition of the OFFICE_POOL table
and any data associated with the table. If the table participates in any referential
constraint or view definitions, CA IDMS returns an error.

drop table office_pool;

Note: For more information about defining tables, see ALTER TABLE and CREATE TABLE
(see page 378).

DROP TABLE PROCEDURE

432 SQL Reference Guide

DROP TABLE PROCEDURE

The DROP TABLE PROCEDURE data description statement deletes the definition of the
referenced table procedure from the dictionary. It is also a CA IDMS extension of the
SQL standard.

Authorization

To issue a DROP TABLE PROCEDURE statement, you must own or have the DROP
privilege on the table procedure named in the statement.

Syntax

►►─── DROP TABLE PROCEDURE ─┬──────────────────┬─ table-procedure-identifier ─►
 └── schema-name. ──┘

 ►────┬───────────┬───►◄
 └─ CASCADE ─┘

Parameters

table-procedure-identifier

Specifies the name of the table procedure to be dropped. Table-procedure-identifier
must identify a table procedure defined in the dictionary.

schema-name

Identifies the schema associated with the specified table procedure. If you do not
specify a schema-name, the default value is:

■ The current schema associated with your SQL session, if the statement is
specified through the Command Facility or executed dynamically

■ The schema associated with the access module used at runtime, if the
statement is embedded in an application program

CASCADE

Directs CA IDMS to delete any view definition that contains a reference to the table
procedure, either directly or nested within some other view reference.

Example

The following DROP TABLE PROCEDURE statement removes the EMP.ORG table
procedure from the SQL catalog.

 drop table procedure emp.org cascade

DROP VIEW

Chapter 8: Statements 433

More Information

■ For more information about syntax for creating table procedures, see CREATE
TABLE PROCEDURE.

■ For more information about defining and using table procedures, see Defining and
Using Table Procedures.

■ For more information about coding the external routines which process procedure
references, see Defining and Using Table Procedures.

DROP VIEW

The DROP VIEW data description statement deletes the definition of a view from the
dictionary.

Authorization

To issue a DROP VIEW statement, you must own or have the DROP privilege on the view
named in the statement.

Note: You need no additional privileges to issue a DROP VIEW statement with the
CASCADE parameter.

Syntax

►►─── DROP VIEW ─┬────────────────┬─ view-identifier ─────────────────────────►
 └─ schema-name. ─┘

 ►─┬───────────┬──►◄
 └─ CASCADE ─┘

Parameters

view-identifier

Specifies the name of the view being dropped. View-identifier must identify a view
defined in the dictionary.

schema-name

Identifies the schema associated with the named view.

If you do not specify a schema-name, the default value is:

■ The current schema associated with your SQL session, if the statement is
entered through the Command Facility or executed dynamically

■ The schema associated with the access module used at runtime, if the
statement is embedded in an application program

CASCADE

Directs CA IDMS to delete the definitions of all views derived from the named view.

END DECLARE SECTION

434 SQL Reference Guide

Example

Dropping a View

The following DROP VIEW statement deletes the definitions of the EMP_VACATION view
and all views derived from the EMP_VACATION view:

drop view emp_vacation cascade;

Views that Participate in Other Views

If you do not specify CASCADE in a DROP VIEW statement, the view named in the
statement cannot participate in the definition of any other view.

Note: For more information about defining a view, see CREATE VIEW

END DECLARE SECTION

The END DECLARE SECTION statement is a precompiler directive that notifies the
precompiler the SQL declare section has ended. You can use this statement only in SQL
that is embedded in a program.

Authorization

None required.

Syntax

►►── END DECLARE SECTION ───►◄

Parameter

END DECLARE SECTION.

Notifies the precompiler that the SQL declare section has ended. An SQL declare
section contains the definition of one or more host variables.

EXECUTE

Chapter 8: Statements 435

Example

Beginning and Ending an SQL Declaration Section

In this example, BEGIN DECLARE SECTION begins an SQL declare section and END
DECLARE SECTION ends it. The SQL declare section contains the definition of five host
variables.

WORKING-STORAGE SECTION.

 .

 .

 .

 EXEC SQL BEGIN DECLARE SECTION END-EXEC

 01 HV-EMP-ID PIC S9(8) USAGE COMP.

 01 HV-EMP-LNAME PIC X(20).

 01 HV-SALARY-AMOUNT PIC S9(6)V(2) USAGE COMP-3.

 01 HV-PROMO-DATE PIC X(10).

 01 HV-PROMO-DATE-I PIC S9(4) USAGE COMP.

 EXEC SQL END DECLARE SECTION END-EXEC

More Information

■ For more information about beginning an SQL declare section, see BEGIN DECLARE
SECTION.

■ For more information about declaring host variables, see Host Variables or the CA
IDMS SQL Programming Guide.

EXECUTE

The EXECUTE statement executes a dynamically-compiled SQL statement other than
SELECT. You can use this statement only in SQL that is embedded in a program.

Authorization

None required.

Syntax

►►─ EXECUTE statement-name ───►

 ►─┬──┬───────────►◄
 │ ┌─────── , ─────────────┐ │
 └─ USING ─┬─▼┬─ host-variable ─────┬┴────────────────────────┬─┘
 │ ├─ local-variable ────┤ │
 │ └─ routine-parameter ─┘ │
 ├─ :dyn-buff sql DESCRIPTOR descriptor-area-name ──┤
 ├─ BULK :bulk-buffer bulk-options ─────────────────┤
 └─ BULK :dyn-buff dynamic-bulk-options1 ───────────┘

EXECUTE

436 SQL Reference Guide

Expansion of bulk-options

►►──┬──────────────────────────────┬──►
 └─ START :start-variable-name ─┘

 ►──┬─────────────────────────────────┬───────────────────────────────────────►◄
 └─ ROWS :row-count-variable-name ─┘

Expansion of dynamic-bulk-options1

►►──┬──────────────────────────────┬──►
 └─ START :start-variable-name ─┘

 ►── ROWS :row-count-variable-name ───►

 ►── sql DESCRIPTOR descriptor-area-name ─────────────────────────────────────►◄

Parameters

statement-name

Identifies the statement being executed.

For detailed information, see Expansion of Statement-name.

USING

Supplies values for the dynamic parameters embedded in the text of the statement.

host-variable

Identifies the host variables from which CA IDMS is to retrieve values for the
dynamic parameters. CA IDMS assigns the value of the first host variable to the
first dynamic parameter, the second host variable to the second dynamic
parameter, and so on.

You must specify the same number of host variables in the USING parameter as
the number of dynamic parameter markers in the statement text.

Note: In COBOL, host-variable can be an elementary data item or a non-bulk
structure. If a non-bulk structure is specified, each sub-element of the structure
is counted as a host variable.

Note: For detailed information, see Expansion of Host-variable (see page 79).

local-variable

routine-parameter

Identifies the local variable or routine parameter from which CA IDMS is to
retrieve values for the dynamic parameters. CA IDMS assigns the value of the
first local variable or routine parameter to the first dynamic parameter, the
second local variable or routine parameter to the second dynamic parameter,
and so on. You must specify the same number of local variables and routine
parameters in the USING parameter as the number of dynamic parameter
markers in the statement text.

EXECUTE

Chapter 8: Statements 437

:dyn-buff

Identifies the variable or bulk-buffer from which CA IDMS is to retrieve values
for the dynamic parameters.

Dyn-buff must identify a variable previously declared in the host-language
application program or SQL routine.

The size of dyn-buff must be sufficient to hold a complete set of dynamic
parameter values for a single execution of the statement. If specified as part of
the BULK parameter, dyn-buff must be sufficient to hold row-count-variable
sets of dynamic parameters. The format of the data in dyn-buff must conform
to the description in the SQL descriptor area specified by descriptor-area-name

BULK

Directs CA IDMS to execute the statement one or more times and to use a
contiguous storage area to retrieve input values for the dynamic parameters.
The specification of BULK is a CA IDMS extension of the SQL Standard.

Note: BULK may only be specified if the statement being executed is an INSERT
statement.

:bulk-buffer

Identifies a variable from which CA IDMS is to retrieve one or more sets of
input values. Bulk-buffer must identify a variable previously declared in the
host-language application program or SQL routine.

Bulk-buffer must be defined as a multiple-occurring structure having the same
number of sub-elements as there are dynamic parameters in the statement.

bulk-options

Optionally specify the location in bulk-buffer for the first row and the number
of rows to be inserted. Expanded syntax for bulk-options immediately follows
the statement syntax.

dynamic-bulk-options1

Provides specification for inserting one or more rows into a table.

Expanded syntax for dynamic-bulk-options1 appears immediately following
the expanded syntax for bulk-options. Descriptions of dynamic-bulk-options1
parameters appear above.

EXECUTE

438 SQL Reference Guide

Note: dyn-buff, bulk-buffer, start-variable-name, and row-count-variable-name are
variables that can be host variables or when the statement is used in an SQL routine
local variables or routine parameters. In this case, their names must not be preceded
with a colon.

Parameters for Expansion of bulk-options

START :start-variable-name

Identifies a variable containing the relative position within the bulk buffer from
which CA IDMS is to retrieve values for the first row to be inserted. Values in
subsequent entries in the bulk buffer are retrieved sequentially, each set
corresponding to a row to be inserted.

Start-variable-name must be a variable previously declared in the host-language
application program or SQL routine. The value in the variable must be an integer in
the natural range of subscripts for arrays in the language in which the application
program is written.

If you do not specify the START parameter, CA IDMS retrieves the values from the
first entry in the bulk buffer.

ROWS :row-count-variable-name

Identifies a variable that specifies the number of rows CA IDMS is to retrieve from
the bulk buffer.

Row-count-variable-name must be a variable previously declared in the
host-language application program or SQL routine. The value in the variable must
be in the range 1 through the number of rows that will fit in the bulk buffer.

If you do not specify the ROWS parameter, CA IDMS retrieves rows from the array
sequentially until reaching the end of the buffer.

Parameters for Expansion of dynamic-bulk-options1

An additional parameter is used with dynamic-bulk-options1.

SQL DESCRIPTOR

Specifies the SQL descriptor area that describes the format of the dynamic
parameter values contained in dyn-buff.

descriptor-area-name

Directs CA IDMS to use the named area as the descriptor area.
Descriptor-area-name must identify an SQL descriptor area.

EXECUTE IMMEDIATE

Chapter 8: Statements 439

Usage

Dynamically-compiled SELECT Statements

You cannot use the EXECUTE statement with a dynamically-compiled SELECT statement.
To retrieve data using a dynamically-compiled SELECT statement, you must define a
cursor and use the FETCH statement.

Use of the Descriptor Area

When describing the format of dynamic parameters with an SQL descriptor area, you
can use the INPUT option of the DESCRIBE statement to determine the format of the
parameters that CA IDMS has assumed based on the context in which they appear. You
can alter the contents of the descriptor area provided that the data types remain
compatible. However, all changes to the descriptor area must be made before the first
time the EXECUTE statement for the given dynamically-compiled statement is executed.
The contents of the descriptor area must remain unchanged for each subsequent
execution.

Examples

Executing a Dynamically-compiled Statement

The following EXECUTE statement executes the dynamically-compiled statement named
DYN_PROJ:

EXEC SQL

 EXECUTE DYN_PROJ

END EXEC

More Information

■ For more information about the dynamic compilation of SQL statements, see the CA
IDMS SQL Programming Guide.

■ For more information about the layout of an SQL descriptor area, see SQL
Descriptor Area.

EXECUTE IMMEDIATE

The EXECUTE IMMEDIATE statement dynamically compiles and executes an SQL
statement. You can use this statement only in SQL that is embedded in a program.

Authorization

To issue an EXECUTE IMMEDIATE statement, you must have the privileges required to
issue the statement being dynamically compiled and executed.

EXECUTE IMMEDIATE

440 SQL Reference Guide

Syntax

►►─── EXECUTE IMMEDIATE ─┬─ 'sql-statement' ──────────────┬───────────────────►◄
 └─ :sql-statement-variable-name ─┘

Parameters

'sql-statement'

Specifies an SQL statement that can be compiled and executed immediately.
Sql-statement must be enclosed in single quotation marks. Do not include the SQL
prefix or terminator within the statement text.

:sql-statement-variable-name

Identifies a host variable, local variable, or routine parameter containing the
statement to be compiled and executed immediately. Sql-statement-variable-name
must be a variable previously declared in the application program or SQL routine. It
must be defined as an elementary data item with no sub-elements. If
sql-statement-variable-name is a local variable or routine parameter, the colon
must not be coded.

Usage

Statements Eligible for Immediate Execution

The following SQL statements can be compiled and executed immediately:

■ All access module management, authorization, logical data description, session
management, and transaction management statements

■ DELETE

■ INSERT

■ UPDATE

Additionally, all CA IDMS utility and physical data description statements can be
compiled and executed immediately.

No Host Variables, Local Variables, or Routine Parameters in a Dynamically Compiled
Statement

An SQL statement that is to be compiled dynamically cannot include any host variables,
local variables, or routine parameters.

No Dynamic Parameters

An SQL statement that is compiled using the EXECUTE IMMEDIATE statement cannot
include any dynamic parameter markers.

Note: For more information about the dynamic compilation of SQL statements, see the
CA IDMS SQL Programming Guide.

EXPLAIN

Chapter 8: Statements 441

Example

Using a Variable in EXECUTE

The following EXECUTE IMMEDIATE statement directs CA IDMS to dynamically compile
and execute the statement contained in the variable DYN-INSERT:

EXEC SQL

 EXECUTE IMMEDIATE :DYN-INSERT

END-EXEC

EXPLAIN

The EXPLAIN utility statement describes the strategy used to access data in the
following statements:

■ DECLARE CURSOR

■ DELETE

■ SELECT

■ UPDATE

■ INSERT that contains a query specification in its VALUES clause

The description is stored as rows in a table which you can retrieve using a SELECT
statement.

The EXPLAIN statement is a CA IDMS extension of the SQL standard.

Authorization

To issue an EXPLAIN statement that specifies:

■ An access module, you must own or have the DISPLAY privilege on the access
module being explained

■ A statement, you must have the privileges required to execute the statement to be
explained

Additionally, if the table in which the access plan is to be stored is:

■ Already defined in the dictionary, you must own or have the INSERT privilege on the
table

■ Not already defined in the dictionary, you must:

– Own the schema associated with the table or have the CREATE and INSERT
privileges on the table

– Have the USE privilege on the area in which rows of the table is stored

EXPLAIN

442 SQL Reference Guide

Syntax

►►─── EXPLAIN ──►

 ►─┬─ access-module-specification ───────────────────────────────────────┬────►
 └─ STATEMENT 'sql-statement' ─┬─────────────────────────────────────┬─┘
 └─ STATEMENT NUMBER statement-number ─┘

 ►─┬──┬───────────────────►
 └─ INTO TABLE ─┬────────────────┬─── table-identifier ─┘
 └─ schema-name. ─┘

 ►─┬─────────────────────────────┬──►◄
 └─ IN segment-name.area-name ─┘

Expansion of access-module-specification

►►─── ACCESS MODULE access-module-name ───────────────────────────────────────►

 ►─┬─────────────────────────────┬──►
 └─ VERSION am-version-number ─┘

 ►─┬─────────────────────────┬──►◄
 │ ┌───── , ────┐ │
 └─ MODULE ─▼─ rcm-name ─┴─┘

EXPLAIN

Chapter 8: Statements 443

Parameters

access-module-specification

Identifies an access module to be explained. Expanded syntax for
access-module-specification s presented immediately following the EXPLAIN
syntax.

STATEMENT 'sql-statement'

Directs CA IDMS to return the access strategy for the specified SQL statement.
Sql-statement must be an explainable statement and must be enclosed in single
quotation marks.

STATEMENT NUMBER statement-number

Assigns a reference number to the access plan for the statement specified in the
STATEMENT parameter. The reference number is stored in the SECTION column in
each row of the access plan.

Statement-number must be an integer in the range 0 through 32,767. If not
specified, a value of 0 is returned.

INTO TABLE table-identifier

Specifies the table in which CA IDMS is to store the access plan. If you do not
include the INTO TABLE parameter in an EXPLAIN statement, table-identifier is
'ACCESS_PLAN'.

If table-identifier does not exist, CA IDMS automatically defines it in the dictionary
using the column definitions described in "Usage" following these parameter
descriptions. If table-identifier identifies an existing table, the table must be defined
with the appropriate columns for storing the access plan.

Important! Do not specify "EXPLAIN" as the schema-name or table-identifier where
you will store the access plan. This produces an error message. The syntax parser
interprets this as an attempt to perform a second EXPLAIN.

schema-name

Identifies the schema associated with the named table.

If you do not specify schema-name, it defaults to:

■ The current schema associated with your SQL session, if the statement is
entered through the Command Facility or executed dynamically

■ The schema associated with the access module used at runtime, if the
statement is embedded in an application program

EXPLAIN

444 SQL Reference Guide

IN segment-name.area-name

Identifies the area to be used for storing rows of the table named in the INTO TABLE
parameter.

IN parameter information is used only when the INTO TABLE parameter identifies a
table that does not exist.

If you do not specify the IN parameter, CA IDMS:

■ Uses the default area, if any, for the schema associated with the table named in
the INTO TABLE parameter

■ Returns an error if the schema does not have a default area

Parameters for Expansion of access-module-specification

ACCESS MODULE access-module-name

Directs CA IDMS to describe the access strategy for all the explainable statements in
the whole access module or in one or more specified RCMs in the access module.

Access-module-name must identify an access module stored in the DDLCATLOD
area of the dictionary. Access modules in this area are represented in the
SYSTEM.LOADHDR table.

Note: For more information about the SYSTEM.LOADHDR table, see
SYSTEM.LOADHDR.

VERSION am-version-number

Specifies the version of the access module being explained.

If am-version-number is not specified, the version is 1.

MODULE rcm-name

Specifies one or more RCMs to be explained. CA IDMS will describe the access
strategy for each explainable statement in each named RCM.

The SECTION value for the first explainable statement in the RCM is 0. The SECTION
value for each succeeding explainable statement in the RCM is incremented by 1.

Rcm-name must identify an RCM included in the access module named in the
ACCESS MODULE parameter. Multiple RCM names must be separated by commas.

If you do not specify the MODULE parameter with ACCESS MODULE, CA IDMS
explains all the RCMs in the named access module.

EXPLAIN

Chapter 8: Statements 445

Usage

Explainable Statements

The explainable statements are DECLARE CURSOR, DELETE, INSERT, SELECT, and
UPDATE.

Table ACCESS_PLAN

The columns of the ACCESS_PLAN table are:

Column Data type Description

DBNAME CHAR(8) Dictionary connection for the session in which
EXPLAIN is issued

ESTAMP TIMESTAMP Date and time EXPLAIN was issued

SCHEMA CHAR(18) Access module schema or, if explaining a
statement, current schema for the SQL session

MODULE CHAR(8) Access module name or, if explaining a
statement, IDMSEXPL

VERSION SMALLINT Access module version or, if explaining a
statement, 0

STAMP TIMESTAMP Date and time access module was created, or, if
explaining a statement, the same value as
ESTAMP

PROGRAM CHAR(8) Program (RCM) name or, if explaining a
statement, IDMSEXPL

PVERSION SMALLINT Program (RCM) version or, if explaining a
statement, 0 (if explaining an access module, a
version number of 0 indicates that no RCM
version was specified the RCM when included in
the access module)

PDICT CHAR(8) Program (RCM) dictionary or, if explaining a
statement, blanks

PSTAMP CHAR(20) Date and time the program (RCM) was created
or, if explaining a statement, blanks

SECTION SMALLINT Section number assigned to the SQLCSID field
during program precompilation, or
statement-number specified in the EXPLAIN
statement

EXPLAIN

446 SQL Reference Guide

Column Data type Description

COMMAND SMALLINT Internal command code indicating the type of
statement being explained:

 8—DECLARE CURSOR

 9—DELETE (searched)

10—DELETE (positioned)

17—INSERT

25—SELECT

29—UPDATE (searched)

30—UPDATE (positioned)

QBLOCK SMALLINT Query block number. Each query that the
statement contains is assigned a block. Blocks
are numbered beginning with 1.

STEP SMALLINT Step number. This number denotes the
sequence of the processing step within the query
block.

STYPE SMALLINT Step type. This denotes the type of processing
for the step:

0—Null

1—Table access

2—Nested loop join

3—Merge join

4—Sort

5—Merge group

6—OR list

PBLOCK SMALLINT Parent block number. Parent block numbers
indicate nesting of multiple query blocks in a
section.

PSTEP SMALLINT Parent step number. Parent step numbers
correlate rows of query blocks:

■ If a table scan row is owned by a sort or join
row, PSTEP is the step number of the
owning row.

■ PSTEP of the top row of each main query
block is 0.

■ PSTEP of the top row of each subquery is the
query block number of the main query block
to which it is subordinate.

EXPLAIN

Chapter 8: Statements 447

Column Data type Description

TSCHEMA CHAR(18) Schema-name qualifier of the accessed table or
procedure.

TABLE CHAR(18) Name of the accessed table or procedure.

TSTAMP TIMESTAMP Date and time the accessed table or procedure
was created or last altered, or the date and time
the EXPLAIN was issued in case no table or
procedure was accessed.

ACMODE CHAR(1) Mode of access to the database record
underlying the table, when STYPE is 1:

'A'—Area

'C'—CALC

'I'—Index

'M'—Set member

'N'—Insert

'O'—Set owner

'P'—Table procedure

'S'—Sequential

'T'—(Temporary table)

ACNAME CHAR(18) Set or index name.

LFS CHAR(1) Leaf scan indicator, when ACMODE is I. This
indicates whether data is retrieved by sequential
access to index leaf pages.

'N'—No

'Y'—Yes

SORTC CHAR(1) Composite sort type. A nonblank value in this
field indicates an actual sort is required (data
cannot be accessed in sort order).

'D'—Distinct

'G'—Group

'M'—Merge join

'O'—Order by

SORTN CHAR(1) Inner sort type. This is an actual sort performed
for the inner loop of a merge join.

'M'—Merge join

SUBQC CHAR(1) Subquery correlation.

'N'—Not correlated

'Y'—Correlated

EXPLAIN

448 SQL Reference Guide

Step types

Values in the STYPE column describe the type of processing:

Step type Meaning

1 (Table access) Access to a single table

2 (Nested loop join) Join using linked constraint

3 (Merge join) Join by scanning both tables and sorting the entire
result

4 (Sort) Sort required by an ORDER BY parameter

5 (Merge group) Sorting required by an aggregate function on distinct
column values with the grouped results

6 (OR list) Sorting required by one or more OR operators in a
WHERE clause

Alternatives to the Default ACCESS_PLAN Table

You can use SQL procedures to tailor the way you retrieve and present access strategy
information. You can also:

■ Create a table with the same column definitions (but, optionally, different column
names) as in table ACCESS_PLAN and specify this table when you issue the EXPLAIN
statement

■ Use the ALTER TABLE statement to add columns to table ACCESS_PLAN, or include
additional columns at the end of the column list when you create a table equivalent
to ACCESS_PLAN

■ Create one or more views of table ACCESS_PLAN

Managing the Contents of an ACCESS_PLAN Table

Each time an EXPLAIN statement is executed; it inserts rows into an ACCESS_PLAN table.
Periodically, contents of the table should be deleted using the DELETE statement.

Enhancing the Presentation of Access Strategy Information

Enhancing the Presentation of Access Strategy Information contains an SQL script with
the definitions and data for a view that returns the access strategy information in an
easy-to-read and understandable format.

FETCH

Chapter 8: Statements 449

Examples

Explaining RCMs in an Access Module

The following EXPLAIN statement returns the access strategy for each explainable
statement in the EMPDSP01, EMPDSP02, and EMPDSP03 RCMs in the EMPAM001
access module. CA IDMS stores the access strategy in a table named
EMPAM001_ACCESS.

explain access module empam001

 module empdsp01, empdsp02, empdsp03

 into table empam001_access;

Explaining a Specified Statement

The following EXPLAIN statement returns an access strategy for the specified SELECT
statement. The access plan is identified by the reference number 4. By default, CA IDMS
stores the access strategy in the ACCESS_PLAN table.

explain statement 'select e1.emp_id

 from employee e1, position p1

 where e1.emp_id = p1.emp_id

 and p1.salary_amount >

 (select p2.salary_amount

 from employee e2, position p2

 where e1.emp_id = e2.emp_id

 and e2.manager_id = p2.emp_id)'

 statement number 4;

FETCH

The FETCH data manipulation statement retrieves values from the result table
associated with a cursor. You can use this statement only in SQL that is embedded in a
program.

Authorization

None required.

Syntax

►►─── FETCH cursor-name ──►

 ┌─────── , ────────────────┐
 ►─┬─ INTO ─┬─▼┬─ host-variable ────────┬┴────────────────────────┬─┬─────────►◄
 │ │ ├─ local-variable ───────┤ │ │
 │ │ └─ routine-parameter ────┘ │ │
 │ └─ :dyn-buffer USING DESCRIPTOR descriptor-area-name ─┘ │
 └─ BULK ─┬─ :bulk-buffer bulk-options ───────────────┬───────────┘
 └─ :dyn-buffer dynamic-bulk-options2 ───────┘

FETCH

450 SQL Reference Guide

Expansion of bulk-options

►►──┬──────────────────────────────┬──►
 └─ START :start-variable-name ─┘

 ►──┬─────────────────────────────────┬───────────────────────────────────────►◄
 └─ ROWS :row-count-variable-name ─┘

Expansion of dynamic-bulk-options2

►►──┬──────────────────────────────┬──►
 └─ START :start-variable-name ─┘

 ►── ROWS :row-count-variable-name ───►

 ►── using sql DESCRIPTOR descriptor-area-name ───────────────────────────────►◄

FETCH

Chapter 8: Statements 451

Parameters

cursor-name

Specifies the cursor to be used for retrieving values. Cursor-name must identify an
open cursor previously defined by a DECLARE CURSOR statement within the
application program or by an ALLOCATE CURSOR statement executed within the
same SQL transaction.

INTO

Directs CA IDMS to retrieve a single row from the result table associated with the
named cursor and to return the column values into the specified locations.

Note: An INTO clause is required for SQL that is imbedded in host programs.

host-variable

Identifies the host variables to which CA IDMS is to assign values retrieved from a
result table defined by a query expression. CA IDMS assigns the value in the first
result column to the first host variable, the value in the second result column to the
second host variable, and so on.

Host-variable must be a host variable declared previously in the host-language
application program.

Note: In COBOL, host-variable can be a non-bulk structure. For more information,
see the CA IDMS SQL Programming Guide.

You must specify the same number of host variables in the INTO parameter as the
number of columns in the result table. Multiple host variables must be separated by
commas. For expanded host-variable syntax, see Host Variables.

local-variable

routine-parameter

Identifies the local variable or routine parameter which CA IDMS is to assign values
retrieved from a result table defined by a query expression. CA IDMS assigns the
value in the first result column to the first local variable or routine parameter, the
value in the second result column to the second local variable or routine parameter,
and so on. You must specify the same number of local variables and routine
parameters in the INTO parameter as the number of columns in the result table.

FETCH

452 SQL Reference Guide

:dyn-buffer

Identifies a variable or a bulk buffer into which CA IDMS is to return all values
retrieved from one or more rows of the result table associated with the named
cursor.

Dyn-buffer must identify a variable previously declared in the host language
application program or SQL routine.

The size of dyn-buffer must be sufficient to hold one row of the result table if
specified as part of the INTO parameter or row-count-variable rows if specified as
part of the BULK parameter. The format of the data returned into dyn-buffer is
determined by the column descriptions in the SQL descriptor area specified in the
USING DESCRIPTOR parameter.

USING DESCRIPTOR

Specifies the SQL descriptor area that describes the format in which the columns of
the result table are to be returned to the host-language application program or SQL
routine.

The specification of a descriptor area is a CA IDMS extension of the SQL standard.

descriptor-area-name

Directs CA IDMS to use the named area as the descriptor area.
Descriptor-area-name must identify an SQL descriptor area.

For the layout of an SQL descriptor area, see SQL Descriptor Area.

BULK

Directs CA IDMS to retrieve one or more rows from the result table associated with
the cursor and to return the column values into a contiguous storage area. The
specification of BULK is a CA IDMS extension of the SQL standard.

:bulk-buffer

Identifies a variable to which CA IDMS is to assign values retrieved from one or
more rows of the result table associated with the named cursor. Bulk-buffer must
identify a variable previously declared in the host-language application program or
SQL routine.

Bulk-buffer must be defined as a multiply-occurring structure having the same
number of sub-elements in one occurrence as the number of columns in the result
table.

bulk-options

Optionally specify the location in bulk-buffer for the first row fetched and/or the
number of rows to be fetched from the result table associated with the cursor.
Expanded syntax for bulk-options immediately follows the statement syntax.

FETCH

Chapter 8: Statements 453

dynamic-bulk-options2

Provides specifications for dynamically retrieving one or more rows from the result
table associated with the named cursor.

Expanded syntax for dynamic-bulk-options2 appears immediately following the
expanded syntax for bulk-options. Descriptions of dynamic-bulk-options2
parameters appear above.

Note: Dyn-buff, bulk-buffer, start-variable-name, and row-count-variable-name are
variables that can be host variables or when the statement is used in an SQL routine,
local variables or routine parameters. In this case, their names must not be preceded
with a colon.

Parameters for Expansion of bulk-options

START :start-variable-name

Identifies a variable containing the relative position within the bulk buffer to which
CA IDMS is to assign the values in the first row retrieved from the result table.
Values in subsequent rows of the result table are assigned sequentially to
subsequent positions in the bulk buffer.

Start-variable-name must be a variable previously declared in the host-language
application program. The value in the variable must be an integer in the range 1
through the number of rows that fit in the bulk buffer.

For languages whose subscript values are relative to 0, the value for
start-variable-name must be in the range 0 through one less than the number of
entries which fit in the bulk buffer.

If you do not specify the START parameter, CA IDMS assigns the values in the first
row of the result table to the first row of the array.

ROWS :row-count-variable-name

Identifies a variable that specifies the maximum number of rows in the result table
CA IDMS is to assign to the bulk buffer.

Row-count-variable-name must be a variable previously declared in the
host-language application program. The value in the variable must be an integer in
the range 1 through the number of rows that fit in the bulk buffer.

The ROWS parameter must be specified if a USING DESCRIPTOR clause is specified
in a BULK parameter.

If you do not specify the ROWS parameter, CA IDMS assigns the rows in the result
table to the buffer sequentially until no more rows exist in the result table or the
buffer has been filled.

FETCH

454 SQL Reference Guide

Parameters for Expansion of dynamic-bulk-options2

The following additional parameter is used with bulk-options to create
dynamic-bulk-options2:

descriptor-area-name

Directs CA IDMS to use the named area as the descriptor area.
Descriptor-area-name must identify an SQL descriptor area.

FETCH

Chapter 8: Statements 455

Usage

Compatible Data Types

The data types of the values retrieved by the FETCH statement and the data types of the
variables named in the INTO parameter must be compatible for assignment. If the
values are assigned to a buffer defined as an array, the data types of the array elements
must be compatible with the data types of the values.

FETCH Execution

When executing a FETCH statement, CA IDMS:

1. Positions a cursor on the next row following the current row

2. Retrieves one or more rows of values from the result table beginning with the new
current row

3. Assigns the retrieved values to the specified variables

4. Leaves the cursor positioned on the last row retrieved

No More Rows

CA IDMS returns an SQLCODE value of 100 when any of the following is true:

■ The result table associated with the cursor named in the FETCH statement is empty

■ The result table associated with the cursor named in the FETCH statement is not
empty, and the cursor is positioned after the last row before the statement is
executed

■ A bulk fetch operation retrieves fewer rows than are requested in the FETCH
statement

In each case, CA IDMS leaves the cursor positioned after the last row.

Use of the Descriptor Area

When you use dynamic SQL to return data to a host-language application program in a
form different from that in which it is stored in the database, you can modify the data
characteristics in the SQL descriptor area named in the FETCH statement. You must
make any changes to the descriptor area before the first fetch operation. You should not
change the contents of the descriptor area after the first fetch operation and before the
closing of the cursor.

Static and Dynamic Cursors

The format of the output of a static cursor is known at compile time. The format of the
output of a dynamic cursor is often not known at compile time. Typically, you specify
dyn-buffer when the cursor is dynamic, such as when the SELECT statement associated
with the cursor is not known at compile time.

GET DIAGNOSTICS

456 SQL Reference Guide

Examples

Fetching Multiple Rows

The following FETCH statement retrieves values from a result table defined by
PROJ_CURSOR. Descriptions of the data in the output buffer are in a descriptor area
named BUFF-1-SQLDA. The retrieved values are assigned to the CURSOR-BUFF-1 buffer,
starting at the position in the buffer indicated by the value in BUFF-1-START. The value
in BUFF-1-ROWS determines the number of rows retrieved.

EXEC SQL

 FETCH PROJ_CURSOR

 BULK :CURSOR-BUFF-1

 START :BUFF-1-START

 ROWS :BUFF-1-ROWS

 USING DESCRIPTOR BUFF-1-SQLDA

END-EXEC

Fetching a Single Row

The following FETCH statement retrieves values from one row of the BONUS_CURSOR
cursor. The values are assigned to the host variables EMP-ID and BONUS-AMT which
have an associated indicator variable.

EXEC SQL

 FETCH BONUS_CURSOR

 INTO :EMP-ID, :BONUS-AMT :BONUS-IND

END-EXEC

More Information

■ For more information about defining and manipulating cursors, see CLOSE,
DECLARE CURSOR, and OPEN.

■ For more information about host variables, local variables or routine parameters,
see Host Variables, Local Variables (see page 81) or Routine Parameters.

■ For more information about compatible data types for assignment operations, see
Comparison, Assignment, Arithmetic, and Concatenation Operations.

■ For more information about the SQL descriptor area, see the CA IDMS Navigational
DML Programming Guide.

GET DIAGNOSTICS

The GET DIAGNOSTICS statement extracts information on exception or completion
conditions of the last executed SQL statement from the diagnostics area and returns it
to the issuer. Use this statement in SQL that is embedded in a program.

GET DIAGNOSTICS

Chapter 8: Statements 457

Syntax

►─ GET DIAGNOSTICS ─┬─ statement-info ────────────────────────────┬───────────►◄
 │─ CONDITION ─┬─ condition-nr condition-info ─┘
 └─ EXCEPTION ─┘

Expansion of statement-info

 ┌────────────────────────────────── , ───────────────────────────────────┐
►─ ▼ ─┬─ routine-parameter ───┬──── = ────┬─ COMMAND_FUNCTION ────────────┬─┴─►◄
 ├─ host-variable ───────┤ ├─ COMMAND_FUNCTION_CODE ───────┤
 └─ local-variable ──────┘ ├─ DYNAMIC_FUNCTION ────────────┤
 ├─ DYNAMIC_FUNCTION_CODE ───────┤
 ├─ IDMS_RETURNED_RESULT_SETS ───┤
 ├─ MORE ────────────────────────┤
 ├─ NUMBER ──────────────────────┤
 └─ ROW_COUNT ───────────────────┘

Expansion of condition-info

 ┌────────────────────────────────── , ───────────────────────────────────┐
►─ ▼ ─┬─ routine-parameter ───┬──── = ────┬─ IDMS_MESSAGE_COMMENTS ───────┬─┴─►◄
 ├─ host-variable ───────┤ ├─ IDMS-MESSAGE_DEFINITION ─────┤
 └─ local-variable ──────┘ ├─ IDMS_MESSAGE_ID ─────────────┤
 ├─ IDMS_MODULE_NUMBER ──────────┤
 ├─ IDMS_REASON_CODE ────────────┤
 ├─ IDMS_SQLCODE ────────────────┤
 ├─ IDMS_TASK_ID ────────────────┤
 ├─ MESSAGE_LENGTH ──────────────┤
 ├─ MESSAGE_TEXT ────────────────┤
 └─ RETURNED_SQLSTATE ───────────┘

GET DIAGNOSTICS

458 SQL Reference Guide

Parameters

A routine-parameter, host-variable, or local-variable must be specified for each
statement-info or condition-info item.

statement-info

Identifies the type of statement information to be extracted and returned.
Statement-info names that begin with 'IDMS_' are extensions to the SQL standard.

CONDITION

Requests diagnostic information for a condition.

condition-nr

Specifies the number of the completion or exception condition for which
diagnostics information is being requested. An exception is raised if condition-nr
does not refer to a valid condition number.

condition-info

Identifies the type of condition-related information to be extracted and returned.
Condition-info names that begin with 'IDMS_' are extensions to the SQL standard.

EXCEPTION

Specifies a synonym for CONDITION. While it is part of the current SQL standard, its
use is discouraged because it will not be in future SQL standards.

Parameters for Expansion of statement-info

routine-parameter

Identifies an SQL routine parameter that is to receive the value of the specified
diagnostics item. Routine-parameter must be a parameter of the current SQL
routine and must be compatible for assignment with the specified diagnostic item.

See Expansion of Routine-parameter for information about expanded syntax.

host-variable

Identifies a host variable that is to receive the value of the specified diagnostics
item. Host-variable must be a host variable previously declared in the application
program and must be compatible for assignment with the specified diagnostic item.

See Expansion of Host-variable for information about expanded syntax.

GET DIAGNOSTICS

Chapter 8: Statements 459

local-variable

Identifies a local variable of an SQL routine that is to receive the value of the
specified diagnostics item. Local-variable must be a local variable declared in the
current SQL routine and must be compatible for assignment with the specified
diagnostic item.

See Expansion of Local-variable for information about expanded syntax.

COMMAND_FUNCTION

Returns a value with data type varchar (64) indicating the type of SQL command
that was last executed. The values that may be returned are listed under the
Statement Type column in Table Procedure Requests.

COMMAND_FUNCTION_CODE

Returns a value with data type integer indicating the type of SQL command that
was last executed. The values that may be returned are listed under the Command
Number column in Table Procedure Requests.

DYNAMIC_FUNCTION

Returns a value with data type varchar (64) indicating the type of SQL command
that was prepared or dynamically executed by the last command. The values that
may be returned are listed under the Statement Type column in Table Procedure
Requests.

DYNAMIC_FUNCTION_CODE

Returns a value with data type integer indicating the type of SQL command that
was prepared or dynamically executed by the last command. The values that may
be returned are listed under the Command Number column in Table Procedure
Requests.

IDMS_RETURNED_RESULT_SETS

Returns a value with data type integer indicating the number of result sets returned
by a procedure invoked by the last command. This value is only valid if the
diagnosed statement is a call or select of an SQL invoked procedure.

MORE

Returns a value with data type char(1). A value of 'Y' indicates that the execution of
the previous SQL statement caused more conditions than have been set in the
diagnostics area. A value of 'N' means that the diagnostics area contains
information on all the completion and exception conditions.

NUMBER

Returns a value with data type integer indicating the number of the exceptions or
completion conditions set by the execution of the previous SQL statement for which
information is available in the diagnostics area.

GET DIAGNOSTICS

460 SQL Reference Guide

ROW_COUNT

Returns a value with data type DEC(31). The value depends on the type of the
previously executed statement:

■ INSERT - Number of rows inserted

■ DELETE - Number of rows deleted

■ UPDATE - Number of rows updated

■ BULK FETCH - Number of rows fetched

■ FETCH - 1 or 0

Parameters for Expansion of condition-info

IDMS_MESSAGE_COMMENTS

Returns a value with data type varchar(4000) containing the comments in the
message dictionary for the message associated with the condition.

IDMS_MESSAGE_DEFINITION

Returns a value with data type varchar(4000) containing the definition in the
message dictionary of the message associated with the condition.

IDMS_MESSAGE_ID

Returns a value with data type char(8) containing the message ID in the message
dictionary of the message associated with the condition.

IDMS_MODULE_NUMBER

Returns a value with data type integer containing the number of the module that
detected the condition.

IDMS_REASON_CODE

Returns a value with data type integer containing the reason code of the condition.

IDMS_SQLCODE

Returns a value with data type integer containing the SQLCODE value associated
with the condition.

IDMS_TASK_ID

Returns a value with data type integer containing the IDMS task ID of the task that
encountered the condition.

MESSAGE_LENGTH

Returns a value with data type integer indicating the length of the message
associated with the specified condition.

GET DIAGNOSTICS

Chapter 8: Statements 461

MESSAGE_TEXT

Returns a value with data type varchar(256) containing the message text associated
with the specified condition.

RETURNED_SQLSTATE

Returns a value with data type char(5) indicating the SQLSTATE associated with the
specified condition.

GET DIAGNOSTICS

462 SQL Reference Guide

Example

The procedure TGETDIAG1 executes a SELECT statement that causes a number of string
truncations. The first GET DIAGNOSTICS returns the number of conditions that the
SELECT statement raised. A WHILE LOOP containing the second GET DIAGNOSTICS
concatenates the message texts of all the raised conditions to the RESULT parameter of
the procedure.

set options command delimiter '++';

create procedure SQLROUT.TGETDIAG1

 (TITLE varchar(10) with default

 , P_NAME char(18)

 , P_NUMBER integer

 , RESULT varchar(512)

)

 EXTERNAL NAME TGETDIAG LANGUAGE SQL

begin not atomic

 declare L_NUMBER integer default 1;

 declare L_MESSAGE varchar(256) default ' ';

 select NAME into P_NAME from system.schema

 where cast(NAME as char(12)) = P_NAME;

 /* retrieve the number of conditions raised */

 get diagnostics P_NUMBER = NUMBER;

 while (L_NUMBER < = P_NUMBER)

 do

 /* retrieve the message text of the raised condition */

 get diagnostics condition L_NUMBER

 L_MESSAGE = MESSAGE_TEXT

 set RESULT = RESULT || ' ' || L_MESSAGE;

 set L_NUMBER = L_NUMBER + 1;

 end while;

end

++

commit++

set options command delimiter default++

call SQLROUT.TGETDIAG1('TGETDIAG1', 'SYSTEM');

*+

*+ TITLE P_NAME P_NUMBER

*+ ----- ------ --------

*+ TGETDIAG1 SYSTEM 4

*+

*+ RESULT

*+ ------

*+ DB001043 T171 C1M322: String truncation DB001043 T171 C1M322:

*+ String truncation DB001043 T171 C1M322: String truncation

*+ DB001043 T171 C1M322: String truncation

GET STATISTICS

Chapter 8: Statements 463

GET STATISTICS

The GET STATISTICS statement returns statistical information for the current
transaction. It is a CA IDMS extension to the SQL standard. Use this statement in SQL
that is embedded in a program, in the SQL command facility, and in the command
console of CA IDMS Visual DBA.

Syntax

►── GET STATISTICS ── transaction-info ───────────────────────────────────────►◄

Expansion of transaction-info

 ┌───────────────────────── , ──────────────────────────────────────┐
►─ ▼ ─┬───────────────────────────────┬┬─ SQL_COMMANDS ──────────────┬┴───────►◄
 ├─ routine-parameter ─────┬─ = ─┘├─ ROWS_FETCHED ──────────────┤
 ├─ host-variable ─────────┤ ├─ ROWS_INSERTED ─────────────┤
 └─ local-variable ────────┘ ├─ ROWS_UPDATED ──────────────┤
 ├─ ROWS_DELETED ──────────────┤
 ├─ SORT ──────────────────────┤
 ├─ ROWS_SORTED ───────────────┤
 ├─ MIN_ROWS_SORTED ───────────┤
 ├─ MAX_ROWS_SORTED ───────────┤
 ├─ AM_RECOMPILES ─────────────┤
 ├─ PAGES_READ ────────────────┤
 ├─ PAGES_WRITTEN ─────────────┤
 ├─ PAGES_REQUESTED ───────────┤
 ├─ CALC_TARGET ───────────────┤
 ├─ CALC_OVERFLOW ─────────────┤
 ├─ VIA_TARGET ────────────────┤
 ├─ VIA_OVERFLOW ──────────────┤
 ├─ RECORDS_REQUESTED ─────────┤
 ├─ RECORDS_CURRENT ───────────┤
 ├─ CALLS_DBMS ────────────────┤
 ├─ FRAGMENTS_STORED ──────────┤
 ├─ RECORDS_RELOCATED ─────────┤
 ├─ TOTAL_LOCKS ───────────────┤
 ├─ SHARE_LOCKS_HELD ──────────┤
 ├─ NON_SHARE_LOCKS_HELD ──────┤
 ├─ TOTAL_LOCKS_FREED ─────────┤
 ├─ SR8_SPLITS ────────────────┤
 ├─ SR8_SPAWNS ────────────────┤
 ├─ SR8_STORED ────────────────┤
 ├─ SR8_ERASED ────────────────┤
 ├─ SR7_STORED ────────────────┤
 ├─ SR7_ERASED ────────────────┤
 ├─ B_TREE_SEARCH ─────────────┤
 ├─ B_TREE_LEVELS_SEARCH ──────┤
 ├─ ORPHANS_ADOPTED ───────────┤
 ├─ LEVELS_SEARCH_BEST_CASE ───┤
 ├─ LEVELS_SEARCH_WORST_CAS ───┤
 ├─ RECORDS_UPDATED ───────────┤
 ├─ SHARE_LOCKS_ACQ_CALL ──────┤
 ├─ SHARE_LOCKS_FREED_CALL ────┤
 ├─ NON_SHARE_LOCKS_ACQ_CALL ──┤
 ├─ NON_SHARE_LOCKS_FREED_CALL ┤
 └─ * ┘

GET STATISTICS

464 SQL Reference Guide

Parameters

routine-parameter

Identifies an SQL routine parameter that is to receive the value of the specified
statistics item. Routine-parameter must be a parameter of the current SQL routine
and must be compatible for assignment with the specified statistics item.

See Expansion of Routine-parameter for information about expanded syntax.

host-variable

Identifies a host variable that is to receive the value of the specified statistics item.
Host-variable must be a host variable previously declared in the application
program and must be compatible for assignment with the specified statistics item.

For more information about expanded syntax, see Expansion of Host-variable.

local-variable

Identifies a local variable of an SQL routine that is to receive the value of the
specified statistics item. Local-variable must be a local variable declared in the
SQL-invoked routine and must be compatible for assignment with the specified
statistics item.

For more information about expanded syntax, see Expansion of Local-variable.

Note: A routine-parameter, host-variable or local-variable must be specified for each
transaction-info when the statement is embedded in a program. Otherwise, these must
not be specified.

transaction-info

Identifies the type of transaction information that is to be returned. Each item has
an integer data type and represents statistical information for the current
transaction.

Note: For more information about these items, see the DCMT DISPLAY STATISTICS
SYSTEM and DCMT DISPLAY TRANSACTION commands in the CA IDMS System Tasks
and Operator Commands Guide.

*

Requests that all transaction-info items are to be retrieved. This is not allowed in
combination with the specification of a routine-parameter, host-variable, or
local-variable and therefore cannot be used in a program.

GET STATISTICS

Chapter 8: Statements 465

Example

The SQL procedure TGETSTA1 counts the number of rows of one of four tables:

■ SYSTEM.TABLE

■ SYSTEM.COLUMN

■ SYSTEM.SCHEMA

■ DEMOEMPL.EMPLOYEE

The actual table is selected through the value of the TITLE parameter. Besides returning
the count of rows, the procedure also returns the values of a number of statistical
information items for the transaction:

■ SQL_COMMANDS

■ PAGES_REQUESTED

■ PAGES_READ

■ CALLS_DBMS

■ TOTAL_LOCKS

set options command delimiter '++';

drop procedure SQLROUT.TGETSTA1++

create procedure SQLROUT.TGETSTA1

 (TITLE char(8) with default

 , P_COUNT integer

 , P_SQL_COMMANDS integer

 , P_PAGES_REQUESTED integer

 , P_PAGES_READ integer

 , P_CALLS_DBMS integer

 , P_TOTAL_LOCKS integer

)

 EXTERNAL NAME TGETSTA1 LANGUAGE SQL

Lab1: begin not atomic

 case TITLE

 when 'TABLE'

 then select count(*) into P_COUNT

 from SYSTEM.TABLE;

 when 'COLUMN'

 then select count(*) into P_COUNT

 from SYSTEM.COLUMN;

 when 'SCHEMA'

 then select count(*) into P_COUNT

 from SYSTEM.SCHEMA;

 when 'EMPLOYEE'

 then select count(*) into P_COUNT

 from DEMOEMPL.EMPLOYEE;

 end case;

GET STATISTICS

466 SQL Reference Guide

 get statistics

 P_SQL_COMMANDS = sql_commands

 , P_PAGES_REQUESTED = pages_requested

 , P_PAGES_READ = pages_read

 , P_CALLS_DBMS = calls_dbms

 , P_TOTAL_LOCKS = total_locks;

end

++

set options command delimiter default ++

call sqlrout.TGETSTA1('TABLE');

*+

*+ TITLE P_COUNT P_SQL_COMMANDS P_PAGES_REQUESTED P_PAGES_READ

*+ ----- ------- -------------- ----------------- ------------

*+ TABLE 808 2 836 9

*+

*+ P_CALLS_DBMS P_TOTAL_LOCKS

*+ ------------ -------------

*+ 813 1673

call sqlrout.TGETSTA1('COLUMN');

*+

*+ TITLE P_COUNT P_SQL_COMMANDS P_PAGES_REQUESTED P_PAGES_READ

*+ ----- ------- -------------- ----------------- ------------

*+ COLUMN 6450 3 8953 1068

*+

*+ P_CALLS_DBMS P_TOTAL_LOCKS

*+ ------------ -------------

*+ 8071 8300

call sqlrout.TGETSTA1('SCHEMA');

*+

*+ TITLE P_COUNT P_SQL_COMMANDS P_PAGES_REQUESTED P_PAGES_READ

*+ ----- ------- -------------- ----------------- ------------

*+ SCHEMA 56 4 59 2

*+

*+ P_CALLS_DBMS P_TOTAL_LOCKS

*+ ------------ -------------

*+ 61 130

call sqlrout.TGETSTA1('EMPLOYEE');

*+

*+ TITLE P_COUNT P_SQL_COMMANDS P_PAGES_REQUESTED P_PAGES_READ

*+ ----- ------- -------------- ----------------- ------------

*+ EMPLOYEE 55 5 58 2

*+

*+ P_CALLS_DBMS P_TOTAL_LOCKS

*+ ------------ -------------

*+ 60 128

GRANT Access Module Execution Privilege

Chapter 8: Statements 467

GRANT Access Module Execution Privilege

The GRANT Access Module Execution Privilege authorization statement gives one or
more users or groups the privilege of executing a specified access module. The GRANT
EXECUTE statement is a CA IDMS extension of the SQL standard.

Authorization

To grant access module execution privilege, you must own the access module, hold
grantable privilege on the access module, or hold DBADMIN privilege on the dictionary
that contains the access module.

Syntax

►►─── GRANT EXECUTE ──►

 ►─── ON ACCESS MODULE ─┬────────────────┬─ access-module-name ───────────────►
 └─ schema-name. ─┘

 ┌─────────────── , ──────────────┐
 ►─── TO ─▼─┬─ PUBLIC ───────────────────┬─┴──────────────────────────────────►
 └─ authorization-identifier ─┘

 ►─┬─────────────────────┬──►◄
 └─ WITH GRANT OPTION ─┘

GRANT Access Module Execution Privilege

468 SQL Reference Guide

Parameters

ON ACCESS MODULE access-module-name

Specifies the access module to which the EXECUTE privilege applies.

schema-name

Identifies the schema associated with access-module-name.

If you do not specify schema-name, it defaults to the current schema in effect
for your SQL session.

TO

Identifies the users to whom you are giving the EXECUTE privilege.

PUBLIC

Specifies all users.

authorization-identifier

Identifies a user or group. For expanded authorization-identifier syntax, see
Expansion of Authorization-identifier.

WITH GRANT OPTION

Gives the privilege of granting the EXECUTE privilege on the named access module
to the users identified in the TO parameter. The owner of the resource, a holder of
the applicable DBADMIN privilege, or a holder of SYSADMIN privilege can specify
WITH GRANT OPTION

A privilege granted with the WITH GRANT OPTION is called a grantable privilege.

GRANT Access Module Execution Privilege

Chapter 8: Statements 469

Usage

Multiple Access Modules in One GRANT EXECUTE Statement

You can grant privileges on multiple access modules in a single GRANT statement by
using an asterisk (*) as a wildcard character. A wildcard character represents one or
more characters omitted from a string.

If used, the asterisk must be the last character in access-module-name. If
access-module-name ends with an asterisk, the name represents all the access modules
whose names match the pattern established.

For example, the access module name TST* in a GRANT EXECUTE statement represents
all access modules whose names start with TST in the specified or current schema.

Duration of Privileges

Users hold the EXECUTE privilege granted on an access module until the privilege is
explicitly taken away by means of the REVOKE EXECUTE statement.

Privileges Granted to Groups

When you grant a privilege to a group, each user in the group holds the privilege. If you
subsequently add a user to the group, that user also holds the privilege. If you drop a
user from the group, that user longer holds the privilege.

Access Modules in Categories

Although you can grant the EXECUTE privilege on a specified access module, the more
typical method is to grant the privilege on a category that includes multiple access
modules. The use of categories for granting the EXECUTE privilege reduces overhead
and provides better performance in a multiuser environment.

Executing an Access Module

To execute an access module, the owner of the access module must have the authority
to execute all statements in the access module.

To execute an access module, a user other than the owner must:

■ Hold the EXECUTE privilege on the access module

■ If CA IDMS internal security is in effect, the owner of the access module must have
the right to grant the privileges necessary to execute the SQL statements in the
access module

■ If external security is in effect, the executing user must have the authority to
execute statements in the access module

GRANT Definition Privileges

470 SQL Reference Guide

Example

Granting the EXECUTE Privilege

The following GRANT EXECUTE statement gives the EXECUTE privilege on all access
modules in the HR schema that begin with EMP to the users in the groups PER_GRP_1
and PER_GRP_2:

grant execute

 on access module hr.emp*

 to per_grp_1, per_grp_2;

More Information

■ For more information about revoking the EXECUTE privilege, see REVOKE Execution
Privilege.

■ For more information about CA IDMS internal security and about external security
for CA IDMS resources, see the CA IDMS Security Administration Guide.

GRANT Definition Privileges

The GRANT Definition Privileges authorization statement gives one or more users the
privilege of performing selected actions on a specified access module, schema, table,
view, procedure or table procedure. It is also a CA IDMS extension of the SQL standard.

Authorization

To issue a GRANT statement for a definition privilege, you must own the resource, hold
grantable privilege on the resource, or hold DBADMIN privilege on the dictionary
containing the definition.

Syntax

►►─── GRANT ─┬─ DEFINE ─────────────┬───►
 │ ┌─────── , ────────┐ │
 └─▼─┬─ ALTER ──────┬─┴─┘
 ├─ CREATE ─────┤
 ├─ DISPLAY ────┤
 ├─ DROP ───────┤
 └─ REFERENCES ─┘

 ►─── ON ─┬─ ACCESS MODULE ─┬────────────────┬─ access-module-name ─┬─────────►
 │ └─ schema-name. ─┘ │
 ├─ SCHEMA schema-name ────────────────────────────────────┤
 ├─ table table-name ──────────────────────────────────────┤
 └─────────────────┬────────────────┬─ function-identifier ┘
 └─ schema-name. ─┘

 ┌─────────────── , ──────────────┐
 ►─── TO ─▼─┬─ PUBLIC ───────────────────┬─┴──────────────────────────────────►
 └─ authorization-identifier ─┘

 ►─┬─────────────────────┬──►◄
 └─ WITH GRANT OPTION ─┘

GRANT Definition Privileges

Chapter 8: Statements 471

Parameters

DEFINE

Gives the ALTER, CREATE, DISPLAY, DROP, and REFERENCES privileges, as applicable
on the resource identified in the ON parameter to the users or groups identified in
the TO parameter.

ALTER

Gives the ALTER privilege on resource identified in the ON parameter to the users
or groups identified in the TO parameter.

The ALTER privilege on a resource allows you to modify the definition of the
resource.

CREATE

Gives the CREATE privilege on the resource identified in the ON parameter to the
users or groups identified in the TO parameter.

The CREATE privilege on a resource allows you to define the resource.

DISPLAY

Gives the DISPLAY privilege on the resource identified in the ON parameter to the
users or groups identified in the TO parameter.

The DISPLAY privilege on an access module allows you to execute the EXPLAIN
statement on the access module.

DROP

Gives the DROP privilege on the resource identified in the ON parameter to the
users or groups identified in the TO parameter.

The DROP privilege on a resource allows you to delete the definition of the
resource.

REFERENCES

Gives the REFERENCES privilege on the resource identified in the ON parameter to
the users or groups identified in the TO parameter.

The REFERENCES privilege on a table allows a user to define referential constraints
in which the table is the referenced table.

ON

Specifies the resource to which the definition privileges apply.

GRANT Definition Privileges

472 SQL Reference Guide

ACCESS MODULE access-module-name

Specifies that the privileges apply to any version of access-module-name in the
associated schema.

schema-name

Identifies the schema associated with access-module-name.

If you do not specify schema-name, it defaults to the current schema in effect
for your SQL session.

SCHEMA schema-name

Identifies an SQL schema.

table table-name

Identifies a table, view, procedure or table procedure.

If table-name does not include schema name qualifier, the schema name qualifier
defaults to the current schema in effect for your SQL session.

schema-name

Specifies the schema with which the function identified by function-identifier is
associated. If schema-name is not specified, the schema defaults to the current
schema in effect for your SQL session.

function-identifier

Identifies the function.

TO

Identifies the users to whom you are giving the definition privileges.

PUBLIC

Specifies all users.

authorization-identifier

Identifies a user or group. For expanded authorization-identifier syntax, see
Expansion of Authorization-identifier.

WITH GRANT OPTION

Gives the privilege of granting the specified definition privileges on the named
resource to the users identified in the TO parameter. Only the owner of the
resource or a user holding the DBADMIN privilege can specify WITH GRANT
OPTION.

A privilege granted with the WITH GRANT OPTION is called a grantable privilege.

GRANT Definition Privileges

Chapter 8: Statements 473

Usage

Multiple Entities in One GRANT Statement

You can grant privileges on multiple entities of the same type in a single GRANT
statement by using an asterisk (*) as a wildcard character. A wildcard character
represents one or more characters omitted from a string.

If used, the asterisk must be the last character in the resource name. The asterisk can
replace all or part of:

■ Access-module-name

■ Schema-name on the SCHEMA parameter

■ Table-identifier, view-identifier, procedure-identifier or table-procedure-identifier in
table-name

■ Function-identifier

A resource name with an asterisk represents all the entities of the same type whose
names match the pattern established by the name with the asterisk. For example, the
access module name ACC* in a GRANT statement represents all access modules whose
names start with ACC in the specified or current schema.

The DEFINE Keyword

When you use the DEFINE keyword with a GRANT statement, you grant a set of
definition privileges on a resource to one or more users or groups.

When you use the DEFINE keyword with a REVOKE statement, you revoke any definition
privileges that have been previously granted on the resource from the specified users or
groups.

This means that if you GRANT CREATE privilege on a table, you can revoke the privilege
with a REVOKE SELECT statement or a REVOKE DEFINE statement. Using REVOKE
DEFINE is an efficient technique when you intend to revoke all definition privileges on a
table from a user or group, whether the privileges were granted singly or as a set.

Similarly, you can GRANT DEFINE on a table to a user and then REVOKE DELETE on the
table from the same user as a way to grant all but one definition privilege.

GRANT Table Access Privileges

474 SQL Reference Guide

Duration of Privileges

Users hold privileges granted on a resource until the privileges are explicitly taken away
by means of the REVOKE statement.

Privileges Granted to Groups

When you grant a privilege to a group, each user in the group holds the privilege. If you
subsequently add a user to the group, that user also holds the privilege. If you drop a
user from the group, that user longer hold the privilege.

Example

Granting Privileges on a Schema

The following GRANT statement gives the ALTER, CREATE, DISPLAY, and DROP privileges
on all schemas that begin with DSF to user DSF. The statement also gives user DSF the
privilege of granting the same privileges to other users.

grant define

 on schema dsf*

 to dsf

 with grant option;

More Information

■ For more information about definition privileges, see REVOKE SQL Definition
Privileges.

■ For more information about granting privileges, see your security administrator.

GRANT Table Access Privileges

The GRANT Table Access Privileges authorization statement gives one or more users or
groups the privilege of performing selected actions on a specified table, view, function,
procedure or table procedure.

Authorization

To issue a GRANT statement for a table privilege, you must own the table, view,
function, procedure, or table procedure, hold the corresponding grantable privilege on
the table, view, procedure or table procedure, or hold the DBADMIN privilege on the
database that contains the table, view, function, procedure, or table procedure.

GRANT Table Access Privileges

Chapter 8: Statements 475

Syntax

►►─── GRANT ─┬─ ACCESS ─────────┬──►
 │ ┌────── , ─────┐ │
 └─▼─┬─ DELETE ─┬─┴─┘
 ├─ INSERT ─┤
 ├─ SELECT ─┤
 └─ UPDATE ─┘

 ►─── ON table ─┬─ table-name ───┬──►
 └┬───────────────┬──────────────────── function-identifier ┘
 └─ schema-name.─┘

 ┌─────────────── , ──────────────┐
 ►─── TO ─▼─┬─ PUBLIC ───────────────────┬─┴──────────────────────────────────►
 └─ authorization-identifier ─┘

 ►─┬─────────────────────┬──►◄
 └─ WITH GRANT OPTION ─┘

GRANT Table Access Privileges

476 SQL Reference Guide

Parameters

ACCESS

Gives the DELETE, INSERT, SELECT, and UPDATE privileges on the table, view,
function, procedure or table procedure identified in the ON parameter to the users
or groups identified in the TO parameter.

The ACCESS parameter is a CA IDMS extension of the SQL standard.

DELETE

Gives the DELETE privilege on the table, view, or table procedure identified in the
ON parameter to the users or groups identified in the TO parameter.

The DELETE privilege on a table, view, or table procedure allows you to delete rows
from the table or view.

INSERT

Gives the INSERT privilege on the table, view, or table procedure identified in the
ON parameter to the users or groups identified in the TO parameter.

The INSERT privilege on a table, view, or table procedure allows you to insert rows
into the table or view.

SELECT

Gives the SELECT privilege on the table, view, function, procedure or table
procedure identified in the ON parameter to the users or groups identified in the
TO parameter.

The SELECT privilege on a table, view, function, procedure or table procedure allows
you to:

■ Retrieve data from the table, view, function, procedure or table procedure

■ Name the table, view, function, procedure or table procedure in a subquery

UPDATE

Gives the UPDATE privilege on the table, view, or table procedure identified in the
ON parameter to the users or groups identified in the TO parameter.

The UPDATE privilege on a table, view, or table procedure allows you to modify
data in the table or through the view.

ON table table-name

Identifies the table, view, procedure or table procedure to which the table access
privileges apply.

If table-name does not include schema name qualifier, the schema name qualifier
defaults to the current schema in effect for your SQL session.

The optional keyword TABLE is a CA IDMS extension of the SQL standard. See
Expansion of Table-name for expanded table-name syntax.

GRANT Table Access Privileges

Chapter 8: Statements 477

schema-name

Optional qualifier of the function-identifier. If not specified the schema name
qualifier defaults to the current schema in effect for your SQL session.

function-identifier

Identifies the function to which the access privilege applies.

TO

Identifies the users to whom you are giving table access privileges.

PUBLIC

Specifies all users.

authorization-identifier

Identifies a user or group. For expanded authorization-identifier syntax, see
Expansion of Authorization-identifier.

WITH GRANT OPTION

Gives the privilege of granting the specified privileges on the named table, view,
procedure or table procedure to the users identified in the TO parameter. The
owner of the resource, a holder of the applicable DBADMIN privilege, or a holder of
SYSADMIN privilege can specify WITH GRANT OPTION.

A privilege granted with the WITH GRANT OPTION is called a grantable privilege.

GRANT Table Access Privileges

478 SQL Reference Guide

Usage

Multiple Tables and Views in One GRANT Statement

You can grant privileges on multiple tables, views, functions, procedures and table
procedures in a single GRANT statement by using an asterisk (*) as a wildcard character.
A wildcard character represents one or more characters omitted from a string.

If used, the asterisk must be the last character in the table, view, function, procedure or
table procedure identifier in table-name or function-identifier. A table, view, function,
procedure or table procedure identifier with an asterisk represents all the tables, views,
and table procedures whose identifiers match the pattern established by the identifier
with the asterisk.

For example, the table, view, function, procedure or table procedure identifier EST* in a
GRANT statement represents all tables, views, procedures and table procedures whose
identifiers start with EST in the specified or current schema.

Duration of Privileges

Users hold privileges granted on a table, view, function, procedure or table procedure
until the privileges are explicitly taken away by means of the REVOKE statement.

The ACCESS Keyword

When you use the ACCESS keyword with a GRANT statement, you grant a set of access
privileges on a table, view, function, procedure or table procedure to one or more users
or groups.

When you use the ACCESS keyword with a REVOKE statement, you revoke any access
privileges that have been previously granted on the table, view, function, procedure or
table procedure from the specified users or groups.

This means that if you GRANT SELECT privilege on a table, you can revoke the privilege
with a REVOKE SELECT statement or a REVOKE ACCESS statement. Using REVOKE
ACCESS is an efficient technique when you intend to revoke all access privileges on a
table from a user or group, whether the privileges were granted singly or as a set.

Similarly, you can GRANT ACCESS on a table to a user and then REVOKE DELETE on the
table from the same user as a way to grant all but one table access privilege.

Privileges Granted to Groups

When you grant a privilege to a group, each user in the group holds the privilege. If you
subsequently add a user to the group, that user also holds the privilege. If you drop a
user from the group, that user no longer holds the privilege.

INCLUDE

Chapter 8: Statements 479

Example

Granting Selected Privileges on a Table

The following GRANT statement gives the SELECT and UPDATE privileges on the
EMPLOYEE table to users KRP, SAE, and PGD:

grant select, update

 on employee

 to krp, sae, pgd;

More Information

■ For more information about revoking table access privileges, see REVOKE Table
Access Privileges.

■ For more information about granting privileges, see your security administrator.

INCLUDE

The INCLUDE precompiler directive statement directs the precompiler to create host
variable definitions for a specified structure or table in the application program. You can
use this statement only in SQL that is embedded in a program.

The INCLUDE statement is a CA IDMS extension of the SQL standard.

Authorization

To issue an INCLUDE statement that specifies:

■ A table, you must own or have the SELECT privilege on the table

■ SQLCA or SQLDA no privileges are required

Syntax

►►─── INCLUDE ─┬─ SQLCA ───┬──►◄
 ├─ SQLDA sqlda-options ─────────────────────────────────────┤
 ├─ TABLE table-name ─┬─────────────────┬────────────────────┤
 │ └─ table-options ─┘ │
 ├─┬────────────────┬─ function-identifier ─┬───────────────┬┤
 │ └─ schema-name. ─┘ └─table-options─┘│
 └─ module-name ───┘

Expansion of sqlda-options

►►─┬──────────────────────────────────┬─┬───────────────────────────┬─────────►◄
 └─ NUMBER OF COLUMNS column-count ─┘ └─ AS descriptor-area-name ─┘

INCLUDE

480 SQL Reference Guide

Expansion of table-options

►►─┬──┬─────────►
 │ ┌─────── , ───────┐ │
 └─ (─▼── column-name ──┴─) ──┬───────────────────────────────┬─┘
 │ ┌─────── , ──────┐ │
 └─ AS (─▼─ column-alias ─┴─) ─┘

 ►─┬─────────────────────┬──►
 ├─ AS structure-name ─┤
 └─ NO STRUCTURE ──────┘

 ►─┬────────────────────────────┬───►
 └─ NUMBER OF ROWS row-count ─┘

 ►─┬──────────────────────────┬───►
 └─ PREFIX 'column-prefix' ─┘

 ►─┬──────────────────────────┬───►
 └─ SUFFIX 'column-suffix' ─┘

 ►─┬──────────────────────────┬───►◄
 └─ LEVEL 'level-number ' ─┘

INCLUDE

Chapter 8: Statements 481

Parameters

SQLCA

Directs the precompiler to define host variables for the fields in the SQL
Communication Area (SQLCA) in the application program.

SQLDA

Directs the precompiler to define host variables for the fields in the SQL descriptor
area in the application program.

sqlda-options

Specifies additional characteristics for the SQL descriptor area. Expanded syntax for
sqlda-options is shown immediately following the INCLUDE syntax and documented
directly below.

NUMBER OF COLUMNS column-count

Directs CA IDMS to build an SQL descriptor area large enough to contain the
specified number of columns.

Column-count must be an integer in the range 1 through 1,024. The default is 100.

AS descriptor-area-name

Assigns the specified name to the SQL descriptor area being defined.
Descriptor-area-name must be unique within the application program and must
follow the conventions for host variable names.

If you do not specify a name for the SQL descriptor area, the name of the descriptor
area is SQLDA.

TABLE table-name

Directs the precompiler to define host variables corresponding to one or more
columns in the named table, view, procedure or table procedure in the application
program.

Table-name must identify a base table, view, procedure or table procedure defined
in the dictionary.

If table-name does not include an explicit schema name, the precompiler:

■ Uses the schema name specified in the schema precompiler option, if any

■ Returns an error if the schema precompiler option is not specified

For expanded table-name syntax, see Expansion of Table-name.

INCLUDE

482 SQL Reference Guide

schema-name

Specifies the schema with which the function identified by function-identifier is
associated. If schema-name is not specified, the precompiler:

■ Uses the schema name specified in the schema precompiler option, if any

■ Returns an error if the schema precompiler option is not specified

function-identifier

Directs the precompiler to define host variables corresponding to one or more
columns in the named function in the application program.

table-options

Specifies additional information about the host variables to be defined for the
named table, view, function, procedure, or table procedure. Expanded syntax for
table-options is shown above immediately following the expanded syntax for
sqlda-options and documented directly below.

module-name

Includes source statements from a module stored in the data dictionary into the
source program.

The unmodified module is placed into the program by the precompiler at the
location of the request. The module can, but need not, contain SQL or navigational
DML statements. Any such statements are examined and expanded within the
context of the program as if they were coded directly.

Note: INCLUDE module-name is equivalent to COPY IDMS module-name as
documented in the CA IDMS DML Reference manuals.

The version of the module that is included is established as follows:

The version defaults to the highest version number defined in the data dictionary
for the language mode under which the program is being compiled (for example,
BATCH or IDMS-DC).

If no mode-specific version exists for module-name, the non-mode-specific version,
if present, is included. If neither a mode-specific entry or a non-mode-specific entry
for module-name has been established, an error results. The same rules apply to
the module's language where version-number defaults to the highest value defined
in the data dictionary for the language in which the program is written.

Parameters for Expansion of sqlda-options

(column-name)

Specifies one or more columns for which the precompiler is to define host variables.
Column-name must identify a column in the named table, view, function,
procedure, or table procedure and must be unique within the list of column names.

If you specify one or more columns, the precompiler defines host variables only for
the columns you name. If you do not specify any columns, the precompiler defines
host variables for all the columns in the named table, view, or table procedure.

INCLUDE

Chapter 8: Statements 483

AS (column-alias)

Specifies names to be used for the host variables defined for the named columns.
Column-alias must follow the conventions for host variable names.

You must specify no column aliases or the same number of column aliases as the
number of host variables defined for columns in the named table, view, or table
procedure.

If you do not specify any column aliases, the name used for each host variable is the
name of the column for which the host variable is defined.

Parameters for Expansion of table-options

AS structure-name

Assigns the specified name to the data structure made up of the host variables
corresponding to the columns in the named table, view, or table procedure.
Structure-name must be a 1- through 31-character name that follows the
conventions for host variable names.

If you do not specify a name for the data structure, and you do not specify NO
STRUCTURE, the name of the structure is the name of the table or view used to
define the structure.

NO STRUCTURE

Directs the precompiler not to group the host variable definitions together in a
single data structure.

NUMBER OF ROWS row-count

Directs the precompiler to define an array, suitable for bulk processing, in which the
host variables are sub-elements of a structure that occurs the specified number of
times. Row-count should be an integer in the range from 2 to the largest number of
entries supported for an array by the host language compiler. You must specify
NUMBER OF ROWS to create a host variable array using INCLUDE.

If you specify NO STRUCTURE, NUMBER OF ROWS is ignored.

PREFIX 'column-prefix'

Specifies a character string to be used as the first portion of the name of each host
variable defined for a column in the named table, view, procedure or table
procedure. Column-prefix must be a one- through seven-character string and must
be enclosed in single quotation marks.

The column prefix concatenated with the column name or alias and the column
suffix, if specified, must follow the conventions for host variable names.

INCLUDE

484 SQL Reference Guide

SUFFIX 'column-suffix'

Specifies a character string to be used as the last portion of the name of each host
variable defined for a column in the named table, view, procedure or table
procedure. Column-suffix must be a one- through seven-character string and must
be enclosed in single quotation marks.

The column prefix, if specified, and the column name or alias concatenated with the
column suffix must follow the conventions for host variable names.

LEVEL level-number

Directs the precompiler to assign the specified level number to the data structure as
a whole or, when the INCLUDE statement specifies NO STRUCTURE, to each host
variable defined for a column. Level-number must be an integer in the range 01
through 47.

If level-number is not specified, the default is 01.

INCLUDE

Chapter 8: Statements 485

Usage

SQLCA, SQLCODE, and SQLSTATE

An application program can contain an INCLUDE SQLCA statement or a host variable
definition for SQLCODE and/or SQLSTATE within an SQL declaration section. In either
case, the precompiler comments out the item and inserts the host variable definitions
for the fields in the SQLCA.

If you include more than one of these items in an application program, the precompiler
comments out all of them, inserts the host variable definitions for the fields in the
SQLCA only once, and returns a warning.

If you do not include any of the items in a COBOL application program, the precompiler
automatically creates the host variable definitions for the fields in the SQLCA if the
application program contains SQL statements.

Note: This does not apply to PL/I application programs. A PL/I program must contain an
INCLUDE SQLCA or a host variable definition for SQLCODE or SQLSTATE.

Multiple SQL Descriptor Areas

Each SQL descriptor area included in an application program must have a unique name.
If you include multiple SQL descriptor areas, you can use the default name SQLDA for
only one of the areas. You must use the AS parameter to specify a different name for
each of the others.

Placement of INCLUDE TABLE

The INCLUDE TABLE statement may appear anywhere within the application program
that variable declarations are allowed. However, to reference the generated variables as
host variable in an SQL statement, you must place the INCLUDE TABLE statement within
an SQL declaration section.

Column Names as Host Variable Names

You can use the names of the columns in an included table as host variable names only
when the column names follow the conventions for host variable names. Otherwise,
you must specify a column alias for each column for which you want to define a host
variable.

Note: In a COBOL application program, the precompiler automatically converts
underscores to hyphens in column names used as host variable names.

Indicator Variable Names

If a column within an included table is nullable, an indicator variable is generated for the
column. The name of the indicator variable is the same as that of the data variable
(column name or column alias) suffixed with '-I'.

INCLUDE

486 SQL Reference Guide

Examples

Including the SQLCA

The following INCLUDE statement directs the precompiler to define host variables for
the fields in the SQL Communication Area (SQLCA):

EXEC SQL

 INCLUDE SQLCA

END-EXEC

Including an SQL Descriptor Area

The following INCLUDE statement directs the precompiler to define host variables for
the fields in an SQL descriptor area named BUFF-1-SQLDA. The maximum number of
columns that can be described using BUFF-1-SQLDA is 30.

EXEC SQL

 INCLUDE SQLDA

 NUMBER OF COLUMNS 30

 AS BUFF-1-SQLDA

END-EXEC

Including a Table

The following INCLUDE statement directs the precompiler to define host variables
corresponding to the named columns in the INSURANCE_PLAN table. The host variables
are defined as a 10-row array named INS-COST-BUFFER.

EXEC SQL

 INCLUDE TABLE INSURANCE_PLAN

 AS INS-COST-BUFFER

 (PLAN_CODE, COMP_NAME, MAX_LIFE_COST, FAMILY_COST, DEP_COST)

 AS (PLANCODE, COMPNAME, MAXLIFE, FAMCOST, DEPCOST)

 NUMBER OF ROWS 10

END-EXEC

The previous statement generates COBOL variable declarations in this format:

01 INS-COST-BUFFER

 02 INS-COST-BUFFER-BULK OCCURS 10.

 03 PLANCODE ...

 03 COMPNAME ...

 03 MAXLIFE ...

 03 FAMCOST ...

 03 DEPCOST ...

INSERT

Chapter 8: Statements 487

More Information

■ For more information about the SQLCA and the SQLDA, see SQL Communication
Area and SQL Descriptor Area.

■ For more information about host variables, see Host Variables.

■ For more information about creating host variable array using INCLUDE, see the CA
IDMS SQL Programming Guide.

INSERT

The INSERT data manipulation statement adds one or more rows to a table.

Authorization

To issue an INSERT statement, you must:

■ Hold the INSERT privilege on or own the table, view, or table procedure named in
the INTO parameter

■ Hold the SELECT privilege on or own each table, function, view, and table procedure
explicitly named in any query specification used in the INSERT statement

Additional authorization requirements apply to:

■ A view named in the INTO parameter; each view named in the FROM parameter of
such a view; each view named in the FROM parameters of those views, and so
forth.

For any such view, the owner of the view must own or have the grantable INSERT
privilege on each table, view, and table procedure explicitly named in the view
definition.

■ Each view explicitly named in a query specification in the INSERT statement; each
view explicitly named in the definition of such a view; each view explicitly named in
the definition of those views, and so forth.

For any such view, the owner of the view must own or have the grantable SELECT
privilege on each table, view, and table procedure explicitly named in the view
definition.

Syntax

►►─── INSERT INTO table-name ─┬─────────────────────────────┬─────────────────►
 │ ┌────── , ────────┐ │
 └─ (─▼── column-name ──┴─) ─┘

INSERT

488 SQL Reference Guide

 ┌──────────── , ────────────┐
►─┬─ VALUES (─▼─┬─ literal ─────────────┬─┴─) ────────────────────────────┬─►◄
 │ ├─ host-variable ───────┤ │
 │ ├─ local-variable ──────┤ │
 │ ├─ routine-parameter ───┤ │
 │ ├─ special-register ────┤ │
 │ └─ NULL ────────────────┘ │
 ├─ query-specification ───┤
 └─ BULK :bulk-buffer ─┬────────────────┬──────────────────────────────────┘
 └─ bulk-options ─┘

Expansion of bulk-options

►►──┬──────────────────────────────┬──►
 └─ START :start-variable-name ─┘

 ►──┬─────────────────────────────────┬───────────────────────────────────────►◄
 └─ ROWS :row-count-variable-name ─┘

INSERT

Chapter 8: Statements 489

Parameters

INTO table-name

Identifies the table, view, or table procedure to which new rows are being added.
Table-name must not specify a procedure. If table-name identifies a view:

■ The view must be updateable

■ The applicable rows are inserted into the table from which the view is derived

For expanded table-name syntax, see Expansion of Table-name.

(column-name)

Specifies one or more columns for which values are being supplied. Column-name
must identify a column in the table, view, or table procedure named in the INTO
parameter and must be unique within the list of columns.

The list of column names must be enclosed in parentheses. Multiple column names
must be separated by commas.

If you specify one or more but not all the columns in the named table, view, or table
procedure, CA IDMS stores default or null values in the unspecified columns. If any
unspecified column is defined as NOT NULL and does not have a default value, CA
IDMS returns an error.

If you do not specify any column names, you must supply values for all columns in
the rows being added in the order in which the columns were specified in the table,
view, or table procedure definition.

VALUES

Indicates a single row with the specified values is to be added to the table, view, or
table procedure named in the INTO parameter. You must provide the same number
of values as the number of columns named in the INSERT statement or, if no
columns are named, the number of columns in the table, view, or table procedure.
The first value specified is stored in the first column named, the second value in the
second column, and so on.

The list of values must be enclosed in parentheses. Multiple values must be
separated by commas.

Important! You can specify limited types of value expressions within a VALUES
clause. For example, you cannot specify scalar functions or expressions with
multiple terms.

INSERT

490 SQL Reference Guide

NULL

Directs CA IDMS to store a null value in the corresponding column in the new row.
The column must be defined to allow null values.

query-specification

Specifies a result table whose rows are to be added to the table, view, or table
procedure named in the INTO parameter. The specified result table must have the
same number of columns as the number of columns named in the INSERT
statement or, if no columns are named, the number of columns in the table, view,
or table procedure.

For expanded query-specification syntax, see Expansion of Query-specification.

BULK :bulk-buffer

Identifies a variable defined as an array from which CA IDMS is to retrieve the
values to be stored in one or more new rows.

Bulk-buffer must be a variable previously declared in the host-language application
program or SQL routine. Bulk-buffer must have a subordinate structure which
occurs multiple times and has the same number of sub-elements as the number of
columns named in the INSERT statement or, if no columns are named, the number
of columns in the table, view, or table procedure named in the INTO parameter.

You can specify the BULK parameter only when you embed the INSERT statement in
an application program.

The BULK parameter is a CA IDMS extension of the SQL standard.

Parameters for Expansion of bulk-options

START :start-variable-name

Identifies a variable containing the relative position within the bulk buffer from
which CA IDMS is to retrieve values for the first new row. Values in subsequent
entries in the bulk buffer are retrieved sequentially for subsequent new rows.

Start-variable-name must be a variable previously declared in the host-language
application program or SQL routine. The value in the host variable must be an
integer in the natural range of subscripts for arrays in the language in which the
application program is written.

If you do not specify the START parameter, CA IDMS retrieves the values from the
first entry in the bulk buffer.

INSERT

Chapter 8: Statements 491

ROWS :row-count-variable-name

Identifies a variable that specifies the number of rows CA IDMS is to retrieve from
the bulk buffer.

Row-count-variable-name must be a variable previously declared in the
host-language application program or SQL routine. The value in the host variable
must be an integer in the range 1 through the number of rows that fit in the bulk
buffer.

If you do not specify the ROWS parameter, CA IDMS retrieves rows from the array
sequentially until reaching the end of the buffer.

Note: The bulk-buffer, start-variable-name, row-count-variable-name variables can be
host variables, or when the statement is used in an SQL routine, local variables or
routine parameters. In this case, their names must not be preceded with a colon.

INSERT

492 SQL Reference Guide

Usage

Restriction on table-name

The table, view, or table procedure named in the INTO parameter of an INSERT
statement cannot also be named in the FROM parameter of a query specification in the
same statement or in the FROM parameter of any subquery within the query
specification. This means that you cannot INSERT into a table from which you are
selecting directly or through a view.

Restriction for Tables in Constraints

If the table named in an INSERT statement is the referencing table in a constraint, the
foreign-key columns in each row being inserted must satisfy either of the following
conditions:

■ The columns must be all or partially null

■ The foreign-key-column values must match the referenced-column values in a row
of the referenced table

Compatible Data Types

The data types of the columns named in the INSERT statement and their corresponding
values represented by the VALUES, query-specification, or BULK parameter must be
compatible for assignment.

Indicator Variables in the INSERT Statement

In an INSERT statement, you can use indicator variables with host variables and within
arrays for bulk processing. A negative value in an indicator variable directs CA IDMS to
store a null value in the column corresponding to the associated host variable or
structure element. CA IDMS ignores an indicator value of 0 or higher.

Errors During Bulk Inserts

If an error occurs during a bulk insert, all rows inserted before the error occurred remain
in the table. Subsequent rows, however, are not inserted into the table.

Satisfying Check Constraints

If a row to be inserted into a table does not satisfy the check constraints, if any, in the
table definition, CA IDMS returns an error and does not insert the row.

Inserting into Views Having WITH CHECK OPTION

If the INTO parameter includes a view defined with WITH CHECK OPTION, any WHERE
clause in the view definition, or in the definitions of any other views nested within its
definition, is applied like a check constraint.

INSERT

Chapter 8: Statements 493

Examples

Supplying Explicit Values

The following INSERT statement adds a new row to the PROJECT table. Values (some
null, some non-null) are provided for all columns in the table.

insert into project

 values ('P634', 'TV ads - WTVK', '1989-12-01',

 '1990-2-28', null, null, 320, null, 3411);

Using the Values in a Result Table

The following INSERT statement adds new rows to the temporary table TEMP_BUDGET.
The values in the new rows come from the result table defined by the query
specification in the INSERT statement. Values are provided only for two columns of the
temporary table.

insert into temp_budget

 (dept_id, all_expenses)

 select dept_id, adv_exp + merch_exp + op_exp + misc_exp

 from proposed_budget;

Inserting Values from a Buffer

The following INSERT statement adds new rows to the CONSULTANT table. Values for
the new rows come from the buffer CNSLT-BUFF. The number of rows added is
determined by the value in the host variable BUFF-ROW-COUNT.

EXEC SQL

INSERT INTO CONSULTANT

 BULK :CNSLT-BUFF

 ROWS :BUFF-ROW-CNT

END-EXEC

OPEN

494 SQL Reference Guide

More Information

■ For more information about updateable views, see CREATE VIEW.

■ For more information about host variables, see Host Variables.

■ For more information about expanded host variable, local variable, or routine
parameters syntax, see Expansion of Host-variable, Local Variables (see page 81), or
Routine Parameters.

■ For more information about compatible data types for assignment operations, see
Comparison, Assignment, Arithmetic, and Concatenation Operations.

■ For more information about null values, see Null Values.

■ For more information about bulk processing in an application program, see the CA
IDMS SQL Programming Guide.

■ For more information about expanded literal syntax, see Expansion of Literal.

■ For more information about expanded special-register syntax, see Expansion of
Special-register.

OPEN

The OPEN data manipulation statement places a specified cursor in the open state. An
open cursor represents a result table, an ordering of the rows in the result table, and a
position relative to the ordering.

You can use this statement only in SQL that is embedded in a program.

Authorization

None required.

Syntax

►►─ OPEN cursor-name ───►

 ►──┬───┬─────────►◄
 │ ┌──────── , ───────────┐ │
 └─ USING ──┬─▼┬─ host-variable ────┬┴────────────────────────┬──┘
 │ │─ local-variable ───┤ │
 │ └─ routine-parameter ┘ │
 └─ :dyn-buff sql DESCRIPTOR descriptor-area-name ─┘

OPEN

Chapter 8: Statements 495

Parameters

cursor-name

Specifies the cursor to be opened. Cursor-name must identify a cursor previously
defined by a DECLARE CURSOR statement within the application program or by an
ALLOCATE CURSOR statement executed within the same SQL transaction.

USING

Supplies values for the dynamic parameters embedded in the text of the
dynamically prepared statement with which the cursor is associated.

host-variable

Identifies the host variables from which CA IDMS is to retrieve values for the
dynamic parameters. CA IDMS assigns the value of the first host variable to the first
dynamic parameter, the second host variable to the second dynamic parameter,
and so on.

You must specify the same number of host variables in the USING parameter as the
number of dynamic parameter markers in the dynamically prepared statement with
which the cursor is associated. See Expansion of Host-variable, for more
information.

Note: In COBOL, host-variable can be an elementary data item or a non-bulk
structure. If a non-bulk structure is specified, each sub-element of the structure is
counted as a host variable.

local-variable

routine-parameter

Identifies the local variable or routine parameter from which CA IDMS is to retrieve
values for the dynamic parameters. CA IDMS assigns the value of the first local
variable or routine parameter to the first dynamic parameter, the second local
variable or routine parameter to the second dynamic parameter, and so on. You
must specify the same number of local variables and routine parameters in the
USING parameter as the number of dynamic parameter markers in the dynamically
prepared statement with which the cursor is associated.

:dyn-buff

Identifies the variable from which CA IDMS is to retrieve values for the dynamic
parameters.

Dyn-buff must identify a variable previously declared in the host-language
application program or SQL routine.

The size of dyn-buff must be sufficient to hold a complete set of dynamic parameter
values. The format of the data in dyn-buff must conform to the description in the
SQL descriptor area specified by descriptor-area-name.

OPEN

496 SQL Reference Guide

SQL DESCRIPTOR

Specifies the SQL descriptor area that describes the format of the dynamic
parameter values contained in dyn-buff.

descriptor-area-name

Directs CA IDMS to use the named area as the descriptor area. Descriptor-name
must identify an SQL descriptor area.

Note: The dyn-buff variable can be a host variable, or when the statement is used in an
SQL routine, a local variable or a routine parameter. In this case, its name must not be
preceded with a colon.

For the layout of an SQL descriptor area, see SQL Descriptor Area.

Usage

Cursor Positions

At any time, the position of an open cursor is one of the following:

■ Before a certain row

■ About a certain row

■ After the last row

A cursor can be before the first row or after the last row of a result table even if the
table is empty.

When a cursor is first opened, its position is before the first row.

Effect on an Open Cursor

If the cursor named in an OPEN statement is already open, CA IDMS returns an error
and continues processing.

Example

Opening a Cursor

The following OPEN statement places the cursor named ALL_EMP_CURSOR in the open
state:

EXEC SQL

 OPEN ALL_EMP_CURSOR

END-EXEC

PREPARE

Chapter 8: Statements 497

More Information

■ For more information about defining and manipulating cursors, see ALLOCATE
CURSOR, CLOSE, DECLARE CURSOR, and FETCH (see page 449).

■ For more information about using cursors in an application program, see the CA
IDMS SQL Programming Guide.

■ For more information about the layout of the descriptor area, see SQL Descriptor
Area.

PREPARE

The PREPARE dynamic compilation statement dynamically compiles an SQL statement
for later execution in the application program.

You can use this statement only in SQL that is embedded in a program.

Authorization

To issue the PREPARE statement, you must have the privileges required to issue the
statement being prepared.

Syntax

►►─ PREPARE statement-name FROM ─┬─ :statement-text ──┬─────────────────►
 └─ 'statement-text' ─┘

 ►──┬──────────────────────────────┬────────────────────────────────────►◄
 ├─ describe-output-expression ─┤
 └─ describe-input-expression ──┘

Expansion of describe-output-expression

►►─ DESCRIBE output USING sql DESCRIPTOR descriptor-area-name1 ────────────►

 ►─┬──┬──────────────────►◄
 └─ INPUT USING sql DESCRIPTOR descriptor-area-name2 ─┘

Expansion of describe-input-expression

►►─ DESCRIBE INPUT USING sql DESCRIPTOR descriptor-area-name2 ─────────────►

 ►─┬───┬─────────────────►◄
 └─ OUTPUT USING sql DESCRIPTOR descriptor-area-name1 ─┘

PREPARE

498 SQL Reference Guide

Parameters

statement-name

Specifies the name to be assigned to the compiled statement. It must be unique
within its associated scope.

Note: For more information, see Expansion of Statement-name.

FROM

Identifies the statement to be compiled.

:statement-text

Identifies a host variable, local variable, or a routine parameter containing a
preparable SQL statement. statement-text must be previously declared in the
application program or SQL routine. It must be defined as an elementary data item
with no sub-elements. Do not specify the colon when statement-text is a local
variable or routine parameter.

'statement-text'

Specifies a preparable SQL statement enclosed in single quotation marks. Do not
include the SQL prefix or terminator within the statement.

Parameters for Expansion of describe-output-expression

DESCRIBE OUTPUT USING SQL DESCRIPTOR descriptor-area-name1

Specifies the SQL descriptor area in which CA IDMS is to return information about
the output values to be returned when the dynamically-compiled statement is
executed. Descriptor-area-name1 is the name of the SQL descriptor area.

INPUT USING SQL DESCRIPTOR descriptor-area-name2

Specifies the SQL descriptor area in which CA IDMS is to return information about
the dynamic parameters used within the statement.

Descriptor-area-name2 is the name of the SQL descriptor area.

Parameters for Expansion of describe-input-expression

DESCRIBE INPUT USING SQL DESCRIPTOR descriptor-area-name2

Specifies the SQL descriptor area in which CA IDMS is to return information about
the dynamic parameters used within the statement.

Descriptor-area-name2 is the name of the SQL descriptor area.

OUTPUT USING SQL DESCRIPTOR descriptor-area-name1

Specifies the SQL descriptor area in which CA IDMS is to return information about
the output values to be returned when the dynamically-compiled statement is
executed. Descriptor-area-name1 is the name of the SQL descriptor area.

PREPARE

Chapter 8: Statements 499

Usage

Preparable Statements

The following SQL statements are preparable:

■ All authorization and logical data description statements

■ CALL

■ COMMIT

■ cursor-specification

■ DELETE

■ EXPLAIN

■ INSERT

■ RELEASE

■ ROLLBACK

■ SUSPEND SESSION

■ UPDATE

Additionally, all CA IDMS utility and physical data description statements are preparable.

Specifying Dynamic Parameters

Dynamic parameters are variables whose values are supplied when the statement is
executed, or in the case of a SELECT or a CALL statement, when its associated cursor is
opened.

Dynamic parameters are specified as question marks (?) within the text of the SQL
statement. They may appear wherever a host variable is permitted with certain
exceptions.

Describing Dynamic Parameters

The INPUT option is used to return information about dynamic parameters that may be
embedded in the SQL statement being described. The SQLD field of the descriptor area
indicates the number of dynamic parameter that appear in the statement. If no dynamic
parameters are used, this field is zero (0).

If dynamic parameters do appear in the statement, CA IDMS returns descriptions of the
parameters in the descriptor area. The data type information is derived from the
context in which the dynamic parameter appears.

PREPARE

500 SQL Reference Guide

Describing Output Values

The OUTPUT option is used to return information about values output from CA IDMS:

■ For a SELECT or a CALL statement, CA IDMS returns a description of the result table
defined by the statement. The SQLD field of the descriptor area indicates the
number of columns in the result table.

■ For a statement other than SELECT or CALL, CA IDMS returns the value zero (0) in
the SQLD field of the descriptor area.

No Host Variables, Local Variables, or Routine Parameters in a Dynamically Compiled
Statement

An SQL statement that is to be compiled dynamically cannot include any host variables,
local variables, or routine parameters.

Re-executing a PREPARE Statement

When reexecuting a PREPARE statement, CA IDMS replaces the previously prepared
statement with the statement currently identified in the PREPARE statement. If the
previously prepared statement is a SELECT or a CALL statement associated with an open
cursor, CA IDMS closes the cursor.

Duration of Dynamically Compiled Statements

Dynamically-compiled statements are available for execution until the transaction
terminates or until destroyed using a DEALLOCATE PREPARE statement.

Specifying the Maximum Number of Column Entries

The application program must specify the maximum number of entries it can accept by
setting the value of the SQLN field in the descriptor area before issuing the PREPARE
statement. If the number of entries is insufficient, CA IDMS returns the number of
entries needed into the SQLD field but does not return any descriptions.

RELEASE

Chapter 8: Statements 501

Examples

Specifying the Statement Explicitly

The following PREPARE statement dynamically compiles the specified SELECT statement.
A subsequent DESCRIBE statement must provide a descriptor area for the description of
the result table before the dynamically compiled statement can be executed.

EXEC SQL

 PREPARE DYN_TMP_SEL_1

 FROM 'SELECT * FROM TEMP_BUDGET'

END-EXEC

Using a Host Variable

The following PREPARE statement dynamically compiles the statement contained in the
host variable SELECT-BUFF. Information about the output from the dynamically
compiled statement is returned in the descriptor area named BUFF-1-SQLDA.

EXEC SQL

 PREPARE DYN_PROJ_SELECT

 FROM :SELECT-BUFF

 DESCRIBE USING DESCRIPTOR BUFF-1-SQLDA

END-EXEC

More Information

■ For more information about the dynamic compilation of SQL statements, see the CA
IDMS SQL Programming Guide.

■ For more information about the SQL descriptor area, see SQL Descriptor Area.

■ For more information about destroying a dynamically-compiled statement, see
DEALLOCATE PREPARE.

■ For more information about the structure of the SQL descriptor area, see SQL
Descriptor Area.

■ For more information about dynamic parameters, see Dynamic Parameters.

RELEASE

The RELEASE session management statement releases a connection to a CA IDMS
dictionary and ends the SQL session. It is also a CA IDMS extension of the SQL standard.

Authorization

None required.

RESUME SESSION

502 SQL Reference Guide

Syntax

►►─── RELEASE ──►◄

Usage

Ending an SQL Session

To end an SQL session established with the CONNECT statement, you must use one of
the following statements:

■ RELEASE

■ COMMIT RELEASE

■ ROLLBACK RELEASE

To end an SQL Session established automatically, you can use any of the above
statements or COMMIT or ROLLBACK without the RELEASE parameter.

Automatic Rollback

When ending an SQL session, CA IDMS automatically rolls back any transaction that is
still active.

Example

Releasing a Connection

The following RELEASE statement ends the current SQL session and releases the
connection with the dictionary:

EXEC SQL

 RELEASE

END-EXEC

More Information

■ For more information about establishing a database connection and beginning an
SQL session, see CONNECT.

■ For more information about managing SQL sessions, see the CA IDMS SQL
Programming Guide.

RESUME SESSION

The RESUME SESSION management statement resumes a suspended SQL session. You
use the RESUME SESSION statement primarily in pseudo conversational programming. It
is also a CA IDMS extension of the SQL standard.

REVOKE All Table Privileges

Chapter 8: Statements 503

Authorization

None required.

Syntax

►►─── RESUME SESSION ───►◄

Usage

Effect of RESUME SESSION

When you resume an SQL session, CA IDMS re-establishes the session as it existed
immediately before it was suspended.

Resuming a Suspended Session

The following RESUME SESSION statement resumes the current suspended SQL session:

EXEC SQL

 RESUME SESSION

END-EXEC

More Information

■ For more information about suspending an SQL session, see SUSPEND SESSION.

■ For more information about managing SQL sessions, see the CA IDMS SQL
Programming Guide.

REVOKE All Table Privileges

The REVOKE All Table Privileges authorization statement removes from one or more
users or groups all definition and access privileges on a specified table, view, function,
procedure or table procedure.

Authorization

To issue the REVOKE ALL PRIVILEGES statement, one of the following must be true:

■ You own the table, view, function, procedure or table procedure

■ You hold all privileges on the table, view, function, procedure or table procedure as
grantable

■ You hold the DBADMIN privilege for the database that contains the table, view,
function, procedure or table procedure

REVOKE All Table Privileges

504 SQL Reference Guide

Syntax

►►─── REVOKE ALL PRIVILEGES ──►

 ►─── ON table─┬─ table-name───┬──►
 └──────────┬────────────────┬────────── function-identifier ┘
 └─ schema-name. ─┘

 ┌─────────────────────────────────┐
 ►─── FROM ─▼─┬─ PUBLIC ────────────────────┬─┴───────────────────────────────►◄
 └─ authorization-identifier ──┘

Parameters

ALL PRIVILEGES

Removes the DELETE, INSERT, SELECT, UPDATE, ALTER, CREATE, DROP, and
REFERENCES privileges, as applicable, on the table, view, function, procedure, or
table procedure identified in the ON parameter from the users or groups identified
in the FROM parameter.

ON table table-name

Identifies the table, view, function, procedure or table procedure to which the
privileges apply.

If table-name does not include a schema name qualifier, the schema name qualifier
defaults to the current schema in effect for your SQL session. For expanded
table-name syntax, see Expansion of Table-name.

schema-name

Specifies the schema with which the function identified by function-identifier is
associated. If schema-name is not specified, the schema qualifier defaults to the
current schema in effect for your SQL session.

function-identifier

Identifies the function to which the privileges apply.

FROM

Specifies the users from whom you are removing the privileges.

PUBLIC

Specifies all users.

The privileges must have been previously given to PUBLIC by means of the GRANT
statement.

authorization-identifier

Identifies a user or group.

The privileges must have been previously given to authorization-identifier by
means of the GRANT statement. For expanded authorization-identifier syntax, see
Expansion of Authorization-identifier.

REVOKE All Table Privileges

Chapter 8: Statements 505

Usage

Revoking Privileges

A user can hold a privilege on a resource through multiple resource names (for example,
through the use of wildcards) or through multiple authorization identifiers (for example,
through two different group identifiers). A REVOKE statement revokes the privileges
specified in the statement only on the specified resource name and only from the
specified authorization identifier.

For example, suppose:

■ User PKB is in the group SALES_ADMIN

■ PKB has been granted the SELECT privilege on the table
SALES_SCH.SALES_FORECAST

■ SALES_ADMIN has been granted the SELECT privilege on all tables named
SALES_SCH.SALES* where * is a wildcard character

You can revoke the SELECT privilege on SALES_FORECAST from the user identifier PKB.
However, PKB can still select data from the table because PKB is a member of
SALES_ADMIN.

Example

Revoking All Privileges From All Users

The following statement removes all privileges on all tables, views, functions,
procedures and table procedures in the TEST schema from the group PUBLIC:

revoke all privileges

 on test.*

 from public;

More Information

■ For more information about table access privileges, see GRANT Table Access
Privileges and REVOKE Table Access Privileges.

■ For more information about table definition privileges, see GRANT Definition
Privileges and REVOKE SQL Definition Privileges.

■ For more information about granting privileges, see your security administrator.

REVOKE SQL Definition Privileges

506 SQL Reference Guide

REVOKE SQL Definition Privileges

The REVOKE SQL Definition Privileges authorization statement removes from one or
more users or groups the privilege of performing selected actions on a specified access
module, schema, table, view, function, procedure or table procedure. It is also a CA
IDMS extension of the SQL standard.

Authorization

To issue a REVOKE statement for a definition privilege, you must own the resource, hold
the corresponding grantable privilege on the resource, or hold DBADMIN privilege on
the dictionary containing the definition.

Syntax

►►─── REVOKE ─┬─ DEFINE ─────────────┬───────────────────────────────────────►
 │ ┌─────── , ────────┐ │
 └─▼─┬─ ALTER ──────┬─┴─┘
 ├─ CREATE ─────┤
 ├─ DISPLAY ────┤
 ├─ DROP ───────┤
 └─ REFERENCES ─┘

 ►─── ON ─┬─ ACCESS MODULE ─┬─────────────────┬─ access-module-name ─┬────────►
 │ └─ schema-name. ─┘ │
 ├─ SCHEMA schema-name ─────────────────────────────────────┤
 ├─ table table-name ───────────────────────────────────────┤
 └──────┬────────────────┬────function-identifier───────────┘
 └─ schema-name. ─┘

 ┌─────────────── , ──────────────┐
 ►─── FROM ─▼─┬─ PUBLIC ───────────────────┬─┴────────────────────────────────►◄
 └─ authorization-identifier ─┘

REVOKE SQL Definition Privileges

Chapter 8: Statements 507

Parameters

DEFINE

Removes the ALTER, CREATE, DISPLAY, DROP, and REFERENCES privileges, as
applicable, on the resource identified in the ON parameter from the users or groups
identified in the FROM parameter.

ALTER

Removes the ALTER privilege on the resource identified in the ON parameter from
the users or groups identified in the FROM parameter.

CREATE

Removes the CREATE privilege on the resource identified in the ON parameter from
the users or groups identified in the FROM parameter.

DISPLAY

Removes the DISPLAY privilege on the resource identified in the ON parameter from
the users or groups identified in the FROM parameter.

DROP

Removes the DROP privilege on the resource identified in the ON parameter from
the users or groups identified in the FROM parameter.

REFERENCES

Removes the REFERENCES privilege on the resource identified in the ON parameter
from the users or groups identified in the FROM parameter.

ON

Identifies the resource to which the named privileges apply.

ACCESS MODULE access-module-name

Identifies an access module.

Privileges on any version of access-module-name in the associated schema are
revoked.

schema-name

Identifies the schema associated with the named access module.

If you do not specify schema-name, it defaults to the current schema in effect
for your SQL session.

SCHEMA schema-name

Identifies a schema.

table table-name

Identifies a table, view, procedure or table procedure.

If table-name does not include a schema name qualifier, the schema name qualifier
defaults to the current schema in effect for your SQL session.

REVOKE SQL Definition Privileges

508 SQL Reference Guide

schema-name

Specifies the schema with which the function identified by function-identifier is
associated. If schema-name is not specified, the schema defaults to the current
schema in effect for your SQL session.

function-identifier

Identifies the function.

FROM

Identifies the users from whom you are removing the specified privileges.

PUBLIC

Specifies all users.

The privileges must have been previously given to PUBLIC by means of the GRANT
statement.

authorization-identifier

Identifies a user or group.

The privileges must have been previously given to authorization-identifier by
means of the GRANT statement. For expanded authorization-identifier syntax, see
Expansion of Authorization-identifier.

REVOKE SQL Definition Privileges

Chapter 8: Statements 509

Usage

Revoking Privileges

A user can hold a privilege on a resource through multiple resource names (for example,
through the use of wildcards) or through multiple authorization identifiers (for example,
through two different group identifiers). A REVOKE statement revokes the privileges
specified in the statement only on the specified resource name and only from the
specified authorization identifier.

For example, suppose:

■ User PKB is in the group SALES_ADMIN

■ PKB has been granted the CREATE privilege on the access module name
SALES_SCH.SALESFCT

■ SALES_ADMIN has been granted the CREATE privilege on all access modules named
SALES_SCH.SALES* where * is a wildcard character

You can revoke the CREATE privilege on SALESFCT from the user identifier PKB.
However, PKB can still create an access module by that name in the SALES_SCH schema
because PKB is a member of SALES_ADMIN.

The DEFINE Keyword

When you use the DEFINE keyword with a GRANT statement, you grant a set of
definition privileges on a resource to one or more users or groups.

When you use the DEFINE keyword with a REVOKE statement, you revoke any definition
privileges that have been previously granted on the resource from the specified users or
groups.

This means that if you GRANT CREATE privilege on a table, you can revoke the privilege
with a REVOKE SELECT statement or a REVOKE DEFINE statement. Using REVOKE DEFINE
is an efficient technique when you intend to revoke all definition privileges on a table
from a user or group, whether the privileges were granted singly or as a set.

Similarly, you can GRANT DEFINE on a table to a user and then REVOKE DELETE on the
table from the same user as a way to grant all but one definition privilege.

REVOKE Execution Privilege

510 SQL Reference Guide

Example

Revoking Privileges on a Schema

The following REVOKE statement removes the ALTER, CREATE, DISPLAY, and DROP
privileges on all schemas that begin with 'DSF' from user DSF:

revoke define

 on schema dsf*

 from dsf;

More Information

■ For more information about granting definition privileges, see GRANT Definition
Privileges.

■ For more information about revoking privileges, see your security administrator.

REVOKE Execution Privilege

The REVOKE Execution Privilege authorization statement removes from one or more
users or groups the privilege of executing a specified access module. It is also a CA IDMS
extension of the SQL standard.

Authorization

To revoke access module execution privilege, you must own the schema associated with
the access module, hold grantable privilege on the access module, or hold DBADMIN
privilege on the dictionary that contains the access module.

Syntax

►►─── REVOKE EXECUTE ───►

 ►─── ON ACCESS MODULE ─┬────────────────┬─ access-module-name ───────────────►
 └─ schema-name. ─┘

 ┌─────────────── , ──────────────┐
 ►─── FROM ─▼─┬─ PUBLIC ───────────────────┬─┴────────────────────────────────►◄
 └─ authorization-identifier ─┘

REVOKE Execution Privilege

Chapter 8: Statements 511

Parameters

ON ACCESS MODULE access-module-name

Specifies the access module to which the EXECUTE privilege applies.

schema-name

Identifies the schema associated with access-module-name. If you do not
specify schema-name, it defaults to the current schema in effect for your SQL
session.

FROM

Identifies the users from whom you are removing the EXECUTE privilege.

PUBLIC

Specifies all users.

The privilege must previously have been granted to PUBLIC.

authorization-identifier

Identifies a user or group.

The privilege must previously have been granted to authorization-identifier. For
expanded authorization-identifier syntax, see Expansion of Authorization-identifier.

Usage

Revoking Privileges

A user can hold a privilege on a resource through multiple resource names (for example,
through the use of wildcards) or through multiple authorization identifiers (for example,
through two different group identifiers). A REVOKE statement revokes the privileges
specified in the statement only on the specified resource name and only from the
specified authorization identifier.

For example, suppose:

■ User PKB is in the group SALES_ADMIN

■ PKB has been granted the EXECUTE privilege on the access module name
SALES_SCH.SALESFCT

■ SALES_ADMIN has been granted the EXECUTE privilege on all access module named
SALES_SCH.SALES* where * is a wildcard character

You can revoke the EXECUTE privilege on SALESFCT from the user identifier PKB.
However, PKB can still execute an access module by that name in the SALES_SCH
schema because PKB is a member of SALES_ADMIN.

REVOKE Table Access Privileges

512 SQL Reference Guide

Example

Revoking the EXECUTE Privilege

The following REVOKE EXECUTE statement removes the EXECUTE privilege on all access
modules associated with schema HR that begin with 'EMP' from the users in group
PER_GRP_2:

revoke execute

 on access module hr.emp*

 from per_grp_2;

More Information

■ For more information about granting the EXECUTE privilege, see GRANT Access
Module Execution Privilege.

■ For more information about revoking privileges, see your security administrator.

REVOKE Table Access Privileges

The REVOKE Table Access Privileges authorization statement removes from one or more
users or groups the privilege of performing selected actions on a specified table, view,
function, procedure or table procedure.

Authorization

To issue a REVOKE statement for a table, view, function, procedure or table procedure
privilege, you must own, hold the corresponding grantable privilege on the table, view,
function, procedure or table procedure, or hold the DBADMIN privilege on the
database.

Syntax

►►─── REVOKE ─┬─ ACCESS ──────────┬──►
 │ ┌───── , ──────┐ │
 └──▼─┬─ DELETE ─┬─┴─┘
 ├─ INSERT ─┤
 ├─ SELECT ─┤
 └─ UPDATE ─┘

 ►─── ON table─┬─ table-name ───┬─►
 └┬────────────────┬──────────── function-identifier ─────────┘
 └─ schema-name. ─┘

 ┌─────────────── , ──────────────┐
 ►─── FROM ─▼─┬─ PUBLIC ───────────────────┬─┴────────────────────────────────►◄
 └─ authorization-identifier ─┘

REVOKE Table Access Privileges

Chapter 8: Statements 513

Parameters

ACCESS

Removes the DELETE, INSERT, SELECT, and UPDATE privileges on the named table,
view, function, procedure or table procedure from the users or groups identified in
the FROM parameter.

DELETE

Removes the DELETE privilege on the table, view, or table procedure identified in
the ON parameter from the users or groups identified in the FROM parameter.

INSERT

Removes the INSERT privilege on the table, view, or table procedure identified in
the ON parameter from the users or groups identified in the FROM parameter.

SELECT

Removes the SELECT privilege on the table, view, function, procedure or table
procedure identified in the ON parameter from the users or groups identified in the
FROM parameter.

UPDATE

Removes the UPDATE privilege on the table, view, or table procedure identified in
the ON parameter from the users or groups identified in the FROM parameter.

ON table table-name

Specifies the table, view, procedure or table procedure which the access privileges
apply.

If table-name does not include a schema name qualifier, the schema name qualifier
defaults to the current schema in effect for your SQL session. For expanded
table-name syntax, see Expansion of Table-name.

schema-name

Specifies the schema with which the function identified by function-identifier is
associated. If schema-name is not specified, the schema qualifier defaults to the
current schema in effect for your SQL session.

function-identifier

Identifies the function to which the privileges apply.

FROM

Identifies the users from whom you are removing access privileges.

REVOKE Table Access Privileges

514 SQL Reference Guide

PUBLIC

Specifies all users.

The privileges must have been previously given to PUBLIC by means of the GRANT
statement.

authorization-identifier

Identifies a user or group.

The privileges must have been previously given to authorization-identifier by
means of the GRANT statement. For expanded authorization-identifier syntax, see
Expansion of Authorization-identifier.

REVOKE Table Access Privileges

Chapter 8: Statements 515

Usage

The ACCESS Keyword

When you use the ACCESS keyword with a GRANT statement, you grant a set of access
privileges on a table, view, function, procedure or table procedure to one or more users
or groups.

When you use the ACCESS keyword with a REVOKE statement, you revoke any access
privileges that have been previously granted on the table, view, function, procedure or
table procedure from the specified users or groups.

Therefore, if you GRANT SELECT privilege on a table, you can revoke the privilege with a
REVOKE SELECT statement or a REVOKE ACCESS statement. Using REVOKE ACCESS is an
efficient technique when you intend to revoke all access privileges on a table from a
user or group, whether the privileges were granted singly or as a set.

Similarly, you can GRANT ACCESS on a table to a user and then REVOKE DELETE on the
table from the same user as a way to grant all but one table access privilege.

Revoking Privileges

A user can hold a privilege on a resource through multiple resource names (for example,
through the use of wildcards) or through multiple authorization identifiers (for example,
through two different group identifiers). A REVOKE statement revokes the privileges
specified in the statement only on the specified resource name and only from the
specified authorization identifier.

For example, suppose:

■ User PKB is in the group SALES_ADMIN

■ PKB has been granted the SELECT privilege on the table name
SALES_SCH.SALES_FORECAST

■ SALES_ADMIN has been granted the SELECT privilege on all tables named
SALES_SCH.SALES* where * is a wildcard character

You can revoke the SELECT privilege on SALES_FORECAST from the user identifier PKB.
However, PKB can still select from the SALES_FORECAST table because PKB is a member
of SALES_ADMIN.

ROLLBACK

516 SQL Reference Guide

Example

Revoking Selected Privileges on a Table

The following REVOKE statement removes the SELECT and UPDATE privileges on the
EMPLOYEE table from users KRP, SAE, and PGD:

revoke select, update

 on employee

 from krp, sae, pgd;

More Information

■ For more information about granting table access privileges, see GRANT Table
Access Privileges.

■ For more information about revoking privileges, see your security administrator.

ROLLBACK

The ROLLBACK transaction management statement performs the following tasks:

■ Cancels changes made to the database during the current transaction

■ Ends the transaction

■ Optionally ends the SQL session

Authorization

None required.

Syntax

►►─── ROLLBACK work ─┬───────────┬──►◄
 └─ RELEASE ─┘

Parameters

RELEASE

Directs CA IDMS to end the current SQL session and the current transaction after
canceling the changes to the database.

The RELEASE parameter is a CA IDMS extension of the SQL standard.

ROLLBACK

Chapter 8: Statements 517

Usage

Effect of a ROLLBACK on an SQL Session

A ROLLBACK statement has the following impact on the SQL session and its transaction:

■ Rolls back all changes made by the session

■ Releases all locks

■ Closes all open cursors

■ Drops all temporary tables

■ Deletes all dynamically compiled statements

■ Terminates the SQL session CA IDMS connected it automatically or if RELEASE is
specified.

Effect of Transaction Sharing

If more than one database session is sharing the SQL session's transaction, the changes
made by all sharing sessions are immediately rolled back. All sharing sessions other than
the one through which the ROLLBACK statement was issued are flagged to indicate that
they must also issue a ROLLBACK. If the next statement issued by each of these sessions
is not a ROLLBACK, it will receive an error:

■ For SQL, the application receives an SQLCODE of -5 (transaction failure) and an
SQLRSN of 1088 (transaction forced to backout).

■ For navigational DML, the run unit is terminated and an error status of xx19 is
returned to the application.

Example

Canceling Database Changes

The following ROLLBACK statement cancels the uncommitted changes to the database
made during the current transaction and ends both the transaction and the current SQL
session:

EXEC SQL

 ROLLBACK RELEASE

END-EXEC

More Information

■ For more information about committing changes to the database before ending a
transaction, see COMMIT.

■ For more information about ending an SQL session, see RELEASE.

■ For more information about managing or sharing transactions, see the CA IDMS SQL
Programming Guide.

SELECT

518 SQL Reference Guide

SELECT

The SELECT data manipulation statement retrieves values from one or more tables,
views, procedures and table procedures. CA IDMS returns the values in the form of a
result table.

When the SELECT statement is:

■ Submitted through the Command Facility, the values in the result table are
displayed in tabular form

■ Embedded in an application program or SQL routine, the values in the result table
are stored in host variables, local variables, or routine parameters

Authorization

To issue a SELECT statement, you must own or have the SELECT privilege on each table,
view, function, procedure and table procedure explicitly named in the statement.

Additional authorization requirements apply to each view explicitly named in the SELECT
statement, to each view explicitly named in the definition of such a view, to each view
explicitly named in the definition of those views, and so forth.

For any such view, the owner of the view must own or have the grantable SELECT
privilege on each table, view, procedure and table procedure explicitly named in the
view definition.

Syntax

►►─── SELECT ─┬────────────┬──►
 ├─ ALL ◄─────┤
 └─ DISTINCT ─┘

 ►─┬─ * ──┬───────────────►
 │ ┌─────────────────────── , ───────────────────────────┐ │
 └─▼─┬── value-expression ──┬──────────────────────────┬─┴──┤
 │ └─┬──────┬───result-name ──┘ │
 │ └─ AS ─┘ │
 ├─ table-name.* ───────────────────────────────────────┤
 └─ alias.* ──┘

 ►─┬───┬──────────────────────────────►
 │ ┌─────── , ───────────┐ │
 ├─ INTO ─▼┬─ host-variable ───┬┴────────────┤
 │ ├ local-variable ───┤ │
 │ └ routine-parameter ┘ │
 └─ BULK :bulk-buffer ──┬────────────────┬───┘
 └─ bulk-options ─┘

SELECT

Chapter 8: Statements 519

 ┌──────────── , ────────────────────────────────────┐
 ►─── FROM ─▼─┬─ table-reference ────┬─┬────────────────────┬───┴─────────────►
 └─ (query-expression) ─┘ └─┬──────┬─── alias ─┘
 └─ AS ─┘

 ►─┬───┬──────────────────────────►
 └─ WHERE ──┬─ search-condition ──────────┬──────┘
 └─ extended-search-condition ─┘

 ►─┬─────────────────────────────┬──►
 └─ PRESERVE ─┬─ table-name ─┬─┘
 └─ alias ──────┘

 ►─┬───┬────────────────────────►
 │ ┌─────────────── , ────────────────┐ │
 └─ GROUP BY ─▼─┬───────────────┬─ column-name ─┴─┤
 ├─ table-name. ─┤ │
 ├─ alias. ──────┘ │
 └─ rowid-pseudo-column ────────────┘

 ►─┬───────────────────────────┬──►
 └─ HAVING search-condition ─┘

 ►─┬─────────────────────────────┬──►
 └─ OPTIMIZE FOR literal ROWS ─┘

 ►─┬───┬──────────────────────────────►
 │ ┌───────────────────────────────────────┐ │
 └─▼─ UNION ─┬────────┬─ query-expression ─┴─┘
 └─ ALL ──┘

 ┌─────────────────────── , ───────────────────────────┐
 ►── ORDER BY ─▼─┬─┬───────────────┬─ column-name ─┬───┬──────────┬──┴────────►◄
 │ ├─ table-name. ─┤ │ ├─ ASC ◄───┤
 │ └─ alias. ──────┘ │ └─ DESC ───┘
 ├─ column-number ─────────────────┤
 ├─ result-name ───────────────────┤
 └─ rowid-pseudo-column ───────────┘

Expansion of bulk-options

►►──┬──────────────────────────────┬──►
 └─ START :start-variable-name ─┘

 ►──┬─────────────────────────────────┬───────────────────────────────────────►◄
 └─ ROWS :row-count-variable-name ─┘

Parameters

ALL

Directs CA IDMS to return all the rows, including duplicates, in the requested result
table. The default value is ALL when you specify neither ALL nor DISTINCT.

DISTINCT

Directs CA IDMS to eliminate duplicate rows from the result table returned by the
SELECT statement.

*

Specifies that the result table is to include all columns in the tables, views,
procedures and table procedures named in the FROM parameter of the SELECT
statement. The columns in the tables, views, procedures and table procedures are
concatenated in the order in which the tables, views, procedures and table
procedures are specified in the FROM parameter.

SELECT

520 SQL Reference Guide

value-expression

Identifies the values to be included in a result column. Typically, value-expression is
a column reference, an arithmetic operation that includes a column reference, or
an aggregate function that includes a column reference.

Each column reference in value-expression must identify a column in the table
defined by the FROM parameter of the SELECT statement.

You can specify from 1 through 1,024 value expressions. Multiple value expressions
must be separated by commas.

The number of columns in a result table is the same as the number of value
expressions in the SELECT statement defining the result table. For expanded
value-expression syntax, see Expansion of Value-expression.

AS result-name

Specifies a name for the result column identified by value-expression. When
displaying the result table, the Command Facility uses the result name as the
column header.

Result-name must be a 1- through 32-character name that follows the conventions
for SQL identifiers.

SELECT

Chapter 8: Statements 521

table-name.*

Specifies that the result table is to include all columns in the table identified by
table-name.

Table-name must match an occurrence of table-name in the FROM parameter.

alias.*

Specifies that the result table is to include all columns in the table identified by
alias.

Alias must match an occurrence of alias in the FROM parameter.

INTO host-variable

local-variable

routine-parameter

Identifies the variables to which CA IDMS is to assign the values in the result table.
CA IDMS assigns the value in the first result column to the first variable, the value in
the second result column to the second variable, and so on. You use the INTO
parameter when the result table will contain at most one row.

Host-variable must be a host variable previously declared in the application
program.

Local-variable and routine-parameter must be defined previously in the SQL
routine.

You must specify the same number of variables in the INTO parameter as the
number of columns in the result table. Multiple variables must be separated by
commas.

You can specify the INTO parameter only when you embed the SELECT statement in
an application program or SQL routine. You must specify INTO or BULK when you
embed a SELECT statement in a host program or SQL routine.

SELECT

522 SQL Reference Guide

BULK :bulk-buffer

Identifies a variable defined as an array to which CA IDMS is to assign the values in
the result table. The BULK parameter is a CA IDMS extension of the SQL standard.
You use the BULK parameter when the result table may contain more than one row.

You can specify the BULK parameter only when you embed the SELECT statement in
an application program. You must specify BULK or INTO when you embed a SELECT
statement in a host program.

Bulk-buffer must be a variable previously declared in the host-language application
program or SQL routine. Bulk-buffer must have a subordinate structure that occurs
multiple times and has the same number of sub-elements as the number of
columns in the result table.

bulk-options

Refers to optional parameters when BULK is specified. Syntax for bulk-options
immediately follows the syntax for SELECT.

FROM table-reference

Identifies one or more tables, views, procedures and table procedures from which
the result table is to be derived. For expanded table-reference syntax, see
Expansion of Table-reference.

(query-expression)

Represents a table to be used in the evaluation of an SQL statement.

AS alias

Defines a new name to be used to identify the table, view, procedure, table
procedure or query-expression within the SELECT statement. Alias must be a 1-
through 18-character name that follows the conventions for SQL identifiers.

Note: CA IDMS supports keywords as identifiers as an extension of the SQL
standard. However, if you use a keyword as an alias but do not code the
optional parameter AS, you must delimit the keyword with double quotation
marks or a syntax error will occur.

SELECT

Chapter 8: Statements 523

WHERE

Introduces criteria that a row must meet to be included in the result table.

search-condition

Specifies the set of values against which a row in the base table is tested:

■ When the value of search-condition is true, the row is included in the result
table

■ When the value of search-condition is false or unknown, the row is not
included in the result table

For expanded search-condition syntax, see Expansion of Search-condition.

extended-search-condition

Specifies a search condition that includes a set specification. For expanded
extended-search-condition syntax, see Expansion of Extended-search Condition.

PRESERVE

Requests an outer join on the specified table, view, procedure, or table procedure.
The PRESERVE parameter is a CA IDMS extension of the SQL standard.

To specify a more powerful outer join that is compatible with the SQL standard, use
the joined-table construct as table-reference

table-name

Specifies by table name the table, view, procedure or table procedure to be
preserved in an outer join. For expanded table-name syntax, see Expansion of
Table-name.

SELECT

524 SQL Reference Guide

alias

Specifies the table, view, procedure or table procedure to be preserved in an outer
join by the alias defined for the table or view in the FROM parameter of the SELECT
statement.

GROUP BY column-name

Groups the rows in the table defined by the FROM parameter by the values in the
specified columns. Rows with the same value in each grouping column are grouped
together.

Column-name must identify a column in a table, view, procedure or table procedure
named in the FROM parameter of the SELECT statement.

table-name

Specifies the table, view, procedure or table procedure that includes the
named column. For expanded table-name syntax, see Expansion of
Table-name.

alias

Specifies the alias associated with the table, view, procedure or table
procedure that includes the named column. Alias must be defined in the FROM
parameter of the SELECT statement.

rowid-pseudo-column

Specifies a ROWID pseudo-column as a grouping column. See Expansion of
rowid-pseudo-column for more information.

HAVING search-condition

Specifies criteria a group must meet to be included in the result table:

■ When the value of search-condition is true, the group is included in the result
table

■ When the value of search-condition is false or unknown, the group is not
included in the result table

For expanded search-condition syntax, see Expansion of Search-condition.

SELECT

Chapter 8: Statements 525

OPTIMIZE FOR literal ROWS

Specifies the expected number of output rows from this query-specification. It is
used by the optimizer to generate the best possible access strategy for satisfying
query-expression. "Literal" is an integer constant.

UNION query-expression

Specifies that:

■ The result table is to include both the rows from the table defined in the FROM
parameter of the SELECT statement and the rows from the table defined in
query-expression.

■ Duplicate rows are to be eliminated from the table resulting from the UNION
operation, unless the ALL keyword is present.

You cannot include the UNION operator in a SELECT statement embedded in an
application program.

See Expansion of Query-expression for:

■ Expanded query-expression syntax

■ A discussion of data type compatibility and the data type that results from the
union of columns with compatible data types

ALL

Specifies that all rows resulting from the UNION operation are retained; duplicates
are not discarded.

ORDER BY

Sorts the rows in the table defined by the FROM parameter in ascending or
descending order by the values in the specified columns. Rows are ordered first by
the first column specified, then by the second column specified within the ordering
established by the first column, then by the third column specified, and so on.

column-name

Specifies a sort column by the column name. Column-name must identify a column
in a table, view, procedure or table procedure named in the FROM parameter of
the SELECT statement and must be included in the result table.

table-name

Specifies the table, view, procedure or table procedure that includes the
named column. For expanded table-name syntax, see Expansion of
Table-name.

alias

Specifies the alias associated with the table, view, procedure or table
procedure that includes the named column. Alias must be defined in the FROM
parameter of the SELECT statement.

SELECT

526 SQL Reference Guide

column-number

Specifies a sort column by the position of the column in the result table. The first
result column is in position 1.

Column-number must be an integer in the range 1 through the number of columns
in the result table.

result-name

Specifies the sort column by the result name specified in the AS parameter of
query-expression.

rowid-pseudo-column

Specifies a sort column as a ROWID pseudo-column. See Expansion of
rowid-pseudo-column for more information.

ASC

Indicates that the values in the specified column are to be sorted in ascending
order. ASC is the default when you specify neither ASC nor DESC.

SELECT

Chapter 8: Statements 527

DESC

Indicates that the values in the specified column are to be sorted in descending
order.

Parameters for Expansion of bulk-options

START :start-variable-name

Identifies a variable containing the relative position within the bulk buffer to which
CA IDMS is to assign the values in the first row of the result table. Values in
subsequent rows of the result table are assigned sequentially to subsequent
positions in the bulk buffer.

Start-variable-name must be a variable previously declared in the host-language
application program or SQL routine. The value in the variable must be an integer in
the natural range of subscripts for arrays in the language in which the application
program is written.

If you do not specify the START parameter, CA IDMS assigns the values in the first
row of the result table to the beginning of the bulk buffer.

ROWS :row-count-variable-name

Identifies a variable that specifies the maximum number of rows in the result table
CA IDMS is to assign to the bulk buffer.

Row-count-variable-name must be a variable previously declared in the
host-language application program or SQL routine. The value in the host variable
must be an integer in the range 1 through the number of rows that will fit in the
bulk buffer.

If you do not specify the ROWS parameter, CA IDMS assigns the rows in the result
table to the bulk buffer sequentially until no more rows exist in the result table or
the buffer is full.

Note: The bulk-buffer, start-variable-name, and row-count-variable-name variables
can be host variables, or when the statement is used in an SQL routine, local
variables or routine parameters. In this case, their names must not be preceded
with a colon.

SELECT

528 SQL Reference Guide

Usage

Value Expressions without Column References

If the value expression that identifies a result column does not include any column
references, the result column contains the same value in each row. This value is derived
directly from the value expression without reference to the table defined by the FROM
parameter of the SELECT statement.

Use of BULK and INTO

You must specify the BULK parameter or the INTO parameter when you embed the
SELECT statement in an application program, except when the statement is to be
compiled dynamically.

You cannot specify either of these parameters when you submit the SELECT statement
through the command facility or for dynamic compilation in an application program.

When you embed the SELECT statement in an application program and:

■ You specify INTO, the result table must have at most one row

■ You specify BULK, the result table must have no more rows than the number of
entries in the bulk buffer (or the value of row-count-variable-name, if specified)

SELECT

Chapter 8: Statements 529

If neither of these conditions is met, CA IDMS returns a cardinality violation error.

Note: To select an undetermined number of rows, the SELECT statement must be
associated with a cursor. You can fetch rows individually from the cursor.

Compatible Data Types

The data types of the result columns and their corresponding host variables in the BULK
or INTO parameter must be compatible for assignment.

Uniqueness of Table Names

Each alias and each table name without an associated alias must be unique within the
FROM parameter of a SELECT statement.

Column References in the WHERE Parameter

Each column reference directly included in the search condition in the WHERE
parameter of a SELECT statement must identify a column in a table, view, procedure or
table procedure specified in the FROM parameter of the SELECT statement, or be an
outer reference.

Note: For more information about outer references, see Subqueries.

Aggregate Functions in the WHERE Parameter

The search condition in the WHERE parameter of a SELECT statement cannot directly
include an aggregate function. However, you can use aggregate functions in subqueries
within the search condition.

GROUP BY Parameter Requirements

When a SELECT statement includes the GROUP BY parameter, each column reference in
the value expressions that identify the result columns must identify a column specified
in the GROUP BY parameter or occur only in the argument of an aggregate function. If
the result columns are identified by an asterisk (*), the GROUP BY parameter must
include all the columns in the tables, views, procedures and table procedures specified
in the FROM parameter.

SELECT Statements without the GROUP BY Parameter

If a SELECT statement does not include the GROUP BY parameter:

■ If any column reference in a value expression that identifies a result column is
included in the argument of an aggregate function, all column references in all the
value expressions must be in aggregate functions

■ The entire table defined by the FROM and WHERE parameters is treated as a single
group

SELECT

530 SQL Reference Guide

Column References in the HAVING Parameter

Each column reference included in the search condition in the HAVING parameter of a
SELECT statement must identify a column specified in the GROUP BY parameter of the
SELECT statement or occur in the argument of an aggregate function.

When to Use OPTIMIZE FOR Literal ROWS

Under some circumstances, the SQL optimizer may choose a less than optimal access
strategy to satisfy a query expression. This typically happens with host program
embedded SQL statements which contain WHERE clauses with host variable references,
rather than explicit constants. For example, a BETWEEN clause involving host variables
may induce the optimizer to assume many rows will be retrieved, causing it to choose
an area sweep to satisfy the request. Without knowing the underlying values of the host
variables, the optimizer cannot know if the BETWEEN will always qualify a small number
of rows, thus possibly making an index retrieval much more efficient. The OPTIMIZE FOR
literal ROWS clause is used to override the number of expected rows deduced by the
optimizer. This allows it to generate better access strategies.

SELECT

Chapter 8: Statements 531

Result Column Names with the UNION Operator

When a SELECT statement includes the UNION operator, the names of the columns in
the result table are the names established by the last UNION operand. These names are
used as:

■ Column headings when the online command facility displays the result table

■ Column names in the SQL descriptor area when CA IDMS compiles the SELECT
statement dynamically

Outer Join Using PRESERVE

Within a SELECT statement, PRESERVE can be used to request an outer join on one of
the tables or views named in the FROM parameter. If PRESERVE is specified, the result
table includes rows of the preserved table for which no matching row exists in the other
tables used in the join operation.

If no matching row exists, the corresponding columns in the result table are set to null.
Predicates in the WHERE clause other than those used to perform the outer join are
evaluated before determining whether a matching row exists.

The following statement returns the names of all active employees. The name of the
employee's spouse is also returned if found. The logic of the statement is that the result
table will include the name of each active employee, whether the employee has a
spouse:

select e.first_name, e.last_name,

 s.first_name, s.last_name

 from employee e, relation s

 where e.empid=s.empid

 and e.status='A' -- active employee

 and s.relationship='S' -- employee's spouse

 preserve e ;

SELECT

532 SQL Reference Guide

Examples

Selecting a Single Row

The following SELECT statement retrieves information about a specific project from the
PROJECT and EMPLOYEE tables. The value in each selected column is assigned to the
corresponding host variable. The SELECT statement includes indicator variables for the
ACT_START_DATE, ACT_END_DATE, EST_START_DATE, and EST_END_DATE columns.

EXEC SQL

 SELECT PROJ_ID, EMP_FNAME, EMP_LNAME, DEPT_ID, PROJ_DESC,

 ACT_START_DATE, ACT_END_DATE, EST_START_DATE, EST_END_DATE

 INTO :PROJ-ID, :EMP-FNAME, :EMP-LNAME, :DEPT-ID, :PROJ-DESC,

 :ACT-START-DATE :ACT-START-DATE-IND,

 :ACT-END-DATE :ACT-END-DATE-IND,

 :EST-START-DATE :EST-START-DATE-IND,

 :EST-END-DATE :EST-END-DATE-IND

 FROM PROJECT, EMPLOYEE

 WHERE PROJ_LEADER_ID = EMP_ID

 AND PROJ_ID = :PROJECT_NUMBER

END-EXEC

SELECT

Chapter 8: Statements 533

Retrieving Values through the Command Facility

The following SELECT statement retrieves project information for each employee and
consultant in department 1100.

select e.proj_id, emp_lname, emp_fname, est_start_date, act_start_date

 from employee e, project p

 where e.proj_id = p.proj_id

 and dept_id = 1100

 union select c.proj_id as "Project ID",

 con_lname as "Last Name",

 con_fname as "First Name",

 est_start_date as "Estimated Start Date",

 act_start_date as "Actual Start Date"

 from consultant c, project p

 where c.proj_id = p.proj_id

 and dept_id = 1100

 order by 1, 2, 3;

Selecting Multiple Rows into a Buffer

The following SELECT statement returns information on the cost of insurance plans in
Massachusetts into an array identified by the host variable :INS-COST-BUFFER:

EXEC SQL

 SELECT PLAN_CODE, COMP_NAME, MAX_LIFE_COST, FAMILY_COST, DEP_COST

 BULK :INS-COST-BUFFER

 FROM INSURANCE_PLAN

 WHERE STATE = 'MA'

END-EXEC

More Information

■ For more information about host variables, local variables, or routine parameters,
see Host Variables, Local Variables, or Routine Parameters (see page 84).

■ For more information about compatible data types for assignment operations, see
Comparison, Assignment, Arithmetic, and Concatenation Operations.

■ For more information about outer joins, see Expansion of Joined-table, and Query
Specifications.

■ For more information about the UNION operator, see Expansion of
Query-expression.

■ For more information about bulk processing in an application program, see the CA
IDMS SQL Programming Guide.

SET ACCESS MODULE

534 SQL Reference Guide

SET ACCESS MODULE

The SET ACCESS MODULE statement overrides the default access module to be used by
a transaction. You can issue only one SET ACCESS MODULE statement in any given
transaction. It is also a CA IDMS extension of the SQL standard. You can use this
statement only in SQL that is embedded in a program.

Authorization

None required.

Syntax

►►─── SET ACCESS MODULE ─┬─ access-module-name ───────────┬───────────────────►◄
 └─ :access-module-variable-name ─┘

Parameters

access-module-name

Specifies the access module to be used by the current transaction.
Access-module-name must identify an access module stored in the dictionary.

:access-module-variable-name

Identifies a host variable, local variable, or routine parameter containing the name
of the access module to be used by the current transaction.
Access-module-variable-name must be a variable previously defined in the
application program or SQL routine.

If access-module-variable-name is a local variable or routine parameter, the colon
must not be coded.

SET host-variable Assignment

Chapter 8: Statements 535

Usage

Order of Execution

If used, the SET ACCESS MODULE statement must be executed before any statement in
the transaction other than:

■ CONNECT

■ SET SESSION

■ SET TRANSACTION

Default Access Module

By default, a transaction uses the access module associated with the application
program issuing the first SQL statement executed within the SQL session.

One Access Module for a Transaction

A transaction can use only one access module.

Example

Setting the Access Module

The following SET ACCESS MODULE specifies that the current transaction is to use the
access module identified by the host variable TRANS-ACC-MOD:

EXEC SQL

 SET ACCESS MODULE :TRANS-ACC-MOD

END-EXEC

Note: For more information about setting the access module for a transaction, see the
CA IDMS SQL Programming Guide.

SET host-variable Assignment

The SET host-variable statement enables directly assigning the results of an SQL value
expression to a host variable. This statement can only be used in embedded SQL.

Syntax

►►── SET ──── host-variable ───────── = ────┬─ value-expression ─┬────────────►◄
 └─ NULL ─────────────┘

SET SESSION

536 SQL Reference Guide

Parameters

host-variable

Identifies a host-variable that is to receive the value of the specified value
expression or null. Host-variable must be a host variable previously declared in the
application program.

value-expression

Specifies the value to be assigned to the destination or receiving field of the
assignment statement.

NULL

Specifies that host-variable is set to the NULL value.

Usage

The rules for assignment are provided in Comparison, Assignment, Arithmetic, and
Concatenation Operations.

Example

The host-variable COMB-NAME is constructed from the values in the host-variables
FIRST-NAME and LAST-NAME.

EXEC SQL

 set:COMB-NAME=trim(:FIRST-NAME) ||' '|| trim(:LAST-NAME);

END-EXEC

SET SESSION

The SET SESSION management statement establishes SQL session characteristics. Using
the SET SESSION statement, you can perform the: following tasks:

■ Specify whether subsequent SQL statements must comply with a particular SQL
standard

■ Change the current schema in effect for the SQL session

■ Establish default transaction options

■ Control SQL dynamic statement caching

■ Specify the encoding of XML values

These session characteristics apply only to SQL submitted through the Command Facility
or for dynamic compilation during the execution of an application program.

A SET SESSION statement must include at least one parameter and is a CA IDMS
extension of the SQL standard.

SET SESSION

Chapter 8: Statements 537

Authorization

None required.

Syntax

►►─── SET SESSION ──►

 ┌──────────────────────┐
 ►─────▼─ session-attribute ──┴───►◄

Expansion of session-attribute

►──┬─ CHECK SYNTAX ─┬─ SQL89 ────────┬────────────────────────────────┬──────►◄
 │ ├─ FIPS ─────────┤ │
 │ └─ EXTENDED ─────┘ │
 ├─ CURRENT SCHEMA ─┬─ schema-name ──┬──────────────────────────────┤
 │ └─ NULL ─────────┘ │
 ├─┬─ CURSOR STABILITY ─┬───┤
 │ └─ TRANSIENT READ ───┘ │
 │ │
 ├─┬─ READ ONLY ──┬───┤
 │ └─ READ WRITE ─┘ │
 ├─ SQL CACHING ─┬─ ON ────────┬─────────────────────────────────┤
 │ ├─ OFF ─────────┤ │
 │ └─ DEFAULT ◄─────┘ │
 └─ XML ENCODING ─┬─ UTF8 ───────┬──────────────────────────────────┘
 ├─ UTF16BE ────┤
 ├─ UTF16LE ────┤
 └─ EBCDIC ◄────┘

Parameters

Parameters for Expansion of session-attribute

CHECK SYNTAX

Specifies whether CA IDMS is to check subsequent SQL statements for compliance
with a particular standard.

If CHECK SYNTAX is not specified, SQL statements are checked for compliance with
CA IDMS Extended SQL.

SQL89

Directs CA IDMS to use ANSI X3.135-1989 (Rev), Database Language SQL with
integrity enhancement, as the standard for compliance.

FIPS

Directs CA IDMS to use FIPS PUB 127-1, Database Language SQL, as the standard
for compliance.

Note: The FIPS standard is based on ANSI X3.135-1989 (Rev). Specifying FIPS in the
CHECK SYNTAX parameter has the same effect as specifying SQL89.

EXTENDED

Directs CA IDMS to check subsequent SQL statements for compliance with CA IDMS
Extended SQL.

SET SESSION

538 SQL Reference Guide

CURRENT SCHEMA

Changes the default schema specification for the SQL session.

schema-name

Specifies a schema to be used as the default for the SQL session. The specified
schema overrides the default in effect for the user session.

NULL

Directs CA IDMS to use the default schema in effect for the user session as the
default for the SQL session.

CURSOR STABILITY/TRANSIENT READ

Directs CA IDMS to set the default isolation level to that specified.

READ ONLY/READ WRITE

Directs CA IDMS to set the default transaction mode to that specified.

SQL CACHING

Enables you to control dynamic SQL statement caching.

ON

If SQL caching is globally enabled, the session will use caching until the session
option is changed or until the caching is disabled at the system level.

OFF

Regardless of the global setting of SQL caching, the session will not use caching
until the session option is changed.

DEFAULT

Same as ON.

XML ENCODING

Specifies the type of encoding to use for XML values.

XML ENCODING remains valid until the end of session or until a new SET SESSION
command is executed.

UTF8

Specifies UTF-8 Unicode encoding.

UTF16BE

Specifies UTF-16 Big Endian Unicode encoding.

UTF16LE

Specifies UTF-16 Little Endian Unicode encoding.

EBCDIC

Specifies EBCDIC encoding. This is the default.

SET SESSION

Chapter 8: Statements 539

Usage

Default Schema for a User Session

The default schema in effect for a user session is established by a user profile, a system
profile, or a DCUF SET PROFILE command.

Duration of SQL Session Characteristics

The SQL session characteristics established by the SET SESSION statement remain in
effect until the end of the SQL session or until changed by a subsequent SET SESSION
statement.

Precompiled Statements

The SET SESSION command does not cause CA IDMS to check precompiled SQL
statements. Use the corresponding precompiler option to enable standards checking for
embedded SQL statements.

Establishing Default Transaction Options

You can establish default transaction options for an SQL session using the SET SESSION
statement. You can establish the default mode in which a database is accessed (READ
ONLY or READ WRITE) and specify an isolation level (CURSOR STABILITY or TRANSIENT
READ).

If you do not specify either of these options, the defaults are READ WRITE and CURSOR
STABILITY, or the settings specified as part of the access module definition for
embedded SQL. The default options may be overridden for an individual transaction by
using the SET TRANSACTION statement.

If a transaction is active at the time these options are changed, they impact only
subsequent transactions.

Note: For more information about transaction mode and isolation level, see CREATE
ACCESS MODULE.

SET SESSION

540 SQL Reference Guide

Examples

Checking Compliance with SQL Standard

The following SET SESSION statement which is embedded in an application program,
directs CA IDMS to flag any subsequent statements submitted for dynamic compilation
that do not comply with SQL standard 89:

EXEC SQL

 SET SESSION CHECK SYNTAX SQL89

END-EXEC

Setting a Default Schema

The following SET SESSION statement (submitted through the Command Facility) directs
CA IDMS to use the SALES_SCH schema as the default schema for the remainder of the
SQL session:

set session current schema sales_sch;

Encoding XML Values

The following examples illustrate EBCDIC and Unicode encoding.

Example 1 - EBCDIC encoding

set session XML ENCODING ebcdic ;

select cast(SLICE as BIN (27)) as EBCDIC

 from SYSCA.XMLSLICE

 where SLICESIZE = 27 and XMLVALUE =

 XMLCOMMENT(' 0123456789ABCDEF ');

The result looks like this:

*+ EBCDIC

*+ ------

*+ 4C5A60604040F0F1F2F3F4F5F6F7F8F9C1C2C3C4C5C6404060606E

SET SESSION

Chapter 8: Statements 541

Example 2 - UTF-8 encoding

set session XML ENCODING UTF8 ;

*+ Status = 0 SQLSTATE = 00000

select cast(SLICE as BIN (27)) as "UTF-8"

 from SYSCA.XMLSLICE

 where SLICESIZE = 27 and XMLVALUE =

 XMLCOMMENT(' 0123456789ABCDEF ');

The result looks like this:

*+ UTF-8

*+ -----

*+ 3C212D2D20203031323334353637383941424344454620202D2D3E

Example 3 - UTF-16 Big Endian encoding

set session XML ENCODING UTF16BE ;

*+ Status = 0 SQLSTATE = 00000

select cast(SLICE as BIN (27)) as "UTF-16 BE"

 from SYSCA.XMLSLICE

 where SLICESIZE = 27 and XMLVALUE =

 XMLCOMMENT(' 0123456789ABCDEF ');

The result looks like this:

*+ UTF-16 BE

*+ ---------

*+ 003C0021002D002D00200020003000310032003300340035003600

*+ 370038003900410042004300440045004600200020002D002D003E

Example 4 - UTF-16 Little Endian encoding

set session XML ENCODING UTF16LE ;

*+ Status = 0 SQLSTATE = 00000

select cast(SLICE as BIN (27)) as "UTF-16 LE"

 from SYSCA.XMLSLICE

 where SLICESIZE = 27 and XMLVALUE =

XMLCOMMENT(' 0123456789ABCDEF ');

The result looks like this:

*+ UTF-16 LE

*+ ---------

*+ 3C0021002D002D0020002000300031003200330034003500360037

*+ 0038003900410042004300440045004600200020002D002D003E00

SET TRANSACTION

542 SQL Reference Guide

More Information

■ For more information about CA IDMS compliance with SQL standard SQL, see
Summary Comparison to SQL Standard.

■ For more information about user profiles, see the CA IDMS Security Administration
Guide.

■ For more information about system profiles, see the CA IDMS System Tasks and
Operator Commands Guide.

■ For more information about the DCUF SET PROFILE command, see the CA IDMS
System Tasks and Operator Commands Guide.

■ For more information about managing SQL sessions, see the CA IDMS SQL
Programming Guide.

■ For more information about precompiler options, see the CA IDMS SQL
Programming Guide.

■ For more information about dynamic SQL statement caching, see SQL Cache Tables,
and the CA IDMS SQL Programming Guide.

SET TRANSACTION

The SET TRANSACTION management statement overrides the default characteristics of a
transaction. The default characteristics are established during access module
compilation or, for transactions initiated by the Command Facility, by CA IDMS, and may
subsequently have been overridden by a SET SESSION statement.

You can issue only one SET TRANSACTION statement in any given transaction.

Authorization

None required.

Syntax

►►─── SET TRANSACTION ──►

 ►─┬──────────────┬───►
 ├─ READ ONLY ─┤
 └─ READ WRITE ─┘

 ►─┬────────────────────┬───►◄
 ├─ CURSOR STABILITY ─┤
 └─ TRANSIENT READ ───┘

SET TRANSACTION

Chapter 8: Statements 543

Parameters

For the duration of the transaction in which the statement is executed, SET
TRANSACTION parameters override the defaults. A SET TRANSACTION statement must
specify at least one parameter; the combination of READ WRITE and TRANSIENT READ is
invalid.

Usage

Order of Execution

If used, the SET TRANSACTION statement must be executed before any statement in the
transaction other than:

■ CONNECT

■ SET ACCESS MODULE

■ SET SESSION

Default Transaction Characteristics

Default transaction characteristics are initially established during access module
compilation. If not specified as parameters on a CREATE or ALTER ACCESS MODULE
statement, and for transactions initiated through the Command Facility, the default
transaction characteristics are:

■ READ WRITE

■ CURSOR STABILITY

These initial defaults can be changed by issuing a SET SESSION statement.

Example

Setting Isolation Level

The following SET TRANSACTION statement specifies that the transaction has an
isolation level of transient read:

EXEC SQL

 SET TRANSACTION

 TRANSIENT READ

END-EXEC

More Information

■ For more information about isolation levels and SET TRANSACTION parameters, see
CREATE ACCESS MODULE.

■ For more information about managing transactions, see the CA IDMS SQL
Programming Guide.

SUSPEND SESSION

544 SQL Reference Guide

SUSPEND SESSION

The SUSPEND SESSION management statement suspends an SQL session and any
transaction currently active within the session. You use the SUSPEND SESSION
statement primarily in pseudoconversational programming. It is also a CA IDMS
extension of the SQL standard.

Authorization

None required.

Syntax

►►─── SUSPEND SESSION ──►◄

Usage

Effect of SUSPEND SESSION

When you suspend an SQL session, CA IDMS releases all resources except those
required to re-establish the session. Resources required to re-establish the session
include locks held by any currently active transaction, cursor currencies, and temporary
tables, and dynamically prepared statements.

The SUSPEND SESSION statement does not cause a commit or rollback of changes to the
database.

Valid SQL Statement After SUSPEND SESSION

The first SQL statement you issue after SUSPEND SESSION must be RESUME SESSION.

Example

Suspending a Session

The following SUSPEND SESSION statement suspends the current SQL session:

EXEC SQL

 SUSPEND SESSION

END-EXEC

More Information

■ For more information about resuming a suspended session, see RESUME SESSION.

■ For more information about managing SQL sessions, see the CA IDMS SQL
Programming Guide.

TRANSFER OWNERSHIP

Chapter 8: Statements 545

TRANSFER OWNERSHIP

The TRANSFER OWNERSHIP authorization statement passes ownership of a schema
from one user or group of users to another. It is also a CA IDMS extension of the SQL
standard.

Authorization

To issue a TRANSFER OWNERSHIP statement, you must own the schema named in the
statement or hold the DBADMIN privilege on the database in which the schema is
defined.

Syntax

►►─── TRANSFER OWNERSHIP OF SCHEMA schema-name ───────────────────────────────►

 ►─── TO authorization-identifier ──►◄

Parameters

OF SCHEMA schema-name

Specifies the schema whose ownership is being transferred. Schema-name must
identify a schema defined in the dictionary.

TO authorization-identifier

Identifies the user or group of users to whom you are transferring ownership of the
named schema. For expanded authorization-identifier syntax, see Expansion of
Authorization-identifier.

Usage

Schema Ownership

At any given time, a schema can be owned by one user or group of users. The initial
owner is the user who created the schema. When ownership of a schema is transferred
to a group, each user in the group has all the privileges associated with ownership.

Ownership of Other Entities

Technically, schemas are the only database entities that users own. However, by
association, the user or group that owns a schema is also said to own the entities in the
schema.

Ownership Privileges

The owner of a schema has all applicable privileges on entities in the schema, as well as
the privilege of granting those privileges to other users or groups. If you transfer
ownership of a schema to another user or group, you no longer have any privileges on
the entities in the schema.

UPDATE

546 SQL Reference Guide

Examples

Transferring Ownership to a Single User

The following TRANSFER OWNERSHIP statement transfers ownership of the PKE_SCH
schema to user PKE:

transfer ownership of schema pke_sch

 to pke;

Transferring Ownership to a Group

The following TRANSFER OWNERSHIP statement transfers ownership of the SALES_SCH
schema to the SALES_GRP group:

transfer ownership of schema sales

 to sales_grp;

More Information

■ For more information about creating a schema, see CREATE SCHEMA.

■ For more information about schema ownership, see your security administrator.

UPDATE

The UPDATE statement is a data manipulation statement that modifies the values in one
or more rows of a table.

UPDATE

Chapter 8: Statements 547

Authorization

To issue an UPDATE statement, you must:

■ Hold the UPDATE privilege on or own the table, view, or table procedure named as
the target of the update operation

■ Hold the SELECT privilege on or own each table, view, function, procedure and table
procedure explicitly named in a subquery in the search condition in the WHERE
parameter

Additional authorization requirements apply to:

■ A view named in table-reference; each view named in the FROM parameter of such
a view; each view named in the FROM parameters of those views, and so forth.

For any such view, the owner of the view must hold the grantable UPDATE privilege
on or own the table, view, or table procedure named in the FROM parameter of the
view definition.

■ Each view named in the FROM parameter of a subquery in the search condition;
each view named in the FROM parameter of such a view; each view named in the
FROM parameters of those views, and so forth.

For any such view, the owner of the view must hold the grantable SELECT privilege
on or own each table, view, function, or table procedure named in the FROM
parameter of the view definition.

Syntax

►►─── UPDATE table-reference ──┬───────────┬──────────────────────────────────►
 └─ alias ───┘

 ┌─────────────────── , ────────────────────────┐
 ►─── SET ─▼── column-name ── = ─┬─ value-expression ───┬─┴───────────────────►
 ├─ NULL ───────────────┤
 └─ (query-expression) ─┘

 ►─┬───┬────────────────────►◄
 └─ WHERE ─┬─ search-condition ────────────────────────┤
 └─ CURRENT OF ─┬─ cursor-name ──────────────┤
 └─ dynamic-name-clause ──────┘

Expansion of dynamic-name-clause

►►─┬─────────────┬─ cursor-name ──►◄
 ├─ LOCAL ◄ ─┬─┘
 └─ GLOBAL ──┘

UPDATE

548 SQL Reference Guide

Parameters

table-reference

Specifies the table, view, or table procedure whose rows are to be updated.
Table-reference must not specify a procedure. If table-reference identifies a view:

■ The view must be updateable

■ The applicable rows are updated in the table from which the view is derived

For expanded table-reference syntax, see Expansion of Table-reference.

alias

Defines a new name to be used to identify the table, view or table procedure
within the UPDATE statement. Alias must be a 1- through 18-character name
that follows the conventions for SQL identifiers.

SET

Specifies the columns to be updated and the value to be stored in each column.

column-name =

Identifies a column to be updated. Column-name must identify a column in the
table, view, or table procedure named in the UPDATE statement.

Column-name must be unique within the SET parameter.

In an UPDATE statement that includes the WHERE CURRENT OF cursor-name
parameter, column-name must identify a column specified in the FOR UPDATE
parameter of the DECLARE CURSOR statement that defines the named cursor.

value-expression

Specifies the value to be stored in the named column. The data type of the value
represented by value-expression must be compatible with the data type of the
named column. For expanded value-expression syntax, see Expansion of
Value-expression.

NULL

Directs CA IDMS to store a null value in the named column. The column must be
defined to allow null values.

UPDATE

Chapter 8: Statements 549

query-expression

Represents a value to be used for a column in an UPDATE column statement. The
query-expression must return at most, one row and the result table of the
query-expression must consist of a single column.

Note: For more information about expanded query-expression syntax, see Chapter
8:.

WHERE

Restricts the rows to be updated. If the UPDATE statement does not include the
WHERE parameter, CA IDMS updates all rows in the specified table or view.

search-condition

Specifies criteria a row must meet to be updated:

■ When the value of search-condition is true, the row is updated

■ When the value of search-condition is false, the row is not updated

For expanded search-condition syntax, see Expansion of Search-condition.

CURRENT OF

Specifies that only the row that corresponds to the current row of the named cursor
is to be updated.

UPDATE

550 SQL Reference Guide

cursor-name

Identifies the cursor whose current row will be updated. Cursor-name must identify
an open cursor previously defined by a DECLARE CURSOR statement within the
application program or by an ALLOCATE CURSOR statement executed within the
same SQL transaction.

Note: This option may only be used in an UPDATE statement embedded in an
application program.

dynamic-name-clause

Identifies the cursor whose current row will be updated.

Note: This option may only be used in an UPDATE statement dynamically compiled
using a PREPARE or EXECUTE IMMEDIATE statement.

Parameters for Expansion of dynamic-name-clause

LOCAL

Indicates that the named cursor has a local scope and was defined using a DECLARE
CURSOR statement or an ALLOCATE CURSOR statement. The default is LOCAL.

GLOBAL

Indicates that the named cursor was created by an ALLOCATE CURSOR statement
and is global in scope.

cursor-name

Specifies the name of the cursor as an identifier. Cursor-name must identify an
open cursor previously defined by a DECLARE CURSOR statement within the
application program or by an ALLOCATE CURSOR statement executed within the
same SQL transaction.

UPDATE

Chapter 8: Statements 551

Usage

Searched Updates

An UPDATE statement that includes the WHERE search-condition parameter or does
not include the WHERE parameter at all is called a searched update. Searched updates
may be entered through the Command Facility, executed dynamically, and embedded
within application programs.

Positioned Updates

An UPDATE statement that includes the WHERE CURRENT OF cursor-name parameter is
called a positioned update. Positioned updates are valid only from within an application
program.

Dynamic Positioned Updates

A dynamic positioned UPDATE statement is one that references a dynamic cursor. Such
an UPDATE statement may be embedded within an application program or created
dynamically using a PREPARE or EXECUTE IMMEDIATE statement.

UPDATE

552 SQL Reference Guide

A positioned UPDATE statement embedded in an application program may reference a
static cursor or a dynamic cursor. A positioned UPDATE statement created dynamically
using a PREPARE or EXECUTE IMMEDIATE statement can only reference a dynamic
cursor.

Ambiguous Cursor References

When a dynamic positioned UPDATE statement is being created by a PREPARE or
EXECUTE IMMEDIATE statement, it is possible that CA IDMS may not be able to
determine which cursor is being referenced. This will occur if the application program
contains a DECLARE CURSOR statement that defines a cursor having the referenced
name and the program has also executed an ALLOCATE cursor statement that creates a
cursor with the same name and a local scope. Under these conditions, CA IDMS cannot
determine which of the two cursors is being referenced. To avoid such problems, it is
advisable to use different names for cursors that are declared from those that are
allocated with a local scope.

Restrictions on Table-reference

In a searched update, the table, view, or table procedure named in the UPDATE
statement cannot also be named in the FROM parameter of any subquery included in
the specified search condition; or, in the case of a view, in any search condition used in
the view definition. The same restriction applies for any update that uses a subquery as
the value to be stored in an updated column. Therefore, you cannot update data in a
table from which you select in a subquery.

In a positioned update, the table, view, or table procedure named in the UPDATE
statement must also be named in the FROM parameter of the query specification used
in the definition of the named cursor.

UPDATE

Chapter 8: Statements 553

Restriction on Value-expression

The value expression that specifies the value to be stored in a column cannot include
any aggregate functions.

Cursor Position after a Positioned Update

After a positioned update, the position of the cursor named in the UPDATE statement
remains unchanged.

Restrictions for Tables in Referential Constraints

If the table named in an UPDATE statement is the referencing table in a referential
constraint, CA IDMS will update a row in the table only if, after the update operation,
the foreign-key columns in the row satisfy either of the following conditions:

■ The columns must be all or partially null

■ The foreign-key values must match the referenced-column values in a row of the
referenced table

If the table named in an UPDATE statement is the referenced table in a referential
constraint, and the referencing table includes one or more rows whose foreign-key
values match the referenced-column values of the row in the referenced table to be
updated, CA IDMS will update the row only if the update operation does not change the
values in the referenced columns.

Satisfying Check Constraints

If the updates to a row do not satisfy the check constraints, if any, in the table
definition, CA IDMS returns an error and does not update the row.

Updating Through a View

If the target of the update statement is a view, the view must be updateable, and only
rows that can be retrieved through the view can be updated through the view.

If the view being updated is defined with WITH CHECK OPTION, any WHERE clause in the
view definition, or in the definitions of any other views nested within its definition, will
be applied like a check constraint to restrict the update values.

Using a query-expression as a Source Value

If a query-expression used as the value stored in a column returns no rows, the column
is set to the null value. If the column does not allow nulls, an exception is raised.

UPDATE

554 SQL Reference Guide

Examples

Requesting a Searched Update

The following UPDATE statement updates the MANAGER_ID column in the EMPLOYEE
table for rows where the value in the column currently is 3222:

update employee

 set manager_id = 9847

 where manager_id = 3222;

Requesting a Positioned Update

The following UPDATE statement updates the BENEFITS table through the
BONUS_CURSOR cursor. The statement stores the value in the host variable
CALC-BONUS-AMT in the BONUS_AMOUNT column of the table row that corresponds to
the current row of the cursor.

EXEC SQL

 UPDATE BENEFITS

 SET BONUS_AMOUNT = :CALC-BONUS-AMT

 WHERE CURRENT OF BONUS_CURSOR

END-EXEC

A Positioned UPDATE Referencing a DECLAREd Cursor

The following statement updates the current row of the cursor C1. C1 may be a dynamic
or static cursor, but it must have been defined using a DECLARE CURSOR statement.
Furthermore, the cursor-specification on which C1 is based must contain a FOR UPDATE
option which directly or implicitly includes the EMP_LNAME column:

EXEC SQL

 UPDATE EMPLOYEE

 SET EMP_LNAME = :emp-name

 WHERE CURRENT OF C1

END-EXEC

A Positioned UPDATE Referencing an ALLOCATEd Cursor

The following statement updates the current row of a cursor whose name is specified in
the variable CNAME. The referenced cursor must have been defined using an ALLOCATE
CURSOR statement:

EXEC SQL

 UPDATE EMPLOYEE

 SET EMP_LNAME = :emp-name

 WHERE CURRENT OF GLOBAL :CNAME

END-EXEC

UPDATE

Chapter 8: Statements 555

A Dynamically-compiled Positioned UPDATE Statement

The following statement updates the current row of local cursor C1. C1 may have been
defined using either a DECLARE CURSOR statement or an ALLOCATE CURSOR statement.
In either case, the cursor name in the UPDATE statement is specified as an identifier
rather than as a literal or host variable:

EXEC SQL

 EXECUTE IMMEDIATE

 'UPDATE EMPLOYEE SET EMP_STATUS = "T"

 WHERE CURRENT OF LOCAL C1'

END-EXEC

Note: The keyword LOCAL is unnecessary since it is the default. Regardless of whether it
is specified, if two local cursors named C1 have been defined, one using a DECLARE
CURSOR statement and one using an ALLOCATE CURSOR statement, the EXECUTE
IMMEDIATE statement will fail on an ambiguous cursor error.

Using query-expressions to Update Columns

The following example sets the value of the SALARY_BUDGET column in the
DEPARTMENT table based on the current salaries of all employees in the department.

update department d

 set salary_budget =

 (select 1.1 * sum (salary) from employee e

 where e.deptid = d.deptid)

Updating All Rows

The following UPDATE statement modifies every row in the INSURANCE_PLAN table.
The statement increases all the values in the FAMILY_COST column by 2 percent and all
the values in the DEP_COST column by 1 percent:

update insurance_plan

 set family_cost = family_cost * 1.02,

 dep_cost = dep_cost * 1.01;

WHENEVER

556 SQL Reference Guide

More Information

■ For more information about updateable views, see CREATE VIEW.

■ For more information about updateable result tables, see DECLARE CURSOR.

■ For more information about compatible data types for assignment operations, see
Comparison, Assignment, Arithmetic, and Concatenation Operations.

■ For more information about null values, see Null Values.

■ For more information about defining and manipulating cursors, see CLOSE,
DECLARE CURSOR, FETCH, and OPEN (see page 494).

■ For more information about referential constraints, see CREATE CONSTRAINT.

WHENEVER

The WHENEVER precompiler-directive statement specifies an action to be taken when
the execution of an SQL statement results in a nonzero SQLCODE value. The WHENEVER
statement directs the precompiler to insert the appropriate conditional code after each
subsequent SQL statement that generates a call to CA IDMS

You can use this statement only in SQL that is embedded in a program.

Authorization

None required.

Syntax

►►─── WHENEVER ─┬─ NOT FOUND ─┬─┬─ CONTINUE ─────────────────────────────┬───►◄
 ├─ SQLERROR ───┤ ├─┬─ GO TO ─┬─┬─ label ──┬─┬─────────────┘
 └─ SQLWARNING ─┘ │ └─ GOTO ─┘ └─ :label ─┘ │
 └─ CALL subroutine-name ───┘

WHENEVER

Chapter 8: Statements 557

Parameters

NOT FOUND

Directs CA IDMS to take the specified action when the execution of an SQL
statement results in an SQLCODE value of 100.

SQLERROR

Directs CA IDMS to take the specified action when the execution of an SQL
statement results in an SQLCODE value that is less than zero.

SQLWARNING

Directs CA IDMS to take the specified action when the execution of an SQL
statement results in an SQLCODE value of 1.

SQLWARNING is a CA IDMS extension of the SQL standard.

CONTINUE

Specifies that processing is to continue with the next statement.

GO TO label/:label

Specifies that processing is to continue with the first statement at the named label.
Label must be the name of a section or the unqualified name of a paragraph in the
application program.

GO TO and GOTO are synonyms and can be used interchangeably. Label and :label
are synonyms and can be used interchangeably.

The GO TO parameter is not valid in CA ADS application programs.

The specification of a label without a colon (:) is a CA IDMS extension of the SQL
standard.

CALL subroutine-name

Specifies that processing control is to pass to the named subroutine.
Subroutine-name must identify a subroutine subsequently defined in the process
module.

The CALL parameter is valid only in CA ADS process modules.

The CALL parameter is a CA IDMS extension of the SQL standard.

Usage

Scope of the WHENEVER Statement

The WHENEVER statement for a specified condition applies to all subsequent SQL
statements until the precompiler encounters another WHENEVER statement that names
the same condition.

WHENEVER

558 SQL Reference Guide

Example

Specifying Error Processing

The following WHENEVER statement specifies that control is to pass to the section or
paragraph named SQLCODE-CHECK whenever CA IDMS returns a negative value in
SQLCODE:

EXEC SQL

 WHENEVER SQLERROR

 GO TO :SQLCODE-CHECK

END-EXEC

More Information

■ For more information about SQLCODE values, see SQLCODE Values.

■ For more information about COBOL section and paragraph names, refer to the
appropriate COBOL documentation.

Chapter 9: Control Statements 559

Chapter 9: Control Statements

This section contains the following topics:

Overview (see page 559)
SQL Control Statements (see page 560)
CALL (see page 561)
CASE (see page 562)
Compound Statement (see page 566)
EXEC ADS (see page 573)
IF (see page 577)
ITERATE (see page 580)
LEAVE (see page 583)
LOOP (see page 585)
REPEAT (see page 587)
RESIGNAL (see page 589)
RETURN (see page 591)
SET Assignment (see page 592)
SIGNAL (see page 594)
WHILE (see page 597)

Overview

The statements defined in the Control category are the basis for the SQL procedural
language used by SQL routines. An SQL routine usually contains procedural language
statements and data manipulation statements. It can also use any statement as
specified by the procedure-statement syntax.

Note: For more information, see CREATE PROCEDURE or CREATE FUNCTION.

SQL Control Statements

560 SQL Reference Guide

The statements of the Control category include syntax to perform the following:

■ Direct the flow of control

■ Assign the result of expressions to variables and parameters

■ Specify condition handlers to process various conditions

■ Signal and resignal conditions

■ Declare local cursors

The advantages for writing SQL routines in the SQL language include:

■ Easy readable and simple but powerful programs

■ Single Language to access and process data

■ Native support for all the SQL data types makes handling of VARCHAR, DATE, TIME,
and TIMESTAMP data a lot easier

■ Built-in NULL support avoids the burden of having to define and manipulate NULL
indicators for nullable data such as table columns or parameters of SQL routines
which are always nullable

■ Flexible handlers are able to process SQL events easily

■ A single development and test platform fully integrated in all CA IDMS supported
environments

SQL Control Statements

All SQL control statements are programmatic only. The following table provides a brief
description of the SQL control statements.

Statement Purpose

CALL Invokes an SQL procedure.

Note: The CALL statement is also a DML statement.
The syntax and semantics of the CALL control
statement are a subset of the CALL DML statement.

CASE Determines the execution flow by the evaluation of
one or more value-expressions.

Compound Specifies a grouping of statements, with optional
definitions of local variables, cursors, and handlers.

EXEC ADS Starts a block of CA ADS code.

IF Determines by evaluation of a search-condition, which
block of statements are executed.

ITERATE Begins a new iteration in a programmatic loop.

CALL

Chapter 9: Control Statements 561

Statement Purpose

LEAVE Exits a programmatic loop.

LOOP Defines a programmatic loop.

REPEAT Defines a programmatic loop with an end condition.

RESIGNAL Raises an SQL exception in a handler.

RETURN Exits an SQL routine or compound statement,
optionally returning a value.

SET Assignment Assigns a value to a routine parameter, local variable,
or host variable.

Note: This statement can also be embedded in any
SQL client program.

SIGNAL Raises an SQL exception.

WHILE Defines a programmatic, conditional loop.

CALL

The CALL control statement invokes SQL-invoked procedures. The syntax and semantics
are a subset of the CALL DML statement.

Authorization

See Authorization.

Syntax

►►──── CALL ───── procedure-reference ─────────────────────────────────────►◄

Parameter

procedure-reference

Identifies the procedure that is invoked, the input values that pass to the procedure
and optionally the local variables and routine parameters for passing and returning
values of input/output parameters.

Usage

See Usage.

CASE

562 SQL Reference Guide

Example

The function GET_NAME invokes the SQL procedure GET_FIRST_LAST to retrieve the
first and last names of the employee's empid that is specified as the input parameter.
The function then returns the combined and trimmed first and last names as one string.

set options command delimiter '++';

create procedure GET_FIRST_LAST

 (P_EMPID NUMERIC(4)

 , P_FNAME char(20)

 , P_LNAME char(30))

 EXTERNAL NAME DEMOGTFL LANGUAGE SQL

 /*

 ** Get first and last name of employee

 */

 Select EMP_FNAME, EMP_LNAME into P_FNAME, P_LNAME From DEMOEMPL.EMPLOYEE

 where EMP_ID = P_EMPID

++

commit++

create function GET_NAME

 (P_ID NUMERIC(4)) RETURNS varchar(40)

 EXTERNAL NAME DEMOGETN LANGUAGE SQL

begin not atomic

 /*

 ** Get name of employee

 */

 declare FNAME char(20);

 declare LNAME char(20);

 call GET_FIRST_LAST(P_ID, FNAME, LNAME);

 return trim(FNAME)|| ' ' || trim(LNAME);

end++

set options command delimiter default++

commit;

select GET_NAME(5008) from SYSCA.SINGLETON_NULL;

*+

*+ USER_FUNC

*+ -----------------------

*+ Timothy Fordman

*+

*+ 1 row processed

CASE

The CASE statement selects different execution paths depending on the evaluation of
one or more value-expressions.

CASE

Chapter 9: Control Statements 563

Syntax

►►──── CASE ───┬── simple-case-when-clause ───┬────────────────────────────────►
 └── searched-case-when-clause ─┘

 ►──┬───┬─ END CASE ───────────────────►◄
 │ ┌────────────────────────────┐ │
 └─── ELSE ── ▼ ─ procedure-statement ─ ; ─┴─┘

Expansion of simple-case-when-clause

►►──── value-expression ───►

 ┌──┐
 │ ┌────────────────────────────┐ │
 ►── ▼ ─ WHEN ── value-expression ─ THEN ─ ▼ ─ procedure-statement ─ ; ─┴─┴──►◄

Expansion of searched-case-when-clause

 ┌──┐
 │ ┌────────────────────────────┐ │
►►─ ▼ ─ WHEN ── search-condition ─ THEN ─ ▼ ─ procedure-statement ─ ; ─┴─┴────►◄

Parameters

Parameters for Expansion of simple-case-when-clause

CASE value-expression

Specifies the value expression whose outcome is compared to the outcomes of the
value-expressions in the WHEN clauses.

WHEN value-expression

Specifies a value expression whose outcome is compared to the outcome of the
CASE value-expression. If the two values are equal, the group of statements
specified in the corresponding THEN is executed.

THEN procedure-statement

Identifies the group of statements to be executed when the value expressions of
the CASE and WHEN clauses are equal.

Parameters for Expansion of searched-case-when-clause

CASE WHEN

Identifies the CASE as a searched case.

CASE

564 SQL Reference Guide

WHEN search-condition

Specifies the search condition whose outcome, if true, results in the execution of
the group of statements specified by the THEN clause.

THEN procedure-statement

Identifies the group of statements executed when the search-condition in the
corresponding WHEN clause evaluates to true.

ELSE procedure-statement END CASE

Specifies the group of statements to be executed when none of the THEN group of
statements has been executed because of the evaluation and comparison of the
value-expression's and search-condition's. This clause can be specified for both
simple and searched case statements.

Usage

SQL Exceptions

If an ELSE clause is not specified and none of the THEN group of statements has been
executed because of the outcome of evaluation of the value expressions and search
conditions, an SQL exception is raised.

CASE

Chapter 9: Control Statements 565

Examples

The first example demonstrates the use of a simple-case-when-clause.

set options command delimiter '++';

create function USER01.TCASE1

 (TITLE varchar(40) with default

 , P_EMP_ID unsigned numeric(4)

) RETURNS varchar(30)

 external name TCASE1 language SQL

begin not atomic

 /*

 ** Function selects an employee with the given EMP_ID and swaps

 ** the first_name value 'James' with 'Jim'.

 ** Returns a message text with the outcome of the execution

 */

 declare MY_STATUS varchar(30);

 declare LOC_FNAME char(20) default ' ';

 select EMP_FNAME into LOC_FNAME

 from DEMOEMPL.EMPLOYEE

 where EMP_ID = P_EMP_ID;

 case LOC_FNAME

 when 'James'

 then update DEMOEMPL.EMPLOYEE set EMP_FNAME = 'Jim'

 where EMP_ID = P_EMP_ID;

 set MY_STATUS = 'James->JIM';

 when 'Jim'

 then update DEMOEMPL.EMPLOYEE set EMP_FNAME = 'James'

 where EMP_ID = P_EMP_ID;

 set MY_STATUS = 'Jim->James';

 when 'Thomas'

 then update DEMOEMPL.EMPLOYEE set EMP_FNAME = 'Thomas'

 where EMP_ID = P_EMP_ID;

 set MY_STATUS = 'Dummy update';

 else set MY_STATUS = 'No Changes';

 end case;

 return MY_STATUS;

end

++

set options command delimiter default++

commit;

select USER01.TCASE1('TCASE1', 1034)from SYSCA.SINGLETON_NULL;

*+

*+ USER_FUNC

*+ ---------

*+ Jim->James

Compound Statement

566 SQL Reference Guide

The second example demonstrates the searched-case-when-clause. It is functionally
equivalent with the example of simple-case-when-clause.

set options command delimiter '++';

create function USER01.TCASESR1

 (TITLE varchar(40) with default

 , P_EMP_ID unsigned numeric(4)

) RETURNS varchar(30)

 external name TCASESR1 language SQL

begin not atomic

 /*

 ** Function selects an employee with the given EMP_ID and

 ** does some conditional updates.

 ** Returns a message text with the outcome of the execution

 */

 declare MY_STATUS varchar(30);

 declare LOC_FNAME char(20) default ' ';

 declare LOC_LNAME char(20) default ' ';

 select EMP_FNAME, EMP_LNAME into LOC_FNAME, LOC_LNAME

 from DEMOEMPL.EMPLOYEE where EMP_ID = P_EMP_ID;

 case

 when LOC_FNAME = 'James'

 then update DEMOEMPL.EMPLOYEE set EMP_FNAME = 'Jim'

 Where EMP_ID = P_EMP_ID;

 set MY_STATUS = 'James->JIM';

 when LOC_FNAME = 'Jim' and LOC_LNAME = 'Gallway'

 then update DEMOEMPL.EMPLOYEE set EMP_FNAME = 'James'

 Where EMP_ID = P_EMP_ID;

 set MY_STATUS = 'Jim->James';

 when LOC_LNAME = 'Van der Bilck'

 then update DEMOEMPL.EMPLOYEE set EMP_LNAME = 'Vanderbilck'

 Where EMP_ID = P_EMP_ID;

 set MY_STATUS = 'Van der Bilck->Vanderbilck';

 else set MY_STATUS = 'No Changes';

 end case;

 return MY_STATUS;

end

++

set options command delimiter default++

Compound Statement

The Compound statement defines a block of related SQL statements. In a compound
block, local variables, condition names, cursors, and condition handlers can be defined.

Compound Statement

Chapter 9: Control Statements 567

Syntax

►►──┬──────────────┬── BEGIN ──┬────────────────┬──────────────────────────────►
 └─ beg-label: ─┘ ├── ATOMIC ──────┤
 └── NOT ATOMIC ◄─┘

 ►───┬───────────────────────────────────────┬─────────────────────────────────►
 │ ┌──────────────────────────────────┐ │
 └─ ▼ ─┬─ variable-declaration ────┬─;─┴─┘
 └─ condition-declaration ───┘

 ►───┬───────────────────────────────────────┬─────────────────────────────────►
 │ ┌──────────────────────────────────┐ │
 └─ ▼ ─── cursor-declaration ────── ; ─┴─┘

 ►─┬─────────────────────────────────┬───►
 │ ┌─────────────────────────────┐│
 └─ ▼ ── handler-declaration ─ ; ─┴┘

 ┌──────────────────────────┐
 ►─── ▼ ─ procedure-statement ─;─┴── END ───────┬─────────────┬────────────────►◄
 └─ end-label ─┘

Expansion of variable-declaration

 ┌───── , ──────┐
 ►─ DECLARE ─ ▼ ── variable ─┴─ data-type ─┬─────────────────────┬─────────────►◄
 └─ DEFAULT ─┬─ NULL ──┤
 └─ const ─┘

Expansion of condition-declaration

 ►─ DECLARE ─ condition-name CONDITION FOR SQLSTATE ─┬─────────┬── const ──────►◄
 └─ VALUE ─┘

Expansion of handler-declaration

 ┌──────────── , ────────────────────┐
 ►─ DECLARE ─┬─ CONTINUE ─┬─ HANDLER FOR ─ ▼ ┬─ SQLEXCEPTION ─────────────────┬┴►
 ├─ EXIT ─────┤ ├─ SQLWARNING ───────────────────┤
 └─ UNDO ─────┘ ├─ NOT FOUND ────────────────────┤
 ├─ SQLSTATE value ─── 'sqlstate' ┤
 └─ condition-name ───────────────┘

►─── procedure-statement ──►◄

Compound Statement

568 SQL Reference Guide

Parameters

beg-label:

Specifies a 1- through 32-character SQL identifier that labels the compound
statement. The value must be different from any other label used in the compound
statement.

ATOMIC

Specifies that an unhandled exception raised while executing the compound
statement causes a rollback of the effects of the compound statement.

NOT ATOMIC

Specifies that an unhandled exception raised while executing the compound
statement does not cause a rollback of the effects of the compound statement. This
is the default.

variable-declaration

Defines a local variable.

condition-declaration

Defines a name for a condition for the purposes of referencing it in other
statements.

cursor-declaration

Defines a local cursor for use within the compound statement. For a description of
this clause, see DECLARE CURSOR.

handler-declaration

Defines a handler routine for SQL exception or completion conditions. A handler
routine receives control when the execution of an SQL statement fails or terminates
with a condition for which the handler has been defined. The three types of
handlers (CONTINUE, EXIT, UNDO) and the conditions under which they are invoked
are described in Parameters for Expansion of handler-declaration in this section.

procedure-statement

Defines the SQL procedure statement that is to be executed when the handler
routine is invoked. Procedure-statement may be any statement except a compound
statement.

end-label

Specifies an SQL identifier that labels the end of the compound statement. If
specified, a beg-label must also have been specified and both labels must be equal.

Compound Statement

Chapter 9: Control Statements 569

Parameters for Expansion of variable-declaration

variable

Specifies the name of the local variable. Variable must be a 1- through 32-character
name that follows the conventions for SQL identifiers. The names of all local
variables declared within a compound statement must be unique.

data-type

Specifies a set of values that share processing characteristics. See Expansion of
Data-type.

DEFAULT

Specifies the initial value of the local variable.

NULL

Initializes the local variable to NULL.

const

Initializes the local variable to the value of const. Const must be a literal whose
value is compatible for assignment to the local variable.

Note: If DEFAULT is not specified, the local variable is not initialized.

Parameters for Expansion of condition-declaration

DECLARE condition-name FOR CONDITION SQLSTATE

Defines a name for a condition. This name can be used in other statements to refer
to the condition.

condition-name

Specifies the name to be assigned to the condition. Condition-name must be a
1- through 32-character name that follows the conventions for SQL identifiers.
The names of all conditions declared within a compound statement must be
unique.

VALUE

Specifies an optional keyword without semantic meaning.

const

Specifies the value of SQLSTATE that constitutes the condition. const is a
5-character string-literal that consists of only digits (0-9) and capital alphabetic
characters (A-Z). const cannot be '00000', the value of SQLSTATE for successful
completion.

Compound Statement

570 SQL Reference Guide

Parameters for Expansion of handler-declaration

CONTINUE

After executing the handler action, a CONTINUE handler returns control to the
statement following the one that caused the event. If this statement is contained in
an IF, CASE, LOOP, WHILE, or REPEAT statement, control is returned to the
statement following the IF, CASE, LOOP, WHILE, or REPEAT statement.

EXIT

After executing the handler action, an EXIT handler returns control to the statement
following the compound statement. If there is no statement following the
compound statement, control is returned to the invoker of the routine.

UNDO

Before executing the handler action, an UNDO handler will rollback the database
changes caused by the execution of the compound statement that caused the
handler to be activated. After the handler actions have been executed, control is
returned to the statement following the compound statement. If there is no
statement after the compound statement, control is returned to the invoker of the
routine. An UNDO handler requires its defining compound statement to be
ATOMIC.

SQLEXCEPTION

Specifies that the handler is to be activated for all events except those of classes
"Successful completion" (SQLSTATE = '00xxx'), "Completed with Warning"
(SQLSTATE ='01xxx'), and "Completed with No Data" (SQLSTATE = '02xxx').

SQLWARNING

Specifies that the handler is to be activated for events of the class, "Completed with
Warning" (SQLSTATE = '01xxx').

NOT FOUND

Specifies that the handler is to be activated for events of the class, "Completed with
No Data" (SQLSTATE = '02xxx').

Compound Statement

Chapter 9: Control Statements 571

'sqlstate'

Specifies a value of SQLSTATE for which the handler is activated. 'Sqlstate' must be
a 5-character string-literal that consists of only digits (0-9) and capital alphabetic
characters (A-Z). 'Sqlstate' cannot be '00000', the value of SQLSTATE for successful
completion.

condition-name

Specifies the name of a condition for which the handler is activated.
Condition-name must identify a condition declared in the compound statement.

procedure-statement

Defines an SQL procedure statement to be included in the compound statement.
Procedure-statement may be any statement including a compound statement. For
more information, see the expansion for this syntax in CREATE FUNCTION (see
page 341) or CREATE PROCEDURE (see page 361).

Usage

Variables, Parameters, and Column Names

When ambiguity exists in referencing local variables, parameters and column names,
qualification is required to resolve the ambiguity.

Note: For more information, see Expansion of Local-variable and Expansion of
Routine-parameter (see page 85).

Nesting of Compound Statement

A compound statement cannot contain other compound statements with the exception
of handlers. A handler, which necessarily is contained in a compound statement, can
have a compound statement as its procedure statement procedure-statement.

Handlers

When both a generic class handler (a handler for SQLEXCEPTION or SQLWARNING) and a
specific handler cover the same event, the more specific handler is invoked when the
event occurs.

Only one handler for a specific event can be defined.

Handlers cannot be defined with duplicate conditions.

If an SQL exception occurs in a compound statement for which there is no handler
defined, control returns to the statement following the compound statement that
caused the exception and an implicit RESIGNAL is executed. The exception is passed in
the SQLSTATE. Database changes made by compound statements defined as ATOMIC
will be rolled back before control returns.

Compound Statement

572 SQL Reference Guide

Atomic Compound Statements

Compound statements defined as ATOMIC cannot contain the transaction management
statements, COMMIT and ROLLBACK, or the session management statement, RELEASE.

Cursor state upon exiting from a compound statement

When execution of a compound statement ends, all cursors defined within the
compound statement that are still open are automatically closed, except for returnable
cursors.

Note: For more information about returnable cursors, see DECLARE CURSOR.

Example

The procedure USER01.TCOMP01 retrieves an employee for a given EMP_ID and returns
a formatted name. An exit handler for NOT FOUND handles the NOT FOUND condition.
An exit handler for SQLEXCEPTION handles generic database errors.

 set options command delimiter '++';

 create procedure USER01.TCOMP01

 (P_ID numeric(4)

 , P_NAME char(30)

 , RESULT varchar(30)

)

 external name TCOMP01 language SQL

 Label_400:

 /*

 ** Return formatted name of employee with given EMP_ID

 */

 begin not atomic

 declare L_FNAME char(50);

 declare L_LNAME char(50);

 declare exit handler for SQLEXCEPTION

 label_8888:

 begin not atomic

 set RESULT = 'Unexpected SQLSTATE: ' || SQLSTATE;

 set P_NAME = '** Error **';

 end;

 declare exit handler for NOT FOUND

 set RESULT = 'No employee for EMP_ID: '

 || cast(P_ID as char(4));

EXEC ADS

Chapter 9: Control Statements 573

 set RESULT = ' ';

 set P_NAME = ' ';

 select EMP_FNAME, EMP_LNAME into L_FNAME, L_LNAME

 from DEMOEMPL.EMPLOYEE

 where EMP_ID = P_ID;

 set P_NAME = trim(L_FNAME) || ' ' || trim(L_LNAME);

 set RESULT = 'All OK';

 End label_400

 ++

set options command delimiter default++

commit;

 call user01.TCOMP01(1003);

 *+

 *+ P_ID P_NAME RESULT

 *+ ---- ------ ------

 *+ 1003 Jim Baldwin ALL OK

 call user01.TCOMP01(9);

 *+

 *+ P_ID P_NAME RESULT

 *+ ---- ------ ------

 *+ 9 NO EMPLOYEE FOR EMP_ID: 9

 call user01.TCOMP01(-2000);

 *+

 *+ P_ID P_NAME RESULT

 *+ ---- ------ ------

 *+ -2000 ** ERROR ** UNEXPECTED SQLSTATE: 22005

EXEC ADS

The EXEC ADS statement is a CA IDMS extension that enables inserting CA ADS code in
SQL routines.

Syntax

 ┌─────────────────────┐
►►─── EXEC ADS ─▼─ ads-process-stmnt ─┴─ ; ───────────────────────────────────►◄

Parameters

ads-process-stmnt

Specifies a CA ADS statement to be executed.

EXEC ADS

574 SQL Reference Guide

Usage

Allowable CA ADS statements

Only CA ADS statements that are allowed in a mapless dialog can be included in the
body of an SQL routine.

Care should be taken in coding SQL transaction and session management statements
because a ROLLBACK or COMMIT breaks the atomicity of a compound statement
containing the EXEC ADS statement.

Referencing SQL-defined data

SQL-defined data can be referenced by respecting the mapping rules for identifiers and
data types between SQL and CA ADS:

■ Underscore characters are mapped to dashes.

■ VARCHAR data are structures that start with a smallint field that holds the length of
the character data, followed by the character data itself. The name of the structure
is the mapped SQL identifier. The name of the length field is the mapped SQL
identifier suffixed with "-LEN". The name of the data field is the mapped SQL
identifier suffixed with "-TEXT".

■ Nullable SQL data must have their NULL indicators managed properly. All SQL
parameters and local variables are nullable.

■ Date, time, and timestamp data types must be correctly processed.

EXEC ADS

Chapter 9: Control Statements 575

Using IDD records and record elements from the dictionary

It is possible to use records and record elements that are defined as IDD records. This
requires the specification of "ADD RECORD record name" in the ADS Compile Option of
the CREATE PROCEDURE or CREATE FUNCTION statements. See the following example.
For more information, see CREATE PROCEDURE and CREATE FUNCTION.

Using EXEC ADS for debugging

Some of the ADS utility commands can be used for debugging SQL routines. SNAP,
TRACE, and WRITE TO LOG are of particular interest. See the second example below. All
the SQL local variables and internal variables are contained in predefined ADS records.
The name of these predefined records is constructed as follows: SQLLOCnnnnxxxxxxxx
with xxxxxxxx representing the external name of the SQL routine and nnnn a four digit
number with values starting from 0 for the internal variables to the total count of
compound statements.

Assume an SQL routine with an associated external name of 'GETLNAME' containing two
compound statements, then the content of all internal and SQL local variables can be
dumped to the log as follows:

 exec ADS snap record(SQLLOC0000GETLNAME

 , SQLLOC0001GETLNAME

 , SQLLOC0002GETLNAME).;

A complete report of the SQL routine, including the layout of all the records can be
obtained by executing the batch utility ADSORPTS. For the SQL routine with external
name GETLNAME, the control statement input for ADSORPTS would look like the
following:

 DIALOG=(GETLNAME),REPORTS=ALL

For the TRACE to be functional, the ADS dialog associated with the SQL routine needs to
be compiled with symbol table information. This option can be turned on by specifying
SYMBOL TABLE IS YES in the ADS Compile Option of the CREATE PROCEDURE or CREATE
FUNCTION statements. See the next example. For more information, see CREATE
PROCEDURE and CREATE FUNCTION (see page 341).

EXEC ADS

576 SQL Reference Guide

Example

Using EXEC ADS to obtain the current LTERM

The SQL function USER01.TEXECADS2 returns the LTERM ID of the LTERM on which the
function is being executed.

set options command delimiter '++';

create function USER01.TEXECADS2

 (P_DUMMY char(1)

) returns char(8)

 external name TEXECAD2 language SQL

begin not atomic

 /*

 ** SQL Function to return LTERM ID using EXEC ADS

 */

 declare L_LTERMID char (8) default ' ';

 exec ads

 ACCEPT LTERM ID INTO L-LTERMID. ;

 return L_LTERMID;

end

++

set options command delimiter default++

commit;

select USER01.TEXECADS2()

 from SYSCA.SINGLETON_NULL;

*+

*+ USER_FUNC

*+ ---------

*+ VL71001

Using EXEC ADS to debug a SQL routine

In the following example, the ADS COMPILE OPTION is used to add the
ADSO-APPLICATION-GLOBAL-RECORD so that it can be accessed within the SQL function.
Furthermore, the ADS dialog associated with the SQL function is compiled with
diagnostics and symbol table so that debugging and diagnostic information is available
at run time.

An EXEC ADS statement is placed as the very first executable statement of the SQL
function to snap the local variables to the IDMS log to verify the initialization and to turn
on ADS tracing. The EXEC ADS statement at the end, snaps the local variables and the
ADSO-APPLICATION-GLOBALE-RECORD before returning to the invoker of the function.
This statement also turns the ADS tracing off.

IF

Chapter 9: Control Statements 577

set options command delimiter '++';

create function GET_NAME

 (P_ID NUMERIC(4)) RETURNS varchar(40)

 EXTERNAL NAME DEMOGETN LANGUAGE SQL

 ADS COMPILE OPTION

 symbol table is yes

 diagnostic is yes

 add record ADSO-APPLICATION-GLOBAL-RECORD;

 begin not atomic

 /*

 ** Get name of employee

 */

 declare FNAME char(20) default ' ';

 declare LNAME char(20) default ' ';

 declare L_STATEMENT char(160);

 EXEC ADS snap record(SQLLOC0001DEMOGETN).

 trace all.;

 set L_STATEMENT =

 'select EMP_FNAME, EMP_LNAME' ||

 ' from DEMOEMPL.EMPLOYEE where EMP_ID = ?';

 prepare 'DYN1' from L_STATEMENT

 describe output using descriptor SQLDA;

 allocate 'CUR1' cursor for 'DYN1';

 open 'CUR1' using P_ID;

 fetch 'CUR1' into FNAME, LNAME;

 EXEC ADS snap record(SQLLOC0001DEMOGETN).

 snap record(ADSO-APPLICATION-GLOBAL-RECORD).

 trace off.;

 return trim(FNAME)|| ' ' || trim(LNAME);

end++

set options command delimiter default++

commit;

select GET_NAME(1003) from SYSCA.SINGLETON_NULL;

IF

The IF statement selects different execution paths depending on the evaluation of one
or more truth value expressions, given as SQL search conditions.

IF

578 SQL Reference Guide

Syntax

 ┌────────────────────────────┐
►►─── IF ── search-condition ── THEN ── ▼ ─ procedure-statement ─ ; ─┴──────────►

 ►─┬───┬►
 │ ┌──┐ │
 │ │ ┌────────────────────────────┐ │ │
 └─ ▼ ─ ELSEIF ── search-condition ─ THEN ─ ▼ ─ procedure-statement ─ ; ─┴─┴─┘

►─┬───┬─ END IF ───────────────────────►◄
 │ ┌────────────────────────────┐ │
 └─ ELSE ──── ▼ ─ procedure-statement ─ ; ─┴─┘

Parameters

IF search-condition

Specifies the truth value expression to be evaluated. The outcome of the evaluation
determines the execution path.

THEN procedure-statement

Specifies the statements to be executed if the immediately preceding search
condition is true.

ELSEIF search-condition

Specifies the truth value expression to be evaluated if the outcomes of all
previously evaluated search conditions are false.

ELSE procedure-statement

Specifies the statements to be executed if all search conditions are false.

Usage

If no alternative execution path is given, execution continues with the next statement
outside the IF.

IF

Chapter 9: Control Statements 579

Example

set options command delimiter '++';

create procedure USER01.TIF1

 (TITLE varchar(10) with default

 , P_LEFT integer

 , P_RIGHT real

 , RESULT varchar(30)

)

 EXTERNAL NAME TIF1 LANGUAGE SQL

Label_200:

begin not atomic

 /*

 ** Compare an integer value with a real value

 */

 if (P_LEFT > P_RIGHT)

 then set RESULT = 'p_left > p_right';

 elseif (P_LEFT = P_RIGHT)

 then set RESULT = 'p_left = p_right';

 elseif (P_LEFT < P_RIGHT)

 then set RESULT = 'p_left < p_right';

 else set RESULT = 'p_left and/or p_right NULL !';

 end if;

end

++

commit++

call user01.TIF1('Test IF >', 4, 2)++

*+

*+ TITLE P_LEFT P_RIGHT RESULT

*+ ----- ------ ------- ------

*+ Test IF > 4 2.0000000E+00 P_LEFT > P_RIGHT

call user01.TIF1('Test IF <', 4, 9)++

*+

*+ TITLE P_LEFT P_RIGHT RESULT

*+ ----- ------ ------- ------

*+ Test IF < 4 9.0000000E+00 P_LEFT < P_RIGHT

call user01.TIF1('Test IF =', 2, 2)++

*+

*+ TITLE P_LEFT P_RIGHT RESULT

*+ ----- ------ ------- ------

*+ Test IF = 2 2.0000000E+00 P_LEFT = P_RIGHT

call user01.TIF1('Test IF ', 4)++

*+

*+ TITLE P_LEFT P_RIGHT RESULT

*+ ----- ------ ------- ------

*+ Test IF 4 <null> P_LEFT AND/OR P_RIGHT

NULL !

set options command delimiter default++

ITERATE

580 SQL Reference Guide

ITERATE

The ITERATE statement terminates execution of the current iteration of an iterated
statement, such as LOOP, REPEAT or WHILE. If the iteration condition is true, a new
iteration starts; otherwise, the statement following the iterated statement is executed.

Syntax

►►── ITERATE ── stmnt-label ──►◄

Parameters

stmnt-label

Specifies the begin label of the iterated statement.

Usage

Statements that may be iterated

The labeled statement referred in the ITERATE must be a LOOP, REPEAT, or WHILE
statement that contains the ITERATE statement.

ITERATE

Chapter 9: Control Statements 581

Example

The procedure USER01.TITERATE1 retrieves all rows of the DEMOEMPL.EMPLOYEE table
three times. The first loop uses a WHILE, the second uses a REPEAT, and the third uses a
LOOP statement.

set options command delimiter '++';

create procedure USER01.TITERATE1

 (TITLE varchar(10) with default

 , P_FNAME char(20)

 , P_COUNT integer

 , RESULT varchar(10)

)

 EXTERNAL NAME TITERATE LANGUAGE SQL

Label_600:

begin not atomic

 declare FNAME char(20);

 declare LNAME varchar(20);

 declare EMP1 CURSOR FOR

 Select EMP_FNAME, EMP_LNAME

 From DEMOEMPL.EMPLOYEE;

 /*

 ITERATE in WHILE

 */

 set RESULT = '?????';

 open EMP1;

 while_loop:

 while (9 = 9)

 do

 fetch EMP1 into FNAME, LNAME;

 if (SQLSTATE = '00000')

 then

 set P_COUNT = P_COUNT + 1;

 iterate while_loop;

 end if;

 if (SQLSTATE = 'abcde')

 then

 iterate while_loop;

 end if;

 set RESULT = SQLSTATE;

 leave while_loop;

 end while while_loop;

 close EMP1;

ITERATE

582 SQL Reference Guide

 /*

 ITERATE in REPEAT

 */

 set RESULT = '?????';

 open EMP1;

 repeat_loop:

 repeat

 fetch EMP1 into FNAME, LNAME;

 if (SQLSTATE = '00000')

 then

 set P_COUNT = P_COUNT + 1;

 iterate repeat_loop;

 end if;

 set RESULT = SQLSTATE;

 leave repeat_loop;

 until (9 = 0)

 end repeat repeat_loop;

 close EMP1;

 /*

 ITERATE in LOOP

 */

 set RESULT = '?????';

 open EMP1;

 loop_loop:

 loop

 fetch EMP1 into FNAME, LNAME;

 if (SQLSTATE = '00000')

 then

 set P_COUNT = P_COUNT + 1;

 iterate loop_loop;

 end if;

 set RESULT = SQLSTATE;

 leave loop_loop;

 end loop loop_loop;

 close EMP1;

end

++

commit++

call USER01.TITERATE1('TITERATE1','James ',0,'U')++

*+

*+ TITLE P_FNAME P_COUNT RESULT

*+ ----- ------- ------- ------

LEAVE

Chapter 9: Control Statements 583

*+ TITERATE1 James 165 02000

set options command delimiter default++

LEAVE

The LEAVE statement continues execution with the statement that immediately follows
the specified labeled statement.

Syntax

►►── LEAVE ── stmnt-label ──►◄

Parameters

stmnt-label

Specifies the begin label of a statement that contains the LEAVE statement, and
identifies the statement that needs to be left.

Usage

Statements that may be left: The labeled statement referred in the LEAVE must be a
LOOP, REPEAT, WHILE or compound statement that contains the LEAVE statement.

LEAVE

584 SQL Reference Guide

Example

set options command delimiter '++';

create procedure USER01.TLEAVE1

 (TITLE varchar(10) with default

 , P_FNAME char(20)

 , P_COUNT integer

 , RESULT varchar(25)

)

 EXTERNAL NAME TLEAVE1 LANGUAGE SQL

Label_700:

 /*

 ** Count number of employees with equal Firstname

 */

begin not atomic

 declare FNAME char(20);

 declare LNAME varchar(20);

 declare EMP1 CURSOR FOR

 Select EMP_FNAME, EMP_LNAME

 From DEMOEMPL.EMPLOYEE

 where EMP_FNAME = P_FNAME;

 open EMP1;

 fetch EMP1 into FNAME, LNAME;

 fetching_loop:

 loop

 if (SQLSTATE < > '00000')

 then leave fetching_loop;

 end if;

 set P_COUNT = P_COUNT + 1;

 fetch EMP1 into FNAME, LNAME;

 end loop fetching_loop;

 set RESULT = 'SQLSTATE: ' || SQLSTATE;

 close EMP1;

end

++

commit++

set options command delimiter default++

call USER01.TLEAVE1('TLEAVE1','Martin',0);

*+

*+ TITLE P_FNAME P_COUNT RESULT

*+ ----- ------- ------- ------

*+ TLEAVE1 Martin 3 SQLSTATE: 02000

LOOP

Chapter 9: Control Statements 585

LOOP

The LOOP statement repeats the execution of a statement or a group of statements.

Syntax

 ┌────────────────────────────┐
►►─┬──────────────┬─── LOOP ─── ▼ ─ procedure-statement ─ ; ─┴── END LOOP ────►
 └─ beg-label: ─┘

 ►──┬─────────────┬───►◄
 └─ end-label ─┘

Parameters

beg-label:

Specifies a 1- through 32-character SQL identifier that labels the LOOP statement.
The value must be different from any other label used in the compound statement
if the LOOP statement is contained in a compound statement.

LOOP procedure-statement END LOOP

Specifies a statement or group of statements that are repeatedly executed.

end-label

Specifies an SQL identifier that labels the end of the LOOP statement. If specified, a
beg-label must also have been specified and both labels must be equal.

Usage

How execution of a LOOP statement ends

To end the repeated execution of the procedure-statements contained in a LOOP
statement, a LEAVE statement can be used or an exit handler can be driven.

LOOP

586 SQL Reference Guide

Example

See the example for the LEAVE statement. The procedure USER01.TLOOP1, is similar to
USER01.TLEAVE1 but it uses an exit handler to terminate the LOOP.

set options command delimiter '++';

create procedure USER01.TLOOP1

 (TITLE varchar(10) with default

 , P_FNAME char(20)

 , P_COUNT integer

 , RESULT varchar(30)

)

 EXTERNAL NAME TLOOP1 LANGUAGE SQL

Label_700:

 /*

 ** Count number of employees with equal Firstname

 */

begin not atomic

 declare FNAME char(20);

 declare LNAME varchar(20);

 declare EMP1 CURSOR FOR

 Select EMP_FNAME, EMP_LNAME

 From DEMOEMPL.EMPLOYEE

 where EMP_FNAME = P_FNAME;

 declare exit handler for SQLEXCEPTION, SQLWARNING, NOT FOUND

 set RESULT = 'SQLSTATE: ' || SQLSTATE;

 /*

 ** Count number of employees with equal Firstname

 */

 open EMP1;

 fetch EMP1 into FNAME, LNAME;

 fetching_loop:

 loop

 set P_COUNT = P_COUNT + 1;

 fetch EMP1 into FNAME, LNAME;

 end loop fetching_loop;

end

++

commit++

set options command delimiter default++

call USER01.TLOOP1('TLOOP1','Martin ',0,'U');

*+

*+ TITLE P_FNAME P_COUNT

*+ ----- ------- -------

*+ TLOOP1 Martin 3

*+

*+ RESULT

*+ ------

REPEAT

Chapter 9: Control Statements 587

*+ SQLSTATE: 02000

REPEAT

The REPEAT statement repeats the execution of a statement or a group of statements
until a condition is met.

Syntax

 ┌────────────────────────────┐
►►──┬──────────────┬──── REPEAT ──── ▼ ─ procedure-statement ─ ; ─┴────────────►
 └─ beg-label: ─┘

 ►── UNTIL ── search-condition ── END REPEAT ──┬─────────────┬─────────────────►◄
 └─ end-label ─┘

Parameters

beg-label:

Specifies a 1- through 32-character SQL identifier that labels the REPEAT statement.
The value must be different from any other label used in the compound statement
if the REPEAT statement is contained in a compound statement.

REPEAT procedure-statement

Specifies the statement or group of statements that are repeatedly executed.

UNTIL search-condition

Specifies the search condition that is evaluated after each iteration. If the outcome
is true, the statement following the REPEAT statement is executed. Otherwise, a
new iteration starts.

end-label

Specifies an SQL identifier that labels the end of the REPEAT statement. If specified,
a beg-label must also have been specified and both labels must be equal.

REPEAT

588 SQL Reference Guide

Example

set options command delimiter '++';

create procedure USER01.TREPEAT1

 (TITLE varchar(10) with default

 , P_FNAME char(20)

 , P_COUNT integer

 , RESULT varchar(25)

)

 EXTERNAL NAME TREPEAT1 LANGUAGE SQL

Label_700:

 /*

 ** Count number of employees with equal First name using REPEAT

 */

begin not atomic

 declare FNAME char(20);

 declare LNAME varchar(20);

 declare EMP1 CURSOR FOR

 Select EMP_FNAME, EMP_LNAME

 From DEMOEMPL.EMPLOYEE

 where EMP_FNAME = P_FNAME;

 open EMP1;

 fetching_loop:

 repeat

 fetch EMP1 into FNAME, LNAME;

 if (SQLSTATE = '00000')

 then set P_COUNT = P_COUNT + 1;

 end if;

 until SQLSTATE < > '00000'

 end repeat fetching_loop;

 set RESULT = 'SQLSTATE: ' || SQLSTATE;

 close EMP1;

end

++

commit++

set options command delimiter default++

call USER01.TREPEAT1('TREPEAT1','Martin',0,'U');

*+

*+ TITLE P_FNAME P_COUNT RESULT

*+ ----- ------- ------- ------

*+ TREPEAT1 Martin 3 SQLSTATE: 02000

RESIGNAL

Chapter 9: Control Statements 589

RESIGNAL

The RESIGNAL statement resignals an SQL event or exception condition in a handler for
the next higher level scope.

Syntax

►── RESIGNAL ─┬──┬───────────────►
 ├── SQLSTATE ──┬─────────┬─── 'sqlstate' ────────┤
 │ └─ VALUE ─┘ │
 └─ condition-name ───────────────────────────────┘

►──┬───┬──────────────►◄
 └── SET MESSAGE_TEXT ── = ─┬────────────────────────────────│
 └─ simple-value-specification ───┘

Parameters

'sqlstate'

Specifies the value for SQLSTATE that is to be resignaled. 'Sqlstate' is a 5-character
string-literal that consists of only digits (0-9) and capital alphabetic characters (A-Z).
'Sqlstate' cannot be '00000', the value of SQLSTATE for successful completion.

condition-name

Specifies the name of a condition whose SQLSTATE value is to be resignaled.
Condition-name must identify a condition defined by a condition-declaration in a
compound-statement containing the RESIGNAL statement. if more than one such
condition-declaration has the specified condition-name, the one with the innermost
scope is raised.

simple-value-specification

Specifies a character value to be added to the information item MESSAGE-TEXT.
simple-value-specification must have a character data type.

RESIGNAL

590 SQL Reference Guide

Usage

Propagating the SQL Condition

The RESIGNAL statement can only be used in a handler to propagate an SQL condition to
the scope that encloses the exception handler's scope. If the RESIGNAL is issued in a
handler of a top level compound statement, control returns to the invoker of the
SQL-invoked routine.

FLOW of CONTROL

If in the outer scope a handler exists for the raised exception or SQL event, the handler
acquires control. After execution of the handler, control returns as with any other
statement that causes a handler to activate.

SQLSTATE

There are no restrictions on the values that can be set for SQLSTATE, other than
compliance with the syntactic rules for SQLSTATE values. We recommend using values in
accordance with the classification of SQLSTATE values.

MESSAGE_TEXT

This is an information item of character type with a length of 80.

RETURN

Chapter 9: Control Statements 591

Example

set options command delimiter '++';

create procedure USER01.RESIGNAL1

 (TITLE varchar(10) with default

 , RESULT varchar(120)

)

 EXTERNAL NAME RESIGNA1 LANGUAGE SQL

Label_400:

 /*

 ** Resignal show case

 */

begin not atomic

 declare DEAD_LOCK condition for SQLSTATE '12000';

 declare NOT_FOUND condition for SQLSTATE '02000';

 declare exit handler for NOT FOUND

 begin not atomic

 set RESULT = RESULT || ' Not Found';

 resignal SQLSTATE '38607';

 end;

 set RESULT = 'Signal trace:';

 signal NOT_FOUND;

end label_400

++

commit;

set options command delimiter++

call user01.resignal1('Signal');

*+ Status = -4 SQLSTATE = 38000 Messages follow:

*+ DB001075 C-4M321: Procedure RESIGNA1 exception 38607

RETURN

The RETURN statement returns a value for an SQL function. As an extension to the SQL
standard, a RETURN without parameters can also be used to exit a compound
statement.

Syntax

►── RETURN ────┬────────────────────┬───►◄
 ├─ NULL ─────────────┤
 └─ value-expression ─┘

SET Assignment

592 SQL Reference Guide

Parameters

NULL

Specifies that the function return value is NULL.

value-expression

Specifies the function return value.

Usage

Compatible Data Types

The data type of the value-expression and the data type of the function return value
named in the CREATE FUNCTION statement must be compatible for assignment.

Example

For an example, see CREATE FUNCTION.

SET Assignment

The SET Assignment statement assigns values to parameters and variables used in SQL
routines.

Syntax

►►── SET ──┬─ local-variable ─────┬ = ─┬─ value-expression ─┬─────────────────►◄
 └─ routine-parameter ──┘ └─ NULL ─────────────┘

Parameters

local-variable

Identifies the local variable that is the target of the SET assignment statement.
Local-variable must be the name of a local variable defined within the compound
statement containing the SET statement.

routine-parameter

Identifies the SQL routine parameter that is the target of the SET assignment
statement. Routine-parameter must be the name of a parameter of the routine
containing the SET assignment statement.

value-expression

Specifies the value to be assigned to the target of the SET assignment statement.

NULL

Specifies that the null value is to be assigned to the target of the SET assignment
statement.

SET Assignment

Chapter 9: Control Statements 593

Usage

Valid assignments

The rules for assignment are provided in Comparison, Assignment, Arithmetic, and
Concatenation Operations.

Example

The procedure TSET3 creates a combined, edited name from a given first and last name.
If the first or last name is null, or if the length of the last name is 0, the null value is
returned for the edited name.

set options command delimiter '++';

create procedure SQLROUT.TSET3

 (P_FNAME varchar(20)

 , P_LNAME varchar(20)

 , P _NAME varchar(41)

)

 EXTERNAL NAME TSET3 LANGUAGE SQL

 /*

 ** Return an edited name from the given Firstname and Lastname

 */

 if (LENGTH(P_LNAME) <= 0)

 then set P_NAME = null;

 else set P_NAME = trim(P_FNAME) || ' ' || trim(P_NLNAME) ;

 end if

++

set options command delimiter default++

call SQLROUT.TSET3('James ', 'Last ');

*+

*+ P_FNAME P_LNAME

*+ ------- -------

*+ James Last

*+

*+ P_NAME

*+ ------

*+ James Last

call SQLROUT.TSET3('James ', '');

*+

*+ P_FNAME P_LNAME

*+ ------- -------

*+ James

*+

*+ P_NAME

*+ ------

*+ <null>

SIGNAL

594 SQL Reference Guide

SIGNAL

The SIGNAL statement raises and signals an SQL event or exception condition.

Syntax

 ►── SIGNAL ──┬── SQLSTATE ──┬─────────┬───── 'sqlstate' ──────┬───────────────►
 │ └─ VALUE ─┘ │
 └─ condition-name ───────────────────────────────┘

►──┬───┬──────────────►◄
 └── SET MESSAGE_TEXT ── = ─┬────────────────────────────────│
 └─ simple-value-specification ───┘

Parameters

'sqlstate'

Specifies the value for SQLSTATE that is to be signaled. 'sqlstate' is a 5-character
string-literal value that consists of only digits (0-9) and capital alphabetic characters
(A-Z). 'Sqlstate' cannot be '00000', the value of SQLSTATE for successful completion.

condition-name

Specifies the name of a condition whose SQLSTATE value is to be signaled.
Condition-name must identify a condition defined by a condition declaration in a
compound statement containing the SIGNAL statement. If more than one such
condition declaration has the specified condition name, the one with the innermost
scope is raised.

simple-value-specification

Specifies a character value to be added to the information item MESSAGE-TEXT.
simple-value-specification must have a character data type.

Usage

FLOW of CONTROL

If a handler exists for the raised exception or SQL event, the handler acquires control.
After execution of the handler, control returns as with any other statement that causes
activation of a handler.

If no handler is activated, control goes to the end of the compound statement that
contains the signal. If the signal is not in a compound statement of an exit handler,
control returns to the invoker of the SQL routine. Otherwise, it returns to the statement
after the SIGNAL statement, just as if a continue handler had been activated.

SIGNAL

Chapter 9: Control Statements 595

SQLSTATE

There are no restrictions on the values that can be set for SQLSTATE, other than
compliance with the syntactic rules for SQLSTATE values. We recommend that values
are used in accordance with the classification of SQLSTATE values.

Note: For more information, see SQLSTATE Values.

MESSAGE_TEXT

This is an information item of character type with a length of 80.

SIGNAL

596 SQL Reference Guide

Example

set options command delimiter '++';

create procedure USER01.TSIGNAL5

 (TITLE varchar(10) with default

 , RESULT varchar(120)

)

 EXTERNAL NAME TSIGNAL5 LANGUAGE SQL

Label_400:

 /*

 ** Trace execution of consecutive signal statements

 */

begin not atomic

 declare DEAD_LOCK condition for SQLSTATE '12000';

 declare NOT_FOUND condition for SQLSTATE '02000';

 declare continue HANDLER for SQLWARNING

 LABEL_9999:

 begin not atomic

 set RESULT = RESULT || ' Sqlwarning';

 end;

 declare continue handler for SQLEXCEPTION

 Label_8888:

 begin not atomic

 set RESULT = RESULT || ' Sqlexception';

 end;

 declare continue handler for SQLSTATE '23800'

 set RESULT = RESULT || ' 23800';

 declare continue handler for DEAD_LOCK

 LABEL_6666:

 begin not atomic

 set RESULT = RESULT || ' Deadlocked';

 end;

 declare continue handler for NOT FOUND

 set RESULT = RESULT || ' Not Found';

 set RESULT = 'Signal trace:';

 signal SQLSTATE '23800';

 signal NOT_FOUND;

 signal SQLSTATE '01200';

 signal SQLSTATE '72300';

 signal DEAD_LOCK;

end label_400

++

commit++

set options command delimiter default++

call user01.tsignal5('Signal');

WHILE

Chapter 9: Control Statements 597

*+

*+ TITLE

*+ -----

*+ Signal

*+

*+

*+ RESULT

*+ ------

*+ Signal trace: 23800 Not Found Sqlwarning Sqlexception

Deadlocked

*+

WHILE

The WHILE statement repeats the execution of a statement or a group of statements
while a condition is met.

Syntax

►►─┬──────────────┬───── WHILE ─── search-condition ── DO ─────────────────────►
 └─ beg-label: ─┘

 ┌──────────────────────────────┐
 ►── ▼ ─── procedure-statement ─ ; ─┴───── END WHILE ───────┬─────────────┬────►◄
 └─ end-label ─┘

Parameters

beg-label:

Specifies a 1- through 32-character SQL identifier that labels the WHILE statement.
The value must be different from any other label used in the compound statement
if the WHILE statement is contained in a compound statement.

WHILE search-condition

Specifies the search condition to be evaluated. If the outcome is false, the
statement after the WHILE statement is executed. Otherwise, an iteration of the
group of statements enclosed by DO and END WHILE is started.

DO procedure-statement END WHILE

Specifies the statement or group of statements that are repeatedly executed.

end-label

Specifies an SQL identifier that labels the end of the WHILE statement. If specified, a
beg-label must also have been specified and both labels must be equal.

WHILE

598 SQL Reference Guide

Example

set options command delimiter '++';

create procedure USER01.TWHILE2

 (TITLE varchar(10) with default

 , P_FNAME char(20)

 , P_COUNT integer

)

 EXTERNAL NAME TWHILE2 LANGUAGE SQL

Label_700:

begin not atomic

 /*

 ** Count number of employees with equal first name

 */

 declare FNAME char(20);

 declare LNAME varchar(20);

 declare EMP1 CURSOR FOR

 Select EMP_FNAME, EMP_LNAME

 From DEMOEMPL.EMPLOYEE

 where EMP_FNAME = P_FNAME;

 set P_COUNT = 0;

 open EMP1;

 fetch EMP1 into FNAME, LNAME;

 fetching_loop_non_SQL:

 while (SQLSTATE = '00000')

 do

 set P_COUNT = P_COUNT + 1;

 fetch EMP1 into FNAME, LNAME;

 end while fetching_loop_non_SQL;

 close EMP1;

end

++

commit++

set options command delimiter default++

call USER01.TWHILE2('TWHILE2','Martin ');

;

*+

*+ TITLE P_FNAME P_COUNT

*+ ----- ------- -------

*+ TWHILE2 Martin 3

Chapter 10: Accessing Non-SQL-Defined Databases 599

Chapter 10: Accessing Non-SQL-Defined
Databases

This section contains the following topics:

Correspondence between SQL and Non-SQL-defined Entities (see page 599)
SQL Schema Considerations (see page 604)
SQL DML Statements Operating on Non-SQL-defined Records (see page 606)
SQL Access to Non-SQL Databases (see page 609)
Expansion of Extended-search Condition (see page 613)
Expansion of Set-specification Statement (see page 613)

Correspondence between SQL and Non-SQL-defined Entities

Procedure

Define an SQL SCHEMA using the CREATE SCHEMA statement containing a FOR NONSQL
SCHEMA parameter. This causes a logical relationship to be established between the
two schemas.

The records defined in the non-SQL schema can now be accessed as tables in SQL DML
and CREATE VIEW statements. Each record element is represented as a column except
as noted under Record Structure Considerations.

Table Names

The table name used when referring to a non-SQL defined record is always the name
specified in the ADD RECORD statement of the non-SQL schema definition. If hyphens
appear in the record name, the table name must be enclosed in double quotation
marks.

Column Names

The column name used when referring to a record element depends on whether a
synonym for LANGUAGE SQL has been defined for the record:

■ If such a synonym has been defined, the column name is the element synonym
name associated with the SQL record synonym.

■ If no SQL synonym has been defined for the record, the column names are based on
the names of record elements either defined in the schema RECORD statement or
associated with the version of the record whose structure is shared by the schema
record.

In either case, column names are transformed by replacing hyphens with underscores.

Correspondence between SQL and Non-SQL-defined Entities

600 SQL Reference Guide

Elements occurring a fixed number of times are represented by multiple columns whose
names are constructed from the element name appended with an underscore (_) and an
occurrence count. For example:

02 MONTHLY-BUDGET OCCURS 12 TIMES ...

is represented as 12 columns whose names are:

MONTHLY_BUDGET_01

MONTHLY_BUDGET_02 etc.

The length of the suffix is one greater than the number of digits in the number of
occurrences of the element.

Up to three levels of nesting are supported. For example:

02 ANNUAL-BUDGET OCCURS 4 TIMES.

 03 MONTHLY-BUDGET OCCURS 12 TIMES ...

is represented as 48 columns whose names are:

MONTHLY_BUDGET_1_01

MONTHLY_BUDGET_1_02

 .

 .

 .

MONTHLY_BUDGET_1_12

MONTHLY_BUDGET_2_01

MONTHLY_BUDGET_2_02 etc.

In constructing column names for multiply-occurring elements, if the length of the
resulting name exceeds 32 characters, the record is not accessible through SQL. To
overcome this, define a synonym for LANGUAGE SQL where the affected element names
are shortened.

Correspondence between SQL and Non-SQL-defined Entities

Chapter 10: Accessing Non-SQL-Defined Databases 601

Record Structure Considerations

Not all record elements can be referred to as columns and, in some cases, a single
record element is represented by multiple columns.

Elements, other than those whose usage is BIT, are handled as follows:

■ Group elements are not represented by columns.

■ FILLERs (elements with names of 'FIL nnnn') are not represented by columns.

■ Level 88 elements (condition names) are not represented by columns.

■ Redefining elements and elements subordinate to a redefining group are not
represented by columns.

■ Elements occurring a fixed number of times and elements subordinate to a group
occurring a fixed number of times are represented by multiple columns, one for
each occurrence of the element.

■ Elements occurring a variable number of times and elements subordinate to a
group occurring a variable number of times are not represented by columns.

■ All other elements in the record are represented by columns.

USAGE BIT

Elements whose usage is BIT are not represented by columns except as noted following:

■ Group elements where all subordinate elements have a usage of BIT and which
start on a byte boundary are represented by columns with a data type of BINARY.
The length of the column is the length in bytes from the start of the group element
to the start of the next element at the same level which begins on a byte boundary.
If groups are nested within groups, the group element with the lowest level number
where all subordinate elements are BITs is the element represented by a column.
Intervening and subordinate elements are not represented by columns.

■ BIT elements occurring a fixed number of times and beginning on a byte boundary
are represented by columns with a data type of BINARY. The length of the column is
the length in bytes from the start of the element to the start of the next element at
the same level which also begins on a byte boundary. Intervening elements are not
represented by columns.

■ Other BIT elements which begin on a byte boundary are represented by columns
with a data type of BINARY. The length of the column is the length in bytes from the
start of the element to the start of the next element at the same level which also
begins on a byte boundary. Intervening elements are not represented by columns.

Correspondence between SQL and Non-SQL-defined Entities

602 SQL Reference Guide

Data Type of Columns

The data type of a column representing a record element is derived from the picture
and usage of the element:

Picture and usage Data type

PIC X(n) usage DISPLAY CHAR(n)

PIC A(n) usage DISPLAY CHAR(n)

Numeric edited&sub1. CHAR(l), l=byte length

External floating point&sub2. CHAR(l), l=byte length

PIC G(n) usage DISPLAY GRAPHIC(n)

PIC S9(p)V9(s) usage DISPLAY NUMERIC(p-s,s)

PIC SP..9(p) usage DISPLAY&sub3. NUMERIC(p,p)

PIC S9(p)P.. usage DISPLAY&sub3. NUMERIC(p,0)

PIC 9(p-s)V9(s) usage DISPLAY UNSIGNED NUMERIC(p,s)

PIC P..9(p) usage DISPLAY&sub3. UNSIGNED NUMERIC(p,p)

PIC 9(p)P.. usage DISPLAY&sub3. UNSIGNED NUMERIC(p,0)

PIC S9(p-s)V9(s) usage COMP-3 DECIMAL(p,s)

PIC SP..9(p) usage COMP-3&sub3. DECIMAL(p,p)

PIC S9(p)P.. usage COMP-3&sub3. DECIMAL(p,0)

PIC 9(p-s)V9(s) usage COMP-3 UNSIGNED DECIMAL(p,s)

PIC P..9(p) usage COMP-3&sub3. UNSIGNED DECIMAL(p,p)

PIC 9(p)P.. usage COMP-3&sub3. UNSIGNED DECIMAL(p,0)

PIC S9(n), n<5 usage COMP&sub4. SMALLINT

PIC S9(n), 4<n<10 usage COMP&sub4. INTEGER

PIC S9(n), 9<n usage COMP&sub4. LONGINT

PIC 9(n) usage COMP&sub4. BINARY(l), l=byte length

PIC X(n) usage BIT BINARY(l), l=byte length

USAGE POINTER BINARY(4)

USAGE COMP-1 REAL

USAGE COMP-2 DOUBLE PRECISION

Correspondence between SQL and Non-SQL-defined Entities

Chapter 10: Accessing Non-SQL-Defined Databases 603

Picture and usage Data type

 Note:

1. Numeric edited includes any element whose usage is
DISPLAY and:

Whose picture contains any of the editing symbols: + - Z B 0
$ CR DB . , *

Whose picture clause contains only the symbols: 9 (n) V S P
but whose element description also includes the SIGN
LEADING or SEPARATE CHARACTER specification

2. External floating point includes any element whose usage
is DISPLAY and whose picture is: +/- mantissa E +/-
exponent

3. The scaling character "P" in a picture clause is ignored in
value representations of associated columns. This has the
effect of representing values of such columns as a power of
10 greater than or smaller than their actual value. For
example, if an element is described as PIC S9(5)PPP, a value
of 123000 is represented in SQL as 123. If an element is
described as PIC SPPP9(5), a value of .000123 is represented
in SQL as .123.

4. Computational elements also include those whose USAGE
is BINARY and COMP-4. If the picture of a computational
item includes an implied decimal point, it is ignored in
determining the data type of the column. This has the effect
of representing values of such columns as a power of 10
greater than their actual values. For example, if an element
is described as PIC S9(5)V99 USAGE COMP, a value of 123.56
is represented in SQL as 12345. :etnote.

SQL Schema Considerations

604 SQL Reference Guide

SQL Schema Considerations

SQL Schemas and Non-SQL-defined Schemas

Typically, one SQL schema is defined for each non-SQL schema which describes data to
be accessed through SQL. The SQL schema definition specifies the name of the segment
or database containing the data described by the non-SQL schema.

However, a single non-SQL schema may describe multiple physical databases. In this
case, one SQL schema can be used to access any of the physical implementations, or a
separate SQL schema can be defined for each. To make the SQL schema independent of
the physical implementation, omit the DBNAME specification from the schema
definition.

If No DBNAME is Specified

If no DBNAME is specified in the SQL schema definition, only one physical instance of
the non-SQL-defined database can be accessed within a single SQL transaction. The data
accessed at runtime is determined by the database name to which your SQL session is
connected. The database name must include the segments containing the data to be
accessed.

DBNAME Specification and Access Modules

The way you choose to associate the non-SQL-defined schema with an SQL-defined
schema has an impact on access modules:

■ If the SQL schema does not contain a DBNAME specification, a single access module
can be used against any of the physical databases because the application can
specify the appropriate database name on a CONNECT statement (or the user can
specify it in a DCUF or SYSIDMS DICTNAME parameter)

■ If the SQL schema contains a DBNAME specification, each physical implementation
must have its own set of access modules and the application must specify which
one to use by issuing a SET ACCESS MODULE statement

Restriction

If two or more non-SQL-defined schemas describe the same physical data, it should be
accessed under only one SQL schema within a transaction. For example, if the same
physical employee information is described in two non-SQL-defined schemas referenced
by the two SQL schemas HR and MFG, the employee records should either be accessed
as HR tables or MFG tables, but not both.

SQL Schema Considerations

Chapter 10: Accessing Non-SQL-Defined Databases 605

Preventing Unpredictable Results

Unpredictable results occur (including possible database corruption) if the above
restriction is violated.

To prevent unpredictable results, grant access to only one table for each
non-SQL-defined record. In the above example, grant access to either the HR.EMPLOYEE
table or the MFG.EMPLOYEE table but not both.

Definition Changes and Access Modules

Changes made to the non-SQL-defined schema do not cause access modules to be
automatically recompiled (as is the case for SQL-defined entities). This is because there
are no synchronization stamps that CA IDMS can use to detect definition changes for
non-SQL-defined records. It is the DBA's responsibility to recompile the access modules
when changes are made to the non-SQL-defined schema.

If an automatic recompile of the access module is desired, the RCM must be recreated
through a recompile of the program to change the RCM synchronization stamps. Then
when the access module is run, an access module recompile is triggered.

Other changes that may necessitate access module recompilation are:

■ Changing the dictionary, name, or version number of the non-SQL-defined schema
associated with an SQL-defined schema

■ Changing the DBNAME parameter associated with the SQL-defined schema

SQL DML Statements Operating on Non-SQL-defined Records

606 SQL Reference Guide

To recompile affected access modules, use the ALTER ACCESS MODULE statement with
the REPLACE ALL option. To determine which access modules are affected, query the
SYSTEM.AM and SYSTEM.AMDEP tables in the dictionary.

Note: For more information, see ALTER ACCESS MODULE and SYSTEM Tables and SYSCA
Views.

Definition Changes and Views

The deletion of records and changes made to the structure of records in a
non-SQL-defined schema may necessitate the dropping and recreating of views
referencing the non-SQL-defined tables representing those records. The following
changes invalidate referencing views:

■ Removal of the record from the schema

■ Addition of record elements (record elements added to the end of the record
structure invalidate only those views based on SELECT *)

■ Re-ordering of record elements within the record

■ Changing of an element's picture or usage

To determine which views are impacted by such changes, query the SYSCA.VIEWDEP
table.

Note: For more information, see SYSTEM Tables and SYSCA Views.

SQL DML Statements Operating on Non-SQL-defined Records

INSERT

CA IDMS allows INSERT statements where the target table represents a non-SQL-defined
record only if all sets with a membership option of AUTOMATIC in which the record
participates as a member have been defined with a primary/foreign key declaration.

Note: For more information about primary and foreign keys in set definitions, see the
CA IDMS Database Administration Guide.

Additionally, you cannot include the control field of an OCCURS DEPENDING ON
structure in the insert column list. On an INSERT, its value is automatically set to 0.

SQL DML Statements Operating on Non-SQL-defined Records

Chapter 10: Accessing Non-SQL-Defined Databases 607

Effect of INSERT on a Record

■ Causes an occurrence of the record represented by the table named in the INTO
parameter to be stored on the database

■ Columns whose values are not supplied on the insert are given standard default
values according to their data types (that is, 0 for numeric, spaces for character and
binary zeros for binary)

■ Has the following effect on system indexes defined on the record:

– Connects the record into every such index defined as AUTOMATIC

– Does not connect the record into any index defined as MANUAL

■ Connects the record into every set for which the values of all columns representing
foreign key fields of the set relationship are not null. The set occurrence to which
the record is connected is that owned by the occurrence of the owner record whose
primary key value matches the member's foreign key value.

■ Returns an error if:

– In attempting to connect the record into a set, no owner record occurrence can
be found with a matching primary key value

– A null value has been specified for any column other than one representing a
nullable foreign key of some set where the record participates as a member

– An invalid data value is detected during the operation

– The operation attempts to store a duplicate row when duplicates are not
allowed

UPDATE

UPDATE statements where the target table is a non-SQL-defined database record are
allowed. Successful execution of an update operation, however, depends on both the
definition options chosen and the current state of the database.

The control field of an OCCURS DEPENDING ON structure cannot be updated.

SQL DML Statements Operating on Non-SQL-defined Records

608 SQL Reference Guide

Effect of UPDATE on a Record

■ Causes one or more occurrences of the record represented by the table to be
modified

■ Only fields represented by columns named in the SET parameter of the UPDATE
statement for which the update value is not NULL are changed

■ Has the following effect on system indexes defined on the record:

– If a record occurrence being updated is connected to such an index and one or
more index key fields are changed, the index is updated.

– If a record occurrence being updated is not connected to such an index, the
index is not updated.

■ Has the following effect on sets where the record is a member:

– If one or more foreign key fields of such a set are changed or are set to NULL,
the following operations are performed:

■ The record occurrence is disconnected from its current owner if it
participates as a member of the set.

■ The record occurrence is connected to a (new) owner if the value of all
foreign key fields are not null and an occurrence of the owner record can
be found with a matching primary key.

■ The record's set membership with owner records whose keys are defined
in the member record as foreign keys will be affected regardless of the
membership options of the set.

– If one or more sort key fields of such a set are changed, and the record
occurrence is a member of the set, the set occurrence is updated to maintain
correct ordering.

■ Returns an error if:

– In attempting to connect the record into a set, no owner record occurrence can
be found with a matching primary key value

– The record being modified is an owner of a non-empty set that was defined
with a primary/foreign key declaration and one or more of the primary key
fields are changed

– A null value is specified for a column other than one representing a nullable
foreign key field of some set where the record participates as a member

– An invalid data value is detected during the operation

– The operation attempts to store a duplicate row when duplicates are not
allowed

SQL Access to Non-SQL Databases

Chapter 10: Accessing Non-SQL-Defined Databases 609

DELETE

DELETE statements where the target table represents a non-SQL-defined record, are
allowed. Successful execution of such a statement depends both on the definition
options chosen and the current state of the database.

Effect of DELETE on a Record

■ Causes one or more occurrences of the record represented by the table to be
erased from the database

■ Disconnects a record occurrence from all indexes where it participates

■ Disconnects a record occurrence from all sets where it participates as a member

■ Returns an error if the record occurrence being erased participates as an owner in
one or more non-empty sets

SELECT

SELECT statements where one or more tables named in the FROM parameter represent
non-SQL defined records are always allowed.

Column values are established as follows:

■ If the column represents a nullable foreign key field, its value is:

– The value of the field in the record occurrence, if the record occurrence is a
member of at least one set where the field is a foreign key field

– Null if the record occurrence is not a member of any set where the field is a
foreign key field

■ Otherwise, the value of the column is the value of the record element it represents

An exception is raised if a value in the result table is null and an indicator variable is
not specified for the host-variable to which the value is to be returned.

SQL Access to Non-SQL Databases

This section provides a review of the transformations used by the SQL engine while
reading the definitions of non-SQL record types. When SQL is used to access non-SQL
record types, the entity names coded in the SQL syntax must follow the conventions
described next.

Note: For more information about defining and using table procedures to process
non-SQL-defined data in a relational way even if the data does not conform to the rules
for such access, see Defining and Using Table Procedures.

SQL Access to Non-SQL Databases

610 SQL Reference Guide

SQL Schemas for Non-SQL Databases

SQL tables are referenced in SQL DML statements by coding the table name preceded by
a schema name qualifier. For example, in SELECT * FROM DEMOSCH.SAMPLE, SAMPLE is
the table name and DEMOSCH is the SQL schema where it is defined. The combination
of schema name and table name allows the SQL compiler to look up the definition of the
table in the SQL catalog.

To access a non-SQL record type from an SQL statement, you must code the record
name in the same manner used for SQL tables. An SQL schema which maps onto the
corresponding non-SQL schema must be defined in the SQL catalog. This SQL schema
name is used to qualify all subsequent references to non-SQL record types in SQL DML
statements. For example,

CREATE SCHEMA SQLNET FOR NONSQL SCHEMA PRODDICT.CUSTSCHM;

SELECT * FROM SQLNET."ORDER-NET";

Non-SQL Record and Set Name Transformations

Because hyphen is the subtraction operator in SQL, non-SQL record names containing
embedded hyphens must be delimited by double quotes (for example,
"CUST-REC-123"). Any non-SQL set names containing embedded hyphens must be
delimited by double quotes before they can be used in an SQL statement (for example,
"CUST-ORDER").

Non-SQL Element Name Transformations

Unlike hyphens embedded in record and set names, hyphens embedded in non-SQL
element names are automatically transformed to underscores (_) during the definition
loading phase of the SQL compiler. So, to access the CUST-NUMBER element in a
non-SQL record type, you must code CUST_NUMBER in an SQL statement.

When a FOR LANGUAGE SQL synonym is defined for a non-SQL record type, the element
synonyms are used for all SQL access. SQL synonyms are only used for element names.
Defining SQL synonyms for non-SQL record types is sometimes the only way to
overcome column name limitations within SQL.

Some non-SQL element names don't make satisfactory SQL column names, even after
the hyphen-to-underscore transformation. For example, if a non-SQL element name
starts with a numeric character, the double quote delimiter must again be used
(123-ORD-NUM would be accessed using "123_ORD_NUM" in an SQL statement).

SQL Access to Non-SQL Databases

Chapter 10: Accessing Non-SQL-Defined Databases 611

Group elements, redefines elements, FILLERS and OCCURS ... DEPENDING ON elements
are simply not available for access by SQL. The SQL user views these elements as not
being defined in the non-SQL record type. However, the subordinate elements of a
group definition are available, as are the base elements to which a REDEFINES is
directed.

Though OCCURS ... DEPENDING ON declarations are not available for SQL access, fixed
OCCURS definitions are made available. The SQL user's perception of a fixed OCCURS
element is that there is one column for each occurrence of the element. The name
which is used to access each such occurrence is the original element name followed by
an underscore and an occurrence number to make the column name distinct. If the
element is declared with nested OCCURS clauses, the corresponding column names
contain one underscore and one occurrence number for each "dimension" of the
OCCURS declaration. For example, the element definition BUD-AMT OCCURS 12 TIMES
generates the following column names: BUD_AMT_01, BUD_AMT_02, BUD_AMT_03, ...,
BUD_AMT_12.

In the preceding example, the occurrence number appended to the column name is
made large enough to hold the largest subscript from the corresponding element
definition. If the base element name in combination with the appended occurrence
information makes the generated column names larger than 32 characters, you receive
an error when the SQL statement is compiled. In this situation, you must define an SQL
synonym for the non-SQL record type. The synonym element names must be short
enough so the appended occurrence information will not make the resulting column
names larger than 32 characters.

Although the SQL implementation in CA IDMS allows 32 character column names, other
SQL implementations restrict column names to 18 characters. In particular, some ODBC
client software may require you to use SQL synonyms for non-SQL record types to limit
the size of the transformed column name to 18 characters.

SQL Access to Non-SQL Databases

612 SQL Reference Guide

Definition Anomalies of Non-SQL Record Types

Certain definition anomalies of non-SQL record types can result in errors during
attempts to access them with SQL. These anomalies pertain to the definition of CALC
keys, system-owned index set keys, and user-owned sorted set keys. They result in a
DB002024 error in Release 12.0 or a DB002038 error in later releases.

The DB002038 message includes both the set name and record type in question. The
DB002024 message only includes the set name. The DB002024 message presents a
problem if a CALC definition is the cause of the error. CALC is the set name, and if there
are several CALC records involved in the SQL statement, or if you are compiling an
access module with references to numerous CALC records, you may have to examine
the definitions of all CALC records to locate the problem.

Another characteristic of the CA IDMS SQL engine can further complicate the process of
finding such errors. The SQL compiler loads the definitions of all SQL tables and non-SQL
record types explicitly referenced by the SQL statements being compiled. However, it
also loads the definitions of the non-SQL record types which (through non-SQL set
definitions) either own or are owned by the records which are explicitly referenced in
the SQL statements, so that set-based access strategies can be considered when it
optimizes each statement. This may result in a 2024 or 2038 error being generated for a
record type which isn't even referenced by the SQL being compiled.

These errors have only two known causes, both of them easily fixed:

1. The control key definition of the CALC, INDEX, or sorted set includes a FILLER
element. To overcome this problem, simply modify the non-SQL record definition to
assign a name other than FILLER to the element in question.

2. The control key definition incorporates subordinate elements of a group level
REDEFINES, and these elements are smaller in size than the base element being
redefined. For example:

02 ELEM1 PIC X(8).

02 ELEM1REDEF REDEFINES ELEME1.

 03 ELEM1A PIC S9(8) COMP.

 03 ELEM1B PIC S9(8) COMP.

 .

 .

 .

An error occurs if ELEM1A and ELEM1B are used in the control key definition; since
they are smaller than the element which they redefine even though together they
are as large as ELEM1. The solution to this error is to change the redefining group,
which contains the smallest subordinate elements, into the base element definition.
This base definition should be used in the control key specification. In the previous
example, ELEM1REDEF should be the base element definition, and ELEM1 should be
coded so that it redefines ELEM1REDEF.

Expansion of Extended-search Condition

Chapter 10: Accessing Non-SQL-Defined Databases 613

Expansion of Extended-search Condition

The parameters used in the expansion of Extended-search Condition specify criteria
used to select rows from tables.

Syntax

Expansion of extended-search-condition

►►─┬─ search-condition ───┬─┬──────────────────────────────────────┬──────────►◄
 └─ set-specification ──┘ │ ┌──────────────────────────────────┐ │
 └─▼── AND ──┬─ search-condition ───┬─┴─┘
 └─ set-specification ──┘

Parameters

search-condition

Specifies a search condition whose value must be true for the row or rows to be
included in the result table.

set-specification

Specifies that only rows participating as owner and member in the named set be
included in the result table. For expanded set-specification syntax, see Expansion of
Set-specification Statement.

Usage

Evaluation

The full search condition is satisfied when the value of all its operands are true. It is not
satisfied when the value of any of its operands is either false or unknown.

Order of Evaluation

CA IDMS effectively evaluates from left to right after first evaluating each operand
individually.

You can use parentheses to override the default order of evaluation. Operands in
parentheses are evaluated first.

Expansion of Set-specification Statement

The parameters used in the expansion of the Set-specification statement specify join
criteria for tables representing owner and member records of a non-SQL-defined set.

Expansion of Set-specification Statement

614 SQL Reference Guide

Syntax

Expansion of set-specification

►►─┬─────────┬─ set-name ──┬─────────────────────────────────┬────────────────►◄
 ├─ FIRST ─┤ │ ┌─────────────────────────────┐ │
 └─ LAST ──┘ └─▼── . ─┬─ table-identifier ─┬─┴─┘
 └─ alias ────────────┘

Parameters

set-name

Specifies the name of the set to be used as the test criteria.

Set-name must follow the rules for identifiers. If hyphens appear in the name, it
must be enclosed in double quotes.

table-identifier

Specifies the name of a table representing either the owner or member of the set.
Table-identifier must appear in the FROM parameter of the containing query
specification or SELECT statement.

At most, two table names or aliases can qualify the set name and if both appear,
one must identify the owner and the other must identify a member of the set.

alias

Specifies the alias assigned to the table representing the owner or member of the
set.

If the table has been assigned an alias in the FROM parameter of the query
specification or SELECT statement where set-specification appears, the alias and
not the original table name must be used to qualify the set.

FIRST

Specifies only the first member record occurrence from each occurrence of
set-name is returned in the join.

LAST

Specifies only the last member record occurrence from each occurrence of
set-name is returned in the join. For chained sets, this command is only valid when
the set linkage includes prior pointers.

Note: For more information about coding considerations and set linkage, see
Chapter 3.3, Sets in the CA IDMS Navigational DML Programming Guide.

Expansion of Set-specification Statement

Chapter 10: Accessing Non-SQL-Defined Databases 615

Usage

Members without Foreign Keys

Joining rows from different tables specified in a SELECT statement is usually done with
comparison operations on column values. The most typical approach for SQL-defined
tables is to use equal comparisons of the matching primary/foreign key columns of a
referential constraint definition.

However, in a non-SQL-defined database, member records may not contain the key
values of their owner records. For example, it is not necessary for the EMPLOYEE record
to contain the department ID of its associated DEPARTMENT record if the relationship
between the EMPLOYEE and DEPARTMENT records is represented by a set.

In such cases, column-based comparison cannot be used to process a join; instead, the
SELECT statement must identify the set in the WHERE parameter using set-specification.

Note: A system-owned index is not a set joining two records; therefore, it cannot be
used in the WHERE clause.

Evaluation

Two table rows satisfy the set-specification criteria if one is a member of the other in
the named set. The value of the set-specification is considered true when this condition
is satisfied and false otherwise.

The tables representing the owner and member records must appear in the FROM
parameter of the containing query specification or SELECT statement.

Inclusion of the FIRST and LAST keywords renders set-specification false for all member
occurrences except for the first or last, respectively. This additional syntax is included
for use with sets with an inherent first-in-first-out or last-in-first-out organization.

Expansion of Set-specification Statement

616 SQL Reference Guide

Qualification Requirements

Set-name must be qualified under the following conditions:

■ More than one member of a multi-member set has been named as a table in the
preceding FROM parameter

■ A table representing either the owner or a member has been assigned an alias in
the preceding FROM parameter

Improved Efficiency of Join Operations

A non-SQL-defined member record can contain the value of its owner's key. However,
unless the set definition in the non-SQL-defined schema identifies this as a foreign key,
CA IDMS will not use the set in its access strategy when performing join operations. This
may result in the choice of a less-than-optimal access strategy.

This can be overcome by using set-specification as part of the selection criteria.

Chapter 11: Defining and Using Table Procedures 617

Chapter 11: Defining and Using Table
Procedures

This section contains the following topics:

When to Use a Table Procedure (see page 617)
Defining a Table Procedure (see page 618)
Accessing a Table Procedure (see page 618)
Table Procedure Parameters (see page 619)
Writing a Table Procedure (see page 622)

When to Use a Table Procedure

You can use a table procedure to process non-SQL-defined data in a relational way even
though the data does not conform to the rules established for such access.

Table procedures allow you to perform the following tasks:

■ Make processing of complex structures, such as bills-of-materials, easier for an end
user. Since the details of access to the underlying records or tables are
encapsulated within the procedure, less knowledge is required on behalf of the user
to process the data.

■ Access non-SQL-defined data which does not conform to the rules associated with
SQL. For example, a procedure can enable access to the variable portion of a record
or support INSERT on a record without embedded foreign keys.

■ Access all segments of a segmented database within a single SQL transaction. Since
a table procedure can open more than one run unit or SQL session simultaneously,
it can access the appropriate segment based on the value of an input parameter. If
no appropriate segment key is available, it can access each segment serially.

■ Access remote data. This enables a single SQL transaction to access data distributed
across different nodes within an IDMS network while hiding the knowledge of the
location of the data within the procedure itself.

Defining a Table Procedure

618 SQL Reference Guide

Defining a Table Procedure

You define a table procedure using the CREATE TABLE PROCEDURE statement. In the
following example, the table procedure ORGANIZATION is named and associated with
schema EMP. The name of the program to be called to service a DML request against
the procedure, EMPORG, is specified in the EXTERNAL NAME parameter. The
parameters to be passed to and from the procedure are listed. Each parameter
definition consists of a name and a data type.

 CREATE TABLE PROCEDURE EMP.ORGANIZATION

 (TOP_KEY UNSIGNED NUMERIC(4),

 LEVEL SMALLINT,

 MGR_ID UNSIGNED NUMERIC(4),

 MGR_LNAME CHAR(25),

 EMP_ID UNSIGNED NUMERIC(4),

 EMP_LNAME CHAR(25),

 START_DATE CHAR(10),

 STRUCTURE_CODE CHAR(2))

 EXTERNAL NAME EMPORG;

More Information

■ For more information about syntax and parameters used in defining table
procedures, see CREATE TABLE PROCEDURE.

■ For more information and a detailed example about using a CREATE TABLE
PROCEDURE, see Sample COBOL Table Procedure.

Accessing a Table Procedure

You access table procedures using SQL DML statements, as with base tables and views.
You can reference table procedures any place where a table reference is permitted.
Whether a specific table procedure supports an SQL operation depends on the
user-written program. The program might, for example, support only retrieval
operations and disallow INSERT, UPDATE and DELETE by returning an error if such an
operation is attempted.

Access to a table procedure is controlled in the same way as for a table. GRANT and
REVOKE statements on a resource type of TABLE are used to give and remove SELECT,
INSERT, UPDATE, DELETE or DEFINE privileges on a table procedure.

Table Procedure Parameters

Chapter 11: Defining and Using Table Procedures 619

Table Procedure Parameters

The parameters associated with a table procedure are treated like columns of a table.
You can specify them within the column list of a SELECT or INSERT statement, the SET
clause of an UPDATE statement, the ORDER BY clause of a SELECT statement or the
search criteria of a WHERE clause. Additionally, you can specify parameter values within
the table procedure reference itself.

Column List, SET and ORDER BY References

Parameters referenced in Specify

Column list of a SELECT statement The columns that are returned to the
invoking application

Column list of an INSERT statement The columns having values that are
supplied in the subsequent VALUES
clause or query-specification

SET clause of an UPDATE statement Columns which are assigned new
values during the update operation

ORDER BY clause of a SELECT statement The order the result rows of the
procedure are returned to the
requesting application

WHERE Clause References

WHERE clause references to parameters are used to filter the output of the table
procedure. Each time a table procedure returns a set of output values, they are
evaluated against the selection criteria specified in the WHERE clause and
non-conforming "rows" are ignored.

The WHERE clause parameter references is used to pass input values to the table
procedure. If the set of column values provided on a particular call to the table
procedure matches the columns defined in a KEY on the same table procedure, the
ESTIMATED ROWS and ESTIMATED I/OS specified for that KEY are used by the optimizer
when the table procedure is joined with other tables or views. If you specify selection
criteria in the form of an "=" comparison (that is, parameter = value), value is passed to
the table procedure. Other types of selection criteria such as IN predicates or
comparison predicates with > or < operators have no effect on the value of the
parameters passed to the table procedure.

Table Procedure Parameters

620 SQL Reference Guide

Note: For more information about defining keys, see CREATE KEY.

Specifically, a reference to a parameter in a WHERE clause results in an input value
being passed to the table procedure only if:

■ It appears within an equality test

■ The equality test is not combined with other predicates in the WHERE clause
through the use of the OR operator

■ The equality test is not preceded by the NOT operator

WHERE Clause Parameter References

The following examples illustrate how a parameter reference in a WHERE clause affects
the value passed to the table procedure:

 WHERE clause Parameter value

 P1 P2

 P1 = 1 1 -null-

 P1 < 1 -null- -null-

 P1 = C1 C1 -null-

 P1 = 2 AND P2 = 3 2 3

 P1 = 2 AND P2 > 3 2 -null-

 P1 = 2 OR P2 = 3 -null- -null-

 P1 IN (2, 3, 8) -null- -null-

Parameters in Table Procedure References

You can also specify input parameter values within the table procedure reference itself.
You can specify them on any reference to a table procedure except within an INSERT
statement.

You specify parameter values supplied on a table procedure reference either
positionally or as keyword/value pairs. You can combine them with WHERE clause
references to form the set of values that are passed to the table procedure.

Examples of Specifying Parameter Values

The following example shows all the ways you can specify input parameter values.

 SELECT * FROM EMP.ORG (MGR_ID = 7, EMP_ID = 127)

 SELECT * FROM EMP.ORG (CAST(NULL AS NUM(4,0)),

 CAST(NULL AS SMALLINT),

 7,

 CAST(NULL AS CHAR(25)),

 127)

 SELECT * FROM EMP.ORG (MGR_ID = 7) WHERE EMP_ID = 127

Table Procedure Parameters

Chapter 11: Defining and Using Table Procedures 621

Difference Between Table Procedure Reference and WHERE Clause

One difference exists between parameter values specified through a WHERE clause and
those specified within the table procedure reference. Parameter values specified within
the table procedure reference are not used to filter the output from the table procedure
as is the case for those specified within the WHERE clause. Parameter values specified
within the table procedure reference affect only the input to the table procedure and
not the output from the table procedure. Therefore, the above three select statements
are equivalent only if the table procedure enforces the conditions specified through the
table procedure reference.

Note: The sample table procedure in Sample COBOL Table Procedure does not enforce
any criteria other than those that it uses to navigate the database.

Statistics and Optimization

Ideally, a table procedure should be written such that when certain sets of column
values are provided (either through a WHERE clause or a procedure reference), the
most efficient path can be used to access the data or join the table procedure to
another data source.

If the set of column values provided on a particular call to the table procedure matches
the columns defined in a KEY on the same table procedure, the ESTIMATED ROWS and
ESTIMATED I/Os defined for that KEY are used during optimization; otherwise, if the
ESTIMATED ROWS and ESTIMATED I/Os are defined for the table procedure, they are
used. If the ESTIMATED ROWS and ESTIMATED I/Os are not specified, the optimizer
defaults to 1000 and 100 respectively.

Normally, these statistics are used when the table procedure is the object a simple
select statement. However, the optimizer also uses them internally when the table
procedure is joined with other tables or views. If the nature of the join is such that the
values for columns (defined as a keys) are passed to the table procedure, the statistics
from the appropriate key are used when choosing an access plan.

Writing a Table Procedure

622 SQL Reference Guide

Writing a Table Procedure

The program associated with a table procedure can be written in COBOL, PL/I, or
Assembler. When called, the program is passed a fixed parameter list consisting of the
parameters specified on the table procedure definition and additional parameters used
for communication between CA IDMS and the table procedure.

Whenever a reference to a table procedure is made, CA IDMS calls the program
associated with the table procedure to service the request. Part of the information
passed to the table procedure is an indication of the type of action that the table
procedure is to perform, such as "return the next result row" or "update the current
row." The table procedure responds by performing the requested action or returning an
error.

CA IDMS performs transaction and session management automatically in response to
requests that the originating application issues. Changes to the database made by a
table procedure are committed or rolled out together with other changes made within
the SQL transaction. No special action is required of the table procedure to ensure this
occurs.

The next section discusses writing a table procedure in detail.

For an example of a table procedure written in COBOL, see Sample Table Procedure
Program.

Calling Arguments

The following sets of arguments are passed each time a table procedure is called:

■ One argument for each of the parameters specified on the table procedure
definition, passed in the order the parameters were declared

■ One argument for each null indicator associated with a parameter specified in the
table procedure definition, passed in the order the parameters were declared

■ A set of common arguments used for communications between CA IDMS and the
table procedure

The first two sets of arguments vary from one table procedure to another. They are
used to pass selection criteria and insert/update values to the table procedure and
result values from the table procedure.

The last set of arguments, shown in the next table, is the same for all table procedures.

Argument Contents

Result Indicator (fullword) Not used

Writing a Table Procedure

Chapter 11: Defining and Using Table Procedures 623

Argument Contents

SQLSTATE (CHAR (5)) Status code returned by the table procedure:

■ 00000—Indicates success

■ 01Hxx—Indicates a warning

■ 02000—Indicates no more rows

■ 38xxx—Indicates an error

Table Procedure Name
(CHAR (18))

Name of the table procedure

Explicit Name Not used

Message Text (CHAR (80)) Message text returned by the table procedure and
displayed by CA IDMS in the event of an error or
warning

SQL Command Code
(fullword)

Code indicating the type of SQL request for which the
table procedure is being called. See Table Procedure
Requests for a list of valid command codes.

SQL Operation Code
(fullword)

Code indicating the type of request being made of the
table procedure. See Table Procedure Requests for a
list of valid operation codes.

Instance Identifier (fullword) A unique value identifying the scan on which the table
procedure is to operate.

Local Work Area
(User-defined)

A user-defined storage area maintained across calls to
the table procedure.

Global Work Area
(User-defined)

A user-defined storage area maintained across calls to
the table procedure and capable of being shared by
other SQL routines.

Table Procedure Requests

Part of the information passed to the table procedure is the type of request being made.
This information is conveyed in two parameters:

■ The first parameter contains a code indicating the type of SQL statement for which
the request is issued (for example, INSERT, OPEN). The table following "SQL
command codes" lists valid SQL command codes.

■ The second parameter is an internal operation code indicating the type of action
expected of the table procedure. The table following "Operation codes" lists
possible operation codes.

Writing a Table Procedure

624 SQL Reference Guide

SQL Command Codes

The following table lists SQL command code values.

Command number Statement type

1 Logical DDL

3 CLOSE

4 COMMIT

5 COMMIT continue

6 COMMIT release

7 CONNECT

8 DECLARE

9 DELETE searched

10 DELETE positioned

11 DESCRIBE

12 EXECUTE

13 TERMINATE

14 EXECUTE IMMEDIATE

16 FETCH

17 INSERT

18 LOCK TABLE

19 OPEN

20 PREPARE

21 RESUME

22 RELEASE

23 ROLLBACK

24 ROLLBACK release

25 SELECT

26 SET ACCESS MODE

27 SET TRANSACTION

28 SUSPEND

29 UPDATE searched

Writing a Table Procedure

Chapter 11: Defining and Using Table Procedures 625

Command number Statement type

30 UPDATE positioned

31 SET COMPILE

32 SET SESSION

Operation Codes

The following table lists operation code values and their meanings:

Code Value Description

Open Scan &sub1. Value 12 Requests the table procedure prepare itself for
returning a set of result rows. Selection criteria
specified in the WHERE clause or in the table
procedure reference are passed as arguments
to the table procedure.

Next Row Value 16 Requests the table procedure return the next
result row for the indicated scan. Next Row
requests are repeated to return all the result
rows for a scan. The table procedure can set an
SQLSTATE value indicating that all rows have
been returned.

Close Scan Value 20 Informs the table procedure that no further
Next Row requests will be issued for the scan.
The table procedure may free resources in
response to this request.

Update Row Value 40 Requests the table procedure update the
"current" row of the indicated scan using the
values of the passed parameters as the update
values. Update Row requests are issued in
response to either searched or positioned
UPDATE statements.

Delete Row Value 36 Requests the table procedure delete the
"current" row of the indicated scan. Delete
Row requests are issued in response to either
searched or positioned DELETE statements.

Insert Row Value 32 Requests the table procedure insert a row into
the database using the values of the passed
parameters as the insert values.

Suspend Scan Value 24 Informs the table procedure the SQL session is
being suspended. The table procedure may
release resources in response to this request.

Writing a Table Procedure

626 SQL Reference Guide

Code Value Description

Resume Scan Value 28 Informs the table procedure the indicated scan
is being resumed following a suspend. The
table procedure may re-establish its state if
necessary.

Note: The term scan refers to a set of related
operations performed on behalf of one or more
SQL statements. A SELECT statement is
associated with a separate scan. Similarly, each
searched UPDATE or searched DELETE
statement is associated with a separate scan.
However, all statements referencing the same
cursor are associated with the same scan.

Both SELECT statements and OPEN/FETCH/CLOSE cursor requests result in the following
set of calls to the table procedure:

 Open Scan

 Next Row (1 to n times)

 Close Scan

A searched UPDATE statement results in the following:

 Open Scan

 Next Row \ (1 to n times)

 Update Row /

 Close Scan

The table procedure is called repeatedly to return the next row to be updated based on
the selection criteria passed on the Open Scan request. The results of the Next Row
request are examined by the DBMS to determine whether they satisfy all the WHERE
clause criteria specified on the searched update statement. If all criteria are satisfied,
the table procedure is then called to update the row. If any criteria are not satisfied, the
row is not updated and the table procedure is called instead to retrieve the next row.

A positioned UPDATE statement associated with an open cursor has a similar calling
sequence except the invoking application determines whether to update the current
row.

Searched and positioned DELETE statements result in similar calling sequences to those
for searched and positioned UPDATE statements, except a Delete Row request is issued
instead of an Update Row request.

INSERT statements result in a single call to the table procedure for each row to be
inserted.

Writing a Table Procedure

Chapter 11: Defining and Using Table Procedures 627

Parameter Arguments

On entry to the table procedure, the value of the arguments corresponding to the
parameters defined on the CREATE TABLE PROCEDURE statement vary depending on
the type of operation performed:

■ On an Open Scan request, non-null parameters contain one of the following:

– Selection criteria specified in the WHERE clause

– Parameter values specified on the table procedure reference

– Data type-specific default value if WITH DEFAULT was specified in the table
procedure definition

All other parameters contain nulls (that is, the null indicator for the parameter is
negative).

■ On an Update Row request, the parameters contain the values returned from the
previous Next Row request, overlaid with the values specified in the SET clause of
the UPDATE statement.

■ On an Insert Row request, the parameters contain the values specified in the
VALUES clause of the INSERT statement or the values returned by the SELECT
associated with the INSERT statement. Unspecified values are either null or contain
the parameter's default value.

■ On other types of requests, the contents of the parameters are undefined on entry.

On exit from a Next Row request, the table procedure is expected either to have set the
value of the parameter arguments and their indicators appropriately or to have set an
SQLSTATE value indicating no-more-rows. If an indicator parameter is set to -1, CA IDMS
ignores the value of the corresponding parameter.

Instance Identifier

On every call issued to a table procedure, a parameter is passed identifying the scan to
which the request is directed. In the case of INSERT, this has no meaning. However, in all
other cases (SELECT, UPDATE, DELETE, and cursor operations) the instance ID can be
used to distinguish one scan from another.

Writing a Table Procedure

628 SQL Reference Guide

Local Work Area

Another parameter passed on each call to a table procedure is a local work area where
the table procedure may save information it wishes to preserve from one call to
another. Each scan is allocated its own local work area so that values associated with
processing an individual scan may be saved appropriately in a local work area. The types
of information which you might need to preserve across calls include:

■ Subschema control block for a run unit or the session identifier of an SQL session
(for retrieval-only table procedures)

■ Database position information

■ Input parameter values used as selection criteria

CA IDMS allocates a local work area when a scan is opened and frees it when the scan is
closed. Each scan receives its own local work area. When the local work area is
allocated, it is initialized to binary zeros.

Global Work Area

A global work area is a storage area that can be shared across one or more table
procedures or other SQL routines within a transaction. Each global work area has an
associated key which is either:

■ The four-character identifier specified on the GLOBAL WORK AREA clause

■ The fully-qualified name of the table procedure if no identifier was specified

All SQL routines executing within a transaction and having the same global storage key
share the same global work area.

Unless transaction sharing is in effect, all SQL routines within an invoking SQL
transaction should update the database through only one run unit or SQL transaction to
avoid deadlocking. Typically an update table procedure uses a global work area to share
the subschema control or SQL session identifier with other SQL routines. A retrieval-only
table procedure might instead use only a local work area for each scan, opening the run
unit or SQL session on the Open Scan request and terminating it on the Close Scan
request.

Chapter 12: Defining and Using Procedures 629

Chapter 12: Defining and Using Procedures

This section contains the following topics:

When to Use a Procedure (see page 629)
Defining a Procedure (see page 630)
Invoking a Procedure (see page 631)
Procedure Parameters (see page 631)
Writing an External Procedure in COBOL, PL/I or Assembler (see page 634)
Writing External Procedures as CA ADS Mapless Dialogs (see page 636)

When to Use a Procedure

SQL-invoked procedures implement a remote procedure call paradigm. They have
similar uses as table procedures, but generally cannot replace table procedures because
of their inability to return many rows of a result table with the table procedure
parameters as columns of a table. Instead, they return only 0 or 1 row of parameters.
Procedures are much simpler to program and can be written in the SQL procedural
language.

Procedures can be implemented for many uses which include but is not limited to the
following:

■ Reuse existing code

■ Encapsulate complex code

■ Standardize common business processes

■ Reduce communication bandwidth

■ Easier and faster deployment and control of applications

■ Isolate user interface logic from database access

■ Implement transparently segmented databases

■ Access non-SQL defined databases

While procedures cannot return more than one row from a result table, made up from
the procedure parameters, it is possible for the caller of a procedure to receive result
sets created by the procedure. The caller can allocate and process dynamic cursors for
all the result sets returned by the called procedure. This feature is called dynamic result
sets. For more information, see CALL.

Defining a Procedure

630 SQL Reference Guide

Defining a Procedure

How to define and deploy SQL-invoked procedures depends on the language of the
procedure.

■ For SQL procedures which are specified with LANGUAGE SQL, you define the
procedure using the CREATE PROCEDURE statement with the procedure-statement
clause. After the successful execution and commit of the CREATE PROCEDURE
statement, the procedure can be called.

■ For external procedures, not specified with LANGUAGE SQL, you must use the
following steps:

1. Define the procedure using the CREATE PROCEDURE statement.

2. Write the procedure in COBOL, PL/I, Assembler, or CA ADS following the
guidelines outlined below. You can also use an existing program as a
procedure.

3. Define the program to a CA IDMS system, if necessary

4. Invoke the procedure with an SQL CALL statement or from within a
query-specification or a SELECT statement.

In the following example, the procedure GET_BONUS is named and associated with
schema EMP. The name of the program to be called to service a CALL request of the
procedure, CALCSAL, is specified in the EXTERNAL NAME parameter. The PROTOCOL
IDMS specifies that the procedure is defined and called using the IDMS protocol. The
parameters that pass to and from the procedure are listed. Each parameter definition
consists of a name and a data type.

 CREATE PROCEDURE EMP.GET_BONUS

 (EMP_ID UNSIGNED NUMERIC (4),

 START_DATE DATE,

 SALARY UNSIGNED NUMERIC (9))

 EXTERNAL NAME CALCSAL

 PROTOCOL IDMS;

More Information

■ For more information about syntax and parameters used in defining procedures,
see CREATE PROCEDURE.

■ For more information and a more detailed example of using CREATE PROCEDURE,
see Sample COBOL Procedure, and Sample CA ADS Procedure.

■ For more information about procedures returning dynamic result sets, see CALL.

Invoking a Procedure

Chapter 12: Defining and Using Procedures 631

Invoking a Procedure

You invoke procedures using an SQL CALL statement or using a query-specification or a
SELECT statement. During SQL CALL processing, CA IDMS issues a call to the
corresponding routines. The output parameter values return as a result set.

You can also reference a procedure in the FROM clause of a query-specification or
SELECT statement, in the same manner as references to SQL tables, views and table
procedures.

If you reference a procedure in a FROM clause, then the parameters of the procedure
act as columns in an SQL table or view. You can reference them in SELECT list
expressions and WHERE clauses. A procedure returns exactly one row of output or no
output. You can reference procedures any place that permits a table reference.

Access to a procedure is controlled in the same way as for a table procedure. GRANT
and REVOKE statements on a resource type of TABLE are used to give and remove
SELECT or DEFINE privileges on a procedure.

Procedure Parameters

Parameters in procedure references are covered in this section when used with or in the
following:

■ SQL CALL Statement

■ Query-specifications and SELECT Statements

■ WHERE Clause

Procedure Parameters

632 SQL Reference Guide

Parameters in Procedure References of the SQL CALL Statement

The recommended and easiest way of specifying input parameter values is within the
procedure reference itself in the SQL CALL statement. When invoked through the
Command Facility, the CALL statement results in a set of output values, one for each
parameter defined to the procedure. In embedded SQL a CALL statement results in an
output value for each parameter specified as a host variable, a local variable or a routine
parameter. For dynamically prepared CALL statements, only the parameters specified in
the procedure reference of the CALL will be available as output values.

You specify parameter values supplied on a procedure reference either positionally or as
keyword/value pairs. You can also combine them with WHERE clause references to form
the set of values that pass to the procedure.

Examples of specifying parameter values

The example below shows different ways in which you can specify input parameter
values using the SQL CALL statement.

 CALL EMP.GET_BONUS (EMP_ID = 127, START_YEAR= '1998')

 CALL EMP.GET_BONUS (127, '1998')

Parameters in Procedure References in Query-specifications and SELECT Statements

The parameters associated with a procedure are treated like columns of a table. You can
specify them within the column list of a SELECT or a query-specification or the search
criteria of a WHERE clause. Additionally, you can specify parameter values within the
procedure reference itself.

Column list references

Parameters referenced in Specify

Column list of a SELECT statement The columns that return to the
invoking application

Procedure Parameters

Chapter 12: Defining and Using Procedures 633

WHERE Clause References

You use WHERE clause references to parameters to filter the output of the procedure.
Each time a procedure returns a set of output values, they are evaluated against the
selection criteria specified in the WHERE clause. A non-conforming "row" results in an
SQLSTATE of No Data for the initiating SQL request.

Additionally, you can use WHERE clause parameter references to pass input values to
the procedure. If you specify selection criteria in the form of an "=" comparison (that is,
parameter = value), value passes to the procedure. Other types of selection criteria such
as IN predicates or comparison predicates with > or < operators have no effect on the
value of the parameters passed to the procedure.

Specifically, a reference to a parameter in a WHERE clause results in an input value
passing to the procedure only if:

■ It appears within an equality test

■ The equality test is not combined with other predicates in the WHERE clause
through the use of the OR operator

■ The NOT operator does not precede the equality test

WHERE clause Parameter References

The examples below illustrate how a parameter reference in a WHERE clause affects the
value passed to the procedure:

 WHERE clause Parameter value

 P1 P2

 P1 = 1 1 -null-

 P1 < 1 -null- -null-

 P1 = C1 C1 -null-

 P1 = 2 AND P2 = 3 2 3

 P1 = 2 AND P2 > 3 2 -null-

 P1 = 2 OR P2 = 3 -null- -null-

 P1 IN (2, 3, 8) -null- -null-

Difference between procedure reference and WHERE clause

One difference exists between parameter values specified through a WHERE clause and
those specified within the procedure reference. Parameter values specified within the
procedure reference are not used to filter the output from the procedure as is the case
for those specified within the WHERE clause. Parameter values specified within the
procedure reference affect only the input to the procedure and not the output from the
procedure. Therefore, the above three select statements are equivalent only if the
procedure enforces the conditions specified through the procedure reference.

Writing an External Procedure in COBOL, PL/I or Assembler

634 SQL Reference Guide

Writing an External Procedure in COBOL, PL/I or Assembler

You can write the program associated with an external procedure in COBOL, PL/I or
Assembler. This requires the procedure to be defined with PROTOCOL IDMS. When
called, the program is passed a fixed parameter list consisting of the parameters
specified on the procedure definition as well as additional parameters used for
communication between CA IDMS and the procedure.

Whenever you make a reference to a procedure, CA IDMS calls the program associated
with the procedure to service the request. The procedure responds by processing the
input parameters. You can optionally set an error condition in SQLSTATE.

CA IDMS performs transaction and session management automatically in response to
requests that the originating application issues. Changes to the database made by a
procedure are committed or rolled out together with other changes made within the
SQL transaction. The procedure requires no special action to ensure this occurs.

The next section discusses writing a procedure in detail.

For an example of a procedure written in COBOL, see Sample COBOL Procedure.

Calling Arguments

The following sets of arguments pass each time you call a procedure:

■ One argument for each of the parameters specified on the procedure definition,
passes in the order you declare the parameters

■ One argument for each null indicator associated with a parameter specified in the
procedure definition, passes in the order you declare the parameters

■ A set of common arguments used for communications between CA IDMS and the
procedure

The first two sets of arguments vary from one procedure to another. They are used to
pass selection criteria and insert/update values to the procedure and result values from
the procedure.

The last set of arguments, shown in the table below, is the same for all procedures.

Argument Contents

Result Indicator (fullword) Not used

Writing an External Procedure in COBOL, PL/I or Assembler

Chapter 12: Defining and Using Procedures 635

Argument Contents

SQLSTATE (CHAR (5)) Status code returned by the procedure: The initial
value is always 00000

■ 00000—Indicates success

■ 01Hxx—Indicates a warning

■ 02000—Indicates no more rows

■ 38xxx—Indicates an error

Procedure Name (CHAR (18)) Name of the procedure

Explicit Name Not used

Message Text (CHAR (80)) Message text returned by the procedure and displayed
by CA IDMS in the event of an error or warning

SQL Command Code
(fullword)

Always 16, indicating a Fetch SQL request.

SQL Operation Code
(fullword)

Always 16, indicating a "next row" request.

Instance Identifier (fullword) Not meaningful for procedures

Local Work Area
(User-defined)

A user-defined working storage area

Global Work Area
(User-defined)

A user-defined storage area that can be shared by
other SQL routines within a transaction.

Parameter Arguments

On entry to the procedure, the value of the arguments corresponding to the parameters
defined on the CREATE PROCEDURE statement are as follows:

Non-null parameters contain one of the following:

■ The parameter values specified on the procedure reference

■ The selection criteria specified in the WHERE clause

■ The data type-specific default value if WITH DEFAULT was specified in the
procedure definition

All other parameters contain nulls (that is, the null indicator for the parameter is
negative).

On exit expect the procedure to either have set the value of the parameter arguments
and their indicators appropriately or to have set an SQLSTATE value indicating
no-more-rows. If you set an indicator parameter to -1, CA IDMS ignores the value of the
corresponding parameter.

Writing External Procedures as CA ADS Mapless Dialogs

636 SQL Reference Guide

Local Work Area

Another parameter passed on each call to a procedure is a local work area.

CA IDMS allocates the local work area just before calling the procedure and frees it
immediately after the procedure exits. When CA IDMS allocates the local work area, it is
initialized to binary zeros.

Global Work Area

A global work area is a storage area that can be shared across one or more procedures
or other SQL routines within a transaction. Each global work area has an associated key
which is either:

■ The four-character identifier specified on the GLOBAL WORK AREA clause

■ The fully-qualified name of the procedure if you do not specify an identifier

All SQL routines executing within a transaction and having the same global storage key
share the same global work area.

Unless transaction sharing is in effect, all SQL routines within an invoking SQL
transaction should update the database through only one run unit or SQL transaction to
avoid deadlocking. Typically, an update procedure uses a global work area to share the
subschema control or SQL session identifier with other SQL routines. A retrieval-only
procedure might instead use only a local work area opening the run unit or SQL session
and terminating it on exit.

Writing External Procedures as CA ADS Mapless Dialogs

You can also code an SQL procedure as a CA ADS mapless dialog. This requires the
procedure to be defined with PROTOCOL ADS and SYSTEM MODE. The name of the
dialog that is loaded and run when the SQL procedure is invoked is specified in the
EXTERNAL NAME clause of the CREATE/ALTER PROCEDURE statement.

Note: For more information about coding an SQL procedure as a CA ADS, see CREATE
PROCEDURE and the examples given in Sample CA ADS Procedure.

Mapless Dialog

The ADS dialog that implements the SQL procedure must be mapless. The name of this
mapless dialog is specified as external-routine-name in the external clause of the
procedure definition.

To return to the SQL engine, the CA ADS premap process of the mapless dialog must
issue a LEAVE ADS command.

Writing External Procedures as CA ADS Mapless Dialogs

Chapter 12: Defining and Using Procedures 637

Work Records

To access the procedure parameters, the dialog must include a work record whose
name is schema-name.procedure-identifier. This record is not copied from the
dictionary but instead is automatically constructed by the CA ADS dialog compiler (ADSC
or ADSOBCOM) when it compiles the dialog. You can refer to the procedure parameters
in the ADS process code in the same way as you refer to columns in any SQL table. Null
indicator(s) (variables) can be referenced by appending "-I" to the relevant column
name (see Usage).

When parameters of a procedure are dropped, added or altered, the dialog that
implements the procedure must be recompiled. Failure to do so may result in a
DC171066 error message when the procedure is next executed. The runtime validation
producing this message is based solely on the size of the record.

Additional Records

Besides the pseudo-work record, schema-name.procedure-identifier, other records
related to the procedure can be included.

ADSO-SQLPROC-COM-AREA is a system-supplied record. The record layout is given next:

ADD RECORD NAME ADSO-SQLPROC-COM-AREA.

 03 FILLER PIC S9(8) COMP SYNC.

 03 FILLER PIC X(3).

 03 SQLPROC-SQLSTATE PIC X(5).

 03 SQLPROC-NAME PIC X(18).

 03 SQLPROC-SPECIFIC-NAME PIC X(18).

 03 SQLPROC-MSG-TEXT PIC X(80).

 03 SQLPROC-COMMAND-CODE PIC S9(8) COMP SYNC.

 03 SQLPROC-OPERATION-CODE PIC S9(8) COMP SYNC.

 03 SQLPROC-INSTANCE-ID PIC S9(8) COMP SYNC.

 03 FILLER OCCURS 2.

Writing External Procedures as CA ADS Mapless Dialogs

638 SQL Reference Guide

The non-FILLER elements of the ADSO-SQLPROC-COM-AREA record are the parameters
that are common to all SQL procedures. For a description of these parameters, see
Calling Arguments.

If the procedure definition contains a LOCAL or GLOBAL WORKAREA clause, you can
define corresponding records in the dictionary. While the layout of these records is
application dependent, the name must comply with the following rules in order for the
ADS runtime to properly initialize these records:

■ dialogname-SQLPROC-GLOBAL-AREA

■ dialogname-SQLPROC-LOCAL-AREA

The dialogname is the name of the dialog, specified as external-routine-name in the
external name clause of the procedure definition.

Note: For more information and examples, see Sample CA ADS Procedure.

Chapter 13: Defining and Using Functions 639

Chapter 13: Defining and Using Functions

This section contains the following topics:

When to Use a User-Defined Function (see page 639)
Defining a Function (see page 640)
Invoking a Function (see page 641)
Writing an External Function in COBOL, PL/I, or Assembler (see page 641)
Writing External Functions as CA ADS Mapless Dialogs (see page 644)

When to Use a User-Defined Function

You can use a user-defined SQL function just as you would use any SQL scalar function. A
scalar function is a function whose argument includes zero or more value expressions on
which the function operates. The result of a scalar function is a single value. This value is
derived from the expression or expressions named in the arguments.

Defining a Function

640 SQL Reference Guide

Defining a Function

How to define and deploy user-defined functions depends on the language of the
function.

■ For SQL functions, specified with LANGUAGE SQL, define the function using the
CREATE FUNCTION statement with the procedure-statement clause. After the
successful execution and commit of the create function statement, the function can
be invoked.

■ For external functions, not specified with LANGUAGE SQL, complete the following
steps:

1. Define the function using the CREATE FUNCTION statement.

2. Write the function in COBOL, PL/I, Assembler, or CA ADS following the
guidelines given in this chapter. You may also be able to use an existing
program as a template for a function.

3. Define the function to a CA IDMS system, if necessary.

4. Invoke the function as needed by specifying it anywhere that a
value-expression can be specified in an SQL statement.

Note: You invoke the SQL function in a way very similar to the way in which you invoke
built-in functions.

An example is shown next:

CREATE FUNCTION DEFJE01.UDF_FUNBONUS

 (EMP_ID DECIMAL(4))

 RETURNS DECIMAL(10)

 EXTERNAL NAME FUNBONUS PROTOCOL IDMS

 DEFAULT DATABASE CURRENT

 USER MODE

 LOCAL WORK AREA 0

 ;

Similarly, use the ALTER FUNCTION and DROP FUNCTION statements to modify and
delete the definition of existing functions.

More Information

■ For more information about the syntax and parameters used in defining functions,
see CREATE FUNCTION, ALTER FUNCTION, and DROP FUNCTION.

■ For more information and detailed examples about using a CREATE FUNCTION, see
Sample COBOL Function, and Sample CA ADS Function.

Invoking a Function

Chapter 13: Defining and Using Functions 641

Invoking a Function

User-defined SQL functions are invoked using the user-defined-function invocation
syntax.

Access to user-defined functions is controlled in the same way as for procedures. GRANT
and REVOKE statements on a resource type of TABLE are used to give and remove
SELECT or DEFINE privileges on a function.

Note: For more information about a user-defined-function, see Expansion of
Value-expression and Expansion of User-defined-function.

Writing an External Function in COBOL, PL/I, or Assembler

You can write the program associated with a function in COBOL, PL/I or Assembler. This
requires the function to be defined with PROTOCOL IDMS. When called, the program is
passed a fixed parameter list consisting of the parameters specified in the function
definition, as well as additional parameters used for communication between CA IDMS
and the function.

Whenever a function is invoked, CA IDMS calls the program associated with the function
to service the request. The function responds by processing the input parameters. An
error condition can optionally be set in SQLSTATE.

CA IDMS performs transaction and session management automatically in response to
requests that the originating application issues. Changes to the database made by a
function are committed or rolled out together with other changes made within the SQL
transaction. No special action is required of the function in order to ensure that this
occurs.

The next section discusses writing a function in detail.

For an example of a function written in COBOL, see Sample COBOL Function.

Writing an External Function in COBOL, PL/I, or Assembler

642 SQL Reference Guide

Calling Arguments

The following sets of arguments are passed when a function is called:

■ One argument for each of the parameters specified on the function definition,
passed in the order in which the parameters were declared. These arguments vary
from function to function; they are used to pass values to the function.

■ One argument to contain the return value of the function. The implicit name for this
argument is USER_FUNC.

■ One argument for each null indicator associated with a parameter specified in the
function definition, passed in the order in which the parameters were declared.
These arguments vary from function to function; they are used to pass values to the
function.

■ One argument for the null indicator associated with the return value of the function
(the null indicator for the USER_FUNC parameter).

■ A set of common arguments used for communications between CA IDMS and the
function. This set of arguments, shown in the following table, is the same for all
functions.

Argument Contents

Result Indicator (fullword) Not used

SQLSTATE (CHAR (5)) Status code returned by the procedure:

The initial value is always 00000

00000 Indicates success

01Hxx Indicates a warning

02000 Indicates no more rows

38xxx Indicates an error

Function Name (CHAR (18)) Name of the function

Explicit Name Not used

Message Text (CHAR (80)) Message text returned by the function and displayed
by CA IDMS in the event of an error or warning

SQL Command Code (fullword) Always 16, indicating a Fetch SQL request

SQL Operation Code (fullword) Always 16, indicating a "next row" request

Instance Identifier (fullword) Not meaningful for functions

Local Work Area (user-defined) A user-defined working storage area

Global Work Area
(user-defined)

A user-defined storage area that can be shared by
other SQL routines within a transaction.

Writing an External Function in COBOL, PL/I, or Assembler

Chapter 13: Defining and Using Functions 643

Parameter Arguments

On entry to the program associated with a function, the value of the arguments
corresponding to the parameters defined in the CREATE FUNCTION statement are as
follows:

■ Non-null parameters contain one of the following:

– The parameter values specified on the function reference

– The data type-specific default value if WITH DEFAULT was specified in the
function definition, and no value was specified in the function invocation

■ All other parameters contain nulls (that is, the null indicator for the parameter is
negative).

On exit, the program associated with the function is expected either to have set the
value of the parameter USER_FUNC, holding the functions return value and the
corresponding indicator appropriately, or to have set an SQLSTATE value indicating
no-more-rows. If the indicator parameter is set to -1, CA IDMS ignores the value of the
USER_FUNC parameter.

Local Work Area

Another parameter passed on each call to a function is a local work area.

CA IDMS allocates the local work area just before calling the function and frees it
immediately after the function exits. When the local work area is allocated, it is
initialized to binary zeros.

Global Work Area

A global work area is a storage area that can be shared across one or more functions or
other SQL routines within a transaction. Each global work area has an associated key
that is one of the following:

■ Four-character identifier specified on the GLOBAL WORK AREA clause

■ Fully-qualified name of the function if no identifier was specified

All SQL routines executing within a transaction and having the same global storage key
share the same global work area.

Writing External Functions as CA ADS Mapless Dialogs

644 SQL Reference Guide

Writing External Functions as CA ADS Mapless Dialogs

You can also code an SQL function as a CA ADS mapless dialog. This requires the
function to be defined with PROTOCOL ADS and SYSTEM MODE. The name of the dialog
that is loaded and run when the SQL function is invoked is specified in the EXTERNAL
NAME clause of the CREATE/ALTER FUNCTION statement.

Note: For more information, see CREATE FUNCTION and the examples given in Sample
CA ADS Function.

Mapless Dialog

The ADS dialog that implements the SQL function must be mapless. The name of this
mapless dialog is specified as external-routine-name in the external name clause of the
function definition.

To return to the SQL engine, the CA ADS premap process of the mapless dialog must
issue a LEAVE ADS.

Work Records

To access the function parameters and the result parameter USER_FUNC, the dialog
must include a work record whose name is schema-name.function-identifier. This
record is not copied from the dictionary but instead is automatically constructed by the
CA ADS dialog compiler (ADSC or ADSOBCOM) when it compiles the dialog. You can
refer to the function parameters and the result parameter USER_FUNC and the
corresponding null indicators in the ADS process code in the same way as you refer to
columns in any SQL table.

When parameters of a function are dropped, added or altered, the dialog that
implements the SQL function must be recompiled. Failure to do so may result in a
DC171066 error message when the function is next executed. The runtime validation
producing this message is based solely on the size of the record.

Writing External Functions as CA ADS Mapless Dialogs

Chapter 13: Defining and Using Functions 645

Additional Records

Besides the pseudo-work-record, schema-name.function-identifier, other records
related to the function can be included.

ADSO-SQLPROC-COM-AREA is a system-supplied record. The record layout is shown
next:

ADD RECORD NAME ADSO-SQLPROC-COM-AREA.

 03 FILLER PIC S9(8) COMP SYNC.

 03 FILLER PIC X(3).

 03 SQLPROC-SQLSTATE PIC X(5).

 03 SQLPROC-NAME PIC X(18).

 03 SQLPROC-SPECIFIC-NAME PIC X(18).

 03 SQLPROC-MSG-TEXT PIC X(80).

 03 SQLPROC-COMMAND-CODE PIC S9(8) COMP SYNC.

 03 SQLPROC-OPERATION-CODE PIC S9(8) COMP SYNC.

 03 SQLPROC-INSTANCE-ID PIC S9(8) COMP SYNC.

 03 FILLER OCCURS 2.

The non-FILLER elements of the ADSO-SQLPROC-COM-AREA record are the parameters
that are common to all SQL functions. For a description of these parameters, see Calling
Arguments.

If the function definition contains a LOCAL or GLOBAL WORKAREA clause, you can define
corresponding records in the dictionary. While the layout of these records is application
dependent, the name must comply with the following rules for the ADS runtime to
properly initialize these records:

■ dialogname-SQLPROC-GLOBAL-AREA

■ dialogname-SQLPROC-LOCAL-AREA

The dialogname is the name of the dialog, specified as external-routine-name in the
external name clause of the function definition.

Chapter 14: Considerations for SQL-invoked External Routines 647

Chapter 14: Considerations for SQL-invoked
External Routines

This section contains the following topics:

Special Considerations for SQL-invoked External Routines (see page 647)
Debugging Procedures (see page 653)
Database Name Inheritance (see page 653)
Transaction Sharing (see page 654)

Special Considerations for SQL-invoked External Routines

This section discusses the following special considerations for table procedures,
procedures and functions, commonly referred to as SQL-invoked external routines.

■ Environment independence

■ Transaction management

■ Suspension/resumption of SQL-invoked external routines

■ Error handling

■ Datetime parameters

■ Transaction mode

Special Considerations for SQL-invoked External Routines

648 SQL Reference Guide

Environment Independence

Since it is likely an SQL-invoked external routine will execute within a batch address
space because of local mode access and within the DC/UCF address space, it should be
independent of the runtime environment.

If your SQL-invoked external routine issues only database requests, use a protocol mode
of BATCH to ensure it executes in local mode and within the DC/UCF address space.

If an SQL-invoked external routine is executed in local mode (for example, through
IDMSBCF), it must limit itself to database requests only or be written in Assembler (or
use an Assembler subroutine for DC/UCF requests) or CA ADS.

Even if the SQL-invoked external routine is written in Assembler, many DC services such
as Print, Queue and Terminal I/O are not supported in local mode and should not be
used. Scratch and storage requests issued from an assembler program are supported in
local mode. Terminal I/O services are not supported in local mode or within the DC/UCF
address space.

If an SQL-invoked external routine is executed within DC/UCF, it should not contain
statements that interfere with, or are prohibited from, that environment. For example,
you should avoid DISPLAY statements in COBOL and GETMAIN requests in Assembler.
Follow the rules specified in the appropriate CA IDMS DML Reference Guide when
coding your SQL-invoked external routine.

When an SQL-invoked external routine is written as a mapless dialog in CA ADS, the CA
ADS batch environment must have been configured resulting in an ADSOOPTI load
module being available in the local mode load libraries.

Special Considerations for SQL-invoked External Routines

Chapter 14: Considerations for SQL-invoked External Routines 649

Transaction Management

Run units and SQL transactions opened within an SQL-invoked external routine are
managed automatically as part of the invoking SQL session's transaction. If the invoking
application issues a COMMIT WORK, all subordinate transactions opened by
SQL-invoked external routines are also committed. Similarly, if the invoking SQL session
is rolled out, all subordinate transactions are also rolled out.

Although an SQL-invoked external routine is free to terminate its own transactions
independently from the invoking SQL session, it should do so only if it made no changes
to the database.

Terminating the invoking SQL transaction, either through a COMMIT or ROLLBACK
operation, affects SQL-invoked external routines in the following ways:

■ All open scans are closed. A Close Scan request is issued to each affected
SQL-invoked external routine.

■ All database transactions (SQL or non-SQL) started by the SQL-invoked external
routine are either committed or rolled out and the corresponding sessions are
terminated.

■ All SQL-invoked external routine work areas are freed.

When the invoking SQL transaction is committed through a COMMIT CONTINUE
operation, the only effect on SQL-invoked external routines is that database changes
that the SQL-invoked external routine made are committed.

Special Considerations for SQL-invoked External Routines

650 SQL Reference Guide

Suspend/Resume

If an SQL session which invokes an SQL-invoked external routine is suspended, the
SQL-invoked external routine is also suspended, with the following results:

■ Run units and SQL sessions started by the SQL-invoked external routine are
suspended

■ Database changes made by the SQL-invoked external routine (whether through SQL
or native DML) are neither committed nor rolled out; instead the records remain
locked and the changes are either committed or rolled out when the invoking SQL
session is committed or rolled out

■ Work areas associated with the SQL-invoked external routine are retained

In most cases, no special action is required of the SQL-invoked external routine during a
suspend operation. The SQL-invoked external routine is called once for each open scan
that exists at the time the session is suspended. If the SQL-invoked external routine has
acquired temporary storage, it might need to save its contents somewhere else (such as
in kept storage or in a scratch area) that is preserved across a pseudo-converse;
otherwise, the SQL-invoked external routine may ignore Suspend Scan requests.

Similarly, the SQL-invoked external routine may ignore Resume Scan requests unless it
needs to restore a temporary storage area. The first request to an SQL-invoked external
routine after a resume is a Resume Scan, if the request involves a scan that was
previously suspended. If the request does not involve a previously-suspended scan, the
SQL-invoked external routine might not be aware that a suspend and resume has
occurred. The contents of the SQL-invoked external routine's work areas are the same
as before the suspend, and any run units or SQL sessions previously started by the
SQL-invoked external routine resume automatically on the next database request.

Error Handling

The SQL-invoked external routine has two arguments to signal an exception condition
back to CA IDMS. These arguments consist of a five-character SQLSTATE code and an
80-byte message area. The following table lists valid SQLSTATE codes and their
descriptions.

Value Description

00000 Request was successful

01Hxx Request was successful but the SQL-invoked external routine generated a
warning message

02000 No more rows to be returned

38xxx The SQL-invoked external routine has detected an error during processing

Special Considerations for SQL-invoked External Routines

Chapter 14: Considerations for SQL-invoked External Routines 651

CA IDMS examines the SQLSTATE value to determine whether the operation was
successful. An SQLSTATE value of 0200 indicates that all rows have been returned. It is
meaningful only on a Next Row request and cannot be set while at the same time
returning a row since CA IDMS ignores parameter arguments if an SQLSTATE value of
02000 is set.

If an SQLSTATE value indicates that an error or warning condition exists, CA IDMS
embeds the message text returned by the SQL-invoked external routine in a standard
DB message and returns it to the calling application through the message area of the
SQLCA. It also translates the SQLSTATE value into one of the following SQLCODE values:

SQLSTATE Value SQLCODE Value

00000 0

01Hxx 1

02000 100

38xxx -4

If the SQL-invoked external routine signals an error, CA IDMS automatically rolls out all
database changes that the SQL-invoked external routine made while processing the SQL
statement that caused the SQL-invoked external routine to be invoked. For example, if
the invoking SQL statement was a searched update and ten rows had been updated
before the error was detected, changes to all ten rows are rolled out automatically.
Database changes made prior to the execution of the searched update statement are
not rolled out.

Datetime Parameters

If an SQL-invoked external routine has a parameter with a data type of DATE, TIME, or
TIMESTAMP, the values passed to and from the SQL-invoked external routine are in the
eight-byte internal datetime format. To interpret incoming parameters, the SQL-invoked
external routine must first convert them to external format using either the IDMSIN01
subroutine or the #XTRA macro. Similarly, before returning a datetime parameter value,
the SQL-invoked external routine must convert the external format to the internal
format again using either IDMSIN01 or #XTRA.

To avoid this type of conversion, you can define date/time parameters using a character
data type which may then be converted to a DATE, TIME, or TIMESTAMP in DML
statements using the CAST function. However, this method requires that the invoking
application or end-user specify the CAST operation, and that the SQL-invoked external
routine validate the datetime on update and insert values.

Note: For more information about datetime parameters, see "Calls to IDMSIN01" in the
CA IDMS Callable Services Guide.

Special Considerations for SQL-invoked External Routines

652 SQL Reference Guide

Transaction Mode

The transaction mode of an SQL session which invokes an SQL-invoked external routine
is propagated to the subordinate transactions started by the SQL-invoked external
routine. If the SQL-invoked external routine starts an SQL session, its default transaction
mode is the same as the transaction mode associated with the invoking transaction. If
the SQL-invoked external routine binds a run unit and the transaction mode of the
invoking SQL transaction is READ ONLY, all update ready modes are converted
automatically to SHARED RETRIEVAL. The net result is that an SQL-invoked external
routine invoked by a transaction in a READ ONLY state is unable to update the database.

DC/UCF Program Definition

If the SQL-invoked external routine is executed within the DC/UCF address space, you
must define the program to the DC/UCF system using one of the following:

■ DCMT VARY DYNAMIC PROGRAM command

■ ADD PROGRAM system generation statement

Compile and Link Options

Compile and link options vary depending on the language in which the SQL-invoked
external routine is written and, in some cases, on the version of the compiler used. The
following guidelines apply to compile and link options for SQL-invoked external routines:

■ Programs should be reentrant or pseudo-reentrant.

■ Programs should be linked with an AMODE of 31. If you do not do this, you must
define all invoking tasks, including OCF, as LOC=BELOW.

COBOL Working Storage

You should not rely on the contents of COBOL working storage to be retained across
calls, nor should you rely on initialization to establish values on the first request for a
scan if the value might have been altered in a prior request.

The allocation and initialization of working storage varies depending on whether:

■ The SQL-invoked external routine is invoked in local mode or within the DC/UCF
address space

■ Concurrent scans are being processed

Use working storage only for the following:

■ Constants the SQL-invoked external routine will never change

■ Variables that are initialized and used within a single call to the program

Other types of data, such as first-time flags or variables set in one call that are used
within another, must be defined within either a local or global work area.

Debugging Procedures

Chapter 14: Considerations for SQL-invoked External Routines 653

Debugging Procedures

The following techniques can help you debug your SQL-invoked external routines:

■ Use WRITE TO LOG or SNAP requests to display trace information and key data
structures to the log (available under DC/UCF only).

■ Use COBOL or PL/I DISPLAY statements or write messages to a print file (available
under local mode or with LE/370 support under DC)

Note: If the program uses a VS COBOL compiler, even in local mode, you cannot
use:

– DISPLAY statements

– STATE and FLOW compiler options

■ Use SQLTRACE and DMLTRACE SYSIDMS parameters to trace the database calls
made by the SQL-invoked external routine (available under local mode only).

■ Use PROCTRACE in conjunction with SQLTRACE or DMLTRACE to trace the calls
made into and out of the SQL-invoked external routine. This option displays the
parameters both before and after the call (available under local mode only)

Note: You enable SQL-invoked external routine tracing by including the following
parameters in the SYSIDMS file:

 SQLTRACE=ON or DMLTRACE=ON

 PROCTRACE=ON

Database Name Inheritance

An SQL-invoked external routine can inherit the current database of the current session.
The DEFAULT DATABASE attribute of the SQL-invoked external routine definition
controls the inheritance of the default database as follows:

■ DEFAULT DATABASE NULL guarantees compatibility with previous releases of CA
IDMS.

■ DEFAULT DATABASE CURRENT makes the current database the default database for
any subordinate database session started by the SQL-invoked external routine.

Transaction Sharing

654 SQL Reference Guide

Transaction Sharing

Transaction sharing allows multiple database sessions within a user session to share a
single locking structure and recovery unit, thereby eliminating inter-session deadlocks.

Any access to a database from within an SQL-invoked external routine brings with it the
potential for deadlocking if the same data is directly accessed from within the
encompassing SQL session. By having both the SQL-invoked external routines and the
encompassing SQL session all share a single transaction, the deadlock potential is
eliminated.

Transaction sharing for SQL-invoked external routines is controlled by the TRANSACTION
SHARING attribute of the SQL-invoked external routine definition. See the different SQL
DDL statements for SQL-invoked external routines.

Chapter 15: XML Publishing Using SQL 655

Chapter 15: XML Publishing Using SQL

This section contains the following topics:

XML Publishing (see page 655)
XMLSLICE Table Procedure (see page 663)

XML Publishing

XML Publishing allows applications to generate XML data from data stored in a CA IDMS
database easily and with high performance. Although the API is based on SQL, CA IDMS
SQL supports SQL DML on non-SQL defined databases. Thus, also allowing non-SQL
defined CA IDMS databases to be used as the data sources for XML Publishing.

XML Publishing is based on and implements a subset of the SQL/XML ISO standard as
described in the ISO publication WD ISO/IEC 9075-14:2007 (E), titled "Information
technology - Database languages - SQL - Part 14: XML-Related Specifications
(SQL/XML)". A few extensions have been made available. These are indicated in the
following section.

The XML Publishing capability is made available through a set of SQL functions, a new
internal XML data type, an SQL table procedure, and an XML encoding session option.

XML Publishing

656 SQL Reference Guide

SQL/XML Functions

The SQL/XML functions are not true SQL functions but pseudo functions. Some of the
SQL/XML functions:

■ have a variable number of arguments

■ use "AS" to specify an alias for an expression as an argument

■ have arguments that can be of any type

■ support subqueries as arguments

■ have arguments that can be SQL identifiers

Following is a list of the SQL/XML routines (all functions except for one table procedure)
that can be used for XML Publishing purposes:

XML Value Functions

■ XMLAGG—aggregates a set of XML values.

■ XMLATTRIBUTES—function-like construct, only allowed as argument of
XMLELEMENT. Generates XML attributes.

■ XMLCOMMENT—generates an XML comment.

■ XMLCONCAT—concatenates multiple XML values.

■ XMLELEMENT—generates an XML element.

■ XMLFOREST—generates a forest (collection) of XML elements.

■ XMLNAMESPACES—function-like construct, only allowed as argument of
XMLELEMENT or XMLFOREST. Generates XML namespaces.

■ XMLPARSE—checks if an XML value is well-formed.

■ XMLPI—generates an XML processing instruction, that is, an XML declaration or
style sheet specification.

■ XMLROOT—sets the XML version and standalone option in the XML declaration of a
root XML element. If an XML declaration is not yet present, one is created with the
ENCODING pseudo attribute set to the sessions current XML encoding.

CA IDMS Scalar Functions

■ XMLPOINTER—returns a pointer to a character large object or CLOB, representing a
serialized XML value. This CA IDMS extension can be used in programs, running in
the same address space as CA IDMS.

■ XMLSERIALIZE—returns a character or binary value with a maximum length of
30,000, representing a serialized XML value.

Table Procedure

■ XMLSLICE—retrieves character or binary slices of equal length from the serialization
of an XML value.

XML Publishing

Chapter 15: XML Publishing Using SQL 657

More Information

■ For more information about detailed syntax and semantics of the SQL/XML
routines, see XML Value Functions.

■ For more information about detailed syntax and semantics of the XMLPOINTER and
XMLSERIALIZE scalar functions, see CA IDMS Scalar Functions.

■ For more information about detailed syntax and semantics of the XMLSLICE table
procedure, see XMLSLICE Table Procedure.

XML Data Type and XML Values

The XML data type is an internal only data type that represents XML data. XML values
are usually used as arguments to some of the SQL/XML functions.

The only way to produce an XML value is through the invocation of an XML value
function, possibly indirectly through using a subquery that returns an XML value. The
return value of all XML value functions is of the XML data type. A subquery used as an
XML-value-expression must be of the XML data type, which implies that its SELECT list
contains an XML value function.

Data of the XML type cannot be stored in a database or directly used in application
programs using the standard SQL API. Programs running in the CA IDMS CV address
space or in batch local mode can access serialized XML data using the XMLPOINTER
function. After serialization and casting to CHAR or VARCHAR through the XMLSERIALIZE
function, XML data can be accessed using any supported SQL API on any platform.

To bypass the 30,000 length limit of the character string returned by XMLSERIALIZE, use
the XMLSLICE table procedure.

Examples of valid XML values are as follows:

■ XML element

■ Forest of XML elements

■ Textual content of an XML element

■ NULL value

■ XML subquery (Select XMLAGG(XMLELEMENT(...)) from ATABLE where ...)

Syntax

No syntax is available. This is a special, internal only data type.

XML Publishing

658 SQL Reference Guide

Mappings

SQL and XML are two different languages with their own specific language elements and
grammar. When using SQL to produce XML, SQL language elements must be mapped to
XML using appropriate rules.

This section describes the rules that are used for mapping of:

■ Plain text SQL to XML

■ SQL identifier to XML

■ SQL data type values to XML schema data type values

Mapping Plain Text SQL to XML

This mapping is between the character set(s) of the SQL language and Unicode.

This feature supports mapping from the SQL character set (EBCDIC) to Unicode using
encodings UTF-8, UTF-16-BE (big endian), and UTF-16-LE (little endian). This mapping is
implemented using the standard CA IDMS code tables (RHDCCODE) and is controlled
through the XML encoding session option. The default is not to map; the serialized XML
values are encoded in EBCDIC.

Note: For more information about encoding XML values, see the XML encoding session
option under SET SESSION.

Mapping SQL Identifier to XML

You can use a much greater range of characters in an SQL identifier than in an XML
name. Any character can be used in an SQL identifier delimited by double quotes.

The normative definition of valid XML Name characters is found in the SQL/XML ISO
standard. Valid first characters of XML Names are:

Letters, <underscore>, and <colon>

Valid XML Name characters, after the first character, are:

Letters, Digits, <period>, <minus sign>, <underscore>, <colon>,

CombiningChars, and Extenders

Note: The XML definition of Letter and Digit is broader than <simple Latin letter> and
<digit> respectively.

XML Publishing

Chapter 15: XML Publishing Using SQL 659

There are two types of XML names: XML NCName and XML QName. An XML NCName is
an XML non-colonized name and contains no colon (:) character. An XML QName is an
XML-qualified name that consists of the XML namespace prefix and the local part of the
name, separated by a colon (:) character. The namespace prefix and the local part of the
name must be XML NCNames. For example, xsd:string is an XML Qname, where xsd is
the namespace prefix which must have been declared for a namespace URI, and string is
the local part of the name.

There are two types of mapping of SQL identifiers to XML: fully escaped and partially
escaped. Fully escaped mapping is used for all SQL identifiers that are derived from an
SQL column name, such as in the XMLATTRIBUTES and XMLFOREST functions. Partially
escaped mapping is used in all the other cases, such as in the AS clause of the
XMLATTRIBUTES, XMLFOREST, and XMLNAMESPACES functions, and in the NAME clause
of the XMLELEMENT and XMLPI functions.

XML names that begin with the characters "xml" (in any combination) are reserved by
W3C for use in future recommendations and cannot be used.

The following table shows some mapping examples:

SQL Identifier Fully Escaped XML Name Partially Escaped XML
Name

department DEPARTMENT DEPARTMENT

"department" department department

"last name" last_x0020_name last_x0020_name

"last_xname" last_x005F_name last_x005F_name

"dept:id" dept_x003A_id dept:id

":id" _x003A_id _x003A_id

"xmlcolumn" _x0078_mlcolumn xmlcolumn

"Xmlcolumn" _x0058_mlcolumn Xmlcolumn

xmlcolumn _x0058_MLCOLUMN XMLCOLUMN

XML Publishing

660 SQL Reference Guide

Mapping SQL Data Type Values to XML Schema Data Type Values

This feature supports mapping SQL data type values to XML schema data type values;
however, mapping of GRAPHIC and VARGRAPHIC are not supported.

You can map null values using absence or xsi:nil="true".

The complete mapping rules are described in the SQL/XML ISO standard specification.
As an oversimplification, mapping can be described as the result of the casting of the
SQL data value to VARCHAR(max).

The following table shows some of the character value mappings:

SQL Character Value Mapped Value

< < .

> > .

& & .

Carriage Return  .

' &apos .

" " .

This mapping does not apply to the characters belonging to an XML CDATA section; a
CDATA section begins with the string "<![CDATA[" and ends with the string "]]>".

Example

In the following example, the use of many of the SQL/XML functions is shown. The result
of the SELECT is an XML document that contains all the employees from the
DEMOEMPL.EMPLOYEE table, grouped by department. The DEMOEMPL.EMPLOYEE and
DEMOEMPL.DEPARTMENT tables are equi-joined on the DEPT_ID. To limit the size of
the output, a WHERE clause is coded for the DEPT_ID column. Note how the SELECT
statement clearly and naturally reflects the structure of the XML document.

XML Publishing

Chapter 15: XML Publishing Using SQL 661

select

 XMLSERIALIZE(CONTENT

 XMLCONCAT(

 XMLPI(NAME "xml"

 ,'version="1.0" encoding="UTF-8" standalone="yes"')

 ,XMLELEMENT(NAME "EmployeesByDepartment"

 ,XMLAGG

 XMLELEMENT(NAME "Department"

 ,XMLATTRIBUTES(DEPT_ID as "DeptId"

 ,DEPT_NAME as "DeptName")

 ,select XMLAGG(

 XMLELEMENT(NAME "Employee"

 ,XMLATTRIBUTES(EMP_ID as "EmpId")

 ,e.EMP_FNAME

 ,e.EMP_LNAME

 ,XMLELEMENT(Name "Address"

 ,XMLFOREST(

 e.STREET as "Street"

 ,e.CITY as "City"

 ,e.STATE as "State"

)

)

)

)

 from DEMOEMPL.EMPLOYEE e

 where d.DEPT_ID = e.DEPT_ID

)

)

)

)

 as VARCHAR(5000)

)

 from DEMOEMPL.DEPARTMENT d

 where d.DEPT_ID < 1120

XML Publishing

662 SQL Reference Guide

The result, which has been formatted for clarity, is similar to the following:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<EmployeesByDdpartment>

 <Department DeptId="1100" DeptName="PURCHASING - USED CARS">

 <Employee EmpId="5008">

 Timothy Fordman

 <Address>

 <Street>60 Boston Rd</Street>

 <City>Brookline</City>

 <State>MA</State>

 </Address>

 </Employee>

 <Employee Empid="4703">

 Martin Halloran

 <Address>

 <Street>27 Elm St</Street>

 <City>Brookline</City>

 <State>MA</State>

 </Address>

 </Employee>

 <Employee EmpId="2246">

 Marylou Hamel

 <Address>

 <Street>11 Main St</Street>

 <City>Medford</City>

 <State>MA</State>

 </Address>

 </Employee>

</Department>

<Department DeptId="1110" DeptName="PURCHASING - NEW CARS">

 <Employee EmpId="2106">

 Susan Widman

 <Address>

 <Street>43 Oak St</Street>

 <City>Medford</City>

 <State>MA</State>

 </Address>

 <Employee EmpId="1765">

 David Alexander

 <Address>

 <Street>18 Cross St</Street>

 <City>Grover</City>

 <State>MA</State>

 </Address>

 </Employee>

</Department>

</EmployeesByDepartment>

XMLSLICE Table Procedure

Chapter 15: XML Publishing Using SQL 663

XMLSLICE Table Procedure

SYSCA.XMLSLICE is a table procedure used to retrieve character or binary slices of equal
length from the serialization of an XML value. It is a CA IDMS extension that has been
made available to allow any client program to process large serialized XML values. It is
used when neither XMLSERIALIZE (limited to 30,000 characters) nor XMLPOINTER
(requires client to run in same address space as CA IDMS) can be used.

Syntax

SELECT ── CAST── (── SLICE ──┬─── AS BIN (slice-size) ───┬─) ───────►
 └─── AS CHAR (slice-size) ──┘

►──┬────────────────┬─┬─────────────────┬────────────────────────────►
 └─,─ TOTLENGTH ──┘ └─,─ RESTLENGTH ──┘

►── FROM SYSCA.XMLSLICE ─┬────────────────────────────────────┬──────►
 └─ (slice-size) ─┬────────────────┬─)┘
 └─ , X'pad-hex' ─┘

►── WHERE ───►

►──┬───┬─►
 └─ SLICESIZE = slice-size ─┬────────────────────────────┬───────┘
 └─ AND PADDING = X'pad-hex' ─┘

►── XMLVALUE = XML-value-expression ─────────────────────────────────►◄

XMLSLICE Table Procedure

664 SQL Reference Guide

Parameters

TOTLENGTH

Specifies the total length of the serialized XML value, without padding characters.

RESTLENGTH

Specifies the XML data length, without padding characters, that have not been
returned yet.

SYSCA.XMLSLICE

Specifies a table procedure that slices XML-value-expression, after serialization,
into slices of equal size, specified by slice-size. Each row returned by
SYSCA.XMLSLICE represents a slice.

slice-size

Specifies an integer value-expression, with a positive value <= 8192. A slice-size
must always be present, either as the first positional parameter of the table
procedure or as the right operand in the equal predicate for SLICESIZE.

pad-hex

Specifies an optional two-byte hexadecimal literal that is used to pad the last slice
of the serialized XML value. The default depends on the XML ENCODING parameter
of the SQL SET SESSION statement. Two spaces are used for EBCDIC (X'4040') and
UTF8 (X'2020'); one space is used for UTF16LE (X'2000') and UTF16BE (X'0020').

If XML-value-expression is specified as a subquery, it must be enclosed in parentheses.

The content of the slice is available in the SLICE column of the table procedure.
Optionally, you can specify additional columns in the SELECT statement.

XMLSLICE Table Procedure

Chapter 15: XML Publishing Using SQL 665

Examples

Example 1

In the following SELECT statement, all the employees in DEMOEMP.EMPLOYEE are
aggregated in one XML value. This XML value is serialized, and each row returned is a
40-character slice of the serialized XML value.

select cast(slice as char(40)) from SYSCA.XMLSLICE

where slicesize = 40

 and xmlvalue =

(

 select xmlelement(name "employee",

 xmlagg(xmlelement(name "Name",

 E.EMP_LNAME)))

 from DEMOEMPL.EMPLOYEE e

)

The result is similar to the following:

*+ (EXPR)

*+ ------

*+ <employee><Name>Albertini </Na

*+ me><Name>Alexander </Name><Nam

*+ e>Anderson </Name><Name>Baldw

*+ in </Name><Name>Bennett

*+ </Name><Name>Bradley

*+ </Name><Name>Brooks </Name

*+ ><Name>Carlson </Name><Name>

*+ Catlin </Name><Name>Clark

*+ </Name><Name>Courtney

*+ </Name><Name>Crane <

*+ /Name><Name>Cromwell </Name><

*+ Name>Dexter </Name><Name>Do

*+ nelson </Name><Name>Ferguson

*+ </Name><Name>Ferndale

*+ </Name><Name>Fordman </N

*+ ame><Name>Gallway </Name><Na

*+ me>Griffin </Name><Name>Hall

XMLSLICE Table Procedure

666 SQL Reference Guide

Example 2

This example shows the z/OS JCL for the batch command facility IDMSBCF and the SQL
statements to create the z/OS dataset "CAIDMS.SAMPLE.XML" holding an XML
document encoded in Unicode UTF-16 Little Endian.

The XML document contains the id and name of all employees as present in the
DEMOEMPL.EMPLOYEE table.

With a binary file transfer, the dataset can be copied to other platforms for further
processing. The use of the XMLSLICE table procedure allows for creating XML
documents up to 2 GB.

//BCFLOCAL EXEC PGM=IDMSBCF,REGION=7500K

//STEPLIB DD DSN=CAIDMS.R160.LOADLIB,DISP=SHR

&invellip.

//SYSLST DD SYSOUT=A

//SYSOUT DD SYSOUT=A

//OUTPUT DD DSN=CAIDMS.SAMPLE.XML,DISP=(NEW,CATLG),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=16000),

// UNIT=SYSDA,SPACE=(TRK,(10,10))

//SYSIPT DD *

set options OUTPUT to OUTPUT; -- redirects output of BCF

set session XML Encoding utf16LE;-- requests UTF-16 LE encoding

select cast(slice as char(80))

 from sysca.xmlslice(80, X'2000')-- defines slices of 80 bytes

 -- padding with space in UTF-16 LE

 where xmlvalue =

(select xmlroot(xmlelement(name "AllEmployees"

 , xmlagg(xmlelement(name "Emp"

 , xmlattributes(EMP_ID as "Id")

 , EMP_FNAME ||EMP_LNAME)))

 , version '1.0')

 from DEMOEMPL.EMPLOYEE

)

Appendix A: Summary Comparison to SQL Standard 667

Appendix A: Summary Comparison to SQL
Standard

SQL Standard Basis

CA IDMS SQL is based on the ISO/IEC SQL Standards endorsed by ANSI.

Additional Statements in CA IDMS

CA IDMS supports the following SQL statements not included in the SQL standard:

Statement category CA IDMS extensions

Access module management ALTER ACCESS MODULE

CREATE ACCESS MODULE

DROP ACCESS MODULE

EXPLAIN

Authorization GRANT definition privileges

GRANT EXECUTE

REVOKE SQL definition privileges

REVOKE EXECUTE

TRANSFER OWNERSHIP

Data manipulation DECLARE EXTERNAL CURSOR

SQL Standard Basis

668 SQL Reference Guide

Statement category CA IDMS extensions

Logical data description ALTER CATALOG

ALTER INDEX

ALTER SCHEMA

ALTER TABLE PROCEDURE

CREATE CALC

CREATE CONSTRAINT

CREATE INDEX

CREATE KEY

CREATE TABLE PROCEDURE

CREATE TEMPORARY TABLE

DROP CALC

DROP CONSTRAINT

DROP INDEX

DROP KEY

DROP TABLE PROCEDURE

Precompiler-directive INCLUDE

Session management RELEASE

RESUME SESSION

SET SESSION

SUSPEND SESSION

Transaction management SET ACCESS MODULE

Additional Parameters and Capabilities in CA IDMS

CA IDMS supports the following additional parameters and capabilities not included in
the SQL standard:

Statement or component CA IDMS extensions

Identifiers ■ Keywords as identifiers

Data-type ■ GRAPHIC data type

■ LONGINT data type

■ NUM as a synonym for NUMERIC

■ VARGRAPHIC data type

Literal ■ G'double-byte-character-string-literal'

rowid-pseudo-column

SQL Standard Basis

Appendix A: Summary Comparison to SQL Standard 669

Statement or component CA IDMS extensions

SQL declaration sections ■ Support for coding delimiters across
multiple lines

Special-register ■ GROUP

■ CURRENT DATE

■ CURRENT TIME

■ CURRENT TIMESTAMP

■ CURRENT DATABASE

■ CURRENT SCHEMA

■ CURRENT SQLID

Aggregate-function ■ Column-name without DISTINCT in the
COUNT function

COMMIT WORK statement ■ CONTINUE parameter

■ RELEASE parameter

CREATE TABLE statement ■ IN parameter

■ COMPRESS parameter

■ ESTIMATED ROWS parameter

DECLARE CURSOR statement ■ GLOBAL parameter

FETCH statement ■ BULK parameter

■ Buffer specification in the INTO
parameter

INSERT statement ■ BULK parameter

ROLLBACK WORK statement ■ RELEASE parameter

SELECT statement ■ PRESERVE parameter

■ BULK parameter

WHENEVER statement ■ Label without a colon

■ CALL parameter

Appendix B: Summary of Limits 671

Appendix B: Summary of Limits

Logical Data Limits

Item Maximum allowed

Tables in a dictionary Unlimited

Views in a dictionary 32,767

Tables in an area 32,767

Indexes in an area 32,767

Bytes in a row 32,760

Columns in a table or view 1,024

CALC keys on a table 1

Indexes on a table Unlimited

Columns in a CALC, index, foreign, or sort key 32

Length of a CALC, index, foreign, or sort key
Note: This includes length of the key columns, null
indicators, and varchar length fields.

2000 bytes

Data Type Limits

Data type Largest possible&sub1. Smallest possible

BINARY 32,760 bytes 1 byte

CHARACTER 32,760 bytes 1 byte

DATE '9999-12-31' '0001-01-01'

DECIMAL 10&sub3.&sub1.-1 -(10&sub3.&sub1.-1)

Positive

DOUBLE

PRECISION

Approximately 7.2E+75 Approximately 5.4E-79

Negative

DOUBLE

PRECISION

Approximately -5.4E-79 Approximately -7.2E+75

Host Variable Limits

672 SQL Reference Guide

Data type Largest possible&sub1. Smallest possible

Positive FLOAT Approximately 7.2E+75 Approximately 5.4E-79

Negative FLOAT Approximately -5.4E-79 Approximately -7.2E+75

GRAPHIC 16,380 double-byte characters 1 double-byte character

INTEGER 2,147,483,647 -2,147,483,648

LONGINT 9,223,372,036,854,775,807 -9,223,372,036,854,775,808

NUMERIC 10&sub3.&sub1.-1 -(10&sub3.&sub1.-1)

Positive REAL Approximately 7.2E+75 Approximately 5.4E-79

Negative REAL Approximately -5.4E-79 Approximately -7.2E+75

SMALLINT 32,767 -32,768

TIME '23:59:59' '00:00:00'

TIMESTAMP '9999-12-31.23.59.59.999999' '0001-01-01.00.00.00.000000'

UNSIGNED
DECIMAL

10&sub3.&sub1.-1 0

UNSIGNED
NUMERIC

10&sub3.&sub1.-1 0

VARCHAR 32,758 bytes 1 byte

VARGRAPHIC 16,379 double-byte characters 1 double-byte character

Note: A TIME value of 24.00.00 is accepted and treated as 00.00.00.

Note: The largest possible data type size is theoretical. The aggregate column size of a
table cannot exceed the page size less bytes reserved for control information.

For more information, see the CA IDMS Database Administration Guide.

Host Variable Limits

Item Maximum allowed

Host and indicator variables in an SQL statement 2,048

Total length of the host and indicator variables
described by an SQLDA

32,767

Syntactic Limits

Appendix B: Summary of Limits 673

Syntactic Limits

Item Maximum allowed

Length of an identifier 32 bytes

Length of an embedded SQL statement 8,192 bytes

Columns in a result table 1,024

Columns in a GROUP BY parameter 255

Total length of the columns in a GROUP BY
parameter

32,767 bytes

UNION operands in a query expression or SELECT
statement

31

Columns in an ORDER BY parameter 254

Total length of the columns in an ORDER BY
parameter

32,767 bytes

Value expressions in a query expression 1,024

Table names in a query specification 32

Query specifications in a query expression 32

Dynamic parameters used in a statement 1024

Subqueries and user-defined function invocations in
a statement

1024

Number of arguments in user-defined function
invocations. The actual limit depends on the data
types and the complexity of expressions used in the
function invocation.

620

Appendix C: SQL Communication Area 675

Appendix C: SQL Communication Area

SQLCA

The SQL Communication Area (SQLCA) is a data structure used to return information
regarding the success or failure of an SQL request.

Structure

Field Meaning Additional information

SQLCAID Eye-catcher (SQLCA) Initialized to SQLCA*.

SQLCODE SQL error code For SQLCODE values, see SQLCODE
Values.

SQLCERC Extended information error
code

This field contains the reason code for
error or warning conditions.

SQLCNRP Number of rows processed by
the SQL statement

SQLCNRRS Number of dynamic results
sets returned by a called
SQL-invoked procedure

This is a 2-byte integer value.

SQLCSER Offset into the user-provided
SQL statement buffer where a
syntax error was recognized

SQLCLNO Source file line number from
which the SQL statement was
obtained

This field is maintained by the
precompiler and is provided for use in
forming error messages.

SQLCMCT Count of messages issued for
this request

SQLCARC Reserved

SQLCFJB Reserved

SQLCERRML Length of error message text
in SQLERRMC

SQLERRMC Text of the error messages This is a 256-byte field containing one
or more messages. Each message is
preceded by a one-byte binary field
containing the length of the message
text.

SQLSTATE

676 SQL Reference Guide

Field Meaning Additional information

SQLSTATE SQL status code For SQLSTATE values, see SQLSTATE
Values

SQLSTATE

SQLSTATE is a five-character string where CA IDMS returns the status of the last SQL
statement executed. It is divided into a two-character class and a three-character
subclass. Standard values are associated with each class and subclass, which minimizes
the need for vendors to define their own values and makes applications more portable
from one environment to another.

SQLSTATE Values

The list of SQLSTATE values that CA IDMS can return appears next. The list is divided
into sections based on the class (the first 2 characters of the SQLSTATE value). Each
subclass (the last 3 characters of the SQLSTATE value) is listed under its associated class.

Standard -defined Values

Class and subclass values beginning with the characters A-H and 0-4 are established by
the SQL standard organizations.

CA IDMS-defined Values

Class and subclass values beginning with the characters I-Z and 5-9 are vendor-defined;
in this case, they are specific to CA IDMS. Any subclass value associated with a
vendor-defined class is also defined by that vendor.

SQLSTATE Values

Appendix C: SQL Communication Area 677

SQLSTATE Values

 00 Successful completion

 000 No subclass

 01 Warning

 000 No subclass

 004 String data, right truncation

 00C SQL-invoked procedure returned result sets

 00D Additional result sets returned

 00E Attempt to return too many result sets

 010 Column cannot be mapped

 600 Inconsistent or invalid option

 602 Entity or association already exists

 605 Entity not defined in Catalog

 606 Invalid option for physical DDL

 607 Invalid option for DMCL

 608 Connecting to a dictionary which is missing either or

 or both of DDLCAT/DDLDML areas

 610 Database is inconsistent with request

 611 SQL routine parse error

 612 ADS compilation for an SQL routine failed

 613 Drop of SQL routine completed with warnings

 638 Warning returned from table procedure

 02 No data

 000 No subclass

 07 Dynamic SQL error

 000 No subclass

 001 USING clause does not match dynamic parameter specification

 002 USING clause does not match target specification

 003 Cursor specification cannot be executed

 004 USING clause required for dynamic parameters

 08 Connection exception

 000 No subclass

 004 SQL-server rejected establishment of SQL-connection

 006 Connection failure

 0M Invalid SQL-invoked procedure reference

 000 No subclass

 0N SQL/XML Mapping Error

 000 No subclass

 001 Unmappable XML name

 002 Invalid XML character

SQLSTATE Values

678 SQL Reference Guide

 21 Cardinality violation

 000 No subclass

 22 Data Exception

 000 No subclass

 001 String data, right truncation

 002 Null value, no indicator parameter

 003 Numeric value out of range

 005 Error in assignment

 007 Invalid datetime format

 008 Datetime field overflow

 00J Nonidentical notations with the same name

 00K Nonidentical unparsed entities with the same name

 00L Not an XML document

 00M Invalid XML document

 00N Invalid XML content

 00R XML value overflow

 00S Invalid comment

 00T Invalid processing instruction

 011 Substring error

 012 Division by zero

 019 Invalid escape character

 23 Constraint violation

 000 No subclass

 501 Duplicate key violation

 24 Invalid cursor state

 000 No subclass

 25 Invalid transaction state

 000 No subclass

 006 Read-only SQL-transaction

 26 Invalid SQL statement name

 000 No subclass

SQLSTATE Values

Appendix C: SQL Communication Area 679

 28 Invalid authorization specification

 000 No subclass

 602 Entity or association already defined

 605 Entity or association not previously defined

 607 Authorization ids not specified

 2C Invalid character set name

 000 No subclass

 34 Invalid cursor name

 000 No subclass

 37 Syntax error or access rule violation

 000 No subclass

 38 External routine exception

 000 No subclass

 999 ADS dialog failed or dialog does not exist

 39 External routine invocation exception

 000 No subclass

 3F Invalid schema name

 000 No subclass

 40 Transaction rollback

 000 No subclass

 001 Serialization failure

SQLSTATE Values

680 SQL Reference Guide

 42 Syntax error or access rule violation

 000 No subclass

 500 Table not found

 501 Column not found

 502 Entity already defined

 503 Authorization failure

 504 Cursor not declared or previously declared

 505 Entity not found

 506 Invalid identifier

 507 Keyword used as identifier

 600 Invalid statement

 601 Statement not valid in this context

 603 Statement not valid for this schema

 604 Invalid data type

 606 Invalid statement option

 607 Missing statement option

 609 Invalid constraint definition

 610 Invalid number of columns

 50 CA-defined errors

 000 No subclass

 002 Limit exceeded

 003 Space exceeded

 00B Internal error

 00I Schema mismatch

 00J Invalid entity definition

 00K Uncategorized error

 00L Invalid calling parameters

 60 CA IDMS specific errors

 000 No subclass

 001 Problem with load module or synchronization stamps

 002 Database error

 003 Rollback failed

 004 Failure while opening or describing a received cursor

 005 Unexpected error from GET/PUT SCRATCH

 64 CA IDMS Physical DDL error

 000 No subclass

 6U CA IDMS Utility error

 000 No subclass

SQLCODE

Appendix C: SQL Communication Area 681

SQLCODE

SQLCODE is a field in the SQLCA, the data structure that CA IDMS uses to return
information about the execution of SQL statements. After CA IDMS processes an SQL
statement SQL CODE contains a value that indicates the outcome of the processing.

An application program can check the value in SQLCODE after CA IDMS processes each
SQL statement and can take appropriate action based on the value.

Note: For more information about the SQLCA, see the CA IDMS SQL Programming
Guide.

SQLCODE Error Values

CA IDMS returns the following values in SQLCODE:

Value Meaning

0 CA IDMS successfully executed the SQL statement.

>1 CA IDMS successfully executed the SQL statement but generated a
warning in the process.

100 CA IDMS could find no row or no more rows to process.

-4 CA IDMS was unable to execute the SQL statement because errors
were detected during processing. The transaction remains active.

-5 CA IDMS terminated the transaction abnormally to recover from a
processing error. The session remains active unless it was
automatically connected.

-6 CA IDMS has detected a condition that prevents further processing.
The session is released.

-7 CA IDMS has detected an abnormal condition that prevents further
processing. The SQL session is aborted.

SQLCODE and SQLCNRP Values

Result of bulk fetch SQLCODE value SQLCNRP value

No rows are returned 100 0

SQLCODE and SQLCNRP Values

682 SQL Reference Guide

Result of bulk fetch SQLCODE value SQLCNRP value

At least one row is returned but fewer
rows than the maximum allowed

100 Equals the
number of rows
returned

The number of rows returned matches the
maximum allowed

0 Equals the
number of rows
returned

Result of bulk select SQLCODE value SQLCNRP value

No rows are returned 100 0

At least one row is returned but fewer
rows than the maximum allowed

100 Greater than 0 and less
than or equal to the
maximum allowed

The number of rows returned exceeds
the maximum allowed

Less than 0 Equal to the maximum
allowed

Result of bulk insert SQLCODE value SQLCNRP value

Fewer rows than the number of rows
specified are inserted because the
insert failed on a row

Less than 0 Equal to the relative
row number of the
failing row

The number of rows inserted matches
the number of rows specified

0 Equal to the number of
rows inserted

COBOL/CA ADS SQLCA

Appendix C: SQL Communication Area 683

COBOL/CA ADS SQLCA

 01 SQLCA.
 02 SQLCAID PIC X(8).
 02 SQLCODE PIC S9(9) COMP.
 02 SQLCSID PIC X(8).
 02 SQLCINFO.
 03 SQLCERC PIC S9(9) COMP.
 03 FILLER PIC S9(9) COMP.
 03 SQLCNRP PIC S9(9) COMP.
 03 FILLER PIC S9(9) COMP.
 03 SQLCSER PIC S9(9) COMP.
 03 FILLER PIC S9(9) COMP.
 03 SQLCLNO PIC S9(9) COMP.
 03 SQLCMCT PIC S9(9) COMP.
 03 SQLCARC PIC S9(9) COMP.
 03 SQLCFJB PIC S9(9) COMP.
 03 FILLER PIC S9(9) COMP.
 03 FILLER PIC S9(9) COMP.
 02 SQLCINF2 REDEFINES SQLCINFO.
 03 SQLERRD PIC S9(9) COMP
 OCCURS 12.
 02 SQLCMSG.
 03 SQLCERL PIC S9(9) COMP.
 03 SQLERM PIC X(256).
 02 SQLCMSG2 REDEFINES SQLCMSG.
 03 FILLER PIC X(2).
 03 SQLERRM.
 04 SQLCERRML PIC S9(4) COMP.
 04 SQLERRMC PIC X(256).
 02 SQLSTATE PIC X(5).
 02 SQLCRNF PIC X(1).
 02 SQLCNRRS PIC S9(4) COMP.
 02 FILLLER PIC X(8).
 ────┐
 02 SQLWORK PIC X(16). │
 02 SQLCWRK2 REDEFINES SQLWORK. │
 03 SQLERRP. │
 04 SQLCVAL PIC X(5). │ Included by the
 04 FILLER PIC X(3). │ precompiler for
 03 SQLWARN. │ DB2 compatibility;
 04 SQLWARN0 PIC X(1). │ not used by CA IDMS
 04 SQLWARN1 PIC X(1). │
 04 SQLWARN2 PIC X(1). │
 04 SQLWARN3 PIC X(1). │
 04 SQLWARN4 PIC X(1). │
 04 SQLWARN5 PIC X(1). │
 04 SQLWARN6 PIC X(1). │
 04 SQLWARN7 PIC X(1). │
 ────┘

PL/I SQLCA

684 SQL Reference Guide

PL/I SQLCA

 DECLARE 1 SQLCA,
 2 SQLCAID CHARACTER (8),
 2 SQLCODE FIXED BINARY (31),
 2 SQLCSID CHARACTER (8),
 2 SQLCINFO,
 3 SQLCERC FIXED BINARY (31),
 3 FILLERnnnn FIXED BINARY (31),
 3 SQLCNRP FIXED BINARY (31),
 3 FILLERnnnn FIXED BINARY (31),
 3 SQLCSER FIXED BINARY (31),
 3 FILLERnnnn FIXED BINARY (31),
 3 SQLCLNO FIXED BINARY (31),
 3 SQLCMCT FIXED BINARY (31),
 3 SQLCARC FIXED BINARY (31),
 3 SQLCFJB FIXED BINARY (31),
 3 FILLERnnnn FIXED BINARY (31),
 3 FILLERnnnn FIXED BINARY (31),
 2 SQLCMSG,
 3 SQLCERL FIXED BINARY (31),
 3 SQLCERM CHARACTER (256),
 2 SQLSTATE CHARACTER (5),
 2 SQLCRNF CHARACTER (1),
 2 SQLCNRRS FIXED BINARY (15),
 2 FILLERnnnn CHARACTER (8),
 2 SQLWORK CHARACTER (16) ;

 DECLARE 1 SQLCINF2 BASED (ADDR(SQLCINFO)),
 2 SQLERRD FIXED BINARY (31),

 DECLARE 1 SQLCMSG2 BASED(ADDR(SQLCMSG)),
 2 FILLERnnnn CHARACTER (2),
 2 SQLERRM,
 3 SQLERRML FIXED BINARY (15).
 3 SQLERRMC CHARACTER (256) ;
 ────┐
 DECLARE 1 SQLCWRK2 BASED(ADDR(SQLWORK)), │
 2 SQLERRP, │
 3 SQLCVAL CHARACTER (5), │ Included by the
 3 FILLERnnnn CHARACTER (3), │ precompiler for
 2 SQLWARN, │ DB2 compatibility;
 3 SQLWARN0 CHARACTER (1), │ not used by CA IDMS.
 3 SQLWARN1 CHARACTER (1), │
 3 SQLWARN2 CHARACTER (1), │
 3 SQLWARN3 CHARACTER (1), │
 3 SQLWARN4 CHARACTER (1), │
 3 SQLWARN5 CHARACTER (1), │
 3 SQLWARN6 CHARACTER (1), │
 3 SQLWARN7 CHARACTER (1) ; │
 ────┘

Appendix D: SQL Descriptor Area 685

Appendix D: SQL Descriptor Area

SQLDA

The SQL Descriptor Area (SQLDA) is a data structure used to describe variable data
passed as part of a dynamic SQL statement.

SQLDA Fields

The SQLDA consists of the following fields:

Field Data type Meaning

SQLDAID CHARACTER(8) Set to SQLDA* on a DESCRIBE

SQLN INTEGER Maximum number of SQLVAR
occurrences

SQLD INTEGER Actual number of SQLVAR occurrences:

■ 0—Not a SELECT statement

■ 1 through SQLN—Number of
columns

■ Greater than SQLN—Not enough
SQLVAR entries

SQLVAR Structure occurring SQLN times

SQLVAR Fields

The structure SQLVAR in the SQLDA consists of the following fields:

Field Data type Meaning

SQLLEN INTEGER Length

(Additional information provided under
"SQLLEN")

SQLTYPE SMALLINT Column data type

(Additional information provided under
"SQLTYPE")

SQLLEN

686 SQL Reference Guide

Field Data type Meaning

SQLSCALE SMALLINT Scale (for exact numeric data types)

(Additional information provided under
"SQLSCALE")

SQLPRECISION SMALLINT Precision

(Additional information provided under
"SQLPRECISION")

SQLALN SMALLINT Data alignment flag

(Additional information provided under
"SQLALN and SQLNALN ")

SQLNALN SMALLINT Null indicator alignment flag

(Additional information provided under
"SQLALN and SQLNALN ")

SQLNULL SMALLINT Length of null indicator

(Additional information provided under
"SQLNULL")

SQLNAME CHARACTER(32) Column name

Notes

The SQLDA can be used by an application program in the following ways:

■ As output on a DESCRIBE or PREPARE statement as the location into which the
DBMS returns the descriptions of selected columns.

■ As input on a FETCH statement to describe the target area for selected columns.

SQLLEN

The definition of SQLLEN by data type is:

Data type Definition of SQLLEN

CHARACTER Number of characters

VARCHAR Maximum number of characters

DATETIME Length of the date/time column

BINARY Number of bytes

GRAPHIC Number of two-byte characters

VARGRAPHIC Maximum number of two-byte characters

SQLTYPE

Appendix D: SQL Descriptor Area 687

SQLTYPE

A code indicating the data type of the host variable. The codes from 1 through 127 are
the same as those defined in the SQL standard. Codes greater than 127 were assigned
before SQL standards existed for these datatypes.

Current SQL standard codes are:

Code Meaning

1 CHARACTER

2 NUMERIC

3 DECIMAL

4 INTEGER (four bytes)

5 SMALLINT (two bytes)

6 FLOAT

7 REAL

8 DOUBLE PRECISION

9 Datetime (DATE, TIME, or TIMESTAMP)

10 Reserved

11 Reserved

12 VARCHAR

Current CA IDMS extensions are:

Code Meaning

128 NUMERIC (UNSIGNED)

129 DECIMAL (UNSIGNED)

130 BIGINT or LONGINT (eight bytes)*

131 Reserved

132 GRAPHIC

133 VARGRAPHIC

134 Reserved for precompiler use (GROUP)

135 BINARY/SQLBIN*

136 TID or Tuple ID (eight bytes, used for ROWID)

SQLSCALE

688 SQL Reference Guide

Code Meaning

140 Reserved

141 Filler field (entry is used to adjust subsequent alignments but is
otherwise ignored)

142 Reserved for precompiler use (SQLIND)

* SQL standard datatype but datatype code in CA IDMS differs from the SQL standard.

SQLSCALE

The definition of SQLSCALE by data type is:

Data type Definition of SQLSCALE

Exact numeric Scale.

Datetime Code indicating the precision of the date/time value.
Permissible values in the first implementation are:

■ 1 for DATE

■ 2 for TIME

■ 3 for TIMESTAMP

SQLPRECISION

The definition of SQLPRECISION by data type is:

Data type Definition of SQLPRECISION

Exact numeric Precision.

Approximate numeric Precision.

Datetime Precision of the fraction field (0 or 6), if applicable.

If passed on a dynamic FETCH statement,
SQLPRECISION is ignored for date/time data types.

SQLALN and SQLNALN

Appendix D: SQL Descriptor Area 689

SQLALN and SQLNALN

SQLALN and SQLNALN are flags that indicate whether data (SQLALN) and the null
indicator (SQLNALN) are aligned:

■ 0—Not aligned.

■ 1—Aligned based on natural alignment rules for the platform. For example, on
both the System/370 and VMS environments, the natural alignment for the
INTEGER data type is on a four-byte boundary.

On a DESCRIBE statement, the SQLALN and SQLNALN fields are set to 0.

SQLNULL

CA IDMS defines SQLNULL to be:

■ 0—No null indicator

■ 1, 2, 4—Null indicator length

A DESCRIBE statement returns 4 if nulls are allowed and 0 otherwise.

Appendix E: SYSTEM Tables and SYSCA Views 691

Appendix E: SYSTEM Tables and SYSCA
Views

Overview

The catalog component of the dictionary comprises SYSTEM tables. SYSTEM tables
contain logical definition information for a database defined with SQL DDL and
information on the definition of the physical implementation of the database.

SYSCA views are views defined on a subset of SYSTEM tables. SYSCA views restrict
information that the user can select from SYSTEM tables to data about tables for which
the user holds SELECT privilege.

Important: SYSTEM tables are defined in segment SYSCAT. This segment is created as
part of defining the SYSTEM schema. SYSCAT should not be used as a segment name,
and no attempt should be made to alter or delete the SYSCAT segment definition.

SYSTEM.AM

Description

A row of SYSTEM.AM identifies an access module.

Column name Column description Data type Null specifi- cation

NAME Access module name CHAR(8) NOT NULL

VERSION Access module version SMALLINT NOT NULL

SCHEMA Access module schema CHAR(18) NOT NULL

CTIME Date and time the access module was
created

TIMESTAMP NOT NULL

LENGTH Length, in bytes, of the access module INTEGER NOT NULL

FILLER Reserved for future use BINARY(20) NOT NULL

SYSTEM.AMDEP

692 SQL Reference Guide

SYSTEM.AMDEP

Description

A row of SYSTEM.AMDEP identifies a table or view referenced in an access module.

Column name Column description Data type Null specifi- cation

NAME Access module name. CHAR(8) NOT NULL

VERSION Access module version. SMALLINT NOT NULL

TABSCHEMA Schema-name qualifier of the table. CHAR(18) NOT NULL

TABLE Table or view name. CHAR(18) NOT NULL

STAMP Date and time the table was created or
last altered.

TIMESTAMP NOT NULL

TYPE Type of table:

■ T—Base table

■ V—View

CHAR(1) NOT NULL

FILLER Reserved for future use. BINARY(25) NOT NULL

SYSTEM.AREA

Description

A row of SYSTEM.AREA represents an area within a segment.

Column name Column description Data type Null specification

SEGMENT Segment name. CHAR(8) NOT NULL

NAME Area name. CHAR(18) NOT NULL

CTIME Date and time when the area was created. TIMESTAMP NOT NULL

UTIME Date and time when the area was last updated. TIMESTAMP NOT NULL

CRITTIME Date and time of the last critical change to the
area.

TIMESTAMP NOT NULL

TIMESTAMP Definition date/time stamp for table validation. TIMESTAMP NOT NULL

CUSER User ID of user who created the area. TIMESTAMP NOT NULL

UUSER User ID of user who last updated the area. CHAR(18) NOT NULL

SYSTEM.AREA

Appendix E: SYSTEM Tables and SYSCA Views 693

Column name Column description Data type Null specification

TYPE Area type:

■ N—Non-SQL area

■ R—SQL area

CHAR(1) NOT NULL

STAMPLEVEL Stamp indicator:

■ N—No stamp checking for a non-SQL area

■ T—Table-level stamping for an SQL area

■ S—Area-level stamping for an SQL area

CHAR(1) NOT NULL

NUMFILEMAPS Number of filemaps in the area. SMALLINT NOT NULL

NUMSYMBOLICS Number of symbolics in the area. SMALLINT NOT NULL

DISPLACEMENT Cluster displacement. SMALLINT NOT NULL

PAGEGROUP The page group associated with the area. SMALLINT NOT NULL

LOWPAGE Low page number of the area. INTEGER NOT NULL

HIGHPAGE High page number of the area. INTEGER NOT NULL

CALCHIGHPAGE Primary (calc) high page number of the area. INTEGER NOT NULL

MAXHIGHPAGE Maximum high page number of the area. INTEGER NOT NULL

NUMPAGES Number of pages INTEGER NOT NULL

PAGESIZE Size, in bytes, of each page in the area. INTEGER NOT NULL

PAGERESERVE Page reserve size, in bytes. This column indicates
the number of bytes left unused on a page when
new rows are stored so that space is available
for the expansion of variable-length rows during
update operations.

INTEGER NOT NULL

ORIGPAGESIZE Original page size of the area. INTEGER NOT NULL

NUMPAGESUSED Number of nonempty pages in the area. INTEGER NOT NULL

NUMROWS Number of rows in the area. INTEGER NOT NULL

PCTSPACEUSED Percent of space used in the area. REAL NOT NULL

FILLER Reserved for future use. BINARY(40) NOT NULL

SYSTEM.BUFFER

694 SQL Reference Guide

SYSTEM.BUFFER

Description

A row of SYSTEM.BUFFER represents a DMCL buffer.

Column name Column description Data
type

Null specifi- cation

DMCL DMCL name. CHAR(
8)

NOT NULL

NAME Buffer name. CHAR(
18)

NOT NULL

TYPE Buffer type:

■ BC—Definition represents a
standard buffer

■ JB—Definition represents a
journal buffer

CHAR(
2)

NOT NULL

CTIME Date and time when the DMCL
buffer was created.

TIMES
TAMP

NOT NULL

UTIME Date and time when the DMCL
buffer was last updated.

TIMES
TAMP

NOT NULL

CRITTIME Date and time of the last critical
change made to the DMCL
buffer.

TIMES
TAMP

NOT NULL

CUSER User ID of user who created the
DMCL buffer.

CHAR(
18)

NOT NULL

UUSER ID of the user who last updated
the DMCL buffer.

CHAR(
18)

NOT NULL

PAGESIZE Size, in bytes, of pages in the
buffer. For native VSAM data
sets, this column indicates the
control interval size.

INTEG
ER

NOT NULL

LOCALPAGES Number of pages in the local
mode buffer.

INTEG
ER

NOT NULL

CVPAGES Initial number of pages in the
central version mode buffer.

INTEG
ER

NOT NULL

MAXPAGES Maximum number of pages in
the central version mode buffer.

INTEG
ER

NOT NULL

SYSTEM.COLUMN

Appendix E: SYSTEM Tables and SYSCA Views 695

Column name Column description Data
type

Null specifi- cation

KEYLENGTH The maximum sort-key or
CALC-key length for native VSAM
files.

SMALL
INT

NOT NULL

BUFNI Number of I/O buffers in the
native VSAM non-shared
resources (NSR) buffer that are
used for index entries.

SMALL
INT

NOT NULL

STRNO Maximum number of concurrent
requests permitted against an
area assigned to the native
VSAM buffer.

SMALL
INT

NOT NULL

STGFLAG Storage location indicator.

■ X'01'—IDMS storage used in
local mode

■ X'02'—IDMS storage used in
central version

BINAR
Y(1)

NOT NULL

FLAG Buffer flag; X'80'—Native VSAM
LSR or NSR buffer

BINAR
Y(1)

NOT NULL

FILLER Reserved for future use. BINAR
Y(40)

NOT NULL

SYSTEM.COLUMN

Description

A row of SYSTEM.COLUMN represents a column in a table.

View SYSCA.COLUMN is defined on SYSTEM.COLUMN.

Note: For more information, see SYSCA Objects.

Column name Column description Data
type

Null specifi- cation

NAME Column name. CHAR(
32)

NOT NULL

NUMBER Relative number of the column
within the table.

SMALL
INT

NOT NULL

SYSTEM.COLUMN

696 SQL Reference Guide

Column name Column description Data
type

Null specifi- cation

SCHEMA Schema-name qualifier of the
table or view that contains the
column.

CHAR(
18)

NOT NULL

TABLE Name of the table or view that
contains the column.

CHAR(
18)

NOT NULL

TYPE Column data type in character
format.

CHAR(
18)

NOT NULL

TYPECODE Column data type in numeric
format. For a description of
values in this field, see SQLTYPE

SMALL
INT

NOT NULL

PRECISION Precision of numeric columns. SMALL
INT

NOT NULL

SCALE Scale of exact numeric fields or
code indicating the type of
date/time column. For a
description of values in this field,
see SQLSCALE.

SMALL
INT

NOT NULL

NULLS Nulls allowed:

■ N—No

■ Y—Yes

CHAR(
1)

NOT NULL

DEFAULT Default value stored:

■ N—No

■ Y—Yes

VOFFSET Offset to column value within a
row.

SMALL
INT

NOT NULL

VLENGTH Length of column value. SMALL
INT

NOT NULL

NOFFSET Offset to NULL indicator for the
column a row.

SMALL
INT

NOT NULL

NLENGTH Length of NULL indicator. SMALL
INT

NOT NULL

NUMVALUES If the column is the first column
in an index key, the number of
unique values in the column
when statistics were last
updated.

INTEG
ER

NOT NULL

SYSTEM.CONSTKEY

Appendix E: SYSTEM Tables and SYSCA Views 697

Column name Column description Data
type

Null specifi- cation

SECLOWVAL If the column is the first column
in an index key, the first eight
bytes of the second lowest
column value when statistics
were last updated.

BINAR
Y(8)

NOT NULL

SECHIGHVAL If the column is the first column
in an index key, the first eight
bytes of the second highest
column value when statistics
were last updated.

BINAR
Y(8)

NOT NULL

PROCPARMTYPE Procedure parameter mode:

■ I—Input parameter

■ O—Output parameter

■ B—Both Input and Output

CHAR(
1)

NOT NULL

FILLER Reserved for future use. BINAR
Y(39)

NOT NULL

SYSTEM.CONSTKEY

Description

A row of SYSTEM.CONSTKEY represents the foreign key in a referential constraint
defined with a CREATE CONSTRAINT statement.

View SYSCA.CONSTKEY is defined on SYSTEM.CONSTKEY.

Note: For more information, see SYSCA Objects.

Column name Column description Data
type

Null specifi- cation

SCHEMA Schema-name qualifier of the
constraint.

CHAR(
18)

NOT NULL

NAME Constraint name. CHAR(
18)

NOT NULL

SEQUENCE Key column sequence number. SMALL
INT

NOT NULL

SYSTEM.CONSTRAINT

698 SQL Reference Guide

Column name Column description Data
type

Null specifi- cation

REFNUMBER Column number of the key
column in the referenced table.

SMALL
INT

NOT NULL

REFCOLUMN Column name of the key column
in the referenced table.

CHAR(
32)

NOT NULL

NUMBER Number of the key column in the
referencing table.

SMALL
INT

NOT NULL

COLUMN Column name of the key column
in the referencing table.

CHAR(
32)

NOT NULL

FILLER Reserved for future use. BINAR
Y(38)

NOT NULL

SYSTEM.CONSTRAINT

Description

A row of SYSTEM.CONSTRAINT represents a referential constraint defined with a
CREATE CONSTRAINT statement.

View SYSCA.CONSTRAINT is defined on SYSTEM.CONSTRAINT.

Note: For more information, see SYSCA Objects.

Column name Column description Data
type

Null specifi- cation

SCHEMA Schema-name qualifier of the
constraint.

CHAR(
18)

NOT NULL

NAME Constraint name. CHAR(
18)

NOT NULL

REFSCHEMA Schema-name qualifier of the
referenced table.

CHAR(
18)

NOT NULL

REFTABLE Name of the referenced table. CHAR(
18)

NOT NULL

TABSCHEMA Schema-name qualifier of the
referencing table.

CHAR(
18)

NOT NULL

TABLE Name of the referencing table. CHAR(
18)

NOT NULL

SYSTEM.CONSTRAINT

Appendix E: SYSTEM Tables and SYSCA Views 699

Column name Column description Data
type

Null specifi- cation

CTIME Date and time the constraint was
created.

TIMES
TAMP

NOT NULL

NUMCOLUMNS Number of columns in the
constraint (foreign key).

SMALL
INT

NOT NULL

REFCOLUMNS Referenced table key column
number array. Each eight bits
contains the relative column
number of a referenced column
(for NUMCOLUMNS entries).

BINAR
Y(64)

NOT NULL

COLUMNS Referencing table foreign key
column number array. Each eight
bits contains the relative column
number of a referencing column
(for NUMCOLUMNS entries).

BINAR
Y(64)

NOT NULL

NUMSORTCOLS Number of columns in the sort
key.

SMALL
INT

NOT NULL

SORTCOLUMNS Sort key column number array.
Each eight bits contains the
relative column number of a sort
column (for NUMSORTCOLS
entries).

BINAR
Y(64)

NOT NULL

SORTORDER Sort order indicator. Each byte
indicates the order of a sort
column (for NUMSORTCOLS
entries):

■ A—Ascending

■ D—Descending

CHAR(
32)

NOT NULL

CLUSTER Referencing table cluster
indicator:

■ Y—Clustered

■ N—Not clustered

CHAR(
1)

NOT NULL

UNIQUE Uniqueness indicator for sort
key:

■ Y—Unique

■ N—Not unique

CHAR(
1)

NOT NULL

SYSTEM.CONSTRAINT

700 SQL Reference Guide

Column name Column description Data
type

Null specifi- cation

TYPE Type of constraint:

■ L—Linked

■ U—Unlinked

■ X—Linked indexed

CHAR(
1)

NOT NULL

COMPRESS Index keys compressed:

■ Y—Yes

■ N—No

CHAR(
1)

NOT NULL

IXBLKLENGTH Index block (SR8) length. SMALL
INT

NOT NULL

IXBLKCONTAINS Number of keys in index block. SMALL
INT

NOT NULL

DISPLACEMENT Index displacement (the number
of pages by which bottom-level
SR8 records are displaced from
the referenced row).

SMALL
INT

NOT NULL

REFNEXT Offset to next db-key pointer
within the referenced table.

SMALL
INT

NOT NULL

REFPRIOR Offset to prior db-key pointer
within the referenced table.

SMALL
INT

NOT NULL

NEXT Offset to next db-key pointer
within the referencing table.

SMALL
INT

NOT NULL

PRIOR Offset to prior db-key pointer
within the referencing table.

SMALL
INT

NOT NULL

OWNER Offset to owner db-key pointer
within the referencing table.

SMALL
INT

NOT NULL

NUMSETS Number of referenced rows
when statistics were last
updated.

INTEG
ER

NOT NULL

AVGMEMROWS Average number of referencing
rows per referenced row when
statistics were last updated.

REAL NOT NULL

LONGESTMEM Highest number of referencing
rows per referenced row when
statistics were last updated.

INTEG
ER

NOT NULL

SYSTEM.CONSTRAINT

Appendix E: SYSTEM Tables and SYSCA Views 701

Column name Column description Data
type

Null specifi- cation

SECLONGMEM Second highest number of
referencing rows per referenced
row when statistics were last
updated.

INTEG
ER

NOT NULL

NUMLONGMEM Number of referenced rows
having LONGESTMEM
referencing rows when statistics
were last updated.

INTEG
ER

NOT NULL

AVGMEMPAGES Average number of database
pages containing referencing
rows per referenced row when
statistics were last updated.
Rows accounted for in
MAXMEMPAGES are not
included in this average.

REAL NOT NULL

MAXMEMPAGES The number referenced rows
whose referencing occupied
more than 20 database pages
when statistics were last
updated. Rows accounted for in
AVGMEMPAGES (above) are not
included in this number.

INTEG
ER

NOT NULL

AVGAMEMCLUSCNT Average number of I/Os required
to read all referencing rows
associated with a referenced row
when statistics were last
updated, if one buffer page was
available. This count includes
I/O to read the bottom-level SR8.

REAL NOT NULL

AVGBMEMCLUSCNT Average number of I/Os required
to read all referencing rows
associated with a referenced row
when statistics were last
updated, if three buffer pages
were available. This count
includes I/O to read the
bottom-level SR8.

REAL NOT NULL

SYSTEM.CONSTRAINT

702 SQL Reference Guide

Column name Column description Data
type

Null specifi- cation

AVGCMEMCLUSCNT Average number of I/Os required
to read all referencing rows
associated with a referenced row
when statistics were last
updated, if five buffer pages
were available. This count
includes I/O to read the
bottom-level SR8.

REAL NOT NULL

AVGDMEMCLUSCNT Average number of I/Os required
to read all referencing rows
associated with a referenced row
when statistics were last
updated, if 10 buffer pages were
available. This count includes
I/O to read the bottom-level SR8.

REAL NOT NULL

AVGEMEMCLUSCNT Average number of I/Os required
to read all referencing rows
associated with a referenced row
when statistics were last
updated, if 20 buffer pages were
available. This count includes
I/O to read the bottom-level SR8.

REAL NOT NULL

AVGSR8ROWS Average number of SR8s per
referenced row in a linked
indexed constraint when
statistics were last updated.

REAL NOT NULL

LONGESTSR8 Highest number of bottom-level
SR8s per referenced row in a
linked indexed constraint when
statistics were last updated.

INTEG
ER

NOT NULL

SECLONGSR8 Second highest number of
bottom-level SR8s per
referenced row in a linked
indexed constraint when
statistics were last updated.

INTEG
ER

NOT NULL

NUMLONGSR8 Number of referenced rows in a
linked indexed constraint having
LONGESTSR8 SR8s when
statistics were last updated.

INTEG
ER

NOT NULL

SYSTEM.CONSTRAINT

Appendix E: SYSTEM Tables and SYSCA Views 703

Column name Column description Data
type

Null specifi- cation

AVGSR8PAGES Average number of pages
containing bottom-level SR8s per
referenced row in a linked
indexed constraint when
statistics were last updated. This
average does not include pages
accounted for in MAXSR8PAGES.

REAL NOT NULL

MAXSR8PAGES The number of referenced rows
in a linked indexed constraint
when statistics were last
updated for which the number of
pages containing bottom-level
SR8s is greater than 20.

INTEG
ER

NOT NULL

AVGSR8LEAFS Average number of bottom-level
SR8s per referenced row in a
linked indexed constraint when
statistics were last updated.

REAL NOT NULL

AVGSR8LEVELS The average high level number
per referenced row in a linked
indexed constraint when
statistics were last updated.
Level number refers to the
number of levels above the
bottom level.

REAL NOT NULL

AVGASR8CLUSCNT Average number of I/Os required
to read all SR8s associated with a
referenced row in a linked
indexed constraint when
statistics were last updated, if
one buffer page was available.

REAL NOT NULL

AVGBSR8CLUSCNT Average number of I/Os required
to read all SR8s associated with a
referenced row in a linked
indexed constraint when
statistics were last updated, if
three buffer pages were
available.

REAL NOT NULL

SYSTEM.DBNAME

704 SQL Reference Guide

Column name Column description Data
type

Null specifi- cation

AVGCSR8CLUSCNT Average number of I/Os required
to read all SR8s associated with a
referenced row in a linked
indexed constraint when
statistics were last updated, if
five buffer pages were available.

REAL NOT NULL

AVGDSR8CLUSCNT Average number of I/Os required
to read all SR8s associated with a
referenced row in a linked
indexed constraint when
statistics were last updated, if 10
buffer pages were available.

REAL NOT NULL

AVGESR8CLUSCNT Average number of I/Os required
to read all SR8s associated with a
referenced row in a linked
indexed constraint when
statistics were last updated, if 20
buffer pages were available.

REAL NOT NULL

FILLER Reserved for future use. BINAR
Y(40)

NOT NULL

SYSTEM.DBNAME

Description

DBNAME contains information about an entry in a database name table.

Column name Column description Data
type

Null specifi- cation

DBTABLE Name of database name table. CHAR(
8)

NOT NULL

NAME Database name entry in the
database name table. If this
column contains *DEFAULT, the
row represents the default
subschema mapping for the
database name table.

CHAR(
8)

NOT NULL

DMCL Reserved for future use. CHAR(
8)

NOT NULL

SYSTEM.DBNAME

Appendix E: SYSTEM Tables and SYSCA Views 705

Column name Column description Data
type

Null specifi- cation

NODE Reserved for future use. CHAR(
8)

NOT NULL

LOADLIST Reserved for future use. CHAR(
8)

NOT NULL

FLAG Database name flag:

■ X'80'—Match on subschema
name is required

■ X'40'—Mixed Page Groups
are allowed

■ X'20'—Mixed Page Groups
Verify is ON

■ X'01'—DB Group Name

BINAR
Y(1)

NOT NULL

CTIME Date and time when the
database name was created.

TIMES
TAMP

NOT NULL

UTIME Date and time when the
database name was last
updated.

TIMES
TAMP

NOT NULL

CUSER ID of the user who created the
database name.

CHAR(
18)

NOT NULL

UUSER ID of the user who last updated
the database name.

CHAR(
18)

NOT NULL

GROUPFLAG DB Group flag:

■ E—Enabled at startup

■ D—Disabled at startup

CHAR(
1)

NOT NULL

NUMSEGMENTS Number of segments associated
with the database name.

SMALL
INT

NOT NULL

NUMSUBSCHEMAS Number of subschemas
associated with the database
name.

SMALL
INT

NOT NULL

USAGEFLAG Indicates general use or utility
use only. x'80' DBName for utility
use only.

BINAR
Y(1)

NOT NULL

FILLER Reserved for future use. BINAR
Y(17)

NOT NULL

SYSTEM.DBSEGMENT

706 SQL Reference Guide

SYSTEM.DBSEGMENT

Description

DBSEGMENT associates the name of a segment with a database name in a database
name table.

Column name Column description Data
type

Null specifi- cation

DBTABLE Database table name. CHAR(
8)

NOT NULL

DBNAME Database name entry in the
database table.

CHAR(
8)

NOT NULL

NAME Segment name. CHAR(
8)

NOT NULL

FILLER Reserved for future use. BINAR
Y(20)

NOT NULL

SYSTEM.DBSSC

Description

DBSSC associates a subschema mapping with a database name in a database name
table.

Column name Column description Data
type

Null specifi- cation

DBTABLE Name of the database table. CHAR(
8)

NOT NULL

DBNAME Database name entry in the
database name table.

CHAR(
8)

NOT NULL

FROMSSC Subschema name passed at run
unit signon (FROM subschema).

CHAR(
8)

NOT NULL

TOSSC Name of the subschema to which
the passed subschema name
maps (TO subschema).&sub1.

CHAR(
8)

NOT NULL

FOREIGNDBNAME Database name to be accessed if
no database name is
specified.&sub1.

CHAR(
8)

NOT NULL

SYSTEM.DBTABLE

Appendix E: SYSTEM Tables and SYSCA Views 707

Column name Column description Data
type

Null specifi- cation

FILLER Reserved for future use. BINAR
Y(20)

NOT NULL

Note:

1. A TOSSC value of spaces and a FOREIGNDBNAME of *DEFAULT indicates all
matching subschemas should use DBNAME mapping rules.

SYSTEM.DBTABLE

Description

DBTABLE contains information about the database name table.

Column name Column description Data
type

Null specifi- cation

NAME Name of the database name
table.

CHAR(
8)

NOT NULL

CVSYSTEM Reserved for future use. SMALL
INT

NOT NULL

CTIME Date and time when the
database name table was
created.

TIMES
TAMP

NOT NULL

UTIME Date and time when the
database name table was last
updated.

TIMES
TAMP

NOT NULL

CUSER ID of the user who created the
database name table.

CHAR(
18)

NOT NULL

UUSER ID of the user who last updated
the database name table.

CHAR(
18)

NOT NULL

NUMDBNAMES Number of names in the
database name table.

SMALL
INT

NOT NULL

NUMSEGMENTS Number of segments in the
database name table.

SMALL
INT

NOT NULL

NUMSUBSCHEMAS Number of subschemas in the
database name table.

SMALL
INT

NOT NULL

NUMGROUPS Number of DB Groups in the
database name table.

SMALL
INT

NOT NULL

SYSTEM.DMCL

708 SQL Reference Guide

Column name Column description Data
type

Null specifi- cation

FILLER Reserved for future use. BINAR
Y(18)

NOT NULL

SYSTEM.DMCL

Description

A row of SYSTEM.DMCL contains information about a DMCL.

Column name Column description Data
type

Null specifi- cation

NAME DMCL name. CHAR(
8)

NOT NULL

CTIME Date and time when the DMCL
was created.

TIMES
TAMP

NOT NULL

UTIME Date and time when the DMCL
was last updated.

TIMES
TAMP

NOT NULL

CRITTIME Date and time of the last critical
change made to the DMCL.

TIMES
TAMP

NOT NULL

CUSER ID of the user who created the
DMCL.

CHAR(
18)

NOT NULL

UUSER ID of the user who last updated
the DMCL.

CHAR(
18)

NOT NULL

BUFFER Default buffer for the DMCL. CHAR(
18)

NOT NULL

DBTABLE Database name table for the
DMCL.

CHAR(
8)

NOT NULL

NUMBUFFERS Number of buffers defined in the
DMCL.

SMALL
INT

NOT NULL

NUMJRNLBUFFERS Number of journal buffers
defined in the DMCL.

SMALL
INT

NOT NULL

NUMJOURNALS Number of journals defined in
the DMCL.

SMALL
INT

NOT NULL

SHAREDCACHE Default shared cache. CHAR(
16)

NOT NULL

SYSTEM.DMCLAREA

Appendix E: SYSTEM Tables and SYSCA Views 709

Column name Column description Data
type

Null specifi- cation

LOCKENTRIES Number of entries in the
coupling facility lock table.

INTEG
ER

NOT NULL

MEMBERS Maximum number of members
in the data sharing group.

BINAR
Y(1)

NOT NULL

DATASHARE Data sharing indicator.

■ 'Y' - data sharing attributes
have been specified.

■ 'N' - data sharing attributes
have not been specified.

CHAR(
1)

NOT NULL

ONCONNECTLOSS Connection loss indicator.

■ 'A' - Abend

■ 'N' - Noabend

CHAR(
1)

NOT NULL

FILLER Reserved for future use. CHAR(
17)

NOT NULL

SYSTEM.DMCLAREA

Description

A row of SYSTEM.DMCLAREA contains information about an area whose segment has
been included in the DMCL.

Column name Column description Data
type

Null specifi- cation

DMCL DMCL name. CHAR(
8)

NOT NULL

SEGMENT Name of the segment that
contains the area.

CHAR(
8)

NOT NULL

NAME Area name. CHAR(
18)

NOT NULL

CTIME Date and time when the area
was created.

TIMES
TAMP

NOT NULL

UTIME Date and time when the area
was last updated.

TIMES
TAMP

NOT NULL

SYSTEM.DMCLAREA

710 SQL Reference Guide

Column name Column description Data
type

Null specifi- cation

CRITTIME Date and time of the last critical
change made to the area.

TIMES
TAMP

NOT NULL

CUSER ID of the user who created the
area.

CHAR(
18)

NOT NULL

UUSER ID of the user who last updated
the area.

CHAR(
18)

NOT NULL

STARTUP Startup indicator. This indicates
the READY action to be taken
when the system is started
following an orderly shutdown.
Values are:

■ U—Update

■ R—Retrieval

■ T—Transient retrieval

■ X—Set status offline

CHAR(
1)

NOT NULL

WARMSTART Warmstart indicator. This
indicates the READY action to be
taken when the system is started
following an abnormal
termination. Values are:

■ U—Update

■ R—Retrieval

■ T—Transient retrieval

■ X—Set status offline

■ C—Maintain current status

CHAR(
1)

NOT NULL

PAGERESERVE Page reserve. Number of bytes
to be left unused on a page
when new rows are stored on
pages in the area. For this
DMCL, the page reserve
specification overrides the page
reserve specification in the
segment's area definition.

INTEG
ER

NOT NULL

SYSTEM.DMCLFILE

Appendix E: SYSTEM Tables and SYSCA Views 711

Column name Column description Data
type

Null specifi- cation

DATASHARE Data sharing indicator.

■ 'Y' - the area is eligible to be
shared for update

■ 'N' - the area is not shared

■ 'D' - the area's sharability is
determined by that of its
segment

CHAR(
1)

NOT NULL

FILLER Reserved for future use. CHAR(
39)

NOT NULL

SYSTEM.DMCLFILE

Description

A row of SYSTEM.DMCLFILE contains information about a file override that has been
included in the DMCL.

Column name Column description Data
type

Null specifi- cation

DMCL DMCL name. CHAR(
8)

NOT NULL

SEGMENT Name of the segment associated
with the file.

CHAR(
8)

NOT NULL

NAME File name. CHAR(
18)

NOT NULL

CTIME Date and time when the file was
created.

TIMES
TAMP

NOT NULL

UTIME Date and time when the file was
last updated.

TIMES
TAMP

NOT NULL

CRITTIME Date and time of the last critical
change made to the file.

TIMES
TAMP

NOT NULL

CUSER ID of the user who created the
file.

CHAR(
18)

NOT NULL

UUSER ID of the user who last updated
the file.

CHAR(
18)

NOT NULL

SYSTEM.DMCLFILE

712 SQL Reference Guide

Column name Column description Data
type

Null specifi- cation

BUFFER Name of the buffer defined
within the DMCL which is used
by the file. This specification
overrides the default buffer
established for the segment
included in the DMCL and the
default buffer established for the
DMCL.

CHAR(
18)

NOT NULL

DDNAME Depending on the operating
system, DDName (z/OS),
filename (z/VSE), or linkname of
the file. This specification
overrides the specification in the
segment's file definition.

CHAR(
8)

NOT NULL

DISP Dataset disposition (IBM) or
shared update). This
specification overrides the
segment's file definition.

CHAR(
4)

NOT NULL

DATASPACE z/OS memory cache indicator:

■ N—Files will not use
memory cache (Z-Storage or
dataspace)

■ Y—Files will use memory
cache (Z-Storage or
dataspace)

CHAR(
1)

NOT NULL

ESAREAD Reserved for future use. CHAR(
1)

NOT NULL

ESAPRELOAD Reserved for future use. CHAR(
1)

NOT NULL

SHAREDCACHE Shared cache:

■ NO—Not used

■ AVAILABLE—Choose first
available

■ Cache Name—Name of the
cache to be used

CHAR(
16)

NOT NULL

FILLER Reserved for future use. BINAR
Y(21)

NOT NULL

SYSTEM.DMCLSEGMENT

Appendix E: SYSTEM Tables and SYSCA Views 713

SYSTEM.DMCLSEGMENT

Description

A row of SYSTEM.DMCLSEGMENT contains information about a segment definition and
a DMCL where the segment has been included. DMCLSEGMENT contains information
specific to the DMCL where the segment has been included.

Column name Column description Data
type

Null specifi- cation

DMCL DMCL name. CHAR(
8)

NOT NULL

NAME Segment name. CHAR(
8)

NOT NULL

CTIME Date and time when the
segment was created.

TIMES
TAMP

NOT NULL

UTIME Date and time when the
segment was last updated.

TIMES
TAMP

NOT NULL

CRITTIME Date and time of the last critical
change made to the segment.

TIMES
TAMP

NOT NULL

CUSER ID of the user who created the
segment.

CHAR(
18)

NOT NULL

UUSER ID of the user who last updated
the segment.

CHAR(
18)

NOT NULL

BUFFER Name of the buffer within the
DMCL which is the default for all
files defined within the segment
unless specifically overridden.

CHAR(
18)

NOT NULL

STARTUP Startup indicator. This indicates
the READY action to be taken
when the system is started
following an orderly shutdown.
Values are:

■ U—Update

■ R—Retrieval

■ T—Transient retrieval

■ X—Set status offline

CHAR(
1)

NOT NULL

SYSTEM.FILE

714 SQL Reference Guide

Column name Column description Data
type

Null specifi- cation

WARMSTART Warmstart indicator. This
indicates the READY action to be
taken when the system is started
following an abnormal
termination. Values are:

■ U—Update

■ R—Retrieval

■ T—Transient retrieval

■ X—Set status offline

■ C—Maintain current status

CHAR(
1)

NOT NULL

DATASHARE Data sharing indicator.

■ 'Y' - all areas in the segment
are eligible to be shared for
update

■ 'N' - no areas in the segment
are shared

CHAR(
1)

NOT NULL

SHAREDCACHE Default shared cache. CHAR(
16)

NOT NULL

FILLER Reserved for future use. CHAR(
23)

NOT NULL

SYSTEM.FILE

Description

A row of SYSTEM.FILE represents a file associated with a segment.

Column name Column description Data
type

Null specifi- cation

SEGMENT Segment name. CHAR(
8)

NOT NULL

NAME File name. CHAR(
18)

NOT NULL

CTIME Date and time when the file was
created.

TIMES
TAMP

NOT NULL

SYSTEM.FILE

Appendix E: SYSTEM Tables and SYSCA Views 715

Column name Column description Data
type

Null specifi- cation

UTIME Date and time when the file was
last updated.

TIMES
TAMP

NOT NULL

CRITTIME Date and time of the last critical
change made to the file.

TIMES
TAMP

NOT NULL

CUSER The ID of the user who created
the file.

CHAR(
18)

NOT NULL

UUSER The ID of the user who last
updated the file.

CHAR(
18)

NOT NULL

NUMFILEMAPS The number of area page ranges
mapped to the file.

SMALL
INT

NOT NULL

BLOCKSIZE Block size, in bytes, of the file.
This is the largest page size of all
areas mapped to the file.

INTEG
ER

NOT NULL

DDNAME Depending on the operating
system, DDName (z/OS), or
filename (z/VSE) of the file.

CHAR(
8)

NOT NULL

ACCESSMETHOD File access method. CHAR(
8)

NOT NULL

VMUSERID In the z/VM environment, the
user ID associated with the file.

CHAR(
8)

NOT NULL

VMVIRTADDR In the z/VM environment, the
virtual address of the file.

INTEG
ER

NOT NULL

FLAG File flag:.

■ X'80'—Native VSAM FOR
CALC file

■ X'40'—Native VSAM FOR SET
file

BINAR
Y(1)

NOT NULL

NVSAMSET Native VSAM KSDS or PATH set
name.

CHAR(
18)

NOT NULL

DSNAME Dataset name. CHAR(
54)

NOT NULL

DISP Dataset disposition (IBM). CHAR(
4)

NOT NULL

FILLER Reserved for future use. BINAR
Y(39)

NOT NULL

SYSTEM.FILEMAP

716 SQL Reference Guide

SYSTEM.FILEMAP

Description

A row of SYSTEM.FILEMAP relates page ranges of an area of a segment to block ranges
of a file in the same segment (area-to-file mapping).

Column name Column description Data
type

Null specifi- cation

SEGMENT Segment name. CHAR(
8)

NOT NULL

AREA Area name. CHAR(
18)

NOT NULL

FILE File name. CHAR(
18)

NOT NULL

PAGESIZE Size, in bytes, of each page in the
area.

INTEG
ER

NOT NULL

LOWPAGE Low page number of the area
page range.

INTEG
ER

NOT NULL

HIGHPAGE High page number of the area
page range.

INTEG
ER

NOT NULL

LOWBLOCK Low relative block number (RBN)
of the range of file blocks to
which the area page range is
mapped.

INTEG
ER

NOT NULL

HIGHBLOCK High relative block number (RBN)
of the range of file blocks to
which the area page range is
mapped.

INTEG
ER

NOT NULL

ACCESSMETHOD File access method. CHAR(
8)

NOT NULL

FLAG File flag:

■ X'80'—Native VSAM FOR
CALC file

■ X'40'—Native VSAM FOR SET
file

BINAR
Y(1)

NOT NULL

FILLER Reserved for future use. BINAR
Y(39)

NOT NULL

SYSTEM.INDEX

Appendix E: SYSTEM Tables and SYSCA Views 717

SYSTEM.INDEX

Description

A row of SYSTEM.INDEX represents an index that has been defined on a table with a
CREATE INDEX statement.

View SYSCA.INDEX is defined on SYSTEM.INDEX.

Note: For more information, see SYSCA Objects.

Column name Column description Data
type

Null specifi- cation

NAME Index name. CHAR(
18)

NOT NULL

SCHEMA Schema-name qualifier for the
indexed table.

CHAR(
18)

NOT NULL

TABLE Name of the indexed table. CHAR(
18)

NOT NULL

SEGMENT Segment containing the area
where index entries are stored.

CHAR(
8)

NOT NULL

AREA Area where index entries are
stored.

CHAR(
18)

INDEXID Internal index ID number. Index
IDs are automatically assigned to
each index and are unique within
the index area.

SMALL
INT

NOT NULL

CTIME Date and time when the index
was created.

TIMES
TAMP

NOT NULL

NUMCOLUMNS Number of columns in the index
key.

SMALL
INT

NOT NULL

IXCOLUMNS Internal index key column
number array. This array
consists of 32 SMALLINT bytes.

BINAR
Y(64)

NOT NULL

IXORDERS Sort order indicator array
consisting of 32 CHAR(1) bytes.
Values are:

■ A—Ascending

■ D—Descending

CHAR(
32)

NOT NULL

SYSTEM.INDEX

718 SQL Reference Guide

Column name Column description Data
type

Null specifi- cation

UNIQUE Unique key indicator:

■ Y—Unique index

■ N—Not unique

CHAR(
1)

NOT NULL

CLUSTER Cluster indicator:

■ Y—Clustered index

■ N—Not clustered

CHAR(
1)

NOT NULL

COMPRESS Index entry compression
indicator:

■ Y—Compressed

■ N—Not compressed

CHAR(
1)

NOT NULL

IXBLKLENGTH Index block length. SMALL
INT

NOT NULL

IXBLKCONTAINS Number of keys in an index
block.

SMALL
INT

NOT NULL

DISPLACEMENT Distance, in number of pages, an
index entry can be stored from
the referenced row.

SMALL
INT

NOT NULL

NEXT Offset to next db-key pointer
(CALC key).

SMALL
INT

NOT NULL

PRIOR Offset to prior db-key pointer
(CALC key).

SMALL
INT

NOT NULL

NUMSETS For non-CALC indexes, this value
is:

■ 1, if the number of rows in
the indexed table was
greater than zero when
statistics were last updated.

■ 0, if there were no rows in
the indexed table when
statistics were last updated.

For CALC indexes, this value is
the number of target pages for
indexed rows when statistics
were last updated.

INTEG
ER

NOT NULL

SYSTEM.INDEX

Appendix E: SYSTEM Tables and SYSCA Views 719

Column name Column description Data
type

Null specifi- cation

AVGMEMROWS For non-CALC indexes, this value
is the same as the NUMROWS
column value in the
SYSTEM.TABLE row for the
indexed table when statistics
were last updated.

For CALC indexes, this value is
the average number of indexed
rows for each target page in the
CALC index when statistics were
last updated.

REAL NOT NULL

LONGESTMEM For non-CALC indexes, this value
is the same as the NUMROWS
column value in the
SYSTEM.TABLE row for the
indexed table when statistics
were last updated.

For CALC indexes, this value is
the highest number of indexed
rows for the same target page
when statistics were last
updated.

INTEG
ER

NOT NULL

SECLONGMEM For non-CALC indexes, this value
is always 0.

For CALC indexes, this value is
the second highest number of
indexed rows for the same target
page when statistics were last
updated.

INTEG
ER

NOT NULL

NUMLONGMEM For non-CALC indexes, this value
is always 1.

For CALC indexes, this value is
the number of target pages with
LONGESTMEM indexed rows
targeted to the page when
statistics were last updated.

INTEG
ER

NOT NULL

SYSTEM.INDEX

720 SQL Reference Guide

Column name Column description Data
type

Null specifi- cation

AVGMEMPAGES For non-CALC indexes, this value
is the same as the NUMPAGES
column value in the
SYSTEM.TABLE row for the
indexed table when statistics
were last updated.

For CALC indexes, this value is
the average number of distinct
pages occupied by indexed rows
that target to the same page
when statistics were last
updated. This average does not
include pages accounted for in
MAXMEMPAGES.

The nearer this value is to 1, the
greater the efficiency of the
index.

REAL NOT NULL

MAXMEMPAGES For non-CALC indexes, this value
is:

■ 0, if AVGMEMPAGES was 20
or less when statistics were
last updated

■ 0, if AVGMEMPAGES was
more than 20 when statistics
were last updated

For CALC indexes, this value is
the number of target pages
where the number of pages
occupied by indexed rows that
target to the same page
occupied more than 20 pages
when statistics were last
updated. This average does not
include pages accounted for in
AVGMEMPAGES (above).

INTEG
ER

NOT NULL

SYSTEM.INDEX

Appendix E: SYSTEM Tables and SYSCA Views 721

Column name Column description Data
type

Null specifi- cation

AVGAMEMCLUSCNT For a non-CALC index, the
average number of I/Os required
to read all rows of the indexed
table associated with a
referenced row when statistics
were last updated, if one buffer
page was available. This count
includes I/O to read the
bottom-level SR8.

For a CALC index, this value is 0.

REAL NOT NULL

AVGBMEMCLUSCNT For a non-CALC index, the
average number of I/Os required
to read all rows of the indexed
table associated with a
referenced row when statistics
were last updated, if three buffer
pages were available. This count
includes I/O to read the
bottom-level SR8.

For a CALC index, this value is 0.

REAL NOT NULL

AVGCMEMCLUSCNT For a non-CALC index, the
average number of I/Os required
to read all rows of the indexed
table associated with a
referenced row if when statistics
were last updated, if five buffer
pages were available. This count
includes I/O to read the
bottom-level SR8.

For a CALC index, this value is 0.

REAL NOT NULL

AVGDMEMCLUSCNT For a non-CALC index, the
average number of I/Os required
to read all rows of the indexed
table associated with a
referenced row when statistics
were last updated, if 10 buffer
pages were available. This count
includes I/O to read the
bottom-level SR8.

For a CALC index, this value is 0.

SYSTEM.INDEX

722 SQL Reference Guide

Column name Column description Data
type

Null specifi- cation

AVGEMEMCLUSCNT For a non-CALC index, the
average number of I/Os required
to read all rows of the indexed
table associated with a
referenced row when statistics
were last updated, if 20 buffer
pages were available. This count
includes I/O to read the
bottom-level SR8.

For a CALC index, this value is 0.

REAL NOT NULL

AVGSR8ROWS For a non-CALC index, the
number of SR8s in the index
when statistics were last
updated.

For a CALC index, this value is 0.

REAL NOT NULL

LONGESTSR8 For a non-CALC index, the
number of bottom-level SR8s in
the index.

For a CALC index, this value is 0.

INTEG
ER

NOT NULL

SECLONGSR8 This value is always 0. INTEG
ER

NOT NULL

NUMLONGSR8 For a non-CALC index, this value
is 1.

For a CALC index, this value is 0.

INTEG
ER

NOT NULL

AVGSR8PAGES For a non-CALC index, the
average number of distinct pages
occupied by bottom-level SR8s
for the index when statistics
were last updated, if the average
is 1 to 20. If the average is more
than 20, the value in this column
is 0.

For a CALC index, this value is 0.

REAL NOT NULL

MAXSR8PAGES For a non-CALC index, if
AVGSR8PAGES is more than 20,
the value in this column is 1.
Otherwise the value is 0.

For a CALC index, this value is 0.

INTEG
ER

NOT NULL

SYSTEM.INDEX

Appendix E: SYSTEM Tables and SYSCA Views 723

Column name Column description Data
type

Null specifi- cation

AVGSR8LEAFS For a non-CALC index, the
average number of bottom-level
SR8s in the index when statistics
were last updated.

For a CALC index, this value is 0.

REAL NOT NULL

AVGSR8LEVELS For a non-CALC index, the
average highest level number in
the index when statistics were
last updated. Level number
refers to the number of levels
above the bottom level.

For a CALC index, this value is 0.

REAL NOT NULL

AVGASR8CLUSCNT For a non-CALC index, the
average number of I/Os required
to read all bottom-level SR8s in
the index when statistics were
last updated, if one buffer page
was available.

For a CALC index, this value is 0.

REAL NOT NULL

AVGBSR8CLUSCNT For a non-CALC index, the
average number of I/Os required
to read all bottom-level SR8s in
the index when statistics were
last updated, if three buffer
pages were available.

For a CALC index, this value is 0.

REAL NOT NULL

AVGCSR8CLUSCNT For a non-CALC index, the
average number of I/Os required
to read all bottom-level SR8s in
the index when statistics were
last updated, if five buffer pages
were available.

For a CALC index, this value is 0.

REAL NOT NULL

AVGDSR8CLUSCNT For a non-CALC index, the
average number of I/Os required
to read all bottom-level SR8s in
the index when statistics were
last updated, if 10 buffer pages
were available.

For a CALC index, this value is 0.

REAL NOT NULL

SYSTEM.INDEX

724 SQL Reference Guide

Column name Column description Data
type

Null specifi- cation

AVGESR8CLUSCNT For a non-CALC index, the
average number of I/Os required
to read all bottom-level SR8s in
the index when statistics were
last updated, if 20 buffer pages
were available.

For a CALC index, this value is 0.

REAL NOT NULL

NUMUNIQKEYS The number of distinct key
values in the index when
statistics were last updated. For
a unique index, this number
should match NUMROWS in the
SYSTEM.TABLE row for the
underlying table.

INTEG
ER

NOT NULL

NUMNULLKEYS Number of rows where all the
index key columns in the row
contained null key values when
statistics were last updated.

INTEG
ER

NOT NULL

NUMLONGKEYS Number of distinct index key
values for which all referencing
rows with the same key value
the indexed table occupied more
than 20 pages when statistics
were last updated. This situation
can occur only when referencing
rows can contain duplicate key
values.

INTEG
ER

NOT NULL

AVGDUPSPERKEY For each distinct index key value,
the average number of duplicate
values when statistics were last
updated. For a unique index,
this is 1.

REAL NOT NULL

AVGPAGESPERKEY For each distinct index key value,
the average number of pages
containing rows of the indexed
table with the key value when
statistics were last updated. This
average does not include pages
accounted for in NUMLONGKEYS
(above).

REAL NOT NULL

PROCKEY Table procedure key:

■ P—If procedure key

CHAR(
1)

NOT NULL

SYSTEM.INDEXKEY

Appendix E: SYSTEM Tables and SYSCA Views 725

Column name Column description Data
type

Null specifi- cation

PRIMEKEY Primary key flag:

■ Y—If primary key

CHAR(
1)

NOT NULL

FILLER Reserved for future use. BINAR
Y(38)

NOT NULL

SYSTEM.INDEXKEY

Description

A row of SYSTEM.INDEXKEY identifies a key column defined in an index. This information
is for documentation and is not used in internal processing.

View SYSCA.INDEXKEY is defined on SYSTEM.INDEXKEY.

Note: For more information, see SYSCA Objects.

Column name Column description Data
type

Null specifi- cation

NAME Index name. CHAR(
18)

NOT NULL

SCHEMA Schema-name qualifier for the
indexed table.

CHAR(
18)

NOT NULL

TABLE Name of the indexed table. CHAR(
18)

NOT NULL

SEQUENCE Internal index key sequence
number.

SMALL
INT

NOT NULL

NUMBER Column number of the key
column.

SMALL
INT

NOT NULL

COLUMN Column name of the key column.

SORTORDER Index key sort order:

■ A—Ascending

■ D—Descending

CHAR(
1)

NOT NULL

FILLER Reserved for future use. BINAR
Y(37)

NOT NULL

SYSTEM.JOURNAL

726 SQL Reference Guide

SYSTEM.JOURNAL

Description

A row of SYSTEM.JOURNAL represents a journal file defined in the DMCL.

Column name Column description Data
type

Null specifi- cation

DMCL DMCL name. CHAR(
8)

NOT NULL

NAME Journal name. CHAR(
18)

NOT NULL

TYPE Journal type:

■ DISK

■ ARCH

■ TAPE

CHAR(
4)

NOT NULL

CTIME Date and time stamp when the
journal was created.

TIMES
TAMP

NOT NULL

UTIME Date and time stamp when the
journal was last updated.

TIMES
TAMP

NOT NULL

CRITTIME Date and time stamp of the last
critical change made to the
journal.

TIMES
TAMP

NOT NULL

CUSER ID of the user who created the
journal.

CHAR(
18)

NOT NULL

UUSER ID of the user who last updated
the journal.

CHAR(
18)

NOT NULL

FILLER Reserved for future use. CHAR(
2)

NOT NULL

NUMBLOCKS Number of blocks (pages) in a
disk journal file.

INTEG
ER

NOT NULL

BLOCKSIZE Archive journal block size, in
bytes.

INTEG
ER

NOT NULL

DDNAME Depending on the operating
system, DDName (z/OS),
filename (z/VSE), or linkname of
the journal file.

CHAR(
8)

NOT NULL

SYSTEM.JOURNAL

Appendix E: SYSTEM Tables and SYSCA Views 727

Column name Column description Data
type

Null specifi- cation

ACCESSMETHOD Journal file access method. CHAR(
8)

NOT NULL

DATASPACE Dataspace option:

■ N—No

■ Y—Yes

CHAR(
1)

NOT NULL

ESAREAD Dataspace read:

■ B—Block

■ T—Track

■ C—Cylinder

■ Blank—Dataspace no

CHAR(
1)

NOT NULL

ESAPRELOAD Dataspace preload.

■ N—No

■ Y—Yes

■ Blank—Dataspace no

CHAR(
1)

NOT NULL

DSNAME Dataset name. CHAR(
44)

NOT NULL

DISP Dataset disposition. CHAR(
4)

NOT NULL

VMUSERID In the z/VM environment, the
user ID associated with the file.

CHAR(
8)

NOT NULL

VMVIRTADDR In the z/VM environment, the
virtual address of the file.

INTEG
ER

NOT NULL

FILLER Reserved for future use. BINAR
Y(41)

NOT NULL

SYSTEM.LOADHDR

728 SQL Reference Guide

SYSTEM.LOADHDR

Description

A row of SYSTEM.LOADHDR represents a load module. Each row of SYSTEM.LOADHDR
contains global information about a load module that resides in the DDLDCLOD or
DDLCATLOD area of the dictionary.

Column name Column description Data
type

Null specifi- cation

NAME Load module name. CHAR(
8)

NOT NULL

VERSION Load module version number. SMALL
INT

NOT NULL

RLDS Number of entries in the
relocation dictionary (RLD) for
the load module.

SMALL
INT

NOT NULL

EPA Entry point address (offset). BINAR
Y(4)

NOT NULL

LENGTH Length, in bytes, of the object
text for the load module.

INTEG
ER

NOT NULL

DATE Date when the load module was
created (mm/dd/yy).

CHAR(
8)

NOT NULL

TIME Time when the load module was
created (hhmmss).

CHAR(
6)

NOT NULL

TYPE Flag byte for load module status
and type.

■ X'80'—Logically deleted
module

■ X'40'—Subschema

■ X'28'—Map help

■ X'20'—Map

■ X'10'—CA ADS dialog

■ X'08'—Table

■ X'04'—Mainline dialog

■ X'02'—Access module

■ X'01'—RCM

BINAR
Y(1)

NOT NULL

SYSTEM.ORDERKEY

Appendix E: SYSTEM Tables and SYSCA Views 729

Column name Column description Data
type

Null specifi- cation

SEC Security class. BINAR
Y(1)

NOT NULL

STLENGTH Reserved. INTEG
ER

NOT NULL

MODE Reserved. BINAR
Y(1)

NOT NULL

STLEVEL X'02'—Module supports SQL
schema names.

BINAR
Y(1)

NOT NULL

SCHEMA SQL schema name for access
module.

CHAR(
18)

NOT NULL

SYSTEM.ORDERKEY

Description

A row of SYSTEM.ORDERKEY represents a column that is a sort key in a linked constraint.
This is a column in the referencing table. This information is for documentation and is
not used in internal processing.

View SYSCA.ORDERKEY is defined on SYSTEM.ORDERKEY.

Note: For more information, see SYSCA Objects.

Column name Column description Data
type

Null specifi- cation

SCHEMA Schema name of the constraint
(that is, of the referencing table).

CHAR(
18)

NOT NULL

CONSTRAINT Constraint name. CHAR(
18)

NOT NULL

SEQUENCE Order key column sequence
number.

SMALL
INT

NOT NULL

NUMBER Column number of the sort
column in the referencing table.

SMALL
INT

NOT NULL

COLUMN Column name of the sort column
in the referencing table.

CHAR(
32)

NOT NULL

SYSTEM.SCHEMA

730 SQL Reference Guide

Column name Column description Data
type

Null specifi- cation

SORTORDER Sort order:

■ A—Ascending

■ D—Descending

CHAR(
1)

NOT NULL

FILLER Reserved for future use. BINAR
Y(39)

NOT NULL

SYSTEM.SCHEMA

Description

A row of SYSTEM.SCHEMA represents an SQL schema.

Column name Column description Data
type

Null specifi- cation

NAME Schema name. CHAR(
18)

NOT NULL

CTIME Date and time when the schema
was created.

TIMES
TAMP

NOT NULL

UTIME Date and time when the schema
was last altered.

TIMES
TAMP

NOT NULL

CUSER ID of the user who created the
schema.

CHAR(
18)

NOT NULL

UUSER The ID of the user who last
altered the schema.

CHAR(
18)

NOT NULL

TYPE Type of schema:

■ N—Represents non-SQL
schema

■ R—SQL schema

CHAR(
1)

NOT NULL

SYSTEM.SCHEMA

Appendix E: SYSTEM Tables and SYSCA Views 731

Column name Column description Data
type

Null specifi- cation

SEGMENT

■ When TYPE is N, the
segment(specified in CREATE
SCHEMA) that contains the
data described by the
non-SQL schema.

If this column is blank and TYPE
is N, a segment is chosen from
the database name table at
runtime.

■ When TYPE is R, the
segment that contains the
default area.

If this column and the AREA
column are blank and TYPE is R,
the storage area for a table
associated with this schema is
identified in SYSTEM.TABLE.

CHAR(
8)

NOT NULL

AREA When TYPE is R, the default area
for storing rows of tables
associated with the schema.

CHAR(
18)

NOT NULL

NODE If it was specified when the SQL
schema was created, node name
of the dictionary that contains
the non-SQL-defined schema
(when TYPE is N).

CHAR(
8)

NOT NULL

DICTIONARY If it was specified when the SQL
schema was created, name of
the dictionary that contains the
non-SQL-defined schema (when
TYPE is N).

CHAR(
8)

NOT NULL

NTWKSCHEMA Name of the non-SQL schema. CHAR(
8)

NOT NULL

VERSION Version number of the non-SQL
schema.

SMALL
INT

NOT NULL

CHARSET Default character set for all
columns in the catalog.

CHAR(
18)

NOT NULL

REFDSQLSCHEMA Name of referenced SQL schema. CHAR(
18)

NOT NULL

SYSTEM.SECTION

732 SQL Reference Guide

Column name Column description Data
type

Null specifi- cation

FILLER Reserved for future use. BINAR
Y(4)

NOT NULL

SYSTEM.SECTION

Description

A row of SYSTEM.SECTION describes part or all the tree form (the form input to the
optimizer) of either a search condition that defines a check constraint or a SELECT
statement that defines a view. If more than one row is needed to return the entire
section, the order of the section portions is represented in column SEQUENCE.

View SYSCA.SECTION is defined on SYSTEM.SECTION.

Note: For more information, see SYSCA Objects.

Column name Column description Data
type

Null specifi- cation

SCHEMA Schema-name qualifier of the
table or view.

CHAR(
18)

NOT NULL

TABLE Table or view name. CHAR(
18)

NOT NULL

TYPE Section type:

■ C—Check constraint
definition

■ V—View definition

CHAR(
1)

NOT NULL

FORMAT Section format; Value is I (I-tree) CHAR(
1)

NOT NULL

SEQUENCE Sequence number of this portion
of the section.

SMALL
INT

NOT NULL

TEXT Text of the section representing
the check constraint or view
definition.

BINAR
Y(512)

NOT NULL

SYSTEM.SEGMENT

Appendix E: SYSTEM Tables and SYSCA Views 733

SYSTEM.SEGMENT

Description

A row of SYSTEM.SEGMENT represents a definition of a database segment.

Column name Column description Data
type

Null specifi- cation

NAME Segment name. CHAR(
8)

NOT NULL

CTIME Date and time stamp when the
segment was created.

TIMES
TAMP

NOT NULL

UTIME Date and time stamp when the
segment was last updated.

TIMES
TAMP

NOT NULL

CRITTIME Date and time stamp of the last
critical change made to the
segment.

TIMES
TAMP

NOT NULL

CUSER ID of the user who created the
segment.

CHAR(
18)

NOT NULL

UUSER ID of the user who last updated
the segment.

CHAR(
18)

NOT NULL

SCHEMA Name of the SQL schema, if any,
that is associated with the
segment. If an SQL schema name
is associated with the segment,
only tables whose names are
qualified by the SQL schema
name can be stored in areas
associated with the segment.

CHAR(
18)

NOT NULL

PAGEGROUP Identifier of the page group that
contains the areas associated
with the segment.

SMALL
INT

NOT NULL

RECSPERPAGE Maximum number of rows that
can be stored on a single page.
The value in this column is equal
to the value supplied by the user,
rounded up to the nearest power
of 2, minus 1.

INTEG
ER

NOT NULL

NUMAREAS Number of areas associated with
the segment.

SMALL
INT

NOT NULL

SYSTEM.SYMBOL

734 SQL Reference Guide

Column name Column description Data
type

Null specifi- cation

NUMFILES Number of files associated with
the segment.

SMALL
INT

NOT NULL

NUMDADS Number of files associated with
this segment that contain
dynamic allocation (DAD)
information.

SMALL
INT

NOT NULL

NUMFILEMAPS Number of files to which the
segment maps.

SMALL
INT

NOT NULL

NUMSYMBOLICS Number of symbolics in the
segment.

SMALL
INT

NOT NULL

STAMPLEVEL Data definition stamp level:

■ N—No stamp checking

■ T—Table stamping

■ S—Area stamping

CHAR(
1)

NOT NULL

TYPE Segment type:

■ N—Non-SQL segment

■ R—SQL (Relational) segment

CHAR(
1)

NOT NULL

FILLER Reserved for future use. BINAR
Y(40)

NOT NULL

SYSTEM.SYMBOL

Description

SYMBOL represents a named symbol within an area whose values are used at runtime to
resolve symbolic parameters named in logical definitions.

Column name Column description Data
type

Null specifi- cation

TYPE Symbolic type.

■ 01—Subarea

■ 02—Symbolic displacement

■ 03—Symbolic index

SMALL
INT

NOT NULL

NAME Symbolic name CHAR(
18)

NOT NULL

SYSTEM.SYMBOL

Appendix E: SYSTEM Tables and SYSCA Views 735

Column name Column description Data
type

Null specifi- cation

SEGMENT Segment name. CHAR(
8)

NOT NULL

AREA Area name. CHAR(
18)

NOT NULL

CTIME Date and time stamp when the
symbolic was created.

TIMES
TAMP

NOT NULL

UTIME Date and time stamp when the
symbolic was last updated.

TIMES
TAMP

NOT NULL

CRITTIME Date and time stamp of the last
critical change to the symbolic.

TIMES
TAMP

NOT NULL

CUSER ID of the user who created the
area.

CHAR(
18)

NOT NULL

UUSER ID of the user who last updated
the area.

CHAR(
18)

NOT NULL

FLAG Symbolic type flag; if column
TYPE=:

■ 01, values are:

■ X'80'—Subarea offset

■ X'40'—VALUE1 is a percent

■ X'20'—VALUE2 is a percent

■ X'10'—Subarea space

■ 02, value is
X'80'—(Displacement)

■ 03:

■ X'80'—Index block contains

■ X'40'—Index size

■ X'20'—Index sorted key

BINAR
Y(1)

NOT NULL

FILLER Reserved for future use. CHAR(
1)

NOT NULL

VALUE1 Symbolic value 1. INTEG
ER

NOT NULL

VALUE2 Symbolic value 2. INTEG
ER

NOT NULL

FILLER Reserved for future use. BINAR
Y(40)

NOT NULL

SYSTEM.SYNTAX

736 SQL Reference Guide

SYSTEM.SYNTAX

Description

A row of SYSTEM.SYNTAX represents the syntax for a CREATE or ALTER TABLE statement
that includes a check constraint, the syntax of a CREATE VIEW statement, or the syntax
of an SQL routine. If more than one row is needed to return all the syntax, the order of
the syntax portions is represented in column SEQUENCE.

View SYSCA.SYNTAX is defined on SYSTEM.SYNTAX.

Note: For more information, see SYSCA Objects.

Column name Column description Data
type

Null specifi- cation

SCHEMA Schema-name qualifier of the
table or view.

CHAR(
18)

NOT NULL

TABLE Table or view name. CHAR(
18)

NOT NULL

TYPE Syntax usage:

■ C—Check constraint
definition

■ V—View definition (SELECT
statement)

■ S—SQL routine definition

CHAR(
1)

NOT NULL

SEQUENCE Sequence number of this portion
of the syntax.

SMALL
INT

NOT NULL

SYNTAX The check constraint syntax or
the syntax of the query
expression in the view definition.

CHAR(
80)

NOT NULL

SYSTEM.TABLE

Appendix E: SYSTEM Tables and SYSCA Views 737

SYSTEM.TABLE

Description

A row of SYSTEM.TABLE represents the definition of a table, view, function, procedure,
table procedure or owner of local variables of an SQL routine, or refers to a database
record in a non-SQL-defined schema referenced by a view definition (for which only
SCHEMA and NAME information appears).

View SYSCA.TABLE is defined on SYSTEM.TABLE.

Note: For more information, see SYSCA Objects.

Column name Column description Data type Null specifi-
cation

SCHEMA Schema-name qualifier of the
table or view.

CHAR(18) NOT NULL

NAME Name of the table or view. CHAR(18) NOT NULL

SEGMENT Segment that contains the area
where table rows are stored.

CHAR(8)

AREA Area where table rows are
stored.

CHAR(18)

TABLEID Internal record ID of the
database record underlying the
table.

SMALLINT NOT NULL

TYPE Type of table:

■ A—View on referencing
SQL schema table

■ F—Function

■ L—Owner of local variables
of a routine

■ N—Record in a
non-SQL-defined schema

■ P—Table procedure

■ R—Procedure

■ T—Base table

■ V—View

CHAR(1) NOT NULL

SYSTEM.TABLE

738 SQL Reference Guide

Column name Column description Data type Null specifi-
cation

LOCMODE Storage location mode for a
table:

■ C—Clustered

■ D—Direct

■ H—CALC

■ R—Row ID index

■ U—Unique calc

Global storage allocation option
for a table procedure:

■ N—Non-keyed global
storage

■ K—Keyed global storage

CHAR(1) NOT NULL

COMPRESS Compression indicator:

■ Y—Compressed

■ N—Uncompressed

■ P—Compressed with CA
IDMS Presspack

For TYPE = R (procedure) or F
(function), this is the protocol:

■ I—IDMS

■ A—ADS

CHAR(1) NOT NULL

FORMAT Format of the database record
underlying the table:

■ F—Fixed length

■ V—Variable length

CHAR(1) NOT NULL

UPDATABLE When TYPE is V, updatable view
indicator:

■ Y—Updatable

■ N—Not updatable

■ Blank—Not known at
definition time

CHAR(1) NOT NULL

SYSTEM.TABLE

Appendix E: SYSTEM Tables and SYSCA Views 739

Column name Column description Data type Null specifi-
cation

CHECKOPT When TYPE is V, WITH CHECK
OPTION indicator:

■ Y—View defined with WITH
CHECK OPTION

■ N—View defined without
WITH CHECK OPTION

CHAR(1) NOT NULL

TIMESTAMP Table timestamp, used for
synchronization with access
module definitions,

TIMESTAMP NOT NULL

CTIME Date and time when the table
or view was created.

TIMESTAMP NOT NULL

UTIME Date and time when the table
or view was last altered.

TIMESTAMP NOT NULL

CUSER ID of the user who created the
table or view.

CHAR(18) NOT NULL

UUSER ID of the user who last altered
the table or view.

CHAR(18) NOT NULL

PUTROUTINE ■ When TYPE = T: CA IDMS
Presspack data
characteristic table (DCT)
name.

■ When TYPE = P or R or F:
external program or dialog
name

CHAR(8) NOT NULL

GETROUTINE Reserved for a table.

Global storage key for a
procedure.

CHAR(8) NOT NULL

LENGTH Internal length of underlying
database record, including
prefix.

SMALLINT NOT NULL

DATALENGTH Internal length of the data
portion of the underlying
database record (including
four-byte RDW for a
compressed table).

SMALLINT NOT NULL

SYSTEM.TABLE

740 SQL Reference Guide

Column name Column description Data type Null specifi-
cation

PREFIXLENGTH Internal length of the prefix
portion of the underlying
database record for a table.

Length of the local work area
for a procedure.

SMALLINT NOT NULL

CTRLENGTH Internal length of the control
portion (without the prefix) of
the underlying database record
for a table.

Length of the global work area
for a procedure.

SMALLINT NOT NULL

FIXLENGTH Internal length of the fixed
portion (without the prefix) of
the underlying database record.

SMALLINT NOT NULL

SECLENGTH Length of the I-tree stored in
the associated section table
rows, for a view or check
constraint.

SMALLINT NOT NULL

NUMSYNTAX Number of rows in the syntax
table for a view or check
constraint.

SMALLINT NOT NULL

NUMCOLS Number of columns in the table
or view.

SMALLINT NOT NULL

NUMINDEXES Number of indexes on the table. SMALLINT NOT NULL

NUMREFERENCED Number of constraints where
the table is the referenced
table.

SMALLINT NOT NULL

NUMREFERENCING Number of constraints where
the table is the referencing
table.

SMALLINT NOT NULL

DISPLACEMENT Displacement, in pages, from
cluster index or constraint for a
table.

Estimated number of I/Os for a
procedure.

INTEGER NOT NULL

ESTROWS Estimated number of rows in
the table.

INTEGER NOT NULL

SYSTEM.TABLE

Appendix E: SYSTEM Tables and SYSCA Views 741

Column name Column description Data type Null specifi-
cation

NUMPAGES Number of pages containing
rows of the table when statistics
were last updated.

INTEGER NOT NULL

NUMROWS Actual number of rows in the
table when statistics were last
updated.

INTEGER NOT NULL

ROWSPERPAGE Number of table rows per page
when statistics were last
updated.

INTEGER NOT NULL

AVGROWLENGTH Average length of a table row
when statistics were last
updated.

REAL NOT NULL

PCTSPACEUSED Percentage of space used in the
area where table rows are
stored when statistics were last
updated.

REAL NOT NULL

PCTFRAGROWS Percentage of rows fragmented
in storage when statistics were
last updated.

REAL NOT NULL

NUMIO01 Number of IOs required to read
all rows with 1 buffer, when
statistics were last updated.

REAL NOT NULL

NUMIO03 Number of IOs required to read
all rows with 3 buffers, when
statistics were last updated.

REAL NOT NULL

NUMIO05 Number of IOs required to read
all rows with 5 buffers, when
statistics were last updated.

REAL NOT NULL

NUMIO10 Number of IOs required to read
all rows with 10 buffers, when
statistics were last updated.

REAL NOT NULL

NUMIO20 Number of IOs required to read
all rows with 20 buffers, when
statistics were last updated.

REAL NOT NULL

PROCMODE Execution mode for a table
procedure:

■ U—User mode

■ S—System mode

CHAR(1) NOT NULL

SYSTEM.VIEWDEP

742 SQL Reference Guide

Column name Column description Data type Null specifi-
cation

TXNSHARNG Transaction sharing:

■ Y—Yes

■ N—No

■ D—Default

CHAR(1) NOT NULL

PROCDBNAME Default Database:

■ P—Current

■ not P—Null

CHAR(1) NOT NULL

DEFAULTINDEX When TYPE is T, Row ID index
indicator:

■ Y—Yes

■ N—No

CHAR(1) NOT NULL

SECLENGTH2 Length of syntax for views and
check constraints.

INTEGER NOT NULL

LANGUAGE Language of an SQL-invoked
routine.

CHAR3

FILLER3 Reserved for future use. BINARY(1) NOT NULL

DYNRESULTSETS Number of dynamic results sets
of an SQL-invoked procedure.

SMALLINT NOT NULL

FILLER Reserved for future use. BINARY(18) NOT NULL

SYSTEM.VIEWDEP

Description

A row of SYSTEM.VIEWDEP identifies a table or view referenced by a view.

View SYSCA.VIEWDEP is defined on SYSTEM.VIEWDEP.

Note: For more information, see SYSCA Objects.

Column name Column description Data
type

Null specifi- cation

SCHEMA Schema-name qualifier of the
dependent view.

CHAR(
18)

NOT NULL

SYSCA Objects

Appendix E: SYSTEM Tables and SYSCA Views 743

Column name Column description Data
type

Null specifi- cation

NAME Dependent view name. CHAR(
18)

NOT NULL

SEQUENCE Sequence number of the table or
view referenced in the
dependent view.

SMALL
INT

NOT NULL

REFSCHEMA Schema-name qualifier of the
table or view referenced in the
dependent view.

CHAR(
18)

NOT NULL

REFTABLE Name of the table or view
referenced in the dependent
view.

CHAR(
18)

NOT NULL

REFTYPE Type of the table or view
referenced in the dependent
view:

■ F—Function

■ N—Record in a
non-SQL-defined schema

■ P—Table procedure

■ R—Procedure

■ T—Base table

■ V—View

CHAR(
1)

NOT NULL

FILLER Reserved for future use. BINAR
Y(5)

NOT NULL

SYSCA Objects

SYSCA Objects

744 SQL Reference Guide

SYSCA Views

SYSCA views are views defined on a subset of SYSTEM tables. They restrict information
that the user can select from the SYSTEM tables to data about tables for which the user
holds SELECT privilege.

If you hold SELECT privilege on the SYSCA views but not on SYSTEM tables, you can see
definitions of the tables from which you are authorized to select data, but you cannot
see definitions of any other tables defined in the catalog component of the dictionary.

Tables that You Can Access

SYSCA.ACCESSIBLE_TABLES is a view you can use to list the tables for which you hold a
SELECT privilege. The result table of this view contains the schema name, table name,
and type of table (T for base table, V for view, N for non-SQL-defined table, P for table
procedure), as in this example:

SELECT * FROM SYSCA.ACCESSIBLE_TABLES;
*+
*+ SCHEMA TABLE TYPE
*+ ────── ───── ────
*+ DEMOEMPL EMP_WORK_INFO V
*+ DEMOEMPL JOB T
*+ DEMOPROJ EXPERTISE T
*+ DEMOPROJ PROJECT T
*+ DEMOPROJ SKILL T
*+ EMPDEMO INSURANCE-PLAN N
*+ SYSCA ACCESSIBLE_TABLES V
*+ SYSCA COLUMN V
*+ SYSCA SECTION V
*+ SYSCA SYNTAX V
*+ SYSCA TABLE V

Non-SQL defined tables are visible through the SYSCA.ACCESSIBLE_TABLES view only if
the dictionary name where the non-SQL-defined schema resides exactly matches the
dictionary to which the SQL session is connected.

SYSCA Objects

Appendix E: SYSTEM Tables and SYSCA Views 745

SYSCA View Names

In addition to SYSCA.ACCESSIBLE_TABLES, these SYSCA views are defined. The view
name matches the name of the SYSTEM table on which it is defined, and the view
column names match the SYSTEM table column names.

■ SYSCA.COLUMN

■ SYSCA.CONSTKEY

■ SYSCA.CONSTRAINT

■ SYSCA.INDEX

■ SYSCA.INDEXKEY

■ SYSCA.ORDERKEY

■ SYSCA.SECTION

■ SYSCA.SYNTAX

■ SYSCA.TABLE

■ SYSCA.VIEWDEP

Example

In this example, columns from SYSCA.TABLE are selected. The column values in the
result table represent information about tables for which the issuing user holds SELECT
privilege:

SET OPTIONS COMPRESS ON;
*+ Status = 0
SELECT SCHEMA, NAME, SEGMENT, AREA, TYPE, UPDATABLE
FROM SYSCA.TABLE
WHERE SCHEMA <> 'SYSCA'
ORDER BY 1, 2, 3, 4, 5;
*+
*+ SCHEMA NAME SEGMENT AREA TYPE UPDATABLE
*+ ────── ──── ─────── ──── ──── ─────────
*+ DEMOEMPL EMP_WORK_INFO SYSCAT DDLCATX V Y
*+ DEMOEMPL JOB SQLDEMO INFOAREA T
*+ DEMOPROJ EXPERTISE PROJSEG PROJAREA T
*+ DEMOPROJ PROJECT PROJSEG PROJAREA T
*+ DEMOPROJ SKILL PROJSEG PROJAREA T

Note: The SYSCA.TABLE view excludes tables of type N because most columns of
SYSTEM.TABLE do not contain meaningful values for non-SQL-defined tables.

SYSCA Objects

746 SQL Reference Guide

SYSCA Other Objects

A number of table-like objects such as views, table procedures, functions, and
procedures are created in the schema SYSCA. These objects are needed by CA IDMS for
miscellaneous purposes, or provide for generally useful procedures or functions.

SYSCA Pseudo Table SINGLETON_NULL

The SYSCA.SINGLETON_NULL is a pseudo table that can be used to return the results of
expressions whose parameters are constants. It is defined to have one row and no
columns. This table is a pseudo table because it does not exist in the catalog. However,
it can be queried through a SELECT statement. Used internally by CA IDMS, it is also
useful when evaluating SQL functions and other expressions with constant parameters.

Example

select USER01.TLANG1('James ', 'Last ')

 from SYSCA.SINGLETON_NULL;

*+

*+ USER_FUNC

*+ ---------

*+ James Last

Appendix F: Index Calculations 747

Appendix F: Index Calculations

INDEX BLOCK CONTAINS

748 SQL Reference Guide

INDEX BLOCK CONTAINS

The following steps are used to calculate key-count for the INDEX BLOCK CONTAINS
parameter of the CREATE INDEX statement:

1. Obtain the maximum number of index entries in an SR8 (this formula assumes 3
SR8s per page):

■ Compute the maximum size of the variable portion of an SR8:

((Page-size - Page-reserve - 32) / 3) - 40 = SR8-variable-size

■ Compute the maximum number of index entries in an SR8:

(SR8-variable-size / (8 + Key-length)) - 2

If the resulting number of SR8 entries is less than 3, set it to 3; if greater than 8180,
set it to 8180.

2. Establish the number of rows to be indexed using the greater of;

■ The estimated number of rows for the table (ESTROWS column in
SYSTEM.TABLE)

■ The actual number of rows in the table (NUMROWS column in SYSTEM.TABLE)

If both values are 0, use 1000.

3. Estimate the number of entries per SR8 for a 3-level index by finding the first entry
in the following table whose Number of Rows column is greater than or equal to the
value established in Step 2:

Number of Rows Number of SR8 Entries

 1,000 10

 15,625 25

 125,000 50

 512,000 80

 1,000,000 100

 2,000,376 126

 3,375,000 150

 5,359,375 175

 8,000,000 200

 15,625,000 250

 -1 8180

4. Determine the INDEX BLOCK CONTAINS value by using the lesser of the Number of
SR8 Entries from the table and the value obtained in Step 1.

Use this value in the INDEX BLOCK CONTAINS key-count parameter of the definition
and for IBC-key-count in calculations for DISPLACEMENT page-count.

DISPLACEMENT

Appendix F: Index Calculations 749

DISPLACEMENT

Index Displacement

The following steps are used to calculate page-count for the DISPLACEMENT parameter
of the CREATE INDEX statement:

1. Calculate number of bottom-level and higher-level SR8s:

Set N = #-of-rows

High-level-SR8s = 0

Bottom-level-SR8s = 1

Repeat

 N = (N + IBC-key-count - 1) / IBC-key-count (truncate)

 If N = 1, exit

 If High-level-SR8s = 0,

 High-level-SR8s = 1

 Bottom-level-SR8s = N

 Else High-level-SR8s = High-level-SR8s + N

Set Total-SR8s = High-level-SR8s + Bottom-level-SR8s

2. Determine the number of SR8s per page:

■ Calculate size of an SR8:

SR8-size = 32 + (IBC-key-count + 2) * (Key-length + 8)

■ Calculate number of SR8s per page:

(Page-size - Page-reserve - 32) / (SR8-size + 8)

3. Establish the INDEX DISPLACEMENT:

■ If the number of higher-level SR8's is less than 2, set the DISPLACEMENT =
High-level-SR8s. (For a one- or two-level index, displacement is 0 or 1
respectively).

■ If the number of higher-level SR8s is greater than 1, compute the displacement
page count:

(High-level-SR8s + SR8s-per-page - 1)

------------------------------------- + 1 (truncate)

 SR8s-per-page

If the calculated displacement is greater than the number of pages in the area
containing the index, then:

Displacement-page-count = Number-of-pages-in-area / 2

DISPLACEMENT

750 SQL Reference Guide

Table Displacement

Table displacement is the number of pages that the rows of a table are displaced from
the index around which they are clustered. The table displacement is 0 if the table and
index reside in different areas. It is calculated as described below if they reside in the
same area:

■ If the total number of SR8s is less than 2, set the table's displacement to 0.

■ If the total number of SR8s is greater than 1, the table's displacement is:

(Total-SR8s + SR8s-per-page - 1)

------------------------------------- + 1 (truncate)

 SR8s-per-page

If the calculated displacement is greater than the number of pages in the area
containing the index, then:

Table-displacement = Number-of-pages-in-area * 3 / 4

Appendix G: Sample COBOL Table Procedure 751

Appendix G: Sample COBOL Table
Procedure

Sample Table Procedure Definition

The following example shows a table procedure definition.

create table procedure emp.org

 (top_key unsigned numeric(4),

 level smallint,

 mgr_id unsigned numeric(4),

 mgr_lname char(25)

 emp_id unsigned numeric (4),

 emp_lname char(25)

 start_date DATE,

 structure_code char(2))

 external name procorgu

 local work area 800

 global work area 600 key emp

 estimated ios 50

 estimated rows 50;

create primary key org1

 on emp.org (mgr_id, start_date, emp_id)

 estimated rows 1

 estimated ios 5;

create key org2

 on emp.org (mgr_id)

 estimated rows 5

 estimated ios 5;

create key org3

 on emp.org (emp_id)

 estimated rows 5

 estimated ios 5;

Sample Table Procedure Program

752 SQL Reference Guide

Sample Table Procedure Program

The following sample program is included on the CA IDMS installation media. This
program requires the employee demo database.

 *RETRIEVAL

 *NO-ACTIVITY-LOG

 *DMLIST

 IDENTIFICATION DIVISION.

 PROGRAM-ID. PROCORGU.

 ENVIRONMENT DIVISION.

 IDMS-CONTROL SECTION.

 PROTOCOL. MODE IS BATCH DEBUG

 IDMS-RECORDS MANUAL.

 DATA DIVISION.

 SCHEMA SECTION.

 DB EMPSS01 WITHIN EMPSCHM VERSION 100.

 WORKING-STORAGE SECTION.

 01 WORK-FIELDS.

 02 IN01-RPB PIC X(36).

 02 IN01-REQUEST.

 03 IN01-REQUEST-CODE PIC S9(8) COMP SYNC.

 03 IN01-RETURN PIC S9(8) COMP SYNC.

 02 IN01-DATE-FORMAT PIC S9(8) COMP SYNC.

 02 I PIC S9(4) COMP SYNC.

 02 ROW-FOUND-FLAG PIC X.

 88 ROW-FOUND VALUE '1'.

 01 COPY IDMS SUBSCHEMA-NAMES.

 01 WK-DBKEYS.

 02 WK-NEW-MGR-DBKEY PIC S9(8) COMP SYNC.

 02 WK-NEW-EMP-DBKEY PIC S9(8) COMP SYNC.

 02 WK-MGR-DBKEY PIC S9(8) COMP SYNC.

 02 WK-EMP-DBKEY PIC S9(8) COMP SYNC.

 02 WK-PRIOR-DBKEY PIC S9(8) COMP SYNC.

 02 WK-STRUCT-DBKEY PIC S9(8) COMP SYNC.

 01 WK-DATE-TIME.

 02 WK-DATE.

 03 FILLER PIC 99 VALUE 19.

 03 WK-YY PIC 99.

 03 FILLER PIC X VALUE '-'.

 03 WK-MM PIC 99.

 03 FILLER PIC X VALUE '-'.

 03 WK-DD PIC 99.

 02 WK-TIME PIC X(16) VALUE '-00.00.00.000000'.

Sample Table Procedure Program

Appendix G: Sample COBOL Table Procedure 753

 01 WK-NEW-DATE.

 02 WK-NEW-YY PIC 99.

 02 WK-NEW-MM PIC 99.

 02 WK-NEW-DD PIC 99.

 01 DB-MSG.

 02 FILLER PIC X(22) VALUE

 'Database error status '.

 02 DB-STAT PIC X(4).

 02 FILLER PIC X(16) VALUE ', during: '.

 02 DB-VERB PIC X(12).

 01 INVDELSEQ-MSG.

 02 FILLER PIC X(43) VALUE

 'Internal sequence error during delete for: '.

 02 DEL-PROC PIC X(18).

 01 INVUPDSEQ-MSG.

 02 FILLER PIC X(43) VALUE

 'Internal sequence error during update for: '.

 02 UPD-PROC PIC X(18).

 01 EMPID-MSG.

 02 FILLER PIC X(28) VALUE

 'EMP_ID is missing or invalid'.

 01 MGRID-MSG.

 02 FILLER PIC X(28) VALUE

 'MGR_ID is missing or invalid'.

 01 STRUCTCD-MSG.

 02 FILLER PIC X(36) VALUE

 'STRUCTURE_CODE is missing or invalid'.

 LINKAGE SECTION.

 * PROCEDURE PARAMETERS

 77 TOP-KEY PIC 9(4).

 77 LEVEL-NO PIC S9(4) COMP SYNC.

 77 MGR-ID PIC 9(4).

 77 MGR-LNAME PIC X(25).

 77 EMP-ID PIC 9(4).

 77 EMP-LNAME PIC X(25).

 77 START-DATE PIC X(10).

 77 STRUCTURE-CODE PIC XX.

 * PROCEDURE PARAMETER INDICATORS

 77 TOP-KEY-I PIC S9(4) COMP SYNC.

 77 LEVEL-NO-I PIC S9(4) COMP SYNC.

 77 MGR-ID-I PIC S9(4) COMP SYNC.

 77 MGR-LNAME-I PIC S9(4) COMP SYNC.

Sample Table Procedure Program

754 SQL Reference Guide

 77 EMP-ID-I PIC S9(4) COMP SYNC.

 77 EMP-LNAME-I PIC S9(4) COMP SYNC.

 77 START-DATE-I PIC S9(4) COMP SYNC.

 77 STRUCTURE-CODE-I PIC S9(4) COMP SYNC.

 * CONTROL PARAMETERS

 77 RESULT-IND PIC S9(4) USAGE COMP SYNC.

 01 SQLSTATE.

 02 SQLSTATE-CLASS PIC XX.

 02 SQLSTATE-SUBCLASS PIC XXX.

 77 PROCEDURE-NAME PIC X(18).

 77 SPECIFIC-NAME PIC X(8).

 77 MESSAGE-TEXT PIC X(80).

 01 SQL-COMMAND-CODE PIC S9(8) USAGE COMP SYNC.

 01 SQL-OP-CODE PIC S9(8) USAGE COMP SYNC.

 88 SQL-OPEN-SCAN VALUE +12.

 88 SQL-NEXT-ROW VALUE +16.

 88 SQL-CLOSE-SCAN VALUE +20.

 88 SQL-SUSPEND-SCAN VALUE +24.

 88 SQL-RESUME-SCAN VALUE +28.

 88 SQL-INSERT-ROW VALUE +32.

 88 SQL-DELETE-ROW VALUE +36.

 88 SQL-UPDATE-ROW VALUE +40.

 01 INSTANCE-ID PIC S9(8) USAGE COMP SYNC.

 01 LOCAL-WORK-AREA.

 02 SCAN-INFO.

 03 SCAN-MGR-DBKEY PIC S9(8) USAGE COMP SYNC.

 03 SCAN-TOP-DBKEY PIC S9(8) USAGE COMP SYNC.

 03 SCAN-STACK-STRDBKEY OCCURS 50 TIMES

 PIC S9(8) USAGE COMP SYNC.

 03 SCAN-STACK-EMPDBKEY OCCURS 50 TIMES

 PIC S9(8) USAGE COMP SYNC.

 03 SCAN-TYPE PIC S9(4) USAGE COMP SYNC.

 03 SCAN-LEVEL PIC S9(4) USAGE COMP SYNC.

 03 SCAN-MAX-LEVEL PIC S9(4) USAGE COMP SYNC.

 03 SCAN-TOP-KEY PIC 9(4).

 03 SCAN-MGR-KEY PIC 9(4).

 03 SCAN-MGR-NAME PIC X(25).

 01 GLOBAL-WORK-AREA.

 02 COPY IDMS SUBSCHEMA-CTRL.

 02 COPY IDMS RECORD EMPLOYEE.

 02 COPY IDMS RECORD STRUCTURE.

 02 RUN-UNIT-FLAG PIC X.

 88 RUN-UNIT-BOUND VALUE '1'.

Sample Table Procedure Program

Appendix G: Sample COBOL Table Procedure 755

 PROCEDURE DIVISION USING

 TOP-KEY

 LEVEL-NO

 MGR-ID

 MGR-LNAME

 EMP-ID

 EMP-LNAME

 START-DATE

 STRUCTURE-CODE

 TOP-KEY-I

 LEVEL-NO-I

 MGR-ID-I

 MGR-LNAME-I

 EMP-ID-I

 EMP-LNAME-I

 START-DATE-I

 STRUCTURE-CODE-I

 RESULT-IND

 SQLSTATE

 PROCEDURE-NAME

 SPECIFIC-NAME

 MESSAGE-TEXT

 SQL-COMMAND-CODE

 SQL-OP-CODE

 INSTANCE-ID

 LOCAL-WORK-AREA

 GLOBAL-WORK-AREA.

 MAINLINE SECTION.

 *

 * PROCESS DML-ONLY OPERATIONS

 *

 IF SQL-NEXT-ROW

 PERFORM NEXT-ROW

 ELSE IF SQL-OPEN-SCAN

 PERFORM OPEN-SCAN

 ELSE IF SQL-INSERT-ROW

 PERFORM INSERT-ROW

 ELSE IF SQL-UPDATE-ROW

 PERFORM UPDATE-ROW

 ELSE IF SQL-DELETE-ROW

 PERFORM DELETE-ROW.

 GOBACK.

Sample Table Procedure Program

756 SQL Reference Guide

 **** FUNCTION MAINLINE ROUTINES ****

 DELETE-ROW SECTION.

 *

 * DELETE MUST HAVE BEEN PRECEDED BY A "NEXT ROW"

 * CALL RETRIEVING THE ROW TO BE DELETED

 * DELETE "CURRENT" ROW AND

 * RESET CURRENCY TO ITS PRIOR IN SET

 *

 MOVE SCAN-LEVEL TO I.

 FIND STRUCTURE DB-KEY SCAN-STACK-STRDBKEY (I)

 IF ERROR-STATUS NOT = '0000'

 PERFORM INVDELSEQ-ERROR

 GO TO DELETE-ROW-X

 MOVE 'ACCEPT PRIO' TO DB-VERB.

 IF SCAN-TYPE = 3

 ACCEPT SCAN-STACK-STRDBKEY (I) FROM

 REPORTS-TO PRIOR CURRENCY

 ELSE

 ACCEPT SCAN-STACK-STRDBKEY (I) FROM

 MANAGES PRIOR CURRENCY.

 IF ERROR-STATUS = '0000'

 MOVE 'ERASE' TO DB-VERB

 ERASE STRUCTURE.

 IF ERROR-STATUS NOT = '0000'

 PERFORM DB-ERROR.

 DELETE-ROW-X.

 EXIT.

 INSERT-ROW SECTION.

 *

 * MAKE SURE RUNUNIT IS BOUND BEFORE STORING ROW

 *

 PERFORM RU-BIND.

 IF SQLSTATE NOT = '00000'

 GO TO INSERT-ROW-X.

 PERFORM VALIDATE-INPUT.

 IF SQLSTATE NOT = '00000'

 GO TO INSERT-ROW-X.

 MOVE 'FIND DBKEY' TO DB-VERB.

 FIND DB-KEY WK-NEW-MGR-DBKEY.

 IF ERROR-STATUS = '0000'

 MOVE WK-NEW-DATE TO STRUCTURE-DATE-0460

 MOVE STRUCTURE-CODE TO STRUCTURE-CODE-0460

 MOVE 'STORE' TO DB-VERB

 STORE STRUCTURE.

 IF ERROR-STATUS = '0000'

Sample Table Procedure Program

Appendix G: Sample COBOL Table Procedure 757

 MOVE 'FIND DBKEY' TO DB-VERB

 FIND DB-KEY WK-NEW-EMP-DBKEY

 IF ERROR-STATUS = '0000'

 MOVE 'CONNECT' TO DB-VERB

 CONNECT STRUCTURE TO REPORTS-TO.

 IF ERROR-STATUS NOT = '0000'

 PERFORM DB-ERROR.

 INSERT-ROW-X.

 EXIT.

 OPEN-SCAN SECTION.

 *

 * DETERMINE TYPE OF SCAN TO DO. CHOICES:

 * 1) BOM EXPLOSION BASED ON TOP KEY

 * 2) DIRECT EMPLOYEES OF A GIVEN MANAGER

 * 3) DIRECT MANAGERS OF A GIVEN EMPLOYEE

 * 4) AREA SWEEP OF ALL MANAGERS

 *

 MOVE 1 TO SCAN-MAX-LEVEL.

 IF MGR-ID-I = 0

 MOVE MGR-ID TO SCAN-TOP-KEY

 MOVE 2 TO SCAN-TYPE

 ELSE IF EMP-ID-I = 0

 MOVE EMP-ID TO SCAN-TOP-KEY

 MOVE 3 TO SCAN-TYPE

 ELSE IF TOP-KEY-I = 0

 MOVE TOP-KEY TO SCAN-TOP-KEY

 MOVE 1 TO SCAN-TYPE

 MOVE 50 TO SCAN-MAX-LEVEL

 ELSE

 MOVE 4 TO SCAN-TYPE.

 MOVE -1 TO SCAN-LEVEL.

 PERFORM RU-BIND.

 OPEN-SCAN-X.

 EXIT.

 NEXT-ROW SECTION.

 *

 * THE FIRST TIME THRU, SCAN-LEVEL = -1

 * WE MUST POSITION OURSELVES ON THE APPROPRIATE EMPLOYEE

 * ON SUBSEQUENT ENTRY, SCAN-LEVEL >= 0

 *

 MOVE '0' TO ROW-FOUND-FLAG.

 IF SCAN-LEVEL = -1

 MOVE 0 TO SCAN-LEVEL

 PERFORM POSITION-FIRST-TIME.

 IF SQLSTATE = '00000'

 PERFORM GET-FIRST-WORKER

 IF SQLSTATE = '02000'

 AND SCAN-TYPE = 4

 MOVE '00000' TO SQLSTATE

Sample Table Procedure Program

758 SQL Reference Guide

 PERFORM PROCESS-NEXT-MGR UNTIL SQLSTATE NOT = '00000'

 OR ROW-FOUND.
 *

Sample Table Procedure Program

Appendix G: Sample COBOL Table Procedure 759

 * FILL IN OUTPUT VALUES IF SUCCESSFULLY RETRIEVED ROW

 *

 IF ROW-FOUND

 MOVE SCAN-LEVEL TO LEVEL-NO

 IF SCAN-TYPE = 3

 MOVE SCAN-MGR-KEY TO EMP-ID

 MOVE SCAN-MGR-NAME TO EMP-LNAME

 MOVE EMP-ID-0415 TO MGR-ID

 MOVE EMP-LAST-NAME-0415 TO MGR-LNAME

 ELSE

 MOVE SCAN-MGR-KEY TO MGR-ID

 MOVE SCAN-MGR-NAME TO MGR-LNAME

 MOVE EMP-ID-0415 TO EMP-ID

 MOVE EMP-LAST-NAME-0415 TO EMP-LNAME

 END-IF

 MOVE STRUCTURE-YEAR-0460 TO WK-YY

 MOVE STRUCTURE-MONTH-0460 TO WK-MM

 MOVE STRUCTURE-DAY-0460 TO WK-DD

 MOVE 5 TO IN01-REQUEST-CODE

 MOVE 2 TO IN01-DATE-FORMAT

 CALL 'IDMSIN01' USING IN01-RPB

 IN01-REQUEST

 IN01-DATE-FORMAT

 WK-DATE-TIME

 START-DATE

 MOVE STRUCTURE-CODE-0460 TO STRUCTURE-CODE

 MOVE 0 TO LEVEL-NO-I

 MOVE 0 TO MGR-ID-I

 MOVE 0 TO MGR-LNAME-I

 MOVE 0 TO EMP-ID-I

 MOVE 0 TO EMP-LNAME-I

 MOVE 0 TO START-DATE-I

 MOVE 0 TO STRUCTURE-CODE-I

 IF SCAN-TYPE = 1

 MOVE 0 TO TOP-KEY-I

 MOVE SCAN-TOP-KEY TO TOP-KEY

 ELSE

 MOVE -1 TO TOP-KEY-I.

 NEXT-ROW-X.

 EXIT.

 UPDATE-ROW SECTION.

 *

 * UPDATE MUST HAVE BEEN PRECEDED BY A "NEXT ROW"

 * CALL RETRIEVING THE ROW TO BE UPDATED

 * UPDATE "CURRENT" ROW

 * IF CHANGING OWNERS (MANAGER OR EMPLOYEE)

 * ADJUST SET CONNECTIONS APPROPRIATELY

 *

 PERFORM VALIDATE-INPUT.

Sample Table Procedure Program

760 SQL Reference Guide

 IF SQLSTATE NOT = '00000'

 GO TO UPDATE-ROW-X.

 MOVE SCAN-LEVEL TO I.

 OBTAIN STRUCTURE DB-KEY SCAN-STACK-STRDBKEY (I)

 IF ERROR-STATUS NOT = '0000'

 PERFORM INVUPDSEQ-ERROR

 GO TO UPDATE-ROW-X.

 MOVE 'ACCEPT OWNR' TO DB-VERB.

 ACCEPT WK-MGR-DBKEY FROM MANAGES OWNER CURRENCY.

 IF ERROR-STATUS = '0000'

 ACCEPT WK-EMP-DBKEY FROM REPORTS-TO OWNER CURRENCY.

 IF ERROR-STATUS = '0000'

 AND WK-MGR-DBKEY NOT = WK-NEW-MGR-DBKEY

 PERFORM SWITCH-MANAGERS.

 IF ERROR-STATUS = '0000'

 AND SQLSTATE = '00000'

 AND WK-EMP-DBKEY NOT = WK-NEW-EMP-DBKEY

 PERFORM SWITCH-EMPLOYEES.

 IF ERROR-STATUS = '0000'

 AND SQLSTATE = '00000'

 AND (STRUCTURE-CODE NOT = STRUCTURE-CODE-0460

 OR WK-NEW-DATE NOT = STRUCTURE-DATE-0460)

 MOVE WK-NEW-DATE TO STRUCTURE-DATE-0460

 MOVE STRUCTURE-CODE TO STRUCTURE-CODE-0460

 MOVE 'MODIFY' TO DB-VERB

 MODIFY STRUCTURE.

 IF ERROR-STATUS NOT = '0000'

 AND SQLSTATE = '00000'

 PERFORM DB-ERROR.

 UPDATE-ROW-X.

 EXIT.

Sample Table Procedure Program

Appendix G: Sample COBOL Table Procedure 761

 **** SUBROUTINES ****

 CHECK-CYCLE SECTION.

 *

 * COMPARE CURRENT EMPLOYEE DBKEY WITH DBKEYS FROM

 * ALL PRIOR LEVELS. IF A MATCH IS FOUND, THEN WE

 * HAVE A CYCLE.

 * ON EXIT I = 0, IF NO CYCLE DETECTED

 * I > 0, IF A CYCLE EXISTS

 *

 IF SCAN-LEVEL > 0

 IF DBKEY = SCAN-TOP-DBKEY

 MOVE 99 TO I

 ELSE

 SUBTRACT 1 FROM SCAN-LEVEL GIVING I

 IF I > 0

 PERFORM DECR-I UNTIL I = 0

 OR SCAN-STACK-EMPDBKEY (I) = DBKEY

 END-IF

 END-IF

 ELSE

 MOVE 0 TO I.

 DECR-I SECTION.

 SUBTRACT 1 FROM I.

 GET-FIRST-WORKER SECTION.

 *

 * WE ARE POSITIONED ON A WORKER WHO MAY OR MAY NOT ALSO

 * BE A MANAGER. IF THEY ARE A MANAGER, THEN WE MUST

 * RETURN THEIR FIRST WORKER AS A ROW AND ALSO PUSH

 * THEM ONTO THE STACK. BEFORE PUTTING THEM ON THE

 * STACK, WE MUST CHECK FOR A CYCLE. IF ONE EXISTS,

 * THEN WE WILL TREAT IT AS IF IT WEREN'T A MANAGER.

 *

 MOVE 'OBTAIN DBKEY' TO DB-VERB.

 OBTAIN EMPLOYEE DB-KEY SCAN-MGR-DBKEY.

 IF ERROR-STATUS = '0000'

 PERFORM CHECK-CYCLE.

 IF ERROR-STATUS = '0000'

 AND I = 0

 MOVE 'OBTAIN FIRST' TO DB-VERB

 IF SCAN-TYPE = 3

 OBTAIN FIRST STRUCTURE WITHIN REPORTS-TO

 ELSE

 OBTAIN FIRST STRUCTURE WITHIN MANAGES.

Sample Table Procedure Program

762 SQL Reference Guide

 IF ERROR-STATUS = '0000'

 AND SCAN-LEVEL < SCAN-MAX-LEVEL

 AND I = 0

 PERFORM PUSH-STACK

 PERFORM GET-WORKER-INFO

 ELSE

 IF I = 0

 AND ERROR-STATUS NOT = '0307'

 AND ERROR-STATUS NOT = '0000'

 PERFORM DB-ERROR

 ELSE

 PERFORM GET-NEXT-ROW UNTIL SQLSTATE NOT = '00000'

 OR ROW-FOUND.

 GET-NEXT-ROW SECTION.

 *

 * IF THE STACK IS EMPTY, WE'VE PROCESSED ALL THE ROWS

 * OTHERWISE REPOSITION ON THE RECORD WHOSE DBKEY IS AT THE

 * TOP OF THE STACK AND OBTAIN THE NEXT IN SET.

 * IF END-OF-SET IS ENCOUNTERED,

 * WE'VE PROCESSED ALL THE WORKERS AT THIS

 * LEVEL AND WE MUST MOVE UP A LEVEL TO CONTINUE

 *

 IF SCAN-LEVEL = 0

 MOVE '02000' TO SQLSTATE

 ELSE

 MOVE 'FIND DBKEY' TO DB-VERB

 MOVE SCAN-LEVEL TO I

 FIND DB-KEY SCAN-STACK-STRDBKEY (I)

 IF ERROR-STATUS = '0000'

 MOVE 'OBTAIN NEXT' TO DB-VERB

 IF SCAN-TYPE = 3

 OBTAIN NEXT STRUCTURE WITHIN REPORTS-TO

 ELSE

 OBTAIN NEXT STRUCTURE WITHIN MANAGES

 END-IF

 END-IF

 IF ERROR-STATUS = '0000'

 PERFORM GET-WORKER-INFO

 ELSE IF ERROR-STATUS = '0307'

 PERFORM POP-STACK

 ELSE

 PERFORM DB-ERROR.

 GET-WORKER-INFO SECTION.

 *

 * SAVE THE CURRENT DBKEY ON THE STACK

 * RETRIEVE THE NAME OF THE CURRENT WORKER

 *

 MOVE SCAN-LEVEL TO I.

 MOVE DBKEY TO SCAN-STACK-STRDBKEY (I).

Sample Table Procedure Program

Appendix G: Sample COBOL Table Procedure 763

 MOVE 'OBTAIN OWNER' TO DB-VERB.

 IF SCAN-TYPE = 3

 OBTAIN OWNER WITHIN MANAGES

 ELSE

 OBTAIN OWNER WITHIN REPORTS-TO.

 IF ERROR-STATUS = '0000'

 MOVE DBKEY TO SCAN-MGR-DBKEY

 MOVE DBKEY TO SCAN-STACK-EMPDBKEY (I)

 MOVE '1' TO ROW-FOUND-FLAG

 ELSE

 PERFORM DB-ERROR.

 POP-STACK SECTION.

 *

 * WHEN WE POP THE STACK, WE ARE CHANGING MANAGERS ALSO

 *

 SUBTRACT 1 FROM SCAN-LEVEL.

 IF SCAN-LEVEL > 0

 MOVE 'OBTAIN DBKEY' TO DB-VERB

 MOVE SCAN-LEVEL TO I

 FIND DB-KEY SCAN-STACK-STRDBKEY (I)

 IF ERROR-STATUS = '0000'

 MOVE 'OBTAIN OWNER' TO DB-VERB

 IF SCAN-TYPE = 3

 OBTAIN OWNER WITHIN REPORTS-TO

 ELSE

 OBTAIN OWNER WITHIN MANAGES

 END-IF

 END-IF

 IF ERROR-STATUS = '0000'

 MOVE EMP-ID-0415 TO SCAN-MGR-KEY

 MOVE EMP-LAST-NAME-0415 TO SCAN-MGR-NAME

 ELSE

 PERFORM DB-ERROR.

 POSITION-FIRST-TIME SECTION.

 *

 * ON FIRST "NEXT-ROW" REQUEST AFTER OPEN, POSITION

 * ON FIRST EMPLOYEE FOR SCAN

 *

 IF SCAN-TYPE = 1

 OR SCAN-TYPE = 2

 OR SCAN-TYPE = 3

 MOVE SCAN-TOP-KEY TO EMP-ID-0415

 OBTAIN CALC EMPLOYEE

 ELSE

 OBTAIN FIRST EMPLOYEE WITHIN EMP-DEMO-REGION

 IF ERROR-STATUS = '0000'

 MOVE EMP-ID-0415 TO SCAN-TOP-KEY.

 IF ERROR-STATUS = '0000'

 MOVE DBKEY TO SCAN-MGR-DBKEY

Sample Table Procedure Program

764 SQL Reference Guide

 MOVE DBKEY TO SCAN-TOP-DBKEY

 ELSE

 MOVE '02000' TO SQLSTATE.

 PROCESS-NEXT-MGR SECTION.

 *

 * CONTINUE WITH AREA SWEEP ON MANAGERS...

 * FIND NEXT EMPLOYEE IN AREA AND RETURN ALL THEIR

 * DIRECT EMPLOYEES.

 * ON EXIT, SQLSTATE = '02000' IF LAST EMPLOYEE PROCESSED

 * '00000' IF MORE EMPLOYEES TO PROCESS

 * '38XXX' IF ERROR

 *

 FIND EMPLOYEE DB-KEY SCAN-TOP-DBKEY.

 IF ERROR-STATUS = '0000'

 OBTAIN NEXT EMPLOYEE WITHIN EMP-DEMO-REGION.

 IF ERROR-STATUS = '0000'

 MOVE EMP-ID-0415 TO SCAN-TOP-KEY

 MOVE DBKEY TO SCAN-MGR-DBKEY

 MOVE DBKEY TO SCAN-TOP-DBKEY

 PERFORM GET-FIRST-WORKER

 IF SQLSTATE = '02000'

 MOVE '00000' TO SQLSTATE

 END-IF

 ELSE

 MOVE '02000' TO SQLSTATE.

 PUSH-STACK SECTION.

 *

 * WHEN WE PUSH THE STACK, WE ALSO HAVE A NEW MANAGER

 *

 MOVE EMP-ID-0415 TO SCAN-MGR-KEY

 MOVE EMP-LAST-NAME-0415 TO SCAN-MGR-NAME

 ADD 1 TO SCAN-LEVEL.

 RU-BIND SECTION.

 *

 * BIND RUNUNIT AND READY AREA...

 * IF RUNUNIT ALREADY BOUND, IGNORE. IT JUST MEANS

 * ANOTHER SCAN HAD CAUSED IT TO BE BOUND PREVIOUSLY.

 *

 IF RUN-UNIT-BOUND

 GO TO RU-BINDX.

 MOVE 'BIND RUNUNIT' TO DB-VERB

 BIND RUN-UNIT DBNAME 'EMPDEMO '.

 IF ERROR-STATUS = '0000'

 MOVE '1' TO RUN-UNIT-FLAG

 BIND EMPLOYEE

 BIND STRUCTURE

 MOVE 'READY AREA' TO DB-VERB

Sample Table Procedure Program

Appendix G: Sample COBOL Table Procedure 765

 READY EMP-DEMO-REGION USAGE-MODE UPDATE

 ELSE

 IF ERROR-STATUS = '1477'

 OR ERROR-STATUS = '0077'

 MOVE '0000' TO ERROR-STATUS.

 IF ERROR-STATUS NOT = '0000'

 PERFORM DB-ERROR.

 RU-BINDX. EXIT.

 SWITCH-EMPLOYEES SECTION.

 IF SCAN-TYPE = 3

 MOVE 'ACCEPT PRIO' TO DB-VERB

 ACCEPT SCAN-STACK-STRDBKEY (I) FROM

 REPORTS-TO PRIOR CURRENCY.

 MOVE DBKEY TO WK-STRUCT-DBKEY.

 IF ERROR-STATUS = '0000'

 MOVE 'DISCONNECT' TO DB-VERB

 DISCONNECT STRUCTURE FROM REPORTS-TO.

 IF ERROR-STATUS = '0000'

 FIND DB-KEY WK-NEW-EMP-DBKEY

 FIND DB-KEY WK-STRUCT-DBKEY

 MOVE 'CONNECT' TO DB-VERB

 CONNECT STRUCTURE TO REPORTS-TO.

 IF ERROR-STATUS NOT = '0000'

 PERFORM DB-ERROR.

 SWITCH-MANAGERS SECTION.

 MOVE 'ACCEPT PRIO' TO DB-VERB

 ACCEPT WK-PRIOR-DBKEY FROM

 REPORTS-TO PRIOR CURRENCY.

 IF SCAN-TYPE NOT = 3

 AND ERROR-STATUS = '0000'

 ACCEPT SCAN-STACK-STRDBKEY (I) FROM

 MANAGES PRIOR CURRENCY.

 IF ERROR-STATUS = '0000'

 MOVE 'ERASE' TO DB-VERB

 ERASE STRUCTURE.

 IF ERROR-STATUS = '0000'

 FIND DB-KEY WK-NEW-MGR-DBKEY

 MOVE 'STORE' TO DB-VERB

 STORE STRUCTURE

 MOVE DBKEY TO WK-STRUCT-DBKEY.

 IF ERROR-STATUS = '0000'

 FIND DB-KEY WK-PRIOR-DBKEY

 FIND DB-KEY WK-STRUCT-DBKEY

 MOVE 'CONNECT' TO DB-VERB

 CONNECT STRUCTURE TO REPORTS-TO.

 IF ERROR-STATUS NOT = '0000'

 PERFORM DB-ERROR.

Sample Table Procedure Program

766 SQL Reference Guide

 VALIDATE-INPUT SECTION.

 * VALIDATE EMPLOYEE-ID

 IF EMP-ID-I = 0

 MOVE EMP-ID TO EMP-ID-0415

 OBTAIN CALC EMPLOYEE.

 IF ERROR-STATUS = '0326'

 OR EMP-ID-I NOT = 0

 PERFORM EMPID-ERROR

 GO TO VALIDATE-X.

 IF ERROR-STATUS NOT = '0000'

 MOVE 'OBTAIN CALC' TO DB-VERB

 PERFORM DB-ERROR

 GO TO VALIDATE-X.

 MOVE DBKEY TO WK-NEW-EMP-DBKEY.

 * VALIDATE MANAGER-ID

 IF MGR-ID-I = 0

 MOVE MGR-ID TO EMP-ID-0415

 OBTAIN CALC EMPLOYEE.

 IF ERROR-STATUS = '0326'

 OR MGR-ID-I NOT = 0

 PERFORM MGRID-ERROR

 GO TO VALIDATE-X.

 IF ERROR-STATUS NOT = '0000'

 MOVE 'OBTAIN CALC' TO DB-VERB

 PERFORM DB-ERROR

 GO TO VALIDATE-X.

 MOVE DBKEY TO WK-NEW-MGR-DBKEY.

 * VALIDATE STRUCTURE-CODE & DATE

 MOVE STRUCTURE-CODE TO STRUCTURE-CODE-0460.

 IF (ADMIN-0460

 OR PROJECT-0460)

 AND STRUCTURE-CODE-I = 0

 NEXT SENTENCE

 ELSE

 PERFORM STRUCTCD-ERROR.

 IF START-DATE-I = 0

 MOVE 5 TO IN01-REQUEST-CODE

 MOVE 0 TO IN01-DATE-FORMAT

 CALL 'IDMSIN01' USING IN01-RPB

 IN01-REQUEST

 IN01-DATE-FORMAT

 START-DATE

 WK-DATE-TIME

 MOVE WK-YY TO WK-NEW-YY

 MOVE WK-DD TO WK-NEW-DD

 MOVE WK-MM TO WK-NEW-MM

 ELSE

 ACCEPT WK-NEW-DATE FROM DATE.

 VALIDATE-X.

Sample Table Procedure Program

Appendix G: Sample COBOL Table Procedure 767

 EXIT.

 **** ERROR ROUTINES ****

 DB-ERROR SECTION.

 MOVE '38001' TO SQLSTATE.

 MOVE ERROR-STATUS TO DB-STAT.

 MOVE DB-MSG TO MESSAGE-TEXT.

 INVDELSEQ-ERROR SECTION.

 MOVE '38006' TO SQLSTATE.

 MOVE PROCEDURE-NAME TO DEL-PROC.

 MOVE INVDELSEQ-MSG TO MESSAGE-TEXT.

 INVUPDSEQ-ERROR SECTION.

 MOVE '38007' TO SQLSTATE.

 MOVE PROCEDURE-NAME TO UPD-PROC.

 MOVE INVUPDSEQ-MSG TO MESSAGE-TEXT.

 EMPID-ERROR SECTION.

 MOVE '38008' TO SQLSTATE.

 MOVE EMPID-MSG TO MESSAGE-TEXT.

 MGRID-ERROR SECTION.

 MOVE '38009' TO SQLSTATE.

 MOVE MGRID-MSG TO MESSAGE-TEXT.

 STRUCTCD-ERROR SECTION.

 MOVE '38010' TO SQLSTATE.

 MOVE STRUCTCD-MSG TO MESSAGE-TEXT.

Appendix H: DISPLAY and PUNCH Syntax 769

Appendix H: DISPLAY and PUNCH Syntax

DISPLAY and PUNCH Syntax

The following entity type options can be specified:

■ ACCESS MODULE

■ CALC KEY

■ CONSTRAINT

■ FUNCTION

■ INDEX

■ KEY

■ PROCEDURE

■ SCHEMA

■ TABLE

■ TABLE PROCEDURE

■ VIEW

DISPLAY/PUNCH ALL syntax for SQL DDL entities is presented first, followed by
DISPLAY/PUNCH statements for each entity type.

DISPLAY and PUNCH Operations

770 SQL Reference Guide

DISPLAY and PUNCH Operations

The DISPLAY and PUNCH operations produce as output the SQL statements that
describe the named entity. DISPLAY and PUNCH operations do not update the entity
description. You can choose to display or punch all the entity occurrences defined within
an entity or only specific entity occurrences.

The location of the output depends on which verb is used and whether you are using
the online or batch command facility:

■ DISPLAY displays online output at the terminal and lists batch output in the
command facility's activity listing.

■ PUNCH writes the output to the system punch file. All punched output is also listed
in the command facility's activity listing.

Benefit

With the DISPLAY and PUNCH support for SQL DDL entities, you can easily display or
punch entity definitions and change them, or migrate their definitions from one
environment to another. For example, you can migrate definitions from one schema to
another in the same catalog, and from one catalog to another in the same or different
Central Version.

DISPLAY/PUNCH ALL Statement

The DISPLAY/PUNCH ALL statement displays all occurrences of an entity type. The basic
syntax for each entity type is the same. The entity-option keywords vary by entity type
and are presented in a table in "Usage" later in this section.

Syntax

►►─┬─ DISplay ─┬──┬─ ALL ────────────────────────────┬── entity-type ─────────►
 └─ PUNch ───┘ └┬─ FIRST ──┬─┬──────────────────┬─┘
 └─ LAST ───┘ ├─ 1 ◄───────────┬─┘
 └─ entity-count ─┘

 ►─┬──────────────────────────────────┬───────────────────────────────────────►
 └─ WHEre conditional-expression ───┘

 ►─┬───────────────────────┬──►
 └─ AS ─┬─ COMments ◄──┬─┘
 └─ SYNtax ─────┘

 ►─┬────────────────────────┬───►◄
 └─ VERB ─┬─ DISplay ◄──┬─┘
 ├─ ALTer ─────┤
 ├─ CREate ────┤
 ├─ DROp ──────┤
 └─ PUNch ─────┘

DISPLAY/PUNCH ALL Statement

Appendix H: DISPLAY and PUNCH Syntax 771

Expansion of conditional-expression

►►─┬─ mask-comparison ────────────────────────┬───────────────────────────────►
 ├─ value-comparison ───────────────────────┤
 └─┬───────┬─ (─┬─ mask-comparison ──┬─) ─┘
 └─ NOT ─┘ └─ value-comparison ─┘

 ►─┬──┬─────────────►◄
 │ ┌──┐ │
 └─▼─┬─ AND ─┬─┬─ mask-comparison ────────────────────────┬─┴─┘
 └─ OR ──┘ ├─ value-comparison ───────────────────────┤
 └─┬───────┬─ (─┬─ mask-comparison ──┬─) ─┘
 └─ NOT ─┘ └─ value-comparison ─┘

Expansion of mask-comparison

►►─── entity-option-keyword ──►

 ►─┬─ CONTAINs ─┬─ 'mask-value' ──►◄
 └─ MATCHES ──┘

Expansion of value-comparison

►►─┬─ 'character-string-literal' ─┬───►
 ├─ numeric-literal ────────────┤
 └─ entity-option-keyword ──────┘

 ►─┬─ IS ─┬───────┬─────────┬─┬─ 'character-string-literal' ─┬────────────────►◄
 │ └─ NOT ─┘ │ ├─ numeric-literal ────────────┤
 ├─ NE ───────────────────┤ └─ entity-option-keyword ──────┘
 └─┬───────┬─┬─┬─ EQ ─┬─┬─┘
 └─ NOT ─┘ │ └─ = ──┘ │
 ├─┬─ GT ─┬─┤
 │ └─ > ──┘ │
 ├─┬─ LT ─┬─┤
 │ └─ < ──┘ │
 ├─ GE ─────┤
 └─ LE ─────┘

Parameters

ALL

Lists all occurrences of the requested entity type that the current user is authorized
to display.

Note: For online users: with many entity occurrences, ALL may slow response time.

FIRst

Lists the first occurrence of the named entity type.

LASt

DISPLAY/PUNCH ALL Statement

772 SQL Reference Guide

Lists the last occurrence of the named entity type.

entity-count

Specifies the number of occurrences of the named entity type to list. 1 is the
default.

entity-type

Identifies the entity type that is the object of the DISPLAY/PUNCH ALL request.
Valid values appear in the table under "Usage" in this section.

WHEre conditional-expression

Specifies criteria to be used in selecting occurrences of the requested entity type.

The outcome of a test for the condition determines which occurrences of the
named entity type are selected for display.

mask-comparison

Compares an entity type operand with a mask value.

entity-option-keyword

Identifies the left operand as a syntax option associated with the named entity
type. The table under "Usage" in this section, lists valid options for each entity
type.

CONTAINs

Searches the left operand for an occurrence of the right operand. The length of
the right operand must be less than or equal to the length of the left operand.
If the right operand is not contained entirely in the left operand, the outcome
of the condition is false.

MATCHES

Compares the left operand with the right operand one character at a time,
beginning with the leftmost character in each operand. When a character in
the left operand does not match a character in the right operand, the outcome
of the condition is false.

'mask-value'

Identifies the right operand as a character string; the specified value must be
enclosed in quotation marks. Mask-value can contain the following special
characters:

@ Matches any alphabetic character in entity-option-keyword.

Matches any numeric character in entity-option-keyword.

* Matches any character in entity-option-keyword.

DISPLAY/PUNCH ALL Statement

Appendix H: DISPLAY and PUNCH Syntax 773

value-comparison

Compares values contained in the left and right operands based on the specified
comparison operator.

'character-string-literal'

Identifies a character string enclosed in quotes.

numeric-literal

Identifies a numeric value.

entity-option-keyword

Identifies a syntax option associated with the named entity type; valid options
for each entity type are listed in the table presented under "Usage" in this
section.

IS

Specifies that the left operand must equal the right operand for the condition
to be true.

NE

Specifies that the left operand must not equal the right operand for the
condition to be true.

EQ/=

Specifies that the left operand must equal the right operand for the condition
to be true.

GT/>

Specifies that the left operand must be greater than the right operand for the
condition to be true.

LT/<

Specifies that the left operand must be less than the right operand for the
condition to be true.

GE

Specifies that the left operand must be greater than or equal to the right
operand for the condition to be true.

LE

Specifies that the left operand must be less than or equal to the right operand
for the condition to be true.

DISPLAY/PUNCH ALL Statement

774 SQL Reference Guide

NOT

Specifies that the opposite of the condition fulfills the test requirements. If NOT is
specified, the condition must be enclosed in parentheses.

AND

Indicates the expression is true only if the outcome of both test conditions is true.

OR

Indicates the expression is true if the outcome of either one or both test conditions
is true.

AS COMments

Outputs access module syntax as comments with the characters *+ preceding the
text of the statement. AS COMMENTS is the default.

AS SYNtax

Outputs access module syntax which can be edited and resubmitted to the
command facility.

VERB DISplay/ALTer/CREate/DROp/PUNch

Specifies the verb with which the entity statement is to be displayed or punched.
For example, if VERB CREATE is specified, the output of the DISPLAY/PUNCH
statement is a CREATE statement; if VERB ALTER is specified, the output is an ALTER
statement; and so on. The default is VERB DISPLAY.

DISPLAY/PUNCH ALL Statement

Appendix H: DISPLAY and PUNCH Syntax 775

Usage

Output Contains only enough Information to DISPLAY/PUNCH Entity

Output produced by DISPLAY or PUNCH ALL consists only of the information necessary
to execute a DISPLAY/PUNCH request for each entity occurrence.

Valid Entity Option Keywords for Conditional Expressions

The following table lists entity type options that you can specify in a conditional
expression.

Entity type Entity-option keyword Selects based on

All entity types

entity-type NAMe

entity-type

FULl entity-type NAMe

DATe CREated

MONth CREated

DAY CREated

YEAr CREated

DATe last UPDated

MONth last UPDated

DAY last UPDated

YEAr last UPDated

CREated by

PREpared by

REVised by

LASt UPDated by

Unqualified name &sub1.

Unqualified name &sub1.

Qualified name &sub1.

Date (MM/DD/YY)
occurrence

 created

Month occurrence created

Day occurrence created

Year occurrence created

Date (MM/DD/YY)
occurrence

 last updated**

Month occurrence

 last updated**

Day occurrence last
updated**

Year occurrence

 last updated**

User who created
occurrence**

User who created
occurrence**

User who last updated

 occurrence**

User who last updated

 occurrence**

DISPLAY/PUNCH ALL Statement

776 SQL Reference Guide

Entity type Entity-option keyword Selects based on

ACCESS

MODULE

AM name

SCHema name

Version

FULl TABle NAMe

TABle SCHema name

TABle name

DATe COMpiled

COMpiled

MONth COMpiled

DAY COMpiled

YEAr COMpiled

Unqualified access module

 name &sub1.

Name of access module's

 schema

Version number

Qualified name of a table

 referenced by the access

 module

Schema name of a table

 referenced by the

 access module

Unqualified name of a table

 referenced by the

 access module

Date (MM/DD/YY) access

 module compiled

Date (MM/DD/YY) access

 module compiled

Month access module
compiled

Day access module compiled

Year access module
compiled

CALC KEY

SCHema name

TABle name

Schema name of the table

 containing the CALC key

Unqualified name of table

 containing the CALC key

DISPLAY/PUNCH ALL Statement

Appendix H: DISPLAY and PUNCH Syntax 777

Entity type Entity-option keyword Selects based on

CONSTRAINT

SCHema name

REFERENCEd FULl TABle

 NAMe

REFERENCEd table

 SCHema name

REFERENCEd TABle name

REFERENCIng FULl

 TABle NAMe

REFERENCIng table

 SCHema name

REFERENCIng TABle name

Schema name of the

 constraint

Qualified name of the

 referenced table

Schema name of the

 referenced table

Unqualified name of the

 referenced table

Qualified name of the

 referencing table

Schema name of the

 referencing table

Unqualified name of the

 referencing table

FUNCTION

SCHema name

EXTernal NAMe

Schema name of the

 function

Name of the program

 or dialog to

 process the function

INDEX

SCHema name

TABle name

FULl AREa NAMe

SEGment name

AREa name

Schema name of the

 indexed table

Unqualified name of the

 indexed table

Qualified name of the area

 containing the index

Segment name of the area

 containing the index

Unqualified name of the
area

 containing the index

DISPLAY/PUNCH ALL Statement

778 SQL Reference Guide

Entity type Entity-option keyword Selects based on

KEY

SCHema name

TABle PROcedure name

FULl TABle

 PROcedure NAMe

Schema name of the

 keyed table procedure

Unqualified name of the

 keyed table procedure

Qualified name of the

 keyed table procedure

PROCEDURE

SCHema name

EXTernal NAMe

Schema name of the

 procedure

Name of the program or

 dialog called to

 process the procedure

SCHEMA

TYPe

full DICtname

DBName

NODe name

NODename

NONsql SCHema

nonsql schema Version

DEFault FULl AREA NAMe

default SEGment name

default AREa name

Type of Schema

 (NONSQL or SQL)

NonSQL Schema

Dictionary name

NonSQL Schema DBName

NonSQL Schema Node Name

NonSQL Schema Node Name

Name of the NonSQL
Schema

Version of the NonSQL
Schema

Qualified area name of the

 Schema's default area

Segment name of

 Schema's default area

Unqualified area name of
the

 Schema's default area

DISPLAY/PUNCH ALL Statement

Appendix H: DISPLAY and PUNCH Syntax 779

Entity type Entity-option keyword Selects based on

TABLE

SCHema name

FULl AREA NAMe

SEGment name

AREa name

Schema name of the table

Qualified area name

 containing the table

Segment name of the area

 containing the table

Unqualified name of the
area

 containing the table

TABLE

PROCEDURE

SCHema name

EXTernal NAMe

Schema name of the

 table procedure

Name of the program

 called to process

 the table procedure

VIEW

SCHema name

REFerenced FULl

 TABle NAMe

REFerenced table

 SCHema NAMe

REFerenced TABle name

Schema name of the View

Qualified name of a table

 referenced by the View

Schema name of a table(s)

 referenced by the View

Unqualified name of a table

 referenced by the View

:tnote.

Note: Unqualified name
selections are based on the
primary name of the entity
occurrence only. To select
based on the fully qualified
occurrence name, token
FULL NAME must be
specified. SQL components
with qualified names are
specified in the table below.

**You can specify this
keyword option only when
using SCHEMA, TABLE,
FUNCTION, PROCEDURE,
TABLE PROCEDURE, and
VIEW entities. :etnote.

DISPLAY/PUNCH ALL Statement

780 SQL Reference Guide

Fully Qualified Names of SQL Components

The fully qualified names of SQL components are listed in the following table:

Resource Fully qualified name

ACCESS MODULE schema-name.access-module-name

FUNCTION schema-name.function-name

PROCEDURE schema-name.procedure-name

TABLE schema-name.table-name

TABLE PROCEDURE schema-name.table-procedure-name

VIEW schema-name.view-name

Date and Year 2000 Support in DISPLAY/PUNCH Statements

You can use date selection criteria as well as year 2000 support in DISPLAY ALL
statements to display SQL entities.

You implement date selection criteria in these WHERE clause options:

■ DATE CREATED

■ DATE LAST UPDATED

You can specify the date as a value-comparison string in the form 'MM/DD/YY' in the
right-hand side of the conditional expression. CA IDMS extracts it in CCMMDDYY form to
accurately determine the relationship of dates. The following DISPLAY ALL statement
example establishes a search criteria to identify the schemas whose DATE CREATED
values are greater than the specified string.

DISPLAY ALL SCHEMAS WHERE DATE CREATED > '01/01/96';

The DISPLAY ALL process determines that the date '01/01/96' is greater than the date
'12/31/95'.

Alternatively, you may specify the value-comparison string on either side of the
conditional expression in the form 'CCYYMMDD' to achieve the same results.

DISPLAY/PUNCH ACCESS MODULE

Appendix H: DISPLAY and PUNCH Syntax 781

You can also substitute day, month, or year for each of these WHERE clause options. For
example, this DISPLAY ALL statement specifies a search condition that is based on
month and year:

DISPLAY ALL VIEWS

 WHERE MONTH CREATED = '01'

 AND YEAR CREATED > '95';

Default Order of Precedence Applied to Logical Operators

Conditional expressions can contain a single condition, or two or more conditions
combined with the logical operators AND or OR. The logical operator NOT specifies the
opposite of the condition. The command facility evaluates operators in a conditional
expression 1 at a time, from left to right, in order of precedence. The default order of
precedence is as follows:

■ MATCHES or CONTAINS keywords

■ EQ, NE, GT, LT, GE, LE operators

■ NOT

■ AND

■ OR

If parentheses are used to override the default order of precedence, the command
facility evaluates the expression within the innermost parentheses first.

Example

The following example displays all ACCESS MODULES compiled since June 1, 1995:

DISPLAY ALL ACCESS MODULES

 WHERE DATE CREATED GT '06/01/95'

 AS SYNTAX.

DISPLAY/PUNCH ACCESS MODULE

The ACCESS MODULE, DISPLAY/PUNCH statement displays or punches an access
module.

Authorization

To issue a DISPLAY/PUNCH ACCESS MODULE statement, you must have the DISPLAY
privilege on the requested access module.

DISPLAY/PUNCH ACCESS MODULE

782 SQL Reference Guide

Syntax

►►─┬─ DISplay ─┬┬─ ACCess MODule is ─┬┬───────────────┬─ access-module-name ──►
 └─ PUNch ───┘└─ AM ───────────────┘└─ schema-name.─┘

 ►─┬──────────────────────────────────┬───────────────────────────────────────►
 └─ Version ──┬─ 1 ◄──────────────┬─┘
 ├─ version-number ──┤
 ├─ HIGhest ─────────┤
 └─ LOWest ──────────┘

 ►─┬───┬────►
 └──┬─ WITh ─────────┬──┬─ ALL ───────────────┬─── AS ─┬─COMments ◄──┬─┘
 ├─ ALSo WITh ────┤ ├─ NONe ──────────────┤ └─ SYNtax ────┘
 ├─ WITHOut ──────┤ ├─ DETails ───────────┤
 └─ ALSo WITHOut ─┘ ├─ HIStory ───────────┤
 └─ TABles ────────────┘

 ►─┬───────────────────────┬──►◄
 └─ VERb ─┬─ CREate ◄──┬─┘
 ├─ ALTer ────┤
 └─ DROp ─────┘

Parameters

schema-name.

Specifies the schema for the access module. Schema-name must identify the
schema associated with the version of the access module being modified. If ou do
not specify schema-name, the value used by the command facility is the current
schema for your SQL session.

access-module-name

Specifies the name of the access module to display or punch. Access-module-name
must identify an access module defined and stored in the dictionary.

Version is version-number

Specifies the version number of the access module. Version-number is a unique
integer in the range 1 through 9999. 1 is the default.

HIGhest

Specifies the highest version number associated with the access module.

LOWest

Specifies the lowest version number associated with the access module.

DISPLAY/PUNCH ACCESS MODULE

Appendix H: DISPLAY and PUNCH Syntax 783

WITh

Lists the requested information, in addition to the information that is always
included, such as the entity occurrence name.

WITHOut

Does not list the specified options. Other options in effect through the WITH or
ALSO WITH clauses in the current DISPLAY statement are displayed.

ALSo WITh

Lists the requested information, in addition to the information requested in
previously issued DISPLAY WITH and DISPLAY ALSO WITH statements for the named
entity.

ALSo WITHOut

Does not list the specified options.

ALL

Specifies the display of all the information associated with the requested entity
occurrence.

NONe

Specifies the display of the name of the requested entity occurrence. NONE is
meaningful only when the WITH clause is specified.

DETails

Specifies the display of entity-specific descriptions.

HIStory

Specifies the display of the date the access module was compiled.

TABles

Specifies the display of all tables associated with the requested access module.

AS COMments

Outputs access module syntax as comments with the characters *+ preceding the
text of the statement. AS COMMENTS is the default.

AS SYNtax

Outputs access module syntax which can be edited and resubmitted to the
command facility.

VERB CREate/ALTer/DROp

Specifies the verb with which the entity statement is to be displayed or punched.
For example, if VERB CREATE is specified, the output of the DISPLAY/PUNCH
statement is a CREATE statement; if VERB ALTER is specified, the output is an ALTER
statement; and so on. The default is VERB CREATE.

DISPLAY/PUNCH CALC KEY

784 SQL Reference Guide

DISPLAY/PUNCH CALC KEY

The DISPLAY/PUNCH CALC KEY statement displays or punches a CALC key definition in
the dictionary.

Authorization

To issue a DISPLAY/PUNCH CALC KEY statement, you must either own or have the ALTER
privilege on the table on which the CALC key is defined.

Syntax

►►─┬─ DISplay ─┬─── CALc key ON ──┬────────────────┬── table-name ────────────►
 └─ PUNch ───┘ └─ schema-name. ─┘

 ►─┬───┬────►
 └──┬─ WITh ─────────┬──┬─ ALL ───────────────┬── AS ─┬─ COMments ◄──┬─┘
 ├─ WITHOut ──────┤ ├─ NONe ──────────────┤ └─ SYNtax ─────┘
 ├─ ALSo WITh ────┤ ├─ DETails ───────────┤
 └─ ALSo WITHOut ─┘ └─ HIStory ───────────┘

 ►─┬───────────────────────┬──►◄
 └─ VERb ─┬─ CREate ◄──┬─┘
 ├─ DISplay ──┤
 ├─ DROp ─────┤
 └─ PUNch ────┘

DISPLAY/PUNCH CALC KEY

Appendix H: DISPLAY and PUNCH Syntax 785

Parameters

schema-name.

Identifies the schema associated with the named table.

If you do not specify schema-name, it defaults to the current schema associated
with your SQL session, if the statement is entered through the command facility or
executed dynamically.

table-name

Specifies the name of the table on which the CALC key is defined. Table-name must
be the name of a table defined in the dictionary.

WITh

Lists the requested information, in addition to the information that is always
included, such as the entity occurrence name.

WITHOut

Does not list the specified options. Other options in effect through the WITH or
ALSO WITH clauses in the current DISPLAY statement are displayed.

ALSo WITh

Lists the requested information, in addition to the information requested in
previously issued DISPLAY WITH and DISPLAY ALSO WITH statements for the named
entity.

ALSo WITHOut

Does not list the specified options.

ALL

Specifies the display of all the information associated with the CALC key.

NONe

Specifies the display of the name of the CALC key. NONE is meaningful only when
the WITH clause is specified.

DISPLAY/PUNCH CONSTRAINT

786 SQL Reference Guide

DETails

Specifies the display of CALC key-specific descriptions.

HIStory

Specifies the display of the date the CALC key was defined.

AS COMments

Outputs CALC key syntax as comments with the characters *+ preceding the text of
the statement. AS COMMENTS is the default.

AS SYNtax

Outputs CALC key syntax which can be edited and resubmitted to the command
facility.

VERB CREate/DISplay/DROp/PUNch

Specifies the verb with which the entity statement is to be displayed or punched.
For example, if VERB CREATE is specified, the output of the DISPLAY/PUNCH
statement is a CREATE statement; if VERB ALTER is specified, the output is an ALTER
statement; and so on. The default is VERB CREATE.

DISPLAY/PUNCH CONSTRAINT

The DISPLAY/PUNCH CONSTRAINT statement displays or punches a referential
constraint in the dictionary.

Authorization

To issue a DISPLAY/PUNCH CONSTRAINT statement, you must:

■ Either hold the DISPLAY privilege on or own the referencing table in the constraint

■ Hold the REFERENCES privilege on the referenced table in the constraint

Syntax

►►─┬─ DISplay ─┬─── CONstraint constraint-name ───────────────────────────────►
 └─ PUNch ───┘

 ►─┬─────────────────────────────┬──►
 ├─ IN ─┬─ SCHEMA schema-name ─┘
 └─ ON ─┘

 ►─┬──┬───►
 └──┬─ WITh ─────────┬──┬─ ALL ───────────────┬─── AS ─┬─ COMments ◄──┬─┘
 ├─ WITHOut ──────┤ ├─ NONe ──────────────┤ └─ SYNtax ─────┘
 ├─ ALSo WITh ────┤ ├─ DETails ───────────┤
 └─ ALSo WITHOut ─┘ └─ HIStory ───────────┘

 ►─┬───────────────────────┬──►◄
 └─ VERb ─┬─ CREate ◄──┬─┘
 ├─ DISplay ──┤
 ├─ DROp ─────┤
 └─ PUNch ────┘

DISPLAY/PUNCH CONSTRAINT

Appendix H: DISPLAY and PUNCH Syntax 787

Parameters

constraint-name

Specifies the name of the referential constraint, within the current schema
associated with your SQL session (if any), to display or punch.

IN SCHEMA schema-name

Specifies the name of the schema for the referential constraint if no schema is
assigned with your SQL session.

WITh

Lists the requested information, in addition to the information that is always
included, such as the entity occurrence name.

WITHOut

Does not list the specified options. Other options in effect through the WITH or
ALSO WITH clauses in the current DISPLAY statement are displayed.

DISPLAY/PUNCH FUNCTION

788 SQL Reference Guide

ALSo WITh

Lists the requested information, in addition to the information requested in
previously issued DISPLAY WITH and DISPLAY ALSO WITH statements for the named
entity.

ALSo WITHOut

Does not list the specified options.

ALL

Specifies the display of all the information associated with the requested entity
occurrence.

NONe

Specifies the display of the name of the requested entity occurrence. NONE is
meaningful only when the WITH clause is specified.

DETails

Specifies the display of constraint-specific descriptions.

HIStory

Specifies the display of the date the constraint was created.

AS COMments

Outputs constraint syntax as comments with the characters *+ preceding the text of
the statement. AS COMMENTS is the default.

AS SYNtax

Outputs constraint syntax which can be edited and resubmitted to the command
facility.

VERB CREate/DISplay/DROp/PUNch

Specifies the verb with which the entity statement is to be displayed or punched.
For example, if VERB CREATE is specified, the output of the DISPLAY/PUNCH
statement is a CREATE statement; if VERB ALTER is specified, the output is an ALTER
statement; and so on. The default is VERB CREATE.

DISPLAY/PUNCH FUNCTION

The DISPLAY/PUNCH FUNCTION statement lets you display or punch a function.

Authorization

To issue a DISPLAY/PUNCH FUNCTION statement, you must hold the DISPLAY privilege
for the named function.

DISPLAY/PUNCH FUNCTION

Appendix H: DISPLAY and PUNCH Syntax 789

Syntax

►►─┬─ DISplay ┬─ FUNction ─┬──────────────┬─ function-name ┬───────────────┬─►
 └─ PUNch ──┘ └ schema-name. ┘ └FULl┬─────────┬┘
 └PHYsical ┘

 ►─┬───┬──────────►
 └──┬─ WITh ─────────┬──┬─ ALL ──────────┬───┬─ AS COMments ◄──┬─┘
 ├─ WITHOut ────┤ ├─ NONe ─────────┤ └─ SYNtax ────────┘
 ├─ Also WITh ────┤ ├─ DETails ──────┤
 └─ ALSo WITHOut ─┘ ├─ TIMestamp ────┤
 ├─ HIStory ──────┤
 └─ KEYs ─────────┘

 ►─┬────────────────────────┬───►◄
 └─ VERb ─┬─ CREATE ◄───┬─┘
 ├─ ALTer ───┤
 ├─ DISplay ───┤
 ├─ DROp ──────┤
 └─ PUNch ─────┘

Parameters

schema-name.

Identifies the SQL schema associated with the named function.

If you do not specify schema-name, then it defaults to the current schema
associated with your SQL session, if you enter the statement through the command
facility or execute it dynamically.

function-name

Specifies the name of the function to display or punch. function-name must be the
name of a function defined in the dictionary.

FULl

Directs CA IDMS to display all attributes of the function except physical attributes.

PHYsical

Directs CA IDMS to display all attributes of the function including its physical
attributes. This includes the function's synchronization timestamp.

WITh

Lists the requested information, in addition to the information that is always
included, such as the entity occurrence name.

DISPLAY/PUNCH FUNCTION

790 SQL Reference Guide

WITHOut

Does not list the specified options. Other options in effect through the WITH or
ALSO WITH clauses in the current DISPLAY statement display.

ALSo WITh

Lists the requested information, in addition to the information requested in
previously issued DISPLAY WITH and DISPLAY ALSO WITH statements for the named
entity.

ALSo WITHOut

Does not list the specified options.

ALL

Specifies the display of all the information associated with the requested entity
occurrence.

NONe

Specifies the display of the name of the requested entity occurrence. NONE is
meaningful only when you specify the WITH clause.

DETails

Specifies the display of entity-specific descriptions; for example, the length of a
table.

TIMestamp

Specifies the display of the synchronization timestamp associated with the function.

HIStory

Specifies the display of the chronological account of an entity's existence, including
PREPARED/REVISED BY specifications, date created, and date last updated.

KEYs

Specifies the display of all keys associated with the requested function.

AS COMments

Outputs procedure syntax as comments with the characters *+ preceding the text
of the statement. AS COMMENTS is the default.

AS SYNtax

Outputs function syntax which you can edit and resubmit to the command facility.

VERB CREate/ALTer/DISplay/DROp/PUNch

Specifies the verb with which the entity statement is to be displayed or punched.
For example, if VERB CREATE is specified, the output of the DISPLAY/PUNCH
statement is a CREATE statement; if VERB ALTER is specified, the output is an ALTER
statement; and so on. The default is VERB CREATE.

DISPLAY/PUNCH INDEX

Appendix H: DISPLAY and PUNCH Syntax 791

Example

DISPLAY FUNCTION FIN.UDF_FUNBONUS FULL PHYSICAL;

DISPLAY/PUNCH INDEX

The DISPLAY/PUNCH INDEX statement displays or punches an index from the dictionary.

Authorization

To issue a DISPLAY/PUNCH INDEX statement, you must either own or have the DISPLAY
privilege on the table on which the index is defined.

Syntax

►►─┬─ DISplay ─┬── INDex index-name ── ON ─┬─────────────┬─ table-name ───────►
 └─ PUNch ───┘ └─schema-name.┘

 ►─┬───┬────►
 └──┬─ WITh ─────────┬──┬─ ALL ───────────────┬─── AS ─┬─COMments ◄──┬─┘
 ├─ ALSo WITh ────┤ ├─ NONe ──────────────┤ └─ SYNtax ────┘
 ├─ WITHOut ──────┤ ├─ DETails ───────────┤
 └─ ALSo WITHOut ─┘ ├─ HIStory ───────────┤
 └─ TABles ────────────┘

 ►─┬───────────────────────┬──►
 └─ VERB ─┬─ CREate ◄──┬─┘
 ├─ DISplay ──┤
 ├─ DROp ─────┤
 └─ PUNch ────┘

 ►─┬───────────────────────┬──►◄
 └─ FULl ─┬─────────────┬┘
 └─ PHYsical ──┘

Parameters

index-name

Specifies the name of an index to display or punch. Index-name must be the name
of an index in the dictionary.

ON table-name

Specifies the table on which the named index is defined.

schema-name.

Identifies the schema associated with the named table.

If you do not specify schema-name, it defaults to the current schema associated
with your SQL session, if the statement is entered through the command facility or
executed dynamically.

DISPLAY/PUNCH INDEX

792 SQL Reference Guide

WITh

Lists the requested information, in addition to the information that is always
included, such as the entity occurrence name.

WITHOut

Does not list the specified options. Other options in effect through the WITH or
ALSO WITH clauses in the current DISPLAY statement are displayed.

ALSo WITh

Lists the requested information, in addition to the information requested in
previously issued DISPLAY WITH and DISPLAY ALSO WITH statements for the named
entity.

ALSo WITHOut

Does not list the specified options.

ALL

Specifies the display of all the information associated with the requested index.

NONe

Specifies the display of the name of the requested index. NONE is meaningful only
when the WITH clause is specified.

DETails

Specifies the display of index-specific descriptions.

HIStory

Specifies the display of the date the index was created.

AS COMments

Outputs index syntax as comments with the characters *+ preceding the text of the
statement. AS COMMENTS is the default.

AS SYNtax

Outputs index syntax which can be edited and resubmitted to the command facility.

VERB CREate/DISplay/DROp/PUNch

Specifies the verb with which the entity statement is to be displayed or punched.
For example, if VERB CREATE is specified, the output of the DISPLAY/PUNCH
statement is a CREATE statement; if VERB ALTER is specified, the output is an ALTER
statement; and so on. The default is VERB CREATE.

FULl

Directs CA IDMS to display all attributes of the function except physical attributes.

PHYsical

Directs CA IDMS to display all attributes of the function including its physical
attributes. This includes the function's synchronization timestamp.

DISPLAY/PUNCH KEY

Appendix H: DISPLAY and PUNCH Syntax 793

DISPLAY/PUNCH KEY

The DISPLAY/PUNCH KEY statement displays a table procedure key definition stored in
the dictionary.

Authorization

To issue a DISPLAY KEY statement, you must either own or hold the ALTER privilege on
the table procedure on which the key being displayed or punched is defined.

Syntax

►►─┬─ DISplay ─┬─── KEY key-name ON ──┬────────────────┬── procedure-name ────►
 └─ PUNch ───┘ └─ schema-name. ─┘

 ►─┬───┬────►
 └──┬─ WITh ─────────┬──┬─ ALL ───────────────┬─── AS ─┬─ COMments ◄──┬┘
 ├─ ALSo WITh ────┤ ├─ NONe ──────────────┤ └─ SYNtax ─────┘
 ├─ WITHOut ──────┤ ├─ DETails ───────────┤
 └─ ALSo WITHOut ─┘ └─ HIStory ───────────┘

 ►─┬───────────────────────┬──►◄
 └─ VERb ─┬─ CREate ◄──┬─┘
 ├─ DISplay ──┤
 ├─ DROp ─────┤
 └─ PUNch ────┘

Parameters

key-name

Specifies the name of a key on a table procedure.

schema-name.

Identifies the schema associated with the table procedure.

If you do not specify a schema-name it defaults to the current schema associated
with your SQL session, if the statement is entered through the Command Facility or
executed dynamically.

procedure-name

Specifies the name of the procedure or table procedure on which the key is defined.
The procedure-name must identify a procedure or table procedure defined in the
dictionary.

WITh

Lists the requested information, in addition to the information that is always
included, such as the entity occurrence name.

WITHOut

Does not list the specified options. Other options in effect through the WITH or
ALSO WITH clauses in the current DISPLAY statement are displayed.

DISPLAY/PUNCH PROCEDURE

794 SQL Reference Guide

ALSo WITh

Lists the requested information, in addition to the information requested in
previously issued DISPLAY WITH and DISPLAY ALSO WITH statements for the key.

ALSo WITHOut

Does not list the specified options.

ALL

Specifies the display of all the information associated with the requested key.

NONe

Specifies the display of the name of the requested key. NONE is meaningful only
when the WITH clause is specified.

DETails

Specifies the display of key-specific descriptions.

HIStory

Specifies the display of the date the key was created.

AS COMments

Outputs key syntax as comments with the characters *+ preceding the text of the
statement. AS COMMENTS is the default.

AS SYNtax

Outputs key syntax which can be edited and resubmitted to the command facility.

VERB CREate/DISplay/DROp/PUNch

Specifies the verb with which the key statement is to be displayed or punched. For
example, if VERB CREATE is specified, the output of the DISPLAY/PUNCH statement
is a CREATE statement; if VERB ALTER is specified, the output is an ALTER
statement; and so on. The default is VERB CREATE.

DISPLAY/PUNCH PROCEDURE

The DISPLAY/PUNCH PROCEDURE statement displays or punches a procedure.

Authorization

To issue a DISPLAY PROCEDURE statement, you must have the DISPLAY privilege for the
named procedure.

DISPLAY/PUNCH PROCEDURE

Appendix H: DISPLAY and PUNCH Syntax 795

Syntax

►►─┬─ DISplay ┬─ PROCedure ─┬──────────────┬─ proc-name ┬───────────────┬──►
 └─ PUNch ──┘ └ schema-name. ┘ └FULl┬─────────┬┘
 └PHYsical ┘

 ►─┬───┬──────────►
 └──┬─ WITh ─────────┬──┬─ ALL ──────────┬───┬─ AS COMments ◄──┬─┘
 ├─ ALSo WITh ────┤ ├─ NONe ─────────┤ └─ SYNtax ────────┘
 ├─ WITHOut ──────┤ ├─ DETails ──────┤
 └─ ALSo WITHOut ─┘ ├─ HIStory ──────┤
 ├─ TIMestamp ────┤
 └─ KEYs ─────────┘

 ►─┬────────────────────────┬───►◄
 └─ VERb ─┬─ CREATE ◄───┬─┘
 ├─ DISplay ───┤
 ├─ DROp ──────┤
 └─ PUNch ─────┘

Parameters

schema-name.

Identifies the SQL schema associated with the named procedure.

If you do not specify schema-name, then it defaults to the current schema
associated with your SQL session, if you enter the statement through the command
facility or execute it dynamically.

procedure-name

Specifies the name of the procedure to display or punch. Procedure-name must be
the name of a procedure defined in the dictionary.

FULl

Directs CA IDMS to display all attributes of the procedure except physical attributes.

PHYsical

Directs CA IDMS to display all attributes of the procedure including its physical
attributes. This includes the procedure's synchronization timestamp.

WITh

Lists the requested information, in addition to the information that is always
included, such as the entity occurrence name.

WITHOut

Does not list the specified options. Other options in effect through the WITH or
ALSO WITH clauses in the current DISPLAY statement display.

ALSo WITh

Lists the requested information, in addition to the information requested in
previously issued DISPLAY WITH and DISPLAY ALSO WITH statements for the named
entity.

DISPLAY/PUNCH SCHEMA

796 SQL Reference Guide

ALSo WITHOut

Does not list the specified options.

ALL

Specifies the display of all the information associated with the requested entity
occurrence.

NONe

Specifies the display of the name of the requested entity occurrence. NONE is
meaningful only when you specify the WITH clause.

DETails

Specifies the display of entity-specific descriptions; for example, the length of a
table.

HIStory

Specifies the display of the chronological account of an entity's existence, including
PREPARED/REVISED BY specifications, date created, and date last updated.

TIMestamp

Specifies the display of the synchronization timestamp for the procedure.

KEYs

Specifies the display of all keys associated with the requested procedure.

AS COMments

Outputs procedure syntax as comments with the characters *+ preceding the text
of the statement. AS COMMENTS is the default.

AS SYNtax

Outputs procedure syntax which you can edit and resubmit to the command
facility.

VERB CREate/DISplay/DROp/PUNch

Specifies the verb with which the entity statement is to be displayed or punched.
For example, if VERB CREATE is specified, the output of the DISPLAY/PUNCH
statement is a CREATE statement; if VERB ALTER is specified, the output is an ALTER
statement; and so on. The default is VERB CREATE.

DISPLAY/PUNCH SCHEMA

The DISPLAY/PUNCH SCHEMA statement displays or punches an SQL schema in the
dictionary.

DISPLAY/PUNCH SCHEMA

Appendix H: DISPLAY and PUNCH Syntax 797

Authorization

To issue a DISPLAY/PUNCH SCHEMA statement, you must have the DISPLAY privilege on
the requested SQL schema.

Syntax

►►─┬─ DISplay ─┬──── SCHema name ──┬────────────────────┬─────────────────────►
 └─ PUNch ───┘ ├─ FULl ─┬──┬────────┤
 └─ ALL ──┘ └PHYsical┘

 ►─┬──┬───────►
 └──┬─ WITh ─────────┬──┬─ ALL ───────────────┬─┬─ AS COMments ◄──┬─┘
 ├─ ALSo WITh ────┤ ├─ NONe ──────────────┤ └─ SYNtax ────────┘
 ├─ WITHOut ──────┤ ├─ DETails ───────────┤
 └─ ALSo WITHOut ─┘ ├─ HIStory ───────────┤
 ├─ CALC keys ─────────┤
 ├─ CONstraints ───────┤
 ├─ INDexes ───────────┤
 ├─ KEYs ──────────────┤
 ├─ PROcedures ───────┤
 ├─ TABles ────────────┤
 ├─ TABle PROcedures ──┤
 ├─ VIEws ─────────────┤
 └─ TIMestamp ─────────┘

 ►─┬───────────────────────┬──►◄
 └─ VERb ─┬─ CREate ◄──┬─┘
 ├─ ALTer ────┤
 ├─ DISplay ──┤
 ├─ DROp ─────┤
 └─ PUNch ────┘

DISPLAY/PUNCH SCHEMA

798 SQL Reference Guide

Parameters

SCHema name

Specifies the SQL schema to display or punch.

Schema-name must be the name of the an SQL schema in the dictionary.

FULl or ALL

Directs CA IDMS to display all attributes of the schema except physical attributes.

PHYsical

Directs CA IDMS to display all attributes of the schema including its physical
attributes. This includes table IDs, index IDs, and synchronization timestamps
for functions, procedures, tables, table procedures, and views.

WITh

Lists the requested information, in addition to the information that is always
included, such as the entity occurrence name.

WITHOut

Does not list the specified options. Other options in effect through the WITH or
ALSO WITH clauses in the current DISPLAY statement are displayed.

ALSo WITh

Lists the requested information, in addition to the information requested in
previously issued DISPLAY WITH and DISPLAY ALSO WITH statements for the named
entity.

ALSo WITHOut

Does not list the specified options.

DISPLAY/PUNCH SCHEMA

Appendix H: DISPLAY and PUNCH Syntax 799

ALL

Specifies the display of all the information associated with the requested entity
occurrence.

NONe

Specifies the display of the name of the requested entity occurrence. NONE is
meaningful only when the WITH clause is specified.

DETails

Specifies the display of SQL schema-specific descriptions.

HIStory

Specifies the display of the chronological account of an entity's existence, including
PREPARED/REVISED BY specifications, date created, and date last updated.

CALC keys

Specifies the display of all CALC keys associated with the requested SQL schema.

CONstraints

Specifies the display of all constraints associated with the requested SQL schema.

INDexes

Specifies the display of all indexes associated with the requested SQL schema.

KEYs

Specifies the display of all table procedure keys associated with the requested SQL
schema.

DISPLAY/PUNCH TABLE

800 SQL Reference Guide

TABles

Specifies the display of all tables associated with the requested SQL schema.

TABle PROcedures

Specifies the display of all table procedures associated with the requested SQL
schema.

VIEws

Specifies the display of all views associated with the requested SQL schema.

TIMestamp

Specifies the display of the synchronization timestamps for the schema entities.

AS COMments

Outputs SQL schema syntax as comments with the characters *+ preceding the text
of the statement. AS COMMENTS is the default.

AS SYNtax

Outputs SQL schema syntax which can be edited and resubmitted to the command
facility.

VERB CREate/ALTer/DISplay/DROp/PUNch

Specifies the verb with which the entity statement is to be displayed or punched.
For example, if VERB CREATE is specified, the output of the DISPLAY/PUNCH
statement is a CREATE statement; if VERB ALTER is specified, the output is an ALTER
statement; and so on. The default is VERB CREATE.

DISPLAY/PUNCH TABLE

The DISPLAY/PUNCH TABLE statement displays or punches the definition of a base table
from the dictionary.

Authorization

To issue a DISPLAY/PUNCH TABLE statement, you must either own or have the DISPLAY
privilege on the named table.

DISPLAY/PUNCH TABLE

Appendix H: DISPLAY and PUNCH Syntax 801

Syntax

►►─┬─ DISplay ┬─ TABle ──┬──────────────┬─ table-name ──┬───────────────┬─────►
 └─ PUNch ──┘ └ schema-name. ┘ └FULl┬─────────┬┘
 └PHYsical─┘

 ►─┬───┬──────────►
 └──┬─ WITh ─────────┬──┬─ ALL ──────────┬───┬─ AS COMments ◄──┬─┘
 ├─ WITHOut ──────┤ ├─ NONe ─────────┤ └─ SYNtax ────────┘
 ├─ ALSo WITh ────┤ ├─ DETails ──────┤
 └─ ALSo WITHOut ─┘ ├─ HIStory ──────┤
 ├─ CALc keys ────┤
 ├─ COLumns ──────┤
 ├─ CONstraints ──┤
 ├─ INDexes ──────┤
 ├─TIMestamp ─────┤
 └─VIEws ─────────┘

 ►─┬───────────────────────┬──►◄
 └─ VERb ─┬─ CREate ◄──┬─┘
 ├─ ALTer ────┤
 ├─ DISplay ──┤
 ├─ DROp ─────┤
 └─ PUNch ────┘

In IDD Record Format with COBOL Elements

►►─┬─ DISplay ─┬──── TABle ─┬────────────────┬─ table-name ───────────────────►
 └─ PUNch ───┘ └─ schema-name.──┘

 ►─── LIKe RECord ──►

 ►─┬──┬───────►◄
 └──┬─ WITh ─────────┬──┬─ ALL ─────────────┬───┬─ AS COMments ◄──┬─┘
 ├─ WITHOut ──────┤ ├─ null INDIcators ─┤ └─ SYNtax ────────┘
 ├─ ALSo WITh ────┤ ├─ record ELEments ─┤
 └─ ALSo WITHOut ─┘ └─ record SYNonyms ─┘

DISPLAY/PUNCH TABLE

802 SQL Reference Guide

Parameters

TABle table-name

Specifies the name of the table to display or punch. table-name must be the name
of a table defined in the dictionary.

schema-name.

Identifies the SQL schema associated with the named table.

If you do not specify schema-name, it defaults to the current schema associated
with your SQL session, if the statement is entered through the command facility or
executed dynamically.

FULl

Directs CA IDMS to display all attributes of the table except physical attributes.

PHYsical

Directs CA IDMS to display all attributes of the table including physical
attributes. This includes the table's synchronization timestamp and table ID.

WITh

Lists the requested information, in addition to the information that is always
included, such as the entity occurrence name.

WITHOut

Does not list the specified options. Other options in effect through the WITH or
ALSO WITH clauses in the current DISPLAY statement are displayed.

ALSo WITh

Lists the requested information, in addition to the information requested in
previously issued DISPLAY WITH and DISPLAY ALSO WITH statements for the named
entity.

ALSo WITHOut

Does not list the specified options.

DISPLAY/PUNCH TABLE

Appendix H: DISPLAY and PUNCH Syntax 803

ALL

Specifies the display of all the information associated with the requested table.

NONe

Specifies the display of the name of the requested table. NONE is meaningful only
when the WITH clause is specified.

DETails

Specifies the display of table-specific descriptions; for example, the length of a
table.

HIStory

Specifies the display of the chronological account of a table's existence, including
PREPARED/REVISED BY specifications, date created, and date last updated.

CALc keys

Specifies the display of a CALC key associated with the requested table occurrence.

COLumns

Specifies the display of all columns associated with the requested table occurrence.

CONstraints

Specifies the display of all constraints where the requested table occurrence has
been named.

INDexes

Specifies the display of all indexes associated with the requested table occurrence.

TIMestamp

Specifies the display of the synchronization timestamp for the table.

DISPLAY/PUNCH TABLE

804 SQL Reference Guide

VIEws

Specifies the display of all views where the requested table occurrence participates.

AS COMments

Outputs table syntax as comments with the characters *+ preceding the text of the
statement. AS COMMENTS is the default.

AS SYNtax

Outputs table syntax which can be edited and resubmitted to the command facility.

VERB CREate/ALTer/DISplay/DROp/PUNch

Specifies the verb with which the entity statement is to be displayed or punched.
For example, if VERB CREATE is specified, the output of the DISPLAY/PUNCH
statement is a CREATE statement; if VERB ALTER is specified, the output is an ALTER
statement; and so on. The default is VERB CREATE.

With COBOL Elements Parameters

LIKe RECord

Specifies that you want IDD RECORD syntax, with its COBOL elements, listed for the
named table. For sample uses, see "Usage" later in this section.

null INDIcators

Specifies the display of COBOL elements defining NULL indicators for nullable
columns.

record ELEments

Specifies the display of elements for the record syntax for the named table.

record SYNonyms

Specifies the display of record synonyms for the record syntax for the named table.

Usage

Using the LIKE RECORD Parameter

You can use the LIKE RECORD parameter to produce IDD record syntax for a named
table, and then add the record syntax to a dictionary.

With the IDD record syntax for a table in the dictionary, CA ADS dialogs can include a
work record definition for the table. This same record definition can be included in a
map definition.

DISPLAY/PUNCH TABLE PROCEDURE

Appendix H: DISPLAY and PUNCH Syntax 805

DISPLAY/PUNCH TABLE PROCEDURE

The DISPLAY/PUNCH TABLE PROCEDURE statement displays or punches a table
procedure.

Authorization

To issue a DISPLAY TABLE PROCEDURE statement, you must have the DISPLAY privilege
for the named table procedure.

Syntax

►►─┬ DISplay ┬TABle PROcedure┬─────────────┬table-proc-name┬──────────────┬───►
 └ PUNch ──┘ └ schema-name ┘ └FULl┬────────┬┘
 └PHYsical┘

 ►─┬───┬──────────►
 └──┬─ WITh ─────────┬──┬─ ALL ──────────┬───┬─ AS COMments ◄──┬─┘
 ├─ ALSo WITh ────┤ ├─ NONe ─────────┤ └─ SYNtax ────────┘
 ├─ WITHOut ──────┤ ├─ DETails ──────┤
 └─ ALSo WITHOut ─┘ ├─ HIStory ──────┤
 ├─ TIMestamp ────┤
 └─ KEYs ─────────┘

 ►─┬────────────────────────┬───►◄
 └─ VERb ─┬─ CREATE ◄───┬─┘
 ├─ DISplay ───┤
 ├─ DROp ──────┤
 └─ PUNch ─────┘

DISPLAY/PUNCH TABLE PROCEDURE

806 SQL Reference Guide

Parameters

schema-name.

Identifies the SQL schema associated with the named table procedure.

If you do not specify schema-name, it defaults to the current schema associated
with your SQL session, if the statement is entered through the command facility or
executed dynamically.

table-procedure-name

Specifies the name of the table procedure to display or punch.
Table-procedure-name must be the name of a table procedure defined in the
dictionary.

FULl

Directs CA IDMS to display all attributes of the procedure except physical attributes.

PHYsical

Directs CA IDMS to display all attributes of the procedure including its physical
attributes. This includes the procedure's synchronization timestamp.

WITh

Lists the requested information, in addition to the information that is always
included, such as the entity occurrence name.

WITHOut

Does not list the specified options. Other options in effect through the WITH or
ALSO WITH clauses in the current DISPLAY statement are displayed.

DISPLAY/PUNCH TABLE PROCEDURE

Appendix H: DISPLAY and PUNCH Syntax 807

ALSo WITh

Lists the requested information, in addition to the information requested in
previously issued DISPLAY WITH and DISPLAY ALSO WITH statements for the named
entity.

ALSo WITHOut

Does not list the specified options.

ALL

Specifies the display of all the information associated with the requested entity
occurrence.

NONe

Specifies the display of the name of the requested entity occurrence. NONE is
meaningful only when the WITH clause is specified.

DETails

Specifies the display of entity-specific descriptions; for example, the length of a
table.

HIStory

Specifies the display of the chronological account of an entity's existence, including
PREPARED/REVISED BY specifications, date created, and date last updated.

TIMestamp

Specifies the display of the synchronization timestamp for the table procedure.

KEYs

Specifies the display of all keys associated with the requested table procedure.

AS COMments

Outputs table procedure syntax as comments with the characters *+ preceding the
text of the statement. AS COMMENTS is the default.

AS SYNtax

Outputs table procedure syntax which can be edited and resubmitted to the
command facility.

VERB CREate/DISplay/DROp/PUNch

Specifies the verb with which the entity statement is to be displayed or punched.
For example, if VERB CREATE is specified, the output of the DISPLAY/PUNCH
statement is a CREATE statement; if VERB ALTER is specified, the output is an ALTER
statement; and so on. The default is VERB CREATE.

DISPLAY/PUNCH VIEW

808 SQL Reference Guide

DISPLAY/PUNCH VIEW

The DISPLAY/PUNCH VIEW statement displays or punches a view.

Authorization

To issue a DISPLAY VIEW statement, you must either own the SQL schema where the
view is defined or hold the DISPLAY privilege on the named view.

Syntax

►►─┬─ DISplay ┬─ VIEw ──┬──────────────┬─view-name────┬───────────────┬──────►
 └─ PUNch ──┘ └ schema-name.─┘ └FULl┬─────────┬┘
 └PHYsical ┘

 ►─┬───┬──────────►
 └──┬─ WITh ─────────┬──┬─ ALL ──────────┬───┬─ AS COMments ◄──┬─┘
 ├─ WITHOut ──────┤ ├─ NONe ─────────┤ └─ SYNtax ────────┘
 ├─ ALSo WITh ────┤ ├─ DETails ──────┤
 └─ ALSo WITHOut ─┘ ├─ HIStory ──────┤
 └─ TIMestamp ────┘

 ►─┬───────────────────────┬──►◄
 └─ VERb ─┬─ CREate ◄──┬─┘
 ├─ DISplay ──┤
 ├─ DROp ─────┤
 └─ PUNch ────┘

In IDD Record Format with COBOL Elements

►►─┬─ DISplay ─┬──── VIEW ─┬────────────────┬─ view-name ─────────────────────►
 └─ PUNch ───┘ └─ schema-name. ─┘

 ►─── LIKe RECord ──►

 ►─┬──┬───────►
 └──┬─ WITh ─────────┬──┬─ ALL ─────────────┬───┬─ AS COMments ◄──┬─┘
 ├─ WITHOut ──────┤ ├─ null INDIcators ─┤ └─ SYNtax ────────┘
 ├─ ALSo WITh ────┤ ├─ record ELEments ─┤
 └─ ALSo WITHOut ─┘ └─ record SYNonyms ─┘

 ►─┬───────────────────────┬──►◄
 └─ VERb ─┬─ CREate ◄──┬─┘
 ├─ ALTer ────┤
 ├─ DISplay ──┤
 ├─ DROp ─────┤
 └─ PUNch ────┘

DISPLAY/PUNCH VIEW

Appendix H: DISPLAY and PUNCH Syntax 809

Parameters

VIEW view-name

Specifies the name of the view to display or punch.

schema-name.

Identifies the SQL schema associated with the named view.

If you do not specify schema-name, it defaults to the current schema associated
with your SQL session, if the statement is entered through the command facility or
executed dynamically.

FULl

Directs CA IDMS to display all attributes of the view except physical attributes.

PHYsical

Directs CA IDMS to display all attributes of the view including its physical
attributes. This includes the view's synchronization timestamp.

WITh

Lists the requested information, in addition to the information that is always
included, such as the entity occurrence name.

WITHOut

Does not list the specified options. Other options in effect through the WITH or
ALSO WITH clauses in the current DISPLAY statement are displayed.

ALSo WITh

Lists the requested information, in addition to the information requested in
previously issued DISPLAY WITH and DISPLAY ALSO WITH statements for the named
entity.

ALSo WITHOut

Does not list the specified options.

ALL

Specifies the display of all the information associated with the requested entity
occurrence.

DISPLAY/PUNCH VIEW

810 SQL Reference Guide

NONe

Specifies the display of the name of the requested entity occurrence. NONE is
meaningful only when the WITH clause is specified.

DETails

Specifies the display of entity-specific descriptions; for example, the length of a
table.

HIStory

Specifies the display of the chronological account of an entity's existence, including
PREPARED/REVISED BY specifications, date created, and date last updated.

TIMestamp

Specifies the display of the synchronization timestamp for the view.

AS COMments

Outputs view syntax as comments with the characters *+ preceding the text of the
statement. AS COMMENTS is the default.

AS SYNtax

Outputs view syntax which can be edited and resubmitted to the command facility.

VERB CREate/DISplay/DROp/PUNch

Specifies the verb with which the entity statement is to be displayed or punched.
For example, if VERB CREATE is specified, the output of the DISPLAY/PUNCH
statement is a CREATE statement; if VERB ALTER is specified, the output is an ALTER
statement; and so on. The default is VERB CREATE.

With COBOL Elements Parameters

LIKe RECord

Specifies that you want IDD RECORD syntax, with its columns as COBOL elements,
listed for the named view. For sample uses, see "Usage" later in this section.

null INDIcators

Specifies the display of COBOL elements defining NULL indicators for nullable
columns.

record ELEments

Specifies the display of elements for the record syntax for the named view.

record SYNonyms

Specifies the display of record synonyms for the record syntax for the named view.

DISPLAY/PUNCH VIEW

Appendix H: DISPLAY and PUNCH Syntax 811

Usage

Using the LIKE RECORD Parameter

The LIKE RECORD parameter produces IDD record syntax for the named view.

You can use this syntax to define a record definition for a view in the dictionary. CA ADS
dialogs can then include it as a work record definition for the view. This same record
definition can be included in a map definition.

Appendix I: Sample COBOL Procedure 813

Appendix I: Sample COBOL Procedure

Sample Procedure Definition

The following example shows an SQL-invoked procedure definition.

create procedure demoempl.get_bonus

 (emp_id unsigned numeric(4) with default,

 bonus unsigned numeric(10) with default,

 currency_bonus char (3) with default)

 external name getbonus

 protocol idms;

Sample Procedure Program

814 SQL Reference Guide

Sample Procedure Program

The following example shows a sample procedure program written in COBOL. This
program requires the SQL employee demo database.

 *COBOL PGM SOURCE FOR GETBONUS

 *RETRIEVAL

 *DMLIST

 IDENTIFICATION DIVISION.

 PROGRAM-ID. GETBONUS.

 AUTHOR DEFJE01.

 INSTALLATION. SYSTEM71.

 DATE-WRITTEN 06/25/99

 --

 * *

 * GETBONUS will return the sum of all bonus amounts for a *

 * given employee. *

 * Parameters: *

 * EMP_ID: : input parameter must contain employee id *

 * BONUS : output parameter returns sum of bonus *

 * CURRENCY-BONUS : output parameter returns currency symbol *

 * or 'ERR' in case of an error condition *

 * These parameters are assumed to have been defined *

 * 'WITH DEFAULT' in the procedure definition, so that null *

 * indicators do not need to be defined and processed *

 --

 ENVIRONMENT DIVISION.

 *

 CONFIGURATION SECTION.

 *SOURCE-COMPUTER. IBM WITH DEBUGGING MODE.

 *

Sample Procedure Program

Appendix I: Sample COBOL Procedure 815

 DATA DIVISION.

 *

 WORKING-STORAGE SECTION.

 01 ERROR-STATUS PIC X(4).

 --

 * *

 --

 LINKAGE SECTION.

 * Procedure parameters

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.

 77 EMP-ID PIC 9(4).

 77 BONUS PIC 9(10).

 EXEC SQL END DECLARE SECTION END-EXEC.

 77 CURRENCY-BONUS PIC X(3).

 * Other parameters do not need to be specified

 --

 PROCEDURE DIVISION USING EMP-ID, BONUS, CURRENCY-BONUS.

 0000-MAINLINE.

 MOVE '$' TO CURRENCY-BONUS.

 EXEC SQL

 SELECT SUM(BONUS_AMOUNT) INTO :BONUS

 FROM DEMOEMPL.BENEFITS

 WHERE EMP_ID = :EMP-ID

 END-EXEC

 IF SQLSTATE NOT = '00000'

 MOVE 'ERR' TO CURRENCY-BONUS.

 EXIT PROGRAM.

 STOP RUN.

Sample of Procedure Invocation

816 SQL Reference Guide

Sample of Procedure Invocation

The first four examples are all equivalent. The last example returns an error indication.

 call demoempl.get_bonus(1234);

 EMP_ID BONUS CURRENCY_BONUS

 1234 6530 $

 1 row processed

 call demoempl.get_bonus(emp_id = 1234);

 EMP_ID BONUS CURRENCY_BONUS

 1234 6530 $

 1 row processed

 select * from demoempl.get_bonus where emp_id = 1234;

 EMP_ID BONUS CURRENCY_BONUS

 1234 6530 $

 1 row processed

 select * from demoempl.get_bonus(emp_id = 1234);

 EMP_ID BONUS CURRENCY_BONUS

 1234 6530 $

 1 row processed

 call demoempl.get_bonus(0);

 EMP_ID BONUS CURRENCY_BONUS

 0 0 ERR

 1 row processed

Appendix J: CA IDMS Scalar Functions 817

Appendix J: CA IDMS Scalar Functions

Overview

This appendix contains an alphabetical listing of the SQL scalar functions that come with
CA IDMS. These scalar functions are either built-in or defined in the SYSCA schema as a
user-defined function. It is worth knowing if an SQL scalar function is built-in or
user-defined because there is a limit on the number of user-defined functions that can
be invoked in a single SQL statement.

Note: For more information, see Syntactic Limits.

The table notations are coded as follows:

■ B = The function is implemented as a true built-in function.

■ U = The function is implemented as a user-defined function in the SYSCA schema.

Functions

Notation Function Meaning

U ABS(number) Absolute value of number

U ACOS(float) Arccosine, in radians, of float

U ASIN(float) Arcsine, in radians, of float

U ATAN(float) Arctangent, in radians, of float

U ATAN2(float1, float2) Arctangent, in radians, of float2/float1

B CAST(number or null, AS
datatype)

Converts value-expression to a
specified data type.

B CEIL(number) Smallest integer greater than or equal
to number data type. (Same as
CEILING.)

B CEILING(number) Smallest integer greater than or equal
to number. (Same as CEIL.)

B CHAR(code) Character with ASCII code value code,
where code is between 0 and 255
other data types.

Functions

818 SQL Reference Guide

Notation Function Meaning

B CHAR_LENGTH(number) Length of the value in value
expression. (Same as
CHARACTER_LENGTH.)

B CHARACTER_LENGTH
(number)

Length of the value in value
expression. (Same as CHAR_LENGTH.)

B COALESCE(datatype) Substitutes a value for a null value.
(Same as VALUE.)

B CONCAT(string1, string2) Character string formed by appending
string2 to string1; if a string is null, the
result is DBMS-dependent

B CONVERT(value, SQLtype) Value converted to SQLtype, where
SQLtype can be any valid SQL data
type.

U COS(float) Cosine of float radians

U COSH(float) Hyperbolic cosine of float radians

U COT(float) Cotangent of float radians

B CURDATE() The current date as a date value

B CURTIME() The current local time as a time value

B DATABASE() Current database

B DATE(date) Obtains the date from the value in
value expression

B DAY(date) An integer from 1 to 41 representing
the day of the month in date(Same as
DAYOFMONTH.)

U DAYNAME(date) A character string representing the day
component of date; the name for the
day is specific to the data source

B DAYOFMONTH(date) An integer from 1 to 41 representing
the day of the month in date (Same as
DAY.)

U DAYOFWEEK(date) An integer from 1 to 7 representing
the day of the week in date; 1
represents Sunday

U DAYOFYEAR(date) An integer from 1 to 366 representing
the day of the year in date

B DAYS(date) An integer representation of the date
in value expression

Functions

Appendix J: CA IDMS Scalar Functions 819

Notation Function Meaning

B DECIMAL(number, precision,
scale)

Decimal representation of the value in
value expression.

U DEGREES(number) Degrees in number radians

B DIGITS(number) Character string representation of the
value in value expression.

U EXP(float) Exponential function of float

B FLOAT(float) Floating point representation of the
value in value expression.

U FLOOR(number) Largest integer less than or equal to
number

B HEX(string) Hexadecimal representation of the
value in value expression.

B HOUR(time) An integer from 0 to 23 representing
the hour component of time

B IFNULL(expression, value) Value if expression is null; expression if
not null

U INSERT(string1, start, length,
string2)

A character string formed by deleting
length characters from string1
beginning at start, and inserting
string2 into string1 at start.

B INTEGER(number) Integer representation of the value in
value expression

B LCASE(string) Converts all uppercase characters in
string to lowercase. (Same as LOWER.)

B LEFT(string, count) The count leftmost characters from
string

B LENGTH(string) Number of characters in string,
excluding trailing blanks

B LOCATE(string1,
string2[,start])

Position in string2 of the first
occurrence of string1, searching from
the beginning of string2; if start is
specified, the search begins from
position start 0 is returned if string2
does not contain string1 Position 1 is
the first character in string2.

U LOG(float) Base e logarithm of float

U LOG10(float) Base 10 logarithm of float

Functions

820 SQL Reference Guide

Notation Function Meaning

B LOWER(string) Converts all uppercase characters in
string to lowercase. (Same as LCASE.)

B LTRIM(string) Characters of string with leading blank
spaces removed

B MICROSECOND (timestamp) Obtains the microsecond part of the
value in value-expression.

B MINUTE(time) An integer from 0 to 59 representing
the minute component of time

U MOD(integer1, integer2) Remainder for integer1/integer2

B MONTH(date) An integer from 1 to 12 representing
the month component of date

U MONTHNAME(date) A character string representing the
month component of date; the name
for the month is specific to the data
source

B NOW() A timestamp value representing the
current date and time

B OCTET_LENGTH(number) Obtains the length in bytes of the
value in value-expression.

U PI() The constant pi

B POSITION(string1,
string2[,start])

Position in string2 of the first
occurrence of string1, searching from
the beginning of string2; if start is
specified, the search begins from
position start 0 is returned if string2
does not contain string1 Position 1 is
the first character in string2.

U POWER(number, power) Number raised to (integer) power

B PROFILE(string) Obtains the value associated with an
attribute of the current user session.

U QUARTER(date) An integer from 1 to 4 representing
the quarter in date; 1 represents
January 1 through March 31

U RADIANS(number) Radians in number degrees

U RAND(integer) Random floating point for seed integer

U REPEAT(string, count) A character string formed by repeating
string count times

Functions

Appendix J: CA IDMS Scalar Functions 821

Notation Function Meaning

U REPLACE(string1, string2,
string3)

Replaces all occurrences of string2 in
string1 with string3

U RIGHT(string, count) The count rightmost characters in
string

U ROUND(number, places) Number rounded to places places

B RTRIM(string) The characters of string with no
trailing blanks

B SECOND(time) An integer from 0 to 59 representing
the second component of time

U SIGN(number)

-1 to indicate number is less than 0

0 to indicate number is equal to 0

1 to indicate number is greater than 0

U SIN(float) Sine of float radians

U SINH(float) Hyperbolic sine of float radians

U SPACE(count) A character string consisting of count
spaces

U SQRT(float) Square root of float

B SUBSTR(string, start, length) A character string formed by
extracting length characters from
string beginning at start

B SUBSTRING(string, FROM
start, FOR length)

A character string formed by
extracting length characters from
string beginning at start

U TAN(float) Tangent of float radians

U TANH(float) Hyperbolic tangent of float radians

B TIME(time) Obtains time from the value in value
expression

B TIMESTAMP(string1, string2) Obtains timestamp from a value or
pair of values

B TRIM(orientation, string) Removes leading and/or trailing pad
characters from CHARACTER or
VARCHAR value expressions

U TRUNCATE(number, places) Number truncated to places places

B UCASE(string) Converts all lowercase characters in
string to uppercase. (Same as UPPER.)

Functions

822 SQL Reference Guide

Notation Function Meaning

B UPPER(string) Converts all lowercase characters in
string to uppercase. (Same as UCASE.)

B USER() Current user

B VALUE(datatype) Substitutes a value for a null value.
(Same as COALESCE.)

B VARGRAPHIC(string) Obtains graphic string representation
of a character string

U WEEK(date) An integer from 1 to 53 representing
the week of the year in date

B YEAR(date) An integer representing the year
component of date

Appendix K: Sample COBOL Function 823

Appendix K: Sample COBOL Function

Sample Function Definition

The following example illustrates an SQL-invoked function definition:

CREATE FUNCTION FIN.UDF_FUNBONUS

 (F_EMP_ID DECIMAL(4)

)

 RETURNS DECIMAL(10)

 EXTERNAL NAME FUNBONUS PROTOCOL IDMS

 DEFAULT DATABASE CURRENT

 USER MODE

 LOCAL WORK AREA 0

 ;

Sample Function Program

824 SQL Reference Guide

Sample Function Program

The following example shows a sample SQL function program written in COBOL. This
program requires the SQL employee demo database.

*COBOL PGM SOURCE FOR FUNBONUS

*RETRIEVAL

*DMLIST

 IDENTIFICATION DIVISION.

 PROGRAM-ID. FUNBONUS.

 AUTHOR. DEFJE01.

 INSTALLATION. SYSTEM71.

 DATE-WRITTEN. mm/dd/yyyy.

--

* *

* CA IDMS SQL nn.n *

* *

* FUNBONUS implements the SQL function FUNBONUS *

* *

--

 ENVIRONMENT DIVISION.

*

 CONFIGURATION SECTION.

*SOURCE-COMPUTER. IBM WITH DEBUGGING MODE.

*

 DATA DIVISION.

*

 WORKING-STORAGE SECTION.

--

* *

--

LINKAGE SECTION.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.

 EXEC SQL

 INCLUDE TABLE FIN.UDF_FUNBONUS NO STRUCTURE

 END-EXEC.

 EXEC SQL END DECLARE SECTION END-EXEC.

Function Invocation

Appendix K: Sample COBOL Function 825

 77 RESULT-IND PIC S9(04) COMP SYNC.

 01 FUN-SQLSTATE.

 02 FUN-SQLSTATE-CLASS PIC X(02).

 02 FUN-SQLSTATE-SUBCLASS PIC X(03).

--

PROCEDURE DIVISION USING F-EMP-ID

 , USER-FUNC

 , F-EMP-ID-I

 , USER-FUNC-I

 , RESULT-IND

 , FUN-SQLSTATE.

0000-MAINLINE.

IF F-EMP-ID-I NOT < 0

 THEN

 EXEC SQL

 SELECT SUM(BONUS_AMOUNT) INTO :USER-FUNC

 FROM DEMOEMPL.BENEFITS

 WHERE EMP_ID = :F-EMP-ID

 END-EXEC

 IF SQLSTATE NOT = '00000'

 MOVE -1 TO USER-FUNC-I

 MOVE '38901' TO FUN-SQLSTATE

 ELSE

 MOVE 0 TO USER-FUNC-I

 ELSE

 MOVE -1 TO USER-FUNC-I

 MOVE '38902' TO FUN-SQLSTATE.

EXIT PROGRAM.

STOP RUN.

Function Invocation

The following example illustrates invoking the SQL function defined earlier:

SELECT EMP_ID, FIN.UDF_FUNBONUS (EMP_ID)

 FROM DEMOEMPL.EMPLOYEE

 WHERE EMP_ID = 3411

*+

*+ EMP_ID USER_FUNC

*+ ------ ---------

*+ 3411 5100

*+

*+ 1 row processed

Appendix L: Sample CA ADS Procedure 827

Appendix L: Sample CA ADS Procedure

SQL Procedure Example

The following SQL-invoked procedure, GET_PROC_AREA, writes any supplied message in
a global area. The contents of the global area are shown when no input is supplied. The
procedure definition is given next:

CREATE PROCEDURE DEFJE01.GET_PROC_AREA

 (IN_AREA CHARACTER (25),

 GLOBAL_AREA CHARACTER (25)

)

 EXTERNAL NAME GETPAREA

 PROTOCOL ADS

 SYSTEM MODE

 LOCAL WORK AREA 0

 GLOBAL WORK AREA 25 KEY GGLA

 ;

Work Records

To access the procedure parameters, the CA ADS dialog should include the
<schema>.<procedure_name> as a work record. This record does not reside in the
dictionary; it is automatically constructed by the CA ADS dialog compiler (ADSC or
ADSOBCOM) when the dialog is compiled. The following DDDL syntax defines the global
work area record:

ADD RECORD NAME GETPAREA-SQLPROC-GLOBAL-AREA.

 03 AREA-C PIC X OCCURS 25.

The work records included in the mapless dialog GETPAREA are provided next:

■ DEFJE01.GET_PROC_AREA

■ GETPAREA-SQLPROC-GLOBAL-AREA

Premap Process

828 SQL Reference Guide

Premap Process

The premap process performs the actions of the SQL-invoked procedure. The premap
process for the sample procedure is provided next:

ADD

PROCESS NAME IS GETPAREA_PROC VERSION IS 1

 PUBLIC ACCESS IS ALLOWED FOR ALL

 PROCESS SOURCE FOLLOWS

IF IN-AREA-I GE 0

 THEN

 D0.

 MOVE 0 TO GLOBAL-AREA-I.

 MOVE IN-AREA TO GLOBAL-AREA.

 MOVE IN-AREA TO GETPAREA-SQLPROC-GLOBAL-AREA.

 MOVE 'WRITING TO GLOBAL AREA' TO IN-AREA.

 END.

 ELSE

 D0.

 M0VE 0 TO IN-AREA-I.

 MOVE 'READING FROM GLOBAL-AREA' TO IN-AREA.

 M0VE 0 TO GLOBAL-AREA-I.

 MOVE GETPAREA-SQLPROC-GLOBAL-AREA TO GLOBAL-AREA.

 END.

LEAVE ADS.

 MSEND

Procedure Invocation

Appendix L: Sample CA ADS Procedure 829

Procedure Invocation

The GET_PROC_AREA invocation is given below. The first example illustrates writing to
the global area:

CALL DEFJE01.GET_PROC_AREA ('HELLO FROM ADS DIALOG');

*+

*+ IN_AREA GLOBAL_AREA

*+ ------- -----------

*+ WRITING TO GLOBAL AREA HELLO FROM ADS DIALOG

*+

*+ 1 row processed

The second example illustrates reading from the global area:

CALL DEFJE01.GET_PROC_AREA ();

*+

*+ IN_AREA GLOBAL_AREA

*+ ------- -----------

*+ READING FROM GLOBAL_AREA HELLO FROM ADS DIALOG

*+

*+ 1 row processed

Appendix M: Sample CA ADS Function 831

Appendix M: Sample CA ADS Function

SQL Function Example

The first example involves the SQL-invoked function ASIND, which returns the arcsine in
degrees of the supplied value. The SQL function is implemented using a CA ADS dialog
that invokes the CA ADS built-in function ARCSINE-DEGREES().

The SQL function is provided next:

CREATE FUNCTION DEFJE01.ASIND

 (ARG DOUBLE PRECISION)

 RETURNS DOUBLE PRECISION

 EXTERNAL NAME ASIND

 PROTOCOL ADS

 SYSTEM MODE

 LOCAL WORK AREA 0

 GLOBAL WORK AREA 0

 ;

Work Records

To access the function parameters, the CA ADS dialog should include the
<schema>.<function_name> as a work record. This record does not reside in the
dictionary; it is automatically constructed by the CA ADS dialog compiler (ADSC or
ADSOBCOM) when the dialog is compiled. ADSO-SQLPROC-COM-AREA is a
system-supplied record. The work records included in the mapless dialog ASIND are
shown in the following example:

■ DEFJE01.ASIND

■ ADSO-SQLPROC-COM-AREA

Premap Process

832 SQL Reference Guide

Premap Process

The premap process performs the actions of the SQL-invoked function. The following
example shows the premap process for the sample function:

ADD MODULE NAME IS ASIND-PROC VERSION IS 1

LANGUAGE PROCESS

PROCESS SOURCE FOLLOWS

IF ARG LE 1.0

 THEN

 DO.

 MOVE 0 TO USER-FUNC-I

 MOVE ARCSINE-DEGREES(ARG) TO USER-FUNC

 END.

 ELSE

 D0.

 MOVE '38099' TO SQLPROC-SQLSTATE.

 MOVE 'Arg must be <= 1.0' to SQLPROC-MSG-TEXT.

 END.

 LEAVE ADS.

 MSEND

Function Invocation

The SELECT clause is used to invoke the function. The first example illustrates a correctly
executing function:

SELECT DEFJE01.ASIND (1)

 FROM SYSTEM.TABLE WHERE NAME = 'ASIND'

*+

*+ USER_FUNC

*+ ---------

*+ 9.0000000000000000E+01

*+

*+ 1 row processed

The second example illustrates a function invocation that results in an error message.

SELECT DEFJE01.ASIND (2)

 FROM SYSTEM.TABLE WHERE NAME = 'ASIND'

*+ Status = -4 SQLSTATE = 38000 Messages follow:

*+ DB001075 C-4M321: Table Procedure ASIND exception 38099 ARG MUST BE <= 1.0

Appendix N: SQL Cache Tables 833

Appendix N: SQL Cache Tables

Overview

This appendix describes the table procedures that are used for displaying and
controlling the SQL cache. It also provides some examples of how the DBA can display
and control the cache. The SQL cache is used in conjunction with the dynamic SQL
statement caching feature. Dynamic SQL and dynamic SQL statement caching is
explained in the CA IDMS SQL Programming Guide.

Tables for Viewing, Monitoring, and Controlling the Cache

SQL is the Application Programming Interface (API) used to view, monitor, and change
the cache and the cache configuration. Therefore, cache administration, configuration,
and dynamic SQL cache monitoring is available in any environment that supports CA
IDMS SQL, such as IDMSBCF, OCF, CA IDMS Visual DBA, and the CA IDMS SQL programs,
among others.

This section describes three table procedures and one view of the SYSCA tables defined
for dynamic SQL cache management.

DSCCACHEOPT

The DSCCACHEOPT table manages the SQL cache options.

Column Data Type Description

CACHEMAXCNT INTEGER The maximum number of entries that the cache
can contain.

DEFAULT CHAR(4) Default for caching: ON/OFF. This specifies if
caching is enabled or disabled for any connect
name that does not appear in the EXCEPTCON
column.

EXCEPTCNT INTEGER Count of rows in the DSCCACHEOPT relation with
non-NULL value for the EXCEPTON column, in
other words, the number of connect names in
the list of exceptions.

EXCEPTCON CHAR(8) Connect name that forms an exception to the
default caching.

Tables for Viewing, Monitoring, and Controlling the Cache

834 SQL Reference Guide

Note the following:

■ After startup of an IDMS Central Version, DSCCACHEOPT reflects the parameters of
the sysgen SQL CACHE statement. In absence of an SQL CACHE statement there will
be no rows in DSCCACHEOPT and SQL caching will be disabled, but can be activated
by inserting a DSCACHEOPT row. Updates to the DSCCACHEOPT table will have no
impact on the sysgen of the CV.

■ In local mode when no DSCCACHEOPT row exists, a DSCCACHEOPT row will be
automatically inserted with values derived from the SYSIDMS parameter
SQL_CACHE_ENTRIES.

■ There can be 0 to n rows in this table. If there are 0 rows, this means that SQL
statement caching is not active and not defined to the system. If there are rows,
then the first row will have non-NULL values for CACHEMAXCNT, DEFAULT and
EXCEPTCNT and a NULL value for EXCEPTCON. The first row contains the main SQL
cache parameters. Other rows in the DSCCACHEOPT relation will have only
non-NULL values for the EXCEPTCON column. These rows form the list of exception
connect names.

■ You can issue select, insert, update and delete commands against DSCCACHEOPT.

■ Deleting the first row automatically deletes all other rows and removes all SQL
cache structures from the system, effectively disabling caching until a new
DSCCACHEOPT row is inserted. Deleting other rows removes exception connect
names from the exception list.

■ Inserting a row is always possible. When one or more rows already exists, an insert
can only specify a value for EXCEPTCON, this is the way to add connect names to
the list. When no rows exist, the first insert must specify values for CACHEMAXCNT
and DEFAULT. Other values are not allowed. A successful insertion of the first row
enables SQL caching.

■ Updating of CACHEMAXCNT and DEFAULT columns automatically applies to the first
row only, so that no WHERE clause is needed to filter the first row. When
CACHEMAXCNT is decreased, the entries in the SQL cache with the highest AGE (see
the section, "DSCCACHE") are removed. Increase CACHEMAXCNT to allow the size
of the cache to be increased. You cannot update EXCEPTCON for the first row. You
cannot update EXCEPTCNT as this is automatically calculated.

■ The size of the cache is specified in terms of number of entries. Each entry
represents a single cached statement. The cache is allocated from the storage pool
within a central version and from operating system storage in local mode. You can
determine the amount of storage being consumed by the cache by selecting from
the DSCCACHECTRL table.

Tables for Viewing, Monitoring, and Controlling the Cache

Appendix N: SQL Cache Tables 835

DSCCACHECTRL

The DSCCACHECTRL table controls SQL caching.

Column Data Type Description

REQUEST CHAR Future use

STATUS CHAR Future use

CACHEMAXCNT INTEGER Maximum count of entries

CACHECURCNT INTEGER Current count of entries used

CURRENT INTEGER Current entry

OLDEST INTEGER Oldest entry

STORAGEUSEKB INTEGER Total storage used by the cache

Note the following:

■ There can be 0 rows or 1 row in this table. If no rows are present, no SQL
statements have been cached.

■ Only select and delete statements against this table are possible.

■ Deleting the 1 row in DSCCACHECTRL clears the SQL cache structures. It does not
disable caching, which is controlled through the DSCCACHEOPT table.

DSCCACHE

The DSCCACHE table represents the SQL cache. Each row is a cache entry.

Column Data Type Description

KEY INTEGER Non-unique key

LOCK BINARY(4) Lock word for access to entry

DBNAME CHAR (8) DBName of SQL session

DEFAULTSCHEMA CHAR (18) Default schema of session if statement
contains at least one unqualified table
reference

USECNT INTEGER Usage count

AGE INTEGER A value used to determine which entry
to purge from a full cache when a new
entry is inserted. The longer an entry
remains in the cache without being
used, the higher its age.

Tables for Viewing, Monitoring, and Controlling the Cache

836 SQL Reference Guide

Column Data Type Description

COMPILECOST INTEGER Compilation cost

ACCPLANSCANCOST FLOAT Cost of scan in access plan

ACCPLANCPUCOST FLOAT Cost of CPU in access plan

ACCPLANROWCNT FLOAT Count of rows in access plan

EXECCOST INTEGER Cost of last execution of statement

COMPILECNT INTEGER Count of (re)compilations

COMPILESTAMP TIMESTAMP Timestamp of compilation

STMTSIZE INTEGER Size of statement

STATEMENT VARCHAR
(8192)

Statement

SQLDIBSIZE INTEGER Size of SQLDIB

SQLCMD INTEGER Type of SQL command

SQLITCL INTEGER Combined Itree/TELL table length

SQLARG INTEGER Bit flags for argument usage

SQLOPT INTEGER Session options flags

SQLTBL INTEGER Length of tuple buffer row

SQLPBL INTEGER Length of parameter buffer

SQLCID INTEGER Cursor identifier

SQLSID INTEGER Section identifier

SQLNM1 CHAR(32) Literal value 1

SQLNM2 CHAR(32) Literal value 2

SQLITL INTEGER Size of Itree

SQLITBADDR BINARY(4) Address of Itree

RTREESIZE INTEGER Size of Rtree

RTREEOFFSET INTEGER Offset of Rtree for relocation purposes

RTREEDOFAOFF INTEGER Offset of DOFA in Rtree

RTREEADDR BINARY(4) Address of Rtree

FIBSIZE INTEGER Size of FIB

FIBADDR BINARY(4) Address of FIB

FOPSIZE INTEGER Size of FOP

Tables for Viewing, Monitoring, and Controlling the Cache

Appendix N: SQL Cache Tables 837

Column Data Type Description

GSTSIZE INTEGER Size of GST

FOPADDR BINARY(4) Address of FOP

LASTUSER CHAR(8) Reserved

GLOBALCURSORNAME CHAR(18) Reserved

FCRC BINARY(4) FCRC flags

SQLDAADDR BINARY(4) Address of cached input SQLDA

STORAGEUSED INTEGER Size in bytes of used storage

Note the following:

■ One row of this table represents one cached statement.

■ Rows cannot be inserted or updated.

■ Because of the size of the STATEMENT column in DSCCACHE and also because many
of these columns are for internal use only, it is advisable to use a view on this table
procedure. The supplied DSCCACHEV view (shown next) is an example of such a
view.

The following acronyms are used in the previous table.

■ Itree: A data structure that contains the internal input representation of an SQL
statement

■ Rtree: A data structure that contains the internal runtime instruction of an SQL
statement. The Rtree is used by the SQL runtime engine IDMSHLDB.

■ FIB: A data structure that contains runtime metadata.

■ FOB/FOP: FIB objects list data structure

■ GST: Global Security Table

■ FCRC: Fixed part of Compiled Relational Command data structure

■ SQLDA: the SQL Descriptor Area (SQLDA) is a data structure used to describe
variable data passed as part of a dynamic SQL statement.

Examples of Displaying and Controlling the Cache

838 SQL Reference Guide

DSCCACHEV

SYSCA.DSCCACHEV is created during installation. It defines a view on the
SYSCA.DSCCACHE table procedure as follows:

create view SYSCA.DSCCACHEV as

 select KEY, DBNAME, DEFAULTSCHEMA, USECNT, AGE

 , COMPILECNT as "#C", compilestamp

 , ACCPLANSCANCOST, ACCPLANCPUCOST

 , ACCPLANROWCNT, FIBSIZE, FIBADDR

 , SUBSTR(STATEMENT, 1, 72) as STMT1

 from SYSCA.DSCCACHE;

You have the option to define your own views.

Allowable Operations on DSCCACHE Tables

DSCCACHOPT DSCCACHECTRL DSCCACHE DSCCACHE

V

Type Table Procedure Table Procedure Table Procedure View

SELECT X X X X

INSERT X

UPDATE X

DELETE X X X X

Examples of Displaying and Controlling the Cache

Examples of Displaying and Controlling the Cache

Appendix N: SQL Cache Tables 839

CACHE Options

To display the cache options:

Select * from SYSCA.DSCCACHEOPT;

*+

*+ CACHEMAXCNT DEFAULT EXCEPTCNT EXCEPTCON

*+ ----------- ------- --------- ---------

*+ 1000 OFF 2 <null>

*+ <null> <null> <null> SYSTEM

*+ <null> <null> <null> APPLDICT

To change the default for caching:

Update SYSCA.DSCCACHEOPT set DEFAULT = 'ON';

To add the connect name 'TSTDICT' to the exception list:

Insert into SYSCA.DSCCACHEOPT (EXCEPTCON) values ('TSTDICT');

To remove the connect name 'SYSTEM' from the exception list:

Delete from SYSCA.DSCCACHEOPT where EXCEPTCON = 'SYSTEM';

To remove all the connect names from the exception list:

Delete from SYSCA.DSCCACHEOPT where EXCEPTCON is not null;

To decrease the number of entries in the cache from 1000 to 5:

Update SYSCA.DSCCACHEOPT set CACHEMAXCNT = 5;

Only the last 5 used entries will be kept in the cache.

To increase the number of entries in the cache from 5 to 9999:

Update SYSCA.DSCCACHEOPT set CACHEMAXCNT = 9999;

The cache will be extended with 9994 new slots.

To clear the SQL cache and remove all the SQL cache structures from the system,
effectively disallowing any SQL caching:

Delete from SYSCA.DSCCACHEOPT;

To rebuild the SQL cache environment or to build the SQL cache environment in a
system that has no SQL CACHE statement in its SYSGEN:

Insert into SYSCA.DSCCACHEOPT (CACHEMAXCNT, DEFAULT) values (1000, 'ON');

Insert into SYSCA.DSCCACHEOPT (EXCEPTCON) values ('APPLDICT');

Insert into SYSCA.DSCCACHEOPT (EXCEPTCON) values ('SYSTEM');

Examples of Displaying and Controlling the Cache

840 SQL Reference Guide

CACHE Control Parameters

To display cache control parameters:

Select * from SYSCA.DSCCACHECTRL;

*+

*+REQUEST STATUS CACHEMAXCNT CACHECURCNT CURRENT OLDEST

*+------- ------ ----------- ----------- ------- ------

*+ A 1000 7 6 0

*+

*+ STORAGEUSEKB

*+ ------------

*+ 138

To clear the cache, but allow caching to continue as defined by the option in
DSCCACHEOPT:

Delete from SYSCA.DSCCACHECTRL;

Examples of Displaying and Controlling the Cache

Appendix N: SQL Cache Tables 841

CACHE Entries

To display key columns of all cache entries:

Select * from SYSCA.DSCCACHEV;

*+

*+ KEY DBNAME DEFAULTSCHEMA USECNT AGE

*+ --- ------ ------------- ------ ---

*+ 29 SYSDICT <null> 4 0

*+ 32 SYSDICT <null> 1 1

*+ 28 SYSDICT <null> 2 1

*+ 32 SYSDICT <null> 7 7

*+ 29 SYSDICT <null> 6 6

*+

*+ #C COMPILESTAMP FIBSIZE FIBADDR

*+ -- ------------ ------- --------

*+ 1 2002-09-04-10.05.20.740186 736 12AC6208

*+ 1 2002-09-04-10.07.20.009275 2528 12ACD088

*+ 1 2002-09-04-10.06.19.785231 2580 12ACB888

*+ 1 2002-09-04-10.02.39.729463 552 12AC0A08

*+ 1 2002-09-04-10.03.00.735305 736 12ABFD88

*+

*+ STMT1

*+ -----

*+ Select * from SYSCA.DSCCACHEV

*+ select * from empnsql.department

*+ select * from empnsql.office

*+ select * from SYSCA.DSCCACHECTRL

*+ select * from sysca.dsccachev

To display cache entries with AGE > 1:

Select * from SYSCA.DSCCACHEV where AGE > 1;

To display cache entries for DBNAME SYSDICT:

Select * from SYSCA.DSCCACHEV where DBNAME = 'SYSDICT';

To display cache entries for statements that use schema EMPNSQL:

Select * from SYSCA.DSCCACHEV where STMT1 like '%EMPNSQL.%';

To remove cache entries that use schema EMPNSQL:

Delete from SYSCA.DSCCACHE where STATEMENT like '%empnsql.%';

Secure the Display and Changes

842 SQL Reference Guide

Secure the Display and Changes

To secure the display of and any changes to SQL caching, the DSCCACHE tables (table
procedures and views) must be secured using the standard CA IDMS security
mechanism.

Note: The SQL cache contains SQL source statements, which might include confidential
information.

Appendix O: Enhancing the Presentation of Access Strategy Information 843

Appendix O: Enhancing the Presentation of
Access Strategy Information

Overview

This appendix provides the definition and data of a table, an index, and a view to enable
presenting the access strategy information in an easy-to-read and understandable
format. The definitions and data are collected in one SQL script that is installed as
member EXPLDDL in the CA IDMS source library.

Contents of EXPLDDL

844 SQL Reference Guide

Contents of EXPLDDL

--

-- -

-- The following SQL definitions can be very helpful when using the -

-- EXPLAIN command. -

-- -

-- These definitions add meaning to the result of the EXPLAIN command -

-- by creating easy-to-understand values for the abbreviated codes that-

-- EXPLAIN produces. When you run an EXPLAIN statement against an SQL -

-- command or Access Module, the result is placed in an SQL table -

-- called ACCESS_PLAN or another name that you choose. After you -

-- create the ACCESS_CODE table and PLANVIEW view, you can easily query-

-- any EXPLAIN results and readily determine what kind of access -

-- strategies will be used for your SQL statements. This is especially-

-- useful for finding SQL queries that will cause area sweeps or other -

-- access strategies that might suggest adding new indices or other -

-- tuning options to the database. -

-- -

-- Before running the script it is assumed that a "current" schema -

-- has been set as follows -

-- SET SESSION CURRENT SCHEMA <schema-name>; -

-- Also this current schema must have been assigned with an -

-- appropriate DEFAULT AREA to accommodate for the ACCESS_CODE and -

-- ACCESS_PLAN tables. -

-- -

--

--

-- Set up access plan code table:

create table ACCESS_CODE

 (COLUMN smallint not null, -- column index

 CODE_NUM smallint, -- numeric code

 CODE_CHAR char, -- character code

 TEXT char(16) not null) -- display text

 no default index

 ;

create index ACCESS_CODE_IX

 on ACCESS_CODE

 (COLUMN, CODE_NUM, CODE_CHAR)

 clustered

 ;

Contents of EXPLDDL

Appendix O: Enhancing the Presentation of Access Strategy Information 845

--

-- These are the codes for the COMMAND column:

insert into ACCESS_CODE values (1,8,NULL,'DECLARE');

insert into ACCESS_CODE values (1,9,NULL,'DELETE');

insert into ACCESS_CODE values (1,17,NULL,'INSERT');

insert into ACCESS_CODE values (1,25,NULL,'SELECT');

insert into ACCESS_CODE values (1,29,NULL,'UPDATE');

-- These are the codes for the STYPE column:

insert into ACCESS_CODE values (2,0,NULL,' ');

insert into ACCESS_CODE values (2,1,NULL,'Table Access');

insert into ACCESS_CODE values (2,2,NULL,'NL Join');

insert into ACCESS_CODE values (2,3,NULL,'SM Join');

insert into ACCESS_CODE values (2,4,NULL,'Sort');

insert into ACCESS_CODE values (2,5,NULL,'Merge Group');

insert into ACCESS_CODE values (2,6,NULL,'OR List');

insert into ACCESS_CODE values (2,7,NULL,'Dbk (Sorted)');

insert into ACCESS_CODE values (2,8,NULL,'Dbk (Unsorted)');

-- These are the codes for the ACMODE column:

insert into ACCESS_CODE values (3,NULL,' ',' ');

insert into ACCESS_CODE values (3,NULL,'A','Area Sweep');

insert into ACCESS_CODE values (3,NULL,'C','Calc');

insert into ACCESS_CODE values (3,NULL,'I','Index');

insert into ACCESS_CODE values (3,NULL,'M','Set Member');

insert into ACCESS_CODE values (3,NULL,'N','Insert');

insert into ACCESS_CODE values (3,NULL,'O','Set Owner');

insert into ACCESS_CODE values (3,NULL,'P','Procedure');

insert into ACCESS_CODE values (3,NULL,'R','Rowid Indx');

insert into ACCESS_CODE values (3,NULL,'S','Index Seql');

insert into ACCESS_CODE values (3,NULL,'T','Temp Seql');

-- These are the codes for the SORTC and SORTN columns:

insert into ACCESS_CODE values (4,NULL,' ',' ');

insert into ACCESS_CODE values (4,NULL,'D','Distinct');

insert into ACCESS_CODE values (4,NULL,'G','Group');

insert into ACCESS_CODE values (4,NULL,'M','Merge Join');

insert into ACCESS_CODE values (4,NULL,'O','Order By');

Contents of EXPLDDL

846 SQL Reference Guide

--

-- This statement forces the definition of the ACCESS_PLAN table,

-- so that the following view creation can reference it.

EXPLAIN STATEMENT 'SELECT * FROM SYSTEM.TABLE' STATEMENT NUMBER 9999;

--

-- This is a sample view definition. The ST instance of ACCESS_CODE

-- decodes the STYPE column of ACCESS_PLAN. The AM instance decodes the

-- ACMODE column. The S1 and S2 instances decode the SORTC and SORTN

-- columns, respectively. The COMMAND column isn't included in the

-- view, but could be decoded by introducing another ACCESS_CODE

-- INSTANCE in the FROM clause along with the matching join factors.

-- A descending sort was chosen to force the high level joins to the

-- top of the output - in sort of a top down tree format.

create view PLANVIEW(SNO, QB, PB, ST, "STEP TYPE", PST, TSCHEMA,

 TABLE, "ACCESS MODE", ACNAME, LFS, OSORT,

 ISORT, SQC) AS

 select CAST(SECTION AS DEC(4)),

 CAST(QBLOCK AS DEC(3)),

 CAST(PBLOCK AS DEC(3)),

 CAST(STEP AS DEC(3)),

 ST.TEXT,

 CAST(PSTEP AS DEC(3)),

 SUBSTR(TSCHEMA, 1, 8),

 SUBSTR(TABLE, 1, 10),

 SUBSTR(AM.TEXT, 1, 10),

 ACNAME,

 LFS,

 SUBSTR(S1.TEXT, 1, 10),

 SUBSTR(S2.TEXT, 1, 10), SUBQC

 from ACCESS_PLAN, ACCESS_CODE ST, ACCESS_CODE AM, ACCESS_CODE S1,

 ACCESS_CODE S2

 where ST.COLUMN = 2 and ST.CODE_NUM = STYPE

 and AM.COLUMN = 3 and AM.CODE_CHAR = ACMODE

 and S1.COLUMN = 4 and S1.CODE_CHAR = SORTC

 and S2.COLUMN = 4 and S2.CODE_CHAR = SORTN

 order by 1, 2, 4 desc;

--

-- Look at the access plans

select * from PLANVIEW;

Appendix P: SQL Reserved Words 847

Appendix P: SQL Reserved Words

ABS DAYOFWEEK IN OUTER TANH

ACOS DAYOFYEAR INDEX PARAMETERS THEN

ADD DAYS INDEXES PATH TIME

ALL DBNAME INDICATOR PI TIMESTAMP

ALLOCATE DBTABLE INNER POSITION TINYINT

ALTER DEC INOUT POWER TO

AND DECIMAL INSERT PRECISION TRANSACTION

ANY DECLARE INT PREPARE TRIM

AREA DEFAULT INTEGER PRESERVE TRUNCATE

AS DEGREES INTERNAL PRIVILEGES UCASE

ASIN DELETE INTO PROCEDURE UNDO

ATAN DESCRIPTOR IS PROFILE UNION

ATAN2 DIGITS ITERATE PROGRAM UNIQUE

BEGIN DISTINCT JOIN PROTOCOL UNSIGNED

BETWEEN DMCL JOURNAL QUARTER UNTIL

BIGINT DO KEYS QUEUE UPDATE

BIN DOUBLE LANGUAGE RADIANS UPPER

BINARY DROP LCASE RAND USE

BUFFER DSNAME LEAVE READ USER

BY DYNAMIC LEFT REFERENCES USERID

CALL ELSE LENGTH RELEASE USING

CASCADE ELSEIF LIKE RENAME VALUE

CASE ENCODING LOAD REPEAT VALUES

CAST END LOCAL REPLACE VARCHAR

CATALOG ESCAPE LOCATE RESIGNAL VARGRAPHIC

CEIL ESTIMATED LOG RESULT VIEW

CEILING EXCEPTION LOG10 RETURN VOLUME

CHAR EXEC LOGINT RETURNS WEEK

CHARACTER EXECUTE LOOP REVOKE WHEN

Contents of EXPLDDL

848 SQL Reference Guide

CHARACTERS EXISTS LOWER RIGHT WHERE

CHARACTER_LENGTH EXIT LTRIM ROLLBACK WHILE

CHAR_LENGTH EXP MAINTAIN ROUND WITH

CHECK EXPLAIN MAP RTRIM WITHIN

CLOSE EXTERNAL MICROSECOND SCHEMA WITHOUT

COALESCE FETCH MICROSECONDS SECOND XMLELEMENT

COLUMN FILE MINUTE SECOND XMLPOINTER

COMMIT FLOAT MINUTES SECONDS XMLSERIALIZE

CONCAT FLOOR MOD SEGMENT YEAR

CONDITION FOR MONTH SELECT YEARS

CONNECT FROM MONTHNAME SET

CONSTRAINT FUNCTION MONTHS SIGN

CONTENT GET NO SIGNAL

CONVERT GLOBAL NOT SIN

COS GOTO NOW SINH

COSH GRANT NULL SMALLINT

COT GRAPHIC NUM SPACE

CREATE GROUP NUMBER SPECIFIC

CURDATE HANDLER OCTET_LENGTH SORT

CURRENT HAVING OF STANDARD

CURSOR HEX OFFSET STORAGE

CURTIME HOUR ON SUBSTR

DATABASE HOURS OPEN SUBSTRING

DATE IDMS OPTIMIZE SYSTEM

DAY IF OR TABLE

DAYNAME IFNULL ORDER TABLESPACE

DAYOFMONTH IMMEDIATE OUT TAN

Appendix Q: CA ADS, COBOL, PL/I Data Types 849

Appendix Q: CA ADS, COBOL, PL/I Data
Types

CA ADS PICTURE and USAGE clause CA IDMS data type

PIC X(n) USAGE DISPLAY CHAR(n)

01 name

49 name-LEN PIC S9(4) COMP

49 name-TEXT PIC X(n)

VARCHAR(n)

PIC S9(p-s)V9(s) USAGE COMP-3 DECIMAL(p,s)

PIC 9(p-s)V9(s) USAGE COMP-3 UNSIGNED DECIMAL(p,s)
1

USAGE COMP-2 DOUBLE PRECISION

USAGE COMP-1 REAL

USAGE COMP-1 FLOAT

PIC S9(n) USAGE COMP

(where n<5)

SMALLINT

PIC S9(n) USAGE COMP

(where n>4 and n<10)

INTEGER

PIC S9(n) USAGE COMP

(where n>9)

LONGINT or BIGINT

PIC S9(p-s)V9(s) USAGE DISPLAY NUMERIC(p,s)

PIC 9(p-s)V9(s) USAGE DISPLAY UNSIGNED NUMERIC(p,s)
1

PIC X(n) USAGE DISPLAY BINARY(n)

PIC G(n) USAGE DISPLAY-1 GRAPHIC(n)
1

01 name

49 name-LEN PIC S9(4) COMP

49 name-TEXT PIC G(n) DISPLAY-1

VARGRAPHIC(n)
1

PIC X(10) USAGE DISPLAY DATE

PIC X(8) USAGE DISPLAY TIME

PIC X(26) USAGE DISPLAY TIMESTAMP

PIC X(8) USAGE DISPLAY TID
1

Contents of EXPLDDL

850 SQL Reference Guide

Note: This data type is a CA IDMS extension of the SQL standard.

COBOL PICTURE and USAGE clause CA IDMS data type

PIC X(n) USAGE DISPLAY CHAR(n)

01 name

49 name-LEN PIC S9(4) COMP

49 name-TEXT PIC X(n)

VARCHAR(n)

PIC S9(p-s)V9(s) USAGE COMP-3 DECIMAL(p,s)

PIC 9(p-s)V9(s) USAGE COMP-3 UNSIGNED DECIMAL(p,s)
1

USAGE COMP-2 DOUBLE PRECISION

USAGE COMP-1 REAL

USAGE COMP-1 FLOAT

PIC S9(n) USAGE COMP

(where n<5)

SMALLINT

PIC S9(n) USAGE COMP

(where n>4 and n<10)

INTEGER

PIC S9(n) USAGE COMP

(where n>9)

LONGINT or BIGINT

PIC S9(p-s)V9(s) USAGE DISPLAY NUMERIC(p,s)

PIC 9(p-s)V9(s) USAGE DISPLAY UNSIGNED NUMERIC(p,s)
1

PIC X(n) USAGE SQLBIN BINARY(n)

PIC G(n) USAGE DISPLAY-1 GRAPHIC(n)
1

01 name

49 name-LEN PIC S9(4) COMP

49 name-TEXT PIC G(n) DISPLAY-1

VARGRAPHIC(n)
1

PIC X(10) USAGE DISPLAY DATE

PIC X(8) USAGE DISPLAY TIME

PIC X(26) USAGE DISPLAY TIMESTAMP

PIC X(8) USAGE SQLBIN TID
1

Note: This data type is a CA IDMS extension of the SQL standard.

Contents of EXPLDDL

Appendix Q: CA ADS, COBOL, PL/I Data Types 851

Equivalent PL/I data type CA IDMS data type

CHAR (n) CHAR(n)

CHAR (n) VAR VARCHAR(n)

FIXED DECIMAL (p,s) DECIMAL(p,s)

FLOAT BINARY (n)

where n <= 24

where n > 24

REAL

DOUBLE PRECISION

FLOAT DECIMAL (n)

where n <= 6

where n > 6

REAL

DOUBLE PRECISION

FIXED BINARY (15) SMALLINT

FIXED BINARY (31) INTEGER

CHAR (n) BINARY(n)

GRAPHIC (n) GRAPHIC(n)
1

GRAPHIC (n) VAR VARGRAPHIC(n)
1

CHAR (10) DATE

CHAR (8) TIME

CHAR (26) TIMESTAMP

SQLBIN (n) BINARY(n)

CHAR(8) TID
1

Note: This data type is a CA IDMS extension of the SQL standard.

Appendix R: Third-Party Acknowledgment 853

Appendix R: Third-Party Acknowledgment

Portions of this product include software developed by the Daniel Veillard. The libxml2
software is distributed in accordance with the following license agreement:

Copyright © 1998-2012 Daniel Veillard. All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions: The
above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE DANIEL VEILLARD BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Except as contained in this notice, the name of Daniel Veillard shall not be used in
advertising or otherwise to promote the sale, use or other dealings in this Software
without prior written authorization from him.

Index 855

Index

A

About Identifiers • 24
Accessing a Table Procedure • 618
Accessing Non-SQL-Defined Databases • 599
Aggregate-function • 117
aliases • 107

in labeled-duration • 107
ALLOCATE CURSOR • 258
ALTER ACCESS MODULE • 261
ALTER CATALOG • 269
ALTER CONSTRAINT • 270
ALTER CONSTRAINT Parameters • 271
ALTER FUNCTION • 272
ALTER FUNCTION statement • 272

syntax • 272
ALTER INDEX • 277
ALTER PROCEDURE • 279
ALTER SCHEMA • 285
ALTER TABLE • 290
ALTER TABLE PROCEDURE • 300

B

BEGIN DECLARE SECTION • 305

C

CA ADS, COBOL, PL/I Data Types • 849
CA IDMS Scalar Functions • 124, 817
CA Technologies Product References • 3
CALL • 306, 561
CASE • 562
CLOSE • 313
COBOL/CA ADS SQLCA • 683
Coding Considerations • 15
COMMIT • 315
Comparison, Assignment, Arithmetic, and

Concatenation Operations • 66
Compound Statement • 566
CONNECT • 317
Considerations for SQL-invoked External Routines •

647
Contact CA Technologies • 3
Contents of EXPLDDL • 844
Control Statements • 559

Correspondence between SQL and Non-SQL-defined
Entities • 599

CREATE ACCESS MODULE • 320
CREATE CALC • 333
CREATE CONSTRAINT • 334
CREATE FUNCTION • 341
CREATE INDEX • 352
CREATE KEY • 357
CREATE PROCEDURE • 361
CREATE SCHEMA • 373
CREATE TABLE • 378
CREATE TABLE PROCEDURE • 387
CREATE TEMPORARY TABLE • 392
CREATE VIEW • 394

D

Data Type Limits • 671
Data Types • 53
Data Types and Null Values • 53
Database Name Inheritance • 653
Date/time Arithmetic • 110
DEALLOCATE PREPARE • 401
Debugging Procedures • 653
DECLARE CURSOR • 402
DECLARE EXTERNAL CURSOR • 406
Defining a Function • 640
Defining a Procedure • 630
Defining a Table Procedure • 618
Defining and Using Functions • 639
Defining and Using Procedures • 629
Defining and Using Table Procedures • 617
Definitions • 15
DELETE • 408
DESCRIBE • 413
DESCRIBE CURSOR • 416
DISPLACEMENT • 749
DISPLAY and PUNCH Operations • 770
DISPLAY and PUNCH Syntax • 769
DISPLAY/PUNCH ACCESS MODULE • 781
DISPLAY/PUNCH ALL Statement • 770
DISPLAY/PUNCH CALC KEY • 784
DISPLAY/PUNCH CONSTRAINT • 786
DISPLAY/PUNCH FUNCTION • 788
DISPLAY/PUNCH INDEX • 791
DISPLAY/PUNCH KEY • 793

856 SQL Reference Guide

DISPLAY/PUNCH PROCEDURE • 794
DISPLAY/PUNCH SCHEMA • 796
DISPLAY/PUNCH TABLE • 800
DISPLAY/PUNCH TABLE PROCEDURE • 805
DISPLAY/PUNCH VIEW • 808
Documentation Changes • 4
DROP ACCESS MODULE • 418
DROP CALC • 420
DROP CONSTRAINT • 421
DROP FUNCTION • 423
DROP INDEX • 424
DROP KEY • 426
DROP PROCEDURE • 427
DROP SCHEMA • 428
DROP TABLE • 430
DROP TABLE PROCEDURE • 432
DROP VIEW • 433
Durations • 107
Dynamic Parameters • 87

E

END DECLARE SECTION • 434
Enhancing the Presentation of Access Strategy

Information • 843
Example • 745

Alter the DEPT_EMPL Constraint • 272
Examples of Displaying and Controlling the Cache •

838
EXEC ADS • 573
EXECUTE • 435
EXECUTE IMMEDIATE • 439
expansion of • 441

access-module-specification • 441
Expansion of Aggregate-function • 117
Expansion of Authorization-identifier • 27
Expansion of Between-predicate • 207
Expansion of Comparison-predicate • 209
Expansion of Cursor-name • 45
Expansion of Cursor-specification • 244
Expansion of Data-type • 55
Expansion of Dynamic-parameter-marker • 92
Expansion of Exists-predicate • 210
Expansion of Extended-search Condition • 613
Expansion of Host-variable • 79
Expansion of In-predicate • 211
Expansion of Joined-table • 39
Expansion of Labeled-duration • 107
Expansion of Like-predicate • 214

Expansion of Literal • 75
Expansion of Local-variable • 81
Expansion of Null-predicate • 219
Expansion of Procedure-reference • 28
Expansion of Quantified-predicate • 220
Expansion of Query-expression • 241
Expansion of Query-specification • 231
Expansion of Routine-parameter • 85
Expansion of rowid-pseudo-column • 96
Expansion of Scalar-function • 122
Expansion of Search-condition • 223
Expansion of Set-specification Statement • 613
Expansion of Special-register • 93
Expansion of Statement-name • 48
Expansion of Subquery • 239
Expansion of Table-name • 35
Expansion of Table-procedure-reference • 32
Expansion of Table-reference • 37
Expansion of User-defined-function • 179
Expansion of Value-expression • 101
Expansion of XML-value-expression • 116
Expansion of XML-value-function • 181
EXPLAIN • 441

F

FETCH • 449
Function Invocation • 825, 832
Functions • 117, 817

G

GET DIAGNOSTICS • 456
GET STATISTICS • 463
GRANT Access Module Execution Privilege • 467
GRANT Definition Privileges • 470
GRANT Table Access Privileges • 474

H

Host Variable Limits • 672
Host Variables • 77

I

Identifiers • 23
Identifying Entities in Schemas • 42
IF • 577
INCLUDE • 479
INDEX BLOCK CONTAINS • 748
Index Calculations • 747
INSERT • 487

Index 857

Invoking a Function • 641
Invoking a Procedure • 631
ITERATE • 580

L

LEAVE • 583
Literals • 75
Local Variables • 81
Logical Data Limits • 671
LOOP • 585

M

Mapping Plain Text SQL to XML • 658
Mapping SQL Data Type Values to XML Schema Data

Type Values • 660
Mapping SQL Identifier to XML • 658

N

nonsql-database name • 373
specified in CREATE SCHEMA • 373

Null Values • 73

O

OPEN • 494
Overview • 207, 559, 691, 817, 833, 843

P

PL/I SQLCA • 684
Predicates and Search Condition • 207
Premap Process • 828, 832
PREPARE • 497
Procedure Invocation • 829
Procedure Parameters • 631

Q

Query Expressions • 240
Query Specifications • 231
Query Specifications, Subqueries, Query Expressions,

and Cursor Specifications • 231

R

RELEASE • 501
REPEAT • 587
Representation of Date/Time Values • 63
RESIGNAL • 589
RESUME SESSION • 502
RETURN • 591

REVOKE All Table Privileges • 503
REVOKE Execution Privilege • 510
REVOKE SQL Definition Privileges • 506
REVOKE Table Access Privileges • 512
ROLLBACK • 516
Routine Parameters • 84
ROWID Pseudo-column • 95

S

Sample CA ADS Function • 831
Sample CA ADS Procedure • 827
Sample COBOL Function • 823
Sample COBOL Procedure • 813
Sample COBOL Table Procedure • 751
Sample Function Definition • 823
Sample Function Program • 824
Sample of Procedure Invocation • 816
Sample Procedure Definition • 813
Sample Procedure Program • 814
Sample Table Procedure Definition • 751
Sample Table Procedure Program • 752
Scalar Function • 121
scalar functions • 124

EXP • 124
TRUNCATE • 124

Secure the Display and Changes • 842
SELECT • 518
SET ACCESS MODULE • 534
SET Assignment • 592
SET host-variable Assignment • 535
SET SESSION • 536
SET TRANSACTION • 542
SIGNAL • 594
Special Considerations for SQL-invoked External

Routines • 647
Special Registers • 93
SQL Access to Non-SQL Databases • 609
SQL Cache Tables • 833
SQL Comments • 18
SQL Communication Area • 675
SQL Control Statements • 560
SQL Descriptor Area • 685
SQL DML Statements Operating on Non-SQL-defined

Records • 606
SQL Function Example • 831
SQL Procedure Example • 827
SQL Reserved Words • 847
SQL Schema Considerations • 604

858 SQL Reference Guide

SQL Standard Basis • 667
SQLALN and SQLNALN • 689
SQLCA • 675
SQLCODE • 681
SQLCODE and SQLCNRP Values • 681
SQLCODE Error Values • 681
SQLDA • 685
SQLLEN • 686
SQLNULL • 689
SQLPRECISION • 688
SQLSCALE • 688
SQLSTATE • 676
SQLSTATE Values • 676
SQLTYPE • 687
Statement Categories • 251
Statements • 249
Subqueries • 238
Summary Comparison to SQL Standard • 667
Summary of Limits • 671
SUSPEND SESSION • 544
Syntactic Limits • 673
Syntax

ALTER CONSTRAINT • 271
Syntax Diagram Conventions • 19
SYSCA Objects • 743
SYSTEM Tables and SYSCA Views • 691
SYSTEM.AM • 691
SYSTEM.AMDEP • 692
SYSTEM.AREA • 692
SYSTEM.BUFFER • 694
SYSTEM.COLUMN • 695
SYSTEM.CONSTKEY • 697
SYSTEM.CONSTRAINT • 698
SYSTEM.DBNAME • 704
SYSTEM.DBSEGMENT • 706
SYSTEM.DBSSC • 706
SYSTEM.DBTABLE • 707
SYSTEM.DMCL • 708
SYSTEM.DMCLAREA • 709
SYSTEM.DMCLFILE • 711
SYSTEM.DMCLSEGMENT • 713
SYSTEM.FILE • 714
SYSTEM.FILEMAP • 716
SYSTEM.INDEX • 717
SYSTEM.INDEXKEY • 725
SYSTEM.JOURNAL • 726
SYSTEM.LOADHDR • 728
SYSTEM.ORDERKEY • 729
SYSTEM.SCHEMA • 730

SYSTEM.SECTION • 732
SYSTEM.SEGMENT • 733
SYSTEM.SYMBOL • 734
SYSTEM.SYNTAX • 736
SYSTEM.TABLE • 737
SYSTEM.VIEWDEP • 742

T

Table Procedure Parameters • 619
Tables for Viewing, Monitoring, and Controlling the

Cache • 833
Third-Party Acknowledgment • 853
Transaction Sharing • 654
TRANSFER OWNERSHIP • 545

U

UPDATE • 546
Using SQL Statements • 16

V

Values and Value Expressions • 75

W

When to Use a Procedure • 629
When to Use a Table Procedure • 617
When to Use a User-Defined Function • 639
WHENEVER • 556
WHILE • 597
Work Records • 827, 831
Writing a Table Procedure • 622
Writing an External Function in COBOL, PL/I, or

Assembler • 641
Writing an External Procedure in COBOL, PL/I or

Assembler • 634
Writing External Functions as CA ADS Mapless

Dialogs • 644
Writing External Procedures as CA ADS Mapless

Dialogs • 636

X

XML Publishing • 655
XML Publishing Using SQL • 655
XML Value Functions • 181
XMLSLICE Table Procedure • 663

	CA IDMS SQL SQL Reference Guide
	CA Technologies Product References
	Contact CA Technologies
	Documentation Changes
	Contents
	1: Coding Considerations
	Definitions
	Using SQL Statements
	Statement Components
	Uppercase and Lowercase
	Delimiting and Continuing Statements

	SQL Comments
	Syntax Diagram Conventions

	2: Identifiers
	About Identifiers
	Qualifying Identifiers
	Forming Identifiers
	Delimited Identifiers
	Avoiding Keywords as Identifiers

	Expansion of Authorization-identifier
	Syntax
	Parameters
	Examples

	Expansion of Procedure-reference
	Syntax
	Parameters
	Usage
	Examples

	Expansion of Table-procedure-reference
	Syntax
	Parameters
	Usage
	Examples

	Expansion of Table-name
	Syntax
	Parameters
	Examples
	More Information

	Expansion of Table-reference
	Syntax
	Parameters
	Examples
	More Information

	Expansion of Joined-table
	Syntax
	Parameters
	Usage
	Examples

	Identifying Entities in Schemas
	Resolving References to Entities in Schemas

	Expansion of Cursor-name
	Syntax
	Parameters
	Usage
	Example

	Expansion of Statement-name
	Syntax
	Parameters
	Usage
	Example

	3: Data Types and Null Values
	Data Types
	Data Types and Value Sets
	More Information
	Categories of Data Types
	More Information
	Determining the Data Type of a Value
	Data Types Effect on Processing

	Expansion of Data-type
	Syntax
	Parameters
	Usage
	Example

	Representation of Date/Time Values
	Internal Representation
	External Representations

	Comparison, Assignment, Arithmetic, and Concatenation Operations
	Binary Values
	Character Values
	Date/time Values
	Graphics Character Values
	Numeric Values

	Null Values
	More Information

	4: Values and Value Expressions
	Literals
	Expansion of Literal
	Syntax
	Parameters
	Example

	Host Variables
	Indicator Variables
	Indicator Variable Values
	Declaring Host Variables
	SQL Declaration Section

	Expansion of Host-variable
	Syntax
	Parameters
	Usage
	Example

	Local Variables
	Declaring Local Variables

	Expansion of Local-variable
	Syntax
	Usage
	Example

	Routine Parameters
	Defining Routine Parameters

	Expansion of Routine-parameter
	Syntax
	Parameters
	Usage
	Example

	Dynamic Parameters
	Using Dynamic Parameters
	Parameter Data Types
	Data Type Conversion Considerations
	Restrictions in the Use of Dynamic Parameters
	Statement Options

	Expansion of Dynamic-parameter-marker
	Syntax
	Parameters
	Usage
	Example

	Special Registers
	Usage

	Expansion of Special-register
	Syntax
	Parameters
	Usage

	ROWID Pseudo-column
	When to Use ROWID

	Expansion of rowid-pseudo-column
	Syntax
	Parameters
	Usage
	Examples

	Expansion of Value-expression
	Syntax
	Parameters
	Usage
	Examples

	Durations
	Labeled Durations
	Date Duration
	Time Duration

	Expansion of Labeled-duration
	Syntax
	Parameters

	Date/time Arithmetic
	Date Arithmetic
	Arithmetic with a Date and a Duration
	Time Arithmetic
	Arithmetic with a Duration and a Time
	Timestamp Arithmetic
	Precedence of Operations

	Expansion of XML-value-expression
	Syntax
	Parameters

	5: Functions
	Aggregate-function
	Expansion of Aggregate-function
	Syntax
	Parameters
	Usage
	Examples
	More Information

	Scalar Function
	Expansion of Scalar-function
	Syntax
	Parameters
	Usage

	CA IDMS Scalar Functions
	ABS-function
	ACOS-function
	ASIN-function
	ATAN-function
	ATAN2-function
	CAST-function
	CEIL or CEILING-function
	CHAR-function
	CHAR_LENGTH or CHARACTER_LENGTH-functions
	COALESCE-function
	CONCAT-function
	CONVERT-function
	COS-function
	COSH-function
	COT-function
	CURDATE-function
	CURTIME-function
	DATABASE-function
	DATE-function
	DAY or DAYOFMONTH-function
	DAYNAME-function
	DAYOFWEEK-function
	DAYOFYEAR-function
	DAYS-function
	DECIMAL-function
	DEGREES-function
	DIGITS-function
	EXP-function
	FLOAT-function
	FLOOR-function
	HEX-function
	HOUR-function
	IFNULL-function
	INSERT-function
	INTEGER-function
	LEFT-function
	LENGTH-function
	LOCATE-function
	LOG-function
	LOG10-function
	LOWER or LCASE-function
	LTRIM-function
	MICROSECOND-function
	MINUTE-function
	MOD-function
	MONTH-function
	MONTHNAME-function
	NOW-function
	OCTET_LENGTH-function
	PI-function
	POSITION-function
	POWER-function
	PROFILE-function
	QUARTER-function
	RADIANS-function
	RAND-function
	REPEAT-function
	REPLACE-function
	RIGHT-function
	ROUND-function
	RTRIM-function
	SECOND-function
	SIGN-function
	SIN-function
	SINH-function
	SPACE-function
	SQRT-function
	SUBSTR or SUBSTRING-function
	TAN-function
	TANH-function
	TIME-function
	TIMESTAMP-function
	TRIM-function
	TRUNCATE-function
	UCASE or UPPER-function
	USER-function
	VALUE or COALESCE-function
	VARGRAPHIC-function
	WEEK-function
	XMLPOINTER-function
	XMLSERIALIZE-function
	YEAR-function

	Expansion of User-defined-function
	Syntax
	Parameters
	Usage
	Examples
	More Information

	Expansion of XML-value-function
	Syntax
	Parameters

	XML Value Functions
	XMLAGG-function
	Syntax
	Parameters
	Examples
	XMLCOMMENT-function
	XMLCONCAT-function
	XMLELEMENT-function
	XMLFOREST-function
	XMLPARSE-function
	XMLPI-function
	XMLROOT-function

	6: Predicates and Search Condition
	Overview
	Expansion of Between-predicate
	Usage
	Example
	More Information

	Expansion of Comparison-predicate
	Syntax
	Parameters
	Usage
	Example

	Expansion of Exists-predicate
	Syntax
	Parameters
	Usage
	Example

	Expansion of In-predicate
	Syntax
	Parameters
	Usage
	Example

	Expansion of Like-predicate
	Syntax
	Parameters
	Usage
	Examples
	More Information

	Expansion of Null-predicate
	Syntax
	Parameters
	Usage
	Example

	Expansion of Quantified-predicate
	Syntax
	Parameters
	Usage
	Examples

	Expansion of Search-condition
	Syntax
	Parameters
	Usage
	Examples
	More Information

	7: Query Specifications, Subqueries, Query Expressions, and Cursor Specifications
	Query Specifications
	Expansion of Query-specification
	Syntax
	Parameters
	Usage
	Examples

	Subqueries
	Nesting Subqueries
	Outer References
	Correlated Subqueries

	Expansion of Subquery
	Syntax
	Parameters
	Usage
	Examples
	More Information

	Query Expressions
	Result of a Query Expression

	Expansion of Query-expression
	Syntax
	Parameters
	Usage
	Example

	Expansion of Cursor-specification
	Syntax
	Parameters
	Usage
	Example

	8: Statements
	Statement Categories
	Access Module Management Statements
	Authorization Statements
	Control Statements
	Data Description Statements
	Data Manipulation Statements
	Diagnostics and Statistics Statements
	Dynamic Compilation Statements
	Precompiler-directive Statements
	Session Management Statements
	Transaction Management Statements

	ALLOCATE CURSOR
	Syntax
	Parameters
	Usage
	Examples

	ALTER ACCESS MODULE
	Authorization
	Syntax
	Parameters
	Usage
	Examples
	More Information

	ALTER CATALOG
	Authorization
	Syntax
	Parameters
	Usage
	Example

	ALTER CONSTRAINT
	Authorization
	Syntax: ALTER CONSTRAINT
	ALTER CONSTRAINT Parameters
	Example: Alter the DEPT_EMPL Constraint

	ALTER FUNCTION
	Authorization
	Syntax
	Parameters
	Usage
	Example

	ALTER INDEX
	Authorization
	Syntax
	Parameters
	Usage
	Example

	ALTER PROCEDURE
	Authorization
	Syntax
	Parameters
	Usage
	Examples

	ALTER SCHEMA
	Authorization
	Syntax
	Parameters
	Usage
	Example
	More Information

	ALTER TABLE
	Authorization
	Syntax
	Parameters
	Usage
	Examples
	More Information

	ALTER TABLE PROCEDURE
	Authorization
	Syntax
	Parameters
	Usage
	Examples

	BEGIN DECLARE SECTION
	Authorization
	Syntax
	Parameter
	Usage
	Example
	More Information

	CALL
	Authorization
	Syntax
	Parameters
	Usage
	Example
	More Information

	CLOSE
	Authorization
	Syntax
	Parameter
	Usage
	Examples
	More Information

	COMMIT
	Authorization
	Syntax
	Parameters
	Usage
	Example
	More Information

	CONNECT
	Authorization
	Syntax
	Parameters
	Usage
	Examples
	More Information

	CREATE ACCESS MODULE
	Authorization
	Syntax
	Parameters
	Usage
	Example
	More Information

	CREATE CALC
	Authorization
	Syntax
	Parameters
	Usage
	Example

	CREATE CONSTRAINT
	Authorization
	Syntax
	Parameters
	Usage
	Examples
	More Information

	CREATE FUNCTION
	Authorization
	Syntax
	Parameters
	Usage
	Examples
	More Information

	CREATE INDEX
	Authorization
	Syntax
	Parameters
	Usage
	Example
	More Information

	CREATE KEY
	Authorization
	Syntax
	Parameters
	Usage
	Example
	More Information

	CREATE PROCEDURE
	Authorization
	Syntax
	Parameters
	Usage
	Example
	More Information

	CREATE SCHEMA
	Authorization
	Syntax
	Parameters
	Usage
	Examples
	More Information

	CREATE TABLE
	Authorization
	Syntax
	Parameters
	Usage
	Example
	More Information

	CREATE TABLE PROCEDURE
	Authorization
	Syntax
	Parameters
	Usage
	Example
	More Information

	CREATE TEMPORARY TABLE
	Authorization
	Syntax
	Parameters
	Usage
	Example

	CREATE VIEW
	Authorization
	Syntax
	Parameters
	Usage
	Examples

	DEALLOCATE PREPARE
	Authorization
	Syntax
	Parameters
	Usage
	Examples

	DECLARE CURSOR
	Authorization
	Syntax
	Parameters
	Usage
	Examples
	More Information

	DECLARE EXTERNAL CURSOR
	Authorization
	Syntax
	Parameter
	Usage
	Example
	More Information

	DELETE
	Authorization
	Syntax
	Parameters
	Usage
	Examples
	More Information

	DESCRIBE
	Authorization
	Syntax
	Parameters
	Usage
	Example
	More Information

	DESCRIBE CURSOR
	Syntax
	Parameters
	Example
	More Information

	DROP ACCESS MODULE
	Authorization
	Syntax
	Parameters
	Example
	More Information

	DROP CALC
	Authorization
	Syntax
	Parameters
	Usage
	Example
	More Information

	DROP CONSTRAINT
	Authorization
	Syntax
	Parameters
	Usage
	Example
	More Information

	DROP FUNCTION
	Authorization
	Syntax
	Parameters
	Example
	More Information

	DROP INDEX
	Authorization
	Syntax
	Parameters
	Usage
	Example
	More Information

	DROP KEY
	Authorization
	Syntax
	Parameters
	Example

	DROP PROCEDURE
	Authorization
	Syntax
	Parameters
	Example
	More Information

	DROP SCHEMA
	Authorization
	Syntax
	Parameters
	Usage
	Example

	DROP TABLE
	Authorization
	Syntax
	Parameters
	Usage
	Example

	DROP TABLE PROCEDURE
	Authorization
	Syntax
	Parameters
	Example
	More Information

	DROP VIEW
	Authorization
	Syntax
	Parameters
	Example

	END DECLARE SECTION
	Authorization
	Syntax
	Parameter
	Example
	More Information

	EXECUTE
	Authorization
	Syntax
	Parameters
	Usage
	Examples
	More Information

	EXECUTE IMMEDIATE
	Authorization
	Syntax
	Parameters
	Usage
	Example

	EXPLAIN
	Authorization
	Syntax
	Parameters
	Usage
	Examples

	FETCH
	Authorization
	Syntax
	Parameters
	Usage
	Examples
	More Information

	GET DIAGNOSTICS
	Syntax
	Parameters
	Example

	GET STATISTICS
	Syntax
	Parameters
	Example

	GRANT Access Module Execution Privilege
	Authorization
	Syntax
	Parameters
	Usage
	Example
	More Information

	GRANT Definition Privileges
	Authorization
	Syntax
	Parameters
	Usage
	Example
	More Information

	GRANT Table Access Privileges
	Authorization
	Syntax
	Parameters
	Usage
	Example
	More Information

	INCLUDE
	Authorization
	Syntax
	Parameters
	Usage
	Examples
	More Information

	INSERT
	Authorization
	Syntax
	Parameters
	Usage
	Examples
	More Information

	OPEN
	Authorization
	Syntax
	Parameters
	Usage
	Example
	More Information

	PREPARE
	Authorization
	Syntax
	Parameters
	Usage
	Examples
	More Information

	RELEASE
	Authorization
	Syntax
	Usage
	Example
	More Information

	RESUME SESSION
	Authorization
	Syntax
	Usage
	More Information

	REVOKE All Table Privileges
	Authorization
	Syntax
	Parameters
	Usage
	Example
	More Information

	REVOKE SQL Definition Privileges
	Authorization
	Syntax
	Parameters
	Usage
	Example
	More Information

	REVOKE Execution Privilege
	Authorization
	Syntax
	Parameters
	Usage
	Example
	More Information

	REVOKE Table Access Privileges
	Authorization
	Syntax
	Parameters
	Usage
	Example
	More Information

	ROLLBACK
	Authorization
	Syntax
	Parameters
	Usage
	Example
	More Information

	SELECT
	Authorization
	Syntax
	Parameters
	Usage
	Examples
	More Information

	SET ACCESS MODULE
	Authorization
	Syntax
	Parameters
	Usage
	Example

	SET host-variable Assignment
	Syntax
	Parameters
	Usage
	Example

	SET SESSION
	Authorization
	Syntax
	Parameters
	Usage
	Examples
	More Information

	SET TRANSACTION
	Authorization
	Syntax
	Parameters
	Usage
	Example
	More Information

	SUSPEND SESSION
	Authorization
	Syntax
	Usage
	Example
	More Information

	TRANSFER OWNERSHIP
	Authorization
	Syntax
	Parameters
	Usage
	Examples
	More Information

	UPDATE
	Authorization
	Syntax
	Parameters
	Usage
	Examples
	More Information

	WHENEVER
	Authorization
	Syntax
	Parameters
	Usage
	Example
	More Information

	9: Control Statements
	Overview
	SQL Control Statements
	CALL
	Authorization
	Syntax
	Parameter
	Usage
	Example

	CASE
	Syntax
	Parameters
	Usage
	Examples

	Compound Statement
	Syntax
	Parameters
	Usage
	Example

	EXEC ADS
	Syntax
	Parameters
	Usage
	Example

	IF
	Syntax
	Parameters
	Usage
	Example

	ITERATE
	Syntax
	Parameters
	Usage
	Example

	LEAVE
	Syntax
	Parameters
	Usage
	Example

	LOOP
	Syntax
	Parameters
	Usage
	Example

	REPEAT
	Syntax
	Parameters
	Example

	RESIGNAL
	Syntax
	Parameters
	Usage
	Example

	RETURN
	Syntax
	Parameters
	Usage
	Example

	SET Assignment
	Syntax
	Parameters
	Usage
	Example

	SIGNAL
	Syntax
	Parameters
	Usage
	Example

	WHILE
	Syntax
	Parameters
	Example

	10: Accessing Non-SQL-Defined Databases
	Correspondence between SQL and Non-SQL-defined Entities
	SQL Schema Considerations
	SQL DML Statements Operating on Non-SQL-defined Records
	SQL Access to Non-SQL Databases
	SQL Schemas for Non-SQL Databases
	Non-SQL Record and Set Name Transformations
	Non-SQL Element Name Transformations
	Definition Anomalies of Non-SQL Record Types

	Expansion of Extended-search Condition
	Syntax
	Parameters
	Usage

	Expansion of Set-specification Statement
	Syntax
	Parameters
	Usage

	11: Defining and Using Table Procedures
	When to Use a Table Procedure
	Defining a Table Procedure
	More Information

	Accessing a Table Procedure
	Table Procedure Parameters
	WHERE Clause References
	Parameters in Table Procedure References
	Statistics and Optimization

	Writing a Table Procedure
	Calling Arguments
	Table Procedure Requests
	Parameter Arguments
	Instance Identifier
	Local Work Area
	Global Work Area

	12: Defining and Using Procedures
	When to Use a Procedure
	Defining a Procedure
	More Information

	Invoking a Procedure
	Procedure Parameters
	Parameters in Procedure References of the SQL CALL Statement
	Parameters in Procedure References in Query-specifications and SELECT Statements
	WHERE Clause References

	Writing an External Procedure in COBOL, PL/I or Assembler
	Calling Arguments
	Parameter Arguments
	Local Work Area
	Global Work Area

	Writing External Procedures as CA ADS Mapless Dialogs
	Mapless Dialog
	Work Records
	Additional Records

	13: Defining and Using Functions
	When to Use a User-Defined Function
	Defining a Function
	More Information

	Invoking a Function
	Writing an External Function in COBOL, PL/I, or Assembler
	Calling Arguments
	Parameter Arguments
	Local Work Area
	Global Work Area

	Writing External Functions as CA ADS Mapless Dialogs
	Mapless Dialog
	Work Records
	Additional Records

	14: Considerations for SQL-invoked External Routines
	Special Considerations for SQL-invoked External Routines
	Environment Independence
	Transaction Management
	Suspend/Resume
	Error Handling
	Datetime Parameters
	Transaction Mode
	DC/UCF Program Definition
	Compile and Link Options
	COBOL Working Storage

	Debugging Procedures
	Database Name Inheritance
	Transaction Sharing

	15: XML Publishing Using SQL
	XML Publishing
	SQL/XML Functions
	More Information
	XML Data Type and XML Values
	Syntax
	Mappings
	Mapping Plain Text SQL to XML
	Mapping SQL Identifier to XML
	Mapping SQL Data Type Values to XML Schema Data Type Values
	Example

	XMLSLICE Table Procedure
	Syntax
	Parameters
	Examples

	A: Summary Comparison to SQL Standard
	SQL Standard Basis
	Additional Statements in CA IDMS
	Additional Parameters and Capabilities in CA IDMS

	B: Summary of Limits
	Logical Data Limits
	Data Type Limits
	Host Variable Limits
	Syntactic Limits

	C: SQL Communication Area
	SQLCA
	Structure

	SQLSTATE
	SQLSTATE Values
	SQLSTATE Values

	SQLCODE
	SQLCODE Error Values
	SQLCODE and SQLCNRP Values
	COBOL/CA ADS SQLCA
	PL/I SQLCA

	D: SQL Descriptor Area
	SQLDA
	SQLDA Fields
	SQLVAR Fields
	Notes

	SQLLEN
	SQLTYPE
	SQLSCALE
	SQLPRECISION
	SQLALN and SQLNALN
	SQLNULL

	E: SYSTEM Tables and SYSCA Views
	Overview
	SYSTEM.AM
	Description

	SYSTEM.AMDEP
	Description

	SYSTEM.AREA
	Description

	SYSTEM.BUFFER
	Description

	SYSTEM.COLUMN
	Description

	SYSTEM.CONSTKEY
	Description

	SYSTEM.CONSTRAINT
	Description

	SYSTEM.DBNAME
	Description

	SYSTEM.DBSEGMENT
	Description

	SYSTEM.DBSSC
	Description

	SYSTEM.DBTABLE
	Description

	SYSTEM.DMCL
	Description

	SYSTEM.DMCLAREA
	Description

	SYSTEM.DMCLFILE
	Description

	SYSTEM.DMCLSEGMENT
	Description

	SYSTEM.FILE
	Description

	SYSTEM.FILEMAP
	Description

	SYSTEM.INDEX
	Description

	SYSTEM.INDEXKEY
	Description

	SYSTEM.JOURNAL
	Description

	SYSTEM.LOADHDR
	Description

	SYSTEM.ORDERKEY
	Description

	SYSTEM.SCHEMA
	Description

	SYSTEM.SECTION
	Description

	SYSTEM.SEGMENT
	Description

	SYSTEM.SYMBOL
	Description

	SYSTEM.SYNTAX
	Description

	SYSTEM.TABLE
	Description

	SYSTEM.VIEWDEP
	Description

	SYSCA Objects
	SYSCA Views
	Tables that You Can Access
	SYSCA View Names
	Example
	SYSCA Other Objects
	SYSCA Pseudo Table SINGLETON_NULL

	F: Index Calculations
	INDEX BLOCK CONTAINS
	DISPLACEMENT
	Index Displacement
	Table Displacement

	G: Sample COBOL Table Procedure
	Sample Table Procedure Definition
	Sample Table Procedure Program

	H: DISPLAY and PUNCH Syntax
	DISPLAY and PUNCH Syntax
	DISPLAY and PUNCH Operations
	DISPLAY/PUNCH ALL Statement
	Syntax
	Parameters
	Usage
	Example

	DISPLAY/PUNCH ACCESS MODULE
	Authorization
	Syntax
	Parameters

	DISPLAY/PUNCH CALC KEY
	Authorization
	Syntax
	Parameters

	DISPLAY/PUNCH CONSTRAINT
	Authorization
	Syntax
	Parameters

	DISPLAY/PUNCH FUNCTION
	Authorization
	Syntax
	Parameters
	Example

	DISPLAY/PUNCH INDEX
	Authorization
	Syntax
	Parameters

	DISPLAY/PUNCH KEY
	Authorization
	Syntax
	Parameters

	DISPLAY/PUNCH PROCEDURE
	Authorization
	Syntax
	Parameters

	DISPLAY/PUNCH SCHEMA
	Authorization
	Syntax
	Parameters

	DISPLAY/PUNCH TABLE
	Authorization
	Syntax
	Parameters
	Usage

	DISPLAY/PUNCH TABLE PROCEDURE
	Authorization
	Syntax
	Parameters

	DISPLAY/PUNCH VIEW
	Authorization
	Syntax
	Parameters
	Usage

	I: Sample COBOL Procedure
	Sample Procedure Definition
	Sample Procedure Program
	Sample of Procedure Invocation

	J: CA IDMS Scalar Functions
	Overview
	Functions

	K: Sample COBOL Function
	Sample Function Definition
	Sample Function Program
	Function Invocation

	L: Sample CA ADS Procedure
	SQL Procedure Example
	Work Records
	Premap Process
	Procedure Invocation

	M: Sample CA ADS Function
	SQL Function Example
	Work Records
	Premap Process
	Function Invocation

	N: SQL Cache Tables
	Overview
	Tables for Viewing, Monitoring, and Controlling the Cache
	DSCCACHEOPT
	DSCCACHECTRL
	DSCCACHE
	DSCCACHEV
	Allowable Operations on DSCCACHE Tables

	Examples of Displaying and Controlling the Cache
	CACHE Options
	CACHE Control Parameters
	CACHE Entries

	Secure the Display and Changes

	O: Enhancing the Presentation of Access Strategy Information
	Overview
	Contents of EXPLDDL

	P: SQL Reserved Words
	Q: CA ADS, COBOL, PL/I Data Types
	R: Third-Party Acknowledgment
	Index

