CA IDMS™ SQL

Programming Guide
Release 18.5.00

tec ies

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for yourinformational purposes onlyandis subject to change or withdrawalby CAatanytime. This
Documentationis proprietaryinformation of CAand maynotbe copied, transferred, reproduced, disclosed, modified or
duplicated, inwhole orin part, without the prior written consent of CA.

If you are a licensed user of the software product(s) addressed in the Documentation, you may print or otherwise make
available a reasonable number of copiesof the Documentation forinternal use by you and your employeesin connection with
thatsoftware, provided that all CA copyright notices and legends are affixed to each reproduced copy.

The rightto print or otherwise make available copiesof the Documentation is limited to the period during which the applicable
license for such software remains in fullforce and effect. Should the license terminate foranyreason, i tis your responsibility to
certifyin writing to CAthatall copies and partial copies of the Documentation have beenreturnedto CA ordestroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CAPROVIDES THISDOCUMENTATION “AS 1S” WITHOUTWARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FORA PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILLCABE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THISDOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IFCA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCHLOSS OR DAMAGE.

The use of anysoftware product referencedinthe Documentationis governed by the applicable license agreement and such
license agreementis not modified inanywaybythe terms ofthis notice.

The manufacturer of this Documentationis CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Governmentis subject to the restrictions
setforth in FARSections 12.212,52.227-14,and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
theirsuccessors.

Copyright © 2013 CA. All rights reserved. All trademarks, trade names, service marks, and|ogos referenced hereinbelongto
theirrespective companies.

CA Technologies Product References

This guide references to the following CA products:

m CA ADS™ For CA IDMS™

m CA ADS™ Option for APPC

m CA ADS™ Batch Option

m CA ADS™ Alive Option

m CA ADS™ Trace Option

m CA IDMS™ DatabaseDictionary Module Editor Option

m CA IDMS™ DatabaseDictionary Migrator Option

Contact CA Technolodies

Contact CA Support

For your convenience, CA Technologies provides one sitewhere you canaccess the
information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

m Onlineandtelephone contactinformation for technical assistanceand customer
services

m [Information about user communities and forums
m Product and documentation downloads
m CA Support policies and guidelines

m Other helpful resources appropriate for your product
Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
cansend a message to techpubs@ca.com.

To providefeedback about CA Technologies product documentation, complete our
shortcustomer survey which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://ca.com/docs
http://ca.com/docs

Documentation Chandes

The following documentation updates were made for the 18.5.00 release of this
documentation:

m Requirements and Options for Host Languages (see page 87)—This chapter now
indicates thatthe use of embedded SQL requires a full SQL license.

Contents

Chapter 1: Introduction 11
WHO ShOUIT USE THiS GUIE ..ottt sttt st ettt sttt b et bbb et ekttt e st et e et st e bane s ee 11
SYNtaX DIagram CONVENTIONSccuiiuiiiiieiteererert ettt ettt sae s e s s et e et e st et e beshe s st e st et et e sensessesseeseessentantensansassenes 12
Chapter 2: SQL Application Development in CA IDMS 15
ACCESSING DAt USING SQL...uiiieiiriiriiiieeecerteeeee ettt sttt ettt e b s b s b e et sae st e s b e sae s st e st e st eneeat e b esbanbesate st et enbensensessaneen 15
SQOL DATA ACCESS..cueveuierieeeuenirteteitseetststebeseststeseststssebest st ebe st st st eseae st et esest st ssebentsbeben et et eseae st e b e b et b eaese st ebebe st sbebentatebebesenentesanens 15
(gLl AV 00T 1] o =T g) £ OO RPN 17
AccessSing NON-SQL DefiNed Databas 5covuiieirririeeririeeererie ettt ettt se et s e n s 19
SQLAPPIICATON DEVEIOPIMENTveveeitiieteetete ettt st e et e e et et e et e e e se st ese et e s ese et esseseebeseebesseneebassesssseneetestenseseaansnsanes 21
LV B g d g T=I Y T o Lo o] o OSSR 21
Creating EXECUTADIE IMOTQUIES ..ottt et a bt e b et e e et et e se et enaebesene et e bennnsenes 22
EXECULING Th @ APPIICATION .ottt ettt b et b et et s b et e b et eaesb et e e saansenetans 25
Testing and Debugging the APPIiCatiON ...t e e ae s sesaens 26
Chapter 3: Writing an SQL Program 27
Accessing One or More Databases With SQL........coeiireiriniiinenieine sttt sae e sae e s e sse e s s sse e ssessenessans 27
HOST VATIADIES ...ttt sttt ettt b e st b bt s a ket bea et et e he e et e b ese e st e ket e et ebeae e ebeae s ebebenens 27
SQL D ECIArE SECLIONS ...ttt ettt st se et se st aesese st et eseae et eseae st et esa et esesensssebenesensenensesessannsssesanens 29
INCLUDE TABLE Dir@CHI VO .uectieuteietetestesiesiesee et e ste e s e s e s e ste s e st e saestessesaesses e st st et essassassesssessensensensessessessesssessansansassessense

Referring to Host Variables
Local Variables and Routine Parameters

QL SESSTOMNS ...ttt ettt et et s et e bt e s b et euesae et e st e se e e st e e st ea et e st se e e ae b e e e Rt s ea e e b et eR e b e ae e At eE et R e e eatebe e eae et et he b et eaeseeneneenes 34
Beginning and ENAiNG an SQL SESSION ..c.civiiiirieieiiieesie sttt ste ettt sttt s sa e s s e e s s e saessesessessssessesesssnsssensans 34
Database TraNS@CH ONS ...c.ccivieueiiirieteeer ettt ettt ettt ettt et be ettt btk e etk e s e st et ebe et e b ebe et e be e st e ke se e st ebenenestetanens 36
Managing Nonshareable Transactions ..36
Sharing TranSactioNs AMONE SESSIONS....c.cciciiirieerrerteesteteee e este s te et e s este e e s esaesesteseesestese st esaaseesarsesessenestersesessanes 38
Effect of Teleprocessing StatemMeNnts aNd EVENTScccevveieieiieeiieiee ettt te ettt esse s esessesesae s esesaenseressesessesesesans 41
Concurrency Control and ISOIAtiON LEVEIScccvieririeiieeresteiees ettt ettt se et a et e s esesse e e se st enesteaenessanes 45
SQL Status Checking and Error HaNAIiNG.......c.co ittt ettt ettt a e et e b e s ae st e e ebe e eneesenes

Displaying SQL Communication Area Fields
[Tl o - 1T |11 oV OO 54
Checking Specific Errors
Using GET DIAGNOSTICS

Contents 5

Chapter 4: Data Manipulation with SQL 57

Data Manipulation Operations

L Y R = DT | - OO PRSP
Fa¥o Lo [oY= 0 - PSR TTSTOORSTRPRRRRRt
MOGITYING DA oeueetiieeieieieietee ettt ee et e e e et e e e be e et et ebe st ese et et ese et eseebeebassebe s essesansesesbessesassassesensesestansesensesesaansesentans 62
DEIELING DATA ..ttt ettt s e R s e R R R ARt e R e Rt E Rt r Rt nen et ne 64
Using Indicator Variables in Data ManipulatioN. ...ttt e e sa e s b se s resassesessans 65
USTNE @ CUMSOF ...ttt ettt et h ettt b s ae et et et et et e b e e b e e bt s he e b e sb e s b e e st e Rt e Rt e a e e at e b e b e st eae e a e et et e besbesbesbeeaeenbasassessennes 67
DECIATTNE @ CUISOF uiuiiuieieieeeirieeetetetiste e este s teseesestesee e seesessesesessaseeseseesessaseesessessesessasessessesessas e et eseesessentesessansesensasessansasesans 67
FEECITNE @ ROW .ttt ettt e e st ettt et e e b et e be et e sseaeebe st ebe b eseesensese st ens et enbessesensesesbansesesseseseansasentans 68
Executing a Positioned UpPdate O DEIELEccceviiieirieieeeeees ettt sa e se e s s et se e se st e e saassesesans 72
BUIK PrOCES SINE.uiitiiitieieiiicteeste et e ettt ettt e e et e b e e et e e e se st e e et e st ese et eseeb e b ensese st ens et ansese st ese et et asseseataseebensesesansesensasesseseseatans 75
EXECULING @ BUIK FEECH ..ttt ettt ee 76
EXECULING @ BUIK SEIECT....etiieeicieeeeeeeee ettt ettt ettt e e b e e be e e s e s b e s e et et esesteneebe s essesesanessensasensans 80
EXECULING @ BUIK INSEIT..uiuiieiieiiiiieieiieietctete ettt e e ettt s e ettt s e e e st e s e e et e sase st s s esane e et esene st esenesesesenensesasensnes 81
INVOKING PrOCEAUIES ...cveeeiiieeiietetiteestes et te st te st st et e e st e e et e e e b e tese st esee s et eneebesaeseesessase st ansesessase et enseseesensaseasansesensasessansnsensans 83
CALL STAtEIMENT ..ttt ettt b e s b e s bt et e e e sb e s b e b e e b e e b e e bt e ae e ab e sbesbesbe e st ent et et e b asbasbeenis 83
SELECT STAtEMENT ..ttt ettt ettt e e et e e st s et e R et e st s e se e st s b e e eresae e e b e e enennenis 84
Chapter 5: Requirements and Options for Host Languages 87
USiNg SQLIN A CA ADS APPIiCaTiON...ciitiiiieieieieeret ettt sttt st sa e e st e e et ese b esesae st ssesenessensesessensenesans 87
Embedding SQL Statements
DEfiNiNG HOST VATiabIES .ottt ettt sttt st e et st ese et et e se et e se et esesenensesasnnsees
Referring to Host Variables
INcluding SQL COMMUNICATION AFAS....cuiicieieiiieieeeeee e ste e ste e e ste e s te e teste s ebe st essebe s esesbessesassesessentessstassesensessssansesensans 95
Using SQLiNna COBOL APPliCatioN PrOSram ... ciereerirenieieenieeeesesee et sse et ses s sssenenesssseneas 97
Embedding SQL Statements
DefiNiNG HOST VATiablESuuieiicieeeee e e ettt
Referring to Host Variables
INCluding SQL COMMUNTCATION AIBAS....cuccivireeierirerieiiirietetsteteesesteeeesesee e et sseeesasse et ssesssessssesesensssensnsssessnsssssesenensesesen 111
Copying INformation from the DiCtiONary. ... ettt e s e sae s s eneesesean 113
COPY IDMS FILE Statement
COPY IDMS RECORD Stat@mMENt.......ccooviiiieireeeeee ettt et ettt n et et
COPY IDMS MODULE SEATEMENT ..cuiieeiiirieieiierteieeeie ettt st ettt ettt sttt st be et st b et stebe ettt e et st eseaesstesenens
INCLUDE Module-name Statement
NON-SQL PrecOmMPIilEr DIFECLIVEScoeueuiiririeieirirteie sttt ettt sttt sttt be et se et se b et seebe et st esenenssaean

Using SQLina PL/I Application Program
EMD dding SOL STAt@MENTSccvreeieiiieicerirte ettt ettt st s et s b e bt se b et esesenesenenen
DEfiNING HOST VATADIES ...cuiieieieiee ettt ettt ettt et et e be s be b ebe st essebenaebestensebe st ensesenbeneesansesenes

REFErriNgG 10 HOSt VAriabl @Sooueuiieiieiiece sttt ettt et s e sa e e st e e e sesae e enesaentesenes
INcluding SQL COMMUNICATION AFAS....cuiicieieiieieieieeereserte e stee e e ste e te e e ste e ebesteseste s ebestesestessebassessesestansesensesessansesanes 125

6 Programming Guide

Including Information from the DiCtiONAIY. ...ttt re bbb b s b e s aes 127
INCLUDE IDMS Record Statement

INCLUDE IDMS MO DULE STAatEMENT .c.vuiuiieieieiieteietriet sttt ettt st st ettt sttt ebe et sbebe et et esanenseaenan 128
INCLUDE MOdUIE-NamME STAtEMENT ..ottt sttt ettt be et s se e se s e s aenes 129
NON-SQL PrecOmMPIilEr DIFECLIVEScoeueuiiririeieirtrietestriett sttt sttt sttt se bt a b et seebe et st esenensssean 130
Chapter 6: Preparing and Executing the Program 131
Creating an Executable Form
PrECOMPIliNG The PrOSrami. .. ettt ettt et e et e et st e e et et ese st eseeseebansebesbessebensebesbenseteebensesessesessensesenes
ADOUL the PraCOMPI LN ..ottt sttt st st b et e b et s b e e e se s e et e b e e esesbe st eaessentenesansesenes
g =ToloYaa Vo RN =T @1 o] K] o Ty
COMPITING TNE PrOZIamM c.cucieieeeieieieieirie ettt et e et e et ae et se et e e et e s ese e st e s ase e st esesess et ese e et esesesessesanensesenerseseseassensesnnensesasn
Creating the ACCESS IMOUUIE.....c.iicicceeres ettt b et e e e s e et e s et e ne et et e s et eneebenseseesessesessesenserean
Overriding ACCESS MOAUIE DEFAUITS.......c.ceeuiieiiieeecete ettt ettt e bt e et e e eseebe st ensebessebesaensetansesenean 139
AIErTNG N ACCESS IMOUUIE ...ttt et sttt et e e b e s e se s b et e s e s ene s b e e esesaensenessansesnass 143
EXECULING Th @ APPIICATION .ttt ettt et e ae st e s e se s b e asebesbeseebensebesbens et e benseaetesessenserenes 144
TESTING the ACCESS IMOTUIE......e ettt ettt st b et e e b et b s se s e st e rene s ne 145
DEDUEEING th @ APPIICATION vttt e st a ettt aeae st e e e et essebe st asesbensebebene et asbensesessesessenserenes 146
COMMANG FACHITY veviiieieiierieteer ettt sttt e et e se et e se et eaese e et ebese st sse et ssesenereetesansnsssesanens 146
SQL TraCE FACHTTY cveueirieteiierieieeeeteiet ettt ettt a ettt b et b e st ebe st s b et sbebe et st eneaeenbesenens 147
EXPLAIN STat@MIENT ...ttt sttt ettt eb e e b e bt e ae st et et e b e b e sb e s at et et e b e b e b e beebeenes 148
(@ LY T TS D= o TUT =4 = =T SO USROS 148
Chapter 7: SQL Programming Techniques 151
MOdUIATIZEA PrOGramIMiNG.....c.cccieieueiririeienireerestsee ettt ettt s e et e s a st e b e st s s e e s e e e s e st se b eseaesenrenenenne 151
SRATINE @ CUISOI ittt ettt e sttt et s b e e et e et e s e e s et e se et et ese s ese e s e st esees et eseebeseese st eseesasseneebesteneesensesessenestensesentan 151
Using the SET ACCESS MODULE Stat@MENTccceeiririeieirieieereeieeesesieteestsasseesestessseesesssessssssesessssessssssssensssssessssssesssen 155
Pseudoconversational Programming
Using SUSPEND SESSION and RESUME SESSIONcoeiiririeiieririeenesieetsesiesesesteteesesessesesessesesessssesensssssesssssesesensessnen 157
SCrolling ThroUgh @ LiST Of ROWS ...cvciiuiiiiiciccsest ettt sttt et et e e e et e e s b esene st aneeseann 158
Updating @ ROW After @ PSEUUOCONVEISEcecuieiiieiiieririeeetetete e ste e teee e ste e tesaesesse s esesaesessasassesaesessensassssensesessansesenes 159
MaNaGiNg CONCUITENT SESSIONScoviiieririeriiriteteteeste ettt ettt ettt et et e b et e sbesbesbe et ebessessesse s st eneeneententesresaesneentent
Session Management Concepts.......
Implementing Concurrent Sessions
Creating and Using @ TemMPOrary Tabl@ ..ttt sttt s s b sa e s s se e s b e ssesestaseesesen
Bill-Of-Materials EXPlOSION....ceciiieiiieieteieee ettt ettt e e et st e et et ese st e seeaeebansebesbensebensebebensetestensesesesessansesenes
W0 DO ettt ettt et b e R Rt e s e e R et e bt E R e Rt e R et E s e s s enene e

Sample Program....

Contents 7

Chapter 8: Using Dynamic SQL 181

Dynamic SQL
Dynamic Insert, Update, and Delete Operations

USING EXECUTE IMMEDIATE ...ttt ettt ettt st se e e s et e et sbe st se b e st st s s e st st ssebe et ebeseaesesbenentesenenensesenn 183
USTNE PREPARE ...ttt ettt ettt ettt s et st ekttt e et be s et e b e st s e et e et et e bese e et ek et st e ke ne s st ebe et et ebanensesann 184
USTNE EXECUTE ..eiuitetiiieteteertsteteestste et e st sts e e ssses s sesaseseetesasessssssasessesasessssasensssnsasessnsesssensssesensssesesensssesenssnsesesensssnnes 186
Executing Prepared SELECT STAtEMENTS ..ottt te sttt e e st se st e s ese st e e ebesbanaesesbesnesessesessensesenes 187
WWHAT 10 DO ettt ettt et sttt et s e s stk a s et ke et s e s ese st et e sese s e e et ane s ese e et e b ene e ne et enene et esenensesennnens 187
T Y 00 o =N 2 oY= - s OO USROS 189
EXecuting Prepared CALL STAtEMENTS ...ttt te et e e e e sba st et e e s beseebe st esestebesesbansesessessebensesessensesness 193
WA 0 DO ettt ettt a bt E s e st s e e b et b e be et e b e st e e b e s et et enene s enenenens 193
T Y 00 o K=l 2 oY= - s OO USROS 194
DYNAMIC SOL CACRING .ttt st b et E st na b e s e s e s et e b se e neerene e s ne 198
SEATCNING thE CACRE .ttt e et e e e se st e e e b e s ese et eseeaesteseesesaeneeteneeserean 199
Impact of Database Definition ChangeS.......cccv ettt st sa st sa s eannan 200
(@foT ol o 1L qY = o[=Y o o =TSRRI 201
Appendix A: Sample JCL 203

Appendix B: Test Database 217
Table Names and DESCIIPTIONScccviieieiiecieeeee ettt et et e et e et e st e se et e e ebe st e e et e s eseebesbesesbassesestessesensesestesteseetanseseass 217
ASSTGINIMIEENT ...ttt ettt et e te e e et ese e et e e e e s se e et e sasesaeesseease e se e seeseeseesseenseensesaseansesneanseesnsesasesneesnsesseesseenseansessnsanns 217
BENEFITS ettt ettt st s e st e st e st e st e eaesatesae e saaesse e s s e e be e beesas e s st enbe e be e b e s s eeasesasesaseenseeaseeasesasesatenasesanesasasasesnsans 218
CONSULTANT ettt ettt ste st e st e st e et e st e st e s e e ae e st e e e e saae s s e e seesae e se e e e sseeesseenseansesaeesasesaeesseasseeseesaeessaanse e seanseenseensesnseanses 218
COVERAGE ..ottt ettt ettt et ettt s e s a e s e s b s b e e b e e bt e st et et e e e s be e st e st e st e e e e e s b e s be e s e e st et e banbenbesbeesesstetensensesansseeneen 219
DEPARTIMIENT ..ceiteeteeteeee ettt st s te st s te st e s e e st e s aeesbe e s aeesaeesaeessa e se e se e seaneeesse e se e s e aaseeneesasesaeeeateaaseensenaseensesasesanesssanaeesnsens 219
DIVISION. c.t ettt sttt sttt et estesresaesae e b e s e s s e sbesbesbe s st e st e st estesbesaesae e st et et ens e s e senbe st et et e s essesaesseeateneentensansansassesnns 219
EIMIPLOYEE ...ttt ettt ettt s e st st e s e st et s et e s ae e st e e s be e ae e b e e sesab e e ae e s e e e be et e e aseentesaseeae e e beaaseentesasee st esasesanessaesasesasens 220
EXPERTISE ...ttt ettt bbb bbb bbb bbbt s ettt e et e ettt e et es 220
INSURANCE_PLAN ...etiteittecteeteeste st st stesteste st e st esteesaeesbeesueessaessessseessesnsessesaseensesssesnsesssesnsesnsesssesssesaseensesasesnsessseseessnens 220
JO B ettt ettt e et e e te et e et e sae e b e e et e heeaaeeate e At e teeteete e teeteeteeaeeateeateeaeeereeeteenteeaeennaenreanne 221
POSITION ettt ettt st sttt st e stestesaesae s st e st e s b e sbeebesbe s st e st e st et et e saeeae e st e e e s e s e banbeebe e st e st et et esaessesseeaeeneenaensesbassensesnns 221
PROUJECT ettt sttt sttt e st e st st st e s aa e s b e e aesaeesaeesaeesae e s e e s be e s s e e b e e st e b e e seeateeaseeaeesaseease e teaateeatesasesatenanasaneentesasesntens 222
SKILL . ettetetetetetetetetstete ettt ettt ettt bbbkt bbb se s e s besese s besese s e s e et e et A At AR s ettt ettt b bbbttt bt 222
Q=T D - | - [OOSR PP PRPORTOOE 222

8 Programming Guide

DEPATTMENTS .ttt et e s e et e st e st e s ae e s aaesbe e be e b e e e e e sb e e be et e e b e e ee e et e e aeea e e e be et e et e et e saneeaaesaaenaeeeateen 223
Divisions

JODIS ettt E et e et e e Rt A et e R e A e Rt h e e e Re et et e Rt A et e A et e Rt A et b et e ae e b et e neese s enessenteaenes
Lo] =101 £ OO OO OO OO OSSO RSOOSR
SKIIS cuueteteteetetetes sttt ettt st et ettt et sa et e e s ae b e e et e s e et eRe st e e e s e e e A e s en e ke Re Rt A ke R et A e R e et oA e Re e e A ek ene et ebe et et ettt eneaentetenanens
Test Database DDL
DEIMO DAt . et b et b e R b e b e b e b e e R e e e b e be b e bt e bt e Rt e Rt et et e b e s b e nbesresaeent
Appendix C: Precompiler Directives 283
Overriding DDLDML Ar€a REAAY IMOUEucviuieiiiiiiieiesteieee ettt e e st be st e et e s ebe st e e be st eseebesaesesbeneebesseneesanaasensn 283
SYNEAX cttetetetete ettt ettt ettt et b e sttt et h e h e e R e ARt e R e h e he b e e Rt e Rt e A e e R e e e e b e R e Re e Rt et et e benbenhenhesRe e Rt e benrensesaeeneeneen 283
PAF@MEBLEIS ..ttt ettt bRt h e et R R R R R e e Rt e st R e e Rt eeae et R e n e nnaee 283
NO Logging Of Program ACTiVity STatiSTICS ..ceiiiicieieiieieteciee ettt ettt sttt e st ese s be et e b et eseebe s ese s esessanneranes 284
SYNEAX tutetetetertes sttt sttt ettt ettt et et be st et et e e e e b e e R e R e e Rt e Rt e A e b e b e he s Rt e Rt e R e e e e e e b et e Rt et et e benbenhenseeae s Rt e bensenresaeeneeneen 284
LR T 1 0= =T PO SO OO 284
GENErating @ SOUICE LISTING...cucciiiiireeeeeet ettt ettt st n et sa e s n e e enenees 284
S NTAX caetitteieeeteeite ettt e st e te et e e st e st e st e e s ae e st e s e e s ha e bt e nR e e b e e bt et e e he et e et e et e e et e e ate s At e Rt e ee s e teeaeena e e Rt e be e be e re e teenneenre e reenres 284
PATAMELEIS ..ot ettt ettt b bt e et e b e b e R e R e e R e e Rt e Rt e b e e hesheea e e Rt et et et et e nbeeheeaeeaes 284
U @B cuiiutitiriesiesie st st st st s bt s e st e bt et et ettt e s ae s a e e st et et et et e b e b e ke e R e e R e oA e e e e nEe R e e Rt oAt oAt e Rt e Rt et e nheehe e Rt e R e et e e e e e e e s be e Rt et et et e tentenbenresrene 285
Index 287

Contents 9

Chapter 1: Introduction

This section contains the following topics:

Who Should Use This Guide (see page 11)
Syntax Diagram Conventions (see page 12)

Who Should Use This Guide

This guide is for CA IDMS users who are responsiblefor designing and developing
application programs usingembedded SQL. It also documents aspects of CA IDMS that
are specifictoapplication programming with SQL, including precompiler options and
data type conversions between the databaseandthe program language.

Users of this guide should be experienced inusingthe programlanguage and should
have a working knowledge of SQL. Users should also befamiliar with concepts of CA
IDMS.

For users new to SQL, completion of the CA IDMS SQL Self-Training Guide is
recommended before usingthis guide. For more information, see the CA IDMS Release
Summary.

How examples are presented in this guide
All program examples are in COBOL unless otherwise indicated.

Most examples of access toan SQL-defined databaserefer to a test databaseof
employee informationthatis supplied as partof CA IDMS installation. Partial
documentation of this databaseappearsin Test Database (see page 217).

The term CAIDMS is used to refer to any one of the following CAIDMS components:
m CAIDMS/DB—The database management system

m CAIDMS/DC—The data communications systemand proprietary teleprocessing
monitor

m CA IDMS UCF—The universal communicationsfacility for accessing CA IDMS
databaseand data communications services through another teleprocessing
monitor, such as CICS

m CA IDMS DDS—The distributed databasesystem

The actual productnames are used for CA IDMS/DB, CA IDMS/DC, CA IDMS UCF,
DC/UCF, and CA IDMS DDS to identify the specific CAIDMS component only when itis
important to your understanding of the product.

Chapter 1: Introduction 11

Syntax Diagram Conventions

Syntax Diagram Conventions

The syntax diagrams presented in this guide use the following notation conventions:
UPPERCASE OR SPECIAL CHARACTERS

Represents arequired keyword, partial keyword, character,or symbol that must be
entered completely as shown.

lowercase

Represents an optional keyword or partial keyword that, if used, must be entered
completely as shown.

italicized lowercase
Represents avaluethat you supply.
lowercase bold

Represents a portion of the syntaxshownin greater detail at the end of the syntax
or elsewhere inthe document.

Points to the defaultinalistof choices.

A/

Indicates the beginning of a complete piece of syntax.

> d
»<4

Indicates the end of a complete piece of syntax.

I
»

Indicates thatthe syntax continues on the next line.

v

Indicates thatthe syntax continues on this line.

>
>

Indicates thatthe parameter continues on the next line.

v

Indicates thata parameter continues on this line.
»— parameter ———»
Indicates a required parameter.
>— parameter —»
parameter
Indicates a choiceof required parameters. You must select one.

»
»

»
»

L parameter -

Indicates an optional parameter.

12 Programming Guide

Syntax Diagram Conventions

> >
parameter :l
parameter

Indicates a choice of optional parameters. Select one or none.

>~ parameter ———»

Indicates thatyou canrepeat the parameter or specify more than one parameter.

e ——
»—v— parameter

Indicates thatyou must enter a comma between repetitions of the parameter.

Sample Syntax Diagram

The following sample explains howthe notation conventions are used:

Required portion of parameter
Beginning of Required : :
the syntax or Optional portion of parameter
Usersupplied value

Syntax continues
on the next line

Syntax continues on this line Comma required between repetition

Required parameter Repetition allowed
Select one

T .
r— KEYWD&U‘f;rfabIE

wariabfle

varrable
variahfle

Portion of syntax End of the syntax
Default expanded elsewhere
> \ i~

KEYWORD ¥variable
KEYWORD

Chapter 1: Introduction 13

Chapter 2: SQL Application Development in

CA IDMS

This section contains the followingtopics:

Accessing Data Using SQL (see page 15)
Accessing Non-SQL Defined Databases (seepage 19)
SQL Application Development (see page 21)

Accessing Data Using SQL

SQL Data Access

You embed SQL statements in anapplication programto access the database.SQL
allows you to access the database without reference to its physical characteristics.

A databasedefined with SQL DDL includes constraints thatgovern data manipulation.
The DBMS enforces constraints atruntime.

Tables and Views

Data accessed through SQL is perceived as tables made up of rows and columns. A table
is a base table.

An application programaccesses an SQL-defined databasebyissuing SQLstatements
that refer to one or more basetables, or to a predefined view of one or more base
tables.

Schema and Area

A schema is a named collection of tables and views. The rows of a table are stored in the
area thatis specified in the CREATE TABLE statement or, if not specified, inthe default
area for the schema.

Concurrent access to data can be controlled at the area level andthe table row level.
SELECT Statement

A SELECT statement requests the DBMS to retrieve data. The table of values returned to

the program on a selectis a result table. Typically,a resulttableis a subset of the row
and column values in one or more basetables.

Chapter 2: SQLApplication Developmentin CAIDMS 15

Accessing Data Using SQL

Cursor

A cursoris anSQLprogramming constructthat is used to process datainaresulttable.
The cursor defines the resulttable, and the programcanretrieve each row of the result
table one at a time with a FETCH statement.

The cursor row whose values areavailableto the program represents the cursor
position. Each FETCH statement advances the cursor position to the next row of the
resulttable.

Updateable Cursor

Ifthe cursor definition meets certain requirements, itis an updateable cursor.The
program can update or delete the row on which an updateablecursoris positioned,
(thatis, the row most recently fetched).

INSERT, UPDATE, and DELETE

The SQL statement to add arow to atable is INSERT and to delete a row is DELETE. The
statement to modify one or more columnvaluesinarow is UPDATE.

Host Variables

A hostvariableis a programvariablethatis referenced inan SQL statement. Host
variablesareusedto receive data retrieved from the database andto supply data to be
added to the database.

Local Variables

A local variableofan SQL routine is a program variabledeclaredina compound
statement of anSQL routine. Local variables can be used to receive data retrieved from
the databaseandto supply data to be added to the database.

Routine Parameter

A routine parameter of an SQLroutineis a program variabledeclared in the parameter
definition of an SQL routine. Routine parameters provide for the mechanism of passing
data between an SQL routine and its invoker, but they canalsobeused to receive data
retrieved from the databaseandto supply data to be added to the database.

CALL

The CALL procedure is the SQL statement that invokes an external procedure's program
or anSQL procedure using a remote procedure paradigm.Inputvalues arepassed from
CA IDMS to the programor SQL procedure. The output values arereturned into the host
variables of the programor into the local variables or routine parameters of the SQL
procedure specifiedinthe procedure reference.

16 Programming Guide

Accessing Data Using SQL

Bulk Processing

Bulk processingis a CA IDMS extension to the SQL standard that allows the program to
select, fetch, or inserta group of rows usinga host variablearray.

Temporary Table
An application programcan createa temporary table, populate it,and manipulatethe

datainit. A temporary tableexists only for the duration of the SQL transactioninwhich
itis created.

Prepared Statement

A programcan prepare, or compile, certain SQL statements atruntime. This allows the
program to execute an SQL statement thatis not known until runtime.

Integrity Constraints

Integrity rules areenforced by the DBMS using constraints that arespecified as part of
the databasedefinition.

Unique Constraint

A uniqueconstraintrequires that each row of a table be unique with respect to the
value of a column or combination of columns. A unique constraintis defined when an
index or CALC key is defined with the UNIQUE parameter.

Itis possibleto define any number of unique constraints ona table.
Primary Key

The primarykey is a column or combination of columns for which a unique constraint
has been defined and which has been defined as not null. Consequently, the primary key
uniquelyidentifies each row and prevents duplicaterows from being stored. For
example, inthe DEPARTMENT table of the demonstration database, DEPT_ID is the
primary key.

A tableusually has oneand only one primary key.

Referential Constraint

A referential constraintis a relationship between two tables. Areferential constraint
identifies a foreign key in one of the tables, the referencing table. A foreign key is a

column or combination of columns whose value must existas the value of the primary
key inarow of the related table, the referenced table.

Chapter 2: SQLApplication Developmentin CAIDMS 17

Accessing Data Using SQL

When a referential constrainthas been created, a row cannotbe stored inthe
referencing table unless its foreign key value already exists as a primary key in the

referenced table. Conversely,a row inthe referenced tablecannot be deleted or have

its primary key valuealtered if the primary key valueexists as a foreign key inthe
referencing table. This assures referential integrity between the tables.

Referential Constraint lllustration

The following example identifies two referential constraints between the DEPARTMENT

table and the EMPLOYEE table:

1. Avaluecannotbe stored inthe DEPT_ID column of the EMPLOYEE table unless the
valueexists inthe DEPT_ID column of the DEPARTMENT table

2. Avaluecannotbe stored inthe DEPT_HEAD_ID column of the DEPARTMENT table

unless the valueexists in the EMP_ID column of the EMPLOYEE table

DEPARTMENT table

DEPT_ID DEPT_NAME DIV_CODE DEPT_HEAD_ID
3510 |APPRAISAL - USED CARS DO2 3082
4500 |HUMAN RESOURCES D@9 3222
2210 (SALES - NEW CARS D&4 2010
5000 [CORPORATE ACCOUNTING D@9 2466
3520 [APPRAISAL NEW CARS D&4 3769
4600 | MAINTENANCE DO6 2096
4200 |LEASING - NEW CARS D&4 1003
5100 [BILLING DO6 2598
6000 | LEGAL DE9 1003
1100 | PURCHASING - USED CARS D02 2246
3530 [APPRAISAL — SERVICE DO6 2209
5200 | CORPORATE MARKETING DO9 2894

» 1110 [PURCHASING - NEW CARS DO4 1765
3000 [CUSTOMER SERVICE D9 4321
6200 [CORPORATE ADMINISTRATION DO9 2461
2200 (SALES - USED CARS D02 2180
1120 |PURCHASING - SERVICE DO6 2004
4900 |MIS D@9 2466

EMPLOYEE (DEPT_ID)
references DEPARTMENT (DEPT_ID)
EMPLOYEE table
DEPARTMENT
DEPT_ID EMP_LNAME EMP_ID (DEPT_HEAD ID)
1100 | FORDMAN 5008 EMPLOYEE
1100 | HALLORAN 4703 (EMP_ID)
1100 |HAMEL 2246 <
1110 |ALEXANDER 1765
1110 |WIDMAN 2106
1120 | JOHNSON 2004
1120 | JOHNSON 3294
1120|UMIDY 2898
1120 |WHITE 3338
2200 | ALBERTINI 2180

18 Programming Guide

Accessing Non-SQL Defined Databases

Domain Constraint
A domain constraintrestricts columnvalues andis partofthe table definition. The
types of domainconstraintare:

m Data type—Restricts columnvalues to the data type of the column (for example,
INTEGER restricts column values to the set of integers)

m Check constraint—Restricts columnvalues to a range of values thatsatisfies a
search condition

® Not null constraint—Requires that each column of a row containanactual value
and not the absence of avalue

Constraint Violation

Ifthe DBMS detects a constraintviolation when processingan SQL statement, itreturns
anerror.

Accessing Non-SQL Defined Databases

What You Can Do

CA IDMS provides the ability to use SQL to access a non-SQL defined database.The SQL
statements used to access such a databasearethe same as those used to access a
databasethatis defined with SQL DDL. Programming considerations such assession
management and concurrency control arealsothe same.

Note: For more information aboutaccessinga non-SQL defined database using SQL, see
the CA IDMS SQL Reference Guide.

You canusea table procedure, a procedure, or a user-defined function to process
non-SQL defined data ina relational way even though the data does not conform to the
rules established for such access.

A table procedure is a user-written program which allows any data accessiblethrough
CA IDMS to be viewed and processed as a table. The parameters passed to and from the
program aretreated as the columns of a tablewhich can be manipulated using SQL DML
commands. The specifics of howthe databaseis accessedinservicingtheserequests is
hidden within the table procedure. A table procedure can:

m Providefull update capability on member records that do not contain foreign keys
m Access data with multipledefinitions
m Access data that does not conform to the data type defined inthe non-SQL schema

m Translatespecial data values into null values

Chapter 2: SQLApplication Developmentin CAIDMS 19

Accessing Non-SQL Defined Databases

A procedure is a user-written program and can be used to process and access a
non-SQL-defined database. Procedures providea method for implementing the remote
call procedureparadigm.

When a procedureisinvoked, itis called only oncefor each set of inputvalues
regardless of the type of statement containingthe procedure reference. Within the
singlecall, the procedure must usethe inputvalues, perform the expected action,and
return the appropriate output values. This differs from a table procedure that can be
called multipletimes for a given set of inputvalues depending upon the type of
statement containingthe procedure reference. Procedures aremuch easier to write and
to interfacewith than table procedures.

A user-defined-function is invoked through a qualified or unqualified function identifier
together with an optional setof parameter values and returns a single value. An
external user-defined function has anassociated user-written programthat can be used
to process and access a non-SQL-defined database.

Note: For more information aboutusingtableprocedures, procedures, and user-defined
functions to access non-SQL databases, seethe CA IDMS SQL Reference Guide.

Requirements

Before you canaccess a non-SQL defined databasethrough SQL, you must define a
schema with the SQL statement CREATE SCHEMA that references the non-SQL defined
schema. Then you canreference the records defined inthe non-SQL defined schema as
tables in SQL DML statements.

Tables and Columns

Once an SQL schema has been defined that references a non-SQL defined schema, each
record inthe non-SQL defined schema is represented as a tableand each record
element is represented as a column. Some elements, such as group elements, do not
appear as columns intables representing non-SQL defined records.

These transformations areapplied to the names of record elements:
m All hyphens ('-') are translated to underscores ('_')

m Elements occurringa fixed number of times are suffixed with an occurrence count
to distinguishindividualitems

No transformations areapplied to the names of records. If the name does not comply to
the rules for non-delimited SQL identifiers (for example, because itcontains a hyphen),
the name has to be delimitedin double quotation marks.

20 Programming Guide

SQLApplication Development

Conditions Imposed by Database Design

The design of your non-SQL defined database mayimpose conditions on the use of
some SQL DML statements:

INSERT, UPDATE and DELETE statements aregoverned by the rules of referential
integrity ifthe table being operated on represents arecord that participatesinaset
defined with primaryand foreign keys inthe non-SQL defined schema

When joiningtwo tables representing records linked through a setin which the
member record does not physically containtheowner's key value (thatis, there are
no embedded foreign keys), you must specify the set name inthe joincriteria

Limitations Imposed by Database Design

The design of your non-SQL defined databasemayimpose limitations on the use of
some SQL DML statements:

DELETE of atable row representing a record occurrenceis disallowed if that record
occurrence is the owner of any non-empty set

INSERT is disallowed on a table representing a record ifthat record participatesin
anautomatic set for which foreign keys have not been defined inthe non-SQL
defined schema

SQL Application Development

Given the design of the databaseandthe application, and the description of the data,
you take these steps to develop an SQL applicationinthe CA IDMS environment:

1.
2.

o v &

Designthe application

Model the databaseaccess using SQLsubmitted through the command facility
Write the application

Create executable modules

Execute the application

Test and debug the application

Writing the Application

Program Language

Inthe programlanguage, you write everything that the application programrequires
except databaseaccess and the structures needed to handle databaseaccess.
Embedding SQL inthe program does not affect anyrules that applyto usingthe
program language.

Chapter 2: SQLApplication Developmentin CAIDMS 21

SQLApplication Development

Embedded SQL

Within the application program, you can embed SQL statements to:

m Access the database

m Access the dictionary

m Define the structures needed to transfer data between the programand the DBMS

m Manage SQL sessionsandtransactions

Note: For more information aboutthe complete syntax for all CAIDMS SQL statements,
see the CA IDMS SQL Reference Guide.

Creating Executable Modules

Sincethe application programcontainsan embedded sublanguage, you precompilethe
program to create a module of the SQL statements (an RCM) thatis separatefrom
program source.You also createanaccess module that contains an optimized access
strategy for the SQL statements in one or more RCMs.

Precompiling the Program
The precompiler converts embedded SQL statements to internal form and stores them
ina module calledan RCM. It replaces embedded SQL inthe sourcemodule with callsto

the DBMS. These calls, unlikethe SQL statements they replace, areintelligibleto the
language compiler.

The precompiler checks the syntax of the embedded SQL. If there are syntaxerrors, it
issues anerror reportinstead of storing the RCM.

Compiling the Program

After the program precompiles successfully, you compileand link the modified source
program to create an executable program load module.

Creating an Access Module

The load module thatis executed when the program requests databaseaccessis the
access module. You must create the access module before executing the program.

An access moduleis builtusingoneor more RCMs. Each RCM represents the SQL
statements from a singlesource programor CA ADS dialog.

22 Programming Guide

SQLApplication Development

When you create anaccess module, the optimizer performs these functions on each SQL
statement from each RCM that you includeinthe access module:

m Validates tableand column references inthe statement againstthe dictionary

m Selects the most efficient databaseaccess strategy for the statement
What Information the Optimizer Uses

To develop an optimized access strategy for an SQL statement, the optimizer considers:

m The type of statement

m The selectioncriteria

m The physical structureof the databaseas defined in the dictionary

m Statistics storedinthe dictionaryas a resultof runningthe UPDATE STATISTICS
utility

Summary of Program Preparation

These are the steps you take to make the application executable:
1. Precompilethe programs

2. Compileandlinkthe programs

3. Create the access module

For more information abouthow you take these steps, see Preparingand Executing the
Program (see page 131).

Chapter 2: SQLApplication Developmentin CAIDMS 23

SQLApplication Development

The next flow chartshows the resultof each step inthe process:

Program with
embedded
SQL

Praogram Error | \
source file listing RCM

Object file

Dictionary

Program

load
module

Load library

24 Programming Guide

SQLApplication Development

Executing the Application

SQL Statement Processing

When the programexecutes at runtime, the program load module and access module
areloaded as necessary.The access module is loaded the firsttime the programcalls
the DBMS to access data inthe database.

The DBMS attempts to validatethe definition of a table to be accessed—thatis, it
verifies the table definition has not changed sincethe access module was created. If
validation fails, the DBMS automatically recreates the access moduleifyou have defined
the access moduleto allowthis.

Concurrency Control

When the application executes ina multiuser processing environment, the DBMS
controls concurrentaccess to the same set of data by setting retrieval or update locks.
The DBMS determines the type, level, and duration of the lock from the activities and
the isolation level of the databasetransaction.

The CA IDMS defaults for locking favor the greatest possible concurrency thatcanbe
maintained while guaranteeing the integrity of the data. You can change the system
defaults for locking by specifying a different isolation level and/or a different ready
mode for anaccessed area.

Note: For more information aboutspecifyingisolation level and ready mode, see
Concurrency Control and Isolation Levels.

Execution Environments

CA IDMS application programs can execute in the DC/UCF region, a batch region, or
other region such as a CICSregion. Except for alocal mode job, all processing of SQL
statements occurs under the central version, the DC system component that manages
multiuser, concurrent access to the database.

Local mode is a single-user batch processing environmentthat manages access to areas
of the databaseindependent of the central version. Itis normally used for retrieval-only
batch jobs andlarge-volumeupdate applicationsthattend to monopolize an area of the
database.

The central version performs automatic recovery for programs that end abnormally. No
automatic recovery is performed for a local mode program.

Chapter 2: SQLApplication Developmentin CAIDMS 25

SQLApplication Development

Testing and Debugging the Application

Testing SQL Access

You canusethe CAIDMS Command Facility totest SQL statements onlineand to verify
conditions of the database. When you successfully testa statement, you cansaveitin
the dictionary.

Note: For more information aboutusingthe Command Facility, see the CA IDMS
Common Facilities Guide.

Debugging Embedded SQL
Besides using CA IDMS debugging tools for the host language program, you can debug

embedded SQL by:

m Displayingvalues infields of SQL Communication Areas (SQLCAs), where the DBMS
returns information aboutthe executing programand about SQL statement
execution

Note: For more information aboutdisplaying SQLCA fields, see SQL Status Checking
and Error Handling.

m Requesting atrace of all SQLcommands issued froma batch application
Note: For more information aboutthe SQL trace facility, see SQL Trace Facility.

m Issuing GET DIAGNOSTICS SQL statements to request diagnostic information from
the DBMS about the lastexecuted SQL statement

Note: For more information aboutthe GET DIAGNOSTICS statement, see the CA
IDMS SQL Reference Guide.

26 Programming Guide

Chapter 3: Writing an SQL Program

This section contains the following topics:

Accessing One or More Databases with SQL (see page 27)

Host Variables (see page 27)
Local Variables and Routine Parameters (see page 33)

SQL Sessions (see page 34)

DatabaseTransactions (seepage 36)

Effect of Teleprocessing Statements and Events (see page 41)

Concurrency Control andIsolation Levels (see page 45)

SQL Status Checking and Error Handling (see page 47)

Accessing One or More Databases with SQL

Host Variables

Databases can be accessed with SQL using any of the following methods:

Host variables —Variables thatcan be referenced in SQL statements inapplication
programs

Local variables and routine parameters —Variables that can be referenced in SQL
statements inSQL routines

SQL transaction—Adatabasetransactioninitiated by an SQL statement
SQL session—Aconnection to a dictionary thatenables SQL access to a database

SQL Communications Areas —Data structures the program uses to check the status
of SQL statement execution

A hostvariableis a programvariablethatis referenced inan SQL statement. Itis the
onlykind of variablethatyou canuseinan SQL statement embedded inapplication
programs.

Host variables arenecessary for the programto receive data from the databaseandin
most cases for the program to modify data inthe database.

Chapter 3: Writing an SQLProgram 27

Host Variables

How Host Variables Are Used

Host variables areused to:
m Receive columnvalues specifiedina SELECT or FETCH statement

m Supplycolumn values specifiedinan UPDATE statement, INSERT statement, or
other statements containinga search condition

m Supplyinformation for dynamically executed statements. For more information, see
Chapter 8, Using Dynamic SQL.

Host Variable Example

In this example, DEPT-ID, EMP-LNAME, and EMP-ID arehost variables. DEPT-ID and
EMP-LNAME receive column values and EMP-ID supplies a columnvalueusedinthe
search condition of the statement:

EXEC SQL
SELECT DEPT ID,
EMP_LNAME
INTO :DEPT-ID,
: EMP- LNAME
FROM EMPLOYEE
WHERE EMP ID = :EMP-ID
END-EXEC.

Indicator Variable
An indicator variableis a hostvariable used to manipulatenull values.

CA IDMS sets anindicator variableto -1 if the column valuein the associated host
variableis null.

An indicator variableshould be defined for each column accessed by the program that
could containa null value. Ifthe program retrieves a null valuefrom a column that has
no indicator variable, CA IDMS returns anerror.

Ina hostvariablearrayforuseinbulk processing, the data type of anindicator variable
must be declared with a usage SQLIND.

Null Value
A null valueis theabsence of a valueand is not the same as spaces or numeric zeros,

which are actual values.Inan SQL-defined database,a column, regardless of data type,
cancontaina null valueunless the column definition specifically disallows them.

28 Programming Guide

Host Variables

SQL Declare Sections

InSQL Standard, you define host variables withinan SQL declaresection. You begin and
end anSQL declaresection with these statements:

EXEC SQL
BEGIN DECLARE SECTION
END-EXEC.

EXEC SQL
END DECLARE SECTION
END-EXEC.

A CA IDMS extension of the SQL standard allows you to continuean SQL declaration
section statement on the followingline after any keyword.

What You Can Do

You canincludeany number of hostvariabledeclarationsinanSQLdeclaresection. You
canincludeany number of SQL declaresectionsina single application program.

Host Variable Declaration Example

In this example, the SQL declaresection defines host variables, includingoneindicator
variable,usingstandard COBOLdata declarations.

WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 EMP-ID PIC S9(8) USAGE COMP.
01 EMP-LNAME PIC X(20).

01 SALARY-AMOUNT PIC S9(6)V(2) USAGE COMP-3.
01 PROMO-DATE PIC X(10).

01 PROMO-DATE-I PIC S9(4) USAGE COMP.
EXEC SQL END DECLARE SECTION END-EXEC.

Chapter 3: Writing an SQLProgram 29

Host Variables

INCLUDE TABLE Directive

INCLUDE TABLE Statement

You canusethe INCLUDE TABLE statement, a CA IDMS extension of the SQL standard, to
define a host languagedata structure for table columns. INCLUDE TABLE is a
precompiler directivethat defines host variables for all columns of a table, view, table
procedure, procedure or function, or for a subset of columns that you specifyin the
statement.

If INCLUDE TABLE falls withinthescope of an SQL declaresection,embedded SQL
statements canreference the variables defined by the precompiler as host variables.

Statement Example

The following INCLUDE statement directs the precompiler to define host variablesfor
the DIVISION table, which has columns DIV_CODE, DIV_NAME, and DIV_HEAD_ID:

WORKING-STORAGE SECTION.

EXEC SQL
INCLUDE TABLE DIVISION
END-EXEC.

Structure Example

When the precompiler processes the INCLUDE TABLE statement inthe priorexample, it
defines this structure:

*EXEC SQL
* INCLUDE TABLE DIVISION
*END-EXEC.
01 DIVISION.
03 DIV-CODE PIC X(3).
03 DIV-HEAD-ID PIC S9(4) COMP.
03 DIV-HEAD-ID-I COMP PIC S9(8).
* SQLIND.
03 DIV-NAME.

49 DIV-NAME-LEN PIC S9(4) COMP.
49 DIV-NAME-TEXT PIC X(40).

30 Programming Guide

Host Variables

INCLUDE Statement Options

You canuseoptions on the INCLUDE statement to perform the following:
m Override the defaultelement level

m Direct the precompiler not to group elements under a structure

m Specify the columns to be included

m Specify names for the generated record and element definitions

m Specify a prefix or suffix for an element name

m Direct the precompiler to generate a multiply-occurringarray

Note: For more information about INCLUDE statement syntax and options, see the CA
IDMS SQL Reference Guide.

Including an Array

You canusethe INCLUDE statement to generate a hostvariablearray by specifyingthe
NUMBER OF ROWS parameter. Ahostvariablearrayis usedinbulk processing.

Note: For more information aboutbulk processing, see Bulk Processing (see page 75).
Host Variable Array Structure
When the precompiler generates a host variablearray,itcreates a structure usingthree

levels.Inthe next example, a structure has been generated by an INCLUDE TABLE
statement with NUMBER OF ROWS =100:

DIVISION.
02 DIVISION-BULK OCCURS 100 TIMES.
03 DIV-CODE PIC X(3).
03 DIV-HEAD-ID PIC S9(4) COMP.
03 DIV-HEAD-ID-I COMP PIC S9(8).
* SQLIND.
03 DIV-NAME.

49 DIV-NAME-LEN PIC S9(4) COMP.
49 DIV-NAME-TEXT PIC X(40).

Usefulness of INCLUDE TABLE

The INCLUDE TABLE statement is a programmingtool. It assures thathostvariable
definitions correspond to current table column definitions in the dictionary:the data
types are equivalent, and indicator variables aredeclared for all columns thatallow null
values.

Chapter 3: Writing an SQLProgram 31

Host Variables

When Not to Use INCLUDE TABLE

Using INCLUDE TABLE is not appropriateif:
m The program must conform to the SQL standard

m The hostvariabledeclarationis for temporarytable columns

Referring to Host Variables

Reference Requirements

These syntaxrequirements apply when you refer to a host variableinanembedded SQL
statement:

m To refer to anyhostvariableinanembedded SQL statement, prefix the host
variablenamewith a colon ()

m To associateanindicator variablewith a host variable, placethe reference to the
indicator variable after the host variable, with no comma or other separator
character

Note: You canusethe optional keyword INDICATOR as a separator.
Reference Example

Inthe following example,information from the BENEFITS table is selected for a given
employee IDvalue, which the program has assigned to the host variable EMP-ID.
BENEFITS table informationis retrieved into hostvariables VAC-TAKEN and SICK-TAKEN.
VAC-TAKEN-I and SICK-TAKEN-I are indicator variables.

EXEC SQL
SELECT VAC TAKEN,
SICK_TAKEN
INTO :VAC-TAKEN INDICATOR :VAC-TAKEN-I,
:SICK-TAKEN INDICATOR :SICK-TAKEN-I
FROM BENEFITS
WHERE EMP_ID = :EMP-ID
END- EXEC.

32 Programming Guide

Local Variables and Routine Parameters

Local Variables and Routine Parameters

Local variables and routine parameters are program variables of SQL routines. These
variablescanbeused as any program variableand arennecessary for the SQL routine to
receive data from the databaseandto modify data inthe database.Inaddition to their
roleas program variables, routine parameters are mainly used to pass inputvalues from
and output values to the invoker of the SQL routine.

Local variables aredefined in the DECLARE statement of a compound SQL statement.
Routine parameters are defined inthe parameter-definition clause of the CREATE
PROCEDURE or CREATE FUNCTION statements.

How Local Variables and Routine Parameters Are Used

Local variables and routine parameters are used as follows:
m Receive columnvalues specifiedina SELECT or FETCH statement

m Supplycolumn values specifiedin an UPDATE statement, INSERT statement, or
other statements containinga search condition

m Supplyinformationfor dynamically executed statements

Note: For more information aboutdynamically executed statements, see Using

Dynamic SQL (see page 181).
Local Variable Example

Inthe following example, DEPT_ID, EMP_LNAME, and EMP_ID are local variables
defined in a compound statement with label MAIN_BLOCK. DEPT_ID and EMP_LNAME
receive column values and EMP_ID supplies a columnvalueusedinthe search condition
of the statement:

SELECT EMPLOYEE.DEPT ID, EMPLOYEE.EMP LNAVE INTO MAIN BLOCK.DEPT ID,
MAIN BLOCK.EMP LNAME

FROM EMPLOYEE
WHERE EMPLOYEE.EMP ID = MAIN BLOCK.EMP ID;

Null Value

A null valueis theabsence of a valueandis not the same as spaces or numeric zeros
which are actual values. Local variables and routine parameters are always nullable.
However, asthese are SQLvariables, nullsupportis built-inand nullindicators mustnot

be used.

Note: For more information, see the CA IDMS SQL Reference Guide.

Chapter 3: Writing an SQLProgram 33

SQLSessions

SQL Sessions

An SQLsessionis a logical connection between the executing application and the DBMS.
It begins when the application connects to a dictionaryand ends when the application
disconnects fromthe dictionary.Thedictionary contains the definition of the data
accessed using SQL.

Bedinning and Ending an SQL Session
Beginning an SQL Session

An SQL session begins when the program submits its firstSQL statement. If that
statement is a CONNECT, the sessionis connected to the dictionary specified by the
statement andthe sessionissaid to be explicitly connected.

Ifthe firststatement is not a CONNECT, the sessionis automatically connected to a
default dictionary.

Session Hierarchy

A hierarchy of databasesessionsoccurs when an SQL invoked routine (an SQL
procedure, tableprocedure, or function) starts its own sessionto access thedatabase.

A databasesessionthatis started by a programexecuting as partof an SQL invoked
routineisis a subordinate session sinceit is under the control of the SQL session within
which the routine was invoked. The controllingsessionisreferred to as the subordinate
session's encompassing session. A top-level sessionisonethat has no encompassing

session.
Top-level/ Application issues:
Encompassing -- CONNECT. ..
Session -- CALL "PROCA"

Encompassing PROCA issues

and -- CONNECT...
Subordinate -- Invokes function FUNCB
Session

FUNCB issues
Subordinate -- BIND RUNUNIT...
Session

34 Programming Guide

SQLSessions

Default Dictionary

When establishingan automatically connected SQL session, CAIDMS connects the
sessiontoa default dictionary.

The default dictionary for a top-level sessionis established by:
m SYSIDMS DICTNAME parameter for a batch application

m Value of the DICTNAME attribute for the user session, as setby one of the
following:

- User profile

- System profile

- Defaultdictionary defined by the DBNAME table
— DCUF SET DICTNAME system task

- Call toIDMSINO1 to set the DICTNAME attribute

Note: For more information about SYSIDMS parameters and callingIDMSINO1, see the
CA IDMS Common Facilities Guide.

The default dictionary for a subordinatesessionis determined by the initiatingroutine
definition's DEFAULT DATABASE parameter.

m |f DEFAULT DATABASE CURRENT was specified, the default dictionaryis the
dictionary to which the encompassing SQL sessionis connected.

m |fDEFAULT DATABASE NULL was specified (or defaulted), the default dictionaryis

determined inthe same way as for a top-level session.

Note: For more information aboutthe DEFAULT DATABASE parameter of the CREATE
PROCEDURE, CREATE TABLE PROCEDURE or CREATE FUNCTION statements, see the CA
IDMS SQL Reference Guide.

SQL Statements that End a Session

Ifthe SQL session beganautomatically (thatis, no CONNECT statement wasissued),it
ends when the program issues one of these statements:

= COMMIT

® ROLLBACK

m COMMIT RELEASE

m ROLLBACK RELEASE

m RELEASE

Chapter 3: Writing an SQLProgram 35

Database Transactions

Ifa CONNECT statement was executed to startthe session,itends when the program
issues one of these statements:

m COMMIT RELEASE
m ROLLBACK RELEASE
m RELEASE

Ifan encompassingsession ends, all of its subordinatesessionsend also.
Automatic Session Termination

Ifa batch application programterminates execution by returning control to the
operating system, SQL sessionsstillin progress areterminated automaticallyasifthe
application hadissued a ROLLBACK RELEASE statement.

Ifa program returns control to a teleprocessingsystem or issues certain teleprocessing
statements, such as FINISHTASK, SQL sessions stillin progress may or may not be
terminated depending on the event or statement issued and whether the sessionis
suspended.

Note: For more information aboutthe effect of teleprocessingstatements on SQL
sessions, see Effect of Teleprocessing Statements and Events (see page 41).

Database Transactions

A databasetransactionisa unitofrecovery representing work done by one or more
databasesessions. All accessto CAIDMS data from withinan SQL sessionisdoneunder
the control of a databasetransaction.

Transactions can beassociated with one or more databasesessions.Atransactioncan
be associated with more than one sessiononlyifasessioniseligibleto shareits
transaction with other sessions. Transactionsstarted by sessionsthatarenot eligibleto
sharetheir transaction arecalled nonshareable transactions.

Managing Nonshareable Transactions

Beginning a Transaction

A nonshareabletransactionisstarted when the programsubmits an SQL statement that
results inaccess to either user data or a dictionary, unless thesessionis already
associated with a transaction.

36 Programming Guide

Database Transactions

Transaction Hierarchy

Justas sessionscanberelated ina hierarchical way, their associated transactionscan
alsoberelated hierarchically.Ifa sessionis subordinateto another session,its
transactionis subordinate to the encompassingsession's transaction.

Note: For more information aboutsession hierarchies, see Beginningand Ending an SQL
Session (see page 34).

When atransactionis committed or rolled back, all ofits directand indirect
subordinates arealso committed or rolled back.

Ending a Transaction

Ifa session'stransactionisnotshareable,itends when:

m A COMMIT statement is executed.

m A ROLLBACK statement is executed.

m The SQL sessionis terminated.

When atransaction ends, all open cursors areclosed, alltemporarytables aredropped,
and all prepared statements are dropped.

More Information

m For more information aboutcursors,see Using a Cursor (see page 67).

m For more information abouttemporary tables,see Creating and Using a Temporary
Table (see page 167).

m For more information about prepared statements, see Executing Prepared SELECT
Statements (see page 187).

Committing Changes

Changes made through an SQL session arecommitted when anSQL COMMIT statement
is executed or when a teleprocessing statement is executed that results in the
committing of database updates. If changes arenot committed inone of these ways,
updates made through anSQL session arebacked out, either as the resultof an explicit
ROLLBACK request or automatically as theresultof a teleprocessing statement or event.

Note: For more information aboutthe effect of teleprocessingstatements on database
transactions, see Effect of Teleprocessing Statements and Events (see page 41).

Transaction sharingimpacts the committing of databasechanges.

Note: For more information aboutthe impact that sharing databasetransactions hason
committing changes, see Sharing Transactions AmongSessions (see page 38).

Chapter 3: Writing an SQLProgram 37

Database Transactions

Preserving Session State aftera Commit

Normally when a transactionis committed, the state of the sessionis reset:cursors are
closed, prepared statements are deleted and temporary tables are dropped. However, a
CA IDMS extension to the SQL standard allows you to commit updates but preserve the
sessionstateas itwas priorto the commit. This extension is the CONTINUE parameter
of the COMMIT statement:

EXEC SQL
COMMIT CONTINUE
END-EXEC.

The CONTINUE parameter limits the effect of a COMMIT to committing updates and
downgradingor releasingupdatelocks held for the transaction.

Sharing Transactions Among Sessions

Sharing a Transaction

A transaction can beshared by multipledatabasesessions, both SQL sessions and
non-SQL sessions (rununits). By sharinga transaction, sessions will notdeadlock among
themselves even ifthey access and update the same data.

Enabling Transaction Sharing

An SQLsessionis eligibleto shareits transactioniftransaction sharingis in effect when
the databasesessionisstarted.

Transactionsharingisin effect for a top-level sessionif:

m TRANSACTION_SHARING=ON is specifiedinthe SYSIDMS filefora batchapplication.

Note: For more information about SYSIDMS parameters, see the CAIDMS Common
Facilities Guide.

m IDMSCINT or CICSOPT parameter specified TXNSHR=ON for CICS applications.

Note: For more information aboutIDMSCINT and CICSOPT parameters, see the CA
IDMS System Operations Guide.

m Transactionsharinghas been enabled for the executing DC/UCF task by means of a
SYSGEN or DCMT command.

m Transactionsharinghas been enabled though a call to IDMSINO1.

38 Programming Guide

Database Transactions

For subordinatesessions, transaction sharingis controlled through the TRANSACTION
SHARING parameter of the SQL invoked routine's definition unless overridden by a call
to IDMSINO1 from within the routine.

m |[fTRANSACTION SHARING ON is specified, transaction sharingis enabled for all
sessions started by the routine.

m [fTRANSACTION SHARING OFF is specified, transaction sharingis disabled for all
sessions started by the routine.

m IfTRANSACTION SHARING DEFAULT is specified (or defaulted), the transaction
sharingstatethat was in effect before the routine was called appliestoall sessions
started by the routine.

Note: For more information aboutthe TRANSACTION SHARING parameter of the
CREATE PROCEDURE, CREATE TABLE PROCEDURE or CREATE FUNCTION statements, see
the CA IDMS SQL Reference Guide.

Whether transactionsharingis enabled for a remote SQL sessionis determined by the
attribute in effect inthe CA IDMS environment in which the session-initiating statement
isissued. (Aremote sessionisonethatis connected to a dictionaryresidingon a central
version different from where the applicationis executing.)

Regardless of how transactionsharingisenabled,ifitis ineffect at the time a database
sessionis started, then that databasesessionis eligibleto shareits transaction with
other databasesessionsstarted by the same task or user session. The followingrules
determine whether two sessionswill sharea transaction.

m Atop-level databasesessionwillshareits transaction with another top-level session
ifthey are both eligiblefor transaction sharing.

Session 1 Session 2
(Eligible for (Eligible for
Sharing) Sharing)
Shared
Transaction

Chapter 3: Writing an SQLProgram 39

Database Transactions

m Asubordinatedatabasesessionthatis eligiblefor transaction sharingwill shareits
encompassingsession'stransaction evenif the encompassingsessionis noteligible
to shareits transaction.

Session 1

(sQL)

Shared
Transaction

Session 2
(Eligible for
Sharing)

Application Programming Considerations

Transactionsharingaffects applicationsin thefollowingways:

m An update made through a databasesession mayimpactother databasesessions
sharingthe same transaction.

m Arollbackissued within one databasesession affects all sessionsthatsharethe
same transaction.

m A commitissuedby adatabasesession whosetransactionisshared has noaffect on
the transaction unless all other sharing sessions havealso been committed.

Inter-session Conflicts

Databasesessionsthatshareatransaction canimpacteach other in ways that would
not be possiblewithouttransaction sharingsincelocking would prevent such
interactions. For example, a record can be deleted by one databasesessionwhileitis
current of another databasesession thatis sharingthe same transaction. This canresult
innew and possibly unexpected error conditions. Ifa databasesession's currencyis
impacted by an update made through another databasesession,thatcurrencyis
invalidated. Ifa subsequent DML request, such as a FETCH from a cursor, relies on that
invalidated currency,anerror is returned.

m For SQL, the application receives an SQLCODE of -4 (statement failure)andan
SQLRSN of 1087 (conflicting activity within a shared transaction).

m For navigational DML, anerror status of xx03 is returned to the application.

Before enablingtransaction sharing for anapplication, youshould ensurethat affected
programs handlethese errors appropriately.

40 Programming Guide

Effect of Teleprocessing Statements and Events

Effect of Rollback Requests

If multipledatabasesessions sharea transaction and one of those sessionsissues a
rollback request, all changes madewithin the transactionareimmediately rolled out.
Other sessionssharingthetransaction mustissuetheir own rollback requests before
issuingany other DML requests. Issuinganother DML request instead of a rollback will
resultinan error:

m For SQL, the applicationreceives an SQLCODE of -5 (transactionfailure)andan
SQLRSN of 1088 (transaction forced to backout)

m For navigational DML, the run unitis terminated and an error status of xx19is
returned to the application.

Effect of Commit Requests

If multipletop level databasesessions sharea transactionand oneof those sessions
issues a commitrequest, no changes arecommitted until:

m All top-level sharingsessionsthathave had activity sincethe lastcommit, rollback
or startof atransaction haveissued a commit, or,

m Until a teleprocessingcommitis issued.

The term "commit" refers to any DML command that would normallyresultin
committing changes (COMMIT RELEASE, COMMIT CONTINUE, FINISH, and so forth).

A commit issued through a subordinatesession has noimpactonits transactionifitis
shared sincesuch a transaction canonly becommitted through the encompassing
session.

Unless a COMMIT CONTINUE request is issued (for which currencylocks areretained),
all currencies owned by the issuing databasesession areimmediately released.
However, implicitexclusivelocks and explicitlocks acquired by the databasesession
remain until the transactionis committed, even if the request terminates the database
session.

Effect of Teleprocessing Statements and Events

Effect of Task-level DML Statements and Events

Ina batch or DC/UCF environment, task-level commit and rollbackstatements and
task-termination events affect the status of databasetransactionsand SQLsessions, as
the followingtableshows.Their effect on a subordinateSQL sessionis thesame as their
effect on its encompassingsession.

Chapter 3: Writing an SQLProgram 41

Effect of Teleprocessing Statements and Events

Statement Effect on Top-level SQL Effect on Top-level
Sessions Database Sessions
COMMIT TASK Equivalentto issuinga Commits changes made

COMMIT CONTINUE on all
nonsuspended SQL sessions

through all transactions
except nonshareable
transactions whose
sessionis suspended.

COMMIT TASK ALL

Equivalentto issuinga
COMMIT on all nonsuspended
SQL sessions.

Commits changes made
through all transactions
except nonshareable
transactions whose
sessionis suspended.

FINISH TASK

Equivalentto issuinga
COMMIT RELEASE on all
nonsuspended SQL sessions

Commits changes made
through all transactions
except nonshareable
transactions whose
sessionis suspended.

ROLLBACK TASK CONTINUE

Equivalentto issuinga
ROLLBACK on all
nonsuspended SQL sessions.
All suspended sessions whose
shareabletransactionis rolled
backare marked as requiring
rollback.

Rolls back changes made
through all transactions
except nonshareable
transactions whose
sessionis suspended.

ROLLBACK TASK

Equivalentto issuinga
ROLLBACK RELEASE on all
nonsuspended SQL sessions.
All suspended sessions whose
shareabletransactionis rolled
backare marked as requiring
rollback.

Rolls back changes made
through all transactions
except nonshareable
transactions whose
sessionis suspended.

Normal task termination

Equivalentto issuinga
ROLLBACK RELEASE on all
nonsuspended SQL sessions.
All suspended sessions whose
shareabletransactionis rolled
backare marked as requiring
rollback.

Rolls back changes made
through all transactions
except those for which
all associated sessions
are suspended.

Abnormal Task Termination

Signoff

CA ADS Application Error
Termination

Equivalentto issuinga
ROLLBACK RELEASE on all SQL
sessions

Rolls back updates made
by all transactions
associated with the task
or usersession.

42 Programming Guide

Effect of Teleprocessing Statements and Events

A task-level commit or rollback statement has no affect on transactionswhosedatabase
sessions aresuspended and for which transaction sharingis notin effect.

CICS Syncpoint and Backout Operations

The effect of a CICS syncpointor backout operation on an SQL session depends on the
parameters used to generate the version of the IDMSCINT interface module with which
the program was link-edited and the CICSOPT parameters used to generate its
corresponding IDMSINTC interface module.

The options in effect for a programthat starts an SQL session determine how that
sessionandits transaction areimpacted by CICS syncpointand backout operations. The
parameters that impacttheir semantics are:

AUTOCMT: Enablingthis option makes the work done by the databasesession
eligibleto be includedina CICS UOW (Unit of Work). If included, CICS syncpointand
backout operations affectthe changes made by the session. Whether the changes
made by asessionareactuallyincluded inthe CICS UOW is determined by the
AUTONLY setting and whether the applicationissues itsown commit or rollback
DML requests prior to the CICS syncpointor backout operation.

AUTONLY: Enablingthis optioninconjunction withthe AUTOCMT option forces the
work done by the databasesessiontobeincludedinthe CICS UOW. DML
statements that would normally commit work (such as FINISH TASK or COMMIT) do
not causechanges to be committed even ifthe sessionitselfisterminated. The
session's changes arecommitted only when the CICS syncpointoccurs.On the other
hand, if the changes made by a session for which AUTONLY is enabled are backed
out, either as the resultof a DML ROLLBACK request or because of some
environmental condition such as a deadlock, the entire CICSUOW will eventually be
backed out. This ensures consistentbehavior across all resources updated by the
application.

If AUTONLY is not enabled but AUTOCMT is, the work done by the databasesession
isincludedinthe CICS UOW onlyifthe application does notissuecommit or
rollback DMLrequests prior to the CICS syncpointoperation.

Enabling AUTONLY without AUTOCMT has no impacton syncpointoperations.

Note: Iftransactionsharingis enabled, AUTONLY and AUTOCMT are always
enabled.

ONCOMT: This option specifies the effect that a CICS syncpointoperationhasona
databasesession whosework is included inthe CICSUOW. The session can
optionally betreated asifa COMMIT RELEASE, COMMIT, or COMMIT CONTINUE
were issued, meaning that it can be terminated, remain active but have currencies
cleared or remainactivewith currencies leftintact.

Chapter 3: Writing an SQLProgram 43

Effect of Teleprocessing Statements and Events

m ONBACK: This option specifies the effect that a CICS backout operation has on a
databasesession whosework is included inthe CICSUOW. The session can
optionally betreated as ifa ROLLBACK RELEASE or a ROLLBACK were issued,
meaning that it can be terminated or remain active but have its currencies cleared.

All of these options can be specified through both IDMSCINT and CICSOPT parameters.
The CICSOPT parameters can either override their IDMSCINT counterparts or be used as
a default.

Note: For more information aboutthese parameters, see the CA IDMS System
Operations Guide.

A CICS syncpointoperation occurs when a CICS SYNCPOINT statement is executed by the
applicationand when the CICS task terminates normally. A CICS backoutoperation
occurs when a CICS BACKOUT statement is executed by the application and when the
CICS task terminates abnormally.

The following table summarizes the impact of CICS syncpointand backoutoperations
and task-termination events on SQL sessions and their transactions.

Operation or Event Effect

SYNCPOINT Operation If AUTOCMT is not in effect fora session, the
SYNCPOINT operation has no impacton the
sessionandits transaction.

If AUTOCMT is in effect for a session, the
uncommitted changes made by the sessionare
committed. The impacton the sessionis
determined by the session's ONCOMT option.

BACKOUT Operation If AUTOCMT is notin effect fora session, the
BACKOUT operation has no impacton the
sessionandits transaction.

If AUTOCMT s in effect for a session, the
uncommitted changes made by the sessionare
backed out. The impacton the sessionis
determined by the session's ONBACK option.

Normal CICS Task Termination All nonsuspended SQL sessions aretreated as if
a ROLLBACK RELEASE were issued (although
their changes may have been committed by the
preceding syncpointoperation). Their
uncommitted changes are backed out.

Abnormal CICS Task Termination All SQL sessionsaretreated as ifa ROLLBACK
RELEASE were issued. Their uncommitted
changes are backed out.

44 Programming Guide

Concurrency Controland Isolation Levels

Effect of Task-level DML Statements in CICS

Ina CICS environment, task-level commit and rollback statements have the same effect
on sessions asina DC/UCF environment. However, a task-level commit request
(COMMIT TASK, COMMIT TASK ALL, or FINISH task) does not commit the work done by
sessions whose AUTONLY and AUTOCMT options are enabled.

Justasina DC/UCF environment, atask-level rollback request (ROLLBACK TASK or
ROLLBACK TASK CONTINUE) affects all transactions except nonshareabletransactions
whose sessionis suspended.

Concurrency Control and Isolation Levels

Concurrency Control

CA IDMS manages concurrentaccess to the same set of data with a system of locks. The
degree of concurrentaccess allowed by a databasetransactionisdetermined by the
isolation level of the transaction and the ready mode of the areas itaccesses.

Locks

CA IDMS provides two types of lock:

m Aretrieval lock prevents updates but allows retrieval of data by another database
transaction

m An update lock prevents both updates and retrieval of data by another database
transaction

Isolation Levels and Locking

CA IDMS supports two isolation levels. Thefollowing descriptions explain how the
system performs lockingunder eachisolation level assumethe leastrestrictiveready
mode for areas accessed by the databasetransaction:

m Cursorstability—Under cursor stability, the DBMS places a retrieval lock on the row
on whichan updateablecursoris positioned until the cursor position changes. It
places aretrieval lock onthe row accessed by a SELECT statement that accesses
onlyone row (a single-rowselect) until the SQL transaction accesses another row
from the sametable. It releases update locks when the transaction either
terminates or issues a COMMIT CONTINUE.

m Transientread—Under transientread, the DBMS:
— Places nolocks onrows accessed by the transaction
— Allows the transaction to retrieve locked rows

— Prevents the transaction from performing updates

Chapter 3: Writing an SQLProgram 45

Concurrency Controland Isolation Levels

Concurrency Under Cursor Stability

Cursor stability provides the greatest possible concurrency while guaranteeing the
integrity of data read by the transaction. Under cursor stability:

m The row on which anupdateable cursoris positioned cannotbe updated by another
databasetransaction beforethe cursor position changes.

m Asinglerowretrieved by a SELECT statement cannotbe updated by another
databasetransaction until the original transaction accesses another row of the
table.

Cursor stability does not prevent other databasesessionsthataresharingthe same
transaction fromupdatinga session's currentcursor position or its most-recently
retrieved row of a singlerowselect.

Cursor stabilityis the CA IDMS default. It is appropriate for high-volume transaction
environments.

Concurrency Under Transient Read

Transientread provides no protection from the effects of concurrent database
transactions. Itallows a databasetransaction toread data that has not been committed
andallows concurrentdatabasetransactions to update the data.

Transientread is appropriatewhen the transactionisretrieval onlyand does not require
the data to be consistentand entirelyaccurate.

Specifying the Isolation Level

You canspecify the defaultisolation level with the DEFAULT ISOLATION parameter of
the CREATE ACCESS MODULE statement.

Note: For more information abouthow to create the access module, see Creating the
Access Module (see page 139).

A programcanoverride the defaultisolation level for the access moduleby issuinga SET
TRANSACTION statement. The specification on this statement remains in effect until the
end of the transaction.

Note: For more information aboutthe SET TRANSACTION statement, see the CA IDMS
SQL Reference Guide.

46 Programming Guide

SQLStatus Checking and Error Handling

Area Ready Mode

You can control concurrentaccess atthe area level usingthe READY parameter of the
CREATE ACCESS MODULE statement. This parameter allows you to specify what type of
retrieval or update lock the DBMS sets on an area that the program accesses. The type
of lock, in combination with the PRECLAIM or INCREMENTAL option, determines how
longthe DBMS holds the lock for the transaction.

Note: For more information aboutthe READY parameter of the CREATE ACCESS
MODULE statement, see the CA IDMS SQL Reference Guide.

Repeatability

If you specify a ready mode of protected retrieval or protected update, the DBMS will
prevent concurrent update access inthe specified areas for the duration of a database
transaction. This gives the transaction running under cursor stability the ability to repeat
aread of the specified area or areas withoutchanges to the data by other transactions.

Note: For more information aboutthe lock management system, see the CA IDMS
Database Administration Guide.

SQL Status Checking and Error Handling

SQLCA

When CA IDMS executes anSQL statement, it returns information about the status of
statement execution to a data structure called the SQLCA. Your program should contain
logic to handleexceptional conditions resulting from statement execution. This logic
takes the form of checking SQLCA information. An alternativeto checking the SQLCA is
the use of the GET DIAGNOSTICS statement that provides for enhanced diagnostic
information.

The SQL Communication Area (SQLCA) is a data structure to which the DBMS returns
information aboutthe execution of an SQL statement.

SQLSTATE

SQLSTATE is a five-character stringin which CA IDMS returns the status of the lastSQL
statement executed. Itis dividedintoatwo-character classanda three-character
subclass.Standard values areassociated with each class and subclass, which minimizes
the need for vendors to define their own values and makes applications more portable
from one environment to another.

Chapter 3: Writing an SQLProgram 47

SQL Status Checking and Error Handling

The followinglistdisplays the SQLSTATE values that CA IDMS canreturn. Itis divided
into sections based onthe class (thefirst2 characters of the SQLSTATE value). Each
subclass (thelast3 characters of the SQLSTATE value)is listed underits associated class.

m SQL standard values—Class and subclassvalues beginning with the characters A-H
and 0-4 are established by the SQL standards organizations.

m CA IDMS-defined values—Class and subclassvalues beginning with the characters
I1-Z and 5-9 arevendor-defined. Inthis case, they are specific to CA IDMS. (Any
subclassvalueassociated with a vendor-defined class isalso defined by that
vendor.)

SQLSTATE Values

00 Successful completion
000 No subclass

01 Warning

000 No subclass

004 String data, right truncation

00C SQL-invoked procedure retumed result sets

00D Additional result sets returned

O0E Attempt to return too many result sets

010 Column cannot be mapped

600 Inconsistent or invalid option

602 Entity or association already exists

605 Entity not defined in Catalog

606 Invalid option for physical DDL

607 Invalid option for DMCL

608 Connecting to a dictionary which is missing either or
or both of DDLCAT/DDLDML areas

610 Database is inconsistent with request

611 SQL routine parse error

612 ADS compilation for an SQL routine failed

613 Drop of SQL routine completed with warnings

638 Warning returned from table procedure

02 No data
000 No subclass

07 Dynamic SQL error
000 No subclass
001 USING clause does not match dynamic parameter specification
002 USING clause does not match target specification
003 Cursor specification cannot be executed
004 USING clause required for dynamic parameters

08 Connection exception
000 No subclass

48 Programming Guide

SQLStatus Checking and Error Handling

004 SQL-server rejected establishment of SQL-connection
006 Connection failure

OM Invalid SQL-invoked procedure reference
000 No subclass

ON SQL/XML Mapping Error
000 No subclass
001 Unmappable XML name
002 Invalid XML character

21 Cardinality violation
000 No subclass

22 Data Exception
000 No subclass
001 String data, right truncation
002 Null value, no indicator parameter
003 Numeric value out of range
005 Error in assignment
007 Invalid datetime format
008 Datetime field overflow
00J Nonidentical notations with the same name
00K Nonidentical unparsed entities with the same name
00L Not an XML document
00M Invalid XML document
00N Invalid XML content
O0R XML value overflow
00S Invalid comment
00T Invalid processing instruction
011 Substring error
012 Division by zero
019 Invalid escape character

23 Constraint violation
000 No subclass
501 Duplicate key violation

24 Invalid cursor state
000 No subclass

25 Invalid transaction state
000 No subclass
006 Read-only SQL-transaction

26 Invalid SQL statement name

Chapter 3: Writing an SQLProgram 49

SQL Status Checking and Error Handling

28

2C

34

37

38

39

3F

40

a2

000 No subclass

Invalid authorization specification

000 No subclass

602 Entity or association already defined

605 Entity or association not previously defined
607 Authorization ids not specified

Invalid character set name
000 No subclass

Invalid cursor name
000 No subclass

Syntax error or access rule violation
000 No subclass

External routine exception
000 No subclass
999 ADS dialog failed or dialog does not exist

External routine invocation exception
000 No subclass

Invalid schema name
000 No subclass

Transaction rollback

000 No subclass
001 Serialization failure

Syntax error or access rule violation
000 No subclass

500 Table not found

501 Column not found

502 Entity already defined

503 Authorization failure

504 Cursor not declared or previously declared
505 Entity not found

506 Invalid identifier

507 Keyword used as identifier

600 Invalid statement

601 Statement not valid in this context
603 Statement not valid for this schema

50 Programming Guide

SQLStatus Checking and Error Handling

604 Invalid data type

606 Invalid statement option

607 Missing statement option

609 Invalid constraint definition
610 Invalid number of columns

50 CA-defined errors
000 No subclass
002 Limit exceeded
003 Space exceeded
00B Internal error
00I Schema mismatch
00J Invalid entity definition
00K Uncategorized error
00L Invalid calling parameters

60 &U$IDMS. specific errors
000 No subclass
001 Problem with load module or synchronization stamps
002 Database error
003 Rollback failed
004 Failure while opening or describing a received cursor
005 Unexpected error from GET/PUT SCRATCH

64 &U$IDMS. Physical DDL error
000 No subclass

6U &U$IDMS. Utility error
000 No subclass

SQLCODE

For status checking, another importantfieldinthe SQLCA structure is SQLCODE. The
followingtableshows the values that the DBMS may return to this field.

Value Meaning

<0 The SQL statement returned anerror (see the followingerror values)
0 The SQL statement was executed successfully

1 The SQL statement was executed successfully with a warning

100 There are no more rows associated with the current query, or no rows

satisfied the search criteriaina searched update or delete

Note: The SQL standard only defines meaning to the values of 0 and 100.
Negative SQLCODE values signify an error; however, specific values arenot
standardized as with SQLSTATE.

Chapter 3: Writing an SQLProgram 51

SQL Status Checking and Error Handling

SQLCODE Error Values

The followingtableassociates SQLCODE error values with one of the three kinds of SQL
statement failureand suggests the appropriateerror-handling strategy for each
category of error:

Value Level of failure Meaning

-7 Task An internal error caused a taskabend, leading to
rollback and termination of the SQL transactionand
termination of the SQL session

-6 SQL session An error caused an SQL session failure, leadingto
rollback, termination of the SQL transaction and
termination of the SQL session.

A programintending to retry the SQL statements
should firstterminate the SQL session with one of
these statements:

m ROLLBACK RELEASE
m RELEASE

m The equivalentTP monitor command

-5 SQL transaction An error has caused an SQL transaction failure,
leadingto rollback and termination of the SQL
transaction.

A programintending to retry the SQL statements
should firstterminate the transaction with one of
these statements:

= ROLLBACK
m ROLLBACK RELEASE
m RELEASE

m The equivalentTP monitor command

-4 SQL statement An error has caused failure of the SQL statement to
execute; the effect of the statement, ifany, on the
databasehas been rolled out.

Unless the reason for the erroris one that the

program can handle, the program should terminate
the sessionortransaction.

52 Programming Guide

SQLStatus Checking and Error Handling

SQLCERC

Ifan error is returned, the DBMS alsoreturns a valueinthe SQLCERC field of the SQLCA.
The valueinthis field is the SQL error code.

In certain cases, you canuse this information to recover from error conditions. For
example, if 1038is returned to SQLCERC, a deadlock has occurred. The application
program can handlethe deadlock by firstterminatingthe databasetransactionandthen
resuming processingafter the lastcommitor startof transaction.

SQLCERC values correspond to the lastfour digits of the CA IDMS/DB runtime messages.
To determine the meaning of a particular SQLCERC value, refer to the text and
description of the equivalentDB message.

Note: For more information aboutthe documentation of DB messages, see the CA IDMS

Messages and Codes Guide, or issuea DCMT DISPLAY MESSAGE DBnnnnnn statement,
as documented inthe CA IDMS System Tasks and Operator Commands Guide.

Other SQLCA Fields

For error checking and reporting, these are other useful SQLCA fields:

Field Description of contents

SQLCLNO Source filelinenumber from which the SQL statement was obtained

SQLCSER Offset into the SQL statement buffer where a syntax error was
recognized

SQLCNRP Number of rows processed by the SQL statement

SQLCERM Text of the error message

SQLCERL Length of error message text

SQLCNRRS Actual number of results sets that an SQL invoked procedure returns

How SQLCA Is Initialized

The DBMS initializes SQLCA values on every SQL statement execution. Ifthe program
accesses the SQLCA after issuingan SQL statement, all SQLCA values refer to that
statement.

Chapter 3: Writing an SQLProgram 53

SQLStatus Checking and Error Handling

SQLPIB Fields

When you display or logerror information, you may wish to includeinformationin fields
of the SQL Program Information Block (SQLPIB):

Field Description of contents
SQLDTS Date and time the program was compiled
SQLPGM Name of the RCM that is the source of the SQL statement

Displaying SQL Communication Area Fields

Error Handling

SQLCA Structure

The technique used by the programto access and display SQLCAinformation may
depend on the SQLCA structure and the rules governing use of the host program
language.

For example, inthe COBOL SQLCA structure, SQLCODE is defined as PICS9(9) USAGE
COMPUTATIONAL. To displayany possible SQLCODE value, includinga negativevalue,
you should firstmove the SQLCODE valueto a work field defined as PIC -9(4).

Note: For more information aboutthe SQLCA structure, see Requirements and Options
for Host Languages (see page 87).

Displaying an SQL Message

To displayanSQLerror message, you usethe IDMSINO1 entry point to the IDMS module
to call a function thatformats error message data usinginformationinthe SQLERM and
SQLCERL fields.

Note: For more information aboutthe requirements for callingIDMSINO1 to display SQL
messages, see the CA IDMS Callable Services Guide.

Using WHENEVER SQLERROR

Ifthe programhandles most or all errors by branchingto one routine, consider usingthe
WHENEVER precompiler directive statement that specifies the SQLERROR condition. The
precompiler adds the logic requested by a WHENEVER statement immediately after
every SQL statement that follows the WHENEVER statement.

54 Programming Guide

SQLStatus Checking and Error Handling

Inthis example, ifan SQL statement that follows the WHENEVER statement returns an
error, processing branches to the routine labeled ERROR-EXIT:

EXEC SQL
WHENEVER SQLERROR GOTO :ERROR-EXIT
END-EXEC.

Overriding WHENEVER

Once the programissues a WHENEVER SQLERROR statement, it canoverridethe
statement only with:

m Another WHENEVER SQLERROR statement that specifies differentbranchinglogic

m A WHENEVER SQLERROR CONTINUE statement, which directs the precompiler not
to add logic after subsequent SQL statements

Note: For more information aboutthe WHENEVER statement, see the CA IDMS SQL
Reference Guide.

Checking Specific Errors
When To Do It

In certain situations the program should check for specific errors beforedirecting
processingtoa generalized error routine.

This guide discusses when to code specific error-checkinglogicin Chapter 4, Data
Manipulation with SQL, and other chapters that present SQL programming techniques.

How to Do It

You write a conditional program statement to check for a specific SQL error following
the SQL statement. The conditional statement must also account for all other errors if
the test for the specific error fails:

EXEC SQL
INSERT
INTO DIVISION
VALUES (:DIVISION-CODE,
:DIVISION-NAME,
:DIV-HEAD-ID)
END-EXEC.

IF SQLSTATE = '23501' PERFORM EXISTING-DIVISION
ELSE IF SQLCODE < O GOTO ERROR-ROUTINE.

Chapter 3: Writing an SQLProgram 55

SQLStatus Checking and Error Handling

Using WHENEVER SQLERROR

To perform specific error checking after the program has issued a WHENEVER
SQLERROR statement, you can:

m Override the previous WHENEVER statement before issuingthe SQL statement:

EXEC SQL
WHENEVER SQLERROR CONTINUE
END-EXEC.

EXEC SQL
INSERT

END-EXEC.

IF SQLSTATE = '23501' PERFORM EXISTING-DIVISION
ELSE IF SQLCODE < O GOTO ERROR-ROUTINE.

EXEC SQL
WHENEVER SQLERROR GOTO ERROR-ROUTINE
END-EXEC.

m Placethe specific error-handlinglogicinthegeneralized routine:

ERROR-ROUTINE.

IF SQLSTATE = '23501' PERFORM EXISTING-DIVISION.

Using GET DIAGNOSTICS

The use of GET DIAGNOSTICS instead orin addition to checking SQLCA offers the
following advantages:

m Better portability becauseof the SQL standards compliance
m Availability of more diagnosticinformation

m Independent of host language

m Built-informatting of all diagnostic information

Note: For more information about GET DIAGNOSTICS, see the CA IDMS SQL Reference
Guide.

56 Programming Guide

Chapter 4: Data Manipulation with SQL

This section contains the following topics:

Data Manipulation Operations (see page 57)
Usinga Cursor (see page 67)

Bulk Processing (see page 75)
Invoking Procedures (see page 83)

Data Manipulation Operations

When SQLis usedin a host language program, you will need to perform data
manipulation. There are several ways that the program can take advantage of SQL DML
in CA IDMS.

SQL DML Statements

Use the following SQLstatements in data manipulation operations:
m SELECT—To retrieve data

m INSERT—To adddata

m UPDATE—To modify data

m DELETE—To delete data

m CALL—To invoke anSQL invoked procedure or table procedure.

SQL data manipulation statements provide the following capabilities:
m Onestatement can manipulatedata in many rows
m Onestatement can perform both computation and data manipulation

m Onestatement can retrieve data from many tables

Consequently, you have several options for performing each type of data manipulation.

Chapter 4: Data Manipulation with SQL 57

Data Manipulation Operations

Retrieving Data

Using SELECT

Ina program, you use the SELECT statement in one of these ways to retrieve data from
the database:

m Withan INTO clausethatspecifies host variable, local variables, or routine
parameters names, to retrieve a singlerowinto working storage

m Witha BULK clausethat specifies the name of a host variable array, to retrieve
multiplerows into working storage

m Ina DECLARE CURSOR statement to define a cursor thatyou canuse to retrieve
multiplerows and then fetch each row one at a time into working storage

® |nan INSERT statement to selectfrom one or more other tables the data to be
inserted

When embedding a SELECT statement, specify each column even if you mean to select
all columns. Using SELECT * to select all columns can causea programerror if, for
example, a columnis added to the table.

Single-row SELECT Statement

Ifthe resultof a SELECT statement will be one and onlyone row, you canissuea SELECT
statement with anINTO clause.

A resulttablewill contain only one row when:
m The WHERE clausespecifies a primary key valueas the search condition:

EXEC SQL
SELECT EMP_ID,
EMP_LNAME,
DEPT ID
INTO :EMP-ID,
: EMP-LNAME,
:DEPT-ID
FROM EMPLOYEE
WHERE EMP ID = :EMP-ID
END- EXEC.

58 Programming Guide

Data Manipulation Operations

m All columnvalues resultfrom aggregate functions and no GROUP BY clausehas
been specified:

EXEC SQL
SELECT COWNT(P.EMP ID) INTO :TOT-EMPLOYEES,
SUM(B.SALARY AMOUNT) INTO :TOT-SALARIES,
(SWM(B.VAC_ACCRUED) - SUM(B.VAC TAKEN))
INTO :UNUSED-VAC
FROM POSITION P, BENEFITS B
WHERE P.EMP_ID = B.EMP_ID
AND P.SALARY_AMOUNT IS NOT NULL
AND P.FINISH DATE IS NULL
END-EXEC.

Checking Single-row Select Status

Ifthe number of rows returned by a SELECT statement with an INTO clauseis greater
than 1, the DBMS returns a cardinality violation error. No data is moved to the host
variablesnamedinthe INTO clause.

If no row is found that matches the selection criteria, the DBMS returns a no rows found
warningand moves 100 to SQLCODE.

Updating the Single Row

Under cursor stability if the program performs single-rowselectthat specifies the
primary key inthe search condition, the DBMS locks the baserow from which the
resultingrow is derived. This prevents any update by a concurrent databasetransaction.
The lockis maintained until one of these events occurs:

m The databasetransactionends
m The databasesessionissuspended

m The databasetransactionaccesses a differentrow from the same table

Until one of these events occurs, the SQL transaction can updatethe row without a
need to check whether a concurrent transaction has modified the row.

Note: For more information aboutupdating rows, see Modifying Data (see page 62).
Multiple-row SELECT

Ifthe resulttableof a SELECT statement potentially has multiplerows, the program
must declarea cursor or perform bulk processingto process retrieved data.

Note: For more information aboutretrieving multiplerows, see Data Manipulation with
SQL (see page 57).

Chapter 4: Data Manipulation with SQL 59

Data Manipulation Operations

AddingData

Using INSERT
Ina program, you use an INSERT statement to add data to the databaseinone of the
following ways:

m INSERT with a VALUES clausetoadd asinglerow to a tableby listingthe column
values in the statement

m INSERT with a SELECT statement to add one or more rows usingexisting data

m |[NSERT with a BULK clauseto add multiplerows to a tablefrom a host variablearray
Single-row INSERT

To addasinglerow to a table, issuean INSERT statement with a VALUES clausethat
specifies a valuefor each columninthe column list:

EXEC SQL
INSERT INTO DIVISION
(DIV_CODE, DIV_NAME) <+— Column list
VALUES (:DIV-CODE, :DIV-NAME)
END-EXEC.

Multiple-row INSERT with SELECT

One way to add multiplerows to a tableis to insertthe resulttable of a SELECT
statement.

Inthis example, aresulttable of data from the EMPLOYEE tableisinsertedinto a table
named TEMP_MGR:

EXEC SQL
INSERT INTO TEMP MGR
SELECT DISTINCT E.MANAGER ID,
M.EMP_FNAME,
M.EMP_LNAME
FROM EMPLOYEE E, EMPLOYEE M
WHERE E.MANAGER ID = M.EMP_ID
END-EXEC.

Guidelines for INSERT

Apply these guidelines when formulatingan INSERT statement:

m An INSERT statement must supply a valuefor each columninthe column list, even if
the valueis null

m The order of column values must match the order of the columnlist

60 Programming Guide

Data Manipulation Operations

An INSERT statement must supply values for all columns of the named tableifthe
columnlistis omitted:

EXEC SQL
INSERT INTO DIVISION
VALUES ('DO6', 'ADVANCED RESEARCH', NULL)
-- Division head id is null --
END-EXEC.

When embedding an INSERT statement with a VALUES clause, you shouldincludea
columnlisteven ifyou mean to insertvaluesintoall columns.Usinga VALUES
clausebutomitting a columnlistcancausea programerror if, for example, a
column has been added to the table.

A columnlistmustincludeanytable columns that are defined as not null and as not
havinga default value

Ifan INSERT statement omits a table column from the columnlist, the DBMS:
— Stores the default valuefor the column, if one has been defined
— Stores a null valueifthe column allows nulls

— Returns a data exception error if no defaultvalue has been defined and nulls
are not allowed

Checking INSERT Status

Sincethe DBMS enforces integrity constraints, the program cantest SQLCERC for a
constraint violation:

1023—Check constraint
1058 —Uniqueconstraint
1060—Referential constraint
1002—Null constraint
1031—Pagegroup violation

Note: Referential constraints defined as linked clustered are not permitted to not
cross pagegroup boundaries.

Here is an example for a specific test for a check constraintviolation:

IF SQLCERC = 1023 PERFORM INVALID-DATA
ELSE IF SQLCODE < O GOTO ERROR-ROUTINE.

Ifan INSERT statement that uses a SELECT statement executes successfully butadds no
rows, the DBMS returns 100 to SQLCODE and 0 to SQLCNRP.

Chapter 4: Data Manipulation with SQL 61

Data Manipulation Operations

Modifying Data

Inserting Multiple Rows
You canadda set of rows to a table usingone INSERT statement with a BULK clause.

Note: For more information aboutusingbulk processingtoinsert, see Bulk Processing
(see page 75).

Using UPDATE
You modify data inatable usingan UPDATE statement. There are two types of UPDATE
statement:

m |fthe WHERE clausecontains a search condition, the statement modifies any row
that meets the search condition—this isa searched update

m Ifthe UPDATE statement specifies WHERE CURRENT OF cursor-name, the statement
modifies only the row on which the cursoris positioned —this is a positioned
update

Note: For information about positioned updates, see Usinga Cursor (see page 67).

Checking UPDATE Status

As with an INSERT statement, the DBMS enforces integrity constraints when the
program issues an UPDATE statement.

Note: For more information about checking statement execution for constraint
violation, see Adding Data (see page 60).

Searched Updates

A searched update statement contains:
m A SET clausethatspecifies a valuefor each columnto be updated

m A WHERE clausecontainingthecriteria for choosingthe rows to be updated

62 Programming Guide

Data Manipulation Operations

Searched Updates Using Host Variables

In this example, the UPDATE statement uses a hostvariable (SALARY-AMOUNT) to
transfer a new data valueto the databaseand another host variable (EMP-ID) supplies
the column valuethat is the criterion for choosingthe row to update:

EXEC SQL
UPDATE POSITION
SET SALARY AMOUNT = :SALARY-AMOUNT
WHERE BMP ID = :EMP-ID
END-EXEC.

The statement inthe example updates only one row because the search conditionis
restricted by the valueof a primary key (EMP_ID).

The statement inthe following example updates multiplerows if more than one
employee does the job represented by the valueinJOB-ID:

EXEC SQL
UPDATE POSITION
SET SALARY_AMOUNT = :SALARY-AMOUNT
WHERE JOB_ID = :JOB-ID
END-EXEC.

Searched Updates Without Host Variables

A searched update may operate on existing column values without using host variables.
This statement gives a 10 percent raiseto all employees with a currentsalaryina
specified range:

EXEC SQL
UPDATE POSITION
SET SALARY AMOUNT = 1.1 * (SALARY_ AMOUNT)
WHERE SALARY AMOUNT BETWEEN 20000 AND 40000
END-EXEC.

No Matching Rows

If no rows satisfy the selection criteria inthe WHERE clauseof a searched update,
SQLCODE will be set to 100.

Automatic Rollback

Ifthe attempt to update one row of a searched update fails:
m Statement execution halts
m The DBMS returns anerror valueto SQLCODE

m The results of the UPDATE statement are automatically rolled back

Chapter 4: Data Manipulation with SQL 63

Data Manipulation Operations

Deleting Data

Using DELETE

You eraserows from a table usinga DELETE statement. As with UPDATE, there are two
types of DELETE statement:

m Ifthe WHERE clausecontains a search condition, the statement deletes any row
that meets the search condition—this isa searched delete

m |fthe DELETE statement specifies WHERE CURRENT OF cursor-name, the statement
deletes only the row on which the cursoris positioned —this is a positioned delete

Note: For more information aboutpositioned deletes, see Usinga Cursor (see page 67).
Searched Deletes

The statement inthis example deletes all rows fromthe BENEFITS table for a fiscal year
that precedes the one specifiedinthe :FISCAL-YEAR hostvariable:

EXEC SQL
DELETE FROM BENEFITS
WHERE FISCAL YEAR < :FISCAL-YEAR
END-EXEC.

If no rows satisfy the selection criteria inthe WHERE clauseof a searched delete,
SQLCODE will be set to 100.

Checking DELETE Status

The DBMS disallows an attempt to delete a row from a referenced tableina relationship
ifa row with a matching foreign key exists in a referencing table.

For example, sincea referential constrainthas been created between the EMPLOYEE
table and the POSITION table (with column EMP_ID in POSITION referencing column
EMP_ID in EMPLOYEE), you cannot delete employee 1234 from the EMPLOYEE tableif
employee 1234 exists inthe POSITION table.

To detect a referential constraintviolation ona DELETE statement, test for SQLCERC =
1060:

IF SQLCERC = 1060 PERFORM REFERENTIAL -ERROR
ELSE IF SQLCODE < 0 GOTO ERROR-ROUTINE.

64 Programming Guide

Data Manipulation Operations

Automatic Rollback

Ifthe attempt to delete one row of a searched delete fails:
m Statement execution halts
m The DBMS returns anerror valueto SQLCODE

m The results of the DELETE statement areautomaticallyrolled back

Important! When you issuea DELETE, be surethat the statement includes a WHERE

clause.Ifthe WHERE clauseis omitted, CA IDMS deletes all rows fromthe named table.
Using Indicator Variables in Data Manipulation

Indicator Variables in SELECT or FETCH

When a columnvalueis retrieved intoa hostvariablethathas an associated indi cator
variable, the DBMS assignsa valueto the indicator variable:

Indicator variable value Meaning

-1 The valueassigned to the host variablewas null. The
actual content of the host variableis unpredictable.

0 The host variablecontains a non-null valuethathas
not been truncated.

1 or greater The host variablecontains a truncated value. The
valueinthe indicator variableis thelength in bytes of
the original untruncated value.

Retrieving a Null Value

Sincea null valueis notvalidinthe programlanguage, the program must test for -1 in
the indicator variableand directprocessingto handlenull valueretrieval as needed if
the test is true.

Null Retrieval Example

Inthe following example, the program initializes two numeric host variables to zero:

MOVE ZERO TO VAC-TAKEN.
MOVE ZERO TO SICK-TAKEN.

Chapter 4: Data Manipulation with SQL 65

Data Manipulation Operations

If the next statement now retrieves null values fromthe VAC_TAKEN and SICK_TAKEN
columns, the value of VAC-TAKEN and SICK-TAKEN are still zero because the actual
content of the hostvariables isunchanged when nulls areretrieved:

EXEC SQL
SELECT VAC TAKEN,
SICK_TAKEN
INTO :VAC-TAKEN INDICATOR :VAC-TAKEN-I,
:SICK-TAKEN INDICATOR :SICK-TAKEN-I
FROM BENEFITS
WHERE EMP_ID = :EMP-ID
END- EXEC.

Indicator Variables in Inserts and Updates

When the programissues a statement to store a valuecontainedin a host variable, the
statement optionally can namethe associated indicator variable.

Ifthe statement names the indicator and theindicator variablevalueis 0,the DBMS
stores the actual content of the host variable. Ifthe indicator variablevalueis -1, the
DBMS stores a null valueinstead of the actual content of the host variable.

Update Examples With Indicator Variables

Inthe next example, the program assigns 0 tothe indicator variable after changingthe
value of the host variable VAC-TAKEN. CA IDMS stores the actual content of VAC-TAKEN
on the subsequent update:

ADD INPUT-VAC-TAKEN TO VAC-TAKEN.
MOVE ZERO TO VAC-TAKEN-I.

EXEC SQL
UPDATE BENEFITS
SET VAC TAKEN = :VAC-TAKEN INDICATOR :VAC-TAKEN-I
WHERE EMP_ID = :BMP-ID
END-EXEC.

66 Programming Guide

Using a Cursor

Using a Cursor

Declaring a Cursor

By omitting reference to the indicator variablein the UPDATE statement, the program
canachievethe sameresultof storingthe actual content of the host variable:

ADD INPUT-VAC-TAKEN TO VAC-TAKEN.

EXEC SQL
UPDATE BENEFITS
SET VAC TAKEN = :VAC-TAKEN
WHERE EMP_ID = :BMP-ID
END-EXEC.

Similarly, the programcanstore a null valuewithout namingthe indicator variable:

EXEC SQL
UPDATE BENEFITS
SET VAC TAKEN = NULL
WHERE EMP_ID = :BMP-ID
END-EXEC.

Inapplication programming, a cursoris anSQL constructthat the program uses to
process datainaresulttable. The cursor declaration defines the resulttable. Once the
program declares the cursor, the programcan open the cursor and sequentially fetch
one row at a time from the resulttable.

How You Declare a Cursor

You define a cursor by issuinga DECLARE CURSOR statement. The DECLARE CURSOR
statement contains a SELECT statement:

EXEC SQL
DECLARE EMP_SUM CURSOR FOR
SELECT EMP_ID,
MANAGER ID,
EMP_FNAME,
EMP_LNAME,
DEPT ID
FROM EMPLOYEE
ORDER BY DEPT ID
END- EXEC.

Chapter 4: Data Manipulation with SQL 67

Using a Cursor

Fetching a Row

Updateable Cursors

Ifthe programupdates the current cursor row, the cursor declaration mustcontain the
FOR UPDATE OF clause, specifyingtheresulttable columns that may be updated. In the
definition of an updateable cursor:

m Onlyone tableis named inthe FROM clause of the SELECT statement
m The named tablemust be a basetable, an updateable view or a table procedure

m The outer select may not containa UNION, ORDER BY, or GROUP BY clause

Note: For more information aboutall criteriathatan updateable cursor must meet, see
the documentation of the DECLARE CURSOR statement inthe CA IDMS SQL Reference
Guide.

Updateable Cursor Declaration Example

In this example, the EMP_SUM cursoris declared to allowthe programto update the
MANAGER_ID and DEPT_ID columns:

EXEC SQL
DECLARE EMP SUM CURSOR FOR
SELECT BMP_ID,
MANAGER_ID,
EMP_FNAME,
EMP_LNAME,
DEPT_ID
FROM EMPLOYEE
FOR UPDATE OF MANAGER ID,
DEPT ID
END-EXEC.

Opening the Cursor

Before the program can fetch cursor rows, it must open the cursor withan OPEN
statement:

EXEC SQL
OPEN EMP_SWM
END-EXEC.

68 Programming Guide

Using a Cursor

How You Fetch a Row

The program fetches a row with a FETCH statement that names the cursorand includes
anINTO clausethatspecifies the hostvariables to receive the fetched row:

EXEC SQL
FETCH EMP_SUM
INTO :EMP-ID,

:MANAGER-ID :MANAGER-ID-I,
:EMP- FNAME,
:EMP-LNAME,
:DEPT-ID

END-EXEC.

Cursor Position

Cursor position refers to a current positionrelativeto a row of the cursor.When a
FETCH statement is executed, the values assigned to the host variables areretrieved
from the row that follows the cursor position.

When the programopens the cursor, cursor positionis beforethe firstrow of the result
table. When a row is fetched, the cursor position moves to that row and the column
values for that row aremoved intothe hostvariables.

If another FETCH statement is executed while the cursor remains open, cursor position
moves to the next row.

When There Are No More Rows

Cursor position advances row by row with each FETCH. If there is norow followingthe
cursor positionand a FETCH statement is executed, the DBMS returns 100 to SQLCODE.
When this condition occurs, the program should end iterativelogic for fetching cursor
rows.

Testing for No More Cursor Rows

To test for no more cursor rows, test for SQLCODE = 100. If the test resultis true, set a
variabletoindicatethis condition,as shown inthe use of END-FETCH in the following
example.

Referencing a variablesuch as END-FETCH in subsequent program logic is recommended
because the programcontrols the variablevalue, whereas the DBMS controls the value
of SQLCODE.

Chapter 4: Data Manipulation with SQL 69

Using a Cursor

WORKING-STORAGE SECTION.

77 END-FETCH PIC X VALUE 'N'.
PI-:{OCEDURE DIVISION.

kxkk Parform paragraph until no more cursor rows to process
PERFORM FETCH-CURSOR UNTIL END-FETCH = Y.

FETCH- CURSOR.

EXEC SQL
FETCH EMP_SUM INTO
EMP-ID,
MANAGER-ID MANAGER-ID-I,
EMP-FNAME,
EMP-LNAME,
DEPT-ID
END-EXEC.

wxxx Test for no more cursor rows
IF SQLCODE = 100 MOVE 'Y' TO END-FETCH.

Closing a Cursor

The program can closea cursor with the CLOSE statement:

EXEC SQL
CLOSE EMP_SUM
END- EXEC.

Automatic Closing of a Cursor

The COMMIT and ROLLBACK statements automatically closeall open cursors used by
the application program.

70 Programming Guide

Using a Cursor

Invalid Cursor State

The DBMS returns aninvalid cursor state condition andignores the statement if the
program issues:

m An OPEN statement fora cursorthatis open

m A CLOSE statement for a cursor thatis closed

m A FETCH statement for a cursor thatis closed

m A FETCH statement when the cursor positionisafter the lastrow (which means that

the DBMS already returned 100 to SQLCODE)

Summary of Cursor Management

This diagram summarizes how the programuses a cursor:

Declare
cursor

Open
cursor

<—.
| Iterative
V- logic

Advance
cursor

Close
cursor

Chapter 4: Data Manipulation with SQL 71

Using a Cursor

Executing a Positioned Update or Delete

A positioned update modifies one or more column values of the current row of an
updateable cursor.The statement takes this form:

EXEC SQL
UPDATE table-name
SET column-name = value-specification

WHERE CURRENT OF cursor-name
END-EXEC.

Requirements for a Positioned Update

To execute a positioned update, the program must declarea cursor that:
m |supdateable

m Contains a FOR UPDATE OF clause

Advantage of an Updateable Cursor

When the databasetransaction runningunder cursor stability fetches a row from an
updateable cursor, the DBMS places a lock on the row and maintains ituntil one of
these events occurs:

m The program fetches the next cursorrow
m The cursorisclosed
m The databasetransaction ends

In this way, CA IDMS guarantees the base row is not modified or deleted by another
transaction whileitis the current cursor row.

The DBMS maintains the lock onthe current row of anupdateable cursorduringa
suspended SQL session. This feature is designed for pseudoconversational
programming.

Note: For more information about pseudoconversational programming with embedded
SQL, see 7.2, Pseudoconversational Programming.

Checking Positioned Update Status

Ifthe programattempts to execute a positioned update when the referenced cursoris
not updateableor does not containa FOR UPDATE OF clause, the DBMS returns an
invalid cursor state error.

Note: For more information aboutchecking the status of UPDATE statements in general,
see Modifying Data (see page 62).

72 Programming Guide

Using a Cursor

Positioned Update Example

Inthe following example, the program declares a cursor toretrieve current data for
vacationandsick days taken by employees. The program adds inputvalues to the values
retrieved for the employee in the current cursor row. Then the programissues a
positioned update.

EXEC SQL

DECLARE VAC SICK CLRSOR CURSOR FOR
SELECT EVP_ID,
VAC_TAKEN,
SICK TAKEN
FROM BENEFITS
FOR UPDATE OF VAC TAKEN,
SICK TAKEN
END- EXEC.

EXEC SQL
OPEN VAC_SICK QURSCR
END-EXEC.

EXEC SQL
FETCH VAC_SICK CURSOR INTO
:EMP-ID,
:VAC-TAKEN INDICATOR VAC-TAKEN-I,
:SICK-TAKEN INDICATOR SI(K-TAKEN-I
END-EXEC.

ADD INPUT-VAC-TAKEN TO VAC-TAKEN
ADD INPUT-SIK-TAKEN TO SICK-TAKEN

EXEC SQL
UPDATE BENEFITS
SET VAC_TAKEN = :VAC-TAKEN,
SICK TAKEN = :SIK-TAKEN
WHERE CURRENT OF VAC-SICK-CURSOR
END - EXEC.

EXEC SQL
CLOSE VAC SICK CURSOR
END - EXEC.

Chapter 4: Data Manipulation with SQL 73

Using a Cursor

Positioned Deletes

You candelete the current row of an updateable cursor simply by namingthe tableand
the cursorinthe DELETE statement:

DELETE FROM table-name WHERE CURRENT OF cursor-name

A cursor mustbe updateable to perform a positioned delete, but the FOR UPDATE OF
clauseis notrequiredin the cursor declaration.

Checking Positioned Delete Status

Ifthe programattempts to execute a positioned delete when the referenced cursoris
not updateable, the DBMS returns an invalid cursor state error.

Note: For more information about checking the status of DELETE statements ingeneral,
see Deleting Data (see page 64).

Positioned Delete Example

Inthis example, the program declares an updateablecursor. After fetching a row, the
program conditionally executes a positioned delete.

74 Programming Guide

Bulk Processing

EXEC SQL

DECLARE DEL POSITION CURSOR FOR
SELECT EMP_ID,
J0B_ID
FROM POSITION
END- EXEC.

EXEC SQL
OPEN DEL_POSITION
END-EXEC.

EXEC SQL
FETCH DEL POSITION INTO
:EMP-1D,
:J0B-ID
END-EXEC.

IF INPUT-ACTION = 'D&rq.
EXEC SQL
DELETE FROM POSITION
WHERE CURRENT OF DEL POSITION
END - EXEC.

EXEC SQL
CLOSE DEL_POSITION
END - EXEC.

Bulk Processing

A CA IDMS extension of the SQL standard allows you to transfer multiplerows of data
between the databaseandthe program usinga singleSELECT, FETCH, or INSERT
statement with a BULK clause.

To issuea bulkselect, fetch, or insert, the programmust declarea hostvariablearray.

Note: For more information aboutdeclaringa hostvariablearrayin CAADS, COBOLand
PL/I see Requirements and Options for Host Languages (see page 87).

Chapter 4: Data Manipulation with SQL 75

Bulk Processing

Executing a Bulk Fetch

A bulk fetch is a FETCH statement that retrieves multiplerows from a cursorinto a host
variablearray.

To execute a bulkfetch:

1. Declarea hostvariablearray

2. Open the cursor

3. Issuea FETCH statement with the BULK clause

Note: For more information aboutthe FETCH statement, see the CA IDMS SQL Reference
Guide.

Cursor Position

The firstexecution of a FETCH BULK statement retrieves the firstsetof rows from the
cursorresulttable. After statement execution, cursor positionis onthe lastrowfetched.
Ifthe FETCH BULK statement is executed again before the cursoris closed, the next set
of rows retrieved begins with the row followingthe cursor position. Fetching proceeds
sequentially through the cursor resulttableuntil no more rows are found.

How Many Rows Are Fetched?

If you do not specify a ROWS parameter inthe BULK clause, the FETCH statement
retrieves as many rows as will fitbetween the startingrow of the arrayand the end of
the array.

Ifyou specifya ROWS parameter inthe BULK clause,the FETCH statement retrieves a
number of rows equal to the valuein the ROWS. This valuemust be less than or equal to
the number of rows between the starting row of the arrayand the end of the array.

Maximum Rows Example

In this example, the program assigns a ROWSvaluethat corresponds to the number of
rows that can be displayed on a given display terminal:

76 Programming Guide

Bulk Processing

01 BULK-DIVISION.
02 BULK-DIV OCCURS 100 TIMES.

01 WS-SCREEN-LENGTH

EXEC SQL
DECLARE DIV DEPT CURSOR FOR
SELECT DEPT ID, DEPT NAME
FROM DEPARTMENT
WHERE DIV CODE = :DIV-CODE
END - EXEC.
ACCEPT SCREENSIZE INTO WS-SCREEN-LENGTH.
SUBTRACT 4 FROM WS-SCREEN-LENGTH.
IF WS-SCREEN-LENGTH > 100 MOVE 100 TO
WS-SCQREEN LENGTH.

M(.)VE INPUT-DIV-CODE TO DIV-CODE.
EXEC SQL

OPEN DIV DEPT

END - EXEC.

FETCH-PARAGRAPH.

EXEC SQL
FETCH DIV _DEPT

END - EXEC.

IF SQLCODE=100 MOVE 'Y' TO END-FETCH.

(Iterate paragraph until no more rows)

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

03 DEPT-ID PIC 9(4).
03 DEPT-NAME PIC X(40).
01 DIV-CODE PIC X(3).
PIC S9(4) COMP.

BULK :BULK-DIVISION ROWS :WS-SCREEN-LENGTH

Specifying a Starting Row

The DBMS assigns thefirstrow of the resulttableto the firstrow of the arrayunless you
includethe START parameter on the BULK clause.The START valuecorresponds to the

subscriptvalueof the array occurrence.

Chapter 4: Data Manipulation with SQL 77

Bulk Processing

Checking Statement Execution

If program logic calls for repeating the FETCH BULK statement until no more rows are
found, the programmust test for SQLCODE =100, as describedin Usinga Cursor (see
page 67). The DBMS always sets the value of SQLCNRP equal to the number of rows
returned unless anerror occurs during processing.

The followingtableshows the possible combination of values returned to SQLCODE and
SQLCNRP on a FETCH BULK statement:

SQLCODE and SQLCNRP Values

Result of bulk fetch SQLCODE value SQLCNRP value

No rows are returned 100 0

At leastone row is returned but fewer 100 Equals the

rows than the maximum allowed number of rows
returned

The number of rows returned matches the 0 Equals the

maximum allowed number of rows
returned

Advantages of a Bulk Fetch
Usinga BULK clausewith a FETCH statement minimizes resources to retrieve data.

Unlikea bulkselect, the program canretrieve an unlimited number of resultrows by
repeating a bulkfetch.

Bulk Fetch Considerations

m Witha bulkfetch, the program generally cannotperform current or cursor
operations such as a positioned update or delete becausethe cursoris always
positioned on (or after) the lastrowfetched

m Ifanerror occurs duringthe processingof a bulk fetch, the contents of the host
variablearrayareunpredictable

m |fa bulkfetch results inretrieval of a null value, the contents of the host variable for
the correspondingcolumnis unpredictable

Bulk Fetch Example

In this example, the program issues an INCLUDE TABLE statement to declarea host
variablearrayfor several columns of the EMPLOYEE table. Then itdeclares a cursor to
select the columnvalues from all rows of the table.

78 Programming Guide

Bulk Processing

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

EXEC SQL
INCLUDE TABLE EMPLOYEE AS BULK-EMPLOYEE
(EMP_ID, EMP_FNAME, EMP LNAVE, DEPT ID)
NUMBER OF ROWS 50
PREFIX 'BULK-'

END- EXEC.

EXEC SQL END DECLARE SECTION END-EXEC.

EXEC SQL
DECLARE EMP CRSR CLRSOR FOR
SELECT EMP_1ID,
EMP_FNAME,
EMP_LNAME,
DEPT ID
ORDER BY 4, 3, 2
END- EXEC.

When the FETCH statement is executed, the first 50 rows of the cursorresulttableare
assigned to the BULK-EMPLOYEE array, becausethe default startingrowassignmentis 1
andthe defaultnumber of rows assignedis thearraysize.fthe FETCH statement is
repeated, the next 50 rows of the resulttable areassignedto the array.

EXEC SQL
OPEN EMP_CRSR
END-EXEC.

EXEC SQL
FETCH EMP_CRSR
BULK :BULK-EMPLOYEE
END-EXEC.

IF SQLCODE = 100 MOVE 'Y' TO END-FETCH.

Chapter 4: Data Manipulation with SQL 79

Bulk Processing

Executing a Bulk Select

A bulkselectis a SELECT statement that retrieves multiplerows from the databaseinto
a hostvariablearray:

1. Declarea hostvariablearray
2. Issuethe SELECT statement with a BULK clause, as inthis example:

EXEC SQL
SELECT DEPT 1ID,
DEPT NAME,
DIV-CODE,
DEPT HEAD ID
BULK :BULK-DEPARTMENT
FROM DEPARTMENT
END- EXEC.

Checking the Status of a Bulk Select

A successfulbulk selectreturns 100 to SQLCODE. Avalueof 100 will bereturned if there
are fewer resultrows than entries inthe bulkarrayorifthe number of resultrows is the
same as the number of entries. Ifthe arrayis toosmall for the resulttable, the
statement returns a cardinality violation error.

The followingtableshows the possible combinations of SQLCODE and SQLCNRP values
on a bulk select:

Result of bulk select SQLCODE value SQLCNRP value

No rows are returned 100 0

At leastone row is returned but fewer 100 Greater than 0 andless
rows than the maximum allowed than or equal to the

maximum allowed

The number of rows returned exceeds Less than O Equal to the maximum
the maximum allowed allowed

Advantage of a Bulk Select

A bulkselect retrieves a set of rows usingfewer resources than a series of single-row
SELECT statements to retrieve the same rows.

80 Programming Guide

Bulk Processing

Bulk Select Considerations

A bulk select:
m Cannotretrieve more rows than there areoccurrences inthe hostvariablearray

m Retrieves the same set of rows, not the next set of rows, ifthe statement is reissued
withinthe databasetransaction

m Causes the contents of the host variablearraytobe unpredictableifanerror occurs

duringprocessing

A bulkselectis appropriate only when selecting from a table with a number of rows that
you consider fixed, such as a table of the 50 states and their mailing codes.

Ifthe sizeof the host variablearray may be too small for the resulttable, you should
declarea cursor for the SELECT statement and use a bulk fetch.

Executing a Bulk Insert

A bulkinsertis an INSERT statement that adds multiplerows in a host variablearrayto
the database.

To execute a bulkinsert:

1. Declarea hostvariablearray

2. Assignvalues tothe hostvariablearray

3. Issuethe INSERT statement with the BULK clause
Specifying the START and ROWS Parameters

A bulkinsertadds as manyrows from the host variablearrayas arespecifiedin the
ROWS parameter, starting from the row specified inthe START parameter. If START and
ROWS are not specified, these are the defaults:

m The startingrow is the firstentry inthe array
m The number of rows inserted is the number of occurrences defined for the array
Note: Ifthe arrayis notfull,specifya ROWS parameter valueequal to the number of

occurrences inthe arraythat contain data. This ensures that the DBMS will not attempt
to insertarrayoccurrences thatcontain no data.

Bulk Insert Example
In this example, the program declares a host-variablearray with an INCLUDE TABLE

statement. After values areassigned tothe array, the program issues a statement to
insertall ofthe datainthe array:

Chapter 4: Data Manipulation with SQL 81

Bulk Processing

EXEC SQL

NUMBER OF ROWS 100
PREFIX 'BULK-'
END-EXEC.

(Assign values to BULK-SKILL array)

EXEC SQL
INSERT INTO SKILL
BULK :BULK-SKILL
ROWS :NUM-ROWS

END-EXEC.

IF SQLCODE < 0
MOVE SQLCNRP TO FAILING-ROW-NUM
PERFORM ERROR-ROUTINE.

INCLUDE TABLE SKILL AS BULK-SKILL

Checking Bulk Insert Status

To detect unsuccessful execution of a bulkinsert, test for SQLCODE < 0.

Ifthe resultof the test is true, the value of SQLCNRP equals the relative row number
(from the specified starting row) of the row which caused the failure. The DBMS rolls
backthe results of the failingrow but not the results of the prior rows.

The followingtableshows the possible combinations of SQLCODE and SQLCNRP values

on abulk insert:

Result of bulk insert

SQLCODE value

SQLCNRP value

Fewer rows than the number of rows
specified areinserted becausethe
insertfailed ona row

Equal to the relative
row number of the
failingrow

The number of rows inserted matches
the number of rows specified

Equal to the number of
rows inserted

Advantage of a Bulk Insert

A bulkinsertadds a group of rows usingfewer resources thanifthe programissues a

separate INSERT statement for each row.

82 Programming Guide

Invoking Procedures

Invoking Procedures

There are two types of SQL invoked procedures: a procedure and a tableprocedures.
Both types can be invoked usingeither a CALL statement or a SELECT statement. This
section describes the results of invoking procedures in each of these ways.

CALL Statement

Ina program, you can use the CALL statement to invoke a (table) procedure. The
followingsections describetheresults of invoking each type of procedure usinga CALL
statement.

Note: For more information aboutSQL procedures and table procedures, see the CA
IDMS SQL Reference Guide.

CALL of a Procedure

A procedure always returns zero or one resultsets of parameters.

EXEC SQL
CALL DEMOEMPL.GET BONUS
(1234, :BONUS-AMOUNT, :BONUS-CURRENCY)
END-EXEC

Ifthe CALL is successful,indicated by an SQLSTATE of '00000' the host variables
BONUS-AMOUNT and BONUS-CURRENCY will containvalid data, returned by the
invoked routine for EMP-ID 1234, the inputvaluesupplied for the first parameter.

CALL of a Table Procedure

A tableprocedure canreturn zero or more resultsets of parameters. Therefore, a
simple CALL statement cannot be used to invoke and return all the resultsets of the
table procedure; a cursoris required.

Declaration of the Cursor

EXEC SQL
DECLARE C_BONUS_SET CURSOR
FOR CALL DEMOEMPL.GET BONUS SET
(EMP_ID =1234)
END- EXEC.

Opening the Cursor

EXEC SQL
OPEN C_BONUS_SET
END- EXEC.

Chapter 4: Data Manipulation with SQL 83

Invoking Procedures

Fetching the Result Sets

EXEC SQL
FETCH C_BONUS_SET INTO
:EMP-ID,
: BONUS - AMOUNT,
: BONUS - CURRENCY
END-EXEC.

Host variables for all parameters specified in the table procedure definition should be
provided.

Note: For more information aboutusingcursors,see Usinga Cursor (see page 67).

SELECT Statement

The SELECT statement can be used as analternativeto the CALL statement to invoke a
(table) procedure. The followingsections describethe results of invoking each type of
procedure usinga SELECT statement.

SELECT of a Procedure

A procedure always returns zero or one resultsets of parameters, therefore, a SELECT ...
INTO is used.

EXEC SQL
SELECT BONUS_AMOUNT,
BONUS_CURRENCY
FROM DEMOEMPL.GET BONUS (1234)
INTO :BONUS-AMOUNT,
:BONUS_CURRENCY
END-EXEC

Ifthe SELECT is successful,indicated by an SQLSTATE of '00000' the host variables
BONUS-AMOUNT and BONUS-CURRENCY will containvalid data, returned by the
invoked routine for EMP-ID 1234, the inputvaluesupplied for the first parameter.

SELECT of a Table Procedure

A tableprocedure canreturn zero or more resultsets of parameters. Therefore, a
SELECT ... INTO statement is only used when the SELECT returns zero or only one result
set. Acursorisrequiredif more than onerow is returned to the resultset.

84 Programming Guide

Invoking Procedures

Declaration of the Cursor

EXEC SQL
DECLARE C_BONUS_SET CURSOR
FOR SELECT BONUS_AMOUNT, BONUS_CURRENCY
FROM DEMOEMPL.GET_BONUS_SET
(EMP_ID =1234)
END-EXEC.

Opening the Cursor

EXEC SQL
OPEN C_BONUS_SET
END- EXEC.

Fetching the Result Sets

EXEC SQL
FETCH C_BONUS_SET
INTO :BONUS-AMOUNT,
: BONUS - CURRENCY
END- EXEC.

Note: For more information aboutusingcursors,see Usinga Cursor (see page 67).

Chapter 4: Data Manipulation with SQL 85

Chapter 5: Requirements and Options for
Host Landuagdes

There are requirements and options that applyto a particularhostlanguage when you
embed SQL inanapplication programto access CAIDMS.

Note: The SQL Web Connect feature allows all IDMS customers limited use of dynamic
SQL. The use of static, precompiled SQL requires a full SQL license.

This section contains the followingtopics:

UsingSQL ina CA ADS Application (seepage 87)
UsingSQL ina COBOL Application Program (see page 97)
UsingSQL ina PL/I Application Program (see page 117)

Using SQL in a CA ADS Application

This section presents information thatis specificto embedding SQL ina CA ADS
application program.

Note: Refer to the following manuals for documentation of all aspects of CA ADS
application programming:

m CA ADS User Guide
m CA ADS Reference Guide

Embedding SQL Statements

Requirements

To embed anSQL statement ina CA ADS program, you must:
m Observe CA ADS marginrequirements (columns 1to 72)

m UseSQL statement delimiters
Options
You canusethe SQL convention to insertcomments inan SQL statement.

You canusethe CA ADS conventionto continue an SQL statement on the next line.

Chapter 5: Requirements and Options for Host Languages 87

Using SQLina CA ADS Application

Delimited, Continued, and Commented Statements

How You Delimit a Statement

When you embed an SQL statement ina CA ADS application program,you must use
these statement delimiters:

m Begin each SQL statement with EXEC SQL

m End eachSQL statement with END-EXEC.

Statement Delimiter Example

The following example shows the use of SQL statement delimiters:

EXEC SQL
INSERT INTO DIVISION VALUES ('DO7','LEGAL',1234)
END-EXEC.

The statement text can be on the same lineas the delimiters.
Continuing Statements

You can write an SQL statement on more than one lineifyou do one of the following:
m Splitthe statement before or after any keyword, value, or delimiter

m Code through column 72 of one lineand continue in column 1 of the next line

Continued Statement Example

et R R LR EEL EEPEY CEERL PP L RS PR CEEEEL SRRy A
EXEC SQL

INSERT INTO SKILL VALUES (5678, 'TELEMARKETING', 'PRESENT SALES SCRIP
T OVER THE TELEPHONE, INPUT RESULTS')
END-EXEC.

How to Put Comments in SQL Statements

To include comments within SQL statements embedded ina CA ADS program, you can
use the SQL comment characters, two consecutive hyphens (--), on an SQL statement
linefollowing the statement text.

Restrictions on Comments
m Do notinsertacomment inthe middleof a stringconstantor delimited identifier

m Do not usethe CA ADS comment character ! to inserta comment inan embedded
SQL statement

88 Programming Guide

Using SQLina CA ADS Application

SQL Comment Example

The following example shows two comments withinan embedded SQL statement:

EXEC SQL
-- Perform update on active employees only
UPDATE BENEFITS
SET VAC ACCRUED = VAC ACCRUED + 10, -- Add 10 hours vacation
SICK ACCRUED = SICK ACRRUED + 1 -- Add 1 sick day
WHERE EMP_ID IN
(SELECT EMP_ID FROM EMPLOYEE
WHERE STATUS = 'A")
END-EXEC.

Placing an SQL Statement
Where You Can Put Statements

These are the rules for placingan SQL statement ina CA ADS program:

m Onlya WHENEVER directiveor a DECLARE CURSOR statement may appearina
declaration module

m Al SQL statements except for INCLUDE TABLE arevalid for premap andresponse
processes

Order of Compilation

Dialog modules arecompiled in this order:
1. Declaration module
2. Premap process module

3. Response process modules

The order of compilation of response process modules is not guaranteed. Therefore, ifa
WHENEVER condition or the availability of a cursor mustspan modules, you should
placethe WHENEVER statement or cursor declarationina declaration module.

Declaration Module
CA ADS uses a declaration module, ifitexists, when you compilethe dialog.

The declaration module can contain WHENEVER directives and DECLARE CURSOR
statements.

Chapter 5: Requirements and Options for Host Languages 89

Using SQLin a CA ADS Application

WHENEVER and DECLARE CURSOR arenot executable statements, and a declaration
module is not executable. The scope of a WHENEVER or DECLARE CURSOR is the entire
dialog.

A WHENEVER directive or DECLARE CURSOR statement isvalidina premaporresponse
process, but the scope of the statement is not global.

Scope of WHENEVER
The scope of a WHENEVER conditionina premap orresponse is the rest of that premap
or responseor until another WHENEVER statement that changes the conditionis

encountered withinthe process.

A WHENEVER declarationina premap or responseoverrides (for the duration of its
scope) the global declarationin thedeclaration module.

Scope of DECLARE CURSOR

The scope of a DECLARE CURSOR statement is from the moment that the declarationis
encountered indialogcompilationtothe end of that compilation.

Defining Host Variables

What You Declare

You implicitly declarehostvariables for a CA ADS dialog when:

m You associatea record or a tablewith the dialogusingthe WORK RECORD screen of
ADSC

® You associatea map or subschema, and thus its records, with the dialog
Any record element thatis valid fora CA ADS MOVE command is validas a hostvariable.

Note: For more information about ADSC and the MOVE command, see the CAADS
Reference Guide.

Equivalent Column Data Types
All CA IDMS data types are supported by CA ADS.

This tableshows definitions of CA ADS host variabledata types and the equivalent CA
IDMS table column data types:

CA ADS PICTURE and USAGE clause CA IDMS data type

PICX(n) USAGE DISPLAY CHAR(n)

90 Programming Guide

Using SQLina CA ADS Application

CA ADS PICTURE and USAGE clause

CA IDMS data type

01 name
49 name-LEN PICS9(4) COMP
49 name-TEXT PICX(n)

VARCHAR(n)

PICS9(p-s)V9(s) USAGE COMP-3

DECIMAL(p,s)

PIC9(p-s)V9(s) USAGE COMP-3

UNSIGNED DECIMAL(p,s)"

USAGE COMP-2

DOUBLE PRECISION

USAGE COMP-1 REAL
USAGE COMP-1 FLOAT
PICS9(n) USAGE COMP SMALLINT
(where n<5)

PICS9(n) USAGE COMP INTEGER

(where n>4 and n<10)

PICS9(n) USAGE COMP
(where n>9)

LONGINT or BIGINT

PICS9(p-s)V9(s) USAGE DISPLAY

NUMERIC(p,s)

PIC9(p-s)V9(s) USAGE DISPLAY

UNSIGNED NUMERIC(p,s)1

PICX(n) USAGE DISPLAY

BINARY(n)

PICG(n) USAGE DISPLAY-1

GRAPHIC(n)"

01 name
49 name-LEN PICS9(4) COMP
49 name-TEXT PICG(n) DISPLAY-1

VARGRAPHIC(n)"

PICX(10) USAGE DISPLAY DATE
PICX(8) USAGE DISPLAY TIME
PICX(26) USAGE DISPLAY TIMESTAMP
PICX(8) USAGE DISPLAY TID!

Note: ' This data type is a CAIDMS extension of the SQL standard. For more information
about documentation of CA IDMS data types, see the CA IDMS SQL Reference Guide.

Chapter 5: Requirements and Options for Host Languages 91

Using SQLin a CA ADS Application

Including Tables

You includeanSQL tableina CA ADS dialogby specifyingthe table on the WORK
RECORD screen of ADSC.

ADSC creates host variablestructures usingthese data type equivalents when directed
to includea tableon the Work Record Screen:

CA IDMS data type Data type in included table

BINARY(n) PICX(n)
CHARACTER(n) PICX(n)
VARCHAR(n) -LEN PICS9(4) COMP

-TEXT PICX(n)

GRAPHIC(n) PICG(n) DISPLAY-1

VARGRAPHIC(n) -LEN PICS9(4) COMP

-TEXT PICG(n) DISPLAY-1

DECIMAL(p,s) PICS9(p-s)V9(s) COMP-3

UNSIGNED DECIMAL(p,s) PIC9(p-s)V9(s) COMP-3

NUMERIC(p,s) PICS9(p-s)V9(s) DISPLAY

UNSIGNED NUMERIC(p,s) PIC9(p-s)V9(s) DISPLAY

DOUBLE PRECISION COMP-2

FLOAT(n) where

n<=24 COMP-1
n>24 COMP-2

REAL COMP-1

DATE PICX(10)

TIME PICX(8)
TIMESTAMP PICX(26)
SMALLINT PICS9(4) COMP
INTEGER PICS9(8) COMP
LONGINT PICS9(18) COMP

Indicator variable

PICS9(4) COMP or PICS9(8) COMP

TID

PICX(8)

92 Programming Guide

Using SQLina CA ADS Application

Defining Bulk Structures

A bulkstructureis a group element or a record which contains a subordinatearray for
holding multipleoccurrences of input or output values.Bulk structures areused in bulk
SELECT, INSERT, and FETCH statements for retrieving or storing multiplerows of data.

Format of a Bulk Structure

A bulk structure consists of three levels:

The highest level is the structure itself (level 01 through 47).
The second level is a multiply occurring group item (level 02 through 48).

The thirdlevel consists of elementary or variablelength data items (variablelength
dataitems are group elements consistingof a halfword length field followed by a
character or graphics field).

The number, type and order of data items atthe lowestlevel must correspond to
the number, data type, and order of columnvalues being retrieved or inserted.

All data descriptions used by CA ADS are defined within the dictionary.

Bulk Structure Example

The followingis anexampleof a valid bulk structuredefinition using IDD syntax:

ADD
ADD
ADD
ADD

ADD

ELEMENT BMP-ID PIC 999.

ELEMENT BMP-NAME PIC X(30).
ELEMENT DEPT-NAME PIC X(30).
ELEMENT BULK-ROW SUB ELEMENTS ARE
(EMP-ID BMP-NAME DEPT-NAME) .
ELEMENT BULK-DATA SUB ELEMENT
BULK-ROW OCCURS 20.

Referring to a Bulk Structure

When referringto a bulk structure ina SELECT, FETCH, or INSERT statement, the name
of the highest level is used:

EXEC SQL
FETCH EMPCWRS BULK :BULK-DATA

END-

EXEC.

Chapter 5: Requirements and Options forHostLanguages 93

Using SQLina CA ADS Application

Restrictions

The followingrestrictions apply to bulk structures defined for use with CA ADS:

m The followingclauses may notappear withinthe lowest |level element definitions:

BLANK WHEN ZERO IS ON
JUSTIFY IS ON

OCCURS

(R) indicating redefinition
SIGN IS LEADING/TRAILING
SYNC

m [Indicatorvariables cannotbedefined for elements withinthe bulk structure

m The bulkstructure must be either arecord or the firstelement withinthe record

Referring to Host Variables

What You Can Do

CA IDMS supports references to host variables in SQLstatements. The hostvariable
name must be preceded with a colon ().

Note: For more information abouthost variables, see Referring to Host Variables (see
page 32).

Qualifying Host Variable Names

CA IDMS supports two methods of qualifying CA ADS hostvariablenamesinanSQL
statement.

For example, assumethese host variabledefinitions:

01 EMP

03 HIRE-DATE

01 MGR

03 HIRE-DATE

94 Programming Guide

Using SQLina CA ADS Application

The methods of qualifying HIRE-DATE in both of the following examples arevalid:

EXEC SQL
SELECT...
INTO :HIRE-DATE OF EMP

EXEC SQL
SELECT...
INTO :EMP.HIRE-DATE

Including SQL Communication Areas

Automatically Included

The SQL Communications Areas (SQLCAs) areincluded automaticallyina CAADS dialog
that contains embedded SQL. You make no declaration of these data structures in the
CA ADS modules you create.

Chapter 5: Requirements and Options for Host Languages 95

Using SQLin a CA ADS Application

SQLCA Structu

This is the CA ADS format of the SQLCA:

re

COBOL/CA ADS SQLCA

Included by the
precompiler for
DB2 compatibility;
not used by CA IDMS

01 SQLCA.
02 SQLCAID PIC X(8).
02 SQLCODE PIC S9(9) COMP.
02 SQLCSID PIC X(8).
02 SQLCINFO.
03 SQLCERC PIC S9(9) COMP.
03 FILLRR PIC S9(9) COMP.
03 SQLCARP PIC S9(9) COMP.
03 FILLRR PIC S9(9) COMP.
03 SQLCSER PIC S9(9) COMP.
63 FILLERR PIC S9(9) COMP.
03 SQLCLNO PIC S9(9) COMP.
03 SQLCMCT PIC S9(9) COMP.
03 SQLCARC PIC S9(9) COMP.
03 SQLCFIB PIC S9(9) COMP.
63 FILLRR PIC S9(9) COMP.
03 FILLRR PIC S9(9) COMP.
02 SQLCINF2 REDEFINES SQLCINFO.
03 SQLERRD PIC S9(9) COMP
OCQURS 12.
02 SQLCMSG.
03 SQLCERL PIC S9(9) COMP.
03 SQLERV PIC X(256).
02 SQLCMSG2 REDEFINES SQLQMSG.
03 FILLRR PIC X(2).
03 SQLERRM.
04 SQLCERRML PIC S9(4) COMP.
04 SQLERRMC PIC X(256).
02 SQLSTATE PIC X(5).
02 SOLCRNF PIC X(1).
02 SQLCNRRS PIC S9(4) COMP.
02 FILLLER PIC X(8).
02 SQLWORK PIC X(16).
02 SQLCWRK2 REDEFINES SQLWORK.
03 SQLERRP.
04 SQLCVAL PIC X(5)
04 FILLER PIC X(3)
03 SQLWARN.
04 SQLWARNO PIC X(1).
04 SQLWARN1 PIC X(1).
04 SQLWARN2 PIC X(1).
04 SQLWARN3 PIC X(1).
04 SQLWARN4 PIC X(1).
04 SQLWARNS PIC X(1).
04 SQLWARNG PIC X(1).
04 SQLWARN7 PIC X(1)

96 Programming Guide

Using SQLina COBOL Application Program

Using SQL in a COBOL Application Program

This section presents information that is specificto embedding SQL ina COBOL
application program.

Note: For more information documenting all aspects of COBOL application programming
inthe CA IDMS environment, see the CA IDMS DML Reference Guide for COBOL.

Embedding SQL Statements

Requirements

To embed anSQL statement ina COBOL program, you must:
m Placethe statement inthe proper division of the program
m Observe COBOL margin requirements (columns 8 to 72)

m Usestatement delimiters
Options

You canuseSQL conventions to:
m Continue an SQL statement on the next line

® Insertcomments inanSQL statement

You canusea precompiler-directive statement to copy SQL statements ina module
from the dictionaryintothe program.

Note: SQL statements cannotbe embedded usingthe COBOL INCLUDE or BASIS
statement.

Delimited, Continued, and Commented Statements
Using SQL Statement Delimiters

When you embed an SQL statement ina COBOL application program, you must use
these statement delimiters:

m Begin each SQL statement with EXEC SQL

m End eachSQL statement with END-EXEC.

Note: The period following END-EXEC is optional.Includeitwherever you would
normally terminate a COBOL statement with a period.

Chapter 5: Requirements and Options forHostLanguages 97

Using SQLina COBOL Application Program

The following example shows the use of SQL statement delimiters:

EXEC SQL
INSERT INTO DIVISION VALUES ('DO7','LEGAL',1234)
END-EXEC.

The statement text can be on the same lineas the delimiters.
Continuing Statements

You can write SQL statements on one or more lines. No special characteris required to
show that a statement continues on the next lineifyou split the statement before or
after any keyword, value, or delimiter.

You canusethe COBOL continuation character,a hyphen (-), incolumn 7 when a string
constantinan embedded SQL statement is splitatcolumn 72 and continued on the next
line:

R R R R e Rt EEEEY EEERL SRR R E R RS Sy A
EXEC SQL
INSERT INTO SKILL
VALUES (5678, 'TELEMARKETING', 'PRESENT SALES SCRIPT OVER THE
- 'TELEPHONE, INPUT RESULTS')
END-EXEC.

Inserting SQL Comments

To include comments within SQL statements embedded ina COBOL program, you can:
m Usethe COBOL comment character *in column?

m Usethe SQL comment characters,two consecutive hyphens (--), on an SQL
statement linefollowingthe statement text

A comment that begins with the SQL comment characters (--) terminates at the end of
the line(column 72).

You cannotuse SQL comment characters toinserta comment inthe middleof a string
constantor delimited identifier.

98 Programming Guide

Using SQLina COBOL Application Program

The following example shows both methods of insertingcomments withinan embedded
SQL statement:

et R R LR EEL EEPEY CEERL PP L RS PR CEEEEL SRRy A
EXEC SQL
*Hdkkkkkkx PERFORM UPDATE ON ACTIVE EMPLOYEES ONLY
UPDATE BENEFITS
SET VAC_ACCRUED = VAC ACCRUED + 10, -- Add 10 hours vacation
SICK ACCRUED = SICK ACCRUBD + 1 -- Add 1 sick day
WHERE EMP_ID IN
(SELECT BMP_ID FROM EMPLOYEE
WHERE STATUS = 'A')
END-EXEC.

Placing an SQL Statement
Where You Can Put Statements

These are the rules for placingan SQL statement ina COBOL program:
m The INCLUDE statement must be inthe DATA DIVISION
m The WHENEVER can be inthe DATA DIVISION or the PROCEDURE DIVISION

m The DECLARE CURSOR and DECLARE EXTERNAL CURSOR statements can beinthe
DATA DIVISION or the PROCEDURE DIVISION but must precede the OPEN statement
that references the cursor

m All other statements must be inthe PROCEDURE DIVISION

Versions Prior toVS COBOL I

If your program is written for a version of COBOL that is prior to VS COBOL Il, observe
these guidelines:

m Do notincludeanSQL statement withinthe scopeof a COBOL IF statement

m Usethe THRU construction fora PERFORM statement that references a section
containingan SQL statement

Chapter 5: Requirements and Options for Host Languages 99

Using SQLina COBOL Application Program

COBOL Version Examples

This exampleisvalidin VS COBOL Il and later versions:

IF I < 100
EXEC SQL
SELECT EMP_LNAME,
DEPT_ID
INTO :EMP-LNAME,
:DEPT-ID
WHERE EMP_ID = :WK-EMP-ID
END- EXEC.
COMPUTE A = A + 1.

For a version of COBOL priorto VS COBOL I, the procedure above can be written:

IF I < 100
PERFORM PARAGRAPH-B THRU PARAGRAPH-B-END
COMPUTE A = A + 1.

PARAGRAPH-B.
EXEC SQL
SELECT EMP_LNAME,
DEPT ID
INTO :EMP-LNAME,
:DEPT-ID
WHERE BYP_ID = :WK-EMP-ID
END- EXEC.
PARAGRAPH-B-END.

Defining Host Variables

Host variables aredefined using COBOL data declarative statements appearingin SQL
declaresections.

CA IDMS extensions offer the alternative methods of usingthe INCLUDE TABLE
precompiler directive or copyingrecord descriptions fromthe data dictionary.

A hostvariabledefinition may appear anywhere a legal data item definition canappear.

100 Programming Guide

Using SQLina COBOL Application Program

Using COBOL Data Declarations

What You Declare

Withinan SQL declaresection, you specify the name, level, and data type of host
variablesusingstandard COBOLdata declarative statements and observingthese

guidelines:

m A hostvariablename must conform to COBOL rules for forming variable names

m The level number isintherange of 01 to 49, or 77

A CA IDMS extension of the SQL standard allows level numbers inthe range of 02 to

49.

m The data type of the host variableas defined inthe PICTURE and USAGE clauses

Equivalent Column Data Types

All CA IDMS data types can be supported ina COBOL program.

This tableshows types of COBOL hostvariables and theequivalent CAIDMS table

columndata types:

COBOL PICTURE and USAGE clause

CA IDMS data type

PICX(n) USAGE DISPLAY

CHAR(n)

01 name
49 name-LEN PICS9(4) COMP
49 name-TEXT PICX(n)

VARCHAR(n)

PICS9(p-s)V9(s) USAGE COMP-3

DECIMAL(p,s)

PIC9(p-s)V9(s) USAGE COMP-3

UNSIGNED DECI MAL(p,S)1

USAGE COMP-2

DOUBLE PRECISION

USAGE COMP-1 REAL
USAGE COMP-1 FLOAT
PICS9(n) USAGE COMP SMALLINT
(where n<5)

PICS9(n) USAGE COMP INTEGER

(where n>4 and n<10)

PICS9(n) USAGE COMP

(where n>9)

LONGINT or BIGINT

PICS9(p-s)V9(s) USAGE DISPLAY

NUMERIC(p,s)

Chapter 5: Requirements and Options forHostLanguages 101

Using SQLina COBOL Application Program

COBOL PICTURE and USAGE clause CA IDMS data type
PIC9(p-s)V9(s) USAGE DISPLAY UNSIGNED NUMERIC(p,s)"
PICX(n) USAGE SQLBIN BINARY(n)

PICG(n) USAGE DISPLAY-1 GRAPHIC(n)*

01 name VARGRAPHIC(n)*

49 name-LEN PICS9(4) COMP
49 name-TEXT PICG(n) DISPLAY-1

PICX(10) USAGE DISPLAY DATE
PICX(8) USAGE DISPLAY TIME
PICX(26) USAGE DISPLAY TIMESTAMP
PICX(8) USAGE SQLBIN TID*

Note: 'This data type is a CAIDMS extension of the SQL standard. For more information
about CA IDMS data types, see the CA IDMS SQL Reference Guide.

Host Variable Declaration Example

In this example, the SQL declaresection defines host variables, includingoneindicator
variable,usingstandard COBOLdata declarations. Theexample is annotated to show
the equivalentcolumn data type for each variableand to identify an indicator varia ble:

WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 EMP-ID PIC S9(8) USAGE COMP. < INTEGER

01 EMP-LNAME PIC X(20). < CHARACTER

01 SALARY-AMOUNT PIC S9(6)V(2) USAGE COMP-3. <« DECIMAL

01 PROMO-DATE PIC X(10). < DATE

01 PROMO-DATE-I PIC S9(4) USAGE COMP. < Indicator variable
EXEC SQL END DECLARE SECTION END-EXEC.

Declaring an indicator variable

An indicator variable must be either a 2 or 4 byte computational (binary) data type. In
the example above, PROMO-DATE-I is a valid indicator variable.

SQLIND data type

You candeclareanindicator variable with the data type SQLIND:

05 PROMO_DATE PIC X(10). <« DATE
05 PROMO_DATE_I SQLIND. < Indicator variable

102 Programming Guide

Using SQLina COBOL Application Program

The precompiler will substitute PICS9(8) USAGE COMP inthe output source.

The SQLIND data type is primarily for use within bulk structure definitions. In other
casesitsuseis optional.

Allowable Host Variable Definitions

A hostvariabledefinition may contain:

m PICTURE clause

m USAGE clause

DISPLAY
DISPLAY SIGN LEADING SEPARATE
COMP

comp-1*

comp-2*

comp-3*

SQLIND

SQLBIN'

sQLsess’

m VALUE clause'

m 88 condition-name" (any legal COBOL clause)

m OCCURS' clause (except withina non-bulk structure)

Within a bulk structure definition, the occurs clauseis allowed only on the
second-level group element. The followingsubclauses arealso supported butonly
on the second level group element of a bulk structure:

DEPENDING ON

Note: The DEPENDING ON variableis notused in determining the number of
rows in the bulk structure.

ASCENDING/DESCENDING KEY
INDEXED BY

m REDEFINES' clause(except withina bulk or non-bulk structure)

m BLANK WHEN ZERO' (except withina bulk or non-bulk structure)

m SYNCHRONIZED' (except withina bulk or non-bulk structure)

(1This supportis a CAIDMS extension of the SQL standard.)

Chapter 5: Requirements and Options for Host Languages 103

Using SQLina COBOL Application Program

Using INCLUDE TABLE

Output of INCLUDE TABLE

The CA IDMS precompiler uses these data type equivalents when directed by an
INCLUDE TABLE statement to create a host variabledeclaration.

CA IDMS data type COBOL data type on INCLUDE TABLE
BINARY(n) PICX(n)
CHARACTER(n) PICX(n)
VARCHAR(n) -LEN PICS9(4) COMP
-TEXT PICX(n)
GRAPHIC(n) PICG(n) DISPLAY-1
VARGRAPHIC(n) -LEN PICS9(4) COMP
-TEXT PICG(n) DISPLAY-1
DECIMAL(p,s) PICS9(p-s)VI(s) COMP-3
UNSIGNED DECIMAL(p,s) PIC9(p-s)V9(s) COMP-3
NUMERIC(p,s) PIC S9(p-s)V9(s) DISPLAY
UNSIGNED NUMERIC(p,s) PIC9(p-s)V9(s) DISPLAY
DOUBLE PRECISION COMP-2

FLOAT(n) where

n<=24 COMP-1
n>24 COMP-2

REAL COMP-1

DATE PICX(10)

TIME PICX(8)

TIMESTAMP PICX(26)

SMALLINT PICS9(4) COMP
INTEGER PICS9(8) COMP
LONGINT PICS9(18) COMP
SQLIND COMP PIC 59(8)

TID PICX(8) USAGE SQLBIN

104 Programming Guide

Using SQLina COBOL Application Program

Default Structure

The default structure created by the INCLUDE statement has these features:
m An Ol-level element for the table

m Asubordinateelement named for each tablecolumn, defined with the equivalent
program languagedata type

m An additional element, with the suffix '-I', for each column that allows null values, to
be availableas anindicator variable

m All element names generated with hyphens to replaceunderscores that appearin
column names, to conform to COBOL naming standards

If you specify a table without a schema name qualifier, you must supply a schema
name with a precompiler option.

Note: For more information about precompiler options, see Preparingand
Executing the Program (see page 131).

Defining Bulk Structures

A bulkstructureis a group element or a record which contains a subordinatearray for
holding multiple occurrences of input or output values.Bulk structures are used in bulk
SELECT, INSERT, and FETCH statements for retrieving or storing multiple rows of data.

Format of a Bulk Structure

A bulk structure consists of three levels:
m The highestlevel is the structure itself (level 01 through 47).
m The second level is a multiply occurring group item (level 02 through 48).

m The thirdlevel consists of elementary or variablelength data items (variablelength
dataitems are group elements consisting of a halfword length field followed by a
character or graphics field).

The number, type and order of data items atthe lowestlevel must correspond to
the number, data type, and order of columnvalues being retrieved or inserted.

Bulk Structure Example

The followingis an exampleof a valid bulk structure:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
02 BULK-DATA.
04 BULK-ROW OCCURS 20 TIMES.
05 EMP-ID PIC 999.
05 EMP-NAME PIC X(30).
05 DEPT-NAME PIC X(30).
EXEC SQL END DECLARE SECTION END - EXEC.

Chapter 5: Requirements and Options forHost Languages 105

Using SQLina COBOL Application Program

Referring to a Bulk Structure

When referringto a bulk structure ina SELECT, FETCH, or INSERT statement, the name
of the highest level is used:

EXEC SQL
FETCH EMPCWRS BULK :BULK-DATA
END-EXEC.

Indicator Variables

An indicator variablecan beassociated with a dataitem within the structure as follows:

m The indicatorvariable mustimmediately followthe data item with whichitis
associated

m The picture of the indicator variable mustbe S9(n) where n is between 4 and 8
m The usage of the indicator variable mustbe SQLIND

On encountering the SQLIND usage, the precompiler interprets the variableas an
indicator associated with the preceding variable.SQLIND is replaced with COMP in
the generated source.

Restrictions

The following COBOL clauses mustnot appear withina bulk structure definition:
® BLANK WHEN ZERO

m JUSTIFIED

m OCCURS (except at the second level)

m REDEFINES

m SIGN

m SYNCHRONIZED

Fillers may appear within the structure; however, their data content is not preserved
across a bulk SELECT or FETCH.

Using INCLUDE TABLE

A bulk structure can be defined for a given table by usingthe INCLUDE TABLE statement
with a NUMBER OF ROWS clause. The statement inthis example will generate a bulk
structure capableof holding 20 entries:

EXEC SQL
INCLUDE TABLE EMPLOYEE NUMBER OF ROWS 20
END-EXEC.

106 Programming Guide

Using SQLina COBOL Application Program

Non-bulk Structures and Indicator Arrays

About Non-bulk Structures

A non-bulkstructureis a group element orrecord whichis usedto represent alistof
host variables withinan SQLstatement. When reference is made to a non-bulk
structure, itis interpreted as a reference to all of the subordinate elements withinthe
structure.

About Indicator Arrays

An indicator arrayis a group element or record which contains one multiply occurring
subordinateelement used as anarray ofindicator variables. Indicator arrays hold
indicator values for items within a non-bulk structure.

Format of a Non-bulk Structure

A non-bulkstructure consists of two levels:
m The highestlevel is the structure itself (level 01 through 48)

m The second level consists of elementary or variablelength data items (variable
length data elements are group elements which consistofa halfword length field
followed by a character or graphics field)

The number, type, and order of data items at the lowest level must correspond to the
number, data type, and order of columnvalues beingretrieved or inserted.

Non-bulk Structure Example

This is an example of a valid non-bulk structure:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 EMP-INFO.
05 EMP-ID PIC 999.
05 EMP-NAME PIC X(30).
05 DEPT-NAME PIC X(30).
EXEC SQL END DECLARE SECTION END - EXEC.

Format of an Indicator Array

An indicator array consists of two levels:
m The highest level represents the entire array (level 01 through 48)

m The second level is a multiply occurring element that defines a halfword or fullword
field

Chapter 5: Requirements and Options for Host Languages 107

Using SQLina COBOL Application Program

This is anexample of a validindicator array:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
02 INDS.
04 IND SQLIND OCQURS 20 TIMES.
EXEC SQL END DECLARE SECTION END - EXEC.

Referring to a Non-bulk Structure

A non-bulk structure can be referred to anywhere alistof host variablescan be
specified:

m The INTO clauseof a SELECT or FETCH statement; for example:

EXEC SQL
FETCH EMPCWRS INTO :EMP-INFO
END-EXEC.

m The VALUES clauseofan INSERT statement

Unlikebulk processing, a single SQLstatement can contain more than one reference to a
non-bulk structure. Each suchreference is interpreted as a listof host variable
references. The union of all such hostvariables together with any elementary host
variables mustcorrespondto a singleresultrow (or input row, in the case of an INSERT
statement).

Referring to an Indicator Array

To associateindicator variables with the elements of the non-bulk structure, the name
of an indicator arrayisspecifiedimmediately following the name of the non-bulk
structure:

EXEC SQL
FETCH EMPCWRS INTO :INFO :INDS
END-EXEC.

Note: Either the name of the group or its subordinate element may be used to refer to
anindicatorarray.

Association of Indicator Variables and Non-bulk Structure Elements

The number of occurrences in the indicator array need not be the same as the number
of elements in the non-bulk structure with whichitis used. If there are more indicators
than elements, the remainingindicatorsareignored, although their contents are not
necessarily preserved. If there are fewer indicatorsthanelements, anindicatoris
associated with each element inthe structure until all indicators areassigned. The
remaining elements do not have associated indicators. This mayresultinanerror ifan
attempt is made to return a null valueinto an element with no associated indicator.

108 Programming Guide

Using SQLina COBOL Application Program

Restrictions

The following COBOL clauses mustnot appear withina non-bulk structure definition:

m BLANK WHEN ZERO

m JUSTIFIED
m OCCURS

m REDEFINES
= SIGN

m SYNCHRONIZED

Fillers havinga character data type may appear within the structure. However, their
data content is notpreserved across a SELECT or FETCH.

Note: Unless the included tablehas no nullablecolumns an INCLUDE TABLE table-name
precompiler directive cannot be used to define the non-bulk structure; any nullable

column would causethe precompiler to insertanassociated indicator variable which
makes the structure unusablefor reference inthe FETCH statement.

Referring to Host Variables

What You Can Do

CA IDMS supports references to host variables in SQLstatements. The hostvariable
name must be prefixed with a colon ().

Note: For more information, see Referring to Host Variables (see page 32).

CA IDMS also supports references to:
m Subordinateelements which may require qualification for uniqueness

m Subscripted elements

Chapter 5: Requirements and Options for Host Languages 109

Using SQLina COBOL Application Program

Qualifying Host Variable Names
CA IDMS supports two methods of qualifyinghostvariable names.

For example, assumethese host variabledefinitions:

01 EMP
03 HIRE-DATE

01 MGR
03 HIRE-DATE

The method of qualifying HIRE-DATE in either of the following examples is valid:

EXEC SQL
SELECT. ..
INTO :HIRE-DATE OF EMP

EXEC SQL
SELECT...
INTO :EMP.HIRE-DATE

Subscripted Variable Names
A CA IDMS extension of the SQL standard supports hostvariablearrays for usein bulk
processing. By further extension of the SQL standard, CA IDMS supports reference to a

subscripted variableina hostvariablearray.

All of the followingarevalid hostvariablereferences:

= :DIV-CODE(1)

= :DIV-CODE (15)

= :DIV-CODE(SUB1)

= :DIV-CODE(SUB1,5UB2)

110 Programming Guide

Using SQLina COBOL Application Program

Including SQL Communication Areas

Declaring SQL Communication Areas

CA IDMS provides these ways of includingthe SQL Communication Areas ina COBOL
program:

The program candeclarethe host variable SQLSTATE inthe WORKING-STORAGE
SECTION:

01 SQLSTATE PIC X(5).
Note: SQLSTATE does not have to be defined insidean SQL declaresection.

The program candeclarethe host variable SQLCODE in the WORKING-STORAGE
SECTION:

01 SQLCODE PIC S9(8)
USAGE COMP.

Note: SQLCODE does not have to be defined insidean SQL declaresection.

The precompiler automaticallyincludes thecommunication areas atthe end of the
WORKING-STORAGE sectioninany program that contains embedded SQL
statements

The program canissuethis precompiler directive:

EXEC SQL
INCLUDE SQLCA
END-EXEC.

Usingthe INCLUDE statement to declarethe SQLCA is a CA IDMS extension of the SQL
standard.

Chapter 5: Requirements and Options for Host Languages 111

Using SQLin a COBOL Application Program

SQLCA Structu

This is the COBOL format of the SQLCA:

re

COBOL/CA ADS SQLCA

Included by the
precompiler for
DB2 compatibility;
not used by CA IDMS

01 SQLCA.
02 SQLCAID PIC X(8).
02 SQLCODE PIC S9(9) COMP.
02 SQLCSID PIC X(8).
02 SQLCINFO.
03 SQLCERC PIC S9(9) COMP.
03 FILLRR PIC S9(9) COMP.
03 SQLCARP PIC S9(9) COMP.
03 FILLRR PIC S9(9) COMP.
03 SQLCSER PIC S9(9) COMP.
63 FILLERR PIC S9(9) COMP.
03 SQLCLNO PIC S9(9) COMP.
03 SQLCMCT PIC S9(9) COMP.
03 SQLCARC PIC S9(9) COMP.
03 SQLCFIB PIC S9(9) COMP.
63 FILLRR PIC S9(9) COMP.
03 FILLRR PIC S9(9) COMP.
02 SQLCINF2 REDEFINES SQLCINFO.
03 SQLERRD PIC S9(9) COMP
OCQURS 12.
02 SQLCMSG.
03 SQLCERL PIC S9(9) COMP.
03 SQLERV PIC X(256).
02 SQLCMSG2 REDEFINES SQLQMSG.
03 FILLRR PIC X(2).
03 SQLERRM.
04 SQLCERRML PIC S9(4) COMP.
04 SQLERRMC PIC X(256).
02 SQLSTATE PIC X(5).
02 SOLCRNF PIC X(1).
02 SQLCNRRS PIC S9(4) COMP.
02 FILLLER PIC X(8).
02 SQLWORK PIC X(16).
02 SQLCWRK2 REDEFINES SQLWORK.
03 SQLERRP.
04 SQLCVAL PIC X(5)
04 FILLER PIC X(3)
03 SQLWARN.
04 SQLWARNO PIC X(1).
04 SQLWARN1 PIC X(1).
04 SQLWARN2 PIC X(1).
04 SQLWARN3 PIC X(1).
04 SQLWARN4 PIC X(1).
04 SQLWARNS PIC X(1).
04 SQLWARNG PIC X(1).
04 SQLWARN7 PIC X(1)

112 Programming Guide

Using SQLina COBOL Application Program

Copying Information from the Dictionary

You canusethese precompiler directives to instructthe precompiler to copy entities
from the dictionaryintothe COBOL application program:

m COPYIDMS FILE

= COPYIDMS RECORD

= COPYIDMS MODULE

m |[NCLUDE module-name

COPY IDMS FILE Statement

Syntax

Parameters

Usade

The COPY IDMS FILE statements copy filedescriptions fromthe dictionaryintothe
program. Each COPY IDMS FILE statement generates the filedefinitionthatincludes
record size, block size, and recording mode from the dictionary. Any records includedin
the filethrough the Integrated Data Dictionary (IDD) facilities arealso copied.

»»—— FILE SECTION. >

' -

© 7 L copy 1oMS FILE fiie-name C I
VERSION version-number

file-name

Copies the description of a non-CA IDMS fileinto the DATA DIVISION. File-name is
either the primaryname or a synonym for a filedefined in the dictionary.

VERSION version-number

Qualifies file-name with a version number. Version-number must be aninteger in
the range 1 through 9999 and defaults to the highest version number defined inthe
dictionary for file-name.

The FILE SECTION of the DATA DIVISION canincludeone or more COPY IDMS FILE
statements.

COPY IDMS RECORD Statement

The COPY IDMS RECORD statement allows you to copy a record description from the
dictionaryinto the DATA DIVISION of a COBOL program atthe location of the COPY
IDMS statement.

Chapter 5: Requirements and Options forHost Languages 113

Using SQLina COBOL Application Program

Syntax

v

WORKING- STORAGE SECTION.
L INKAGE SECTION, ——— 1

[
-
>V l

T = COPY IDMS RECORD record-specification —-‘
level-number

Expansion of Record-specification

v

»»— record-name
L VERSION version-number —I

M

" L REDEFINES record-name —

Parameters
level-number

Instructs the precompiler to copy the descriptions intothe program at a level other
than that originally specified for the descriptionin the dictionary. Level-number
must be aninteger inthe range 01 through 48.

If level-number is specified, the firstlevel will be copiedto the level specified by
level-n; all other levels will beadjusted accordingly. If level-nis not specified, the
descriptions copied will havethe same level numbers as originally specified in the
dictionary.

record-name

Specifies the name of the record to be copied. Record-name can be either the
primaryname or a synonym for a record stored inthe dictionary.

version-number

Qualifies dictionary records with a version number. Version-number must be an
integer inthe range 1 through 9999.

If version-number is not specified, the record that is copied will bethe record
synonym for the named record that is the highest version defined for COBOL.

REDEFINES record-name

Copies arecord descriptiontoan area previously defined by another record
description. Therefore, two record descriptions can providealternative definitions
of the same storage location.

114 Programming Guide

Using SQLina COBOL Application Program

Usage

Invalid Descriptors

The program can copy a record definition from the dictionaryand usethe record
elements as host variables in embedded SQL.

If you declarehostvariables by copyinga record description fromthe dictionary, you
must observe all rules regarding hostvariabledeclarations.

Placement

You canplace COPY IDMS RECORD statements inany area of the DATA DIVISION that
COBOL allows record definitions.

VALUE Clauses

Ifthe dictionaryrecordis to be copiedinto the LINKAGE SECTION and includes VALUE
clauses, the VALUE clauses arenotcopied.

Using COPY IDMS RECORD for Host Variables

Ifthe record to copy contains fields thatthe program may reference as host variables,
you mustincludethe COPY IDMS RECORD statement inan SQL declaration section.

COPY IDMS MODULE Statement

Syntax

Parameters

The COPY IDMS MODULE statement copies sourcestatements from a module stored in
the data dictionaryinto the source program.

»»—— PROCEDURE DIVISION.

- L e
L COPY IDMS module module-name T] b
VERSION version-number

v

module-name
Specifies the name of a module previously defined in the dictionary.
version-number

Qualifies module-name with a version number. Version-number must be aninteger
inthe range 1 through 9999.

If version-number is not specified, the record copied will be the highestversion of
the named module defined inthe dictionaryfor COBOL.

Chapter 5: Requirements and Options forHost Languages 115

Using SQLina COBOL Application Program

Usagde

Placement

The unmodified moduleis placedinto the program by the precompiler at the location of
the request. The location of the request is usuallyinthe PROCEDURE DIVISION, but it
canbe anywhere thatis appropriatefor the contents of the module to be includedin
the program.

Nesting Modules
COPY IDMS MODULE statements can be nested (that is, a statement invoked by a COPY

IDMS MODULE entry canitselfbe a COPY IDMS MODULE statement). However, you
must ensure that a copied module does not, inturn, copy itself.

INCLUDE Module-name Statement

The INCLUDE module-name statement is equivalentto a COPY IDMS MODULE statement
inwhich the version number is omitted.

Note: For more information aboutthis statement, see the CA IDMS SQL Reference
Guide.

Non-SQL Precompiler Directives

The CA IDMS precompiler accepts several directives that arenot associated with SQL
statements and hostvariabledeclarations. These include:

m RETRIEVAL—Specifies thatthe precompiler should readythe area of the dictionary
containing data definitions in retrieval mode, allowing concurrent update of the
area by other transactions

m PROTECTED—Specifies that the precompiler should ready the area of the dictionary
containing data definitions in update mode, preventing concurrent update of the
area by other transactions

m NO-ACTIVITY-LOG—Suppresses the loggingof program activity statistics

m DMLIST/NODMLIST—Specifies generation or no generation of a sourcelisting for
the statements that follow

Note: For more information aboutnon-SQL precompiler directives, see Precompiler

Directives (see page 283).

116 Programming Guide

Using SQLin a PL/T Application Program

Using SQL in a PL/I Application Program

This section presents information that is specificto embedding SQL in a PL/I application
program.

Note: For more information aboutdocumentation of all aspects of PL/l application
programming inthe CA IDMS environment, see the CA IDMS DML Reference Guide for

PL/I.

Embedding SQL Statements

Declaring SQLXQ1

Requirements

To embed anSQL statement ina PL/I program, you must:
® IncludeanSQLXQ1 declaration
m Observe PL/I marginrequirements (columns 2 to 72)

m Usestatement delimiters
Options

You canuseSQL conventions to:
m Continue an SQL statement on the next line
® Insertcomments inanSQL statement

You canusea precompiler-directive statement to copy SQL statements ina module
from the dictionaryintothe program.

PL/I applications with embedded SQL mustincludethe SQLXQ1 ENTRY statement. The
syntax for this statement is:

)

>>—|: DECLARE SQLXQ1 ENTRY OPTIONS (INTER, ASSEMBLER);
DCL —T1

Delimited, Continued, and Commented Statements

Using SQL Statement Delimiters

When you embed anSQL statement ina PL/l application program, you must use these
statement delimiters:

m Begin each SQL statement with EXEC SQL

m End eachSQL statement with ;

Chapter 5: Requirements and Options for Host Languages 117

Using SQLin a PL/T Application Program

An EXEC SQL delimiter must be preceded by either a PL/I label or the ; character.

The following example shows the use of SQL statement delimiters:

EXEC SQL INSERT INTO DIVISION VALUES ('DO7','LEGAL',1234) ;

The statement text can be on the same lineas the delimiters.

Continuing Statements

You can write SQL statements on one or more lines. No special characteris required to
show that a statement continues on the next lineifyou splitthe statement before or
after any keyword, value, or delimiter.

Inserting SQL Comments

To include comments within SQL statements embedded ina PL/I program, you can:
m Usethe PL/I comment delimiters /* and */

m Usethe SQL comment characters,two consecutive hyphens (--), on an SQL
statement linefollowingthe statement text

A comment that begins with the SQL comment characters (--) terminates at the end of
the line(column 72).

You cannotuse SQL comment characters toinserta comment inthe middleof a string
constantor delimited identifier.

The following example shows both methods of inserting comments withinan embedded
SQL statement:

EXEC SQL
/*¥xxxexkk - PERFORM UPDATE ON ACTIVE EMPLOYEES ONLY ototksksorck/
UPDATE BENEFITS
SET VAC_ACCRUED = VAC ACCRUBD + 10, -- Add 10 hours vacation
SICK ACCRUED = SICK ACCRUED + 1 -- Add 1 sick day
WHERE EMP ID IN
(SELECT EMP_ID FROM EMPLOYEE
WHERE STATUS = 'A') ;

118 Programming Guide

Using SQLin a PL/T Application Program

Defining Host Variables
What You Declare

Withinan SQL declaresection, you specify the name, level, and data type of host
variablesusingstandard PL/I data declarative statements and observingthese
guidelines:

m A hostvariablename must conform to PL/I rules for forming variable names
m The level number isinthe range of 1 to 255

m The data type of the host variable
Using PL/I Declarations

Equivalent Column Data Types

This tableshows data types of PL/I host variablesthatarevalidinanSQL declaresection
andequivalent to CA IDMS table column data types:

Equivalent PL/Idata type CA IDMS data type

CHAR (n)

CHAR(n)

CHAR (n) VAR

VARCHAR(n)

FIXED DECIMAL (p,s)

DECIMAL(p,s)

FLOAT BINARY (n)
where n <= 24

where n > 24

REAL
DOUBLE PRECISION

FLOAT DECIMAL (n)

where n<=6

REAL

where n > 6 DOUBLE PRECISION
FIXED BINARY (15) SMALLINT

FIXED BINARY (31) INTEGER

CHAR (n) BINARY(n)
GRAPHIC (n) GRAPHIC(n)"

GRAPHIC (n) VAR

VARGRAPHIC(n)"

CHAR (10) DATE

CHAR (8) TIME

CHAR (26) TIMESTAMP
SQLBIN (n) BINARY(n)

Chapter 5: Requirements and Options for Host Languages 119

Using SQLin a PL/T Application Program

Equivalent PL/Idata type CA IDMS data type

CHAR(8) TID*

Note: ' This data type is a CA IDMS extension of the SQL standard. For more information
about CA IDMS data types, see the CA IDMS SQL Reference Guide.

Data Types Not Supported

The followingtableshows CA IDMS data types for which there are no equivalentdata
types in PL/I that arevalidinan SQLdeclaresection. The table shows compatible PL/I
data types thatarevalidin hostvariable declarations; however, accessinga column that
has no equivalentdata type may resultinanerror ifa data valueis not convertible
between the two data types.

Compatible PL/I data type CA IDMS data type
FIXED BINARY (31) LONGINT or BIGINT
FIXED DECIMAL (p,s) NUMERIC(p,s)

FIXED DECIMAL (p,s) UNSIGNED NUMERIC(p,s)
FIXED DECIMAL (p,s) UNSIGNED DECIMAL(p,s)

Host Variable Declaration Example

In this example, the SQL declaresection defines host variables, includingoneindicator
variable,usingstandard PL/I data declarations. The example is annotated to show the
equivalentcolumn data type for each variableandto identify an indicator variable:

WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION ;

DECLARE 1 EMP_ID FIXED BINARY (31) ; < INTEGER

DECLARE 1 EMP_LNAME CHAR (20) ; < CHARACTER

DECLARE 1 SALARY_AMOUNT FIXED DECIMAL (6,2) ; < DECIMAL

DECLARE 1 PROMO_DATE CHAR (10) ; <« DATE

DECLARE 1 PROMO DATE_I FIXED BINARY (31) ; < Indicator variable

EXEC SQL END DECTARE SECTION ;

Declaring an Indicator Variable

An indicator variable mustbe either FIXED BINARY (15) or FIXED BINARY (31) data type.
Inthe example above, PROMO_DATE_| is anindicator variablefor PROMO_DATE.

SQLIND Data Type
You candeclareanindicator variable with the data type SQLIND:

DECLARE 1 PROMO_DATE CHAR (10) ; < DATE
DECLARE 1 PROMO_DATE_I SQLIND ; < Indicator variable

120 Programming Guide

Using SQLin a PL/T Application Program

The precompiler will substitutea FIXED BINARY (31)in the output source.

Note: The SQLIND data type is primarily for use within bulk structure definitions. In
other casesits useis optional.

Allowable Host Variable Definitions

A hostvariabledefinition mustcontaina data type declarationand maycontainan
occurrence count. No other declarationsaresupported.

Using INCLUDE TABLE
Output of INCLUDE TABLE

The CA IDMS precompiler uses these data type equivalents when directed by an
INCLUDE TABLE statement to create a host variabledeclaration.

CA IDMS data type

PL/I data type on INCLUDE TABLE

BINARY(n) CHAR (n)
CHARACTER(n) CHAR (n)
VARCHAR(n) CHAR (n) VAR
GRAPHIC(n) GRAPHIC (n)
VARGRAPHIC(n) GRAPHIC (n) VAR
DECIMAL(p,s) FIXED DECIMAL (p,s)

UNSIGNED DECIMAL(p,s) FIXED DECIMAL (p,s)

NUMERIC(p,s)" FIXED DECIMAL (p,s)

UNSIGNED NUMERIC(p,s) FIXED DECIMAL (p,s)

DOUBLE PRECISION FLOAT BINARY (53)

FLOAT (n)

where n <= 24 FLOAT BINARY (21)
where n > 24 FLOAT BINARY (53)
REAL FLOAT BINARY (21)
DATE CHAR (10)

TIME CHAR (8)
TIMESTAMP CHAR (26)
SMALLINT FIXED BINARY (15)
INTEGER FIXED BINARY (31)

Chapter 5: Requirements and Options for Host Languages 121

Using SQLin a PL/T Application Program

Defining Bulk Structures

CA IDMS data type PL/I data type on INCLUDE TABLE
LONGINT FIXED BINARY (31)

SQLIND FIXED BINARY (31)

TID CHAR(8)

Default Structure

The default structure created by the INCLUDE statement has these features:

A level 1 element for the table

A level 2 subordinate element named for each tablecolumn, defined with the
equivalentprogram language data type

An additionallevel 2 element, with the suffix'_I', for each column that allows null
values, to be availableas anindicator variable

If you specify a tablewithout a schema name qualifier, you must supply a schema
name with a precompiler option inthe JCL.

Note: For more information about precompiler options, see Precompiler Directives
(see page 283).

A bulkstructure is a group element or a record which contains a subordinatearray for
holding multiple occurrences of input or output values.Bulk structures areused in bulk
SELECT, INSERT, and FETCH statements for retrieving or storing multiple rows of data.

Format of a Bulk Structure

A bulk structure consists of three levels:

The highest level is the structureitself(level 01 through 253)
The second level is a multiply-occurring group item (level 02 through 254)
The thirdlevel consists of elementary or variablelength data items

The number, type and order of data items atthe lowestlevel must correspond to
the number, data type, and order of column values being retrieved or inserted.

122 Programming Guide

Using SQLin a PL/T Application Program

Bulk Structure Example

The followingis an exampleof a valid bulk structure:

EXEC SQL BEGIN DECLARE SECTION;
DCL 1 BULK DATA,
4 BULK ROW (20),
5 EMP_ID FIXED DECIMAL(3),
5 EMP_NAME CHAR(30),
5 DEPT NAME CHAR(30);
EXEC SQL END DECLARE SECTION;

Referring to a Bulk Structure

When referringto a bulk structure ina SELECT, FETCH, or INSERT statement, the name
of the highest level is used:

EXEC SQL
FETCH EMPCURS BULK :BULK DATA;

Indicator Variables

An indicator variablecan beassociated with a data item within the structure as follows:

m The indicator variable mustimmediately followthe data item with whichitis
associated

m The data type of the indicator variable mustbe SQLIND

On encountering the SQLIND data type, the precompilerinterprets the variableas
anindicator associated with the preceding variable.SQLIND is replaced with BINARY
FIXED(31) inthe generated source.

Restrictions

A subscripted data element may not appear withinthe lowest level of a bulk structure.
Using INCLUDE TABLE

A bulk structure can be defined for a given table by usingthe INCLUDE TABLE statement

with a NUMBER OF ROWS clause. The statement in this example will generate a bulk
structure capableof holding 20 entries:

EXEC SQL
INCLUDE TABLE EMPLOYEE NUMBER OF ROWS 20;

Chapter 5: Requirements and Options for HostLanguages 123

Using SQLin a PL/T Application Program

Referring to Host Variables

What You Can Do

CA IDMS supports references to host variables in SQLstatements. The hostvariable
name must be prefixed with a colon ().

Note: For more information, see Data Manipulation with SQL (see page 57).

CA IDMS also supports references to:
m Subordinateelements which may require qualification for uniqueness

m Subscripted elements
Qualifying host variable names
You canusethe group name to qualify the element name of a host variable.

For example, assumethese host variabledefinitions:

DECLARE 1 EMP,
2 HIRE DATE

DECLARE 1 MGR,
2 HIRE DATE

You can qualify HIRE_DATE as in this example:

EXEC SQL
SELECT. ..
INTO :EMP.HIRE DATE ;

124 Programming Guide

Using SQLin a PL/T Application Program

Subscripted Variable Names

A CA IDMS extension of the SQL standard supports hostvariablearrays for usein bulk

processing. By further extension of the SQL standard, CAIDMS supports reference to a
subscripted variableina hostvariablearray.

All of the followingarevalid hostvariablereferences:

:DIV-CODE(1)
:DIV-CODE (15)
:DIV-CODE(SUB1)
:DIV-CODE(SUB1,SUB2)

Including SQL Communication Areas

Declaring SQL Communication Areas

CA IDMS provides these ways of includingthe SQL Communication Areas ina PL/I
program:

The program can declarethe host variable SQLSTATE:

EXEC SQL BEGIN DECLARE SECTION ;
DECLARE SQLSTATE CHARACTER(5) ;
EXEC SQL END DECLARE SECTION ;

The program candeclarethe host variable SQLCODE:

EXEC SQL BEGIN DECLARE SECTION ;
DECLARE SQLCODE FIXED BINARY (31) ;
EXEC SQL END DECLARE SECTION ;

The program canissuethis directive:

EXEC SQL INCLUDE SQLCA ;

Usingthe INCLUDE statement to declarethe SQLCA is a CA IDMS extension of the SQL
standard.

Chapter 5: Requirements and Options forHost Languages 125

Using SQLin a PL/T Application Program

SQLCA Structure
This is the PL/I format of the SQLCA:

PL/1SQLCA

DECLARE 1 SQLCA,

2 SQLCAID CHARACTRR (8),

2 SQLCODE FIXED BINARY (31),

2 SQLCSID CHARACTRR (8),

2 SQLCINFO,
3 SQLCERC FIXED BINARY (31),
3 FILLERnnnn FIXED BINARY (31),
3 SQLCNRP FIXED BINARY (31),
3 FILLERnnnn FIXED BINARY (31),
3 SQLCSRR FIXED BINARY (31),
3 FILLERnnnn FIXED BINARY (31),
3 SQLCLNO FIXED BINARY (31),
3 sQLeMcT FIXED BINARY (31),
3 SQLCARC FIXED BINARY (31),
3 SQLCFIB FIXED BINARY (31),
3 FILLERnnnn FIXED BINARY (31),
3 FILLERnnnn FIXED BINARY (31),

2 SQLAYSG,
3 SQLCERL FIXED BINARY (31),
3 SQLCERM CHARACTRR (256),

2 SQLSTATE CHARACTRR (5),

2 SQLGRNF CHARACTRR (1),

2 SQLANRRS FIXED BINARY (15),

2 FILLERnnnn CHARACTRR (8),

2 SQLWORK CHARACTRR (16) ;

DECLARE 1 SQLCINF2 BASED (ADDR(SQLCINFO)),
2 SQLERRD FIXED BINARY (31),

DECLARE 1 SQLCMSG2 BASED (ADDR(SQLQVSG)),
2 FILLERnnnn CHARACTER (2),
2 SQLERRM,
3 SQLERRML FIXED BINARY (15).
3 SQLERRMC CHARACTER (256) ;

DECLARE 1 SQLCWRK2 BASED (ADDR(SQLWORK)),
2 SQLERRP,
3 SQLCVAL CHARACTER (5), Included by the
3 FILLERnnnn CHARACTER (3), precompiler for
2 SQLWARN, DB2 compatibility;
SQLWARNO CHARACTER (1), not used by CA IDMS.
SQLWARN1 CHARACTER (1),
SQLWARN2 CHARACTER (1),
SQLWARN3 CHARACTER (1),
SQLWARN4 CHARACTER (1),
SQLWARNS CHARACTER (1),
SQLWARNG CHARACTER (1),
SQLWARN7 CHARACTER (1) ;

Wwwwwwww

N

126 Programming Guide

Using SQLin a PL/T Application Program

Including Information from the Dictionary

You canusethese precompiler directivestatements to instructthe precompiler to copy
entities from the dictionaryinto the PL/l application program:

m [NCLUDE IDMS record-name
m INCLUDE IDMS MODULE module-name
m INCLUDE module-name

INCLUDE IDMS Record Statement

Syntax

Parameters

The INCLUDE IDMS Record statement is used to copy record descriptions into the
program and can be coded inyour application program.

- <

v
Vvl

INCLUDE IDMS record-specification —‘

L level-number —J

Expansion of Record Specification

»»— record-name

v

L VERSION version-number]

X

>
L attribute]

level-number INCLUDE IDMS

Instructs the precompiler to copy one or more record descriptions into your
program at the location of the INCLUDE IDMS statement.

The optional level-number clauseinstructs the precompiler to copy descriptions into
your programat a different level than the level specifiedinthe data dictionary.
Level-number must be aninteger inthe range 01 through 99. If your program
specifies level-number, the DML precompiler copies the firstlevel of code to the
level specified by level-number and adjusts all other levels accordingly. If your
program does not specify level-number, the descriptions copied by the DML
precompiler have the same level numbers as originally specifiedin the dictionary.

record-name

Specifies the name of the record to be copied. It can be the primary name of a
record stored in the data dictionary, or a synonym.

Chapter 5: Requirements and Options for Host Languages 127

Using SQLin a PL/T Application Program

VERSION version-number

Optionally qualifies IDD records with a version number. Version-number must be an
integer inthe range 1 through 9999. Version-number defaults to the highest version
number of the record defined inthe data dictionaryfor the languageand operating
mode under which the program compiles.

attribute

Optionallyallows you to instructthe DML precompiler to include PL/I attributes in
the PL/I DECLARE statement. The DML precompiler generates the PL/I DECLARE
statement for the record that you specifyin record-name.

Usagde
Using Included Records as Host Variables

The program can copy a record definition from the dictionaryand usethe record
elements as host variables in embedded SQL.

Ifyou declarehostvariables by copyinga record description fromthe dictionary, the
following descriptors should notappear in the record definition:

m REDEFINES
m SYNC

INCLUDE IDMS MODULE statement

The INCLUDE IDMS (module-name) statement copies procedure source statements
defined by the databaseadministrator as modules inthe dictionary.

Syntax

. |
L INCLUDE IDMS (module-name C]) -
VERSION version-number

M

Parameters
INCLUDE IDMS (module-name)

Copies procedure source statements defined by the DBA as modules in the
dictionary. Module-name specifies the name of a module previously defined using
the DDDL compiler.

Note: For more information aboutthe DDDL compiler, see the CA IDMS IDD DDDL
Reference Guide.

128 Programming Guide

Using SQLin a PL/T Application Program

The availablePL/I standard modules are:
m IDMS_STATUS
m IDMS_STATUS (mode is IDMS_DC)

The DML precompilerinserts the module into your programat the location of the
INCLUDE IDMS MODULE statement, without modification.

You cannest INCLUDE IDMS MODULE statements. Code invoked by an INCLUDE
IDMS MODULE entry canitselfcontain INCLUDE IDMS MODULE statements.
However, make sure that a copied module does not copyitself.

VERSION version-number

Optionally qualifies module-name with a version number. Version-number must be
aninteger inthe range 1 through 9999.

There are two defaults for version-number, depending on whether:

m There is aversion of the module that you name with module-name whichis
operating-mode-specific. In this case, the defaultis the version number of this
module. Ifthere aretwo or more mode-specific versions of the module,
version-number defaults to the highestversion number among these versions.

m There is aversion of the module that you name with module-name whichis
non-operating-mode-specific,and there exists no operating-mode-specific
version.Inthis case, the defaultis the version number of this module. Ifthere
are two or more non-mode-specific versions of the module, version-number
defaults to the highestversion number among these versions.

If no version of the module exists inthe dictionary,an error condition results.

INCLUDE Module-name Statement

The INCLUDE module-name statement is equivalentto an INCLUDE IDMS MODULE
statement in which the version number is omitted.

Note: For more information aboutthis statement, see the CA IDMS SQL Reference
Guide.

Chapter 5: Requirements and Options for Host Languages 129

Using SQLin a PL/T Application Program

Non-SQL Precompiler Directives

The CA IDMS precompiler accepts several directives that arenot associated with SQL
statements and hostvariabledeclarations. These include:

m RETRIEVAL—Specifies thatthe precompiler shouldreadythe area of the dictionary
containing data definitions in retrieval mode, allowing concurrent update of the
area by other transactions

m PROTECTED—Specifies that the precompiler should ready the area of the dictionary
containingdata definitions in update mode, preventing concurrent update of the
area by other transactions

m NO-ACTIVITY-LOG—Suppresses the loggingof program activity statistics
m DMLIST/NODMLIST—Specifies generation or no generation of a sourcelisting for

the statements that follow

Note: For more information aboutnon-SQL precompiler directives, see Precompiler
Directives (see page 283).

130 Programming Guide

Chapter 6: Preparing and Executing the
Program

This section contains the followingtopics:

Creating an Executable Form (see page 131)
Precompilingthe Program (see page 131)
Compilingthe Program (see page 138)
Creating the Access Module (see page 139)
Executing the Application (see page 144)
Testing the Access Module (see page 145)
Debugging the Application (see page 146)

Creating an Executable Form

To put your source program into executable form, take the followingsteps:
1. Precompilethe program

2. Compileandlinkeditthe program

3. Create the access module

4. Execute and debug the program

Ifyou areusing CA ADS, the CA ADS compiler ADSC performs steps 1and 2.

Precompiling the Program

You precompilethe program to separate SQL statements from the rest of the program
andto replacethe SQL statements inthe source program module with callsto the
DBMS.

Chapter 6: Preparing and Executing the Program 131

Precompiling the Program

About the Precompiler

Why You Precompile

SQL is a databasesublanguagethatis notknown to the language compiler.The CA IDMS
precompiler:

m Checks the syntax of embedded SQL statements

m Modifies the sourcecode by:

— ReplacingSQL statements inthe source programwith program languagecalls
to the DBMS

— Executing precompiler directives

m Stores a relational command module (RCM) for the program if no errors occurin
precompiling

When to Precompile

Once you have precompiled a program, you must precompileit again after any changes
to either hostlanguageor embedded SQL statements. When you precompilea program
that was previously precompiled, the DBMS rebuilds the RCM onlyif one or more SQL
statements inthe program have changed.

After a program has been precompiled, you can make global changes to the
schema-name qualifiers of tables and views in embedded SQL statements when you
create the access module. If instead you modify the SQL statements inthe source
program, you must precompile the program again.

Note: For more information and documentation about the schema-name mapping for
tables andviews, see Creatingthe Access Module (see page 139).

How You Precompile
You precompilethe program by submittinga batchjob.
For precompiler JCL, see Sample JCL (see page 203).

You canspecify parameters inthe precompiler JCL that determine how the precompiler
executes.

For documentation of precompiler parameters, see Precompiler Options (see page 133).

132 Programming Guide

Precompiling the Program

Authorization

To execute the precompiler, you must have:

m The authorityto precompilethe program if program registrationis in effect for the
dictionary

m User authority to precompileagainstthe dictionary

m SELECT privilegeon tables named in INCLUDE TABLE statements

Precompiler Options
Syntax

This is the expansion of precompiler-options inthe precompiler EXEC PGM statement in
JCL. These are not positional parameters:

»h

v

L RCM = rcm-name -

v
v

L RCMVERSION = rcm-version-number -

v

L AM = access-module-name -

v

L SCHEMA = schema-name -

v

L NOINSTALL .

v

L DICTNAME = dictionary-name |

L sqL = NO
E 89
FIPS
g |: LIST —_I
NOL1ist

L DATE

v

v

L
v

Tl

IS0
USA
EUR
JIS

L]

L
M

L TIME

I
|

1T

IS0
USA
EUR
JIS

L11]

COBOL precompiler only

L COBOL = 1
E 2
85

v

Chapter 6: Preparing and Executing the Program 133

Precompiling the Program

Parameters

RCM = rcm-name

Specifies the name of the RCM created for the programby the precompiler.
This parameter must be specified for all hostlanguage programs except COBOL.

Ifthis RCM is not specified to the COBOL precompiler, the RCM name is the
program name identified in the programsource. If the name is not identified in the
program, you must specify an RCM parameter.

RCMVERSION = rcm-version-number

Specifies the version number of the RCM created for the programby the
precompiler.

If RCMVERSION is not specified, the version number defaults to 1. If an RCM with
the same version number already exists inthe dictionary, the precompiler replaces
the existing RCM.

AM = access-module-name

Specifies the name of the access moduleto be executed for the programat
runtime.

The program can override this specification atruntime by issuinga SET ACCESS
MODULE statement.

Ifthis parameter is not specified, the access module name defaults to rcm-name.

The access modulespecifiedin access-module-name does need not existwhen the
program is precompiled. However, ifthe access moduledoes not exist when the
program is executed, an invalid SQL statement identifier error occurs.

SCHEMA = schema-name

Specifies the defaultschema-name qualifier for the precompiler to use when
processingan INCLUDE TABLE statement that does not supplya qualifier.

Ifan INCLUDE TABLE statement supplies a qualifier,the SCHEMA parameter is
ignored for that table.

If SCHEMA is notspecified and an INCLUDE TABLE statement does not supplya
qualifier, the precompiler returns an error.

NOINSTALL

Specifies that the precompiler should only check syntax.
If this parameter is specified, the precompiler does not store the RCM.

If this parameter is not specified and the precompiler executes without errors, the
precompiler stores the RCM.

134 Programming Guide

Precompiling the Program

DICTNAME = dictionary-name
Specifies the name of the dictionarythe precompiler should access.

Ifthis parameter is not specified, the precompiler defaults to the dictionary
specifiedinthe DICTNAME parameter of the SYSIDMS statement inthe precompiler
JCL.

Note: For more information aboutsample precompiler JCL, see Sample JCL (see
page 203).

Ifthis parameter is not specified and there is no SYSIDMS DICTNAME parameter,
the CA IDMS returns anerror at runtime.

SQL =

Specifies the SQL syntax standard that the precompiler should apply when checking
the validity of SQL statements inthe program.

The precompilerissues a warningifitdetects anSQL statement that does not
comply with the standard specifiedin this parameter.

Ifthis parameter is not specified, the defaultis the same as specifying SQL = NO.
NO

Specifies that compliancewith a named SQL standardis notchecked or enforced,
and all CA IDMS extensions are permitted.

89

Directs the precompiler to use ANSI X3.135-1989 (Rev), Database Language SQL
with integrity enhancement, as the standard for compliance.

FIPS

Directs the precompilerto use FIPSPUB 127-1, Database Language SQL, as the
standard for compliance.

LIST

Directs the precompiler to create a listing of the program with precompiler
messages.

Ifthis parameter is specified, the program listingis written to the SYSLST file.
Ifthis parameter is not specified, the defaultis the same as specifying NOList.

The precompiler directive NODMLIST, includedinthe program source, overrides the
EXEC PGM parameter LIST.

Note: For more information about NODMLIST, see Precompiler Directives (see
page 283).

Chapter 6: Preparing and Executing the Program 135

Precompiling the Program

NOList

Directs the compiler not to create a listing of the program with precompiler
messages.

The precompiler directive DMLIST, included in the programsource, overrides the
EXEC PGM parameter NOList.

Note: For more information about DMLIST, see Precompiler Directives (see
page 283).

COBOL =

Specifies the version of COBOL with which COBOL statements generated by the
precompiler must comply.

Ifthis parameter is not specified, the defaultis the same as specifying COBOL = 2.

1
Directs the precompiler to comply with versions of COBOL that precede VS-COBOL Il
when generating COBOL statements.
2
Directs the precompiler to comply with VS-COBOL |l when generating COBOL
statements.
DATE =
Specifies the format of the DATE data type to be used for communication between
the program and the databasewhen the access moduleis executed.
TIME =
Specifies the format of the TIME data type to be used for communication between
the program and the databasewhen the access moduleis executed.
Note: You canusethe DATE and TIME parameters to override the default for the
installation.
ISO
Specifies that the format of the DATE data type should comply with the
standard of the International Standards Organization. Formats used when 1SO
is specified are:
Data type Format Example
DATE yyyy-mm-dd 1990-12-15
TIME hh.mm.ss 16.43.17
TIMESTAMP yyyy-mm-dd-hh.mm.ss.nnnn 1990-12-15-16.43.17.1234

56

136 Programming Guide

Precompiling the Program

USA
Specifies that the format of the DATE data type should comply with the
standard of the IBM USA standard. Formats used when USA is specified are:
Data type Format Example
DATE mm/dd/yyyy 12/15/1990
TIME hh:mm AM 4:43 PM
hh:mm PM
TIMESTAMP yyyy-mm-dd-hh.mm.ss.nnnn 1990-12-15-16.43.17.1234
56
EUR
Specifies that the format of the DATE data type should comply with the
standard of the IBM European standard. Formats used when EUR is specified
are:
Data type Format Example
DATE dd.mm.yyyy 15.12.1990
TIME hh.mm.ss 16.43.17
TIMESTAMP yyyy-mm-dd-hh.mm.ss.nnnn 1990-12-15-16.43.17.1234
56
JIS
Specifies that the format of the DATE data type should comply with the
standard of the Japanese Industrial Standard Christian Era. Formats used when
JISis specified are:
Data type Format Example
DATE yyyy-mm-dd 1990-12-15
TIME hh:mm:ss 16:43:17
TIMESTAMP yyyy-mm-dd-hh.mm.ss.nnnn 1990-12-15-16.43.17.1234

56

Chapter 6: Preparing and Executing the Program 137

Compiling the Program

Compiling the Program

CA IDMS Precompiler

The CA IDMS precompiler modifies the program that you submit. CA IDMS comments
out SQL statements and substitutes callsto the DBMS. The entire sourceprogramis now
incompilableform.

Here is an example of an SQL statement that has been commented out by the
precompiler,and the code that the precompiler has substituted:

011200%* EXEC QL

011300* FETCH CURS1 BULK :EMPDATA
011400%* START :INDEX-CNTR ROWS :NUM-ROWS
011500* END-EXEC.
MOVE 4 TO SQLCLNO
MOVE 16 TO SQLCMD
MOVE 1 TO SQLARG
MOVE 4 TO SQLSID
MOVE 278 TO SQLTBL
MOVE 6 TO SQLMRO
MOVE INDEX-ONTR TO SQLSRO
MOVE NUM-ROWS TO SQLNRO
CALL 'IDMSSQL' USING
SQLRPB
SQLCA
SQLCA
SQLCIB
SQLPIB
SQLCA
EMPDATA
SQLCA
SQLCA
SQLCA
SQLCA

Language Compiler

To compilethe program, you submitthe source program, as successfully modified by
the precompiler, to the language compiler. Output from the compiler consistsofan
object program and a source listing.

Link Editing

The linkage editor edits the object program into a specified load library. Outputfrom
the linkage editor consists of a load module and a link map.

Note: For JCL and more information about compilingand link editinga programsee
Sample JCL (see page 203).

138 Programming Guide

Creating the Access Module

Creating the Access Module

An access moduleis the executable form of the SQL statements that a programissues.
When you create anaccess module, you alsoinvokethe optimizer. The optimizer
automatically determines the most efficient access to the data requested by the SQL
statements. CAIDMS stores the access strategyinthe access module.

How You Create an Access Module
You create anaccess module with an SQL statement, CREATE ACCESS MODULE. Ifyou
accept all defaults, the access moduleyou create:

m s qualified with the name of the default schema for the user session

m |sstored inthe DDLCATLOD area of the applicationdictionarytowhichyou are
connected

B |screated as version1ifno access moduleof the same name and version existsin
the dictionary

m Has no schema-name mapping to replaceexistingtableor view qualifiers in SQL
statements inthe RCMs that the access modulecontains

m |s defined with AUTO RECREATE ON, which means that the DBMS will attempt to
re-create the access moduleat runtime ifa change has been made to the definition
of a tableaccessed the module or ifthe RCM has been re-created sinceitwas
includedinthe access module

m |sdefined with VALIDATE ALL, which means thatthe DBMS will check the definition
for eachtableinthe access modulebefore executing the firststatement inthe
access module

m Will execute with a defaultisolation of cursor stabilityand allowa transaction to
perform updates

m Will execute with a ready mode of sharedretrieval onall areas itaccesses

Overriding Access Module Defaults

Access Module Name Qualifier

Qualify the access modulename if you want to associatethe access modulewith a
schema thatis not the default for the SQL sessioninwhich the CREATE ACCESS MODULE
statement isissued.

Chapter 6: Preparing and Executing the Program 139

Creating the Access Module

Ownership of the schema that qualifies theaccess moduleaffects authority to use the
access moduleunder CA IDMS internal security. The owner of the schema must have
authority to execute the statements inthe access module, and the authorities mustbe
grantablefor another user to execute the access module.

Note: For more information and specific rules regarding schema ownershipand

authority to execute access modules under CA IDMS security, see the CA IDMS Security
Administration Guide.

Access Module Version Number
Specify anaccess moduleversion number accordingtositestandards.

You canusethe version number of the access module to represent the version of the
application thatyou want to execute at runtime.

Note: For more information, see Executing the Application (see page 144).

Schema-name Mapping for Tables and Views

Supply schema-name mappingto specify a qualifier thatshould replacea tableor view
qualifierinthe RCMs that the access module contains.Schema-name mapping allows
you to specify the databasethat the access module accesses.

Inthis example, unqualified tableand view names, andtable and view names qualified
with EMP_SCH, are mapped to a schema called EMP_TSTSCH. When the access module
executes, a reference to the EMPLOYEE tableor the EMP_SCH.EMPLOYEE will changeto
the EMP_TSTSCH.EMPLOYEE table:

EXEC SQL
CREATE ACCESS MODULE EMPINFO1
FROM EMPDICT.EMPDSPOL,
EMPDICT.EMPDSPO2,
EMPDICT.EMPDSPO3,
EMPDICT. EMPADDO1,
EMPDICT.EMPUPDO1,
EMPDICT.EMPUPDO2,
EMPDICT. EMPDELO1
MAP EMP_SCH TO EMP_TSTSCH, <«— Schema-name mapping
MAP NULL TO EMP_TSTSCH
END-EXEC.

You cansubsequently change the schema-name mapping by creatinga new access
module or alteringan existing one. This lets you change the database that the
application accesses without precompilingthe programs again.

Note: For more information aboutalteringanaccess module, see Altering an Access
Module (see page 143).

140 Programming Guide

Creating the Access Module

Automatic Access Module Re-creation

At runtime, ifthe DBMS detects that the databasedefinition of a table specified in the
access modulehas changed sincethe access modulewas created, itautomatically
recreates the access moduleunless the access modul e was defined with AUTO
RECREATE OFF.

Ifthe AUTO RECREATE optionis OFF atruntime, the DBMS returns anerror with an
SQLCERC valueof 1014.

Table Definition Timestamp Validation

The DBMS validates the definition timestamp of every tableaccessed by statements in
the access module before executing the access moduleunless you specify VALIDATE BY
RCM or VALIDATE BY STATEMENT. Validation failureisa conditionthatrequires
re-creation of the access module.

BY RCM causes validation only for tables accessed by statements inthe RCM to be
executed. BY STATEMENT causes validation only for tables accessed by the statement to
be executed.

One of these specifications may be appropriateifthe application contains sections of
code that areinfrequently executed.

Transaction State

The default transaction stateis READ WRITE unless you specify the READ ONLY
parameter. READ ONLY will causean error to be returned at runtime attempts to
perform an update. The combination of READ ONLY and a ready mode of update will
causeanerror when you create the access module(see Ready mode).

A programcanoverride the transaction state specified for the access modulewith the
SET TRANSACTION statement.

SET TRANSACTION must precede most statements inthe transaction. For more
information, see the CA IDMS SQL Reference Guide.

A transactionwith anisolationlevel of transientreadis automatically a READ ONLY
transaction. Aspecification of READ WRITE for the access module or the transactionis
ignored when the isolation level of the transactionis transientread.

Isolation Level

Specify the DEFAULT ISOLATION parameter only if cursor stability is notthe appropriate
isolation level for executing the application.

Note: For more information aboutthe effect of isolation level,see Writingan SQL
Program (see page 27).

Chapter 6: Preparing and Executing the Program 141

Creating the Access Module

Ready Mode
With the READY parameter, you can specify ready mode for one, some, or all areas.

Ready mode refers to the type of arealockthe DBMS sets for the databasetransaction.
The effect of the area lock differs depending on whether the execution environment is
the central version or local mode. For example, fora program running under the central
version, a ready mode of protected retrieval prevents concurrent transactions from
updatingdata inthe area, but for a local modeprogram, it does not prevent concurrent
updates.

If you specify the PRECLAIM option for anarea,the DBMS sets area locks on the first
databaseaccess statement (to anyarea)inthe transaction.Ifyou do not specify

PRECLAIM for anarea, the defaultis INCREMENTAL, meaning that the arealockis seton
the firstaccess tothat area.

Default Ready Mode

You should acceptthe defaultready mode unless experience proves there is areasonto
overrideit.

Note: For more information aboutready mode options, see:

m Documentation of the CREATE ACCESS MODULE statement inthe CAIDMS SQL
Reference Guide

m CA IDMS Database Administration Guide
Actual Ready Mode

The actual ready mode at runtime depends on the interaction of transaction state,
specified ready mode, and the status of the area (initially defined in the DMCL).

The following two tables present the actual ready mode in each possibleinteraction.
READ ONLY Ready Modes

This table presents the actual ready modes when the transaction stateis READ ONLY:

Specified ready mode Area status Actual ready mode

(No specification) Transientretrieval Transientretrieval
Retrieval Shared retrieval
Update Shared retrieval

Any retrieval mode Transientretrieval Transientretrieval
Retrieval As specified
Update Shared retrieval

142 Programming Guide

Creating the Access Module

Specified ready mode Area status Actual ready mode

Any update mode Transientretrieval Transientretrieval
Retrieval Shared retrieval
Update Shared retrieval

READ WRITE Ready Modes

This table presents the actual ready modes when the transaction stateis READ WRITE:

Specified ready mode Area status Actual ready mode

(No specification) Transientretrieval Transientretrieval
Retrieval Shared retrieval
Update Shared update

Any retrieval mode Transientretrieval Transientretrieval
Retrieval As specified
Update As specified

Any update mode Transientretrieval (Runtime error)
Retrieval (Runtime error)
Update As specified

Alteringan Access Module
What You Can Change

Withan ALTER ACCESS MODULE statement, you can change any specification thatyou
made on the CREATE ACCESS MODULE statement. You canadd, drop, or replace RCMs.

Note: For more information aboutalteringanaccess module, see the ALTER ACCESS
MODULE statement inthe CA IDMS SQL Reference Guide.

Changing Schema-name Mapping

To change the schema-name mappingfor the access module, you must reprocess all
RCMs by specifyingthe REPLACE ALL parameter, as inthis example:

EXEC SQL
ALTER ACCESS MODULE EMPINFO1
REPLACE ALL
MAP EMP_SCH TO EMP_PRODSCH,
MAP NULL TO EMP PRODSCH
END- EXEC.

Chapter 6: Preparing and Executing the Program 143

Executing the Application

Executing the Application

Batch Jobs

You can execute a batchjob under the central versionorinlocal mode.

JCL for executing an SQL application programin batchis presentedin SampleJCL (see

page 203).

SYSIDMS Parameters

In batch JCL, you cantailor certain aspects of the runtime environment by specifying
SYSIDMS parameters. The followingtablelists the options specific to SQL processing:

SYSIDMS parameter

What it does

SQLTRACE

Activates or deactivates the facility thattraces all SQL
requests made by the application

PROCTRACE=ON/OFF

ON activates a trace of key user blocks that
participateinan SQL PROCEDURE call.OFFis the
default.

SQL_CACHE_ENTRIES=n

n specifies the max number of entries that will be
used inthe dynamic SQL cache.One entry holds one
cached SQL statement. With n set to 0, dynamic SQL
cachingwill bedisabled. The theoretical max value
for nis 2,147,483,647, but the real maximum is
determined by availableaddress space. The defaultis
200.

SQL_INTLSORT=ON/OFF

Allows you to force the internal IDMS sortto be used
inlocal mode. IfON is specified,aninternal SORT
rather than an operating system SORT will be
performed on SQL commands issuedina local batch
jobthat contains an ORDER BY clause.ln manycases,
aninternal SORT is faster than an operating system
SORT when you are not dealing with a largeamount
of data. OFF is the default, indicatingan operating
system SORT will beused.

Note: For more information andthe complete listofavailable SYSIDMS parameters, see
the CA IDMS Common Facilities Guide.

144 Programming Guide

Testing the Access Module

Execution Privilege

The privileges required to access a CA IDMS databaseusing SQL depends on how CA
IDMS databaseresources aresecured.

If CA IDMS internal securityis in effect, authority to access the databasethrough the
program derives from ownership of the schema that qualifies theaccess module name.

Note: For more information about qualifyingtheaccess module name, see Overriding
Access Module Defaults (see page 139).

If CA IDMS resources are secured by an external security system, the executing user
must hold appropriateprivileges onall resources thatthe application programaccesses.
The schema name has no significance exceptas a qualifier.

Note: For more information aboutprivileges required to access CA IDMS, see your
security administrator.

Testing the Access Module

Which Access Module Executes

The default access modulethatis executed at runtime is the access moduleassociated
with the program thatissues the firstSQL statement executed withinthe SQL session.

A programis associated with an access modulewhen the program is precompiled.

Note: For more information aboutassociatinga programwith an access module, see
Precompilingthe Program (see page 131).

There are two ways to override at runtime the access moduledefault thatis set at
precompiletime:

m The programissues a SET ACCESS MODULE statement before the database
transaction begins

Note: For more information aboutusingthe SET ACCESS MODULE statement, see
Preparingand Executing the Program (see page 131).

m Adifferent version of the access moduleis used becausea test version option has
been set for the DC sessionin which the programis executing

Chapter 6: Preparing and Executing the Program 145

Debugging the Application

Test Versions

Ifthere is a version of the access module that matches the test version setting, the
matching versionis executed. If an access modulewith a matching versionis notfound
at runtime, version 1 of the access module is executed.

Note: For more information abouttest versions, see documentation of DCUF TEST in the
CA IDMS System Tasks and Operator Commands Guide.

Debudging the Application

CA IDMS provides these tools that you can use to debug the SQL portion of the
application program:

m Command Facility
m SQL trace facility
m EXPLAIN statement

Command Facility

The Command Facilityis a tool for a user to issuead hoc SQL statements inan
interactiveonline environment or in batch mode.

You canusethis facility to test SQL statement syntax andto test conditions of the
databaseboth when you are designingthe applicationand,if necessary, while
debugging.

Note: You canuseCA OLQ to access CAIDMS with SQL. For more information, see the
CA 0OLQ Reference Guide.

This example shows a query submitted onlineto the Command Facilityand the result
table returned. A successful SELECT statement, such as the one shown here, can be
declared as a cursor with no change to the syntax.

146 Programming Guide

Debugging the Application

SQL Trace Facility

OCF nn.n ONLINE IDMS NO ERRORS /16
SELECT

PROJ DD,

EST START DATE,
PROJ_DESC

FROM DEMOPROJ .PROJECT
WHERE EST START DATE > CURRENT DATE

ORDER BY 2;

*4

*+ PROJ_ID EST START DATE
T
*+ €203 1998-02-01

*+ 240 1998-06-01

*+ C200 1999-01-15

*+ D880 1999-11-01

*+ P634 2000-02-01

*+ P200 2000-09-01

*4

*+ 6 rows processed

PROJ DESC
Consumer study
Service study

New brand research
Systems Analysis
TV ads - WT\K
Christmas media

Note: For more information aboutusingthe Command Facility, see the CA IDMS
Common Facilities Guide.

You canusethe SQL trace facility to trace execution of the SQL statements ina batch
program.

You activatethe SQL tracefacility by specifying the SYSIDMS parameter SQLTRACE=ON.

In this example, the SQL tracefacility reports on the SQL processingfor a SELECT
statement submitted through IDMSBCF, the batch Command Facility. The trace facility
shows the steps indynamically executing the SELECT, includinganautomatic CONNECT.

Chapter 6: Preparing and Executing the Program 147

Debugging the Application

SELECT R.REFTABLE AS "PARENT",
K.REFCOLUMN AS "PARENT COLUMN",
R.NAME AS "RELATIONSHIP"

FROM SYSTEM.CONSTRAINT R,

SYSTEM.CONSTKEY K

WHERE R.SCHEMA = K.SCHEMA
AND R.NAME = K.NAME
AND R.SCHEMA = 'REL'

AND R.TABLE = 'C_EMPLOYEE'

AND R.UNIQUE >= ' '
OR R.COMPRESS <= ' ' ;

Verb=07 CONNECT TO SYSSQL Caller=IDMSBCF
Verb=20 PREPARE-—+» SELECT R.REFTABLE AS "PARENT", Caller=IDMSBCF
Verb=11 DESCRIBE Caller=IDMSBCF
Verb=19 OPEN Caller=IDMSBCF
Verb=16 FETCH Caller=IDMSBCF
S QL SQLCODE=0106 REASON CODE=0000

Verb=03 CLOSE Caller=IDMSBCF
PARENT PARENT COLUMN RELATIONSHIP
C_DEPARTMENT C DEPT_ID DEPT_EMPLOYEE
C_PROJECT C_PROJ_ID EMP_PROJECT
2 rows processed

Caller=IDMSBCF

Verb=05 COMMIT continue

SQLSEQ=000001
SQLSEQ=000008
SQLSEQ=000005
SQLSEQ=000007
SQLSEQ=000006

SQLSEQ=000002

SQLSEQ=000003

% G (L

You canactivateand deactivate the SQL trace facility within the logic of the program.
You do this byissuingcalls to the IDMSINO1 entry pointto the IDMS module.

Note: For more information aboutthe requirements for calling IDMSINO1 to activate or

deactivate the SQL tracefacility, seethe CA IDMS Callable Services Guide.

EXPLAIN Statement

Online Debudger

You canusethe EXPLAIN statement to analyzethe optimized access strategy for an SQL

statement. An aspectof databasedefinition or the formulation of the SQL statement

canresultina relativelyinefficientstrategy for a given SQL statement. The information

produced by the EXPLAIN statement cansuggest corrective measures.

Note: For more information aboutthe EXPLAIN statement andits use, see the CA IDMS

SQL Reference Guide.

You candebug onlineapplication program execution usingthe CA IDMS online

debugger. The onlinedebugger allows you to:
m Set breakpointsinthe program

m Stop execution of the program at a breakpoint

148 Programming Guide

Debugging the Application

m Examine andoptionallyalter conditionsthatexistat the breakpoint

m Resume program execution

Note: For more information about debugging onlineapplication programs, seethe CA
IDMS Online Debugger Guide.

Chapter 6: Preparing and Executing the Program 149

Chapter 7: SQL Programming Techniques

Programming techniques that increasethe processing capability of the program and
reduce the demand for system resources are necessary for optimum performance. In
several cases,you canachieve these results because of CAIDMS SQL extensions.

This section contains the followingtopics:

Modularized Programming (see page 151)

Pseudoconversational Programming (see page 157)
Managing Concurrent Sessions (see page 163)
Creating and Usinga Temporary Table (see page 167)
Bill-of-materials Explosion (see page 169)

Modularized Programming

You candesignan SQL application using modularized programming techniques. CA IDMS
provides extensions to the SQL standard that allowa program to:

m Shareacursorthat was opened by another program

m Specify the access modulethatis to be executed forthe program

Sharinga Cursor

A sharedcursoris declared and opened in one programand accessed in another
program.

Requirements

These are the requirements for declaringand usinga shared cursor:

m The cursordeclarationinthefirstprogrammust specify the GLOBAL parameter.

Chapter 7: SQLProgramming Techniques 151

Modularized Programming

In this example, program EMPGET declares and opens a global cursor toselect
benefits information:

IDENTIFICATION DIVISION.
PROGRAM-ID. EMPGET.

DATA DIVISION.
WORKING-STORAGE SECTION.

EXEC SQL
DECLARE EMP CRSR GLOBAL CURSOR FOR
SELECT EMP_ID,
J0B_1ID,
SALARY AMOUNT,
BONUS_PERCENT
FROM BENEFITS
WHERE EMP_ID = :EMP-ID
END- EXEC.

PROCEDURE DIVISION.

EXEC SQL
OPEN EMP_CRSR
END-EXEC.

m Onlythe program that contains the global cursor declaration can contain the OPEN
statement for the global cursor.

m A programthat shares the cursor must make an external cursor declaration.

Inthe followingexample, program EMPUPD declares an external cursortoshare
the global cursor declaredin EMPGET:

IDENTIFICATION DIVISION.
PROGRAM-ID. EMPUPD.

DATA DIVISION.
WORKING-STORAGE SECTION.

EXEC SQL
DECLARE EMP_CRSR EXTERNAL CQURSOR
END- EXEC.

® Any number of programs that execute within the same databasetransactioncan
sharea global cursor.

m All programs that sharea cursor must be partof the same access module.

The GLOBAL parameter is not valid for cursors associated with dynamically-compiled
SELECT statements.

152 Programming Guide

Modularized Programming

Verifying External Cursors

The precompiler does not verify the validity of a DECLARE EXTERNAL CURSOR
statement. The programmer has the responsibility of verifying that programs meet the
requirements for declaringandaccessinga global cursor.

Shared Cursor Example

In this example, EMPGET declares EMP_CRSR as an updateable global cursor, opens the
cursor,and fetches the row. After checkingthe results of the fetch, EMPGET passes
control to EMPUPD. EMPUPD declares EMP_CRSR as an external cursor and performs a
positioned update usinginputvalues for the updateable columns.

Chapter 7: SQLProgramming Techniques 153

Modularized Programming

IDENTIFICATION DIVISION.
PROGRAM-ID. EMPGET.

DATA DIVISION.
WORKING-STORAGE SECTION.

EXEC SQL
DECLARE EMP CRSR GLOBAL CURSOR FOR
SELECT EMP_ID,
J0B_1ID,
SALARY AMOUNT,
BONUS_PERCENT
FROM BENEFITS
WHERE EMP ID = :EMP-ID
FOR UPDATE OF SALARY AMOUNT,
BONUS PERCENT
END-EXEC.

PROCEDURE DIVISION.

EXEC SQL
OPEN EMP_CRSR
END- EXEC.

PERFORM FETCH-ROUTINE UNTIL END-FETCH='Y'
FETCH-ROUTINE.

EXEC SQL
FETCH BMP_(RSR
INTO :EMP-ID,
:JOB-1ID,
:SALARY -AMOUNT INDICATOR SALARY-AVOUNT-I,
:BONUS-PERCENT INDICATOR BONUS-PERCENT-I
END - EXEC.

IF SQLCODE = 100 MOVE 'Y' TO END-FETCH.
IF SALARY-AMOUNT-I = -1 OR BONUS-PERCENT-I = -1
PERFORM INITIALIZE-NULL-VARIABLES.

CALL EMPUPD.

154 Programming Guide

Modularized Programming

IDENTIFICATION DIVISION.
PROGRAM-ID. EMPUPD.

DATA DIVISION.
WORKING-STORAGE SECTION.

EXEC SQL
DECLARE EMP CRSR EXTERNAL CURSOR
END - EXEC.

PROCEDURE DIVISION.

MOVE INPUT-SALARY-AMOUNT TO SALARY-AMOUNT.
MOVE INPUT-BONUS-PERCENT TO BONUS-PERCENT.

EXEC SQL
UPDATE BENEFITS
SET SALARY_AMOUNT = :SALARY-AMOUNT,
BONUS PERCENT = :BONUS-PERCENT
WHERE CURRENT OF EMP_CRSR
END-EXEC.

Using the SET ACCESS MODULE Statement
Why You Use It
You usea SET ACCESS MODULE statement to specifyinthe program what access
module should be executed for a databasetransaction.SET ACCESS MODULE overrides
the default access modulespecification for the duration of the transaction.

Default Access Module Specification

The default access modulespecificationis theone associated with the programthat
initiates the SQL session—thatis, the first programto issuean SQL statement.

Note: For information abouthow anaccess moduleis associated with a program, see
Preparingand Executing the Program (see page 131).

The default access moduleis the access module that is executed unless the program
issues a SET ACCESS MODULE statement. The SET ACCESS MODULE specification
remains in effect until the databasetransaction ends. After the databasetransaction
ends, the default access moduleis re-established.

Chapter 7: SQLProgramming Techniques 155

Modularized Programming

When to Issue SET ACCESS MODULE

The SET ACCESS MODULE statement is valid onlyifthe programissuesitinthe
transaction beforeitissues an SQLstatement requesting dictionary or databaseaccess.

Note: For more informationanda listof statements that can precede SET ACCESS
MODULE ina databasetransaction, seethe CA IDMS SQL Reference Guide.

Using a Host Variable
You canspecify the access module nameina host variableonthe SET ACCESS MODULE.
This allows the specification ofanaccess moduleto be decided by conditions notknown

until runtime.

Note: When you define a host variablefor the access module name, an eight-byte
character field suffices becauseanaccess modulename is limited to eight characters.

SET ACCESS MODULE Example

In this example, program EMPACT declares a global cursorandissues a SET ACCESS
MODULE statement before startinga transaction with an OPEN statement:

IDENTIFICATION DIVISION.
PROGRAM-ID. EMPACT.

DATA DIVISION.
WORKING-STORAGE SECTION.

EXEC SQL
DECLARE EMP_CRSR GLOBAL CURSOR FOR
SELECT EMP_ID
FROM EMPLOYEE
WHERE STATUS = 'A'
END-EXEC.

PROCEDURE DIVISION.
MOVE 'EMPAPPL3' TO AM-NAME.

EXEC SQL
SET ACCESS MODULE :AM-NAME
END - EXEC.

EXEC SQL
OPEN EMP_CRSR
END - EXEC.

156 Programming Guide

Pseudoconversational Programming

Pseudoconversational Programming

Pseudoconversational programmingis an online programmingtechnique that frees
certainresources whilethe system waits for a response from the onlineuser. This
permits anonlineenvironment to supportmore concurrent processing by conserving
limited resources such as storage pool and program pool space.

To facilitate pseudoconversational programminginan SQL application, CA IDMS
supports the SUSPEND SESSION and RESUME SESSION statements.

Updating After a Pseudoconverse

The onlineuser's responsemay call for modification of data thatwas retrieved by the
program. This section discusses techniques for updating after a pseudoconverse,
including consideration of whether the programneeds to verify that the data has not
changed sinceitwas retrieved.

Using SUSPEND SESSION and RESUME SESSION
What SUSPEND SESSION Does

When the programissues a SUSPEND SESSION statement, the DBMS releases all
resources associated with the SQL session except those needed to resume the current
sessionandtransaction:

m The databaseconnection

m Cursorcurrencies

m Locks held by any currently activetransaction
m Temporary tables

m Dynamically prepared SQLstatements

SUSPEND SESSION does not causea commit or rollback of work.

What RESUME SESSION Does

RESUME SESSION reestablishes theactive SQL sessionand databasetransaction. All
characteristicsand cursor positions of the session and transaction arerestored to what

they were when the programissued the SUSPEND SESSION statement.

Ina pseudoconversational program, RESUME SESSION must be the firstSQL statement
the applicationissues after a SUSPEND SESSION statement.

Chapter 7: SQLProgramming Techniques 157

Pseudoconversational Programming

Advantages of Suspending and Resuming

Sincea suspended session preserves databasetransactionand SQLsession
characteristics, you can use SUSPEND SESSION and RESUME SESSION in these types of
applications:

m Scrollingthroughalistofresultrows

m Updating a row with userinput

The followingsections discuss howto use SUSPEND SESSION and RESUME SESSION in
these types of processing.

Scrolling Through a List of Rows

Retrieval List Using Bulk Fetch

You canusea bulkfetch anda suspended sessionto develop anonlineapplication for
scrollingthrough a listof rows. Each fetch statement retrieves a screen display of rows.
The sessionis suspended before the pseudoconverse and resumed when the user
requests the next set of rows to display. Sincethe DBMS has maintained cursor position
duringthe suspended session, the next execution of the fetch statement automatically
retrieves the next set of rows inthe cursor resulttable.

Retrieval List Example

In this example, havingalready declared a hostvariablearray with as many occurrences
as there arerows ina screen display, the programdeclares and opens the
POSITION_CRSR cursor to retrieve data about employees by department:

EXEC SQL
DECLARE POSITION CRSR CURSOR FOR
SELECT P.EMP_ID,
E.DEPT ID,
P.JOB_ID,
P.SALARY AMDUNT,
FROM POSITION P, EMPLOYEE E
WHERE P.EMP_ID = E.EMP_ID
AND E.DEPT ID = :DEPT-ID
END- EXEC.

EXEC SQL
OPEN POSITION_CRSR
END-EXEC.

158 Programming Guide

Pseudoconversational Programming

The program then iterates the followinglogic until theonlineuser exits this thread of
the application. The firstfetch uses the value of INPUT-DEPT-ID. The second fetch
retrieves the next set of employees for the department because the DBMS has
maintained the cursor position duringthesuspended session:

EXEC SQL
FETCH POSITION CRSR
BULK :BULK-POSITION
END-EXEC.
IF SQLCODE = 100 MOVE 'Y' TO END-FETCH.
EXEC SQL

SUSPEND SESSION
END - EXEC.

(Move retrieved values to display fields)
MAP OUT ...
(Pseudoconverse)
MAP IN ...
EXEC SQL
RESUME SESSION
END-EXEC.

IF END-FETCH = 'Y' ... <«— Close cursor and either
select a new department or exit

Scrolling Backwards
Scrolling backwards through anonlineretrieval listrequires pageable map processing. If
necessary, you can manage pageable map processing by using:

m The CA IDMS scratch area and scratch management statements to temporarily
store andre-access retrieved data

m CA ADS pageablemappingina CA ADS application

Note: For more information aboutscratch area management, see the applicableCA
IDMS program languagereference manual.

Updating a Row After a Pseudoconverse
Using an Updateable Cursor

Duringa suspended session, the DBMS maintains the cursor position of an open cursor
andalsothelockon the current cursor row. Therefore, a programrunningunder the
cursor stabilityisolation level can resume the suspended session and performa
positioned update without checking whether the row has been updated by a concurrent
databasetransaction.

Chapter 7: SQLProgramming Techniques 159

Pseudoconversational Programming

Updateable Cursor Example

In this example, the program fetches a row from the BENEFITS_CRSR cursor, suspends
the session,and displaystherow to the onlineuser. Followinguser input, the program
resumes the sessionand performs a positioned update with userinput:

EXEC SQL
DECLARE BENEFITS CRSR FOR
SELECT JOB_ID,
SALARY AMOUNT,
BONUS_PERCENT
FROM BENEFITS
WHERE BMP_ID = :EMP-ID
END-EXEC.

EXEC SQL
OPEN BENEFITS (RSR
END - EXEC.

EXEC SQL
FETCH BENEFITS CRSR
INTO :JOB ID,
:SALARY_AMOUNT,
:BONUS_PERCENT
END - EXEC.

EXEC SQL
SUSPEND SESSION
END-EXEC.

(Move retrieved values to display fields)
MAP QUT ...

(Pseudoconverse)

MAP IN...

(Program moves input data to host variables)

EXEC SQL
RESUME SESSION
END - EXEC.

EXEC SQL
UPDATE BENEFITS
SET SALARY_AMOUNT = :SALARY-AMOUNT,
BONUS PERCENT = :BONUS-PERCENT
WHERE CURRENT OF BENEFITS CRSR
END - EXEC.

EXEC SQL
COMMIT
END - EXEC.

160 Programming Guide

Pseudoconversational Programming

Searched Update After a Pseudoconverse

When a databasetransactionrunningunder the defaultisolation mode of cursor
stability suspends thesession, the DBMS releases anylockitset on the baserow(s) of a
single-row SELECT result. No locks aremaintained on rows resulting from bulk selects in
this situation,and only the lock on the lastrowfetched in a bulk fetch is maintained
under cursor stability duringa suspended session.

A concurrent databasetransaction can updatethe data retrieved by a single-row SELECT
statement or FETCH BULK statement whilethe session ofthe originaltransactionis
suspended. Inthese situations, the program should check whether the data has been
modified sinceitwas retrieved before applyingan update after the pseudoconverse.

Checking Whether the Row Was Modified

To be ableto check whether arow has been modified, your processingenvironment can
create and maintaina column for a last-updatetimestamp value. An alternativeis to
compare the values of all fields to be updated with the values that were retrieved.

Maintaining a Last-Update Timestamp

To maintaina last-updatetimestamp for a tablerow, use these procedures:

1. Define alast-updatecolumn for each tablewith data type TIMESTAMP and NOT
NULL WITH DEFAULT

2. Inthe program, define the host variablefor the last-updatetimestamp column as a
character field with length 26

3. Set the last-updatetimestamp columnto the value of the special register CURRENT
TIMESTAMP when modifyingthe row

You canadda last-update column to an existingtable usingthe ALTER TABLE statement.

Note: For more information aboutthe ALTER TABLE, see the CA IDMS SQL Reference
Guide.

How You Check the Row Before Updating
To determine whether a row has been modified sincethe program retrieved it, you

attempt a searched update with a search condition thatincludes a comparison to verify
that the last-updatetimestamp value has not changed.

Chapter 7: SQLProgramming Techniques 161

Pseudoconversational Programming

Searched Update Example

Inthis example, the programissues a single-row SELECT statement from the POSITION
table usingthe primary key of the table. The program suspends the SQL sessionand
displaystheretrieved row to the onlineuser:

MOVE MAP-EMP-ID
MOVE MAP-JOB-ID

33

EMP-ID.
J0B-1D.
EXEC SQL
SELECT EMP_ID,
JOB_ID,
SALARY AMOUNT,
LAST UPDATED
INTO :EMP-ID,
: JOB-ID,
: SALARY -AMOUNT,
: LAST - UPDATED
FROM POSITION
WHERE EMP ID = :EMP-ID
END- EXEC.

EXEC SQL

SUSPEND SESSION
END - EXEC.

MAP OUT ...

(Pseudoconverse)

Followingthe pseudoconverse, the programissues an update to the singlerow using
input from the onlineuser. The update executes onlyifthe row has not been modified
sinceitwas retrieved:

MAP IN ...
MOVE MAP-SALARY -AMOUNT TO SALARY -AMOUNT .

EXEC SQL
RESUME SESSION
END - EXEC.

EXEC SQL
UPDATE POSITION
SET SALARY AMOUNT = :SALARY-AMOUNT,
LAST _UPDATED = CURRENT TIMESTAMP
WHERE EMP ID = :EMP-ID
AND JOB ID = :JOB-ID
AND LAST UPDATED = :LAST-UPDATED
END - EXEC.

IF SQLCODE = 100 PERFORM ROW-CHANGED.

162 Programming Guide

Managing ConcurrentSessions

Manading Concurrent Sessions

The ability to maintain concurrentactivesessionsallows the program to access multiple
databases with parallel databasetransactions. For example, one session canretrieve
data from one databaseand, usingthat data, perform an update operation on another
database.

Caution When Transaction Sharing Is Not in Effect

Ifan application attempts to access the same databasein concurrentsessions, thereis
aninherent risk of deadlock; however, transactionsharingcanbeused to avoidsuch
deadlocks.

Note: For more information aboutthe use of transactionsharing, see Writingan SQL
Program (see page 27) and the CA IDMS Database Administration Guide.

Session Management Concepts
Concurrent Session Identifier

When a session begins, CAIDMS assignsanidentifier to the sessionand maintainsthe
sessionidentifier internally. All SQLstatements implicitly referencethe sessionidentifier
during execution.

Ifthere are multiple concurrentsessions, each session hasits ownsession|D.To
manage multiplesessions,anapplication mustmanipulatethe sessionidentifier
directly.

Data Declaration Requirements

To manipulatethe sessionidentifier, the program must first:

m Declareone hostvariable of usage SQLSESS

m Define avariablein working storagefor each of the multiplesessions thatthe
program will maintain

When the programbegins an SQL session, CAIDMS returns the sessionidentifier to the
SQLSESS hostvariablethatthe program has defined. The program must save the
SQLSESS valueof each concurrentsession.

Chapter 7: SQLProgramming Techniques 163

Managing ConcurrentSessions

How CA IDMS Uses the SQLSESS Variable

Ifthe programdeclares an SQLSESS hostvariable, allcallsto CA IDMS pass the SQLSESS
host variableas a parameter to indicatethe session to which the SQL statements should
be directed.

CA IDMS does not alter the sessionIDvalueinthis parameter unless the statement

being executed terminates the session (thatis,on a COMMIT, RELEASE, or ROLLBACK
RELEASE). Ifthe sessionis terminated, CA IDMS initializes the SQLSESS host variable.

What the Program Must Do

Before executing an SQL statement, the application mustensurethat the correctsession
ID value has been moved to the SQLSESS host variable.

Implementing Concurrent Sessions

Declaring the SQLSESS Host Variable

To implement concurrent sessions, the programmust declarea host variableto which
CA IDMS assignsthesessionidentifier of the activeSQL session:

EXEC SQL
BEGIN DECLARE SECTION
END-EXEC.

01 IDMS-SESS-ID USAGE SQLSESS.

EXEC SQL
END DECLARE SECTION
END-EXEC.

Saving the Session ID Value

The precompiler expands the SQLSESS host variableto an 8-byte character field.
Therefore, to savesession IDvalues, the application program mustdefine work fields
that alsoare8-byte characterfields:

WS-SESSION-1IDS.
05 SESS1-ID PIC X(8).
05 SESS2-ID PIC X(8).

164 Programming Guide

Managing ConcurrentSessions

Multiple Session Steps

These are the stepsina typical scenario for managing multiplesessions:

1. BeginasessionaccessingDatabasel

2. Move IDMS-SESS-ID to SESS1-1D

3. Initialize IDMS-SESS-ID by moving spaces to it

4. CONNECT TO Database?2

5. Move IDMS-SESS-ID to SESS2-ID

At this point, the current session IDvalueis the one representing the second session.To

make the firstsessionthecurrent session, the application programwould move the
valuein SESS1-ID to IDMS-SESS-ID.

Multiple Sessions Started by One Program

The followingdiagramillustrates a scenarioin which a program manages session IDs to
maintain multiple concurrentsessions.

In this case, the mainlineprograminitiates both sessions and passes theappropriate
session|Dtoeach subordinate programto indicatewhich sessionthesubprogram
should process. Each subprogrammust also declarea session identifier to hold the value
passed from the mainline program.

Chapter 7: SQLProgramming Techniques 165

Managing ConcurrentSessions

Mainline

Connect to DBO1

Save first session value
Initialize SQLSESS
Connect to DBO2

Save second session value
Move first session value to SQLSESS
Call PROGRAM1 passing SQLSESS

Programl

LINKAGE SECTION.
EXEC SQL

BEGIN DECLARE SECTION
END-EXEC.
01 SQLSESS USAGE SQLSESS
EXEC SQL

END DECLARE SECTION
END-EXEC.

Ebl statements for DBOI1

A

Move second session value to SQLSESS
Call PROGRAM2 passing SQLSESS

Program2

[
—

LINKAGE SECTION.
EXEC SQL

BEGIN DECLARE SECTION
END-EXEC.
01 SQLSESS USAGE SQLSESS
EXEC SQL

END DECLARE SECTION
END-EXEC.

SOL statements for DBO2

A

FINISH TASK

Multiple Sessions Started by Different Programs

The followingdiagramillustrates a scenario in which multiplesessionsare begun by

multiple programs

Inthis case, Program 1 must declarea session|Dtoindicatethat a separate sessionis
desired; otherwise, the CONNECT statement will returnanerror. However, no

manipulation of the session IDis required.

Mainline

Connect to DBO1
Call PROGRAM1

Programl

I
Connect to DBO2

Retrieve data

A

Update data in DBO1
COMMIT RELEASE

COMMIT RELEASE

166 Programming Guide

Creating and Using a Temporary Table

Creating and Using a Temporary Table

A temporary table differs from a databasetable inthese ways:

m Atemporary table exists onlyas longas the databasetransactioninwhichitis
created

® You cannotcreate anindex on atemporary table
m A temporary table cannotbe referenced inaview or a referential constraint
m Atemporary table cannotbe accessed by another databasetransaction

With the above exceptions, a program canaccess a temporary table and manipulate
temporary tabledata as it does with a databasetable.

Why Use a Temporary Table

A temporary table can be useful for certain processing requirements, such as to:
m Take asnapshotofinformationinthe database

m Avoid re-accessingbasetables multipletimes to retrieve the same information, to
process efficiently and assurethatthe information does not change

m Perform certainoperations thatcannot be done with a single SQL statement, such
asinsertingrows intoatable using data retrieved from the same table

Caution Using a Temporary Table

Sinceyou cannotcreate anindex on a temporary table,access to a temporary tableis
always serial. Accessing data in a temporary table with many rows may degrade the
performance of the program.

How You Create a Temporary Table

You create a temporary table inthe procedural section of the program by issuinga
CREATE TEMPORARY TABLE statement. This statement requires:

m Atemporary table name

m Column names

m Column definitions

CA IDMS maintains temporarytables inthe scratch area.The program does not supply
information aboutthe physical characteristics of a temporary table.

Note: For more information aboutcreatingtemporary tables in particular, seethe CA
IDMS SQL Reference Guide. For more information aboutcreating tables in general, see
the CA IDMS Database Administration Guide.

Chapter 7: SQLProgramming Techniques 167

Creating and Using a Temporary Table

Naming a Temporary Table

When you create a temporary table, you should nameitina way that cannot match the
name of anytable or view that may be created. Ifa temporary table name matches the
name of a basetable or view, the optimizer will assumethe name refers to the base
table orview, and the temporary table will notbe accessed.

Cursor for a Temporary Table

The program can declarea cursor for a temporary table. However, when you create the
access modulefor the program, the optimizer issues a warninginresponseto any
reference to the temporary table other than inthe CREATE TEMPORARY TABLE
statement.

The programmer has the responsibility of verifyingthatthe cursor declarationand the
CREATE TEMPORARY TABLE statement are compatible.

Temporary Table Example

In this example, the program creates a temporary table of manager names andids using
information inthe EMPLOYEE table. (The EMPLOYEE tableitselfassociates theid of a
manager with the name of the subordinateemployee, not the name of the manager.)
Usinga cursor,the program accesses a row of the temporary table and selects
employees from the EMPLOYEE table who report to the manager identified in the
temporary tablerow.

This is the cursor declaration and thestatement to create the temporary table:

WORKING STORAGE SECTION.

EXEC SQL
DECLARE TEMP_CRSR CURSOR FOR
SELECT *
FROM TEMP_MGR
ORDER BY 3
END EXEC

PROCEDURE DIVISION.

EXEC SQL
CREATE TEMPORARY TABLE TEMP MGR
(TEMP_MGR ID INTEGRR,
TEMP_FNAME CHAR(20),
TEMP_LNAME CHAR(20))
END-EXEC.

168 Programming Guide

Bill-of-materials Explosion

This statement adds manager information to the temporary table:

EXEC SQL
INSERT INTO TEMP_MGR
SELECT DISTINCT E.MANAGER ID,
M.EMP_FNAME,
M.EMP_LNAME
FROM EMPLOYEE E, BMPLOYEE M
WHERE E.MANAGER ID = M.EMP_ID
END-EXEC.

This statement establishes a currentcursor row for the temporary table:

EXEC SQL
FETCH TEMP_CRSR
INTO :MGR-ID,
:MGR- FNAME,
:MGR- LNAME
END-EXEC.

This statement performs a bulk select of employees who report to the manager inthe
current cursor row. Depending on processing requirements, this statement could be a
bulk fetch:

EXEC SQL
SELECT EMP_FNAME,
EMP_LNAME,
DEPT ID
BULK :BULK-EMPLOYEE
FROM EMPLOYEE
WHERE MANAGER ID = :MGR-ID
AND TERMINATION DATE IS NULL
END- EXEC.

Bill-of-materials Explosion

This section presents a sample program that performs a bill-of-materials explosion. A
discussion of the concepts involved precedes the sampleprogram.

Chapter 7: SQLProgramming Techniques 169

Bill-of-materials Explosion

What to Do

Maximum Level

The sampleprogram establishes a value of 100 as the limitof levels for the explosionin
its use of the MAX-LEVELS variable.Alimitof 100is forillustration only;a programcan
set a higher or lower limit.

LIMITS-AND-CONSTANTS.
02 NUMBER-OF-CURSORS PIC S9 COMP VALUE 3.
02 MAX-LEVELS PIC S9(4) COMP VALUE 160.
02 NULL-KEY-VALUE PIC 9(7) VALUE 0.

Cursor Declarations
The program declares three different cursors with identical definitions. Thecursor issues

ajoinof the PART and COMPONENT tables that produces a resulttable of component
parts for each part.

EXEC SQL DECLARE CURSOR1 CURSOR FOR
SELECT COMPONENT PART,
QUANTTTY,
PART NAME
FROM COMPONENT C,
PART P
WHERE C.PART = :CURRENT-KEY
AND C.COMPONENT PART > :PREVIOUS-COMPONENT
AND P.NUMBER = C.PART
ORDER BY COMPONENT PART
END- EXEC

EXEC SQL DECLARE CURSOR2 CURSOR FOR
SELECT COMPONENT PART,
QUANTITY,
PART NAME
FROM COMPONENT C,
PART P
WHERE C.PART = :CURRENT-KEY

The minimum number of cursors needed is two. Theoretically, the program could
declaremore cursors with identical definitions, up toa number of cursors equal to the
maximum level for the explosion. However, for most bill-of-material explosions, itis
more practical and efficientto add program logic that allows thethree cursors to be
reused as illustrated in the sample program later in this section.

170 Programming Guide

Bill-of-materials Explosion

Getting the First Row

The GET-FIRST-ROW section of the program issues a single-rowselectfrom the PART
table. The search condition equates an inputpart number (TOP-KEY), the partto be
exploded, with PART_NUMBER, the uniquekey of the PART table.

This selectverifies the existence of the part and alsoretrieves its name.

EXEC SQL
SELECT PART NUMBER, PART NAME
INTO :CURRENT-KEY, :COMPONENT-NAME
FROM PART
WHERE PART_NUMBER = :TOP-KEY
END-EXEC.

Going to the First Level

Inthe FETCH-NEXT-ROW section, the program opens a cursor to retrieve the component
parts that make up the current part, whose number it has assigned to CURRENT-KEY.
The program fetches the firstrow of the cursorresulttable.

FETCH-NEXT-ROWN SECTION.
PERFORM OPEN-CURRENT - CURSOR.

IF QURRENT-CURSOR = 1
EXEC SQL
FETCH CURSORL INTO
:COMPONENT-KEY, :QTY, :COMPONENT-NAME
END - EXEC
ELSE IF QURRENT-CWRSOR = 2

Going Down More Levels

Ifthe firstfetch succeeds, the program executes the DOWN-ONE-LEVEL section. In this
section, the program:

m Assigns the partnumber inthe firstrow fetched to CURRENT-KEY

® Increments the current level by 1

® Increments the current cursor by 1 ifthe current cursorisless than3

Because the program reuses the three cursors, itattempts to closea cursorinthe
CLOSE-CURRENT-CURSOR section before it opens the cursorinthe

OPEN-CURRENT-CURSOR section. For the firstthree levels of the explosion, the DBMS
will ignorethe CLOSE statement becausethe specified cursor has notyet been opened.

Chapter 7: SQLProgramming Techniques 171

Bill-of-materials Explosion

Usingthe part number retrieved inthe fetch by the previous cursor, the program now
fetches the firstcomponent partof the next level down by opening the current cursor
and fetching from it. This logicis repeated until a fetch returns an SQLCODE of 100 (in
effect, no more levels) or the defined maximum level is reached.

Saved Keys

Each time it goes down a level, the program saves the part number used inthe fetch:

DOWN-ONE-LEVEL SECTION.
IF CURRENT-LEVEL > MAX-LEVELS
NEXT SENTENCE
ELSE
MOVE COMPONENT-KEY TO CURRENT-KEY

MOVE COMPONENT-KEY TO SAVE-KEY (CURRENT-LEVEL)

By savingthe key, the programcan later retrieve the partnumber for alevel and
execute the backup logic described below.

When There Are No More Levels

When there are no more levels, the program executes the BACKUP-ONE-LEVEL section.
It subtracts 1 from the level number andretrieves the saved keys for the current and
previous levels.

BACKUP-ONE-LEVEL SECTION.
SUBTRACT 1 FROM CURRENT-LEVEL.
IF CURRENT-LEVEL > 0
MOVE SAVE-KEY (CURRENT-LEVEL) TO PREVIOUS-COMPONENT.
IF CURRENT-LEVEL > 1
MOVE SAVE-KEY (CURRENT-LEVEL - 1) TO CURRENT-KEY

Sincethe cursorresulttables areordered by component partnumber and one of the
conditions of eachis CCOMPONENT_PART > :PREVIOUS-COMPONENT, the program
re-establishes cursor positioninthe listof components by limiting the rows selected to
those not yet processed. Each time a cursoris re-opened, the firstrow of the result
tableis the next component to be processed,

This allows the program both to reuse a cursor and to fetch the next row for the
previous level.

172 Programming Guide

Bill-of-materials Explosion

Completing the Explosion

The process of goingdown a level until there are no more levels, goingback one level,
and attempting to go down againis repeated until backing up reaches the top level. The
bill-of-materials explosion is now complete.

Chapter 7: SQLProgramming Techniques 173

Bill-of-materials Explosion

Sample Program

IDENTIFICATION DIVISION.
PROGRAM-ID. EXPLODE.

ENVIRONMENT DIVISION.

DATA DIVISION.
WORKING-STORAGE SECTION.

01 SQLMSGS.
02 SQLMMAX PIC S9(8) COMP VALUE +6.
02 SQLMSIZE PIC S9(8) COMP VALUE +80.
02 SQLMCNT PIC S9(8) COMP.
02 SQLM.INE OCCURS 6 TIMES PIC X(80).
01 REQ-WK.
02 REQUEST-CODE PIC S9(8) COMP.

02 REQUEST-RETURN PIC S9(8) COMP.

01 LIMITS-AND-CONSTANTS.
02 NUMBER-OF-CURSORS PIC S9 COMP VALUE 3.
02 MAX-LEVELS PIC S9(4) COMP VALUE 100.
02 NULL-KEY-VALUE PIC 9(7) VALUE 0.

01 (QURSOR-FLAGS.
02 QRSOR-FLAG OCCURS 3 TIMES PIC X.

01 KEY-TABLE.
02 SAVE-KEY OCCWRS 100 TIMES PIC 9(7).

01 WORK-FIELDS.

02 CURRENT-LEVEL PIC S9(4) COMP.
02 QURRENT-QRSOR PIC S9(4) COMP.
02 DISPLAY-LEVEL PIC Z79.
02 WARNING-MSG PIC X(40).
02 SQLVALUE PIC ----9.
EXEC SQL BEGIN DECLARE SECTION END - EXEC
01 DBNAME PIC X(8).
01 PREVIOUS-COMPONENT PIC S9(7) COMP-3.
01 TOP-KEY PIC S9(7) COMP-3.
01 QURRENT-ROW.
02 QURRENT-KEY PIC S9(7) COMP-3.
02 COMPONENT-KEY PIC S9(7) COMP-3.
62 Qry PIC S9(5)V99 COMP-3.
02 COMPONENT-NAME PIC X(30).
EXEC SQL END DECLARE SECTION END -EXEC.

174 Programming Guide

Bill-of-materials Explosion

3Kk ok ok ok Kok 3k ok Skok ok ok kok >k ok Kok Sk ok dkok ok >k Skok ok sk kok >k sk >k kok >k sk kok >k sk kok sk >k skok ok sk kok k sk kok k

HoAAAx DECLARE CURSORS HoAdrk

EXEC SQL DECLARE CURSOR1 CURSOR FOR
SELECT COMPONENT PART,
QUANTITY,
PART NAME
FROM COMPONENT C,
PART P
WHERE C.PART = :CURRENT-KEY
AND C.COMPONENT PART > :PREVIOUS-COMPONENT
AND P.NUMBER = C.PART
ORDER BY COMPONENT PART
END- EXEC

EXEC SQL DECLARE CURSOR2 CURSOR FOR
SELECT COMPONENT PART,
QUANTITY,
PART NAME
FROM COMPONENT C,
PART P
WHERE C.PART = :CURRENT -KEY
AND C.COMPONENT PART > :PREVIOUS-COMPONENT
AND P.NUMBER = C.PART
ORDER BY COMPONENT PART
END- EXEC

EXEC SQL DECLARE CURSOR3 CURSOR FOR
SELECT COMPONENT PART,
QUANTITY,
PART NAME
FROM COMPONENT C,
PART P
WHERE C.PART = :CURRENT -KEY
AND C.COMPONENT PART > :PREVIOUS-COMPONENT
AND P.NUMBER = C.PART
ORDER BY COMPONENT PART
END- EXEC

ok KRR KRR KKK Kok KR Kok KKK Aok KRR Kok KR Kok KKK oK
PROCEDURE DIVISION.
EXEC SQL

WHENEVER SQLERROR GO TO SQL-ERROR
END-EXEC.

Chapter 7: SQLProgramming Techniques 175

Bill-of-materials Explosion

MAINLINE SECTION.
ACCEPT DBNAME.
ACCEPT TOP-KEY.
* INITIALIZE VARIABLES TO GET US STARTED
MOVE 1 TO CURRENT-LEVEL.
MOVE 1 TO CURRENT-CURSOR.
MOVE SPACES TO CURSOR-FLAGS.
MOVE NULL-KEY-VALUE TO PREVIOUS-COMPONENT.

PERFORM GET - FIRST-ROW.
PERFORM FETCH-NEXT -ROW
UNTIL QURRENT-LEVEL = 0.
EXEC SQL COMMIT RELEASE END-EXEC.
GOBAKK.

GET-FIRST-ROW SECTION.
EXEC SQL CONNECT TO :DBNAME END - EXEC.
EXEC SQL
SELECT PART NUMBER, PART NAME

INTO :CURRENT-KEY, :COMPONENT-NAME
FROM PART
WHERE PART_NWMBER = :TOP-KEY

END-EXEC.

IF SQLCODE = 100
MOVE © TO CURRENT-LEVEL
DISPLAY '*¥**x TNVALID PART NUMBER: '
TOP-KEY
ELSE
DISPLAY '*¥**x BT|| OF MATERIALS FOR '
'"PART: ' CQURRENT-KEY ' '
COMPONENT -NAME ' ¥kt
DISPLAY ' ekksksiorskokotokskodok ok kodok koo otk ook ok ko !
1ok sk ok ok Kok oKk ok ok ok o o ok KoK koK ok ok ok oK KoK oK 1
ko kotokofoktokokkofok ok kofokkoolofok ook doktokok ok |

176 Programming Guide

Bill-of-materials Explosion

FETCH-NEXT -RON SECTION.
PERFORM OPEN-CURRENT -CURSOR.

IF QURRENT-@RSOR = 1
EXEC QL
FETCH QURSOR1 INTO
:COMPONENT -KEY, :QTY, :COMPONENT-NAME
END - EXEC
ELSE IF QURRENT-QURSOR = 2
EXEC QL
FETCH QURSOR2 INTO
:COMPONENT -KEY, :QTY, :COMPONENT-NAME
END - EXEC
ELSE IF QURRENT-QURSOR = 3
EXEC SQL
FETCH QURSOR3 INTO
:COMPONENT -KEY, :QTY, :COMPONENT-NAME
END-EXEC.

IF SQLCODE = 100
PERFORM BACKUP-ONE-LEVEL
ELSE
PERFORM PRINT-CURRENT-ROW
PERFORM DOWN - ONE - LEVEL.

OPEN-CURRENT -CURSOR SECTION.

IF CURSOR-FLAG (QURRENT-QURSOR) NOT = 'O
MOVE '0' TO CURSOR-FLAG (CURRENT-CURSOR)
IF CURRENT -CURSOR = 1

EXEC SQL
OPEN CURSOR1
END- EXEC
ELSE IF CURRENT-CURSOR = 2
EXEC SQL
OPEN CURSOR2
END- EXEC
ELSE IF CURRENT-CURSOR = 3
EXEC SQL
OPEN CURSOR3
END-EXEC.

Chapter 7: SQLProgramming Techniques 177

Bill-of-materials Explosion

CLOSE-CURRENT-CURSOR SECTION.

IF CURSOR-FLAG (QURRENT-QURSOR) = '0'
MOVE ' ' TO CURSOR-FLAG (CURRENT-CURSOR)
IF CURRENT -CURSOR = 1

EXEC SQL
CLOSE CURSOR1
END- EXEC
ELSE IF CURRENT-CURSOR = 2
EXEC SQL
CLOSE CURSOR2
END- EXEC
ELSE IF CURRENT-CURSOR = 3
EXEC SQL
CLOSE CURSOR3
END-EXEC.

DOWN-ONE-LEVEL SECTION.
IF CURRENT-LEVEL > MAX-LEVELS
NEXT SENTENCE
ELSE
MOVE COMPONENT-KEY TO CURRENT-KEY
MOVE COMPONENT-KEY TO SAVE-KEY (CURRENT-LEVEL)
MOVE NULL-KEY-VALUE TO PREVIOUS-COMPONENT
ADD 1 TO CURRENT-LEVEL
IF CURRENT-CURSOR = MAX-CURSORS
MOVE 1 TO QURRENT-CQURSOR
PERFORM CLOSE - QURRENT -CURSOR
ELSE
ADD 1 TO CURRENT-CURSOR
PERFORM CLOSE - QURRENT - CURSOR.

BACKUP-ONE-LEVEL SECTION.
SUBTRACT 1 FROM QURRENT-LEVEL.
IF CURRENT-LEVEL > 0
MOVE SAVE-KEY (CURRENT-LEVEL) TO PREVIOUS-COMPONENT.
IF CURRENT-LEVEL > 1
MOVE SAVE-KEY (CURRENT-LEVEL - 1) TO CURRENT-KEY
ELSE
MOVE TOP-KEY TO CURRENT-KEY.
PERFORM CLOSE-CURRENT-CURSOR.
IF CURRENT-CLRSOR = 1
MOVE MAX-CURSORS TO CURRENT-CURSOR
ELSE
SUBTRACT 1 FROM CURRENT - CURSOR.

178 Programming Guide

Bill-of-materials Explosion

PRINT-CURRENT -ROW SECTION.

MOVE CURRENT-LEVEL TO DISPLAY-LEVEL.
TF CURRENT-LEVEL > MAX-LEVELS
MOVE 'MAXIMUM LEVEL, COMPONENTS NOT LISTED'
TO WARNING-MSG
ELSE
MOVE SPACES TO WARNING-MSG.
DISPLAY ' ' DISPLAY-LEVEL
' PART: ' COMPONENT-KEY
o COMPONENT -NAME
L oQTY: ' QTY
Lo WARNING -MSG.
SQL-ERROR SECTION.
DISPLAY 'sosiskisssiioniins ERROR IN SQL STATEMENT'
bkl skookokk
DISPLAY 'PROGRAM ' SQLPGM
DISPLAY 'COMPILED ' SOLDATE
MOVE SQLCLNO TO SQLVALUE.
DISPLAY 'SQL LINE NUMBER ' SQLVALUE
MOVE SQLCODE TO SQLVALUE.

DISPLAY 'SQLCODE ' SQLVALUE
MOVE SQLCERC TO SQLVALUE.
DISPLAY 'REASON CODE ' SQLVALUE
MOVE SQLCERC TO SQLVALUE.
DISPLAY 'ERROR CODE ' SQLVALUE

MOVE SQLONRP TO SQLVALUE.
DISPLAY 'ROWS PROCESSED ' SQLVALUE

MOVE 4 TO REQUEST-CODE.
CALL 'IDMSINO1' USING SQLRPB, REQ=WK,
SQLCA, SQLMSGS.
IF REQUEST-RETURN NOT = 4
MOVE 1 TO LINE-CNT
PERFORM DISP=MSG UNTIL LINE-CNT > SQLMCNT.

DISP-MSG SECTION.
DISPLAY SQLMLINE (LINE-CNT).
ADD 1 TO LINE-CNT.

Chapter 7: SQLProgramming Techniques 179

Chapter 8: Using Dynamic SQL

This section contains the following topics:

Dynamic SQL (see page 181)

Dynamic Insert, Update, and Delete Operations (see page 182)
Executing Prepared SELECT Statements (see page 187)
Executing Prepared CALL Statements (see page 193)

Dynamic SQL Caching (see page 198)

Dynamic SQL

Depending on the processingrequirement of the programand the capabilities of the
programming language, you will need to implement dynamic SQL.

Dynamic SQL refers to an SQL statement that is notknown to the programat
precompiletime and therefore is compiled dynamically when the program executes. CA
IDMS provides dynamic SQL to allowthe program to formulate, compile, and execute a
DML statement at runtime.

To Insert, Update, or Delete

You implement dynamic SQL with a small setof SQL statements. For SQL DML other
than SELECT or CALL, these statements are:

m EXECUTE IMMEDIATE—Dynamically compiles and executes the statement

m PREPARE—Dynamically compiles the statement

m EXECUTE—Executes a prepared statement

If the statement to be dynamically compiled could beissued more than onceinthe
program, you should usethe combination of PREPARE and EXECUTE statements.

To Select

To dynamically compileand execute a SELECT statement, you take these steps:
1. Formulate the statement
2. Preparethe statement and optionally describethe resulttableto CA IDMS

3. Declareor allocatea cursor usingthedynamically compiled SELECT statement

Chapter 8: Using DynamicSQL 181

Dynamic Insert, Update, and Delete Operations

To CALL an SQL Invoked Procedure

To dynamically compileand execute a CALL statement, you take these steps:
1. Formulate the statement
2. Preparethe statement and optionally describethe resulttableto CA IDMS

3. Declareor allocatea cursor usingthedynamically compiled CALL statement
Host Language Dependency

Ifthe number and type of columns ina dynamic SELECT or CALL are not known at
compiletime, the host language must provideexplicitsupportfor dynamic storage
allocation becausethe variablestoragerequirements for the data to be retrieved can be
derived only from information returned to the SQLDA when the SELECT statement is
prepared.

No Host Variables, Local Variables, or Routine Parameters

A dynamic SQL statement that is prepared or executed usingan EXECUTE IMMEDIATE
statement cannot reference host variables, local variables, or routine parameters within
the text of the statement. If you want to repeatedly execute a statement, suchas an
UPDATE, usingdifferent update values each time, you must use dynamic parameters in
placeof variables or parameters.

Note: For more information aboutdynamic parameters, see the CA IDMS SQL Reference
Guide.

Precompiling with NOINSTALL

A programthat consists entirely of dynamic SQL statements, sessionand transaction
management statements, requires no RCM. Therefore, you may precompile sucha
program with the NOINSTALL option. This directs the precompiler to check syntaxand
not to store an RCM, thus eliminatingthe need for updatingthe dictionary.fSQL
requests will beissued from more than one program withina singletransaction, each
such program must have its RCM included in the access modulebeing used. This
requirement holds, regardless of whether all of the statements withina programare
dynamic or not. As general practice, you should avoid specifying the NOINSTALL option.

Dynamic Insert, Update, and Delete Operations

You can perform a dynamicinsert, update, or delete using EXECUTE or EXECUTE
IMMEDIATE. EXECUTE is valid only when the statement has been dynamically compiled
with a PREPARE statement.

182 Programming Guide

Dynamic Insert, Update, and Delete Operations

Using EXECUTE IMMEDIATE

When to Use It

Use EXECUTE IMMEDIATE to dynamically compileand execute a statement that will be
issued only once in the transaction.

Ifa program consists mainly of dynamic SQLstatements, consider using EXECUTE
IMMEDIATE for the few remaining SQL statements. You can precompile the program
with the NOINSTALL option, eliminatingan RCM and an access moduleto execute the
program. This may be more efficientin your processingenvironment.

EXECUTE IMMEDIATE example
In this example, the program builds an INSERT statement in working storage and moves

the complete statement to a host variable, STATEMENT-TEXT. The programissues an
EXECUTE IMMEDIATE statement on the text containedin the hostvariable:

DATA DIVISION.
WORKING-STORAGE SECTION.

01 INSERT-STATEMENT-TEXT.

02 FILLER PIC X(21) VALUE
"INSERT INTO C DIVISION VALUES ('".

02 DIV-CODE-TEXT ~ PIC X(3).

02 FILLERR PIC X(3) VALUE

02 DIV-NAME-TEXT PIC X(40).

02 FILLERR PIC X(2) VALUE

02 DIV-HEAD-ID-TEXT PIC X(4).

02 FILLERR PIC X(3) VALUE
||)||.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 STATEMENT-TEXT PIC X(76).
EXEC SQL END DECLARE SECTION END-EXEC.

PROCEDURE DIVISION.

MOVE INPUT-DIV-CODE TO DIV-CODE-TEXT.

MOVE INPUT-DIV-NAME TO DIV-NAME-TEXT.

MOVE INPUT-DIV-HEAD-ID TO DIV-HEAD-ID-TEXT.
MOVE INSERT-STATEMENT-TEXT TO STATEMENT-TEXT.

EXEC SQL
EXECUTE IMMEDIATE :STATEMENT-TEXT
END - EXEC.

Error-checking

There is no error-checkingtechnique that is specificto EXECUTE IMMEDIATE. Check for
SQLCODE < 0, or check for a specific SQLSTATE value ifappropriate.

Chapter 8: Using DynamicSQL 183

Dynamic Insert, Update, and Delete Operations

Using PREPARE

Why You Use PREPARE

You usethe PREPARE statement to dynamically compilean SQL statement thatis
formulated at runtime. You should prepare the statement if:

m The statement may be issued more than once duringa transaction

m The statement may be a SELECT

Determining Information About the Prepared Statement

You canuseeither the DESCRIBE option of the PREPARE statement or a separate
DESCRIBE statement to determine the followinginformation:

m Whether the prepared statement is a SELECT

m Ifthe prepared statement is a SELECT, the number of resultcolumns to be returned
andthe name and format of each of the resultcolumns

m The format of any dynamic parameters that must be supplied as inputvalues when

the statement is executed or anassociated cursoris opened

To retrieve this information, you must allocateatleastone SQL descriptorarea.You
need to allocatetwo descriptor areas if you want to retrieve information about both
resultcolumns and dynamic parameters.

Note: Descriptor areas mustbe defined usingthe SQLDA structure.
Declaring SQLDA

The program can declarethe default descriptor area SQLDA with an INCLUDE statement:

EXEC SQL
INCLUDE SQLDA
NUMBER OF COLUMNS 20
END-EXEC.

Declaring SQLDA in CA ADS
If you areusingdescriptorareas in CAADS, you cancreate a work record layoutthrough

IDD as describedinthe CA ADS User Guide. This work record must match the SQLDA
layoutand the initial values should conformto the data types.

184 Programming Guide

Dynamic Insert, Update, and Delete Operations

The following example displays the CA ADS format of the SQLDA:

SQLDA.
05
05

05
05

SQLD.
SQLN

SQLD
SQLV.
10
10
10
10
10
10
10
10

AID

AR

SQLLEN
SQLTYPE
SQLSCALE
SQLPRECISION
SQLALN
SQLNALN
SQLNULL
SQLNAME

PIC X(8).
PIC S9(9)
VALUE +n
PIC S9(9)
OCCURS n.
PIC S9(9)
PIC S9(4)
PIC S9(4)
PIC S9(4)
PIC S9(4)
PIC S9(4)
PIC S9(4)

PIC X(32).

comMP

COMP.

COMP.
COMP.
COMP.
COMP.
COMP.
COMP.
COMP.

where n is the maximum number of occurrences of SQLVAR

SQLDA Values

An SQL descriptor area used to retrieve information about the output of the prepared
statement contains the followingvalues:

The valuein SQLD indicates whether the statement is:
m A SELECT statement ifthe valueis greater than0

m Not a SELECT statement ifthe valueis equal to O

If greater than 0, SQLD is the number of columns inthe result table of the SELECT
statement.

The valuein SQLN indicates the maximum number of columns the descriptor area can

describe:

m The number specifiedinthe NUMBER OF COLUMNS parameter of the INCLUDE
statement

m [fSQLD is greater than SQLN, the descriptor areais toosmall todescribethe result

table.

SQLVAR is a structure that occurs SQLN times. Each occurrencecontains information
about aresultcolumn.

Note: For more information, see the CA IDMS SQL Reference Guide.

Chapter 8: Using DynamicSQL 185

Dynamic Insert, Update, and Delete Operations

PREPARE Example

In this example, the program has formulated an SQL statement and has moved the
character stringinto the host variable STATEMENT-STRING:

EXEC SQL
PREPARE DYNAMIC STATEMENT
FROM :STATEMENT -STRING
DESCRIBE INTO SQLDA
END-EXEC.

Error-checking

Ifa PREPARE statement fails to execute at runtime, CA IDMS returns a negative valueto
SQLCODE.

Ifthe SQLCODE valueis -4, there may be a syntaxerror inthe statement. If there is, the

offset within the statement at which the syntax error occurredis returned to the
SQLCSER field of the SQLCA.

Using EXECUTE
Why You Use EXECUTE

You use EXECUTE to execute a dynamically compiled (prepared) statement other than
SELECT. Thisis the format of the EXECUTE statement:

EXEC SQL
EXECUTE statement-name
END-EXEC.

The parameter statement-name must correspond to the valueinthe same parameter of
a PREPARE statement that has already been issuedinthe same transaction.

EXECUTE Example

Inthis example, the statement prepared inanearlier example is executed:

EXEC SQL
EXECUTE DYNAMIC STATEMENT
END-EXEC.

Error-checking

There is no error-checkingtechnique that is specificto EXECUTE. Check for SQLCODE <
0, or check for a specific SQLSTATE value if appropriate.

186 Programming Guide

Executing Prepared SELECT Statements

Repeating EXECUTE

You canrepeat an EXECUTE statement in the same transaction because CAIDMS retains
all dynamically compiled statements for the duration of the transaction.

Ifthe program prepares more than one statement ina databasetransaction usingthe
same statement name, an EXECUTE issued for the statement name will execute the
most recently prepared statement.

Executing Prepared SELECT Statements

What to Do

This section presents a sample program that prepares a SELECT statement and executes
it dynamically. Adiscussion of the concepts involved precedes the sample program.

Declaring a Cursor

To execute a prepared SELECT statement, the programmust firstdeclarea cursor for
the prepared statement.

The sampleprogram declares this cursor:

EXEC SQL
DECLARE CURSOR1 CURSOR FOR SELECT_ STATEMENT
END-EXEC.

Preparing the Statement

Before opening a cursor defined with a dynamic SQL statement, the program must
prepare the statement.

The sampleprogram issues this PREPARE statement:

EXEC SQL
PREPARE SELECT STATEMENT FROM :STATEMENT-TEXT
END-EXEC.

Building the Statement Text
Inthe sampleprogram, the hostvariable STATEMENT-TEXT contains a character string

consisting of a fixed portion of the statement to whichinput text is added when the
program executes.

Chapter 8: Using DynamicSQL 187

Executing Prepared SELECT Statements

The fixed portion of the statement specifies tableand columns from which datais
selected. This partof the statement is initialized in working storage:

FIRST-PART-OF-STATEMENT.

02 FILLRR PIC X(32) VALUE
'SELECT EMP_ID, EMP_FNAME,'.

02 FILLR PIC X(32) VALUE
' EMP_LNAME, DEPT ID,'.

02 FILLER PIC X(32) VALUE
' MANAGER ID, START DATE '.

02 FILLER PIC X(32) VALUE

' FROM DEMO.EMPL VIEW 1 ‘.

The variable portion of the statement, which can specify additional selection criteria

suchas an ORDER BY or a WHERE clause,is completed when BUILD-SQL-STATEMENT
section of the program executes.

Declaring a Host Variable Array

The sampleprogram performs a bulk fetch after it opens the cursor.The bulk fetch
requires a host variablearray toreceive the data.

The sampleprogram declares the host variablearray withinan SQL declaration section
usingthis INCLUDE statement:

FETCH-BUFFER.
EXEC SQL
INCLUDE TABLE DEMO.EMPL VIEW 1
(EMP_ID, EMP FNAME, EMP LNAME,
DEPT ID, MANAGER ID, START DATE)

NUMBER OF ROWS 50
LEVEL 02

END-EXEC.

Executing the Fetch

After the programbuilds the statement text, prepares the statement, and opens the
cursor,itissues the bulk fetch:

FETCH-ROWS SECTION.

EXEC SQL

FETCH CURSOR1

BULK :FETCH-BUFFER

END - EXEC.
MOVE 1 TO ROW-CTR.
PERFORM DISPLAY -ROW

UNTIL ROW-CTR > SQLCNRP.

188 Programming Guide

Executing Prepared SELECT Statements

Sample Program

IDENTIFICATION DIVISION.
PROGRAM-ID. EMPVIEWL.

ENVIRONMENT DIVISION.

DATA DIVISION.
WORKING-STORAGE SECTION.

01 SQLMSGS.
02 SQLMMAX PIC S9(8) COMP VALUE +6.
02 SQLMSIZE PIC S9(8) COMP VALUE +80.
02 SQLMCNT PIC S9(8) COvP.
02 SQLMLINE OCQURS 6 TIMES PIC X(80).
01 REQ-WK.
02 REQUEST-CODE PIC S9(8) COvP.
02 REQUEST-RETURN PIC S9(8) COvP.

01 LIMITS-AND-CONSTANTS.
MAX-TEXT -LINES PIC S9 COMP VALUE 5.

02

01 FIRST-PART-OF-STATEMENT.

02

02

02

02

FILLER PIC X(32)
'SELECT EMP_ID, EMP_FNAME,'.
FILLER PIC X(32)
' BMP_LNAME, DEPT_ID,"'.
FILLER PIC X(32)
' MANAGER ID, START DATE '.
FILLER PIC X(32)

' FROM DEMO.EMPL VIEW 1 ‘.

01 HEADING-LINE.

02

02

02

FILLER PIC X(31)
'ID # FIRST NAME '.
FILLER PIC X(23)
"LAST NAME ‘.

FILLER PIC X(31)

‘DEPT MGR START DATE'.

01 DETAIL-LINE.

02
02
02
02
02
02
02
02

EMP-ID PIC 9(5).
FILLER PIC X(3)
EMP- FNAME PIC X(20).
FILLER PIC X(3)
EMP- LNAME PIC X(20).
FILLER PIC X(3)
DEPT-ID PIC 9(5).
FILLER PIC X(3)

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE SPACES.

VALUE SPACES.

VALUE SPACES.

VALUE SPACES.

Chapter 8: Using DynamicSQL 189

Executing Prepared SELECT Statements

02 MANAGER-ID

02 FILLER

02 START-DATE

01 WORK-FIELDS.

02 ROW-CTR

02 TEXT-CTR

02 INPUT-LINE.
03 END-CHAR

88 END-STATEMENT

03 FILLER

02 SQLVALUE

01 STATEMENT-TXT2.
02 FIXED-PART
02 VARIABLE-PART.

PIC 9(5).
PIC X(3)
PIC X(10).

VALUE SPACES.

PIC S99 COMP.
PIC S99 COMP.

PIC X.

VALUE ';'.
PIC X(79).
PIC —O.

PIC X(128).

03 TEXT-LINES OCCURS 5 TIMES PIC X(80).

EXEC SQL
77 DBNAME
01 STATEMENT-TEXT
01 FETCH-BUFFER.
EXEC SQL

BEGIN DECLARE

SECTION
PIC X(8).
PIC X(641).

END-EXEC

INCLUDE TABLE DEMO.EMPL VIEW 1
(EMP_ID, EMP FNAME, EMP LNAME,
DEPT ID, MANAGER ID, START DATE)
NUMBER OF ROWS 50

LEVEL 02

END-EXEC.

EXEC SQL END DECLARE SECTION END-EXEC
kKKK KKK AR KKK KKK K KKK KA KK KKK KKK KKK H KKK KKK KoK
Hokkokok DECLARE CURSORS HHAHK

EXEC SQL

DECLARE CURSOR1 CURSOR FOR SELECT STATEMENT
END-EXEC

>kokook ok ok ok ok ok ok ok sk dkok ok >k ok >k ok >k sk ok ok ok ok sk ok ok ok sk dkok ok ok sk ok ok ok sk kok ok ok ok sk sk ok ok kok ok ok k sk sk k ok

PROCEDURE DIVISION.

EXEC SQL

WHENEVER SQLERROR GO TO SQL-ERROR
END-EXEC.

190 Programming Guide

Executing Prepared SELECT Statements

MAINLINE SECTION.
ACCEPT DBNAME.
MOVE FIRST-PART-OF-STATEMENT TO FIXED-PART.
MOVE 1 TO TEXT-CTR.
PERFORM BUILD-SQL-STATEMENT
UNTIL TEXT-CTR > MAX-TEXT-LINES.
IF END-STATEMENT
PERFORM PREPARE -AND-0PEN-CURSOR
PERFORM FETCH-ROWS
UNTIL SQLCODE = 100
EXEC SQL COMMIT RELEASE END-EXEC.
GOBACK.

BUILD-SQL-STATEMENT SECTION.
IF NOT END-STATEMENT
ACCEPT INPUT-LINE
DISPLAY INPUT-LINE.
IF NOT END-STATEMENT
MOVE INPUT-LINE TO TEXT-LINE (TEXT-CTR)
ELSE
MOVE SPACES TO TEXT-LINE (TEXT-CTR).
ADD 1 TO TEXT-CTR.

PREPARE - AND-OPEN-CURSOR SECTION.

EXEC SQL — CONNECT TO DATABASE
CONNECT TO :DBNAME

END - EXEC.

EXEC SQL — SET ISOLATION MODE
SET TRANSACTION TRANSIENT READ

END - EXEC.

MOVE STATEMENT-TXT2 TO STATEMENT-TEXT.

EXEC SQL — PREPARE THE SELECT
PREPARE SELECT STATEMENT FROM :STATEMENT-TEXT

END-EXEC.

EXEC SQL — OPEN THE CURSOR
OPEN CURSOR1
END - EXEC.

DISPLAY ' '.

Chapter 8: Using DynamicSQL 191

Executing Prepared SELECT Statements

DISPLAY ' '.
DISPLAY HEADING-LINE.
DISPLAY * '.

FETCH-ROWS SECTION.

EXEC SQL

FETH CURSOR1

BULK :FETH-BUFFER

END - EXEC.
MOVE 1 TO ROW-CTR.
PERFORM DISPLAY-ROW

UNTIL ROW-CTR > SQLCNRP.

DISPLAY-ROW SECTION.
MOVE CORRESPONDING EMPL-VIEW-1 (ROW-CTR) TO DETAIL-LINE.
DISPLAY DETAIL-LINE.
ADD 1 TO ROW-CTR.

SQL-ERROR SECTION.
DISPLAY 'Hktdkistodtiodkisk ERROR IN SQL STATEMENT'
1 skoksokskoksksk R RkRok ok |
DISPLAY 'PROGRAM ' SQLPGM
DISPLAY 'COMPILED ' SQLDTS
MOVE SQLCLNO TO SQLVALUE.
DISPLAY 'SQL LINE NUMBER ' SQLVALUE
MOVE SQLCODE TO SQLVALUE.

DISPLAY 'SQLCODE ' SQLVALUE
MOVE SQLCERC TO SQLVALUE.
DISPLAY 'REASON CODE ' SQLVALUE
MOVE SQLCERC TO SQLVALUE.
DISPLAY 'ERROR CODE ' SQLVALUE

MOVE SQLCNRP TO SQLVALUE.
DISPLAY 'ROWS PROCESSED ' SQLVALUE

MOVE 4 TO REQUEST-CODE.
CALL 'IDMSINO1' USING SQLRPB, REQ-WK,
SQLCA, SQLMSGS.
IF REQUEST-RETURN NOT = 4
MOVE 1 TO LINE-CNT
PERFORM DISP-MSG UNTIL LINE-CNT > SQLMCNT

DISP-MSG SECTION.
DISPLAY SQLMLINE (LINE-CNT).
ADD 1 TO LINE-CNT.

192 Programming Guide

Executing Prepared CALL Statements

Executing Prepared CALL Statements

What to Do

This section presents a sample program that prepares a CALL statement and executes it
dynamically.Adiscussion of the concepts involved precedes the sample program.

Declaring a Cursor

To execute a prepared CALL statement, the program must firstdeclarea cursor for the
prepared statement. The sample programdeclares this cursor:

EXEC SQL
DECLARE CURSOR1 (QURSOR FOR CALL_STATEMENT
END-EXEC.

Preparing the Statement

Before opening a cursor defined with a dynamic SQL statement, the program must
prepare the statement. The sampleprogramissues this PREPARE statement:

EXEC SQL
PREPARE CALL_STATEMENT FROM :STATEMENT-TEXT
END-EXEC.

Building the Statement Text

Inthe sampleprogram, the hostvariable STATEMENT-TEXT contains a character string
consisting of a fixed portion of the statement to which input text is added when the
program executes.

The fixed portion of the statement specifies the CALL statement. This part of the
statement is initialized in working storage:

01 FIRST-PART-OF-STATEMENT.
02 FILLER PIC X(8) VALUE 'CALL '.

The variable portion of the statement, which specifies the procedure-reference inthe
form of [schema].procedure [parameters], is completed when BUILD-SQL-STATEMENT
section of the program executes.

Chapter 8: Using DynamicSQL 193

Executing Prepared CALL Statements

Declaring Host Variables for 3 Parameters
The sample program performs a fetch into 3 host variables afteritopens the cursor.

The sampleprogram declares the following hostvariables withinan SQLdeclaration:

01 DETAIL-LINE.

02 P1 PIC 9(10).

02 FILLER PIC X(3) VALUE SPACES.

02 P2 PIC 9(10).

02 FILLER PIC X(3) VALUE SPACES.

02 P3 PIC X(32) VALUE SPACES.

02 FILLER PIC X(3) VALUE SPACES.
01 DBNAME PIC X(8).

01 STATEMENT-TEXT PIC X(641).

Executing the Fetch

After the programbuilds the statement text, prepares the statement, and opens the
cursor,itissues the fetch:

FETCH-ROWS SECTION.

EXEC SQL
FETCH CURSOR1 INTO :P1,
P2,
:P3

END-EXEC.

MOVE 1 TO ROW-CTR.
PERFORM DISPLAY-ROW UNTIL
ROW-CTR > SQLQONRP.

Sample Program

IDENTIFICATION DIVISION.
PROGRAM-ID. DYNCALL.

DYNCALL will read a procedure-reference and execute it
dynamically.

It is assumed that the procedure has 3 parameters,
P1 and P2 are numeric, P3 is alphanumeric.

¥ X X X X ¥ *x
¥ X ¥ X ¥ ¥ *x

194 Programming Guide

Executing Prepared CALL Statements

ENVIRONMENT DIVISION.
DATA DIVISION.

WORKING-STORAGE SECTION.

01 SQLMSGS.
02 SQLMMAX
02 SQLMSIZE
02 SQLMCNT
02 SQLMLINE

01 REQ-WK.
02 REQUEST-CODE
02 REQUEST-RETURN

77 LINE-CNT

01 LIMITS-AND-CONSTANTS.

02 MAX-TEXT-LINES

PIC S9(8) COMP VALUE +6.
PIC S9(8) COMP VALUE +80.

PIC S9(8) COMP.
OCCURS 6 TIMES PIC X(80).

PIC S9(8) COMP.

PIC S9(8) COMP.

PIC S9(8) COMP.

PIC S9 COMP VALUE 5.

01 FIRST-PART-OF-STATEMENT.

02 FILLER PIC X(8) VALUE
"CALL '.
01 HEADING-LINE.
02 FILLER PIC X(13) VALUE
'P1 PIC 9(10)".
02 FILLER PIC X(13) VALUE
'P2 PIC 9(10)".
02 FILLER PIC X(33) VALUE
'P3 X(32)"'.
EXEC SQL BEGIN DECLARE SECTION END - EXEC
01 DETAIL-LINE.
02 Pl PIC 9(10).
02 FILLER PIC X(3) VALUE SPACES.
02 P2 PIC 9(10).
02 FILLER PIC X(3) VALUE SPACES.
02 P3 PIC X(32) VALUE SPACES.
02 FILLER PIC X(3) VALUE SPACES.
01 DBNAME PIC X(8).
01 STATEMENT-TEXT PIC X(641).

EXEC SQL END

DECLARE SECTION

END - EXEC

Chapter 8: Using DynamicSQL 195

Executing Prepared CALL Statements

01 WORK-FIELDS.

02 ROW-CTR PIC S99 COMP.
02 TEXT-CIR PIC S99 COMP.
02 INPUT-LINE.
03 END-CHAR PIC X.
88 END-STATEMENT VALUE *';'.
03 FILLER PIC X(79).
02 SQLVALUE PIC ----9.

01 STATEMENT-TXT2.
02 FIXED-PART PIC X(8).
02 VARIABLE-PART.
03 TEXT-LINES OCCURS 5 TIMES PIC X(80).

>Rk ok ok ok ok kok >k ok ok ok ok sk ok kok k ok k ok ok ok ok ok kok sk ok sk ok sk sk sk kok k ok sk ok ok ok ok kok sk sk ok sk sk sk sk kok ok kk

HoAAAK DECLARE CURSORS Rk
EXEC SQL

DECLARE (URSOR1 CURSOR FOR CALL_STATEMENT
END-EXEC

koK ok ok ok ok kok >k ok ok ok >k ok ok kok 5k ok ok ok ok ok ok ok kok sk sk sk ok sk ok sk kok k ok ok ok >k ok ok skok sk sk sk ok sk sk sk skok k kk

PROCEDURE DIVISION.

EXEC SQL
WHENEVER SQLERROR GO TO SQL-ERROR
END-EXEC.

MAINLINE SECTION.
ACCEPT DBNAME.
MOVE FIRST-PART-OF-STATEMENT TO FIXED-PART.
MOVE 1 TO TEXT-CTR.
PERFORM BUILD-SQL-STATEMENT
UNTIL TEXT-CTR > MAX-TEXT-LINES.
IF END-STATEMENT
PERFORM PREPARE - AND - OPEN - CURSOR

196 Programming Guide

Executing Prepared CALL Statements

PERFORM FETCH-ROWS
UNTIL SQLCODE = 100
EXEC SQL COMMIT RELEASE END-EXEC.
GOBACK.

BUILD-SQL-STATEMENT SECTION.
IF NOT END-STATEMENT
ACCEPT INPUT-LINE
DISPLAY INPUT-LINE.
IF NOT END-STATEMENT
MOVE INPUT-LINE TO TEXT-LINES(TEXT-CTR)

ELSE
MOVE SPACES TO TEXT-LINES(TEXT-CTR).
ADD 1 TO TEXT-CTR.

PREPARE -AND - OPEN-CURSOR SECTION.

EXEC SQL -- CONNECT TO DATABASE
CONNECT TO :DBNAME

END-EXEC.

EXEC SQL -- SET ISOLATION MODE

SET TRANSACTION TRANSIENT READ
END-EXEC.

MOVE STATEMENT-TXT2 TO STATEMENT-TEXT.

EXEC SQL -- PREPARE THE CALL
PREPARE CALL STATEMENT FROM :STATEMENT-TEXT

END-EXEC.

EXEC SQL -- OPEN THE QURSOR
OPEN CURSOR1
END-EXEC.

DISPLAY ' '.
DISPLAY ' '.
DISPLAY HEADING-LINE.
DISPLAY ' '.

FETCH-ROWS SECTION.
EXEC SQL
FETCH CURSOR1
INTO :P1, :P2, :P3

Chapter 8: Using DynamicSQL 197

Dynamic SQL Caching

END-EXEC.
MOVE 1 TO ROW-CTR.
PERFORM DISPLAY-ROW
UNTIL ROW-CTR > SQLCNRP.

DISPLAY-ROW SECTION.
DISPLAY DETAIL-LINE.
ADD 1 TO ROW-CTR.

SQL-ERROR SECTION.
DISPLAY '#ksiksciididkskx ERROR IN SQL STATEMENT'
1 sksksksokokskok koo ok kK
DISPLAY 'PROGRAM ' SQLPGM
DISPLAY 'COMPILED ' SQLDTS
MOVE SQLCLNO TO SQLVALUE.
DISPLAY 'SQL LINE NWMBER ' SQLVALUE
MOVE SQLCODE TO SQLVALUE.

DISPLAY 'SQLCODE ' SQLVALUE
MOVE SQLCERC TO SQLVALUE.
DISPLAY 'REASON CODE ' SQLVALUE

MOVE SQLCERC TO SQLVALUE.
DISPLAY 'ERROR CODE ' SQLVALUE
MOVE SQLCNRP TO SQLVALUE.
DISPLAY 'ROWS PROCESSED ' SQLVALUE

MOVE 4 TO REQUEST-CODE.
CALL 'IDMSINO1' USING SQLRPB, REQ-WK,

SQLCA, SQLMSGS.
IF REQUEST-RETURN NOT = 4
MOVE 1 TO LINE-CNT
PERFORM DISP-MSG UNTIL LINE-CNT > SQLMCNT.

DISP-MSG SECTION.
DISPLAY SQLMLINE (LINE-CNT).
ADD 1 TO LINE-CNT.

Dynamic SQL Caching

Dynamic SQL cachingis a common technique used to improve performanceinanSQL
environment. Cachingworks inthe following manner: when a dynamic SQL statement is
compiled, a copy of the SQL statement and the resultof the SQL compilationaresaved
inacache. For each subsequent SQL compilation request, the cacheis searched. Ifthe
statement is found, the matching compiled structures areused instead of recompiling
the statement. This improves performance by eliminatingthe 1/O requests to read the
catalogandthe CPU usage required to invoke the SQL optimizer for subsequent
executions of the same dynamic SQL statement.

198 Programming Guide

Dynamic SQL Caching

In most cases, the savings inresource consumption due to bypassingthe SQL
compilation aresignificantly greater than the extra cost associated with cachingthe SQL
source, access plans,and related structures.

Note: At this time, only the SELECT, UPDATE, and DELETE SQL statements are cacheable.

Searchingthe Cache

When asearchis madeinthe cachefor a matching SQL statement, a cache hitoccurs
when a matchingentry is found. The followingfactors areconsidered in determining
whether anSQL statement matches a cacheentry:

m The text of the statement
m The default schema in effect for the SQL session
m The dictionaryto which the SQL sessionis connected

m Whether the statement references temporary tables

A literal comparison of the statement's text is made againsteach cacheentry until a
match is found. A literal comparison avoids the overhead of parsingbuthas the
consequence that an entry may not match because of differences insuchthings as case
andspacing. For example, the followingthree statements areconsidered different if
usinga literal comparison:

Select * from EMPLOYEE
Select * from EMPLOYEE
select * from employee

Specifyingvalues as literals instead of as dynamic parameters canalsoresultin unequal
comparisons.Thefollowingtwo statements would be textuallyidentical ifa dynamic
parameter had been used in place of the numeric values 100 and 101:

select * from DEMOEMPL.EMPLOYEE where EMP ID = 100
select * from DEMOEMPL.EMPLOYEE where EMP ID = 101

Note: Whilethe use of dynamic parameters canincreasethe frequency of findinga
matching cacheentry, it may occasionally prevent the optimizer from choosingthe most
efficient access strategy.

Chapter 8: Using DynamicSQL 199

Dynamic SQL Caching

When a dynamic statement thatrelies on a default schema is cached, both the
statement text and the default schema are saved. When the cacheis searched for a
statement that relies on a default schema, both the statement's text andthe session's
default schema must be equal to their cached equivalents for the entry to match.
Consider the followingtwo statements. The firstwill match a cached entry regardless of
the default schema in effect for the SQL session.The second will match onlyif the
default schema in effect for the SQL sessionis thesame as thatinthe cache:

select * from DEMOEMPL.EMPLOYEE
select * from EMPLOYEE

The name of the dictionarytowhichan SQL sessionis connected is always savedin the
cacheand compared to the session's dictionary duringa search of the cache. If the two
are not the same, then the cacheentry does not match.

Ifan SQL statement references a temporary table, it will notbe cachedsinceeach
temporary tableinstancecanbe structurally different from others of the same name.
Therefore, no statement that references a temporary table will match a cache entry.

Impact of Database Definition Changes

Databasedefinition changes may or may not be detected automatically basedon
whether the databaseis SQL-defined or non-SQL-defined. This has consequences for
dynamic SQL cachingas explained next.

SQL-Defined Databases and Caching

Because SQL-defined databases haveanassociated catalogand becauseareas for
SQL-defined databases havetimestamps, CA IDMS is ableto automatically detect
definitional changes thatimpactcached SQL statements. Whenever a statement needs
recompilation, CA IDMS automatically detects this condition and recompiles the
affected statement dynamically.

Non-SQL-Defined Databases and Caching

Non-SQL-defined databases do not have timestamps for automatically determining
whether a database's definition accurately describes theunderlying data. Consequently,
when changingthe structure of a non-SQL-defined database,itis the administrator's
responsibility to ensure that all SQLstatements impacted by the change are recompiled.
If dynamic SQL cachingis notused, then this entails recompilingaccess modules that
reference the affected database.If dynamic SQL cachingis used, then it also entails
purgingthe cache of statements that reference the affected database.This canbe done
by deleting rows from the SYSCA.DSCCACHE or SYSCA.DSCCACHEV tables.

Note: For more information aboutthese tables, see the CA IDMS SQL Reference Guide.

200 Programming Guide

Dynamic SQL Caching

Itis alsorecommended that dynamic SQL cachingbe disabled duringthe transition
periodin which the definitional changes are beingimplemented. For information on
how to do this, see Controllingthe Cache (see page 201).

CA IDMS will detect the need to recompilecached SQL statements ifa changeis made
to the referencing SQL schema through which a non-SQL-defined schema is referenced.
It does this by comparingthe update stamp of the referencing SQL schema to the
compilestamp of the cached statement.

Controlling the Cache

There are various ways thatan individual user and a DBA can control dynamic SQL
caching.Three ways are discussed following:

m Establishingcachingattributes for anindividual SQLsession byissuinga SET
SESSION statement

m Establishingdefaultcachingattributes for a central version through a system
generation SQL CACHE statement

m Establishingdefaultcachingattributes for a local modejob by specifyinga SYSIDMS
SQL_CACHE_ENTRIES parameter.

Note: For more information aboutthe SET SESSION statement, the various tables that
control cachingand examples of how to displayand control thecache usingSQL, see the
CA IDMS SQL Reference Guide. For more information aboutthe SQL CACHE system
generation statement, see the CA IDMS System Generation Guide. For more information
about SYSIDMS parameter SQL_CACHE_ENTRIES, see the CA IDMS Common Facilities
Guide.

Chapter 8: Using DynamicSQL 201

Appendix A: Sample JCL

z/0S

Sample JCL or commands for executing the precompile, access module creation,
compile,and link editsteps on four operating systems areprovided in this section.

This section contains the followingtopics:

z/0S (see page 203)
z/VSE (see page 209)
z/VM (see page 212)

The followingsampleJCL streams contain the steps required to make a host language
source program with embedded SQL into the form of executable modules. The first
example is for execution under the central version, and the second example is for
execution inlocal mode.

The host languagefor the examples is COBOL 1. Change the specification of precompiler
name, precompiler options,and compiler name accordingto the hostlanguageand
version of your program.

Followingthe second exampleis a tablethat gives the meaning of variables usedin the
examples.

Central Version JCL

//***

//** PRECOMPILE COBOL PROGRAM *k

//***

//precomp EXEC PGM=IDMSDMLC,REGION=1024K,

// PARM='optional precompiler parameters'
//STEPLIB DD DSN=idns.dba. loadlib,DISP=SHR
// DD DSN=idms.loadlib,DISP=SHR

//sysctl DD DSN=idns.sysctl,DISP=SHR
//dcmsg DD DSN=idns.sysmsg.ddldcmsg,DISP=SHR

//5YS001 DD UNIT=disk,SPACE=(TRK, (10,10))
//5YS002 DD UNIT=disk,SPACE=(TRK, (10,10))
//5YS003 DD UNIT=disk,SPACE=(TRK, (10,10))
//SYSPCH DD DSN=&.&.source,DISP=(NEW,PASS),

// UNIT=disk,SPACE=(TRK, (10,5),RLSE),
// DCB=(RECFM=FB, LRECL=80, BLKSIZE=3120)
//SYSLST DD SYSOUT=A

//SYSIDMS DD *

Appendix A: SampleJCL 203

z/0S

DMCL=dmc-name
DICTNAME=dictionary-name
Additional SYSIDMS parameters, as appropriate

/*
//SYSIPT DD *
Host language source statements with embedded SQL

/*
HoRAKF A KA KA A KA A KA A A FAA KA A KK A A KA A KA A A FAA KA A KA FAAFAAKAK A KA KK

//

//** CREATE ACCESS MODULE *ok

//***

//accmod EXEC PGM=IDMSBCF,REGION=1024K
//STEPLIB DD DSN=idns.dba. loadlib,DISP=SHR

// DD DSN=idns. loadlib,DISP=SHR
//sysctl DD DSN=idms.sysctl,DISP=SHR

//dcmsg DD DSN=idmns.sysmsg.ddldcmsg,DISP=SHR
//SYSLST DD SYSOUT=A

//SYSIDMS DD *

DMCL=dmc1-name

DICTNAME=dictionary-name

Additional SYSIDMS parameters, as appropriate

/*

//SYSIPT DD *

CREATE ACCESS MODULE statement ;
COMMIT WORK RELEASE ;

/*
//FRRRRRRR Rk Rkl Rk Rk Rk R R R R R RO KR K
//** COMPILE COBOL PROGRAM *k

[[FFFAAFAAAAAAAFAAFFAFAK KK FFFFFF AR KKAKKIAAAAAAAAAAAAAAAAAAAAFAA KA K

//compile EXEC PGM=IKFCBLOO,REGION=240K,
// PARM='DECK, NOLOAD, NOLIB, BUF=500000,SIZE=150K"

//STEPLIB DD DSN=sysl.cobol. linklib,DISP=SHR
//SYSUT1 DD UNIT=disk,SPACE=(TRK, (10,5))
//SYSUT2 DD UNIT=disk,SPACE=(TRK, (10,5))
//SYSUT3 DD UNIT=disk,SPACE=(TRK, (10,5))
//SYSUT4 DD UNIT=disk,SPACE=(TRK, (10,5))
//SYSPUNCH DD DSN=&.&.object,DISP=(NEW,PASS),

// UNIT=disk,SPACE=(TRK, (10,5) ,RLSE),
// DCB=(RECFM=FB, LRECL=80, BLKSIZE=3120)

204 Programming Guide

z/0S

//SYSPRINT DD SYSOUT=A
//SYSIN DD DSN=&.&.source,DISP=(0LD,DELETE)

//***

/7% LINK PROGRAM MODULE ok
//***
//link EXEC PGM=IBEWL,REGION=300K,PARM='LET,LIST,XREF'

//SYSUT1 DD UNIT=disk,SPACE=(TRK, (20,5))

//SYSLIB DD DSN=sys1.coblib,DISP=SHR

//loadlib DD DSN=idns.loadlib,DISP=SHR

//SYSLMOD DD DSN=user. loadlib,DISP=SHR

//SYSPRINT DD SYSOUT=A
//SYSLIN DD DSN=&.&.object,DISP=(OLD,DELETE)

// DD *
INCLUDE loadlib(IDMS) <+— Non-CICS only
INCLUDE loadlib(IDMSCINT) <+— (ICS only

ENTRY userentry
NAME userprog (R)
/*
/7*

Local Mode JCL

//***

//** PRECOMPILE COBOL PROGRAM ok

[[FFFFAFAAAAAAAAFAAAFFA AR KA FAFF AR KKK KKKIAAAAAAAAAAAAAAAAAAAAAAAAAK

//precomp EXEC PGM=IDMSDMLC, REGION=1024K,

// PARM="'precompiler parameters'
//STEPLIB DD DSN=idns.dba. loadlib,DISP=SHR
// DD DSN=idns. loadlib,DISP=SHR

//dictb DD DSN=idns.appldict.ddldml,DISP=SHR
//dloddb DD DSN=idms.appldict.ddldclod,DISP=SHR
//sqldd DD DSN=idms.syssql.ddlcat,DISP=SHR
//5qlxdd DD DSN=idms.syssql.ddlcatx,DISP=SHR
//sqllod DD DSN=idms.syssql.ddlcatl,DISP=SHR

//dcmsg DD DSN=idns.sysmsg.ddldcmsg,DISP=SHR

//sysjrnl DD DSN=idnms.tapejrnl,DISP=(NEW,CATLG,UNIT=tape
//SYSe01 DD UNIT=disk,SPACE=(TRK, (10,10))

//SYSe02 DD UNIT=disk,SPACE=(TRK, (10,10))

//5YS003 DD UNIT=disk,SPACE=(TRK, (10,10))

//SYSPCH DD DSN=&.&.source,DISP=(NEW,PASS,DELETE),

// UNIT=disk,SPACE=(TRK, (10,5),RLSE),

// DCB=(RECFM=FB, LRECL=80, BLKSIZE=3120)
//SYSLST DD SYSOUT=A

Appendix A: Sample JCL 205

z/0S

//SYSIDMS DD *

DMCL=dmc1- name

DICTNAME=dictionary-name

Additional SYSIDMS parameters, as appropriate

/*

//SYSIPT DD *

Host language source statements with embedded SQL

/*
] /FRRRRRRR Rk RO RO KRR KRR KRR
//** CREATE ACCESS MODULE *k

//***

//accmod EXEC PGM=IDMSBCF,REGION=1024K

//STEPLIB DD DSN=idns.dba. loadlib,DISP=SHR

// DD DSN=idms. loadlib,DISP=SHR

//dictb DD DSN=idns.appldict.ddldml ,DISP=SHR

//dloddb DD DSN=idns.appldict.ddldclod,DISP=SHR

//sqldd DD DSN=idms.syssql.ddlcat,DISP=SHR

//5qlxdd DD DSN=idms.syssql.ddlcatx,DISP=SHR

//sqllod DD DSN=idms.syssql.ddlcatl,DISP=SHR

//dcmsg DD DSN=idmns.sysmsg.ddldcmsg,DISP=SHR

//sysjrnl DD DSN=idnms.tapejrnl,DISP=(NEW,CATLG,UNIT=tape

//SYSLST DD SYSOUT=A

//SYSIDMS DD *

DMCL=dmc1-name

DICTNAME=dictionary-name

Additional SYSIDMS parameters, as appropriate
/*

//SYSIPT DD *

CREATE ACCESS MODULE statement ;

COMMIT WORK RELEASE ;

/*

//***

//** COMPILE COBOL PROGRAM *x
//***
//compile EXEC PGM=IKFCBLOO,REGION=240K,

// PARM="'DECK, NOLOAD, NOLIB, BUF=500000,SIZE=150K'
//STEPLIB DD DSN=sysl.cobol. linklib,DISP=SHR

//SYSUT1 DD UNIT=disk,SPACE=(TRK, (10,5))

//SYSUT2 DD UNIT=disk,SPACE=(TRK, (10,5))

//SYSUT3 DD UNIT=disk,SPACE=(TRK, (10,5))

206 Programming Guide

z/0S

//SYSUT4 DD UNIT=disk,SPACE=(TRK, (10,5))
//SYSPUNCH DD DSN=&.&.object,DISP=(NEW,PASS,DELETE),
// UNIT=disk,SPACE=(TRK, (10,5) ,RLSE),

// DCB=(RECFM=FB, LRECL=80, BLKSIZE=3120)
//SYSPRINT DD SYSOUT=A

//SYSIN DD DSN=&.&.source,DISP=(0LD,DELETE)

[[FFFAAHAAAAAAAAAAFFAAK KKK FFFF KKK KKKKIAAAAAAAAAIAAAAAAAAAAAAAAAK

//** LINK PROGRAM MODULE *k

[[FFFHAAAAAAAAAAAAAAAARFAFFAFAFF AR FFFFFFFAKAKKAKKKAAAAAAAAAAAAAAAAA K

//link EXEC PGM=IBWL,REGION=300K,PARM='LET,LIST,XREF'
//SYSUT1 DD UNIT=disk,SPACE=(TRK, (20,5))

//SYSLIB DD DSN=sysl.coblib,DISP=SHR

//loadlib DD DSN=idns.loadlib,DISP=SHR

//SYSLMOD DD DSN=user. loadlib,DISP=SHR

//SYSPRINT DD SYSOUT=A

//SYSLIN DD DSN=&.&.object,DISP=(OLD,DELETE)

/7 DD *
INCLUDE loadlib(IDMS) <«—— Non-CICS only
INCLUDE loadlib (IDMSCINT) <«—— (ICS only

ENTRY userentry
NAME userprog (R)
/*
/7*

Note: The link of CICS application programs thatuse IDMSCINT must incorporateJCL to
resolve external reference DFHEI1. The particular JCLdepends on the nature and
language of your application. For more information, see the appropriate I BM CICS
application programming documentation.

Variable Definitions

Variable Definition

accmod Stepname for batch Command Facility execution of the
CREATE ACCESS MODULE statement

compile Stepname for the compilestep

dcmsg DDname of the system message area (DDLDCMSG)

dictb DDname of the application dictionary definition area
(DDLDML)

dictionary-name Name of the dictionary containingtheSQL definition areas

disk Symbolic device name for workfiles

dloddb DDname of the application dictionary definitionload area
(DDLDCLOD)

Appendix A: Sample JCL 207

z/0S

Variable

Definition

dmcl-name

Name of the DMCL

idms.appldict.ddidclod

Data set name of the application dictionary definition load
area (DDLDCLOD)

idms.appldict.ddidml

Data set name of the application dictionary definition area
(DDLDML)

idms.dba.loadlib

Data set name of the load library containingthe DMCL and
databasename table load modules

idms.loadlib Data set name of the load library containing the CA IDMS
executable modules
idms.sysctl Data set name of the SYSCTL file

idms.sysmsg.ddldcmsg

Data set name of the system message area (DDLDCMSG)

idms.syssql.ddlcat

Data set name of the SQL definition area (DDLCAT) of the
applicationdictionary

idms.syssql.ddlcatl

Data set name of the SQL definition load area (DDLCATLOD)
of the application dictionary

idms.syssql.ddlcatx

Data set name of the SQL definitionindex area (DDLCATX) of
the application dictionary

idms.tapejrnl

Data set name of the tapejournal file

loadlib DDname of the load library containing the CA IDMS
executable modules

precomp Stepname for the precompilestep

sqldd DDname of the SQL definition area (DDLCAT) of the
application dictionary

sqllod DDname of the SQL definitionload area (DDLCATLOD) of the
applicationdictionary

sqglxdd DDname of the SQL definitionindex area (DDLCATX) of the
application dictionary

sysctl DDname of the SYSCTL file

sysjrnl DDname of the tape journal file

sys1l.cobol.linklib

Data set name of the library containingthe hostlanguage
compiler module

sys1l.coblib Data set name of the library containing hostlanguage
compiler subroutines

tape Symbolic device name for tape journal file

userentry Entry pointfor the user program

208 Programming Guide

z/VSE

Variable Definition

user.loadlib Data set name of the load library containing executable
modules for user programs

userprog Name of the user program

&.&object. Host language compiler output to be passed to the linkage
editor

&.&source. Precompiler output to be passed to the host language
compiler

z/VISE

The following sampleJCL stream contains the steps required to make a host language
sourceprogram with embedded SQL into form of executable modules. Complete JCL for
central version execution is presented, foll owed by modifications for local mode
execution.

The host languagefor the examples is COBOL. Change the specification of precompiler
name, precompiler options,and compiler name accordingto the hostlanguageand
version of your program.

Followingthe sampleJCL is a table that gives the meaning of variables usedin the
examples along with a set of usage notes.

Central Version JCL

Skook >k k ok ok >k ok ok ok ok sk okok sk ok ok ok sk ok ok skok ok ok ok sk ok ok sk sk kok skook ok ok sk ok sk kok sk ok sk ok ok ok sk ko sk ok ok k sk ok ok kok sk kk sk ok

** PRECOMPILE COBOL PROGRAM Hok
Skesk 3k ok >k sk ok >k sk ok >k Sk okok >k sk ok >k sk ok sk kek Sk ok sk Sk sk >k Sk sk ke Sk ok sk ok sk sk sk skok >k sk ok >k sk ok >k skek ok >k sk ok sk sk ok sk kook sk kok
// EXEC PROC=IDMSLBLS

// DLBL idmspch, temp.dmlc,0

// EXTENT SYS020,nnnnnn, ,,ssss, L1111

// ASSGN SYS020,DISK, VOL=nnnnnn,SHR

// EXEC IDMSDMLC

Optional precompiler parameters

/*

DMCL=dmc1-name
DICTNAME=dictionary-name
Additional SYSIDMS parameters, as appropriate

/*

Host language source statements with embedded SQL

/*

Skookosk ok ok sk sk ok ok sk sk ok ke sk ok sk sk sk sk sk skok sk sk sk sk sk sk sk sk skok sk sk sk sk sk sk sk kok sk sk sk ok sk sk sk kek sk ok sk sk k ok sk kok sk kok sk k
ok CREATE ACCESS MODULE ok

3Kk ok ok ok ok ok ok ok ok ok ok kok K Sk >k Sk >k 3k >k Skok ok >k ok >k 5k >k ok >k Kok 5k Sk K Sk >k Sk >k Skok sk ok k >k k ok sk ok ok k sk K sk sk sk kok k sk k sk k

Appendix A: Sample JCL 209

z/\'SE

// EXEC IDMSBCF

DMCL=dmc-name

DICTNAME=dictionary-name

Additional SYSIDMS parameters, as appropriate
/*

CREATE ACCESS MODULE statement ;

COMMIT WORK RELEASE ;

/*
HRKAH KK H KA H KA A H KA H KA KKK A H KA H KA A H KA H KA K AK KA H KKK KA K HKAH KA A H KKK
ok COMPILE COBOL PROGRAM *ok

koK ok ok ok ok ok ok ok ok ok ok kok k ok ok ok ok ok ok Skok sk ok ok ok k ok ok ok kok ok ok ok ok ok ok ok dkok sk sk ok ok k ok sk kok ok sk ok k ok sk ok kok >k k k k k

// DLBL IJSYSIN, temp.dmlc,0

// EXTENT SYSIPT,nnnnnn

// ASSGN SYSIPT,DISK,VOL=nnnnnn,SHR

// OPTION CATAL,NODECK,NOSYM

// PHASE userprog,*

// EXEC FCOBOL

Sk ok ok ke ke ok ok ok ok ok >k sk ok Sk ok ok ok sk sk sk ok ok ok ok sk ok ok >k >k kok ok ok ok ok sk >k sk ok ok ok ok ok ok ok >k ok ok ok sk ok ok ok >k kok ok sk ok ok ok
*x LINK PROGRAM MODULE *x

koK ok ok ok ok ok ok ok ok ok ok kok sk ok ok ok ok ok ok Skok sk ok ok sk ok ok ok ok kok sk ok ok ok ok ok ok dkok sk ok sk ok ok sk sk skok ok sk ok ok ok sk k kok sk sk kk ok

// CLOSE SYSIPT,SYSRDR
INCLUDE IDMS
INCLUDE IDMSCINT

<«—— Non-CICS only
<«—— (ICS only

ENTRY (userentry)
// EXEC LNKEDT
/*

Variable Definitions

Variable Definition

dictionary-name

Name of the dictionary containingtheSQL definitions

dmcl-name Name of the DMCL
f Filenumber of the tape journal file
idmspch Host language compiler output to be passed to the linkage

editor

idms.tapejrnl

FileID of the tape journalfile

Number of tracks (CKD) or blocks (FBA) of disk extent

nnnnnn Volume serial identifier of appropriatedisk volume
SSSS Startingtrack (CKD) or block (FBA) of disk extent
sysjrnl Filename of the tape journal file

temp.dmlc File 1D of the precompiler output

210 Programming Guide

z/VSE

Usage

Variable Definition
userentry Entry pointfor the user program
userprog Name of the user program

Local Mode JCL

To execute inlocal mode, add these statements to the precompilestep:

// TLBL sysjrnl, 'idms.tapejml' ,nnnnm, ,f
// ASSGN SYS009, TAPE, VOL=nnnnnn

Note: The link of CICS application programs thatuse IDMSCINT must incorporateJCL to
resolve external reference DFHEI1. The particular JCLdepends on the nature and
language of your application. See the appropriate|BM CICS application programming
documentation for details.

IDMSLBLS Procedure

IDMSLBLS is a procedure provided duringa CA IDMS z/VSE installation. Itcontains file
definitions for these CA IDMS components:

m Dictionaries

m Demonstration databases

m Diskjournal files

m SYSIDMS file

Individualfile definitions for these components do not appearinthe samplelJCL. The

IDMSLBLS procedure should be tailored to reflect site-specific names and CA IDMS z/VSE
job streams.

Logical Unit Assignments

These logical unitassignments appearinthe samplelCL:
m SYS020—Precompiler output

m SYS009—Journal file (local mode)

Appendix A: SampleJCL 211

z/VM

COBOL Internal Sort

For programs thatincludea COBOL internal sort, placethese statements inthe compile
step before the EXEC statement:

m ACTION NOAUTO—Prevents multipleinclusions of IDMS

m INCLUDE IDMS—IDMS interface for usewith COMRG

m |INCLUDE IDMSOPTI—IDMSOPTI module

If IDMSOPTI is included, placethis statement after the EXEC PROC=IDMSLBLS
statement:

// UPSI b
where b is the appropriate one- through eight-character UPSI switch.

m INCLUDE IDMSCANC—For local mode,abort entry point

z/VNGM

The samplecommand sequence that follows contains the steps required to make a host
languagesource program with embedded SQLinto form of executable modules.

The host language for the example is COBOL. Change the specification of precompiler
name, precompiler options,and compiler name accordingto the hostlanguageand
version of your program.

Followingthe example is a tablethat gives the meaning of variables usedin the
examples and a set of usage notes.

Commands for Central Version Execution

/***/

/** PRECOMPILE COBOL PROGRAM *x/

/***/

FILEDEF sysiptl DISK program source a
FILEDEF sysidnsl DISK sysidmsl parms a
FILEDEF syspch DISK progname COBOL A3

FILEDEF SYSLST PRINTER
OSRUN IDMSDMLC PARM='gptional precompiler parameters'

/***/

/** (REATE ACCESS MODULE *x/

/***/

212 Programming Guide

z/VM

FILEDEF sysipt2 DISK create accmod a
FILEDEF sysidns2 DISK sysidms2 parms a
OSRUN IDMSBCF

/***/

/** COMPILE COBOL PROGRAM xx/

JFFHHAAAAAAAAAAAAAFFAARFAFFAFAFF AR FFFFFFFAK KK KKKKKAKAAAAAAAAAAAAAK |

FILEDEF TEXT DISK progname TEXT A3
COBOL progname (OSDECK APOST LIB
TXTLIB DEL utextlib progname
TXTLIB ADD utextlib progname

/***/

Ve LINK PROGRAM MODULE oK/

/***/

FILEDEF SYSLST PRINTER

FILEDEF SYSLMOD uloadlib LOADLIB A6 (RECAM V LRECL 1024 BLKSIZE 1024
FILEDEF objlib DISK utextlib TXTLIB a

FILEDEF SYSLIB DISK coblibvs TXTLIB p

LKED linkctl (LIST XREF LET MAP RENT NOTERM PRINT SIZE 512K 64K

Linkage editor control statements (in linkctl):

INCLUDE objlib(progname)
INCLUDE objlib1(IDMS)
ENTRY progname

NAME progname (R)

Variable Definitions

Variable Definition

coblibvs TEXTLIB p Filename, filetype, and filemode of the librarythatcontains
host language compiler modules

createaccmod a Filename of the filecontaining the CREATE ACCESS MODULE
statement

linkctl Filename of the filethat contains the linkage editor control
statements

loadlib DDname of the load library containing the CA IDMS

executable modules

objlib DDname of the user object library

Appendix A: SampleJCL 213

z/VM

Usade

Variable

Definition

objlibl

DDname of the CA IDMS object library

program COBOL A3

Filename, filetype, and filemode of the precompiler output

progname

Name of the user program

programsourcea

Filename of the filecontainingthe program source

sysidms1

DDname for the file of SYSIDMS parameters for the
precompiler step

sysidms1 parms a

Filename of the filecontaining SYSIDMS parameters for the
precompiler step

sysidms2

DDname for the file of SYSIDMS parameters for the step to
create the access module

sysidms2 parms a

Filename of the file containing SYSIDMS parameters for the
step to create the access module

sysiptl DDname for the program sourcefile

sysipt2 DDname for the filecontaining the CREATE ACCESS MODULE
statement

syspch DDname for the precompiler output

uloadlib LOADLIBA6

Filename, filetype, and filemode of the user load library

utextlib TXTLIB a

Filename, filetype, and filemode of the user text library

Local Mode

To specify that the precompileris executing inlocal mode, perform one of the following:

m Link the program with an IDMSOPTI programthat specifies local execution mode

m Specify *LOCAL* as the firstinput parameter of the filename, type and mode
identified by idmspass inputainthe IDMSFD exec.

m Modify the OSRUN statement:

OSRUN IDMSDMCL PARM='*LOCAL*'

Note: This optionis valid onlyifthe OSRUN command is issued froma System
Product interpreter or an EXEC2 file.

A local modejob should contain file definitions to include the followingin the
precompilestep andthe step to create the access module:

214 Programming Guide

z/VM

Variable Definitions

Variable Definition

dcmsg DDname of the system message area
(DDLDCMSG)

dictb DDname of the application dictionary definition
area (DDLDML)

dloddb DDname of the application dictionary definition

load area (DDLDCLOD)

idms.appldict.ddidclod

Filename of the application dictionary definition
load area (DDLDCLOD)

idms.appldict.ddidml

Filename of the application dictionary definition
area (DDLDML)

idms.sysmsg.ddldcmsg

Filename of the system message area
(DDLDCMSG)

idms.syssql.ddlcat

Filename of the SQL definition area (DDLCAT) of
the applicationdictionary

idms.syssql.ddlcatl

Filename of the SQL definitionload area
(DDLCATLOD) of the applicationdictionary

idms.syssql.ddlcatx

Filename of the SQL definitionindex area
(DDLCATX) of the applicationdictionary

idms.tapejrnl

Filename of the tape journal file

sqldd DDname of the SQL definition area (DDLCAT) of
the applicationdictionary

sqllod DDname of the SQL definitionload area
(DDLCATLOD) of the applicationdictionary

sqlxdd DDname of the SQL definitionindex area
(DDLCATX) of the applicationdictionary

sysjrnl DDname of the tape journal file

A local modejob should containfiledefinitionstoincludethe followingin the step to

create the access module:

Appendix A: SampleJCL 215

z/VM

SYSIPT File

To create a sysiptfile:
1. Type XEDIT sysipt data a (NOPROF on the z/VM command lineand press Enter
2. Type INPUT on the XEDIT command lineand press Enter

Type inthe IDMSPASS input parameters ininput mode

4. Press Enter to exitinput mode
5. Type FILE on the XEDIT command lineand press Enter
SYSIDMS File

To execute the precompiler and create the access module, you shouldincludethese
SYSIDMS parameters:

m DMCl=dmcl-name, to identify the DMCL

m DICTNAME=dictionary-name, to identifythe dictionary whosecatalogcomponent
contains the databasedefinitions

To create a file of SYSIDMS parameters:

1. Type XEDIT sysidms data a (NOPROF on the z/VM command lineand press Enter

2. Type INPUT on the XEDIT command lineand press Enter

3. Typeinthe SYSIDMS parameters ininput mode

4. Press Enter to exitinput mode

5. Type FILE on the XEDIT command lineand press Enter

Note: For more information aboutdocumentation of SYSIDMS parameters,. see the CA
IDMS Common Facilities Guide.

216 Programming Guide

Appendix B: Test Database

Complete informationaboutthe datainthe test database, supplied with CA IDMS, to
which most of the sampleprograms inthis guide refer, is presented in this section. You
canuse this information to develop SQL programs that access the test database.

This section contains the followingtopics:

Table Names and Descriptions (see page 217)

Test Data (see page 222)

Test Database DDL (see page 227)

Demo Data (see page 237)

Table Names and Descriptions

ASSIGNMENT

This section contains information for the followingtables:

ASSIGNMENT
BENEFITS
CONSULTANT
COVERAGE
DEPARTMENT
DIVISION
EMPLOYEE
EXPERTISE

INSURANCE_PLAN

= JOB

= POSITION

m PROIJECT

m SKILL

EMP_ID Employee ID

PROJ_ID ID of projectto which employee is assigned
START_DATE Date employee was assigned to the project

Appendix B: Test Database 217

Table Names and Descriptions

END_DATE Date employee completed work on the project
BENEFITS

FISCAL_YEAR Fiscal year for which this data applies

EMP_ID Employee ID

VAC_ACCRUED Vacation hours accrued to date

VAC_TAKEN Vacation hours taken to date

SICK_ACCRUED Sick days accrued to date

SICK_TAKEN Sick days taken to date

STOCK_PERCENT Percentage of earnings allocated to stock purchase

STOCK_AMOUNT Year-to-date amount deducted for stock purchase

LAST_REVIEW_DATE Date of lastemployee review

REVIEW_PERCENT Percent increaseatlastreview

PROMO_DATE Date of lastpromotion

RETIRE_PLAN Retirement fund identifier: STOCK, BONDS, 401K

RETIRE_PERCENT Percentage of earnings deducted for retirement

BONUS_AMOUNT Amount of lastbonus

COMP_ACCRUED Hours of compensation time accrued

COMP_TAKEN Hours of compensation time taken

EDUC_LEVEL Level of education: GED, HSDIP, JRCOLL, COLL, MAS, PHD

UNION_ID Union identification number

UNION_DUES Amount of dues deducted per pay period
CONSULTANT

CON_ID Unique consultantID

CON_FNAME Consultant's firstname

CON_LNAME Consultant's lastname

MANAGER_ID Employee ID of consultant's manager

DEPT_ID ID of department to which consultantis assigned

218 Programming Guide

Table Names and Descriptions

COVERAGE

DEPARTMENT

DIVISION

PROJ_ID ID of projectto which consultantis assigned

STREET Consultant's street address

CITY Consultant's city

STATE Consultant's state

ZIP_CODE Consultant's zip code

PHONE Consultant's phone

BIRTH_DATE Birth date

START_DATE Consultant's date of hire

SS_NUMBER Social security number

RATE Hourly rate of pay

PLAN_CODE Code of insuranceplan providing the coverage
EMP_ID Employee ID of employee havingthe coverage

SELECTION_DATE

Date employee selected thisinsuranceplan

TERMINATION_DATE

Date employee terminated this insuranceplan;ifnull,
planisstillinforce

NUM_DEPENDENTS

Number of dependents covered under this insurance
plan

DEPT_ID Unique department ID

DEPT_HEAD_ID Employee ID of department head

DIV_CODE Code of the division to which this department belongs
DEPT_NAME Department name

DIV_CODE Unique division ID

DIV_HEAD_ID Employee ID of division head

Appendix B: Test Database 219

Table Names and Descriptions

DIV_NAME Division name
EMPLOYEE

EMP_ID Unique employee 1D

MANAGER_ID Employee ID of employee's manager

EMP_FNAME Employee's firstname

EMP_LNAME Employee's lastname

DEPT_ID ID of department to which employee is assigned

STREET Employee's street address

CITY Employee's city

STATE Employee's state

ZIP_CODE Employee's zip code

PHONE Employee's phone

STATUS Status of employee: (A) Active; (S) Short-term disability;
(L) Long term disability

SS_NUMBER Social security number

START_DATE Employee's date of hire

TERMINATION_DATE Date of termination

BIRTH_DATE Birth date

EXPERTISE

EMP_ID Employee ID

SKILL_ID Skill ID

SKILL_LEVEL Level of abilityinthis skill:01 (low) to 04 (high)

EXP_DATE Date this level of ability was achieved

INSURANCE_PLAN

PLAN_CODE Unique plan code for company offeringthe insurance

220 Programming Guide

Table Names and Descriptions

JOB

POSITION

COMP_NAME Name of insurance company

STREET Street address ofinsurancecompany
CITY City address ofinsurance company

STATE State address ofinsurancecompany
ZIP_CODE Zip code of insurancecompany

PHONE Telephone number of insurancecompany

GROUP_NUMBER

Commonwealth's group number for this insurancecompany

DEDUCT

Dollar amountdeductible per year for this insuranceplan

MAX_LIFE_BENEFIT

Maximum dollar amountto be paidto insured employee

FAMILY_COST Amount deducted per paycheck for family coverage
DEP_COST Additional amountdeducted per paycheck per dependent
EFF_DATE Date this coverage plan became effective

JOB_ID Uniquejob ID

JOB_TITLE Job title

MIN_RATE Minimum salary/hourly ratefor this job

MAX_RATE Maximum salary/hourly ratefor this job

SALARY_IND Indicator for type of salary:(S) salaried; (H) hourly

NUM_OF_POSITIONS

Total number of positions for this job

NUM_OPEN

Number of positions currently open

EFF_DATE

Date this job became effective

JOB_DESLINE_1

Firstlineof job description

JOB_DESLINE_2

Second line of job description

EMP_ID Employee ID
JOB_ID Job ID associated with this employee
START_DATE Date employee began this job

Appendix B: Test Database 221

Test Data

PROJECT

SKILL

Test Data

FINISH_DATE

Date employee ended this job (null if current)

HOURLY_RATE

Hourlyrate earned whilein this job (if hourly position)

SALARY_AMOUNT

Yearlysalary earned whilein this job (ifsalaried position)

BONUS_PERCENT

Bonus percent amount for this position (if sales position)

COMM_PERCENT

Commission percent for this position (ifsales position)

OVERTIME_RATE

Overtime rate for this position (if hourly position)

PROJ_ID

Unique project ID

PROJ_LEADER_ID

Employee ID of project leader

EST_START DATE

Estimated date projectis to begin

EST_END_DATE

Estimated date projectis to end

ACT_START_DATE

Actual date projectbegan

ACT_END_DATE

Actual date projectended

EST_MAN_HOURS

Total number of hours estimated for project

ACT_MAN_HOURS

Actual number of hours required for project

PROJ_DESC Project description
SKILL_ID Unique skill ID
SKILL_NAME Skill name

SKILL_DESC Skill description

This section lists thetest data stored in the test databasefor the following:

m Departments

m Divisions

222 Programming Guide

Test Data

Departments

Divisions

® InsurancePlans

= Jobs

m Projects

m Skills

Code Name Division code Head ID
3510 Appraisal -Used cars D02 3082
2200 Sales - Used cars D02 2180
1100 Purchasing-Used cars D02 2246
3520 Appraisal - New cars D04 3769
2210 Sales - New cars D04 2010
4200 Leasing- New cars D04 1003
1110 Purchasing - New cars D04 1765
1120 Purchasing-Service D06 2004
4600 Maintenance D06 2096
3530 Appraisal - Service D06 2209
5100 Billing D06 2598
6200 Corporate Administration D09 2461
5200 Corporate Marketing D09 2894
5000 Corporate Accounting D09 2466
4900 MIS D09 2466
6000 Legal D09 1003
4500 Human Resources D09 3222
Division code Division name Head ID
D02 Used cars 2180

D04 New cars 2010

Appendix B: Test Database 223

Test Data

Division code Division name Head ID

D06 Service 4321

D09 Corporate 1003
Insurance Plans

Plan ID Name

PLI Providential LifeInsurance

HHM Homeostasis Health Maintenance Program

HGH Holistic Group Health Association

DAS Dental Associates
Jobs
Job ID Name Minimum salary Maximum Salaried/ hourly No.

salary

8001 Vice president 90000 136000 S 1
4023 Accountant 44000 120000 S 1
2051 AP Clerk 8.80 14.60 H 2
2053 AR Clerk 8.80 14.60 H 3
2077 Purch Clerk 17000 30000 S 3
3029 Computer Operator 25500 44000 S 1
3051 Data Entry Clerk 8.50 11.45 H 1
6011 Manager - Acctng 59400 121000 S 1
4560 Mechanic 11.45 21.00 H 7
4666 Sr Mechanic 41000 91000 S 1
4734 Mkting Admin 25000 62000 S 2
3333 Sales Trainee 21600 39000 S 4
5555 Salesperson 30000 79500 S 9
6004 Manager - HR 66000 138000 S 1
6021 Manager - Mktng 76000 150000 S 1

224 Programming Guide

Test Data

Job ID Name Minimum salary Maximum Salaried/ hourly No.
salary

2055 PAYROLL CLERK 17000 30000 S 1
4025 Writer - Mktng 31000 50000 S 1
9001 President 111000 190000 S 1
4123 Recruiter 35000 56000 S 1
4130 Benefits Analyst 35000 56000 S 1
4012 Admin Asst 21000 44000 S 4
5111 CUST SER REP 27000 54000 S 4
4700 Purch Agent 33000 60000 S 5
5890 Appraisal Spec 45000 70000 S 5
5110 CUST SERVICE MGR 40000 108000 S 1
Projects

Project ID Description

P634 TV ads - WTVK

C200 New brandresearch

P400 Christmas media

C203 Consumer study

C240 Service study

D880 System analysis
Skills

skill ID Name

4444 Assembly

3333 Bodywork

3088 Brake work

3065 Electronics

1030 Acct Mgt

Appendix B: Test Database 225

Test Data

skill ID Name

5130 Basic math

5160 Calculus

4250 Data entry

4370 Filing

5200 General Acctng
5500 General Mktng
5430 Mktng Writing
5420 Writing

4490 Gen Ledger

4430 Interviewing
1000 Management
4420 Telephone

5180 Statistics

4410 Typing

5309 Appraising

6770 Purchasing

7000 Sales

6666 Billing

6650 Diesel Engine Repair
6670 Gas Engine Repair
6470 Window Installation

226 Programming Guide

Test Database DDL

Test Database DDL

This section contains the SQL DDL that creates the demonstration database provided
with the installation of CA IDMS.

Skookookokook ok >k sk ok ok ok sk ko sk ok ok >k sk ok ok kok ok >k ok sk ok ok sk sk skok sk ok ok ok sk ok sk skok sk ok ok ok sk ok sk kok ok ok sk ok ok ok sk kok sk >k sk ok sk k sk kk

* Create schema for the following tables. Then set session qualifier

* for that schema

ok K kKKK oK oK oK oK ok ok KKK KoK oK oK oK ok 3K o K KoK KoK oK oK oK oK ok ok S KKK sk ok ok sk ok oK ok ok ok ok ok Sk K KK oK oK oK koK

CREATE SCHEMA DEMOBMPL;

SET SESSION CURRENT SCHEMA DEMOEMPL;
skeoske ok sk sk sk ok ok sk sk sk sk skok sk sk sk sk sk sk sk skok sk sk sk sk sk ok sk sk skok sk sk sk sk sk sk sk skok sk ok sk sk sk sk sk skok sk sk ok sk sk sk sk skok sk sk sk sk sk sk sk ok
* (Create the tables that belong to the schema DEMOEMPL. Each

* table is associated with an area in the segment DEMOEMPL.
Skookosk ok sk sk sk ok ok sk sk ok ke sk ok sk >k sk ok sk ok sk sk sk sk sk sk sk sk skok Sk sk sk sk sk sk sk skok kook sk sk sk sk sk kok sk ok sk sk sk ok sk kok skokskok sk >k skkek

CREATE TABLE
(FISCAL YEAR
EMP_ID
VAC_ACCRUED
VAC_TAKEN
SICK_ACCRUED
SICK_TAKEN
STOCK_PERCENT
STOCK_AMOUNT

LAST REVIEW DATE
REVIEW PERCENT
PROMO_DATE
RETIRE_PLAN
RETIRE_PERCENT
BONUS_AMOUNT
COMP_ACCRUED
COMP_TAKEN

EDUC_LEVEL
UNION_ID
UNION DUES

BENEFITS
UNSIGNED NUMERIC(4,0) NOT NULL,
UNSIGNED NUMERIC(4,0) NOT NULL,

6,2) NOT NULL WITH DEFAULT,

UNSIGNED DECIMAL(6,2)
UNSIGNED DECIMAL(6,2)

NOT NULL WITH DEFAULT,
NOT NULL WITH DEFAULT,
UNSIGNED DECIMAL(6,2) NOT NULL WITH DEFAULT,
UNSIGNED DECIMAL(6,3) NOT NULL WITH DEFAULT,
UNSIGNED DECIMAL(10,2) NOT NULL WITH DEFAULT,

(
(
UNSIGNED DECIMAL(
(
(

DATE ,

UNSIGNED DECIMAL(6,3) ,

DATE ,

CHAR(6) ’

UNSIGNED DECIMAL(6,3) ,

UNSIGNED DECIMAL(10,2))

UNSIGNED DECIMAL(6,2) NOT NULL WITH DEFAULT,
UNSIGNED DECIMAL(6,2) NOT NULL WITH DEFAULT,

—_ o~~~

CHAR(06) ,
CHAR(10) ’
UNSIGNED DECIMAL(10,2) ,

CHECK ((RETIRE_PLAN IN ('STOCK', 'BONDS', '401K')) AND
(BDUC_LEVEL IN ('GED', 'HSDIP', 'JRCOLL', 'COLL',

IMASI,

‘PHD'))))

IN SQLDEMO.EMPLAREA;

Skookookok ok ok ok ok ok ok ok sk ko sk ok ok ok sk ok ok kok ok ok sk ok ok ok sk ok kok ok ok ok ok sk ok ok skok sk ok ok ok sk ke sk kok ok ok sk ok ok ok sk kok sk >k sk ok sk k sk skk

Appendix B: Test Database 227

Test Database DDL

CREATE TABLE
(PLAN_CODE

EMP_ID

SELECTION DATE

TERMINATION DATE

NUM_DEPENDENTS

COVERAGE
CHAR(03) NOT NULL,
UNSIGNED NUMERIC(4,0) NOT NULL,
DATE NOT NULL WITH DEFAULT,
DATE

UNSIGNED NUMERIC(2,0) NOT NULL WITH DEFAULT)

IN SQLDEMO.EMPLAREA;

Skokookokookok ok ok ok ok ok ok kok sk ok ok ok ok ok ok Skok sk ok ok ok ok ok ok sk kok ok ok ok ok ok sk ok dkok sk ok sk sk sk ok ok skok ok ok ok ok ok >k sk kok sk ok sk sk sk skok ok

CREATE TABLE
(DEPT_ID

DEPT HEAD ID

DIV CODE

DEPT NAME

IN SQLDEMO.INFOAREA;

CREATE TABLE

(DIV_CODE
DIV_HEAD ID
DIV _NAME

IN SQLDEMO.INFOAREA;

CREATE TABLE
(EMP_ID

MANAGER ID
EMP_FNAME
EMP_LNAME
DEPT ID
STREET
CITY

DEPARTMENT
UNSIGNED NUMERIC(4,0) NOT NULL,
UNSIGNED NUMERIC(4,0) ,
HAR(03) NOT NULL,
HAR(40) NOT NULL)
SRR AR KA KK KA KA KA AR AR A AR H A AR KA KA F A AF A A A A AR
sotoksk ok okk ko okok ok ook ko ktokok ko ko solok ok sk ok sokiok ok sk ok soksk ok sk sk oksk kol sk ok okok ko ok
DIVISION
CHAR(03) NOT NULL,
UNSIGNED NUMERIC(4,0) ,
(HAR(40) NOT NULL)
sotoksk ok fokk ko okoktokokok ko ktokok sk sk ko solok ok sk ook ok sk ok soksk ok sk ok oksk kol sk sk okok ko ok
EMPLOYEE
UNSIGNED NUMERIC(4,0) NOT NULL,
UNSIGNED NUMERIC(4,0) ,
CHAR(20) NOT NULL,
CHAR(20) NOT NULL,
UNSIGNED NUMERIC(4,0) NOT NULL,
CHAR(40) NOT NULL,
CHAR(20) NOT NULL,
CHAR(02) NOT NULL,

STATE

228 Programming Guide

Test Database DDL

ZIP CODE

PHONE

STATUS
SS_NUMBER

START DATE
TERMINATION DATE
BIRTH DATE

CHAR(09)

CHAR(10)

CHAR

UNSIGNED NUMERIC(9,0)
DATE

DATE

DATE

NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,

’

CHECK ((EMP_ID <= 8999) AND (STATUS IN ('A‘', 'S', 'L', 'T'))))
IN SQLDEMO.EMPLAREA;

Skokook ok ok ok ok ok ok ok ok ok kok >k ok ok ok >k ok >k Skok ok ok ok ok ok ok ok sk kok >k Sk >k ok >k Sk >k Skok sk ok sk ok sk ok sk dkok ok >k sk >k sk >k sk kok sk ok sk sk sk sk sk skok

CREATE TABLE
(PLAN_CODE
COMP_NAME
STREET

CITY

STATE
ZIP_CODE

PHONE
GROUP_NUMBER
DEDUCT

MAX_LIFE BENEFIT
FAMILY COST
DEP_COST
EFF_DATE

INSURANCE PLAN
CHAR(03)
CHAR(40)
CHAR(40)
CHAR(20)
CHAR(02)
CHAR(09)

CHAR(10)

UNSIGNED NUMERIC(4,0)
UNSIGNED DECIMAL(9,2)
UNSIGNED DECIMAL(9,2)
UNSIGNED DECIMAL(9,2)
UNSIGNED DECIMAL(9,2)
DATE

IN SQLDEMO.INFOAREA;

NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,

NOT NULL,
NOT NULL,

’
’

’

NOT NULL)

K3k ok 3K ok ok ok ok ok ok ok ok okok 5K 3k >k Sk K Sk >k Skok ok ok ok ok ok ok ok sk kok K 3k >k ok >k Sk >k Skok k ok k ok ok sk ok skok ok K Sk >k ok >k sk kok sk ok sk ok sk sk ke kok

CREATE TABLE
(JOB_ID

JOB TITLE

MIN RATE
MAX_RATE

SALARY IND

NUM OF POSITIONS

JoB

UNSIGNED NUMERIC(4,0)

CHAR(20)

UNSIGNED DECIMAL(10,2)
UNSIGNED DECIMAL(10,2)
CHAR(01)

UNSIGNED DECIMAL(4,0)

NOT NULL,
NOT NULL,

’
’
’

’

Appendix B: Test Database 229

Test Database DDL

EFF_DATE DATE ,
JOB DESC LINE 1 VARCHAR(60) ,
JOB DESC LINE 2 VARCHAR(60) ,

CHECK (SALARY IND IN ('S', 'H')))
IN SQLDEMO.INFOAREA;

ok KKK KKK oK oK oK ook 3k 3 KKK oK KoK oK oK oK ok 3 o K oK KoK oK oK oK oK ok ok 3 KK oK sk sk ko ok ok ok 3 K Kok KoK oK oK ok ok ok Kok

CREATE TABLE POSITION

(EMP_ID UNSIGNED NUMERIC(4,0) NOT NULL,
JOB_ID UNSIGNED NUMERIC(4,0) NOT NULL,
START DATE DATE NOT NULL,
FINISH DATE DATE ,
HOURLY_RATE UNSIGNED DECIMAL(7,2) ,
SALARY_AMOUNT UNSIGNED DECIMAL(10,2) ,
BONUS_PERCENT UNSIGNED DECIMAL(7,3) ,
COMM_PERCENT UNSIGNED DECIMAL(7,3) ,
OVERTIME_RATE UNSIGNED DECIMAL(5,2) ,

CHECK ((HOURLY_RATE IS NOT NULL AND SALARY_AMOUNT IS NULL)

OR (HOURLY_RATE IS NULL AND SALARY AMOUNT IS NOT NULL)))
IN SQLDEMO.EMPLAREA;

Skokook ok ok ok ok ok ok ok ok ok kok k ok ok ok >k Sk ok Skok sk ok ok sk ok ok ok sk kok >k ok ok ok >k Sk ok Skok sk ok sk ok sk ok sk skok ok >k sk ok ok >k sk kok sk ok sk sk sk sk sk kok

Skookookok ok ok >k sk ok ok ok sk ko sk ok ok ok sk ok ok kok ok >k sk ok ok >k sk ok kok ok ok ok sk sk ok sk skok sk sk ok ok sk ok ok skek sk sk sk ok sk sk sk skok ok ok kksk sk koskek

CREATE SCHEMA DEMOPROJ;
SET SESSION CURRENT SCHEMA DEMOPROJ;

ok kKK KoK oK oK oK ok 3k 3 KKK Kok oK oK ok ok 3 3 K oK KoK oK oK oK oK ok ok 3 KKK sk sk ko ok ok 3k 3 K KoK KoK oK oK ok ok ok Kok

* Create the tables that belong to the schema DEMOPROJ. Each

* table is associated with an area in the segment PROJSEG.
skoske ok sk sk sk ok ok sk sk sk sk skok sk sk sk sk sk sk sk skok sk sk sk sk ok sk sk skok sk sk sk sk sk sk sk skok sk ok sk sk sk sk sk skok sk sk ok sk sk sk sk skok sk sk sk sk sk sk sk ok

CREATE TABLE ASSIGNMENT

(EMP_ID UNSIGNED NUMERIC(4,0) NOT NULL,
PROJ_ID CHAR(10) NOT NULL,
START_DATE DATE NOT NULL,
END_DATE DATE)

IN PROJSEG.PROJAREA;

230 Programming Guide

Test Database DDL

Skookookok ok ok ok ok ok ok >k sk ko sk ok ok ok ok ok ok kok ok ok ok ok ok ok sk ok kok ok ok ok sk sk ok ok skok sk ok ok ok sk ke sk kok ok ok sk ok ok ok sk kok sk >k sk ok sk >k sk skok

CREATE TABLE
(CON_ID
CON_FNAME
CON_LNAME
MANAGER ID
DEPT ID
PROJ_ID
STREET

CITY

STATE
ZIP_CODE
PHONE
BIRTH DATE
START DATE
SS_NUMBER
RATE

CHECK ((CON_ID >= 9000 AND CON_ID <= 9999)))

CONSULTANT

UNSIGNED NUMERIC(4,0)
CHAR(20)

CHAR(20)

UNSIGNED NUMERIC(4,0)
UNSIGNED NUMERIC(4,0)
CHAR(10)

CHAR(40)

CHAR(20)

CHAR(02)

CHAR(09)

CHAR(10)

DATE

DATE

UNSIGNED NUMERIC(9,0)
UNSIGNED DECIMAL(7,2)

IN PROJSEG.PROJAREA;

NOT
NOT
NOT
NOT
NOT

NOT

NOT
NOT

NOT
NOT

NULL,
NULL,
NULL,
NULL,
NULL,

NULL,

NULL,
NULL,

NULL,
NULL,

3Kk ok ok ok ok ok ok ok ok ok ok okok 5K 3k ok Sk ok Sk ok Skok ok ok ok sk ok sk ok sk kok K Sk >k ok >k Sk >k Skok k sk ok sk ok sk ok skok ok k Sk >k ok >k sk kok sk ok sk sk sk sk sk kok

CREATE TABLE
(EMP_ID

SKILL ID
SKILL LEVEL
EXP_DATE

EXPERTISE

UNSIGNED NUMERIC(4,0)
UNSIGNED NUMERIC(4,0)
CHAR(02)

DATE

IN PROJSEG.PROJAREA;

NOT
NOT

NULL,
NULL,

’

)

3Kk 3k ok oK oK ok ok ok ok ok ok Rok K 3k K Sk K Sk ok Skok K 5k K sk 3k sk ok sk kok K Sk >k ok >k Sk K Skok K sk K ok K sk ok skok ok K Sk >k ok >k sk kok sk ok sk sk sk sk k kok

koK ok ok ok ok ok ok ok ok ok ok kok >k ok ok ok >k ok >k Skok sk ok ok ok ok ok ok ok skok sk ok ok ok ok ok ok dkok Sk ok ok >k ok >k ok kok ok ok ok ok sk ok sk kok >k k >k sk >k k >k kok

CREATE TABLE
(PROJ_ID

PROJ LEADER ID
EST START DATE
EST END DATE
ACT_START DATE
ACT END_DATE
EST MAN_HOURS

PROJECT

CHAR(10)

UNSIGNED NUMERIC(4,0)
DATE

DATE

DATE

DATE

UNSIGNED DECIMAL(7,2)

NOT NULL,

Appendix B: Test Database 231

Test Database DDL

ACT_MAN HOURS UNSIGNED DECIMAL(7,2) ,
PROJ DESC VARCHAR(60) NOT NULL)
IN PROJSEG.PROJAREA;

Skookook sk ok ok ok sk ok ok >k sk ko sk ok ok >k sk ok ok kok ok ok sk ok ok ok sk sk skok ok ok k ok sk ok sk ok sk ok ok ok sk ok sk kok ok ok sk ok ok ok sk kok sk >k sk ok sk k sk skk

CREATE TABLE SKILL

(SKILL ID UNSIGNED NUMERIC(4,0) NOT NULL,
SKILL NAME CHAR(20) NOT NULL,
SKILL DESC VARCHAR(60))

IN PROJSEG.PROJAREA;

ok kKKK oK oK oK oK ok ok 3 KKK Kok oK oK ok ok 3 o oK KoK oK oK oK oK oK ko ok ok 3k KoKtk sk ok ok ok ok ok o ok KoK oK oK oK oK oK koK

* Name calc keys for above tables (in order that they were defined)
Skookook ok sk ok >k ok ok ok >k ok ke ok ok ok sk ok sk sk skok sk sk ok ok sk sk ok sk skok Sk sk sk ok sk sk sk skok sk ok ok ok sk ok sk kok sk ok sk sk ok ok sk kok sk >k sk ok sk >k sk skk
CREATE UNIQUE CALC KEY ON DEMOEMPL.DEPARTMENT (DEPT ID);
CREATE UNIQUE CALC KEY ON DEMOEMPL.DIVISION(DIV CODE);
CREATE UNIQUE CALC KEY ON DEMOEMPL.EMPLOYEE(EMP ID);

CREATE UNIQUE CALC KEY ON DEMOEMPL.INSURANCE PLAN(PLAN CODE);

CREATE UNIQUE CALC KEY ON DEMOEMPL.JOB(JOB_ID);
CREATE UNIQUE CALC KEY ON DEMOPROJ.CONSULTANT(CON_ID);
CREATE UNIQUE CALC KEY ON DEMOPROJ.PROJECT(PROJ_ID);

CREATE UNIQUE CALC KEY ON DEMOPROJ.SKILL (SKILL ID);

3Kk 3k ok oK oK ok ok ok ok ok ok Rok K 3k K Sk K Sk ok Skok K 5k K sk 3k sk ok sk kok K Sk >k ok >k Sk K Skok K sk K ok K sk ok skok ok K Sk >k ok >k sk kok sk ok sk sk sk sk k kok

* Create unique indexes for tables in order in which they were defined
Skoskoskeoke sk sk sk ok sk sk skk kek sk sk sk sk sk sk sk skok sk sk sk sk sk sk sk sk skok Skesk sk sk ok sk sk skok sk osk sk sk sk sk sk skok sk sk sk sk sk ok sk skok kokskeok skok ok kek

CREATE UNIQUE INDEX AS EMPROJ NDX ON
DEMOPROJ . ASSIGNMENT (EMP_ID,PROJ ID);

CREATE UNIQUE INDEX EX EMPSKILL NDX ON
DEMOPROJ . EXPERTISE (EMP_ID, SKILL ID);

Skookook ok sk ok ok sk ok ok >k sk ko sk ok ok >k sk ok ok kok ok >k sk ok ok ok sk ok skok Sk ok ok ok sk ok sk ok sk ok ok ok sk ok sk kok ok ok sk ok ok ok sk kok sk >k sk ok sk k sk kk

232 Programming Guide

Test Database DDL

* Create nonunique indexes for tables in order in which they

* were defined
Sk 3k 3k ok Sk >k ok Sk sk ok Sk sk ko Sk sk ok Sk sk ok Sk skok sk ok Sk sk ok sk sk Sk skok skook Sk sk ok sk sk Sksk Sk sk sk Sk sk ok Sk sk sk ok sk sk ok sk sk ko sk sk ok sk skok sk kek

CREATE INDEX CO CODE NDX ON DEMOEMPL.COVERAGE (PLAN CODE)
IN SQLDEMO.INDXAREA;

CREATE INDEX DE_CODE NDX ON DEMOEMPL.DEPARTMENT(DIV CODE);
CREATE INDEX DI_HEAD NDX ON DEMOEMPL.DIVISION(DIV_HEAD ID);

CREATE INDEX DE HEAD NDX ON DEMOEMPL.DEPARTMENT(DEPT_HEAD ID);

CREATE INDEX EM MANAGER NDX ON DEMOEMPL.EMPLOYEE (MANAGER ID)
IN SQLDEMO.INDXAREA;

CREATE INDEX EM NAME_NDX ON DEMOEMPL.EMPLOYEE (EMP_LNAME, EMP_FNAME)
IN SQLDEMO.INDXAREA;

CREATE INDEX EM DEPT_NDX ON DEMOEMPL.EMPLOYEE(DEPT_ID)
IN SQLDEMO.INDXAREA;

CREATE INDEX IN_NAME_NDX ON DEMOEMPL.INSURANCE PLAN(COMP_NAME)
COMPRESSED;

CREATE INDEX PO_JOB NDX ON DEMOEMPL.POSITION(JOB ID)
IN SQLDEMO.INDXAREA;

CREATE INDEX CN_NAME_ NDX
ON DEMOPROJ.CONSULTANT(CON_LNAME,CON_FNAME) ;

3Kk 3k ok oK ok ok ok oK ok ok ok Rok 5K 3k K Sk K Sk >k Skok K sk K sk 3k sk ok sk kok K Sk >k ok >k Sk >k Skok K sk K ok K sk ok skok ok K 5k >k ok >k sk kok sk k sk sk sk k ke kok

* Create referential constraints
Sk ok ke ke ke ok sk ok ok ok ok sk ok Sk ok ok sk sk ok ok ok ok ok sk ok ok ok >k >k ok ok ok ok ok ok ok >k kok ok ok sk ok ok >k >k kok ok sk ok ok >k >k >k kok ok ok ok ok >k k >k sk

CREATE CONSTRAINT EMP_BENEFITS
DEMOEMPL.BENEFITS (EMP_ID) REFERENCES
DEMOEMPL.EMPLOYEE (EMP_ID)

LINKED CLUSTERED
ORDER BY (FISCAL YEAR DESC);

CREATE CONSTRAINT INSPLAN COVERAGE

Appendix B: Test Database 233

Test Database DDL

CREATE

CREATE

CREATE

CREATE

CREATE

CREATE

CREATE

CREATE

DEMOEMPL . COVERAGE (PLAN_CODE) REFERENCES
DEMOEMPL . INSURANCE PLAN (PLAN CODE)
UNLINKED;

CONSTRAINT EMP_COVERAGE
DEMOEMPL.COVERAGE (EMP_ID) REFERENCES
DEMOEMPL.EMPLOYEE (EMP_ID)

LINKED CLUSTERED

ORDER BY (PLAN CODE) UNIQUE;

CONSTRAINT DIVISION DEPT

DEMOEMPL .DEPARTMENT (DIV_CODE) REFERENCES
DEMOEMPL . DIVISION (DIV_CODE)
UNLINKBD;

CONSTRAINT BMP_DEPT_HEAD
DEMOEMPL .DEPARTMENT (DEPT_HEAD ID) REFERENCES
DEMOEMPL . EMPLOYEE (EMP_ID)

UNLINKBED;

CONSTRAINT BMP_DIV_HEAD

DEMOEMPL.DIVISION (DIV_HEAD ID) REFERENCES
DEMOEMPL.EMPLOYEE (EMP_ID)
UNLINKED;

CONSTRAINT DEPT_EMPLOYEE
DEMOEMPL.EMPLOYEE (DEPT_ID) REFERENCES
DEMOEMPL . DEPARTMENT (DEPT_ID)

UNLINKED;

CONSTRAINT MANAGER EMP

DEMOEMPL.EMPLOYEE (MANAGER ID) REFERENCES
DEMOEMPL.EMPLOYEE (EMP_ID)
UNLINKED;

CONSTRAINT SKILL EXPERTISE
DEMOPROJ.EXPERTISE (SKILL ID) REFERENCES
DEMOPROJ . SKILL (SKILL ID)

LINKED CLUSTERED;

CONSTRAINT EMP_POSITION
DEMOEMPL.POSITION (EMP_ID) REFERENCES

234 Programming Guide

Test Database DDL

DEMOEMPL.EMPLOYEE (EMP_ID)
LINKED CLUSTERED

ORDER BY (JOB ID) UNIQUE;

CREATE CONSTRAINT JOB POSITION
DEMOEMPL.POSITION (JOB ID)
DEMOEMPL .. JOB (JoB_ID)

UNLINKED;

CREATE CONSTRAINT PROJECT_ASSIGN

DEMOPROJ . ASSIGNMENT (PROJ_ID)

DEMOPROJ.PROJECT (PROJ ID)
LINKED CLUSTERED;

CREATE CONSTRAINT PROJECT_CONSULT

DEMOPROJ . CONSULTANT (PROJ_ID)
DEMOPROJ . PROJECT (PROJ_ID)

LINKED INDEX
ORDER BY (PROJ_ID);

3Kk 3k ok ok ok ok ok ok ok ok ok kok 5k ok ok ok K Sk ok Skok K sk ok sk ok sk ok sk kok 5k Sk ok ok K Sk ok Skok K sk sk sk ok sk sk skok ok k sk ok ok >k sk kok sk sk sk sk sk kok ok

* Alter tables to remove default indexes as necessary
Sk ok Sk sk ok ok sk ok ok ok ok sk ok Sk sk ok ok ok ok sk Kok sk ok ok ok ok ok sk sk kok ok ok ok ok sk sk sk kok ok ok ok ok ok ok >k kok ok ok ok ok >k >k >k kok ok ok ok ok >k >k >k skok

ALTER TABLE DEMOEMPL.COVERAGE
DROP DEFAULT INDEX;

ALTER TABLE DEMOEMPL.DEPARTMENT
DROP DEFAULT INDEX;

ALTER TABLE DEMOEMPL.DIVISION

DROP DEFAULT INDEX;

ALTER TABLE DEMOEMPL.EMPLOYEE
DROP DEFAULT INDEX;

ALTER TABLE DEMOEMPL.INSURANCE PLAN
DROP DEFAULT INDEX;

ALTER TABLE DEMOEMPL.POSITION

Appendix B: Test Database 235

Test Database DDL

DROP DEFAULT INDEX;

ALTER TABLE DEMOPROJ.ASSIGNMENT
DROP DEFAULT INDEX;

ALTER TABLE DEMOPRQJ.CONSULTANT
DROP DEFAULT INDEX;

ALTER TABLE DEMOPROJ.EXPERTISE
DROP DEFAULT INDEX;

ok KKK KoK oK oK oK ok ok 3 KKK Kok oK oK ok ok o o oK KoK oK oK oK oK ok ok S KK oK sk sk koK ok ok ok 3 Kok KoK oK oK ok ok ok Kok

* Create views
Sk ok ok ok ke ok ok ok ok ok >k sk kok ok ok ok ok >k >k sk kok ok ok ok ok ok >k >k >k kok ok ok ok ok >k k >k kok ok ok >k >k >k >k >k kok ok ok >k ok >k sk >k kok ok ok ok >k >k k >k ok

CREATE VIEW DEMOEMPL.EMP VACATION
(EMP_ID, DEPT ID, VAC TIME)
AS SELECT E.EMP_ID, DEPT ID, SWM(VAC ACCRUED) - SUM(VAC TAKEN)
FROM DEMOEMPL.EMPLOYEE E, DEMOEMPL.BENEFITS B
WHERE E.EMP_ID = B.EMP_ID
GROUP BY DEPT ID, E.EMP ID;

CREATE VIEW DEMOEMPL.OPEN POSITIONS
(J0B_ID, JOB NAME, OPEN POS)
AS SELECT J.JOB_ID, J.JOB TITLE,
(J.NUM_OF POSITIONS - COUNT(P.JOB ID))
FROM DEMOEMPL.JOB J, DEMOEMPL.POSITION P
WHERE P.FINISH DATE IS NULL AND P.JOB ID = J.JOB_ID
PRESERVE DEMOEMPL . JOB
GROUP BY J.JOB_ID, J.JOB TITLE, J.NUM OF POSITIONS
HAVING (J.NUM_OF POSITIONS - COUNT(P.JOB ID)) > 0;

ok kKKK KoK oK oK oK ok 3k 3 KKK SKoK oK oK ok ok 3 o K KoK KoK oK oK oK oK ok ok 3 KK oK sk sk ko ok ok ok 3 K Kok KoK oK oK ok ok ok Kok

* Create updatable views
Skoskoskeoke sk sk sk ok sk sk skk skek sk sk sk sk sk sk sk skok sk sk sk sk sk sk sk sk skok Skesk sk sk sk sk sk skok sk osk sk sk sk sk sk skok sk sk sk sk sk ok sk skok sk kskeok skok ok kek

CREATE VIBW DEMOEMPL.EMP HOME INFO
AS SELECT EMP_ID, EMP LNAME, EMP_FNAME, STREET, CITY, STATE,

ZIP CODE, PHONE
FROM DEMOEMPL .EMPLOYEE;

CREATE VIBW DEMOEMPL.EMP WORK INFO
AS SELECT EMP_ID, MANAGER ID, START DATE, TERMINATION DATE
FROM DEMOEMPL . EMPLOYEE;

236 Programming Guide

Demo Data

Demo Data

3Kk 3k ok oK oK ok ok oK ok ok ok Rok K 3k K Sk K Sk >k Skok K sk ok sk K ok ok sk kok K 3k >k ok K Sk >k Skok K sk K sk K sk ok skok ok K sk >k ok >k sk kok sk k sk sk sk sk ke kok

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INTO DEMOEMPL.
VALUES ('D02',
INTO DEMOEMPL.
VALUES ('D04',
INTO DEMOEMPL.
VALUES ('DO6',
INTO DEMOEMPL.
VALUES ('DO9',

INTO DEMOEMPL.

VALUES (3510,

INTO DEMOEMPL.

VALUES (2200,

INTO DEMOEMPL.

VALUES (1100,

INTO DEMOEMPL.

VALUES (3520,

INTO DEMOEMPL.

VALUES (2210,

INTO DEMOEMPL.

VALUES (4200,

INTO DEMOEMPL.

VALUES (1110,

INTO DEMOEMPL.

VALUES (1120,

INTO DEMOEMPL.

VALUES (4600,

INTO DEMOEMPL.

VALUES (3530,

INTO DEMOEMPL.

VALUES (5100,

INTO DEMOEMPL.

VALUES (6200,

INTO DEMOEMPL.

VALUES (5200,

INTO DEMOEMPL.

VALUES (5000,

INTO DEMOEMPL.

VALUES (4900,

INTO DEMOEMPL.

VALUES (6000,

DIVISION

NULL, 'USED CARS');

DIVISION

NULL, 'NEW CARS');

DIVISION

NULL, 'SERVICE');

DIVISION

NULL, 'CORPORATE');

DEPARTMENT

NULL, 'DO2', 'APPRAISAL - USED CARS');
DEPARTMENT

NULL, 'DO2', 'SALES - USED CARS');
DEPARTMENT

NULL, 'D02', 'PURCHASING - USED CARS');
DEPARTMENT

NULL, 'D04', 'APPRAISAL NEW CARS');
DEPARTMENT

NULL, 'D04', 'SALES - NEW CARS');
DEPARTMENT

NULL, 'D04', 'LEASING - NEW CARS');
DEPARTMENT

NULL, 'D04', 'PURCHASING - NBW CARS');
DEPARTMENT

NULL, 'DO6', 'PURCHASING - SERVICE');
DEPARTMENT

NULL, 'DO6', 'MAINTENANCE');
DEPARTMENT

NULL, 'DO6', 'APPRAISAL - SERVICE');
DEPARTMENT

NULL, 'DO6', 'BILLING');

DEPARTMENT

NULL, 'DO9', 'CORPORATE ADMINISTRATION');
DEPARTMENT

NULL, 'DO9', 'CORPORATE MARKETING');
DEPARTMENT

NULL, 'D09', 'CORPORATE ACCOWNTING');
DEPARTMENT

NULL, 'DO9', 'MIS');

DEPARTMENT

NULL, 'DO9', 'LEGAL');

Appendix B: Test Database 237

Demo Data

INSERT INTO DEMOEMPL.DEPARTMENT
VALUES (4500, NULL, 'D@G9', 'HUMAN RESOURCES');
INSERT INTO DEMOPROJ.PROJECT
values ('P634', 3411, '2000-02-01', '2000-03-01',
null, null, 320, null, 'TV ads - WIVK');
INSERT INTO DEMOPROJ.PROJECT
values ('C200', 3411, '1999-01-15', '2000-04-30', '1999-01-15',
'2000-04-30', 1776, 2010, 'New brand research');
INSERT INTO DEMOPROJ.PROJECT
values ('P400', null, '2000-09-01', '2000-12-10',
null, null, 2960, null, 'Christmas media');
INSERT INTO DEMOPROJ.PROJECT
values ('C203', 2894, '1998-02-01', '1998-03-15', '1998-02-10',
'1998-03-10', 960, 901.50, 'Consumer study');
INSERT INTO DEMOPROJ.PROJECT
values ('C240', 4358, '1998-06-01', '1998-07-01', '1998-06-01',
'1998-08-15', 320, 722.75, 'Service study');
INSERT INTO DEMOPROJ.PROJECT
values ('D880', 2466, '1999-11-01', '2001-02-01',
null, null, 960, null, 'Systems analysis');

INSERT INTO DEMOEMPL.JOB
values (8001, 'Vice President', 90000, 136000, 'S', 1,
'1988-01-01",
'Takes overall responsibility upon president absence',
'Oversees coordination among divisions and departments');
INSERT INTO DEMOEMPL.JOB
values (4023, 'Accountant', 44000, 120000, 'S', 1,
'1985-01-01', 'Responsible for quarterly and final reports',
' Works with outside consultants on taxes');
INSERT INTO DEMOEMPL.JOB
values (2051, 'AP Clerk', 8.80, 14.60, 'H', 2,
'1989-03-01',
'Responds to incoming invoices by sending out issued checks',
'Files invoices');
INSERT INTO DEMOEMPL.JOB
values (2053, 'AR Clerk', 8.80, 14.60, 'H', 3,
'1989-03-01', 'Sends out customer invoices',
'Sends out monthly statements and accepts payments');
INSERT INTO DEMOEMPL.JOB
values (2077, 'Purch Clerk', 17000, 30000, 'S', 3,
'1989-03-01",
'Responsible for soliciting quotes from vendors', null);
INSERT INTO DEMOEMPL.JOB
values (3029, 'Computer Operator', 25000, 44000, 'S', 1,
'1993-06-01',
'Responsible for regular operation of computer system',
'Calls outside maintenance as necessary');

238 Programming Guide

Demo Data

INSERT INTO DEMOEMPL.JOB
values (3051, 'Data Entry Clerk', 8.50, 11.45, 'H', 1,
'1993-06-02', 'Enters A/P and A/R data as necessary',
null);
INSERT INTO DEMOEMPL.JOB
values (6011, 'Manager - Acctng', 59400, 121000, 'S', 1,
'1988-01-01',
'RESPONSIBILITY FOR ACCOUNTING INCLUDING A/P AND A/R',
null);
INSERT INTO DEMOEMPL.JOB
values (4560, 'Mechanic', 11.45, 21.00, 'H', 7,
'1984-01-01',
'Works under supervision of senior mechanic to repair cars', null);
INSERT INTO DEMOEMPL.JOB
values (4666, 'Sr Mechanic', 41000, 91000, 'S', 1,
'1988-06-01',
'Oversees maintenance of all cars under warranty or not',
null);
INSERT INTO DEMOEMPL.JOB
values (4734, 'Mktng Admin', 25000, 62000, 'S', 2,
'1994-06-01',
'Provides marketing plans and ideas for marketing', null);
INSERT INTO DEMOEMPL.JOB
values (3333, 'Sales Trainee', 21600, 39000, 'S', 4,
'1994-10-01',
'Initial sales position for incoming salespecple',
'"Works under supervision of salesperson');
INSERT INTO DEMOEMPL.JOB
values (5555, 'Salesperson', 30000, 79000, 'S', 9,
'1984-01-01',
'"Primary responsibility to sell new or used cars', null);
INSERT INTO DEMOEMPL.JOB
values (6004, 'Manager - HR', 66000, 138000, 'S', 1,
'1990-06-01',
'Responsible for hiring, benefits, and education',
'"Also responsible for OSHA compliance');
INSERT INTO DEMOEMPL.JOB
values (6021, 'Manager - Mktng', 76000, 150000, 'S', 1,
'1992-01-02',
'Responsible for all marketing for used and new cars', null);
INSERT INTO DEMOEMPL.JOB
VALUES (2055, 'PAYROLL CLERK', 17000, 30000, 'S',1,'1989-03-01',
'Issue payroll checks to employees and maintains records', null);

Appendix B: Test Database 239

Demo Data

INSERT INTO DEMOEMPL.JOB

values (4025, 'Writer - Mktng', 31000, 50000, 'S', 1,
'1996-06-01', 'Writes marketing material based on marketingplans',

null);

INSERT INTO DEMOEMPL.JOB

values (9001, 'President’, 111000, 190000, 'S', 1,

'1984-01-01', 'Overall responsibility for well-beingof company',
null);

INSERT INTO DEMOEMPL.JOB
values (4123, 'Recruiter', 35000, 56000, 'S', 1,
'1994-03-01',
'Posts job openings and submits newspaper ads for openings', null);
INSERT INTO DEMOEMPL.JOB
values (4130, 'Benefits Analyst', 35000, 56000, 'S', 1,
'1994-03-01"',
'Maintains benefits information, conforms to govt regulations',
null);
INSERT INTO DEMOEMPL.JOB
values (4012, 'Admin Asst', 21000, 44000, 'S', 4,
'1994-03-01', 'Assists managers as necessary',
'Answers phone, files, writes letters, etc.');
INSERT INTO DEMOEMPL.JOB
VALUES (5111, 'CUST SER REP', 27000, 54000, 'S',4,
'1989-06-01',
'Provides customer support-takes care of complaints',
'Provides information for customers over the phone');
INSERT INTO DEMOEMPL.JOB
values (4700, 'Purch Agnt', 33000, 60000, 'S', 5,
'1993-06-01',
'Responsible for purchasing decisions for parts and vehicles', null);
INSERT INTO DEMOEMPL.JOB
values (5890, 'Appraisal Spec', 45000, 70000, 'S', 5,
'1993-06-01",
'Responsible for assessing value of vehicles traded in', null);
INSERT INTO DEMOEMPL.JOB
VALUES (5110, 'CUST SER MGR', 40000, 108000, 'S',1, '1989-06-01',
'Responsible for overseeing all customer support', null);

INSERT INTO DEMOPROJ.SKILL
values (4444, 'Assembly', 'Auto body assembly experience');
INSERT INTO DEMOPROJ.SKILL
values (3333, 'Bodywork',
'Experience in repairing auto bodies');

240 Programming Guide

Demo Data

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INTO DEMOPROJ.SKILL

values (3088, 'Brake work', 'Brake diagnosis and repair');

INTO DEMOPROJ.SKILL
values (3065, 'Electronics’',
'Electronic diagnosis and repair');
INTO DEMOPROJ.SKILL
values (1030, 'Acct Mgt',
'Experience in managing acctng activities');
INTO DEMOPROJ.SKILL
values (5130, 'Basic Math',
'"Knowledge of basic math functions');

INTO DEMOPROJ.SKILL
values (5160, 'Calculus',
'"Knowledge of advanced mathematics');
INTO DEMOPROJ.SKILL
values (4250, 'Data Entry',
'Familiarity with computer keyboard');
INTO DEMOPROJ.SKILL
values (4370, 'Filing',
'"Ability to organize correspondence/invoices');
INTO DEMOPROJ.SKILL
values (5200, 'Gen Acctng',
'Familiarity with basic AR and AP');
INTO DEMOPROJ.SKILL
values (5500, 'Gen Mktng',
'Knowledge of basic marketing concepts');
INTO DEMOPROJ.SKILL
values (5430, 'Mktng Writing',
'Background in promotional writing');
INTO DEMOPROJ.SKILL
values (5420, 'Writing', 'General writing skills');
INTO DEMOPROJ.SKILL
values (4490, 'Gen Ledger',
'Experience with general ledger');
INTO DEMOPROJ.SKILL
values (4430, 'Interviewing',
'Basic interviewing experience');
INTO DEMOPROJ.SKILL

values (1000, 'Management', 'Experience managing people');

INTO DEMOPROJ.SKILL
values (4420, 'Telephone', 'Basic customer support');
INTO DEMOPROJ.SKILL
values (5180, 'Statistics',
'Creating & evaluating statistics');

Appendix B: Test Database 241

Demo Data

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INTO DEMOPROJ.SKILL
values (4410, 'Typing', 'Minimum 60 wpm');
INTO DEMOPROJ.SKILL
values (5309, 'Appraising', 'Used car evaluation');
INTO DEMOPROJ.SKILL
values (6770, 'Purchasing',
'Basic buying & negotiation procedures');
INTO DEMOPROJ.SKILL
values (7000, 'Sales', 'Background in sales techniques');
INTO DEMOPROJ.SKILL
values (6666, 'Billing', 'Basic billing procedures');
INTO DEMOPROJ.SKILL
values (6650, 'Diesel Engine Repair',
'Experience in diesel engine repair');

INTO DEMOPROJ.SKILL
values (6670, 'Gas Engine Repair',

'Experience in gasoline engine repair');
INTO DEMOPROJ.SKILL
values (6470, 'Window Installation',

'Installation of automotive windows');

INTO DEMOEMPL.BMPLOYEE

values (1003, null, 'James', 'Baldwin', 6200,
'21 South St', 'Boston', 'MA', '02010',
'6173295757', 'A', 076598765, '1984-02-01',
null, '1951-08-02');

INTO DEMOEMPL.BMPLOYEE

values (3222, 1003, 'Louise', 'Voltmer', 4500,
'28 Hayden St', 'Brookline', 'MA', '02066',
'6176635520', 'A', 090588361, '1993-01-07',
null, '1968-12-27');

INTO DEMOEMPL.BMPLOYEE

values (4321, 1003, 'George', 'Bradley', 6200,
'344 East Main St', 'Grover', 'MA', '02976',
'5087463300', 'A', 082999642, '1996-08-04',
null, '1966-10-31');

INTO DEMOEMPL.BMPLOYEE

values (1234, 1003, 'Thomas', 'Mills', 6200,
'14 Pleasant St', 'Brookline', 'MA', '02066',
'6176646602', 'A', 055711009, '1985-03-14',
null, '1969-10-19');

INTO DEMOEMPL.BMPLOYEE

values (2466, 1003, 'Patricia‘', 'Bennett', 5000,
'152B Central St', 'Medford', 'MA', '02432',
'5089487709"', 'A', 098339556, '1991-10-29°',

242 Programming Guide

Demo Data

null, '1963-12-23');
INSERT INTO DEMOEMPL.BMPLOYEE
values (2894, 1003, 'William', 'Griffin', 5200,
'390 Sherman St', 'Taunton', 'MA', '02678',
'5088449008', 'A', 077442111, '1992-05-11',
null, '1966-07-10');
INSERT INTO DEMOEMPL.BMPLOYEE
values (2174, 3222, 'Jonathan', 'Zander',6 4500,
'54 Bradford St', 'Brookline', 'MA', '02066',
'6176633854"', 'A', 032423789, '1997-09-30',
null, '1969-05-17');
INSERT INTO DEMOEMPL.BMPLOYEE
values (3118, 3222, 'Alan', 'Wooding', 4500,
'196 School St', 'Canton', 'MA', '02020',
'5083766984', 'A', 098746783, '1992-11-18',
null, '1969-05-17');
INSERT INTO DEMOEMPL.BEMPLOYEE
values (2461, 1234, 'Alice', 'Anderson', 6200,
'534 Newton St', 'Medford', 'MA', '02432',
'5083873664"', 'A', 068338909, '1991-09-09',
null, '1966-07-01');
INSERT INTO DEMOEMPL.BEMPLOYEE
values (3841, 2461, 'Michelle', 'Cromwell', 6200,
'452 Great Rd', 'Boston', 'MA', '02010',
'6173298763', 'A', 055848876, '1994-10-25',
null, '1971-05-20');

INSERT INTO DEMOEMPL.BMPLOYEE
values (4002, 2461, 'Linda', 'Roy', 6200,
'29 Westville Ave', 'Wilmington', 'MA', '02476',
'5088477701', 'A', 098354660, '1995-12-11',
null, '1972-12-13');
INSERT INTO DEMOEMPL.BEMPLOYEE
values (5103, 2466, 'Adele', 'Ferguson', 5000,
'12 York Dr', 'Brookline', 'MA', '02066',
'6176600684', 'A', 095877432, '1999-10-11',
null, '1977-04-19');
INSERT INTO DEMOEMPL.BEMPLOYEE
values (3449, 2466, 'Cynthia', 'Taylor', 5000,
'201 Washington St', 'Concord', 'MA', '01342',
'5082684508', 'A', 088930834, '1993-12-07',
null, '1968-06-02');

Appendix B: Test Database 243

Demo Data

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INTO DEMOEMPL.BEMPLOYEE

values (3411, 2894, 'Catherine', 'Williams', 5200,
'566 Lincoln St', 'Boston', 'MA', '02010',
null, 'A', 083356561, '1993-09-30',
null, '1967-10-28');

INTO DEMOEMPL.EMPLOYEE

values (4358, 2894, 'Judith', 'Robinson', 5200,
'139 White St', 'Wilmington', 'MA', '02476',
'5087488011', 'A', 075399870, '1996-09-13',
null, '1964-10-24');

INTO DEMOEMPL.BEMPLOYEE

values (2781, 4358, 'Joseph', 'Thurston', 5200,
'4 Birch St', 'Stoneham', 'MA', '02928',
'6173286008', 'A', 087700466, '1992-04-12°',
null, '1968-11-29');

INTO DEMOEMPL.BEMPLOYEE

values (2246, 2466, 'Marylou', 'Hamel', 1100,
'11 Main St', 'Medford', 'MA', '02432',
'5083457789', 'A', 059975848, '1998-12-07',
null, '1968-10-24');

INTO DEMOEMPL.EMPLOYEE

values (4703, 2246, 'Martin', 'Halloran', 1100,
'27 Elm St', 'Brookline', 'MA', '02066',
'6176648290', 'A', 054475838, '1997-03-19',
null, '1971-12-28');

INTO DEMOEMPL.EMPLOYEE

values (5008, 2246, 'Timothy', 'Fordman', 1100,
'60 Boston Rd', 'Brookline', 'MA', '02066',
'6176642209', 'A', 033767754, '1998-01-31',
null, '1973-06-07');

INTO DEMOEMPL.EMPLOYEE

values (3082, 2894, 'John', 'Brooks', 3510,
'129 Bedford St', 'Camden', 'MA', '02113',
'5089273644', 'A', 098234567, '1992-07-03',
null, '1970-09-02');

INTO DEMOEMPL.EMPLOYEE

values (4773, 3082, 'Janice', 'Dexter', 3510,
'399 Pine St', 'Medford', 'MA', '02432',
'5083847566', 'A', 089675632, '1997-06-14',
null, '1969-11-19');

244 Programming Guide

Demo Data

INSERT INTO DEMOEMPL.BMPLOYEE
values (2180, 2894, 'Joan', 'Albertini', 2200,
'501 Piper Rd', 'Medford', 'MA', '02432',
'5083145366', 'A', 066783225, '1989-10-27',
null, '1964-03-26');
INSERT INTO DEMOEMPL.BEMPLOYEE
values (4660, 2180, 'Bruce', 'MacGregor', 2200,
'254 Waterside Rd', 'Camden', 'MA', '02113',
'5092344620', 'A', 098363389, '1997-01-20',
null, '1965-10-28');

INSERT INTO DEMOEMPL.BEVMPLOYEE
values (3767, 2180, 'Frank', 'Lowe', 2200,
'25 Rutland St', 'Natick', 'MA', '02364°',
'5082844094', 'A', 066985009, '1994-08-31',
null, '1964-12-08');
INSERT INTO DEMOEMPL.BMPLOYEE
values (2448, 2180, 'David', 'Lynn', 2200,
'93 Hubbard St', 'Natick', 'MA', '02364',
'5082844736', 'A', 028448958, '1991-09-01',
null, '1961-03-02');

INSERT INTO DEMOEMPL.BEMPLOYEE
values (3704, 2448, 'Richard', 'Moore', 2200,
'130 Swanson St', 'Dedham', 'MA', '02026',
'6177739440', 'A', 095435467, '1994-04-10',
null, '1961-11-23');
INSERT INTO DEMOEMPL.BEMPLOYEE
values (1765, 2466, 'David', 'Alexander', 1110,
'18 Cross St', 'Grover', 'MA', '02976',
'5087394772', 'A', 048903743, '1985-10-23',
null, '1955-11-13');

INSERT INTO DEMOEMPL.BEMPLOYEE
values (2106, 1765, 'Susan', 'Widman', 1110,
'43 Qak St', 'Medford', 'MA', '02432',
'5083346364', 'A', 109857893, '1989-05-01',
null, '1971-05-11');
INSERT INTO DEMOEMPL.BEMPLOYEE
values (3769, 2894, 'Julie', 'Donelson', 3520,
'14 Atwood Rd', 'Grover', 'MA', '02976',
'5084850432', 'A', 067783532, '1994-08-31',
null, '1967-08-15');

Appendix B: Test Database 245

Demo Data

INSERT INTO DEMOEMPL.EMPLOYEE
values (2010, 2894, 'Cora', 'Parker', 2210,
'2 Spring St', 'Boston', 'MA', '02010',
null, 'A', 086574983, '1983-03-18',
null, '1962-05-25');
INSERT INTO DEMOEMPL.BEMPLOYEE
values (4001, 2010, 'Jason', 'Thompson', 2210,
'3 Flintlock St', 'Natick', 'MA', '02364',
'5082649956', 'A', 054578957, '1995-12-11',
null, '1964-08-15');

INSERT INTO DEMOEMPL.BMPLOYEE
values (4008, 2010, 'Robert', 'Clark', 2210,
'54 Tenny St', 'Brookline', 'MA', '02066',
null, 'A', 198546272, '19%-01-23',
null, '1959-11-01');
INSERT INTO DEMOEMPL.BMPLOYEE
values (4962, 2010, 'Peter', 'White', 2210,
'1440 Mass Ave', 'Boston', 'MA', '02010',
'6177732280', 'A', 123395857, '1997-10-04',
null, '1959-07-01');

INSERT INTO DEMOEMPL.BEMPLOYEE
values (3764, 2010, 'Deborah', 'Park', 2210,
'379 Center St', 'Brookline', 'MA', '02066',
'6179458377', 'A', 034222564, '1994-08-25',
null, '1960-03-08');
INSERT INTO DEMOEMPL.BEMPLOYEE
values (5090, 2010, 'Stephen', 'Wills', 2210,
'34 Avon Dr', 'Canton', 'MA', '02020',
'5083389935', 'A', 012434452, '1998-07-12°',
null, '1972-04-25');

INSERT INTO DEMOEMPL.BEMPLOYEE
values (3991, 2010, 'Fred', 'Wilkins', 2210,
'344 Stevens St', 'Taunton', 'MA', '02678',
'5081840883', 'A', 026475929, '1994-11-12°',
null, '1963-03-29');
INSERT INTO DEMOEMPL.BEMPLOYEE
values (4027, 3991, 'Cecile', 'Courtney', 2210,
'99 West Main St', 'Natick', 'MA', '02364',
'5089445386', 'A', 012209982, '1996-04-01',
null, '1967-07-07');

246 Programming Guide

Demo Data

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INTO DEMOEMPL.BEMPLOYEE

values (3778, 2466, 'Jane', 'Ferndale', 5100,
'15 Dawson St', 'Medford', 'MA', '02432',
'6173450099', 'A', 10477822, '1994-09-07',
null, '1962-11-30');

INTO DEMOEMPL.EMPLOYEE

values (2598, 3778, 'Mary', 'Jacobs', 5100,
'24A Main St', 'Camden', 'MA', '02113',
null, 'A', 339000022, '1992-01-03',
null, '1974-05-02');

INTO DEMOEMPL.EMPLOYEE

values (2004, 2466, 'Eleanor', 'Johnson', 1120,
'225 Fisk St', 'Medford', 'MA', '02432',
'5089253998', 'A', 01010885, '1988-02-28',
null, '1952-12-23');

INTO DEMOEMPL.EMPLOYEE

values (3294, 2004, 'Carolyn', 'Johnson', 1120,
'79 High St', 'Brookline', 'MA', '02066',
'6175567551', 'A', 038800922, '1993-02-19',
null, '1967-10-05');

INTO DEMOEMPL.EMPLOYEE

values (3338, 2004, 'Mark', 'White', 1120,
'560 Camden St', 'Canton', 'MA', '02020',
'6179238844', 'A', 055002432, '1993-07-02',
null, '1964-08-15');

INTO DEMOEMPL.EMPLOYEE

values (2209, 2894, 'Michael', 'Smith', 3530,
'201 Summer St', 'Brookline', 'MA', '02066',
'6175563331', 'A', 093666540, '1990-06-17',
null, '1959-12-13');

INTO DEMOEMPL.BEMPLOYEE
values (3341, 2209, 'Carl', 'Smith', 3530,
'18 South St', 'Newton', 'MA', '02576',
'6179658099', 'A', 033970385, '1993-07-02',
null, '1962-02-03');
INTO DEMOEMPL.BEMPLOYEE
values (2096, 4321, 'Thomas', 'Carlson', 4600,
'23 Hemmingway Ln', 'Brookline', 'MA', '02066',
'6175553643', 'A', 041783445, '1989-01-26',
null, '1964-04-14");

Appendix B: Test Database

247

Demo Data

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INTO DEMOEMPL.BEMPLOYEE
values (2437, 2096, 'Henry', 'Thompson', 4600,

'1467 West Ave', 'Boston', 'MA', '02030',
'6179264105', 'S', 44622905, '1991-08-06',
null, '1966-10-12');

INTO DEMOEMPL.BMPLOYEE

values (3433, 2096, 'Herbert', 'Crane', 4600,
'20 W Bloomfield Ave', 'Newton', 'MA', '02456',
'6178653440', 'A', 209338445, '1993-11-01',
null, '1958-05-30');

INTO DEMOEMPL.EMPLOYEE
values (1034, 2096, 'James', 'Gallway', 4600,
'12 East Speen St', 'Stoneham', 'MA', '02928',

'6172251178', 'A', 067775312, '1984-02-01',
null, '1951-11-23');

INTO DEMOEMPL.BEMPLOYEE

values (2424, 1034, 'Ronald', 'Wilder', 4600,
'30 Heron Ave', 'Natick', 'MA', '02178',
'5083347700', 'A', 056668338, '1991-07-24',
null, '1948-09-09');

INTO DEMOEMPL.BMPLOYEE
values (4456, 1034, 'Thomas', 'Thompson', 4600,
'32 South Broadway', 'Newton', 'MA', '02576',

'6179660089', 'A', 077492347, '1997-01-04',
null, '1978-09-13');

INTO DEMOEMPL .BMPLOYEE

values (3288, 1034, 'Ralph', 'Sampson', 4600,
'99 Vale Ave', 'Newton', 'MA', '02576',
'6179654443', 'A', 077447333, '1993-01-29°',
null, '1962-09-30');

INTO DEMOEMPL.BMPLOYEE

values (2299, null, 'Samuel', 'Spade', 4600,
'47 London St', 'Canton', 'MA', '02020',
null, 'L', 033892200, '1991-02-04',
null, '1958-01-09');

INTO DEMOEMPL.BMPLOYEE

values (3199, null, 'Martin', 'Loren', 4600,
'401 Cross St', 'Grover', 'MA', '02976',
null, 'L', 098884332, '1992-12-05',
null, '1962-10-19');

248 Programming Guide

Demo Data

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INTO DEMOEMPL.

values (2145,

EMPLOYEE
null,

'Martin',

'Catlin', 5200,

'44 Smithville Hts', 'Wilmington', 'MA', '02476',

'5087480625",

null,

INTO DEMOEMPL.

BMPLOYEE

‘L', 044895224,
'1954-03-02');

values (2898, null, 'Mary', 'Umidy', 1120,

'895A Braintree Circle',
'6173458860"' ,

null,

INTO DEMOEMPL.

values (4773,
null,

INTO DEMOEMPL.

values (1234,
null,

INTO DEMOEMPL.

values (3082,
null,

INTO DEMOEMPL.

values (2180,
null,

INTO DEMOEMPL.

values (4660,
.25,

values (3767,
.23,

INTO DEMOEMPL.

values (2448,
.255,

INTO DEMOEMPL.

values (3704,
null,

INTO DEMOEMPL.

values (4703,
null,

INTO DEMOEMPL.

values (2246,
null,

INTO DEMOEMPL.

values (5008,
null,

INTO DEMOEMPL.

values (3769,
null,

POSITION
5890,
null, null);
POSITION

8001,
null, null);
POSITION

5890,
null, null);

POSITION
5555,
null, null);
POSITION

5555,

POSITION
5555,

POSITION
5555,
.157, null);
POSITION

3333,
.105, null);
POSITION

2077,
null, null);

POSITION
4700,
null, null);
POSITION

4700,
null, null);
POSITION

5890,
null, null);

'S', 056906868,
'1962-05-11');

'1997-06-14',

'1985-03-14',

'1992-07-03',

'1990-04-18',

'1997-03-31',
.157, null);
INTO DEMOEMPL.
'1995-01-11",
.125, null);

'1991-09-01',

'1994-04-10',

'1997-03-19',

'1993-09-28',

'1998-01-31',

'1994-08-31',

null,

null,

null,

null,

null,

null,

null,

null,

null,

null,

null,

null,

'Medford', 'MA',
'1992-05-11",

null,

null,

null,

null,

null,

null,

null,

null,

null,

null,

null,

null,

'1989-09-24",

'02432",

45240.00,

117832.68,

68016.00,

76961.00,

36400.00,

50440.50,

70720.00,

22880.00,

24857.00,

59488.00,

47944.00,

41600.00,

Appendix B: Test Database

249

Demo Data

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INTO DEMOEMPL.

values (4001,
.23,

INTO DEMOEMPL.

values (4008,
null,

INTO DEMOEMPL.

values (4962,
null,

INTO DEMOEMPL.

values (2010,
275,

INTO DEMOEMPL.

values (3764,
.26,

values (5090,
.205,

INTO DEMOEMPL.

values (4027,
null,

INTO DEMOEMPL.

values (3991,
.235,

INTO DEMOEMPL.

values (1765,
null,

INTO DEMOEMPL.

values (2106,
null,

INTO DEMOEMPL.

values (2096,
null,

INTO DEMOEMPL.

values (2437,
null,

INTO DEMOEMPL.

values (2598,
null,

POSITION
5555,

POSITION
3333,
.99, null);
POSITION

3333,
.125, null);

POSITION
5555,
.180, null);
POSITION

5555,

POSITION
5555,
.135, null);

POSITION
3333,
.120, null);
POSITION

5555,
.125, null);
POSITION

4700,
null, null);

POSITION
2077,
null, null);
POSITION
4666,
null, null);
POSITION
4560,
null, 21.83);
POSITION

2053,
null, 15.00);

'1995-12-11",
.125, null);

'1996-01-23',

'1997-10-04',

'1988-03-18',

'1995-10-02"',
.170, null);
INTO DEMOEMPL.
'1998-07-12"',

'1996-04-01',

'1995-06-06",

'1992-06-10',

'1989-05-01',

'1994-10-10',

'1991-08-06',

'1992-01-03',

null,

null,

null,

null,

null,

null,

null,

null,

null,

null,

null,

null,

null,

null, 36921.00,

null, 24441.00,

null, 30680.00,

null, 76440.00,

null, 54184.00,

null, 48568.48,

null, 28081.40,

null, 42016.00,

null, 47009.34,

null, 23920.00,

null,

85280.00,

14.55, null,

10.50, null,

250 Programming Guide

Demo Data

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INTO DEMOEMPL.

values (3433,
null,

INTO DEMOEMPL.

values (3778,
null,

INTO DEMOEMPL.

values (1034,
null,

INTO DEMOEMPL.

values (2424,
null,

INTO DEMOEMPL.

values (2004,
null,

INTO DEMOEMPL.

values (4456,
null,

INTO DEMOEMPL.

values (3288,
null,

INTO DEMOEMPL.

values (3341,
null,

INTO DEMOEMPL.

values (2209,
null,

INTO DEMOEMPL.

values (3294,
null,

INTO DEMOEMPL.

values (3338,
null,

INTO DEMOEMPL.

values (2174,
null,

INTO DEMOEMPL.

values (3118,
null,

POSITION
4560,
null, 28.00);
POSITION

2053,
null, 14.00);
POSITION

4560,
null, 29.50);

POSITION
4560,
null, 19.40);
POSITION

4700,
null, null);
POSITION
4560,
null, 19.87);

POSITION
4560,
null, 23.60);
POSITION

5890,
null, null);
POSITION
5890,
null, null);

POSITION
4700,
null, null);
POSITION

2077,
null, null);
POSITION

4123,
null, null);
POSITION

4130,
null, null);

'1993-11-01',

'1994-09-07',

'1984-02-01',

'1991-07-24",

'1993-11-19',

'1997-01-04',

'1993-01-29',

'1993-07-02',

'1990-06-17',

'1993-02-19',

'1993-07-02',

'1989-09-30',

'1992-11-18',

null,

null,

null,

null,

null,

null,

null,

null,

null,

null,

null,

null,

null,

19.15, null,

9.98, null,

20.93, null,

13.60, null,
null, 59280.00,

14.58, null,

16.40, null,
null, 48465.80,

null, 66144.00,

null, 53665.56,

null, 22048.84,
null, 49921.76,

null, 45241.94,

Appendix B: Test Database

251

Demo Data

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INTO DEMOEMPL
values (3222,
null,
INTO DEMOEMPL
values (4321,
null,
INTO DEMOEMPL
values (2461,
null,

INTO DEMOEMPL.

values (3841,
null,

INTO DEMOEMPL.

values (4002,
null,

INTO DEMOEMPL.

values (1003,
null,

INTO DEMOEMPL.

values (5103,
null,

INTO DEMOEMPL.

values (2466,
null,

INTO DEMOEMPL.

values (3449,
null,

INTO DEMOEMPL.

values (2781,
null,

INTO DEMOEMPL.

values (2894,
null,

INTO DEMOEMPL.

values (3411,
null,

.POSITION
'1993-01-07',

6004,
null, null);

.POSITION
'1996-08-04",

5110,
null, null);

.POSITION
'1991-09-09',

4012,
null, null);
POSITION

4012,
null, null);

POSITION
4012,
null, null);
POSITION
92001,
null, null);
POSITION
2051,
null, 11.70);
POSITION

6011,
null, null);

POSITION
4023,
null, null);
POSITION

4025,
null, null);

POSITION
6021,
null, null);
POSITION

4734,
null, null);

'1994-10-25',

'1995-12-11',

'1984-02-01',

'1999-10-11',

'1991-10-29',

'1993-12-07',

'1992-04-12',

'1992-05-11',

'1995-04-02',

null,

null,

null,

null,

null,

null,

null,

null,

null,

null,

null,

null,

null,

null,

null,

null,

null,

null,

7.13,

null,

null,

null,

null,

null,

110448.00,

56977.80,

43784.00,

33800.00,

28601.80,

146432.00,

null,

94953.52,

74776.00,

43888.00,

111593.00,

53665.00,

252 Programming Guide

Demo Data

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INTO DEMOEMPL.
values (4358,
null,
INTO DEMOEMPL.
VALUES (3764,
null,
INTO DEMOEMPL.
values (3991,
null,
INTO DEMOEMPL.
values (2246,
null,

INTO DEMOEMPL.
values (2096,
null,
INTO DEMOEMPL.
values (3767,
null,
INTO DEMOEMPL.
values (2180,
null,
INTO DEMOEMPL.
values (4660,
null,

INTO DEMOEMPL.
values (1765,

POSITION
4734,
null, null);
POSITION

3333,
null, null);
POSITION

3333,
null, null);
POSITION

2077,
null, null);

POSITION
4560,
null, 28.85);
POSITION

3333,

POSITION
3333,

POSITION
3333,

POSITION
2077,

null, null, null);

INTO DEMOEMPL.
values (2004,

POSITION
2053,

null, null, 13.50);

INTO DEMOEMPL.
values (3411,

POSITION
4012,

null, null, null);

INTO DEMOPROJ.
values (4773,

INTO DEMOPROJ.
values (1234,
INTO DEMOPROJ.
values (3082,
INTO DEMOPROJ.
values (2180,
INTO DEMOPROJ.
values (4660,
INTO DEMOPROJ.
values (3767,
INTO DEMOPROJ.
values (2448,

EXPERTISE
5309, '02',

EXPERTISE
1000, '04',
EXPERTISE
5309, '04',
EXPERTISE
7000, '04',
EXPERTISE
7000, '03',
EXPERTISE
7000, '04°',
EXPERTISE
7000, '03',

'1996-09-13',

'1994-08-25',

'1994-11-12",

'1990-12-07',

'1989-01-26',

'1994-08-31',
.105, null);

'1997-10-27",
.09, null);

'1997-01-20"',
.11, null);

'1985-10-23',

'1988-02-28',

'1993-09-30",

null, null, 57824.50,

'1995-10-01', NULL, 28912.00,

'1995-06-05', null, 27976.00,

'1993-09-27', null, 29536.00,

'1994-10-09', 17.90, null,

'1995-01-10', null, 2200.00,

'1990-04-17', null, 19000.10,

'1997-03-30', null, 24000.00,

'1992-06-10', null, 18001.00,

'1993-11-18', 9.50, null,

'1995-04-01', null, 44001.40,

'1995-10-14");

'1988-06-01");

'1994-06-03");

'1993-01-01');

'1995-10-09');

'1994-09-20"');

'1991-06-10");

Appendix B: Test Database 253

Demo Data

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INTO DEMOPROJ.

values (3704,

INTO DEMOPROJ.

values (4703,

INTO DEMOPROJ.

values (2246,

INTO DEMOPROJ.

values (2246,

INTO DEMOPROJ.

values (5008,

INTO DEMOPROJ.

values (4703,

INTO DEMOPROJ.

values (3769,

INTO DEMOPROJ.

values (4001,
INTO DEMOPROJ
values (4008,

INTO DEMOPROJ.

values (4962,

INTO DEMOPROJ.

values (2010,

INTO DEMOPROJ.

values (3764,

INTO DEMOPROJ.

values (5090,

INTO DEMOPROJ.

values (4027,

INTO DEMOPROJ.

values (3991,

INTO DEMOPROJ.

values (1765,

INTO DEMOPROJ.

values (2106,

INTO DEMOPROJ.

values (2096,

INTO DEMOPROJ.

values (2096,

INTO DEMOPROJ.

values (2437,

INTO DEMOPROJ.

EXPERTISE
7000, '01',
EXPERTISE
4250, '03',
EXPERTISE
leeo, '03',
EXPERTISE
6670, '04',
EXPERTISE
6770, '04',

EXPERTISE
5130, '03',
EXPERTISE
5309, '04',
EXPERTISE
7000, '03',

.EXPERTISE

4420, '01',
EXPERTISE
5130, '02',

EXPERTISE
7000, '03',
EXPERTISE
7000, '03',
EXPERTISE
7000, '03',
EXPERTISE
7000, '01',
EXPERTISE
7000, '03',

EXPERTISE
6770, '04',
EXPERTISE
6770, '03',
EXPERTISE
3333, 'ez2’',
EXPERTISE
3065, '03',
EXPERTISE
3333, '04',
EXPERTISE

'1993-08-21"

'1996-11-20"

'1993-10-01'

'1990-03-29'

'1998-01-31"'

'1998-03-30"'

'1992-10-04'

'1994-12-11"

'1994-12-14'

'1992-11-01"

'1988-02-18'

'1992-01-01'

'1997-02-12'

'1995-03-19'

'1995-01-01"

'1985-10-23"'

'1991-10-01'

'1995-03-03"

'1998-04-01"

'1995-03-15'

);

);

);

);

);

);

);

);

);

);

);

);

);

254 Programming Guide

Demo Data

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

values (2437,

INTO DEMOPROJ.

values (2598,
INTO DEMOPROJ
values (3433,

INTO DEMOPROJ.

values (3778,

INTO DEMOPROJ.

values (3778,

INTO DEMOPROJ.

values (1034,
INTO DEMOPROJ
values (2424,

INTO DEMOPROJ
values (2004,

INTO DEMOPROJ.

values (4456,

INTO DEMOPROJ.

values (4456,

INTO DEMOPROJ.

values (3288,
INTO DEMOPROJ]
values (3288,

INTO DEMOPROJ.

values (3288,

INTO DEMOPROJ.

values (3341,
INTO DEMOPROJ
values (2209,

INTO DEMOPROJ
values (3294,

INTO DEMOPROJ.

values (3338,

INTO DEMOPROJ.

values (2174,

INTO DEMOPROJ.

values (3118,

INTO DEMOPROJ.

values (3222,

4444, '04',
EXPERTISE
6666, '03',

.EXPERTISE

6650, '02',
EXPERTISE
5200, '03',
EXPERTISE
6606, '04',

EXPERTISE
6470, '02',

.EXPERTISE

6470, '03',

.EXPERTISE

6770, '04',
EXPERTISE
6670, '01',
EXPERTISE
3065, '02',

EXPERTISE
6650, '02',

.EXPERTISE

6670, '01',
EXPERTISE
3333, '04°',
EXPERTISE
5309, '03',

.EXPERTISE

5309, '04',

.EXPERTISE

6770, '01',
EXPERTISE
6770, '03',
EXPERTISE
4430, '04',
EXPERTISE
5180, '03',
EXPERTISE
1000, '04',

'1997-05-01"

'1997-07-25'

'1991-10-01'

'1998-01-21"

'1998-05-15"

'1984-02-21"

'1989-04-18'

'1988-02-28"

'1993-06-02'

'1993-09-01'

'1993-06-12"

'1994-12-01'

'1993-12-01"

'1993-10-02'

'1992-08-12'

'1989-09-21"'

'1994-12-11"

'1995-03-30"'

'1995-07-23"'

'1995-10-01"'

);

);

);

);

);

);

);

);

);

);

);

);

);

);

);

);

);

);

);

Appendix B: Test Database 255

Demo Data

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INTO DEMOPROJ]
values (3222,

INTO DEMOPROJ.

values (4321,

INTO DEMOPROJ.

values (4321,
INTO DEMOPROJ
values (2461,

INTO DEMOPROJ.

values (2461,

INTO DEMOPROJ.

values (2461,

INTO DEMOPROJ.

values (3841,
INTO DEMOPROJ
values (3841,

INTO DEMOPROJ.

values (4002,

INTO DEMOPROJ.

values (4002,
INTO DEMOPROJ
values (1003,

INTO DEMOPROJ
values (5103,

INTO DEMOPROJ.

values (2466,

INTO DEMOPROJ.

values (2466,

INTO DEMOPROJ.

values (2466,
INTO DEMOPROJ
values (3449,

INTO DEMOPROJ
values (2781,

INTO DEMOPROJ.

values (2781,

INTO DEMOPROJ.

values (2894,
INTO DEMOPROJ
values (2894,

INTO DEMOPROJ.

values (3411,

INTO DEMOPROJ.

values (4358,

.EXPERTISE

4430, '04',
EXPERTISE
4430, '04',
EXPERTISE
leeo, '03',

.EXPERTISE

4370, '04',
EXPERTISE
4250, '04',
EXPERTISE
5180, '03',

EXPERTISE
4370, '03',

.EXPERTISE

4410, '02',
EXPERTISE
4370, '03',
EXPERTISE
4410, '04',

.EXPERTISE

1000, '04',

.EXPERTISE

5200, '04',
EXPERTISE
1030, '04',

EXPERTISE
5200, '04',
EXPERTISE
4490, '03',

.EXPERTISE

5200, '03',

.EXPERTISE

5430, '01',
EXPERTISE
5420, '02',
EXPERTISE
1000, '04',

.EXPERTISE

5500, '04',
EXPERTISE
5500, '04',
EXPERTISE
5500, '03',

'1996-12-01'

'1997-03-24'

'1998-06-01'

'1994-03-12'

'1997-03-01"'

'1997-06-01"'

'1995-10-10'

'1996-06-01"'

'1996-02-15"

'1999-01-15"

'1984-02-01'

'1997-10-11"

'1991-10-29'

'1999-06-01"'

'1999-12-01'

'1993-09-29'

'1995-09-27'

'1996-12-01'

'1995-11-12'

'1996-12-15'

'1997-01-30"'

'1996-12-30"

);

);

);

);

);

)

);

);

);

);

);

)

);

);

256 Programming Guide

Demo Data

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INTO DEMOPROJ.CONSULTANT

values (9443, 'Diane', 'Jones', 2466, 5200, 'D880',
'183 Hawthorne Ln', 'Medford', 'MA', '02432',
'5084475583"', '1957-01-23', '1999-08-08', 089393334,
50.00);

INTO DEMOPROJ.CONSULTANT

values (9439, 'Charles', 'Miller', 2466, 4900, 'D880'
'85 St. James St', 'Brookline', 'MA', '02066',
'6174800873"', '1963-09-12', '1999-02-18', 085763854,
47.00);

INTO DEMOPROJ.CONSULTANT
values (9388, 'Linda', 'Candido', 2466, 5200, 'D880',
'54 Church St', 'Newton', 'MA', '02456',
'6179943082', '1959-08-30', '1997-12-21', 033006132,
76.00);
INTO DEMOPROJ.CONSULTANT
values (9000, 'James', 'legato', 1003, 6000, null,
'85 North Rd', 'Newton', 'MA', '02456',
'6179964874', '1970-05-20', '1994-03-20', 095578460,
148.00);

INTO DEMOEMPL.BENEFITS
VALUES (2000, 4773, 68, 68, 8.00, 5.00, 6 ,0
, '2000-10-15', .05, null,
NULL, NULL, 900.00,0 ,0,
'COLL', null, null);
INTO DEMOEMPL.BENEFITS
VALUES (2000, 3082, 68, 52, 8, 8, 06 ,0
, '2000-10-20', .055, null,
'401K', .08, 1400.00,0 ,0,
'JRCOLL', null, null);

INTO DEMOEMPL.BENEFITS

VALUES (2000, 2180, 92.50, 0, 8.00, 4.00, 0 ,0
, '2000-10-30', .06, null,
'STOCK', .05, 2100.00, 16, O ,
'COLL', null, null);

INTO DEMOEMPL.BENEFITS

values (2000, 4660, 68, 56, 8.00, 0, .07,
3095, '2000-01-13', .06, null,
'401K', .05, 850.68,0,0,
'"HSDIP', null, null);

Appendix B: Test Database 257

Demo Data

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INTO DEMOEMPL.BENEFITS

values (2000, 3767, 68, 68, 8.00, 0, .07,
2250, '2000-09-22', .045, null,
'401K', .05, 1350.50, 16, 16,
'JRCOLL', null, null);

INTO DEMOEMPL.BENEFITS

values (2000, 2448, 68, 20.50, 8.00, 3,
6600, '2000-07-13', .05, null,
'BONDS', .08, 2100.00, 0,0,
'COLL', null, null);

.075,

INTO DEMOEMPL.BENEFITS

values (2000, 3704, 68, 48, 8.00, 8.00,
3470, '2000-04-30', .045, null,
'BONDS', .04, 1800.00, 8, 8,
'JRCOLL', null, null);

INTO DEMOEMPL.BENEFITS

values (2000, 4703, 46.75, 16, 8.00, 14.
3010, '2000-03-10', .08, null,
NULL, NULL, 1107.50,0,0,
'"HSDIP', null, null);

.05,

.05,

INTO DEMOEMPL.BENEFITS

values (2000, 2246, 92.50, 72, 8.00, 5, .05,
4500, '2000-12-15', .08, '1993-09-27',
null, null, 2300.00, 24.5, 16.00,
'"HSDIP', null, null);

INTO DEMOEMPL.BENEFITS

values (2000, 5008, 46.5, 40, 8.00, 0O,
2000, '2000-01-29', .06, null,
'401K', .05, 307.50,0,0,
'COLL', null, null);

.10,

INTO DEMOEMPL.BENEFITS

values (2000, 3769, 68, 0, 8.00, 6.00,
6600, '2000-10-01', .04, null,
'401K', .03, 1356.70,0,0,
'HSDIP', null, null);

INTO DEMOEMPL.BENEFITS

VALUES (2000, 4001, 68, 40, 8.00, 2.5,
, '2000-12-20', .04, null,
NULL, NULL, 1756.50,0,0,
'"HSDIP', null, null);

.10,

0,0

258 Programming Guide

Demo Data

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INTO DEMOEMPL.BENEFITS
VALUES (2000, 4008, 68, 0, 8.00, 3.5,0,0
, '2000-01-14', .05, null,
'401K', .05, 1750.00,0,0,
'COLL', null, null);
INTO DEMOEMPL.BENEFITS
VALUES (2000, 4962, 68, 16, 8.00, 7.5, 0,0
, '2000-10-04', .06, null,
'401K', .06, 1307.80, 8.5, 8.5,

'"COLL', null, null);

INTO DEMOEMPL.BENEFITS

VALUES (2000, 2010, 92.75, 16.00, 8.00, 2.5,0,0

, '2000-03-18', .05, null,
'STOCK', .05, 2450.50, 0,0,
'COLL', null, null);

INTO DEMOEMPL.BENEFITS

values (2000, 3764, 68, 80, 8.00, 5.00, .08,
3060, '2000-06-11', .065, '1991-05-10',
'STOCK', .06, 1406.90, 32.5, 16.0,
'"COLL', null, null);

INTO DEMOEMPL.BENEFITS

VALUES (2000, 5090, 46, 0, 8.00, 0,0,0
, '2000-07-14', .04, null,
NULL, NULL, ©0,0,0,
"JRCOLL', null, null);

INTO DEMOEMPL.BENEFITS

values (2000, 4027, 68, 40, 8.00, 4.00, .08,
3000, '2000-07-19', .035, null,
'401K', .04, 1750.00,0,0,
'COLL', null, null);

INTO DEMOEMPL.BENEFITS

values (2000, 3991, 68, 68, 8.00, 3.00, .08,
4500, '2000-11-12', .055, '1995-06-05',
'401K', .06, 1354.60, 8.0, O,
'COLL', null, null);

INTO DEMOEMPL.BENEFITS

values (2000, 1765, 92.5, 32, 8.00, 0, .10,
7600, '2000-10-23', .07, null,
'401K', .08, 2500.00, 32, 0,
'"COLL', null, null);

Appendix B: Test Database 259

Demo Data

INSERT INTO DEMOEMPL.BENEFITS
values (2000, 2106, 92.5, 32, 8.00, 1.00, .08,
5500, '2000-04-16', .06, '1999-08-17',
'BONDS', .04, 2100.00, 0,0,
'"HSDIP', null, null);
INSERT INTO DEMOEMPL.BENEFITS
VALUES (2000, 2096, 92.5, 80, 8.00, 5.00, .05,
5300, '2000-02-28', .055,
'1998-10-09', 'STOCK', .05, 2300.00, 0,0,
'"HSDIP', NULL, NULL);

INSERT INTO DEMOEMPL.BENEFITS
VALUES (2000, 2437, 68, 0, 8.00, 4.5, 0,0
, '2000-08-16', .04, null,
NULL, NULL, 2100.60, 0,0,
'GED', 'MC655-6991', 90.55);
INSERT INTO DEMOEMPL.BENEFITS
VALUES (2000,2598, 60, 8, 20.00, 8.5, 0 ,0
, '2000-01-26', .035, null,
NULL, NULL, 2300.600, 0,0,
'"HSDIP', 'HP302-7409', 50.50);

INSERT INTO DEMOEMPL.BENEFITS
VALUES (2000, 3433, 68, 40, 8.00, 4.00,0,0
, '2000-10-23', .05, null,
NULL, NULL, 1456.70,0,0,
"JRCOLL', 'MC655-7487', 90.55);
INSERT INTO DEMOEMPL.BENEFITS
VALUES (2000, 3778, 68, 40, 8.00, 4,0,0
, '2000-09-24', .06, null,
NULL, NULL, 1350.50,0,0,
'"HSDIP', 'HP302-7487', 50.50);

INSERT INTO DEMOEMPL.BENEFITS
values (2000, 1034, 92.5, 72, 8.00, 2.5, .10,
5540, '2000-01-24', .05, null,
'BONDS', .06, 2900.00, 0,0,
'"HSDIP', 'MC655-4490', 90.55);
INSERT INTO DEMOEMPL.BENEFITS
values (2000, 2424, 92.5, 48, 8.00, 3.5, .05,
2460, '2000-07-19', .04, null,
NULL, NULL, 2100.600, 0,0,
'"HSDIP', 'MC655-5571', 90.55);

260 Programming Guide

Demo Data

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INTO DEMOEMPL.BENEFITS

values (2000, 2004, 92.5, 40, 8.00, 0, .05,
2300, '2000-02-28', .03, null,
'401K', .04, 2450.50,0,0,
'JRCOLL', null, null);

INTO DEMOEMPL.BENEFITS

VALUES (2000, 4456, 68, 40, 8.00, 7.00,0,0
, '2000-01-05', .03, null,
NULL, NULL, 906.50,0,0,
'"HSDIP', 'MC655-6680', 90.55);

INTO DEMOEMPL.BENEFITS
VALUES (2000, 3288, 68, 56, 8.00, 2.00,0,0
, '2000-01-05', .04, null,
NULL, NULL, 1500.00, 0,0,
'"HSDIP', 'MC655-4402', 90.55);
INTO DEMOEMPL.BENEFITS
VALUES (2000, 3341, 68, 32.5, 8.00, 3.00,0,0
, '2000-10-05', .045, null,
'401K', .07, 1500.00, 0,0,
'"COLL', null, null);

INTO DEMOEMPL.BENEFITS

VALUES (2000, 2209, 92.50, 32, 8.00, 5.5,0,0
, '2000-06-14', .06, null,
'401K', .06, 2300.00, 16.00, 16.00,
'"COLL', null, null);

INTO DEMOEMPL.BENEFITS

VALUES (2000, 3294, 68, 16, 8.00, 3.00,0,0
, '2000-02-28', .055, null,
'401K', .03, 1500.00, 0,0,
'COLL', null, null);

INTO DEMOEMPL.BENEFITS

VALUES (2000, 3338, 68, 0, 8.00, 1.5,0,0
, '2000-07-02', .05, null,
NULL, NULL, 1450.50,0,0,
'"HSDIP', null, null);

INTO DEMOEMPL.BENEFITS

VALUES (2000, 2174, 92, 48, 8.00, 9.00,0,0
, '2000-09-27', .06, null,
'401K', .04, 2100.00, 0,0,
"JRCOLL', null, null);

Appendix B: Test Database

261

Demo Data

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INTO DEMOEMPL.BENEFITS

values (2000, 3118, 68, 8, 8.00, 7.00, .05,
2010, '2000-11-24', .045, null,
'BONDS', .08, 1500.00, 8.5, 8.00,
'"COLL', null, null);

INTO DEMOEMPL.BENEFITS

values (2000, 3222, 68, 0, 8.00, 2.5, .05,
2240, '2000-01-02', .07, '1999-06-08',
'401K', .09, 1350.50, 32, 8,
'MAS', null, null);

INTO DEMOEMPL.BENEFITS
values (2000, 4321, 68, 48, 8.00, 3.00, .05,
1991, '2000-08-02', .05, null,
NULL, NULL, 1200.60, 0,0,
'JRCOLL', null, null);
INTO DEMOEMPL.BENEFITS
VALUES (2000, 2461, 68, 40, 8.00, 1.5,0,0
, '2000-09-13', .04, null,
NULL, NULL, 2100.00,0 ,0,
'"HSDIP', null, null);

INTO DEMOEMPL.BENEFITS

VALUES (2000, 3841, 68, 0, 8.00, 2.00,0,0
, '2000-10-10', .06, null,
NULL, NULL, 1300.00, 0,0,
'"JRCOLL', null, null);

INTO DEMOEMPL.BENEFITS

VALUES (2000, 4002, 68, 40, 8.00, 4.5,0,0
, '2000-12-15', .045, null,
NULL, NULL, 1750.50,0,0,
'"HSDIP', null, null);

INTO DEMOEMPL.BENEFITS

values (2000, 1003, 92, 0, 8.00, 0, .10,
12340, null, .05, null,
'401K', .10, NULL,0,0,
'MAS', null, null);

INTO DEMOEMPL.BENEFITS

values (2000, 5103, 46, 0, 8, 0, .05,
530, '2000-10-11', .05, null,
NULL, NULL, NULL,0,0,
'"HSDIP', 'HP302-8403', 50.50);

262 Programming Guide

Demo Data

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INTO DEMOEMPL.BENEFITS

values (2000, 2466, 92.5, 40, 8.00, 3.5,

3400, '2000-10-30', .055, null,
'401K', .05, 2100.00, 16, 16,
'"COLL', null, null);

INTO DEMOEMPL.BENEFITS

values (2000, 3449, 68, 56, 8.00, 10.5,
3700, '2000-12-02', .045, null,
'401K', .03, 1453.70,0,0,
'"COLL', null, null);

INTO DEMOEMPL.BENEFITS

VALUES (2000, 2781, 68, 60, 8.00, 7.00,
, '2000-04-25', .05, null,
'401K', .03, 2105.90,0,0,
'"COLL', null, null);

INTO DEMOEMPL.BENEFITS

VALUES (2000, 2894, 68, 0, 8.00, 2.5,0,
, '2000-05-04', .055, null,
'STOCK', .08, 2155.30, 16.5, 8,
'MAS', null, null);

INTO DEMOEMPL.BENEFITS

VALUES (2000, 3411, 68, 68, 8, 8,0,0
, '2000-09-30', .05, NULL
'401K', .03, 1400.00, 0,0,
"JRCOLL', null, null);

INTO DEMOEMPL.BENEFITS

values (2000, 4358, 68, 0, 8.00, 6.5,
1430, '2000-09-27', .055, null,
NULL, NULL, 950.50,0,0,
'"HSDIP', null, null);

INTO DEMOEMPL.BENEFITS
VALUES (1999, 4773, 80, 80, 15, 1, 0
.04, NULL, NULL, NULL, 600.00,
null, null);
INTO DEMOEMPL.BENEFITS
VALUES (1998, 4773, 80, 48, 10, 10, 0
.03, NULL, NULL, NULL, 560.00,
null, null);
INTO DEMOEMPL.BENEFITS
VALUES (1997, 4773, 24, 24, 4.5, 0, 0O
NULL, NULL, NULL, NULL,0,0,
null);

.05,
.07,
0,0
0
.07,
,0, '1999-07-02',
0,0, 'COLL',
,0, '1998-07-05',
0,0, ‘'CoOLL',
, 0, NULL, NULL,
'COLL', NULL,

Appendix B: Test Database

263

Demo Data

INSERT INTO DEMOEMPL.BENEFITS
VALUES (1999, 3082, 120, 120, 15, 8, 6 ,0, '1999-10-12°',
.05, NULL, NULL, NULL, 1100.00, 0,0, 'JRCOLL', NULL,
null);
INSERT INTO DEMOEMPL.BENEFITS
VALUES (1998, 3082, 120, 120, 15, 4.5, 0 ,0,
'1998-01-09"',
.05, NULL, NULL, NULL, 1000.00,0 ,0, 'JRCOLL', NULL,
NULL) ;

INSERT INTO DEMOEMPL.BENEFITS

VALUES (1997, 3082, 120, 120, 15,2, ©, O , '1997-10-01',
.05, NULL, NULL, NULL, 1000.00, 0,0, 'JRCOLL',
null, null);

INSERT INTO DEMOEMPL.BENEFITS
VALUES (1999, 2180, 160, 160, 15, 6, © ,0, '1999-10-17',
.05, NULL, 'STOK', .05, 2000.00, 0,0, 'COLL',
null, null);
INSERT INTO DEMOEMPL.BENEFITS
VALUES (1998, 2180, 120, 120, 15, 2.5, © ,0, '1998-10-25',
.055, NULL, 'STOCK', .05, 1900.00, 0,0, 'COLL',
null, null);

INSERT INTO DEMOEMPL.BENEFITS
VALUES (1997, 2180, 120, 120, 15, 7, 0 ,0, '1997-10-02',
.05, NULL, 'STOK', .05, 2000.00, 0,0, 'COLL',
null, null);
INSERT INTO DEMOEMPL.BENEFITS
values (1999, 4660, 80, 80, 15, 10, .05, 2060, '1999-01-15',
.055, NULL, '401K', .05, 750.60, O ,0 , 'HSDIP',
null, null);
INSERT INTO DEMOEMPL.BENEFITS
VALUES (1998, 4660, 80, 80, 10, 5, 0 ,0, '1998-01-30',
.04, NULL, '401K', .05, 500.00,0 ,0, 'HSDIP', NULL
null);

INSERT INTO DEMOEMPL.BENEFITS
VALUES (1997, 4660, 48, 48, 8, 2.5, 6 , 06 , NULL, NULL,
NULL, '401K', .4, 400.00, 0,0, 'HSDIP',
null, null);
INSERT INTO DEMOEMPL.BENEFITS
values (1999, 3767, 120, 120, 15, 0, .07, 2400, '1999-08-17',
.05, NULL, '401K', .05, 1000.00, 0,0, 'JRCOLL',
null, null);
INSERT INTO DEMOEMPL.BENEFITS
values (1998, 3767, 120, 120, 15, 0, .07, 2200, '1998-08-10',
.05, NULL, '401K', .05, 1000.00, 0,0,
'JRCOLL', null, null);

264 Programming Guide

Demo Data

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INTO DEMOEMPL.BENEFITS

values (1997, 3767, 120, 120, 15, 0, .07, 2000, '1997-08-01',
.05, NULL, '401K', .05, 1350.00,0,0, 'JRCOLL',
null, null);

INTO DEMOEMPL.BENEFITS

VALUES (1999, 2448, 120, 120, 15, 8,0 ,0, '1999-09-18',
.04, NULL, 'BONDS', .08, 1700.00,0 ,0, 'COLL',
null, null);

INTO DEMOEMPL.BENEFITS

VALUES (1998, 2448, 120, 120, 15, 15, 0,0, '1998-09-15',
.035, NULL, 'BONDS', .08, 1500.00,0,0 , 'COLL',
null, null);

INTO DEMOEMPL.BENEFITS
VALUES (1997, 2448, 120, 120, 15, 5, 0,0, '1997-08-30',
.03, NULL, 'BONDS', .08, 1500.00,0 ,0, 'COLL',
null, null);
INTO DEMOEMPL.BENEFITS
values (1999, 3704, 120, 120, 15, 15, .04, 2800, '1999-04-24',
.045, NULL, 'BONDS', .04, 1700.00, 0,0, 'JRCOLL',
null, null);

INTO DEMOEMPL.BENEFITS

values (1998, 3704, 120, 120, 15, 15, .03, 2200, '1998-04-30',
.04, NULL, 'BONDS', .04, 1500.00, 0,0, 'JRCOLL',
null, null);

INTO DEMOEMPL.BENEFITS

VALUES (1997, 3704, 120, 120, 15, 15, 0,0, '1997-04-20',
.035, null, null, null, 1300.00, 12, 12, 'JRCOLL',
null, null);

INTO DEMOEMPL.BENEFITS

values (1999, 4703, 80, 80, 15, 1, .04, 2300, '1999-03-10',
.065, NULL, NULL, NULL, 950.00,0,0, 'HSDIP',
null, null);

INTO DEMOEMPL.BENEFITS

values (1998, 4703, 80, 89, 10, 2.5, .04, 2010, '1998-03-30',
.05, NULL, NULL, NULL, 800.00,0 ,0, 'HSDIP',
null, null);

Appendix B: Test Database

265

Demo Data

INSERT INTO DEMOEMPL.BENEFITS
VALUES (1997, 4703, 36, 36, 6, 0, © , © , NULL, NULL,
NULL, NULL, NULL, NULL,0,0, 'HSDIP', NULL,
null);
INSERT INTO DEMOEMPL.BENEFITS
values (1999, 2246, 160, 160, 15, 3, .04, 3500, '1999-12-06',
.07, '1993-09-27', NULL, NULL, 2100.00,0 ,0, 'HSDIP',
null, null);
INSERT INTO DEMOEMPL.BENEFITS
VALUES (1998, 2246, 120, 120, 15, 3,0 ,0, '1998-12-01',
.065, '1993-09-27', NULL, NULL, 1700.00, 0,0, 'HSDIP',
null, null);

INSERT INTO DEMOEMPL.BENEFITS
VALUES (1997, 2246, 120, 120, 15, 5,0 ,0, '1997-12-20',
.06, '1993-09-27', NULL, NULL, 1600.00, 0,0, 'HSDIP',
null, null);
INSERT INTO DEMOEMPL.BENEFITS
values (1999, 5008, 80, 80, 10, 6, .10, 1700, '1999-02-07',
.04, NULL, NULL, NULL, 200.00, 0,0, ‘'COLL',
null, null);
INSERT INTO DEMOEMPL.BENEFITS
values (1998, 5008, 48, 48, 8, 7, .10, 1500, null, null,
NULL, '401K', .05, NULL,0,0, 'COLL'
null, null);

INSERT INTO DEMOEMPL.BENEFITS
VALUES (1999, 3769, 120, 120, 15, 14,0 ,0, '1999-09-17',
.04, NULL, '401K', .03, 1200.00,0 ,0, 'HSDIP',
null, null);
INSERT INTO DEMOEMPL.BENEFITS
VALUES (1998, 3769, 120, 120, 15, 8.5,0 ,0, '1998-09-01',
.04, NULL, '401K', .04, 1100.00,0 ,0, 'HSDIP',
null, null);
INSERT INTO DEMOEMPL.BENEFITS
VALUES (1997, 3769, 120, 120, 15, 3, 0,0, '1997-09-06',
.04, NULL, '401K', .04, 1000.00,0 ,0, 'HSDIP',
null, null);

266 Programming Guide

Demo Data

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INTO DEMOEMPL.BENEFITS

VALUES (1999, 46001, 120, 120, 15, 3,0 ,0, '1999-12-01',
.045, NULL, NULL, NULL, 1500.00,0 ,0, 'HSDIP',
null, null);

INTO DEMOEMPL.BENEFITS

VALUES (1998, 4001, 80, 80, 15, 8,0 ,0, '1998-12-18',
.04, NULL, NULL, NULL, 1200.00,0 ,0, 'HSDIP',
null, null);

INTO DEMOEMPL.BENEFITS

VALUES (1997, 4001, 80, 80, 15, 3, 0,0, '1997-12-10',
.04, NULL, NULL, NULL, 1000.00, 0,0, 'HSDIP',
null, null);

INTO DEMOEMPL.BENEFITS
VALUES (1999, 4008, 120, 120, 15, 2, 0,0, '1999-01-15',
.04, NULL, '40K', .05, 1500.00,0 ,0, 'COLL',
null, null);
INTO DEMOEMPL.BENEFITS
VALUES (1998, 4008, 80, 80, 15, 1, 0,0, '1998-01-31',
.035, NULL, '401K', .05, 1350.00,0,0, 'COLL',
null, null);
INTO DEMOEMPL.BENEFITS
VALUES (1997, 4008, 80, 72, 15, 0, 0,0, '1997-01-30',
.035, NULL, NULL, NULL, 1100.00,0 ,0, 'COLL',
null, null);

INTO DEMOEMPL.BENEFITS

VALUES (1999, 4962, 80, 80, 15, 4.5,0 ,0, '1999-10-10',
.06, NULL, '401K', .05, 1150.50,0,0, 'COLL',
null, null);

INTO DEMOEMPL.BENEFITS

VALUES (1998, 4962, 80, 80, 10, 1,0 ,0, '1998-10-16',
.05, null, '401K', .05, 1000.00, 2, 2, 'COLL',
null, null);

INTO DEMOEMPL.BENEFITS

values (1997, 4962, 12, 0, 2, 0, .05, 3000, null, null,
NULL, NULL, NULL, NULL,0,0, 'COLL',
null, null);

Appendix B: Test Database

267

Demo Data

INSERT INTO DEMOEMPL.BENEFITS
VALUES (1999, 2010, 160, 160, 15, 4,0 ,0, '1999-03-01',
.055, NULL, 'STOCK', .05, 2100.00,0 ,0, 'COLL',
null, null);
INSERT INTO DEMOEMPL.BENEFITS
VALUES (1998, 2010, 160, 152.5, 15, 3, 0,0, '1998-03-30',
.05, NULL, 'STOK', .05, 2000.00,0 ,0, 'COLL',
null, null);
INSERT INTO DEMOEMPL.BENEFITS
VALUES (1997, 2010, 160, 160, 15, 3,0 ,0, '1997-03-10',
.05, null, 'BONDS', .05, 1600.00, 2, 2, 'COLL',
null, null);

INSERT INTO DEMOEMPL.BENEFITS
VALUES (1999, 3764, 120, 120, 15, 2, 0,0, '1999-08-01',
.055, '1991-05-10', 'STOXK', .06, 1500.00,0 ,0,
'COLL', null, null);

INSERT INTO DEMOEMPL.BENEFITS
VALUES (1998, 3764, 120, 120, 15, 3, 0,0, '1998-08-30',
.05, '1991-05-10', 'STOCK', .05, 1200.00, 14, 14,
'COLL', NULL,NULL);
INSERT INTO DEMOEMPL.BENEFITS
VALUES (1997, 3764, 120, 120, 15, 5, 0,0, '1997-08-17',
.045, '1991-05-10', 'STOCK', .05, 1000.00,0 ,0, 'COLL',
null, null);
INSERT INTO DEMOEMPL.BENEFITS
VALUES (1999, 5090, 80, 80, 15, 2,0 ,0, '1999-07-30',
.035, NULL, NULL, NULL, 800.00,0 ,0, 'JRCOLL',
NULL,NULL);
INSERT INTO DEMOEMPL.BENEFITS
VALUES (1998, 5090, 24, 24, 4, 2, 0 , 0 , NULL, NULL,
NULL, NULL, NULL, NULL,0,0, 'JRCOLL',
null, null);

INSERT INTO DEMOEMPL.BENEFITS
VALUES (1999, 4027, 120, 120, 15, 8,0 ,0, '1999-03-15',
.03, null, null, null, 1500.00, 16, 16, 'COLL',
null, null);

268 Programming Guide

Demo Data

INSERT INTO DEMOEMPL.BENEFITS
VALUES (1998, 4027, 120, 120, 15, 0, 0,0, '1998-04-30',
.03, NULL, NULL, NULL, 1200.00, 0,0, 'COLL',
null, null);
INSERT INTO DEMOEMPL.BENEFITS
VALUES (1997, 4027, 80, 80, 10, 2.5,0 ,0, '1997-04-01',
.03, NULL, NULL, NULL, 1000.00, 0,0, 'COLL',
null, null);
INSERT INTO DEMOEMPL.BENEFITS
values (1999, 3991, 120, 120, 15, 8, .08, 4000, '1999-12-04',
.05, '1995-06-05', '401K', .05, 1300.00, 0,0, 'COLL',

null, null);
INSERT INTO DEMOEMPL.BENEFITS
VALUES (1998, 3991, 120, 116, 15, 2, ©0 , 6 , '1998-11-28',
.045, '1995-06-05', '401K', .05, 1100.00, 8, 8, 'COLL',
null, null);

INSERT INTO DEMOEMPL.BENEFITS
VALUES (1997, 3991, 120, 120, 15, 8, 0,0, '1997-11-30',
.045, '1995-06-05', NULL, NULL, 1000.00,0,0, 'COLL',
null, null);
INSERT INTO DEMOEMPL.BENEFITS
values (1999, 1765, 160, 160, 15, 0, .10, 7000, '1999-11-15',
.07, null, '401K', .08, 2500.50, 36, 0, 'COLL',
null, null);
INSERT INTO DEMOEMPL.BENEFITS
values (1998, 1765, 160, 160, 15, 0, .10, 6500, '1998-11-01',
.07, null, '401K', .08, 2500.00, 88, 0, 'COLL', null, null);
INSERT INTO DEMOEMPL.BENEFITS
values (1997, 1765, 160, 160, 15, 0, .10, 6000, '1997-10-30°',
.065, null, '40K', .07, 2400.00, 72, 0, 'COLL',
null, null);

INSERT INTO DEMOEMPL.BENEFITS
values (1999, 2106, 160, 160, 15, 9.5, .07, 4500, '1999-05-01',
.055, '1999-08-17', 'BONDS', .04, 1800.00, 6 , 0 ,
'"HSDIP', null, null);
INSERT INTO DEMOEMPL.BENEFITS
VALUES (1998, 2106, 160, 160, 15, 3,0 ,0, '1998-05-15',
.05, null, 'BONDS', .05, 1800.00, 8, 8, 'HSDIP',
null, null);
INSERT INTO DEMOEMPL.BENEFITS
VALUES (1997, 2106, 120, 120, 15, 8, 0,0, '1997-04-30',
.03, NULL, NULL, NULL, 1700.00, 0,0 ,
'"HSDIP', null, null);
INSERT INTO DEMOEMPL.BENEFITS
values (1999, 2096, 160, 128, 15, 3, .04, 4500, '1999-02-18',
.05, '1998-10-09', 'STOCK', .05, 2000.00, 0,0 ,
'"HSDIP', null, null);

Appendix B: Test Database

269

Demo Data

INSERT INTO DEMOEMPL.BENEFITS
VALUES (1998, 2096, 160, 160, 15, 3,0 ,0, '1998-02-01',
.05, '1998-10-09', 'STOCK', .05, 2500.00,0 ,0 ,
'"HSDIP', null, null);
INSERT INTO DEMOEMPL.BENEFITS
VALUES (1997, 2096, 120, 104, 15, 3,0 ,0, '1997-02-15',
.06, NULL, NULL, NULL, 1700.00, 0,0 , 'HSDIP',
null, null);
INSERT INTO DEMOEMPL.BENEFITS
VALUES (1999, 2437, 120, 16, 15, 11.5,0 ,0, '1999-08-01',
.035, NULL, NULL, NULL, 1800.00, 0,0 , 'GED',
'MC655-6901', 84.05);
INSERT INTO DEMOEMPL.BENEFITS
VALUES (1998, 2437, 120, 120, 15, 6.5,0 ,0, '1998-08-30',
.03, NULL, NULL, NULL, 1200.00, 0,0 , 'GED',
'MC655-6901', 79.62);
INSERT INTO DEMOEMPL.BENEFITS
VALUES (1997, 2437, 120, 120, 15, 15, 0,0, '1997-08-16',
.03, NULL, '401K', .05, 1100.00,0 ,0 , 'GED',
'MC655-6901', 70.00);
INSERT INTO DEMOEMPL.BENEFITS
VALUES (1999, 2598, 120, 129, 15, 15, 0,0, '1999-01-30',
.035, NULL, NULL, NULL, 2150.50, 0,0 , 'HSDIP',
'"HP302-7409', 54.86);
INSERT INTO DEMOEMPL.BENEFITS
VALUES (1998, 2598, 120, 120, 15, 14, 0,0, '1998-01-15',
.03, NULL, NULL, NULL, 1800.00,0 ,0 , 'HSDIP',
'"HP302-7409', 50.00);
INSERT INTO DEMOEMPL.BENEFITS
VALUES (1997, 2598, 120, 120, 15, 6, 0,0, '1997-02-01',
.03, NULL, NULL, NULL, 1700.00, 0,0 , 'HSDIP',
'HP302-7409', 45.75);
INSERT INTO DEMOEMPL.BENEFITS
VALUES (1999, 3433, 120, 120, 15, 8,0 ,0, '1999-10-17',
.05, NULL, NULL, NULL, 1400.00, 0, 0, 'JRCOLL',
'MC655-7487"', 84.05);
INSERT INTO DEMOEMPL.BENEFITS
VALUES (1998, 3433, 120, 120, 15, 4, 0,0, '1998-10-30',
.05, NULL, NULL, NULL, 1300.00, 6 ,0 , 'JRCOLL',
'MC655-7487"', 79.62);
INSERT INTO DEMOEMPL.BENEFITS
VALUES (1997, 3433, 120, 120, 15, 4,0 ,0, '1997-10-15',
.055, NULL, NULL, NULL, 1200.00,0 ,0 , 'JRCOLL',
'MC655-7487', 70.00);
INSERT INTO DEMOEMPL.BENEFITS
VALUES (1999, 3778, 120, 120, 15, 0,0 ,0, '1999-09-01',
.055, NULL, NULL, NULL, 1240.50,0 ,0 , 'HSDIP',
'"HP302-7487"', 54.86);

270 Programming Guide

Demo Data

INSERT INTO DEMOEMPL.BENEFITS
VALUES (1998, 3778, 120, 120, 15, 14,0 ,0, '1998-09-26',
.05, NULL, NULL, NULL, 1100.00, 0,0 , 'HSDIP',
'"HP302-7487"', 50.00);
INSERT INTO DEMOEMPL.BENEFITS
VALUES (1997, 3778, 120, 120, 15, 10, 0,0, '1997-09-18',
.05, NULL, NULL, NULL, 1000.00,0 ,0 , 'HSDIP',
'"HP302-7487', 45.75);
INSERT INTO DEMOEMPL.BENEFITS
values (1999, 1034, 160, 112, 15, 6, .10, 5000, '1999-02-01',
.05, NULL, 'BONDS', .06, 2850.60, 0, O, 'HSDIP',
'MC655-4490', 84.05);
INSERT INTO DEMOEMPL.BENEFITS
VALUES (1998, 1034, 160, 112, 15, 15, 0,0, '1998-02-17',
.05, NULL, 'BONDS', .06, 2720.80,0 ,0 , 'HSDIP',
'MC655-4490',79.62) ;
INSERT INTO DEMOEMPL.BENEFITS
VALUES (1997, 1034, 160, 48, 15, 8.5, 0,0, '1997-02-15',
.05, NULL, NULL, NULL, 2500.00, 0,0 , 'HSDIP',
'MC655-4490', 70.00);
INSERT INTO DEMOEMPL.BENEFITS
VALUES (1999, 2424, 120, 120, 15, 15,0 ,0, '1999-06-25',
.04, NULL, NULL, NULL, 1900.00, 0,0 , 'HSDIP',
'MC655-5571"', 84.05);
INSERT INTO DEMOEMPL.BENEFITS
VALUES (1998, 2424, 120, 120, 15, 7, 0,0, '1998-07-01',
.035, NULL, NULL, NULL, 1700.00,0 ,0 , 'HSDIP',
'MC655-5571"', 79.62);
INSERT INTO DEMOEMPL.BENEFITS
VALUES (1997, 2424, 120, 120, 15, 3,0 ,0, '1997-07-17',
.035, NULL, NULL, NULL, 1500.00,0 ,0 , 'HSDIP',
'MC655-5571", 70.00);
INSERT INTO DEMOEMPL.BENEFITS
values (1999, 2004, 160, 160, 15, 8, .04, 1550, '1999-02-17°',
.03, NULL, '401K', .04, 180.00, 0 , 06 , 'JRCOLL',
null, null);
INSERT INTO DEMOEMPL.BENEFITS
VALUES (1998, 2004, 160, 160, 15, 2, 0,0, '1998-02-01',
.035, NULL, '401K', .04, 1700.00,0 ,0 , 'JRCOLL',
null, null);
INSERT INTO DEMOEMPL.BENEFITS
VALUES (1997, 2004, 160, 160, 15, 3.5, 0,0, '1997-02-15',
.03, NULL, NULL, NULL, 1600.00,0 ,0 , 'JRCOLL',
null, null);
INSERT INTO DEMOEMPL.BENEFITS
VALUES (1999, 4456, 80, 80, 15, 3, 0,0, '1999-02-05',
.03, NULL, NULL, NULL, 650.00,0 ,0 , 'HSDIP',
'MC655-6680', 84.05);

Appendix B: Test Database

271

Demo Data

INSERT INTO DEMOEMPL.BENEFITS
VALUES (1998, 4456, 80, 80, 10, 0, 0,0, '1998-02-17',
.02, NULL, NULL, NULL, 700.00,0 ,0 , 'HSDIP',
'MC655-6680"', 79.62);
INSERT INTO DEMOEMPL.BENEFITS
values (1997, 4456, 48, 48, 8, 1,0 , 0 , null, null,
NULL, NULL, NULL, NULL, 0,0 , 'HSDIP',
'MC655-6680', 70.00);
INSERT INTO DEMOEMPL.BENEFITS
VALUES (1999, 3288, 120, 120, 15, 9,0 ,0, '1999-02-01',
.035, NULL, NULL, NULL, 1380.00,0 ,0 , 'HSDIP',
'MC655-4402', 84.05);
INSERT INTO DEMOEMPL.BENEFITS
VALUES (1998, 3288, 120, 120, 15, 8,0 ,0, '1998-02-03',
.035, NULL, NULL, NULL, 1250.00,0 ,0 , 'HSDIP',
'MC655-4402', 79.62);
INSERT INTO DEMOEMPL.BENEFITS
VALUES (1997, 3288, 120, 120, 15, 11,0 ,0, '1997-01-28',
.03, NULL, NULL, NULL, 1000.00, 0,0 , 'HSDIP',
'MC655-4402', 70.00);
INSERT INTO DEMOEMPL.BENEFITS
VALUES (1999, 3341, 120, 120, 15, 9,0 ,0, '1999-07-25',
.05, NULL, '401K', .06, 1350.00,0,0, 'COLL',
null, null);
INSERT INTO DEMOEMPL.BENEFITS
VALUES (1998, 3341, 120, 116, 15, 8, 0,0, '1998-07-26',
.06, null, '401K', .05, 1400.00, 16, 16, 'COLL',
null, null);
INSERT INTO DEMOEMPL.BENEFITS
VALUES (1997, 3341, 120, 120, 15, 6.5, 0,0, '1997-07-15',
.04, NULL, NULL, NULL, 900.00, 0,0 , 'JRCOLL',
null, null);
INSERT INTO DEMOEMPL.BENEFITS
VALUES (1999, 2209, 120, 120, 15, 6, 0,0, '1999-07-02',
.05, NULL, '401K', .05, 1200.00,0,0, 'COLL',
null, null);
INSERT INTO DEMOEMPL.BENEFITS
VALUES (1998, 2209, 120, 120, 15, 7,0 ,0, '1998-06-17',
.05, NULL, '401K', .05, 1200.00,0,0, 'COLL',
null, null);
INSERT INTO DEMOEMPL.BENEFITS
VALUES (1997, 2209, 120, 120, 15, 3, 0,0, '1997-06-28',
.045, null, null, null, 1550.80, 8, 8, 'COLL',
null, null);

INSERT INTO DEMOEMPL.BENEFITS
VALUES (1999, 3294, 120, 120, 15, 10, 0,0, '1999-02-20',
.05, NULL, '401K', .03, 1380.00,0,0, 'COLL',
null, null);

272 Programming Guide

Demo Data

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INTO DEMOEMPL.BENEFITS
VALUES (1998, 3294, 120, 120, 15, 13, 0,0, '1998-01-28',
.05, NULL, '401K', .03, 1100.00,0,0, 'COLL',
null, null);
INTO DEMOEMPL.BENEFITS
VALUES (1997, 3294, 120, 120, 15, 3, 0,0, '1997-02-04',
.05, NULL, '401K', .02, 1150.00,0,0, 'COLL',
null, null);
INTO DEMOEMPL.BENEFITS
VALUES (1999, 3338, 120, 120, 15, 0, 0,0, '1999-07-17',
.05, NULL, NULL, NULL, 1200.00, 0,0 , 'HSDIP',
null, null);
INTO DEMOEMPL.BENEFITS
VALUES (1998, 3338, 120, 120, 15, 1,0 ,0, '1998-07-19',
.045, NULL, NULL, NULL, 1130.00,0 ,0 , 'HSDIP',
null, null);
INTO DEMOEMPL.BENEFITS
VALUES (1997, 3338, 120, 120, 15, 2, 0,0, '1997-07-08',
.05, NULL, NULL, NULL, 950.70, 0,0 , 'HSDIP',
null, null);
INTO DEMOEMPL.BENEFITS
VALUES (1999, 2174, 160, 160, 15, 9, 0,0, '1999-09-26',
.055, NULL, '40K', .04, 1900.00,0 ,0 , 'JRCOLL',
null, null);
INTO DEMOEMPL.BENEFITS
VALUES (1998, 2174, 160, 160, 15, 11, 0,0, '1998-09-10',
.05, NULL, '401K', .03, 1600.00, 0,0 , 'JRCOLL',
null, null);
INTO DEMOEMPL.BENEFITS
VALUES (1997, 2174, 120, 120, 15, 8, 0,0, '1997-09-09',
.06, NULL, NULL, NULL, 1120.90, 0,0 , 'HSDIP',
null, null);
INTO DEMOEMPL.BENEFITS
values (1999, 3118, 120, 120, 15, 3, .05, 2000, '1999-11-02°',
.04, NULL, 'BONDS', .08, 1350.60,0,0, 'COLL',
null, null);
INTO DEMOEMPL.BENEFITS
VALUES (1998, 3118, 120, 112, 15, 8, 0,0, '1998-11-16',
.04, NULL, 'BONDS', .07, 1200.00,0,0, 'COLL',
null, null);
INTO DEMOEMPL.BENEFITS
VALUES (1997, 3118, 120, 120, 15, 6,0 ,0, '1997-11-30',
.04, NULL, 'STOK', .06, 1100.00,0,0, 'COLL',
null, null);
INTO DEMOEMPL.BENEFITS
values (1999, 3222, 120, 120, 15, 6, .04, 1780, '1999-01-16',
.06, '1999-06-08', '401K', .06, 1200.00, 32, 16, 'MAS',
null, null);

Appendix B: Test Database

273

Demo Data

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

INTO DEMOEMPL.BENEFITS
VALUES (1998, 3222, 120, 120, 15, 4,0 ,0, '1998-01-28',
.06, null, '401K', .06, 1150.00, 48, 8.5, 'MAS',
null, null);
INTO DEMOEMPL.BENEFITS
VALUES (1997, 3222, 120, 120, 15, 7, 0,0, '1997-01-13',
.05, null, '401K', .05, 980.00, 16, 16, 'COLL',
null, null);
INTO DEMOEMPL.BENEFITS
values (1999, 4321, 120, 96, 15, 2, .05, 1720, '1999-08-24',
.055, null, null, null, 1100.00, 16, 16, 'COLL',
null, null);
INTO DEMOEMPL.BENEFITS
VALUES (1998, 4321, 80, 80, 15, 4, 0,0, '1998-08-29',
.05, NULL, NULL, NULL, 980.00,0,0, 'COLL',
null, null);
INTO DEMOEMPL.BENEFITS
VALUES (1997, 4321, 80, 80, 10, 4,0 ,0, '1997-08-08',
.04, NULL, NULL, NULL, 850.00,0,0, 'COLL',
null, null);
INTO DEMOEMPL.BENEFITS
VALUES (1999, 2461, 120, 112, 15, 0, 0,0, '1999-09-18',
.05, NULL, NULL, NULL, 1950.00, 0,0 , 'HSDIP',
null, null);
INTO DEMOEMPL.BENEFITS
VALUES (1998, 2461, 120, 120, 15, 4, 0,0, '1998-09-01',
.04, null, null, null, 1830.00, 48, 48, 'HSDIP',
null, null);
INTO DEMOEMPL.BENEFITS
VALUES (1997, 2461, 120, 120, 15, 3, 0,0, '1997-09-18',
.035, NULL, NULL, NULL, 1600.00,0 ,0 , 'HSDIP',
null, null);
INTO DEMOEMPL.BENEFITS
VALUES (1999, 3841, 120, 120, 15, 1,0 ,0, '1999-10-05',
.06, NULL, 'BONDS', .05, 1200.00,0 ,0 , 'JRCOLL',
null, null);
INTO DEMOEMPL.BENEFITS
VALUES (1998, 3841, 120, 120, 15, 3,0 ,0, '1998-10-31',
.05, NULL, 'BONDS', .05, 1020.00,0 ,0 , 'JRCOLL',
null, null);
INTO DEMOEMPL.BENEFITS
VALUES (1997, 3841, 80, 80, 15, 2,0 ,0, '1997-10-11',
.07, NULL, NULL, NULL, 980.00,0 ,0 , 'JRCOLL',
null, null);
INTO DEMOEMPL.BENEFITS

VALUES (1999, 4002, 120, 120, 15, 3,0 ,0, '1999-12-01',

.05, NULL, NULL, NULL, 1630.00,0 ,0 , 'HSDIP',
null, null);

274 Programming Guide

Demo Data

INSERT INTO DEMOEMPL.BENEFITS

VALUES (1998, 4002, 120,
.04, NULL, NULL,
null, null);

INSERT INTO DEMOEMPL.BENEFITS

VALUES (1997, 4002, 80, 80, 15, 5, 0,0,

.04, NULL, NULL,
null, null);
INTO DEMOEMPL.BENEFITS
values (1999, 1003, 160,
.05, NULL,
null, null);
INTO DEMOEMPL.BENEFITS
values (1998, 1003, 160,
.05, NULL,
null, null);
INTO DEMOEMPL.BENEFITS
values (1997, 1003, 160,
.05, NULL,
null, null);
INTO DEMOEMPL.BENEFITS

INSERT

INSERT

INSERT

INSERT

values (1999, 5103, 12, 12, 2, 6,0 , O
NULL, NULL, NULL, NULL, ©,0 ,

'401K",

'401K",

'401K",

120, 15, 6, 0,0, '1998-12-05',
NULL, 1400.00, 0,0 , 'HSDIP',

'1997-12-01',
NULL, 1380.00,0 ,0 , 'HSDIP',

56, 15, 0, .10, 11500, null,
.10, NULL, 0,0 , 'MAS',

80, 15, 0, .10, 10000, null,
.10, NULL, 0,0 , 'MAS',

40, 15, 0, .10, 10000, null,
.10, NULL, O, 0, 'MAS',

, null, null,
'"HSDIP',

'"HP302-8403', 54.86);

INSERT INTO DEMOEMPL.BENEFITS

values (1999, 2466, 120,
.05, null,
null, null);

INSERT INTO DEMOEMPL.BENEFITS

VALUES (1998, 2466, 120, 112, 15, 11, 0,0,

.04, NULL, NULL,
null, null);
INSERT INTO DEMOEMPL.BENEFITS

VALUES (1997, 2466, 120, 120, 15, 10,0 ,O,
.035, NULL, NULL, NULL, 980.00,0

null, null);
INSERT INTO DEMOEMPL.BENEFITS
VALUES (1999, 3449, 120,
.04, NULL, NULL,
null, null);
INSERT INTO DEMOEMPL.BENEFITS
VALUES (1998, 3449, 120,
.05, NULL, NULL,
null, null);
INSERT INTO DEMOEMPL.BENEFITS
VALUES (1997, 3449, 120,
.03, NULL, NULL,
null, null);

'401K",

120, 15, 9, .05, 2650,
.03, 1800.00, 16, 16,

'1999-10-26",
'COLL",

'1998-10-18",
NULL, 1300.00,0,0, 'COLL',

'1997-10-10',
,0 , 'JRCOLL',

120, 15, 8, 0,0, '1999-12-08',
NULL, 240.50,0,0, 'COLL',

104, 15, 8, 0,0, '1998-12-02',
NULL, 1100.00,0,0, 'COLL',

112, 15, 9,0 ,0, '1997-12-18',
NULL, 080.00,0,0, 'COLL',

Appendix B: Test Database

275

Demo Data

INSERT INTO DEMOEMPL.BENEFITS

VALUES (1999, 2781, 120, 120, 15, 8, 0,0, '1999-04-11',
.05, NULL, '401K', .03, 1700.00,0,0, 'COLL',
null, null);

INTO DEMOEMPL.BENEFITS

VALUES (1998, 2781, 120, 96, 15, 15, 0,0, '1998-04-26',
.05, NULL, '401K', .03, 1450.80,0,0, 'COLL',
null, null);

INTO DEMOEMPL.BENEFITS

VALUES (1997, 2781, 120, 120, 15, 2,0 ,0, '1997-04-18',
.05, NULL, NULL, NULL, 1100.00,0,0, 'COLL',
null, null);

INTO DEMOEMPL.BENEFITS

VALUES (1999, 2894, 120, 48, 15, 1,0 ,0, '1999-05-01',
.05, null, 'STOK', .08, 1920.00, 16, O, 'MAS',
null, null);

INTO DEMOEMPL.BENEFITS

VALUES (1998, 2894, 120, 40, 15,
.08, null, 'STOK', .08,
null, null);

INTO DEMOEMPL.BENEFITS

VALUES (1997, 2894, 120, 0, 15, 0, 0,0, '1997-05-11',
.06, null, 'STOK', .08, 1600.00, 16, 8, 'MAS',
null, null);

INSERT

INSERT

INSERT

INSERT
0,0 ,0, '1998-05-18',
1750.00, 32, 32, 'MAS',

INSERT

INSERT INTO DEMOEMPL.BENEFITS
VALUES (1999, 3411, 120, 120, 15, 3, 0,0, '1999-10-10',
.04, NULL, '401K', .03, 1350.00,0 ,0 , 'JRCOLL',
null, null);

INSERT INTO DEMOEMPL.BENEFITS
VALUES (1998, 3411, 120, 120, 15, 15, 0,0, '1998-09-10',
.04, NULL, '401K', .03, 1250.00, 0 ,0 , 'JRCOLL',
null, null);
INSERT INTO DEMOEMPL.BENEFITS
VALUES (1997, 3411, 120, 120, 15, 15,0 ,0, '1997-09-28',
.03, NULL, NULL, NULL, 1100.00,0 ,0 , 'JRCOLL',
null, null);
INSERT INTO DEMOEMPL.BENEFITS
values (1999, 4358, 120, 112, 15, 2, .07, 1300, '1999-10-01',
.055, NULL, NULL, NULL, 790.80, 0,0 , 'HSDIP',
null, null);
INSERT INTO DEMOEMPL.BENEFITS
values (1998, 4358, 120, 80, 15, 0, .07, 1230, '1998-09-15',
.055, NULL, NULL, NULL, 820.00, 0,0 , 'HSDIP',
null, null);
INSERT INTO DEMOEMPL.BENEFITS
values (1997, 4358, 80, 80, 15, 14.5, .06, 980, '1997-09-26',
.055, NULL, NULL, NULL, 700.00,0 ,0 , 'HSDIP',

null, null);

276 Programming Guide

Demo Data

INSERT INTO DEMOEMPL.BENEFITS
values (2000, 1234, 92, 40, 8, 12, .05, 9800, '2000-04-18',
.06, '1998-07-10', 'BONDS', .10, 1750.00, 72, O, 'HSDIP',
null, null);
INSERT INTO DEMOEMPL.BENEFITS
values (1999, 1234, 160, 16, 15, 0, .05, 8370, '1999-04-26',
.07, '1998-07-10', 'BONDS', .08, 1600.00, 48, O, 'HSDIP',
null, null);
INSERT INTO DEMOEMPL.BENEFITS
values (1998, 1234, 160, 32, 15, 0, .05, 8440, '1998-04-10',
.06, '1993-07-10', 'BONDS', .07, 1600.00, 56, 0, 'HSDIP',
null, null);
INSERT INTO DEMOEMPL.BENEFITS
values (1997, 1234, 160, 0, 15, 0, .05, 7690, '1997-04-01',
.06, null, 'BONDS', .06, 1580.50, 48, 0, 'HSDIP',
null, null);

INSERT INTO DEMOEMPL.INSURANCE PLAN
values ('PLI', 'Providential Life Insurance',
'950 Gibraltar Ave', 'Lisbon', 'VA', '03097',
'7033548300', 7815, null, 1000000, null, null, '1988-02-01');
INSERT INTO DEMOEMPL.INSURANCE PLAN
values ('HHM', 'Homeostasis Health Maintenance Program',
'57 Goodwill Blvd', 'Bellingham', 'MA', '01988',
'5083535600', 2867, 300, 100000, 30, NULL, '1992-01-03');
INSERT INTO DEMOEMPL.INSURANCE PLAN
values ('HGH', 'Holistic Group Health Association',
'2 Technology Park', 'Winnetka', 'IL', '06060',
'0413865700', 9471, NULL, 990000, 10, 5, '1992-01-08');
INSERT INTO DEMOEMPL.INSURANCE PLAN
values ('DAS', 'Dental Associates',
'52 Dedham Pl', 'Medford', 'MA', '03032',
'6174445362"', 5598, 50, 15000, NULL, NULL, '1993-01-04');
INSERT INTO DEMOEMPL.COVERAGE values ('PLL', 2096, '1995-03-03',
null, 1);
INSERT INTO DEMOEMPL.COVERAGE values ('HHM', 2096, '1995-03-03',
null, 3);
INSERT INTO DEMOEMPL.COVERAGE values ('DAS', 2096, '1995-03-03',
null, 3);
INSERT INTO DEMOEMPL.COVERAGE values ('HHM', 2437, '1995-03-15',
null, 2);
INSERT INTO DEMOEMPL.COVERAGE values ('HGH', 2598, '1997-07-25',
null, 1);
INSERT INTO DEMOEMPL.COVERAGE values ('HGH', 3433, '1993-12-31',
null, 1);
INSERT INTO DEMOEMPL.COVERAGE values ('HHM', 3433, '1993-11-01',

Appendix B: Test Database

277

Demo Data

'1993-

INSERT
null,
INSERT
NULL,
INSERT
NULL,
INSERT
NULL,
INSERT
NULL,
INSERT
NULL,
INSERT
null,
INSERT
null,

INSERT
null,
INSERT
NULL,
INSERT
NULL,
INSERT

NULL,
INSERT
NULL,
INSERT
NULL,
INSERT
null,
INSERT
null,
INSERT
NULL,
INSERT
null,
INSERT

12-31', 1) ;

INTO DEMOEMPL.

1);

INTO DEMOEMPL.

0);

INTO DEMOEMPL.

0);

INTO DEMOEMPL.

0);

INTO DEMOEMPL.

0);

INTO DEMOEMPL.

0);

INTO DEMOEMPL.

1);

INTO DEMOEMPL.

1);

INTO DEMOEMPL.

1);

INTO DEMOEMPL.

0);

INTO DEMOEMPL.

0);

INTO DEMOEMPL.

0);

INTO DEMOEMPL.

0);

INTO DEMOEMPL.

0);

INTO DEMOEMPL.

2);

INTO DEMOEMPL.

1);

INTO DEMOEMPL.

0);

INTO DEMOEMPL.

2);

INTO DEMOEMPL.

COVERAGE

COVERAGE

COVERAGE

COVERAGE

COVERAGE

COVERAGE

COVERAGE

COVERAGE

COVERAGE

COVERAGE

COVERAGE

COVERAGE

COVERAGE

COVERAGE

COVERAGE

COVERAGE

COVERAGE

COVERAGE

COVERAGE

values

values

values

values

values

values

values

values

values

values

values

values

values

values

values

values

values

values

values

('DAS',

("HHM",

('DAS',

('HHY",

('DAS',

(*HHY",

("HG&',

("HHM",

('DAS',

("HM',

(IDASII

("HG&',

(IDASII

("HM',

("HHM',

('DAS’,

('PLT",

("HHM",

('DAS',

3433, '1993-12-31',

3778, '1998-01-21',

3778, '1998-01-21',

1034, '1992-06-01',

1034, '1993-12-01',

2424, '1993-07-24"',

4456, '1994-01-04',

3288, '1993-06-12',

3288, '1993-12-01',

3341, '1993-10-02',

3341, '1997-01-01',

2209, '1992-08-12°',

2209, '1993-12-01',

3294, '1993-02-19',

3338, '1994-12-11',

2299, '1996-01-01',

3199, '1995-10-20',

3199, '1995-10-20',

3199, '1995-10-20',

278 Programming Guide

Demo Data

null, 2);

INSERT INTO DEMOEMPL.

NULL, @);

INSERT INTO DEMOEMPL.

NULL, @);

INSERT INTO DEMOEMPL.

NULL, @);

INSERT INTO DEMOEMPL.

null, 1);

INSERT INTO DEMOEMPL.

NULL, @);

INSERT INTO DEMOEMPL.

null, 4);

INSERT INTO DEMOEMPL.

NULL, @);

INSERT INTO DEMOEMPL.

null, 3);

INSERT INTO DEMOEMPL.

NULL, @);

INSERT INTO DEMOEMPL.

'1995-12-31',5) ;

INSERT INTO DEMOEMPL.

null, 5);

INSERT INTO DEMOEMPL.

null, 5);

INSERT INTO DEMOEMPL.

null, 2);

INSERT INTO DEMOEMPL.

null, 2);

INSERT INTO DEMOEMPL.

NULL, @);

INSERT INTO DEMOEMPL.

NULL, 0);

INSERT INTO DEMOEMPL.

null, 2);

INSERT INTO DEMOEMPL.

null, 2);

INSERT INTO DEMOEMPL.

NULL, @);

INSERT INTO DEMOEMPL.

null, 3);

COVERAGE

COVERAGE

COVERAGE

COVERAGE

COVERAGE

COVERAGE

COVERAGE

COVERAGE

COVERAGE

COVERAGE

COVERAGE

COVERAGE

COVERAGE

COVERAGE

COVERAGE

COVERAGE

COVERAGE

COVERAGE

COVERAGE

COVERAGE

values

values

values

values

values

values

values

values

values

values

values

values

values

values

values

values

values

values

values

values

("PLT",

("H&',

('PLT",

('DAS',

(‘PLT",

('DAS',

('DAS’,

("HHY",

("PLT,

("HHY",

("H&',

('DAS',

("H&',

('DAS',

('DAS",

('PLT',

("HM',

('DAS',

('PLT",

('DAS',

4001, '1995-12-11',
4001, '1997-01-01',
4008, '1996-01-23',
4008, '1996-01-23',
4962, '1997-10-04',
4962, '1997-12-01',
3764, '1994-08-25',
5090, '1998-07-12',
4027, '1996-04-01',
3991, '1994-11-12°',
3991, '1996-01-01',
3991, '1994-11-12°',
1765, '1992-06-01',
1765, '1993-12-01',

4773, '1995-10-14',

3767, '1994-09-20',
3767, '1994-09-20',
3767, '1995-01-01',
2448, '1992-01-01',
2448, '1993-12-01',

Appendix B: Test Database

279

Demo Data

INSERT INTO DEMOEMPL.COVERAGE values ('DAS', 3704, '1997-01-01',

null, 3);

INSERT INTO DEMOEMPL.COVERAGE VALUES ('H®H', 4703, '1997-03-19',
null, 1);

INSERT INTO DEMOEMPL.COVERAGE values ('DAS', 4703, '1997-03-19',
null, 1);

INSERT INTO DEMOEMPL.COVERAGE values ('HHM', 2246, '1992-06-01',
null, 2);

INSERT INTO DEMOEMPL.COVERAGE values ('DAS', 2246, '1998-01-01',
null, 2);

INSERT INTO DEMOEMPL.COVERAGE values ('HHM', 5008, '1998-01-31',
null, 2);

INSERT INTO DEMOEMPL.COVERAGE values ('DAS', 5008, '1998-01-31',
null, 2);

INSERT INTO DEMOEMPL.COVERAGE values ('HHM', 1234, '1993-06-01',
null, 5);

INSERT INTO DEMOEMPL.COVERAGE values ('H®AH', 2174, '1995-03-30',
NULL, @);

INSERT INTO DEMOEMPL.COVERAGE values ('H&H', 3118, '1995-07-23',
null, 1);

INSERT INTO DEMOEMPL.COVERAGE values ('DAS', 3222, '1995-10-01',
null, 2);

INSERT INTO DEMOEMPL.COVERAGE VALUES ('PLI', 1003, '1988-02-01',
NULL, 0);

INSERT INTO DEMOEMPL.COVERAGE VALUES ('HHM', 1003, '1992-06-01',
null, 3);

INSERT INTO DEMOEMPL.COVERAGE VALUES ('DAS', 1003, '1993-12-01',
null, 3);

INSERT INTO DEMOEMPL.COVERAGE VALUES ('PLI', 5103, '1999-10-11',
NULL, 0);

INSERT INTO DEMOEMPL.COVERAGE VALUES ('HHM', 5103, '1999-10-11',
null, 1);

INSERT INTO DEMOEMPL.COVERAGE VALUES ('DAS', 5103, '1999-10-11',
null, 1);

INSERT INTO DEMOEMPL.COVERAGE VALUES ('PLI', 2781, '1995-09-27',
NULL, @);

INSERT INTO DEMOEMPL.COVERAGE VALUES ('DAS', 2781, '1998-01-01',
null, 2);

INSERT INTO DEMOEMPL.COVERAGE VALUES ('PLI', 2894, '1995-11-12',
NULL, @);

INSERT INTO DEMOEMPL.COVERAGE VALUES ('HGH', 2894, '1995-11-12',
null, 3);

INSERT INTO DEMOEMPL.COVERAGE VALUES ('DAS', 2894, '1995-11-12',
null, 3);

INSERT INTO DEMOEMPL.COVERAGE VALUES ('HGH', 3411, '1997-01-30',
null, 3);

INSERT INTO DEMOEMPL.COVERAGE VALUES ('DAS', 3411, '1997-01-30',
null, 3);

280 Programming Guide

Demo Data

INSERT INTO DEMOEMPL.COVERAGE VALUES ('HHM', 4358, '1996-09-13',
null, 1);
INSERT INTO DEMOEMPL.COVERAGE VALUES ('DAS', 4358, '1996-09-13',
null, 1);
INSERT INTO DEMOPROJ.ASSIGNMENT
VALUES (2466, 'D880', '1999-11-01', NULL);
INSERT INTO DEMOPROJ.ASSIGNMENT
values (2894, 'P634', '2000-02-15', null);
INSERT INTO DEMOPROJ.ASSIGNMENT
values (3411, 'P634', '2000-03-01', null);
INSERT INTO DEMOPROJ.ASSIGNMENT
VALUES (4358, 'C240', '1998-06-01', '1998-08-15') ;

UPDATE DEMOEMPL .DIVISION
SET DIV HEAD ID =2180
WHERE DIV CODE = 'DO2';
UPDATE DEMOEMPL .DIVISION
SET DIV HEAD ID =2010
WHERE DIV CODE = 'DO4';
UPDATE DEMOEMPL .DIVISION
SET DIV HEAD ID =4321
WHERE DIV CODE = 'DO6';
UPDATE DEMOEMPL .DIVISION
SET DIV HEAD ID =1003
WHERE DIV CODE = 'DO9';
UPDATE DEMOEMPL .DEPARTMENT
SET DEPT_HEAD ID =3082
WHERE DEPT ID = 3510 ;
UPDATE DEMOEMPL .DEPARTMENT
SET DEPT HEAD ID =2180
WHERE DEPT ID = 2200 ;
UPDATE DEMOEMPL .DEPARTMENT
SET DEPT HEAD ID =2246
WHERE DEPT ID = 1100 ;
UPDATE DEMOEMPL .DEPARTMENT
SET DEPT HEAD ID =3769
WHERE DEPT ID = 3520 ;
UPDATE DEMOEMPL .DEPARTMENT
SET DEPT HEAD ID =2010
WHERE DEPT ID = 2210 ;
UPDATE DEMOEMPL .DEPARTMENT
SET DEPT_HEAD ID =1003
WHERE DEPT ID = 4200 ;
UPDATE DEMOEMPL .DEPARTMENT
SET DEPT HEAD ID =1765
WHERE DEPT ID = 1110 ;

Appendix B: Test Database 281

Demo Data

UPDATE DEMOEMPL .DEPARTMENT
SET DEPT_HEAD ID =2004
WHERE DEPT ID = 1120 ;
UPDATE DEMOEMPL .DEPARTMENT
SET DEPT_HEAD ID =2096
WHERE DEPT ID = 4600 ;
UPDATE DEMOEMPL .DEPARTMENT
SET DEPT_HEAD ID =2209
WHERE DEPT ID = 3530 ;
UPDATE DEMOEMPL .DEPARTMENT
SET DEPT HEAD ID =2598
WHERE DEPT ID = 5100 ;
UPDATE DEMOEMPL .DEPARTMENT
SET DEPT_HEAD ID =2461
WHERE DEPT ID = 6200 ;
UPDATE DEMOEMPL .DEPARTMENT
SET DEPT HEAD ID =2894
WHERE DEPT ID = 5200 ;
UPDATE DEMOEMPL .DEPARTMENT
SET DEPT_HEAD ID =2466
WHERE DEPT ID = 5000 ;
UPDATE DEMOEMPL .DEPARTMENT
SET DEPT HEAD ID =2466
WHERE DEPT ID = 4900 ;
UPDATE DEMOEMPL .DEPARTMENT
SET DEPT HEAD ID =1003
WHERE DEPT ID = 6000 ;
UPDATE DEMOEMPL .DEPARTMENT
SET DEPT HEAD ID =3222
WHERE DEPT ID = 4500 ;

COMMIT WORK RELEASE;

282 Programming Guide

Appendix C: Precompiler Directives

Information about CA IDMS precompiler directives thatare not associated with SQL
statements and hostvariabledeclarationsis presented in this section.

This section contains the followingtopics:

Overriding DDLDML Area Ready Mode (see page 283)
No Logging of Program Activity Statistics (see page 284)
Generating a Source Listing (see page 284)

Usage (see page 285)

Overriding DDLDML Area Ready Mode

Syntax

»

g |: *RETRIEVAL —_|
*PROTECTED-UPDATE

M

Parameters
*RETRIEVAL

Overrides the default ready mode for the DDLDML area of the dictionary by
specifyingthatthe areais to be readied for retrieval only. This allows concurrent
databasetransactionstoaccess thearea insharedretrieval,shared update,
protected retrieval, or protected update modes.

*PROTECTED-UPDATE

Overrides the default ready mode for the DDLDML area of the dictionary by
specifyingthatthe areais to be readied for both retrieval and update. This allows
concurrent databasetransactionstoreadythe area inshared retrieval mode only.
The protected update usage mode prevents concurrent update of the area.

The dictionaryready override statement is printed on the source listingbutis not
passed to the COBOL compiler.

Appendix C: Precompiler Directives 283

No Logging of Program Activity Statistics

No Logding of Program Activity Statistics

Syntax

)

~ L «NO-ACTIVITY-L0G -

Parameters
*NO-ACTIVITY-LOG

Suppresses the logging of program activity statistics. The precompiler generates
and logs the following programactivity statistics unless the *NO-ACTIVITY-LOG
option is specified:

m Programname

m language

m Date lastcompiled

m Number of lines

m Number of compilations
m Date created

m Schema name

m Filestatistics

m Databaseaccess statistics

Generating a Source Listing

Syntax

M

I: *DMLIST
*NODMLIST -

Parameters
*DMLIST
Specifies that the sourcelistingis to be generated for the statements that follow.

*DMLIST overrides a previous *NODMLIST directiveand the NOLIST precompiler
parameter.

284 Programming Guide

Usage

Usade

*NODMLIST

Specifies that the sourcelistingis notto be generated for the statements that
follow.

*NODMLIST overrides a previous *DMLIST directiveand the LIST precompiler
parameter.

Column Position

Precompiler directives must be coded beginningincolumn 7.

Default Ready Mode

The default ready for the DDLDML area mode is shared update. Shared update readies
the area for both retrieval and update and allows concurrentdatabasetransactions to
ready the DDLDML areainshared update orsharedretrieval.

Program Activity Statistics

Program activity statisticswillnotbe logged ifthe DDLDML area is readied for retrieval
only.

Appendix C: Precompiler Directives 285

Index

A

access modulee 25,134,139, 143, 145,155, 203,

209, 212
authorityto use » 139
automaticre-creation e 25, 139
changinge 143
defaultisolationfor ¢139
defaults » 139,155
definition ¢ 139
execution atruntime ¢ 145
how to execute atest version e 145
precompiler specification ¢ 134
schema-name mapping ¢ 139, 143
SET ACCESS MODULE statement ¢ 155
timestamp validation ¢ 139
transactionstatefor e 139
versione 139
z/OS JCL to create » 203
z/VM commands to create e 212
z/VSE JCL to create ¢ 209
ALTER ACCESS MODULE statement ¢ 143
Application programmingconsiderations ¢ 38
Automatic session termination e 34

B

BEGIN DECLARE SECTION e 29
END DECLARE SECTION e 29
Beginning a transaction ¢ 36
bill-of-materials explosion with SQL * 169
bulk buffer e 30
bulkfetch ¢ 76, 158,187
checkingstatement status ¢ 76
example with dynamic SQL ¢ 187
for scrollingthrough rows ¢ 158
ROWS parameter ¢ 76
START parameter ¢ 76
bulkinserte 81
ROWS parameter 81
START parameter ¢ 81
bulk processing e 15,27, 75
data type of, indicator variable ® 27
defined 15
bulkselect » 80
bulk structure » 93,101, 105, 122

in CA ADS » 93
inCOBOL « 101, 105
inPL/I » 122

C

CA ADS applications,embedding SQL * 87, 88, 89,

90,92,94,95
continuing statements ¢ 88
declaration module ¢ 89
declaringhostvariables 90
delimiters » 88
equivalentdata types ¢ 90
includingatablee 92
including SQLCA « 95
insertingcomments ¢ 88
order of dialogcompilation ¢ 89
placing statements ¢ 89
qualifying hostvariablenames ¢ 94
requirements e 87
scope of DECLARE CURSOR ¢ 89
scope of WHENEVER e 89
SQLCA structure e 95
CAOLQ - 146
CALL 15
procedure e 15
cardinality violation 58, 80
central version e 25,139, 144
check constrainte 17
CICS, effect of statements on processing¢41

COBOL applications,embedding SQL * 97, 99, 100,

101,104,109, 111, 115

COBOL version considerations ¢ 99
continuing statements ¢ 97
declaringhostvariables « 100,115
declaringSQLCA » 111

delimiters » 97

INCLUDE TABLE statement e 104
indicator variables ¢ 101
insertingcomments ¢ 97

placing statements ¢ 99

qualifying hostvariablenames ¢ 109
requirements ¢ 97

SQLCA structuree 111

subscripted hostvariablenames ¢ 109

COBOL applications, precompiling ® 134

Index 287

column list,in INSERT e 60
Command Facility,in debugging 146
commands ¢ 212
z/VM o 212
Commit requests e 38
Committing changes ¢ 36
compilinge22,138
concurrentaccesstoanarea ¢ 45
concurrent processing e 157
concurrent sessions 163, 164
sessionidentifier 163,164
SQLSESS hostvariablee 163
steps to manage ¢ 164
constraintviolation ¢ 60, 64
on DELETE e« 64
on INSERT ¢ 60
COPY IDMS FILE ¢ 113
COPY IDMS MODULE e 115
COPY IDMS RECORD ¢ 113
CREATE ACCESS MODULE statement ¢ 139
AUTO RECREATE option ¢ 139
DEFAULT ISOLATION parameter ¢ 139
INCREMENTAL option of READY parameter ¢ 139
MAP schema parameter ¢ 139
PRECLAIM option of READY parameter ¢ 139
READ ONLY transactionstatee 139
READ WRITE transactionstatee 139
VALIDATE BY option ¢ 139
CREATE TEMPORARY TABLE statement ¢ 167
creatingan access module e 22
cursore15,67,68,72,76,151, 159, 167,169
closing 68
cursor positione15,76
declaring 67
defined 15
external ¢ 151
fetching from « 68
for temporary tables 167
global ¢ 151
in bill-of-materials explosion ¢ 169
invalid cursor state e 68, 72
no more rows ¢ 68
opening * 68
position e 68
shared e 151
updateable ¢ 15, 67,72, 159
usinge 67
cursor stability ¢ 159

D

data exception error, on INSERT e 60
data manipulation 15,57, 58, 60, 62,64, 65, 67, 68,
72,75, 76, 80, 81,145,157,159,169
addingdata ¢ 60, 65,81
bill-of-materials explosion * 169
bulk processing e 75
checking for modified rows after a
pseudoconverse ¢ 159
checking statement status ¢ 64, 76, 81
DELETE statement ¢ 64
deleting all rows of a table» 64
deleting data e 72
FETCH statement ¢ 68, 76
INSERT statement ¢ 60, 81
modifyingdata ¢ 62, 65, 72
positioned delete 72
positioned update ¢ 72
retrieval e 58
retrieving data ¢ 65, 68, 76
ROWS parameter, on FETCH ¢ 76
ROWS parameter, on INSERT e 81
searched delete ¢ 64
searched update ¢ 62, 159
SELECT statement ¢ 15,58, 80
SET ACCESS MODULE statement e 145
SQL DML operations ¢ 57
START parameter, on FETCH ¢ 76
START parameter, on INSERT e 81
UPDATE statement e 62
updateable cursor e 72
updating after a pseudoconverse ¢ 157
usinga bulkfetch o 76
usingabulkinserte 81
usinga bulkselect e 80
usingacursore 67
with null values 65
databasetransactione41
effect of teleprocessing statements on » 41
Databasetransactions 36
database, demonstration ¢ 227
database,test 217,222
table descriptions 217
test data e 222
date format e 134
debugging ¢ 146
declaration module ¢ 89
declaringa global cursore 151

288 Programming Guide

declaringanexternal cursor e 151
requirements ¢ 151
user validation ¢ 151

Default dictionary ¢34

deleting data » 64

demonstration database e 227

dictionary 113

dynamicSQL » 181,182,183, 184, 186
checking statement status ¢ 183,186
limited by no host variables « 181
limited by no local variables « 181
limited by no routine parameters ¢ 181
programs with only dynamic SQL » 181
requirements e 181
update operations ® 182
when to use EXECUTE e 186
when to use EXECUTE IMMEDIATE o 183
when to use PREPARE e« 184

dynamic SQL caching*199, 200, 201
controllingthecache » 201
impactof databasedefinition changes » 200

non-SQL-defined databases and caching ¢ 200

searchingthe cachee 199
SQL-defined databases and cachinge 200

E

embedded SQL e 21,87,97,117

in CA ADS applications 87

in COBOL applications *97

inPL/I applicationse 117

programming functions 21
Enablingtransactionsharing « 38
Ending a transaction 36
errors,SQL » 47,54,184

error codes ® 47

error message, displaying ¢ 54

error-handlingtechniques ¢ 54

SQLCODE error values 47

syntaxerror in prepared statement ¢ 184
EUR date/time format e 134
executing anSQL programe 25,144
EXPLAIN statement ¢ 148

F

FETCH statement e 15

G
GET DIAGNOSTICS 56

advantages, GET DIAGNOSTICS ¢ 56
H

hostvariablee 15,27,32,101, 109, 119,124, 155,

163

defined ¢ 15

definition* 27,101,119

reference requirements ¢ 32

references to in COBOL ¢ 109

references to inPL/l » 124

SQLSESS * 163

to dynamically specify access module e 155

host variablearray 76

I

IDD 113
IDMSCINT ¢ 41
IDMSINO1 entry point e 54, 147
IDMSINTC « 41
INCLUDE IDMS module statement ¢ 128
INCLUDE IDMS record statement ¢ 127
INCLUDE module » 116, 129
INCLUDE TABLE ¢ 30,132,134
authorizationrequirements ¢ 132
determining schema qualifier ¢ 134
for declaringhostvariables 30
guidelines ¢ 30
options ¢ 30
indicatorarray ¢ 107
in COBOL « 107
indicatorvariablee27, 65,101, 119
data type of ¢ 27
definition e 27
SQLIND data type » 27,101, 119
using e 65
integrity constraints ¢ 17
check constrainte 17
constraintviolatione17
data type » 17
described e 17
domain constraints ¢ 17
not null constrainte 17
referential constrainte 17
unique constrainte17
Intersession conflicts 38
invalid SQLstatement identifier error 134
Invoking procedures ¢ 83
I1SO date/time format e 134

Index 289

isolation level #45, 139
concurrency control ¢ 45

CREATE ACCESS MODULE statement e 45

SET TRANSACTION statement e 45
specified for access modulee 139
specifying e 45

types ¢ 45

J

JCL » 203,209
z/0S » 203
z/VSE 209
JIS date/time format ¢ 134

L

link editing e 138

local mode ¢ 25, 139, 144

local variable 15
defined ¢ 15

Local variables 33
definition ¢ 33

locks ® 25, 45,58, 72, 159
duringa suspended session ¢ 159
for a positioned update » 72
for single-rowselecte 58
management ¢ 25
types ¢ 45

M

Managingnonshareabletransactions * 36
modularized programming ¢ 151
multiplesessions ¢ 164
started by different programs ¢ 164
started by one programe 164
multiple-rowinserte 60
multiple-rowselect » 58

N

non-bulk structure ¢ 107
inCOBOL » 107

non-SQL defined databases ¢ 19
accessinge®19

null valuee 27, 29, 65
definition e 27, 29
testing for ¢ 65

0

onlinedebugger ¢ 148
OPEN statement 151
optimizer e 22,139, 148

P

pagingapplication 158
PL/I applications,embedding SQL 117,119, 121,
124,125,127,128
continuingstatements ¢ 117
copyingdictionarysourcee 127
data types of included tablee 121
declaringhostvariables «119,128
declaring SQLCA » 125
delimiters e 117
equivalentdata types ¢ 119
indicator variables #119
insertingcomments ¢ 117
qualifying hostvariablenames ¢ 124
requirements ¢ 117
SQLCA structuree 125
subscripted hostvariablenames » 124
using INCLUDE TABLE » 121
PL/I standard modules » 128
precompiler e 132,133, 134,138,203, 209, 212
authorization requirements ¢ 132
COBOL-specificoptions 134
functions ¢ 132
messages, with LIST option ¢ 134
optionsinJCL e 133
output ¢ 138
SQL standards enforcement ¢ 134
z/OS JCL » 203
z/VM commands « 212
z/VSE JCL » 209
precompiler directives 116, 130, 283
precompiler-directivestatement ¢ 104, 113,115,
116,121,127,128,129
COPY IDMS FILE (COBOL) »113
COPY IDMS MODULE (COBOL) » 115
COPY IDMS RECORD (COBOL) » 113
INCLUDE IDMS module (PL/1) » 128
INCLUDE IDMS record (PL/1) » 127
INCLUDE module (COBOL) » 116
INCLUDE module (PL/I) » 129
INCLUDE TABLE (COBOL) » 104
INCLUDE TABLE (PL/I) 121
precompilinge 22,131

290 Programming Guide

prepared statement o 15, 181
defined ¢ 15

Preservingsession stateafter a commit ¢ 36

primarykey e 17,58, 159
defined o 17

specifiedinthe search condition 58, 159
pseudoconversational programminge 157, 159

checking for modified rows ¢ 159
definition ¢ 157
searched update in® 159

R

RCM ¢ 22,132,134,143
droppingfroman access modulee 143
NOINSTALL precompiler option * 134
precompiler parameter * 134
replacinginanaccess modulee 143
version, specified to precompiler 134

ready mode ¢ 45,139
access modulespecification 139
actual ready mode ¢ 139
default e 139
depending on transactionstatee 139

repeatable reads of data 45

Rollbackrequests * 38

rollback,automatic *62, 64
on searched delete * 64
when searched update fails ¢ 62

routine parameter ¢ 15
defined 15

Routine parameters ¢ 33
definition ¢ 33

row lock e 45

runtime processing of SQL statements ¢ 25

S

sampleprogram e 174, 187
bill-of-materials explosion ¢ 174
executing a prepared SELECT e 187

schema ¢ 15, 134
defined 15
precompiler specification ¢ 134

security e 139, 144
as appliedtoSQL access 144
CA IDMS internal security » 144
executing access modules ¢ 139
external security e 144
roleof schema ownership e 144

Session hierarchy 34
Sharingatransaction 38

Sharingtransactionsamongsessions 38

single-row INSERT ¢ 60
single-rowselecte 58

SQL access, terminology of » 15
SQL applications® 21, 22,25, 26

application development steps » 21

compilationsteps e 22
debugging ¢ 26
execution environments e 25
testing » 26

SQL Communication Areas ¢ 47,54
error message, displaying ¢ 54
field values, displaying ® 54
SQLCA « 47
SQLPIB « 47
SQLSTATE e 47

SQL Communications Areas ¢ 95
including ¢95

SQL DDL » 227
for demonstration databasee 227

SQL declaresectione 29,100,101, 111,115,119

SQL extensions ¢ 15,75,101,119,121
bulk processinge 15,75
COBOL data structures e 101
data types ¢ 119
dynamicSQL ¢ 15
PL/I host variabledefinitions ¢121
SQL messages, displaying ¢ 54
SQL session 34,41
beginningand ending ¢ 34
definition 34

effect of teleprocessingstatements on ¢ 41

SQL standards ¢ 134

SQL statements that end a session ¢34

SQL trace facility « 147

SQLCA « 47
description 47
fields » 47
initialization 47
SQLCERC 47
SQLCODE « 47

SQLCNRP ¢ 76, 80, 81
checkingon a bulkinserte 81
checkingon a bulkselect e 80
testing for bulk fetch ¢ 76

SQLCODE » 47, 54,58, 60, 62,64, 68, 76, 80, 81, 111,

125,183

Index 291

SQLDA « 184 differences from basetables ¢ 167

checking statement status e 184 naming considerations ¢ 167

declaring 184 uses e 167

declaringin CAADS e« 184 test versions ¢ 145

structure ¢ 184 time format e 134

values » 184 timestamp columnfor atable ¢ 159
SQLPIB ¢ 47 Transaction hierarchy 36
SQLSTATE e 47 transactionstatee 139

ANSI-defined values ¢ 47

CA IDMS-defined values » 47 u

1SO-defined values * 47 USA date/time format e 134
SYNCPOINT (CICS) statement « 41
syntaxe 113,114,115,117,127,128,133, 283 Vv

for COPY IDMS FILE » 113

for COPY IDMS module 115

for COPY IDMS RECORD » 114

for INCLUDE IDMS module e 128

for INCLUDE IDMS record » 127

for precompiler directives » 283

for precompiler options ¢ 133

for SQLXQ1 ENTRY e 117
SYSIDMS parameters » 134,144,147

SQLTRACE= e 147

view ¢ 15, 30, 58, 67,139, 167
cannot usetemporary table ¢ 167
defined ¢ 15
includingthedefinitionina program e 30
name qualifier ¢ 139
selectingdata through ¢ 58
updateable view ¢ 67

T

table ¢ 15,17, 30, 45, 58, 60,62, 64, 67,76, 90, 139,
159,170,181, 184
addingdatato ¢ 60
basetable » 67
constraints onvalues ¢ 17
defined 15
definingto a CA ADS dialog*90
deleting data from e 64
ifa columnisadded e 60
includingthedefinitionina program e 30
modifyingdata ine 62
name qualifier ¢ 139
primarykey ¢ 159
resulttable » 15,58,67,76,170,181, 184
row lock e 45
selectingdata from ¢ 58
timestamp column for ¢ 159
updatingthrough a cursor e 15, 67
table procedure e 19
Task-level DML statements inCICS » 41
teleprocessing statements ¢ 41
temporary tablee 15,167
defined » 15

292 Programming Guide

	CA IDMS SQL Programming Guide
	CA Technologies Product References
	Contact CA Technologies
	Documentation Changes
	Contents
	1: Introduction
	Who Should Use This Guide
	Syntax Diagram Conventions

	2: SQL Application Development in CA IDMS
	Accessing Data Using SQL
	SQL Data Access
	Integrity Constraints

	Accessing Non-SQL Defined Databases
	SQL Application Development
	Writing the Application
	Creating Executable Modules
	Executing the Application
	Testing and Debugging the Application

	3: Writing an SQL Program
	Accessing One or More Databases with SQL
	Host Variables
	SQL Declare Sections
	INCLUDE TABLE Directive
	Referring to Host Variables

	Local Variables and Routine Parameters
	SQL Sessions
	Beginning and Ending an SQL Session

	Database Transactions
	Managing Nonshareable Transactions
	Sharing Transactions Among Sessions

	Effect of Teleprocessing Statements and Events
	Concurrency Control and Isolation Levels
	SQL Status Checking and Error Handling
	SQLCA
	Displaying SQL Communication Area Fields
	Error Handling
	Checking Specific Errors
	Using GET DIAGNOSTICS

	4: Data Manipulation with SQL
	Data Manipulation Operations
	Retrieving Data
	Adding Data
	Modifying Data
	Deleting Data
	Using Indicator Variables in Data Manipulation

	Using a Cursor
	Declaring a Cursor
	Fetching a Row
	Executing a Positioned Update or Delete

	Bulk Processing
	Executing a Bulk Fetch
	Executing a Bulk Select
	Executing a Bulk Insert

	Invoking Procedures
	CALL Statement
	CALL of a Procedure
	CALL of a Table Procedure

	SELECT Statement
	SELECT of a Procedure
	SELECT of a Table Procedure

	5: Requirements and Options for Host Languages
	Using SQL in a CA ADS Application
	Embedding SQL Statements
	Delimited, Continued, and Commented Statements
	Placing an SQL Statement

	Defining Host Variables
	Including Tables
	Defining Bulk Structures

	Referring to Host Variables
	Including SQL Communication Areas

	Using SQL in a COBOL Application Program
	Embedding SQL Statements
	Delimited, Continued, and Commented Statements
	Placing an SQL Statement

	Defining Host Variables
	Using COBOL Data Declarations
	Using INCLUDE TABLE
	Defining Bulk Structures
	Non-bulk Structures and Indicator Arrays

	Referring to Host Variables
	Including SQL Communication Areas
	Copying Information from the Dictionary
	COPY IDMS FILE Statement
	Syntax
	Parameters
	Usage

	COPY IDMS RECORD Statement
	Syntax
	Parameters
	Usage

	COPY IDMS MODULE Statement
	Syntax
	Parameters
	Usage

	INCLUDE Module-name Statement
	Non-SQL Precompiler Directives

	Using SQL in a PL/I Application Program
	Embedding SQL Statements
	Declaring SQLXQ1
	Delimited, Continued, and Commented Statements

	Defining Host Variables
	Using PL/I Declarations
	Using INCLUDE TABLE
	Defining Bulk Structures

	Referring to Host Variables
	Including SQL Communication Areas
	Including Information from the Dictionary
	INCLUDE IDMS Record Statement
	Syntax
	Parameters
	Usage

	INCLUDE IDMS MODULE statement
	Syntax
	Parameters

	INCLUDE Module-name Statement
	Non-SQL Precompiler Directives

	6: Preparing and Executing the Program
	Creating an Executable Form
	Precompiling the Program
	About the Precompiler
	Precompiler Options
	Syntax
	Parameters

	Compiling the Program
	Creating the Access Module
	Overriding Access Module Defaults
	Altering an Access Module

	Executing the Application
	Testing the Access Module
	Debugging the Application
	Command Facility
	SQL Trace Facility
	EXPLAIN Statement
	Online Debugger

	7: SQL Programming Techniques
	Modularized Programming
	Sharing a Cursor
	Using the SET ACCESS MODULE Statement

	Pseudoconversational Programming
	Using SUSPEND SESSION and RESUME SESSION
	Scrolling Through a List of Rows
	Updating a Row After a Pseudoconverse

	Managing Concurrent Sessions
	Session Management Concepts
	Implementing Concurrent Sessions

	Creating and Using a Temporary Table
	Bill-of-materials Explosion
	What to Do
	Sample Program

	8: Using Dynamic SQL
	Dynamic SQL
	Dynamic Insert, Update, and Delete Operations
	Using EXECUTE IMMEDIATE
	Using PREPARE
	Using EXECUTE

	Executing Prepared SELECT Statements
	What to Do
	Sample Program

	Executing Prepared CALL Statements
	What to Do
	Sample Program

	Dynamic SQL Caching
	Searching the Cache
	Impact of Database Definition Changes
	SQL-Defined Databases and Caching
	Non-SQL-Defined Databases and Caching

	Controlling the Cache

	A: Sample JCL
	z/OS
	z/VSE
	Usage

	z/VM
	Usage

	B: Test Database
	Table Names and Descriptions
	ASSIGNMENT
	BENEFITS
	CONSULTANT
	COVERAGE
	DEPARTMENT
	DIVISION
	EMPLOYEE
	EXPERTISE
	INSURANCE_PLAN
	JOB
	POSITION
	PROJECT
	SKILL

	Test Data
	Departments
	Divisions
	Insurance Plans
	Jobs
	Projects
	Skills

	Test Database DDL
	Demo Data

	C: Precompiler Directives
	Overriding DDLDML Area Ready Mode
	Syntax
	Parameters

	No Logging of Program Activity Statistics
	Syntax
	Parameters

	Generating a Source Listing
	Syntax
	Parameters

	Usage

	Index

