

Programming Guide
Release 18.5.00

CA IDMS™ SQL

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time. Thi s

Documentation is proprietary information of CA and may not be copied, transferred, reproduced, disclosed, modified or
duplicated, in whole or in part, without the prior wri tten consent of CA.

If you are a licensed user of the software product(s) addressed in the Documentation, you may print or otherwise make
available a reasonable number of copies of the Documentation for internal use by you and your employees in connection with
that software, provided that all CA copyright notices and legends are affixed to each reproduced copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable

l i cense for such software remains in full force and effect. Should the license terminate for any reason, i t is your responsibility to
certi fy in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,

DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such

l icense agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions

set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2013 CA. Al l rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

CA Technologies Product References

This guide references to the following CA products:

■ CA ADS™ For CA IDMS™

■ CA ADS™ Option for APPC

■ CA ADS™ Batch Option

■ CA ADS™ Alive Option

■ CA ADS™ Trace Option

■ CA IDMS™ Database Dictionary Module Editor Option

■ CA IDMS™ Database Dictionary Migrator Option

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information that you need for your Home Office, Small Business, and Enterprise CA

Technologies products. At http://ca.com/support, you can access the following
resources:

■ Online and telephone contact information for technical assistance and customer
services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

To provide feedback about CA Technologies product documentation, complete our
short customer survey which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://ca.com/docs
http://ca.com/docs

Documentation Changes

The following documentation updates were made for the 18.5.00 release of this
documentation:

■ Requirements and Options for Host Languages (see page 87)—This chapter now
indicates that the use of embedded SQL requires a full SQL license.

Contents 5

Contents

Chapter 1: Introduction 11

Who Should Use This Guide ... 11

Syntax Diagram Conventions ... 12

Chapter 2: SQL Application Development in CA IDMS 15

Accessing Data Using SQL ... 15

SQL Data Access.. 15

Integrity Constraints .. 17

Accessing Non-SQL Defined Databases .. 19

SQL Application Development ... 21

Writing the Application ... 21

Creating Executable Modules .. 22

Executing the Application ... 25
Testing and Debugging the Application ... 26

Chapter 3: Writing an SQL Program 27

Accessing One or More Databases with SQL... 27

Host Variables ... 27

SQL Declare Sections ... 29

INCLUDE TABLE Directive.. 30

Referring to Host Variables .. 32

Local Variables and Routine Parameters ... 33

SQL Sessions .. 34

Beginning and Ending an SQL Session .. 34

Database Transactions .. 36

Managing Nonshareable Transactions ... 36

Sharing Transactions Among Sessions.. 38

Effect of Teleprocessing Statements and Events ... 41

Concurrency Control and Isolation Levels ... 45

SQL Status Checking and Error Handling.. 47

SQLCA ... 47
Displaying SQL Communication Area Fields .. 54

Error Handling... 54

Checking Specific Errors .. 55

Using GET DIAGNOSTICS ... 56

6 Programming Guide

Chapter 4: Data Manipulation with SQL 57

Data Manipulation Operations .. 57

Retrieving Data ... 58

Adding Data... 60

Modifying Data ... 62
Deleting Data .. 64

Using Indicator Variables in Data Manipulation ... 65

Using a Cursor ... 67

Declaring a Cursor .. 67

Fetching a Row.. 68

Executing a Positioned Update or Delete .. 72

Bulk Processing ... 75

Executing a Bulk Fetch... 76

Executing a Bulk Select.. 80

Executing a Bulk Insert .. 81

Invoking Procedures .. 83

CALL Statement .. 83

SELECT Statement .. 84

Chapter 5: Requirements and Options for Host Languages 87

Using SQL in a CA ADS Application.. 87

Embedding SQL Statements ... 87

Defining Host Variables ... 90
Referring to Host Variables .. 94

Including SQL Communication Areas.. 95

Using SQL in a COBOL Application Program .. 97

Embedding SQL Statements ... 97

Defining Host Variables ...100

Referring to Host Variables ..109

Including SQL Communication Areas..111

Copying Information from the Dictionary..113

COPY IDMS FILE Statement ..113

COPY IDMS RECORD Statement...113

COPY IDMS MODULE Statement ...115

INCLUDE Module-name Statement ..116

Non-SQL Precompiler Directives ...116

Using SQL in a PL/I Application Program..117

Embedding SQL Statements ...117

Defining Host Variables ...119

Referring to Host Variables ..124

Including SQL Communication Areas..125

Contents 7

Including Information from the Dictionary..127

INCLUDE IDMS Record Statement...127

INCLUDE IDMS MODULE statement ...128

INCLUDE Module-name Statement ..129

Non-SQL Precompiler Directives ...130

Chapter 6: Preparing and Executing the Program 131

Creating an Executable Form ...131

Precompiling the Program..131

About the Precompiler ..132

Precompiler Options..133

Compiling the Program ...138
Creating the Access Module...139

Overriding Access Module Defaults..139

Altering an Access Module ...143

Executing the Application ...144

Testing the Access Module...145

Debugging the Application ...146

Command Facility...146

SQL Trace Facility..147

EXPLAIN Statement..148

Online Debugger...148

Chapter 7: SQL Programming Techniques 151

Modularized Programming...151

Sharing a Cursor ...151

Using the SET ACCESS MODULE Statement...155

Pseudoconversational Programming..157

Using SUSPEND SESSION and RESUME SESSION ..157

Scrolling Through a List of Rows ..158
Updating a Row After a Pseudoconverse ..159

Managing Concurrent Sessions ...163

Session Management Conc epts ...163

Implementing Concurrent Sessions ..164

Creating and Using a Temporary Table ..167

Bill-of-materials Explosion ..169

What to Do ..170

Sample Program ...174

8 Programming Guide

Chapter 8: Using Dynamic SQL 181

Dynamic SQL ...181

Dynamic Insert, Update, and Delete Operations ...182

Using EXECUTE IMMEDIATE ...183

Using PREPARE..184
Using EXECUTE..186

Executing Prepared SELECT Statements ..187

What to Do ..187

Sample Program ...189

Executing Prepared CALL Statements ...193

What to Do ..193

Sample Program ...194

Dynamic SQL Caching ..198

Searching the Cache ..199

Impact of Database Definition Changes...200

Controlling the Cache ..201

Appendix A: Sample JCL 203

z/OS...203

z/VSE...209

Usage ..211

z/VM ...212

Usage ..214

Appendix B: Test Database 217

Table Names and Descriptions ..217

ASSIGNMENT...217

BENEFITS ..218

CONSULTANT ..218

COVERAGE ...219

DEPARTMENT..219

DIVISION...219

EMPLOYEE ...220

EXPERTISE ..220

INSURANCE_PLAN ..220

JOB ..221

POSITION ...221

PROJECT ...222

SKILL..222

Test Data ..222

Contents 9

Departments ...223

Divisions ...223

Insurance Plans...224

Jobs ...224

Projects ..225

Skills ..225

Test Database DDL ...227

Demo Data...237

Appendix C: Precompiler Directives 283

Overriding DDLDML Area Ready Mode ..283

Syntax ...283
Parameters ..283

No Logging of Program Activity Statistics ..284

Syntax ...284

Parameters ..284

Generating a Source Listing..284

Syntax ...284

Parameters ..284

Usage ..285

Index 287

Chapter 1: Introduction 11

Chapter 1: Introduction

This section contains the following topics:

Who Should Use This Guide (see page 11)
Syntax Diagram Conventions (see page 12)

Who Should Use This Guide

This guide is for CA IDMS users who are responsible for designing and developing

application programs using embedded SQL. It also documents aspects of CA IDMS that
are specific to application programming with SQL, including precompiler options and
data type conversions between the database and the program language.

Users of this guide should be experienced in using the program language and should
have a working knowledge of SQL. Users should also be familiar with concepts of CA

IDMS.

For users new to SQL, completion of the CA IDMS SQL Self-Training Guide is
recommended before using this guide. For more information, see the CA IDMS Release

Summary.

How examples are presented in this guide

All program examples are in COBOL unless otherwise indicated.

Most examples of access to an SQL-defined database refer to a test database of
employee information that is supplied as part of CA IDMS installation. Partial

documentation of this database appears in Test Database (see page 217).

The term CA IDMS is used to refer to any one of the following CA IDMS components:

■ CA IDMS/DB—The database management system

■ CA IDMS/DC—The data communications system and proprietary teleprocessing
monitor

■ CA IDMS UCF—The universal communications facility for accessing CA IDMS

database and data communications services through another teleprocessing
monitor, such as CICS

■ CA IDMS DDS—The distributed database system

The actual product names are used for CA IDMS/DB, CA IDMS/DC, CA IDMS UCF,
DC/UCF, and CA IDMS DDS to identify the specific CA IDMS component only when it is

important to your understanding of the product.

Syntax Diagram Conventions

12 Programming Guide

Syntax Diagram Conventions

The syntax diagrams presented in this guide use the following notation conventions:

UPPERCASE OR SPECIAL CHARACTERS

Represents a required keyword, partial keyword, character, or symbol that must be
entered completely as shown.

lowercase

Represents an optional keyword or partial keyword that, if used, must be entered
completely as shown.

italicized lowercase

Represents a value that you supply.

lowercase bold

Represents a portion of the syntax shown in greater detail at the end of the syntax
or elsewhere in the document.

◄─

Points to the default in a l ist of choices.

►►────────────────────

Indicates the beginning of a complete piece of syntax.

────────────────────►◄

Indicates the end of a complete piece of syntax.

─────────────────────►

Indicates that the syntax continues on the next l ine.

►─────────────────────

Indicates that the syntax continues on this l ine.

────────────────────►─

Indicates that the parameter continues on the next l ine.

─►────────────────────

Indicates that a parameter continues on this l ine.

►── parameter ─────────►

Indicates a required parameter.

►──┬─ parameter ─┬─────►
 └─ parameter ─┘

Indicates a choice of required parameters. You must select one.

►──┬─────────────┬─────►
 └─ parameter ─┘

Indicates an optional parameter.

Syntax Diagram Conventions

Chapter 1: Introduction 13

►──┬─────────────┬─────►
 ├─ parameter ─┤
 └─ parameter ─┘

Indicates a choice of optional parameters. Select one or none.

 ┌─────────────┐
►─▼─ parameter ─┴──────►

Indicates that you can repeat the parameter or specify more than one parameter.

 ┌─── , ─────────┐
►─▼─ parameter ───┴──────►

Indicates that you must enter a comma between repetitions of the parameter.

Sample Syntax Diagram

The following sample explains how the notation conventions are used:

Chapter 2: SQL Application Development in CA IDMS 15

Chapter 2: SQL Application Development in
CA IDMS

This section contains the following topics:

Accessing Data Using SQL (see page 15)
Accessing Non-SQL Defined Databases (see page 19)

SQL Application Development (see page 21)

Accessing Data Using SQL

You embed SQL statements in an application program to access the database. SQL
allows you to access the database without reference to its physical characteristics.

A database defined with SQL DDL includes constraints that govern data manipulation.

The DBMS enforces constraints at runtime.

SQL Data Access

Tables and Views

Data accessed through SQL is perceived as tables made up of rows and columns. A table

is a base table.

An application program accesses an SQL-defined database by issuing SQL statements
that refer to one or more base tables, or to a predefined view of one or more base

tables.

Schema and Area

A schema is a named collection of tables and views. The rows of a table are stored in the
area that is specified in the CREATE TABLE statement or, if not specified, in the default
area for the schema.

Concurrent access to data can be controlled at the area level a nd the table row level.

SELECT Statement

A SELECT statement requests the DBMS to retrieve data. The table of values returned to
the program on a select is a result table. Typically, a result table is a subset of the row
and column values in one or more base tables.

Accessing Data Using SQL

16 Programming Guide

Cursor

A cursor is an SQL programming construct that is used to process data in a result table.

The cursor defines the result table, and the program can retrieve each row of the result
table one at a time with a FETCH statement.

The cursor row whose values are available to the program represents the cursor

position. Each FETCH statement advances the cursor position to the next row of the
result table.

Updateable Cursor

If the cursor definition meets certain requirements, it is an updateable cursor. The
program can update or delete the row on which an updateable cursor is positioned,

(that is, the row most recently fetched).

INSERT, UPDATE, and DELETE

The SQL statement to add a row to a table is INSERT and to delete a row is DELETE. The
statement to modify one or more column values in a row is UPDATE.

Host Variables

A host variable is a program variable that is referenced in an SQL statement. Host
variables are used to receive data retrieved from the database and to supply data to be

added to the database.

Local Variables

A local variable of an SQL routine is a program variable declared in a compound
statement of an SQL routine. Local variables can be used to receive data retrieved from

the database and to supply data to be added to the database.

Routine Parameter

A routine parameter of an SQL routine is a program variable declared in the parameter
definition of an SQL routine. Routine parameters provide for the mechanism of passing
data between an SQL routine and its invoker, but they can also be used to receive data

retrieved from the database and to supply data to be added to the database.

CALL

The CALL procedure is the SQL statement that invokes an external procedure's program
or an SQL procedure using a remote procedure paradigm. Input values are passed from
CA IDMS to the program or SQL procedure. The output values are returned into the host

variables of the program or into the local variables or routine parameters of the SQL
procedure specified in the procedure reference.

Accessing Data Using SQL

Chapter 2: SQL Application Development in CA IDMS 17

Bulk Processing

Bulk processing is a CA IDMS extension to the SQL standard that allows the program to

select, fetch, or insert a group of rows using a host variable array.

Temporary Table

An application program can create a temporary table, populate it, and manipulate the
data in it. A temporary table exists only for the duration of the SQL transaction in which
it is created.

Prepared Statement

A program can prepare, or compile, certain SQL statements at runtime. This allows the
program to execute an SQL statement that is not known until runtime.

Integrity Constraints

Integrity rules are enforced by the DBMS using constraints that are specified as part of

the database definition.

Unique Constraint

A unique constraint requires that each row of a table be unique with respect to the
value of a column or combination of columns. A unique constraint is defined when an

index or CALC key is defined with the UNIQUE parameter.

It is possible to define any number of unique constraints on a table.

Primary Key

The primary key is a column or combination of columns for which a unique constraint
has been defined and which has been defined as not null. Consequently, the primary key

uniquely identifies each row and prevents duplicate rows from being stored. For
example, in the DEPARTMENT table of the demonstration database, DEPT_ID is the
primary key.

A table usually has one and only one primary key.

Referential Constraint

A referential constraint is a relationship between two tables. A referential constraint
identifies a foreign key in one of the tables, the referencing table. A foreign key is a
column or combination of columns whose value must exist as the value of the primary

key in a row of the related table, the referenced table.

Accessing Data Using SQL

18 Programming Guide

When a referential constraint has been created, a row cannot be stored in the
referencing table unless its foreign key value already exists as a primary key in the

referenced table. Conversely, a row in the referenced table cannot be deleted or have
its primary key value altered if the primary key value exists as a foreign key in the
referencing table. This assures referential integrity between the tables.

Referential Constraint Illustration

The following example identifies two referential constraints between the DEPARTMENT

table and the EMPLOYEE table:

1. A value cannot be stored in the DEPT_ID column of the EMPLOYEE table unless the
value exists in the DEPT_ID column of the DEPARTMENT table

2. A value cannot be stored in the DEPT_HEAD_ID column of the DEPARTMENT table
unless the value exists in the EMP_ID column of the EMPLOYEE table

 DEPARTMENT table

 ┌───────────┬─────────────────────────────┬─────────────┬──────────────┐
 │DEPT_ID │DEPT_NAME │DIV_CODE │DEPT_HEAD_ID │
 ├───────────┼─────────────────────────────┼─────────────┼──────────────┤
 │ 3510│APPRAISAL - USED CARS │D02 │ 3082│
 │ 4500│HUMAN RESOURCES │D09 │ 3222│
 │ 2210│SALES - NEW CARS │D04 │ 2010│
 │ 5000│CORPORATE ACCOUNTING │D09 │ 2466│
 │ 3520│APPRAISAL NEW CARS │D04 │ 3769│
 │ 4600│MAINTENANCE │D06 │ 2096│
 │ 4200│LEASING - NEW CARS │D04 │ 1003│
 │ 5100│BILLING │D06 │ 2598│
 │ 6000│LEGAL │D09 │ 1003│
 │ 1100│PURCHASING - USED CARS │D02 │ 2246│ ──┐
 │ 3530│APPRAISAL ─ SERVICE │D06 │ 2209│ │
 │ 5200│CORPORATE MARKETING │D09 │ 2894│ │
┌───┼─────► 1110│PURCHASING - NEW CARS │D04 │ 1765│ │
│ │ 3000│CUSTOMER SERVICE │D09 │ 4321│ │
│ │ 6200│CORPORATE ADMINISTRATION │D09 │ 2461│ │
│ │ 2200│SALES - USED CARS │D02 │ 2180│ │
│ │ 1120│PURCHASING - SERVICE │D06 │ 2004│ │
│ │ 4900│MIS │D09 │ 2466│ │
│ └───────────┴─────────────────────────────┴─────────────┴──────────────┘ │
│ │
│ EMPLOYEE (DEPT_ID) │
│ references DEPARTMENT (DEPT_ID) │
│ │
│ │
│ EMPLOYEE table │
│ │
│ ┌───────────┬────────────────────┬───────────┐ DEPARTMENT │
│ │DEPT_ID │EMP_LNAME │EMP_ID │ (DEPT_HEAD_ID) │
│ ├───────────┼────────────────────┼───────────┤ │
│ │ 1100│FORDMAN │ 5008│ EMPLOYEE │
│ │ 1100│HALLORAN │ 4703│ (EMP_ID) │
│ │ 1100│HAMEL │ 2246│ ◄────────────────────┘
└──────────┼───── 1110│ALEXANDER │ 1765│
 │ 1110│WIDMAN │ 2106│
 │ 1120│JOHNSON │ 2004│
 │ 1120│JOHNSON │ 3294│
 │ 1120│UMIDY │ 2898│
 │ 1120│WHITE │ 3338│
 │ 2200│ALBERTINI │ 2180│
 │ . │ . │ . │
 │ . │ . │ . │
 │ . │ . │ . │
 └───────────┴────────────────────┴───────────┘

Accessing Non-SQL Defined Databases

Chapter 2: SQL Application Development in CA IDMS 19

Domain Constraint

A domain constraint restricts column values and is part of the table definition. The

types of domain constraint are:

■ Data type—Restricts column values to the data type of the column (for example,
INTEGER restricts column values to the set of integers)

■ Check constraint—Restricts column values to a range of values that satisfies a
search condition

■ Not null constraint—Requires that each column of a row contain an actual value
and not the absence of a value

Constraint Violation

If the DBMS detects a constraint violation when processing an SQL statement, it returns
an error.

Accessing Non-SQL Defined Databases

What You Can Do

CA IDMS provides the ability to use SQL to access a non-SQL defined database. The SQL

statements used to access such a database are the same as those used to access a
database that is defined with SQL DDL. Programming considerations such as session
management and concurrency control are also the same.

Note: For more information about accessing a non-SQL defined database using SQL, see
the CA IDMS SQL Reference Guide.

You can use a table procedure, a procedure, or a user-defined function to process
non-SQL defined data in a relational way even though the data does not conform to the
rules established for such access.

A table procedure is a user-written program which allows any data accessible through
CA IDMS to be viewed and processed as a table. The parameters passed to and from the

program are treated as the columns of a table which can be manipulated using SQL DML
commands. The speci fics of how the database is accessed in servicing these requests is
hidden within the table procedure. A table procedure can:

■ Provide full update capability on member records that do not contain foreign keys

■ Access data with multiple definitions

■ Access data that does not conform to the data type defined in the non-SQL schema

■ Translate special data values into null values

Accessing Non-SQL Defined Databases

20 Programming Guide

A procedure is a user-written program and can be used to process and access a
non-SQL-defined database. Procedures provide a method for implementing the remote

call procedure paradigm.

When a procedure is invoked, it is called only once for each set of input values
regardless of the type of statement containing the procedure reference. Within the
single call, the procedure must use the input values, perform the expected action, and
return the appropriate output values. This differs from a table procedure that can be

called multiple times for a given set of input values depending upon the type of
statement containing the procedure reference. Procedures are much easier to write and
to interface with than table procedures.

A user-defined-function is invoked through a qualified or unqualified function identifier
together with an optional set of parameter values and returns a single value. An

external user-defined function has an associated user-written program that can be used
to process and access a non-SQL-defined database.

Note: For more information about using table procedures, procedures, and user -defined

functions to access non-SQL databases, see the CA IDMS SQL Reference Guide.

Requirements

Before you can access a non-SQL defined database through SQL, you must define a
schema with the SQL statement CREATE SCHEMA that references the non-SQL defined
schema. Then you can reference the records defined in the non-SQL defined schema as

tables in SQL DML statements.

Tables and Columns

Once an SQL schema has been defined that references a non-SQL defined schema, each
record in the non-SQL defined schema is represented as a table and each record
element is represented as a column. Some elements, such as group elements, do not

appear as columns in tables representing non-SQL defined records.

These transformations are applied to the names of record elements:

■ All hyphens ('-') are translated to underscores ('_')

■ Elements occurring a fixed number of times are suffixed with an occurrence count
to distinguish individual items

No transformations are applied to the names of records. If the name does not comply to

the rules for non-delimited SQL identifiers (for example, because it contains a hyphen),
the name has to be delimited in double quotation marks.

SQL Application Development

Chapter 2: SQL Application Development in CA IDMS 21

Conditions Imposed by Database Design

The design of your non-SQL defined database may impose conditions on the use of

some SQL DML statements:

■ INSERT, UPDATE and DELETE statements are governed by the rules of referential
integrity if the table being operated on represents a record that participates in a set

defined with primary and foreign keys in the non-SQL defined schema

■ When joining two tables representing records l inked through a set in which the
member record does not physically contain the owner's key value (that is, there are
no embedded foreign keys), you must specify the set name in the join criteria

Limitations Imposed by Database Design

The design of your non-SQL defined database may impose limitations on the use of
some SQL DML statements:

■ DELETE of a table row representing a record occurrence is disallowed if that record
occurrence is the owner of any non-empty set

■ INSERT is disallowed on a table representing a record if that record participates in
an automatic set for which foreign keys have not been defined in the non-SQL
defined schema

SQL Application Development

Given the design of the database and the application, and the description of the data,
you take these steps to develop an SQL application in the CA IDMS environment:

1. Design the application

2. Model the database access using SQL submitted through the command facil ity

3. Write the application

4. Create executable modules

5. Execute the application

6. Test and debug the application

Writing the Application

Program Language

In the program language, you write everything that the application program requires
except database access and the structures needed to handle database access.
Embedding SQL in the program does not affect any rules that apply to using the

program language.

SQL Application Development

22 Programming Guide

Embedded SQL

Within the application program, you can embed SQL statements to:

■ Access the database

■ Access the dictionary

■ Define the structures needed to transfer data between the program and the DBMS

■ Manage SQL sessions and transactions

Note: For more information about the complete syntax for all CA IDMS SQL statements,

see the CA IDMS SQL Reference Guide.

Creating Executable Modules

Since the application program contains an embedded sublanguage, you precompile the
program to create a module of the SQL statements (an RCM) that is separate from

program source. You also create an access module that contains an optimized access
strategy for the SQL statements in one or more RCMs.

Precompiling the Program

The precompiler converts embedded SQL statements to internal form and stores them
in a module called an RCM. It replaces embedded SQL in the source module with calls to

the DBMS. These calls, unlike the SQL statements they replace, are intell igible to the
language compiler.

The precompiler checks the syntax of the embedded SQL. If there are syntax errors, it

issues an error report instead of storing the RCM.

Compiling the Program

After the program precompiles successfully, you compile and link the modified source
program to create an executable program load module.

Creating an Access Module

The load module that is executed when the program requests database access is the

access module. You must create the access module before executing the program.

An access module is built using one or more RCMs. Each RCM represents the SQL
statements from a single source program or CA ADS dialog.

SQL Application Development

Chapter 2: SQL Application Development in CA IDMS 23

When you create an access module, the optimizer performs these functions on each SQL
statement from each RCM that you include in the access module:

■ Validates table and column references in the statement against the dictionary

■ Selects the most efficient database access strategy for the statement

What Information the Optimizer Uses

To develop an optimized access strategy for an SQL statement, the optimizer considers:

■ The type of statement

■ The selection criteria

■ The physical structure of the database as defined in the dictionary

■ Statistics stored in the dictionary as a result of running the UPDATE STATISTICS

util ity

Summary of Program Preparation

These are the steps you take to make the application executable:

1. Precompile the programs

2. Compile and link the programs

3. Create the access module

For more information about how you take these steps, see Preparing and Executing the
Program (see page 131).

SQL Application Development

24 Programming Guide

The next flow chart shows the result of each step in the process:

SQL Application Development

Chapter 2: SQL Application Development in CA IDMS 25

Executing the Application

SQL Statement Processing

When the program executes at runtime, the program load module and access module
are loaded as necessary. The access module is loaded the first time the program calls

the DBMS to access data in the database.

The DBMS attempts to validate the definition of a table to be accessed—that is, it
verifies the table definition has not changed since the access module was created. If
validation fails, the DBMS automatically recreates the access module if you have defined

the access module to al low this.

Concurrency Control

When the application executes in a multiuser processing environment, the DBMS
controls concurrent access to the same set of data by setting retrieval or update locks.
The DBMS determines the type, level, and duration of the lock from the activities and

the isolation level of the database transaction.

The CA IDMS defaults for locking favor the greatest possible concurrency that can be
maintained while guaranteeing the integrity of the data. You can change the system
defaults for locking by specifying a different isolation level and/or a different ready
mode for an accessed area.

Note: For more information about specifying isolation level and ready mode, see
Concurrency Control and Isolation Levels.

Execution Environments

CA IDMS application programs can execute in the DC/UCF region, a batch region, or
other region such as a CICS region. Except for a local mode job, all processing of SQL

statements occurs under the central version, the DC system component that manages
multiuser, concurrent access to the database.

Local mode is a single-user batch processing environment that manages access to areas
of the database independent of the central version. It is normally used for retrieval -only
batch jobs and large-volume update applications that tend to monopolize an area of the

database.

The central version performs automatic recovery for programs that end abnormally. No
automatic recovery is performed for a local mode program.

SQL Application Development

26 Programming Guide

Testing and Debugging the Application

Testing SQL Access

You can use the CA IDMS Command Faci l ity to test SQL statements online and to verify
conditions of the database. When you successfully test a statement, you can save it in

the dictionary.

Note: For more information about using the Command Facil ity, see the CA IDMS
Common Facilities Guide.

Debugging Embedded SQL

Besides using CA IDMS debugging tools for the host language program, you can debug

embedded SQL by:

■ Displaying values in fields of SQL Communication Areas (SQLCAs), where the DBMS
returns information about the executing program and about SQL statement
execution

Note: For more information about displaying SQLCA fields, see SQL Status Checking
and Error Handling.

■ Requesting a trace of all SQL commands issued from a batch application

Note: For more information about the SQL trace facil ity, see SQL Trace Facil ity.

■ Issuing GET DIAGNOSTICS SQL statements to request diagnostic information from

the DBMS about the last executed SQL statement

Note: For more information about the GET DIAGNOSTICS statement, see the CA
IDMS SQL Reference Guide.

Chapter 3: Writing an SQL Program 27

Chapter 3: Writing an SQL Program

This section contains the following topics:

Accessing One or More Databases with SQL (see page 27)
Host Variables (see page 27)
Local Variables and Routine Parameters (see page 33)

SQL Sessions (see page 34)
Database Transactions (see page 36)
Effect of Teleprocessing Statements and Events (see page 41)

Concurrency Control and Isolation Levels (see page 45)
SQL Status Checking and Error Handling (see page 47)

Accessing One or More Databases with SQL

Databases can be accessed with SQL using any of the following methods:

■ Host variables—Variables that can be referenced in SQL statements in application

programs

■ Local variables and routine parameters —Variables that can be referenced in SQL
statements in SQL routines

■ SQL transaction—A database transaction initiated by an SQL statement

■ SQL session—A connection to a dictionary that enables SQL access to a database

■ SQL Communications Areas—Data structures the program uses to check the status
of SQL statement execution

Host Variables

A host variable is a program variable that is referenced in an SQL statement. It is the

only kind of variable that you can use in an SQL statement embedded in application
programs.

Host variables are necessary for the program to receive data from the database and in
most cases for the program to modify data in the database.

Host Variables

28 Programming Guide

How Host Variables Are Used

Host variables are used to:

■ Receive column values specified in a SELECT or FETCH statement

■ Supply column values specified in an UPDATE statement, INSERT statement, or
other statements containing a search condition

■ Supply information for dynamically executed statements. For more information, see
Chapter 8, Using Dynamic SQL.

Host Variable Example

In this example, DEPT-ID, EMP-LNAME, and EMP-ID are host variables. DEPT-ID and
EMP-LNAME receive column values and EMP-ID supplies a column value used in the

search condition of the statement:

EXEC SQL

 SELECT DEPT_ID,

 EMP_LNAME

 INTO :DEPT-ID,

 :EMP-LNAME

 FROM EMPLOYEE

 WHERE EMP_ID = :EMP-ID

END-EXEC.

Indicator Variable

An indicator variable is a host variable used to manipulate null values.

CA IDMS sets an indicator variable to -1 if the column value in the associated host
variable is null.

An indicator variable should be defined for each column accessed by the program that
could contain a null value. If the program retrieves a null value from a column that has

no indicator variable, CA IDMS returns an error.

In a host variable array for use in bulk processing, the data type of an indicator variable
must be declared with a usage SQLIND.

Null Value

A null value is the absence of a value and is not the same as spaces or numeric zeros,
which are actual values. In an SQL-defined database, a column, regardless of data type,
can contain a null value unless the column definition specifically disallows them.

Host Variables

Chapter 3: Writing an SQL Program 29

SQL Declare Sections

In SQL Standard, you define host variables within an SQL declare section. You begin and
end an SQL declare section with these statements:

EXEC SQL

 BEGIN DECLARE SECTION

END-EXEC.

 .

 .

 .

EXEC SQL

 END DECLARE SECTION

END-EXEC.

A CA IDMS extension of the SQL standard allows you to continue an SQL declaration
section statement on the following line after any keyword.

What You Can Do

You can include any number of host variable declarations in an SQL declare section. You

can include any number of SQL declare sections in a single application program.

Host Variable Declaration Example

In this example, the SQL declare section defines host variables, including one indicator
variable, using standard COBOL data declarations.

WORKING-STORAGE SECTION.

 .

 .

 .

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.

 01 EMP-ID PIC S9(8) USAGE COMP.

 01 EMP-LNAME PIC X(20).

 01 SALARY-AMOUNT PIC S9(6)V(2) USAGE COMP-3.

 01 PROMO-DATE PIC X(10).

 01 PROMO-DATE-I PIC S9(4) USAGE COMP.

 EXEC SQL END DECLARE SECTION END-EXEC.

Host Variables

30 Programming Guide

INCLUDE TABLE Directive

INCLUDE TABLE Statement

You can use the INCLUDE TABLE statement, a CA IDMS extension of the SQL standard, to
define a host language data structure for table columns. INCLUDE TABLE is a

precompiler directive that defines host variables for all columns of a table, view, table
procedure, procedure or function, or for a subset of columns that you specify in the
statement.

If INCLUDE TABLE falls within the scope of an SQL declare section, embedded SQL

statements can reference the variables defined by the precompiler as host variables.

Statement Example

The following INCLUDE statement directs the precompiler to define host variables for
the DIVISION table, which has columns DIV_CODE, DIV_NAME, and DIV_HEAD_ID:

WORKING-STORAGE SECTION.

 .

 .

 .

EXEC SQL

 INCLUDE TABLE DIVISION

END-EXEC.

Structure Example

When the precompiler processes the INCLUDE TABLE statement in the prior example, it

defines this structure:

*EXEC SQL

* INCLUDE TABLE DIVISION

*END-EXEC.

 01 DIVISION.

 03 DIV-CODE PIC X(3).

 03 DIV-HEAD-ID PIC S9(4) COMP.

 03 DIV-HEAD-ID-I COMP PIC S9(8).

* SQLIND.

 03 DIV-NAME.

 49 DIV-NAME-LEN PIC S9(4) COMP.

 49 DIV-NAME-TEXT PIC X(40).

Host Variables

Chapter 3: Writing an SQL Program 31

INCLUDE Statement Options

You can use options on the INCLUDE statement to perform the following:

■ Override the default element level

■ Direct the precompiler not to group elements under a structure

■ Specify the columns to be included

■ Specify names for the generated record and element definitions

■ Specify a prefix or suffix for an element name

■ Direct the precompiler to generate a multiply-occurring array

Note: For more information about INCLUDE statement syntax and options, see the CA
IDMS SQL Reference Guide.

Including an Array

You can use the INCLUDE statement to generate a host variable array by specifying the

NUMBER OF ROWS parameter. A host variable array is used in bulk processing.

Note: For more information about bulk processing, see Bulk Processing (see page 75).

Host Variable Array Structure

When the precompiler generates a host variable array, it creates a structure using three
levels. In the next example, a structure has been generated by an INCLUDE TABLE

statement with NUMBER OF ROWS = 100:

DIVISION.

 02 DIVISION-BULK OCCURS 100 TIMES.

 03 DIV-CODE PIC X(3).

 03 DIV-HEAD-ID PIC S9(4) COMP.

 03 DIV-HEAD-ID-I COMP PIC S9(8).

* SQLIND.

 03 DIV-NAME.

 49 DIV-NAME-LEN PIC S9(4) COMP.

 49 DIV-NAME-TEXT PIC X(40).

Usefulness of INCLUDE TABLE

The INCLUDE TABLE statement is a programming tool. It assures that host variable
definitions correspond to current table column definitions in the dictionary: the data

types are equivalent, and indicator variables are declared for all columns that allow null
values.

Host Variables

32 Programming Guide

When Not to Use INCLUDE TABLE

Using INCLUDE TABLE is not appropriate if:

■ The program must conform to the SQL standard

■ The host variable declaration is for temporary table columns

Referring to Host Variables

Reference Requirements

These syntax requirements apply when you refer to a host variable in an embedded SQL
statement:

■ To refer to any host variable in an embedded SQL statement, prefix the host

variable name with a colon (:)

■ To associate an indicator variable with a host variable, place the reference to the
indicator variable after the host variable, with no comma or other separator
character

Note: You can use the optional keyword INDICATOR as a separator.

Reference Example

In the following example, information from the BENEFITS table is selected for a given
employee ID value, which the program has assigned to the host variable EMP-ID.
BENEFITS table information is retrieved into host variables VAC-TAKEN and SICK-TAKEN.

VAC-TAKEN-I and SICK-TAKEN-I are indicator variables.

EXEC SQL

 SELECT VAC_TAKEN,

 SICK_TAKEN

 INTO :VAC-TAKEN INDICATOR :VAC-TAKEN-I,

 :SICK-TAKEN INDICATOR :SICK-TAKEN-I

 FROM BENEFITS

 WHERE EMP_ID = :EMP-ID

END-EXEC.

Local Variables and Routine Parameters

Chapter 3: Writing an SQL Program 33

Local Variables and Routine Parameters

Local variables and routine parameters are program variables of SQL routines. These
variables can be used as any program variable and are necessary for the SQL routine to
receive data from the database and to modify data in the database. In addition to their
role as program variables, routine parameters are mainly used to pass input values from

and output values to the invoker of the SQL routine.

Local variables are defined in the DECLARE statement of a compound SQL statement.
Routine parameters are defined in the parameter-definition clause of the CREATE
PROCEDURE or CREATE FUNCTION statements.

How Local Variables and Routine Parameters Are Used

Local variables and routine parameters are used as follows:

■ Receive column values specified in a SELECT or FETCH statement

■ Supply column values specified in an UPDATE statement, INSERT statement, or

other statements containing a search condition

■ Supply information for dynamically executed statements

Note: For more information about dynamically executed statements, see Using
Dynamic SQL (see page 181).

Local Variable Example

In the following example, DEPT_ID, EMP_LNAME, and EMP_ID are local variables
defined in a compound statement with label MAIN_BLOCK. DEPT_ID and EMP_LNAME
receive column values and EMP_ID supplies a column value used in the search condition
of the statement:

SELECT EMPLOYEE.DEPT_ID, EMPLOYEE.EMP_LNAME INTO MAIN_BLOCK.DEPT_ID,

MAIN_BLOCK.EMP_LNAME

 FROM EMPLOYEE

WHERE EMPLOYEE.EMP_ID = MAIN_BLOCK.EMP_ID;

Null Value

A null value is the absence of a value and is not the same as spaces or numeric zeros
which are actual values. Local variables and routine parameters are always nullable.
However, as these are SQL variables, null support is built-in and null indicators must not
be used.

Note: For more information, see the CA IDMS SQL Reference Guide.

SQL Sessions

34 Programming Guide

SQL Sessions

An SQL session is a logical connection between the executing application and the DBMS.
It begins when the application connects to a dictionary and ends when the application
disconnects from the dictionary. The dictionary contains the definition of the data
accessed using SQL.

Beginning and Ending an SQL Session

Beginning an SQL Session

An SQL session begins when the program submits its first SQL statement. If that
statement is a CONNECT, the session is connected to the dictionary specified by the

statement and the session is said to be explicitly connected.

If the first statement is not a CONNECT, the session is automatically connected to a
default dictionary.

Session Hierarchy

A hierarchy of database sessions occurs when an SQL invoked routine (an SQL

procedure, table procedure, or function) starts its own session to access the database.

A database session that is started by a program executing as part of an SQL invoked
routine is is a subordinate session since it is under the control of the SQL session within

which the routine was invoked. The controlling session is referred to as the subordinate
session's encompassing session. A top-level session is one that has no encompassing
session.

 ┌──────────────┐
 │ Top-level/ │ Application issues:
 │ Encompassing │ -- CONNECT...
 │ Session │ -- CALL "PROCA"
 │ │
 └──────────────┘
 │
 │
 │
 ┌──────────────┐
 │ Encompassing │ PROCA issues
 │ and │ -- CONNECT...
 │ Subordinate │ -- Invokes function FUNCB
 │ Session │
 └──────────────┘
 │
 │
 │
 ┌──────────────┐
 │ │ FUNCB issues
 │ Subordinate │ -- BIND RUNUNIT...
 │ Session │
 │ │
 └──────────────┘

SQL Sessions

Chapter 3: Writing an SQL Program 35

Default Dictionary

When establishing an automatically connected SQL session, CA IDMS connects the

session to a default dictionary.

The default dictionary for a top-level session is established by:

■ SYSIDMS DICTNAME parameter for a batch application

■ Value of the DICTNAME attribute for the user session, as set by one of the
following:

– User profile

– System profile

– Default dictionary defined by the DBNAME table

– DCUF SET DICTNAME system task

– Call to IDMSIN01 to set the DICTNAME attribute

Note: For more information about SYSIDMS parameters and call ing IDMSIN01, see the
CA IDMS Common Facilities Guide.

The default dictionary for a subordinate session is determined by the initiating routine

definition's DEFAULT DATABASE parameter.

■ If DEFAULT DATABASE CURRENT was specified, the default dictionary is the
dictionary to which the encompassing SQL session is connected.

■ If DEFAULT DATABASE NULL was specified (or defaulted), the default dictionary is

determined in the same way as for a top-level session.

Note: For more information about the DEFAULT DATABASE parameter of the CREATE
PROCEDURE, CREATE TABLE PROCEDURE or CREATE FUNCTION statements, see the CA

IDMS SQL Reference Guide.

SQL Statements that End a Session

If the SQL session began automatically (that is, no CONNECT statement was issued), it
ends when the program issues one of these statements:

■ COMMIT

■ ROLLBACK

■ COMMIT RELEASE

■ ROLLBACK RELEASE

■ RELEASE

Database Transactions

36 Programming Guide

If a CONNECT statement was executed to start the session, it ends when the program
issues one of these statements:

■ COMMIT RELEASE

■ ROLLBACK RELEASE

■ RELEASE

If an encompassing session ends, all of its subordinate sessions end also.

Automatic Session Termination

If a batch application program terminates execution by returning control to the
operating system, SQL sessions still in progress are terminated automatically as if the
application had issued a ROLLBACK RELEASE statement.

If a program returns control to a teleprocessing system or issues certain teleprocessing
statements, such as FINISH TASK, SQL sessions still in progress may or may not be

terminated depending on the event or statement issued and whether the session is
suspended.

Note: For more information about the effect of teleprocessing statements on SQL

sessions, see Effect of Teleprocessing Statements and Events (see page 41).

Database Transactions

A database transaction is a unit of recovery representing work done by one or more
database sessions. All access to CA IDMS data from within an SQL session is done under
the control of a database transaction.

Transactions can be associated with one or more database sessions. A transaction can
be associated with more than one session only if a session is eligible to share its
transaction with other sessions. Transactions started by sessions that are not eligible to

share their transaction are called nonshareable transactions.

Managing Nonshareable Transactions

Beginning a Transaction

A nonshareable transaction is started when the program submits an SQL statement that

results in access to either user data or a dictionary, unless the session is already
associated with a transaction.

Database Transactions

Chapter 3: Writing an SQL Program 37

Transaction Hierarchy

Just as sessions can be related in a hierarchical way, their associated transactions can

also be related hierarchically. If a session is subordinate to another session, its
transaction is subordinate to the encompassing session's transaction.

Note: For more information about session hierarchies, see Beginning and Ending an SQL

Session (see page 34).

When a transaction is committed or rolled back, all of its direct and indirect
subordinates are also committed or rolled back.

Ending a Transaction

If a session's transaction is not shareable, it ends when:

■ A COMMIT statement is executed.

■ A ROLLBACK statement is executed.

■ The SQL session is terminated.

When a transaction ends, all open cursors are closed, all temporary tables are dropped,
and all prepared statements are dropped.

More Information

■ For more information about cursors, see Using a Cursor (see page 67).

■ For more information about temporary tables, see Creating and Using a Temporary
Table (see page 167).

■ For more information about prepared statements, see Executing Prepared SELECT
Statements (see page 187).

Committing Changes

Changes made through an SQL session are committed when an SQL COMMIT statement
is executed or when a teleprocessing statement is executed that results in the

committing of database updates. If changes are not committed in one of these ways,
updates made through an SQL session are backed out, either as the result of an explicit
ROLLBACK request or automatically as the result of a teleprocessing statement or event.

Note: For more information about the effect of teleprocessing statements on database
transactions, see Effect of Teleprocessing Statements and Events (see page 41).

Transaction sharing impacts the committing of database changes.

Note: For more information about the impact that sharing database transactions has on
committing changes, see Sharing Transactions Among Sessions (see page 38).

Database Transactions

38 Programming Guide

Preserving Session State after a Commit

Normally when a transaction is committed, the state of the session is reset: cursors are

closed, prepared statements are deleted and temporary tables are dropped. However, a
CA IDMS extension to the SQL standard allows you to commit updates but preserve the
session state as it was prior to the commit. This extension is the CONTINUE parameter

of the COMMIT statement:

 EXEC SQL

 COMMIT CONTINUE

 END-EXEC.

The CONTINUE parameter l imits the effect of a COMMIT to committing updates and
downgrading or releasing update locks held for the transaction.

Sharing Transactions Among Sessions

Sharing a Transaction

A transaction can be shared by multiple database sessions, both SQL sessions and
non-SQL sessions (rununits). By sharing a transaction, sessions will not deadlock among
themselves even if they access and update the same data.

Enabling Transaction Sharing

An SQL session is eligible to share its transaction if transaction sharing is in effect when
the database session is started.

Transaction sharing is in effect for a top-level session if:

■ TRANSACTION_SHARING=ON is specified in the SYSIDMS fi le for a batch application.

Note: For more information about SYSIDMS parameters, see the CA IDMS Common
Facilities Guide.

■ IDMSCINT or CICSOPT parameter specified TXNSHR=ON for CICS applications.

Note: For more information about IDMSCINT and CICSOPT parameters, see the CA
IDMS System Operations Guide.

■ Transaction sharing has been enabled for the executing DC/UCF task by means of a
SYSGEN or DCMT command.

■ Transaction sharing has been enabled though a call to IDMSIN01.

Database Transactions

Chapter 3: Writing an SQL Program 39

For subordinate sessions, transaction sharing is controlled through the TRANSACTION
SHARING parameter of the SQL invoked routine's definition unless overridden by a call

to IDMSIN01 from within the routine.

■ If TRANSACTION SHARING ON is specified, transaction sharing is enabled for all
sessions started by the routine.

■ If TRANSACTION SHARING OFF is specified, transaction sharing is disabled for all
sessions started by the routine.

■ If TRANSACTION SHARING DEFAULT is specified (or defaulted), the transaction
sharing state that was in effect before the routine was called applies to all sessions
started by the routine.

Note: For more information about the TRANSACTION SHARING parameter of the
CREATE PROCEDURE, CREATE TABLE PROCEDURE or CREATE FUNCTION statements, see
the CA IDMS SQL Reference Guide.

Whether transaction sharing is enabled for a remote SQL session is determined by the
attribute in effect in the CA IDMS environment in which the session-initiating statement

is issued. (A remote session is one that is connected to a dictionary residing on a central
version different from where the application is executing.)

Regardless of how transaction sharing is enabl ed, if it is in effect at the time a database
session is started, then that database session is eligible to share its transaction with
other database sessions started by the same task or user session. The following rules

determine whether two sessions will share a transaction.

■ A top-level database session will share its transaction with another top-level session
if they are both eligible for transaction sharing.

Database Transactions

40 Programming Guide

■ A subordinate database session that is eligible for transaction sharing will share its
encompassing session's transaction even if the encompassing session is not eligible

to share its transaction.

Application Programming Considerations

Transaction sharing affects applications in the following ways:

■ An update made through a database session may impact other database sessions
sharing the same transaction.

■ A rollback issued within one database session affects all sessions that share the
same transaction.

■ A commit issued by a database session whose transaction is shared has no affect on
the transaction unless all other sharing sessions have also been committed.

Inter-session Conflicts

Database sessions that share a transaction can impact each other in ways that would
not be possible without transaction sharing since locking would prevent such

interactions. For example, a record can be deleted by one database session while it is
current of another database session that is sharing the same transaction. This can result
in new and possibly unexpected error conditions. If a database ses sion's currency is

impacted by an update made through another database session, that currency is
invalidated. If a subsequent DML request, such as a FETCH from a cursor, relies on that
invalidated currency, an error is returned.

■ For SQL, the application receives an SQLCODE of -4 (statement failure) and an
SQLRSN of 1087 (conflicting activity within a shared transaction).

■ For navigational DML, an error status of xx03 is returned to the application.

Before enabling transaction sharing for an application, you should ensure that affected
programs handle these errors appropriately.

Effect of Teleprocessing Statements and Events

Chapter 3: Writing an SQL Program 41

Effect of Rollback Requests

If multiple database sessions share a transaction and one of those sessions issues a

rollback request, all changes made within the transaction are immediately rolled out.
Other sessions sharing the transaction must issue their own rollback requests before
issuing any other DML requests. Issuing another DML request instead of a rollback will

result in an error:

■ For SQL, the application receives an SQLCODE of -5 (transaction failure) and an
SQLRSN of 1088 (transaction forced to backout)

■ For navigational DML, the run unit is terminated and an error status of xx19 is

returned to the application.

Effect of Commit Requests

If multiple top level database sessions share a transaction and one of those sessions
issues a commit request, no changes are committed until:

■ All top-level sharing sessions that have had activity since the last commit, rollback

or start of a transaction have issued a commit, or,

■ Until a teleprocessing commit is issued.

The term "commit" refers to any DML command that would normally result in

committing changes (COMMIT RELEASE, COMMIT CONTINUE, FINISH, and so forth).

A commit issued through a subordinate session has no impact on its transaction if it is

shared since such a transaction can only be committed through the encompassing
session.

Unless a COMMIT CONTINUE request is issued (for which currency locks are retained),

all currencies owned by the issuing database session are immediately released.
However, implicit exclusive locks and explicit locks acquired by the database session
remain until the transaction is committed, even if the request terminates the database
session.

Effect of Teleprocessing Statements and Events

Effect of Task-level DML Statements and Events

In a batch or DC/UCF environment, task-level commit and rollback statements and
task-termination events affect the status of database transactions and SQL sessions, as

the following table shows. Their effect on a subordinate SQL session is the same as their
effect on its encompassing session.

Effect of Teleprocessing Statements and Events

42 Programming Guide

Statement Effect on Top-level SQL

Sessions

Effect on Top-level

Database Sessions

COMMIT TASK Equivalent to issuing a
COMMIT CONTINUE on all

nonsuspended SQL sessions

Commits changes made
through all transactions

except nonshareable
transactions whose
session is suspended.

COMMIT TASK ALL Equivalent to issuing a

COMMIT on all nonsuspended
SQL sessions.

Commits changes made

through all transactions
except nonshareable
transactions whose
session is suspended.

FINISH TASK Equivalent to issuing a
COMMIT RELEASE on all
nonsuspended SQL sessions

Commits changes made
through all transactions
except nonshareable

transactions whose
session is suspended.

ROLLBACK TASK CONTINUE Equivalent to issuing a
ROLLBACK on all

nonsuspended SQL sessions.
All suspended sessions whose
shareable transaction is rolled

back are marked as requiring
rollback.

Rolls back changes made
through all transactions

except nonshareable
transactions whose
session is suspended.

ROLLBACK TASK Equivalent to issuing a
ROLLBACK RELEASE on all

nonsuspended SQL sessions.
All suspended sessions whose
shareable transaction is rolled

back are marked as requiring
rollback.

Rolls back changes made
through all transactions

except nonshareable
transactions whose
session is suspended.

Normal task termination Equivalent to issuing a
ROLLBACK RELEASE on all

nonsuspended SQL sessions.
All suspended sessions whose
shareable transaction is rolled
back are marked as requiring

rollback.

Rolls back changes made
through all transactions

except those for which
all associated sessions
are suspended.

Abnormal Task Termination

Signoff

CA ADS Application Error
Termination

Equivalent to issuing a
ROLLBACK RELEASE on all SQL

sessions

Rolls back updates made
by all transactions

associated with the task
or user session.

Effect of Teleprocessing Statements and Events

Chapter 3: Writing an SQL Program 43

A task-level commit or rollback statement has no affect on transactions whose database
sessions are suspended and for which transaction sharing is not in effect.

CICS Syncpoint and Backout Operations

The effect of a CICS syncpoint or backout operation on an SQL session depends on the
parameters used to generate the version of the IDMSCINT interface module with which
the program was link-edited and the CICSOPT parameters used to generate its
corresponding IDMSINTC interface module.

The options in effect for a program that starts an SQL session determine how that

session and its transaction are impacted by CICS syncpoint and backout operations. The
parameters that impact their semantics are:

■ AUTOCMT: Enabling this option makes the work done by the database session
eligible to be included in a CICS UOW (Unit of Work). If included, CICS syncpoint and

backout operations affect the changes made by the session. Whether the changes
made by a session are actually included in the CICS UOW is determined by the
AUTONLY setting and whether the application issues its own commit or rollback

DML requests prior to the CICS syncpoint or backout operation.

■ AUTONLY: Enabling this option in conjunction with the AUTOCMT option forces the

work done by the database session to be included in the CICS UOW. DML
statements that would normally commit work (such as FINISH TASK or COMMIT) do
not cause changes to be committed even if the session itself is terminated. The

session's changes are committed only when the CICS syncpoint occurs. On the other
hand, if the changes made by a session for which AUTONLY is enabled are backed
out, either as the result of a DML ROLLBACK request or because of some
environmental condition such as a deadlock, the entire CICS UOW will eventually be

backed out. This ensures consistent behavior across all resources updated by the
application.

If AUTONLY is not enabled but AUTOCMT is, the work done by the database session
is included in the CICS UOW only if the application does not issue commit or
rollback DML requests prior to the CICS syncpoint operation.

Enabling AUTONLY without AUTOCMT has no impact on syncpoint operations.

Note: If transaction sharing is enabled, AUTONLY and AUTOCMT are always
enabled.

■ ONCOMT: This option specifies the effect that a CICS syncpoint operation has on a

database session whose work is included in the CICS UOW. The session can
optionally be treated as if a COMMIT RELEASE, COMMIT, or COMMIT CONTINUE
were issued, meaning that it can be terminated, remain active but have currencies
cleared or remain active with currencies left intact.

Effect of Teleprocessing Statements and Events

44 Programming Guide

■ ONBACK: This option specifies the effect that a CICS backout operation has on a
database session whose work is included in the CICS UOW. The session can

optionally be treated as if a ROLLBACK RELEASE or a ROLLBACK were issued,
meaning that it can be terminated or remain active but have its currencies cleared.

All of these options can be specified through both IDMSCINT and CICSOPT parameters.

The CICSOPT parameters can either override their IDMSCINT counterparts or be used as
a default.

Note: For more information about these parameters, see the CA IDMS System
Operations Guide.

A CICS syncpoint operation occurs when a CICS SYNCPOINT statement is executed by the

application and when the CICS task terminates normally. A CICS backout operation
occurs when a CICS BACKOUT statement is executed by the application and when the
CICS task terminates abnormally.

The following table summarizes the impact of CICS syncpoint and backout operations

and task-termination events on SQL sessions and their transactions.

Operation or Event Effect

SYNCPOINT Operation If AUTOCMT is not in effect for a session, the
SYNCPOINT operation has no impact on the

session and its transaction.

If AUTOCMT is in effect for a session, the
uncommitted changes made by the session are

committed. The impact on the session is
determined by the session's ONCOMT option.

BACKOUT Operation If AUTOCMT is not in effect for a session, the
BACKOUT operation has no impact on the

session and its transaction.

If AUTOCMT is in effect for a session, the
uncommitted changes made by the session are

backed out. The impact on the session is
determined by the session's ONBACK option.

Normal CICS Task Termination All nonsuspended SQL sessions are treated as if
a ROLLBACK RELEASE were issued (although

their changes may have been committed by the
preceding syncpoint operation). Their
uncommitted changes are backed out.

Abnormal CICS Task Termination All SQL sessions are treated as if a ROLLBACK

RELEASE were issued. Their uncommitted
changes are backed out.

Concurrency Control and Isolation Levels

Chapter 3: Writing an SQL Program 45

Effect of Task-level DML Statements in CICS

In a CICS environment, task-level commit and rollback statements have the same effect

on sessions as in a DC/UCF environment. However, a task-level commit request
(COMMIT TASK, COMMIT TASK ALL, or FINISH task) does not commit the work done by
sessions whose AUTONLY and AUTOCMT options are enabled.

Just as in a DC/UCF environment, a task-level rollback request (ROLLBACK TASK or
ROLLBACK TASK CONTINUE) affects all transactions except nonshareable transactions
whose session is suspended.

Concurrency Control and Isolation Levels

Concurrency Control

CA IDMS manages concurrent access to the same set of data with a system of locks. The
degree of concurrent access allowed by a database transaction is determined by the
isolation level of the transaction and the ready mode of the areas it accesses.

Locks

CA IDMS provides two types of lock:

■ A retrieval lock prevents updates but allows retrieval of data by another database
transaction

■ An update lock prevents both updates and retrieval of data by another database

transaction

Isolation Levels and Locking

CA IDMS supports two isolation levels. The following descriptions explain how the
system performs locking under each isolation level assume the least restrictive ready
mode for areas accessed by the database transaction:

■ Cursor stability—Under cursor stability, the DBMS places a retrieval lock on the row
on which an updateable cursor is positioned until the cursor position changes. It
places a retrieval lock on the row accessed by a SELECT statement that accesses
only one row (a single-row select) until the SQL transaction accesses another row

from the same table. It releases update locks when the transaction either
terminates or issues a COMMIT CONTINUE.

■ Transient read—Under transient read, the DBMS:

– Places no locks on rows accessed by the transaction

– Allows the transaction to retrieve locked rows

– Prevents the transaction from performing updates

Concurrency Control and Isolation Levels

46 Programming Guide

Concurrency Under Cursor Stability

Cursor stability provides the greatest possible concurrency while guaranteeing the

integrity of data read by the transaction. Under cursor stability:

■ The row on which an updateable cursor is positioned cannot be updated by another
database transaction before the cursor position changes.

■ A single row retrieved by a SELECT statement cannot be updated by another
database transaction until the original transaction accesses another row of the
table.

Cursor stability does not prevent other database sessions that are sharing the same
transaction from updating a session's current cursor position or its most-recently

retrieved row of a single row select.

Cursor stability is the CA IDMS default. It is appropriate for high-volume transaction
environments.

Concurrency Under Transient Read

Transient read provides no protection from the effects of concurrent database

transactions. It allows a database transaction to read data that has not been committed
and allows concurrent database transactions to update the data.

Transient read is appropriate when the transaction is retrieval only and does not require
the data to be consistent and entirely accurate.

Specifying the Isolation Level

You can specify the default isolation level with the DEFAULT ISOLATION parameter of
the CREATE ACCESS MODULE statement.

Note: For more information about how to create the access module, see Creating the
Access Module (see page 139).

A program can override the default isolation level for the access module by issuing a SET

TRANSACTION statement. The specification on this statement remains in effect until the
end of the transaction.

Note: For more information about the SET TRANSACTION statement, see the CA IDMS
SQL Reference Guide.

SQL Status Checking and Error Handling

Chapter 3: Writing an SQL Program 47

Area Ready Mode

You can control concurrent access at the area level using the READY parameter of the

CREATE ACCESS MODULE statement. This parameter allows you to specify what type of
retrieval or update lock the DBMS sets on an area that the program accesses. The type
of lock, in combination with the PRECLAIM or INCREMENTAL option, determines how

long the DBMS holds the lock for the transaction.

Note: For more information about the READY parameter of the CREATE ACCESS
MODULE statement, see the CA IDMS SQL Reference Guide.

Repeatability

If you specify a ready mode of protected retrieval or protected update, the DBMS will

prevent concurrent update access in the specified areas for the duration of a database
transaction. This gives the transaction running under cursor stability the ability to repeat
a read of the specified area or areas without changes to the data by other transactions.

Note: For more information about the lock management system, see the CA IDMS

Database Administration Guide.

SQL Status Checking and Error Handling

When CA IDMS executes an SQL statement, it returns information about the status of
statement execution to a data structure called the SQLCA. Your program should contain

logic to handle exceptional conditions resulting from statement execution. This logic
takes the form of checking SQLCA information. An alternative to checking the SQLCA is
the use of the GET DIAGNOSTICS statement that provi des for enhanced diagnostic
information.

SQLCA

The SQL Communication Area (SQLCA) is a data structure to which the DBMS returns
information about the execution of an SQL statement.

SQLSTATE

SQLSTATE is a five-character string in which CA IDMS returns the status of the last SQL
statement executed. It is divided into a two-character class and a three-character
subclass. Standard values are associated with each class and subclass, which minimizes

the need for vendors to define their own values and makes applications more portable
from one environment to another.

SQL Status Checking and Error Handling

48 Programming Guide

The following list displays the SQLSTATE values that CA IDMS can return. It is divided
into sections based on the class (the first 2 characters of the SQLSTATE value). Each

subclass (the last 3 characters of the SQLSTATE value) is l isted under its associated class.

■ SQL standard values—Class and subclass values beginning with the characters A-H
and 0-4 are established by the SQL standards organizations.

■ CA IDMS-defined values—Class and subclass values beginning with the characters
I-Z and 5-9 are vendor-defined. In this case, they are specific to CA IDMS. (Any

subclass value associated with a vendor-defined class is also defined by that
vendor.)

SQLSTATE Values

 00 Successful completion

 000 No subclass

 01 Warning

 000 No subclass

 004 String data, right truncation

 00C SQL-invoked procedure returned result sets

 00D Additional result sets returned

 00E Attempt to return too many result sets

 010 Column cannot be mapped

 600 Inconsistent or invalid option

 602 Entity or association already exists

 605 Entity not defined in Catalog

 606 Invalid option for physical DDL

 607 Invalid option for DMCL

 608 Connecting to a dictionary which is missing either or

 or both of DDLCAT/DDLDML areas

 610 Database is inconsistent with request

 611 SQL routine parse error

 612 ADS compilation for an SQL routine failed

 613 Drop of SQL routine completed with warnings

 638 Warning returned from table procedure

 02 No data

 000 No subclass

 07 Dynamic SQL error

 000 No subclass

 001 USING clause does not match dynamic parameter specification

 002 USING clause does not match target specification

 003 Cursor specification cannot be executed

 004 USING clause required for dynamic parameters

 08 Connection exception

 000 No subclass

SQL Status Checking and Error Handling

Chapter 3: Writing an SQL Program 49

 004 SQL-server rejected establishment of SQL-connection

 006 Connection failure

 0M Invalid SQL-invoked procedure reference

 000 No subclass

 0N SQL/XML Mapping Error

 000 No subclass

 001 Unmappable XML name

 002 Invalid XML character

 21 Cardinality violation

 000 No subclass

 22 Data Exception

 000 No subclass

 001 String data, right truncation

 002 Null value, no indicator parameter

 003 Numeric value out of range

 005 Error in assignment

 007 Invalid datetime format

 008 Datetime field overflow

 00J Nonidentical notations with the same name

 00K Nonidentical unparsed entities with the same name

 00L Not an XML document

 00M Invalid XML document

 00N Invalid XML content

 00R XML value overflow

 00S Invalid comment

 00T Invalid processing instruction

 011 Substring error

 012 Division by zero

 019 Invalid escape character

 23 Constraint violation

 000 No subclass

 501 Duplicate key violation

 24 Invalid cursor state

 000 No subclass

 25 Invalid transaction state

 000 No subclass

 006 Read-only SQL-transaction

 26 Invalid SQL statement name

SQL Status Checking and Error Handling

50 Programming Guide

 000 No subclass

 28 Invalid authorization specification

 000 No subclass

 602 Entity or association already defined

 605 Entity or association not previously defined

 607 Authorization ids not specified

 2C Invalid character set name

 000 No subclass

 34 Invalid cursor name

 000 No subclass

 37 Syntax error or access rule violation

 000 No subclass

 38 External routine exception

 000 No subclass

 999 ADS dialog failed or dialog does not exist

 39 External routine invocation exception

 000 No subclass

 3F Invalid schema name

 000 No subclass

 40 Transaction rollback

 000 No subclass

 001 Serialization failure

 42 Syntax error or access rule violation

 000 No subclass

 500 Table not found

 501 Column not found

 502 Entity already defined

 503 Authorization failure

 504 Cursor not declared or previously declared

 505 Entity not found

 506 Invalid identifier

 507 Keyword used as identifier

 600 Invalid statement

 601 Statement not valid in this context

 603 Statement not valid for this schema

SQL Status Checking and Error Handling

Chapter 3: Writing an SQL Program 51

 604 Invalid data type

 606 Invalid statement option

 607 Missing statement option

 609 Invalid constraint definition

 610 Invalid number of columns

 50 CA-defined errors

 000 No subclass

 002 Limit exceeded

 003 Space exceeded

 00B Internal error

 00I Schema mismatch

 00J Invalid entity definition

 00K Uncategorized error

 00L Invalid calling parameters

 60 &U$IDMS. specific errors

 000 No subclass

 001 Problem with load module or synchronization stamps

 002 Database error

 003 Rollback failed

 004 Failure while opening or describing a received cursor

 005 Unexpected error from GET/PUT SCRATCH

 64 &U$IDMS. Physical DDL error

 000 No subclass

 6U &U$IDMS. Utility error

 000 No subclass

SQLCODE

For status checking, another important field in the SQLCA structure is SQLCODE. The

following table shows the values that the DBMS may return to this field.

Value Meaning

< 0 The SQL statement returned an error (see the following error values)

0 The SQL statement was executed successfully

1 The SQL statement was executed successfully with a warning

100 There are no more rows associated with the current query, or no rows
satisfied the search criteria in a searched update or delete

Note: The SQL standard only defines meaning to the values of 0 and 100.

Negative SQLCODE values signify an error; however, specific values are not
standardized as with SQLSTATE.

SQL Status Checking and Error Handling

52 Programming Guide

SQLCODE Error Values

The following table associates SQLCODE error values with one of the three kinds of SQL

statement failure and suggests the appropriate error-handling strategy for each
category of error:

Value Level of failure Meaning

-7 Task An internal error caused a task abend, leading to
rollback and termination of the SQL transaction and
termination of the SQL session

-6 SQL session An error caused an SQL session failure, leading to
rollback, termination of the SQL transaction and
termination of the SQL session.

A program intending to retry the SQL statements

should first terminate the SQL session with one of
these statements:

■ ROLLBACK RELEASE

■ RELEASE

■ The equivalent TP monitor command

-5 SQL transaction An error has caused an SQL transaction failure,
leading to rollback and termination of the SQL

transaction.

A program intending to retry the SQL statements
should first terminate the transaction with one of

these statements:

■ ROLLBACK

■ ROLLBACK RELEASE

■ RELEASE

■ The equivalent TP monitor command

-4 SQL statement An error has caused failure of the SQL statement to
execute; the effect of the statement, if any, on the

database has been rolled out.

Unless the reason for the error is one that the
program can handle, the program should terminate
the session or transaction.

SQL Status Checking and Error Handling

Chapter 3: Writing an SQL Program 53

SQLCERC

If an error is returned, the DBMS also returns a value in the SQLCERC field of the SQLCA.

The value in this field is the SQL error code.

In certain cases, you can use this information to recover from error conditions. For
example, if 1038 is returned to SQLCERC, a deadlock has occurred. The application

program can handle the deadlock by first terminating the database transaction and then
resuming processing after the last commit or start of transaction.

SQLCERC values correspond to the last four digits of the CA IDMS/DB runtime messages.
To determine the meaning of a particular SQLCERC value, refer to the text and
description of the equivalent DB message.

Note: For more information about the documentation of DB messages, see the CA IDMS
Messages and Codes Guide, or issue a DCMT DISPLAY MESSAGE DBnnnnnn statement,
as documented in the CA IDMS System Tasks and Operator Commands Guide.

Other SQLCA Fields

For error checking and reporting, these are other useful SQLCA fields:

Field Description of contents

SQLCLNO Source fi le l ine number from which the SQL statement was obtained

SQLCSER Offset into the SQL statement buffer where a syntax error was

recognized

SQLCNRP Number of rows processed by the SQL statement

SQLCERM Text of the error message

SQLCERL Length of error message text

SQLCNRRS Actual number of results sets that an SQL invoked procedure returns

How SQLCA Is Initialized

The DBMS initializes SQLCA values on every SQL statement execution. If the program

accesses the SQLCA after issuing an SQL statement, all SQLCA values refer to that
statement.

SQL Status Checking and Error Handling

54 Programming Guide

SQLPIB Fields

When you display or log error information, you may wish to include information in fields

of the SQL Program Information Block (SQLPIB):

Field Description of contents

SQLDTS Date and time the program was compiled

SQLPGM Name of the RCM that is the source of the SQL statement

Displaying SQL Communication Area Fields

SQLCA Structure

The technique used by the program to access and display SQLCA information may
depend on the SQLCA structure and the rules governing use of the host program
language.

For example, in the COBOL SQLCA structure, SQLCODE is defined as PIC S9(9) USAGE
COMPUTATIONAL. To display any possible SQLCODE value, including a negative value,
you should first move the SQLCODE value to a work field defined as PIC -9(4).

Note: For more information about the SQLCA structure, see Requirements and Options
for Host Languages (see page 87).

Displaying an SQL Message

To display an SQL error message, you use the IDMSIN01 entry point to the IDMS module
to call a function that formats error message data using information in the SQLERM and

SQLCERL fields.

Note: For more information about the requirements for call ing IDMSIN01 to display SQL
messages, see the CA IDMS Callable Services Guide.

Error Handling

Using WHENEVER SQLERROR

If the program handles most or all errors by branching to one routine, consider using the
WHENEVER precompiler directive statement that specifies the SQLERROR condition. The
precompiler adds the logic requested by a WHENEVER statement immediately after

every SQL statement that follows the WHENEVER statement.

SQL Status Checking and Error Handling

Chapter 3: Writing an SQL Program 55

In this example, if an SQL statement that follows the WHENEVER statement returns an
error, processing branches to the routine labeled ERROR-EXIT:

EXEC SQL

 WHENEVER SQLERROR GOTO :ERROR-EXIT

END-EXEC.

Overriding WHENEVER

Once the program issues a WHENEVER SQLERROR statement, it can override the
statement only with:

■ Another WHENEVER SQLERROR statement that specifies different branching logic

■ A WHENEVER SQLERROR CONTINUE statement, which directs the precompiler not

to add logic after subsequent SQL statements

Note: For more information about the WHENEVER statement, see the CA IDMS SQL
Reference Guide.

Checking Specific Errors

When To Do It

In certain situations the program should check for specific errors before directing
processing to a generalized error routine.

This guide discusses when to code specific error-checking logic in Chapter 4, Data
Manipulation with SQL, and other chapters that present SQL programming techniques.

How to Do It

You write a conditional program statement to check for a specific SQL error following
the SQL statement. The conditional statement must also account for all other errors if

the test for the specific error fails:

EXEC SQL

 INSERT

 INTO DIVISION

 VALUES (:DIVISION-CODE,

 :DIVISION-NAME,

 :DIV-HEAD-ID)

END-EXEC.

IF SQLSTATE = '23501' PERFORM EXISTING-DIVISION

ELSE IF SQLCODE < 0 GOTO ERROR-ROUTINE.

SQL Status Checking and Error Handling

56 Programming Guide

Using WHENEVER SQLERROR

To perform specific error checking after the program has issued a WHENEVER

SQLERROR statement, you can:

■ Override the previous WHENEVER statement before issuing the SQL statement:

EXEC SQL

 WHENEVER SQLERROR CONTINUE

END-EXEC.

EXEC SQL

 INSERT

 .

 .

 .

END-EXEC.

IF SQLSTATE = '23501' PERFORM EXISTING-DIVISION

ELSE IF SQLCODE < 0 GOTO ERROR-ROUTINE.

EXEC SQL

 WHENEVER SQLERROR GOTO ERROR-ROUTINE

END-EXEC.

■ Place the specific error-handling logic in the generalized routine:

ERROR-ROUTINE.

IF SQLSTATE = '23501' PERFORM EXISTING-DIVISION.

 .

 .

 .

Using GET DIAGNOSTICS

The use of GET DIAGNOSTICS instead or in addition to checking SQLCA offers the
following advantages:

■ Better portability because of the SQL standards compliance

■ Availability of more diagnostic information

■ Independent of host language

■ Built-in formatting of all diagnostic information

Note: For more information about GET DIAGNOSTICS, see the CA IDMS SQL Reference
Guide.

Chapter 4: Data Manipulation with SQL 57

Chapter 4: Data Manipulation with SQL

This section contains the following topics:

Data Manipulation Operations (see page 57)
Using a Cursor (see page 67)
Bulk Processing (see page 75)

Invoking Procedures (see page 83)

Data Manipulation Operations

When SQL is used in a host language program, you will need to perform data
manipulation. There are several ways that the program can take advantage of SQL DML

in CA IDMS.

SQL DML Statements

Use the following SQL statements in data manipulation operations:

■ SELECT—To retrieve data

■ INSERT—To add data

■ UPDATE—To modify data

■ DELETE—To delete data

■ CALL—To invoke an SQL invoked procedure or table procedure.

SQL data manipulation statements provide the following capabilities:

■ One statement can manipulate data in many rows

■ One statement can perform both computation and data manipulation

■ One statement can retrieve data from many tables

Consequently, you have several options for performing each type of data manipulation.

Data Manipulation Operations

58 Programming Guide

Retrieving Data

Using SELECT

In a program, you use the SELECT statement in one of these ways to retrieve data from
the database:

■ With an INTO clause that specifies host variable, local variables, or routine
parameters names, to retrieve a single row into working storage

■ With a BULK clause that specifies the name of a host variable array, to retrieve
multiple rows into working storage

■ In a DECLARE CURSOR statement to define a cursor that you can use to retrieve

multiple rows and then fetch each row one at a time into working storage

■ In an INSERT statement to select from one or more other tables the data to be
inserted

When embedding a SELECT statement, specify each column even if you mean to select

all columns. Using SELECT * to select all columns can cause a program error if, for
example, a column is added to the table.

Single-row SELECT Statement

If the result of a SELECT statement will be one and only one row, you can issue a SELECT
statement with an INTO clause.

A result table will contain only one row when:

■ The WHERE clause specifies a primary key value as the search condition:

EXEC SQL

 SELECT EMP_ID,

 EMP_LNAME,

 DEPT_ID

 INTO :EMP-ID,

 :EMP-LNAME,

 :DEPT-ID

 FROM EMPLOYEE

 WHERE EMP_ID = :EMP-ID

END-EXEC.

Data Manipulation Operations

Chapter 4: Data Manipulation with SQL 59

■ All column values result from aggregate functions and no GROUP BY clause has
been specified:

EXEC SQL

 SELECT COUNT(P.EMP_ID) INTO :TOT-EMPLOYEES,

 SUM(B.SALARY_AMOUNT) INTO :TOT-SALARIES,

 (SUM(B.VAC_ACCRUED) - SUM(B.VAC_TAKEN))

 INTO :UNUSED-VAC

 FROM POSITION P, BENEFITS B

 WHERE P.EMP_ID = B.EMP_ID

 AND P.SALARY_AMOUNT IS NOT NULL

 AND P.FINISH_DATE IS NULL

END-EXEC.

Checking Single-row Select Status

If the number of rows returned by a SELECT statement with an INTO clause is greater
than 1, the DBMS returns a cardinality violation error. No data is moved to the host
variables named in the INTO clause.

If no row is found that matches the selection criteria, the DBMS returns a no rows found

warning and moves 100 to SQLCODE.

Updating the Single Row

Under cursor stability if the program performs single-row select that specifies the
primary key in the search condition, the DBMS locks the base row from which the
resulting row is derived. This prevents any update by a concurrent database transaction.

The lock is maintained until one of these events occurs:

■ The database transaction ends

■ The database session i s suspended

■ The database transaction accesses a different row from the same table

Until one of these events occurs, the SQL transaction can update the row without a

need to check whether a concurrent transaction has modified the row.

Note: For more information about updating rows, see Modifying Data (see page 62).

Multiple-row SELECT

If the result table of a SELECT statement potentially has multiple rows, the program

must declare a cursor or perform bulk processing to process retrieved data.

Note: For more information about retrieving multiple rows, see Data Manipulation with
SQL (see page 57).

Data Manipulation Operations

60 Programming Guide

Adding Data

Using INSERT

In a program, you use an INSERT statement to add data to the database in one of the
following ways:

■ INSERT with a VALUES clause to add a single row to a table by l isting the column
values in the statement

■ INSERT with a SELECT statement to add one or more rows using existing data

■ INSERT with a BULK clause to add multiple rows to a table from a host variable array

Single-row INSERT

To add a single row to a table, issue an INSERT statement with a VALUES clause that
specifies a value for each column in the column list:

EXEC SQL
 INSERT INTO DIVISION
 (DIV_CODE, DIV_NAME) ◄─── Column list
 VALUES (:DIV-CODE, :DIV-NAME)
END-EXEC.

Multiple-row INSERT with SELECT

One way to add multiple rows to a table is to insert the result table of a SELECT
statement.

In this example, a result table of data from the EMPLOYEE table is inserted into a table
named TEMP_MGR:

EXEC SQL

 INSERT INTO TEMP_MGR

 SELECT DISTINCT E.MANAGER_ID,

 M.EMP_FNAME,

 M.EMP_LNAME

 FROM EMPLOYEE E, EMPLOYEE M

 WHERE E.MANAGER_ID = M.EMP_ID

END-EXEC.

Guidelines for INSERT

Apply these guidelines when formulating an INSERT statement:

■ An INSERT statement must supply a value for each column in the column list, even if

the value is null

■ The order of column values must match the order of the column list

Data Manipulation Operations

Chapter 4: Data Manipulation with SQL 61

■ An INSERT statement must supply values for all columns of the named table if the
column list is omitted:

EXEC SQL

 INSERT INTO DIVISION

 VALUES ('D06', 'ADVANCED RESEARCH', NULL)

 -- Division head id is null --

END-EXEC.

When embedding an INSERT statement with a VALUES clause, you should include a
column list even if you mean to insert values into all columns. Using a VALUES
clause but omitting a column list can cause a program error if, for example, a

column has been added to the table.

■ A column list must include any table columns that are defined as not null and as not

having a default value

If an INSERT statement omits a table column from the column list, the DBMS:

– Stores the default value for the column, if one has been defined

– Stores a null value if the column allows nulls

– Returns a data exception error if no default value has been defined and nulls
are not allowed

Checking INSERT Status

Since the DBMS enforces integrity constraints, the program can test SQLCERC for a

constraint violation:

■ 1023—Check constraint

■ 1058—Unique constraint

■ 1060—Referential constraint

■ 1002—Null constraint

■ 1031—Page group violation

Note: Referential constraints defined as l inked clustered are not permitted to not
cross page group boundaries.

Here is an example for a specific test for a check constraint violation:

IF SQLCERC = 1023 PERFORM INVALID-DATA

ELSE IF SQLCODE < 0 GOTO ERROR-ROUTINE.

If an INSERT statement that uses a SELECT statement executes successfully but adds no

rows, the DBMS returns 100 to SQLCODE and 0 to SQLCNRP.

Data Manipulation Operations

62 Programming Guide

Inserting Multiple Rows

You can add a set of rows to a table using one INSERT statement with a BULK clause.

Note: For more information about using bulk processing to insert, see Bulk Processing
(see page 75).

Modifying Data

Using UPDATE

You modify data in a table using an UPDATE statement. There are two types of UPDATE
statement:

■ If the WHERE clause contains a search condition, the statement modifies any row

that meets the search condition—this is a searched update

■ If the UPDATE statement specifies WHERE CURRENT OF cursor-name, the statement
modifies only the row on which the cursor is positioned—this is a positioned
update

Note: For information about positioned updates, see Using a Cursor (see page 67).

Checking UPDATE Status

As with an INSERT statement, the DBMS enforces integrity constraints when the
program issues an UPDATE statement.

Note: For more information about checking statement execution for constraint

violation, see Adding Data (see page 60).

Searched Updates

A searched update statement contains:

■ A SET clause that specifies a value for each column to be updated

■ A WHERE clause containing the criteria for choosing the rows to be updated

Data Manipulation Operations

Chapter 4: Data Manipulation with SQL 63

Searched Updates Using Host Variables

In this example, the UPDATE statement uses a host variable (SALARY-AMOUNT) to

transfer a new data value to the database and another host variable (EMP-ID) supplies
the column value that is the criterion for choosing the row to update:

EXEC SQL

 UPDATE POSITION

 SET SALARY_AMOUNT = :SALARY-AMOUNT

 WHERE EMP_ID = :EMP-ID

END-EXEC.

The statement in the example updates only one row because the search condition is

restricted by the value of a primary key (EMP_ID).

The statement in the following example updates multiple rows if more than one

employee does the job represented by the value in JOB-ID:

EXEC SQL

 UPDATE POSITION

 SET SALARY_AMOUNT = :SALARY-AMOUNT

 WHERE JOB_ID = :JOB-ID

END-EXEC.

Searched Updates Without Host Variables

A searched update may operate on existing column values without using host variables.
This statement gives a 10 percent raise to all employees with a current salary in a
specified range:

EXEC SQL

 UPDATE POSITION

 SET SALARY_AMOUNT = 1.1 * (SALARY_AMOUNT)

 WHERE SALARY_AMOUNT BETWEEN 20000 AND 40000

END-EXEC.

No Matching Rows

If no rows satisfy the selection criteria in the WHERE clause of a searched update,
SQLCODE will be set to 100.

Automatic Rollback

If the attempt to update one row of a searched update fails:

■ Statement execution halts

■ The DBMS returns an error value to SQLCODE

■ The results of the UPDATE statement are automatically rolled back

Data Manipulation Operations

64 Programming Guide

Deleting Data

Using DELETE

You erase rows from a table using a DELETE statement. As with UPDATE, there are two
types of DELETE statement:

■ If the WHERE clause contains a search condition, the statement deletes any row
that meets the search condition—this is a searched delete

■ If the DELETE statement specifies WHERE CURRENT OF cursor-name, the statement
deletes only the row on which the cursor is positioned—this is a positioned delete

Note: For more information about positioned deletes, see Using a Cursor (see page 67).

Searched Deletes

The statement in this example deletes all rows from the BENEFITS table for a fiscal year
that precedes the one specified in the :FISCAL-YEAR host variable:

EXEC SQL

 DELETE FROM BENEFITS

 WHERE FISCAL_YEAR < :FISCAL-YEAR

END-EXEC.

If no rows satisfy the selection criteria in the WHERE clause of a searched delete,

SQLCODE will be set to 100.

Checking DELETE Status

The DBMS disallows an attempt to delete a row from a referenced table in a relationship
if a row with a matching foreign key exists in a referencing table.

For example, since a referential constraint has been created between the EMPLOYEE

table and the POSITION table (with column EMP_ID in POSITION referencing column
EMP_ID in EMPLOYEE), you cannot delete employee 1234 from the EMPLOYEE table if
employee 1234 exists in the POSITION table.

To detect a referential constraint violation on a DELETE statement, test for SQLCERC =
1060:

IF SQLCERC = 1060 PERFORM REFERENTIAL-ERROR

ELSE IF SQLCODE < 0 GOTO ERROR-ROUTINE.

Data Manipulation Operations

Chapter 4: Data Manipulation with SQL 65

Automatic Rollback

If the attempt to delete one row of a searched delete fails:

■ Statement execution halts

■ The DBMS returns an error value to SQLCODE

■ The results of the DELETE statement are automatically rolled back

Important! When you issue a DELETE, be sure that the statement includes a WHERE
clause. If the WHERE clause is omitted, CA IDMS deletes all rows from the named table.

Using Indicator Variables in Data Manipulation

Indicator Variables in SELECT or FETCH

When a column value is retrieved into a host variable that has an associated indi cator
variable, the DBMS assigns a value to the indicator variable:

Indicator variable value Meaning

-1 The value assigned to the host variable was null. The
actual content of the host variable is unpredictable.

0 The host variable contains a non-null value that has
not been truncated.

1 or greater The host variable contains a truncated value. The
value in the indicator variable is the length in bytes of
the original untruncated value.

Retrieving a Null Value

Since a null value is not valid in the program language, the program must test for -1 in
the indicator variable and direct processing to handle null value retrieval as needed if
the test is true.

Null Retrieval Example

In the following example, the program initializes two numeric host variables to zero:

MOVE ZERO TO VAC-TAKEN.

MOVE ZERO TO SICK-TAKEN.

Data Manipulation Operations

66 Programming Guide

If the next statement now retrieves null values from the VAC_TAKEN and SICK_TAKEN
columns, the value of VAC-TAKEN and SICK-TAKEN are stil l zero because the actual

content of the host variables is unchanged when nulls are retrieved:

EXEC SQL

 SELECT VAC_TAKEN,

 SICK_TAKEN

 INTO :VAC-TAKEN INDICATOR :VAC-TAKEN-I,

 :SICK-TAKEN INDICATOR :SICK-TAKEN-I

 FROM BENEFITS

 WHERE EMP_ID = :EMP-ID

END-EXEC.

Indicator Variables in Inserts and Updates

When the program issues a statement to store a value contained in a host variable, the
statement optionally can name the associated indicator variable.

If the statement names the indicator and the indicator variable value is 0, the DBMS
stores the actual content of the host variable. If the indicator variable value is -1, the

DBMS stores a null value instead of the actual content of the host variable.

Update Examples With Indicator Variables

In the next example, the program assigns 0 to the indicator variable after changing the
value of the host variable VAC-TAKEN. CA IDMS stores the actual content of VAC-TAKEN
on the subsequent update:

ADD INPUT-VAC-TAKEN TO VAC-TAKEN.

MOVE ZERO TO VAC-TAKEN-I.

 .

 .

 .

EXEC SQL

 UPDATE BENEFITS

 SET VAC_TAKEN = :VAC-TAKEN INDICATOR :VAC-TAKEN-I

 WHERE EMP_ID = :EMP-ID

END-EXEC.

Using a Cursor

Chapter 4: Data Manipulation with SQL 67

By omitting reference to the indicator variable in the UPDATE statement, the program
can achieve the same result of storing the actual content of the host variable:

ADD INPUT-VAC-TAKEN TO VAC-TAKEN.

 .

 .

 .

EXEC SQL

 UPDATE BENEFITS

 SET VAC_TAKEN = :VAC-TAKEN

 WHERE EMP_ID = :EMP-ID

END-EXEC.

Similarly, the program can store a null value without naming the indicator variable:

EXEC SQL

 UPDATE BENEFITS

 SET VAC_TAKEN = NULL

 WHERE EMP_ID = :EMP-ID

END-EXEC.

Using a Cursor

In application programming, a cursor is an SQL construct that the program uses to
process data in a result table. The cursor declaration defines the result table. Once the
program declares the cursor, the program can open the cursor and sequentially fetch
one row at a time from the result table.

Declaring a Cursor

How You Declare a Cursor

You define a cursor by issuing a DECLARE CURSOR statement. The DECLARE CURSOR
statement contains a SELECT statement:

EXEC SQL

 DECLARE EMP_SUM CURSOR FOR

 SELECT EMP_ID,

 MANAGER_ID,

 EMP_FNAME,

 EMP_LNAME,

 DEPT_ID

 FROM EMPLOYEE

 ORDER BY DEPT_ID

END-EXEC.

Using a Cursor

68 Programming Guide

Updateable Cursors

If the program updates the current cursor row, the cursor declaration must contain the

FOR UPDATE OF clause, specifying the result table columns that may be updated. In the
definition of an updateable cursor:

■ Only one table is named in the FROM clause of the SELECT statement

■ The named table must be a base table, an updateable view or a table procedure

■ The outer select may not contain a UNION, ORDER BY, or GROUP BY clause

Note: For more information about all criteria that an updateable cursor must meet, see
the documentation of the DECLARE CURSOR statement in the CA IDMS SQL Reference

Guide.

Updateable Cursor Declaration Example

In this example, the EMP_SUM cursor is declared to allow the program to update the
MANAGER_ID and DEPT_ID columns:

EXEC SQL

 DECLARE EMP_SUM CURSOR FOR

 SELECT EMP_ID,

 MANAGER_ID,

 EMP_FNAME,

 EMP_LNAME,

 DEPT_ID

 FROM EMPLOYEE

 FOR UPDATE OF MANAGER_ID,

 DEPT_ID

END-EXEC.

Fetching a Row

Opening the Cursor

Before the program can fetch cursor rows, it must open the cursor with an OPEN
statement:

EXEC SQL

 OPEN EMP_SUM

END-EXEC.

Using a Cursor

Chapter 4: Data Manipulation with SQL 69

How You Fetch a Row

The program fetches a row with a FETCH statement that names the cursor and includes

an INTO clause that specifies the host variables to receive the fetched row:

EXEC SQL

 FETCH EMP_SUM

 INTO :EMP-ID,

 :MANAGER-ID :MANAGER-ID-I,

 :EMP-FNAME,

 :EMP-LNAME,

 :DEPT-ID

END-EXEC.

Cursor Position

Cursor position refers to a current position relative to a row of the cursor. When a
FETCH statement is executed, the values assigned to the host variables are retrieved
from the row that follows the cursor position.

When the program opens the cursor, curs or position is before the first row of the result
table. When a row is fetched, the cursor position moves to that row and the column
values for that row are moved into the host variables.

If another FETCH statement is executed while the cursor remains open, cursor position
moves to the next row.

When There Are No More Rows

Cursor position advances row by row with each FETCH. If there is no row following the
cursor position and a FETCH statement is executed, the DBMS returns 100 to SQLCODE.

When this condition occurs, the program should end iterative logic for fetching cursor
rows.

Testing for No More Cursor Rows

To test for no more cursor rows, test for SQLCODE = 100. If the test result is true, set a
variable to indicate this condition, as shown in the use of END-FETCH in the following

example.

Referencing a variable such as END-FETCH in subsequent program logic is recommended
because the program controls the variable value, whereas the DBMS controls the value
of SQLCODE.

Using a Cursor

70 Programming Guide

 WORKING-STORAGE SECTION.

 77 END-FETCH PIC X VALUE 'N'.
 .
 .
 .
 PROCEDURE DIVISION.
 .
 .
 .
 ***** Perform paragraph until no more cursor rows to process
 PERFORM FETCH-CURSOR UNTIL END-FETCH = Y.
 .
 .
 .
 FETCH-CURSOR.

 EXEC SQL
 FETCH EMP_SUM INTO
 EMP-ID,
 MANAGER-ID MANAGER-ID-I,
 EMP-FNAME,
 EMP-LNAME,
 DEPT-ID
 END-EXEC.

 ***** Test for no more cursor rows
 IF SQLCODE = 100 MOVE 'Y' TO END-FETCH.
 .
 .
 .

Closing a Cursor

The program can close a cursor with the CLOSE statement:

EXEC SQL

 CLOSE EMP_SUM

END-EXEC.

Automatic Closing of a Cursor

The COMMIT and ROLLBACK statements automatically close all open cursors used by
the application program.

Using a Cursor

Chapter 4: Data Manipulation with SQL 71

Invalid Cursor State

The DBMS returns an invalid cursor state condition and ignores the statement if the

program issues:

■ An OPEN statement for a cursor that is open

■ A CLOSE statement for a cursor that is closed

■ A FETCH statement for a cursor that is closed

■ A FETCH statement when the cursor position is after the las t row (which means that
the DBMS already returned 100 to SQLCODE)

Summary of Cursor Management

This diagram summarizes how the program uses a cursor:

┌────────────┐
│ │
│ Declare │
│ cursor │
│ │
└──────┬─────┘
 │
 │
 │
┌──────▼─────┐
│ │
│ Open │
│ cursor │
│ │
└──────┬─────┘
 │
 ◄──────────┐
 │ │ Iterative
┌──────▼─────┐ │ logic
│ │ │
│ Advance ├────┘
│ cursor │
│ │
└──────┬─────┘
 │
 │
 │
┌──────▼─────┐
│ │
│ Close │
│ cursor │
│ │
└────────────┘

Using a Cursor

72 Programming Guide

Executing a Positioned Update or Delete

A positioned update modifies one or more column values of the current row of an
updateable cursor. The statement takes this form:

EXEC SQL

UPDATE table-name

 SET column-name = value-specification

 ...

 WHERE CURRENT OF cursor-name

END-EXEC.

Requirements for a Positioned Update

To execute a positioned update, the program must declare a cursor that:

■ Is updateable

■ Contains a FOR UPDATE OF clause

Advantage of an Updateable Cursor

When the database transaction running under cursor stability fetches a row from an
updateable cursor, the DBMS places a lock on the row and maintains it until one of
these events occurs:

■ The program fetches the next cursor row

■ The cursor is closed

■ The database transaction ends

In this way, CA IDMS guarantees the base row is not modified or deleted by another
transaction while it is the current cursor row.

The DBMS maintains the lock on the current row of an updateable cursor during a
suspended SQL session. This feature is designed for pseudoconversational
programming.

Note: For more information about pseudoconversational programming with embedded
SQL, see 7.2, Pseudoconversational Programming.

Checking Positioned Update Status

If the program attempts to execute a positioned update when the referenced cursor is
not updateable or does not contain a FOR UPDATE OF clause, the DBMS returns an

invalid cursor state error.

Note: For more information about checking the status of UPDATE s tatements in general,
see Modifying Data (see page 62).

Using a Cursor

Chapter 4: Data Manipulation with SQL 73

Positioned Update Example

In the following example, the program declares a cursor to retrieve current data for

vacation and sick days taken by empl oyees. The program adds input values to the values
retrieved for the employee in the current cursor row. Then the program issues a
positioned update.

 EXEC SQL

 DECLARE VAC_SICK_CURSOR CURSOR FOR
 SELECT EMP_ID,
 VAC_TAKEN,
 SICK_TAKEN
 FROM BENEFITS
 FOR UPDATE OF VAC_TAKEN,
 SICK_TAKEN
 END-EXEC.
 .
 .
 .
 EXEC SQL
 OPEN VAC_SICK_CURSOR
 END-EXEC.
 .
 .
 .
 EXEC SQL
 FETCH VAC_SICK_CURSOR INTO
 :EMP-ID,
 :VAC-TAKEN INDICATOR VAC-TAKEN-I,
 :SICK-TAKEN INDICATOR SICK-TAKEN-I
 END-EXEC.
 .
 .
 .
 ADD INPUT-VAC-TAKEN TO VAC-TAKEN
 ADD INPUT-SICK-TAKEN TO SICK-TAKEN
 .
 .
 .
 EXEC SQL
 UPDATE BENEFITS
 SET VAC_TAKEN = :VAC-TAKEN,
 SICK_TAKEN = :SICK-TAKEN
 WHERE CURRENT OF VAC-SICK-CURSOR
 END-EXEC.
 .
 .
 .
 EXEC SQL
 CLOSE VAC_SICK_CURSOR
 END-EXEC.

Using a Cursor

74 Programming Guide

Positioned Deletes

You can delete the current row of an updateable cursor simply by naming the table and

the cursor in the DELETE statement:

DELETE FROM table-name WHERE CURRENT OF cursor-name

A cursor must be updateable to perform a positioned delete, but the FOR UPDATE OF
clause is not required in the cursor declaration.

Checking Positioned Delete Status

If the program attempts to execute a positioned delete when the referenced cursor is

not updateable, the DBMS returns an invalid cursor state error.

Note: For more information about checking the status of DELETE statements in general,
see Deleting Data (see page 64).

Positioned Delete Example

In this example, the program declares an updateable cursor. After fetching a row, the

program conditionally executes a positioned delete.

Bulk Processing

Chapter 4: Data Manipulation with SQL 75

 EXEC SQL

 DECLARE DEL_POSITION CURSOR FOR
 SELECT EMP_ID,
 JOB_ID
 FROM POSITION
 END-EXEC.
 .
 .
 .
 EXEC SQL
 OPEN DEL_POSITION
 END-EXEC.
 .
 .
 .
 EXEC SQL
 FETCH DEL_POSITION INTO
 :EMP-ID,
 :JOB-ID
 END-EXEC.
 .
 .
 .
 IF INPUT-ACTION = 'D&rq.
 EXEC SQL
 DELETE FROM POSITION
 WHERE CURRENT OF DEL_POSITION
 END-EXEC.
 .
 .
 .
 EXEC SQL
 CLOSE DEL_POSITION
 END-EXEC.

Bulk Processing

A CA IDMS extension of the SQL standard allows you to transfer multiple rows of data

between the database and the program using a single SELECT, FETCH, or INSERT
statement with a BULK clause.

To issue a bulk select, fetch, or insert, the program must declare a host variable array.

Note: For more information about declaring a host variable array in CA ADS, COBOL and

PL/I see Requirements and Options for Host Languages (see page 87).

Bulk Processing

76 Programming Guide

Executing a Bulk Fetch

A bulk fetch is a FETCH statement that retrieves multiple rows from a cursor into a host
variable array.

To execute a bulk fetch:

1. Declare a host variable array

2. Open the cursor

3. Issue a FETCH statement with the BULK clause

Note: For more information about the FETCH statement, see the CA IDMS SQL Reference

Guide.

Cursor Position

The first execution of a FETCH BULK statement retrieves the first set of rows from the
cursor result table. After statement execution, cursor position is on the last row fetched.
If the FETCH BULK statement is executed again before the cursor is closed, the next set

of rows retrieved begins with the row following the cursor position. Fetching proceeds
sequentially through the cursor result table until no more rows are found.

How Many Rows Are Fetched?

If you do not specify a ROWS parameter in the BULK clause, the FETCH statement
retrieves as many rows as will fit between the starting row of the array and the end of

the array.

If you specify a ROWS parameter in the BULK clause, the FETCH statement retrieves a
number of rows equal to the value in the ROWS. This value must be less than or equal to

the number of rows between the starting row of the array and the end of the array.

Maximum Rows Example

In this example, the program assigns a ROWS value that corresponds to the number of
rows that can be displayed on a given display terminal:

Bulk Processing

Chapter 4: Data Manipulation with SQL 77

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.

 01 BULK-DIVISION.
 02 BULK-DIV OCCURS 100 TIMES.
 03 DEPT-ID PIC 9(4).
 03 DEPT-NAME PIC X(40).
 01 DIV-CODE PIC X(3).
 01 WS-SCREEN-LENGTH PIC S9(4) COMP.
 .
 .
 .
 EXEC SQL
 DECLARE DIV_DEPT CURSOR FOR
 SELECT DEPT_ID, DEPT_NAME
 FROM DEPARTMENT
 WHERE DIV_CODE = :DIV-CODE
 END-EXEC.
 ACCEPT SCREENSIZE INTO WS-SCREEN-LENGTH.
 SUBTRACT 4 FROM WS-SCREEN-LENGTH.
 IF WS-SCREEN-LENGTH > 100 MOVE 100 TO
 WS-SCREEN LENGTH.
 .
 .
 .
 MOVE INPUT-DIV-CODE TO DIV-CODE.

 EXEC SQL
 OPEN DIV_DEPT
 END-EXEC.

 FETCH-PARAGRAPH.

 EXEC SQL
 FETCH DIV_DEPT
 BULK :BULK-DIVISION ROWS :WS-SCREEN-LENGTH
 END-EXEC.

 IF SQLCODE=100 MOVE 'Y' TO END-FETCH.
 .
 .
 .
 (Iterate paragraph until no more rows)

Specifying a Starting Row

The DBMS assigns the first row of the result table to the first row of the array unless you
include the START parameter on the BULK clause. The START value corresponds to the

subscript value of the array occurrence.

Bulk Processing

78 Programming Guide

Checking Statement Execution

If program logic calls for repeating the FETCH BULK statement until no more rows are

found, the program must test for SQLCODE = 100, as described in Using a Cursor (see
page 67). The DBMS always sets the value of SQLCNRP equal to the number of rows
returned unless an error occurs during processing.

The following table shows the possible combination of values returned to SQLCODE and
SQLCNRP on a FETCH BULK statement:

SQLCODE and SQLCNRP Values

Result of bulk fetch SQLCODE value SQLCNRP value

No rows are returned 100 0

At least one row is returned but fewer
rows than the maximum allowed

100 Equals the
number of rows
returned

The number of rows returned matches the
maximum allowed

0 Equals the
number of rows
returned

Advantages of a Bulk Fetch

Using a BULK clause with a FETCH statement minimizes resources to retrieve data.

Unlike a bulk select, the program can retrieve an unlimited number of result rows by
repeating a bulk fetch.

Bulk Fetch Considerations

■ With a bulk fetch, the program generally cannot perform current or cursor
operations such as a positioned update or delete because the cursor is always
positioned on (or after) the last row fetched

■ If an error occurs during the processing of a bulk fetch, the contents of the host

variable array are unpredictable

■ If a bulk fetch results in retrieval of a null value, the contents of the host variable for
the corresponding column is unpredictable

Bulk Fetch Example

In this example, the program issues an INCLUDE TABLE statement to declare a host

variable array for several columns of the EMPLOYEE table. Then it declares a cursor to
select the column values from all rows of the table.

Bulk Processing

Chapter 4: Data Manipulation with SQL 79

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.

 EXEC SQL
 INCLUDE TABLE EMPLOYEE AS BULK-EMPLOYEE
 (EMP_ID, EMP_FNAME, EMP_LNAME, DEPT_ID)
 NUMBER OF ROWS 50
 PREFIX 'BULK-'
 END-EXEC.
 EXEC SQL END DECLARE SECTION END-EXEC.
 .
 .
 .
 EXEC SQL
 DECLARE EMP_CRSR CURSOR FOR
 SELECT EMP_ID,
 EMP_FNAME,
 EMP_LNAME,
 DEPT_ID
 ORDER BY 4, 3, 2
 END-EXEC.

When the FETCH statement is executed, the first 50 rows of the cursor result table are
assigned to the BULK-EMPLOYEE array, because the default starting row assignment is 1
and the default number of rows assigned is the array size. If the FETCH statement is

repeated, the next 50 rows of the result table are assigned to the array.

EXEC SQL

 OPEN EMP_CRSR

END-EXEC.

 .

 .

 .

EXEC SQL

 FETCH EMP_CRSR

 BULK :BULK-EMPLOYEE

END-EXEC.

IF SQLCODE = 100 MOVE 'Y' TO END-FETCH.

Bulk Processing

80 Programming Guide

Executing a Bulk Select

A bulk select is a SELECT statement that retrieves multiple rows from the database into
a host variable array:

1. Declare a host variable array

2. Issue the SELECT statement with a BULK clause, as in this example:

EXEC SQL

 SELECT DEPT_ID,

 DEPT_NAME,

 DIV-CODE,

 DEPT_HEAD_ID

 BULK :BULK-DEPARTMENT

 FROM DEPARTMENT

END-EXEC.

Checking the Status of a Bulk Select

A successful bulk select returns 100 to SQLCODE. A value of 100 will be returned if there
are fewer result rows than entries in the bulk array or if the number of result rows is the
same as the number of entries. If the array is too small for the result table, the

statement returns a cardinality violation error.

The following table shows the possible combinations of SQLCODE and SQLCNRP values

on a bulk select:

Result of bulk select SQLCODE value SQLCNRP value

No rows are returned 100 0

At least one row is returned but fewer
rows than the maximum allowed

100 Greater than 0 and less
than or equal to the
maximum allowed

The number of rows returned exceeds
the maximum allowed

Less than 0 Equal to the maximum
allowed

Advantage of a Bulk Select

A bulk select retrieves a set of rows using fewer resources than a series of single-row
SELECT statements to retrieve the same rows.

Bulk Processing

Chapter 4: Data Manipulation with SQL 81

Bulk Select Considerations

A bulk select:

■ Cannot retrieve more rows than there are occurrences in the host variable array

■ Retrieves the same set of rows, not the next set of rows, if the statement is reissued
within the database transaction

■ Causes the contents of the host variable array to be unpredictable if an error occurs
during processing

A bulk select is appropriate only when selecting from a table with a number of rows that
you consider fixed, such as a table of the 50 states and their mailing codes.

If the size of the host variable array may be too small for the result table, you should

declare a cursor for the SELECT statement and use a bulk fetch.

Executing a Bulk Insert

A bulk insert is an INSERT statement that adds multiple rows in a host variable array to
the database.

To execute a bulk insert:

1. Declare a host variable array

2. Assign values to the host variable array

3. Issue the INSERT statement with the BULK clause

Specifying the START and ROWS Parameters

A bulk insert adds as many rows from the host variable array as are specified in the
ROWS parameter, starting from the row specified in the START parameter. If START and
ROWS are not specified, these are the defaults:

■ The starting row is the first entry in the array

■ The number of rows inserted is the number of occurrences defined for the array

Note: If the array is not full, specify a ROWS parameter value equal to the number of
occurrences in the array that contain data. This ensures that the DBMS will not attempt

to insert array occurrences that contain no data.

Bulk Insert Example

In this example, the program declares a host-variable array with an INCLUDE TABLE
statement. After values are assigned to the array, the program issues a statement to
insert all of the data in the array:

Bulk Processing

82 Programming Guide

 EXEC SQL

 INCLUDE TABLE SKILL AS BULK-SKILL
 NUMBER OF ROWS 100
 PREFIX 'BULK-'
 END-EXEC.
 .
 .
 .
 (Assign values to BULK-SKILL array)
 .
 .
 .
 EXEC SQL
 INSERT INTO SKILL
 BULK :BULK-SKILL
 ROWS :NUM-ROWS
 END-EXEC.

 IF SQLCODE < 0
 MOVE SQLCNRP TO FAILING-ROW-NUM
 PERFORM ERROR-ROUTINE.

Checking Bulk Insert Status

To detect unsuccessful execution of a bulk insert, test for SQLCODE < 0.

If the result of the test is true, the value of SQLCNRP equals the relative row number
(from the specified starting row) of the row which caused the failure. The DBMS rolls

back the results of the fail ing row but not the results of the prior rows.

The following table shows the possible combinations of SQLCODE and SQLCNRP values
on a bulk insert:

Result of bulk insert SQLCODE value SQLCNRP value

Fewer rows than the number of rows
specified are inserted because the
insert failed on a row

Less than 0 Equal to the relative
row number of the
fail ing row

The number of rows inserted matches

the number of rows specified

0 Equal to the number of

rows inserted

Advantage of a Bulk Insert

A bulk insert adds a group of rows using fewer resources than if the program issues a

separate INSERT statement for each row.

Invoking Procedures

Chapter 4: Data Manipulation with SQL 83

Invoking Procedures

There are two types of SQL invoked procedures: a procedure and a table procedures.
Both types can be invoked using either a CALL statement or a SELECT statement. This
section describes the results of invoking procedures in each of these ways.

CALL Statement

In a program, you can use the CALL statement to invoke a (table) procedure. The
following sections describe the results of invoking each type of procedure using a CALL
statement.

Note: For more information about SQL procedures and table procedures, see the CA

IDMS SQL Reference Guide.

CALL of a Procedure

A procedure always returns zero or one result sets of parameters.

EXEC SQL

 CALL DEMOEMPL.GET_BONUS

 (1234, :BONUS-AMOUNT, :BONUS-CURRENCY)

END-EXEC

If the CALL is successful, indicated by an SQLSTATE of '00000' the host variables
BONUS-AMOUNT and BONUS-CURRENCY will contain valid data, returned by the

invoked routine for EMP-ID 1234, the input value supplied for the first parameter.

CALL of a Table Procedure

A table procedure can return zero or more result sets of parameters. Therefore, a
simple CALL statement can not be used to invoke and return all the result sets of the

table procedure; a cursor is required.

Declaration of the Cursor

EXEC SQL

 DECLARE C_BONUS_SET CURSOR

 FOR CALL DEMOEMPL.GET_BONUS_SET

 (EMP_ID =1234)

END-EXEC.

Opening the Cursor

EXEC SQL

 OPEN C_BONUS_SET

END-EXEC.

Invoking Procedures

84 Programming Guide

Fetching the Result Sets

EXEC SQL

 FETCH C_BONUS_SET INTO

 :EMP-ID,

 :BONUS-AMOUNT,

 :BONUS-CURRENCY

END-EXEC.

Host variables for all parameters specified in the table procedure definition should be
provided.

Note: For more information about using cursors, see Using a Cursor (see page 67).

SELECT Statement

The SELECT statement can be used as an alternative to the CALL statement to invoke a
(table) procedure. The following sections describe the results of invoking each type of

procedure using a SELECT statement.

SELECT of a Procedure

A procedure always returns zero or one result sets of parameters, therefore, a SELECT ...
INTO is used.

EXEC SQL

 SELECT BONUS_AMOUNT,

 BONUS_CURRENCY

 FROM DEMOEMPL.GET_BONUS(1234)

 INTO :BONUS-AMOUNT,

 :BONUS_CURRENCY

END-EXEC

If the SELECT is successful, indicated by an SQLSTATE of '00000' the host variables

BONUS-AMOUNT and BONUS-CURRENCY will contain valid data, returned by the
invoked routine for EMP-ID 1234, the input value supplied for the first parameter.

SELECT of a Table Procedure

A table procedure can return zero or more result sets of parameters. Therefore, a

SELECT ... INTO statement is only used when the SELECT returns zero or only one result
set. A cursor is required if more than one row is returned to the result set.

Invoking Procedures

Chapter 4: Data Manipulation with SQL 85

Declaration of the Cursor

EXEC SQL

 DECLARE C_BONUS_SET CURSOR

 FOR SELECT BONUS_AMOUNT, BONUS_CURRENCY

 FROM DEMOEMPL.GET_BONUS_SET

 (EMP_ID =1234)

END-EXEC.

Opening the Cursor

EXEC SQL

 OPEN C_BONUS_SET

END-EXEC.

Fetching the Result Sets

EXEC SQL

 FETCH C_BONUS_SET

 INTO :BONUS-AMOUNT,

 :BONUS-CURRENCY

END-EXEC.

Note: For more information about using cursors, see Using a Cursor (see page 67).

Chapter 5: Requirements and Options for Host Languages 87

Chapter 5: Requirements and Options for
Host Languages

There are requirements and options that apply to a particular host language when you
embed SQL in an application program to access CA IDMS.

Note: The SQL Web Connect feature allows all IDMS customers l imited use of dynamic
SQL. The use of static, precompiled SQL requires a full SQL license.

This section contains the following topics:

Using SQL in a CA ADS Application (see page 87)
Using SQL in a COBOL Application Program (see page 97)
Using SQL in a PL/I Application Program (see page 117)

Using SQL in a CA ADS Application

This section presents information that is specific to embedding SQL in a CA ADS
application program.

Note: Refer to the following manuals for documentation of all aspects of CA ADS
application programming:

■ CA ADS User Guide

■ CA ADS Reference Guide

Embedding SQL Statements

Requirements

To embed an SQL statement in a CA ADS program, you must:

■ Observe CA ADS margin requirements (columns 1 to 72)

■ Use SQL statement delimiters

Options

You can use the SQL convention to insert comments in an SQL statement.

You can use the CA ADS convention to continue an SQL statement on the next l ine.

Using SQL in a CA ADS Application

88 Programming Guide

Delimited, Continued, and Commented Statements

How You Delimit a Statement

When you embed an SQL statement in a CA ADS appl ication program, you must use
these statement delimiters:

■ Begin each SQL statement with EXEC SQL

■ End each SQL statement with END-EXEC.

Statement Delimiter Example

The following example shows the use of SQL statement delimiters:

EXEC SQL

 INSERT INTO DIVISION VALUES ('D07','LEGAL',1234)

END-EXEC.

The statement text can be on the same line as the delimiters.

Continuing Statements

You can write an SQL statement on more than one line if you do one of the following:

■ Split the statement before or after any keyword, value, or delimiter

■ Code through column 72 of one line and continue in column 1 of the next l ine

Continued Statement Example

----+----1----+----2----+----3----+----4----+----5----+----6----+----7—

EXEC SQL

 INSERT INTO SKILL VALUES (5678, 'TELEMARKETING', 'PRESENT SALES SCRIP

T OVER THE TELEPHONE, INPUT RESULTS')

END-EXEC.

How to Put Comments in SQL Statements

To include comments within SQL statements embedded in a CA ADS program, you can
use the SQL comment characters, two consecutive hyphens (--), on an SQL statement

l ine following the statement text.

Restrictions on Comments

■ Do not insert a comment in the middle of a string constant or delimited identifier

■ Do not use the CA ADS comment character ! to insert a comment in an embedded
SQL statement

Using SQL in a CA ADS Application

Chapter 5: Requirements and Options for Host Languages 89

SQL Comment Example

The following example shows two comments within an embedded SQL statement:

EXEC SQL

-- Perform update on active employees only

 UPDATE BENEFITS

 SET VAC_ACCRUED = VAC_ACCRUED + 10, -- Add 10 hours vacation

 SICK_ACCRUED = SICK_ACCRUED + 1 -- Add 1 sick day

 WHERE EMP_ID IN

 (SELECT EMP_ID FROM EMPLOYEE

 WHERE STATUS = 'A')

END-EXEC.

Placing an SQL Statement

Where You Can Put Statements

These are the rules for placing an SQL statement in a CA ADS program:

■ Only a WHENEVER directive or a DECLARE CURSOR statement may appear in a

declaration module

■ All SQL statements except for INCLUDE TABLE are valid for premap and response
processes

Order of Compilation

Dialog modules are compiled in this order:

1. Declaration module

2. Premap process module

3. Response process modules

The order of compilation of response process modules is not guaranteed. Therefore, if a

WHENEVER condition or the availability of a cursor must span modules, you should
place the WHENEVER statement or cursor declaration in a declaration module.

Declaration Module

CA ADS uses a declaration module, if it exists, when you compile the dialog.

The declaration module can contain WHENEVER directives and DECLARE CURSOR

statements.

Using SQL in a CA ADS Application

90 Programming Guide

WHENEVER and DECLARE CURSOR are not executable statements, and a declaration
module is not executable. The scope of a WHENEVER or DECLARE CURSOR is the entire

dialog.

A WHENEVER directive or DECLARE CURSOR statement is valid in a premap or response
process, but the scope of the statement is not global.

Scope of WHENEVER

The scope of a WHENEVER condition in a premap or response is the rest of that premap

or response or until another WHENEVER statement that changes the condition is
encountered within the process.

A WHENEVER declaration in a premap or response overrides (for the duration of its

scope) the global declaration in the declaration module.

Scope of DECLARE CURSOR

The scope of a DECLARE CURSOR statement is from the moment that the declaration is
encountered in dialog compilation to the end of that compilation.

Defining Host Variables

What You Declare

You implicitly declare host variables for a CA ADS dialog when:

■ You associate a record or a table with the dialog using the WORK RECORD screen of
ADSC

■ You associate a map or subschema, and thus its records, with the dialog

Any record element that is valid for a CA ADS MOVE command is valid as a host variable.

Note: For more information about ADSC and the MOVE command, see the CA ADS
Reference Guide.

Equivalent Column Data Types

All CA IDMS data types are supported by CA ADS.

This table shows definitions of CA ADS host variable data types and the equivalent CA
IDMS table column data types:

CA ADS PICTURE and USAGE clause CA IDMS data type

PIC X(n) USAGE DISPLAY CHAR(n)

Using SQL in a CA ADS Application

Chapter 5: Requirements and Options for Host Languages 91

CA ADS PICTURE and USAGE clause CA IDMS data type

01 name

49 name-LEN PIC S9(4) COMP

49 name-TEXT PIC X(n)

VARCHAR(n)

PIC S9(p-s)V9(s) USAGE COMP-3 DECIMAL(p,s)

PIC 9(p-s)V9(s) USAGE COMP-3 UNSIGNED DECIMAL(p,s)
1

USAGE COMP-2 DOUBLE PRECISION

USAGE COMP-1 REAL

USAGE COMP-1 FLOAT

PIC S9(n) USAGE COMP

(where n<5)

SMALLINT

PIC S9(n) USAGE COMP

(where n>4 and n<10)

INTEGER

PIC S9(n) USAGE COMP

(where n>9)

LONGINT or BIGINT

PIC S9(p-s)V9(s) USAGE DISPLAY NUMERIC(p,s)

PIC 9(p-s)V9(s) USAGE DISPLAY UNSIGNED NUMERIC(p,s)
1

PIC X(n) USAGE DISPLAY BINARY(n)

PIC G(n) USAGE DISPLAY-1 GRAPHIC(n)
1

01 name

49 name-LEN PIC S9(4) COMP

49 name-TEXT PIC G(n) DISPLAY-1

VARGRAPHIC(n)
1

PIC X(10) USAGE DISPLAY DATE

PIC X(8) USAGE DISPLAY TIME

PIC X(26) USAGE DISPLAY TIMESTAMP

PIC X(8) USAGE DISPLAY TID
1

Note:
1
 This data type is a CA IDMS extension of the SQL standard. For more information

about documentation of CA IDMS data types, see the CA IDMS SQL Reference Guide.

Using SQL in a CA ADS Application

92 Programming Guide

Including Tables

You include an SQL table in a CA ADS dialog by specifying the table on the WORK
RECORD screen of ADSC.

ADSC creates host variable structures using these data type equivalents when directed

to include a table on the Work Record Screen:

CA IDMS data type Data type in included table

BINARY(n) PIC X(n)

CHARACTER(n) PIC X(n)

VARCHAR(n) -LEN PIC S9(4) COMP

-TEXT PIC X(n)

GRAPHIC(n) PIC G(n) DISPLAY-1

VARGRAPHIC(n) -LEN PIC S9(4) COMP

-TEXT PIC G(n) DISPLAY-1

DECIMAL(p,s) PIC S9(p-s)V9(s) COMP-3

UNSIGNED DECIMAL(p,s) PIC 9(p-s)V9(s) COMP-3

NUMERIC(p,s) PIC S9(p-s)V9(s) DISPLAY

UNSIGNED NUMERIC(p,s) PIC 9(p-s)V9(s) DISPLAY

DOUBLE PRECISION COMP-2

FLOAT(n) where

n <= 24

n > 24

COMP-1

COMP-2

REAL COMP-1

DATE PIC X(10)

TIME PIC X(8)

TIMESTAMP PIC X(26)

SMALLINT PIC S9(4) COMP

INTEGER PIC S9(8) COMP

LONGINT PIC S9(18) COMP

Indicator variable PIC S9(4) COMP or PIC S9(8) COMP

TID PIC X(8)

Using SQL in a CA ADS Application

Chapter 5: Requirements and Options for Host Languages 93

Defining Bulk Structures

A bulk structure is a group element or a record which contains a subordinate array for
holding multiple occurrences of input or output values. Bulk structures are used in bulk
SELECT, INSERT, and FETCH statements for retrieving or storing multiple rows of data.

Format of a Bulk Structure

A bulk structure consists of three levels:

■ The highest level is the structure itself (level 01 through 47).

■ The second level is a multiply occurring group item (level 02 through 48).

■ The third level consists of elementary or variable length data items (variable length
data items are group elements consisting of a halfword length field followed by a

character or graphics field).

The number, type and order of data items at the lowest level must correspond to
the number, data type, and order of column values being retrieved or inserted.

All data descriptions used by CA ADS are defined within the dictionary.

Bulk Structure Example

The following is an example of a valid bulk structure definition using IDD syntax:

ADD ELEMENT EMP-ID PIC 999.

ADD ELEMENT EMP-NAME PIC X(30).

ADD ELEMENT DEPT-NAME PIC X(30).

ADD ELEMENT BULK-ROW SUB ELEMENTS ARE

 (EMP-ID EMP-NAME DEPT-NAME).

ADD ELEMENT BULK-DATA SUB ELEMENT

 BULK-ROW OCCURS 20.

Referring to a Bulk Structure

When referring to a bulk structure in a SELECT, FETCH, or INSERT statement, the name
of the highest level is used:

EXEC SQL

 FETCH EMPCURS BULK :BULK-DATA

END-EXEC.

Using SQL in a CA ADS Application

94 Programming Guide

Restrictions

The following restrictions apply to bulk structures defined for use with CA ADS:

■ The following clauses may not appear within the lowest level element definitions:

– BLANK WHEN ZERO IS ON

– JUSTIFY IS ON

– OCCURS

– (R) indicating redefinition

– SIGN IS LEADING/TRAILING

– SYNC

■ Indicator variables cannot be defined for elements within the bulk structure

■ The bulk structure must be either a record or the first element within the record

Referring to Host Variables

What You Can Do

CA IDMS supports references to host variables in SQL statements. The host variable

name must be preceded with a colon (:).

Note: For more information about host variables, see Referring to Host Variables (see
page 32).

Qualifying Host Variable Names

CA IDMS supports two methods of qualifying CA ADS host variable names in an SQL

statement.

For example, assume these host variable definitions:

01 EMP

 03 HIRE-DATE

 .

 .

 .

01 MGR

 03 HIRE-DATE

 .

 .

 .

Using SQL in a CA ADS Application

Chapter 5: Requirements and Options for Host Languages 95

The methods of qualifying HIRE-DATE in both of the following examples are valid:

EXEC SQL

 SELECT...

 INTO :HIRE-DATE OF EMP

EXEC SQL

 SELECT...

 INTO :EMP.HIRE-DATE

Including SQL Communication Areas

Automatically Included

The SQL Communications Areas (SQLCAs) are included automatically in a CA ADS dialog
that contains embedded SQL. You make no declaration of these data structures in the
CA ADS modules you create.

Using SQL in a CA ADS Application

96 Programming Guide

SQLCA Structure

This is the CA ADS format of the SQLCA:

COBOL/CA ADS SQLCA

 01 SQLCA.
 02 SQLCAID PIC X(8).
 02 SQLCODE PIC S9(9) COMP.
 02 SQLCSID PIC X(8).
 02 SQLCINFO.
 03 SQLCERC PIC S9(9) COMP.
 03 FILLER PIC S9(9) COMP.
 03 SQLCNRP PIC S9(9) COMP.
 03 FILLER PIC S9(9) COMP.
 03 SQLCSER PIC S9(9) COMP.
 03 FILLER PIC S9(9) COMP.
 03 SQLCLNO PIC S9(9) COMP.
 03 SQLCMCT PIC S9(9) COMP.
 03 SQLCARC PIC S9(9) COMP.
 03 SQLCFJB PIC S9(9) COMP.
 03 FILLER PIC S9(9) COMP.
 03 FILLER PIC S9(9) COMP.
 02 SQLCINF2 REDEFINES SQLCINFO.
 03 SQLERRD PIC S9(9) COMP
 OCCURS 12.
 02 SQLCMSG.
 03 SQLCERL PIC S9(9) COMP.
 03 SQLERM PIC X(256).
 02 SQLCMSG2 REDEFINES SQLCMSG.
 03 FILLER PIC X(2).
 03 SQLERRM.
 04 SQLCERRML PIC S9(4) COMP.
 04 SQLERRMC PIC X(256).
 02 SQLSTATE PIC X(5).
 02 SQLCRNF PIC X(1).
 02 SQLCNRRS PIC S9(4) COMP.
 02 FILLLER PIC X(8).
 ────┐
 02 SQLWORK PIC X(16). │
 02 SQLCWRK2 REDEFINES SQLWORK. │

 03 SQLERRP. │
 04 SQLCVAL PIC X(5). │ Included by the
 04 FILLER PIC X(3). │ precompiler for
 03 SQLWARN. │ DB2 compatibility;
 04 SQLWARN0 PIC X(1). │ not used by CA IDMS
 04 SQLWARN1 PIC X(1). │
 04 SQLWARN2 PIC X(1). │
 04 SQLWARN3 PIC X(1). │
 04 SQLWARN4 PIC X(1). │
 04 SQLWARN5 PIC X(1). │

 04 SQLWARN6 PIC X(1). │
 04 SQLWARN7 PIC X(1). │
 ────┘

Using SQL in a COBOL Application Program

Chapter 5: Requirements and Options for Host Languages 97

Using SQL in a COBOL Application Program

This section presents information that is specific to embedding SQL in a COBOL
application program.

Note: For more information documenting all aspects of COBOL application programming
in the CA IDMS environment, see the CA IDMS DML Reference Guide for COBOL.

Embedding SQL Statements

Requirements

To embed an SQL statement in a COBOL program, you must:

■ Place the statement in the proper division of the program

■ Observe COBOL margin requirements (columns 8 to 72)

■ Use statement delimiters

Options

You can use SQL conventions to:

■ Continue an SQL statement on the next l ine

■ Insert comments in an SQL statement

You can use a precompiler-directive statement to copy SQL statements in a module
from the dictionary into the program.

Note: SQL statements cannot be embedded using the COBOL INCLUDE or BASIS
statement.

Delimited, Continued, and Commented Statements

Using SQL Statement Delimiters

When you embed an SQL statement in a COBOL application program, you must use
these statement delimiters:

■ Begin each SQL statement with EXEC SQL

■ End each SQL statement with END-EXEC.

Note: The period following END-EXEC is optional. Include it wherever you would
normally terminate a COBOL statement with a period.

Using SQL in a COBOL Application Program

98 Programming Guide

The following example shows the use of SQL statement delimiters:

EXEC SQL

 INSERT INTO DIVISION VALUES ('D07','LEGAL',1234)

END-EXEC.

The statement text can be on the same line as the delimiters.

Continuing Statements

You can write SQL statements on one or more lines. No special character is required to
show that a statement continues on the next l ine if you split the statement before or
after any keyword, value, or delimiter.

You can use the COBOL continuation character, a hyphen (-), in column 7 when a string
constant in an embedded SQL statement is split at column 72 and continued on the next

l ine:

----+----1----+----2----+----3----+----4----+----5----+----6----+----7—

 EXEC SQL

 INSERT INTO SKILL

 VALUES (5678,'TELEMARKETING','PRESENT SALES SCRIPT OVER THE

 -'TELEPHONE, INPUT RESULTS')

 END-EXEC.

Inserting SQL Comments

To include comments within SQL statements embedded in a COBOL program, you can:

■ Use the COBOL comment character * in column 7

■ Use the SQL comment characters, two consecutive hyphens (--), on an SQL

statement l ine following the statement text

A comment that begins with the SQL comment characters (--) terminates at the end of
the line (column 72).

You cannot use SQL comment characters to insert a comment in the middle of a string
constant or delimited identifier.

Using SQL in a COBOL Application Program

Chapter 5: Requirements and Options for Host Languages 99

The following example shows both methods of inserting comments within an embedded
SQL statement:

----+----1----+----2----+----3----+----4----+----5----+----6----+----7—

 EXEC SQL

 ********* PERFORM UPDATE ON ACTIVE EMPLOYEES ONLY

 UPDATE BENEFITS

 SET VAC_ACCRUED = VAC_ACCRUED + 10, -- Add 10 hours vacation

 SICK_ACCRUED = SICK_ACCRUED + 1 -- Add 1 sick day

 WHERE EMP_ID IN

 (SELECT EMP_ID FROM EMPLOYEE

 WHERE STATUS = 'A')

 END-EXEC.

Placing an SQL Statement

Where You Can Put Statements

These are the rules for placing an SQL statement in a COBOL program:

■ The INCLUDE statement must be in the DATA DIVISION

■ The WHENEVER can be in the DATA DIVISION or the PROCEDURE DIVISION

■ The DECLARE CURSOR and DECLARE EXTERNAL CURSOR statements can be in the
DATA DIVISION or the PROCEDURE DIVISION but must precede the OPEN statement
that references the cursor

■ All other statements must be in the PROCEDURE DIVISION

Versions Prior to VS COBOL II

If your program is written for a version of COBOL that is prior to VS COBOL II, observe
these guidelines:

■ Do not include an SQL statement within the scope of a COBOL IF statement

■ Use the THRU construction for a PERFORM statement that references a section
containing an SQL statement

Using SQL in a COBOL Application Program

100 Programming Guide

COBOL Version Examples

This example is valid in VS COBOL II and later versions:

IF I < 100

 EXEC SQL

 SELECT EMP_LNAME,

 DEPT_ID

 INTO :EMP-LNAME,

 :DEPT-ID

 WHERE EMP_ID = :WK-EMP-ID

 END-EXEC.

 COMPUTE A = A + 1.

For a version of COBOL prior to VS COBOL II, the procedure above can be written:

IF I < 100

 PERFORM PARAGRAPH-B THRU PARAGRAPH-B-END

 COMPUTE A = A + 1.

PARAGRAPH-B.

 EXEC SQL

 SELECT EMP_LNAME,

 DEPT_ID

 INTO :EMP-LNAME,

 :DEPT-ID

 WHERE EMP_ID = :WK-EMP-ID

 END-EXEC.

PARAGRAPH-B-END.

Defining Host Variables

Host variables are defined using COBOL data declarative statements appearing in SQL
declare sections.

CA IDMS extensions offer the alternative methods of using the INCLUDE TABLE

precompiler directive or copying record descriptions from the data dictionary.

A host variable definition may appear anywhere a legal data item definition can appear.

Using SQL in a COBOL Application Program

Chapter 5: Requirements and Options for Host Languages 101

Using COBOL Data Declarations

What You Declare

Within an SQL declare section, you specify the name, level, and data type of host
variables using standard COBOL data declarative sta tements and observing these

guidelines:

■ A host variable name must conform to COBOL rules for forming variable names

■ The level number is in the range of 01 to 49, or 77

A CA IDMS extension of the SQL standard allows level numbers in the range of 02 to

49.

■ The data type of the host variable as defined in the PICTURE and USAGE clauses

Equivalent Column Data Types

All CA IDMS data types can be supported in a COBOL program.

This table shows types of COBOL host variables and the equivalent CA IDMS table

column data types:

COBOL PICTURE and USAGE clause CA IDMS data type

PIC X(n) USAGE DISPLAY CHAR(n)

01 name

49 name-LEN PIC S9(4) COMP

49 name-TEXT PIC X(n)

VARCHAR(n)

PIC S9(p-s)V9(s) USAGE COMP-3 DECIMAL(p,s)

PIC 9(p-s)V9(s) USAGE COMP-3 UNSIGNED DECIMAL(p,s)
1

USAGE COMP-2 DOUBLE PRECISION

USAGE COMP-1 REAL

USAGE COMP-1 FLOAT

PIC S9(n) USAGE COMP

(where n<5)

SMALLINT

PIC S9(n) USAGE COMP

(where n>4 and n<10)

INTEGER

PIC S9(n) USAGE COMP

(where n>9)

LONGINT or BIGINT

PIC S9(p-s)V9(s) USAGE DISPLAY NUMERIC(p,s)

Using SQL in a COBOL Application Program

102 Programming Guide

COBOL PICTURE and USAGE clause CA IDMS data type

PIC 9(p-s)V9(s) USAGE DISPLAY UNSIGNED NUMERIC(p,s)
1

PIC X(n) USAGE SQLBIN BINARY(n)

PIC G(n) USAGE DISPLAY-1 GRAPHIC(n)
1

01 name

49 name-LEN PIC S9(4) COMP

49 name-TEXT PIC G(n) DISPLAY-1

VARGRAPHIC(n)
1

PIC X(10) USAGE DISPLAY DATE

PIC X(8) USAGE DISPLAY TIME

PIC X(26) USAGE DISPLAY TIMESTAMP

PIC X(8) USAGE SQLBIN TID
1

Note:
1
This data type is a CA IDMS extension of the SQL standard. For more information

about CA IDMS data types, see the CA IDMS SQL Reference Guide.

Host Variable Declaration Example

In this example, the SQL declare section defines host variables, including one indicator
variable, using standard COBOL data declarations. The example is annotated to show

the equivalent column data type for each variable and to identify an indicator varia ble:

WORKING-STORAGE SECTION.
 .
 .
 .
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 EMP-ID PIC S9(8) USAGE COMP. ◄─ INTEGER
 01 EMP-LNAME PIC X(20). ◄─ CHARACTER
 01 SALARY-AMOUNT PIC S9(6)V(2) USAGE COMP-3. ◄─ DECIMAL
 01 PROMO-DATE PIC X(10). ◄─ DATE
 01 PROMO-DATE-I PIC S9(4) USAGE COMP. ◄─ Indicator variable
 EXEC SQL END DECLARE SECTION END-EXEC.

Declaring an indicator variable

An indicator variable must be either a 2 or 4 byte computational (binary) data type. In
the example above, PROMO-DATE-I is a valid indicator variable.

SQLIND data type

You can declare an indicator variable with the data type SQLIND:

05 PROMO_DATE PIC X(10). ◄─ DATE
05 PROMO_DATE_I SQLIND. ◄─ Indicator variable

Using SQL in a COBOL Application Program

Chapter 5: Requirements and Options for Host Languages 103

The precompiler will substitute PIC S9(8) USAGE COMP in the output source.

The SQLIND data type is primarily for use within bulk structure definitions. In other

cases its use is optional.

Allowable Host Variable Definitions

A host variable definition may contain:

■ PICTURE clause

■ USAGE clause

– DISPLAY

– DISPLAY SIGN LEADING SEPARATE

– COMP

– COMP-1
1

– COMP-2
1

– COMP-3
1

– SQLIND
1

– SQLBIN
1

– SQLSESS
1

■ VALUE clause
1

■ 88 condition-name
1
 (any legal COBOL clause)

■ OCCURS
1
 clause (except within a non-bulk structure)

Within a bulk structure definition, the occurs clause is allowed only on the

second-level group element. The following subclauses are also supported but only
on the second level group element of a bulk structure:

– DEPENDING ON

Note: The DEPENDING ON variable is not used in determining the number of

rows in the bulk structure.

– ASCENDING/DESCENDING KEY

– INDEXED BY

■ REDEFINES
1

clause (except within a bulk or non-bulk structure)

■ BLANK WHEN ZERO
1
 (except within a bulk or non-bulk structure)

■ SYNCHRONIZED
1
 (except within a bulk or non-bulk structure)

 (
1
 This support is a CA IDMS extension of the SQL standard.)

Using SQL in a COBOL Application Program

104 Programming Guide

Using INCLUDE TABLE

Output of INCLUDE TABLE

The CA IDMS precompiler uses these data type equivalents when directed by an
INCLUDE TABLE statement to create a host variable declaration.

CA IDMS data type COBOL data type on INCLUDE TABLE

BINARY(n) PIC X(n)

CHARACTER(n) PIC X(n)

VARCHAR(n) -LEN PIC S9(4) COMP

-TEXT PIC X(n)

GRAPHIC(n) PIC G(n) DISPLAY-1

VARGRAPHIC(n) -LEN PIC S9(4) COMP

-TEXT PIC G(n) DISPLAY-1

DECIMAL(p,s) PIC S9(p-s)V9(s) COMP-3

UNSIGNED DECIMAL(p,s) PIC 9(p-s)V9(s) COMP-3

NUMERIC(p,s) PIC S9(p-s)V9(s) DISPLAY

UNSIGNED NUMERIC(p,s) PIC 9(p-s)V9(s) DISPLAY

DOUBLE PRECISION COMP-2

FLOAT(n) where

n <= 24

n > 24

COMP-1

COMP-2

REAL COMP-1

DATE PIC X(10)

TIME PIC X(8)

TIMESTAMP PIC X(26)

SMALLINT PIC S9(4) COMP

INTEGER PIC S9(8) COMP

LONGINT PIC S9(18) COMP

SQLIND COMP PIC S9(8)

TID PIC X(8) USAGE SQLBIN

Using SQL in a COBOL Application Program

Chapter 5: Requirements and Options for Host Languages 105

Default Structure

The default structure created by the INCLUDE statement has these features:

■ An 01-level element for the table

■ A subordinate element named for each table column, defined with the equivalent
program language data type

■ An additional element, with the suffix '-I', for each column that allows null values, to
be available as an indicator variable

■ All element names generated with hyphens to replace underscores that appear in
column names, to conform to COBOL naming standards

If you specify a table without a schema name qualifier, you must supply a schema

name with a precompiler option.

Note: For more information about precompiler options, see Preparing and
Executing the Program (see page 131).

Defining Bulk Structures

A bulk structure is a group element or a record which contains a subordinate array for
holding multiple occurrences of input or output values. Bulk structures are used in bulk
SELECT, INSERT, and FETCH statements for retrieving or storing multiple rows of data.

Format of a Bulk Structure

A bulk structure consists of three levels:

■ The highest level is the structure itself (level 01 through 47).

■ The second level is a multiply occurring group item (level 02 through 48).

■ The third level consists of elementary or variable length data items (variable length
data items are group elements consisting of a halfword length field followed by a

character or graphics field).

The number, type and order of data items at the lowest level must correspond to
the number, data type, and order of column values being retrieved or inserted.

Bulk Structure Example

The following is an example of a valid bulk structure:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

 02 BULK-DATA.

 04 BULK-ROW OCCURS 20 TIMES.

 05 EMP-ID PIC 999.

 05 EMP-NAME PIC X(30).

 05 DEPT-NAME PIC X(30).

EXEC SQL END DECLARE SECTION END-EXEC.

Using SQL in a COBOL Application Program

106 Programming Guide

Referring to a Bulk Structure

When referring to a bulk structure in a SELECT, FETCH, or INSERT statement, the name

of the highest level is used:

EXEC SQL

 FETCH EMPCURS BULK :BULK-DATA

END-EXEC.

Indicator Variables

An indicator variable can be associated with a data item within the structure as follows:

■ The indicator variable must immediately follow the data item with which it is
associated

■ The picture of the indicator variable must be S9(n) where n is between 4 and 8

■ The usage of the indicator variable must be SQLIND

On encountering the SQLIND usage, the precompiler interprets the variable as an

indicator associated with the preceding variable. SQLIND is replaced with COMP in
the generated source.

Restrictions

The following COBOL clauses must not appear within a bulk structure definition:

■ BLANK WHEN ZERO

■ JUSTIFIED

■ OCCURS (except at the second level)

■ REDEFINES

■ SIGN

■ SYNCHRONIZED

Fil lers may appear within the structure; however, their data content is not preser ved
across a bulk SELECT or FETCH.

Using INCLUDE TABLE

A bulk structure can be defined for a given table by using the INCLUDE TABLE statement
with a NUMBER OF ROWS clause. The statement in this example will generate a bulk

structure capable of holding 20 entries:

EXEC SQL

 INCLUDE TABLE EMPLOYEE NUMBER OF ROWS 20

END-EXEC.

Using SQL in a COBOL Application Program

Chapter 5: Requirements and Options for Host Languages 107

Non-bulk Structures and Indicator Arrays

About Non-bulk Structures

A non-bulk structure is a group element or record which is used to represent a l ist of
host variables within an SQL statement. When reference i s made to a non-bulk

structure, it is interpreted as a reference to all of the subordinate elements within the
structure.

About Indicator Arrays

An indicator array is a group element or record which contains one multiply occurring
subordinate element used as an array of indicator variables. Indicator arrays hold

indicator values for items within a non-bulk structure.

Format of a Non-bulk Structure

A non-bulk structure consists of two levels:

■ The highest level is the structure itself (level 01 through 48)

■ The second level consists of elementary or variable length data items (variable

length data elements are group elements which consist of a halfword length field
followed by a character or graphics field)

The number, type, and order of data items at the lowest level must correspond to the
number, data type, and order of column values being retrieved or inserted.

Non-bulk Structure Example

This is an example of a valid non-bulk structure:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

 01 EMP-INFO.

 05 EMP-ID PIC 999.

 05 EMP-NAME PIC X(30).

 05 DEPT-NAME PIC X(30).

EXEC SQL END DECLARE SECTION END-EXEC.

Format of an Indicator Array

An indicator array consists of two levels:

■ The highest level represents the entire array (level 01 through 48)

■ The second level is a multiply occurring element that defines a halfword or fullword

field

Using SQL in a COBOL Application Program

108 Programming Guide

This is an example of a valid indicator array:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

 02 INDS.

 04 IND SQLIND OCCURS 20 TIMES.

EXEC SQL END DECLARE SECTION END-EXEC.

Referring to a Non-bulk Structure

A non-bulk structure can be referred to anywhere a l ist of host variables can be

specified:

■ The INTO clause of a SELECT or FETCH statement; for example:

EXEC SQL

 FETCH EMPCURS INTO :EMP-INFO

END-EXEC.

■ The VALUES clause of an INSERT statement

Unlike bulk processing, a single SQL statement can contain more than one reference to a
non-bulk structure. Each such reference is interpreted as a l ist of host variable

references. The union of all such host variables together with any elementary host
variables must correspond to a single result row (or input row, in the case of an INSERT
statement).

Referring to an Indicator Array

To associate indicator variables with the elements of the non-bulk structure, the name

of an indicator array is specified immediately following the name of the non-bulk
structure:

EXEC SQL

 FETCH EMPCURS INTO :INFO :INDS

END-EXEC.

Note: Either the name of the group or its subordinate element may be used to refer to
an indicator array.

Association of Indicator Variables and Non-bulk Structure Elements

The number of occurrences in the indicator array need not be the same as the number
of elements in the non-bulk structure with which it is used. If there are more indicators
than elements, the remaining indicators are ignored, although their contents are not

necessarily preserved. If there are fewer indicators than elements, an indicator is
associated with each element in the structure until all indicators are assigned. The
remaining elements do not have associated indicators. This may result in an error if an
attempt is made to return a null value into an element with no associated indicator.

Using SQL in a COBOL Application Program

Chapter 5: Requirements and Options for Host Languages 109

Restrictions

The following COBOL clauses must not appear within a non-bulk structure definition:

■ BLANK WHEN ZERO

■ JUSTIFIED

■ OCCURS

■ REDEFINES

■ SIGN

■ SYNCHRONIZED

Fil lers having a character data type may appear within the structure. However, their
data content is not preserved across a SELECT or FETCH.

Note: Unless the included table has no nullable columns an INCLUDE TABLE table-name
precompiler directive cannot be used to define the non-bulk structure; any nullable
column would cause the precompiler to insert an associated indicator variable which
makes the structure unusable for reference in the FETCH statement.

Referring to Host Variables

What You Can Do

CA IDMS supports references to host variables in SQL statements. The host variable
name must be prefixed with a colon (:).

Note: For more information, see Referring to Host Variables (see page 32).

CA IDMS also supports references to:

■ Subordinate elements which may require qualification for uniqueness

■ Subscripted elements

Using SQL in a COBOL Application Program

110 Programming Guide

Qualifying Host Variable Names

CA IDMS supports two methods of qualifying host variable names.

For example, assume these host variable definitions:

01 EMP

 03 HIRE-DATE

 .

 .

 .

01 MGR

 03 HIRE-DATE

 .

 .

 .

The method of qualifying HIRE-DATE in either of the following examples is valid:

EXEC SQL

 SELECT...

 INTO :HIRE-DATE OF EMP

EXEC SQL

 SELECT...

 INTO :EMP.HIRE-DATE

Subscripted Variable Names

A CA IDMS extension of the SQL standard supports host variable arrays for use in bulk
processing. By further extension of the SQL standard, CA IDMS supports reference to a
subscripted variable in a host variable array.

All of the following are valid host variable references:

■ :DIV-CODE(1)

■ :DIV-CODE (15)

■ :DIV-CODE(SUB1)

■ :DIV-CODE(SUB1,SUB2)

Using SQL in a COBOL Application Program

Chapter 5: Requirements and Options for Host Languages 111

Including SQL Communication Areas

Declaring SQL Communication Areas

CA IDMS provides these ways of including the SQL Communicati on Areas in a COBOL
program:

■ The program can declare the host variable SQLSTATE in the WORKING-STORAGE
SECTION:

01 SQLSTATE PIC X(5).

Note: SQLSTATE does not have to be defined inside an SQL declare section.

■ The program can declare the host variable SQLCODE in the WORKING-STORAGE

SECTION:

01 SQLCODE PIC S9(8)

 USAGE COMP.

Note: SQLCODE does not have to be defined inside an SQL declare section.

■ The precompiler automatically includes the communication areas at the end of the
WORKING-STORAGE section in any program that contains embedded SQL
statements

■ The program can issue this precompiler directive:

EXEC SQL

 INCLUDE SQLCA

END-EXEC.

Using the INCLUDE statement to declare the SQLCA is a CA IDMS extension of the SQL
standard.

Using SQL in a COBOL Application Program

112 Programming Guide

SQLCA Structure

This is the COBOL format of the SQLCA:

COBOL/CA ADS SQLCA

 01 SQLCA.
 02 SQLCAID PIC X(8).
 02 SQLCODE PIC S9(9) COMP.
 02 SQLCSID PIC X(8).
 02 SQLCINFO.
 03 SQLCERC PIC S9(9) COMP.
 03 FILLER PIC S9(9) COMP.
 03 SQLCNRP PIC S9(9) COMP.
 03 FILLER PIC S9(9) COMP.
 03 SQLCSER PIC S9(9) COMP.
 03 FILLER PIC S9(9) COMP.
 03 SQLCLNO PIC S9(9) COMP.
 03 SQLCMCT PIC S9(9) COMP.
 03 SQLCARC PIC S9(9) COMP.
 03 SQLCFJB PIC S9(9) COMP.
 03 FILLER PIC S9(9) COMP.
 03 FILLER PIC S9(9) COMP.
 02 SQLCINF2 REDEFINES SQLCINFO.
 03 SQLERRD PIC S9(9) COMP
 OCCURS 12.
 02 SQLCMSG.
 03 SQLCERL PIC S9(9) COMP.
 03 SQLERM PIC X(256).
 02 SQLCMSG2 REDEFINES SQLCMSG.
 03 FILLER PIC X(2).
 03 SQLERRM.
 04 SQLCERRML PIC S9(4) COMP.
 04 SQLERRMC PIC X(256).
 02 SQLSTATE PIC X(5).
 02 SQLCRNF PIC X(1).
 02 SQLCNRRS PIC S9(4) COMP.
 02 FILLLER PIC X(8).
 ────┐
 02 SQLWORK PIC X(16). │
 02 SQLCWRK2 REDEFINES SQLWORK. │

 03 SQLERRP. │
 04 SQLCVAL PIC X(5). │ Included by the
 04 FILLER PIC X(3). │ precompiler for
 03 SQLWARN. │ DB2 compatibility;
 04 SQLWARN0 PIC X(1). │ not used by CA IDMS
 04 SQLWARN1 PIC X(1). │
 04 SQLWARN2 PIC X(1). │
 04 SQLWARN3 PIC X(1). │
 04 SQLWARN4 PIC X(1). │
 04 SQLWARN5 PIC X(1). │

 04 SQLWARN6 PIC X(1). │
 04 SQLWARN7 PIC X(1). │
 ────┘

Using SQL in a COBOL Application Program

Chapter 5: Requirements and Options for Host Languages 113

Copying Information from the Dictionary

You can use these precompiler directives to instruct the precompiler to copy entities
from the dictionary into the COBOL application program:

■ COPY IDMS FILE

■ COPY IDMS RECORD

■ COPY IDMS MODULE

■ INCLUDE module-name

COPY IDMS FILE Statement

The COPY IDMS FILE statements copy fi le descriptions from the dictionary into the
program. Each COPY IDMS FILE statement generates the fi le definition that includes
record size, block size, and recording mode from the dictionary. Any records included in
the fi le through the Integrated Data Dictionary (IDD) facil ities are also copied.

Syntax

►►─── FILE SECTION. ──►

 ┌───┐
 ►─▼─┬───┬─ . ─┴────────►◄
 └─ COPY IDMS FILE file-name ─┬──────────────────────────┬─┘
 └─ VERSION version-number ─┘

Parameters

file-name

Copies the description of a non-CA IDMS fi le into the DATA DIVISION. File-name is
either the primary name or a synonym for a fi le defined in the dictionary.

VERSION version-number

Qualifies file-name with a version number. Version-number must be an integer in
the range 1 through 9999 and defaults to the highest version number defined in the
dictionary for file-name.

Usage

The FILE SECTION of the DATA DIVISION can include one or more COPY IDMS FILE
statements.

COPY IDMS RECORD Statement

The COPY IDMS RECORD statement allows you to copy a record description from the
dictionary into the DATA DIVISION of a COBOL program at the location of the COPY
IDMS statement.

Using SQL in a COBOL Application Program

114 Programming Guide

Syntax

►►─┬─ WORKING-STORAGE SECTION. ─┬───►
 └─ LINKAGE SECTION. ─────────┘

 ┌──┐
 ►─▼─┬──┬─ . ─┴───►◄
 └─┬────────────────┬─── COPY IDMS RECORD record-specification ─┘
 └─ level-number ─┘

Expansion of Record-specification

►►─── record-name ───┬──────────────────────────┬─────────────────────────────►
 └─ VERSION version-number ─┘

 ►─┬─────────────────────────┬──►◄
 └─ REDEFINES record-name ─┘

Parameters

level-number

Instructs the precompiler to copy the descriptions into the program at a level other

than that originally specified for the description in the dictionary. Level-number
must be an integer in the range 01 through 48.

If level-number is specified, the first level will be copied to the level specified by

level-n; all other levels will be adjusted accordingly. If level-n is not specified, the
descriptions copied will have the same level numbers as originally specified in the
dictionary.

record-name

Specifies the name of the record to be copied. Record-name can be either the

primary name or a synonym for a record stored in the dictionary.

version-number

Qualifies dictionary records with a version number. Version-number must be an
integer in the range 1 through 9999.

If version-number is not specified, the record that is copied will be the record

synonym for the named record that is the highest version defined for COBOL.

REDEFINES record-name

Copies a record description to an area previously defined by another record
description. Therefore, two record descriptions can provide alternative definitions
of the same storage location.

Using SQL in a COBOL Application Program

Chapter 5: Requirements and Options for Host Languages 115

Usage

Invalid Descriptors

The program can copy a record definition from the dictionary and use the record
elements as host variables in embedded SQL.

If you declare host variables by copying a record description from the dictionary, you
must observe all rules regarding host variable declarations.

Placement

You can place COPY IDMS RECORD statements in any area of the DATA DIVISION that
COBOL allows record definitions.

VALUE Clauses

If the dictionary record is to be copied into the LINKAGE SECTION and includes VALUE
clauses, the VALUE clauses are not copied.

Using COPY IDMS RECORD for Host Variables

If the record to copy contains fields that the program may reference as host variables,
you must include the COPY IDMS RECORD statement in an SQL declaration section.

COPY IDMS MODULE Statement

The COPY IDMS MODULE statement copies source statements from a module stored in
the data dictionary into the source program.

Syntax

►►─── PROCEDURE DIVISION. ──►

 ┌───┐
 ►─▼─┬───┬─ . ─┴────►◄
 └─ COPY IDMS module module-name ─┬──────────────────────────┬─┘
 └─ VERSION version-number ─┘

Parameters

module-name

Specifies the name of a module previously defined in the dictionary.

version-number

Qualifies module-name with a version number. Version-number must be an integer
in the range 1 through 9999.

If version-number is not specified, the record copied will be the highest version of
the named module defined in the dictionary for COBOL.

Using SQL in a COBOL Application Program

116 Programming Guide

Usage

Placement

The unmodified module is placed into the program by the precompiler at the location of
the request. The location of the request is usually in the PROCEDURE DIVISION, but it

can be anywhere that is appropriate for the contents of the module to be included i n
the program.

Nesting Modules

COPY IDMS MODULE statements can be nested (that is, a statement invoked by a COPY
IDMS MODULE entry can itself be a COPY IDMS MODULE statement). However, you

must ensure that a copied module does not, in turn, copy itself.

INCLUDE Module-name Statement

The INCLUDE module-name statement is equivalent to a COPY IDMS MODULE statement
in which the version number is omitted.

Note: For more information about this statement, see the CA IDMS SQL Reference
Guide.

Non-SQL Precompiler Directives

The CA IDMS precompiler accepts several directives that are not associated with SQL

statements and host variable declarations. These include:

■ RETRIEVAL—Specifies that the precompiler should ready the area of the dictionary
containing data definitions in retrieval mode, allowing concurrent update of the
area by other transactions

■ PROTECTED—Specifies that the precompiler should ready the area of the dictionary
containing data definitions in update mode, preventing concurrent update of the
area by other transactions

■ NO-ACTIVITY-LOG—Suppresses the logging of program activity statistics

■ DMLIST/NODMLIST—Specifies generation or no generation of a source listing for

the statements that follow

Note: For more information about non-SQL precompiler directives, see Precompiler
Directives (see page 283).

Using SQL in a PL/I Application Program

Chapter 5: Requirements and Options for Host Languages 117

Using SQL in a PL/I Application Program

This section presents information that is specific to embedding SQL in a PL/I application
program.

Note: For more information about documentation of all aspects of PL/I application
programming in the CA IDMS environment, see the CA IDMS DML Reference Guide for

PL/I.

Embedding SQL Statements

Requirements

To embed an SQL statement in a PL/I program, you must:

■ Include an SQLXQ1 declaration

■ Observe PL/I margin requirements (columns 2 to 72)

■ Use statement delimiters

Options

You can use SQL conventions to:

■ Continue an SQL statement on the next l ine

■ Insert comments in an SQL statement

You can use a precompiler-directive statement to copy SQL statements in a module

from the dictionary into the program.

Declaring SQLXQ1

PL/I applications with embedded SQL must include the SQLXQ1 ENTRY statement. The
syntax for this statement is:

►►─┬─ DECLARE ─┬─ SQLXQ1 ENTRY OPTIONS (INTER, ASSEMBLER); ───────────────────►◄
 └─ DCL ─────┘

Delimited, Continued, and Commented Statements

Using SQL Statement Delimiters

When you embed an SQL statement in a PL/I application program, you must use these
statement delimiters:

■ Begin each SQL statement with EXEC SQL

■ End each SQL statement with ;

Using SQL in a PL/I Application Program

118 Programming Guide

An EXEC SQL delimiter must be preceded by either a PL/I label or the ; character.

The following example shows the use of SQL statement delimiters:

EXEC SQL INSERT INTO DIVISION VALUES ('D07','LEGAL',1234) ;

The statement text can be on the same line as the delimiters.

Continuing Statements

You can write SQL statements on one or more lines. No special character is required to
show that a statement continues on the next l ine if you split the statement before or
after any keyword, value, or delimiter.

Inserting SQL Comments

To include comments within SQL statements embedded in a PL/I program, you can:

■ Use the PL/I comment delimiters /* and */

■ Use the SQL comment characters, two consecutive hyphens (--), on an SQL
statement l ine following the statement text

A comment that begins with the SQL comment characters (--) terminates at the end of

the line (column 72).

You cannot use SQL comment characters to insert a comment in the middle of a string
constant or delimited identifier.

The following example shows both methods of inserting comments within an embedded
SQL statement:

EXEC SQL

/********* PERFORM UPDATE ON ACTIVE EMPLOYEES ONLY ********/

 UPDATE BENEFITS

 SET VAC_ACCRUED = VAC_ACCRUED + 10, -- Add 10 hours vacation

 SICK_ACCRUED = SICK_ACCRUED + 1 -- Add 1 sick day

 WHERE EMP_ID IN

 (SELECT EMP_ID FROM EMPLOYEE

 WHERE STATUS = 'A') ;

Using SQL in a PL/I Application Program

Chapter 5: Requirements and Options for Host Languages 119

Defining Host Variables

What You Declare

Within an SQL declare section, you specify the name, level, and data type of host
variables using standard PL/I data declarative statements and observing these

guidelines:

■ A host variable name must conform to PL/I rules for forming variable names

■ The level number is in the range of 1 to 255

■ The data type of the host variable

Using PL/I Declarations

Equivalent Column Data Types

This table shows data types of PL/I host variables that are valid in an SQL declare section
and equivalent to CA IDMS table column data types:

Equivalent PL/I data type CA IDMS data type

CHAR (n) CHAR(n)

CHAR (n) VAR VARCHAR(n)

FIXED DECIMAL (p,s) DECIMAL(p,s)

FLOAT BINARY (n)

where n <= 24

where n > 24

REAL

DOUBLE PRECISION

FLOAT DECIMAL (n)

where n <= 6

where n > 6

REAL

DOUBLE PRECISION

FIXED BINARY (15) SMALLINT

FIXED BINARY (31) INTEGER

CHAR (n) BINARY(n)

GRAPHIC (n) GRAPHIC(n)
1

GRAPHIC (n) VAR VARGRAPHIC(n)
1

CHAR (10) DATE

CHAR (8) TIME

CHAR (26) TIMESTAMP

SQLBIN (n) BINARY(n)

Using SQL in a PL/I Application Program

120 Programming Guide

Equivalent PL/I data type CA IDMS data type

CHAR(8) TID
1

Note:
1

This data type is a CA IDMS extension of the SQL standard. For more information
about CA IDMS data types, see the CA IDMS SQL Reference Guide.

Data Types Not Supported

The following table shows CA IDMS data types for which there are no equivalent data
types in PL/I that are valid in an SQL declare section. The table shows compatible PL/I

data types that are valid in host variable declarations; however, accessing a column that
has no equivalent data type may result in an error if a data value is not convertible
between the two data types.

Compatible PL/I data type CA IDMS data type

FIXED BINARY (31) LONGINT or BIGINT

FIXED DECIMAL (p,s) NUMERIC(p,s)

FIXED DECIMAL (p,s) UNSIGNED NUMERIC(p,s)

FIXED DECIMAL (p,s) UNSIGNED DECIMAL(p,s)

Host Variable Declaration Example

In this example, the SQL declare section defines host variables, including one indicator
variable, using standard PL/I data declarations. The example is annotated to show the

equivalent column data type for each variable and to identify an indicator variab le:

WORKING-STORAGE SECTION.
 .
 .
 .
EXEC SQL BEGIN DECLARE SECTION ;
DECLARE 1 EMP_ID FIXED BINARY (31) ; ◄─ INTEGER
DECLARE 1 EMP_LNAME CHAR (20) ; ◄─ CHARACTER
DECLARE 1 SALARY_AMOUNT FIXED DECIMAL (6,2) ; ◄─ DECIMAL
DECLARE 1 PROMO_DATE CHAR (10) ; ◄─ DATE
DECLARE 1 PROMO_DATE_I FIXED BINARY (31) ; ◄─ Indicator variable
EXEC SQL END DECLARE SECTION ;

Declaring an Indicator Variable

An indicator variable must be either FIXED BINARY (15) or FIXED BINARY (31) data type.
In the example above, PROMO_DATE_I is an indicator variable for PROMO_DATE.

SQLIND Data Type

You can declare an indicator variable with the data type SQLIND:

DECLARE 1 PROMO_DATE CHAR (10) ; ◄─ DATE
DECLARE 1 PROMO_DATE_I SQLIND ; ◄─ Indicator variable

Using SQL in a PL/I Application Program

Chapter 5: Requirements and Options for Host Languages 121

The precompiler will substitute a FIXED BINARY (31) in the output source.

Note: The SQLIND data type is primarily for use withi n bulk structure definitions. In

other cases its use is optional.

Allowable Host Variable Definitions

A host variable definition must contain a data type declaration and may contain an
occurrence count. No other declarations are supported.

Using INCLUDE TABLE

Output of INCLUDE TABLE

The CA IDMS precompiler uses these data type equivalents when directed by an
INCLUDE TABLE statement to create a host variable declaration.

CA IDMS data type PL/I data type on INCLUDE TABLE

BINARY(n) CHAR (n)

CHARACTER(n) CHAR (n)

VARCHAR(n) CHAR (n) VAR

GRAPHIC(n) GRAPHIC (n)

VARGRAPHIC(n) GRAPHIC (n) VAR

DECIMAL(p,s) FIXED DECIMAL (p,s)

UNSIGNED DECIMAL(p,s) FIXED DECIMAL (p,s)

NUMERIC(p,s)
1
 FIXED DECIMAL (p,s)

UNSIGNED NUMERIC(p,s) FIXED DECIMAL (p,s)

DOUBLE PRECISION FLOAT BINARY (53)

FLOAT (n)

where n <= 24

where n > 24

FLOAT BINARY (21)

FLOAT BINARY (53)

REAL FLOAT BINARY (21)

DATE CHAR (10)

TIME CHAR (8)

TIMESTAMP CHAR (26)

SMALLINT FIXED BINARY (15)

INTEGER FIXED BINARY (31)

Using SQL in a PL/I Application Program

122 Programming Guide

CA IDMS data type PL/I data type on INCLUDE TABLE

LONGINT FIXED BINARY (31)

SQLIND FIXED BINARY (31)

TID CHAR(8)

Default Structure

The default structure created by the INCLUDE statement has these features:

■ A level 1 element for the table

■ A level 2 subordinate element named for each table column, defined with the
equivalent program language data type

■ An additional level 2 element, with the suffix '_I', for each column that allows null
values, to be available as an indicator variable

If you specify a table without a schema name qualifier, you must supply a schema
name with a precompiler option in the JCL.

Note: For more information about precompiler options, see Precompiler Directives
(see page 283).

Defining Bulk Structures

A bulk structure is a group element or a record which contains a subordinate array for
holding multiple occurrences of input or output values . Bulk structures are used in bulk
SELECT, INSERT, and FETCH statements for retrieving or storing multiple rows of data.

Format of a Bulk Structure

A bulk structure consists of three levels:

■ The highest level is the structure itself (level 01 through 253)

■ The second level is a multiply-occurring group item (level 02 through 254)

■ The third level consists of elementary or variable length data items

The number, type and order of data items at the lowest level must correspond to

the number, data type, and order of column values being retrieved or inserted.

Using SQL in a PL/I Application Program

Chapter 5: Requirements and Options for Host Languages 123

Bulk Structure Example

The following is an example of a valid bulk structure:

EXEC SQL BEGIN DECLARE SECTION;

DCL 1 BULK_DATA,

 4 BULK_ROW (20),

 5 EMP_ID FIXED DECIMAL(3),

 5 EMP_NAME CHAR(30),

 5 DEPT_NAME CHAR(30);

EXEC SQL END DECLARE SECTION;

Referring to a Bulk Structure

When referring to a bulk structure in a SELECT, FETCH, or INSERT statement, the name
of the highest level is used:

EXEC SQL

 FETCH EMPCURS BULK :BULK_DATA;

Indicator Variables

An indicator variable can be associated with a data item within the structure as follows:

■ The indicator variable must immediately follow the data item with which it is

associated

■ The data type of the indicator variable must be SQLIND

On encountering the SQLIND data type, the precompiler interprets the variable as
an indicator associated with the preceding variable. SQLIND is replaced with BINARY

FIXED(31) in the generated source.

Restrictions

A subscripted data element may not appear within the lowest level of a bulk structure.

Using INCLUDE TABLE

A bulk structure can be defined for a given table by using the INCLUDE TABLE statement
with a NUMBER OF ROWS clause. The statement in this example will generate a bulk

structure capable of holding 20 entries:

EXEC SQL

 INCLUDE TABLE EMPLOYEE NUMBER OF ROWS 20;

Using SQL in a PL/I Application Program

124 Programming Guide

Referring to Host Variables

What You Can Do

CA IDMS supports references to host variables in SQL statements. The host variable
name must be prefixed with a colon (:).

Note: For more information, see Data Manipulation with SQL (see page 57).

CA IDMS also supports references to:

■ Subordinate elements which may require qualification for uniqueness

■ Subscripted elements

Qualifying host variable names

You can use the group name to qualify the element name of a host variable.

For example, assume these host variable definitions:

DECLARE 1 EMP,

 2 HIRE_DATE

 .

 .

 .

DECLARE 1 MGR,

 2 HIRE_DATE

 .

 .

 .

You can qualify HIRE_DATE as in this example:

EXEC SQL

 SELECT...

 INTO :EMP.HIRE_DATE ;

Using SQL in a PL/I Application Program

Chapter 5: Requirements and Options for Host Languages 125

Subscripted Variable Names

A CA IDMS extension of the SQL standard supports host variable arrays for use in bulk

processing. By further extension of the SQL standard, CA IDMS supports reference to a
subscripted variable in a host variable array.

All of the following are valid host variable references:

■ :DIV-CODE(1)

■ :DIV-CODE (15)

■ :DIV-CODE(SUB1)

■ :DIV-CODE(SUB1,SUB2)

Including SQL Communication Areas

Declaring SQL Communication Areas

CA IDMS provides these ways of including the SQL Communication Areas in a PL/I
program:

■ The program can declare the host variable SQLSTATE:

EXEC SQL BEGIN DECLARE SECTION ;

DECLARE SQLSTATE CHARACTER(5) ;

EXEC SQL END DECLARE SECTION ;

■ The program can declare the host variable SQLCODE:

EXEC SQL BEGIN DECLARE SECTION ;

DECLARE SQLCODE FIXED BINARY (31) ;

EXEC SQL END DECLARE SECTION ;

■ The program can issue this directive:

EXEC SQL INCLUDE SQLCA ;

Using the INCLUDE statement to declare the SQLCA is a CA IDMS extension of the SQL
standard.

Using SQL in a PL/I Application Program

126 Programming Guide

SQLCA Structure

This is the PL/I format of the SQLCA:

PL/I SQLCA

 DECLARE 1 SQLCA,
 2 SQLCAID CHARACTER (8),
 2 SQLCODE FIXED BINARY (31),
 2 SQLCSID CHARACTER (8),
 2 SQLCINFO,
 3 SQLCERC FIXED BINARY (31),
 3 FILLERnnnn FIXED BINARY (31),
 3 SQLCNRP FIXED BINARY (31),
 3 FILLERnnnn FIXED BINARY (31),
 3 SQLCSER FIXED BINARY (31),
 3 FILLERnnnn FIXED BINARY (31),
 3 SQLCLNO FIXED BINARY (31),
 3 SQLCMCT FIXED BINARY (31),
 3 SQLCARC FIXED BINARY (31),
 3 SQLCFJB FIXED BINARY (31),
 3 FILLERnnnn FIXED BINARY (31),
 3 FILLERnnnn FIXED BINARY (31),
 2 SQLCMSG,
 3 SQLCERL FIXED BINARY (31),
 3 SQLCERM CHARACTER (256),
 2 SQLSTATE CHARACTER (5),
 2 SQLCRNF CHARACTER (1),
 2 SQLCNRRS FIXED BINARY (15),
 2 FILLERnnnn CHARACTER (8),
 2 SQLWORK CHARACTER (16) ;

 DECLARE 1 SQLCINF2 BASED (ADDR(SQLCINFO)),
 2 SQLERRD FIXED BINARY (31),

 DECLARE 1 SQLCMSG2 BASED(ADDR(SQLCMSG)),
 2 FILLERnnnn CHARACTER (2),
 2 SQLERRM,
 3 SQLERRML FIXED BINARY (15).
 3 SQLERRMC CHARACTER (256) ;
 ────┐
 DECLARE 1 SQLCWRK2 BASED(ADDR(SQLWORK)), │
 2 SQLERRP, │
 3 SQLCVAL CHARACTER (5), │ Included by the

 3 FILLERnnnn CHARACTER (3), │ precompiler for
 2 SQLWARN, │ DB2 compatibility;
 3 SQLWARN0 CHARACTER (1), │ not used by CA IDMS.
 3 SQLWARN1 CHARACTER (1), │
 3 SQLWARN2 CHARACTER (1), │
 3 SQLWARN3 CHARACTER (1), │
 3 SQLWARN4 CHARACTER (1), │
 3 SQLWARN5 CHARACTER (1), │
 3 SQLWARN6 CHARACTER (1), │
 3 SQLWARN7 CHARACTER (1) ; │
 ────┘

Using SQL in a PL/I Application Program

Chapter 5: Requirements and Options for Host Languages 127

Including Information from the Dictionary

You can use these precompiler directive statements to instruct the precompiler to c opy
entities from the dictionary into the PL/I application program:

■ INCLUDE IDMS record-name

■ INCLUDE IDMS MODULE module-name

■ INCLUDE module-name

INCLUDE IDMS Record Statement

The INCLUDE IDMS Record statement is used to copy record descriptions into the

program and can be coded in your application program.

Syntax

 ┌──┐
►─▼─┬──┬─ ; ─┴───────►◄
 └─┬────────────────┬─── INCLUDE IDMS record-specification ─┘
 └─ level-number ─┘

Expansion of Record Specification

►►─── record-name ───┬──────────────────────────┬─────────────────────────────►
 └─ VERSION version-number ─┘

 ►─┬─────────────┬──►◄
 └─ attribute ─┘

Parameters

level-number INCLUDE IDMS

Instructs the precompiler to copy one or more record descriptions into your
program at the location of the INCLUDE IDMS statement.

The optional level-number clause instructs the precompiler to copy descriptions into

your program at a different level than the level specified in the data dictionary.
Level-number must be an integer in the range 01 through 99. If your program
specifies level-number, the DML precompiler copies the first level of code to the
level specified by level-number and adjusts all other levels accordingly. If your

program does not specify level-number, the descriptions copied by the DML
precompiler have the same level numbers as originally specified in the dictionary.

record-name

Specifies the name of the record to be copied. It can be the primary name of a
record stored in the data dictionary, or a synonym.

Using SQL in a PL/I Application Program

128 Programming Guide

VERSION version-number

Optionally qualifies IDD records with a version number. Version-number must be an

integer in the range 1 through 9999. Version-number defaults to the highest version
number of the record defined in the data dictionary for the language and operating
mode under which the program compiles.

attribute

Optionally allows you to instruct the DML precompiler to include PL/I attributes in

the PL/I DECLARE statement. The DML precompiler generates the PL/I DECLARE
statement for the record that you specify in record-name.

Usage

Using Included Records as Host Variables

The program can copy a record definition from the dictionary and use the record
elements as host variables in embedded SQL.

If you declare host variables by copying a record description from the dictionary, the
following descriptors should not appear in the record definition:

■ REDEFINES

■ SYNC

INCLUDE IDMS MODULE statement

The INCLUDE IDMS (module-name) statement copies procedure source statements

defined by the database administrator as modules in the dictionary.

Syntax

 ┌───┐
►►─▼─┬───┬─┴──────►◄
 └─ INCLUDE IDMS (module-name ─┬──────────────────────────┬─); ─┘
 └─ VERSION version-number ─┘

Parameters

INCLUDE IDMS (module-name)

Copies procedure source statements defined by the DBA as modules in the
dictionary. Module-name specifies the name of a module previously defined using
the DDDL compiler.

Note: For more information about the DDDL compiler, see the CA IDMS IDD DDDL
Reference Guide.

Using SQL in a PL/I Application Program

Chapter 5: Requirements and Options for Host Languages 129

The available PL/I standard modules are:

■ IDMS_STATUS

■ IDMS_STATUS (mode is IDMS_DC)

The DML precompiler inserts the module into your program at the location of the
INCLUDE IDMS MODULE statement, without modification.

You can nest INCLUDE IDMS MODULE statements. Code invoked by an INCLUDE
IDMS MODULE entry can itself contain INCLUDE IDMS MODULE statements.

However, make sure that a copied module does not copy itself.

VERSION version-number

Optionally qualifies module-name with a version number. Version-number must be
an integer in the range 1 through 9999.

There are two defaults for version-number, depending on whether:

■ There is a version of the module that you name with module-name which is

operating-mode-specific. In this case, the default is the version number of this
module. If there are two or more mode-specific versions of the module,
version-number defaults to the highest version number among these versions.

■ There is a version of the module that you name with module-name which is

non-operating-mode-specific, and there exists no operating-mode-specific
version. In this case, the default is the version number of this module. If there
are two or more non-mode-specific versions of the module, version-number

defaults to the highest version number among these versions.

If no version of the module exists in the dictionary, an error condition results.

INCLUDE Module-name Statement

The INCLUDE module-name statement is equivalent to an INCLUDE IDMS MODULE

statement in which the vers ion number is omitted.

Note: For more information about this statement, see the CA IDMS SQL Reference
Guide.

Using SQL in a PL/I Application Program

130 Programming Guide

Non-SQL Precompiler Directives

The CA IDMS precompiler accepts several directives that are not associated with SQL
statements and host variable declarations. These include:

■ RETRIEVAL—Specifies that the precompiler should ready the area of the dictionary

containing data definitions in retrieval mode, allowing concurrent update of the
area by other transactions

■ PROTECTED—Specifies that the precompiler should ready the area of the dictionary
containing data definitions in update mode, preventing concurrent update of the

area by other transactions

■ NO-ACTIVITY-LOG—Suppresses the logging of program activity statistics

■ DMLIST/NODMLIST—Specifies generation or no generation of a source listing for
the statements that follow

Note: For more information about non-SQL precompiler directives, see Precompiler

Directives (see page 283).

Chapter 6: Preparing and Executing the Program 131

Chapter 6: Preparing and Executing the
Program

This section contains the following topics:

Creating an Executable Form (see page 131)
Precompiling the Program (see page 131)

Compiling the Program (see page 138)
Creating the Access Module (see page 139)
Executing the Application (see page 144)
Testing the Access Module (see page 145)

Debugging the Application (see page 146)

Creating an Executable Form

To put your source program into executable form, take the following steps:

1. Precompile the program

2. Compile and link edit the program

3. Create the access module

4. Execute and debug the program

If you are using CA ADS, the CA ADS compiler ADSC performs steps 1 and 2.

Precompiling the Program

You precompile the program to separate SQL statements from the rest of the program
and to replace the SQL statements in the source program module with calls to the
DBMS.

Precompiling the Program

132 Programming Guide

About the Precompiler

Why You Precompile

SQL is a database sublanguage that is not known to the language compiler. The CA IDMS
precompiler:

■ Checks the syntax of embedded SQL statements

■ Modifies the source code by:

– Replacing SQL statements in the source program with program language calls
to the DBMS

– Executing precompiler directives

■ Stores a relational command module (RCM) for the program if no errors occur in
precompiling

When to Precompile

Once you have precompiled a program, you must precompile it again after any changes

to either host language or embedded SQL statements. When you precompile a program
that was previously precompiled, the DBMS rebuilds the RCM only if one or more SQL
statements in the program have changed.

After a program has been precompiled, you can make global changes to the
schema-name qualifiers of tables and views in embedded SQL statements when you

create the access module. If instead you modify the SQL statements in the source
program, you must precompile the program again.

Note: For more information and documentation about the schema -name mapping for

tables and views, see Creating the Access Module (see page 139).

How You Precompile

You precompile the program by submitting a batch job.

For precompiler JCL, see Sample JCL (see page 203).

You can specify parameters in the precompiler JCL that determine how the precompiler

executes.

For documentation of precompiler parameters, see Precompiler Options (see page 133).

Precompiling the Program

Chapter 6: Preparing and Executing the Program 133

Authorization

To execute the precompiler, you must have:

■ The authority to precompile the program if program registration is in effect for the
dictionary

■ User authority to precompile against the dictionary

■ SELECT privilege on tables named in INCLUDE TABLE statements

Precompiler Options

Syntax

This is the expansion of precompiler-options in the precompiler EXEC PGM statement in
JCL. These are not positional parameters:

►►─┬──────────────────┬───►
 └─ RCM = rcm-name ─┘

 ►─┬───────────────────────────────────┬──────────────────────────────────────►
 └─ RCMVERSION = rcm-version-number ─┘

 ►─┬───────────────────────────┬──►
 └─ AM = access-module-name ─┘

 ►─┬────────────────────────┬───►
 └─ SCHEMA = schema-name ─┘

 ►─┬─────────────┬──►
 └─ NOINSTALL ─┘

 ►─┬──────────────────────────────┬───►
 └─ DICTNAME = dictionary-name ─┘

 ►─┬───────────────────┬──►
 └─ SQL = ──┬─ NO ───┤
 ├─ 89 ───┤
 └─ FIPS ─┘

 ►─┬──────────┬───►
 ├─ LIST ───┤
 └─ NOList ─┘

 ►─┬────────────────────┬───►
 └─ DATE = ─┬─ ISO ─┬─┘
 ├─ USA ─┤
 ├─ EUR ─┤
 └─ JIS ─┘

 ►─┬────────────────────┬───►◄
 └─ TIME = ─┬─ ISO ─┬─┘
 ├─ USA ─┤
 ├─ EUR ─┤
 └─ JIS ─┘

COBOL precompiler only

►►─┬─────────────────────┬──►
 └─ COBOL = ──┬─ 1 ──┬─┘
 ├─ 2 ──┤
 └─ 85 ─┘

Precompiling the Program

134 Programming Guide

Parameters

RCM = rcm-name

Specifies the name of the RCM created for the program by the precompiler.

This parameter must be specified for all host language programs except COBOL.

If this RCM is not specified to the COBOL precompiler, the RCM name is the
program name identified in the program source. If the name is not identified in the
program, you must specify an RCM parameter.

RCMVERSION = rcm-version-number

Specifies the version number of the RCM created for the program by the

precompiler.

If RCMVERSION is not specified, the version number defaults to 1. If an RCM with
the same version number already exists in the dictionary, the precompiler replaces
the existing RCM.

AM = access-module-name

Specifies the name of the access module to be executed for the program at
runtime.

The program can override this specification at runtime by issuing a SET ACCESS
MODULE statement.

If this parameter is not specified, the access module name defaults to rcm-name.

The access module specified in access-module-name does need not exist when the
program is precompiled. However, if the access module does not exist when the

program is executed, an invalid SQL statement identifier error occurs.

SCHEMA = schema-name

Specifies the default schema-name qualifier for the precompiler to use when
processing an INCLUDE TABLE statement that does not supply a qualifier.

If an INCLUDE TABLE statement supplies a qualifier, the SCHEMA parameter is

ignored for that table.

If SCHEMA is not specified and an INCLUDE TABLE statement does not supply a
qualifier, the precompiler returns an error.

NOINSTALL

Specifies that the precompiler should only check syntax.

If this parameter is specified, the precompiler does not store the RCM.

If this parameter is not specified and the precompiler executes without errors, the
precompiler stores the RCM.

Precompiling the Program

Chapter 6: Preparing and Executing the Program 135

DICTNAME = dictionary-name

Specifies the name of the dictionary the precompiler should access.

If this parameter is not specified, the precompiler defaults to the dictionary
specified in the DICTNAME parameter of the SYSIDMS statement in the precompiler
JCL.

Note: For more information about sample precompiler JCL, see Sample JCL (see
page 203).

If this parameter is not specified and there is no SYSIDMS DICTNAME parameter,
the CA IDMS returns an error at runtime.

SQL =

Specifies the SQL syntax standard that the precompiler should apply when checking
the validity of SQL statements in the program.

The precompiler issues a warning if it detects an SQL statement that does not
comply with the standard specified in this parameter.

If this parameter is not specified, the default is the same as specifying SQL = NO.

NO

Specifies that compliance with a named SQL standard is not checked or enforced,
and all CA IDMS extensions are permitted.

89

Directs the precompiler to use ANSI X3.135-1989 (Rev), Database Language SQL

with integrity enhancement, as the standard for compliance.

FIPS

Directs the precompiler to use FIPS PUB 127-1, Database Language SQL, as the
standard for compliance.

LIST

Directs the precompiler to create a l isting of the program with precompiler

messages.

If this parameter is specified, the program listing is written to the SYSLST fi le.

If this parameter is not specified, the default is the same as specifying NOList.

The precompiler directive NODMLIST, included in the program source, overrides the

EXEC PGM parameter LIST.

Note: For more information about NODMLIST, see Precompiler Directives (see
page 283).

Precompiling the Program

136 Programming Guide

NOList

Directs the compiler not to create a l isting of the program with precompiler

messages.

The precompiler directive DMLIST, included in the program source, overrides the
EXEC PGM parameter NOList.

Note: For more information about DMLIST, see Precompiler Directives (see
page 283).

COBOL =

Specifies the version of COBOL with which COBOL statements generated by the

precompiler must comply.

If this parameter is not specified, the default is the s ame as specifying COBOL = 2.

1

Directs the precompiler to comply with versions of COBOL that precede VS-COBOL II
when generating COBOL statements.

2

Directs the precompiler to comply with VS-COBOL II when generating COBOL
statements.

DATE =

Specifies the format of the DATE data type to be used for communication between

the program and the database when the access module is executed.

TIME =

Specifies the format of the TIME data type to be used for communication between
the program and the database when the access module is executed.

Note: You can use the DATE and TIME parameters to override the default for the

installation.

ISO

Specifies that the format of the DATE data type should comply with the
standard of the International Standards Organization. Formats used when ISO
is specified are:

Data type Format Example

DATE yyyy-mm-dd 1990-12-15

TIME hh.mm.ss 16.43.17

TIMESTAMP yyyy-mm-dd-hh.mm.ss.nnnn 1990-12-15-16.43.17.1234
56

Precompiling the Program

Chapter 6: Preparing and Executing the Program 137

USA

Specifies that the format of the DATE data type should comply with the

standard of the IBM USA standard. Formats used when USA is specified are:

Data type Format Example

DATE mm/dd/yyyy 12/15/1990

TIME hh:mm AM

hh:mm PM

4:43 PM

TIMESTAMP yyyy-mm-dd-hh.mm.ss.nnnn 1990-12-15-16.43.17.1234

56

EUR

Specifies that the format of the DATE data type should comply with the
standard of the IBM European standard. Formats used when EUR is specified

are:

Data type Format Example

DATE dd.mm.yyyy 15.12.1990

TIME hh.mm.ss 16.43.17

TIMESTAMP yyyy-mm-dd-hh.mm.ss.nnnn 1990-12-15-16.43.17.1234
56

JIS

Specifies that the format of the DATE data type should comply with the
standard of the Japanese Industrial Standard Christian Era. Formats used when

JIS is specified are:

Data type Format Example

DATE yyyy-mm-dd 1990-12-15

TIME hh:mm:ss 16:43:17

TIMESTAMP yyyy-mm-dd-hh.mm.ss.nnnn 1990-12-15-16.43.17.1234
56

Compiling the Program

138 Programming Guide

Compiling the Program

CA IDMS Precompiler

The CA IDMS precompiler modifies the program that you submit. CA IDMS comments
out SQL statements and substitutes calls to the DBMS. The entire source program is now
in compilable form.

Here is an example of an SQL statement that has been commented out by the

precompiler, and the code that the precompiler has substituted:

 011200* EXEC SQL

 011300* FETCH CURS1 BULK :EMPDATA
 011400* START :INDEX-CNTR ROWS :NUM-ROWS
 011500* END-EXEC.
 MOVE 4 TO SQLCLNO
 MOVE 16 TO SQLCMD
 MOVE 1 TO SQLARG
 MOVE 4 TO SQLSID
 MOVE 278 TO SQLTBL
 MOVE 6 TO SQLMRO
 MOVE INDEX-CNTR TO SQLSRO
 MOVE NUM-ROWS TO SQLNRO
 CALL 'IDMSSQL' USING
 SQLRPB
 SQLCA
 SQLCA
 SQLCIB
 SQLPIB
 SQLCA
 EMPDATA
 SQLCA
 SQLCA
 SQLCA
 SQLCA
 .

Language Compiler

To compile the program, you submit the source program, as successfully modified by
the precompiler, to the language compiler. Output from the compiler consists of an

object program and a source listing.

Link Editing

The linkage editor edits the object program into a specified load library. Output from
the linkage editor consists of a load module and a l ink map.

Note: For JCL and more information about compiling and link editing a program see

Sample JCL (see page 203).

Creating the Access Module

Chapter 6: Preparing and Executing the Program 139

Creating the Access Module

An access module is the executable form of the SQL statements that a program issues.
When you create an access module, you also invoke the optimizer. The optimizer
automatically determines the most efficient access to the data requested by the SQL
statements. CA IDMS stores the access strategy in the access module.

How You Create an Access Module

You create an access module with an SQL statement, CREATE ACCESS MODULE. If you
accept all defaults, the access module you create:

■ Is qualified with the name of the default schema for the user session

■ Is stored in the DDLCATLOD area of the application dictionary to which you are

connected

■ Is created as version 1 if no access module of the same name and version exists in
the dictionary

■ Has no schema-name mapping to replace existing table or view qualifiers in SQL
statements in the RCMs that the access module contains

■ Is defined with AUTO RECREATE ON, which means that the DBMS will attempt to

re-create the access module at runtime if a change has been made to the definition
of a table accessed the module or if the RCM has been re-created since it was
included in the access module

■ Is defined with VALIDATE ALL, which means that the DBMS will check the definition

for each table in the access module before executing the first statement in the
access module

■ Will execute with a default isolation of cursor stability and allow a transaction to
perform updates

■ Will execute with a ready mode of shared retrieval on all areas it accesses

Overriding Access Module Defaults

Access Module Name Qualifier

Qualify the access module name if you want to associate the access module with a
schema that is not the default for the SQL session in which the CREATE ACCESS MODULE

statement is issued.

Creating the Access Module

140 Programming Guide

Ownership of the schema that qualifies the access module affects authority to use the
access module under CA IDMS internal security. The owner of the schema must have

authority to execute the statements in the access module, and the authorities must be
grantable for another user to execute the access module.

Note: For more information and specific rules regarding schema ownership and

authority to execute access modules under CA IDMS security, see the CA IDMS Security
Administration Guide.

Access Module Version Number

Specify an access module version number according to site standards.

You can use the version number of the access module to represent the version of the

application that you want to execute at runtime.

Note: For more information, see Executing the Application (see page 144).

Schema-name Mapping for Tables and Views

Supply schema-name mapping to specify a qualifier that should replace a table or view
qualifier in the RCMs that the access module contains. Schema -name mapping allows

you to specify the database that the access module accesses.

In this example, unqualified table and view names, and table and view names qualified

with EMP_SCH, are mapped to a schema called EMP_TSTSCH. When the access module
executes, a reference to the EMPLOYEE table or the EMP_SCH.EMPLOYEE will change to
the EMP_TSTSCH.EMPLOYEE table:

EXEC SQL
 CREATE ACCESS MODULE EMPINFO1
 FROM EMPDICT.EMPDSP01,
 EMPDICT.EMPDSP02,
 EMPDICT.EMPDSP03,
 EMPDICT.EMPADD01,
 EMPDICT.EMPUPD01,
 EMPDICT.EMPUPD02,
 EMPDICT.EMPDEL01
 MAP EMP_SCH TO EMP_TSTSCH, ◄─── Schema-name mapping
 MAP NULL TO EMP_TSTSCH
END-EXEC.

You can subsequently change the schema-name mapping by creating a new access
module or altering an existing one. This lets you change the database that the
application accesses without precompiling the programs again.

Note: For more information about altering an access module, see Altering an Access
Module (see page 143).

Creating the Access Module

Chapter 6: Preparing and Executing the Program 141

Automatic Access Module Re-creation

At runtime, if the DBMS detects that the database definition of a table specified in the

access module has changed since the access module was created, it automatically
recreates the access module unless the access modul e was defined with AUTO
RECREATE OFF.

If the AUTO RECREATE option is OFF at runtime, the DBMS returns an error with an
SQLCERC value of 1014.

Table Definition Timestamp Validation

The DBMS validates the definition timestamp of every table accessed by sta tements in
the access module before executing the access module unless you specify VALIDATE BY

RCM or VALIDATE BY STATEMENT. Validation failure is a condition that requires
re-creation of the access module.

BY RCM causes validation only for tables access ed by statements in the RCM to be
executed. BY STATEMENT causes validation only for tables accessed by the statement to
be executed.

One of these specifications may be appropriate if the application contains sections of
code that are infrequently executed.

Transaction State

The default transaction state is READ WRITE unless you specify the READ ONLY
parameter. READ ONLY will cause an error to be returned at runtime attempts to

perform an update. The combination of READ ONLY and a ready mode of update will
cause an error when you create the access module (see Ready mode).

A program can override the transaction state specified for the access module with the
SET TRANSACTION statement.

SET TRANSACTION must precede most statements in the transaction. For more

information, see the CA IDMS SQL Reference Guide.

A transaction with an isolation level of transient read is automatically a READ ONLY
transaction. A specification of READ WRITE for the access module or the transaction is
ignored when the isolation level of the transaction is transient read.

Isolation Level

Specify the DEFAULT ISOLATION parameter only if cursor stability is not the appropriate

isolation level for executing the application.

Note: For more information about the effect of isolation level, see Writing an SQL
Program (see page 27).

Creating the Access Module

142 Programming Guide

Ready Mode

With the READY parameter, you can specify ready mode for one, some, or all areas.

Ready mode refers to the type of area lock the DBMS sets for the database transaction.
The effect of the area lock differs depending on whether the execution environment is
the central version or local mode. For example, for a program running under the central

version, a ready mode of protected retrieval prevents concurrent transactions from
updating data in the area, but for a local mode program, it does not prevent concurrent
updates.

If you specify the PRECLAIM option for an area, the DBMS sets area locks on the first
database access statement (to any area) in the transaction. If you do not specify

PRECLAIM for an area, the default is INCREMENTAL, meaning that the area lock is set on
the first access to that area.

Default Ready Mode

You should accept the default ready mode unless experience proves there is a reason to
override it.

Note: For more information about ready mode options, see:

■ Documentation of the CREATE ACCESS MODULE statement in the CA IDMS SQL
Reference Guide

■ CA IDMS Database Administration Guide

Actual Ready Mode

The actual ready mode at runtime depends on the interaction of transaction state,
specified ready mode, and the status of the area (initially defined in the DMCL).

The following two tables present the actual ready mode in each possible interaction.

READ ONLY Ready Modes

This table presents the actual ready modes when the transaction state is READ ONLY:

Specified ready mode Area status Actual ready mode

(No specification) Transient retrieval

Retrieval

Update

Transient retrieval

Shared retrieval

Shared retrieval

Any retrieval mode Transient retrieval

Retrieval

Update

Transient retrieval

As specified

Shared retrieval

Creating the Access Module

Chapter 6: Preparing and Executing the Program 143

Specified ready mode Area status Actual ready mode

Any update mode Transient retrieval

Retrieval

Update

Transient retrieval

Shared retrieval

Shared retrieval

READ WRITE Ready Modes

This table presents the actual ready modes when the transaction state is READ WRITE:

Specified ready mode Area status Actual ready mode

(No specification) Transient retrieval

Retrieval

Update

Transient retrieval

Shared retrieval

Shared update

Any retrieval mode Transient retrieval

Retrieval

Update

Transient retrieval

As specified

As specified

Any update mode Transient retrieval

Retrieval

Update

(Runtime error)

(Runtime error)

As specified

Altering an Access Module

What You Can Change

With an ALTER ACCESS MODULE statement, you can change any specification that you
made on the CREATE ACCESS MODULE statement. You can add, drop, or replace RCMs.

Note: For more information about altering an access module, see the ALTER ACCESS

MODULE statement in the CA IDMS SQL Reference Guide.

Changing Schema-name Mapping

To change the schema-name mapping for the access module, you must reprocess all
RCMs by specifying the REPLACE ALL parameter, as in this example:

EXEC SQL

 ALTER ACCESS MODULE EMPINFO1

 REPLACE ALL

 MAP EMP_SCH TO EMP_PRODSCH,

 MAP NULL TO EMP_PRODSCH

END-EXEC.

Executing the Application

144 Programming Guide

Executing the Application

Batch Jobs

You can execute a batch job under the central version or in local mode.

JCL for executing an SQL application program in batch is presented in Sample JCL (see
page 203).

SYSIDMS Parameters

In batch JCL, you can tailor certain aspects of the runtime environment by specifying
SYSIDMS parameters. The following table l ists the options specific to SQL processing:

SYSIDMS parameter What it does

SQLTRACE Activates or deactivates the facil ity that traces all SQL
requests made by the application

PROCTRACE=ON/OFF ON activates a trace of key user blocks that

participate in an SQL PROCEDURE call. OFF is the
default.

SQL_CACHE_ENTRIES=n n specifies the max number of entries that will be
used in the dynamic SQL cache. One entry holds one

cached SQL statement. With n set to 0, dynamic SQL
caching will be disabled. The theoretical max value
for n is 2,147,483,647, but the real maximum is
determined by available address space. The default is

200.

SQL_INTLSORT=ON/OFF Allows you to force the internal IDMS sort to be us ed
in local mode. If ON is specified, an internal SORT

rather than an operating system SORT will be
performed on SQL commands issued in a local batch
job that contains an ORDER BY clause. In many cases,
an internal SORT is faster than an operating system

SORT when you are not dealing with a large amount
of data. OFF is the default, indicating an operating
system SORT will be used.

Note: For more information and the complete l ist of available SYSIDMS parameters, see
the CA IDMS Common Facilities Guide.

Testing the Access Module

Chapter 6: Preparing and Executing the Program 145

Execution Privilege

The privileges required to access a CA IDMS database using SQL depends on how CA

IDMS database resources are secured.

If CA IDMS internal security is in effect, authority to access the database through the
program derives from ownership of the schema that qualifies the access module name.

Note: For more information about qualifying the access module name, see Overriding
Access Module Defaults (see page 139).

If CA IDMS resources are secured by an external security system, the executing user
must hold appropriate privileges on all resources that the application program accesses.
The schema name has no significance except as a qualifier.

Note: For more information about privileges required to access CA IDMS, see your
security administrator.

Testing the Access Module

Which Access Module Executes

The default access module that is executed at runtime is the access module associated

with the program that issues the first SQL statement executed within the SQL session.

A program is associated with an access module when the program is precompiled.

Note: For more information about associating a program with an access module, see

Precompiling the Program (see page 131).

There are two ways to override at runtime the access module default that is set at

precompile time:

■ The program issues a SET ACCESS MODULE statement before the database
transaction begins

Note: For more information about using the SET ACCESS MODULE statement, see
Preparing and Executing the Program (see page 131).

■ A different version of the access module is used because a test version option has
been set for the DC session in which the program is executing

Debugging the Application

146 Programming Guide

Test Versions

If there is a version of the access module that matches the test version setting, the

matching version is executed. If an access module with a matching version is not found
at runtime, version 1 of the access module is executed.

Note: For more information about test versions, see documentation of DCUF TEST in the

CA IDMS System Tasks and Operator Commands Guide.

Debugging the Application

CA IDMS provides these tools that you can use to debug the SQL portion of the
application program:

■ Command Facil ity

■ SQL trace facil ity

■ EXPLAIN statement

Command Facility

The Command Facil ity is a tool for a user to issue ad hoc SQL statements in an

interactive online environment or in batch mode.

You can use this facil ity to test SQL statement syntax and to test conditions of the
database both when you are designing the application and, if necessary, while

debugging.

Note: You can use CA OLQ to access CA IDMS with SQL. For more information, see the
CA OLQ Reference Guide.

This example shows a query submitted online to the Command Facil ity and the result
table returned. A successful SELECT statement, such as the one shown here, can be

declared as a cursor with no change to the syntax.

Debugging the Application

Chapter 6: Preparing and Executing the Program 147

 OCF nn.n ONLINE IDMS NO ERRORS 1/16
SELECT
PROJ_ID,
EST_START_DATE,
PROJ_DESC
FROM DEMOPROJ.PROJECT
WHERE EST_START_DATE > CURRENT DATE
ORDER BY 2;
*+
*+ PROJ_ID EST_START_DATE PROJ_DESC
*+ ------- -------------- ---------
*+ C203 1998-02-01 Consumer study
*+ C240 1998-06-01 Service study
*+ C200 1999-01-15 New brand research
*+ D880 1999-11-01 Systems Analysis
*+ P634 2000-02-01 TV ads - WTVK
*+ P200 2000-09-01 Christmas media
*+

*+ 6 rows processed

Note: For more information about using the Command Facil ity, see the CA IDMS

Common Facilities Guide.

SQL Trace Facility

You can use the SQL trace facil ity to trace execution of the SQL statements in a batch
program.

You activate the SQL trace facil ity by specifying the SYSIDMS parameter SQLTRACE=ON.

In this example, the SQL trace facil ity reports on the SQL processing for a SELECT
statement submitted through IDMSBCF, the batch Command Facil ity. The trace facil ity

shows the steps in dynamically executing the SELECT, including an automatic CONNECT.

Debugging the Application

148 Programming Guide

 SELECT R.REFTABLE AS "PARENT",

 K.REFCOLUMN AS "PARENT COLUMN",
 R.NAME AS "RELATIONSHIP"

 FROM SYSTEM.CONSTRAINT R,

 SYSTEM.CONSTKEY K

 WHERE R.SCHEMA = K.SCHEMA

 AND R.NAME = K.NAME

 AND R.SCHEMA = 'REL'

 AND R.TABLE = 'C_EMPLOYEE'

 AND R.UNIQUE >= ' '

 OR R.COMPRESS <= ' ' ;

Verb=07 CONNECT TO SYSSQL Caller=IDMSBCF SQLSEQ=000001 *** S Q L

Verb=20 PREPARE-─► SELECT R.REFTABLE AS "PARENT", Caller=IDMSBCF SQLSEQ=000008 *** S Q L

Verb=11 DESCRIBE Caller=IDMSBCF SQLSEQ=000005 *** S Q L

Verb=19 OPEN Caller=IDMSBCF SQLSEQ=000007 *** S Q L

Verb=16 FETCH Caller=IDMSBCF SQLSEQ=000006 *** S Q L

 S Q L SQLCODE=0100 REASON CODE=0000
Verb=03 CLOSE Caller=IDMSBCF SQLSEQ=000002 *** S Q L

PARENT PARENT COLUMN RELATIONSHIP

C_DEPARTMENT C_DEPT_ID DEPT_EMPLOYEE

C_PROJECT C_PROJ_ID EMP_PROJECT

2 rows processed

Verb=05 COMMIT continue Caller=IDMSBCF SQLSEQ=000003 *** S Q L
 .

 .

 .

You can activate and deactivate the SQL trace facil ity within the logic of the program.
You do this by issuing calls to the IDMSIN01 entry point to the IDMS module.

Note: For more information about the requirements for call ing IDMSIN01 to activate or
deactivate the SQL trace facil ity, see the CA IDMS Callable Services Guide.

EXPLAIN Statement

You can use the EXPLAIN statement to analyze the optimized access strategy for an SQL

statement. An aspect of database definition or the formulation of the SQL statement
can result in a relatively inefficient strategy for a given SQL statement. The information
produced by the EXPLAIN statement can suggest corrective measures.

Note: For more information about the EXPLAIN statement and its use, see the CA IDMS

SQL Reference Guide.

Online Debugger

You can debug online application program execution using the CA IDMS online
debugger. The online debugger allows you to:

■ Set breakpoints in the program

■ Stop execution of the program at a breakpoint

Debugging the Application

Chapter 6: Preparing and Executing the Program 149

■ Examine and optionally alter conditions that exist at the breakpoint

■ Resume program execution

Note: For more information about debugging online application programs, see the CA
IDMS Online Debugger Guide.

Chapter 7: SQL Programming Techniques 151

Chapter 7: SQL Programming Techniques

Programming techniques that increase the processing capability of the program and
reduce the demand for system resources are necessary for optimum performance. In
several cases, you can achieve these results because of CA IDMS SQL extensions.

This section contains the following topics:

Modularized Programming (see page 151)

Pseudoconversational Programming (see page 157)
Managing Concurrent Sessions (see page 163)
Creating and Using a Temporary Table (see page 167)
Bil l-of-materials Explosion (see page 169)

Modularized Programming

You can design an SQL application using modularized programming techniques. CA IDMS
provides extensions to the SQL standard that allow a program to:

■ Share a cursor that was opened by another program

■ Specify the access module that is to be executed for the program

Sharing a Cursor

A shared cursor is declared and opened in one program and accessed in another
program.

Requirements

These are the requirements for declaring and using a shared cursor:

■ The cursor declaration in the first program must specify the GLOBAL parameter.

Modularized Programming

152 Programming Guide

In this example, program EMPGET declares and opens a global cursor to select
benefits information:

 IDENTIFICATION DIVISION.
 PROGRAM-ID. EMPGET.
 .
 .
 .
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 EXEC SQL
 DECLARE EMP_CRSR GLOBAL CURSOR FOR
 SELECT EMP_ID,
 JOB_ID,
 SALARY_AMOUNT,
 BONUS_PERCENT
 FROM BENEFITS
 WHERE EMP_ID = :EMP-ID
 END-EXEC.
 .
 .
 .
 PROCEDURE DIVISION.

 EXEC SQL
 OPEN EMP_CRSR
 END-EXEC.

■ Only the program that contains the global cursor declaration can contain the OPEN
statement for the global cursor.

■ A program that shares the cursor must make an external cursor declaration.

In the following example, program EMPUPD declares an external cursor to share
the global cursor declared in EMPGET:

 IDENTIFICATION DIVISION.
 PROGRAM-ID. EMPUPD.
 .
 .
 .
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 EXEC SQL
 DECLARE EMP_CRSR EXTERNAL CURSOR
 END-EXEC.

■ Any number of programs that execute within the same database transaction can

share a global cursor.

■ All programs that share a cursor must be part of the same access module.

The GLOBAL parameter is not valid for cursors associated with dynamically-compiled
SELECT statements.

Modularized Programming

Chapter 7: SQL Programming Techniques 153

Verifying External Cursors

The precompiler does not verify the validity of a DECLARE EXTERNAL CURSOR

statement. The programmer has the responsibility of verifying that programs meet the
requirements for declaring and accessing a global cursor.

Shared Cursor Example

In this example, EMPGET declares EMP_CRSR as an updateable global cursor, opens the
cursor, and fetches the row. After checking the results of the fetch, EMPGET passes

control to EMPUPD. EMPUPD declares EMP_CRSR as an external cursor and performs a
positioned update using input values for the updateable columns.

Modularized Programming

154 Programming Guide

 IDENTIFICATION DIVISION.
 PROGRAM-ID. EMPGET.
 .
 .
 .

 DATA DIVISION.
 WORKING-STORAGE SECTION.

 EXEC SQL
 DECLARE EMP_CRSR GLOBAL CURSOR FOR
 SELECT EMP_ID,
 JOB_ID,
 SALARY_AMOUNT,
 BONUS_PERCENT
 FROM BENEFITS
 WHERE EMP_ID = :EMP-ID
 FOR UPDATE OF SALARY_AMOUNT,
 BONUS_PERCENT
 END-EXEC.
 .
 .
 .

 PROCEDURE DIVISION.

 EXEC SQL
 OPEN EMP_CRSR
 END-EXEC.

 PERFORM FETCH-ROUTINE UNTIL END-FETCH='Y'

 FETCH-ROUTINE.

 EXEC SQL
 FETCH EMP_CRSR
 INTO :EMP-ID,
 :JOB-ID,
 :SALARY-AMOUNT INDICATOR SALARY-AMOUNT-I,
 :BONUS-PERCENT INDICATOR BONUS-PERCENT-I
 END-EXEC.

 IF SQLCODE = 100 MOVE 'Y' TO END-FETCH.
 IF SALARY-AMOUNT-I = -1 OR BONUS-PERCENT-I = -1
 PERFORM INITIALIZE-NULL-VARIABLES.

 CALL EMPUPD.

Modularized Programming

Chapter 7: SQL Programming Techniques 155

 IDENTIFICATION DIVISION.
 PROGRAM-ID. EMPUPD.
 .
 .
 .
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 EXEC SQL
 DECLARE EMP_CRSR EXTERNAL CURSOR
 END-EXEC.
 .
 .
 .

 PROCEDURE DIVISION.
 .
 .
 .

 MOVE INPUT-SALARY-AMOUNT TO SALARY-AMOUNT.
 MOVE INPUT-BONUS-PERCENT TO BONUS-PERCENT.

 EXEC SQL
 UPDATE BENEFITS
 SET SALARY_AMOUNT = :SALARY-AMOUNT,
 BONUS_PERCENT = :BONUS-PERCENT
 WHERE CURRENT OF EMP_CRSR
 END-EXEC.

Using the SET ACCESS MODULE Statement

Why You Use It

You use a SET ACCESS MODULE statement to specify in the program what access
module should be executed for a database transaction. SET ACCESS MODULE overrides
the default access module specification for the duration of the transaction.

Default Access Module Specification

The default access module specification is the one associated with the program that

initiates the SQL session—that is, the first program to issue an SQL statement.

Note: For information about how an access module is associated with a program, see
Preparing and Executing the Program (see page 131).

The default access module is the access module that is executed unless the program
issues a SET ACCESS MODULE statement. The SET ACCESS MODULE specification

remains in effect until the database transaction ends. After the database transaction
ends, the default access module is re-established.

Modularized Programming

156 Programming Guide

When to Issue SET ACCESS MODULE

The SET ACCESS MODULE statement is valid only if the program issues it in the

transaction before it issues an SQL statement requesting dictionary or database access.

Note: For more information and a l ist of statements that can precede SET ACCESS
MODULE in a database transaction, see the CA IDMS SQL Reference Guide.

Using a Host Variable

You can specify the access module name in a host variable on the SET ACCESS MODULE.

This allows the specification of an access module to be decided by conditions not known
until runtime.

Note: When you define a host variable for the access module name, an eight-byte

character field suffices because an access module name is l imited to eight characters.

SET ACCESS MODULE Example

In this example, program EMPACT declares a global cursor and issues a SET ACCESS
MODULE statement before starting a transaction wi th an OPEN statement:

 IDENTIFICATION DIVISION.
 PROGRAM-ID. EMPACT.
 .
 .
 .

 DATA DIVISION.
 WORKING-STORAGE SECTION.

 EXEC SQL
 DECLARE EMP_CRSR GLOBAL CURSOR FOR
 SELECT EMP_ID
 FROM EMPLOYEE
 WHERE STATUS = 'A'
 END-EXEC.
 .
 .
 .

 PROCEDURE DIVISION.

 MOVE 'EMPAPPL3' TO AM-NAME.

 EXEC SQL
 SET ACCESS MODULE :AM-NAME
 END-EXEC.

 EXEC SQL
 OPEN EMP_CRSR
 END-EXEC.
 .
 .
 .

Pseudoconversational Programming

Chapter 7: SQL Programming Techniques 157

Pseudoconversational Programming

Pseudoconversational programming is an online programming technique that frees
certain resources while the system waits for a response from the online user. This
permits an online environment to support more concurrent processing by conserving
limited resources such as storage pool and program pool s pace.

To facil itate pseudoconversational programming in an SQL application, CA IDMS
supports the SUSPEND SESSION and RESUME SESSION statements.

Updating After a Pseudoconverse

The online user's response may call for modification of data that was retrieved by the
program. This section discusses techniques for updating after a pseudoconverse,

including consideration of whether the program needs to verify that the data has not
changed since it was retrieved.

Using SUSPEND SESSION and RESUME SESSION

What SUSPEND SESSION Does

When the program issues a SUSPEND SESSION statement, the DBMS releases all
resources associated with the SQL session except those needed to resume the current
session and transaction:

■ The database connection

■ Cursor currencies

■ Locks held by any currently active transaction

■ Temporary tables

■ Dynamically prepared SQL statements

SUSPEND SESSION does not cause a commit or rollback of work.

What RESUME SESSION Does

RESUME SESSION reestablishes the active SQL session and database transaction. All
characteristics and cursor positions of the session and transaction are restored to what
they were when the program issued the SUSPEND SESSION statement.

In a pseudoconversational program, RESUME SESSION must be the first SQL statement
the application issues after a SUSPEND SESSION statement.

Pseudoconversational Programming

158 Programming Guide

Advantages of Suspending and Resuming

Since a suspended session preserves database transaction and SQL session

characteristics, you can use SUSPEND SESSION and RESUME SESSION in these types of
applications:

■ Scrolling through a l ist of result rows

■ Updating a row with user input

The following sections discuss how to use SUSPEND SESSION and RESUME SESSION in
these types of processing.

Scrolling Through a List of Rows

Retrieval List Using Bulk Fetch

You can use a bulk fetch and a suspended session to develop an online application for
scrolling through a l ist of rows. Each fetch statement retrieves a screen display of rows.
The session is suspended before the pseudoconverse and resumed when the user

requests the next set of rows to display. Since the DBMS has maintained cursor position
during the suspended session, the next execution of the fetch statement automatically
retrieves the next set of rows in the cursor result table.

Retrieval List Example

In this example, having already declared a host variable array with as many occurrences

as there are rows in a screen display, the program declares and opens the
POSITION_CRSR cursor to retrieve data about employees by department:

EXEC SQL

 DECLARE POSITION_CRSR CURSOR FOR

 SELECT P.EMP_ID,

 E.DEPT_ID,

 P.JOB_ID,

 P.SALARY_AMOUNT,

 FROM POSITION P, EMPLOYEE E

 WHERE P.EMP_ID = E.EMP_ID

 AND E.DEPT_ID = :DEPT-ID

END-EXEC.

EXEC SQL

 OPEN POSITION_CRSR

END-EXEC.

Pseudoconversational Programming

Chapter 7: SQL Programming Techniques 159

The program then iterates the following logic until the online user exits this thread of
the application. The first fetch uses the value of INPUT-DEPT-ID. The second fetch

retrieves the next set of employees for the department because the DBMS has
maintained the cursor position during the suspended session:

 EXEC SQL
 FETCH POSITION_CRSR
 BULK :BULK-POSITION
 END-EXEC.

 IF SQLCODE = 100 MOVE 'Y' TO END-FETCH.

 EXEC SQL
 SUSPEND SESSION
 END-EXEC.

 (Move retrieved values to display fields)

 MAP OUT ...

 (Pseudoconverse)

 MAP IN ...

 EXEC SQL
 RESUME SESSION
 END-EXEC.

 IF END-FETCH = 'Y' ... ◄─── Close cursor and either
 select a new department or exit

Scrolling Backwards

Scrolling backwards through an online retrieval l ist requires pageable map processing. If

necessary, you can manage pageable map processing by using:

■ The CA IDMS scratch area and scratch management statements to temporarily
store and re-access retrieved data

■ CA ADS pageable mapping in a CA ADS application

Note: For more information about scratch area management, see the applicable CA
IDMS program language reference manual.

Updating a Row After a Pseudoconverse

Using an Updateable Cursor

During a suspended session, the DBMS maintains the cursor position of an open cursor
and also the lock on the current cursor row. Therefore, a program running under the
cursor stability isolation level can resume the suspended session and perform a
positioned update without checking whether the row has been updated by a concurrent

database transaction.

Pseudoconversational Programming

160 Programming Guide

Updateable Cursor Example

In this example, the program fetches a row from the BENEFITS_CRSR cursor, suspends

the session, and displays the row to the online user. Following user input, the program
resumes the session and performs a positioned update with user input:

 EXEC SQL
 DECLARE BENEFITS_CRSR FOR
 SELECT JOB_ID,
 SALARY_AMOUNT,
 BONUS_PERCENT
 FROM BENEFITS
 WHERE EMP_ID = :EMP-ID
 END-EXEC.

 EXEC SQL
 OPEN BENEFITS_CRSR
 END-EXEC.

 EXEC SQL
 FETCH BENEFITS_CRSR
 INTO :JOB_ID,
 :SALARY_AMOUNT,
 :BONUS_PERCENT
 END-EXEC.

 EXEC SQL
 SUSPEND SESSION
 END-EXEC.

 (Move retrieved values to display fields)

 MAP OUT ...

 (Pseudoconverse)

 MAP IN...

 (Program moves input data to host variables)

 EXEC SQL
 RESUME SESSION
 END-EXEC.

 EXEC SQL
 UPDATE BENEFITS
 SET SALARY_AMOUNT = :SALARY-AMOUNT,
 BONUS_PERCENT = :BONUS-PERCENT
 WHERE CURRENT OF BENEFITS_CRSR
 END-EXEC.

 EXEC SQL
 COMMIT
 END-EXEC.

Pseudoconversational Programming

Chapter 7: SQL Programming Techniques 161

Searched Update After a Pseudoconverse

When a database transaction running under the default isolation mode of cursor

stability suspends the session, the DBMS releases any lock it set on the base row(s) of a
single-row SELECT result. No locks are maintained on rows resulting from bulk selec ts in
this situation, and only the lock on the last row fetched in a bulk fetch is maintained

under cursor stability during a suspended session.

A concurrent database transaction can update the data retrieved by a single-row SELECT

statement or FETCH BULK statement while the session of the original transaction is
suspended. In these situations, the program should check whether the data has been
modified since it was retrieved before applying an update after the pseudoconverse.

Checking Whether the Row Was Modified

To be able to check whether a row has been modified, your processing environment can

create and maintain a column for a last-update timestamp value. An alternative is to
compare the values of all fields to be updated with the values that were r etrieved.

Maintaining a Last-Update Timestamp

To maintain a last-update timestamp for a table row, use these procedures:

1. Define a last-update column for each table with data type TIMESTAMP and NOT

NULL WITH DEFAULT

2. In the program, define the host variable for the last-update timestamp column as a
character field with length 26

3. Set the last-update timestamp column to the value of the special register CURRENT
TIMESTAMP when modifying the row

You can add a last-update column to an existing table using the ALTER TABLE statement.

Note: For more information about the ALTER TABLE, see the CA IDMS SQL Reference
Guide.

How You Check the Row Before Updating

To determine whether a row has been modified since the program retrieved it, you
attempt a searched update with a search condition that includes a comparison to verify
that the last-update timestamp value has not changed.

Pseudoconversational Programming

162 Programming Guide

Searched Update Example

In this example, the program issues a single-row SELECT statement from the POSITION

table using the primary key of the table. The program suspends the SQL session and
displays the retrieved row to the online user:

 MOVE MAP-EMP-ID TO EMP-ID.
 MOVE MAP-JOB-ID TO JOB-ID.

 EXEC SQL
 SELECT EMP_ID,
 JOB_ID,
 SALARY_AMOUNT,
 LAST_UPDATED
 INTO :EMP-ID,
 :JOB-ID,
 :SALARY-AMOUNT,
 :LAST-UPDATED
 FROM POSITION
 WHERE EMP_ID = :EMP-ID
 END-EXEC.

 EXEC SQL
 SUSPEND SESSION
 END-EXEC.
 .
 .
 .
 MAP OUT ...

 (Pseudoconverse)

Following the pseudoconverse, the program issues an update to the single row using

input from the online user. The update executes only if the row has not been modified
since it was retrieved:

 MAP IN ...

 MOVE MAP-SALARY-AMOUNT TO SALARY-AMOUNT.

 EXEC SQL
 RESUME SESSION
 END-EXEC.

 EXEC SQL
 UPDATE POSITION
 SET SALARY_AMOUNT = :SALARY-AMOUNT,
 LAST_UPDATED = CURRENT TIMESTAMP
 WHERE EMP_ID = :EMP-ID
 AND JOB_ID = :JOB-ID
 AND LAST_UPDATED = :LAST-UPDATED
 END-EXEC.

 IF SQLCODE = 100 PERFORM ROW-CHANGED.

Managing Concurrent Sessions

Chapter 7: SQL Programming Techniques 163

Managing Concurrent Sessions

The ability to maintain concurrent active sessions allows the program to access multiple
databases with parallel database transactions. For example, one session can retrieve
data from one database and, using that data, perform an update operation on another
database.

Caution When Transaction Sharing Is Not in Effect

If an application attempts to access the same database in concurrent sessions, there is
an inherent risk of deadlock; however, transaction sharing can be used to avoid such
deadlocks.

Note: For more information about the use of transaction sharing, see Writing an SQL

Program (see page 27) and the CA IDMS Database Administration Guide.

Session Management Concepts

Concurrent Session Identifier

When a session begins, CA IDMS assigns an identifier to the session and maintains the

session identifier internally. All SQL statements implicitly reference the session identifier
during execution.

If there are multiple concurrent sessions, each session has its own sess ion ID. To

manage multiple sessions, an application must manipulate the session identifier
directly.

Data Declaration Requirements

To manipulate the session identifier, the program must first:

■ Declare one host variable of usage SQLSESS

■ Define a variable in working storage for each of the multiple sessions that the
program will maintain

When the program begins an SQL session, CA IDMS returns the session identifier to the
SQLSESS host variable that the program has defined. The program must save the

SQLSESS value of each concurrent session.

Managing Concurrent Sessions

164 Programming Guide

How CA IDMS Uses the SQLSESS Variable

If the program declares an SQLSESS host variable, all calls to CA IDMS pass the SQLSESS

host variable as a parameter to indicate the session to which the SQL statements should
be directed.

CA IDMS does not alter the session ID value in this parameter unless the statement

being executed terminates the session (that is, on a COMMIT, RELEASE, or ROLLBACK
RELEASE). If the session is terminated, CA IDMS initializes the SQLSESS host variable.

What the Program Must Do

Before executing an SQL statement, the application must ensure that the correct session
ID value has been moved to the SQLSESS host variable.

Implementing Concurrent Sessions

Declaring the SQLSESS Host Variable

To implement concurrent sessions, the program must declare a host variable to which
CA IDMS assigns the session identifier of the active SQL session:

EXEC SQL

 BEGIN DECLARE SECTION

END-EXEC.

01 IDMS-SESS-ID USAGE SQLSESS.

EXEC SQL

 END DECLARE SECTION

END-EXEC.

Saving the Session ID Value

The precompiler expands the SQLSESS host variable to an 8-byte character field.

Therefore, to save session ID values, the application program must define work fields
that also are 8-byte character fields:

WS-SESSION-IDS.

 05 SESS1-ID PIC X(8).

 05 SESS2-ID PIC X(8).

Managing Concurrent Sessions

Chapter 7: SQL Programming Techniques 165

Multiple Session Steps

These are the steps in a typical scenario for managing multiple sessions:

1. Begin a session accessing Database 1

2. Move IDMS-SESS-ID to SESS1-ID

3. Initialize IDMS-SESS-ID by moving spaces to it

4. CONNECT TO Database 2

5. Move IDMS-SESS-ID to SESS2-ID

At this point, the current session ID value is the one representing the second session. To
make the first session the current session, the application program would move the
value in SESS1-ID to IDMS-SESS-ID.

Multiple Sessions Started by One Program

The following diagram il lustrates a scenario in which a program manages session IDs to

maintain multiple concurrent sessions.

In this case, the mainline program initiates both sessions and passes the appropriate
session ID to each subordinate program to indicate which session the subprogram
should process. Each subprogram must also declare a session identifier to hold the value
passed from the mainline program.

Managing Concurrent Sessions

166 Programming Guide

Mainline
┌──┐
│ Connect to DB01 │
│ Save first session value │
│ Initialize SQLSESS │
│ Connect to DB02 │
│ Save second session value │ Program1
│ Move first session value to SQLSESS │ ┌────────────────────────┐
│ Call PROGRAM1 passing SQLSESS ──────┼──────►... │
│ │ │LINKAGE SECTION. │
│ │ │EXEC SQL │
│ │ │ BEGIN DECLARE SECTION │
│ │ │END-EXEC. │
│ │ │01 SQLSESS USAGE SQLSESS│
│ │ │EXEC SQL │
│ │ │ END DECLARE SECTION │
│ │ │END-EXEC. │
│ │ │... │
│ ◄─────┼──────┤SQL statements for DB01 │
│ │ └────────────────────────┘
│ │
│ │ Program2
│ Move second session value to SQLSESS │ ┌────────────────────────┐
│ Call PROGRAM2 passing SQLSESS ──────┼──────►... │
│ │ │LINKAGE SECTION. │
│ │ │EXEC SQL │
│ │ │ BEGIN DECLARE SECTION │
│ │ │END-EXEC. │
│ │ │01 SQLSESS USAGE SQLSESS│
│ │ │EXEC SQL │
│ │ │ END DECLARE SECTION │
│ │ │END-EXEC. │
│ │ │... │
│ ◄─────┼──────┤SQL statements for DB02 │
│ │ └────────────────────────┘
│ FINISH TASK │
└──┘

Multiple Sessions Started by Different Programs

The following diagram il lustrates a scenario in which multiple sessions are begun by
multiple programs.

In this case, Program 1 must declare a session ID to indicate that a separate session is

desired; otherwise, the CONNECT statement will return an error. However, no
manipulation of the session ID is required.

Mainline
┌──┐
│ │
│ │ Program1
│ Connect to DB01 │ ┌────────────────────┐
│ Call PROGRAM1 ──────┼──────► Connect to DB02 │
│ │ │ Retrieve data │
│ ◄─────┼──────┤ COMMIT RELEASE │
│ │ └────────────────────┘
│ Update data in DB01 │
│ COMMIT RELEASE │
└──┘

Creating and Using a Temporary Table

Chapter 7: SQL Programming Techniques 167

Creating and Using a Temporary Table

A temporary table differs from a database table in these ways:

■ A temporary table exists only as long as the database transaction in which it is
created

■ You cannot create an index on a temporary table

■ A temporary table cannot be referenced in a view or a referential constraint

■ A temporary table cannot be accessed by another database transaction

With the above exceptions, a program can access a temporary table and manipulate
temporary table data as it does with a database table.

Why Use a Temporary Table

A temporary table can be useful for certain processing requirements, such as to:

■ Take a snapshot of information in the database

■ Avoid re-accessing base tables multiple times to retrieve the same information, to
process efficiently and assure that the information does not change

■ Perform certain operations that cannot be done with a single SQL statement, such

as inserting rows into a table using data retrieved from the same table

Caution Using a Temporary Table

Since you cannot create an index on a temporary table, access to a temporary table is
always serial. Accessing data in a temporary table with many rows may degrade the
performance of the program.

How You Create a Temporary Table

You create a temporary table in the procedural section of the program by issuing a
CREATE TEMPORARY TABLE statement. This statement requires:

■ A temporary table name

■ Column names

■ Column definitions

CA IDMS maintains temporary tables in the scratch area. The program does not supply
information about the physical characteristics of a temporary table.

Note: For more information about creating temporary tables in particular, see the CA

IDMS SQL Reference Guide. For more information about creating tables in general, see
the CA IDMS Database Administration Guide.

Creating and Using a Temporary Table

168 Programming Guide

Naming a Temporary Table

When you create a temporary table, you should name it in a way that cannot match the

name of any table or view that may be created. If a temporary table name matches the
name of a base table or view, the optimizer will assume the name refers to the base
table or view, and the temporary table will not be accessed.

Cursor for a Temporary Table

The program can declare a cursor for a temporary table. However, when you create the

access module for the program, the optimizer issues a warning in response to any
reference to the temporary table other than in the CREATE TEMPORARY TABLE
statement.

The programmer has the responsibil ity of verifying that the cursor declaration and the
CREATE TEMPORARY TABLE statement are compatible.

Temporary Table Example

In this example, the program creates a temporary table of manager names and ids using
information in the EMPLOYEE table. (The EMPLOYEE table itself associates the id of a

manager with the name of the subordinate employee, not the name of the mana ger.)
Using a cursor, the program accesses a row of the temporary table and selects
employees from the EMPLOYEE table who report to the manager identified in the
temporary table row.

This is the cursor declaration and the statement to create the temporary table:

 WORKING STORAGE SECTION.

 EXEC SQL

 DECLARE TEMP_CRSR CURSOR FOR

 SELECT *

 FROM TEMP_MGR

 ORDER BY 3

 END EXEC

 .

 .

 .

 PROCEDURE DIVISION.

 EXEC SQL

 CREATE TEMPORARY TABLE TEMP_MGR

 (TEMP_MGR_ID INTEGER,

 TEMP_FNAME CHAR(20),

 TEMP_LNAME CHAR(20))

 END-EXEC.

Bill-of-materials Explosion

Chapter 7: SQL Programming Techniques 169

This statement adds manager information to the temporary table:

EXEC SQL

 INSERT INTO TEMP_MGR

 SELECT DISTINCT E.MANAGER_ID,

 M.EMP_FNAME,

 M.EMP_LNAME

 FROM EMPLOYEE E, EMPLOYEE M

 WHERE E.MANAGER_ID = M.EMP_ID

END-EXEC.

This statement establishes a current cursor row for the temporary table:

EXEC SQL

 FETCH TEMP_CRSR

 INTO :MGR-ID,

 :MGR-FNAME,

 :MGR-LNAME

END-EXEC.

This statement performs a bulk select of employees who report to the manager in the
current cursor row. Depending on processing requirements, this statement could be a

bulk fetch:

EXEC SQL

 SELECT EMP_FNAME,

 EMP_LNAME,

 DEPT_ID

 BULK :BULK-EMPLOYEE

 FROM EMPLOYEE

 WHERE MANAGER_ID = :MGR-ID

 AND TERMINATION_DATE IS NULL

END-EXEC.

Bill-of-materials Explosion

This section presents a sample program that performs a bil l -of-materials explosion. A
discussion of the concepts involved precedes the sample program.

Bill-of-materials Explosion

170 Programming Guide

What to Do

Maximum Level

The sample program establishes a value of 100 as the limit of levels for the explosion in
its use of the MAX-LEVELS variable. A l imit of 100 is for i l lustration only; a program can

set a higher or lower l imit.

LIMITS-AND-CONSTANTS.

 02 NUMBER-OF-CURSORS PIC S9 COMP VALUE 3.

 02 MAX-LEVELS PIC S9(4) COMP VALUE 100.

 02 NULL-KEY-VALUE PIC 9(7) VALUE 0.

Cursor Declarations

The program declares three different cursors with identical definitions. The cursor issues
a join of the PART and COMPONENT tables that produces a result table of component
parts for each part.

 EXEC SQL DECLARE CURSOR1 CURSOR FOR
 SELECT COMPONENT_PART,
 QUANTITY,
 PART_NAME
 FROM COMPONENT C,
 PART P
 WHERE C.PART = :CURRENT-KEY
 AND C.COMPONENT_PART > :PREVIOUS-COMPONENT
 AND P.NUMBER = C.PART
 ORDER BY COMPONENT_PART
 END-EXEC

 EXEC SQL DECLARE CURSOR2 CURSOR FOR
 SELECT COMPONENT_PART,
 QUANTITY,
 PART_NAME
 FROM COMPONENT C,
 PART P
 WHERE C.PART = :CURRENT-KEY
 .
 .
 .

The minimum number of cursors needed is two. Theoretically, the program could

declare more cursors with identical definitions, up to a number of cursors equal to the
maximum level for the explosion. However, for most bil l -of-material explosions, it is
more practical and efficient to add program logic that allows the three cursors to be
reused as i l lustrated in the sample program later in this section.

Bill-of-materials Explosion

Chapter 7: SQL Programming Techniques 171

Getting the First Row

The GET-FIRST-ROW section of the program issues a single-row select from the PART

table. The search condition equates an input part number (TOP-KEY), the part to be
exploded, with PART_NUMBER, the unique key of the PART table.

This select verifies the existence of the part and also retrieves its name.

EXEC SQL

 SELECT PART_NUMBER, PART_NAME

 INTO :CURRENT-KEY, :COMPONENT-NAME

 FROM PART

 WHERE PART_NUMBER = :TOP-KEY

END-EXEC.

Going to the First Level

In the FETCH-NEXT-ROW section, the program opens a cursor to retrieve the component
parts that make up the current part, whose number it has assigned to CURRENT-KEY.

The program fetches the first row of the cursor result table.

FETCH-NEXT-ROW SECTION.

 PERFORM OPEN-CURRENT-CURSOR.

 IF CURRENT-CURSOR = 1

 EXEC SQL

 FETCH CURSOR1 INTO

 :COMPONENT-KEY, :QTY, :COMPONENT-NAME

 END-EXEC

 ELSE IF CURRENT-CURSOR = 2

 .

 .

 .

Going Down More Levels

If the first fetch succeeds, the program executes the DOWN-ONE-LEVEL section. In this

section, the program:

■ Assigns the part number in the first row fetched to CURRENT-KEY

■ Increments the current level by 1

■ Increments the current cursor by 1 if the current cursor is less than 3

Because the program reuses the three cursors, it attempts to close a cursor in the

CLOSE-CURRENT-CURSOR section before it opens the cursor in the
OPEN-CURRENT-CURSOR section. For the first three levels of the explosion, the DBMS
will ignore the CLOSE statement because the specified cursor has not yet been opened.

Bill-of-materials Explosion

172 Programming Guide

Using the part number retrieved in the fetch by the previous cursor, the program now
fetches the first component part of the next level down by opening the current cursor

and fetching from it. This logic is repeated until a fetch returns an SQLCODE of 100 (in
effect, no more levels) or the defined maximum level is reached.

Saved Keys

Each time it goes down a level, the program saves the part number used in the fetch:

DOWN-ONE-LEVEL SECTION.

 IF CURRENT-LEVEL > MAX-LEVELS

 NEXT SENTENCE

 ELSE

 MOVE COMPONENT-KEY TO CURRENT-KEY

 MOVE COMPONENT-KEY TO SAVE-KEY (CURRENT-LEVEL)

 .

 .

 .

By saving the key, the program can later retrieve the part number for a level and
execute the backup logic described below.

When There Are No More Levels

When there are no more levels, the program executes the BACKUP-ONE-LEVEL section.
It subtracts 1 from the level number and retrieves the saved keys for the current and
previous levels.

BACKUP-ONE-LEVEL SECTION.

 SUBTRACT 1 FROM CURRENT-LEVEL.

 IF CURRENT-LEVEL > 0

 MOVE SAVE-KEY (CURRENT-LEVEL) TO PREVIOUS-COMPONENT.

 IF CURRENT-LEVEL > 1

 MOVE SAVE-KEY (CURRENT-LEVEL - 1) TO CURRENT-KEY

.

.

.

Since the cursor result tables are ordered by component part number and one of the
conditions of each is C.COMPONENT_PART > :PREVIOUS-COMPONENT, the program

re-establishes cursor position in the list of components by l imiting the rows selected to
those not yet processed. Each time a cursor is re-opened, the first row of the result
table is the next component to be processed,

This allows the program both to reuse a cursor and to fetch the next row for the

previous level.

Bill-of-materials Explosion

Chapter 7: SQL Programming Techniques 173

Completing the Explosion

The process of going down a level until there are no more levels, going back one level,

and attempting to go down again is repeated until backing up reaches the top level. The
bil l-of-materials explosion is now complete.

Bill-of-materials Explosion

174 Programming Guide

Sample Program

 IDENTIFICATION DIVISION.
 PROGRAM-ID. EXPLODE.

 ENVIRONMENT DIVISION.

 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 SQLMSGS.
 02 SQLMMAX PIC S9(8) COMP VALUE +6.
 02 SQLMSIZE PIC S9(8) COMP VALUE +80.
 02 SQLMCNT PIC S9(8) COMP.
 02 SQLMLINE OCCURS 6 TIMES PIC X(80).

 01 REQ-WK.
 02 REQUEST-CODE PIC S9(8) COMP.
 02 REQUEST-RETURN PIC S9(8) COMP.

 01 LIMITS-AND-CONSTANTS.
 02 NUMBER-OF-CURSORS PIC S9 COMP VALUE 3.
 02 MAX-LEVELS PIC S9(4) COMP VALUE 100.
 02 NULL-KEY-VALUE PIC 9(7) VALUE 0.

 01 CURSOR-FLAGS.
 02 CURSOR-FLAG OCCURS 3 TIMES PIC X.

 01 KEY-TABLE.
 02 SAVE-KEY OCCURS 100 TIMES PIC 9(7).

 01 WORK-FIELDS.
 02 CURRENT-LEVEL PIC S9(4) COMP.
 02 CURRENT-CURSOR PIC S9(4) COMP.
 02 DISPLAY-LEVEL PIC ZZ9.
 02 WARNING-MSG PIC X(40).
 02 SQLVALUE PIC ----9.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC
 01 DBNAME PIC X(8).
 01 PREVIOUS-COMPONENT PIC S9(7) COMP-3.
 01 TOP-KEY PIC S9(7) COMP-3.
 01 CURRENT-ROW.
 02 CURRENT-KEY PIC S9(7) COMP-3.
 02 COMPONENT-KEY PIC S9(7) COMP-3.
 02 QTY PIC S9(5)V99 COMP-3.
 02 COMPONENT-NAME PIC X(30).
 EXEC SQL END DECLARE SECTION END-EXEC.

Bill-of-materials Explosion

Chapter 7: SQL Programming Techniques 175

***** DECLARE CURSORS *****

 EXEC SQL DECLARE CURSOR1 CURSOR FOR
 SELECT COMPONENT_PART,
 QUANTITY,
 PART_NAME
 FROM COMPONENT C,
 PART P
 WHERE C.PART = :CURRENT-KEY
 AND C.COMPONENT_PART > :PREVIOUS-COMPONENT
 AND P.NUMBER = C.PART
 ORDER BY COMPONENT_PART
 END-EXEC

 EXEC SQL DECLARE CURSOR2 CURSOR FOR
 SELECT COMPONENT_PART,
 QUANTITY,
 PART_NAME
 FROM COMPONENT C,
 PART P
 WHERE C.PART = :CURRENT-KEY
 AND C.COMPONENT_PART > :PREVIOUS-COMPONENT
 AND P.NUMBER = C.PART
 ORDER BY COMPONENT_PART
 END-EXEC

 EXEC SQL DECLARE CURSOR3 CURSOR FOR
 SELECT COMPONENT_PART,
 QUANTITY,
 PART_NAME
 FROM COMPONENT C,
 PART P
 WHERE C.PART = :CURRENT-KEY
 AND C.COMPONENT_PART > :PREVIOUS-COMPONENT
 AND P.NUMBER = C.PART
 ORDER BY COMPONENT_PART
 END-EXEC

 PROCEDURE DIVISION.

 EXEC SQL
 WHENEVER SQLERROR GO TO SQL-ERROR
 END-EXEC.

Bill-of-materials Explosion

176 Programming Guide

 MAINLINE SECTION.
 ACCEPT DBNAME.
 ACCEPT TOP-KEY.
* INITIALIZE VARIABLES TO GET US STARTED
 MOVE 1 TO CURRENT-LEVEL.
 MOVE 1 TO CURRENT-CURSOR.
 MOVE SPACES TO CURSOR-FLAGS.
 MOVE NULL-KEY-VALUE TO PREVIOUS-COMPONENT.
*
 PERFORM GET-FIRST-ROW.
 PERFORM FETCH-NEXT-ROW
 UNTIL CURRENT-LEVEL = 0.
 EXEC SQL COMMIT RELEASE END-EXEC.
 GOBACK.

 GET-FIRST-ROW SECTION.
 EXEC SQL CONNECT TO :DBNAME END-EXEC.
 EXEC SQL
 SELECT PART_NUMBER, PART_NAME
 INTO :CURRENT-KEY, :COMPONENT-NAME
 FROM PART
 WHERE PART_NUMBER = :TOP-KEY
 END-EXEC.

 IF SQLCODE = 100
 MOVE 0 TO CURRENT-LEVEL
 DISPLAY '***** INVALID PART NUMBER: '
 TOP-KEY
 ELSE
 DISPLAY '***** BILL OF MATERIALS FOR '
 'PART: ' CURRENT-KEY ' '
 COMPONENT-NAME ' *****'
 DISPLAY '**********************************'
 '**********************************'
 '**********************************'.

Bill-of-materials Explosion

Chapter 7: SQL Programming Techniques 177

 FETCH-NEXT-ROW SECTION.
 PERFORM OPEN-CURRENT-CURSOR.

 IF CURRENT-CURSOR = 1
 EXEC SQL
 FETCH CURSOR1 INTO
 :COMPONENT-KEY, :QTY, :COMPONENT-NAME
 END-EXEC
 ELSE IF CURRENT-CURSOR = 2
 EXEC SQL
 FETCH CURSOR2 INTO
 :COMPONENT-KEY, :QTY, :COMPONENT-NAME
 END-EXEC
 ELSE IF CURRENT-CURSOR = 3
 EXEC SQL
 FETCH CURSOR3 INTO
 :COMPONENT-KEY, :QTY, :COMPONENT-NAME
 END-EXEC.

 IF SQLCODE = 100
 PERFORM BACKUP-ONE-LEVEL
 ELSE
 PERFORM PRINT-CURRENT-ROW
 PERFORM DOWN-ONE-LEVEL.

 OPEN-CURRENT-CURSOR SECTION.
 IF CURSOR-FLAG (CURRENT-CURSOR) NOT = 'O'
 MOVE 'O' TO CURSOR-FLAG (CURRENT-CURSOR)
 IF CURRENT-CURSOR = 1
 EXEC SQL
 OPEN CURSOR1
 END-EXEC
 ELSE IF CURRENT-CURSOR = 2
 EXEC SQL
 OPEN CURSOR2
 END-EXEC
 ELSE IF CURRENT-CURSOR = 3
 EXEC SQL
 OPEN CURSOR3
 END-EXEC.

Bill-of-materials Explosion

178 Programming Guide

 CLOSE-CURRENT-CURSOR SECTION.

 IF CURSOR-FLAG (CURRENT-CURSOR) = 'O'
 MOVE ' ' TO CURSOR-FLAG (CURRENT-CURSOR)
 IF CURRENT-CURSOR = 1
 EXEC SQL
 CLOSE CURSOR1
 END-EXEC
 ELSE IF CURRENT-CURSOR = 2
 EXEC SQL
 CLOSE CURSOR2
 END-EXEC
 ELSE IF CURRENT-CURSOR = 3
 EXEC SQL
 CLOSE CURSOR3
 END-EXEC.

 DOWN-ONE-LEVEL SECTION.
 IF CURRENT-LEVEL > MAX-LEVELS
 NEXT SENTENCE
 ELSE
 MOVE COMPONENT-KEY TO CURRENT-KEY
 MOVE COMPONENT-KEY TO SAVE-KEY (CURRENT-LEVEL)
 MOVE NULL-KEY-VALUE TO PREVIOUS-COMPONENT
 ADD 1 TO CURRENT-LEVEL
 IF CURRENT-CURSOR = MAX-CURSORS
 MOVE 1 TO CURRENT-CURSOR
 PERFORM CLOSE-CURRENT-CURSOR
 ELSE
 ADD 1 TO CURRENT-CURSOR
 PERFORM CLOSE-CURRENT-CURSOR.

 BACKUP-ONE-LEVEL SECTION.
 SUBTRACT 1 FROM CURRENT-LEVEL.
 IF CURRENT-LEVEL > 0
 MOVE SAVE-KEY (CURRENT-LEVEL) TO PREVIOUS-COMPONENT.
 IF CURRENT-LEVEL > 1
 MOVE SAVE-KEY (CURRENT-LEVEL - 1) TO CURRENT-KEY
 ELSE
 MOVE TOP-KEY TO CURRENT-KEY.
 PERFORM CLOSE-CURRENT-CURSOR.
 IF CURRENT-CURSOR = 1
 MOVE MAX-CURSORS TO CURRENT-CURSOR
 ELSE
 SUBTRACT 1 FROM CURRENT-CURSOR.

Bill-of-materials Explosion

Chapter 7: SQL Programming Techniques 179

PRINT-CURRENT-ROW SECTION.

 MOVE CURRENT-LEVEL TO DISPLAY-LEVEL.
 IF CURRENT-LEVEL > MAX-LEVELS
 MOVE 'MAXIMUM LEVEL, COMPONENTS NOT LISTED'
 TO WARNING-MSG
 ELSE
 MOVE SPACES TO WARNING-MSG.
 DISPLAY ' ' DISPLAY-LEVEL
 ' PART: ' COMPONENT-KEY
 ' ' COMPONENT-NAME
 ' QTY: ' QTY
 ' ' WARNING-MSG.
 SQL-ERROR SECTION.
 DISPLAY '****************** ERROR IN SQL STATEMENT'
 ' ******************'.
 DISPLAY 'PROGRAM ' SQLPGM
 DISPLAY 'COMPILED ' SQLDATE
 MOVE SQLCLNO TO SQLVALUE.
 DISPLAY 'SQL LINE NUMBER ' SQLVALUE
 MOVE SQLCODE TO SQLVALUE.
 DISPLAY 'SQLCODE ' SQLVALUE
 MOVE SQLCERC TO SQLVALUE.
 DISPLAY 'REASON CODE ' SQLVALUE
 MOVE SQLCERC TO SQLVALUE.
 DISPLAY 'ERROR CODE ' SQLVALUE
 MOVE SQLCNRP TO SQLVALUE.
 DISPLAY 'ROWS PROCESSED ' SQLVALUE

 MOVE 4 TO REQUEST-CODE.
 CALL 'IDMSIN01' USING SQLRPB, REQ=WK,
 SQLCA, SQLMSGS.
 IF REQUEST-RETURN NOT = 4
 MOVE 1 TO LINE-CNT
 PERFORM DISP=MSG UNTIL LINE-CNT > SQLMCNT.

 DISP-MSG SECTION.
 DISPLAY SQLMLINE (LINE-CNT).
 ADD 1 TO LINE-CNT.

Chapter 8: Using Dynamic SQL 181

Chapter 8: Using Dynamic SQL

This section contains the following topics:

Dynamic SQL (see page 181)
Dynamic Insert, Update, and Delete Operations (see page 182)
Executing Prepared SELECT Statements (see page 187)

Executing Prepared CALL Statements (see page 193)
Dynamic SQL Caching (see page 198)

Dynamic SQL

Depending on the processing requirement of the program and the capabilities of the

programming language, you will need to implement dynamic SQL.

Dynamic SQL refers to an SQL statement that is not known to the program at
precompile time and therefore is compiled dynamically when the program executes. CA
IDMS provides dynamic SQL to allow the program to formulate, compile, and execute a

DML statement at runtime.

To Insert, Update, or Delete

You implement dynamic SQL with a small set of SQL statements. For SQL DML other
than SELECT or CALL, these statements are:

■ EXECUTE IMMEDIATE—Dynamically compiles and executes the statement

■ PREPARE—Dynamically compiles the statement

■ EXECUTE—Executes a prepared statement

If the statement to be dynamically compiled could be issued more than once in the

program, you should use the combination of PREPARE and EXECUTE statements.

To Select

To dynamically compile and execute a SELECT statement, you take these steps:

1. Formulate the statement

2. Prepare the statement and optionally describe the result table to CA IDMS

3. Declare or allocate a cursor using the dynamically compiled SELECT statement

Dynamic Insert, Update, and Delete Operations

182 Programming Guide

To CALL an SQL Invoked Procedure

To dynamically compile and execute a CALL statement, you take these steps:

1. Formulate the statement

2. Prepare the statement and optionally describe the result table to CA IDMS

3. Declare or allocate a cursor using the dynamically compiled CALL statement

Host Language Dependency

If the number and type of columns in a dynamic SELECT or CALL are not known at

compile time, the host language must provide explicit support for dynamic storage
allocation because the variable storage requirements for the data to be retrieved can be
derived only from information returned to the SQLDA when the SELECT statement is

prepared.

No Host Variables, Local Variables, or Routine Parameters

A dynamic SQL statement that is prepared or executed using an EXECUTE IMMEDIATE
statement cannot reference host variables, local variables, or routine parameters within
the text of the statement. If you want to repeatedly execute a statement, such as an

UPDATE, using different update values each time, you must use dynamic parameters in
place of variables or parameters.

Note: For more information about dynamic parameters, see the CA IDMS SQL Reference
Guide.

Precompiling with NOINSTALL

A program that consists entirely of dynamic SQL statements, session and transaction
management statements, requires no RCM. Therefore, you may precompile such a
program with the NOINSTALL option. This directs the precompiler to check syntax and
not to store an RCM, thus eliminating the need for updating the dictionary. If SQL

requests will be issued from more than one program within a single transaction, each
such program must have its RCM included in the access module being used. This
requirement holds, regardless of whether all of the statements within a program are

dynamic or not. As general practice, you should avoid specifying the NOINSTALL option.

Dynamic Insert, Update, and Delete Operations

You can perform a dynamic insert, update, or delete using EXECUTE or EXECUTE
IMMEDIATE. EXECUTE is valid only when the statement has been dynamically compiled
with a PREPARE statement.

Dynamic Insert, Update, and Delete Operations

Chapter 8: Using Dynamic SQL 183

Using EXECUTE IMMEDIATE

When to Use It

Use EXECUTE IMMEDIATE to dynamically compile and execute a statement that will be
issued only once in the transaction.

If a program consists mainly of dynamic SQL statements, consider using EXECUTE
IMMEDIATE for the few remaining SQL statements. You can precompile the program

with the NOINSTALL option, eliminating an RCM and an access module to execute the
program. This may be more efficient in your processing environment.

EXECUTE IMMEDIATE example

In this example, the program builds an INSERT statement in working storage and moves
the complete statement to a host variable, STATEMENT-TEXT. The program issues an

EXECUTE IMMEDIATE statement on the text contained in the host variable:

 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 INSERT-STATEMENT-TEXT.
 02 FILLER PIC X(21) VALUE
 "INSERT INTO C_DIVISION VALUES ('".
 02 DIV-CODE-TEXT PIC X(3).
 02 FILLER PIC X(3) VALUE
 "','".
 02 DIV-NAME-TEXT PIC X(40).
 02 FILLER PIC X(2) VALUE
 "',".
 02 DIV-HEAD-ID-TEXT PIC X(4).
 02 FILLER PIC X(3) VALUE
 ")".

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 STATEMENT-TEXT PIC X(76).
 EXEC SQL END DECLARE SECTION END-EXEC.

 PROCEDURE DIVISION.

 MOVE INPUT-DIV-CODE TO DIV-CODE-TEXT.
 MOVE INPUT-DIV-NAME TO DIV-NAME-TEXT.
 MOVE INPUT-DIV-HEAD-ID TO DIV-HEAD-ID-TEXT.
 MOVE INSERT-STATEMENT-TEXT TO STATEMENT-TEXT.

 EXEC SQL
 EXECUTE IMMEDIATE :STATEMENT-TEXT
 END-EXEC.

Error-checking

There is no error-checking technique that is specific to EXECUTE IMMEDIATE. Check for
SQLCODE < 0, or check for a specific SQLSTATE value if appropriate.

Dynamic Insert, Update, and Delete Operations

184 Programming Guide

Using PREPARE

Why You Use PREPARE

You use the PREPARE statement to dynamically compile an SQL statement that is
formulated at runtime. You should prepare the statement if:

■ The statement may be issued more than once during a transaction

■ The statement may be a SELECT

Determining Information About the Prepared Statement

You can use either the DESCRIBE option of the PREPARE statement or a separate
DESCRIBE statement to determine the following information:

■ Whether the prepared statement is a SELECT

■ If the prepared statement is a SELECT, the number of result columns to be returned
and the name and format of each of the result columns

■ The format of any dynamic parameters that must be supplied as input values when

the statement is executed or an associated cursor is opened

To retrieve this information, you must allocate at l east one SQL descriptor area. You
need to allocate two descriptor areas if you want to retrieve information about both
result columns and dynamic parameters.

Note: Descriptor areas must be defined using the SQLDA structure.

Declaring SQLDA

The program can declare the default descriptor area SQLDA with an INCLUDE statement:

EXEC SQL

 INCLUDE SQLDA

 NUMBER OF COLUMNS 20

END-EXEC.

Declaring SQLDA in CA ADS

If you are using descriptor areas in CA ADS, you can create a work record layout through
IDD as described in the CA ADS User Guide. This work record must match the SQLDA
layout and the initial values should conform to the data types.

Dynamic Insert, Update, and Delete Operations

Chapter 8: Using Dynamic SQL 185

The following example displays the CA ADS format of the SQLDA:

SQLDA.

 05 SQLDAID PIC X(8).

 05 SQLN PIC S9(9) COMP

 VALUE +n .

 05 SQLD PIC S9(9) COMP.

 05 SQLVAR OCCURS n.

 10 SQLLEN PIC S9(9) COMP.

 10 SQLTYPE PIC S9(4) COMP.

 10 SQLSCALE PIC S9(4) COMP.

 10 SQLPRECISION PIC S9(4) COMP.

 10 SQLALN PIC S9(4) COMP.

 10 SQLNALN PIC S9(4) COMP.

 10 SQLNULL PIC S9(4) COMP.

 10 SQLNAME PIC X(32).

where n is the maximum number of occurrences of SQLVAR

SQLDA Values

An SQL descriptor area used to retrieve information about the output of the prepared
statement contains the following values:

The value in SQLD indicates whether the statement is:

■ A SELECT statement if the value is greater than 0

■ Not a SELECT statement if the value is equal to 0

If greater than 0, SQLD is the number of columns in the result table of the SELECT
statement.

The value in SQLN indicates the maximum number of columns the descriptor area can
describe:

■ The number specified in the NUMBER OF COLUMNS parameter of the INCLUDE
statement

■ If SQLD is greater than SQLN, the descriptor area is too small to describe the result

table.

SQLVAR is a structure that occurs SQLN times. Each occurrence contains information
about a result column.

Note: For more information, see the CA IDMS SQL Reference Guide.

Dynamic Insert, Update, and Delete Operations

186 Programming Guide

PREPARE Example

In this example, the program has formulated an SQL statement and has moved the

character string into the host variable STATEMENT-STRING:

EXEC SQL

 PREPARE DYNAMIC_STATEMENT

 FROM :STATEMENT-STRING

 DESCRIBE INTO SQLDA

END-EXEC.

Error-checking

If a PREPARE statement fails to execute at runtime, CA IDMS returns a negative value to
SQLCODE.

If the SQLCODE value is -4, there may be a syntax error in the statement. If there is, the

offset within the statement at which the syntax error occurred is returned to the
SQLCSER field of the SQLCA.

Using EXECUTE

Why You Use EXECUTE

You use EXECUTE to execute a dynamically compiled (prepared) statement other than
SELECT. This is the format of the EXECUTE statement:

EXEC SQL

 EXECUTE statement-name

END-EXEC.

The parameter statement-name must correspond to the value in the same parameter of

a PREPARE statement that has already been issued in the same transaction.

EXECUTE Example

In this example, the statement prepared in an earlier example is executed:

EXEC SQL

 EXECUTE DYNAMIC_STATEMENT

END-EXEC.

Error-checking

There is no error-checking technique that is specific to EXECUTE. Check for SQLCODE <
0, or check for a specific SQLSTATE value if appropriate.

Executing Prepared SELECT Statements

Chapter 8: Using Dynamic SQL 187

Repeating EXECUTE

You can repeat an EXECUTE statement in the same transaction because CA IDMS retains

all dynamically compiled statements for the duration of the transaction.

If the program prepares more than one statement in a database transaction using the
same statement name, an EXECUTE issued for the statement name will execute the

most recently prepared statement.

Executing Prepared SELECT Statements

This section presents a sample program that prepares a SELECT statement and executes
it dynamically. A discussion of the concepts involved precedes the sample program.

What to Do

Declaring a Cursor

To execute a prepared SELECT statement, the program must first declare a cursor for
the prepared statement.

The sample program declares this cursor:

EXEC SQL

 DECLARE CURSOR1 CURSOR FOR SELECT_STATEMENT

END-EXEC.

Preparing the Statement

Before opening a cursor defined with a dynamic SQL statement, the program must
prepare the statement.

The sample program issues this PREPARE statement:

EXEC SQL

 PREPARE SELECT_STATEMENT FROM :STATEMENT-TEXT

END-EXEC.

Building the Statement Text

In the sample program, the host variable STATEMENT-TEXT contains a character string

consisting of a fixed portion of the statement to which input text is added when the
program executes.

Executing Prepared SELECT Statements

188 Programming Guide

The fixed portion of the statement specifies table and columns from which data is
selected. This part of the statement is initialized in working storage:

FIRST-PART-OF-STATEMENT.

 02 FILLER PIC X(32) VALUE

 'SELECT EMP_ID, EMP_FNAME,'.

 02 FILLER PIC X(32) VALUE

 ' EMP_LNAME, DEPT_ID,'.

 02 FILLER PIC X(32) VALUE

 ' MANAGER_ID, START_DATE '.

 02 FILLER PIC X(32) VALUE

 ' FROM DEMO.EMPL_VIEW_1 '.

The variable portion of the statement, which can specify additional selection criteria

such as an ORDER BY or a WHERE clause, is completed when BUILD-SQL-STATEMENT
section of the program executes.

Declaring a Host Variable Array

The sample program performs a bulk fetch after it opens the cursor. The bulk fetch
requires a host variable array to receive the data.

The sample program declares the host variable array within an SQL declaration section

using this INCLUDE statement:

FETCH-BUFFER.

EXEC SQL

 INCLUDE TABLE DEMO.EMPL_VIEW_1

 (EMP_ID, EMP_FNAME, EMP_LNAME,

 DEPT_ID, MANAGER_ID, START_DATE)

 NUMBER OF ROWS 50

 LEVEL 02

END-EXEC.

Executing the Fetch

After the program builds the statement text, prepares the statement, and opens the
cursor, it issues the bulk fetch:

FETCH-ROWS SECTION.

 EXEC SQL

 FETCH CURSOR1

 BULK :FETCH-BUFFER

 END-EXEC.

 MOVE 1 TO ROW-CTR.

 PERFORM DISPLAY-ROW

 UNTIL ROW-CTR > SQLCNRP.

Executing Prepared SELECT Statements

Chapter 8: Using Dynamic SQL 189

Sample Program

 IDENTIFICATION DIVISION.

 PROGRAM-ID. EMPVIEW1.

 ENVIRONMENT DIVISION.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 01 SQLMSGS.

 02 SQLMMAX PIC S9(8) COMP VALUE +6.

 02 SQLMSIZE PIC S9(8) COMP VALUE +80.

 02 SQLMCNT PIC S9(8) COMP.

 02 SQLMLINE OCCURS 6 TIMES PIC X(80).

 01 REQ-WK.

 02 REQUEST-CODE PIC S9(8) COMP.

 02 REQUEST-RETURN PIC S9(8) COMP.

 01 LIMITS-AND-CONSTANTS.

 02 MAX-TEXT-LINES PIC S9 COMP VALUE 5.

 01 FIRST-PART-OF-STATEMENT.

 02 FILLER PIC X(32) VALUE

 'SELECT EMP_ID, EMP_FNAME,'.

 02 FILLER PIC X(32) VALUE

 ' EMP_LNAME, DEPT_ID,'.

 02 FILLER PIC X(32) VALUE

 ' MANAGER_ID, START_DATE '.

 02 FILLER PIC X(32) VALUE

 ' FROM DEMO.EMPL_VIEW_1 '.

 01 HEADING-LINE.

 02 FILLER PIC X(31) VALUE

 'ID # FIRST NAME '.

 02 FILLER PIC X(23) VALUE

 'LAST NAME '.

 02 FILLER PIC X(31) VALUE

 'DEPT MGR START DATE'.

 01 DETAIL-LINE.

 02 EMP-ID PIC 9(5).

 02 FILLER PIC X(3) VALUE SPACES.

 02 EMP-FNAME PIC X(20).

 02 FILLER PIC X(3) VALUE SPACES.

 02 EMP-LNAME PIC X(20).

 02 FILLER PIC X(3) VALUE SPACES.

 02 DEPT-ID PIC 9(5).

 02 FILLER PIC X(3) VALUE SPACES.

Executing Prepared SELECT Statements

190 Programming Guide

 02 MANAGER-ID PIC 9(5).

 02 FILLER PIC X(3) VALUE SPACES.

 02 START-DATE PIC X(10).

 01 WORK-FIELDS.

 02 ROW-CTR PIC S99 COMP.

 02 TEXT-CTR PIC S99 COMP.

 02 INPUT-LINE.

 03 END-CHAR PIC X.

 88 END-STATEMENT VALUE ';'.

 03 FILLER PIC X(79).

 02 SQLVALUE PIC ────9.

 01 STATEMENT-TXT2.

 02 FIXED-PART PIC X(128).

 02 VARIABLE-PART.

 03 TEXT-LINES OCCURS 5 TIMES PIC X(80).

 EXEC SQL BEGIN DECLARE SECTION END-EXEC

 77 DBNAME PIC X(8).

 01 STATEMENT-TEXT PIC X(641).

 01 FETCH-BUFFER.

 EXEC SQL

 INCLUDE TABLE DEMO.EMPL_VIEW_1

 (EMP_ID, EMP_FNAME, EMP_LNAME,

 DEPT_ID, MANAGER_ID, START_DATE)

 NUMBER OF ROWS 50

 LEVEL 02

 END-EXEC.

 EXEC SQL END DECLARE SECTION END-EXEC

 ***** DECLARE CURSORS *****

 EXEC SQL

 DECLARE CURSOR1 CURSOR FOR SELECT_STATEMENT

 END-EXEC

 PROCEDURE DIVISION.

 EXEC SQL

 WHENEVER SQLERROR GO TO SQL-ERROR

 END-EXEC.

Executing Prepared SELECT Statements

Chapter 8: Using Dynamic SQL 191

 MAINLINE SECTION.

 ACCEPT DBNAME.

 MOVE FIRST-PART-OF-STATEMENT TO FIXED-PART.

 MOVE 1 TO TEXT-CTR.

 PERFORM BUILD-SQL-STATEMENT

 UNTIL TEXT-CTR > MAX-TEXT-LINES.

 IF END-STATEMENT

 PERFORM PREPARE-AND-OPEN-CURSOR

 PERFORM FETCH-ROWS

 UNTIL SQLCODE = 100

 EXEC SQL COMMIT RELEASE END-EXEC.

 GOBACK.

 BUILD-SQL-STATEMENT SECTION.

 IF NOT END-STATEMENT

 ACCEPT INPUT-LINE

 DISPLAY INPUT-LINE.

 IF NOT END-STATEMENT

 MOVE INPUT-LINE TO TEXT-LINE (TEXT-CTR)

 ELSE

 MOVE SPACES TO TEXT-LINE (TEXT-CTR).

 ADD 1 TO TEXT-CTR.

 PREPARE-AND-OPEN-CURSOR SECTION.

 EXEC SQL ── CONNECT TO DATABASE

 CONNECT TO :DBNAME

 END-EXEC.

 EXEC SQL ── SET ISOLATION MODE

 SET TRANSACTION TRANSIENT READ

 END-EXEC.

 MOVE STATEMENT-TXT2 TO STATEMENT-TEXT.

 EXEC SQL ── PREPARE THE SELECT

 PREPARE SELECT_STATEMENT FROM :STATEMENT-TEXT

 END-EXEC.

 EXEC SQL ── OPEN THE CURSOR

 OPEN CURSOR1

 END-EXEC.

 DISPLAY ' '.

Executing Prepared SELECT Statements

192 Programming Guide

 DISPLAY ' '.

 DISPLAY HEADING-LINE.

 DISPLAY ' '.

 FETCH-ROWS SECTION.

 EXEC SQL

 FETCH CURSOR1

 BULK :FETCH-BUFFER

 END-EXEC.

 MOVE 1 TO ROW-CTR.

 PERFORM DISPLAY-ROW

 UNTIL ROW-CTR > SQLCNRP.

 DISPLAY-ROW SECTION.

 MOVE CORRESPONDING EMPL-VIEW-1 (ROW-CTR) TO DETAIL-LINE.

 DISPLAY DETAIL-LINE.

 ADD 1 TO ROW-CTR.

 SQL-ERROR SECTION.

 DISPLAY '****************** ERROR IN SQL STATEMENT'

 ' ******************'.

 DISPLAY 'PROGRAM ' SQLPGM

 DISPLAY 'COMPILED ' SQLDTS

 MOVE SQLCLNO TO SQLVALUE.

 DISPLAY 'SQL LINE NUMBER ' SQLVALUE

 MOVE SQLCODE TO SQLVALUE.

 DISPLAY 'SQLCODE ' SQLVALUE

 MOVE SQLCERC TO SQLVALUE.

 DISPLAY 'REASON CODE ' SQLVALUE

 MOVE SQLCERC TO SQLVALUE.

 DISPLAY 'ERROR CODE ' SQLVALUE

 MOVE SQLCNRP TO SQLVALUE.

 DISPLAY 'ROWS PROCESSED ' SQLVALUE

 MOVE 4 TO REQUEST-CODE.

 CALL 'IDMSIN01' USING SQLRPB, REQ-WK,

 SQLCA, SQLMSGS.

 IF REQUEST-RETURN NOT = 4

 MOVE 1 TO LINE-CNT

 PERFORM DISP-MSG UNTIL LINE-CNT > SQLMCNT

 DISP-MSG SECTION.

 DISPLAY SQLMLINE (LINE-CNT).

 ADD 1 TO LINE-CNT.

Executing Prepared CALL Statements

Chapter 8: Using Dynamic SQL 193

Executing Prepared CALL Statements

This section presents a sample program that prepares a CALL statement and executes it
dynamically. A discussion of the concepts involved precedes the sample program.

What to Do

Declaring a Cursor

To execute a prepared CALL statement, the program must first declare a cursor for the
prepared statement. The sample program declares this cursor:

EXEC SQL

 DECLARE CURSOR1 CURSOR FOR CALL_STATEMENT

END-EXEC.

Preparing the Statement

Before opening a cursor defined with a dynamic SQL statement, the program must
prepare the statement. The sample program issues this PREPARE statement:

EXEC SQL

 PREPARE CALL_STATEMENT FROM :STATEMENT-TEXT

END-EXEC.

Building the Statement Text

In the sample program, the host variable STATEMENT-TEXT contains a character string

consisting of a fixed portion of the statement to which input text is added when the
program executes.

The fixed portion of the statement specifies the CALL statement. This part of the
statement is initialized in working storage:

01 FIRST-PART-OF-STATEMENT.

 02 FILLER PIC X(8) VALUE 'CALL '.

The variable portion of the statement, which specifies the procedure-reference in the

form of [schema].procedure [parameters], is completed when BUILD-SQL-STATEMENT
section of the program executes.

Executing Prepared CALL Statements

194 Programming Guide

Declaring Host Variables for 3 Parameters

The sample program performs a fetch into 3 host variables after it opens the cursor.

The sample program declares the following host variables within an SQL declaration:

01 DETAIL-LINE.

 02 P1 PIC 9(10).

 02 FILLER PIC X(3) VALUE SPACES.

 02 P2 PIC 9(10).

 02 FILLER PIC X(3) VALUE SPACES.

 02 P3 PIC X(32) VALUE SPACES.

 02 FILLER PIC X(3) VALUE SPACES.

01 DBNAME PIC X(8).

01 STATEMENT-TEXT PIC X(641).

Executing the Fetch

After the program builds the statement text, prepares the statement, and opens the
cursor, it issues the fetch:

FETCH-ROWS SECTION.

EXEC SQL

 FETCH CURSOR1 INTO :P1,

 :P2,

 :P3

END-EXEC.

MOVE 1 TO ROW-CTR.

PERFORM DISPLAY-ROW UNTIL

 ROW-CTR > SQLCNRP.

Sample Program

 IDENTIFICATION DIVISION.

 PROGRAM-ID. DYNCALL.

 * *

 * *

 * DYNCALL will read a procedure-reference and execute it *

 * dynamically. *

 * *

 * It is assumed that the procedure has 3 parameters, *

 * P1 and P2 are numeric, P3 is alphanumeric. *

Executing Prepared CALL Statements

Chapter 8: Using Dynamic SQL 195

 ENVIRONMENT DIVISION.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 01 SQLMSGS.

 02 SQLMMAX PIC S9(8) COMP VALUE +6.

 02 SQLMSIZE PIC S9(8) COMP VALUE +80.

 02 SQLMCNT PIC S9(8) COMP.

 02 SQLMLINE OCCURS 6 TIMES PIC X(80).

 01 REQ-WK.

 02 REQUEST-CODE PIC S9(8) COMP.

 02 REQUEST-RETURN PIC S9(8) COMP.

 77 LINE-CNT PIC S9(8) COMP.

 01 LIMITS-AND-CONSTANTS.

 02 MAX-TEXT-LINES PIC S9 COMP VALUE 5.

 01 FIRST-PART-OF-STATEMENT.

 02 FILLER PIC X(8) VALUE

 'CALL '.

 01 HEADING-LINE.

 02 FILLER PIC X(13) VALUE

 'P1 PIC 9(10)'.

 02 FILLER PIC X(13) VALUE

 'P2 PIC 9(10)'.

 02 FILLER PIC X(33) VALUE

 'P3 X(32)'.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC

 01 DETAIL-LINE.

 02 P1 PIC 9(10).

 02 FILLER PIC X(3) VALUE SPACES.

 02 P2 PIC 9(10).

 02 FILLER PIC X(3) VALUE SPACES.

 02 P3 PIC X(32) VALUE SPACES.

 02 FILLER PIC X(3) VALUE SPACES.

 01 DBNAME PIC X(8).

 01 STATEMENT-TEXT PIC X(641).

 EXEC SQL END DECLARE SECTION END-EXEC

Executing Prepared CALL Statements

196 Programming Guide

 01 WORK-FIELDS.

 02 ROW-CTR PIC S99 COMP.

 02 TEXT-CTR PIC S99 COMP.

 02 INPUT-LINE.

 03 END-CHAR PIC X.

 88 END-STATEMENT VALUE ';'.

 03 FILLER PIC X(79).

 02 SQLVALUE PIC ----9.

 01 STATEMENT-TXT2.

 02 FIXED-PART PIC X(8).

 02 VARIABLE-PART.

 03 TEXT-LINES OCCURS 5 TIMES PIC X(80).

 ***** DECLARE CURSORS *****

 EXEC SQL

 DECLARE CURSOR1 CURSOR FOR CALL_STATEMENT

 END-EXEC

 PROCEDURE DIVISION.

 EXEC SQL

 WHENEVER SQLERROR GO TO SQL-ERROR

 END-EXEC.

 MAINLINE SECTION.

 ACCEPT DBNAME.

 MOVE FIRST-PART-OF-STATEMENT TO FIXED-PART.

 MOVE 1 TO TEXT-CTR.

 PERFORM BUILD-SQL-STATEMENT

 UNTIL TEXT-CTR > MAX-TEXT-LINES.

 IF END-STATEMENT

 PERFORM PREPARE-AND-OPEN-CURSOR

Executing Prepared CALL Statements

Chapter 8: Using Dynamic SQL 197

 PERFORM FETCH-ROWS

 UNTIL SQLCODE = 100

 EXEC SQL COMMIT RELEASE END-EXEC.

 GOBACK.

 BUILD-SQL-STATEMENT SECTION.

 IF NOT END-STATEMENT

 ACCEPT INPUT-LINE

 DISPLAY INPUT-LINE.

 IF NOT END-STATEMENT

 MOVE INPUT-LINE TO TEXT-LINES(TEXT-CTR)

 ELSE

 MOVE SPACES TO TEXT-LINES(TEXT-CTR).

 ADD 1 TO TEXT-CTR.

 PREPARE-AND-OPEN-CURSOR SECTION.

 EXEC SQL -- CONNECT TO DATABASE

 CONNECT TO :DBNAME

 END-EXEC.

 EXEC SQL -- SET ISOLATION MODE

 SET TRANSACTION TRANSIENT READ

 END-EXEC.

 MOVE STATEMENT-TXT2 TO STATEMENT-TEXT.

 EXEC SQL -- PREPARE THE CALL

 PREPARE CALL_STATEMENT FROM :STATEMENT-TEXT

 END-EXEC.

 EXEC SQL -- OPEN THE CURSOR

 OPEN CURSOR1

 END-EXEC.

 DISPLAY ' '.

 DISPLAY ' '.

 DISPLAY HEADING-LINE.

 DISPLAY ' '.

 FETCH-ROWS SECTION.

 EXEC SQL

 FETCH CURSOR1

 INTO :P1, :P2, :P3

Dynamic SQL Caching

198 Programming Guide

 END-EXEC.

 MOVE 1 TO ROW-CTR.

 PERFORM DISPLAY-ROW

 UNTIL ROW-CTR > SQLCNRP.

 DISPLAY-ROW SECTION.

 DISPLAY DETAIL-LINE.

 ADD 1 TO ROW-CTR.

 SQL-ERROR SECTION.

 DISPLAY '****************** ERROR IN SQL STATEMENT'

 ' ******************'.

 DISPLAY 'PROGRAM ' SQLPGM

 DISPLAY 'COMPILED ' SQLDTS

 MOVE SQLCLNO TO SQLVALUE.

 DISPLAY 'SQL LINE NUMBER ' SQLVALUE

 MOVE SQLCODE TO SQLVALUE.

 DISPLAY 'SQLCODE ' SQLVALUE

 MOVE SQLCERC TO SQLVALUE.

 DISPLAY 'REASON CODE ' SQLVALUE

 MOVE SQLCERC TO SQLVALUE.

 DISPLAY 'ERROR CODE ' SQLVALUE

 MOVE SQLCNRP TO SQLVALUE.

 DISPLAY 'ROWS PROCESSED ' SQLVALUE

 MOVE 4 TO REQUEST-CODE.

 CALL 'IDMSIN01' USING SQLRPB, REQ-WK,

 SQLCA, SQLMSGS.

 IF REQUEST-RETURN NOT = 4

 MOVE 1 TO LINE-CNT

 PERFORM DISP-MSG UNTIL LINE-CNT > SQLMCNT.

 DISP-MSG SECTION.

 DISPLAY SQLMLINE (LINE-CNT).

 ADD 1 TO LINE-CNT.

Dynamic SQL Caching

Dynamic SQL caching is a common technique used to improve performance in an SQL
environment. Caching works in the following manner: when a dynamic SQL statement is

compiled, a copy of the SQL statement and the result of the SQL compilation are saved
in a cache. For each subsequent SQL compilation request, the cache is searched. If the
statement is found, the matching compiled structures are used instead of recompiling
the statement. This improves performance by eliminating the I/O requests to read the

catalog and the CPU usage required to invoke the SQL optimizer for subsequent
executions of the same dynamic SQL statement.

Dynamic SQL Caching

Chapter 8: Using Dynamic SQL 199

In most cases, the savings in resource consumption due to bypassing the SQL
compilation are significantly greater than the extra cost associated with caching the SQL

source, access plans, and related structures.

Note: At this time, only the SELECT, UPDATE, and DELETE SQL statements are cacheable.

Searching the Cache

When a search is made in the cache for a matching SQL statement, a cache hit occ urs

when a matching entry is found. The following factors are considered in determining
whether an SQL statement matches a cache entry:

■ The text of the statement

■ The default schema in effect for the SQL session

■ The dictionary to which the SQL session is connected

■ Whether the statement references temporary tables

A literal comparison of the statement's text is made against each cache entry until a
match is found. A l iteral comparison avoids the overhead of parsi ng but has the

consequence that an entry may not match because of differences in such things as case
and spacing. For example, the following three statements are considered different if
using a l iteral comparison:

Select * from EMPLOYEE

Select * from EMPLOYEE

select * from employee

Specifying values as l iterals instead of as dynamic parameters can also result in unequal
comparisons. The following two statements would be textually identical if a dynamic

parameter had been used in place of the numeric values 100 and 101:

select * from DEMOEMPL.EMPLOYEE where EMP_ID = 100

select * from DEMOEMPL.EMPLOYEE where EMP_ID = 101

Note: While the use of dynamic parameters can increase the frequency of finding a
matching cache entry, it may occasionally prevent the optimizer from choosing the most
efficient access strategy.

Dynamic SQL Caching

200 Programming Guide

When a dynamic statement that relies on a default schema is cached, both the
statement text and the default schema are saved. When the cache is searched for a

statement that relies on a default schema, both the statement's text and the session's
default schema must be equal to their cached equivalents for the entry to match.
Consider the following two statements. The first will match a cached entry regardless of

the default schema in effect for the SQL session. The second will match only if the
default schema in effect for the SQL session is the same as that in the cache:

select * from DEMOEMPL.EMPLOYEE

select * from EMPLOYEE

The name of the dictionary to which an SQL session is connected is always saved in the
cache and compared to the session's dictionary during a search of the cache. If the two
are not the same, then the cache entry does not match.

If an SQL statement references a temporary table, it will not be cached since each
temporary table instance can be structurally different from others of the same name.
Therefore, no statement that references a temporary table will match a cache entry.

Impact of Database Definition Changes

Database definition changes may or may not be detected automatically based on
whether the database is SQL-defined or non-SQL-defined. This has consequences for
dynamic SQL caching as explained next.

SQL-Defined Databases and Caching

Because SQL-defined databases have an associated catalog and because areas for
SQL-defined databases have timestamps, CA IDMS is able to automatically detect
definitional changes that impact cached SQL statements. Whenever a statement needs
recompilation, CA IDMS automatically detects this condition and recompiles the

affected statement dynamically.

Non-SQL-Defined Databases and Caching

Non-SQL-defined databases do not have timestamps for automatically determining

whether a database's definition accurately describes the under lying data. Consequently,
when changing the structure of a non-SQL-defined database, it is the administrator's
responsibility to ensure that all SQL statements impacted by the change are recompiled.
If dynamic SQL caching is not used, then this entails recompiling access modules that

reference the affected database. If dynamic SQL caching is used, then it also entails
purging the cache of statements that reference the affected database. This can be done
by deleting rows from the SYSCA.DSCCACHE or SYSCA.DSCCACHEV tables.

Note: For more information about these tables, see the CA IDMS SQL Reference Guide.

Dynamic SQL Caching

Chapter 8: Using Dynamic SQL 201

It is also recommended that dynamic SQL caching be disabled during the transition
period in which the definitional changes are being implemented. For information on

how to do this, see Controlling the Cache (see page 201).

CA IDMS will detect the need to recompile cached SQL statements if a change is made
to the referencing SQL schema through which a non-SQL-defined schema is referenced.

It does this by comparing the update stamp of the referencing SQL schema to the
compile stamp of the cached statement.

Controlling the Cache

There are various ways that an individual user and a DBA can control dynamic SQL

caching. Three ways are discussed following:

■ Establishing caching attributes for an individual SQL session by is suing a SET
SESSION statement

■ Establishing default caching attributes for a central version through a system

generation SQL CACHE statement

■ Establishing default caching attributes for a local mode job by specifying a SYSIDMS
SQL_CACHE_ENTRIES parameter.

Note: For more information about the SET SESSION statement, the various tables that
control caching and examples of how to display and control the cache using SQL, see the

CA IDMS SQL Reference Guide. For more information about the SQL CACHE system
generation statement, see the CA IDMS System Generation Guide. For more information
about SYSIDMS parameter SQL_CACHE_ENTRIES, see the CA IDMS Common Facilities

Guide.

Appendix A: Sample JCL 203

Appendix A: Sample JCL

Sample JCL or commands for executing the precompile, access module creation,
compile, and link edit steps on four operating systems are provided in this section.

This section contains the following topics:

z/OS (see page 203)
z/VSE (see page 209)

z/VM (see page 212)

z/OS

The following sample JCL streams contain the steps required to make a host language
source program with embedded SQL into the form of executable modules. The first
example is for execution under the central version, and the second example is for

execution in local mode.

The host language for the examples is COBOL 1. Change the specification of precompiler
name, precompiler options, and compiler name according to the host language and
version of your program.

Following the second example is a table that gi ves the meaning of variables used in the
examples.

Central Version JCL

//***

//** PRECOMPILE COBOL PROGRAM **

//***

//precomp EXEC PGM=IDMSDMLC,REGION=1024K,

// PARM='optional precompiler parameters'

//STEPLIB DD DSN=idms.dba.loadlib,DISP=SHR

// DD DSN=idms.loadlib,DISP=SHR

//sysctl DD DSN=idms.sysctl,DISP=SHR

//dcmsg DD DSN=idms.sysmsg.ddldcmsg,DISP=SHR

//SYS001 DD UNIT=disk,SPACE=(TRK,(10,10))

//SYS002 DD UNIT=disk,SPACE=(TRK,(10,10))

//SYS003 DD UNIT=disk,SPACE=(TRK,(10,10))

//SYSPCH DD DSN=&.&.source,DISP=(NEW,PASS),

// UNIT=disk,SPACE=(TRK,(10,5),RLSE),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120)

//SYSLST DD SYSOUT=A

//SYSIDMS DD *

z/OS

204 Programming Guide

DMCL=dmcl-name

DICTNAME=dictionary-name

Additional SYSIDMS parameters, as appropriate

/*

//SYSIPT DD *

Host language source statements with embedded SQL

/*

//***

//** CREATE ACCESS MODULE **

//***

//accmod EXEC PGM=IDMSBCF,REGION=1024K

//STEPLIB DD DSN=idms.dba.loadlib,DISP=SHR

// DD DSN=idms.loadlib,DISP=SHR

//sysctl DD DSN=idms.sysctl,DISP=SHR

//dcmsg DD DSN=idms.sysmsg.ddldcmsg,DISP=SHR

//SYSLST DD SYSOUT=A

//SYSIDMS DD *

DMCL=dmcl-name

DICTNAME=dictionary-name

Additional SYSIDMS parameters, as appropriate

/*

//SYSIPT DD *

CREATE ACCESS MODULE statement ;

COMMIT WORK RELEASE ;

/*

//***

//** COMPILE COBOL PROGRAM **

//***

//compile EXEC PGM=IKFCBL00,REGION=240K,

// PARM='DECK,NOLOAD,NOLIB,BUF=500000,SIZE=150K'

//STEPLIB DD DSN=sys1.cobol.linklib,DISP=SHR

//SYSUT1 DD UNIT=disk,SPACE=(TRK,(10,5))

//SYSUT2 DD UNIT=disk,SPACE=(TRK,(10,5))

//SYSUT3 DD UNIT=disk,SPACE=(TRK,(10,5))

//SYSUT4 DD UNIT=disk,SPACE=(TRK,(10,5))

//SYSPUNCH DD DSN=&.&.object,DISP=(NEW,PASS),

// UNIT=disk,SPACE=(TRK,(10,5),RLSE),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120)

z/OS

Appendix A: Sample JCL 205

//SYSPRINT DD SYSOUT=A

//SYSIN DD DSN=&.&.source,DISP=(OLD,DELETE)

//***

//** LINK PROGRAM MODULE **

//***

//link EXEC PGM=IEWL,REGION=300K,PARM='LET,LIST,XREF'

//SYSUT1 DD UNIT=disk,SPACE=(TRK,(20,5))

//SYSLIB DD DSN=sys1.coblib,DISP=SHR

//loadlib DD DSN=idms.loadlib,DISP=SHR

//SYSLMOD DD DSN=user.loadlib,DISP=SHR

//SYSPRINT DD SYSOUT=A

//SYSLIN DD DSN=&.&.object,DISP=(OLD,DELETE)

// DD *

 INCLUDE loadlib(IDMS) ◄──────────── Non-CICS only

 INCLUDE loadlib(IDMSCINT) ◄──────────── CICS only

 ENTRY userentry

 NAME userprog(R)

/*

//*

Local Mode JCL

//***

//** PRECOMPILE COBOL PROGRAM **

//***

//precomp EXEC PGM=IDMSDMLC,REGION=1024K,

// PARM='precompiler parameters'

//STEPLIB DD DSN=idms.dba.loadlib,DISP=SHR

// DD DSN=idms.loadlib,DISP=SHR

//dictb DD DSN=idms.appldict.ddldml,DISP=SHR

//dloddb DD DSN=idms.appldict.ddldclod,DISP=SHR

//sqldd DD DSN=idms.syssql.ddlcat,DISP=SHR

//sqlxdd DD DSN=idms.syssql.ddlcatx,DISP=SHR

//sqllod DD DSN=idms.syssql.ddlcatl,DISP=SHR

//dcmsg DD DSN=idms.sysmsg.ddldcmsg,DISP=SHR

//sysjrnl DD DSN=idms.tapejrnl,DISP=(NEW,CATLG,UNIT=tape

//SYS001 DD UNIT=disk,SPACE=(TRK,(10,10))

//SYS002 DD UNIT=disk,SPACE=(TRK,(10,10))

//SYS003 DD UNIT=disk,SPACE=(TRK,(10,10))

//SYSPCH DD DSN=&.&.source,DISP=(NEW,PASS,DELETE),

// UNIT=disk,SPACE=(TRK,(10,5),RLSE),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120)

//SYSLST DD SYSOUT=A

z/OS

206 Programming Guide

//SYSIDMS DD *

DMCL=dmcl-name

DICTNAME=dictionary-name

Additional SYSIDMS parameters, as appropriate

/*

//SYSIPT DD *

Host language source statements with embedded SQL

/*

//***

//** CREATE ACCESS MODULE **

//***

//accmod EXEC PGM=IDMSBCF,REGION=1024K

//STEPLIB DD DSN=idms.dba.loadlib,DISP=SHR

// DD DSN=idms.loadlib,DISP=SHR

//dictb DD DSN=idms.appldict.ddldml,DISP=SHR

//dloddb DD DSN=idms.appldict.ddldclod,DISP=SHR

//sqldd DD DSN=idms.syssql.ddlcat,DISP=SHR

//sqlxdd DD DSN=idms.syssql.ddlcatx,DISP=SHR

//sqllod DD DSN=idms.syssql.ddlcatl,DISP=SHR

//dcmsg DD DSN=idms.sysmsg.ddldcmsg,DISP=SHR

//sysjrnl DD DSN=idms.tapejrnl,DISP=(NEW,CATLG,UNIT=tape

//SYSLST DD SYSOUT=A

//SYSIDMS DD *

DMCL=dmcl-name

DICTNAME=dictionary-name

Additional SYSIDMS parameters, as appropriate

/*

//SYSIPT DD *

CREATE ACCESS MODULE statement ;

COMMIT WORK RELEASE ;

/*

//***

//** COMPILE COBOL PROGRAM **

//***

//compile EXEC PGM=IKFCBL00,REGION=240K,

// PARM='DECK,NOLOAD,NOLIB,BUF=500000,SIZE=150K'

//STEPLIB DD DSN=sys1.cobol.linklib,DISP=SHR

//SYSUT1 DD UNIT=disk,SPACE=(TRK,(10,5))

//SYSUT2 DD UNIT=disk,SPACE=(TRK,(10,5))

//SYSUT3 DD UNIT=disk,SPACE=(TRK,(10,5))

z/OS

Appendix A: Sample JCL 207

//SYSUT4 DD UNIT=disk,SPACE=(TRK,(10,5))

//SYSPUNCH DD DSN=&.&.object,DISP=(NEW,PASS,DELETE),

// UNIT=disk,SPACE=(TRK,(10,5),RLSE),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120)

//SYSPRINT DD SYSOUT=A

//SYSIN DD DSN=&.&.source,DISP=(OLD,DELETE)

//***

//** LINK PROGRAM MODULE **

//***

//link EXEC PGM=IEWL,REGION=300K,PARM='LET,LIST,XREF'

//SYSUT1 DD UNIT=disk,SPACE=(TRK,(20,5))

//SYSLIB DD DSN=sys1.coblib,DISP=SHR

//loadlib DD DSN=idms.loadlib,DISP=SHR

//SYSLMOD DD DSN=user.loadlib,DISP=SHR

//SYSPRINT DD SYSOUT=A

//SYSLIN DD DSN=&.&.object,DISP=(OLD,DELETE)

// DD *

 INCLUDE loadlib(IDMS) ◄──────────── Non-CICS only

 INCLUDE loadlib(IDMSCINT) ◄──────────── CICS only

 ENTRY userentry

 NAME userprog(R)

/*

//*

Note: The link of CICS application programs that use IDMSCINT must incorporate JCL to

resolve external reference DFHEI1. The particular JCL depends on the nature and
language of your application. For more information, see the appropriate IBM CICS
application programming documentation.

Variable Definitions

Variable Definition

accmod Stepname for batch Command Facil ity execution of the
CREATE ACCESS MODULE statement

compile Stepname for the compile step

dcmsg DDname of the system message area (DDLDCMSG)

dictb DDname of the application dictionary definition area
(DDLDML)

dictionary-name Name of the dictionary containing the SQL definition areas

disk Symbolic device name for workfiles

dloddb DDname of the application dictionary definition load area
(DDLDCLOD)

z/OS

208 Programming Guide

Variable Definition

dmcl-name Name of the DMCL

idms.appldict.ddldclod Data set name of the application dictionary definition load
area (DDLDCLOD)

idms.appldict.ddldml Data set name of the application dictionary definition area

(DDLDML)

idms.dba.loadlib Data set name of the load library containing the DMCL and
database name table load modules

idms.loadlib Data set name of the load library containing the CA IDMS

executable modules

idms.sysctl Data set name of the SYSCTL fi le

idms.sysmsg.ddldcmsg Data set name of the system message area (DDLDCMSG)

idms.syssql.ddlcat Data set name of the SQL definition area (DDLCAT) of the

application dictionary

idms.syssql.ddlcatl Data set name of the SQL definition load area (DDLCATLOD)
of the application dictionary

idms.syssql.ddlcatx Data set name of the SQL definition index area (DDLCATX) of
the application dictionary

idms.tapejrnl Data set name of the tape journal fi le

loadlib DDname of the load library containing the CA IDMS

executable modules

precomp Stepname for the precompile step

sqldd DDname of the SQL definition area (DDLCAT) of the

application dictionary

sqllod DDname of the SQL definition load area (DDLCATLOD) of the
application dictionary

sqlxdd DDname of the SQL definition index area (DDLCATX) of the

application dictionary

sysctl DDname of the SYSCTL fi le

sysjrnl DDname of the tape journal fi le

sys1.cobol.l inklib Data set name of the library containing the host language
compiler module

sys1.coblib Data set name of the library containing host language
compiler subroutines

tape Symbolic device name for tape journal fi le

userentry Entry point for the user program

z/VSE

Appendix A: Sample JCL 209

Variable Definition

user.loadlib Data set name of the load library containing executable

modules for user programs

userprog Name of the user program

&.&object. Host language compiler output to be passed to the linkage

editor

&.&source. Precompiler output to be passed to the host language
compiler

z/VSE

The following sample JCL stream contains the steps required to make a host language
source program with embedded SQL into form of executable modules. Complete JCL for
central version execution is presented, foll owed by modifications for local mode

execution.

The host language for the examples is COBOL. Change the specification of precompiler
name, precompiler options, and compiler name according to the host language and
version of your program.

Following the sample JCL is a table that gives the meaning of variables used in the
examples along with a set of usage notes.

Central Version JCL

** PRECOMPILE COBOL PROGRAM **

// EXEC PROC=IDMSLBLS

// DLBL idmspch,temp.dmlc,0

// EXTENT SYS020,nnnnnn,,,ssss,llll

// ASSGN SYS020,DISK,VOL=nnnnnn,SHR

// EXEC IDMSDMLC

Optional precompiler parameters

/*

DMCL=dmcl-name

DICTNAME=dictionary-name

Additional SYSIDMS parameters, as appropriate

/*

Host language source statements with embedded SQL

/*

** CREATE ACCESS MODULE **

z/VSE

210 Programming Guide

// EXEC IDMSBCF

DMCL=dmcl-name

DICTNAME=dictionary-name

Additional SYSIDMS parameters, as appropriate

/*

CREATE ACCESS MODULE statement ;

COMMIT WORK RELEASE ;

/*

** COMPILE COBOL PROGRAM **

// DLBL IJSYSIN,temp.dmlc,0

// EXTENT SYSIPT,nnnnnn

// ASSGN SYSIPT,DISK,VOL=nnnnnn,SHR

// OPTION CATAL,NODECK,NOSYM

// PHASE userprog,*

// EXEC FCOBOL

** LINK PROGRAM MODULE **

// CLOSE SYSIPT,SYSRDR

INCLUDE IDMS ◄──────────── Non-CICS only

INCLUDE IDMSCINT ◄──────────── CICS only

ENTRY(userentry)

// EXEC LNKEDT

/*

Variable Definitions

Variable Definition

dictionary-name Name of the dictionary containing the SQL definitions

dmcl-name Name of the DMCL

f File number of the tape journal fi le

idmspch Host language compiler output to be passed to the linkage
editor

idms.tapejrnl File ID of the tape journal fi le

l l l l Number of tracks (CKD) or blocks (FBA) of disk extent

nnnnnn Volume serial identifier of appropriate disk volume

ssss Starting track (CKD) or block (FBA) of disk extent

sysjrnl Filename of the tape journal fi le

temp.dmlc File ID of the precompiler output

z/VSE

Appendix A: Sample JCL 211

Variable Definition

userentry Entry point for the user program

userprog Name of the user program

Local Mode JCL

To execute in local mode, add these statements to the precompile step:

// TLBL sysjrnl,'idms.tapejrnl',nnnnnn,,f

// ASSGN SYS009,TAPE,VOL=nnnnnn

Note: The link of CICS application programs that use IDMSCINT must incorporate JCL to
resolve external reference DFHEI1. The particular JCL depends on the nature and
language of your application. See the appropriate IBM CICS application programming
documentation for details.

Usage

IDMSLBLS Procedure

IDMSLBLS is a procedure provided during a CA IDMS z/VSE installation. It contains fi le
definitions for these CA IDMS components:

■ Dictionaries

■ Demonstration databases

■ Disk journal fi les

■ SYSIDMS fi le

Individual fi le definitions for these components do not appear in the sample JCL. The

IDMSLBLS procedure should be tailored to reflect site-specific names and CA IDMS z/VSE
job streams.

Logical Unit Assignments

These logical unit assignments appear in the sample JCL:

■ SYS020—Precompiler output

■ SYS009—Journal fi le (local mode)

z/VM

212 Programming Guide

COBOL Internal Sort

For programs that include a COBOL internal sort, place these statements in the compile

step before the EXEC statement:

■ ACTION NOAUTO—Prevents multiple inclusions of IDMS

■ INCLUDE IDMS—IDMS interface for use with COMRG

■ INCLUDE IDMSOPTI—IDMSOPTI module

If IDMSOPTI is included, place this statement after the EXEC PROC=IDMSLBLS

statement:

// UPSI b

where b is the appropriate one- through eight-character UPSI switch.

■ INCLUDE IDMSCANC—For local mode, abort entry point

z/VM

The sample command sequence that follows contains the steps required to make a host
language source program with embedded SQL into form of executable modules.

The host language for the example is COBOL. Change the specification of precompiler
name, precompiler options, and compiler name according to the host language and

version of your program.

Following the example is a table that gives the meaning of variables used in the
examples and a set of usage notes.

Commands for Central Version Execution

/***/

/** PRECOMPILE COBOL PROGRAM **/

/***/

FILEDEF sysipt1 DISK program source a

FILEDEF sysidms1 DISK sysidms1 parms a

FILEDEF syspch DISK progname COBOL A3

FILEDEF SYSLST PRINTER

OSRUN IDMSDMLC PARM='optional precompiler parameters'

/***/

/** CREATE ACCESS MODULE **/

/***/

z/VM

Appendix A: Sample JCL 213

FILEDEF sysipt2 DISK create accmod a

FILEDEF sysidms2 DISK sysidms2 parms a

OSRUN IDMSBCF

/***/

/** COMPILE COBOL PROGRAM **/

/***/

FILEDEF TEXT DISK progname TEXT A3

COBOL progname (OSDECK APOST LIB

TXTLIB DEL utextlib progname

TXTLIB ADD utextlib progname

/***/

/** LINK PROGRAM MODULE **/

/***/

FILEDEF SYSLST PRINTER

FILEDEF SYSLMOD uloadlib LOADLIB A6 (RECFM V LRECL 1024 BLKSIZE 1024

FILEDEF objlib DISK utextlib TXTLIB a

FILEDEF SYSLIB DISK coblibvs TXTLIB p

LKED linkctl (LIST XREF LET MAP RENT NOTERM PRINT SIZE 512K 64K

Linkage editor control statements (in linkctl):

INCLUDE objlib(progname)

INCLUDE objlib1(IDMS)

ENTRY progname

NAME progname(R)

Variable Definitions

Variable Definition

coblibvs TEXTLIB p Filename, fi letype, and fi lemode of the library that contains
host language compiler modules

create accmod a Filename of the fi le containing the CREATE ACCESS MODULE

statement

l inkctl Fi lename of the fi le that contains the linkage editor control
statements

loadlib DDname of the load library containing the CA IDMS

executable modules

objlib DDname of the user object l ibrary

z/VM

214 Programming Guide

Variable Definition

objlib1 DDname of the CA IDMS object l ibrary

program COBOL A3 Fi lename, fi letype, and fi lemode of the precompiler output

progname Name of the user program

program source a Filename of the fi le containing the program source

sysidms1 DDname for the fi le of SYSIDMS parameters for the
precompiler step

sysidms1 parms a Filename of the fi le containing SYSIDMS parameters for the
precompiler step

sysidms2 DDname for the fi le of SYSIDMS parameters for the step to
create the access module

sysidms2 parms a Filename of the fi le containing SYSIDMS parameters for the
step to create the access module

sysipt1 DDname for the program source fi le

sysipt2 DDname for the fi le containing the CREATE ACCESS MODULE
statement

syspch DDname for the precompiler output

uloadlib LOADLIB A6 Fi lename, fi letype, and fi lemode of the user load library

utextlib TXTLIB a Filename, fi letype, and fi lemode of the user text l ibrary

Usage

Local Mode

To specify that the precompiler is executing in local mode, perform one of the following:

■ Link the program with an IDMSOPTI program that specifies local execution mode

■ Specify *LOCAL* as the first input parameter of the fi lename, type and mode
identified by idmspass input a in the IDMSFD exec.

■ Modify the OSRUN statement:

OSRUN IDMSDMCL PARM='*LOCAL*'

Note: This option is valid only if the OSRUN command is issued from a System

Product interpreter or an EXEC2 fi le.

A local mode job should contain fi le definitions to include the following in the
precompile step and the step to create the access module:

z/VM

Appendix A: Sample JCL 215

Variable Definitions

Variable Definition

dcmsg DDname of the system message area
(DDLDCMSG)

dictb DDname of the application dictionary definition
area (DDLDML)

dloddb DDname of the application dictionary definition
load area (DDLDCLOD)

idms.appldict.ddldclod File name of the application dictionary definition
load area (DDLDCLOD)

idms.appldict.ddldml File name of the application dictionary definition
area (DDLDML)

idms.sysmsg.ddldcmsg File name of the system message area
(DDLDCMSG)

idms.syssql.ddlcat File name of the SQL definition area (DDLCAT) of

the application dictionary

idms.syssql.ddlcatl Fi le name of the SQL definition load area
(DDLCATLOD) of the application dictionary

idms.syssql.ddlcatx File name of the SQL definition index area

(DDLCATX) of the application dictionary

idms.tapejrnl File name of the tape journal fi le

sqldd DDname of the SQL definition area (DDLCAT) of

the application dictionary

sqllod DDname of the SQL definition load area
(DDLCATLOD) of the application dictionary

sqlxdd DDname of the SQL definition index area

(DDLCATX) of the application dictionary

sysjrnl DDname of the tape journal fi le

A local mode job should contain fi le definitions to include the following in the step to

create the access module:

z/VM

216 Programming Guide

SYSIPT File

To create a sysipt fi le:

1. Type XEDIT sysipt data a (NOPROF on the z/VM command line and press Enter

2. Type INPUT on the XEDIT command line and press Enter

3. Type in the IDMSPASS input parameters in input mode

4. Press Enter to exit input mode

5. Type FILE on the XEDIT command line and press Enter

SYSIDMS File

To execute the precompiler and create the access module, you should include these
SYSIDMS parameters:

■ DMCL=dmcl-name, to identify the DMCL

■ DICTNAME=dictionary-name, to identify the dictionary whose catalog component
contains the database definitions

To create a fi le of SYSIDMS parameters:

1. Type XEDIT sysidms data a (NOPROF on the z/VM command line and press Enter

2. Type INPUT on the XEDIT command line and press Enter

3. Type in the SYSIDMS parameters in input mode

4. Press Enter to exit input mode

5. Type FILE on the XEDIT command line and press Enter

Note: For more information about documentation of SYSIDMS parameters,. see the CA
IDMS Common Facilities Guide.

Appendix B: Test Database 217

Appendix B: Test Database

Complete information about the data in the test database, supplied with CA IDMS, to
which most of the sample programs in this guide refer, is presented in this section. You
can use this information to develop SQL programs that access the test database.

This section contains the following topics:

Table Names and Descriptions (see page 217)

Test Data (see page 222)
Test Database DDL (see page 227)
Demo Data (see page 237)

Table Names and Descriptions

This section contains information for the following tables:

■ ASSIGNMENT

■ BENEFITS

■ CONSULTANT

■ COVERAGE

■ DEPARTMENT

■ DIVISION

■ EMPLOYEE

■ EXPERTISE

■ INSURANCE_PLAN

■ JOB

■ POSITION

■ PROJECT

■ SKILL

ASSIGNMENT

EMP_ID Employee ID

PROJ_ID ID of project to which employee is assigned

START_DATE Date employee was assigned to the project

Table Names and Descriptions

218 Programming Guide

END_DATE Date employee completed work on the project

BENEFITS

FISCAL_YEAR Fiscal year for which this data applies

EMP_ID Employee ID

VAC_ACCRUED Vacation hours accrued to date

VAC_TAKEN Vacation hours taken to date

SICK_ACCRUED Sick days accrued to date

SICK_TAKEN Sick days taken to date

STOCK_PERCENT Percentage of earnings allocated to stock purchase

STOCK_AMOUNT Year-to-date amount deducted for stock purchase

LAST_REVIEW_DATE Date of last employee review

REVIEW_PERCENT Percent increase at last review

PROMO_DATE Date of last promotion

RETIRE_PLAN Retirement fund identifier: STOCK, BONDS, 401K

RETIRE_PERCENT Percentage of earnings deducted for retirement

BONUS_AMOUNT Amount of last bonus

COMP_ACCRUED Hours of compensation time accrued

COMP_TAKEN Hours of compensation time taken

EDUC_LEVEL Level of education: GED, HSDIP, JRCOLL, COLL, MAS, PHD

UNION_ID Union identification number

UNION_DUES Amount of dues deducted per pay period

CONSULTANT

CON_ID Unique consultant ID

CON_FNAME Consultant's first name

CON_LNAME Consultant's last name

MANAGER_ID Employee ID of consultant's manager

DEPT_ID ID of department to which consultant is assigned

Table Names and Descriptions

Appendix B: Test Database 219

PROJ_ID ID of project to which consultant is assigned

STREET Consultant's street address

CITY Consultant's city

STATE Consultant's state

ZIP_CODE Consultant's zip code

PHONE Consultant's phone

BIRTH_DATE Birth date

START_DATE Consultant's date of hire

SS_NUMBER Social security number

RATE Hourly rate of pay

COVERAGE

PLAN_CODE Code of insurance plan providing the coverage

EMP_ID Employee ID of employee having the coverage

SELECTION_DATE Date employee selected this insurance plan

TERMINATION_DATE Date employee terminated this insurance plan; if null,
plan is sti l l in force

NUM_DEPENDENTS Number of dependents covered under this insurance
plan

DEPARTMENT

DEPT_ID Unique department ID

DEPT_HEAD_ID Employee ID of department head

DIV_CODE Code of the division to which this department belongs

DEPT_NAME Department name

DIVISION

DIV_CODE Unique division ID

DIV_HEAD_ID Employee ID of division head

Table Names and Descriptions

220 Programming Guide

DIV_NAME Division name

EMPLOYEE

EMP_ID Unique employee ID

MANAGER_ID Employee ID of employee's manager

EMP_FNAME Employee's first name

EMP_LNAME Employee's last name

DEPT_ID ID of department to which employee is assigned

STREET Employee's street address

CITY Employee's city

STATE Employee's state

ZIP_CODE Employee's zip code

PHONE Employee's phone

STATUS Status of employee: (A) Active; (S) Short-term disability;
(L) Long term disability

SS_NUMBER Social security number

START_DATE Employee's date of hire

TERMINATION_DATE Date of termination

BIRTH_DATE Birth date

EXPERTISE

EMP_ID Employee ID

SKILL_ID Skil l ID

SKILL_LEVEL Level of ability in this skil l: 01 (low) to 04 (high)

EXP_DATE Date this level of ability was achieved

INSURANCE_PLAN

PLAN_CODE Unique plan code for company offering the insurance

Table Names and Descriptions

Appendix B: Test Database 221

COMP_NAME Name of insurance company

STREET Street address of insurance company

CITY City address of insurance company

STATE State address of insurance company

ZIP_CODE Zip code of insurance company

PHONE Telephone number of insurance company

GROUP_NUMBER Commonwealth's group number for this insurance company

DEDUCT Dollar amount deductible per year for this insurance plan

MAX_LIFE_BENEFIT Maximum dollar amount to be paid to insured employee

FAMILY_COST Amount deducted per paycheck for family coverage

DEP_COST Additional amount deducted per paycheck per dependent

EFF_DATE Date this coverage plan became effective

JOB

JOB_ID Unique job ID

JOB_TITLE Job title

MIN_RATE Minimum salary/hourly rate for this job

MAX_RATE Maximum salary/hourly rate for this job

SALARY_IND Indicator for type of salary: (S) salaried; (H) hourly

NUM_OF_POSITIONS Total number of positions for this job

NUM_OPEN Number of positions currently open

EFF_DATE Date this job became effective

JOB_DESLINE_1 First l ine of job description

JOB_DESLINE_2 Second line of job description

POSITION

EMP_ID Employee ID

JOB_ID Job ID associated with this employee

START_DATE Date employee began this job

Test Data

222 Programming Guide

FINISH_DATE Date employee ended this job (null if current)

HOURLY_RATE Hourly rate earned while in this job (if hourly position)

SALARY_AMOUNT Yearly salary earned whi le in this job (if salaried position)

BONUS_PERCENT Bonus percent amount for this position (if sales position)

COMM_PERCENT Commission percent for this position (if sales position)

OVERTIME_RATE Overtime rate for this position (if hourly position)

PROJECT

PROJ_ID Unique project ID

PROJ_LEADER_ID Employee ID of project leader

EST_START_DATE Estimated date project is to begin

EST_END_DATE Estimated date project is to end

ACT_START_DATE Actual date project began

ACT_END_DATE Actual date project ended

EST_MAN_HOURS Total number of hours estimated for project

ACT_MAN_HOURS Actual number of hours required for project

PROJ_DESC Project description

SKILL

SKILL_ID Unique skil l ID

SKILL_NAME Skill name

SKILL_DESC Skil l description

Test Data

This section lists the test data stored in the test database for the following:

■ Departments

■ Divisions

Test Data

Appendix B: Test Database 223

■ Insurance Plans

■ Jobs

■ Projects

■ Skills

Departments

Code Name Division code Head ID

3510 Appraisal - Used cars D02 3082

2200 Sales - Used cars D02 2180

1100 Purchasing - Used cars D02 2246

3520 Appraisal - New cars D04 3769

2210 Sales - New cars D04 2010

4200 Leasing - New cars D04 1003

1110 Purchasing - New cars D04 1765

1120 Purchasing - Service D06 2004

4600 Maintenance D06 2096

3530 Appraisal - Service D06 2209

5100 Bill ing D06 2598

6200 Corporate Administration D09 2461

5200 Corporate Marketing D09 2894

5000 Corporate Accounting D09 2466

4900 MIS D09 2466

6000 Legal D09 1003

4500 Human Resources D09 3222

Divisions

Division code Division name Head ID

D02 Used cars 2180

D04 New cars 2010

Test Data

224 Programming Guide

Division code Division name Head ID

D06 Service 4321

D09 Corporate 1003

Insurance Plans

Plan ID Name

PLI Providential Life Insurance

HHM Homeostasis Health Maintenance Program

HGH Holistic Group Health Association

DAS Dental Associates

Jobs

Job ID Name Minimum salary Maximum
salary

Salaried/ hourly No.

8001 Vice president 90000 136000 S 1

4023 Accountant 44000 120000 S 1

2051 AP Clerk 8.80 14.60 H 2

2053 AR Clerk 8.80 14.60 H 3

2077 Purch Clerk 17000 30000 S 3

3029 Computer Operator 25500 44000 S 1

3051 Data Entry Clerk 8.50 11.45 H 1

6011 Manager - Acctng 59400 121000 S 1

4560 Mechanic 11.45 21.00 H 7

4666 Sr Mechanic 41000 91000 S 1

4734 Mkting Admin 25000 62000 S 2

3333 Sales Trainee 21600 39000 S 4

5555 Salesperson 30000 79500 S 9

6004 Manager - HR 66000 138000 S 1

6021 Manager - Mktng 76000 150000 S 1

Test Data

Appendix B: Test Database 225

Job ID Name Minimum salary Maximum
salary

Salaried/ hourly No.

2055 PAYROLL CLERK 17000 30000 S 1

4025 Writer - Mktng 31000 50000 S 1

9001 President 111000 190000 S 1

4123 Recruiter 35000 56000 S 1

4130 Benefits Analyst 35000 56000 S 1

4012 Admin Asst 21000 44000 S 4

5111 CUST SER REP 27000 54000 S 4

4700 Purch Agent 33000 60000 S 5

5890 Appraisal Spec 45000 70000 S 5

5110 CUST SERVICE MGR 40000 108000 S 1

Projects

Project ID Description

P634 TV ads - WTVK

C200 New brand research

P400 Christmas media

C203 Consumer study

C240 Service study

D880 System analysis

Skills

Skill ID Name

4444 Assembly

3333 Bodywork

3088 Brake work

3065 Electronics

1030 Acct Mgt

Test Data

226 Programming Guide

Skill ID Name

5130 Basic math

5160 Calculus

4250 Data entry

4370 Fil ing

5200 General Acctng

5500 General Mktng

5430 Mktng Writing

5420 Writing

4490 Gen Ledger

4430 Interviewing

1000 Management

4420 Telephone

5180 Statistics

4410 Typing

5309 Appraising

6770 Purchasing

7000 Sales

6666 Bill ing

6650 Diesel Engine Repair

6670 Gas Engine Repair

6470 Window Installation

Test Database DDL

Appendix B: Test Database 227

Test Database DDL

This section contains the SQL DDL that creates the demonstration databa se provided
with the installation of CA IDMS.

* Create schema for the following tables. Then set session qualifier

* for that schema

 CREATE SCHEMA DEMOEMPL;

 SET SESSION CURRENT SCHEMA DEMOEMPL;

* Create the tables that belong to the schema DEMOEMPL. Each

* table is associated with an area in the segment DEMOEMPL.

 CREATE TABLE BENEFITS

 (FISCAL_YEAR UNSIGNED NUMERIC(4,0) NOT NULL,

 EMP_ID UNSIGNED NUMERIC(4,0) NOT NULL,

 VAC_ACCRUED UNSIGNED DECIMAL(6,2) NOT NULL WITH DEFAULT,

 VAC_TAKEN UNSIGNED DECIMAL(6,2) NOT NULL WITH DEFAULT,

 SICK_ACCRUED UNSIGNED DECIMAL(6,2) NOT NULL WITH DEFAULT,

 SICK_TAKEN UNSIGNED DECIMAL(6,2) NOT NULL WITH DEFAULT,

 STOCK_PERCENT UNSIGNED DECIMAL(6,3) NOT NULL WITH DEFAULT,

 STOCK_AMOUNT UNSIGNED DECIMAL(10,2) NOT NULL WITH DEFAULT,

 LAST_REVIEW_DATE DATE ,

 REVIEW_PERCENT UNSIGNED DECIMAL(6,3) ,

 PROMO_DATE DATE ,

 RETIRE_PLAN CHAR(6) ,

 RETIRE_PERCENT UNSIGNED DECIMAL(6,3) ,

 BONUS_AMOUNT UNSIGNED DECIMAL(10,2) ,

 COMP_ACCRUED UNSIGNED DECIMAL(6,2) NOT NULL WITH DEFAULT,

 COMP_TAKEN UNSIGNED DECIMAL(6,2) NOT NULL WITH DEFAULT,

 EDUC_LEVEL CHAR(06) ,

 UNION_ID CHAR(10) ,

 UNION_DUES UNSIGNED DECIMAL(10,2) ,

 CHECK ((RETIRE_PLAN IN ('STOCK', 'BONDS', '401K')) AND

 (EDUC_LEVEL IN ('GED', 'HSDIP', 'JRCOLL', 'COLL',

 'MAS', 'PHD'))))

 IN SQLDEMO.EMPLAREA;

Test Database DDL

228 Programming Guide

 CREATE TABLE COVERAGE

 (PLAN_CODE CHAR(03) NOT NULL,

 EMP_ID UNSIGNED NUMERIC(4,0) NOT NULL,

 SELECTION_DATE DATE NOT NULL WITH DEFAULT,

 TERMINATION_DATE DATE ,

 NUM_DEPENDENTS UNSIGNED NUMERIC(2,0) NOT NULL WITH DEFAULT)

 IN SQLDEMO.EMPLAREA;

 CREATE TABLE DEPARTMENT

 (DEPT_ID UNSIGNED NUMERIC(4,0) NOT NULL,

 DEPT_HEAD_ID UNSIGNED NUMERIC(4,0) ,

 DIV_CODE CHAR(03) NOT NULL,

 DEPT_NAME CHAR(40) NOT NULL)

 IN SQLDEMO.INFOAREA;

 CREATE TABLE DIVISION

 (DIV_CODE CHAR(03) NOT NULL,

 DIV_HEAD_ID UNSIGNED NUMERIC(4,0) ,

 DIV_NAME CHAR(40) NOT NULL)

 IN SQLDEMO.INFOAREA;

 CREATE TABLE EMPLOYEE

 (EMP_ID UNSIGNED NUMERIC(4,0) NOT NULL,

 MANAGER_ID UNSIGNED NUMERIC(4,0) ,

 EMP_FNAME CHAR(20) NOT NULL,

 EMP_LNAME CHAR(20) NOT NULL,

 DEPT_ID UNSIGNED NUMERIC(4,0) NOT NULL,

 STREET CHAR(40) NOT NULL,

 CITY CHAR(20) NOT NULL,

 STATE CHAR(02) NOT NULL,

Test Database DDL

Appendix B: Test Database 229

 ZIP_CODE CHAR(09) NOT NULL,

 PHONE CHAR(10) ,

 STATUS CHAR NOT NULL,

 SS_NUMBER UNSIGNED NUMERIC(9,0) NOT NULL,

 START_DATE DATE NOT NULL,

 TERMINATION_DATE DATE ,

 BIRTH_DATE DATE ,

 CHECK ((EMP_ID <= 8999) AND (STATUS IN ('A', 'S', 'L', 'T'))))

 IN SQLDEMO.EMPLAREA;

 CREATE TABLE INSURANCE_PLAN

 (PLAN_CODE CHAR(03) NOT NULL,

 COMP_NAME CHAR(40) NOT NULL,

 STREET CHAR(40) NOT NULL,

 CITY CHAR(20) NOT NULL,

 STATE CHAR(02) NOT NULL,

 ZIP_CODE CHAR(09) NOT NULL,

 PHONE CHAR(10) NOT NULL,

 GROUP_NUMBER UNSIGNED NUMERIC(4,0) NOT NULL,

 DEDUCT UNSIGNED DECIMAL(9,2) ,

 MAX_LIFE_BENEFIT UNSIGNED DECIMAL(9,2) ,

 FAMILY_COST UNSIGNED DECIMAL(9,2) ,

 DEP_COST UNSIGNED DECIMAL(9,2) ,

 EFF_DATE DATE NOT NULL)

 IN SQLDEMO.INFOAREA;

 CREATE TABLE JOB

 (JOB_ID UNSIGNED NUMERIC(4,0) NOT NULL,

 JOB_TITLE CHAR(20) NOT NULL,

 MIN_RATE UNSIGNED DECIMAL(10,2) ,

 MAX_RATE UNSIGNED DECIMAL(10,2) ,

 SALARY_IND CHAR(01) ,

 NUM_OF_POSITIONS UNSIGNED DECIMAL(4,0) ,

Test Database DDL

230 Programming Guide

 EFF_DATE DATE ,

 JOB_DESC_LINE_1 VARCHAR(60) ,

 JOB_DESC_LINE_2 VARCHAR(60) ,

 CHECK (SALARY_IND IN ('S', 'H')))

 IN SQLDEMO.INFOAREA;

 CREATE TABLE POSITION

 (EMP_ID UNSIGNED NUMERIC(4,0) NOT NULL,

 JOB_ID UNSIGNED NUMERIC(4,0) NOT NULL,

 START_DATE DATE NOT NULL,

 FINISH_DATE DATE ,

 HOURLY_RATE UNSIGNED DECIMAL(7,2) ,

 SALARY_AMOUNT UNSIGNED DECIMAL(10,2) ,

 BONUS_PERCENT UNSIGNED DECIMAL(7,3) ,

 COMM_PERCENT UNSIGNED DECIMAL(7,3) ,

 OVERTIME_RATE UNSIGNED DECIMAL(5,2) ,

 CHECK ((HOURLY_RATE IS NOT NULL AND SALARY_AMOUNT IS NULL)

 OR (HOURLY_RATE IS NULL AND SALARY_AMOUNT IS NOT NULL)))

 IN SQLDEMO.EMPLAREA;

 CREATE SCHEMA DEMOPROJ;

 SET SESSION CURRENT SCHEMA DEMOPROJ;

* Create the tables that belong to the schema DEMOPROJ. Each

* table is associated with an area in the segment PROJSEG.

 CREATE TABLE ASSIGNMENT

 (EMP_ID UNSIGNED NUMERIC(4,0) NOT NULL,

 PROJ_ID CHAR(10) NOT NULL,

 START_DATE DATE NOT NULL,

 END_DATE DATE)

 IN PROJSEG.PROJAREA;

Test Database DDL

Appendix B: Test Database 231

 CREATE TABLE CONSULTANT

 (CON_ID UNSIGNED NUMERIC(4,0) NOT NULL,

 CON_FNAME CHAR(20) NOT NULL,

 CON_LNAME CHAR(20) NOT NULL,

 MANAGER_ID UNSIGNED NUMERIC(4,0) NOT NULL,

 DEPT_ID UNSIGNED NUMERIC(4,0) NOT NULL,

 PROJ_ID CHAR(10) ,

 STREET CHAR(40) ,

 CITY CHAR(20) NOT NULL,

 STATE CHAR(02) NOT NULL,

 ZIP_CODE CHAR(09) NOT NULL,

 PHONE CHAR(10) ,

 BIRTH_DATE DATE ,

 START_DATE DATE NOT NULL,

 SS_NUMBER UNSIGNED NUMERIC(9,0) NOT NULL,

 RATE UNSIGNED DECIMAL(7,2) ,

 CHECK ((CON_ID >= 9000 AND CON_ID <= 9999)))

 IN PROJSEG.PROJAREA;

 CREATE TABLE EXPERTISE

 (EMP_ID UNSIGNED NUMERIC(4,0) NOT NULL,

 SKILL_ID UNSIGNED NUMERIC(4,0) NOT NULL,

 SKILL_LEVEL CHAR(02) ,

 EXP_DATE DATE)

 IN PROJSEG.PROJAREA;

 CREATE TABLE PROJECT

 (PROJ_ID CHAR(10) NOT NULL,

 PROJ_LEADER_ID UNSIGNED NUMERIC(4,0) ,

 EST_START_DATE DATE ,

 EST_END_DATE DATE ,

 ACT_START_DATE DATE ,

 ACT_END_DATE DATE ,

 EST_MAN_HOURS UNSIGNED DECIMAL(7,2) ,

Test Database DDL

232 Programming Guide

 ACT_MAN_HOURS UNSIGNED DECIMAL(7,2) ,

 PROJ_DESC VARCHAR(60) NOT NULL)

 IN PROJSEG.PROJAREA;

 CREATE TABLE SKILL

 (SKILL_ID UNSIGNED NUMERIC(4,0) NOT NULL,

 SKILL_NAME CHAR(20) NOT NULL,

 SKILL_DESC VARCHAR(60))

 IN PROJSEG.PROJAREA;

* Name calc keys for above tables (in order that they were defined)

 CREATE UNIQUE CALC KEY ON DEMOEMPL.DEPARTMENT(DEPT_ID);

 CREATE UNIQUE CALC KEY ON DEMOEMPL.DIVISION(DIV_CODE);

 CREATE UNIQUE CALC KEY ON DEMOEMPL.EMPLOYEE(EMP_ID);

 CREATE UNIQUE CALC KEY ON DEMOEMPL.INSURANCE_PLAN(PLAN_CODE);

 CREATE UNIQUE CALC KEY ON DEMOEMPL.JOB(JOB_ID);

 CREATE UNIQUE CALC KEY ON DEMOPROJ.CONSULTANT(CON_ID);

 CREATE UNIQUE CALC KEY ON DEMOPROJ.PROJECT(PROJ_ID);

 CREATE UNIQUE CALC KEY ON DEMOPROJ.SKILL(SKILL_ID);

* Create unique indexes for tables in order in which they were defined

 CREATE UNIQUE INDEX AS_EMPROJ_NDX ON

 DEMOPROJ.ASSIGNMENT(EMP_ID,PROJ_ID);

 CREATE UNIQUE INDEX EX_EMPSKILL_NDX ON

 DEMOPROJ.EXPERTISE(EMP_ID, SKILL_ID);

Test Database DDL

Appendix B: Test Database 233

* Create nonunique indexes for tables in order in which they

* were defined

 CREATE INDEX CO_CODE_NDX ON DEMOEMPL.COVERAGE(PLAN_CODE)

 IN SQLDEMO.INDXAREA;

 CREATE INDEX DE_CODE_NDX ON DEMOEMPL.DEPARTMENT(DIV_CODE);

 CREATE INDEX DI_HEAD_NDX ON DEMOEMPL.DIVISION(DIV_HEAD_ID);

 CREATE INDEX DE_HEAD_NDX ON DEMOEMPL.DEPARTMENT(DEPT_HEAD_ID);

 CREATE INDEX EM_MANAGER_NDX ON DEMOEMPL.EMPLOYEE(MANAGER_ID)

 IN SQLDEMO.INDXAREA;

 CREATE INDEX EM_NAME_NDX ON DEMOEMPL.EMPLOYEE(EMP_LNAME, EMP_FNAME)

 IN SQLDEMO.INDXAREA;

 CREATE INDEX EM_DEPT_NDX ON DEMOEMPL.EMPLOYEE(DEPT_ID)

 IN SQLDEMO.INDXAREA;

 CREATE INDEX IN_NAME_NDX ON DEMOEMPL.INSURANCE_PLAN(COMP_NAME)

 COMPRESSED;

 CREATE INDEX PO_JOB_NDX ON DEMOEMPL.POSITION(JOB_ID)

 IN SQLDEMO.INDXAREA;

 CREATE INDEX CN_NAME_NDX

 ON DEMOPROJ.CONSULTANT(CON_LNAME,CON_FNAME);

* Create referential constraints

 CREATE CONSTRAINT EMP_BENEFITS

 DEMOEMPL.BENEFITS (EMP_ID) REFERENCES

 DEMOEMPL.EMPLOYEE (EMP_ID)

 LINKED CLUSTERED

 ORDER BY (FISCAL_YEAR DESC);

 CREATE CONSTRAINT INSPLAN_COVERAGE

Test Database DDL

234 Programming Guide

 DEMOEMPL.COVERAGE (PLAN_CODE) REFERENCES

 DEMOEMPL.INSURANCE_PLAN (PLAN_CODE)

 UNLINKED;

 CREATE CONSTRAINT EMP_COVERAGE

 DEMOEMPL.COVERAGE (EMP_ID) REFERENCES

 DEMOEMPL.EMPLOYEE (EMP_ID)

 LINKED CLUSTERED

 ORDER BY (PLAN_CODE) UNIQUE;

 CREATE CONSTRAINT DIVISION_DEPT

 DEMOEMPL.DEPARTMENT (DIV_CODE) REFERENCES

 DEMOEMPL.DIVISION (DIV_CODE)

 UNLINKED;

 CREATE CONSTRAINT EMP_DEPT_HEAD

 DEMOEMPL.DEPARTMENT (DEPT_HEAD_ID) REFERENCES

 DEMOEMPL.EMPLOYEE (EMP_ID)

 UNLINKED;

 CREATE CONSTRAINT EMP_DIV_HEAD

 DEMOEMPL.DIVISION (DIV_HEAD_ID) REFERENCES

 DEMOEMPL.EMPLOYEE (EMP_ID)

 UNLINKED;

 CREATE CONSTRAINT DEPT_EMPLOYEE

 DEMOEMPL.EMPLOYEE (DEPT_ID) REFERENCES

 DEMOEMPL.DEPARTMENT (DEPT_ID)

 UNLINKED;

 CREATE CONSTRAINT MANAGER_EMP

 DEMOEMPL.EMPLOYEE (MANAGER_ID) REFERENCES

 DEMOEMPL.EMPLOYEE (EMP_ID)

 UNLINKED;

 CREATE CONSTRAINT SKILL_EXPERTISE

 DEMOPROJ.EXPERTISE (SKILL_ID) REFERENCES

 DEMOPROJ.SKILL (SKILL_ID)

 LINKED CLUSTERED;

 CREATE CONSTRAINT EMP_POSITION

 DEMOEMPL.POSITION (EMP_ID) REFERENCES

Test Database DDL

Appendix B: Test Database 235

 DEMOEMPL.EMPLOYEE (EMP_ID)

 LINKED CLUSTERED

 ORDER BY (JOB_ID) UNIQUE;

 CREATE CONSTRAINT JOB_POSITION

 DEMOEMPL.POSITION (JOB_ID) REFERENCES

 DEMOEMPL.JOB (JOB_ID)

 UNLINKED;

 CREATE CONSTRAINT PROJECT_ASSIGN

 DEMOPROJ.ASSIGNMENT (PROJ_ID) REFERENCES

 DEMOPROJ.PROJECT (PROJ_ID)

 LINKED CLUSTERED;

 CREATE CONSTRAINT PROJECT_CONSULT

 DEMOPROJ.CONSULTANT (PROJ_ID) REFERENCES

 DEMOPROJ.PROJECT (PROJ_ID)

 LINKED INDEX

 ORDER BY (PROJ_ID);

* Alter tables to remove default indexes as necessary

 ALTER TABLE DEMOEMPL.COVERAGE

 DROP DEFAULT INDEX;

 ALTER TABLE DEMOEMPL.DEPARTMENT

 DROP DEFAULT INDEX;

 ALTER TABLE DEMOEMPL.DIVISION

 DROP DEFAULT INDEX;

 ALTER TABLE DEMOEMPL.EMPLOYEE

 DROP DEFAULT INDEX;

 ALTER TABLE DEMOEMPL.INSURANCE_PLAN

 DROP DEFAULT INDEX;

 ALTER TABLE DEMOEMPL.POSITION

Test Database DDL

236 Programming Guide

 DROP DEFAULT INDEX;

 ALTER TABLE DEMOPROJ.ASSIGNMENT

 DROP DEFAULT INDEX;

 ALTER TABLE DEMOPROJ.CONSULTANT

 DROP DEFAULT INDEX;

 ALTER TABLE DEMOPROJ.EXPERTISE

 DROP DEFAULT INDEX;

* Create views

 CREATE VIEW DEMOEMPL.EMP_VACATION

 (EMP_ID, DEPT_ID, VAC_TIME)

 AS SELECT E.EMP_ID, DEPT_ID, SUM(VAC_ACCRUED) - SUM(VAC_TAKEN)

 FROM DEMOEMPL.EMPLOYEE E, DEMOEMPL.BENEFITS B

 WHERE E.EMP_ID = B.EMP_ID

 GROUP BY DEPT_ID, E.EMP_ID;

 CREATE VIEW DEMOEMPL.OPEN_POSITIONS

 (JOB_ID, JOB_NAME, OPEN_POS)

 AS SELECT J.JOB_ID, J.JOB_TITLE,

 (J.NUM_OF_POSITIONS - COUNT(P.JOB_ID))

 FROM DEMOEMPL.JOB J, DEMOEMPL.POSITION P

 WHERE P.FINISH_DATE IS NULL AND P.JOB_ID = J.JOB_ID

 PRESERVE DEMOEMPL.JOB

 GROUP BY J.JOB_ID, J.JOB_TITLE, J.NUM_OF_POSITIONS

 HAVING (J.NUM_OF_POSITIONS - COUNT(P.JOB_ID)) > 0;

* Create updatable views

 CREATE VIEW DEMOEMPL.EMP_HOME_INFO

 AS SELECT EMP_ID, EMP_LNAME, EMP_FNAME, STREET, CITY, STATE,

 ZIP_CODE, PHONE

 FROM DEMOEMPL.EMPLOYEE;

 CREATE VIEW DEMOEMPL.EMP_WORK_INFO

 AS SELECT EMP_ID, MANAGER_ID, START_DATE, TERMINATION_DATE

 FROM DEMOEMPL.EMPLOYEE;

Demo Data

Appendix B: Test Database 237

Demo Data

INSERT INTO DEMOEMPL.DIVISION

 VALUES ('D02', NULL, 'USED CARS');

INSERT INTO DEMOEMPL.DIVISION

 VALUES ('D04', NULL, 'NEW CARS');

INSERT INTO DEMOEMPL.DIVISION

 VALUES ('D06', NULL, 'SERVICE');

INSERT INTO DEMOEMPL.DIVISION

 VALUES ('D09', NULL, 'CORPORATE');

INSERT INTO DEMOEMPL.DEPARTMENT

 VALUES (3510, NULL, 'D02', 'APPRAISAL - USED CARS');

INSERT INTO DEMOEMPL.DEPARTMENT

 VALUES (2200, NULL, 'D02', 'SALES - USED CARS');

INSERT INTO DEMOEMPL.DEPARTMENT

 VALUES (1100, NULL, 'D02', 'PURCHASING - USED CARS');

INSERT INTO DEMOEMPL.DEPARTMENT

 VALUES (3520, NULL, 'D04', 'APPRAISAL NEW CARS');

INSERT INTO DEMOEMPL.DEPARTMENT

 VALUES (2210, NULL, 'D04', 'SALES - NEW CARS');

INSERT INTO DEMOEMPL.DEPARTMENT

 VALUES (4200, NULL, 'D04', 'LEASING - NEW CARS');

INSERT INTO DEMOEMPL.DEPARTMENT

 VALUES (1110, NULL, 'D04', 'PURCHASING - NEW CARS');

INSERT INTO DEMOEMPL.DEPARTMENT

 VALUES (1120, NULL, 'D06', 'PURCHASING - SERVICE');

INSERT INTO DEMOEMPL.DEPARTMENT

 VALUES (4600, NULL, 'D06', 'MAINTENANCE');

INSERT INTO DEMOEMPL.DEPARTMENT

 VALUES (3530, NULL, 'D06', 'APPRAISAL - SERVICE');

INSERT INTO DEMOEMPL.DEPARTMENT

 VALUES (5100, NULL, 'D06', 'BILLING');

INSERT INTO DEMOEMPL.DEPARTMENT

 VALUES (6200, NULL, 'D09', 'CORPORATE ADMINISTRATION');

INSERT INTO DEMOEMPL.DEPARTMENT

 VALUES (5200, NULL, 'D09', 'CORPORATE MARKETING');

INSERT INTO DEMOEMPL.DEPARTMENT

 VALUES (5000, NULL, 'D09', 'CORPORATE ACCOUNTING');

INSERT INTO DEMOEMPL.DEPARTMENT

 VALUES (4900, NULL, 'D09', 'MIS');

INSERT INTO DEMOEMPL.DEPARTMENT

 VALUES (6000, NULL, 'D09', 'LEGAL');

Demo Data

238 Programming Guide

INSERT INTO DEMOEMPL.DEPARTMENT

 VALUES (4500, NULL, 'D09', 'HUMAN RESOURCES');

INSERT INTO DEMOPROJ.PROJECT

 values ('P634', 3411, '2000-02-01', '2000-03-01',

 null, null, 320, null, 'TV ads - WTVK');

INSERT INTO DEMOPROJ.PROJECT

 values ('C200', 3411, '1999-01-15', '2000-04-30', '1999-01-15',

 '2000-04-30', 1776, 2010, 'New brand research');

INSERT INTO DEMOPROJ.PROJECT

 values ('P400', null, '2000-09-01', '2000-12-10',

 null, null, 2960, null, 'Christmas media');

INSERT INTO DEMOPROJ.PROJECT

 values ('C203', 2894, '1998-02-01', '1998-03-15', '1998-02-10',

 '1998-03-10', 960, 901.50, 'Consumer study');

INSERT INTO DEMOPROJ.PROJECT

 values ('C240', 4358, '1998-06-01', '1998-07-01', '1998-06-01',

 '1998-08-15', 320, 722.75, 'Service study');

INSERT INTO DEMOPROJ.PROJECT

 values ('D880', 2466, '1999-11-01', '2001-02-01',

 null, null, 960, null, 'Systems analysis');

INSERT INTO DEMOEMPL.JOB

 values (8001, 'Vice President', 90000, 136000, 'S', 1,

 '1988-01-01',

 'Takes overall responsibility upon president absence',

 'Oversees coordination among divisions and departments');

INSERT INTO DEMOEMPL.JOB

 values (4023, 'Accountant', 44000, 120000, 'S', 1,

 '1985-01-01', 'Responsible for quarterly and final reports',

' Works with outside consultants on taxes');

INSERT INTO DEMOEMPL.JOB

 values (2051, 'AP Clerk', 8.80, 14.60, 'H', 2,

 '1989-03-01',

 'Responds to incoming invoices by sending out issued checks',

 'Files invoices');

INSERT INTO DEMOEMPL.JOB

 values (2053, 'AR Clerk', 8.80, 14.60, 'H', 3,

 '1989-03-01', 'Sends out customer invoices',

 'Sends out monthly statements and accepts payments');

INSERT INTO DEMOEMPL.JOB

 values (2077, 'Purch Clerk', 17000, 30000, 'S', 3,

 '1989-03-01',

 'Responsible for soliciting quotes from vendors', null);

INSERT INTO DEMOEMPL.JOB

 values (3029, 'Computer Operator', 25000, 44000, 'S', 1,

 '1993-06-01',

 'Responsible for regular operation of computer system',

 'Calls outside maintenance as necessary');

Demo Data

Appendix B: Test Database 239

INSERT INTO DEMOEMPL.JOB

 values (3051, 'Data Entry Clerk', 8.50, 11.45, 'H', 1,

 '1993-06-02', 'Enters A/P and A/R data as necessary',

 null);

INSERT INTO DEMOEMPL.JOB

 values (6011, 'Manager - Acctng', 59400, 121000, 'S', 1,

 '1988-01-01',

 'RESPONSIBILITY FOR ACCOUNTING INCLUDING A/P AND A/R',

 null);

INSERT INTO DEMOEMPL.JOB

 values (4560, 'Mechanic', 11.45, 21.00, 'H', 7,

 '1984-01-01',

'Works under supervision of senior mechanic to repair cars', null);

INSERT INTO DEMOEMPL.JOB

 values (4666, 'Sr Mechanic', 41000, 91000, 'S', 1,

 '1988-06-01',

 'Oversees maintenance of all cars under warranty or not',

 null);

INSERT INTO DEMOEMPL.JOB

 values (4734, 'Mktng Admin', 25000, 62000, 'S', 2,

 '1994-06-01',

'Provides marketing plans and ideas for marketing', null);

INSERT INTO DEMOEMPL.JOB

 values (3333, 'Sales Trainee', 21600, 39000, 'S', 4,

 '1994-10-01',

 'Initial sales position for incoming salespeople',

 'Works under supervision of salesperson');

INSERT INTO DEMOEMPL.JOB

 values (5555, 'Salesperson', 30000, 79000, 'S', 9,

 '1984-01-01',

 'Primary responsibility to sell new or used cars', null);

INSERT INTO DEMOEMPL.JOB

 values (6004, 'Manager - HR', 66000, 138000, 'S', 1,

 '1990-06-01',

 'Responsible for hiring, benefits, and education',

 'Also responsible for OSHA compliance');

INSERT INTO DEMOEMPL.JOB

 values (6021, 'Manager - Mktng', 76000, 150000, 'S', 1,

 '1992-01-02',

 'Responsible for all marketing for used and new cars', null);

INSERT INTO DEMOEMPL.JOB

 VALUES (2055, 'PAYROLL CLERK', 17000, 30000, 'S',1,'1989-03-01',

 'Issue payroll checks to employees and maintains records', null);

Demo Data

240 Programming Guide

INSERT INTO DEMOEMPL.JOB

 values (4025, 'Writer - Mktng', 31000, 50000, 'S', 1,

'1996-06-01', 'Writes marketing material based on marketingplans',

 null);

INSERT INTO DEMOEMPL.JOB

 values (9001, 'President', 111000, 190000, 'S', 1,

 '1984-01-01', 'Overall responsibility for well-beingof company',

 null);

INSERT INTO DEMOEMPL.JOB

 values (4123, 'Recruiter', 35000, 56000, 'S', 1,

 '1994-03-01',

 'Posts job openings and submits newspaper ads for openings', null);

INSERT INTO DEMOEMPL.JOB

 values (4130, 'Benefits Analyst', 35000, 56000, 'S', 1,

 '1994-03-01',

 'Maintains benefits information, conforms to govt regulations',

 null);

INSERT INTO DEMOEMPL.JOB

 values (4012, 'Admin Asst', 21000, 44000, 'S', 4,

 '1994-03-01', 'Assists managers as necessary',

 'Answers phone, files, writes letters, etc.');

INSERT INTO DEMOEMPL.JOB

 VALUES (5111, 'CUST SER REP', 27000, 54000, 'S',4,

 '1989-06-01',

 'Provides customer support-takes care of complaints',

 'Provides information for customers over the phone');

INSERT INTO DEMOEMPL.JOB

 values (4700, 'Purch Agnt', 33000, 60000, 'S', 5,

 '1993-06-01',

'Responsible for purchasing decisions for parts and vehicles', null);

INSERT INTO DEMOEMPL.JOB

 values (5890, 'Appraisal Spec', 45000, 70000, 'S', 5,

 '1993-06-01',

 'Responsible for assessing value of vehicles traded in', null);

INSERT INTO DEMOEMPL.JOB

 VALUES (5110, 'CUST SER MGR', 40000, 108000, 'S',1, '1989-06-01',

 'Responsible for overseeing all customer support', null);

INSERT INTO DEMOPROJ.SKILL

 values (4444, 'Assembly', 'Auto body assembly experience');

INSERT INTO DEMOPROJ.SKILL

 values (3333, 'Bodywork',

 'Experience in repairing auto bodies');

Demo Data

Appendix B: Test Database 241

INSERT INTO DEMOPROJ.SKILL

 values (3088, 'Brake work', 'Brake diagnosis and repair');

INSERT INTO DEMOPROJ.SKILL

 values (3065, 'Electronics',

 'Electronic diagnosis and repair');

INSERT INTO DEMOPROJ.SKILL

 values (1030, 'Acct Mgt',

 'Experience in managing acctng activities');

INSERT INTO DEMOPROJ.SKILL

 values (5130, 'Basic Math',

 'Knowledge of basic math functions');

INSERT INTO DEMOPROJ.SKILL

 values (5160, 'Calculus',

 'Knowledge of advanced mathematics');

INSERT INTO DEMOPROJ.SKILL

 values (4250, 'Data Entry',

 'Familiarity with computer keyboard');

INSERT INTO DEMOPROJ.SKILL

 values (4370, 'Filing',

 'Ability to organize correspondence/invoices');

INSERT INTO DEMOPROJ.SKILL

 values (5200, 'Gen Acctng',

 'Familiarity with basic AR and AP');

INSERT INTO DEMOPROJ.SKILL

 values (5500, 'Gen Mktng',

 'Knowledge of basic marketing concepts');

INSERT INTO DEMOPROJ.SKILL

 values (5430, 'Mktng Writing',

 'Background in promotional writing');

INSERT INTO DEMOPROJ.SKILL

 values (5420, 'Writing', 'General writing skills');

INSERT INTO DEMOPROJ.SKILL

 values (4490, 'Gen Ledger',

 'Experience with general ledger');

INSERT INTO DEMOPROJ.SKILL

 values (4430, 'Interviewing',

 'Basic interviewing experience');

INSERT INTO DEMOPROJ.SKILL

 values (1000, 'Management', 'Experience managing people');

INSERT INTO DEMOPROJ.SKILL

 values (4420, 'Telephone', 'Basic customer support');

INSERT INTO DEMOPROJ.SKILL

 values (5180, 'Statistics',

 'Creating & evaluating statistics');

Demo Data

242 Programming Guide

INSERT INTO DEMOPROJ.SKILL

 values (4410, 'Typing', 'Minimum 60 wpm');

INSERT INTO DEMOPROJ.SKILL

 values (5309, 'Appraising', 'Used car evaluation');

INSERT INTO DEMOPROJ.SKILL

 values (6770, 'Purchasing',

 'Basic buying & negotiation procedures');

INSERT INTO DEMOPROJ.SKILL

 values (7000, 'Sales', 'Background in sales techniques');

INSERT INTO DEMOPROJ.SKILL

 values (6666, 'Billing', 'Basic billing procedures');

INSERT INTO DEMOPROJ.SKILL

 values (6650, 'Diesel Engine Repair',

 'Experience in diesel engine repair');

INSERT INTO DEMOPROJ.SKILL

 values (6670, 'Gas Engine Repair',

 'Experience in gasoline engine repair');

INSERT INTO DEMOPROJ.SKILL

 values (6470, 'Window Installation',

 'Installation of automotive windows');

INSERT INTO DEMOEMPL.EMPLOYEE

 values (1003, null, 'James', 'Baldwin', 6200,

 '21 South St', 'Boston', 'MA', '02010',

 '6173295757', 'A', 076598765, '1984-02-01',

 null, '1951-08-02');

INSERT INTO DEMOEMPL.EMPLOYEE

 values (3222, 1003, 'Louise', 'Voltmer', 4500,

 '28 Hayden St', 'Brookline', 'MA', '02066',

 '6176635520', 'A', 090588361, '1993-01-07',

 null, '1968-12-27');

INSERT INTO DEMOEMPL.EMPLOYEE

 values (4321, 1003, 'George', 'Bradley', 6200,

 '344 East Main St', 'Grover', 'MA', '02976',

 '5087463300', 'A', 082999642, '1996-08-04',

 null, '1966-10-31');

INSERT INTO DEMOEMPL.EMPLOYEE

 values (1234, 1003, 'Thomas', 'Mills', 6200,

 '14 Pleasant St', 'Brookline', 'MA', '02066',

 '6176646602', 'A', 055711009, '1985-03-14',

 null, '1969-10-19');

INSERT INTO DEMOEMPL.EMPLOYEE

 values (2466, 1003, 'Patricia', 'Bennett', 5000,

 '152B Central St', 'Medford', 'MA', '02432',

 '5089487709', 'A', 098339556, '1991-10-29',

Demo Data

Appendix B: Test Database 243

 null, '1963-12-23');

INSERT INTO DEMOEMPL.EMPLOYEE

 values (2894, 1003, 'William', 'Griffin', 5200,

 '390 Sherman St', 'Taunton', 'MA', '02678',

 '5088449008', 'A', 077442111, '1992-05-11',

 null, '1966-07-10');

INSERT INTO DEMOEMPL.EMPLOYEE

 values (2174, 3222, 'Jonathan', 'Zander', 4500,

 '54 Bradford St', 'Brookline', 'MA', '02066',

 '6176633854', 'A', 032423789, '1997-09-30',

 null, '1969-05-17');

INSERT INTO DEMOEMPL.EMPLOYEE

 values (3118, 3222, 'Alan', 'Wooding', 4500,

 '196 School St', 'Canton', 'MA', '02020',

 '5083766984', 'A', 098746783, '1992-11-18',

 null, '1969-05-17');

INSERT INTO DEMOEMPL.EMPLOYEE

 values (2461, 1234, 'Alice', 'Anderson', 6200,

 '534 Newton St', 'Medford', 'MA', '02432',

 '5083873664', 'A', 068338909, '1991-09-09',

 null, '1966-07-01');

INSERT INTO DEMOEMPL.EMPLOYEE

 values (3841, 2461, 'Michelle', 'Cromwell', 6200,

 '452 Great Rd', 'Boston', 'MA', '02010',

 '6173298763', 'A', 055848876, '1994-10-25',

 null, '1971-05-20');

INSERT INTO DEMOEMPL.EMPLOYEE

 values (4002, 2461, 'Linda', 'Roy', 6200,

 '29 Westville Ave', 'Wilmington', 'MA', '02476',

 '5088477701', 'A', 098354660, '1995-12-11',

 null, '1972-12-13');

INSERT INTO DEMOEMPL.EMPLOYEE

 values (5103, 2466, 'Adele', 'Ferguson', 5000,

 '12 York Dr', 'Brookline', 'MA', '02066',

 '6176600684', 'A', 095877432, '1999-10-11',

 null, '1977-04-19');

INSERT INTO DEMOEMPL.EMPLOYEE

 values (3449, 2466, 'Cynthia', 'Taylor', 5000,

 '201 Washington St', 'Concord', 'MA', '01342',

 '5082684508', 'A', 088930884, '1993-12-07',

 null, '1968-06-02');

Demo Data

244 Programming Guide

INSERT INTO DEMOEMPL.EMPLOYEE

 values (3411, 2894, 'Catherine', 'Williams', 5200,

 '566 Lincoln St', 'Boston', 'MA', '02010',

 null, 'A', 083356561, '1993-09-30',

 null, '1967-10-28');

INSERT INTO DEMOEMPL.EMPLOYEE

 values (4358, 2894, 'Judith', 'Robinson', 5200,

 '139 White St', 'Wilmington', 'MA', '02476',

 '5087488011', 'A', 075399870, '1996-09-13',

 null, '1964-10-24');

INSERT INTO DEMOEMPL.EMPLOYEE

 values (2781, 4358, 'Joseph', 'Thurston', 5200,

 '4 Birch St', 'Stoneham', 'MA', '02928',

 '6173286008', 'A', 087700466, '1992-04-12',

 null, '1968-11-29');

INSERT INTO DEMOEMPL.EMPLOYEE

 values (2246, 2466, 'Marylou', 'Hamel', 1100,

 '11 Main St', 'Medford', 'MA', '02432',

 '5083457789', 'A', 059975848, '1998-12-07',

 null, '1968-10-24');

INSERT INTO DEMOEMPL.EMPLOYEE

 values (4703, 2246, 'Martin', 'Halloran', 1100,

 '27 Elm St', 'Brookline', 'MA', '02066',

 '6176648290', 'A', 054475888, '1997-03-19',

 null, '1971-12-28');

INSERT INTO DEMOEMPL.EMPLOYEE

 values (5008, 2246, 'Timothy', 'Fordman', 1100,

 '60 Boston Rd', 'Brookline', 'MA', '02066',

 '6176642209', 'A', 033767754, '1998-01-31',

 null, '1973-06-07');

INSERT INTO DEMOEMPL.EMPLOYEE

 values (3082, 2894, 'John', 'Brooks', 3510,

 '129 Bedford St', 'Camden', 'MA', '02113',

 '5089273644', 'A', 098234567, '1992-07-03',

 null, '1970-09-02');

INSERT INTO DEMOEMPL.EMPLOYEE

 values (4773, 3082, 'Janice', 'Dexter', 3510,

 '399 Pine St', 'Medford', 'MA', '02432',

 '5083847566', 'A', 089675632, '1997-06-14',

 null, '1969-11-19');

Demo Data

Appendix B: Test Database 245

INSERT INTO DEMOEMPL.EMPLOYEE

 values (2180, 2894, 'Joan', 'Albertini', 2200,

 '501 Piper Rd', 'Medford', 'MA', '02432',

 '5083145366', 'A', 066783225, '1989-10-27',

 null, '1964-03-26');

INSERT INTO DEMOEMPL.EMPLOYEE

 values (4660, 2180, 'Bruce', 'MacGregor', 2200,

 '254 Waterside Rd', 'Camden', 'MA', '02113',

 '5092344620', 'A', 098363389, '1997-01-20',

 null, '1965-10-28');

INSERT INTO DEMOEMPL.EMPLOYEE

 values (3767, 2180, 'Frank', 'Lowe', 2200,

 '25 Rutland St', 'Natick', 'MA', '02364',

 '5082844094', 'A', 066985009, '1994-08-31',

 null, '1964-12-08');

INSERT INTO DEMOEMPL.EMPLOYEE

 values (2448, 2180, 'David', 'Lynn', 2200,

 '93 Hubbard St', 'Natick', 'MA', '02364',

 '5082844736', 'A', 028448958, '1991-09-01',

 null, '1961-03-02');

INSERT INTO DEMOEMPL.EMPLOYEE

 values (3704, 2448, 'Richard', 'Moore', 2200,

 '130 Swanson St', 'Dedham', 'MA', '02026',

 '6177739440', 'A', 095435467, '1994-04-10',

 null, '1961-11-23');

INSERT INTO DEMOEMPL.EMPLOYEE

 values (1765, 2466, 'David', 'Alexander', 1110,

 '18 Cross St', 'Grover', 'MA', '02976',

 '5087394772', 'A', 048903743, '1985-10-23',

 null, '1955-11-13');

INSERT INTO DEMOEMPL.EMPLOYEE

 values (2106, 1765, 'Susan', 'Widman', 1110,

 '43 Oak St', 'Medford', 'MA', '02432',

 '5083346364', 'A', 109857893, '1989-05-01',

 null, '1971-05-11');

INSERT INTO DEMOEMPL.EMPLOYEE

 values (3769, 2894, 'Julie', 'Donelson', 3520,

 '14 Atwood Rd', 'Grover', 'MA', '02976',

 '5084850432', 'A', 067783532, '1994-08-31',

 null, '1967-08-15');

Demo Data

246 Programming Guide

INSERT INTO DEMOEMPL.EMPLOYEE

 values (2010, 2894, 'Cora', 'Parker', 2210,

 '2 Spring St', 'Boston', 'MA', '02010',

 null, 'A', 086574983, '1988-03-18',

 null, '1962-05-25');

INSERT INTO DEMOEMPL.EMPLOYEE

 values (4001, 2010, 'Jason', 'Thompson', 2210,

 '3 Flintlock St', 'Natick', 'MA', '02364',

 '5082649956', 'A', 054578957, '1995-12-11',

 null, '1964-08-15');

INSERT INTO DEMOEMPL.EMPLOYEE

 values (4008, 2010, 'Robert', 'Clark', 2210,

 '54 Tenny St', 'Brookline', 'MA', '02066',

 null, 'A', 198546272, '1996-01-23',

 null, '1959-11-01');

INSERT INTO DEMOEMPL.EMPLOYEE

 values (4962, 2010, 'Peter', 'White', 2210,

 '1440 Mass Ave', 'Boston', 'MA', '02010',

 '6177732280', 'A', 123395857, '1997-10-04',

 null, '1959-07-01');

INSERT INTO DEMOEMPL.EMPLOYEE

 values (3764, 2010, 'Deborah', 'Park', 2210,

 '379 Center St', 'Brookline', 'MA', '02066',

 '6179458377', 'A', 034222564, '1994-08-25',

 null, '1960-03-08');

INSERT INTO DEMOEMPL.EMPLOYEE

 values (5090, 2010, 'Stephen', 'Wills', 2210,

 '34 Avon Dr', 'Canton', 'MA', '02020',

 '5083389935', 'A', 012434452, '1998-07-12',

 null, '1972-04-25');

INSERT INTO DEMOEMPL.EMPLOYEE

 values (3991, 2010, 'Fred', 'Wilkins', 2210,

 '344 Stevens St', 'Taunton', 'MA', '02678',

 '5081840883', 'A', 026475929, '1994-11-12',

 null, '1963-03-29');

INSERT INTO DEMOEMPL.EMPLOYEE

 values (4027, 3991, 'Cecile', 'Courtney', 2210,

 '99 West Main St', 'Natick', 'MA', '02364',

 '5089445386', 'A', 012209982, '1996-04-01',

 null, '1967-07-07');

Demo Data

Appendix B: Test Database 247

INSERT INTO DEMOEMPL.EMPLOYEE

 values (3778, 2466, 'Jane', 'Ferndale', 5100,

 '15 Dawson St', 'Medford', 'MA', '02432',

 '6173450099', 'A', 10477822, '1994-09-07',

 null, '1962-11-30');

INSERT INTO DEMOEMPL.EMPLOYEE

 values (2598, 3778, 'Mary', 'Jacobs', 5100,

 '24A Main St', 'Camden', 'MA', '02113',

 null, 'A', 339000022, '1992-01-03',

 null, '1974-05-02');

INSERT INTO DEMOEMPL.EMPLOYEE

 values (2004, 2466, 'Eleanor', 'Johnson', 1120,

 '225 Fisk St', 'Medford', 'MA', '02432',

 '5089253998', 'A', 01010885, '1988-02-28',

 null, '1952-12-23');

INSERT INTO DEMOEMPL.EMPLOYEE

 values (3294, 2004, 'Carolyn', 'Johnson', 1120,

 '79 High St', 'Brookline', 'MA', '02066',

 '6175567551', 'A', 038800922, '1993-02-19',

 null, '1967-10-05');

INSERT INTO DEMOEMPL.EMPLOYEE

 values (3338, 2004, 'Mark', 'White', 1120,

 '560 Camden St', 'Canton', 'MA', '02020',

 '6179238844', 'A', 055002432, '1993-07-02',

 null, '1964-08-15');

INSERT INTO DEMOEMPL.EMPLOYEE

 values (2209, 2894, 'Michael', 'Smith', 3530,

 '201 Summer St', 'Brookline', 'MA', '02066',

 '6175563331', 'A', 093666540, '1990-06-17',

 null, '1959-12-13');

INSERT INTO DEMOEMPL.EMPLOYEE

 values (3341, 2209, 'Carl', 'Smith', 3530,

 '18 South St', 'Newton', 'MA', '02576',

 '6179658099', 'A', 033970385, '1993-07-02',

 null, '1962-02-03');

INSERT INTO DEMOEMPL.EMPLOYEE

 values (2096, 4321, 'Thomas', 'Carlson', 4600,

 '23 Hemmingway Ln', 'Brookline', 'MA', '02066',

 '6175553643', 'A', 041783445, '1989-01-26',

 null, '1964-04-14');

Demo Data

248 Programming Guide

INSERT INTO DEMOEMPL.EMPLOYEE

 values (2437, 2096, 'Henry', 'Thompson', 4600,

 '1467 West Ave', 'Boston', 'MA', '02030',

 '6179264105', 'S', 44622905, '1991-08-06',

 null, '1966-10-12');

INSERT INTO DEMOEMPL.EMPLOYEE

 values (3433, 2096, 'Herbert', 'Crane', 4600,

 '20 W Bloomfield Ave', 'Newton', 'MA', '02456',

 '6178653440', 'A', 209338445, '1993-11-01',

 null, '1958-05-30');

INSERT INTO DEMOEMPL.EMPLOYEE

 values (1034, 2096, 'James', 'Gallway', 4600,

 '12 East Speen St', 'Stoneham', 'MA', '02928',

 '6172251178', 'A', 067775312, '1984-02-01',

 null, '1951-11-23');

INSERT INTO DEMOEMPL.EMPLOYEE

 values (2424, 1034, 'Ronald', 'Wilder', 4600,

 '30 Heron Ave', 'Natick', 'MA', '02178',

 '5083347700', 'A', 056668338, '1991-07-24',

 null, '1948-09-09');

INSERT INTO DEMOEMPL.EMPLOYEE

 values (4456, 1034, 'Thomas', 'Thompson', 4600,

 '32 South Broadway', 'Newton', 'MA', '02576',

 '6179660089', 'A', 077492347, '1997-01-04',

 null, '1978-09-13');

INSERT INTO DEMOEMPL.EMPLOYEE

 values (3288, 1034, 'Ralph', 'Sampson', 4600,

 '99 Vale Ave', 'Newton', 'MA', '02576',

 '6179654443', 'A', 077447333, '1993-01-29',

 null, '1962-09-30');

INSERT INTO DEMOEMPL.EMPLOYEE

 values (2299, null, 'Samuel', 'Spade', 4600,

 '47 London St', 'Canton', 'MA', '02020',

 null, 'L', 033892200, '1991-02-04',

 null, '1958-01-09');

INSERT INTO DEMOEMPL.EMPLOYEE

 values (3199, null, 'Martin', 'Loren', 4600,

 '401 Cross St', 'Grover', 'MA', '02976',

 null, 'L', 098884332, '1992-12-05',

 null, '1962-10-19');

Demo Data

Appendix B: Test Database 249

INSERT INTO DEMOEMPL.EMPLOYEE

 values (2145, null, 'Martin', 'Catlin', 5200,

 '44 Smithville Hts', 'Wilmington', 'MA', '02476',

 '5087486625', 'L', 044895224, '1989-09-24',

 null, '1954-03-02');

INSERT INTO DEMOEMPL.EMPLOYEE

 values (2898, null, 'Mary', 'Umidy', 1120,

 '895A Braintree Circle', 'Medford', 'MA', '02432',

 '6173458860', 'S', 056906868, '1992-05-11',

 null, '1962-05-11');

INSERT INTO DEMOEMPL.POSITION

 values (4773, 5890, '1997-06-14', null, null, 45240.00,

 null, null, null);

INSERT INTO DEMOEMPL.POSITION

 values (1234, 8001, '1985-03-14', null, null, 117832.68,

 null, null, null);

INSERT INTO DEMOEMPL.POSITION

 values (3082, 5890, '1992-07-03', null, null, 68016.00,

 null, null, null);

INSERT INTO DEMOEMPL.POSITION

 values (2180, 5555, '1990-04-18', null, null, 76961.00,

 null, null, null);

INSERT INTO DEMOEMPL.POSITION

 values (4660, 5555, '1997-03-31', null, null, 36400.00,

 .25, .157, null);

INSERT INTO DEMOEMPL.POSITION

 values (3767, 5555, '1995-01-11', null, null, 50440.50,

 .23, .125, null);

INSERT INTO DEMOEMPL.POSITION

 values (2448, 5555, '1991-09-01', null, null, 70720.00,

 .255, .157, null);

INSERT INTO DEMOEMPL.POSITION

 values (3704, 3333, '1994-04-10', null, null, 22880.00,

 null, .105, null);

INSERT INTO DEMOEMPL.POSITION

 values (4703, 2077, '1997-03-19', null, null, 24857.00,

 null, null, null);

INSERT INTO DEMOEMPL.POSITION

 values (2246, 4700, '1993-09-28', null, null, 59488.00,

 null, null, null);

INSERT INTO DEMOEMPL.POSITION

 values (5008, 4700, '1998-01-31', null, null, 47944.00,

 null, null, null);

INSERT INTO DEMOEMPL.POSITION

 values (3769, 5890, '1994-08-31', null, null, 41600.00,

 null, null, null);

Demo Data

250 Programming Guide

INSERT INTO DEMOEMPL.POSITION

 values (4001, 5555, '1995-12-11', null, null, 36921.00,

 .23, .125, null);

INSERT INTO DEMOEMPL.POSITION

 values (4008, 3333, '1996-01-23', null, null, 24441.00,

 null, .99, null);

INSERT INTO DEMOEMPL.POSITION

 values (4962, 3333, '1997-10-04', null, null, 30680.00,

 null, .125, null);

INSERT INTO DEMOEMPL.POSITION

 values (2010, 5555, '1988-03-18', null, null, 76440.00,

 .275, .180, null);

INSERT INTO DEMOEMPL.POSITION

 values (3764, 5555, '1995-10-02', null, null, 54184.00,

 .26, .170, null);

INSERT INTO DEMOEMPL.POSITION

 values (5090, 5555, '1998-07-12', null, null, 48568.48,

 .205, .135, null);

INSERT INTO DEMOEMPL.POSITION

 values (4027, 3333, '1996-04-01', null, null, 28081.40,

 null, .120, null);

INSERT INTO DEMOEMPL.POSITION

 values (3991, 5555, '1995-06-06', null, null, 42016.00,

 .235, .125, null);

INSERT INTO DEMOEMPL.POSITION

 values (1765, 4700, '1992-06-10', null, null, 47009.34,

 null, null, null);

INSERT INTO DEMOEMPL.POSITION

 values (2106, 2077, '1989-05-01', null, null, 23920.00,

 null, null, null);

INSERT INTO DEMOEMPL.POSITION

 values (2096, 4666, '1994-10-10', null, null, 85280.00,

 null, null, null);

INSERT INTO DEMOEMPL.POSITION

 values (2437, 4560, '1991-08-06', null, 14.55, null,

 null, null, 21.83);

INSERT INTO DEMOEMPL.POSITION

 values (2598, 2053, '1992-01-03', null, 10.50, null,

 null, null, 15.00);

Demo Data

Appendix B: Test Database 251

INSERT INTO DEMOEMPL.POSITION

 values (3433, 4560, '1993-11-01', null, 19.15, null,

 null, null, 28.00);

INSERT INTO DEMOEMPL.POSITION

 values (3778, 2053, '1994-09-07', null, 9.98, null,

 null, null, 14.00);

INSERT INTO DEMOEMPL.POSITION

 values (1034, 4560, '1984-02-01', null, 20.93, null,

 null, null, 29.50);

INSERT INTO DEMOEMPL.POSITION

 values (2424, 4560, '1991-07-24', null, 13.60, null,

 null, null, 19.40);

INSERT INTO DEMOEMPL.POSITION

 values (2004, 4700, '1993-11-19', null, null, 59280.00,

 null, null, null);

INSERT INTO DEMOEMPL.POSITION

 values (4456, 4560, '1997-01-04', null, 14.58, null,

 null, null, 19.87);

INSERT INTO DEMOEMPL.POSITION

 values (3288, 4560, '1993-01-29', null, 16.40, null,

 null, null, 23.60);

INSERT INTO DEMOEMPL.POSITION

 values (3341, 5890, '1993-07-02', null, null, 48465.80,

 null, null, null);

INSERT INTO DEMOEMPL.POSITION

 values (2209, 5890, '1990-06-17', null, null, 66144.00,

 null, null, null);

INSERT INTO DEMOEMPL.POSITION

 values (3294, 4700, '1993-02-19', null, null, 53665.56,

 null, null, null);

INSERT INTO DEMOEMPL.POSITION

 values (3338, 2077, '1993-07-02', null, null, 22048.84,

 null, null, null);

INSERT INTO DEMOEMPL.POSITION

 values (2174, 4123, '1989-09-30', null, null, 49921.76,

 null, null, null);

INSERT INTO DEMOEMPL.POSITION

 values (3118, 4130, '1992-11-18', null, null, 45241.94,

 null, null, null);

Demo Data

252 Programming Guide

INSERT INTO DEMOEMPL.POSITION

 values (3222, 6004, '1993-01-07', null, null, 110448.00,

 null, null, null);

INSERT INTO DEMOEMPL.POSITION

 values (4321, 5110, '1996-08-04', null, null, 56977.80,

 null, null, null);

INSERT INTO DEMOEMPL.POSITION

 values (2461, 4012, '1991-09-09', null, null, 43784.00,

 null, null, null);

INSERT INTO DEMOEMPL.POSITION

 values (3841, 4012, '1994-10-25', null, null, 33800.00,

 null, null, null);

INSERT INTO DEMOEMPL.POSITION

 values (4002, 4012, '1995-12-11', null, null, 28601.80,

 null, null, null);

INSERT INTO DEMOEMPL.POSITION

 values (1003, 9001, '1984-02-01', null, null, 146432.00,

 null, null, null);

INSERT INTO DEMOEMPL.POSITION

 values (5103, 2051, '1999-10-11', null, 7.13, null,

 null, null, 11.70);

INSERT INTO DEMOEMPL.POSITION

 values (2466, 6011, '1991-10-29', null, null, 94953.52,

 null, null, null);

INSERT INTO DEMOEMPL.POSITION

 values (3449, 4023, '1993-12-07', null, null, 74776.00,

 null, null, null);

INSERT INTO DEMOEMPL.POSITION

 values (2781, 4025, '1992-04-12', null, null, 43888.00,

 null, null, null);

INSERT INTO DEMOEMPL.POSITION

 values (2894, 6021, '1992-05-11', null, null, 111593.00,

 null, null, null);

INSERT INTO DEMOEMPL.POSITION

 values (3411, 4734, '1995-04-02', null, null, 53665.00,

 null, null, null);

Demo Data

Appendix B: Test Database 253

INSERT INTO DEMOEMPL.POSITION

 values (4358, 4734, '1996-09-13', null, null, 57824.50,

 null, null, null);

INSERT INTO DEMOEMPL.POSITION

 VALUES (3764, 3333, '1994-08-25', '1995-10-01', NULL, 28912.00,

 null, null, null);

INSERT INTO DEMOEMPL.POSITION

 values (3991, 3333, '1994-11-12', '1995-06-05', null, 27976.00,

 null, null, null);

INSERT INTO DEMOEMPL.POSITION

 values (2246, 2077, '1990-12-07', '1993-09-27', null, 29536.00,

 null, null, null);

INSERT INTO DEMOEMPL.POSITION

 values (2096, 4560, '1989-01-26', '1994-10-09', 17.90, null,

 null, null, 28.85);

INSERT INTO DEMOEMPL.POSITION

 values (3767, 3333, '1994-08-31', '1995-01-10', null, 2200.00,

 null, .105, null);

INSERT INTO DEMOEMPL.POSITION

 values (2180, 3333, '1997-10-27', '1990-04-17', null, 19000.10,

 null, .09, null);

INSERT INTO DEMOEMPL.POSITION

 values (4660, 3333, '1997-01-20', '1997-03-30', null, 24000.00,

 null, .11, null);

INSERT INTO DEMOEMPL.POSITION

 values (1765, 2077, '1985-10-23', '1992-06-10', null, 18001.00,

 null, null, null);

INSERT INTO DEMOEMPL.POSITION

 values (2004, 2053, '1988-02-28', '1993-11-18', 9.50, null,

 null, null, 13.50);

INSERT INTO DEMOEMPL.POSITION

 values (3411, 4012, '1993-09-30', '1995-04-01', null, 44001.40,

 null, null, null);

INSERT INTO DEMOPROJ.EXPERTISE

 values (4773, 5309, '02', '1995-10-14');

INSERT INTO DEMOPROJ.EXPERTISE

 values (1234, 1000, '04', '1988-06-01');

INSERT INTO DEMOPROJ.EXPERTISE

 values (3082, 5309, '04', '1994-06-03');

INSERT INTO DEMOPROJ.EXPERTISE

 values (2180, 7000, '04', '1993-01-01');

INSERT INTO DEMOPROJ.EXPERTISE

 values (4660, 7000, '03', '1995-10-09');

INSERT INTO DEMOPROJ.EXPERTISE

 values (3767, 7000, '04', '1994-09-20');

INSERT INTO DEMOPROJ.EXPERTISE

 values (2448, 7000, '03', '1991-06-10');

Demo Data

254 Programming Guide

INSERT INTO DEMOPROJ.EXPERTISE

 values (3704, 7000, '01', '1993-08-21');

INSERT INTO DEMOPROJ.EXPERTISE

 values (4703, 4250, '03', '1996-11-20');

INSERT INTO DEMOPROJ.EXPERTISE

 values (2246, 1000, '03', '1993-10-01');

INSERT INTO DEMOPROJ.EXPERTISE

 values (2246, 6670, '04', '1990-03-29');

INSERT INTO DEMOPROJ.EXPERTISE

 values (5008, 6770, '04', '1998-01-31');

INSERT INTO DEMOPROJ.EXPERTISE

 values (4703, 5130, '03', '1998-03-30');

INSERT INTO DEMOPROJ.EXPERTISE

 values (3769, 5309, '04', '1992-10-04');

INSERT INTO DEMOPROJ.EXPERTISE

 values (4001, 7000, '03', '1994-12-11');

INSERT INTO DEMOPROJ.EXPERTISE

 values (4008, 4420, '01', '1994-12-14');

INSERT INTO DEMOPROJ.EXPERTISE

 values (4962, 5130, '02', '1992-11-01');

INSERT INTO DEMOPROJ.EXPERTISE

 values (2010, 7000, '03', '1988-02-18');

INSERT INTO DEMOPROJ.EXPERTISE

 values (3764, 7000, '03', '1992-01-01');

INSERT INTO DEMOPROJ.EXPERTISE

 values (5090, 7000, '03', '1997-02-12');

INSERT INTO DEMOPROJ.EXPERTISE

 values (4027, 7000, '01', '1995-03-19');

INSERT INTO DEMOPROJ.EXPERTISE

 values (3991, 7000, '03', '1995-01-01');

INSERT INTO DEMOPROJ.EXPERTISE

 values (1765, 6770, '04', '1985-10-23');

INSERT INTO DEMOPROJ.EXPERTISE

 values (2106, 6770, '03', '1991-10-01');

INSERT INTO DEMOPROJ.EXPERTISE

 values (2096, 3333, '02', '1995-03-03');

INSERT INTO DEMOPROJ.EXPERTISE

 values (2096, 3065, '03', '1998-04-01');

INSERT INTO DEMOPROJ.EXPERTISE

 values (2437, 3333, '04', '1995-03-15');

INSERT INTO DEMOPROJ.EXPERTISE

Demo Data

Appendix B: Test Database 255

 values (2437, 4444, '04', '1997-05-01');

INSERT INTO DEMOPROJ.EXPERTISE

 values (2598, 6666, '03', '1997-07-25');

INSERT INTO DEMOPROJ.EXPERTISE

 values (3433, 6650, '02', '1991-10-01');

INSERT INTO DEMOPROJ.EXPERTISE

 values (3778, 5200, '03', '1998-01-21');

INSERT INTO DEMOPROJ.EXPERTISE

 values (3778, 6666, '04', '1998-05-15');

INSERT INTO DEMOPROJ.EXPERTISE

 values (1034, 6470, '02', '1984-02-21');

INSERT INTO DEMOPROJ.EXPERTISE

 values (2424, 6470, '03', '1989-04-18');

INSERT INTO DEMOPROJ.EXPERTISE

 values (2004, 6770, '04', '1988-02-28');

INSERT INTO DEMOPROJ.EXPERTISE

 values (4456, 6670, '01', '1993-06-02');

INSERT INTO DEMOPROJ.EXPERTISE

 values (4456, 3065, '02', '1993-09-01');

INSERT INTO DEMOPROJ.EXPERTISE

 values (3288, 6650, '02', '1993-06-12');

INSERT INTO DEMOPROJ.EXPERTISE

 values (3288, 6670, '01', '1994-12-01');

INSERT INTO DEMOPROJ.EXPERTISE

 values (3288, 3333, '04', '1993-12-01');

INSERT INTO DEMOPROJ.EXPERTISE

 values (3341, 5309, '03', '1993-10-02');

INSERT INTO DEMOPROJ.EXPERTISE

 values (2209, 5309, '04', '1992-08-12');

INSERT INTO DEMOPROJ.EXPERTISE

 values (3294, 6770, '01', '1989-09-21');

INSERT INTO DEMOPROJ.EXPERTISE

 values (3338, 6770, '03', '1994-12-11');

INSERT INTO DEMOPROJ.EXPERTISE

 values (2174, 4430, '04', '1995-03-30');

INSERT INTO DEMOPROJ.EXPERTISE

 values (3118, 5180, '03', '1995-07-23');

INSERT INTO DEMOPROJ.EXPERTISE

 values (3222, 1000, '04', '1995-10-01');

Demo Data

256 Programming Guide

INSERT INTO DEMOPROJ.EXPERTISE

 values (3222, 4430, '04', '1996-12-01');

INSERT INTO DEMOPROJ.EXPERTISE

 values (4321, 4430, '04', '1997-03-24');

INSERT INTO DEMOPROJ.EXPERTISE

 values (4321, 1000, '03', '1998-06-01');

INSERT INTO DEMOPROJ.EXPERTISE

 values (2461, 4370, '04', '1994-03-12');

INSERT INTO DEMOPROJ.EXPERTISE

 values (2461, 4250, '04', '1997-03-01');

INSERT INTO DEMOPROJ.EXPERTISE

 values (2461, 5180, '03', '1997-06-01');

INSERT INTO DEMOPROJ.EXPERTISE

 values (3841, 4370, '03', '1995-10-10');

INSERT INTO DEMOPROJ.EXPERTISE

 values (3841, 4410, '02', '1996-06-01');

INSERT INTO DEMOPROJ.EXPERTISE

 values (4002, 4370, '03', '1996-02-15');

INSERT INTO DEMOPROJ.EXPERTISE

 values (4002, 4410, '04', '1999-01-15');

INSERT INTO DEMOPROJ.EXPERTISE

 values (1003, 1000, '04', '1984-02-01');

INSERT INTO DEMOPROJ.EXPERTISE

 values (5103, 5200, '04', '1997-10-11');

INSERT INTO DEMOPROJ.EXPERTISE

 values (2466, 1030, '04', '1991-10-29');

INSERT INTO DEMOPROJ.EXPERTISE

 values (2466, 5200, '04', '1999-06-01');

INSERT INTO DEMOPROJ.EXPERTISE

 values (2466, 4490, '03', '1999-12-01');

INSERT INTO DEMOPROJ.EXPERTISE

 values (3449, 5200, '03', '1993-09-29');

INSERT INTO DEMOPROJ.EXPERTISE

 values (2781, 5430, '01', '1995-09-27');

INSERT INTO DEMOPROJ.EXPERTISE

 values (2781, 5420, '02', '1996-12-01');

INSERT INTO DEMOPROJ.EXPERTISE

 values (2894, 1000, '04', '1995-11-12');

INSERT INTO DEMOPROJ.EXPERTISE

 values (2894, 5500, '04', '1996-12-15');

INSERT INTO DEMOPROJ.EXPERTISE

 values (3411, 5500, '04', '1997-01-30');

INSERT INTO DEMOPROJ.EXPERTISE

 values (4358, 5500, '03', '1996-12-30');

Demo Data

Appendix B: Test Database 257

INSERT INTO DEMOPROJ.CONSULTANT

 values (9443, 'Diane', 'Jones', 2466, 5200, 'D880',

 '183 Hawthorne Ln', 'Medford', 'MA', '02432',

 '5084475583', '1957-01-23', '1999-08-08', 089393334,

 50.00);

INSERT INTO DEMOPROJ.CONSULTANT

 values (9439, 'Charles', 'Miller', 2466, 4900, 'D880',

 '85 St. James St', 'Brookline', 'MA', '02066',

 '6174800873', '1963-09-12', '1999-02-18', 085763854,

 47.00);

INSERT INTO DEMOPROJ.CONSULTANT

 values (9388, 'Linda', 'Candido', 2466, 5200, 'D880',

 '54 Church St', 'Newton', 'MA', '02456',

 '6179943082', '1959-08-30', '1997-12-21', 033006132,

 76.00);

INSERT INTO DEMOPROJ.CONSULTANT

 values (9000, 'James', 'Legato', 1003, 6000, null,

 '85 North Rd', 'Newton', 'MA', '02456',

 '6179964874', '1970-05-20', '1994-03-20', 095578460,

 148.00);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (2000, 4773, 68, 68, 8.00, 5.00, 0 ,0

 , '2000-10-15', .05, null,

 NULL, NULL, 900.00,0 ,0,

 'COLL', null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (2000, 3082, 68, 52, 8, 8, 0 ,0

 , '2000-10-20', .055, null,

 '401K', .08, 1400.00,0 ,0,

 'JRCOLL', null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (2000, 2180, 92.50, 0, 8.00, 4.00, 0 ,0

 , '2000-10-30', .06, null,

 'STOCK', .05, 2100.00, 16, 0 ,

 'COLL', null, null);

INSERT INTO DEMOEMPL.BENEFITS

 values (2000, 4660, 68, 56, 8.00, 0, .07,

 3095, '2000-01-13', .06, null,

 '401K', .05, 850.68,0,0,

 'HSDIP', null, null);

Demo Data

258 Programming Guide

INSERT INTO DEMOEMPL.BENEFITS

 values (2000, 3767, 68, 68, 8.00, 0, .07,

 2250, '2000-09-22', .045, null,

 '401K', .05, 1350.50, 16, 16,

 'JRCOLL', null, null);

INSERT INTO DEMOEMPL.BENEFITS

 values (2000, 2448, 68, 20.50, 8.00, 3, .075,

 6600, '2000-07-13', .05, null,

 'BONDS', .08, 2100.00, 0,0,

 'COLL', null, null);

INSERT INTO DEMOEMPL.BENEFITS

 values (2000, 3704, 68, 48, 8.00, 8.00, .05,

 3470, '2000-04-30', .045, null,

 'BONDS', .04, 1800.00, 8, 8,

 'JRCOLL', null, null);

INSERT INTO DEMOEMPL.BENEFITS

 values (2000, 4703, 46.75, 16, 8.00, 14.5, .05,

 3010, '2000-03-10', .08, null,

 NULL, NULL, 1107.50,0,0,

 'HSDIP', null, null);

INSERT INTO DEMOEMPL.BENEFITS

 values (2000, 2246, 92.50, 72, 8.00, 5, .05,

 4500, '2000-12-15', .08, '1993-09-27',

 null, null, 2300.00, 24.5, 16.00,

 'HSDIP', null, null);

INSERT INTO DEMOEMPL.BENEFITS

 values (2000, 5008, 46.5, 40, 8.00, 0, .10,

 2000, '2000-01-29', .06, null,

 '401K', .05, 307.50,0,0,

 'COLL', null, null);

INSERT INTO DEMOEMPL.BENEFITS

 values (2000, 3769, 68, 0, 8.00, 6.00, .10,

 6600, '2000-10-01', .04, null,

 '401K', .03, 1356.70,0,0,

 'HSDIP', null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (2000, 4001, 68, 40, 8.00, 2.5, 0,0

 , '2000-12-20', .04, null,

 NULL, NULL, 1756.50,0,0,

 'HSDIP', null, null);

Demo Data

Appendix B: Test Database 259

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (2000, 4008, 68, 0, 8.00, 3.5,0,0

 , '2000-01-14', .05, null,

 '401K', .05, 1750.00,0,0,

 'COLL', null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (2000, 4962, 68, 16, 8.00, 7.5, 0,0

 , '2000-10-04', .06, null,

 '401K', .06, 1307.80, 8.5, 8.5,

 'COLL', null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (2000, 2010, 92.75, 16.00, 8.00, 2.5,0,0

 , '2000-03-18', .05, null,

 'STOCK', .05, 2450.50, 0,0,

 'COLL', null, null);

INSERT INTO DEMOEMPL.BENEFITS

 values (2000, 3764, 68, 80, 8.00, 5.00, .08,

 3060, '2000-06-11', .065, '1991-05-10',

 'STOCK', .06, 1406.90, 32.5, 16.0,

 'COLL', null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (2000, 5090, 46, 0, 8.00, 0,0,0

 , '2000-07-14', .04, null,

 NULL, NULL, 0,0,0,

 'JRCOLL', null, null);

INSERT INTO DEMOEMPL.BENEFITS

 values (2000, 4027, 68, 40, 8.00, 4.00, .08,

 3000, '2000-07-19', .035, null,

 '401K', .04, 1750.00,0,0,

 'COLL', null, null);

INSERT INTO DEMOEMPL.BENEFITS

 values (2000, 3991, 68, 68, 8.00, 3.00, .08,

 4500, '2000-11-12', .055, '1995-06-05',

 '401K', .06, 1354.60, 8.0, 0,

 'COLL', null, null);

INSERT INTO DEMOEMPL.BENEFITS

 values (2000, 1765, 92.5, 32, 8.00, 0, .10,

 7600, '2000-10-23', .07, null,

 '401K', .08, 2500.00, 32, 0,

 'COLL', null, null);

Demo Data

260 Programming Guide

INSERT INTO DEMOEMPL.BENEFITS

 values (2000, 2106, 92.5, 32, 8.00, 1.00, .08,

 5500, '2000-04-16', .06, '1999-08-17',

 'BONDS', .04, 2100.00, 0,0,

 'HSDIP', null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (2000, 2096, 92.5, 80, 8.00, 5.00, .05,

 5300, '2000-02-28', .055,

 '1998-10-09','STOCK', .05, 2300.00, 0,0,

 'HSDIP', NULL, NULL);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (2000, 2437, 68, 0, 8.00, 4.5, 0,0

 , '2000-08-16', .04, null,

 NULL, NULL, 2100.00, 0,0,

 'GED', 'MC655-690l', 90.55);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (2000,2598, 60, 8, 20.00, 8.5, 0 ,0

 , '2000-01-26', .035, null,

 NULL, NULL, 2300.00, 0,0,

 'HSDIP', 'HP302-7409', 50.50);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (2000, 3433, 68, 40, 8.00, 4.00,0,0

 , '2000-10-23', .05, null,

 NULL, NULL, 1456.70,0,0,

 'JRCOLL', 'MC655-7487', 90.55);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (2000, 3778, 68, 40, 8.00, 4,0,0

 , '2000-09-24', .06, null,

 NULL, NULL, 1350.50,0,0,

 'HSDIP', 'HP302-7487', 50.50);

INSERT INTO DEMOEMPL.BENEFITS

 values (2000, 1034, 92.5, 72, 8.00, 2.5, .10,

 5540, '2000-01-24', .05, null,

 'BONDS', .06, 2900.00, 0,0,

 'HSDIP', 'MC655-4490', 90.55);

INSERT INTO DEMOEMPL.BENEFITS

 values (2000, 2424, 92.5, 48, 8.00, 3.5, .05,

 2460, '2000-07-19', .04, null,

 NULL, NULL, 2100.00, 0,0,

 'HSDIP', 'MC655-5571', 90.55);

Demo Data

Appendix B: Test Database 261

INSERT INTO DEMOEMPL.BENEFITS

 values (2000, 2004, 92.5, 40, 8.00, 0, .05,

 2300, '2000-02-28', .03, null,

 '401K', .04, 2450.50,0,0,

 'JRCOLL', null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (2000, 4456, 68, 40, 8.00, 7.00,0,0

 , '2000-01-05', .03, null,

 NULL, NULL, 906.50,0,0,

 'HSDIP', 'MC655-6680', 90.55);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (2000, 3288, 68, 56, 8.00, 2.00,0,0

 , '2000-01-05', .04, null,

 NULL, NULL, 1500.00, 0,0,

 'HSDIP', 'MC655-4402', 90.55);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (2000, 3341, 68, 32.5, 8.00, 3.00,0,0

 , '2000-10-05', .045, null,

 '401K', .07, 1500.00, 0,0,

 'COLL', null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (2000, 2209, 92.50, 32, 8.00, 5.5,0,0

 , '2000-06-14', .06, null,

 '401K', .06, 2300.00, 16.00, 16.00,

 'COLL', null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (2000, 3294, 68, 16, 8.00, 3.00,0,0

 , '2000-02-28', .055, null,

 '401K', .03, 1500.00, 0,0,

 'COLL', null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (2000, 3338, 68, 0, 8.00, 1.5,0,0

 , '2000-07-02', .05, null,

 NULL, NULL, 1450.50,0,0,

 'HSDIP', null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (2000, 2174, 92, 48, 8.00, 9.00,0,0

 , '2000-09-27', .06, null,

 '401K', .04, 2100.00, 0,0,

 'JRCOLL', null, null);

Demo Data

262 Programming Guide

INSERT INTO DEMOEMPL.BENEFITS

 values (2000, 3118, 68, 8, 8.00, 7.00, .05,

 2010, '2000-11-24', .045, null,

 'BONDS', .08, 1500.00, 8.5, 8.00,

 'COLL', null, null);

INSERT INTO DEMOEMPL.BENEFITS

 values (2000, 3222, 68, 0, 8.00, 2.5, .05,

 2240, '2000-01-02', .07, '1999-06-08',

 '401K', .09, 1350.50, 32, 8,

 'MAS', null, null);

INSERT INTO DEMOEMPL.BENEFITS

 values (2000, 4321, 68, 48, 8.00, 3.00, .05,

 1991, '2000-08-02', .05, null,

 NULL, NULL, 1200.00, 0,0,

 'JRCOLL', null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (2000, 2461, 68, 40, 8.00, 1.5,0,0

 , '2000-09-13', .04, null,

 NULL, NULL, 2100.00,0 ,0,

 'HSDIP', null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (2000, 3841, 68, 0, 8.00, 2.00,0,0

 , '2000-10-10', .06, null,

 NULL, NULL, 1300.00, 0,0,

 'JRCOLL', null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (2000, 4002, 68, 40, 8.00, 4.5,0,0

 , '2000-12-15', .045, null,

 NULL, NULL, 1750.50,0,0,

 'HSDIP', null, null);

INSERT INTO DEMOEMPL.BENEFITS

 values (2000, 1003, 92, 0, 8.00, 0, .10,

 12340, null, .05, null,

 '401K', .10, NULL,0,0,

 'MAS', null, null);

INSERT INTO DEMOEMPL.BENEFITS

 values (2000, 5103, 46, 0, 8, 0, .05,

 530, '2000-10-11', .05, null,

 NULL, NULL, NULL,0,0,

 'HSDIP', 'HP302-8403', 50.50);

Demo Data

Appendix B: Test Database 263

INSERT INTO DEMOEMPL.BENEFITS

 values (2000, 2466, 92.5, 40, 8.00, 3.5, .05,

 3400, '2000-10-30', .055, null,

 '401K', .05, 2100.00, 16, 16,

 'COLL', null, null);

INSERT INTO DEMOEMPL.BENEFITS

 values (2000, 3449, 68, 56, 8.00, 10.5, .07,

 3700, '2000-12-02', .045, null,

 '401K', .03, 1453.70,0,0,

 'COLL', null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (2000, 2781, 68, 60, 8.00, 7.00,0,0

 , '2000-04-25', .05, null,

 '401K', .03, 2105.90,0,0,

 'COLL', null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (2000, 2894, 68, 0, 8.00, 2.5,0,0

 , '2000-05-04', .055, null,

 'STOCK', .08, 2155.30, 16.5, 8,

 'MAS', null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (2000, 3411, 68, 68, 8, 8,0,0

 , '2000-09-30', .05, NULL,

 '401K', .03, 1400.00, 0,0,

 'JRCOLL', null, null);

INSERT INTO DEMOEMPL.BENEFITS

 values (2000, 4358, 68, 0, 8.00, 6.5, .07,

 1430, '2000-09-27', .055, null,

 NULL, NULL, 950.50,0,0,

 'HSDIP', null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1999, 4773, 80, 80, 15, 1, 0 ,0, '1999-07-02',

 .04, NULL, NULL, NULL, 600.00, 0,0, 'COLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1998, 4773, 80, 48, 10, 10, 0 ,0, '1998-07-05',

 .03, NULL, NULL, NULL, 500.00, 0,0, 'COLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1997, 4773, 24, 24, 4.5, 0, 0 , 0 , NULL, NULL,

 NULL, NULL, NULL, NULL,0,0, 'COLL', NULL,

 null);

Demo Data

264 Programming Guide

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1999, 3082, 120, 120, 15, 8, 0 ,0, '1999-10-12',

 .05, NULL, NULL, NULL, 1100.00, 0,0, 'JRCOLL', NULL,

 null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1998, 3082, 120, 120, 15, 4.5, 0 ,0,

 '1998-01-09',

 .05, NULL, NULL, NULL, 1000.00,0 ,0, 'JRCOLL', NULL,

 NULL);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1997, 3082, 120, 120, 15, 2, 0 , 0 , '1997-10-01',

 .05, NULL, NULL, NULL, 1000.00, 0,0, 'JRCOLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1999, 2180, 160, 160, 15, 6, 0 ,0, '1999-10-17',

 .05, NULL, 'STOCK', .05, 2000.00, 0,0, 'COLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1998, 2180, 120, 120, 15, 2.5, 0 ,0, '1998-10-25',

 .055, NULL, 'STOCK', .05, 1900.00, 0,0, 'COLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1997, 2180, 120, 120, 15, 7, 0 ,0, '1997-10-02',

 .05, NULL, 'STOCK', .05, 2000.00, 0,0, 'COLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 values (1999, 4660, 80, 80, 15, 10, .05, 2060, '1999-01-15',

 .055, NULL, '401K', .05, 750.60, 0 ,0 , 'HSDIP',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1998, 4660, 80, 80, 10, 5, 0 ,0, '1998-01-30',

 .04, NULL, '401K', .05, 500.00,0 ,0, 'HSDIP', NULL,

 null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1997, 4660, 48, 48, 8, 2.5, 0 , 0 , NULL, NULL,

 NULL, '401K', .04, 400.00, 0,0, 'HSDIP',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 values (1999, 3767, 120, 120, 15, 0, .07, 2400, '1999-08-17',

 .05, NULL, '401K', .05, 1000.00, 0,0, 'JRCOLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 values (1998, 3767, 120, 120, 15, 0, .07, 2200, '1998-08-10',

 .05, NULL, '401K', .05, 1000.00, 0,0,

 'JRCOLL', null, null);

Demo Data

Appendix B: Test Database 265

INSERT INTO DEMOEMPL.BENEFITS

 values (1997, 3767, 120, 120, 15, 0, .07, 2000, '1997-08-01',

 .05, NULL, '401K', .05, 1350.00,0,0, 'JRCOLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1999, 2448, 120, 120, 15, 8,0 ,0, '1999-09-18',

 .04, NULL, 'BONDS', .08, 1700.00,0 ,0, 'COLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1998, 2448, 120, 120, 15, 15, 0,0, '1998-09-15',

 .035, NULL, 'BONDS', .08, 1500.00,0,0 , 'COLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1997, 2448, 120, 120, 15, 5, 0,0, '1997-08-30',

 .03, NULL, 'BONDS', .08, 1500.00,0 ,0, 'COLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 values (1999, 3704, 120, 120, 15, 15, .04, 2800, '1999-04-24',

 .045, NULL, 'BONDS', .04, 1700.00, 0,0, 'JRCOLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 values (1998, 3704, 120, 120, 15, 15, .03, 2200, '1998-04-30',

 .04, NULL, 'BONDS', .04, 1500.00, 0,0, 'JRCOLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1997, 3704, 120, 120, 15, 15, 0,0, '1997-04-20',

 .035, null, null, null, 1300.00, 12, 12, 'JRCOLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 values (1999, 4703, 80, 80, 15, 1, .04, 2300, '1999-03-10',

 .065, NULL, NULL, NULL, 950.00,0,0, 'HSDIP',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 values (1998, 4703, 80, 80, 10, 2.5, .04, 2010, '1998-03-30',

 .05, NULL, NULL, NULL, 800.00,0 ,0, 'HSDIP',

 null, null);

Demo Data

266 Programming Guide

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1997, 4703, 36, 36, 6, 0, 0 , 0 , NULL, NULL,

 NULL, NULL, NULL, NULL,0,0, 'HSDIP', NULL,

 null);

INSERT INTO DEMOEMPL.BENEFITS

 values (1999, 2246, 160, 160, 15, 3, .04, 3500, '1999-12-06',

 .07, '1993-09-27', NULL, NULL, 2100.00,0 ,0, 'HSDIP',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1998, 2246, 120, 120, 15, 3,0 ,0, '1998-12-01',

 .065, '1993-09-27', NULL, NULL, 1700.00, 0,0, 'HSDIP',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1997, 2246, 120, 120, 15, 5,0 ,0, '1997-12-20',

 .06, '1993-09-27', NULL, NULL, 1600.00, 0,0, 'HSDIP',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 values (1999, 5008, 80, 80, 10, 6, .10, 1700, '1999-02-07',

 .04, NULL, NULL, NULL, 200.00, 0,0, 'COLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 values (1998, 5008, 48, 48, 8, 7, .10, 1500, null, null,

 NULL, '401K', .05, NULL,0,0, 'COLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1999, 3769, 120, 120, 15, 14,0 ,0, '1999-09-17',

 .04, NULL, '401K', .03, 1200.00,0 ,0, 'HSDIP',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1998, 3769, 120, 120, 15, 8.5,0 ,0, '1998-09-01',

 .04, NULL, '401K', .04, 1100.00,0 ,0, 'HSDIP',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1997, 3769, 120, 120, 15, 3, 0,0, '1997-09-06',

 .04, NULL, '401K', .04, 1000.00,0 ,0, 'HSDIP',

 null, null);

Demo Data

Appendix B: Test Database 267

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1999, 4001, 120, 120, 15, 3,0 ,0, '1999-12-01',

 .045, NULL, NULL, NULL, 1500.00,0 ,0, 'HSDIP',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1998, 4001, 80, 80, 15, 8,0 ,0, '1998-12-18',

 .04, NULL, NULL, NULL, 1200.00,0 ,0, 'HSDIP',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1997, 4001, 80, 80, 15, 3, 0,0, '1997-12-10',

 .04, NULL, NULL, NULL, 1000.00, 0,0, 'HSDIP',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1999, 4008, 120, 120, 15, 2, 0,0, '1999-01-15',

 .04, NULL, '401K', .05, 1500.00,0 ,0, 'COLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1998, 4008, 80, 80, 15, 1, 0,0, '1998-01-31',

 .035, NULL, '401K', .05, 1350.00,0,0, 'COLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1997, 4008, 80, 72, 15, 0, 0,0, '1997-01-30',

 .035, NULL, NULL, NULL, 1100.00,0 ,0, 'COLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1999, 4962, 80, 80, 15, 4.5,0 ,0, '1999-10-10',

 .06, NULL, '401K', .05, 1150.50,0,0, 'COLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1998, 4962, 80, 80, 10, 1,0 ,0, '1998-10-16',

 .05, null, '401K', .05, 1000.00, 2, 2, 'COLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 values (1997, 4962, 12, 0, 2, 0, .05, 3000, null, null,

 NULL, NULL, NULL, NULL,0,0, 'COLL',

 null, null);

Demo Data

268 Programming Guide

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1999, 2010, 160, 160, 15, 4,0 ,0, '1999-03-01',

 .055, NULL, 'STOCK', .05, 2100.00,0 ,0, 'COLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1998, 2010, 160, 152.5, 15, 3, 0,0, '1998-03-30',

 .05, NULL, 'STOCK', .05, 2000.00,0 ,0, 'COLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1997, 2010, 160, 160, 15, 3,0 ,0, '1997-03-10',

 .05, null, 'BONDS', .05, 1600.00, 2, 2, 'COLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1999, 3764, 120, 120, 15, 2, 0,0, '1999-08-01',

 .055, '1991-05-10', 'STOCK', .06, 1500.00,0 ,0,

 'COLL', null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1998, 3764, 120, 120, 15, 3, 0,0, '1998-08-30',

 .05, '1991-05-10', 'STOCK', .05, 1200.00, 14, 14,

 'COLL', NULL,NULL);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1997, 3764, 120, 120, 15, 5, 0,0, '1997-08-17',

 .045, '1991-05-10', 'STOCK', .05, 1000.00,0 ,0, 'COLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1999, 5090, 80, 80, 15, 2,0 ,0, '1999-07-30',

 .035, NULL, NULL, NULL, 800.00,0 ,0, 'JRCOLL',

 NULL,NULL);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1998, 5090, 24, 24, 4, 2, 0 , 0 , NULL, NULL,

 NULL, NULL, NULL, NULL,0,0, 'JRCOLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1999, 4027, 120, 120, 15, 8,0 ,0, '1999-03-15',

 .03, null, null, null, 1500.00, 16, 16, 'COLL',

 null, null);

Demo Data

Appendix B: Test Database 269

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1998, 4027, 120, 120, 15, 0, 0,0, '1998-04-30',

 .03, NULL, NULL, NULL, 1200.00, 0,0, 'COLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1997, 4027, 80, 80, 10, 2.5,0 ,0, '1997-04-01',

 .03, NULL, NULL, NULL, 1000.00, 0,0, 'COLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 values (1999, 3991, 120, 120, 15, 8, .08, 4000, '1999-12-04',

 .05, '1995-06-05', '401K', .05, 1300.00, 0,0, 'COLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1998, 3991, 120, 116, 15, 2, 0 , 0 , '1998-11-28',

 .045, '1995-06-05', '401K', .05, 1100.00, 8, 8, 'COLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1997, 3991, 120, 120, 15, 8, 0,0, '1997-11-30',

 .045, '1995-06-05', NULL, NULL, 1000.00,0,0, 'COLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 values (1999, 1765, 160, 160, 15, 0, .10, 7000, '1999-11-15',

 .07, null, '401K', .08, 2500.50, 36, 0, 'COLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 values (1998, 1765, 160, 160, 15, 0, .10, 6500, '1998-11-01',

 .07, null, '401K', .08, 2500.00, 88, 0, 'COLL', null, null);

INSERT INTO DEMOEMPL.BENEFITS

 values (1997, 1765, 160, 160, 15, 0, .10, 6000, '1997-10-30',

 .065, null, '401K', .07, 2400.00, 72, 0, 'COLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 values (1999, 2106, 160, 160, 15, 9.5, .07, 4500, '1999-05-01',

 .055, '1999-08-17', 'BONDS', .04, 1800.00, 0 , 0 ,

 'HSDIP', null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1998, 2106, 160, 160, 15, 3,0 ,0, '1998-05-15',

 .05, null, 'BONDS', .05, 1800.00, 8, 8, 'HSDIP',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1997, 2106, 120, 120, 15, 8, 0,0, '1997-04-30',

 .03, NULL, NULL, NULL, 1700.00, 0,0 ,

 'HSDIP', null, null);

INSERT INTO DEMOEMPL.BENEFITS

 values (1999, 2096, 160, 128, 15, 3, .04, 4500, '1999-02-18',

 .05, '1998-10-09', 'STOCK', .05, 2000.00, 0,0 ,

 'HSDIP', null, null);

Demo Data

270 Programming Guide

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1998, 2096, 160, 160, 15, 3,0 ,0, '1998-02-01',

 .05, '1998-10-09', 'STOCK', .05, 2500.00,0 ,0 ,

 'HSDIP', null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1997, 2096, 120, 104, 15, 3,0 ,0, '1997-02-15',

 .06, NULL, NULL, NULL, 1700.00, 0,0 , 'HSDIP',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1999, 2437, 120, 16, 15, 11.5,0 ,0, '1999-08-01',

 .035, NULL, NULL, NULL, 1800.00, 0,0 , 'GED',

 'MC655-6901', 84.05);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1998, 2437, 120, 120, 15, 6.5,0 ,0, '1998-08-30',

 .03, NULL, NULL, NULL, 1200.00, 0,0 , 'GED',

 'MC655-6901', 79.62);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1997, 2437, 120, 120, 15, 15, 0,0, '1997-08-16',

 .03, NULL, '401K', .05, 1100.00,0 ,0 , 'GED',

 'MC655-6901', 70.00);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1999, 2598, 120, 120, 15, 15, 0,0, '1999-01-30',

 .035, NULL, NULL, NULL, 2150.50, 0,0 , 'HSDIP',

 'HP302-7409', 54.86);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1998, 2598, 120, 120, 15, 14, 0,0, '1998-01-15',

 .03, NULL, NULL, NULL, 1800.00,0 ,0 , 'HSDIP',

 'HP302-7409', 50.00);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1997, 2598, 120, 120, 15, 6, 0,0, '1997-02-01',

 .03, NULL, NULL, NULL, 1700.00, 0,0 , 'HSDIP',

 'HP302-7409', 45.75);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1999, 3433, 120, 120, 15, 8,0 ,0, '1999-10-17',

 .05, NULL, NULL, NULL, 1400.00, 0, 0, 'JRCOLL',

 'MC655-7487', 84.05);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1998, 3433, 120, 120, 15, 4, 0,0, '1998-10-30',

 .05, NULL, NULL, NULL, 1300.00, 0 ,0 , 'JRCOLL',

 'MC655-7487', 79.62);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1997, 3433, 120, 120, 15, 4,0 ,0, '1997-10-15',

 .055, NULL, NULL, NULL, 1200.00,0 ,0 , 'JRCOLL',

 'MC655-7487', 70.00);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1999, 3778, 120, 120, 15, 0,0 ,0, '1999-09-01',

 .055, NULL, NULL, NULL, 1240.50,0 ,0 , 'HSDIP',

 'HP302-7487', 54.86);

Demo Data

Appendix B: Test Database 271

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1998, 3778, 120, 120, 15, 14,0 ,0, '1998-09-26',

 .05, NULL, NULL, NULL, 1100.00, 0,0 , 'HSDIP',

 'HP302-7487', 50.00);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1997, 3778, 120, 120, 15, 10, 0,0, '1997-09-18',

 .05, NULL, NULL, NULL, 1000.00,0 ,0 , 'HSDIP',

 'HP302-7487', 45.75);

INSERT INTO DEMOEMPL.BENEFITS

 values (1999, 1034, 160, 112, 15, 6, .10, 5000, '1999-02-01',

 .05, NULL, 'BONDS', .06, 2850.60, 0, 0, 'HSDIP',

 'MC655-4490', 84.05);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1998, 1034, 160, 112, 15, 15, 0,0, '1998-02-17',

 .05, NULL, 'BONDS', .06, 2720.80,0 ,0 , 'HSDIP',

 'MC655-4490',79.62);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1997, 1034, 160, 48, 15, 8.5, 0,0, '1997-02-15',

 .05, NULL, NULL, NULL, 2500.00, 0,0 , 'HSDIP',

 'MC655-4490', 70.00);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1999, 2424, 120, 120, 15, 15,0 ,0, '1999-06-25',

 .04, NULL, NULL, NULL, 1900.00, 0,0 , 'HSDIP',

 'MC655-5571', 84.05);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1998, 2424, 120, 120, 15, 7, 0,0, '1998-07-01',

 .035, NULL, NULL, NULL, 1700.00,0 ,0 , 'HSDIP',

 'MC655-5571', 79.62);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1997, 2424, 120, 120, 15, 3,0 ,0, '1997-07-17',

 .035, NULL, NULL, NULL, 1500.00,0 ,0 , 'HSDIP',

 'MC655-5571', 70.00);

INSERT INTO DEMOEMPL.BENEFITS

 values (1999, 2004, 160, 160, 15, 8, .04, 1550, '1999-02-17',

 .03, NULL, '401K', .04, 1850.00, 0 , 0 , 'JRCOLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1998, 2004, 160, 160, 15, 2, 0,0, '1998-02-01',

 .035, NULL, '401K', .04, 1700.00,0 ,0 , 'JRCOLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1997, 2004, 160, 160, 15, 3.5, 0,0, '1997-02-15',

 .03, NULL, NULL, NULL, 1600.00,0 ,0 , 'JRCOLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1999, 4456, 80, 80, 15, 3, 0,0, '1999-02-05',

 .03, NULL, NULL, NULL, 650.00,0 ,0 , 'HSDIP',

 'MC655-6680', 84.05);

Demo Data

272 Programming Guide

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1998, 4456, 80, 80, 10, 0, 0,0, '1998-02-17',

 .02, NULL, NULL, NULL, 700.00,0 ,0 , 'HSDIP',

 'MC655-6680', 79.62);

INSERT INTO DEMOEMPL.BENEFITS

 values (1997, 4456, 48, 48, 8, 1, 0 , 0 , null, null,

 NULL, NULL, NULL, NULL, 0,0 , 'HSDIP',

 'MC655-6680', 70.00);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1999, 3288, 120, 120, 15, 9,0 ,0, '1999-02-01',

 .035, NULL, NULL, NULL, 1380.00,0 ,0 , 'HSDIP',

 'MC655-4402', 84.05);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1998, 3288, 120, 120, 15, 8,0 ,0, '1998-02-03',

 .035, NULL, NULL, NULL, 1250.00,0 ,0 , 'HSDIP',

 'MC655-4402', 79.62);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1997, 3288, 120, 120, 15, 11,0 ,0, '1997-01-28',

 .03, NULL, NULL, NULL, 1000.00, 0,0 , 'HSDIP',

 'MC655-4402', 70.00);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1999, 3341, 120, 120, 15, 9,0 ,0, '1999-07-25',

 .05, NULL, '401K', .06, 1350.00,0,0, 'COLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1998, 3341, 120, 116, 15, 8, 0,0, '1998-07-26',

 .06, null, '401K', .05, 1400.00, 16, 16, 'COLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1997, 3341, 120, 120, 15, 6.5, 0,0, '1997-07-15',

 .04, NULL, NULL, NULL, 900.00, 0,0 , 'JRCOLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1999, 2209, 120, 120, 15, 6, 0,0, '1999-07-02',

 .05, NULL, '401K', .05, 1200.00,0,0, 'COLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1998, 2209, 120, 120, 15, 7,0 ,0, '1998-06-17',

 .05, NULL, '401K', .05, 1200.00,0,0, 'COLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1997, 2209, 120, 120, 15, 3, 0,0, '1997-06-28',

 .045, null, null, null, 1550.80, 8, 8, 'COLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1999, 3294, 120, 120, 15, 10, 0,0, '1999-02-20',

 .05, NULL, '401K', .03, 1380.00,0,0, 'COLL',

 null, null);

Demo Data

Appendix B: Test Database 273

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1998, 3294, 120, 120, 15, 13, 0,0, '1998-01-28',

 .05, NULL, '401K', .03, 1100.00,0,0, 'COLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1997, 3294, 120, 120, 15, 3, 0,0, '1997-02-04',

 .05, NULL, '401K', .02, 1150.00,0,0, 'COLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1999, 3338, 120, 120, 15, 0, 0,0, '1999-07-17',

 .05, NULL, NULL, NULL, 1200.00, 0,0 , 'HSDIP',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1998, 3338, 120, 120, 15, 1,0 ,0, '1998-07-19',

 .045, NULL, NULL, NULL, 1130.00,0 ,0 , 'HSDIP',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1997, 3338, 120, 120, 15, 2, 0,0, '1997-07-08',

 .05, NULL, NULL, NULL, 950.70, 0,0 , 'HSDIP',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1999, 2174, 160, 160, 15, 9, 0,0, '1999-09-26',

 .055, NULL, '401K', .04, 1900.00,0 ,0 , 'JRCOLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1998, 2174, 160, 160, 15, 11, 0,0, '1998-09-10',

 .05, NULL, '401K', .03, 1600.00, 0,0 , 'JRCOLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1997, 2174, 120, 120, 15, 8, 0,0, '1997-09-09',

 .06, NULL, NULL, NULL, 1120.90, 0,0 , 'HSDIP',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 values (1999, 3118, 120, 120, 15, 3, .05, 2000, '1999-11-02',

 .04, NULL, 'BONDS', .08, 1350.60,0,0, 'COLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1998, 3118, 120, 112, 15, 8, 0,0, '1998-11-16',

 .04, NULL, 'BONDS', .07, 1200.00,0,0, 'COLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1997, 3118, 120, 120, 15, 6,0 ,0, '1997-11-30',

 .04, NULL, 'STOCK', .06, 1100.00,0,0, 'COLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 values (1999, 3222, 120, 120, 15, 6, .04, 1780, '1999-01-16',

 .06, '1999-06-08', '401K', .06, 1200.00, 32, 16, 'MAS',

 null, null);

Demo Data

274 Programming Guide

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1998, 3222, 120, 120, 15, 4,0 ,0, '1998-01-28',

 .06, null, '401K', .06, 1150.00, 48, 8.5, 'MAS',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1997, 3222, 120, 120, 15, 7, 0,0, '1997-01-13',

 .05, null, '401K', .05, 980.00, 16, 16, 'COLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 values (1999, 4321, 120, 96, 15, 2, .05, 1720, '1999-08-24',

 .055, null, null, null, 1100.00, 16, 16, 'COLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1998, 4321, 80, 80, 15, 4, 0,0, '1998-08-29',

 .05, NULL, NULL, NULL, 980.00,0,0, 'COLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1997, 4321, 80, 80, 10, 4,0 ,0, '1997-08-08',

 .04, NULL, NULL, NULL, 850.00,0,0, 'COLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1999, 2461, 120, 112, 15, 0, 0,0, '1999-09-18',

 .05, NULL, NULL, NULL, 1950.00, 0,0 , 'HSDIP',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1998, 2461, 120, 120, 15, 4, 0,0, '1998-09-01',

 .04, null, null, null, 1830.00, 48, 48, 'HSDIP',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1997, 2461, 120, 120, 15, 3, 0,0, '1997-09-18',

 .035, NULL, NULL, NULL, 1600.00,0 ,0 , 'HSDIP',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1999, 3841, 120, 120, 15, 1,0 ,0, '1999-10-05',

 .06, NULL, 'BONDS', .05, 1200.00,0 ,0 , 'JRCOLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1998, 3841, 120, 120, 15, 3,0 ,0, '1998-10-31',

 .05, NULL, 'BONDS', .05, 1020.00,0 ,0 , 'JRCOLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1997, 3841, 80, 80, 15, 2,0 ,0, '1997-10-11',

 .07, NULL, NULL, NULL, 980.00,0 ,0 , 'JRCOLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1999, 4002, 120, 120, 15, 3,0 ,0, '1999-12-01',

 .05, NULL, NULL, NULL, 1630.00,0 ,0 , 'HSDIP',

 null, null);

Demo Data

Appendix B: Test Database 275

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1998, 4002, 120, 120, 15, 6, 0,0, '1998-12-05',

 .04, NULL, NULL, NULL, 1400.00, 0,0 , 'HSDIP',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1997, 4002, 80, 80, 15, 5, 0,0, '1997-12-01',

 .04, NULL, NULL, NULL, 1380.00,0 ,0 , 'HSDIP',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 values (1999, 1003, 160, 56, 15, 0, .10, 11500, null,

 .05, NULL, '401K', .10, NULL, 0,0 , 'MAS',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 values (1998, 1003, 160, 80, 15, 0, .10, 10000, null,

 .05, NULL, '401K', .10, NULL, 0,0 , 'MAS',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 values (1997, 1003, 160, 40, 15, 0, .10, 10000, null,

 .05, NULL, '401K', .10, NULL, 0, 0, 'MAS',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 values (1999, 5103, 12, 12, 2, 0, 0 , 0 , null, null,

 NULL, NULL, NULL, NULL, 0,0 , 'HSDIP',

 'HP302-8403', 54.86);

INSERT INTO DEMOEMPL.BENEFITS

 values (1999, 2466, 120, 120, 15, 9, .05, 2650, '1999-10-26',

 .05, null, '401K', .03, 1800.00, 16, 16, 'COLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1998, 2466, 120, 112, 15, 11, 0,0, '1998-10-18',

 .04, NULL, NULL, NULL, 1300.00,0,0, 'COLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1997, 2466, 120, 120, 15, 10,0 ,0, '1997-10-10',

 .035, NULL, NULL, NULL, 980.00,0 ,0 , 'JRCOLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1999, 3449, 120, 120, 15, 8, 0,0, '1999-12-08',

 .04, NULL, NULL, NULL, 240.50,0,0, 'COLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1998, 3449, 120, 104, 15, 8, 0,0, '1998-12-02',

 .05, NULL, NULL, NULL, 1100.00,0,0, 'COLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1997, 3449, 120, 112, 15, 9,0 ,0, '1997-12-18',

 .03, NULL, NULL, NULL, 080.00,0,0, 'COLL',

 null, null);

Demo Data

276 Programming Guide

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1999, 2781, 120, 120, 15, 8, 0,0, '1999-04-11',

 .05, NULL, '401K', .03, 1700.00,0,0, 'COLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1998, 2781, 120, 96, 15, 15, 0,0, '1998-04-26',

 .05, NULL, '401K', .03, 1450.80,0,0, 'COLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1997, 2781, 120, 120, 15, 2,0 ,0, '1997-04-18',

 .05, NULL, NULL, NULL, 1100.00,0,0, 'COLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1999, 2894, 120, 48, 15, 1,0 ,0, '1999-05-01',

 .05, null, 'STOCK', .08, 1920.00, 16, 0, 'MAS',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1998, 2894, 120, 40, 15, 0,0 ,0, '1998-05-18',

 .08, null, 'STOCK', .08, 1750.00, 32, 32, 'MAS',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1997, 2894, 120, 0, 15, 0, 0,0, '1997-05-11',

 .06, null, 'STOCK', .08, 1600.00, 16, 8, 'MAS',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1999, 3411, 120, 120, 15, 3, 0,0, '1999-10-10',

 .04, NULL, '401K', .03, 1350.00,0 ,0 , 'JRCOLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1998, 3411, 120, 120, 15, 15, 0,0, '1998-09-10',

 .04, NULL, '401K', .03, 1250.00, 0 ,0 , 'JRCOLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 VALUES (1997, 3411, 120, 120, 15, 15,0 ,0, '1997-09-28',

 .03, NULL, NULL, NULL, 1100.00,0 ,0 , 'JRCOLL',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 values (1999, 4358, 120, 112, 15, 2, .07, 1300, '1999-10-01',

 .055, NULL, NULL, NULL, 790.80, 0,0 , 'HSDIP',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 values (1998, 4358, 120, 80, 15, 0, .07, 1230, '1998-09-15',

 .055, NULL, NULL, NULL, 820.00, 0,0 , 'HSDIP',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 values (1997, 4358, 80, 80, 15, 14.5, .06, 980, '1997-09-26',

 .055, NULL, NULL, NULL, 700.00,0 ,0 , 'HSDIP',

 null, null);

Demo Data

Appendix B: Test Database 277

INSERT INTO DEMOEMPL.BENEFITS

 values (2000, 1234, 92, 40, 8, 12, .05, 9800, '2000-04-18',

 .06, '1998-07-10', 'BONDS', .10, 1750.00, 72, 0, 'HSDIP',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 values (1999, 1234, 160, 16, 15, 0, .05, 8870, '1999-04-26',

 .07, '1998-07-10', 'BONDS', .08, 1600.00, 48, 0, 'HSDIP',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 values (1998, 1234, 160, 32, 15, 0, .05, 8440, '1998-04-10',

 .06, '1998-07-10', 'BONDS', .07, 1600.00, 56, 0, 'HSDIP',

 null, null);

INSERT INTO DEMOEMPL.BENEFITS

 values (1997, 1234, 160, 0, 15, 0, .05, 7690, '1997-04-01',

 .06, null, 'BONDS', .06, 1580.50, 48, 0, 'HSDIP',

 null, null);

INSERT INTO DEMOEMPL.INSURANCE_PLAN

 values ('PLI', 'Providential Life Insurance',

 '950 Gibraltar Ave', 'Lisbon', 'VA', '03097',

 '7033548300', 7815, null, 1000000, null, null, '1988-02-01');

INSERT INTO DEMOEMPL.INSURANCE_PLAN

 values ('HHM', 'Homeostasis Health Maintenance Program',

 '57 Goodwill Blvd', 'Bellingham', 'MA', '01988',

 '5083535600', 2867, 300, 100000, 30, NULL, '1992-01-03');

INSERT INTO DEMOEMPL.INSURANCE_PLAN

 values ('HGH', 'Holistic Group Health Association',

 '2 Technology Park', 'Winnetka', 'IL', '06060',

 '9413865700', 9471, NULL, 900000, 10, 5, '1992-01-08');

INSERT INTO DEMOEMPL.INSURANCE_PLAN

 values ('DAS', 'Dental Associates',

 '52 Dedham Pl', 'Medford', 'MA', '03032',

 '6174445362', 5598, 50, 15000, NULL, NULL, '1993-01-04');

INSERT INTO DEMOEMPL.COVERAGE values ('PLI', 2096, '1995-03-03',

 null, 1);

INSERT INTO DEMOEMPL.COVERAGE values ('HHM', 2096, '1995-03-03',

 null, 3);

INSERT INTO DEMOEMPL.COVERAGE values ('DAS', 2096, '1995-03-03',

 null, 3);

INSERT INTO DEMOEMPL.COVERAGE values ('HHM', 2437, '1995-03-15',

 null, 2);

INSERT INTO DEMOEMPL.COVERAGE values ('HGH', 2598, '1997-07-25',

 null, 1);

INSERT INTO DEMOEMPL.COVERAGE values ('HGH', 3433, '1993-12-31',

 null, 1);

INSERT INTO DEMOEMPL.COVERAGE values ('HHM', 3433, '1993-11-01',

Demo Data

278 Programming Guide

 '1993-12-31', 1) ;

INSERT INTO DEMOEMPL.COVERAGE values ('DAS', 3433, '1993-12-31',

 null, 1);

INSERT INTO DEMOEMPL.COVERAGE values ('HHM', 3778, '1998-01-21',

 NULL, 0);

INSERT INTO DEMOEMPL.COVERAGE values ('DAS', 3778, '1998-01-21',

 NULL, 0);

INSERT INTO DEMOEMPL.COVERAGE values ('HHM', 1034, '1992-06-01',

 NULL, 0);

INSERT INTO DEMOEMPL.COVERAGE values ('DAS', 1034, '1993-12-01',

 NULL, 0);

INSERT INTO DEMOEMPL.COVERAGE values ('HHM', 2424, '1993-07-24',

 NULL, 0);

INSERT INTO DEMOEMPL.COVERAGE values ('HGH', 4456, '1994-01-04',

 null, 1);

INSERT INTO DEMOEMPL.COVERAGE values ('HHM', 3288, '1993-06-12',

 null, 1);

INSERT INTO DEMOEMPL.COVERAGE values ('DAS', 3288, '1993-12-01',

 null, 1);

INSERT INTO DEMOEMPL.COVERAGE values ('HHM', 3341, '1993-10-02',

 NULL, 0);

INSERT INTO DEMOEMPL.COVERAGE values ('DAS', 3341, '1997-01-01',

 NULL, 0);

INSERT INTO DEMOEMPL.COVERAGE values ('HGH', 2209, '1992-08-12',

 NULL, 0);

INSERT INTO DEMOEMPL.COVERAGE values ('DAS', 2209, '1993-12-01',

 NULL, 0);

INSERT INTO DEMOEMPL.COVERAGE values ('HHM', 3294, '1993-02-19',

 NULL, 0);

INSERT INTO DEMOEMPL.COVERAGE values ('HHM', 3338, '1994-12-11',

 null, 2);

INSERT INTO DEMOEMPL.COVERAGE values ('DAS', 2299, '1996-01-01',

 null, 1);

INSERT INTO DEMOEMPL.COVERAGE values ('PLI', 3199, '1995-10-20',

 NULL, 0);

INSERT INTO DEMOEMPL.COVERAGE values ('HHM', 3199, '1995-10-20',

 null, 2);

INSERT INTO DEMOEMPL.COVERAGE values ('DAS', 3199, '1995-10-20',

Demo Data

Appendix B: Test Database 279

 null, 2);

INSERT INTO DEMOEMPL.COVERAGE values ('PLI', 4001, '1995-12-11',

 NULL, 0);

INSERT INTO DEMOEMPL.COVERAGE values ('HGH', 4001, '1997-01-01',

 NULL, 0);

INSERT INTO DEMOEMPL.COVERAGE values ('PLI', 4008, '1996-01-23',

 NULL, 0);

INSERT INTO DEMOEMPL.COVERAGE values ('DAS', 4008, '1996-01-23',

 null, 1);

INSERT INTO DEMOEMPL.COVERAGE values ('PLI', 4962, '1997-10-04',

 NULL, 0);

INSERT INTO DEMOEMPL.COVERAGE values ('DAS', 4962, '1997-12-01',

 null, 4);

INSERT INTO DEMOEMPL.COVERAGE values ('DAS', 3764, '1994-08-25',

 NULL, 0);

INSERT INTO DEMOEMPL.COVERAGE values ('HHM', 5090, '1998-07-12',

 null, 3);

INSERT INTO DEMOEMPL.COVERAGE values ('PLI', 4027, '1996-04-01',

 NULL, 0);

INSERT INTO DEMOEMPL.COVERAGE values ('HHM', 3991, '1994-11-12',

 '1995-12-31',5) ;

INSERT INTO DEMOEMPL.COVERAGE values ('HGH', 3991, '1996-01-01',

 null, 5);

INSERT INTO DEMOEMPL.COVERAGE values ('DAS', 3991, '1994-11-12',

 null, 5);

INSERT INTO DEMOEMPL.COVERAGE values ('HGH', 1765, '1992-06-01',

 null, 2);

INSERT INTO DEMOEMPL.COVERAGE values ('DAS', 1765, '1993-12-01',

 null, 2);

INSERT INTO DEMOEMPL.COVERAGE values ('DAS', 4773, '1995-10-14',

 NULL, 0);

INSERT INTO DEMOEMPL.COVERAGE values ('PLI', 3767, '1994-09-20',

 NULL, 0);

INSERT INTO DEMOEMPL.COVERAGE values ('HHM', 3767, '1994-09-20',

 null, 2);

INSERT INTO DEMOEMPL.COVERAGE values ('DAS', 3767, '1995-01-01',

 null, 2);

INSERT INTO DEMOEMPL.COVERAGE values ('PLI', 2448, '1992-01-01',

 NULL, 0);

INSERT INTO DEMOEMPL.COVERAGE values ('DAS', 2448, '1993-12-01',

 null, 3);

Demo Data

280 Programming Guide

INSERT INTO DEMOEMPL.COVERAGE values ('DAS', 3704, '1997-01-01',

 null, 3);

INSERT INTO DEMOEMPL.COVERAGE VALUES ('HGH', 4703, '1997-03-19',

 null, 1);

INSERT INTO DEMOEMPL.COVERAGE values ('DAS', 4703, '1997-03-19',

 null, 1);

INSERT INTO DEMOEMPL.COVERAGE values ('HHM', 2246, '1992-06-01',

 null, 2);

INSERT INTO DEMOEMPL.COVERAGE values ('DAS', 2246, '1998-01-01',

 null, 2);

INSERT INTO DEMOEMPL.COVERAGE values ('HHM', 5008, '1998-01-31',

 null, 2);

INSERT INTO DEMOEMPL.COVERAGE values ('DAS', 5008, '1998-01-31',

 null, 2);

INSERT INTO DEMOEMPL.COVERAGE values ('HHM', 1234, '1993-06-01',

 null, 5);

INSERT INTO DEMOEMPL.COVERAGE values ('HGH', 2174, '1995-03-30',

 NULL, 0);

INSERT INTO DEMOEMPL.COVERAGE values ('HGH', 3118, '1995-07-23',

 null, 1);

INSERT INTO DEMOEMPL.COVERAGE values ('DAS', 3222, '1995-10-01',

 null, 2);

INSERT INTO DEMOEMPL.COVERAGE VALUES ('PLI', 1003, '1988-02-01',

 NULL, 0);

INSERT INTO DEMOEMPL.COVERAGE VALUES ('HHM', 1003, '1992-06-01',

 null, 3);

INSERT INTO DEMOEMPL.COVERAGE VALUES ('DAS', 1003, '1993-12-01',

 null, 3);

INSERT INTO DEMOEMPL.COVERAGE VALUES ('PLI', 5103, '1999-10-11',

 NULL, 0);

INSERT INTO DEMOEMPL.COVERAGE VALUES ('HHM', 5103, '1999-10-11',

 null, 1);

INSERT INTO DEMOEMPL.COVERAGE VALUES ('DAS', 5103, '1999-10-11',

 null, 1);

INSERT INTO DEMOEMPL.COVERAGE VALUES ('PLI', 2781, '1995-09-27',

 NULL, 0);

INSERT INTO DEMOEMPL.COVERAGE VALUES ('DAS', 2781, '1998-01-01',

 null, 2);

INSERT INTO DEMOEMPL.COVERAGE VALUES ('PLI', 2894, '1995-11-12',

 NULL, 0);

INSERT INTO DEMOEMPL.COVERAGE VALUES ('HGH', 2894, '1995-11-12',

 null, 3);

INSERT INTO DEMOEMPL.COVERAGE VALUES ('DAS', 2894, '1995-11-12',

 null, 3);

INSERT INTO DEMOEMPL.COVERAGE VALUES ('HGH', 3411, '1997-01-30',

null, 3);

INSERT INTO DEMOEMPL.COVERAGE VALUES ('DAS', 3411, '1997-01-30',

null, 3);

Demo Data

Appendix B: Test Database 281

INSERT INTO DEMOEMPL.COVERAGE VALUES ('HHM', 4358, '1996-09-13',

null, 1);

INSERT INTO DEMOEMPL.COVERAGE VALUES ('DAS', 4358, '1996-09-13',

null, 1);

INSERT INTO DEMOPROJ.ASSIGNMENT

 VALUES (2466, 'D880', '1999-11-01', NULL);

INSERT INTO DEMOPROJ.ASSIGNMENT

 values (2894, 'P634', '2000-02-15', null);

INSERT INTO DEMOPROJ.ASSIGNMENT

 values (3411, 'P634', '2000-03-01', null);

INSERT INTO DEMOPROJ.ASSIGNMENT

 VALUES (4358, 'C240', '1998-06-01', '1998-08-15') ;

UPDATE DEMOEMPL.DIVISION

 SET DIV_HEAD_ID =2180

 WHERE DIV_CODE = 'D02';

UPDATE DEMOEMPL.DIVISION

 SET DIV_HEAD_ID =2010

 WHERE DIV_CODE = 'D04';

UPDATE DEMOEMPL.DIVISION

 SET DIV_HEAD_ID =4321

 WHERE DIV_CODE = 'D06';

UPDATE DEMOEMPL.DIVISION

 SET DIV_HEAD_ID =1003

 WHERE DIV_CODE = 'D09';

UPDATE DEMOEMPL.DEPARTMENT

 SET DEPT_HEAD_ID =3082

 WHERE DEPT_ID = 3510 ;

UPDATE DEMOEMPL.DEPARTMENT

 SET DEPT_HEAD_ID =2180

 WHERE DEPT_ID = 2200 ;

UPDATE DEMOEMPL.DEPARTMENT

 SET DEPT_HEAD_ID =2246

 WHERE DEPT_ID = 1100 ;

UPDATE DEMOEMPL.DEPARTMENT

 SET DEPT_HEAD_ID =3769

 WHERE DEPT_ID = 3520 ;

UPDATE DEMOEMPL.DEPARTMENT

 SET DEPT_HEAD_ID =2010

 WHERE DEPT_ID = 2210 ;

UPDATE DEMOEMPL.DEPARTMENT

 SET DEPT_HEAD_ID =1003

 WHERE DEPT_ID = 4200 ;

UPDATE DEMOEMPL.DEPARTMENT

 SET DEPT_HEAD_ID =1765

 WHERE DEPT_ID = 1110 ;

Demo Data

282 Programming Guide

UPDATE DEMOEMPL.DEPARTMENT

 SET DEPT_HEAD_ID =2004

 WHERE DEPT_ID = 1120 ;

UPDATE DEMOEMPL.DEPARTMENT

 SET DEPT_HEAD_ID =2096

 WHERE DEPT_ID = 4600 ;

UPDATE DEMOEMPL.DEPARTMENT

 SET DEPT_HEAD_ID =2209

 WHERE DEPT_ID = 3530 ;

UPDATE DEMOEMPL.DEPARTMENT

 SET DEPT_HEAD_ID =2598

 WHERE DEPT_ID = 5100 ;

UPDATE DEMOEMPL.DEPARTMENT

 SET DEPT_HEAD_ID =2461

 WHERE DEPT_ID = 6200 ;

UPDATE DEMOEMPL.DEPARTMENT

 SET DEPT_HEAD_ID =2894

 WHERE DEPT_ID = 5200 ;

UPDATE DEMOEMPL.DEPARTMENT

 SET DEPT_HEAD_ID =2466

 WHERE DEPT_ID = 5000 ;

UPDATE DEMOEMPL.DEPARTMENT

 SET DEPT_HEAD_ID =2466

 WHERE DEPT_ID = 4900 ;

UPDATE DEMOEMPL.DEPARTMENT

 SET DEPT_HEAD_ID =1003

 WHERE DEPT_ID = 6000 ;

UPDATE DEMOEMPL.DEPARTMENT

 SET DEPT_HEAD_ID =3222

 WHERE DEPT_ID = 4500 ;

COMMIT WORK RELEASE;

Appendix C: Precompiler Directives 283

Appendix C: Precompiler Directives

Information about CA IDMS precompiler directives that are not associated with SQL
statements and host variable declarations is presented in this section.

This section contains the following topics:

Overriding DDLDML Area Ready Mode (see page 283)
No Logging of Program Activity Statistics (see page 284)

Generating a Source Listing (see page 284)
Usage (see page 285)

Overriding DDLDML Area Ready Mode

Syntax

►─┬─────────────────────┬──►◄
 ├─ *RETRIEVAL ────────┤
 └─ *PROTECTED-UPDATE ─┘

Parameters

*RETRIEVAL

Overrides the default ready mode for the DDLDML area of the dictionary by
specifying that the area is to be readied for retrieval only. This allows concurrent
database transactions to access the area in shared retrieval, shared update,

protected retrieval, or protected update modes.

*PROTECTED-UPDATE

Overrides the default ready mode for the DDLDML area of the dictionary by
specifying that the area is to be readied for both retrieval and update. This allows
concurrent database transactions to ready the area in shared retrieval mode only.

The protected update usage mode prevents concurrent update of the area.

The dictionary ready override statement is printed on the source listing but is not
passed to the COBOL compiler.

No Logging of Program Activity Statistics

284 Programming Guide

No Logging of Program Activity Statistics

Syntax
►─┬────────────────────┬───►◄
 └─ *NO-ACTIVITY-LOG ─┘

Parameters

*NO-ACTIVITY-LOG

Suppresses the logging of program activity statistics. The precompiler generates
and logs the following program activity statistics unless the *NO-ACTIVITY-LOG
option is specified:

■ Program name

■ Language

■ Date last compiled

■ Number of l ines

■ Number of compilations

■ Date created

■ Schema name

■ File statistics

■ Database access statistics

Generating a Source Listing

Syntax
►─┬──────────────┬───►◄
 ├─ *DMLIST ────┤
 └─ *NODMLIST -─┘

Parameters

*DMLIST

Specifies that the source listing is to be generated for the statements that follow.

*DMLIST overrides a previous *NODMLIST directive and the NOLIST precompiler
parameter.

Usage

Appendix C: Precompiler Directives 285

*NODMLIST

Specifies that the source listing is not to be generated for the statements that

follow.

*NODMLIST overrides a previous *DMLIST directive and the LIST precompiler
parameter.

Usage

Column Position

Precompiler directives must be coded beginning in column 7.

Default Ready Mode

The default ready for the DDLDML area mode is shared update. Shared update readies
the area for both retrieval and update and allows concurrent database transactions to

ready the DDLDML area in shared update or shared retrieval.

Program Activity Statistics

Program activity statistics will not be logged if the DDLDML area is readied for retrieval
only.

Index 287

Index

A

access module • 25, 134, 139, 143, 145, 155, 203,
209, 212

authority to use • 139
automatic re-creation • 25, 139
changing • 143

default isolation for • 139
defaults • 139, 155
definition • 139
execution at runtime • 145

how to execute a test version • 145
precompiler specification • 134
schema-name mapping • 139, 143
SET ACCESS MODULE statement • 155

timestamp validation • 139
transaction state for • 139
version • 139

z/OS JCL to create • 203
z/VM commands to create • 212
z/VSE JCL to create • 209

ALTER ACCESS MODULE statement • 143

Application programming considerations • 38
Automatic session termination • 34

B

BEGIN DECLARE SECTION • 29
END DECLARE SECTION • 29

Beginning a transaction • 36

bil l-of-materials explosion with SQL • 169
bulk buffer • 30
bulk fetch • 76, 158, 187

checking statement status • 76
example with dynamic SQL • 187
for scrolling through rows • 158
ROWS parameter • 76

START parameter • 76
bulk insert • 81

ROWS parameter • 81
START parameter • 81

bulk processing • 15, 27, 75
data type of, indicator variable • 27
defined • 15

bulk select • 80
bulk structure • 93, 101, 105, 122

in CA ADS • 93
in COBOL • 101, 105
in PL/I • 122

C

CA ADS applications, embedding SQL • 87, 88, 89,
90, 92, 94, 95

continuing statements • 88
declaration module • 89
declaring host variables • 90
delimiters • 88

equivalent data types • 90
including a table • 92
including SQLCA • 95
inserting comments • 88

order of dialog compilation • 89
placing statements • 89
qualifying host variable names • 94

requirements • 87
scope of DECLARE CURSOR • 89
scope of WHENEVER • 89
SQLCA structure • 95

CA OLQ • 146
CALL • 15

procedure • 15

cardinality violation • 58, 80
central version • 25, 139, 144
check constraint • 17
CICS, effect of statements on processing • 41

COBOL applications, embedding SQL • 97, 99, 100,
101, 104, 109, 111, 115

COBOL version considerations • 99

continuing statements • 97
declaring host variables • 100, 115
declaring SQLCA • 111
delimiters • 97

INCLUDE TABLE statement • 104
indicator variables • 101
inserting comments • 97
placing statements • 99

qualifying host variable names • 109
requirements • 97
SQLCA structure • 111

subscripted host variable names • 109
COBOL applications, precompiling • 134

288 Programming Guide

column list, in INSERT • 60
Command Facil ity, in debugging • 146

commands • 212
z/VM • 212

Commit requests • 38

Committing changes • 36
compiling • 22, 138
concurrent access to an area • 45
concurrent processing • 157

concurrent sessions • 163, 164
session identifier • 163, 164
SQLSESS host variable • 163
steps to manage • 164

constraint violation • 60, 64
on DELETE • 64
on INSERT • 60

COPY IDMS FILE • 113
COPY IDMS MODULE • 115
COPY IDMS RECORD • 113
CREATE ACCESS MODULE statement • 139

AUTO RECREATE option • 139
DEFAULT ISOLATION parameter • 139
INCREMENTAL option of READY parameter • 139

MAP schema parameter • 139
PRECLAIM option of READY parameter • 139
READ ONLY transaction state • 139
READ WRITE transaction state • 139

VALIDATE BY option • 139
CREATE TEMPORARY TABLE statement • 167
creating an access module • 22

cursor • 15, 67, 68, 72, 76, 151, 159, 167, 169
closing • 68
cursor position • 15, 76
declaring • 67

defined • 15
external • 151
fetching from • 68
for temporary tables • 167

global • 151
in bil l -of-materials explosion • 169
invalid cursor state • 68, 72

no more rows • 68
opening • 68
position • 68
shared • 151

updateable • 15, 67, 72, 159
using • 67

cursor stability • 159

D

data exception error, on INSERT • 60
data manipulation • 15, 57, 58, 60, 62, 64, 65, 67, 68,

72, 75, 76, 80, 81, 145, 157, 159, 169

adding data • 60, 65, 81
bil l-of-materials explosion • 169
bulk processing • 75
checking for modified rows after a

pseudoconverse • 159
checking statement status • 64, 76, 81
DELETE statement • 64
deleting all rows of a table • 64

deleting data • 72
FETCH statement • 68, 76
INSERT statement • 60, 81

modifying data • 62, 65, 72
positioned delete • 72
positioned update • 72
retrieval • 58

retrieving data • 65, 68, 76
ROWS parameter, on FETCH • 76
ROWS parameter, on INSERT • 81

searched delete • 64
searched update • 62, 159
SELECT statement • 15, 58, 80
SET ACCESS MODULE statement • 145

SQL DML operations • 57
START parameter, on FETCH • 76
START parameter, on INSERT • 81

UPDATE statement • 62
updateable cursor • 72
updating after a pseudoconverse • 157
using a bulk fetch • 76

using a bulk insert • 81
using a bulk select • 80
using a cursor • 67
with null values • 65

database transaction • 41
effect of teleprocessing statements on • 41

Database transactions • 36

database, demonstration • 227
database, test • 217, 222

table descriptions • 217
test data • 222

date format • 134
debugging • 146
declaration module • 89

declaring a global cursor • 151

Index 289

declaring an external cursor • 151
requirements • 151

user validation • 151
Default dictionary • 34
deleting data • 64

demonstration database • 227
dictionary • 113
dynamic SQL • 181, 182, 183, 184, 186

checking statement status • 183, 186

limited by no host variables • 181
limited by no local variables • 181
limited by no routine parameters • 181
programs with only dynamic SQL • 181

requirements • 181
update operations • 182
when to use EXECUTE • 186

when to use EXECUTE IMMEDIATE • 183
when to use PREPARE • 184

dynamic SQL caching • 199, 200, 201
controlling the cache • 201

impact of database definition changes • 200
non-SQL-defined databases and caching • 200
searching the cache • 199

SQL-defined databases and caching • 200

E

embedded SQL • 21, 87, 97, 117

in CA ADS applications • 87
in COBOL applications • 97
in PL/I applications • 117

programming functions • 21
Enabling transaction sharing • 38
Ending a transaction • 36
errors, SQL • 47, 54, 184

error codes • 47
error message, displaying • 54
error-handling techniques • 54
SQLCODE error values • 47

syntax error in prepared statement • 184
EUR date/time format • 134
executing an SQL program • 25, 144

EXPLAIN statement • 148

F

FETCH statement • 15

G

GET DIAGNOSTICS • 56

advantages, GET DIAGNOSTICS • 56

H

host variable • 15, 27, 32, 101, 109, 119, 124, 155,
163

defined • 15
definition • 27, 101, 119
reference requirements • 32
references to in COBOL • 109

references to in PL/I • 124
SQLSESS • 163
to dynamically specify access module • 155

host variable array • 76

I

IDD • 113

IDMSCINT • 41
IDMSIN01 entry point • 54, 147
IDMSINTC • 41
INCLUDE IDMS module statement • 128

INCLUDE IDMS record statement • 127
INCLUDE module • 116, 129
INCLUDE TABLE • 30, 132, 134

authorization requirements • 132
determining schema qualifier • 134
for declaring host variables • 30
guidelines • 30

options • 30
indicator array • 107

in COBOL • 107
indicator variable • 27, 65, 101, 119

data type of • 27
definition • 27
SQLIND data type • 27, 101, 119

using • 65
integrity constraints • 17

check constraint • 17
constraint violation • 17

data type • 17
described • 17
domain constraints • 17

not null constraint • 17
referential constraint • 17
unique constraint • 17

Intersession conflicts • 38

invalid SQL statement identifier error • 134
Invoking procedures • 83
ISO date/time format • 134

290 Programming Guide

isolation level • 45, 139
concurrency control • 45

CREATE ACCESS MODULE statement • 45
SET TRANSACTION statement • 45
specified for access module • 139

specifying • 45
types • 45

J

JCL • 203, 209
z/OS • 203
z/VSE • 209

JIS date/time format • 134

L

l ink editing • 138

local mode • 25, 139, 144
local variable • 15

defined • 15
Local variables • 33

definition • 33
locks • 25, 45, 58, 72, 159

during a suspended session • 159

for a positioned update • 72
for single-row select • 58
management • 25
types • 45

M

Managing nonshareable transactions • 36
modularized programming • 151

multiple sessions • 164
started by different programs • 164
started by one program • 164

multiple-row insert • 60
multiple-row select • 58

N

non-bulk structure • 107
in COBOL • 107

non-SQL defined databases • 19

accessing • 19
null value • 27, 29, 65

definition • 27, 29
testing for • 65

O

online debugger • 148
OPEN statement • 151
optimizer • 22, 139, 148

P

paging application • 158
PL/I applications, embedding SQL • 117, 119, 121,

124, 125, 127, 128
continuing statements • 117
copying dictionary source • 127
data types of included table • 121

declaring host variables • 119, 128
declaring SQLCA • 125
delimiters • 117

equivalent data types • 119
indicator variables • 119
inserting comments • 117
qualifying host variable names • 124

requirements • 117
SQLCA structure • 125
subscripted host variable names • 124

using INCLUDE TABLE • 121
PL/I standard modules • 128
precompiler • 132, 133, 134, 138, 203, 209, 212

authorization requirements • 132

COBOL-specific options • 134
functions • 132
messages, with LIST option • 134
options in JCL • 133

output • 138
SQL standards enforcement • 134
z/OS JCL • 203

z/VM commands • 212
z/VSE JCL • 209

precompiler directives • 116, 130, 283
precompiler-directive statement • 104, 113, 115,

116, 121, 127, 128, 129
COPY IDMS FILE (COBOL) • 113
COPY IDMS MODULE (COBOL) • 115

COPY IDMS RECORD (COBOL) • 113
INCLUDE IDMS module (PL/I) • 128
INCLUDE IDMS record (PL/I) • 127
INCLUDE module (COBOL) • 116

INCLUDE module (PL/I) • 129
INCLUDE TABLE (COBOL) • 104
INCLUDE TABLE (PL/I) • 121

precompiling • 22, 131

Index 291

prepared statement • 15, 181
defined • 15

Preserving session state after a commit • 36
primary key • 17, 58, 159

defined • 17

specified in the search condition • 58, 159
pseudoconversational programming • 157, 159

checking for modified rows • 159
definition • 157

searched update in • 159

R

RCM • 22, 132, 134, 143

dropping from an access module • 143
NOINSTALL precompiler option • 134
precompiler parameter • 134

replacing in an access module • 143
version, specified to precompiler • 134

ready mode • 45, 139
access module specification • 139

actual ready mode • 139
default • 139
depending on transaction state • 139

repeatable reads of data • 45
Rollback requests • 38
rollback, automatic • 62, 64

on searched delete • 64

when searched update fails • 62
routine parameter • 15

defined • 15

Routine parameters • 33
definition • 33

row lock • 45
runtime processing of SQL statements • 25

S

sample program • 174, 187
bil l-of-materials explosion • 174

executing a prepared SELECT • 187
schema • 15, 134

defined • 15

precompiler specification • 134
security • 139, 144

as applied to SQL access • 144
CA IDMS internal security • 144

executing access modules • 139
external security • 144
role of schema ownership • 144

Session hierarchy • 34
Sharing a transaction • 38

Sharing transactions among sessions • 38
single-row INSERT • 60
single-row select • 58

SQL access, terminology of • 15
SQL applications • 21, 22, 25, 26

application development steps • 21
compilation steps • 22

debugging • 26
execution environments • 25
testing • 26

SQL Communication Areas • 47, 54

error message, displaying • 54
field values, displaying • 54
SQLCA • 47

SQLPIB • 47
SQLSTATE • 47

SQL Communications Areas • 95
including • 95

SQL DDL • 227
for demonstration database • 227

SQL declare section • 29, 100, 101, 111, 115, 119

SQL extensions • 15, 75, 101, 119, 121
bulk processing • 15, 75
COBOL data structures • 101
data types • 119

dynamic SQL • 15
PL/I host variable definitions • 121

SQL messages, displaying • 54

SQL session • 34, 41
beginning and ending • 34
definition • 34
effect of teleprocessing statements on • 41

SQL standards • 134
SQL statements that end a session • 34
SQL trace facil ity • 147
SQLCA • 47

description • 47
fields • 47
initialization • 47

SQLCERC • 47
SQLCODE • 47

SQLCNRP • 76, 80, 81
checking on a bulk insert • 81

checking on a bulk select • 80
testing for bulk fetch • 76

SQLCODE • 47, 54, 58, 60, 62, 64, 68, 76, 80, 81, 111,

125, 183

292 Programming Guide

SQLDA • 184
checking statement status • 184

declaring • 184
declaring in CA ADS • 184
structure • 184

values • 184
SQLPIB • 47
SQLSTATE • 47

ANSI-defined values • 47

CA IDMS-defined values • 47
ISO-defined values • 47

SYNCPOINT (CICS) statement • 41
syntax • 113, 114, 115, 117, 127, 128, 133, 283

for COPY IDMS FILE • 113
for COPY IDMS module • 115
for COPY IDMS RECORD • 114

for INCLUDE IDMS module • 128
for INCLUDE IDMS record • 127
for precompiler directives • 283
for precompiler options • 133

for SQLXQ1 ENTRY • 117
SYSIDMS parameters • 134, 144, 147

SQLTRACE= • 147

T

table • 15, 17, 30, 45, 58, 60, 62, 64, 67, 76, 90, 139,
159, 170, 181, 184

adding data to • 60
base table • 67
constraints on values • 17

defined • 15
defining to a CA ADS dialog • 90
deleting data from • 64
if a column is added • 60

including the definition in a program • 30
modifying data in • 62
name qualifier • 139
primary key • 159

result table • 15, 58, 67, 76, 170, 181, 184
row lock • 45
selecting data from • 58

timestamp column for • 159
updating through a cursor • 15, 67

table procedure • 19
Task-level DML statements in CICS • 41

teleprocessing statements • 41
temporary table • 15, 167

defined • 15

differences from base tables • 167
naming considerations • 167

uses • 167
test versions • 145
time format • 134

timestamp column for a table • 159
Transaction hierarchy • 36
transaction state • 139

U

USA date/time format • 134

V

view • 15, 30, 58, 67, 139, 167
cannot use temporary table • 167
defined • 15

including the definition in a program • 30
name qualifier • 139
selecting data through • 58
updateable view • 67

	CA IDMS SQL Programming Guide
	CA Technologies Product References
	Contact CA Technologies
	Documentation Changes
	Contents
	1: Introduction
	Who Should Use This Guide
	Syntax Diagram Conventions

	2: SQL Application Development in CA IDMS
	Accessing Data Using SQL
	SQL Data Access
	Integrity Constraints

	Accessing Non-SQL Defined Databases
	SQL Application Development
	Writing the Application
	Creating Executable Modules
	Executing the Application
	Testing and Debugging the Application

	3: Writing an SQL Program
	Accessing One or More Databases with SQL
	Host Variables
	SQL Declare Sections
	INCLUDE TABLE Directive
	Referring to Host Variables

	Local Variables and Routine Parameters
	SQL Sessions
	Beginning and Ending an SQL Session

	Database Transactions
	Managing Nonshareable Transactions
	Sharing Transactions Among Sessions

	Effect of Teleprocessing Statements and Events
	Concurrency Control and Isolation Levels
	SQL Status Checking and Error Handling
	SQLCA
	Displaying SQL Communication Area Fields
	Error Handling
	Checking Specific Errors
	Using GET DIAGNOSTICS

	4: Data Manipulation with SQL
	Data Manipulation Operations
	Retrieving Data
	Adding Data
	Modifying Data
	Deleting Data
	Using Indicator Variables in Data Manipulation

	Using a Cursor
	Declaring a Cursor
	Fetching a Row
	Executing a Positioned Update or Delete

	Bulk Processing
	Executing a Bulk Fetch
	Executing a Bulk Select
	Executing a Bulk Insert

	Invoking Procedures
	CALL Statement
	CALL of a Procedure
	CALL of a Table Procedure

	SELECT Statement
	SELECT of a Procedure
	SELECT of a Table Procedure

	5: Requirements and Options for Host Languages
	Using SQL in a CA ADS Application
	Embedding SQL Statements
	Delimited, Continued, and Commented Statements
	Placing an SQL Statement

	Defining Host Variables
	Including Tables
	Defining Bulk Structures

	Referring to Host Variables
	Including SQL Communication Areas

	Using SQL in a COBOL Application Program
	Embedding SQL Statements
	Delimited, Continued, and Commented Statements
	Placing an SQL Statement

	Defining Host Variables
	Using COBOL Data Declarations
	Using INCLUDE TABLE
	Defining Bulk Structures
	Non-bulk Structures and Indicator Arrays

	Referring to Host Variables
	Including SQL Communication Areas
	Copying Information from the Dictionary
	COPY IDMS FILE Statement
	Syntax
	Parameters
	Usage

	COPY IDMS RECORD Statement
	Syntax
	Parameters
	Usage

	COPY IDMS MODULE Statement
	Syntax
	Parameters
	Usage

	INCLUDE Module-name Statement
	Non-SQL Precompiler Directives

	Using SQL in a PL/I Application Program
	Embedding SQL Statements
	Declaring SQLXQ1
	Delimited, Continued, and Commented Statements

	Defining Host Variables
	Using PL/I Declarations
	Using INCLUDE TABLE
	Defining Bulk Structures

	Referring to Host Variables
	Including SQL Communication Areas
	Including Information from the Dictionary
	INCLUDE IDMS Record Statement
	Syntax
	Parameters
	Usage

	INCLUDE IDMS MODULE statement
	Syntax
	Parameters

	INCLUDE Module-name Statement
	Non-SQL Precompiler Directives

	6: Preparing and Executing the Program
	Creating an Executable Form
	Precompiling the Program
	About the Precompiler
	Precompiler Options
	Syntax
	Parameters

	Compiling the Program
	Creating the Access Module
	Overriding Access Module Defaults
	Altering an Access Module

	Executing the Application
	Testing the Access Module
	Debugging the Application
	Command Facility
	SQL Trace Facility
	EXPLAIN Statement
	Online Debugger

	7: SQL Programming Techniques
	Modularized Programming
	Sharing a Cursor
	Using the SET ACCESS MODULE Statement

	Pseudoconversational Programming
	Using SUSPEND SESSION and RESUME SESSION
	Scrolling Through a List of Rows
	Updating a Row After a Pseudoconverse

	Managing Concurrent Sessions
	Session Management Concepts
	Implementing Concurrent Sessions

	Creating and Using a Temporary Table
	Bill-of-materials Explosion
	What to Do
	Sample Program

	8: Using Dynamic SQL
	Dynamic SQL
	Dynamic Insert, Update, and Delete Operations
	Using EXECUTE IMMEDIATE
	Using PREPARE
	Using EXECUTE

	Executing Prepared SELECT Statements
	What to Do
	Sample Program

	Executing Prepared CALL Statements
	What to Do
	Sample Program

	Dynamic SQL Caching
	Searching the Cache
	Impact of Database Definition Changes
	SQL-Defined Databases and Caching
	Non-SQL-Defined Databases and Caching

	Controlling the Cache

	A: Sample JCL
	z/OS
	z/VSE
	Usage

	z/VM
	Usage

	B: Test Database
	Table Names and Descriptions
	ASSIGNMENT
	BENEFITS
	CONSULTANT
	COVERAGE
	DEPARTMENT
	DIVISION
	EMPLOYEE
	EXPERTISE
	INSURANCE_PLAN
	JOB
	POSITION
	PROJECT
	SKILL

	Test Data
	Departments
	Divisions
	Insurance Plans
	Jobs
	Projects
	Skills

	Test Database DDL
	Demo Data

	C: Precompiler Directives
	Overriding DDLDML Area Ready Mode
	Syntax
	Parameters

	No Logging of Program Activity Statistics
	Syntax
	Parameters

	Generating a Source Listing
	Syntax
	Parameters

	Usage

	Index

