

Release Summary
r17 SP1, 4th Edition

CA IDMS™

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time.

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part, without
the prior written consent of CA. This Documentation is confidential and proprietary information of CA and may not be disclosed
by you or used for any purpose other than as may be permitted in (i) a separate agreement between you and CA governing
your use of the CA software to which the Documentation relates; or (ii) a separate confidentiality agreement between you and
CA.

Notwithstanding the foregoing, if you are a licensed user of the software product(s) addressed in the Documentation, you may
print or otherwise make available a reasonable number of copies of the Documentation for internal use by you and your
employees in connection with that software, provided that all CA copyright notices and legends are affixed to each reproduced
copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable
license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to
certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such
license agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2009 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

CA Technologies Product References

This document references the following CA products:

■ CA ADS™

■ CA ADS™ Alive

■ CA IDMS™/DB

■ CA IDMS™/DC (DC)

■ CA IDMS™/DC or CA IDMS™ UCF (DC/UCF)

■ CA IDMS™ DDS

■ CA IDMS™ Dictionary Migrator

■ CA IDMS™ Dictionary Migrator Assistant (DMA)

■ CA IDMS™ Dictionary Module Editor (CA IDMS DME)

■ CA IDMS™ DML Online (CA IDMS DMLO)

■ CA IDMS™ Enforcer

■ CA IDMS™ Extractor

■ CA IDMS™ Journal Analyzer

■ CA IDMS™ Masterkey

■ CA IDMS™ Online Log Display

■ CA IDMS™ SASO

■ CA IDMS™ Server

■ CA IDMS™ SQL

■ CA IDMS™ UCF (UCF)

■ CA IDMS™ Visual DBA

■ CA OLQ™ Online Query for CA IDMS™ (CA OLQ)

■ CA SiteMinder®

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

■ Online and telephone contact information for technical assistance and customer
services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

To provide feedback about CA Technologies product documentation, complete our
short customer survey which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://www.ca.com/docs
http://www.ca.com/docs

Contents 5

Contents

Chapter 1: Introduction 11

New and Changed Features ... 11

New Features for SP1 ... 18

Syntax Diagram Conventions ... 19

Chapter 2: Upgrading to r17 23

Overview .. 24

Installing the Software ... 25

Installing the SVC .. 25

Formatting Journal Files ... 25

Offloading the Log File ... 26

Updating the CICS Interfaces.. 26

Creating New CICS Interface Modules .. 26

Using the New IDMSINTC CICS Interface .. 26

Deprecated Macro Level Support ... 27

Updating the CICS System ... 27

Upgrading from Versions Earlier than r16 .. 27

Recompiling User-Written Programs ... 27

Increasing Storage and Program Pools ... 28

Updating Execution JCL .. 28

Updating Task and Program Definitions ... 29

Updating Dictionary Descriptions .. 29

Updating Catalogs .. 29

Updating the SYSTEM Schema .. 30

Updating the SYSCA Schema ... 31

Fallback Considerations .. 31

Deprecated and Stabilized Features .. 31

Agent Technology Support .. 31

BS2000/OSD Support .. 32

CICS IDMSINTL Interface ... 32

CICS Macro Level Support ... 32

Optional APARs ... 32

SYSIDMS Parameters ... 32

DCMT DISPLAY LINE Parameter .. 32

New Reserved Profile Attribute ... 33

Changes in CV Startup .. 33

6 Release Summary

Chapter 3: Non-Stop Processing 35

Change Tracking ... 35

Change Tracking and SYSTRK Files .. 36

Implementing Change Tracking .. 37

Managing Change Tracking ... 45

Change Tracking Impact .. 53

Dynamic Journal Files ... 61

Dynamically Adding or Removing a Journal File ... 62

CREATE/ALTER DISK JOURNAL: New Parameters ... 63

DCMT DISPLAY JOURNAL Command ... 65

DCMT VARY JOURNAL Command.. 67

Scratch Enhancements ... 70

System Generation SYSTEM Statement .. 71

DCMT DISPLAY SCRATCH Command ... 74

DCMT VARY SCRATCH Command .. 76

DCMT Help Command ... 79

SYSIDMS Parameters ... 80

Chapter 4: Performance 83

CICS Threadsafe Support .. 83

Threadsafe Concepts ... 84

CA IDMS Support for Threadsafe Applications ... 85

IDMSINTC Interface Considerations .. 86

UCF Front-end (#UCFCICS) Considerations ... 87

Distributed Processing with #UDASCIC Considerations .. 87

CICS Abort Session Program Considerations ... 87

CICS Abort Session Program .. 88

IDMSRSYN Resynchronization Program Considerations ... 91

New CICSOPT Parameters ... 92

Fast Journal Format Option .. 94

LE System Mode Support ... 94

Database Procedure .. 95

SQL-invoked Routine ... 95

TCP/IP Generic Listener ... 95

Reduced 24-bit Storage Usage ... 95

zIIP Exploitation .. 96

zIIP Eligibility ... 97

DCMT DISPLAY SUBTASK Command ... 99

DCPROFIL System Task .. 107

Evaluating the zIIP Feature Benefits ... 108

Contents 7

Chapter 5: SQL 111

SQL Procedural Language Support in Routines .. 112

New Terminology .. 113

Implementing SQL Routines .. 114

Statement Components .. 115

Enhanced Data Description Statements ... 126

Control Statements ... 137

Result Sets from SQL-invoked Procedures ... 171

ALLOCATE CURSOR .. 172

ALTER PROCEDURE .. 175

CALL ... 176

CLOSE CURSOR .. 177

CREATE PROCEDURE ... 177

DECLARE CURSOR .. 179

DESCRIBE CURSOR... 180

SQL Communication Area ... 183

Catalog Extensions .. 183

Enhanced Diagnostics and Statistics .. 184

GET DIAGNOSTICS ... 184

GET STATISTICS ... 188

Enhanced ANSI/ISO SQL JOIN Support ... 193

Expansion of Table-reference ... 193

More Information ... 197

SET Host-variable Assignment .. 197

Extended Use of query-expression .. 198

SET OPTIONS COMMAND DELIMITER .. 199

Pseudo Table SYSCA.SINGLETON_NULL ... 200

Chapter 6: TCP/IP 201

Port Number Independence ... 201

CA IDMS Services Resolver .. 202

Service Name for LISTENER and DDSTCPIP PTERMS ... 205

Enhanced Stack Selection ... 206

SYSIDMS Parameters ... 207

New TCP/IP System Entity .. 208

System Generation TCP/IP Statement .. 209

System Generation SOCKET LINE Statement .. 213

DCMT DISPLAY TCP/IP Command ... 214

DCMT DISPLAY LINE Command ... 220

DCMT VARY TCP/IP Command .. 221

DCMT Help Command ... 224

8 Release Summary

New TCP_NODELAY Option .. 225

SETSOCKOPT Socket Function ... 225

New Socket Functions .. 226

GETSERVBYNAME .. 227

GETSERVBYPORT ... 228

IOCTL ... 230

GETADDRINFO and GETNAMEINFO socket functions ... 231

Socket Structure Description .. 232

DDS Connectivity Using TCP/IP .. 232

System Generation NODE Statement ... 232

System Generation PTERM Statement ... 233

DCMT VARY PTERM Command ... 236

DCMT DISPLAY DDS Command ... 239

DC Front-end System .. 244

Chapter 7: Administrative and Operational Enhancements 245

Callable Security Cleanup ... 246

DISPLAY SEGMENT Enhancement .. 247

Enhanced Diagnostic Information .. 248

Display Data at the PSW .. 248

GETMAIN Failure Message for Buffers .. 249

Identification of Program Filling Journal ... 249

IDMSINTC CWADISP ABND Message ... 249

IDMSINTC Maximum Run Units ABND Message ... 249

Journal Warning Message at Startup .. 249

Validation and Shutdown Sysplex Messages .. 250

VTAM Enhanced Error Reporting .. 250

XCF and XES Messages Written to Log .. 250

External Identity Auditing .. 251

Profile Attribute Key.. 252

Journal Reports ... 252

IDD Display Load Modules by Type .. 254

Index Tuning Enhancements .. 254

PRINT INDEX .. 255

TUNE INDEX ... 265

LOCKMON Longterm Lock Display Enhancements ... 271

DISPLAY Commands .. 273

Miscellaneous Commands .. 275

More Information ... 275

LOOK Display Enhancements ... 275

SQL-Defined Database Attributes ... 276

Contents 9

Converted Date/Time Stamps ... 276

More Information ... 277

New Message Replacement Operand .. 278

New Startup Parameters .. 278

Coding Options as Freeform Parameters .. 278

Coding Options as Positional Parameters ... 281

More Information ... 282

Online Print Log (OLP) Usability Enhancements... 283

REORG Enhancements ... 284

Usage ... 287

REORG tasks and phases ... 287

Sample Output .. 288

Considerations for running REORG on z/VSE ... 291

Work File Creation and Deletion: .. 291

CA DYNAM/D is required to create labels ... 291

SYSIDMS .. 291

DSMODEL .. 292

RORGJCL .. 293

REORG ... 294

Run-time DMCL File Management ... 295

Snap Enhancements ... 296

System Generation SYSTEM Statement .. 296

DCMT VARY PROGRAM Command ... 300

DCMT VARY TASK Command .. 302

DCMT DISPLAY SNAP Command ... 305

Support for Large and Extended Format Files .. 306

Large Format Database and Journal Files ... 306

Large and Extended Format Work Files .. 307

More Information ... 308

SVC Enhancements ... 308

Default to the Secured SVC ... 309

Load the SVC Using CAIRIM ... 309

Wait for In-Use Data Set ... 310

Forcing a Database File into Input Mode ... 311

Miscellaneous changes for z/VSE ... 311

Change to operator communication ... 311

Generating the SVC ... 312

Chapter 8: Application Development 313

Accept Extended Database Statistics DML Command ... 313

Accept System ID DML Command .. 316

10 Release Summary

ADSORPTS Enhancements .. 316

SQL Table Expansion ... 316

Unlimited Dialog Reporting ... 317

More Information ... 317

Assembler Programming Enhancements ... 317

#CHAP.. 317

#GETSTG .. 319

Built-In Functions for Date-Time Stamp Conversions .. 319

CA ADS Built-In Functions ... 319

CA OLQ Procedures ... 326

COBOL Compiler Debugging Line Support ... 333

FIND/OBTAIN WITHIN SET USING SORT KEY DML Statement .. 334

IDMSIN01 Environment Information Function .. 335

Chapter 9: CA IDMS Tools 339

CA ADS Alive RECORD Command Enhancement .. 339

CA IDMS Dictionary Migrator Enhancements .. 340

CA IDMS Journal Analyzer Enhancements ... 341

Enhanced Decompression Support ... 341

Management Ranking Report Enhancement .. 342

More Information ... 342

CA IDMS Online Log Display Enhancement .. 343

CA IDMS Tools Editor Enhancement .. 343

ECHO Command .. 343

More Information ... 344

CA IDMS Tools Queue Record Deletion Enhancement .. 345

CA IDMS Tools Site-Specific Segment Name and Database Name Enhancement ... 346

Chapter 10: DCMT Command Codes 349

Chapter 1: Introduction 11

Chapter 1: Introduction

This section contains the following topics:

New and Changed Features (see page 11)
New Features for SP1 (see page 18)
Syntax Diagram Conventions (see page 19)

New and Changed Features

This release incorporates many new features and changes to existing features to
enhance your use of CA IDMS in the following areas of functionality:

■ Non-stop processing

■ Performance

■ SQL

■ TCP/IP

■ Administration and Operations

■ Application development

■ CA IDMS Tools

The following are the new features in CA IDMS r17 and references to detailed
descriptions about them.

New r17 Features Reference

Non-Stop Processing Enhancements

A new tracking capability provides a
means of making dynamic changes to the
database environment of a Central
Version (CV) in a fault tolerant manner.

See Change Tracking

Dynamic Journal files provide enhanced
24x7 capabilities by enabling the journal
files in use by a CV to be changed while
the system remains active

See Dynamic Journal Files

New and Changed Features

12 Release Summary

Two scratch enhancements are provided
to improve management and performance
of the CA IDMS scratch area as well as
increase system availability. These
enhancements include:

■ Scratch above the bar

■ Extensible scratch

See Scratch Enhancements

Performance Enhancements

CICS threadsafe support allows threadsafe
application programs to use multiple open
TCBs while accessing CA IDMS, thereby
increasing throughput.

See CICS Threadsafe Support

The FORMAT JOURNAL utility is enhanced
to quickly reformat already existing and
formatted journal files.

See Fast Journal Format Option

To reduce CPU usage, system mode
execution is available for database
procedures and other Language
Environment (LE) COBOL or PL/I programs.

See LE System Mode Support

CA IDMS's use of 24-bit storage usage is
reduced, thereby relieving pressure on
storage constrained CA IDMS and CICS
systems.

See Reduced 24-bit Storage Usage

CA IDMS is enhanced to exploit zIIP
processors on the z9 series for the z/OS
operating system.

See zIIP Exploitation

SQL Enhancements

SQL is now available as a programming
language for SQL-invoked procedures and
functions.

See SQL Procedural Language Support in
Routines

An SQL-invoked procedure can now return
result sets in the form of rows of result
tables to the procedure invoker.

See Result Sets from SQL-invoked
Procedures

The new GET DIAGNOSTICS and GET
STATISTICS statements can be used for
diagnosing the execution of SQL
statements and for returning statistical
information about the current transaction.

See Enhanced Diagnostics and Statistics

Join capabilities have been enhanced by
adding ANSI/ISO SQL join table support.

See Enhanced ANSI/ISO SQL JOIN Support

New and Changed Features

Chapter 1: Introduction 13

The new SET statement provides a simple
means of assigning SQL value-expressions
to host variables.

See SET Host-variable Assignment

The UPDATE statement has been
enhanced to allow a query-expression to
be assigned to a column.

See Extended Use of query-expression

The SET OPTIONS command facility
statement has been extended with a
COMMAND DELIMITER option to provide
alternate delimiters for separating
commands.

See SET OPTIONS COMMAND DELIMITER

SYSCA.SINGLETON_NULL is a pseudo table
with only one row and no columns. It can
be used for easy evaluation of SQL
functions with constant parameters.

See Pseudo Table
SYSCA.SINGLETON_NULL

TCP/IP Enhancements

TCP/IP support is enhanced to provide
port number independence, allowing port
numbers to be changed without impacting
applications or DC/UCF system definitions.

See Port Number Independence

CA IDMS is enhanced to enable the
selection of the stacks to be used by
socket applications running in the CA
IDMS system.

See Enhanced Stack Selection

A new TCP/IP system entity consolidates
the definition of the TCP/IP runtime
environment and allows multiple socket
lines to be active at one time.

See New TCP/IP System Entity

A new TCP_NODELAY socket option
enables two consecutive SEND socket
requests to be executed without a delay
between the sends.

See New TCP_NODELAY Option

CA IDMS now supports the following new
socket functions:

■ GETSERVBYNAME

■ GETSERVBYPORT

■ IOCTL

See New Socket Functions

TCP/IP can now be used for CA IDMS DDS
communications to improve the
performance of database requests to
geographically distributed databases.

See DDS Connectivity Using TCP/IP

New and Changed Features

14 Release Summary

Administrative and Operational
Enhancements

The linkable RHDCSDEL enhancement
allows a user program to clean up security
definitions for logically deleted users by
linking to RHDCSDEL.

See Callable Security Cleanup

The DCMT DISPLAY SEGMENT command is
enhanced to report the number of areas
in a segment.

See DISPLAY SEGMENT Enhancement

A number of improvements in the
detection and reporting of exceptional
conditions facilitate problem diagnosis
and correction.

See Enhanced Diagnostic Information

The new EXTIDENT session profile
attribute makes the external identity
visible to applications and ensures that it
can be audited on all CVs that take part in
a transaction.

See External Identity Auditing

IDD is enhanced to display only the load
modules for a specified type.

See IDD Display Load Modules by Type

Index tuning enhancements are provided
in the following areas:

■ The PRINT INDEX utility is enhanced
to better determine whether an index
needs tuning.

■ The TUNE INDEX utility is enhanced to
perform more comprehensive tuning
and to improve its ability to tune
indexes while they remain available
to online applications.

See Index Tuning Enhancements

The Lock Monitor (LOCKMON) system task
is enhanced to do the following:

■ Report the area portion of a keep
longterm lock

■ Display the longterm lock IDs

See LOCKMON Longterm Lock Display
Enhancements

New LOOK functions report on
SQL-defined database attributes and
converted time stamps.

See LOOK Display Enhancements

A new operand is provided to enable
including the volser of the current CA
IDMS installation tape in the text of a
message.

See New Message Replacement Operand

New and Changed Features

Chapter 1: Introduction 15

CA IDMS is enhanced with the following
new startup parameters:

■ Multitasking queue depth allows you
to set the multitasking queue depth
at startup

■ Operating system subpool allows you
to specify a different subpool at
startup

■ zIIP allows you to control use of zIIP
processors in z/OS

See New Startup Parameters

Online Print Log (OLP) usability is
enhanced to do the following:

■ Specify seconds in FROM and TO time
parameters

■ Flush the data automatically in the log
buffer so the most recent data
displays

See Online Print Log (OLP) Usability
Enhancements

The REORG utility has been enhanced in
the following areas:

■ Work file size estimation

■ Reduced record overflows

■ Reduced area sweeps when updating
index UP pointers

■ New options for deleting work files

See REORG Enhancements

Support of dynamic allocation has been
enhanced through changes in the way
data set information is recorded in the
DMCL.

See Run-time DMCL File Management

New SYSGEN and DCMT facilities are
provided to enable control over the
generation of system and task SNAPS.

See Snap Enhancements

To more easily handle large volumes of
data, CA IDMS now supports large format
database files and large and extended
format work files for the REORG utility.

See Support for Large and Extended
Format Files

Installation of the SVC has been enhanced
to avoid inadvertent installation of an
unsecured SVC.

See SVC Enhancements

New and Changed Features

16 Release Summary

When dynamically allocating a data set on
z/OS, and the DSN is in use by another job,
you can now request that local jobs and
CV startup wait for the DSN rather than
fail the request.

See Wait for In-Use Data Set

The IDMSIOX2 DB User Exit supports the
following new functionality:

■ A Pre-Open call is enhanced with a
new flag to force the database file to
input mode.

■ A Pre-Write call is enhanced with a
new flag to reopen the database file
on the next write call.

See Forcing a Database File

into Input Mode

Application Development Enhancements

The ACCEPT database statistics command
is enhanced to obtain the extended VIB
statistics that are provided as part of the
CA IDMS runtime system.

See Accept Extended Database Statistics
DML Command

The ACCEPT command is enhanced to
retrieve the system ID of the current
DC/UCF system.

See Accept System ID DML Command

ADSORPTS is enhanced to report on the
columns of SQL tables and an unlimited
number of dialogs.

See ADSORPTS Enhancements

Assembler DML programs can make use of
the following new functionality:

■ #CHAP allows changing the
dispatching priority of the issuing task
relative to its current priority.

■ #GETSTG allows requesting storage
above the 16-megabyte line.

See Assembler Programming
Enhancements

New date-time stamp built-in functions
enable CA ADS and CA OLQ applications to
convert date-time stamps between their
internal and external formats.

See Built-In Functions for Date-Time
Stamp Conversions

Debugging line support is provided in
COBOL programs so that DML commands
can be designated as debugging lines.

See COBOL Compiler Debugging Line
Support

The IDMSDMLC precompiler is enhanced
to issue a syntax error on a FIND/OBTAIN
USING clause that specifies more than one
field as a sortkey.

See FIND/OBTAIN WITHIN SET USING
SORT KEY DML Statement

New and Changed Features

Chapter 1: Introduction 17

A new IDMSIN01 function is added to
retrieve runtime environment
information.

See IDMSIN01 Environment Information
Function

CA IDMS Tools Product Enhancements

The CA ADS Alive RECORD command is
enhanced so that when records to be
displayed are subschema built, only those
record elements that are contained in the
subschema view are displayed. Otherwise,
all elements are displayed.

See CA ADS Alive RECORD Command
Enhancement

CA IDMS Dictionary Migrator is enhanced
to enable optional generation of MODIFY
or REPLACE instead of ADD DDDL
statements.

See CA IDMS Dictionary Migrator
Enhancements

CA IDMS Journal Analyzer is enhanced to
do the following:

■ Decompress and display data records
that are compressed using custom
built Data Characteristic Tables
(DCTs).

■ Provide ranking by a cumulative value
on the Management Ranking Report.

See CA IDMS Journal Analyzer
Enhancements

CA IDMS Online Log Display is enhanced to
force the log buffer to be written at task
invocation, thereby ensuring the most
recent log data is included in the display.

See CA IDMS Online Log Display
Enhancement

The CA IDMS Tools Editor is enhanced to
include the ECHO command that allows
the primary line command to be
preserved and redisplayed.

See CA IDMS Tools Editor Enhancement

A new PROKEEP installation parameter
enables the automatic deletion of queue
records after a specified time. This
parameter can be used with the following
CA IDMS Tools online products:

■ CA IDMS Dictionary Migrator
Assistant

■ CA IDMS DME

■ CA IDMS Enforcer

■ CA IDMS Masterkey

■ CA IDMS SASO

See CA IDMS Tools Queue Record Deletion
Enhancement

New Features for SP1

18 Release Summary

CA IDMS Tools users can now provide
their own site-specific SEGMENT and
DBNAME values for each database
associated with a CA IDMS Tools product.

See CA IDMS Tools Site-Specific Segment
Name and Database Name Enhancement

New Features for SP1

New for r17 SP1 Reference

All CA IDMS product fixes are packaged as
module replacements PTFs. When
applying a PTF, prerequisites are required
and must not be removed. Starting with
SP1, a maintenance tape is a collection of
PTFs and the PTFs for CA IDMS/DB, CA
IDMS Tools and CA Endevor/DB are now
installed together. CA IDMS customers on
z/OS may use CA Mainframe Software
Manager (MSM) to apply maintenance to
a CA IDMS r17 SMP/E CSI that is migrated
to MSM.

For more information, see the CA IDMS
Installation and Maintenance Guide-z/OS,
CA IDMS Installation and Maintenance
Guide-z/VSE, and CA IDMS Installation and
Maintenance Guide-z/VM.

The #UCFBTCH macro has been enhanced
to allow optional suppression of printing
the message "UCFBTCH S015 - NOTHING
FOR PRINTER TO PRINT"

For more information, see the CA IDMS
System Operations Guide.

Support has been provided for the z/VSE
and z/VM operating systems.

Any special requirements for use of a
feature or the availability of a feature
specific to each operating system is
documented in place with each feature.

Syntax Diagram Conventions

Chapter 1: Introduction 19

IDMS now exploits the IBM Health
Checker Facility.Each Health Check

issues its output as messages, which you
can view using SDSF,the

HZSPRINT utility, or a log stream that
collects a history of check output. If a
check finds a potential problem, it issues a
WTO message. We will call these
messages exceptions. The check exception
messages are issued both as WTOs and
also to the message buffer. The WTO
version contains only the message text,
while the exception message in the
message buffer includes both the text and
explanation of the potential problem
found, including the severity, as well as
information on what to do to fix the the
potential problem.

For more information, see the CA IDMS
System Operations Guide.

Syntax Diagram Conventions

The syntax diagrams presented in this guide use the following notation conventions:

UPPERCASE OR SPECIAL CHARACTERS

Represents a required keyword, partial keyword, character, or symbol that must be
entered completely as shown.

lowercase

Represents an optional keyword or partial keyword that, if used, must be entered
completely as shown.

underlined lowercase

Represents a value that you supply.

Note: If you are reading this guide in HTML format, the syntax diagram characters
display as different symbols.

Syntax diagram character HTML Symbol

 ?

??

 ??

 +-

Syntax Diagram Conventions

20 Release Summary

Syntax diagram character HTML Symbol

 -+

+-
+-

-|
-+

◄─

Points to the default in a list of choices.

lowercase bold

Represents a portion of the syntax shown in greater detail at the end of the syntax
or elsewhere in the document.

►►────────────────────

Indicates the beginning of a complete piece of syntax.

────────────────────►◄

Indicates the end of a complete piece of syntax

─────────────────────►

Indicates that the syntax continues on the next line.

►─────────────────────

Indicates that the syntax continues on this line.

────────────────────►─

Indicates that the parameter continues on the next line.

─►────────────────────

Indicates that a parameter continues on this line.

►── parameter ─────────►

Indicates a required parameter.

►──┬─ parameter ─┬─────►
 └─ parameter ─┘

Indicates a choice of required parameters. You must select one.

►──┬─────────────┬─────►
 └─ parameter ─┘

Indicates an optional parameter.

►──┬─────────────┬─────►
 ├─ parameter ─┤
 └─ parameter ─┘

Indicates a choice of optional parameters. Select one or none.

 ┌─────────────┐
►─▼─ parameter ─┴──────►

Syntax Diagram Conventions

Chapter 1: Introduction 21

Indicates that you can repeat the parameter or specify more than one parameter.

 ┌─── , ─────────┐
►─▼─ parameter ───┴──────►

Indicates that you must enter a comma between repetitions of the parameter.

Sample Syntax Diagram

The following sample explains how the notation conventions are used:

Chapter 2: Upgrading to r17 23

Chapter 2: Upgrading to r17

This chapter describes the considerations and actions that you must take to upgrade
from r16 to r17 of CA IDMS.

This section contains the following topics:

Overview (see page 24)
Installing the Software (see page 25)
Installing the SVC (see page 25)
Formatting Journal Files (see page 25)
Offloading the Log File (see page 26)
Updating the CICS Interfaces (see page 26)
Recompiling User-Written Programs (see page 27)
Increasing Storage and Program Pools (see page 28)
Updating Execution JCL (see page 28)
Updating Task and Program Definitions (see page 29)
Updating Dictionary Descriptions (see page 29)
Updating Catalogs (see page 29)
Deprecated and Stabilized Features (see page 31)
New Reserved Profile Attribute (see page 33)
Changes in CV Startup (see page 33)

Overview

24 Release Summary

Overview

You can upgrade to r17 from CA IDMS Releases 10.x, 12.0, 14.0, 14.1, 15.0, or 16.0. The
CA IDMS r17 installation tape contains the conversion utilities needed to upgrade from
all releases other than 10.x.

The CA IDMS r17 Release Summary describes the actions required to upgrade from r16
to r17 of CA IDMS. If you are upgrading to CA IDMS r17 from a release prior to CA IDMS
r16, we recommend that you review all the intervening CA IDMS Release Summary
documents for the cumulative requirements for your upgrade.

The following is a summary of actions required to upgrade the CA IDMS software from
r16 to r17:

■ Install the software into a new environment.

■ Install the new SVC delivered with r17.

■ Initialize the journal files using the r17 FORMAT utility before starting an r17 system
for the first time.

■ Offload the log file using a pre-r17 ARCHIVE LOG utility or initialize the log file
before starting an r17 system for the first time.

■ CICS users must create new IDMSINTC interface modules before using r17 runtime
libraries in their CICS systems. If you are using UCFCICS or UDASCIC, you must
create them also using the r17 installed macro library.

■ Recompile all user-written programs that reference CA IDMS control blocks or
journal files.

■ If necessary, increase the size of XA storage and reentrant program pools.

■ If necessary, update execution JCL to increase region sizes, reference additional
IBM-supplied libraries, and add new SYSIDMS parameters.

■ Update the CA IDMS task and program definitions using source members provided
on the installation tape.

■ Run IDMSDIRL against each dictionary containing the IDMSNTWK schema
definition.

■ Update each application dictionary with the protocol modules supplied on the
installation tape.

■ CA IDMS SQL and CA IDMS Visual DBA users should update the SYSCA and SYSTEM
schemas in every catalog in which they reside.

■ Review the following information to determine if any of these changes impact your
environment:

– The list of deprecated and stabilized features

– The list of newly reserved words

Installing the Software

Chapter 2: Upgrading to r17 25

– The way in which CV startup manages the run-time DMCL and XA storage pool
255

Installing the Software

Follow the instructions documented in the CA IDMS installation guide for your operating
system. Also, follow any special installation instructions outlined in the cover letter
delivered with the installation tape. Be sure to install the r17 software into a new set of
installation libraries. If you install r17 into your existing CA IDMS SMP/E or MSHP
libraries, the results can be unpredictable.

Installing the SVC

A new SVC is delivered with r17. It should be used for all r17 systems. The SVC is
downward compatible and can be used with Releases 14.1, 15.0, and 16.0 systems.

The procedure for installing the SVC has changed slightly in r17. For more information,
see SVC Enhancements.

Formatting Journal Files

The content of journal files is changed slightly in r17. You must initialize the journal files
using the r17 FORMAT utility statement before the journal files can be used with an r17
system. At startup, the system verifies that the journal files are in the correct format.

If it is necessary to fall back to an earlier release of the software, the journal files must
be reinitialized using the FORMAT utility and runtime libraries from the earlier release,
otherwise warmstart fails.

Journal File Changes

The content of disk journal files is changed in r17 in the following ways:

■ The JTRSEQ field in DSEG, JSEG, and JSGX records is always binary zeros.

■ No TIME record is written to a journal block that contains a DSEG, JSEG, or JSGX
record.

The content of archived journal files is also changed in the following ways:

■ DSEG, JSEG, and JSGX journal records are no longer offloaded.

■ A segment number is added to the TIME record.

These changes may impact user and third party software that directly access journal
files.

Offloading the Log File

26 Release Summary

Offloading the Log File

The format of the log file's statistics records is unchanged in r17, although the release
identifier in these records is updated and contains the string 'R170'. If CA IDMS
encounters a log record with an earlier release identifier, the ARCHIVE LOG utility issues
the warning message:

NON 17.0 RECORD HAS BEEN ENCOUNTERED IN THE LOG, RECORD WILL BE BYPASSED

To avoid these messages and to separate logs from prior releases, offload the log file
using the ARCHIVE LOG utility before installing r17 or initialize the log file if you do not
need the log information.

If it is necessary to fall back to an earlier release of the software, any log file accessed by
an r17 system must be offloaded or initialized prior to its use by a pre-r17 system.

Updating the CICS Interfaces

This section describes the upgrade requirements for the CICS interfaces.

Creating New CICS Interface Modules

Before a CICS system can use the r17 CA IDMS runtime library, you must create new
IDMSINTC interface modules and UCF front-ends (if applicable) using the r17 source,
macro, and object libraries. However, you do not have to create new IDMSCINT or
IDMSCINL modules or relink user applications when upgrading to a CA IDMS r17 system.

The CICS IDMSINTL interface has been stabilized at the r16 level. For the applications
that use this interface, we recommend using the IDMSINTC interface instead. You do
not have to change or relink the application programs that were using IDMSINTL to use
IDMSINTC. You can create an IDMSINTC interface module by compiling a CICSOPT with
the same invocation parameters as the IDMSINTL interface being replaced.

Using the New IDMSINTC CICS Interface

Starting with r15, the IDMSINTC CICS interface module is delivered as an object module.
It is installed using SMP/E and can be maintained using SMP/E. Various exits and
parameterized options are provided so that all users can take advantage of this
improved delivery method. The IDMSINTC macro is no longer delivered in source form.

Recompiling User-Written Programs

Chapter 2: Upgrading to r17 27

Deprecated Macro Level Support

In compliance with all current releases of CICS, the r17 version of IDMSINTC no longer
supports macro level programs. Should you still have such programs, they must be
converted to command level before upgrading to the r17 version of the CICS interface.

Updating the CICS System

Install the CA IDMS r17 entity definitions into the CICS CSD. These definitions are
contained in the installed source library members CICSCSD and CICSCSD2. Consult the
appropriate IBM documentation to ensure that these definitions take precedence over
any previously installed definitions for the corresponding entities.

If you issue SQL requests from CICS applications, ensure that the IBM Language
Environment runtime support is available in the CICS region.

Upgrading from Versions Earlier than r16

If you are upgrading the CICS interface from versions earlier than r16, additional actions
may be required, such as establishing a unique identifier for the CICS system and
defining a resynchronization task and program.

Note: For more information, see the CA IDMS r16 Release Summary or the CA IDMS
System Operations Guide.

Recompiling User-Written Programs

Several control block formats are changed in r17. Although in most cases, the only
changes are the addition of new fields, we recommend that you recompile all programs,
such as user-written exits, that reference CA IDMS control blocks using the r17 library.

Any program that directly accesses the DMCL run-time structures can be impacted by
changes in the way data set information is recorded.

Note: For more information, see Run-time DMCL File Management (see page 295).

Two records in the TCP/IP API interface were modified in CA IDMS release 17. The
affected records are:

■ SOCKET-CALL-INTERFACE

■ SOCKET-MISC-DEFINITIONS

Recompile all programs making reference to these records (COBOL, PL/I, and ADS) when
upgrading to CA IDMS release 17.

Increasing Storage and Program Pools

28 Release Summary

Increasing Storage and Program Pools

It may be necessary to increase the size of the XA storage pool (pool 255) due to
increased storage requirements. Transactions that use SQL require about 80 KB
additional XA storage in pool 255.

Updating Execution JCL

In most cases, no changes are needed to CA IDMS execution JCL. However, the following
conditions may require updating this JCL to successfully upgrade to CA IDMS r17:

■ Access to the IBM Language Environment (LE) runtime support is required in the
following environments:

– Central Version

– Batch job steps that issue CA IDMS SQL statements or that execute IDMSBCF,
IDMSDMLC, IDMSDMLP or ADSOBCOM

– CICS systems in which CA IDMS SQL statements are executed

If the LE runtime library is not in the linklist, it must be added to the execution JCL if
it is not already present. For CV and batch, this means adding the LE SCEERUN load
library to the CDMSLIB concatenation if CDMSLIB is used; otherwise, adding it to the
STEPLIB concatenation. For CICS, this means enabling the CICS LE runtime support
as described in the appropriate IBM documentation.

■ It may be necessary to increase the region size to accommodate increased storage
requirements.

■ In r17, CV and batch jobs attempt to access a new type of data set using a DDNAME
that by default begins with the character string "SYSTRK". You do not need to add
new DD statements to your JCL to upgrade; however, if these DDNAMEs conflict
with ones for your own files, use the SYSTRK_DDNAME_PREFIX SYSIDMS parameter
to override the default.

Note: For more information, see Change Tracking.

■ Any new SYSIDMS parameters, such as the SYSTRK_DDNAME_PREFIX parameter
described previously, and the CV_STARTUP_XA_REGION_MB parameter described
in Changes in CV Startup, can be added directly to execution JCL or specified in a
SYSIDMS load module tailored to your site.

Note: For more information about creating a SYSIDMS load module, see the CA
IDMS Common Facilities Guide.

Updating Task and Program Definitions

Chapter 2: Upgrading to r17 29

Updating Task and Program Definitions

New CA-supplied task and program definitions are provided for r17. You should update
the system definition using the batch sysgen compiler RHDCSGEN and source members
provided on the installation tape. This can be accomplished by taking the following
steps:

1. Perform an UPGRADE install to upgrade the definitions for SYSTEM 99.

2. Copy the task and program definitions from SYSTEM 99 to your system definition.

Note: For more information on the UPGRADE install process, see the CA IDMS
installation manual for your operating system.

If it is necessary to fall back to an earlier release of the software, you can recreate the
earlier versions of the task and program definitions by reinstalling them from the
installation tape provided with the earlier release or by restoring the system dictionary
from a backup that was taken prior to the upgrade. If returning to r15 or r16, it is not
necessary to restore the earlier version of the task and program definitions.

Updating Dictionary Descriptions

New fields are added to the JOURNAL-1043 record in the IDMSNTWK schema and the
IDMSNWKG subschema. You should update the definition of these records in every
dictionary containing the IDMSNTWK schema description. To do this, use the IDMSDIRL
utility. For more information about executing this utility, see the CA IDMS Utilities
Guide.

You should also update each of your application dictionaries using the DLOD members
appropriate to your environment. For more information, see the installation materials
provided with the r17 installation tape.

Updating Catalogs

CA IDMS Visual DBA and CA IDMS SQL users should take the following steps to update
every catalog in which the SYSCA or SYSTEM schemas are defined:

■ Convert the catalog to update the SYSTEM schema definition

■ Update the SYSCA schema definition

Any catalog, including non-SQL defined catalogs, may require special handling if falling
back to an earlier release of CA IDMS. For more information, see Fallback
Considerations.

Updating Catalogs

30 Release Summary

Updating the SYSTEM Schema

CA IDMS Visual DBA and CA IDMS SQL users should use the CONVERT CATALOG
command to update the definitions of system tables in each catalog in which the
SYSTEM schema is defined.

SYSTEM Schema Changes

When an r16 format catalog is converted, the definitions of the following tables are
upgraded to their r17 definition and new columns in associated rows are initialized
appropriately:

■ SYSTEM.JOURNAL

■ SYSTEM.TABLE

Changes introduced in earlier releases of the software are applied if they have not
already been made. For a description of the changes made in earlier releases of CA
IDMS, see the CA IDMS r16 Release Summary.

Note: If IDMSDBAN is run against a newly migrated catalog area it is very possible that
numerous 598516 errors indicating a record length different than the subschema length
will be found. These conditions are acceptable and will not create any run-time
problems for IDMS. These conditions will be rectified the next time the record
occurrences are updated by IDMS. Rows associated with the SYSTEM.JOURNAL table
are updated by the ALTER JOURNAL statement of the DMCL compiler and rows related
to the SYSTEM.TABLE table are altered by the ALTER TABLE command.

Executing the Catalog Conversion Utility

The CONVERT CATALOG utility can be invoked using the online command facility (OCF)
or the batch command facility (IDMSBCF). If running in local mode or if converting from
Release 12.0 or 12.01, you should back up the target catalog before executing this
utility.

To convert a catalog to r17 format, enter the following statement:

►►─── CONVERT CATALOG ──►

After successful execution, CA IDMS issues one of the following informational messages
to indicate the status of the conversion:

■ If a catalog conversion is performed, the message indicates the number of rows of
each type that are changed.

■ If a catalog conversion is not required, an appropriate message is issued.

Deprecated and Stabilized Features

Chapter 2: Upgrading to r17 31

Updating the SYSCA Schema

CA IDMS Visual DBA and CA IDMS SQL users should update the SYSCA schema definition
in each catalog in which the SYSCA schema is defined. This process varies slightly
depending on your current release of CA IDMS. For more information about the
required steps, see the installation materials provided with the r17 installation tape.

The following new procedures are defined to the SYSCA schema for r17 and are
downward compatible with prior releases of CA IDMS:

■ SYSCA.GET_DIAGNOSTICS

■ SYSCA.GET_STATISTICS

Fallback Considerations

The changes implemented by the r17 catalog conversion utility are downward
compatible with r14 and later releases of CA IDMS. If it is necessary to fall back to one of
these earlier releases, no further action needs to be taken regarding the catalog.

Should it be necessary to reorganize (or unload and reload) a catalog updated by r17 CA
IDMS after falling back to an earlier release, it may be necessary to do so using the r17
version of the IDMSCATZ subschema rather than the earlier version. This further action
is necessary only if the catalog contains disk journal definitions and one of the following
actions took place under r17 of CA IDMS:

■ A disk journal file was created or altered

■ The catalog was converted

Important! Converted definitions are not downward compatible with Release 12.0 or
12.01 of the software. For this reason, if you are upgrading from either of these
releases, you should retain backup files of the catalog before converting it. Should it be
necessary to fall back, you must restore the catalog and any database areas containing
tables that were created or altered using the r17 version of the software.

Deprecated and Stabilized Features

This section describes the impact of r17 on the support of features available in earlier
releases of CA IDMS.

Agent Technology Support

Support for CA IDMS agent technology has been dropped on all releases of CA IDMS.

Deprecated and Stabilized Features

32 Release Summary

BS2000/OSD Support

Support for the Fujitsu-Siemens BS2000/OSD operating system has been stabilized at
the r16 level.

CICS IDMSINTL Interface

The CICS IDMSINTL interface has been stabilized at the r16 level. For more information,
see Creating New CICS Interface Modules.

CICS Macro Level Support

The r17 version of IDMSINTC no longer supports macro level programs. For more
information, see Deprecated Macro Level Support.

Optional APARs

Support for optional APAR OPT00224 has been replaced with the SYSIDMS parameters
described in Wait for In-Use Data Set.

Support for optional APAR OPT00135 has been removed. Retaining the offline status of
an area across CV shutdowns can instead be achieved by using the PERMANENT option
of the DCMT VARY AREA/SEGMENT command. A warning will be issued at CV startup if
CA IDMS detects that this APAR is applied.

SYSIDMS Parameters

Support for SYSIDMS parameters TCP/IP_MAXIMUM_SOCKETS and
TCP/IP_MAXIMUM_SOCKETS_PER_TASK is replaced with parameters on the new TCP/IP
SYSGEN statement described in New TCP/IP System Entity.

DCMT DISPLAY LINE Parameter

The IPINFO option of the DCMT DISPLAY LINE command is no longer supported for a
SOCKET LINE. The information can now be obtained using the DCMT DISPLAY TCP/IP ALL
command.

Note: For more information, see DCMT DISPLAY LINE Command.

New Reserved Profile Attribute

Chapter 2: Upgrading to r17 33

New Reserved Profile Attribute

EXTIDENT is now a CA-reserved profile attribute used to represent the external identity
for a user session. If you have used this name for a user-defined attribute, you must
select another name and update all places in which it is referenced.

Note: For more information about the EXTIDENT profile attribute, see External Identity
Auditing.

Changes in CV Startup

The way in which CV startup manages the run-time DMCL structures is changed in r17.
In earlier releases, CA IDMS builds the run-time DMCL twice: once before warmstart and
again during CV startup. The first run-time DMCL is deleted before the second is built.

In r17, the run-time DMCL is built only once. This occurs prior to warmstart, and the
resulting structures are retained in memory throughout CV's execution. This change
may impact user and third party software that directly access the run-time DMCL.

This change may also require the use of a new CV_STARTUP_XA_REGION_MB SYSIDMS
parameter for CVs whose DMCL is extremely large. This new parameter allows for larger
XA storage pool allocation during the initial stages of CV startup to hold the run-time
DMCL.

CV_STARTUP_XA_REGION_MB=:pv.nnn:epv.

Specifies the size of the initial XA storage pool acquired during early CV startup.

:pv.nnn:epv.

Specifies the size in MB (megabytes) of the initial XA storage pool.

Default:

32 MB

Note: The XA storage used for CV startup is internally converted to a dynamic
extension of XA storage pool 255 that is fully used. This may impact user and third
party software that directly access the IDMS storage management control blocks.

Chapter 3: Non-Stop Processing 35

Chapter 3: Non-Stop Processing

This chapter describes the non-stop processing enhancements.

This section contains the following topics:

Change Tracking (see page 35)
Dynamic Journal Files (see page 61)
Scratch Enhancements (see page 70)

Change Tracking

Change tracking enables changing the database environment of a Central Version (CV) in
a fault-tolerant manner. Specifically, it enables the DBA to perform the following
actions:

■ Vary the data set name of a journal or database file within a CV without introducing
the potential for a warmstart failure

■ Vary a new version of a DMCL without introducing the potential for a warmstart
failure

■ Vary the status of an area or segment permanently on a CV without regard to
subsequent page range changes

■ Change the journal files in use by a CV and coordinate those changes with the
associated archive journal jobs

Change tracking also provides an easy way for a local mode job to use the same
database environment (definition and data sets) as a CV, even if that environment has
been impacted by dynamic modifications.

More Information

■ For more information about how CV tracks changes to its database environment,
see Change Tracking and SYSTRK Files.

■ For more information about the steps necessary to implement change tracking, see
Implementing Change Tracking.

■ For more information about how to manage change tracking and its impact on
existing DCMT commands, see Managing Change Tracking.

Change Tracking

36 Release Summary

Change Tracking and SYSTRK Files

To track changes, CV maintains a description of its database environment in a new type
of file called a SYSTRK file. The presence of such a file in the execution JCL of a CV
triggers change tracking by that CV. A local mode job, such as a journal archive job, can
share the description of the CV's database environment by referencing the same SYSTRK
file in its execution JCL.

A SYSTRK file holds a description of the database environment most recently in use by
the CV. During startup, an image of the current DMCL is written to SYSTRK along with
information about database and journal files defined in the JCL. If DCMT commands
issued during CV execution cause critical changes to its database environment, SYSTRK is
updated to reflect those changes. If the CV fails, the runtime database definition is
restored from SYSTRK during restart, ensuring that the files being updated at the time of
failure are the ones recovered by warmstart unless explicitly overridden by changes in
the JCL used to restart the CV.

Change tracking is optional. If no SYSTRK file is referenced in the execution JCL of the
CV, change tracking is not in effect, meaning that the potential for a warmstart failure is
introduced when varying in a new copy of a DMCL or dynamically changing the data set
name of a file. Additionally, any permanent status established for an area whose page
range is changed is lost or may be misapplied to another area whose page range is also
changed.

Change tracking can be temporarily inactivated or disabled for a CV to facilitate
expansion or replacement of a SYSTRK file. However, doing this impacts the ability to
dynamically change the database environment.

■ Inactivating change tracking has the effect of disallowing DCMT commands that
would otherwise require updating SYSTRK.

■ Disabling change tracking allows such commands to be executed, but a warning is
issued indicating that manual intervention will be needed to restart CV should it fail
before change tracking is re-activated.

Change Tracking

Chapter 3: Non-Stop Processing 37

Implementing Change Tracking

To implement change tracking for a CV, take the following steps:

1. Create and format two to four SYSTRK files. A minimum of two SYSTRK files are
needed because mirroring is used to provide fault tolerance and recoverability in
case of file damage.

2. Alter CV execution JCL to reference the SYSTRK files.

3. Alter the JCL for the associated archive journal job to also reference the SYSTRK files
and to remove references to the disk journal files.

4. Optionally, change the JCL of other local mode jobs to reference the SYSTRK files
and remove explicit references to database files.

Once change tracking has been initiated for a CV, its use should be continued
indefinitely; otherwise, permanent area or journal statuses will be lost. Despite this, if
you choose to discontinue the use of change tracking, do so as follows:

■ Shutdown CV

■ Remove all references to the SYSTRK files in the execution JCL of the CV and other
jobs

■ After restarting CV, use DCMT commands to re-establish permanent area statuses

Note: You can temporarily disable change tracking by issuing a DCMT VARY CHANGE
TRACKING command or by overriding the SYSTRK file assignments to reference a dummy
file.

More Information

■ For more information about sizing and formatting SYSTRK files, see Formatting
SYSTRK Files.

■ For more information about options for altering CV startup JCL to reference SYSTRK
files, see Referencing SYSTRK Files in Execution JCL.

Formatting SYSTRK Files

A SYSTRK file must be formatted before it can be used. The FORMAT utility statement
has been enhanced for this purpose.

Syntax

►─ FORMAT ─┬ . . . ──┬──────►◄
 │ │
 └ SYSTRK ── SYSTRK-format-options ──────────────────────────┘

Expansion of SYSTRK-format-options

 ┌─────────,─────┐
►──── ▼ ─ target-ddn ─┴──────┬──┬─────►◄
 └─ INITIAL ┬───────────────────────────┬───┘
 └─ initial-SYSTRK-options ──┘

Change Tracking

38 Release Summary

Expansion of initial-SYSTRK-options

 ┌───┐
►───▼ ─┬─ FILE COUNT file-cnt ───┬┴─►◄
 ├─ DELETE ┬ ON ─┬───┤
 │ └ OFF ┘ │
 ├─ PAGE SIZE page-size ───┤
 ├─ FILE SIZE number-of-pages ───────────────────────────────────────┤
 └─ LIKE ─ ddname2 ─┬────────┬─┬────────────────────────────────────┬┘
 └ ACTIVE ┘ └ EXPAND ─ pct-increase ─┬─────────┬─┘
 ├ percent ┤
 └ % ──────┘

Change Tracking

Chapter 3: Non-Stop Processing 39

Parameters

SYSTRK

Indicates that one or more SYSTRK files are to be formatted.

target-ddn

Specifies the DDname or linkname of a SYSTRK file to be formatted.

Note: The target-ddn should not begin with the DDname prefix used for referencing
SYSTRK files. Otherwise, CA IDMS attempts to use it for building the DMCL
definition and fails if it cannot do so.

INITIAL

Indicates this is the first time the SYSTRK file is being formatted. If specified, no
check is made to determine whether the file is in use by a CV. INITIAL must be
specified the first time a file is formatted. It should not be specified when a file is
being re-formatted unless you are sure that the file is not in use by a CV.

file-cnt

Specifies the number of SYSTRK files that are maintained as active mirrors. The
file-cnt must be an integer in the range 2 through 4.

If file-cnt is not specified, the value is taken from the file identified by ddname2, if
specified, or at run time from the file count currently in use by the DC/UCF system.
If file-cnt has never been specified on a format for a related SYSTRK file, the first
time that a DC/UCF system writes to a set of SYSTRK files, it sets file-cnt to be the
lesser of the number of files currently allocated and 4. The value can be altered
dynamically by a DCMT VARY CHANGE TRACKING command.

DELETE

Specifies whether the DC/UCF system is to automatically delete obsolete SYSTRK
files.

ON

(z/OS and z/VM systems only) Enables automatic file deletion.

OFF

Disables automatic file deletion.

If DELETE is not specified, the value is taken from the file identified by ddname2, if
specified, or at run time from the delete option currently in use by the DC/UCF
system. If DELETE has never been specified on a format for a related SYSTRK file, the
first time that a DC/UCF system writes to a set of SYSTRK files, it sets the option to
OFF. The option can be altered dynamically by a DCMT VARY CHANGE TRACKING
command.

page-size

Change Tracking

40 Release Summary

Specifies the size of each page to be written to the SYSTRK file being formatted and
must be an integer in the range 4088 through 32764. On z/VM, the value must be
4096. On z/OS, the maximum page-size is 32760. Do not specify page-size for VSAM
files.

number-of-pages

Specifies the number of pages to be written to the SYSTRK file being formatted and
must be an integer in the range 10 through 999,999.

ddname2

Specifies the DDname of a file from which the attributes and contents may be
taken. If ddname2 is specified together with either or both page-size and
number-of-pages, the latter values override the respective attributes of the file
identified by ddname2.

Note: ddname2 should not begin with the DDname prefix used for referencing
SYSTRK files unless the identified file contains the DMCL definition to be used
during execution of the command facility.

ACTIVE

Indicates that the contents of the file identified by ddname2 are to be copied to the
file being formatted even if the file identified by ddname2 is currently in-use by a
CV.

pct-increase

Specifies the percentage increase in the number of pages written to the file being
formatted over the number of pages in the file identified by ddname2. The
pct-increase must be an integer in the range 0 through 1000.

Note: For more information about the DDname prefix used for referencing SYSTRK files,
see Referencing SYSTRK Files in Execution JCL.

Usage

Referencing SYSTRK Files During Format

To avoid I/O errors when building the runtime environment in local mode, only
previously formatted files should be referenced using a DDname that matches the
SYSTRK DDname prefix. For this reason, it is recommended that non-matching DDnames
always be used to identify SYSTRK files being formatted.

SYSTRK File Attributes

If a SYSTRK file is being formatted to be added as a mirror of an existing file, the page
sizes of the two files must be the same and the file being formatted must have at least
as many pages as the existing file. If these criteria are not met the following conditions
can occur:

■ Any attempt to make the newly formatted file an active mirror of the existing file
fails.

Change Tracking

Chapter 3: Non-Stop Processing 41

■ If a LIKE parameter is specified, FORMAT does not copy the contents of the file
specified by ddname2 to the newly formatted file.

If INITIAL is not specified, the page size and number of pages of a file being formatted
remain unchanged.

If INITIAL is specified, the number of pages written to the file is determined according to
the following precedence rules:

■ If a FILE SIZE parameter is specified, then the number of pages is number-of-pages.

■ If a LIKE parameter is specified, then the number of pages is a value based on the
number of pages in the file identified by ddname2. The value is calculated as:

page-cnt * (100 + pct-increase) / 100

page-cnt

Specifies the number of pages in the file identified by ddname2.

pct-increase

Specifies the value in the EXPAND parameter, if specified or 0.

■ The number of pages is a value based on the size of the current DMCL calculated as:

((DMCL-size + page-size -1) / page-size)*4

DMCL-size

Specifies the size of the DMCL load module.

page-size

Specifies the page size of the file being formatted.

In the latter two cases, the number calculated is rounded up to the next larger integer
value. If the calculated value is less than the minimum, it is set to the minimum of 10. If
the calculated value is larger than the maximum, it is set to the maximum of 999,999.

If INITIAL is specified, the size of the pages written to a non-VSAM file is determined
according to the following precedence rules:

■ If PAGE SIZE is specified, then the page size is page-size.

■ If a block size has been assigned (for example, specified in JCL or at the time the file
was created), then page size is the block size.

■ If a LIKE parameter is specified, then page size is the page-size of the file identified
by ddname2.

■ Otherwise, the page size is 7548.

For VSAM files, the page size is the file record size. Any attempt to override this through
a PAGE SIZE parameter fails.

Choosing a SYSTRK Page Size

Change Tracking

42 Release Summary

In most cases, the FORMAT utility's default page size for SYSTRK files provides an
acceptable tradeoff between memory, I/O, and disk space. Consider overriding the
default only if the size of the DMCL is extremely large (500K or more). A larger page size
will reduce I/Os and disk space requirements at the expense of slightly increased
memory usage for buffers.

Estimating the Minimum Number of Pages for a SYSTRK File

To estimate the minimum number of pages needed for a SYSTRK file, perform the
following steps:

1. Take the size of the DMCL load module used by the CV, divide it by the SYSTRK page
size and multiply it by 2.5.

2. Multiply the resulting value with a factor to allow for overrides and growth.
Overrides require approximately 100 bytes of space each and are generated for:

■ Each database or journal file defined in the execution JCL

■ Each dynamic change in the data set name of a database or journal file

■ Each dynamic change in the permanent status of an area

■ Each dynamic change in the status of a journal file

Copying SYSTRK File Contents

If a LIKE parameter is specified, the contents of the file identified by ddname2 are
copied to the files being formatted unless the file identified by ddname2 is in use by a
CV or the attributes of the two files are incompatible. If the contents of ddname2 are
not copied, a message indicates the reason.

If the file attributes are compatible, specify the keyword ACTIVE to force the copy to
occur even if the file identified by ddname2 is in use by CV. Only do this if you are sure
that CV will not update the file while the copy is in progress, otherwise, the contents of
the two files may not be the same which can lead to unpredictable results during CV
restart. Ensure that a CV does not update its SYSTRK files by varying change tracking
inactive before doing the format.

There is normally no need to force the contents of SYSTRK files to be copied. CV
automatically updates newly formatted SYSTRK files as part of making them active
mirrors.

Note: Formatting SYSTRK files can only be done in local mode.

JCL Considerations

When you submit a FORMAT statement through the batch command facility in local
mode to format SYSTRK files, the JCL to execute the facility must include statements to
define the SYSTRK files to be processed.

To format a new SYSTRK file, code the following:

Change Tracking

Chapter 3: Non-Stop Processing 43

//anydd DD DSN=user.systrkn,DISP=(NEW,disp),

// UNIT=disk,VOL=SER=nnnnnn,

// SPACE=(space)

To reformat an existing SYSTRK file, code the following:

//anydd DD DSN=user.systrkn,DISP=(OLD,PASS)

anydd

The target DDname specified in the FORMAT SYSTRK statement.

user.systrkn

Data set name of the SYSTRK file.

Note: For more information about generic JCL to execute the batch commandfacility,
see the chapter pertaining to your operating system in the CA IDMS Utilities Guide.

Examples

Formatting SYSTRK Files

The following sample IDMSBCF statement instructs the FORMAT utility to format three
new SYSTRK files (track01, track02, track03). It directs the utility to format the files to
have the default page size of 7548 and contain 60 pages each. CA IDMS will maintain 3
active mirrors.

format systrk track01, track02, track03

 initial file count 3

 file size 60;

Sample Output

Formatting SYSTRK Files

The following listing was generated after the successful completion of the previous
FORMAT SYSTRK example.

Change Tracking

44 Release Summary

IDMSBCF CA IDMS Batch Command Facility

FORMAT SYSTRK TRACK01, TRACK02, TRACK03
 INITIAL FILE COUNT 3 FILE SIZE 60;

Systrk file TRACK01 page size 7,548 file size 60
 delete NULL file count 3.
Systrk file TRACK02 page size 7,548 file size 60
 delete NULL file count 3.
Systrk file TRACK03 page size 7,548 file size 60
 delete NULL file count 3.
Status = 0 SQLSTATE = 00000

AutoCommit will COMMIT transaction

Command Facility ended with no errors or warnings

Referencing SYSTRK Files in Execution JCL

SYSTRK files are referenced in execution JCL using file assignments whose DDname
begins with the value specified by the SYSIDMS parameter: SYSTRK_DDNAME_PREFIX.
The default value for this parameter is SYSTRK. Because mirroring is used to provide
recovery in the event of file damage, multiple SYSTRK files must be used at runtime.

Depending on your operating system, you can reference SYSTRK files in execution JCL by
including one of the following:

■ A model SYSTRK file assignment

■ A file assignment for each SYSTRK file to be used

Referencing SYSTRK files using a model is the recommended approach because it
enables the set of active SYSTRK files to be changed without impacting execution JCL.

Using a Model SYSTRK File Assignment

A model SYSTRK file assignment has a DDname that is the SYSTRK_DDNAME_PREFIX. It
references a data set whose name is used as the prefix for constructing the names of
the real SYSTRK files by appending a numeric suffix ranging from 1 to 9 to the end of the
model's data set name.

For example, if the SYSTRK_DDNAME_PREFIX is SYSTRK and a model SYSTRK file
assignment references a data set name of DBDC.SYSTEM73.SYSD with a disposition of
SHR, CA IDMS attempts to discover through dynamic allocation the data sets shown in
the following table:

DDNAME DSN DISP

SYSTRK1 DBDC.SYSTEM73.SYSD1 SHR

SYSTRK2 DBDC.SYSTEM73.SYSD2 SHR

Change Tracking

Chapter 3: Non-Stop Processing 45

DDNAME DSN DISP

" " "

SYSTRK9 DBDC.SYSTEM73.SYSD9 SHR

The presence of a file assignment whose DDname is SYSTRKn overrides the generated
data set name and disposition. If an overriding file assignment refers to a dummied file,
the overridden file is not used.

If a model SYSTRK file assignment refers to a dummied file, it is equivalent to not
including a model file assignment in the execution JCL.

Note: The data set referenced by a model SYSTRK file assignment is never opened.
While the file must exist, its contents are not relevant.

Note: In z/VSE if a model SYSTRK label is used, the individual SYSTRK files must be
defined in system labels, or cataloged in a CA DYNAM catalog. Otherwise it is
recommended to use individual SYSTRK file assignments. If the IDMSLBLS JCL procedure
is used, you may wish to add a SYSTRK model or individual file assignments here.

Using Individual SYSTRK File Assignments

The DDNAME for an individual SYSTRK file assignment is the SYSTRK_DDNAME_PREFIX
suffixed with a digit from 1 to 9. For example, if the SYSTRK_DDNAME_PREFIX is SYSTRK,
the DDNAMEs that can be used for SYSTRK files are SYSTRK1, SYSTRK2, . . . SYSTRK9.

Using this approach to reference SYSTRK files requires that a file assignment be included
in the JCL for each SYSTRK file to be used. To change the set of files being used, you
must update every set of JCL in which they are referenced.

Managing Change Tracking

This section describes the facilities that are available for managing change tracking. The
following topics are covered in this section:

■ The ability to monitor the status of change tracking by issuing a DCMT DISPLAY
CHANGE TRACKING command

■ The ability to alter the status of change tracking by issuing a DCMT VARY CHANGE
TRACKING command

■ The ability to increase the size of the SYSTRK files by using the FORMAT utility
statement in conjunction with the DCMT VARY CHANGE TRACKING command

Change Tracking

46 Release Summary

DCMT DISPLAY CHANGE TRACKING Command

Displays information on the status of change tracking and on the SYSTRK files currently
known to the system.

Syntax

►►─ DCMT ─┬───────────────────┬─ Display CHAnge TRAcking ─────────────────────►◄
 └─ broadcast-parms ─┘

Change Tracking

Chapter 3: Non-Stop Processing 47

Parameters

broadcast-parms

Specifies to execute the DCMT command on all or a list of data sharing group
members.

Note: For more information about broadcasting and broadcast-parms, see How to
Broadcast System Tasks in the CA IDMS System Tasks and Operator Commands
Guide.

Example

DCMT D CHANGE TRACKING
Change Tracking - Status Delete PageCnt Target-FileCnt Actual-FileCnt
 ACTIVE OFF 21 4 2

SYSTRK contents Size PagCnt Pct Last Updated (time zone: UTC)
DMCL + file information 35076 5 24% 2007-06-14-17.06.20.642828
Permanent area statuses 0 0 0% 2007-06-14-17.06.23.349039
Journal status overrides 0 0 0% 2007-06-14-17.06.20.674228
Control information 30192 4 19% N/A
-------------------------- ------ ------ ----
Total: 65268 9 43%

File Name MirrorStat MODE ErrStat PagSize PagCnt Fl-Type DD-Name
SYSTRK1 ACTIVE Clos 0 7548 21 non-VSAM SYSTRK1
 DSname: DBDC.SYSTEM73.SYSTRK1 DISP=SHR VOLSER:CULL06
 FORMAT datetime (time zone: UTC) 2007-06-08-13.31.15.587813
 CONTROL datetime (time zone: UTC) 2007-06-14-17.06.15.640034

SYSTRK2 ACTIVE Clos 0 7548 21 non-VSAM SYSTRK2
 DSname: DBDC.SYSTEM73.SYSTRK2 DISP=SHR VOLSER:CULL06
 FORMAT datetime (time zone: UTC) 2007-06-08-13.31.15.674543
 CONTROL datetime (time zone: UTC) 2007-06-14-17.06.15.640034

Usage

CHAnge TRAcking displays the following attributes:

■ Current change tracking status

■ Target number of files to be maintained as active mirrors

■ Current delete option setting

■ Page count in effect for SYSTRK files

■ Summary of file content and space utilization

■ For each known SYSTRK file

– DSName, filename, initial format date, page size and file size

– Mirroring and usage status

Change Tracking

48 Release Summary

DCMT VARY CHANGE TRACKING Command

DCMT VARY CHANGE TRACKING changes the status of change tracking.

Syntax

►►─ DCMT ┬───────────────────┬ Vary CHAnge TRAcking ───────────────────────────►
 └─ broadcast-parms ─┘
►────┬─ REFresh ─────────────┬──►◄
 ├─ ACTive ──────────────┤
 ├─ INActive ────────────┤
 ├─ DISable ─────────────┤
 ├─ FILe COUnt file-cnt ─┤
 └─ DELete ┬─ ON ──┬─────┘
 └─ OFF ─┘

Change Tracking

Chapter 3: Non-Stop Processing 49

Parameters

broadcast-parms

Specifies to execute the DCMT command on all or a list of data sharing group
members.

Note: For more information about broadcasting and broadcast-parms, see How to
Broadcast System Tasks in the CA IDMS System Tasks and Operator Commands
Guide.

REFresh

Adds new SYSTRK files to the list of mirrors and terminates use of older or
non-existent mirrors. New SYSTRK files are made active before terminating the use
of other SYSTRK files. In the process of becoming active mirrors, the contents of
new files are brought up-to-date if necessary. Terminated files are deleted if the
current delete option is ON. After a successful refresh, the status of change tracking
is active.

ACTive

If change tracking is active, this option has no effect. If change tracking is inactive or
disabled, this option activates change tracking and enables the execution of DCMT
commands that update information in SYSTRK. An automatic refresh is done as part
of activation. Any files with out-of-date contents are brought up-to-date as part of
the process of becoming active. The contents of all SYSTRK files are refreshed if
change tracking was previously disabled. At least one SYSTRK file must exist and
achieve active mirror status before certain DCMT commands can be executed.

Note: For a list of impacted commands, see DCMT Commands that Require Active
Change Tracking.

INActive

Deactivates change tracking and prevents the execution of certain DCMT
commands. All SYSTRK files are closed and deallocated except those that have
encountered an I/O error.

DISable

Disables change tracking but does not prevent the execution of certain DCMT
commands. Disabling change tracking should only be used in an emergency
situation because the inability to record changes in the SYSTRK files may lead to
incorrect recovery during warmstart and incorrect area statuses on system restarts.

file-cnt

Specifies the target number of files to be maintained as active mirrors. file-cnt must
be an integer in the range 2 through 4. To affect the number of files actually in use
while change tracking is active, issue a DCMT VARY CHANGE TRACKING REFRESH
command.

DELete

Specifies whether the DC/UCF system automatically deletes obsolete SYSTRK files.

Change Tracking

50 Release Summary

ON

(z/OS and z/VM systems only) Enables automatic file deletion.

OFF

Disables automatic file deletion.

Usage

Refreshing SYSTRK File Use

If the REFresh option is specified or change tracking is activated by specifying the ACTive
option, the system replaces existing SYSTRK files with more recently formatted ones.
This is useful in expanding the size of SYSTRK files because newer files can have more
pages than existing files. To increase the amount of SYSTRK space available, all files must
be replaced with files having the larger number of pages.

The following algorithm is used when refreshing SYSTRK file usage:

■ A discovery process determines all SYSTRK files that are referenced either directly
or indirectly through a model DD statement in the execution JCL.

■ Each file is opened and read to determine its characteristics and control
information.

– Any file that cannot be opened, that encounters an I/O error or whose header
is invalid, is discarded.

– Any file whose characteristics are incompatible with the current SYSTRK file
characteristics is discarded. To be compatible, its page size must be the same as
the current page size and the number of pages must not be less than the
current number of pages.

■ All out-of-date files are brought up-to-date by copying the content from other files,
or by writing new information.

■ If the count of active mirrors is greater than the target, then the following actions
occur:

– The use of files is terminated until the count of active mirrors is equal to the
target. The next file terminated is the one with the oldest initialization
timestamp.

– For each file whose use is terminated, the following actions occur:

■ If automatic file deletion is enabled, the file is deleted.

Note: This may take some time if the file is in use by another job.

■ If automatic file deletion is disabled, a message is written indicating that
the file is no longer being used and should be deleted manually.

– If the count of active mirrors is equal to the target, the current number of
pages is set to be the smallest of all active files.

Change Tracking

Chapter 3: Non-Stop Processing 51

DCMT Commands that Require Active Change Tracking

If change tracking is in use for a CV, the following commands are impacted by the status
of change tracking:

■ DCMT VARY DMCL

■ DCMT VARY FILE if it changes the data set name of the file

■ DCMT VARY AREA or SEGMENT if it changes the permanent status of an area

■ DCMT VARY JOURNAL FILE if it changes the data set name or the permanent status
of a journal file

Note: If change tracking is inactive, these commands are prohibited. If it is disabled, a
warning is issued if these commands are executed.

Change Tracking

52 Release Summary

Expanding SYSTRK Files

A set of SYSTRK files can be expanded by using the FORMAT utility statement. The
procedure for expanding files while CV remains active differs depending on whether the
SYSTRK files are referenced through a model SYSTRK file assignment or if they are
referenced using individual file assignments.

Expanding Files Referenced Through a Model SYSTRK File Assignment

Assuming two SYSTRK files are in use, take the following steps to increase the size of the
SYSTRK files while the CV remains active:

1. Allocate larger SYSTRK files using data set names that conform to the standard
established by the model DD statement.

2. Format the larger files by executing a FORMAT utility statement as follows:

FORMAT SYSTRK DD1, DD2 INITIAL LIKE DD3 EXPAND 20 PERCENT

Where DD1 and DD2 are the DDnames of file assignments referencing the new
SYSTRK files, and DD3 is the DDname of a file assignment referencing one of the old
SYSTRK files. In this example, the files are being expanded 20 percent over their
current size.

3. Replace use of the old files with the new files by issuing the following command:

DCMT VARY CHANGE TRACKING REFRESH

When the old files are no longer in use, they can be deleted.

Expanding Files Referenced Through Individual File Assignments

Assuming two SYSTRK files are in use, take the following steps to increase the file size
while the CV remains active:

1. Allocate larger SYSTRK files using new data set names

2. Close and deallocate the current set of SYSTRK files by issuing the following
command:

DCMT VARY CHANGE TRACKING INACTIVE

3. Format the larger files by executing a FORMAT utility statement as follows:

FORMAT SYSTRK DD1, DD2 INITIAL LIKE DD3 EXPAND 20 PERCENT

Where DD1 and DD2 are the DDnames of file assignments referencing the new
SYSTRK files, and DD3 is the DDname of a file assignment referencing one of the old
SYSTRK files. In this example, the files are being expanded 20 percent over their
current size.

4. Scratch the old files. Rename the new files to have the same data set names as the
old files.

5. Allocate the new files and make change tracking active by issuing the following
command:

Change Tracking

Chapter 3: Non-Stop Processing 53

DCMT VARY CHANGE TRACKING ACTIVE

Change Tracking Impact

This section describes the impact that change tracking has on the execution of existing
DCMT commands and the new SYSIDMS parameters related to change tracking.

DCMT DISPLAY DATABASE Command

The output of this command now includes the output from a DISPLAY CHANGE
TRACKING command so that it includes output from all of the following commands:

■ DCMT DISPLAY AREA

■ DCMT DISPLAY BUFFER

■ DCMT DISPLAY FILE

■ DCMT DISPLAY JOURNAL

■ DCMT DISPLAY TRANSACTION

■ DCMT DISPLAY CHANGE TRACKING

DCMT DISPLAY FILE Command

The DCMT DISPLAY FILE command displays information about a specified file. It has
been enhanced to support journal and SYSTRK files.

Syntax

►►─ DCMT ─┬───────────────────┬─ Display ──────────────────────────────────────►
 └─ broadcast-parms ─┘
►──── File ─┬─ . . . ──────────────────────────────────┬──────────────────────►◄
 ├─ journal-file-name ──────────────────────┤
 └─ SYSTRK-file-name ───────────────────────┘

Parameters

File

Displays information about one or more files.

journal-file-name

Specifies the name of a disk or archive journal file.

SYSTRK-file-name

Specifies the name of a SYSTRK file.

Change Tracking

54 Release Summary

DCMT VARY FILE Command

The DCMT VARY FILE command alters information about a specified file. It has been
enhanced to enable altering information about SYSTRK files and to update SYSTRK when
changing the data set name of a database or journal file.

Syntax

►►─ DCMT ─┬───────────────────┬─ Vary ──►
 └─ broadcast-parms ─┘
►── File ─┬─ segment-name.file-name ───────────────┬────────── . . . ────────►◄
 └─ SYSTRK-file-name ─────────────────────┘

Change Tracking

Chapter 3: Non-Stop Processing 55

Parameters

File

Identifies a specific file.

segment-name

Specifies the segment associated with the file.

file-name

Specifies the name of the file.

SYSTRK-file-name

Specifies the name of the SYSTRK file.

ACtive

Enables access to the file and sets its status to something other than 9999 if this is a
database file. If the file is not open, it is opened the next time it is accessed. Varying
the file active allows suspended transactions that are waiting on the file to resume
execution.

If this is a SYSTRK file, its mirror status is changed to active or activating. Before an
activating mirror becomes active, its contents are brought up-to-date.

Inactive

Disables access to the file and sets its status to 9999 if this is a database file. The
ability to vary database files inactive is provided to simulate I/O errors for the
purpose of testing recovery procedures.

If this is a SYSTRK file, its mirror status is changed to inactive. If this is the last active
mirror, change tracking is inactivated.

ALlocate

(z/OS and z/VM systems only) Allocates the file dynamically, using its currently
assigned data set name and other options specified on its definition.

DSname new-dataset-name

Changes the data set name of a database file in the runtime DMCL to
new-dataset-name. If the file has not been opened, then only the DSname is
changed. If the file has previously been opened, then the DSname is changed, and
the DDname is cleared to blanks.

Data set names of SYSTRK files cannot be changed.

Usage

Changing the Data Set Name of a File

Change Tracking

56 Release Summary

The ability to change the data set name of a file through a DCMT VARY FILE command is
provided for emergency situations only, such as, when a data set is physically damaged
and cannot be recovered using its original name. Data set name changes made through
a DCMT VARY FILE command are temporary and are not preserved after a normal
shutdown. Furthermore, they introduce the potential for incorrect recovery during
warmstart unless change tracking is active or appropriate changes are made to the
execution JCL of the system to ensure that the correct data set is referenced.

Note: To make permanent changes to the data set name of a file, change its definition in
the dictionary and use a DCMT VARY DMCL command to make the change effective
within a DC/UCF system.

To change a data set name through a DCMT VARY FILE command, the following
conditions must be met:

■ The file must have encountered an I/O error, been varied inactive or its area must
be varied offline using a DCMT VARY AREA or SEGMENT command.

■ The file must be deallocated, using the FORCE option if necessary.

■ If change tracking is in use, it must either be active or disabled.

Change Tracking

Chapter 3: Non-Stop Processing 57

DCMT VARY AREA/SEGMENT Command

The DCMT VARY AREA/SEGMENT command updates information about one or more
database areas. It has been enhanced to maintain permanent area statuses in the
SYSTRK files if change tracking is in effect for the CV.

Changing the Area Status Permanently

A permanent area status is one that is retained until it is changed by another DCMT
VARY command, or until the system journal or SYSTRK files are formatted. The area
status is retained across normal shutdowns and across abnormal terminations, provided
the warmstart option of the area in the DMCL specifies MAINTAIN CURRENT STATUS.

Note: The permanence of an area status has no effect on physical area locks. It only
affects the mode in which the area is accessed when the system is next started. If the
DC/UCF system is shut down normally, all physical area locks held by the system are
removed, regardless of whether the area status of the system was assigned as UPDATE
PERMANENT.

If change tracking is in use for the DC/UCF system, permanent area statuses are
recorded in the SYSTRK files. Status entries are identified by area name and are deleted
when their associated area is no longer in the runtime DMCL. A vary that affects the
permanent status of an area fails if change tracking is inactive and receives a warning if
it is disabled.

If change tracking is not in use for the DC/UCF system, permanent status entries are
recorded in the system journals and are identified by page group and low-page number.
If a page group or low-page number of an area is changed, an existing permanent status
entry cannot be matched against the area. If this happens, the usage mode of the area
defaults to the usage-mode specified in the DMCL and the orphaned status entry for the
area remains in the journals until they are formatted. It is also possible for an orphaned
status entry to be misapplied to a new area with a matching low page number and page
group.

Change Tracking

58 Release Summary

DCMT VARY DMCL Command

The DCMT VARY DMCL command updates the database environment in use by the CV to
reflect the current DMCL load module. It has been enhanced to maintain an up-to-date
description of that environment in the SYSTRK files if change tracking is in effect for the
CV.

Using a New Copy of the Database Load Module

DCMT VARY DMCL NEW COPY allows programs running under the DC/UCF system to
benefit from changes made to the database definition without having to recycle the
system. For example, an area can be added to an existing segment while the system
remains active.

When a DCMT VARY DMCL NEW COPY command is issued, CA IDMS applies changes to
the database definition that have been made by the following DDL statements:

■ CREATE/ALTER/DROP AREA

■ CREATE/ALTER/DROP BUFFER

■ CREATE/ALTER/DROP FILE

■ CREATE/ALTER/DROP SEGMENT

■ CREATE/ALTER/DROP DISK JOURNAL

Additionally, CA IDMS loads a new copy of the database name table. The system must
be recycled to implement changes made to the journal buffer, to VARY in a DMCL
generated under a release level that is different from that of the current DMCL, or to
remove or replace all active disk journal files at the same time.

Impact of Change Tracking

If change tracking is in use, a DCMT VARY DMCL NEW COPY command can only be
issued if change tracking is active or disabled. We recommend that change tracking be
active in systems in which new copies of DMCLs are to be varied online.

Note: For more information, see Recovery Considerations and DMCL Changes.

What DC/UCF Does in Response to a New Copy Command

In response to a DCMT VARY DMCL NEW COPY command, CA IDMS performs the
following actions:

■ Compares the contents of the runtime DMCL with the new DMCL load module,
identifying entities that have been added, changed or removed. Changes to entities
are detected by comparing their timestamps.

■ Displays all of the changes to the user.

Change Tracking

Chapter 3: Non-Stop Processing 59

■ Unless NOPROMPT was specified, issues the following prompt: 'Continue with Vary
DMCL Yes or No?'. Specifying No negates the changes and allows the system to run
as before. Specifying Yes causes the changes to be incorporated into the runtime
DMCL as described in the following steps.

■ Quiesces those areas and disk journals that have been removed or impacted by a
change.

■ Updates the runtime DMCL to reflect the new DMCL load module.

■ If change tracking is active, writes an image of the new runtime DMCL to the
SYSTRK files.

■ Swaps to a new active journal file and writes the timestamp from the new DMCL
load module to the active journal file.

■ Reopens the disk journals, buffers, files, and areas using the definitions contained in
the new runtime DMCL. New areas are opened in the mode specified in the DMCL
and existing areas are opened in the mode they were in prior to the vary operation.

When quiescing access to impacted entities, the following actions are taken:

■ Areas that have been dropped or modified are varied offline.

■ Their associated files are closed and de-allocated.

■ Buffers that have been dropped or modified or whose associated files are changing
are closed.

■ Disk journals that have been dropped or modified are varied offline.

Note: If areas or disk journals must be varied offline, the vary operation could have a
lengthy completion time. Before responding Yes to the prompt, note the areas affected
by the change and the transactions that are accessing those areas. If disk journals are
being changed, look for transactions that may depend on those journal files for
recovery. Look especially for long-running transactions that do not issue frequent
commits.

Recovery Considerations and DMCL Changes

If change tracking is active when a DCMT VARY DMCL NEW COPY is issued, CA IDMS
ensures that any subsequent warmstart uses the correct data sets and DMCL definition
by recording the new definition in the SYSTRK files. If a failure occurs prior to writing the
new DMCL to SYSTRK, the system restarts using the old DMCL definition and data sets.
Otherwise, the system restarts using the new definition and data sets. If the write to
SYSTRK fails because of an I/O error or out-of-space condition, the vary operation
continues but change tracking is varied inactive, and manual intervention is needed to
restart the CV in the event of a failure. Therefore, you should correct the cause of the
failure and vary change tracking active as soon as possible. If the CV fails before these
corrective actions are taken, specify IGNORE_SYSTRK_DMCL=ON in the SYSIDMS file
when restarting the system, and ensure that the execution JCL does not reference
obsolete data sets. If IGNORE_SYSTRK_DMCL=ON is not specified, warmstart fails due to
a mismatch between the timestamp in the DMCL and that recorded on the journal files.

Change Tracking

60 Release Summary

If change tracking is disabled or not in use when a DCMT VARY DMCL NEW COPY is
issued, manual intervention may be necessary to ensure correct recovery in the event
that a subsequent warmstart is needed. The necessary actions depend on when the
failure occurs:

■ If the failure occurs before the timestamp of the new DMCL was recorded in the
journal files, warmstart fails due to a mismatch between the timestamp in the
DMCL load module and the timestamp recorded in the journal. The old DMCL load
module must be restored, and the system restarted with JCL that reflects the data
sets in use at the time of the failure.

■ If the failure occurs after the new DMCL timestamp was recorded in the journal
files, no timestamp mismatch occurs. However, before restarting, the JCL may need
to be adjusted so that obsolete DD statements do not override files whose data set
names were changed by the DCMT VARY DMCL command.

■ In either case, if change tracking was disabled at the time of the failure,
IGNORE_SYSTRK_DMCL=ON must be specified in the SYSIDMS file when restarting
the system.

New SYSIDMS Parameters

New SYSIDMS parameters have been added in support of change tracking.

IGNORE_SYSTRK_DMCL=ON|OFF

Specifies whether to disable building the runtime DMCL from the SYSTRK file and
instead force the use of the DMCL load module.

ON

Specifies to disable use of SYSTRK for building the runtime DMCL.

OFF

Specifies to build the runtime DMCL from SYSTRK if the CV was not previously
shutdown normally.

Default:

OFF

SYSTRK_DDNAME_PREFIX=:pv.xxxxxxx:epv.

Specifies the DDname prefix to be used for referencing SYSTRK files in execution
JCL.

:pv.xxxxxxx:epv.

Specifies the 1- to 7-character DDname prefix.

Default:

SYSTRK

Dynamic Journal Files

Chapter 3: Non-Stop Processing 61

Dynamic Journal Files

Dynamic Journal files provide enhanced 24x7 capabilities by enabling the journal files in
use by a CV to be changed while the system remains active. Journal files can be added,
removed, or replaced without processing interruption. If change tracking is employed,
the following additional functionality is provided:

■ Use of a journal file can be permanently disabled. The journal file remains unused
until explicitly re-enabled instead of being automatically re-enabled when the CV is
restarted after a normal shutdown.

■ Changes made to CV journals can be automatically shared with the jobs that archive
those journals.

To implement this feature, a data set name can be specified during journal file definition
and if present, is used to dynamically allocate the file at runtime. New options on the
DCMT VARY JOURNAL command enable changing a journal's data set name and varying
journal files on and offline. Journal files can be dynamically added, replaced or removed
by varying a new copy of the DMCL.

To dynamically change the data set name of a journal file or remove a journal file, it
must be "quiesced." A journal file reaches a quiesced state when no active transaction is
dependent on it for recovery and its contents have been archived. The ability to quiesce
use of a journal file is new for r17.

Dynamic Journal Files

62 Release Summary

Dynamically Adding or Removing a Journal File

During a DCMT V DMCL NEW COPY command, the system automatically quiesces use of
journal files that have been removed or whose definition has had critical changes.

A new FILE OFFLINE option on the DCMT V JOURNAL command enables the DBA to
quiesce use of a specific journal file. When a CV restarts after an abnormal termination,
an offline journal remains offline. A PERMANENT option on the VARY command enables
the DBA to specify that the offline status should be retained across a shutdown and
restart. The PERMANENT option is only available if change tracking is active.

To Dynamically Add a Journal File to a CV

1. Define the new disk journal and specify its data set name.

CREATE/ALTER DISK JOURNAL dmcl-name.journal-name DSNAME 'data-set-name'

2. Generate, punch, and link edit the affected DMCL load module.

3. Allocate and format the new journal file using the newly-created DMCL.

4. Activate the change in the CV by issuing a DCMT VARY DMCL NEW COPY command.

To Dynamically Remove a Journal File

1. Delete the disk journal.

DROP DISK JOURNAL dmcl-name.journal-name

2. Generate, punch, and link edit the affected DMCL load module.

3. Activate the change in the CV by issuing a DCMT VARY DMCL NEW COPY command.

Note: It is not possible to apply critical changes to all active journal files at one time
when varying in a new copy of the DMCL. To make such changes without recycling CV,
repeat the above process and replace or remove only some of the journal files each
time.

Dynamic Journal Files

Chapter 3: Non-Stop Processing 63

CREATE/ALTER DISK JOURNAL: New Parameters

To enable dynamic allocation of journal files, new parameters have been added to the
CREATE DISK JOURNAL and ALTER DISK JOURNAL DDL statements:

Syntax

►─┬─ CREATE ─┬─ DISK JOURNAL ─ . . . ──►
 └─ ALTER ──┘
►─┬────────────────────────────────┬───►
 └─ ASSIGN TO ─┬─ ddname ─────────┤
 ├─ filename ───────┤
 └─ NULL ───────────┘
►─┬─────────────────────────────┬──►
 └─ DSNAME ─┬ 'data-set-name' ─┤
 └─ NULL ◄──────────┘
►─┬─────────────────┬──►
 └─ DISP ─ SHR ◄───┘
►─┬──┬─────────────────────────────────►
 └─ VM VIRTUAL ADDRESS ─┬─ virtual-address ─┤
 └─ NULL ◄──────────┘
►─┬───────────────────────────┬───►◄
 └─ VM USERID ─┬ vm-user-id ─┤
 └─ NULL ◄─────┘

Dynamic Journal Files

64 Release Summary

Parameters

ASSIGN TO

Specifies an external file name. Every external file name in a DMCL definition must
be unique. In z/VSE without DYNAM/D, an external file name must be specified. In
other environments, if the external file name is not specified, a data set name or
VM virtual address must be specified.

ddname

(z/OS and z/VM systems only) Specifies the external name for the file. ddname must
be a 1- through 8-character value that follows operating system conventions for
ddnames.

filename

(z/VSE systems only) Specifies the external name for the file. filename must be a 1-
through 7-character value that follows operating system conventions for file names.

NULL

Sets the external file name to blanks. It is equivalent to not specifying an external
file name for a file. This option is not valid under z/VSE unless DYNAM/D is being
used.

DSNAME data-set-name

Specifies the name of the data set to be used when dynamically allocating the
journal file for z/OS, z/VSE, and OS-format data sets under z/VM.

data-set-name must conform to host operating system rules for forming data set
names.

A data-set-name that includes embedded periods must be enclosed in single or
double quotation marks.

Under z/VM, the DSNAME parameter or VM VIRTUAL ADDRESS and USERID
parameters, or both can be specified.

NULL

Sets the data set name to blanks. This is equivalent to not specifying a data set
name for a file.

DISP

(z/OS and z/VM systems only) Specifies the disposition to be assigned when the file
is dynamically allocated.

SHR

Indicates that the data set used for the file is available to multiple DC/UCF systems
and local mode applications at a time.

Under z/VM, DISP SHR causes a link with an access mode of multiple read (MR).

SHR is the default when you do not include the DISP parameter in a CREATE
JOURNAL FILE statement.

Dynamic Journal Files

Chapter 3: Non-Stop Processing 65

VM VIRTUAL ADDRESS 'virtual-address'

(z/VM systems only) Specifies the virtual address of the minidisk used for the
journal file. virtual-address is a hexadecimal value in the range X'01' to X'FFFF'.

NULL

Sets the virtual address to blanks. On CREATE statements, this is equivalent to not
specifying a virtual address for a file. On ALTER statements, it removes any previous
virtual address specification for the file.

VM USERID vm-user-id

(z/VM systems only) Identifies the owner of the minidisk used for the journal file.
vm-user-id is a 1- to 8-character value.

A user ID for an OS-format data set must be specified. The user ID is optional for
CMS-format files.

If a user ID is not specified for a CMS-format file, CA IDMS assumes that the owner
of the minidisk is the user ID of the virtual machine in which it is running.

NULL

On CREATE statements, this is equivalent to not specifying a minidisk owner for a
file. On ALTER statements, removes any previous minidisk owner specification for
the file.

Usage

Dynamic Allocation of Journal Files

Dynamic allocation of files is operating system and file-type dependent. For information
about allocating files dynamically, see FILE Statements in the CA IDMS Database
Administration Guide

DCMT DISPLAY JOURNAL Command

The DCMT DISPLAY JOURNAL command displays information about the journals. It has
been enhanced to display information about a specific journal file.

Syntax

►►─ DCMT ─┬───────────────────┬──
───────►
 └─ broadcast-parms ─┘

 ►─ Display ─┬─ Journal ─┬─ journal-file-name ─────────────────────────────────┬─
┬─────►◄
 │ └─ FILe journal-file-name ─┬────────────────────────┬─┘
│
 │ └─ PENding TRAnsactions ─┘
│
 └─ Journals ──
┘

Dynamic Journal Files

66 Release Summary

Parameters

FILe

Displays information about a disk journal.

journal-file-name

Specifies the name of the disk journal.

PENding TRAnsactions

Outputs information about pending transactions.

Usage

Displaying Pending Transactions of a Disk Journal File

A pending transaction is a transaction that is active and might need the named disk
journal if the transaction has to be backed out. Pending transactions prevent the disk
journal from reaching an offline status.

Example

DCMT DISPLAY JOURNAL FILE journal-file-name PENDING TRANSACTIONS

 DCMT DISPLAY JOURNAL FILE SYSJRNL2 PENDING TRANSACTION
Task / LTE Trans-ID Pri Orig Module SS/AM St Stat Date:Time
 57 165 100 LOC LOCKTEST EMPSS01 RW H 2007-03-16-08.52.45.6079

Dynamic Journal Files

Chapter 3: Non-Stop Processing 67

DCMT VARY JOURNAL Command

The DCMT VARY JOURNAL command varies journaling-related options and switches the
active journal from one file to another. It has been enhanced to enable changing the
status and attributes of an individual journal file.

■ Switch the active disk journal from one file to another

■ Disable or enable use of a disk journal file

■ Change the data set name or disposition of a disk journal file

■ Allocate or deallocate a disk journal file

■ Change the values assigned to the journal fragment interval

■ Assign a value to the journal transaction level

Syntax

►►─ DCMT ─┬───────────────────┬─ Vary ───►
 └─ broadcast-parms ─┘
►── Journal ┬─ . . . ───┬─►◄
 ├─ SWAp ◄───┤
 └─ FILe journal-file-name ┬ OFfline ┬────────────┬┬────────────┬┤
 │ └─ PERmanent ┘└ ID dcmt-id ┘│
 ├ ONline ─────────────────────────────┤
 ├ ACtive ─────────────────────────────┤
 ├ Inactive ───────────────────────────┤
 ├ ALlocate ───────────────────────────┤
 ├ DEallocate ┬───────┬────────────────┤
 │ └ Force ┘ │
 └ DSname new-dataset-name ────────────┘

Dynamic Journal Files

68 Release Summary

Parameters

SWAp

Directs CA IDMS to switch the active journal file from one file to another.

FILe journal-file-name

Specifies the name of the disk journal to be varied.

OFfline

Makes the specified disk journal file inaccessible to the system.

 PERmanent

 Specifies that the OFFLINE status of the journal file is permanent. The
status remains in effect until it is changed by another DCMT VARY
command or the SYSTRK files are formatted.

 The ability to record a status as permanent requires that change tracking
be active. If change tracking is not active, the OFFLINE status is not made
permanent and a warning message is issued.

 dcmt-id

 Specifies the identifier that is assigned to this vary operation. It must be a
1- to 8-alphanumeric character string that is unique across all outstanding
DCMT operations originating on this DC/UCF system.

 If no dcmt-id is specified, the vary operation is assigned an internally
generated identifier.

 The identifier can subsequently be used to monitor or terminate the vary
using DCMT DISPLAY ID and DCMT VARY ID commands.

ONline

Makes the specified disk journal file accessible to the system.

ACtive

Enables access to the journal file and sets its status to something other than 9999.

Varying the file active allows suspended transactions that are waiting on the journal
file to resume execution.

Inactive

Disables access to the journal file and sets its status to 9999. No new journal images
are written to the file, but it can still be read for recovery purposes.

The ability to vary journal files inactive is provided to simulate I/O errors for the
purpose of testing recovery procedures.

ALlocate

Dynamically allocates the journal file using its currently assigned data set name.

DEallocate

Dynamic Journal Files

Chapter 3: Non-Stop Processing 69

Dynamically closes and deallocates the named file.

Force

Directs DC/UCF to mark the file as deallocated and closed, even though these
actions were not taken. This option is useful for certain types of error
conditions for which a close cannot be completed.

DSname new-dataset-name

Changes the DSname temporarily in the runtime DMCL to new-dataset-name. If the
file has previously been opened, the DDname is cleared to blanks.

To change the DSname of a disk journal, it must be offline.

Usage

Forcing a Journal SWAP

The SWAP option of the DCMT VARY JOURNAL command directs the DC/UCF system to
switch the active journal file from one disk journal file to another. If only one journal file
is online and usable, the contents of the journal file must be offloaded before the
command can complete and journaling resume. This causes a delay in the execution of
all update transactions until the swap completes.

Varying a Specific Journal File

The DCMT VARY JOURNAL FILE command is intended for solving disk journal problems
such as I/O errors while DC/UCF remains active. Before issuing any DCMT VARY
JOURNAL FILE command, see Recovery Procedures from Journal File I/O Errors in the CA
IDMS Database Administration Guide.

To successfully issue a VARY JOURNAL FILE command, the target journal file must not be
the active journal file. Additionally, the following restrictions apply depending on the
nature of the change:

■ To vary the data set name of the journal file or to allocate or deallocate the file, it
must be offline or inactive or have encountered an I/O error.

■ To vary a journal file whose status is permanently offline to an active or online
state, requires that change tracking be active.

Varying a Disk Journal File Offline

When varying a disk journal file offline, the system quiesces use of the journal file
before marking it as offline. While the journal file is quiescing, the following is true:

■ No further journal images are written to the journal file.

■ The journal file remains available for recovery operations until all transactions
having journal images on the disk journal have been terminated.

■ The journal file remains in a pending offline state until all journal images contained
on the file have been offloaded by an ARCHIVE JOURNAL utility statement.

Scratch Enhancements

70 Release Summary

Note: Once the journal file reaches the quiesced state, it is closed.

The DCMT DISPLAY JOURNAL FILE command is used to determine which transactions
may have journal images on the target file.

Dynamically Allocating and Deallocating Journal Files

The ability to dynamically allocate and deallocate journal files is operating system and
file-type dependent. The restrictions are the same as those for database files.

Note: For more information about allocating and deallocating files, see DCMT VARY FILE
Command in the CA IDMS System Tasks and Operator Commands Guide.

Example

DCMT VARY JOURNAL FILE journal-file-name OFFLINE

 DCMT VARY JOURNAL FILE SYSJRNL2 OFFLINE
Journal SYSJRNL2 OFFLINE
Disk Journal Segno LoRBN HiRBN NxRBN Ful Act Rcv Arc Stat DsRBN DsINTV Tql
SYSJRNL2 OFFLINE
------ Journal File ------- MODE Stat Pg-Size Fl-Type M-Cache S-Cache DD-Name
SYSJRNL2 Clos 0 2932 non-VSAM No No SYSJRNL2
 VOLSER: CULL06
 DSname: (JCL)... DBDC.SYSTEM73.SYSJRNL2 DISP=SHR

Scratch Enhancements

The CA IDMS scratch area is a virtual database whose content disappears when a job
step ends. To eliminate all I/O to the associated file, the scratch area can be maintained
in memory. Scratch enhancements for r17 include the following:

■ Scratch above the bar allows direct memory access to 64-bit storage and allows the
size of the scratch area to be significantly larger when it is memory resident.

■ Extensible scratch allows you to dynamically extend the scratch area.

You can control scratch in memory using the following methods:

■ For CV, through new parameters on the system generation SYSTEM statement or
through a new DCMT VARY SCRATCH command.

■ In batch local mode, through new SYSIDMS parameters.

Scratch Enhancements

Chapter 3: Non-Stop Processing 71

System Generation SYSTEM Statement

Use the system generation SYSTEM statement to control the scratch area.

Syntax

►►─┬──────────┬─ SYStem dc/ucf-version-number ─ . . . ────────────────────────►
 ├─ ADD ────┤
 ├─ MODify ─┤
 └─ DELete ─┘
►──┬──┬──────────►
 └─ SCRatch in STOrage is ─┬─ NO ◄──────────────────────────────┤
 └─ YES ─┬───────────────────────────┬┘
 └── scratch-storage-parms ──┘

Expansion of scratch-storage-parms

►►──┬───────────────────────┬───►
 └─ LOCation ─┬─ XA ─────┤
 ├─ ANY ◄───┤
 └─ 64-bit ─┘

 ►──┬───┬───────────────────────────►
 └─ PRImary extent is ─┬─ prim-size-with-unit ─┤
 └─ DEFAULT ◄────────────┘

 ►──┬──┬──────────────────────────►
 └─ SECondary extent is ─┬─ sec-size-with-unit ─┤
 └─ DEFAULT ◄───────────┘

 ►──┬─────────────────────────────────┬───────────────────────────────────────►◄
 └─ LIMit is ─┬─ limit-with-unit ─┤
 └─ DEFAULT ◄────────┘

Scratch Enhancements

72 Release Summary

Parameters

SCRatch in STOrage is

Specifies whether scratch information resides in memory.

NO

Specifies that the scratch information is not memory-resident.

YES

Specifies that the scratch information is memory-resident.

LOCation

Controls where memory for the scratch information is allocated with the following
options:

ANY|XA|64-bit

Determines the storage location. The storage needed for scratch processing is
allocated directly from the operating system and not from the CA IDMS storage
pools.

 ANY Acquires 64-bit storage, if possible. If the request to allocate 64-bit
storage fails, XA storage is acquired.

 XA Acquires 31-bit storage.

 64-bit Acquires 64-bit storage. If the request to allocate 64-bit storage fails,
no attempt to acquire XA storage is done.

Notes:

■ SCRATCH IN XA STORAGE IS YES is synonymous to SCRATCH IN STORAGE IS
YES LOCATION XA.

■ Usage of 64-bit storage is controlled by the MEMLIMIT parameter of the
JOB or EXEC JCL statement.

PRImary extent is

Specifies the primary scratch allocation size.

prim-size-with-unit

Specifies the size of the initial storage area acquired for scratch use. Enter a
number in the range 1-32767 followed by a unit of KB (Kilobyte: 2**10), MB
(Megabyte: 2**20), GB (Gigabyte: 2**30), TB (Terabyte: 2**40), or PB
(Petabyte: 2**50).

DEFAULT

Specifies the system default value. If the DMCL contains a scratch area
definition, the default value is the number of pages in the area multiplied by
the page size. If no scratch area is defined in the DMCL, the system default
value is 1 MB.

SECondary extent is

Scratch Enhancements

Chapter 3: Non-Stop Processing 73

Specifies the secondary scratch allocation size.

sec-size-with-unit

Specifies the amount of additional storage acquired when all existing scratch
storage is in use. Enter a number in the range 1-32767 followed by a unit of KB
(Kilobyte: 2**10), MB (Megabyte: 2**20), GB (Gigabyte: 2**30), TB (Terabyte:
2**40), or PB (Petabyte: 2**50).

DEFAULT

Specifies the system default value. The size of the secondary allocation is equal
to the size of the primary allocation.

LIMit is

Specifies the maximum scratch allocation size.

limit-with-unit

Specifies the maximum amount of scratch storage. The system continues to
allocate more storage for scratch processing until the sum of all allocations
reaches the value specified by limit-with-unit. Enter a number in the range
1-32767 followed by a unit of KB (Kilobyte: 2**10), MB (Megabyte: 2**20), GB
(Gigabyte: 2**30), TB (Terabyte: 2**40), or PB (Petabyte: 2**50).

DEFAULT

Specifies the system default value. If the DMCL contains a scratch area
definition, the default value is the number of pages in the area multiplied by
the page size. If no scratch area is defined in the DMCL, the system default
value is the size of the primary allocation plus 99 times the size of the
secondary allocation.

More Information

For more information about the System Generation SYSTEM statement, see the CA
IDMS System Generation Guide.

Scratch Enhancements

74 Release Summary

DCMT DISPLAY SCRATCH Command

A new DCMT DISPLAY SCRATCH command has been added to obtain the following
information about scratch usage:

■ Definition-related information, such as number of pages, page size, and location

■ Global statistics and high-water marks

■ Detailed information

Syntax

►►─── DCMT ─┬───────────────────┬───►
 └─ broadcast-parms ─┘

 ►──── Display SCRatch ───►

 ►──────┬──┬────────────────────────────►◄
 │ ┌──────────────────────────┐ │
 ├─ SORt ──┬ ▼ ┬─┬── DEScending ◄─┬────┬┴─┘
 └─ ORDer ─┘ │ └── ASCending ───┘ │
 └─ BY ─┬─ SIZe ◄──────┬─┘
 ├─ LTErm ──────┤
 ├─ SCRatch id ─┤
 └─ USEr id ────┘

Scratch Enhancements

Chapter 3: Non-Stop Processing 75

Parameters

broadcast-parms

Indicates to execute the DCMT command on all or a list of data sharing group
members.

Note: For more information about broadcasting and broadcast-parms, see How to
Broadcast System Tasks in the CA IDMS System Tasks and Operator Commands
Guide.

Display SCRatch

Displays global statistics, definition-related, and detailed information about scratch.

SORt or ORDer

Requests sorted output.

DEScending

Specifies to display the higher values first in the sorted output. This is the
default.

ASCending

Specifies to display the lower values first in the sorted output.

BY

Identifies the sort criterion.

 SIZe

 Specifies to sort by the scratch area size. This is the default.

 LTErm

 Specifies to sort by the logical terminal name.

 SCRatch id

 Specifies to sort by the scratch area ID.

 USEr id

 Specifies to sort by the user ID.

Usage

Obtaining Output with SORT BY

SORT BY allows you to obtain the output that is most relevant for a given situation as
shown in the following examples:

■ SORT DESCENDING BY SIZE—Identifies the largest scratch users.

■ SORT BY USER ID—Identifies how much scratch a user owns.

■ SORT BY SCRATCH ID—Identifies an application program's usage based on scratch
area ID.

Scratch Enhancements

76 Release Summary

Example

DCMT DISPLAY SCRATCH SORT DESCENDING BY SIZE

DCMT DISPLAY SCRATCH SORT DESCENDING BY SIZE
Total number of pages 391 Location ANY Storage
Page size 2676 Storage address 00000001 00900000
Primary extent #pages 391 Primary extent size 1 MB
Secondary extent #pages 783 Secondary extent size 2 MB
Storage limit #pages 11363 Storage limit size 29 MB
PUT scratch requests 223 Scratch Areas active 9
GET scratch requests 91 Scratch Areas created 12
DELETE scratch requests 44 HWM concurrent Scr. Areas 9
Pages in use 240 HWM pages in use 241
Pages in use percentage 61% HWM pages in use percentage 61%
Buffers N/A HWM pages in use for 1 S.A. 141
Pages found in buffer N/A HWM pages found for 1 S.A. N/A
Pages written N/A HWM pages written for 1 S.A. N/A
Pages read N/A HWM pages read for 1 S.A. N/A

Scratch Area ID Size: Pages / % LTERM User id
OCF*FSEO 140 35 VL72001 USER02
DDDLFSEI 83 21 VL72002 USER01
SSCHFSEO 6 1 VL72001 USER02
OCF*FSEI 3 <1 VL72001 USER02
SSCHFSEI 3 <1 VL72001 USER02
DDDLFSEO 2 <1 VL72002 USER01
DDDLFSEC 1 <1 VL72002 USER01
OCF*FSEC 1 <1 VL72001 USER02
SSCHFSEC 1 <1 VL72001 USER02

More Information

For more information about DCMT commands, see the CA IDMS System Tasks and
Operator Commands Guide.

DCMT VARY SCRATCH Command

A new DCMT VARY SCRATCH command has been added to dynamically alter the scratch
area control parameters.

Syntax

►►─── DCMT ─┬───────────────────┬───►
 └─ broadcast-parms ─┘

 ►──── Vary SCRatch ──►

 ►──────┬──┬──────────────────────────►◄
 ├─ LOCation ─┬─XA ──────┬──────────────────┤
 │ ├ ANY ─────┤ │
 │ └ 64-bit ──┘ │
 ├─ SECondary extent is sec-size-with-unit ─┤
 └─ LIMit is limit-with-unit ───────────────┘

Scratch Enhancements

Chapter 3: Non-Stop Processing 77

Parameters

broadcast-parms

Indicates to execute the DCMT command on all or a list of data sharing group
members.

Note: For more information about broadcasting and broadcast-parms, see How to
Broadcast System Tasks in the CA IDMS System Tasks and Operator Commands
Guide.

Vary SCRatch

Specifies the size of the secondary allocation, maximum amount of storage, and
storage location.

LOCation

Specifies where memory for the scratch information is allocated with the following
options:

ANY|XA|64-bit

Determines the storage location. The storage needed for scratch processing is
allocated directly from the operating system and not from the CA IDMS storage
pools.

 ANY

 Acquires 64-bit storage if possible. If the request to allocate 64-bit storage
fails, XA storage is acquired.

 XA

 Acquires 31-bit storage.

 64-bit

 Acquires 64-bit storage. If the request to allocate 64-bit storage fails, no
attempt to acquire XA storage is done.

SECondary extent is

Specifies the secondary scratch allocation size.

sec-size-with-unit

Specifies the amount of additional storage acquired when all existing scratch
storage is in use. Enter a number in the range 1-32767 followed by a unit of KB
(Kilobyte: 2**10), MB (Megabyte: 2**20), GB (Gigabyte: 2**30), TB (Terabyte:
2**40), or PB (Petabyte: 2**50).

LIMit is

Specifies the maximum scratch allocation size.

limit-with-unit

Scratch Enhancements

78 Release Summary

Specifies the maximum amount of scratch storage. The system continues to
allocate more storage for scratch processing until the sum of all allocations
reaches the value specified by limit-with-unit. Enter a number in the range
1-32767 followed by a unit of KB (Kilobyte: 2**10), MB (Megabyte: 2**20), GB
(Gigabyte: 2**30), TB (Terabyte: 2**40), or PB (Petabyte: 2**50).

Usage

Changing Scratch Parameters

The following information should be taken into consideration when changing scratch
parameters:

■ A change in scratch location can be done only if scratch is in storage.

■ A change in scratch location only affects the location of future secondary
allocations. Current allocations are not relocated.

■ Decreased values for sec-size-with-unit and limit-with-unit are honored at the time
a secondary extent becomes empty.

Example: prim-size-with-unit=10 MB; sec-size-with-unit=5 MB; limit-with-unit=50
MB; three secondary extents are allocated (25 MB of storage is in use). DCMT VARY
SCRATCH LIMIT 20 MB is issued. A secondary allocation is freed only when it
becomes entirely unused.

Examples

DCMT VARY SCRATCH SECONDARY EXTENT 1 MB

 V SCR SECONDARY EXTENT 1 MB
IDMS DC293001 V71 USER:JSMITH Scratch Secondary extent changed to 1 MB

DCMT VARY SCRATCH LIMIT 10 MB

 V SCR LIMIT 10 MB
IDMS DC293001 V71 USER:JSMITH Scratch Limit changed to 10 MB

More Information

For more information about DCMT commands, see the CA IDMS System Tasks and
Operator Commands Guide.

Scratch Enhancements

Chapter 3: Non-Stop Processing 79

DCMT Help Command

The DCMT HELP command has been enhanced to display a help screen of the DCMT
DISPLAY SCRATCH and DCMT VARY SCRATCH syntax.

Syntax

►►─── DCMT ─┬───────────────────┬───►
 └─ broadcast-parms ─┘
►─────── Help ┬─ . . . ──────────────────────────┬───────────────────────────►
 └─ SCRatch ────────────────────────┘

Parameters

Help

Displays syntax for the HELP command.

SCRatch

Displays the scratch help screen.

More Information

For more information about the DCMT HELP command, see the CA IDMS System Tasks
and Operator Commands Guide.

Scratch Enhancements

80 Release Summary

SYSIDMS Parameters

Use the following SYSIDMS parameters to control the scratch processing:

SCRATCH_IN_STORAGE=ON|OFF|ANY|XA|64-bit

Enables storage allocation from the operating system for scratch processing.

ON

Specifies the same as SCRATCH_IN_STORAGE=ANY.

OFF

Specifies to allocate the scratch area as defined in the DMCL.

ANY

Acquires 64-bit storage if possible. If the request to allocate 64-bit storage fails,
XA storage is acquired.

XA

Acquires 31-bit storage.

64-bit

Acquires 64-bit storage. If the request to allocate 64-bit storage fails, no
attempt to acquire XA storage is done.

Default:

OFF

Note: Usage of 64-bit storage is controlled by the MEMLIMIT parameter of the JOB
or EXEC JCL statement.

SCRATCH_LIMIT=:pv.limit-with-unit:epv.

Specifies the maximum amount of scratch storage. The system continues to allocate
more storage for scratch processing until the sum of all allocations reaches the
value specified by limit-with-unit. Enter a number in the range 1-32767 followed by
a unit of KB (Kilobyte: 2**10), MB (Megabyte: 2**20), GB (Gigabyte: 2**30), TB
(Terabyte: 2**40), or PB (Petabyte: 2**50).

The default value is determined as follows:

■ If the DMCL contains a scratch area definition, the default is the number of
pages in the area multiplied by the page size.

■ If no scratch area is defined in the DMCL, the default is the size of the primary
allocation plus 99 times the size of the secondary allocation.

SCRATCH_PRIMARY_EXTENT=:pv.prim-size-with-unit:epv.

Specifies the primary scratch allocation size. Enter a number in the range 1-32767
followed by a unit of KB (Kilobyte: 2**10), MB (Megabyte: 2**20), GB (Gigabyte:
2**30), TB (Terabyte: 2**40), or PB (Petabyte: 2**50).

The default value is determined as follows:

Scratch Enhancements

Chapter 3: Non-Stop Processing 81

■ If the DMCL contains a scratch area definition, the default value is the number
of pages in the area multiplied by the page size.

■ If no scratch area is defined in the DMCL, the system default value is 1 MB.

SCRATCH_SECONDARY_EXTENT=:pv.sec-size-with-unit:epv.

Specifies the amount of storage to allocate when all existing scratch storage is in
use. Enter a number in the range 1-32767 followed by a unit of KB (Kilobyte:
2**10), MB (Megabyte: 2**20), GB (Gigabyte: 2**30), TB (Terabyte: 2**40), or PB
(Petabyte: 2**50).

The default size of the secondary allocation is equal to the size of the primary
allocation.

More Information

For more information about SYSIDMS parameters, see the CA IDMS Common Facilities
Guide.

Chapter 4: Performance 83

Chapter 4: Performance

This chapter describes the performance enhancements.

This section contains the following topics:

CICS Threadsafe Support (see page 83)
Fast Journal Format Option (see page 94)
LE System Mode Support (see page 94)
Reduced 24-bit Storage Usage (see page 95)
zIIP Exploitation (see page 96)

CICS Threadsafe Support

CA IDMS is enhanced with CICS threadsafe support that allows threadsafe application
programs to use multiple open TCBs while accessing CA IDMS.

CICS Threadsafe Support

84 Release Summary

Threadsafe Concepts

CICS Transaction Server for z/0S (CTS) provides a method for multiple CTS transactions
to run simultaneously on separate TCBs. Application programs that are eligible to run in
this mode are described as threadsafe. For more information about the CTS threadsafe
operation, see the appropriate IBM documentation. A brief overview of this IBM feature
as it relates to the CA IDMS interface is described in the next section.

Historically, all CICS application programs ran on the same TCB, which allowed only one
program task to execute at any given instant. While multiple tasks could be active, only
one task could execute instructions on a CPU. Under CTS, IBM has introduced the
concept of threadsafe application programs that can be run on open TCBs, thus allowing
multiple programs to execute simultaneously on different CPUs.

A program that is declared with the CONCURRENCY(THREADSAFE) attribute is
considered to be eligible to run on an open TCB, but this attribute alone is not enough
to cause the program to do so. Various conditions exist that cause a threadsafe program
to execute on an open TCB. Three of the most common cases are the following:

■ Define an application program with the API(OPENAPI) attribute. This attribute is
only available in CTS Version 3.1 and later.

■ Invoke a Task Related User Exit (TRUE) that has been enabled with the
API(OPENAPI) attribute.

■ Access a DB2 database using DB2 Version 6 or later. This is a special instance of the
previous case because DB2 executes as a TRUE exit.

When a task begins to run on an open TCB, it continues to run until one of the following
occurs:

■ A non-threadsafe command is executed

■ An EXEC CICS RETURN is made to a non-threadsafe program

■ A particular point is reached during CICS task termination processing

A threadsafe command is one which can be executed on an open TCB. A program
defined as threadsafe can issue a non-threadsafe command. However, issuing a
non-threadsafe command causes the task to be switched to run on the QR
(single-threaded) TCB. This can cause performance degradation, particularly if a lot of
TCB switching is done.

If a threadsafe program defined with API(CICSAPI) is switched to the QR TCB, it stays
there unless another OPENAPI TRUE exit is invoked. If a threadsafe program defined
with API(OPENAPI) is switched to the QR TCB, it switches back to the open TCB when
control is returned to the application program after execution of the non-threadsafe
command.

CICS Threadsafe Support

Chapter 4: Performance 85

CA IDMS Support for Threadsafe Applications

The CA IDMS interface modules that run in a CTS region have been enhanced to be
threadsafe. Threadsafe application programs, that is, programs defined with the
CONCURRENCY(THREADSAFE) attribute can use this enhancement to obtain increased
throughput.

An application program that is running on an open TCB can access CA IDMS without
switching to the single-threaded QR TCB. A new option, TRUEAPI, is provided to allow
the first CA IDMS access by a task to force a switch to an open TCB. If the interface has
been called by a program defined as threadsafe, the program continues to run on the
open TCB after return from the CA IDMS call. For more information about the TRUEAPI
option, see IDMSINTC Interface Considerations.

CTS has rules and guidelines on whether an application program can or should be
defined with CONCURRENCY(THREADSAFE) or API(OPENAPI) attributes or both. Before
defining your own programs as THREADSAFE or OPENAPI, be sure to consult the
appropriate IBM documentation.

The use of CA IDMS with an otherwise threadsafe program does not cause integrity
problems and can provide significant performance improvement. Depending on the
nature of the application, however, it may not improve performance and could
conceivably cause performance degradation. In addition, if a client-written application
program is declared to be threadsafe and the program itself violates the rules for
threadsafe programs, the results are unpredictable.

Note: A few cases exist where the CA IDMS interface issues CICS commands that force a
switch to the QR TCB. For more information, see IDMSINTC Interface Considerations.

CICS Threadsafe Support

86 Release Summary

IDMSINTC Interface Considerations

You can enter the IDMSINTC interface program using one of the following methods:

■ Through the PLT or by invocation of a transaction that starts the IDMSINTC
interface. By invoking IDMSINTC in this way, it is not threadsafe, so the program
cannot be defined as THREADSAFE. See the sample definition of
PROGRAM(IDMSINTC) in member CICSCSD in the installed CA IDMS source library.

■ Through a branch entry from the application program using the IDMSCINT stub
program. This entry functions as an extension of the calling program with the same
program attributes. This includes the THREADSAFE and OPENAPI attributes.

Except for a few cases, discussed in Non-threadsafe Instructions, the IDMSINTC
interface does not issue any non-threadsafe commands. Therefore, if IDMSINTC is
entered on an open TCB, it stays on the open TCB throughout its execution and return
to the application program.

When a task makes its first CA IDMS call, IDMSINTC invokes the CA IDMS TRUE exit. This
exit is always enabled with the THREADSAFE attribute. The TRUEAPI=OPEN parameter is
provided on the CICSOPT macro that causes the exit to also be enabled with the
OPENAPI attribute. For more information about the TRUEAPI parameter, see New
CICSOPT Parameters.

If TRUEAPI=OPEN is specified, the first CA IDMS call in each task causes a switch to an
open TCB. If the application program is defined as threadsafe, the interface continues to
execute on that open TCB through its return to the application program.

Non-threadsafe Instructions

A few cases exist where invocation of the CA IDMS interface from an application
program causes a non-threadsafe instruction to be issued. If the application program is
defined as THREADSAFE, but not OPENAPI, the interface continues to execute on the QR
TCB through return to the application program. If the application program is defined as
OPENAPI, CICS switches to the QR TCB during execution of the non-threadsafe
instruction and back to the open TCB after completion of the instruction. The interface
continues to run on the open TCB through return to the application program.

The following cases can cause a non-threadsafe instruction to be issued:

■ If the CICSOPT macro specifies a value other than IMMEDIATE on the TIMEOUT
parameter, an EXEC CICS START TRANSACTION is issued at task termination. This is
not an important performance consideration because there will be no return to an
application program, and CICS always switches to the QR TCB at some point during
task termination.

■ If a ROLLBACK command is issued when AUTOCMT=ON is in effect, an EXEC CICS
SYNCPOINT ROLLBACK is issued.

■ The EXEC CICS WRITEQ TD command can produce certain error conditions, resulting
in a message to be written. These conditions are rare in a production system.

CICS Threadsafe Support

Chapter 4: Performance 87

■ If DEBUG=ON is specified in the CICSOPT macro or IDMSDBUG=ON is specified as a
SYSIDMS runtime parameter, various information is written using the EXEC CICS
WRITEQ TD command. These options are usually used only in special situations
when CA Technical Support personnel need diagnostic information to resolve a
problem. For more information about using an alternative parameter value of
DEBUG=QTS, see New CICSOPT Parameters.

UCF Front-end (#UCFCICS) Considerations

The UCF Front-end program does not violate any threadsafe rules and can be declared
as a THREADSAFE or OPENAPI program. It does, however, issue various non-threadsafe
commands, such as terminal I/O commands. Therefore, for best performance, it should
be defined with CONCURRENCY(QUASIRENTRANT).

Distributed Processing with #UDASCIC Considerations

The distributed processing program created with the #UDASCIC macro rarely issues a
non-threadsafe command and is a good candidate to declare as a THREADSAFE or
OPENAPI program. However, this program does issue a non-threadsafe command when
a 1473 Error-Status is received from the CA IDMS interface because of a MAXERUS
condition on the CA IDMS Central Version. In this case, the program waits by continuing
to issue EXEC CICS DELAY INTERVAL(1) commands until the condition is alleviated or 100
attempts have been made.

CICS Abort Session Program Considerations

The CICS Abort Session Program is created by compiling the #UCFCICZ program and can
be declared as a THREADSAFE and OPENAPI program.

The #UCFCICZ macro generates some code that is not compliant with the recommended
usage with CICS Transaction Server. This code can cause problems with applications that
are associated with a bridge facility. To provide compatibility with previous methods of
calling #UCFCICZ from CICS error programs, two new parameters are added to the
#UCFCICZ macro: PASSVAL and BRIDGE. To prevent the #UCFCICZ macro from issuing
non-threadsafe commands, we recommend that you compile it with the
PASSVAL=TERMID parameter.

Note: For more information, see CICS Abort Session Program.

CICS Threadsafe Support

88 Release Summary

CICS Abort Session Program

The #UCFCICZ macro is enhanced to provide compatibility with previous methods of
calling #UCFCICZ from CICS error programs with two new parameters: PASSVAL and
BRIDGE.

The #UCFCICZ macro can be assembled to create an abort program to request UCF to
abort the session for any terminal that disconnects or goes out of service. You can call
the abort program by any combination of the following methods:

■ The CICS terminal error program DFHTEP

■ The node error program DFHZNEP

■ The bridge facility global exit XFAINTU

By using #UCFCICZ, you can assure the timely release of back-end resources when a
front-end abort occurs. You can also prevent the following scenario from occurring:

A user signs onto CICS through a bridge facility or onto a VTAM terminal through a
multisession manager. During a terminal-read request from UCF, the user loses the
connection or terminates the CICS session from the multisession manager. A second
user simultaneously connects and is assigned to the same terminal identifier. The
second user invokes the UCF front-end program and is placed in the middle of the
session started by the first user.

Syntax

►►─── #UCFCICZ ───►

 ►─── BRIDGE= ─┬─ YES ──┬───►
 └─ NO ◄──┘

 ►─── PASSVAL= ─┬─ TERMID ───┬──►
 └─ TCTADDR ◄─┘

 ►─── . . . ──►

CICS Threadsafe Support

Chapter 4: Performance 89

Parameters

BRIDGE

Specifies whether the module generated by this #UCFCICZ macro will be called from
a program invoked by the bridge facility exit point XFAINTU. If NO is specified, the
UCF abort session program assumes that the aborted session is associated with a
permanent terminal. If UCFCICS had modified the UCTRANST value associated with
the terminal, the UCF abort session program attempts to restore the original
UCTRANST value. Therefore, this parameter has no effect if the associated UCFCICS
macro specifies UCTRAN=TCT. The default is NO.

PASSVAL=TCTADDR/TERMID

Specifies the format and value of the COMMAREA parameter that is passed to the
UCF abort session program. PASSVAL=TCTADDR indicates that the COMMAREA
contains a fullword address pointing to the Terminal Control table.
PASSVAL=TERMID indicates that the COMMAREA contains the 4-byte identifier of
the terminal or bridge facility associated with the aborted session.

How to Use the UCF CICS Abort Session Program

One or two UCF CICS abort sessions are needed for each UCFCICS program created with
a #UCFUFT macro that specifies the corresponding NTID. One program is needed for
persistent terminals. A separate one may be needed for sessions associated with a
bridge facility. A single program can be used if both the following conditions are true:

■ All callers pass the same format COMMAREA to the UCF CICS abort session program
as defined by the PASSVAL parameter. PASSVAL=TERMID is recommended.

Note: The default is PASSVAL=TCTADDR for compatibility with previous site-created
versions of DFHZNEP or DFHTEP.

■ The associated #UCFCICS macro specifies UCTRAN=TCT.

For each UCF CICS abort session program you create, perform the following steps:

1. Assemble the #UCFCICZ macro with the appropriate parameters and link the
resulting program with a unique name

2. Add an entry to the CICS CSD for each session abort program as follows:

DEFINE PROGRAM(ucfcicz)

 GROUP(groupnam) LANGUAGE(ASSEMBLER) CEDF(NO)

 EXECKEY(CICS)

3. Modify DFHTEP, DFHZNEP, and XFAINTU to call the appropriate versions of the
program

Modify DFHTEP/DFHZNEP/XFAINTU to link to UCFCICZ

Modify the error programs or bridge facility tidy up program or both to link to the
appropriate UCF session abort programs.

CICS Threadsafe Support

90 Release Summary

Note: For more information about DFHTEP, DFHZNEP, and XFAINTU,refer to the CICS
system documentation.

The following examples illustrate one approach to the modification of error and tidy up
programs.

For DFHTEP and DFHZNEP, insert the instructions immediately before the
DFHTEP/DFHZNEP exit. The logic states that if the error action codes indicate that the
application task (if any) is to abend, a link is made to two UCF CICS session abort
programs.

DFHTEP instructions when PASSVAL=TERMID

The following statements add instructions to DFHTEP when the #UCFCICZ macro
specifies PASSVAL=TERMID:

 TM TCTLEECB+1,X'04' ABEND TASK?

 BZ NOCICZ NO

 LA 10,TCTLEPTE POINTER TO TCTTE

 L 10,0(,10) TCTTETI

 EXEC CICS LINK PROGRAM('UCFCICZ1')

 COMMAREA(0(10))

 LENGTH(4).

 EXEC CICS LINK PROGRAM('UCFCICZ2')

 COMMAREA(0(10))

 LENGTH(4).

NOCICZ DS 0H

DFHTEP instructions when PASSVAL=TCTADDR

The following statements add instructions to DFHTEP when the #UCFCICZ macro
specifies PASSVAL=TCTADDR. This method is provided for compatibility with earlier
versions. PASSVAL=TERMID is recommended.

 TM TCTLEECB+1,X'04' ABEND TASK?

 BZ NOCICZ NO

 LA 10,TCTLEPTE POINTER TO TCTTE

 EXEC CICS LINK PROGRAM('UCFCICZ1')

 COMMAREA(0(10))

 LENGTH(4).

 EXEC CICS LINK PROGRAM('UCFCICZ2')

 COMMAREA(0(10))

 LENGTH(4).

NOCICZ DS 0H

DFHZNEP instructions when PASSVAL=TERMID

The following statements add instructions to DFHZNEP when the #UCFCICZ macro
specifies PASSVAL=TERMID:

CICS Threadsafe Support

Chapter 4: Performance 91

 TM TWAROPT2,TWAOAT ABEND TASK?

 BZ NOCICZ NO

 L 7,TWATCTA

 EXEC CICS LINK PROGRAM('UCFCICZ1')

 COMMAREA(0(7))

 LENGTH(4).

*

 EXEC CICS LINK PROGRAM('UCFCICZ2')

 COMMAREA(0(7))

 LENGTH(4).

 NOCICZ DS 0H

DFHZNEP instructions when PASSVAL=TCTADDR

The following statements add instructions to DFHZNEP when the #UCFCICZ macro
specifies PASSVAL=TCTADDR. This method is provided for compatibility with earlier
versions. PASSVAL=TERMID is recommended.

 TM TWAROPT2,TWAOAT ABEND TASK?

 BZ NOCICZ NO

 EXEC CICS LINK PROGRAM('UCFCICZ1')

 COMMAREA(TWATCTA)

 LENGTH(4).

*

 EXEC CICS LINK PROGRAM('UCFCICZ2')

 COMMAREA(TWATCTA)

 LENGTH(4).

 NOCICZ DS 0H

XFAINTU instructions when UEPFAREQ=UEPFATU

The following statements illustrate how to modify XFAINTU. The code should be
executed only if UEPFAREQ contains the value UEPFATU on entry to XFAINTU.

 EXEC CICS LINK PROGRAM('UCFCICZ1')

 COMMAREA(UEPFANAM)

 LENGTH(4).

*

 EXEC CICS LINK PROGRAM('UCFCICZ2')

 COMMAREA(UEPFANAM)

 LENGTH(4).

IDMSRSYN Resynchronization Program Considerations

IDMSRSYN is threadsafe, but because it issues non-threadsafe commands, it should not
be defined as OPENAPI.

CICS Threadsafe Support

92 Release Summary

New CICSOPT Parameters

This section describes the new and enhanced CICSOPT parameters.

Syntax

►►──── CICSOPT ─ . . . ───►
►─┬───────────────────────────┬──►
 └─ ,DEBUG= ─ (┬─ YES ─┬) ─┘
 ├─ NO ◄─┤
 └─ QTS ─┘
►─┬──┬─────────────────────────────────►
 └─ ,DBUGDCT= (┬─ DBUG ◄────────────┬) ─┘
 └─ destination-name ─┘
►─┬────────────────────────────┬───►
 └─ ,TRUEAPI= (┬─ CICS ─┬) ─┘
 └─ OPEN ─┘

CICS Threadsafe Support

Chapter 4: Performance 93

Parameters

DEBUG

Specifies whether IDMSINTC produces extra debugging information about internal
processing.

YES

Specifies that IDMSINTC produces extra information. This information is written
using WRITEQ TD to the destination specified on the DBUGDCT parameter.

NO

Specifies that IDMSINTC does not produce debugging information. This is the
default. You should always use DEBUG=NO unless otherwise requested by CA
Technical Support to resolve a system problem.

QTS

Specifies that IDMSINTC produces extra information. This information is written
using WRITEQ TS to the queue specified on the DBUGDCT parameter.

DBUGDCT

Identifies the CICS transient data or temporary storage destination to use as the
target for error messages produced if DEBUG=YES or DEBUG=QTS is specified.

destination-name

The default destination-name is DBUG. Use another destination if you want to
route diagnostic messages to another CICS destination. If DEBUG=YES is
specified, the DCT entry should be defined with a variable length record of at
least 136 characters. We recommend that you use the values provided in
source library member CICSCSD2.

TRUEAPI

Specifies whether to enable the IDMS TRUE exit with the OPENAPI attribute.

CICS

Specifies to enable the exit with the THREADSAFE attribute.

OPEN

Specifies to enable the exit with the THREADSAFE and OPENAPI attributes.

More Information

For more information about the CICSOPT macro, see IDMSINTC in the "TP-Monitor
Considerations" chapter in the CA IDMS System Operations Guide.

Fast Journal Format Option

94 Release Summary

Fast Journal Format Option

A new FAST parameter on the FORMAT JOURNAL utility statement provides a method of
quickly reformatting already existing and formatted journal files rather than completely
reinitializing entire journal files.

Syntax

►►─── FORMAT ───►
 ┌─────────────────────────────────────┐
 ►─ JOURNAL ─┬─ journal-file-name ─┬▼─┬──────────────────────────────────┬┴─►◄
 └─ ALL ───────────────┘ ├─ MAX AREA nnnn ──────────────────┤
 ├┬──────┬─ STORAGE ─┬──────┬─ nnn ─┤
 │└ DATA ┘ └ SIZE ┘ │
 └─ FAST ───────────────────────────┘

Parameters

FAST

Formats only the journal header blocks of already existing and formatted journal
files. If MAX AREA is specified, the number of JHDA entries are recalculated and the
number formatted may change. If the STORAGE clause is specified, the number of
JHD2 entries are recalculated and the number formatted may change.

More Information

For more information about the FORMAT utility statement, see the CA IDMS Utilities
Guide.

LE System Mode Support

CA IDMS is enhanced to allow database procedures, SQL-invoked routines, and TCP/IP
generic listener programs to execute in system mode if they are written in COBOL or
PL/I and compiled with an LE-compliant compiler.

Note: The CA IDMS stack usage increases when the system is extended with applications
that run in system mode. You might need to increase the system generation STACKSIZE
parameter, depending on its current value. These applications include numbered exits,
database procedures, SQL-invoked routines (defined with SYSTEM MODE), and TCP/IP
generic listeners (defined with MODE IS SYSTEM).

Reduced 24-bit Storage Usage

Chapter 4: Performance 95

Database Procedure

In prior releases, a database procedure written in COBOL or PL/I had to be invoked using
a stub module as described in Coding Database Procedures in the "Writing Database
Procedures" chapter in the CA IDMS Database Administration Guide. This requirement
disappears if the database procedure is compiled with an LE-compliant COBOL or PL/I
compiler. If no stub module is used and standard program linking is done, the database
procedure executes in system mode, resulting in better performance.

Note: For more information about database procedures, see the CA IDMS Database
Administration Guide.

SQL-invoked Routine

To execute an SQL-invoked routine in system mode, define it with the SYSTEM MODE
attribute.

Note: For more information about SQL-invoked routines, see the CA IDMS SQL
Reference Guide.

TCP/IP Generic Listener

To execute a TCP/IP generic listener program in system mode, define it with the SYSTEM
MODE attribute.

Note: For more information about how to define a TCP/IP generic listener, see the CA
IDMS System Generation Guide.

Reduced 24-bit Storage Usage

With this release, more IDMS structures and programs can reside in XA storage. This
increases XA storage requirements, but it frees up 24-bit storage for other uses. For
example, the amount of file related storage that must reside below the line has been
reduced. This will benefit 24-bit storage constrained systems that access a large number
of database files. The need for below the line storage is further reduced by enabling
IDMSDBIO to reside in XA storage.

The IDMSINTC interface is also enhanced to allocate RCA and additional IDMS control
blocks above the line.

zIIP Exploitation

96 Release Summary

zIIP Exploitation

CA IDMS is enhanced to exploit zIIP processors on the z9 series and above for the z/OS
operating system. This feature enables offloading computing cycles to zIIPs, thereby
increasing overall CPU throughput at lower operational costs. The zIIP feature is not
dependent on any other CA IDMS feature, including multitasking.

z/OS software feature HBB7709 is required to use the zIIP feature.

The default mode of operation is to not use zIIP processors unless specifically requested
at runtime. A new ZIIP startup parameter is available to enable or disable the use of
these processors by CA IDMS. To facilitate analysis of the potential benefit, the feature
can be enabled even if no zIIP processors are available. For more information, see New
Startup Parameters.

If this feature is enabled, CA IDMS uses Workload Manager to create a dependent
enclave for each OS task capable of servicing work type IDMS (see DCMT DISPLAY
SUBTASK in the CA IDMS System Tasks and Operator Commands Guide.) It then
schedules a separate preemptable SRB into each such enclave.

The following sections discuss topics related to zIIP exploitation:

■ Eligibility requirements

■ zIIP-related DCMT commands and displays, and DCPROFIL system task

■ Steps for evaluating the zIIP feature benefits

Note: On systems utilizing zIIP processors, CPU time in CA IDMS statistics includes time
on the zIIP processor normalized to standard processor speed.

zIIP Exploitation

Chapter 4: Performance 97

zIIP Eligibility

Most CA IDMS system code is eligible to run on a zIIP processor. However, user exits,
database procedures, SQL-invoked routines, and application programs are not eligible to
run on a zIIP processor. CA IDMS runtime processing ensures that a non-zIIP processor is
selected to run non-eligible routines.

To ensure that only eligible modules are selected to be run on a zIIP processor, some
load modules must be loaded from one of the following secured locations:

■ An authorized load library named in the STEPLIB concatenation or in the CDMSLIB
concatenation. A library is authorized by adding it to the list of APF-authorized
libraries in the appropriate PROGxx or IEAAPFxx member in SYS1.PARMLIB.

■ The Link Pack Area, which includes the following modules:

– Dynamic LPA modules, as specified in PROGxx members in SYS1.PARMLIB

– Fixed LPA (FLPA) modules, as specified in IEAFIXxx members

– Modified LPA (MLPA) modules, as specified in IEALPAxx members

– Pageable LPA (PLPA) modules, loaded from libraries specified in LPALSTxx or
PROGxx members

– A library in the linklist, as specified in PROGxx and LNKLSTxx members.

Note: For more information about authorized libraries, the LPA, and the linklist, see the
IBM documentation.

The specific rules for load module residence for zIIP processing are as follows:

■ The load module that is executed to start the CA IDMS CV must reside in an
authorized library in the STEPLIB concatenation or in a linklist library. This module is
RHDCOMVS or the startup routine. For more information about the startup routine,
see Step 1: Link Edit the Startup Routine in the System Startup chapter in the CA
IDMS System Operations Guide.

■ CA IDMS nucleus modules, including all line drivers and service drivers, must be
loaded from an authorized load library in the CDMSLIB concatenation or from the
LPA. The IBM Language Environment library (usually CEE.SCEERUN) must be
authorized if it is included in the CDMSLIB concatenation. Alternatively, the
following modules must reside in the LPA: CEEPIPI, CEEPLPKA, and CEEEV003.

■ z/OS Callable Services library (SYS1.CSSLIB) must be in the linklist or it must be
authorized and included in the STEPLIB concatenation.

■ Use of the LPA or linklist for modules supplied during the CA IDMS installation is not
generally recommended. Maintenance of such modules is difficult to manage and
can lead to the inadvertent use of a module with one release of CA IDMS when the
module was created for a different release.

zIIP Exploitation

98 Release Summary

Modules that consist of non-executable code or code that is never eligible to run on a
zIIP processor do not have to come from a secured location. Most modules which are
supplied by a client or which are modifiable at a client site are in this category. This
category includes the following:

■ Client-written code, including application programs, CA ADS dialogs, table
procedures, database procedures, and SQL routines

■ Stand-alone load modules for DC exits WTOEXIT or WTOREXIT

■ RHDCUXIT and stand-alone load modules for numbered exits

■ DMCL load modules

■ Database name tables

■ Control blocks or tables that contain no executable code

The IDMSDBIO load module can be modified at a client site by linking a DB user exit with
it. It is a nucleus module containing executable code, and it must be loaded from a
secured location for zIIP eligibility regardless of whether it is modified.

Individual nucleus members in a load library do not have to be authorized and should
not be linked with SETCODE AC(1). The startup module (RHDCOMVS or site-linked
startup module) must be linked with SETCODE AC(1) if and only if the AUTHREQ
parameter is specified for the CA IDMS SVC. For more information about the AUTHREQ
parameter, see Generating the SVC for z/OS in the Setting Up Interpartition
Communication and the SVC chapter in the CA IDMS System Operations Guide.

Note that not every load library in the CA IDMS startup STEPLIB and CDMSLIB needs to
be authorized; only those libraries from which nucleus modules are loaded must be
authorized. Appropriate startup error messages are provided to assist in this effort.

To ensure that all nucleus modules are loaded from an authorized library, it is
recommended that one of the following actions be taken:

■ Authorize the SMP/E target load library created during the installation of CA IDMS.

■ Maintain two separate but identical SMP/E target zones except that one contains
an authorized load library and the other contains a non-authorized load library.

■ Manually copy all modules in the SMP/E target load library to an authorized library
to be used by CV startup. Recopy all modules in this library whenever maintenance
is applied.

zIIP Exploitation

Chapter 4: Performance 99

When CA IDMS is used with a batch program, no modules are made zIIP-eligible. There
are, however, considerations that arise from the use of an authorized load library. The
z/OS operating system enforces certain rules for programs that are loaded from a set of
authorized load libraries. In particular, any program that is linked with the RENT
attribute cannot be modified at runtime. If this rule is violated, an S0C4 program check
occurs. Application programs linked with the CA IDMS interface module will be modified
at runtime by Computer Associates. Therefore, the batch STEPLIB concatenation should
contain at least one non-authorized load library, or such user programs should be linked
without the RENT attribute.

Computer Associates-supplied application programs (such as IDDSDDDL) are linked
appropriately in the SMP/E target load library, so no special action is required for these
programs.

DCMT DISPLAY SUBTASK Command

The DCMT DISPLAY SUBTASK command is enhanced to produce additional output when
zIIP support is activated.

zIIP-Enabled Example Without a zIIP Processor

The following example illustrates a CA IDMS system running in multitasking mode with
zIIP support enabled. The display was obtained on hardware that contained two CPs and
no zIIP.

DCMT DISPLAY SUBTASK 0003

 *** Display Subtask details ***
 Name SUBT0002
 Number 03
 Status BUSY
 Work type IDMS
 Count wakeups 80,836,576
 Count task dispatches 96,549,679
 User mode CPU time 00:00:00.0251
 System mode CPU time 00:17:10.3946
 CPU effectiveness (%) 27
 Count times fast posted 10,451,388
 Count times OS posted 00
 Count found work pass 1 96,256,979
 Count found work pass 2 292,700
 Count times POSTEXIT resumed 80,639,015
 *** Enclave Info ***
 zIIP time 00:00:00.0000
 zIIP on CP time 00:05:39.9737
 CPU effectiveness (%) 41
 Count swap attempts 60,356
 Count actual swaps 60,336

zIIP Exploitation

100 Release Summary

zIIP-Enabled Examples with a zIIP Processor

The following series of examples illustrate a CA IDMS system running in multitasking
mode with zIIP support enabled. The displays were obtained on hardware that
contained five CPs and one zIIP.

DCMT DISPLAY SUBTASK 0001

 *** Display Subtask details ***
 Name MAINTASK
 Number 01
 Status IDLE
 Work type IDMS
 Count wakeups 1,445
 Count task dispatches 1,597
 User mode CPU time 00:00:00.0000
 System mode CPU time 00:00:01.3376
 CPU effectiveness (%) 14
 Count times fast posted 21
 Count times OS posted 00
 Count found work pass 1 1,478
 Count found work pass 2 119
 Count times POSTEXIT resumed 1,445
 *** Enclave Info ***
 zIIP time 00:00:00.0304
 zIIP on CP time 00:00:00.0000
 CPU effectiveness (%) 173
 Count swap attempts 3,397
 Count actual swaps 3,397

DCMT DISPLAY SUBTASK 0006

The following example illustrates the additional information provided for the preferred
subtask:

 *** Display Subtask details ***
 Name SUBT0005
 Number 06
 Status BUSY
 Work type IDMS
 Count wakeups 11,308,085
 Count task dispatches 30,029,342
 User mode CPU time 00:00:00.0137
 System mode CPU time 00:05:15.0039
 CPU effectiveness (%) 57
 Count times fast posted 9,261,458
 Count times OS posted 00
 Count found work pass 1 29,728,572
 Count found work pass 2 300,770
 Count times POSTEXIT resumed 11,234,399
 *** Enclave Info ***
 zIIP time 00:01:44.4525
 zIIP on CP time 00:00:00.1209
 CPU effectiveness (%) 113
 Count swap attempts 35,029
 Count actual swaps 35,008

zIIP Exploitation

Chapter 4: Performance 101

DISPLAY SUBTASK EFFECTIVENESS

The following example illustrates whether zIIP support is active by subtask. It includes
CPU statistics for each subtask and associated SRB, and percentage comparison of CPU
effectiveness.

 DISPLAY SUBTASK EFFECTIVENESS
 *** Subtask display ***
 Subtask Elapsed time Total CPU time % CPU SRB
 Name TCB SRB TCB SRB TCB SRB
 -------- -------------- -------------- -------------- -------------- --- ---
 MAINTASK 00:00:08.7635 00:00:00.0182 00:00:01.3060 00:00:00.0316 14 173 Y
 SUBT0001 00:00:00.0069 00:00:00.0003 00:00:00.0053 00:00:00.0002 76 66 Y
 SUBT0002 00:00:00.0067 00:00:00.3827 00:00:00.0060 00:00:00.4328 89 113 Y
 SUBT0003 00:00:00.0117 00:00:18.2373 00:00:00.0117 00:00:20.5911 100 112 Y
 SUBT0004 00:00:00.1378 00:01:16.6358 00:00:00.0723 00:01:26.6610 52 113 Y
 SUBT0005 00:00:00.2610 00:04:38.2176 00:00:00.1506 00:05:14.8743 57 113 Y
 -------- -------------- -------------- -------------- -------------- --- ---
 Totals 00:00:09.1876 00:06:13.4919 00:00:01.5519 00:07:02.5910 16 113

Usage

DCMT DISPLAY SUBTASK 000n

(z/OS systems only) Displays the following CPU statistics under Enclave Info when zIIP
support is active:

Field Value

zIIP time The CPU time consumed while physically executing on a zIIP
processor.

zIIP on CP time The CPU time used on a CP, such as the time of scheduling the
zIIP processor use and contention for a zIIP processor.

CPU effectiveness The percentage comparison of CPU time to wall-clock time
while the subtask was executing. A subtask is considered to be
executing if it has not been put into a WAIT state by the CA
IDMS system. An executing subtask can lose effective CPU time
due to paging or to other tasks being given a higher priority by
the operating system. Reported CPU effectiveness can exceed
100% due to pro-rating techniques used by the operating
system to compensate for relative speed differences between
the CP and zIIP.

zIIP Exploitation

102 Release Summary

DCMT DISPLAY SUBTASK EFFECTIVENESS

Displays whether zIIP support is active by subtask and displays the following fields for
each TCB and SRB:

Field Value

Name The name of each subtask.

Elapsed time The length of time the subtask or SRB has been running.

Total CPU time The amount of CPU time the subtask or SRB has used.

CPU effectiveness The percentage comparison of CPU time to wall-clock time
while the subtask was executing. A subtask is considered to be
executing if it has not been put into a WAIT state by the CA
IDMS system. An executing subtask can lose effective CPU time
due to paging or to other tasks being given a higher priority by
the operating system. Reported CPU effectiveness can exceed
100% due to pro-rating techniques used by the operating
system to compensate for relative speed differences between
the CP and zIIP.

Using the REORG Utility

Efficiency of the reorganized database

The database resulting from a REORG operation should be as efficient as one
reorganized through UNLOAD and RELOAD even though the two may not be identical.

A database processed by RELOAD is loaded back to front. CALC and VIA records that
overflow are usually written to pages that have already been loaded and have room. A
database processed by REORG is loaded from front to back. CALC and VIA records that
overflow are saved in a memory cache so that they do not displace records targeting
later pages. If the cache is not large enough, the records are written to an overflow file
and loaded in a later step.

The resulting databases should be similar in terms of the number of records that are
stored on their intended target page and the number of records that overflow, but the
two databases will not be exactly the same.

You can use the IDMSDBAN utility to obtain a report of the number of page changes
needed to traverse all occurrences of each CALC and VIA set. By executing this utility
before and after reorganization, you can determine the effect that REORG has had on
these statistics and therefore the relative efficiency of the resulting database.

zIIP Exploitation

Chapter 4: Performance 103

Special Database Considerations

DCMT VARY PERMANENT considerations

If you run the REORG utility to change an area's low page number and Change Tracking
is not used, it is recommended that you remove any permanent status on the affected
area before making the new DMCL active within the CV.

When Change Tracking is not used, the PERMANENT feature is implemented by carrying
the area's low page number in the journals across cycles of the CV. Changing an area's
low-page prohibits future cycles of the CV from properly identifying the area once the
new page range is implemented.

If a DCMT VARY SEGMENT/AREA PERMANENT command is still in effect when the new
page range is implemented, the area's usage-mode at startup is determined by the
value specified in the DMCL. The entry in the journals for the old area's page range
remains until the next format of the journals.

The journal entry for the old starting page can be removed without formatting the
journal by doing a non-permanent DCMT VARY AREA command against the area prior to
changing the DMCL definition in the CV.

zIIP Exploitation

104 Release Summary

Work Files

Work file creation

REORG can create work files dynamically, or you can manually create them prior to
beginning the UNLOAD and/or RELOAD phases of REORG execution. Regardless of how
the files are created, it is a good idea to halt execution after setup to determine what
work files are needed by examining the report produced by REORG.

If using dynamic work file creation, you must specify the attributes of the work files
using one or more CREATE DSMODEL statements. REORG creates the files as directed by
the CREATE WORKFILE clause or at the time they are first accessed. Dynamically created
work files, other than DBKEYS files, are deleted automatically during the cleanup phase.

If you want to use REORG's size estimates to create a file, code a DSMODEL without a
primary SPACE allocation. You can code a SPACE parameter with just a unit type (TRK,
CYL, or blksize) and no value for primary allocation.

You must code a primary space allocation value or delay creating work files until
estimates are available. This means, for example, that you cannot direct REORG to
create RELOAD work files during the setup phase unless the DSMODEL contains a
primary allocation value.

If you code a zero primary space allocation value and a non-zero secondary value, the
secondary value is replaced by a value derived from the estimated primary value. See
"Considerations for running REORG on z/VSE".

Work file deletion

By default during the cleanup phase, REORG deletes all work files created during the
current operation other than DBKEYS files. It deletes only those files for which a
matching data set model was specified at setup or when the file was created. If a
matching model is detected, REORG attempts to dynamically allocate the file, thereby
determining its data set name which may be derived from the model or overridden by a
DD statement in the JCL. Regardless of how the data set name is determined, if the file
is created during the execution of a REORG statement, it is deleted during the cleanup
phase of the operation unless the file is subsequently overridden with a different data
set name in some later job. You can determine which files cleanup will delete by
examining the work file summary sections of the REORG Status Report.

Should it be necessary to restart a REORG operation from the beginning, you should first
execute a REORG statement that specifies CLEANUP in order to delete any work files
created by the interrupted operation. If you do not do this, none of the work files
created during the first operation execution will be deleted by REORG even if they are
reused during the second execution.

If REORG is restarted without first cleaning up the old work files, you can still direct
REORG to delete them using one of the following methods:

zIIP Exploitation

Chapter 4: Performance 105

■ You can allow REORG to reuse the old files and then after REORG has ended
normally, run a REORG CLEANUP job with the DELETEALL option. This option directs
REORG to delete all work files, other than DBKEYS files, whether they were created
by the most recent REORG operation or not

■ You can delete the old work files during the setup phase of the restarted run.
Specify DELETE OLD WORKFILES during setup and REORG checks for and deletes any
files it finds that match the file names it plans to use. This includes DBKEYS files.
This approach is preferable when the old files may be too small to be reused. See
"Considerations for running REORG on z/VSE"

Sizing work files

The simplest way to size work files is to let REORG do it for you. REORG automatically
estimates the size of all files after making a pass of the database and gathering statistics.
This occurs by default when the data is unloaded. While this does not require an extra
pass of the data, the estimates that are generated can only be used for allocating
RELOAD work files because the UNLOAD files have already been created and used.

To use REORG-generated estimates for allocating UNLOAD work files, use the ESTIMATE
WORKFILE SIZES option. This directs REORG to make a preliminary pass of the data
without opening or writing to any work files. The generated file estimates are stored in
the control file and can be used to allocate both UNLOAD and RELOAD work files when
the REORG operation is resumed.

For REORG to more accurately estimate the size of overflow files, it may be necessary to
specify an OVERFLOW PERCENT parameter. REORG assumes that 10% of the records to
be stored in the database will overflow. If this assumption is not valid for a particular
database, you may need to specify a different overflow percent value so that REORG can
generate better estimates for the size of overflow files.

While REORG attempts to accurately estimate the size needed for work files, it may not
always be able to do so. In certain cases, it may be necessary to manually estimate the
size needed for one or more work files.

Estimating the size needed for work files is difficult for two reasons: many classes of files
contain different types of records, and the number of records written to each file within
a class varies depending on how REORG chooses to divide the page ranges into slices.
Consequently, there are no simple formulas that can be used to estimate work file sizes.
There are however, some techniques that can be used to facilitate file sizing and
allocation.

zIIP Exploitation

106 Release Summary

In planning for a reorganization, do one or more trial runs to determine the actual file
sizes needed for a given n-WAY value. This can be done during a non-critical time
against a copy of the source database. This is the easiest way to obtain accurate size
estimates. If it is impractical to do a trial reorganization on a full copy of the database,
do it on a reasonably-sized sample that is representative of the original and then scale
up the work file sizes proportionately. Be sure that the sample database is large enough
relative to the n-WAY parameter so that the slicing algorithm does not reduce the
number of slices due to their small size. Size estimates determined using a sample
database are not as accurate as those determined using a full copy of the database and
so should be increased to account for this.

The following is a list of additional techniques that may prove helpful in allocating work
files:

■ Specify a relatively modest primary allocation and a large secondary allocation
under z/OS. This allows the file to extend to handle large amounts of information
without wasting unneeded space.

■ Use IBM's Storage Management Subsystem (SMS) to determine where files are to
be allocated rather than trying to manually place files on specific volumes. SMS can
automatically spread the files across volumes wherever there is available space. Use
the DATACLAS and STORCLAS options to allow files to extend across multiple
volumes.

■ If SMS is not available, allow the files to be allocated across multiple volumes by
specifying multiple volume serial numbers. There must be enough space across all
listed volumes to satisfy the space needs of all of the work files. The order of the
entries in the list is not important.

■ Consider using extended format data sets for large work files. Although this adds 32
bytes of overhead to each block, extended format data sets can have more extents
across more volumes than a basic format data set.

REORG Processing Details

Under z/VSE it is recommended to not specify a primary space value, and let REORG
calculate one. If this value is not large enough, or will not fit on the specified volume, a
DLBL and EXTENT for the individual file should be manually coded to override the
generated label.

More Information

For more information about the DCMT DISPLAY SUBTASK command, see the CA IDMS
System Tasks and Operator Commands Guide.

zIIP Exploitation

Chapter 4: Performance 107

DCPROFIL System Task

The OPERATING SYSTEM display of the DCPROFIL system task is enhanced to display
whether the CA IDMS system is eligible to run on a zIIP processor.

Example

TAPE: volser NUMBER OF SCTS: 0008

TOOLS TAPE: volser

SYSTEM TRACE: YES OPERATING SYSTEM: z/OS ZIIP=N

CWA SIZE: 0000000504 DMCL TABLE: CVDMCL

 PRIMARY STORAGE
SCRATCH HWM 0000000176 PROTECT KEY: 04

SIZE OF XA ACTIVE TRANSACTION
STORAGE AREA: 0049381376 COUNT: 0009

QUEUE AREA
LOW PAGE: 0007999951
HIGH PAGE: 0008001950

DC VERSION ID: 0210 SVC NUMBER: 173

NUMBER OF USER GETMAIN SUBPOOL: 001
TRACE BUFFERS: 0250

 PAGE 00001 - NEXT PAGE:

More Information

For more information about the DCPROFIL system task, see the CA IDMS System Tasks
and Operator Commands Guide.

zIIP Exploitation

108 Release Summary

Evaluating the zIIP Feature Benefits

Evaluation of the zIIP feature requires neither zIIP processors nor even hardware that is
capable of supporting zIIP processors.

Several easy steps are used to determine the benefits that can be achieved by using the
zIIP feature as follows:

1. Run the system with ZIIP=N using your preferred performance test stream.

2. Record the results of DCMT DISPLAY SUBTASK EFFECTIVENESS. Using a UCFBATCH
program is a good method for obtaining this information.

3. Run the system with ZIIP=Y using your preferred performance test stream.

4. Record the results of DCMT DISPLAY SUBTASK EFFECTIVENESS. Using a UCFBATCH
program is a good method for obtaining this information.

5. Compare the TCB column from Step 2 with that from Step 4. The difference is
proportional to the potential reduction in both the total CPU use and the Total Cost
of Ownership (TCO) that can be achieved by using the zIIP feature.

The SRB column from Step 4 is proportional to the number of MIPs of zIIP
processing power that will be required to achieve these cost reductions

Examples

The following displays indicate that each run used between 93 and 98 CPU seconds of
total normalized CPU. The second run shows that 91.1222 CPU seconds out of a total of
93.5108 CPU seconds were offloaded to an SRB. Approximately one third of this SRB
CPU time can be offloaded to a zIIP processor. For this particular application mix, this
means that approximately one third of the total CV CPU could be offloaded to zIIP
processors.

Since a zIIP processor was present, the actual offloaded CPU can then be confirmed
from the JES LOG Step End messages, IEF374I, which, in this case, indicates a total CPU
reduction of 31.68 seconds.

Step 2 Output with ZIIP=N

*** Subtask display ***
Subtask Elapsed time Total CPU time % CPU SRB
 Name TCB SRB TCB SRB TCB SRB
-------- -------------- -------------- -------------- -------------- --- ---
MAINTASK 00:00:14.0505 00:00:00.0000 00:00:02.3699 00:00:00.0000 16 N/A N
SUBT0001 00:00:00.0122 00:00:00.0000 00:00:00.0104 00:00:00.0000 85 N/A N
SUBT0002 00:00:00.0175 00:00:00.0000 00:00:00.0131 00:00:00.0000 74 N/A N
SUBT0003 00:00:00.2348 00:00:00.0000 00:00:00.0398 00:00:00.0000 16 N/A N
SUBT0004 00:00:00.2175 00:00:00.0000 00:00:00.0240 00:00:00.0000 11 N/A N
SUBT0005 00:01:42.0081 00:00:00.0000 00:01:35.8538 00:00:00.0000 93 N/A N
-------- -------------- -------------- -------------- -------------- --- ---
Totals 00:01:56.5406 00:00:00.0000 00:01:38.3110 00:00:00.0000 84 N/A

zIIP Exploitation

Chapter 4: Performance 109

JES LOG Step End Message

IEF374I STEP/DCV /STOP 2008242.0425 CPU 1MIN 39.53SEC SRB
0MIN 11.73SEC VIRT 7840K SYS 552K EXT 56072K SYS 11460K

Step 4 Output with ZIIP=Y

*** Subtask display ***
Subtask Elapsed time Total CPU time % CPU SRB
 Name TCB SRB TCB SRB TCB SRB
-------- -------------- -------------- -------------- -------------- --- ---
MAINTASK 00:00:12.9116 00:00:00.0434 00:00:02.1387 00:00:00.0525 16 120 Y
SUBT0001 00:00:00.0125 00:00:00.0000 00:00:00.0111 00:00:00.0000 88 N/A Y
SUBT0002 00:00:00.0118 00:00:00.0002 00:00:00.0103 00:00:00.0000 87 00 Y
SUBT0003 00:00:00.1643 00:00:00.0014 00:00:00.0624 00:00:00.0016 37 114 Y
SUBT0004 00:00:00.0276 00:00:00.0004 00:00:00.0239 00:00:00.0008 86 200 Y
SUBT0005 00:00:00.3849 00:01:17.1037 00:00:00.1422 00:01:31.0673 36 118 Y
-------- -------------- -------------- -------------- -------------- --- ---
Totals 00:00:13.5127 00:01:17.1491 00:00:02.3886 00:01:31.1222 17 118

JES LOG Step End Message

IEF374I STEP/DCV /STOP 2008242.0400 CPU 1MIN 01.60SEC SRB
0MIN 17.98SEC VIRT 7840K SYS 552K EXT 56080K SYS 11500K

More Information

For more information about the DCMT DISPLAY SUBTASK command, see the CA IDMS
System Tasks and Operator Commands Guide.

Chapter 5: SQL 111

Chapter 5: SQL

This chapter describes the new SQL enhancements.

This section contains the following topics:

SQL Procedural Language Support in Routines (see page 112)
Result Sets from SQL-invoked Procedures (see page 171)
Enhanced Diagnostics and Statistics (see page 184)
Enhanced ANSI/ISO SQL JOIN Support (see page 193)
SET Host-variable Assignment (see page 197)
Extended Use of query-expression (see page 198)
SET OPTIONS COMMAND DELIMITER (see page 199)
Pseudo Table SYSCA.SINGLETON_NULL (see page 200)

SQL Procedural Language Support in Routines

112 Release Summary

SQL Procedural Language Support in Routines

This new feature adds SQL as a programming language for SQL-invoked procedures and
functions. Earlier releases of CA IDMS provided support for Cobol, PL/I, Assembler, and
CA ADS.

The new SQL language elements, syntax, and terminology are fully compliant with the
ISO standards, except where noted.

The SQL language for SQL routines includes syntax to perform the following:

■ Direct the flow of control

■ Assign the result of expressions to variables and parameters

■ Specify condition handlers to process various conditions

■ Signal and resignal conditions

■ Declare local cursors

■ Declare local variables

The advantages of writing SQL routines in the SQL language include:

■ The ability to use a readable, simple yet powerful programming language

■ A single language to access and process data

■ Native support for all the SQL data types making manipulation of VARCHAR, DATE,
TIME, and TIMESTAMP data easier

■ Built-in NULL support that eliminates the need for defining and manipulating NULL
indicators for data such as table columns and parameters of SQL routines

■ Flexible handlers able to process SQL events easily

■ A single development and test platform fully integrated in all the CA IDMS
supported environments

SQL Procedural Language Support in Routines

Chapter 5: SQL 113

New Terminology

This feature introduces the following new and changed terminology for routines invoked
through SQL:

SQL-invoked routine

Specifies a routine that is allowed to be invoked only from within SQL. An
SQL-invoked routine can be defined in the SQL catalog as a procedure, function, or
table procedure.

SQL-invoked procedure

Specifies an SQL-invoked routine defined as a procedure in the SQL catalog.

SQL-invoked function

Specifies an SQL-invoked routine defined as a function in the SQL catalog.

SQL routine

Specifies an SQL-invoked routine whose language attribute is SQL. Because table
procedures cannot be written in the SQL language, an SQL routine is necessarily
defined as a procedure or a function.

SQL procedure

Specifies an SQL routine defined in the SQL catalog as a procedure with language
attribute SQL.

SQL function

Specifies an SQL routine defined in the SQL catalog as a function with language
attribute SQL.

SQL Procedural Language Support in Routines

114 Release Summary

Implementing SQL Routines

To define an SQL routine, use a CREATE FUNCTION or CREATE PROCEDURE statement
and specify LANGUAGE SQL. In the same statement, also specify the SQL statements
that make up the body of the routine. These are the statements that are executed when
the routine is invoked.

After successful creation of an SQL routine, it can be invoked immediately. No additional
steps, such as creating an access module are needed.

Routines written in the SQL language are implemented internally as CA ADS When an
SQL routine is successfully created, it results in the creation of the following objects:

■ A mapless dialog whose name is the external name specified on the routine
definition.

■ A process module whose name is PREMAP-dialog-name. This premap process has a
builder code of "Q" and identifies the owning routine in its description.

■ Zero or more SQL tables used to represent the local variables defined in compound
statements within the routine. These tables have names of the form
schema-name.SQLLOCnnnndialog-name.

■ An access module whose name is the same as that of the dialog.

The following considerations apply when creating SQL routines:

■ The dictionary to which the SQL session is connected must include DDLDML and
DDLDCLOD areas and these areas must be updatable.

■ SQL routines require more space in both the catalog and the DDLDML and
DDLDCLOD areas than SQL-invoked routines written in other languages.

■ The following attribute settings are required for SQL routines. You do not need to
specify these when defining an SQL routine, but if you do, their values must be as
indicated:

– The protocol must be ADS

– The mode of the SQL routine must be SYSTEM

– Transaction sharing must be ON

■ When using the command facility to define an SQL routine whose body contains
multiple statements, it is necessary to change the command delimiter to distinguish
termination of the routine definition from termination of the SQL statements that
make up the routine body. The following example illustrates the use of the
character string "++" as a command delimiter:

set options command delimiter '++';

create procedure DEFJE01.TIF1

 (TITLE varchar(10) with default

 , P_LEFT integer

 , P_RIGHT real

SQL Procedural Language Support in Routines

Chapter 5: SQL 115

 , RESULT varchar(30)

)

 EXTERNAL NAME TIF1 LANGUAGE SQL

Label_200:

begin not atomic

 /*

 ** Compare an integer value with a real value

 */

 if (P_LEFT > P_RIGHT)

 then set RESULT = 'p_left > p_right';

 elseif (P_LEFT = P_RIGHT)

 then set RESULT = 'p_left = p_right';

 elseif (P_LEFT < P_RIGHT)

 then set RESULT = 'p_left < p_right';

 else set RESULT = 'p_left and/or p_right NULL !';

 end if;

end

++

Note: For more information about changing the command delimiter, see SET OPTIONS
COMMAND DELIMITER.

Statement Components

The new SQL statement components are described in this section.

Bracketed Comment

The comment capabilities within SQL have been extended to support bracketed
comments. This enables multiple statements to be designated as comments simply by
enclosing them within comment delimiters.

Syntax

►►── /* ── comment-text ── */ ──►◄

SQL Procedural Language Support in Routines

116 Release Summary

Parameters

comment-text

Specifies the text to be designated as a comment.

Usage

Where bracketed comments can be used

Bracketed comments are only allowed in the routine body of an SQL routine. Outside of
this context, they are not recognized.

Coding conventions

The bracket introducer '/*' and terminator '*/' strings cannot be split over two lines.
They can be specified wherever a separator or space is allowed.

When defining an SQL routine using the command facility tools OCF, IDMSBCF, or the
command console in CA IDMS Visual DBA, the comment introducer '/*' cannot be placed
in column 1, because a '/*' is interpreted as an end of file on the input by the command
processor.

Expansion of language-clause

The language-clause specifies the programming language of an SQL-invoked routine.
This clause is required for SQL routines written in SQL. For others, it is documentational
only. The language-clause can be used on a CREATE or ALTER PROCEDURE and on a
CREATE or ALTER FUNCTION statement.

Syntax

►►───────── LANGUAGE ──────────────┬── ADS ─────────┬────────────────────────►◄
 ├── ASSEMBLER ───┤
 ├── COBOL ───────┤
 ├── PLI ─────────┤
 └── SQL ─────────┘

SQL Procedural Language Support in Routines

Chapter 5: SQL 117

Parameters

ADS

Specifies that the SQL routine is written in the CA ADS language.

ASSEMBLER

Specifies that the SQL routine is written in the assembler language.

COBOL

Specifies that the SQL routine is written in the COBOL language.

PLI

Specifies that the SQL routine is written in the PL/I language.

SQL

Specifies that the SQL routine is written in the SQL language.

Note: The ability to specify ADS or ASSEMBLER as a language is a CA IDMS extension.

Usage

Specifying Language SQL

If LANGUAGE SQL is specified when creating a routine, the following routine attributes
are established by default and any attempt to override them to other values will fail:

■ Protocol is ADS

■ Mode is SYSTEM

■ Transaction sharing is ON

If no Language is Specified:

If the language is not specified when a routine is created, it is treated as null. There is no
default.

Note: In the ISO standard, the default for LANGUAGE is SQL.

Example

The TLANG1 function defined in the schema USER01 returns the edited name, given the
first and last names.

create function USER01.TLANG1

 (P_FNAME char(20)

 , P_LNAME char(20)

) returns varchar(41)

 external name TLANG1 language SQL

 return trim(P_FNAME) || ' ' || trim(P_LNAME);

SQL Procedural Language Support in Routines

118 Release Summary

select USER01.TLANG1('James ', 'Last ')

 from SYSCA.SINGLETON_NULL;

*+

*+ USER_FUNC

*+ ---------

*+ James Last

Expansion of procedure-statement

Defines the SQL statements that can be included in the body of an SQL routine or in an
SQL Control statement.

Syntax

Expansion of procedure-statement

►────┬── SQL-AM-mgmt-stmt ───────────┬──►◄
 ├── SQL-authorization-stmt ─────┤
 ├── SQL-Control-stmt ───────────┤
 ├── SQL-Diagnostics-stmt ───────┤
 ├── SQL-DDL-stmt ───────────────┤
 ├── SQL-DML-stmt ───────────────┤
 ├── SQL-session-mgmt-stmt ──────┤
 └── SQL-transaction-mgmt-stmt ──┘

SQL Procedural Language Support in Routines

Chapter 5: SQL 119

Parameters

SQL-AM-mgmt-stmt

Specifies a statement from the Access Module Management Statements category.

SQL-authorization-stmt

Specifies a statement from the Authorization Statements category.

SQL-Control-stmt

Specifies a statement from the Control Statements category.

SQL-Diagnostics-stmt

Specifies a statement from the Diagnostics Statements category.

SQL-DDL-stmt

Specifies a statement from the Data Description Statements category.

SQL-DML-stmt

Specifies a statement from the Data Manipulation Statements category.

SQL-session-mgmt-stmt

Specifies a statement from the Session Management Statements category.

Note: The ability to include a RELEASE, SUSPEND, or RESUME statement in an SQL
routine is a CA IDMS extension.

SQL-transaction-mgmt-stmt

Specifies a statement from the Transaction Management Statements category.

Note: The ability to include a COMMIT or ROLLBACK statement in an SQL routine is
a CA IDMS extension.

Usage

Grouping procedure statements into a single statement

Multiple procedure statements can be grouped together as a compound statement. A
compound statement is a control statement and therefore is also a procedure
statement.

More Information

■ For more information about Control Statements, see Control Statements.

■ For more information about Diagnostics Statements, see Enhanced Diagnostics and
Statistics.

■ For more information about the other categories, see Statement Categories in the
"Statements" chapter in the CA IDMS SQL Reference Guide.

SQL Procedural Language Support in Routines

120 Release Summary

Local Variables

Local variables are new entities introduced in support of SQL routines.

A local variable is a variable that is defined in an SQL routine. You use local variables to
temporarily store and retrieve values as needed in the logic of the routine. Local
variables are used for such things as:

■ Retrieving data from a CA IDMS database by specifying them on the INTO clause of
a SELECT statement

■ Passing data to and from other SQL-invoked routines by specifying them as
arguments on the routine invocation

■ Holding computational values by specifying them as a target of a SET statement or
as values within expressions.

Local variables can only be referenced within the body of the SQL routine in which they
are defined.

Declaring Local Variables

A local variable is defined by a variable-declaration statement that is included in a
compound statement within an SQL routine body. The declaration of a local variable
consists of the specification of its name, data type, and optionally its initial value. For
more information about declaring local variables, see Compound Statement.

Expansion of Local-variable

Identifies a local variable declared in a compound statement.

Syntax

Expansion of local-variable

►─────────┬──────────────────────┬── local-variable-name ─────────────────────►◄
 └── cmp-stmnt-label. ──┘

SQL Procedural Language Support in Routines

Chapter 5: SQL 121

Parameters

cmp-stmnt-label

Specifies the label of the compound statement that contains the definition of
local-variable.

local-variable-name

Identifies the local variable of an SQL routine.

Usage

Referencing Local Variables

A local variable can only be referenced from within the compound statement that
contains its declaration or from within a compound statement contained in the
compound statement that contains its declaration.

Avoiding Ambiguous References

The name of a local variable of an SQL routine can be the same as the name of another
local variable, a routine parameter, a column, or another schema-defined entity such as
a table. To avoid ambiguity when referencing these objects, qualification can be used as
follows:

■ A local variable can be qualified with the label of the compound statement in which
it is declared.

■ A routine parameter can be qualified with its associated schema and routine name.

■ A column can be qualified with its schema and table name.

■ Other schema-defined objects can be qualified with the name of the schema in
which they are defined.

Resolving Ambiguous References

If a name is not qualified and more than one object has the specified name, CA IDMS
uses the following precedence rules to resolve the ambiguous reference:

■ If a local variable with a matching name has been declared within the compound
statement in which the reference occurs, the reference is to the local variable. If
more than one such variable is declared, the reference is to the variable declared in
the innermost compound statement containing the reference.

■ If a parameter of the routine in which the reference occurs has a matching name,
the reference is to the routine parameter.

■ Otherwise, the reference is treated as a reference to a schema-defined object. For
information on how such a reference is resolved, see Resolving References to
Entities in Schemas in "Identifiers" in the CA IDMS SQL Reference Guide.

SQL Procedural Language Support in Routines

122 Release Summary

Note: In the ISO standard, an unqualified reference would be to the object with
innermost scope.

Example

In the following SQL procedure, two local variables, FNAME and LNAME are defined. The
references are qualified in the SELECT statement with the label of the compound
statement that holds the definition of the local variables. The SET statement uses
unqualified references.

set options command delimiter '++';

create procedure SQLROUT.LOCALVAR

 (TITLE varchar(10) with default

 , P_EMP_ID NUMERIC(4)

 , P_NAME varchar(25)

)

 external name LOCALVAR language SQL

L_MAIN: begin not atomic

 /*

** Count number of employees with equal Firstname using REPEAT

*/

 declare FNAME char(20);

 declare LNAME varchar(20);

 select EMP_FNAME, EMP_LNAME

 into L_MAIN.FNAME, L_MAIN.LNAME

 from DEMOEMPL.EMPLOYEE

 where EMP_ID = P_EMP_ID;

 set P_NAME = FNAME || LNAME;

end L_MAIN

++

*+ TITLE P_EMP_ID P_NAME

call SQLROUT.LOCALVAR('LOCALVAR',2010)++

*+

*+ ----- -------- -------------

*+ LOCALVAR 2010 Cora Parke

SQL Procedural Language Support in Routines

Chapter 5: SQL 123

Routine Parameter

Routine parameters are new entities introduced in support of SQL routines.

A routine parameter is a parameter of an SQL routine. You use routine parameters to
perform the following:

■ Pass values to and from the SQL routine

■ Store and retrieve values as needed by the routine logic

■ Pass values to other SQL-invoked routines

Routine parameters can only be referenced within the body of the SQL routine in which
they are defined.

Defining Routine Parameters

A routine parameter is defined through a parameter-definition clause of the CREATE
PROCEDURE or CREATE FUNCTION statements. The definition includes the specification
of the name, the data type, and optional WITH DEFAULT attribute.

Note: For more information about defining routine parameters, see CREATE
PROCEDURE and CREATE FUNCTION statements in the CA IDMS SQL Reference Guide.

Expansion of Routine-parameter

Identifies a routine parameter of an SQL routine.

Syntax

Expansion of routine-parameter

►─┬──┬── parameter-name ──────────►◄
 └─┬───────────────────┬─────── routine-name. ──┘
 └─ schema. ─────────┘

SQL Procedural Language Support in Routines

124 Release Summary

Parameters

schema

Specifies the schema with which the SQL routine identified by routine-name is
associated.

routine-name

Specifies the name of the SQL routine in which the routine parameter identified by
routine-parameter is defined.

parameter-name

Identifies a parameter of an SQL routine.

Usage

Referencing Routine Parameters

Routine parameters can only be referenced within the body of the SQL routine in which
they are defined. A routine parameter is global to the SQL routine. It can be referenced
anywhere in the body of the routine.

Avoiding Ambiguous References

The name of a routine parameter can be the same as the name of a local variable, a
column, or another schema-defined entity such as a table. To avoid ambiguity when
referencing these objects, qualification can be used as follows:

■ A local variable can be qualified with the label of the compound statement in which
it is declared

■ A routine parameter can be qualified with its associated schema and routine name

■ A column can be qualified with its schema and table name

■ Other schema-defined objects can be qualified with the name of the schema in
which they are defined.

Resolving Ambiguous References

If a name is not qualified and more than one object has the specified name, CA IDMS
uses the following precedence rules to resolve the ambiguous reference:

■ If a local variable with a matching name has been declared within the compound
statement in which the reference occurs, the reference is to the local variable. If
more than one such variable is declared, the reference is to the variable declared in
the innermost compound statement containing the reference.

■ If a parameter of the routine in which the reference occurs has a matching name,
the reference is to the routine parameter.

SQL Procedural Language Support in Routines

Chapter 5: SQL 125

■ Otherwise, the reference is treated as a reference to a schema-defined object. For
information on how such a reference is resolved, see Resolving References to
Entities in Schemas in "Identifiers" in the CA IDMS SQL Reference Guide.

Note: In the ISO standard, an unqualified reference would be to the object with
innermost scope.

Example

In the following SQL procedure, three routine parameters, TITLE, P_EMP_ID, and
P_LAST_NAME are defined. The references are to P_EMP_ID and P_LAST_NAME in the
SELECT statement are qualified. The SET statement uses an unqualified reference to
TITLE.

 .

 set options command delimiter '++';

 create procedure SQLROUT.GETLNAME

 (TITLE varchar(10) with default

 , P_EMP_ID NUMERIC(4)

 , P_LAST_NAME varchar(25)

)

 external name GETLNAME language SQL

 L_MAIN: begin not atomic

 select EMP_FNAME

 into SQLROUT.GETLNAME.P_LAST_NAME

 from DEMOEMPL.EMPLOYEE

 where EMP_ID = GETLNAME.P_EMP_ID;

 set TITLE = 'Success';

 end L_MAIN

 ++

 call SQLROUT.GETLNAME ('?',2010)++

 *+

 *+ TITL:EP_EMP_ID P_LAST_NAME

 *+ ----- -------- -----------

 *+ Success 2010 Cora

SQL Procedural Language Support in Routines

126 Release Summary

Expansion of value-expression

The expansion of value-expression has been enhanced to enable referencing
parameters and local variables of SQL routines.

Syntax

►►─┬─────┬─┬─── . . . ──────────────────┬─────────────────────────────────────►
 ├─ + ─┤ ├── routine-parameter ───────┤
 └─ - ─┘ └── local-variable ──────────┘
►┬───┬───►◄
 │ ┌───┐ │
 └─▼┬─ _ ──┬─┬───────┬─┬─── . . . ────────────────────────────────────┬┴─┘
 ├─ / ──┤ ├─ + _ ─┤ ├─── routine-parameter ────────────────────────┤
 ├─ + ──┤ └─ - ───┘ └─── local-variable ───────────────────────────┘
 ├─ - ──┤
 └─ ││ ─┘

Parameters

routine-parameter

Specifies a parameter of an SQL routine to be used as a single operand in the value
expression. For information about expanded routine-parameter syntax, see
Expansion of Routine-parameter.

local-variable

Specifies a local variable of an SQL routine to be used as a single operand in the
value expression. For information about expanded local-variable syntax, see
Expansion of Local-variable.

Enhanced Data Description Statements

This section contains data description statements that have been enhanced in support
of SQL routines.

ALTER FUNCTION

The ALTER FUNCTION statement has been enhanced with the addition of the
language-clause which is used to change the language of the function.

Syntax

►►─ ALTER FUNCTION ─ . . . ──►

►───┬───────────────────┬───►◄
 └─ language-clause ─┘

SQL Procedural Language Support in Routines

Chapter 5: SQL 127

Parameters

language-clause

Specifies the programming language of the function.

Usage

Changing the language of a function

A function with language SQL cannot be changed to any other language and a function
whose language is not SQL cannot be changed to language SQL.

ALTER PROCEDURE

The ALTER PROCEDURE statement has been enhanced with the addition of the
language-clause which is used to change the language of the procedure.

Syntax

►►─ ALTER PROCEDURE ─ . . . ───►

►───┬───────────────────┬───►◄
 └─ language-clause ─┘

Parameters

language-clause

Specifies the programming language of the procedure.

Usage

Changing the language of a procedure

A procedure with language SQL cannot be changed to any other language and a
procedure whose language is not SQL cannot be changed to language SQL.

SQL Procedural Language Support in Routines

128 Release Summary

CREATE FUNCTION

The CREATE FUNCTION statement has been enhanced to enable the definition of
functions written in the SQL language. The CREATE FUNCTION statement is a data
description statement that stores the definition of a function in the SQL catalog. You can
then invoke the function in any value-expression of an SQL statement except in the
search condition of a table's check constraint. The function invocation results in CA
IDMS calling the corresponding routine. Such routines can perform any action and
return a single scalar value. Use the formal parameters of a function definition to specify
the data type and format of the data to be passed to the function. Similarly, the data
type of the return value is specified in the function definition.

Functions can be defined with a language of SQL, in which case, the routine actions
written as SQL statements are specified and stored together with the function definition
in the SQL catalog.

Syntax

►►─ CREATE FUNCTION ─ . . . ───►
►───┬───────────────────┬───┬─────────────────────────────┬────────────────────►
 └─ language-clause ─┘ └── PROTOCOL ───┬── IDMS ──┬──┘
 └── ADS ───┘
►───┬───────────────┬──►
 ├─ USER MODE ───┤
 └─ SYSTEM MODE ─┘
►───┬──┬─────────────────►
 └─ TRANSACTION SHARING ───────────────┬─ ON ───────┬─────┘
 ├─ OFF ──────┤
 └─ DEFAULT ◄─┘
►───┬───┬─►◄
 └┬──┬ procedure-statement ──┘
 │ ┌──────────────────┐ │
 └ ADS COMPILE OPTION ─▼─ compile-option ─┴─ ; ─┘

SQL Procedural Language Support in Routines

Chapter 5: SQL 129

Parameters

language-clause

Specifies the programming language of the function. This clause is required for
functions written in SQL. For others, it is documentational only. If the language is
not specified, it is treated as null.

PROTOCOL

Specifies the protocol with which the function is invoked. This specification is
required except with language SQL. If LANGUAGE SQL is specified, PROTOCOL must
be ADS or the clause must not be specified.

IDMS

Use IDMS for functions that are written in COBOL, PL/I, or Assembler.

ADS

Use ADS for functions that are written in CA ADS. The name of the dialog that is
loaded and executed when the function is invoked is specified by the
external-routine-name in the EXTERNAL NAME clause. ADS is the default if
LANGUAGE SQL is specified.

USER MODE

Specifies that the function should execute as a user-mode application program
within CA IDMS. This cannot be specified with language SQL or protocol ADS. For
other languages and protocols, it is the default.

SYSTEM MODE

Specifies that the function should execute as a system-mode application program.
SYSTEM MODE is the default if language is SQL or protocol is ADS.

To execute as SYSTEM MODE, the program must be one of the following:

■ A fully reentrant Assembler program

■ A Language Environment (LE) COBOL or PL/I program

■ A mapless dialog

TRANSACTION SHARING

Specifies whether transaction sharing should be enabled for database sessions
started by the function. If transaction sharing is enabled for a function's database
session, it shares the current transaction of the SQL session. If language SQL is
specified, TRANSACTION SHARING must be ON or the clause must not be specified.

ON

Specifies that transaction sharing should be enabled. ON is the default if
language is SQL.

OFF

Specifies that transaction sharing should be disabled.

SQL Procedural Language Support in Routines

130 Release Summary

DEFAULT

Specifies that the transaction sharing setting in effect when the function is
invoked should be retained. DEFAULT is the default for languages other than
SQL.

compile-option

Specifies a CA ADS option to be used when compiling the dialog associated with an
SQL function. The options that can be specified and the syntax to use are given in
the CA ADS Reference Guide, Appendix D.2.6 Dialog-expression. Compile-option can
be specified only if language is SQL.

Note: The ability to specify the ADS COMPILE OPTION clause is a CA IDMS
extension.

procedure-statement

Specifies the actions taken in the function. Procedure-statement is required if
language is SQL. It cannot be specified otherwise.

Usage

Language SQL

If LANGUAGE SQL is specified, the following attribute settings are established by default
and must not be overridden to a different value:

■ Protocol is ADS

■ Mode is SYSTEM

■ Transaction sharing is ON

Functions whose language is SQL are implemented through an automatically generated
CA ADS dialog whose name is external-routine-name.

An error while parsing procedure-statement or an error while compiling the associated
CA ADS dialog causes termination of the CREATE FUNCTION statement with a warning
instead of a statement error. This allows the erroneous procedure-statement syntax to
be saved in the catalog for later correction using the DISPLAY FUNCTION command. The
CA ADS dialog and associated access module are not created.

Specifying CA ADS Compile Options

If LANGUAGE SQL is specified, you can specify one or more compile options to be used
when the associated dialog is compiled. Specifying compile options can be useful for
debugging purposes to enable tracing and the use of online debugging facilities. Compile
options can also be used to include additional work records and SQL tables which can be
referenced in native CA ADS code included in the routine body.

Some useful compile options include:

SQL Procedural Language Support in Routines

Chapter 5: SQL 131

■ SYMBOL TABLE IS YES - to allow the use of symbols by the TRACE command and the
online debug facilities

■ ADD RECORD record-name - to enable manipulation of elements from the specified
record

■ ADD SQL TABLE table-name - to enable manipulation of columns or parameters of
the specified SQL table-like object.

Example

set options command delimiter '++';

drop function USER01.TCNTEQNAME++

commit++

create function USER01.TCNTEQNAME

 (TITLE varchar(40) with default

 , P_FNAME char(20)

 , P_COUNT integer

 , RESULT varchar(10)

) RETURNS varchar(20)

 EXTERNAL NAME TCNTEQN LANGUAGE SQL

Label_700:

begin not atomic

 /*

 ** Count number of employees with equal Firstname

 */

 declare FNAME char(20);

 declare LNAME varchar(20);

 declare P_COUNT_SAV integer default 0;

 declare EMP1 CURSOR FOR

 Select EMP_FNAME, EMP_LNAME

 From DEMOEMPL.EMPLOYEE

 where EMP_FNAME = P_FNAME;

 open EMP1;

 fetch EMP1 into FNAME, LNAME;

 fetching_loop:

 loop

 if (SQLSTATE < > '00000')

 then leave fetching_loop;

 end if;

 set P_COUNT = P_COUNT + 1;

 fetch EMP1 into FNAME, LNAME;

 end loop fetching_loop;

 set RESULT = SQLSTATE;

 close EMP1;

 if (P_COUNT < = P_COUNT_SAV)

SQL Procedural Language Support in Routines

132 Release Summary

 then return null;

 else return 'Res: ' || cast(P_COUNT as char(5));

 end if;

end

++

CREATE PROCEDURE

The CREATE PROCEDURE statement has been enhanced to enable the definition of
procedures written in the SQL language.

The CREATE PROCEDURE statement is a data description statement that stores the
definition of a procedure in the SQL catalog. You can refer to the procedure in an SQL
CALL statement or in an SQL SELECT statement just as you would a table procedure.
These references result in CA IDMS calls to the corresponding routine. Such routines can
perform any action, such as manipulating data stored in some other organization (for
example, in a non SQL-defined database or in a set of VSAM files). You can also use
them to implement business logic.

Procedures can be defined with a language of SQL. The routine actions, written as SQL
statements, are specified and stored together with the procedure definition in the SQL
catalog.

The formal parameters of a procedure definition can be used like columns of a table
during a procedure invocation to pass values to and from the procedure.

Syntax

►►─ CREATE PROCEDURE ─ . . . ──►

►───┬───────────────────┬───┬─────────────────────────────┬────────────────────►
 └─ language-clause ─┘ └── PROTOCOL ───┬── IDMS ──┬──┘
 └── ADS ───┘

►───┬───────────────┬──►
 ├─ USER MODE ───┤
 └─ SYSTEM MODE ─┘

►───┬──┬─────────────────►
 └─ TRANSACTION SHARING ───────────────┬─ ON ───────┬─────┘
 ├─ OFF ──────┤
 └─ DEFAULT ◄─┘
►───┬───┬─►◄
 └┬──┬ procedure-statement ──┘
 │ ┌──────────────────┐ │
 └ ADS COMPILE OPTION ─▼─ compile-option ─┴─ ; ─┘

SQL Procedural Language Support in Routines

Chapter 5: SQL 133

Parameters

language-clause

Specifies the programming language of the procedure. This clause is required for
procedures written in SQL. For others, it is documentational only. If the language is
not specified, it is treated as null.

PROTOCOL

Specifies the PROTOCOL with which the procedure is invoked. This specification is
required except with language SQL. If LANGUAGE SQL is specified, PROTOCOL must
be ADS or the clause must not be specified.

IDMS

Use IDMS for procedures that are written in COBOL, PL/I, or Assembler.

ADS

Use ADS for procedures that are written in CA ADS. The name of the dialog that
is loaded and executed when the procedure is invoked is specified by the
external-routine-name in the EXTERNAL NAME clause. ADS is the default if
LANGUAGE SQL is specified.

USER MODE

Specifies that the procedure should execute as a user-mode application program
within CA IDMS. This cannot be specified with language SQL or protocol ADS. For
other languages and protocols, it is the default.

SYSTEM MODE

Specifies that the procedure should execute as a system-mode application program.
SYSTEM MODE is the default if language is SQL or protocol is ADS.

To execute as SYSTEM MODE, the program must be one of the following:

■ A fully reentrant Assembler program

■ A Language Environment (LE) COBOL or PL/I program

■ A mapless dialog

TRANSACTION SHARING

Specifies whether transaction sharing should be enabled for database sessions
started by the procedure. If transaction sharing is enabled for a procedure's
database session, it shares the current transaction of the SQL session. If language
SQL is specified, TRANSACTION SHARING must be ON or the clause must not be
specified.

ON

Specifies that transaction sharing should be enabled. ON is the default if
language is SQL.

OFF

Specifies that transaction sharing should be disabled.

SQL Procedural Language Support in Routines

134 Release Summary

DEFAULT

Specifies that the transaction sharing setting in effect when the procedure is
invoked should be retained. Default is the default for languages other than SQL.

compile-option

Specifies a CA ADS option to be used when compiling the dialog associated with an
SQL procedure. The options that can be specified and the syntax to use are given in
the CA ADS Reference Guide, Appendix D.2.6 Dialog-expression. Compile-option can
be specified only if language is SQL.

Note: The ability to specify the ADS COMPILE OPTION clause is a CA IDMS
extension.

procedure-statement

Specifies the actions taken in the procedure. Procedure-statement is required if
language is SQL. It cannot be specified otherwise.

Usage

Language SQL

If LANGUAGE SQL is specified, the following attribute settings are established by default
and must not be overridden to a different value:

■ Protocol is ADS

■ Mode is SYSTEM

■ Transaction sharing is ON

Procedures whose language is SQL are implemented through an automatically
generated CA ADS dialog whose name is external-routine-name.

An error while parsing procedure-statement or an error while compiling the associated
CA ADS dialog causes the CREATE PROCEDURE statement to terminate with a warning
instead of a statement error. This allows the erroneous procedure-statement syntax to
be saved in the catalog for later correction using the DISPLAY PROCEDURE command.
The CA ADS dialog and associated access module are not created.

Specifying CA ADS Compile Options

If LANGUAGE SQL is specified, you can specify one or more compile options to be used
when the associated dialog is compiled. Specifying compile options can be useful for
debugging purposes to enable tracing and the use of online debugging facilities. Compile
options can also be used to include additional work records and SQL tables which can be
referenced in native CA ADS code included in the routine body.

Some useful compile options include:

■ SYMBOL TABLE IS YES - to allow the use of symbols by the TRACE command and the
online debug facilities

SQL Procedural Language Support in Routines

Chapter 5: SQL 135

■ ADD RECORD record-name - to enable manipulation of elements from the specified
record

■ ADD SQL TABLE table-name - to enable manipulation of columns or parameters of
the specified SQL table-like object

Example

The procedure USER01.TSELECT1 uses the given employee ID to retrieve the first and
last name. It returns the edited name in the RESULT parameter.

create procedure USER01.TSELECT1

 (TITLE varchar(10) with default

 , P_EMP_ID numeric(4)

 , RESULT varchar(20)

)

 EXTERNAL NAME TSELECT1 LANGUAGE SQL

 select trim(EMP_FNAME) || ' ' || trim(EMP_LNAME)

 into RESULT

 from DEMOEMPL.EMPLOYEE

 where EMP_ID = P_EMP_ID

;

call user01.tselect1('TSIGNAL3', 1003);

*+

*+ TITLE P_EMP_ID RESULT

*+ ----- -------- ------

*+ TSIGNAL3 1003 Jim Baldwin

DISPLAY/PUNCH FUNCTION

The DISPLAY/PUNCH FUNCTION statement has been enhanced to display the SQL
statements that make up the body of a function written in SQL. The DISPLAY/PUNCH
FUNCTION statement lets you display or punch a function. For functions with language
SQL, the statement also displays the SQL routine body from the dictionary.

DISPLAY/PUNCH PROCEDURE

The DISPLAY/PUNCH PROCEDURE statement has been enhanced to display the SQL
statements that make up the body of a procedure written in SQL. The DISPLAY
PROCEDURE statement displays or punches the definition of a procedure. For
procedures with language SQL, the statement also displays the SQL routine body from
the dictionary.

SQL Procedural Language Support in Routines

136 Release Summary

DROP FUNCTION

The DROP FUNCTION statement has been enhanced to delete the additional
components created in support of a function written in SQL. The DROP FUNCTION
statement is a data description statement that deletes the definition of the referenced
function from the dictionary. For functions with language SQL, the statement removes
the SQL routine body from the dictionary and the associated entities: access
module(AM), relational command module (RCM), ADS premap process code, and dialog
load module.

If in the same SQL session the DROP of an SQL function is followed by a CREATE of an
SQL routine with an external name identical to that of the dropped function, a COMMIT
should follow the DROP to avoid deadlocks on the load module resources.

DROP PROCEDURE

The DROP PROCEDURE statement has been enhanced to delete the additional
components created in support of a procedure written in SQL. The DROP PROCEDURE
statement is a data description statement that deletes the definition of the referenced
procedure from the dictionary. For procedures with language SQL, the statement
removes the SQL routine body from the dictionary and the associated entities: access
module(AM), relational command module (RCM), ADS premap process code, and dialog
load module.

If in the same SQL session the DROP of an SQL procedure is followed by a CREATE of an
SQL routine with an external name identical to that of the dropped procedure, a
COMMIT should follow the DROP to avoid deadlocks on the load module resources.

DROP SCHEMA

The DROP SCHEMA statement has been enhanced to delete the additional components
created in support of SQL routines. The DROP SCHEMA statement is a data description
statement that deletes a schema definition from the dictionary. The DROP SCHEMA
statement is a CA IDMS extension of ANSI-standard SQL.

Usage

Effect of the CASCADE Parameter

When you specify CASCADE in a DROP SCHEMA statement, CA IDMS deletes the
following:

■ For functions and procedures with language SQL, the statement removes the SQL
routine body from the dictionary and the associated CA ADS entities and program
structures: access module(AM), relational command module (RCM), ADS premap
process code and dialog load module.

SQL Procedural Language Support in Routines

Chapter 5: SQL 137

Control Statements

This is a new category of CA IDMS SQL statements that allow you to define the flow of
control in an SQL routine and assign values to routine parameters or local variables.

SQL Control Statements

Statement Purpose

CALL Invokes a procedure or a table procedure.

Note: The CALL statement
has been available in earlier
releases of CA IDMS, where
it has been categorized as a
DML-statement.

CASE Determines the execution flow by the evaluation of
one or more value-expressions.

Compound Specifies a grouping of statements, with optional
definitions of local variables, cursors, and handlers.

EXEC ADS Starts a block of CA ADS code.

IF Determines by evaluation of a search-condition, which
block of statements are executed.

ITERATE Begins a new iteration in a programmatic loop.

LEAVE Exits a programmatic loop.

LOOP Defines a programmatic loop.

REPEAT Defines a programmatic loop with an end condition.

RESIGNAL Raises an SQL exception in a handler.

RETURN Exits an SQL-invoked routine or compound statement.

SET Assignment Assigns a value to a routine parameter, local variable,
or host variable.

Note: This statement can
also be embedded in any
SQL client program.

SIGNAL Raises an SQL exception.

WHILE Defines a programmatic, conditional loop.

SQL Procedural Language Support in Routines

138 Release Summary

CALL

The CALL statement has been enhanced to enable the invocation of SQL procedures.

Usage

Calling an SQL Procedure

An SQL procedure is an SQL-invoked procedure with language SQL. Any transaction
started by this procedure is shared with the transaction of the caller. After returning
from an SQL procedure, any session opened by the procedure is automatically released
except for sessions that have result sets. Such sessions are released when their last
result set has been processed and the associated received cursor has been closed.

CASE

The CASE statement selects different execution paths depending on the evaluation of
one or more value-expressions.

Syntax

►►──── CASE ───┬── simple-case-when-clause ───┬────────────────────────────────►
 └── searched-case-when-clause ─┘
►───┬───┬─ END CASE ───────────────────►
 │ ┌────────────────────────────┐ │
 └─── ELSE ── ▼ ─ procedure-statement ─ ; ─┴─┘

Expansion of simple-case-when-clause

►►──── value-expression──►
 ┌──┐
 │ ┌────────────────────────────┐ │
►── ▼ ─ WHEN ── value-expression ─ THEN ─ ▼ ─ procedure-statement ─ ; ─┴─┴────►◄

Expansion of searched-case-when-clause

 ┌──┐
 │ ┌────────────────────────────┐ │
►►─ ▼ ─ WHEN ── search-condition ─ THEN ─ ▼ ─ procedure-statement ─ ; ─┴─┴────►◄

SQL Procedural Language Support in Routines

Chapter 5: SQL 139

Parameters

Simple Case:

CASE value-expression

Specifies the value expression whose outcome is compared to the outcomes of the
value-expressions in the WHEN clauses.

WHEN value-expression

Specifies a value expression whose outcome is compared to the outcome of the
CASE value-expression. If the two values are equal, the group of statements
specified in the corresponding THEN is executed.

THEN procedure-statement

Identifies the group of statements to be executed when the value expressions of
the CASE and WHEN clauses are equal.

Searched Case:

CASE WHEN

Identifies the CASE as a searched case.

WHEN search-condition

Specifies the search condition whose outcome, if true, results in the execution of
the group of statements specified by the THEN clause.

THEN procedure-statement

Identifies the group of statements executed when the search-condition in the
corresponding WHEN clause evaluates to true.

ELSE procedure-statement END CASE

Specifies the group of statements to be executed when none of the THEN group of
statements has been executed because of the evaluation and comparison of the
value-expression's and search-condition's. This clause can be specified for both
simple and searched case statements.

Usage

SQL Exceptions

If an ELSE clause is not specified and none of the THEN group of statements has been
executed because of the outcome of evaluation of the value expressions and search
conditions, an SQL exception is raised.

Examples

The first example demonstrates the use of a simple-case-when-clause.

set options command delimiter '++';

SQL Procedural Language Support in Routines

140 Release Summary

create function USER01.TCASE1

 (TITLE varchar(40) with default

 , P_EMP_ID unsigned numeric(4)

) RETURNS varchar(30)

 external name TCASE1 language SQL

begin not atomic

 /*

 ** Function selects an employee with the given EMP_ID and swaps

 ** the first_name value 'James' with 'Jim'.

 ** Returns a message text with the outcome of the execution

 */

 declare MY_STATUS varchar(30);

 declare LOC_FNAME char(20) default ' ';

 select EMP_FNAME into LOC_FNAME

 from DEMOEMPL.EMPLOYEE

 where EMP_ID = P_EMP_ID;

 case LOC_FNAME

 when 'James'

 then update DEMOEMPL.EMPLOYEE set EMP_FNAME = 'Jim'

 where EMP_ID = P_EMP_ID;

 set MY_STATUS = 'James->JIM';

 when 'Jim'

 then update DEMOEMPL.EMPLOYEE set EMP_FNAME = 'James'

 where EMP_ID = P_EMP_ID;

 set MY_STATUS = 'Jim->James';

 when 'Thomas'

 then update DEMOEMPL.EMPLOYEE set EMP_FNAME = 'Thomas'

 where EMP_ID = P_EMP_ID;

 set MY_STATUS = 'Dummy update';

 else set MY_STATUS = 'No Changes';

 end case;

 return MY_STATUS;

end

++

select USER01.TCASE1('TCASE1', 1034)from SYSCA.SINGLETON_NULL++

*+

*+ USER_FUNC

*+ ---------

*+ Jim->James

The second example demonstrates the searched-case-when-clause. It is functionally
equivalent with the example of simple-case-when-clause.

set options command delimiter '++';

create function USER01.TCASESR1

 (TITLE varchar(40) with default

SQL Procedural Language Support in Routines

Chapter 5: SQL 141

 , P_EMP_ID unsigned numeric(4)

) RETURNS varchar(30)

 external name TCASESR1 language SQL

begin not atomic

 /*

 ** Function selects an employee with the given EMP_ID and

 ** does some conditional updates.

 ** Returns a message text with the outcome of the execution

 */

 declare MY_STATUS varchar(30);

 declare LOC_FNAME char(20) default ' ';

 declare LOC_LNAME char(20) default ' ';

 select EMP_FNAME, EMP_LNAME into LOC_FNAME, LOC_LNAME

 from DEMOEMPL.EMPLOYEE where EMP_ID = P_EMP_ID;

 case

 when LOC_FNAME = 'James'

 then update DEMOEMPL.EMPLOYEE set EMP_FNAME = 'Jim'

 Where EMP_ID = P_EMP_ID;

 set MY_STATUS = 'James->JIM';

 when LOC_FNAME = 'Jim' and LOC_LNAME = 'Gallway'

 then update DEMOEMPL.EMPLOYEE set EMP_FNAME = 'James'

 Where EMP_ID = P_EMP_ID;

 set MY_STATUS = 'Jim->James';

 when LOC_LNAME = 'Van der Bilck'

 then update DEMOEMPL.EMPLOYEE set EMP_LNAME = 'Vanderbilck'

 Where EMP_ID = P_EMP_ID;

 set MY_STATUS = 'Van der Bilck->Vanderbilck';

 else set MY_STATUS = 'No Changes';

 end case;

 return MY_STATUS;

end

++

SQL Procedural Language Support in Routines

142 Release Summary

Compound Statement

The Compound statement defines a block of related SQL statements and can include the
definition of local variables, condition names, cursors, and condition handlers.

Syntax

►►──┬──────────────┬── BEGIN ──┬────────────────┬──────────────────────────────►
 └─ beg-label: ─┘ ├── ATOMIC ──────┤
 └── NOT ATOMIC ◄─┘
►───┬───────────────────────────────────────┬──────────────────────────────────►
 │ ┌──────────────────────────────────┐ │
 └─ ▼ ─┬─ variable-declaration ────┬─;─┴─┘
 └─ condition-declaration ───┘
►───┬───────────────────────────────────────┬──────────────────────────────────►
 │ ┌──────────────────────────────────┐ │
 └─ ▼ ─── cursor-declaration ────── ; ─┴─┘
►─┬─────────────────────────────────┬──►
 │ ┌─────────────────────────────┐│
 └─ ▼ ── handler-declaration ─ ; ─┴┘

 ┌─────────────────────────┐
►─── ▼ ─procedure-statement ─;─┴── END ───────┬─────────────┬─────────────────►◄
 └─ end-label ─┘

Expansion of variable-declaration

 ┌───── , ──────┐
►─ DECLARE ─ ▼ ── variable ─┴─ data-type ─┬─────────────────────┬─────────────►◄
 └─ DEFAULT ─┬─ NULL ──┤
 └─ const ─┘

Expansion of condition-declaration

►─ DECLARE ─ condition-name CONDITION FOR SQLSTATE ─┬─────────┬── const ──────►◄
 └─ VALUE ─┘

Expansion of handler-declaration

 ┌──────────── , ────────────────────┐
►─ DECLARE ─┬─ CONTINUE ─┬─ HANDLER FOR ─ ▼ ┬─ SQLEXCEPTION ─────────────────┬┴►
 ├─ EXIT ─────┤ ├─ SQLWARNING ───────────────────┤
 └─ UNDO ─────┘ ├─ NOT FOUND ────────────────────┤
 ├─ SQLSTATE value ─── 'sqlstate' ┤
 └─ condition-name ───────────────┘
►─── procedure-statement ───►◄

SQL Procedural Language Support in Routines

Chapter 5: SQL 143

Parameters

beg-label:

Specifies a 1- through 32-character SQL identifier that labels the compound
statement. The value must be different from any other label used in the compound
statement.

ATOMIC

Specifies that an unhandled exception raised while executing the compound
statement causes a rollback of the effects of the compound statement.

NOT ATOMIC

Specifies that an unhandled exception raised while executing the compound
statement does not cause a rollback of the effects of the compound statement. This
is the default.

variable-declaration

Defines a local variable.

variable

Specifies the name of the local variable. Variable must be a 1- through
32-character name that follows the conventions for SQL identifiers. The names
of all local variables declared within a compound statement must be unique.

DEFAULT

Specifies the initial value of the local variable.

 NULL

 Initializes the local variable to NULL.

 const

 Initializes the local variable to the value of const. Const must be a literal
whose value is compatible for assignment to the local variable.

Note: If DEFAULT is not specified, the local variable is not initialized.

DECLARE condition-name FOR CONDITION SQLSTATE

Defines a name for a condition. This name can be used in other statements to refer
to the condition.

VALUE

Specifies an optional keyword without semantic meaning.

const

Specifies the value of SQLSTATE that constitutes the condition. const is a
5-character string-literal that consists of only digits (0-9) and capital alphabetic
characters (A-Z). const can not be '00000', the value of SQLSTATE for sucessful
completion.

cursor-declaration

SQL Procedural Language Support in Routines

144 Release Summary

Defines a local cursor for use within the compound statement. For a description of
this clause, see DECLARE CURSOR.

procedure-statement

Defines an SQL procedure statement to be included in the compound statement.
Procedure-statement may be any statement defined by Expansion of
procedure-statement except a compound statement.

handler-declaration

Defines a handler routine for SQL exception or completion conditions. A handler
routine receives control when the execution of an SQL statement fails or terminates
with a condition for which the handler has been defined. The three types of
handlers (CONTINUE, EXIT, UNDO) and the conditions under which they are invoked
are as follows:

CONTINUE

After executing the handler action, a CONTINUE handler returns control to the
statement following the one that caused the event. If this statement is
contained in an IF, CASE, LOOP, WHILE, or REPEAT statement, control is
returned to the statement following the IF, CASE, LOOP, WHILE, or REPEAT
statement.

EXIT

After executing the handler action, an EXIT handler returns control to the
statement following the compound statement. If there is no statement
following the compound statement, control is returned to the invoker of the
routine.

UNDO

Before executing the handler action, an UNDO handler will rollback the
database changes caused by the execution of the compound statement that
caused the handler to be activated. After the handler actions have been
executed, control is returned to the statement following the compound
statement. If there is no statement after the compound statement, control is
returned to the invoker of the routine. An UNDO handler requires its defining
compound statement to be ATOMIC.

SQLEXCEPTION

Specifies that the handler is to be activated for all events except those of
classes "Successful completion" (SQLSTATE = '00xxx'), "Completed with
Warning" (SQLSTATE ='01xxx'), and "Completed with No Data" (SQLSTATE =
'02xxx').

SQLWARNING

Specifies that the handler is to be activated for events of the class, "Completed
with Warning" (SQLSTATE = '01xxx').

NOT FOUND

SQL Procedural Language Support in Routines

Chapter 5: SQL 145

Specifies that the handler is to be activated for events of the class, "Completed
with No Data" (SQLSTATE = '02xxx').

'sqlstate'

Specifies a value of SQLSTATE for which the handler is activated. 'Sqlstate' must
be a 5-character string-literal that consists of only digits (0-9) and capital
alphabetic characters (A-Z). 'Sqlstate' cannot be '00000', the value of SQLSTATE
for successful completion.

condition-name

Specifies the name of a condition for which the handler is activated.
Condition-name must identify a condition declared in the compound
statement.

procedure-statement

Defines the SQL procedure statement that is to be executed when the handler
routine is invoked.

end-label

Specifies an SQL identifier that labels the end of the compound statement. If
specified, a beg-label must also have been specified and both labels must be equal.

Usage

Variables, Parameters, and Column Names

When ambiguity exists in referencing local variables, parameters and column names,
qualification is required to resolve the ambiguity.

Note: For more information, see Expansion of Local-variable and Expansion of
Routine-parameter.

Nesting of Compound Statement

A compound statement cannot contain other compound statements with the exception
of handlers. A handler, which necessarily is contained in a compound statement, can
have a compound statement as its procedure statement procedure-statement.

Handlers

When both a generic class handler (a handler for SQLEXCEPTION or SQLWARNING) and a
specific handler cover the same event, the more specific handler is invoked when the
event occurs.

Only one handler for a specific event can be defined.

Handlers cannot be defined with duplicate conditions.

SQL Procedural Language Support in Routines

146 Release Summary

If an SQL exception occurs in a compound statement for which there is no handler
defined, control returns to the statement following the compound statement that
caused the exception and an implicit RESIGNAL is executed. The exception is passed in
the SQLSTATE. Database changes made by compound statements defined as ATOMIC
will be rolled back before control returns.

Atomic Compound Statements

Compound statements defined as ATOMIC cannot contain the transaction management
statements, COMMIT and ROLLBACK, or the session management statement, RELEASE.

Cursor state upon exiting from a compound statement

When execution of a compound statement ends, all cursors defined within the
compound statement that are still open are automatically closed, except for returnable
cursors. For more information about returnable cursors, see DECLARE CURSOR.

Example

The procedure USER01.TCOMP01 retrieves an employee for a given EMP_ID and returns
a formatted name. An exit handler for NOT FOUND handles the NOT FOUND condition.
An exit handler for SQLEXCEPTION handles generic database errors.

 set options command delimiter '++';

 create procedure USER01.TCOMP01

 (P_ID numeric(4)

 , P_NAME char(30)

 , RESULT varchar(30)

)

 external name TCOMP01 language SQL

 Label_400:

 /*

 ** Return formatted name of employee with given EMP_ID

 */

 begin not atomic

 declare L_FNAME char(50);

 declare L_LNAME char(50);

 declare exit handler for SQLEXCEPTION

 label_8888:

 begin not atomic

 set RESULT = 'Unexpected SQLSTATE: ' || SQLSTATE;

 set P_NAME = '** Error **';

 end;

 declare exit handler for NOT FOUND

 set RESULT = 'No employee for EMP_ID: '

 || cast(P_ID as char(4));

SQL Procedural Language Support in Routines

Chapter 5: SQL 147

 set RESULT = ' ';

 set P_NAME = ' ';

 select EMP_FNAME, EMP_LNAME into L_FNAME, L_LNAME

 from DEMOEMPL.EMPLOYEE

 where EMP_ID = P_ID;

 set P_NAME = trim(L_FNAME) || ' ' || trim(L_LNAME);

 set RESULT = 'All OK';

 End label_400

 ++

 call user01.TCOMP01(1003);

 *+

 *+ P_ID P_NAME RESULT

 *+ ---- ------ ------

 *+ 1003 Jim Baldwin ALL OK

 call user01.TCOMP01(9);

 *+

 *+ P_ID P_NAME RESULT

 *+ ---- ------ ------

 *+ 9 NO EMPLOYEE FOR EMP_ID: 9

 call user01.TCOMP01(-2000);

 *+

 *+ P_ID P_NAME RESULT

 *+ ---- ------ ------

 *+ -2000 ** ERROR ** UNEXPECTED SQLSTATE: 22005

EXEC ADS

The EXEC ADS statement is a CA IDMS extension that enables inserting CA ADS code in
SQL routines.

Syntax

 ┌─────────────────────┐
►►─── EXEC ADS ─▼─ ads-process-stmnt ─┴─ ; ───────────────────────────────────►◄

SQL Procedural Language Support in Routines

148 Release Summary

Parameters

ads-process-stmnt

Specifies a CA ADS statement to be executed.

Usage

Allowable CA ADS statements

Only CA ADS statements that are allowed in a mapless dialog can be included in the
body of an SQL routine.

Care should be taken in coding SQL transaction and session management statements
because a ROLLBACK or COMMIT breaks the atomicity of a compound statement
containing the EXEC ADS statement.

Referencing SQL-defined data

SQL-defined data can be referenced by respecting the mapping rules for identifiers and
data types between SQL and CA ADS:

■ Underscore characters are mapped to dashes.

■ VARCHAR data are structures that start with a smallint field that holds the length of
the character data, followed by the character data itself. The name of the structure
is the mapped SQL identifier. The name of the length field is the mapped SQL
identifier suffixed with "-LEN". The name of the data field is the mapped SQL
identifier suffixed with "-TEXT".

■ Nullable SQL data must have their NULL indicators managed properly. All SQL
parameters and local variables are nullable.

■ Date, time, and timestamp data types must be correctly processed.

Example

The SQL function USER01.TEXECADS2 returns the LTERM ID of the LTERM on which the
function is being executed.

set options command delimiter '++';

create function USER01.TEXECADS2

 (P_DUMMY char(1)

) returns char(8)

 external name TEXECAD2 language SQL

begin not atomic

 /*

 ** SQL Function to return LTERM ID using EXEC ADS

 */

 declare L_LTERMID char (8) default ' ';

 exec ads

 ACCEPT LTERM ID INTO L-LTERMID. ;

SQL Procedural Language Support in Routines

Chapter 5: SQL 149

 return L_LTERMID;

end

++

select USER01.TEXECADS2()

 from SYSCA.SINGLETON_NULL;

*+

*+ USER_FUNC

*+ ---------

*+ VL71001

IF

The IF statement selects different execution paths depending on the evaluation of one
or more truth value expressions, given as SQL search conditions.

Syntax

 ┌────────────────────────────┐
►►─── IF ── search-condition ── THEN ── ▼ ─ procedure-statement ─ ; ─┴─────────►

►─┬───┬►
 │ ┌──┐ │
 │ │ ┌────────────────────────────┐ │ │
 └─ ▼ ─ ELSEIF ── search-condition ─ THEN ─ ▼ ─ procedure-statement ─ ; ─┴─┴─┘

►─┬───┬─ END IF ──────────────────────►◄
 │ ┌────────────────────────────┐ │
 └─ ELSE ──── ▼ ─ procedure-statement ─ ; ─┴─┘

SQL Procedural Language Support in Routines

150 Release Summary

Parameters

IF search-condition

Specifies the truth value expression to be evaluated. The outcome of the evaluation
determines the execution path.

THEN procedure-statement

Specifies the statements to be executed if the immediately preceding search
condition is true.

ELSEIF search-condition

Specifies the truth value expression to be evaluated if the outcomes of all
previously evaluated search conditions are false.

ELSE procedure-statement

Specifies the statements to be executed if all search conditions are false.

Usage

If no alternative execution path is given, execution continues with the next statement
outside the IF.

Example

set options command delimiter '++';

create procedure USER01.TIF1

 (TITLE varchar(10) with default

 , P_LEFT integer

 , P_RIGHT real

 , RESULT varchar(30)

)

 EXTERNAL NAME TIF1 LANGUAGE SQL

Label_200:

begin not atomic

 /*

 ** Compare an integer value with a real value

 */

 if (P_LEFT > P_RIGHT)

 then set RESULT = 'p_left > p_right';

 elseif (P_LEFT = P_RIGHT)

 then set RESULT = 'p_left = p_right';

 elseif (P_LEFT < P_RIGHT)

 then set RESULT = 'p_left < p_right';

 else set RESULT = 'p_left and/or p_right NULL !';

 end if;

end

++

call user01.TIF1('Test IF >', 4, 2)++

*+

SQL Procedural Language Support in Routines

Chapter 5: SQL 151

*+ TITLE P_LEFT P_RIGHT RESULT

*+ ----- ------ ------- ------

*+ Test IF > 4 2.0000000E+00 P_LEFT > P_RIGHT

call user01.TIF1('Test IF <', 4, 9)++

*+

*+ TITLE P_LEFT P_RIGHT RESULT

*+ ----- ------ ------- ------

*+ Test IF < 4 9.0000000E+00 P_LEFT < P_RIGHT

call user01.TIF1('Test IF =', 2, 2)++

*+

*+ TITLE P_LEFT P_RIGHT RESULT

*+ ----- ------ ------- ------

*+ Test IF = 2 2.0000000E+00 P_LEFT = P_RIGHT

call user01.TIF1('Test IF ', 4)++

*+

*+ TITLE P_LEFT P_RIGHT RESULT

*+ ----- ------ ------- ------

*+ Test IF 4 <null> P_LEFT AND/OR P_RIGHT

NULL !

ITERATE

The ITERATE statement terminates execution of the current iteration of an iterated
statement, such as LOOP, REPEAT or WHILE. If the iteration condition is true, a new
iteration starts; otherwise, the statement following the iterated statement is executed.

Syntax

►►── ITERATE ── stmnt-label ───►

SQL Procedural Language Support in Routines

152 Release Summary

Parameters

stmnt-label

Specifies the begin label of the iterated statement.

Usage

Statements that may be iterated

The labeled statement referred in the ITERATE must be a LOOP, REPEAT, or WHILE
statement that contains the ITERATE statement.

Example

The procedure USER01.TITERATE1 retrieves all rows of the DEMOEMPL.EMPLOYEE table
three times. The first loop uses a WHILE, the second uses a REPEAT, and the third uses a
LOOP statement.

set options command delimiter '++';

create procedure USER01.TITERATE1

 (TITLE varchar(10) with default

 , P_FNAME char(20)

 , P_COUNT integer

 , RESULT varchar(10)

)

 EXTERNAL NAME TITERATE LANGUAGE SQL

Label_600:

begin not atomic

 declare FNAME char(20);

 declare LNAME varchar(20);

 declare EMP1 CURSOR FOR

 Select EMP_FNAME, EMP_LNAME

 From DEMOEMPL.EMPLOYEE;

 /*

 ITERATE in WHILE

 */

 set RESULT = '?????';

 open EMP1;

 while_loop:

 while (9 = 9)

 do

 fetch EMP1 into FNAME, LNAME;

 if (SQLSTATE = '00000')

 then

 set P_COUNT = P_COUNT + 1;

 iterate while_loop;

 end if;

SQL Procedural Language Support in Routines

Chapter 5: SQL 153

 if (SQLSTATE = 'abcde')

 then

 iterate while_loop;

 end if;

 set RESULT = SQLSTATE;

 leave while_loop;

 end while while_loop;

 close EMP1;

 /*

 ITERATE in REPEAT

 */

 set RESULT = '?????';

 open EMP1;

 repeat_loop:

 repeat

 fetch EMP1 into FNAME, LNAME;

 if (SQLSTATE = '00000')

 then

 set P_COUNT = P_COUNT + 1;

 iterate repeat_loop;

 end if;

 set RESULT = SQLSTATE;

 leave repeat_loop;

 until (9 = 0)

 end repeat repeat_loop;

 close EMP1;

 /*

 ITERATE in LOOP

 */

 set RESULT = '?????';

 open EMP1;

 loop_loop:

 loop

 fetch EMP1 into FNAME, LNAME;

 if (SQLSTATE = '00000')

 then

 set P_COUNT = P_COUNT + 1;

 iterate loop_loop;

 end if;

 set RESULT = SQLSTATE;

 leave loop_loop;

SQL Procedural Language Support in Routines

154 Release Summary

 end loop loop_loop;

 close EMP1;

end

++

call USER01.TITERATE1('TITERATE1','James ',0,'U')++

*+

*+ TITLE P_FNAME P_COUNT RESULT

*+ ----- ------- ------- ------

*+ TITERATE1 James 165 02000

LEAVE

The LEAVE statement continues execution with the statement that immediately follows
the specified labeled statement.

Syntax

►►── LEAVE ── stmnt-label ───►

SQL Procedural Language Support in Routines

Chapter 5: SQL 155

Parameters

stmnt-label

Specifies the begin label of a statement that contains the LEAVE statement, and
identifies the statement that needs to be left.

Usage

Statements that may be left: The labeled statement referred in the LEAVE must be a
LOOP, REPEAT, WHILE or compound statement that contains the LEAVE statement.

Example

set options command delimiter '++';

create procedure USER01.TLEAVE1

 (TITLE varchar(10) with default

 , P_FNAME char(20)

 , P_COUNT integer

 , RESULT varchar(25)

)

 EXTERNAL NAME TLEAVE1 LANGUAGE SQL

Label_700:

 /*

 ** Count number of employees with equal Firstname

 */

begin not atomic

 declare FNAME char(20);

 declare LNAME varchar(20);

 declare EMP1 CURSOR FOR

 Select EMP_FNAME, EMP_LNAME

 From DEMOEMPL.EMPLOYEE

 where EMP_FNAME = P_FNAME;

 open EMP1;

 fetch EMP1 into FNAME, LNAME;

 fetching_loop:

 loop

 if (SQLSTATE < > '00000')

 then leave fetching_loop;

 end if;

 set P_COUNT = P_COUNT + 1;

 fetch EMP1 into FNAME, LNAME;

 end loop fetching_loop;

 set RESULT = 'SQLSTATE: ' || SQLSTATE;

 close EMP1;

end

++

call USER01.TLEAVE1('TLEAVE1','Martin',0)

SQL Procedural Language Support in Routines

156 Release Summary

*+

*+ TITLE P_FNAME P_COUNT RESULT

*+ ----- ------- ------- ------

*+ TLEAVE1 Martin 3 SQLSTATE: 02000

LOOP

The LOOP statement repeats the execution of a statement or a group of statements.

Syntax

 ┌────────────────────────────┐
►►─┬──────────────┬─── LOOP ─── ▼ ─ procedure-statement ─ ; ─┴── END LOOP ─────►
 └─ beg-label: ─┘

►──┬─────────────┬──►◄
 └─ end-label ─┘

SQL Procedural Language Support in Routines

Chapter 5: SQL 157

Parameters

beg-label:

Specifies a 1- through 32-character SQL identifier that labels the LOOP statement.
The value must be different from any other label used in the compound statement
if the LOOP statement is contained in a compound statement.

LOOP procedure-statement END LOOP

Specifies a statement or group of statements that are repeatedly executed.

end-label

Specifies an SQL identifier that labels the end of the LOOP statement. If specified, a
beg-label must also have been specified and both labels must be equal.

Usage

How execution of a LOOP statement ends

To end the repeated execution of the procedure-statements contained in a LOOP
statement, a LEAVE statement can be used or an exit handler can be driven.

Example

See the example for the LEAVE statement. The procedure USER01.TLOOP1, is similar to
USER01.TLEAVE1 but it uses an exit handler to terminate the LOOP.

set options command delimiter '++';

create procedure USER01.TLOOP1

 (TITLE varchar(10) with default

 , P_FNAME char(20)

 , P_COUNT integer

 , RESULT varchar(30)

)

 EXTERNAL NAME TLOOP1 LANGUAGE SQL

Label_700:

 /*

 ** Count number of employees with equal Firstname

 */

begin not atomic

 declare FNAME char(20);

 declare LNAME varchar(20);

 declare EMP1 CURSOR FOR

 Select EMP_FNAME, EMP_LNAME

 From DEMOEMPL.EMPLOYEE

 where EMP_FNAME = P_FNAME;

 declare exit handler for SQLEXCEPTION, SQLWARNING, NOT FOUND

 set RESULT = 'SQLSTATE: ' || SQLSTATE;

 /*

SQL Procedural Language Support in Routines

158 Release Summary

 ** Count number of employees with equal Firstname

 */

 open EMP1;

 fetch EMP1 into FNAME, LNAME;

 fetching_loop:

 loop

 set P_COUNT = P_COUNT + 1;

 fetch EMP1 into FNAME, LNAME;

 end loop fetching_loop;

end

++

call USER01.TLOOP1('TLOOP1','Martin ',0,'U')

*+

*+ TITLE P_FNAME P_COUNT

*+ ----- ------- -------

*+ TLOOP1 Martin 3

*+

*+ RESULT

*+ ------

*+ SQLSTATE: 02000

REPEAT

The REPEAT statement repeats the execution of a statement or a group of statements
until a condition is met.

Syntax

 ┌────────────────────────────┐
►►──┬──────────────┬──── REPEAT ──── ▼ ─ procedure-statement ─ ; ─┴────────────►
 └─ beg-label: ─┘

►── UNTIL ── search-condition ── END REPEAT ──┬─────────────┬─────────────────►◄
 └─ end-label ─┘

SQL Procedural Language Support in Routines

Chapter 5: SQL 159

Parameters

beg-label:

Specifies a 1- through 32-character SQL identifier that labels the REPEAT statement.
The value must be different from any other label used in the compound statement
if the REPEAT statement is contained in a compound statement.

REPEAT procedure-statement

Specifies the statement or group of statements that are repeatedly executed.

UNTIL search-condition

Specifies the search condition that is evaluated after each iteration. If the outcome
is true, the statement following the REPEAT statement is executed. Otherwise, a
new iteration starts.

end-label

Specifies an SQL identifier that labels the end of the REPEAT statement. If specified,
a beg-label must also have been specified and both labels must be equal.

Example

set options command delimiter '++';

create procedure USER01.TREPEAT1

 (TITLE varchar(10) with default

 , P_FNAME char(20)

 , P_COUNT integer

 , RESULT varchar(25)

)

 EXTERNAL NAME TREPEAT1 LANGUAGE SQL

Label_700:

 /*

 ** Count number of employees with equal First name using REPEAT

 */

begin not atomic

 declare FNAME char(20);

 declare LNAME varchar(20);

 declare EMP1 CURSOR FOR

 Select EMP_FNAME, EMP_LNAME

 From DEMOEMPL.EMPLOYEE

 where EMP_FNAME = P_FNAME;

 open EMP1;

 fetching_loop:

 repeat

 fetch EMP1 into FNAME, LNAME;

 if (SQLSTATE = '00000')

 then set P_COUNT = P_COUNT + 1;

SQL Procedural Language Support in Routines

160 Release Summary

 end if;

 until SQLSTATE < > '00000'

 end repeat fetching_loop;

 set RESULT = 'SQLSTATE: ' || SQLSTATE;

 close EMP1;

end

++

call USER01.TREPEAT1('TREPEAT1','Martin',0,'U')

*+

*+ TITLE P_FNAME P_COUNT RESULT

*+ ----- ------- ------- ------

*+ TREPEAT1 Martin 3 SQLSTATE: 02000

RESIGNAL

The RESIGNAL statement resignals an SQL event or exception condition in a handler for
the next higher level scope.

Syntax

►── RESIGNAL ─┬──┬───────────────►
 ├── SQLSTATE ──┬─────────┬─── 'sqlstate' ────────┤
 │ └─ VALUE ─┘ │
 └─ condition-name ───────────────────────────────┘

►──┬───┬──────────────►◄
 └── SET MESSAGE_TEXT ── = ─┬────────────────────────────────│
 └─ simple-value-specification ───┘

SQL Procedural Language Support in Routines

Chapter 5: SQL 161

Parameters

condition-name

Specifies the name of a condition whose SQLSTATE value is to be resignaled.
Condition-name must identify a condition defined by a condition-declaration in a
compound-statement containing the RESIGNAL statement. if more than one such
condition-declaration has the specified condition-name, the one with the innermost
scope is raised.

'sqlstate'

Specifies the value for SQLSTATE that is to be resignaled. 'Sqlstate' is a 5-character
string-literal that consists of only digits (0-9) and capital alphabetic characters (A-Z).
'Sqlstate' cannot be '00000', the value of SQLSTATE for successful completion.

simple-value-specification

Specifies a character value to be added to the information item MESSAGE-TEXT. The
data type of simple-value-specification must be a character.

Usage

Propagating the SQL Condition

The RESIGNAL statement can only be used in a handler to propagate an SQL condition to
the scope that encloses the exception handler's scope. If the RESIGNAL is issued in a
handler of a top level compound statement, control returns to the invoker of the
SQL-invoked routine.

FLOW of CONTROL

If in the outer scope a handler exists for the raised exception or SQL event, the handler
acquires control. After execution of the handler, control returns as with any other
statement that causes a handler to activate.

SQLSTATE

There are no restrictions on the values that can be set for SQLSTATE, other than
compliance with the syntactic rules for SQLSTATE values. We recommend using values in
accordance with the classification of SQLSTATE values.

Note: For more information, see SQLSTATE Values in the "SQL Communication Area"
appendix in the CA IDMS SQL Reference Guide.

MESSAGE_TEXT

This is an information item of CHAR type with no defined maximum length.

Example

set options command delimiter '++';

SQL Procedural Language Support in Routines

162 Release Summary

drop procedure USER01.RESIGNAL1++

commit++

create procedure USER01.RESIGNAL1

 (TITLE varchar(10) with default

 , RESULT varchar(120)

)

 EXTERNAL NAME RESIGNA1 LANGUAGE SQL

Label_400:

 /*

 ** Resignal show case

 */

begin not atomic

 declare DEAD_LOCK condition for SQLSTATE '12000';

 declare NOT_FOUND condition for SQLSTATE '02000';

 declare exit handler for NOT FOUND

 begin not atomic

 set RESULT = RESULT || ' Not Found';

 resignal SQLSTATE '38607';

 end;

 set RESULT = 'Signal trace:';

 signal NOT_FOUND;

end label_400

++

call user01.resignal1('Signal')

*+ Status = -4 SQLSTATE = 38000 Messages follow:

*+ DB001075 C-4M321: Procedure RESIGNA1 exception 38607

RETURN

The RETURN statement returns a value for an SQL function. As an extension to the ISO
standard, a RETURN without parameters can also be used to exit a compound
statement.

Syntax

►── RETURN ────┬────────────────────┬───►◄
 ├─ NULL ─────────────┤
 └─ value-expression ─┘

SQL Procedural Language Support in Routines

Chapter 5: SQL 163

Parameters

NULL

Specifies that the function return value is NULL.

value-expression

Specifies the function return value.

Usage

Compatible Data Types

The data type of the value-expression and the data type of the function return value
named in the CREATE FUNCTION statement must be compatible for assignment.

Example

See CREATE FUNCTION.

SET Assignment

The SET Assignment statement assigns values to parameters and variables used in SQL
routines.

Syntax

►►── SET ──┬─ local-variable ─────┬ = ─┬─ value-expression ─┬─────────────────►◄
 └─ routine-parameter ──┘ └─ NULL ─────────────┘

SQL Procedural Language Support in Routines

164 Release Summary

Parameters

local-variable

Identifies the local variable that is the target of the SET assignment statement.
local-variable must be the name of a local variable defined within the compound
statement containing SET statement.

routine-parameter

Identifies the SQL routine parameter that is the target of the SET assignment
statement. Routine-parameter must be the name of a parameter of the routine
containing the SET assignment statement.

value-expression

Specifies the value to be assigned to the target of the SET assignment statement.

NULL

Specifies that the null value is to be assigned to the target of the SET assignment
statement.

Usage

Valid assignments

The rules for assignment are provided in Comparison, Assignment, Arithmetic, and
Concatenation Operations in the "Data Types and Null Values" chapter in the CA IDMS
SQL Reference Guide.

Example

The procedure TSET3 creates a combined, edited name from a given first and last name.
If the first or last name is null, or if the length of the last name is 0, the null value is
returned for the edited name.

set options command delimiter '++';

create procedure SQLROUT.TSET3

 (P_FNAME varchar(20)

 , P_LNAME varchar(20)

 , P _NAME varchar(41)

)

 EXTERNAL NAME TSET3 LANGUAGE SQL

 /*

 ** Return an edited name from the given Firstname and Lastname

 */

 if (LENGTH(P_LNAME) <= 0)

 then set P_NAME = null;

 else set P_NAME = trim(P_FNAME) || ' ' || trim(P_NLNAME) ;

 end if

++

set options command delimiter default++

SQL Procedural Language Support in Routines

Chapter 5: SQL 165

call SQLROUT.TSET3('James ', 'Last ');

*+

*+ P_FNAME P_LNAME

*+ ------- -------

*+ James Last

*+

*+ P_NAME

*+ ------

*+ James Last

call SQLROUT.TSET3('James ', '');

*+

*+ P_FNAME P_LNAME

*+ ------- -------

*+ James

*+

*+ P_NAME

*+ ------

*+ <null>

SIGNAL

The SIGNAL statement raises and signals an SQL event or exception condition.

Syntax

 ►── SIGNAL ──┬── SQLSTATE ──┬─────────┬───── 'sqlstate' ──────┬───────────────►
 │ └─ VALUE ─┘ │
 └─ condition-name ───────────────────────────────┘

►──┬───┬──────────────►◄
 └── SET MESSAGE_TEXT ── = ─┬────────────────────────────────│
 └─ simple-value-specification ───┘

SQL Procedural Language Support in Routines

166 Release Summary

Parameters

condition-name

Specifies the name of a condition whose SQLSTATE value is to be signaled.
Condition-name must identify a condition defined by a condition declaration in a
compound statement containing the SIGNAL statement. If more than one such
condition declaration has the specified condition name, the one with the innermost
scope is raised.

'sqlstate'

Specifies the value for SQLSTATE that is to be signaled. 'sqlstate' is a 5-character
string-literal value that consists of only digits (0-9) and capital alphabetic characters
(A-Z). 'Sqlstate' cannot be '00000', the value of SQLSTATE for successful completion.

simple-value-specification

Specifies a character value to be added to the information item MESSAGE-TEXT. The
data type of simple-value-specification must be a character.

Usage

FLOW of CONTROL

If a handler exists for the raised exception or SQL event, the handler acquires control.
After execution of the handler, control returns as with any other statement that causes
activation of a handler.

If no handler is activated, control goes to the end of the compound statement that
contains the signal. If the signal is not in a compound statement of an exit handler,
control returns to the invoker of the SQL routine. Otherwise, it returns to the statement
after the SIGNAL statement, just as if a continue handler had been activated.

SQLSTATE

There are no restrictions on the values that can be set for SQLSTATE, other than
compliance with the syntactic rules for SQLSTATE values. We recommend that values
are used in accordance with the classification of SQLSTATE values. See SQLSTATE Values
in the "SQL Communication Area" appendix in the CA IDMS SQL Reference Guide.

MESSAGE_TEXT

This is an information item of CHAR type with no defined maximum length.

Example

set options command delimiter '++';

create procedure USER01.TSIGNAL5

 (TITLE varchar(10) with default

 , RESULT varchar(120)

)

SQL Procedural Language Support in Routines

Chapter 5: SQL 167

 EXTERNAL NAME TSIGNAL5 LANGUAGE SQL

Label_400:

 /*

 ** Trace execution of consecutive signal statements

 */

begin not atomic

 declare DEAD_LOCK condition for SQLSTATE '12000';

 declare NOT_FOUND condition for SQLSTATE '02000';

 declare continue HANDLER for SQLWARNING

 LABEL_9999:

 begin not atomic

 set RESULT = RESULT || ' Sqlwarning';

 end;

 declare continue handler for SQLEXCEPTION

 Label_8888:

 begin not atomic

 set RESULT = RESULT || ' Sqlexception';

 end;

 declare continue handler for SQLSTATE '23800'

 set RESULT = RESULT || ' 23800';

 declare continue handler for DEAD_LOCK

 LABEL_6666:

 begin not atomic

 set RESULT = RESULT || ' Deadlocked';

 end;

 declare continue handler for NOT FOUND

 set RESULT = RESULT || ' Not Found';

 set RESULT = 'Signal trace:';

 signal SQLSTATE '23800';

 signal NOT_FOUND;

 signal SQLSTATE '01200';

 signal SQLSTATE '72300';

 signal DEAD_LOCK;

end label_400

++

call user01.tsignal5('Signal')

*+

*+ TITLE

*+ -----

*+ Signal

*+

*+

*+ RESULT

*+ ------

SQL Procedural Language Support in Routines

168 Release Summary

*+ Signal trace: 23800 Not Found Sqlwarning Sqlexception

Deadlocked

*+

WHILE

The WHILE statement repeats the execution of a statement or a group of statements
while a condition is met.

Syntax

►►─┬──────────────┬───── WHILE ─── search-condition ── DO ─────────────────────►
 └─ beg-label: ─┘

 ┌──────────────────────────────┐
►── ▼ ─── procedure-statement ─ ; ─┴───── END WHILE ───────┬─────────────┬────►◄
 └─ end-label ─┘

SQL Procedural Language Support in Routines

Chapter 5: SQL 169

Parameters

beg-label:

Specifies a 1- through 32-character SQL identifier that labels the WHILE statement.
The value must be different from any other label used in the compound statement
if the WHILE statement is contained in a compound statement.

WHILE search-condition

Specifies the search condition to be evaluated. If the outcome is false, the
statement after the WHILE statement is executed. Otherwise, an iteration of the
group of statements enclosed by DO and END WHILE is started.

DO procedure-statement END WHILE

Specifies the statement or group of statements that are repeatedly executed.

end-label

Specifies an SQL identifier that labels the end of the WHILE statement. If specified, a
beg-label must also have been specified and both labels must be equal.

Example

set options command delimiter '++';

create procedure USER01.TWHILE2

 (TITLE varchar(10) with default

 , P_FNAME char(20)

 , P_COUNT integer

)

 EXTERNAL NAME TWHILE2 LANGUAGE SQL

Label_700:

begin not atomic

 /*

 ** Count number of employees with equal first name

 */

 declare FNAME char(20);

 declare LNAME varchar(20);

 declare EMP1 CURSOR FOR

 Select EMP_FNAME, EMP_LNAME

 From DEMOEMPL.EMPLOYEE

 where EMP_FNAME = P_FNAME;

 set P_COUNT = 0;

 open EMP1;

 fetch EMP1 into FNAME, LNAME;

 fetching_loop_non_SQL:

 while (SQLSTATE = '00000')

 do

 set P_COUNT = P_COUNT + 1;

 fetch EMP1 into FNAME, LN&AME

.

 end while fetching_loop_non_SQL;

SQL Procedural Language Support in Routines

170 Release Summary

 close EMP1;

end

++

call USER01.TWHILE2('TWHILE2','Martin ')

;

*+

*+ TITLE P_FNAME P_COUNT

*+ ----- ------- -------

*+ TWHILE2 Martin 3

Result Sets from SQL-invoked Procedures

Chapter 5: SQL 171

Result Sets from SQL-invoked Procedures

An SQL-invoked procedure can return results to the caller by assigning values to one or
more parameters of the procedure. With r17, it is now possible for an SQL-invoked
procedure to return result sets in the form of rows of result tables.

To exploit result sets returned by an SQL-invoked procedure, an application must consist
of at least an SQL-invoked procedure and a caller of that procedure. The caller can be an
SQL client program or another SQL-invoked routine. The SQL-invoked procedure that
returns the result sets can be an external procedure (Cobol, PL/I, Assembler or CA ADS)
or an internal SQL-invoked procedure written in SQL.

For an SQL-invoked procedure to return result sets to its caller, it must be defined with a
positive integer value for the new Dynamic Result Sets attribute.

A cursor declared or dynamically allocated in the SQL-invoked procedure becomes a
potential returned result set if its definition contains With Return as the value for the
new returnability attribute. Such a cursor is called a returnable cursor. It becomes a
returned result set if it is in the open state when the SQL-invoked procedure terminates.

An SQL-invoked procedure can return multiple result sets up to the number specified by
the Dynamic Result Sets attribute of the procedure. The list of returned result sets are
sequenced in the order of the open of the cursors. If the procedure starts multiple
sessions, then returned result sets are grouped by session and the sessions are
sequenced in the order of the connects. After a procedure CALL, the new SQLCA field
SQLCNRRS contains the number of result sets returned by the procedure.

The caller of an SQL-invoked procedure accesses returned result sets by allocating a
dynamic cursor and associating it with the procedure through an ALLOCATE CURSOR
FOR PROCEDURE statement. Such a cursor is called a received cursor.

A successful ALLOCATE CURSOR FOR PROCEDURE statement associates the received
cursor with the first result set from the sequence of returned result sets and places the
cursor in the open state. The cursor position is the same as it was when the SQL-invoked
procedure terminated and the associated returned result set is removed from the list of
returned result sets.

The caller of the procedure can access the next in the sequence of returned result sets
by either allocating another cursor for the procedure or by closing the previously
allocated received cursor. If the close is successful and the list of remaining returned
result sets is not empty, the received cursor is automatically placed in the open state
and associated with the result set that is now first in the list. The newly associated result
set is also removed from the list. This process can be repeated until the list of returned
result sets is empty.

A new invocation of the SQL-invoked procedure automatically destroys all the returned
result sets from the previous invocation.

Result Sets from SQL-invoked Procedures

172 Release Summary

The received cursors, allocated by the caller and associated with returned result sets,
are necessarily dynamic. Unless the program knows the returned columns and their
data type, a DESCRIBE CURSOR statement is needed to retrieve the description of the
returned result set in an SQL descriptor area (SQLDA).

Only the immediate caller of an SQL-invoked procedure can process returned result
sets. There is no mechanism for the caller to return returned result sets to its caller.

ALLOCATE CURSOR

The ALLOCATE CURSOR statement has been enhanced with the FOR PROCEDURE and
WITH/WITHOUT RETURN clauses.

The ALLOCATE CURSOR statement defines a cursor for a dynamically-prepared
statement or for a result set returned from a previously invoked procedure.

Syntax

►►──── ALLOCATE extended-cursor-name ──►
►┬─ CURSOR ──────┬─────────────────┬─ FOR extended-statement-name ────────┬────►◄
 │ ├ WITH RETURN ────┤ │
 │ └ WITHOUT RETURN ◄┘ │
 └┬──────────┬─ FOR PROCEDURE SPECIFIC PROCEDURE spec-routine-designator ─┘
 └─ CURSOR ─┘

Expansion of spec-routine-designator

►─┬───┬────────────────┬─── procedure-identifier ──────────────────┬──────────►◄
 │ └─ schema-name. ─┘ │
 │ │
 └┬ procedure-identifier ┬─┬────────────────────────────────────┬─┘
 └ :host-variable-proc ─┘ └─ SCHEMA ─┬─ schema-name ──────────┤
 └─ :host-variable-schema ┘

Result Sets from SQL-invoked Procedures

Chapter 5: SQL 173

Parameters

WITH RETURN

Defines the cursor as a returnable cursor. If a returnable cursor is allocated in an
SQL-invoked procedure and is in the open state when the procedure terminates, a
result set is returned to the caller.

WITHOUT RETURN

Specifies that the cursor is not a returnable cursor. This is the default.

FOR PROCEDURE SPECIFIC PROCEDURE

Specifies that the cursor is to be allocated for a result set returned by the invocation
of the identified procedure. This type of cursor is called a received cursor.

spec-routine-designator

Identifies the SQL-invoked procedure.

schema-name

Specifies the schema with which the procedure identified by procedure-identifier is
associated.

procedure-identifier

Identifies a procedure defined in the dictionary.

:host-variable-proc

Identifies a host variable, routine parameter, or local variable containing the name
of the previously invoked procedure.

If :host-variable-proc is a routine parameter or local variable, the colon must not be
coded.

SCHEMA

Qualifies the procedure name with the name of the schema with which it is
associated. This option is an extension to the ISO standard.

schema-name

Specifies the schema with which the procedure identified by procedure-identifier or
host-variable-proc is associated.

:host-variable-schema

Identifies a host variable, routine parameter, or local variable containing the name
of the schema with which the procedure identified by procedure-identifier or
host-variable-proc is associated.

If :host-variable-schema is a routine parameter or local variable, the colon must not
be coded.

Note: For more information about using a schema name to qualify a procedure, see
Identifying Entities in Schemas in the "Identifiers" chapter in the CA IDMS SQL Reference
Guide.

Result Sets from SQL-invoked Procedures

174 Release Summary

Usage

Allocating a Received Cursor for a Result Set

If the ALLOCATE statement is used for a result set, then the procedure identified by
spec-routine-designator must have been previously invoked by an SQL CALL or SELECT
statement in the same transaction as that in which the ALLOCATE CURSOR statement is
executed.

The result sets that the SQL-invoked procedure returns, form a list ordered in the
sequence in which the cursors were opened by the procedure. When a received cursor
is allocated, the following actions are taken:

■ the new cursor is associated with the first result set in the list of returned result sets

■ the result set is removed from the list

■ the cursor is placed in the open state

■ the cursor is positioned at the same point at which the corresponding returnable
cursor was left by the procedure

If an SQL-invoked procedure has started multiple sessions, the sequence of returned
result sets is by session, in the order in which the sessions were connected. Within each
session, the result sets are sequenced by the order in which their cursors were opened.

A received cursor cannot be used to return a result set nor can it be referenced in a
positioned update or delete statement.

Note: For more information, see DESCRIBE CURSOR.

Example

exec sql

 call GET_EMPLOYEE_INFO(1003)

end-exec

exec sql

 allocate 'RECEIVED_CURSOR_GET_EMPG' for procedure specific

 procedure GET_EMPLOYEE_INFO

end-exec

Result Sets from SQL-invoked Procedures

Chapter 5: SQL 175

ALTER PROCEDURE

This is an existing statement that is enhanced with the DYNAMIC RESULT SETS clause.
Using the ALTER PROCEDURE statement you can change the number of dynamic result
sets that a procedure can return to the caller.

Syntax

►►── ALTER PROCEDURE ─ . . . ──►
►────┬───┬──────────────────►◄
 └── DYNAMIC RESULT SETS maximum-dynamic-result-sets ──┘

Parameters

DYNAMIC RESULT SETS

Defines the maximum number of result sets that a procedure invocation can return
to its caller. A result set is a sequence of rows specified by a cursor-specification,
created by the opening of a cursor and ranged over that cursor.

maximum-dynamic-result-sets

Defines an integer in the range 0-32767 specifying the maximum number of result
sets a procedure can return.

Note: For more information, see CREATE PROCEDURE.

Result Sets from SQL-invoked Procedures

176 Release Summary

CALL

The CALL statement has been enhanced to provide a warning if the procedure returns
more result sets than specified in the DYNAMIC RESULT SETS attribute of the procedure.

Note: For a comprehensive example illustrating the basic coding techniques to use
dynamic result sets in an application, see the CALL statement in the "Statements"
chapter in the CA IDMS SQL Reference Guide.

Usage

Calling an SQL-invoked Procedure Returning Result Sets

After a CALL of an SQL-invoked procedure that has been defined with a positive value
for the Dynamic Result Sets attribute the number of actual returned results sets is
available in the field SQLCNRRS of the SQLCA. The number of returned result sets can
also be determined by issuing a GET DIAGNOSTICS statement to retrieve the
IDMS_RETURNED_RESULT_SETS information item.

The successful execution of a CALL statement may result in one of two warning
conditions:

0100C SQL invoked procedure returned result sets

Indicates that the number of result sets returned by the procedure is less than or
equal to the value of the procedure's DYNAMIC RESULT SETS attribute.

0100E Attempt to return too many result sets

Indicates that the procedure attempted to return more result sets than permitted
by its DYNAMIC RESULT SETS attribute. The actual number of result sets is reduced
to the value of the DYNAMIC RESULT SETS attribute.

A call of a procedure destroys any result sets left over from a previous invocation of the
same procedure.

Note: For more information, see ALLOCATE CURSOR.

Result Sets from SQL-invoked Procedures

Chapter 5: SQL 177

CLOSE CURSOR

The CLOSE statement has been enhanced to associate a received cursor with the next in
the sequence of result sets returned by an SQL-invoked procedure.

The CLOSE statement places a specified cursor in the closed state or disassociates a
received cursor from the current returned result set and associates it with the next
result set returned by the procedure. Use this statement only in SQL that is embedded
in a program.

Usage

Closing a Received Cursor

A received cursor is a dynamically allocated cursor used to process one or more result
sets returned by an SQL-invoked procedure. Returned result sets are maintained in an
ordered list. An ALLOCATE CURSOR statement associates the cursor with the first result
set in the list and removes it from the list.

If the list of returned result sets is not empty when a received cursor is closed, the
CLOSE statement causes the following actions to be taken:

■ disassociates the cursor from its current result set

■ associates the cursor with the first result set in the list of returned result sets

■ removes the result set from the list

■ positions the cursor at the same point at which the corresponding returnable cursor
was left by the procedure

■ returns a warning "Additional result sets returned" (SQLSTATE "0100D)

Closing the cursor associated with the last result set of a session started by the called
procedure, releases that session.

Note: For more information, see the FOR PROCEDURE clause in ALLOCATE CURSOR.

CREATE PROCEDURE

The CREATE PROCEDURE statement has been enhanced with the DYNAMIC RESULT SETS
clause.

Syntax

►►── CREATE PROCEDURE ─ . . . ───►
►────┬───┬──────────────────►◄
 └── DYNAMIC RESULT SETS maximum-dynamic-result-sets ──┘

Result Sets from SQL-invoked Procedures

178 Release Summary

Parameters

DYNAMIC RESULT SETS

Defines the maximum number of result sets that a procedure invocation can return
to its caller. A result set is a sequence of rows specified by a cursor-specification,
created by the opening of a cursor and ranged over that cursor.

maximum-dynamic-result-sets

Defines an integer in the range 0-32767 specifying the maximum number of result
sets a procedure can return. The default is 0.

Usage

Dynamic Result Sets

An SQL invoked procedure can return one or more result sets to its caller, up to the
maximum number specified by its dynamic result sets attribute. A result set is returned
for each returnable cursor that is still open when the procedure returns control to its
caller.

For information on defining a returnable cursor, see ALLOCATE CURSOR or :hdref
refid=declcur.. For information on how the caller processes the returned result sets, see
ALLOCATE CURSOR.

Example

The GET_EMPLOYEE_INFO procedure uses the given employee ID, to construct two
result set cursors:

■ A static declared cursor RET_COVERAGE returns a cursor with the data from the
COVERAGE table.

■ The allocated dynamic cursor RET_BENEFITS to return the data from the BENEFITS
data.

set options command delimiter '++';

create procedure SQLROUTE.GET_EMPLOYEE_INFO

 (TITLE varchar(10) with default

 , P_EMP_ID numeric(4)

 , RESULT varchar(20)

)

 EXTERNAL NAME GETEMPIN LANGUAGE SQL

 DYNAMIC RESULT SETS 2

begin not atomic

 declare STMNT_NAME char(10) default 'DYN_STMNT1';

 declare STMNT_BUF char(80) default ' ';

 declare RET_COVERAGE cursor with return for

 select * from DEMOEMPL.COVERAGE

 where EMP_ID = P_EMP_ID;

 open RET_COVERAGE;

Result Sets from SQL-invoked Procedures

Chapter 5: SQL 179

 set STMNT_BUF = 'select * from DEMOEMPL.BENEFITS'

 || 'where EMP_ID = ' || P_EMP_ID;

 prepare STMT_NAME from STMT_BUF;

 allocate 'RET_BENEFITS' cursor with return for STMT_NAME;

 open 'RET_BENEFITS';

 set RESULT = '2 returned result sets';

end

set options command delimiter default ++

DECLARE CURSOR

The DECLARE CURSOR statement has been enhanced with the cursor returnability
characteristic.

The DECLARE CURSOR statement is a data manipulation statement that defines a cursor
for a specified result table. Use this statement only in SQL that is embedded in a
program.

Syntax

►►── cursor-declaration ──►◄

Expansion of cursor-declaration

►►── DECLARE static-cursor-name ─┬──────────┬─ CURSOR ─────────────────────────►
 └─ GLOBAL ─┘
►───┬───────────────────┬── FOR ──┬─ cursor-specification ──┬─────────────────►◄
 ├─ WITH RETURN ─────┤ └─ static-statement-name ─┘
 └─ WITHOUT RETURN ◄─┘

Result Sets from SQL-invoked Procedures

180 Release Summary

Parameters

WITH RETURN

Defines the cursor as a returnable cursor. If a returnable cursor is declared in an
SQL-invoked procedure and is in the open state when the procedure returns to its
caller, a result set is returned to the caller.

WITHOUT RETURN

Specifies that the cursor is not a returnable cursor. This is the default.

Usage

Defining Returnable Cursors

While any cursor can be defined as a returnable cursor using WITH RETURN, it only
makes sense to do so in programs that are invoked as SQL-invoked procedures and that
are defined with a non-zero dynamic result set attribute.

The invoker must use the ALLOCATE CURSOR statement to associate returned result sets
with received cursors for further processing. For more information about how the caller
processes returned result sets, see ALLOCATE CURSOR.

Example

The following DECLARE CURSOR statement is specified in an SQL-invoked procedure
written in SQL. The cursor RET_COVERAGE returns a result set consisting of the rows of
the table DEMOEMPL.COVERAGE for which the column EMP_ID equals the value of the
parameter P_EMP_ID. To effectively return the result set, the cursor must be left open
on the return from the procedure.

declare RET_COVERAGE cursor with return for

 select * from DEMOEMPL.COVERAGE

 where EMP_ID = P_EMP_ID;

DESCRIBE CURSOR

The DESCRIBE CURSOR is a new data manipulation statement that describes the result
set associated with a received cursor. It directs CA IDMS to return information about the
result set associated with a received cursor into an SQL descriptor area. Use this
statement only in SQL that is embedded in a program.

Syntax

►►──── DESCRIBE output CURSOR extended-cursor-name STRUCTURE ──────────────────►
►───── USING sql DESCRIPTOR descriptor-area-name ─────────────────────────────►◄

Result Sets from SQL-invoked Procedures

Chapter 5: SQL 181

Parameters

extended-cursor-name

Specifies the name of the cursor whose result set is to be described. The cursor
must have been previously associated with a returned result set using the
ALLOCATE CURSOR statement.

USING sql DESCRIPTOR

Specifies the SQL descriptor area where CA IDMS is to return information about the
result set with which the cursor is associated.

descriptor-area-name

Directs CA IDMS to use the named area as the descriptor area.
descriptor-area-name must identify an SQL descriptor area.

Example

The GET_EMPLOYEE_INFO procedure returns two result sets for a given EMP_ID:

■ One for COVERAGE info

■ One for BENEFITS info

Note: For more information about how to define this procedure, see the examples in
CREATE PROCEDURE.

* Invocation of the procedure GET_EMPLOYEE_INFO.

exec sql

 call GET_EMPLOYEE_INFO(1003)

end-exec

* The dynamic cursor 'RECEIVED_CURSOR' is associated with the first result set.

* The received cursor is in the open state.

exec sql

 allocate 'RECEIVED_CURSOR' for procedure specific procedure

 GET_EMPLOYEE_INFO

end-exec

* The 'RECEIVED_CURSOR' cursor info is being described.

exec sql

 describe cursor 'RECEIVED_CURSOR' structure

 using sql descriptor SQLDA-AREA

end-exec

* The COVERAGE info is being processed.

* The statement is executed in a loop until the SQLSTATE indicates NO MORE DATA.

Result Sets from SQL-invoked Procedures

182 Release Summary

exec sql

 fetch 'RECEIVED_CURSOR' into :BUFFER-COVER

 using descriptor SQLDA-AREA

end-exec

* The dynamic cursor 'RECEIVED_CURSOR' is associated with the second result set.

* The received cursor is in the open state.

exec sql

 close 'RECEIVED_CURSOR'

end-exec

. .

* The 'RECEIVED_CURSOR' info is being described.

exec sql

 describe cursor 'RECEIVED_CURSOR' structure

 using sql descriptor SQLDA-AREA

end-exec

. . .

* The BENEFITS info is being processed.

* The statement is executed in a loop until the SQLSTATE indicates NO MORE DATA.

exec sql

 fetch 'RECEIVED_CURSOR' into :BUFFER-BENEF

 using descriptor SQLDA-AREA

end-exec

* Close the cursor.

exec sql

 close 'RECEIVED_CURSOR'

end-exec

Result Sets from SQL-invoked Procedures

Chapter 5: SQL 183

SQL Communication Area

SQLCA

After a CALL or SELECT of a procedure, the new SQLCNRRS field holds the actual number
of result sets that an SQL-invoked procedure returned.

SQLSTATE

The following new SQLSTATE values are associated with processing returned result sets.

SQLSTATE Description

0100C SQL-invoked procedure returned result sets

0100D Additional result sets returned

0100E Attempt to return too many result sets

Catalog Extensions

The SYSTEM.TABLE and SYSTEM.SYNTAX catalog tables have been enhanced.

SYSTEM.TABLE

TYPE Column

The new type value of 'L' identifies this as an internal table whose columns
represent the local variables of an SQL routine.

LANGUAGE Column

The new LANGUAGE column identifies the language in which the SQL routine is
written. The data type of this column is CHAR(3) and its allowable values are: ADS,
ASM, COB, PLI, or SQL.

DYNRESULTSETS column

The new DYNRESULTSETS column specifies the maximum number of result sets that
can be returned by a procedure. The data type of this column is SMALLINT and its
allowable values range from 0-32767.

SYSTEM.SYNTAX

TYPE Column

The new type value of 'S' identifies this as a row of text contained in the body of an
SQL routine.

Enhanced Diagnostics and Statistics

184 Release Summary

Enhanced Diagnostics and Statistics

The new SQL Diagnostic statements category is used for diagnosing the execution of SQL
statements and for returning statistical information for the current transaction.

Note: These statements can be used as embedded SQL, including embedding in an
SQL-invoked routine. The GET STATISTICS statement can also be used in the command
facility and the CA IDMS Visual DBA command console.

Statement Purpose

GET DIAGNOSTICS Diagnoses the execution of the last
executed SQL statement.

GET STATISTICS Returns statistical information for the
current transaction.

GET DIAGNOSTICS

The GET DIAGNOSTICS statement extracts information on exception or completion
conditions from the diagnostics area and returns it to the issuer. Use this statement in
SQL that is embedded in a program.

Syntax

►─ GET DIAGNOSTICS ─┬─ statement-info ────────────────────────────┬───────────►◄
 │─ CONDITION ─┬─ condition-nr condition-info ─┘
 └─ EXCEPTION ─┘

Expansion of statement-info

 ┌────────────────────────────────── , ───────────────────────────────────┐
►─ ▼ ─┬─ routine-parameter ───┬──── = ────┬─ COMMAND_FUNCTION ────────────┬─┴─►◄
 ├─ host-variable ───────┤ ├─ COMMAND_FUNCTION_CODE ───────┤
 └─ local-variable ──────┘ ├─ DYNAMIC_FUNCTION ────────────┤
 ├─ DYNAMIC_FUNCTION_CODE ───────┤
 ├─ IDMS_RETURNED_RESULT_SETS ───┤
 ├─ MORE ────────────────────────┤
 ├─ NUMBER ──────────────────────┤
 └─ ROW_COUNT ───────────────────┘

Expansion of condition-info

 ┌────────────────────────────────── , ───────────────────────────────────┐
►─ ▼ ─┬─ routine-parameter ───┬──── = ────┬─ IDMS_MESSAGE_COMMENTS ───────┬─┴─►◄
 ├─ host-variable ───────┤ ├─ IDMS-MESSAGE_DEFINITION ─────┤
 └─ local-variable ──────┘ ├─ IDMS_MESSAGE_ID ─────────────┤
 ├─ IDMS_MODULE_NUMBER ──────────┤
 ├─ IDMS_REASON_CODE ────────────┤
 ├─ IDMS_SQLCODE ────────────────┤
 ├─ IDMS_TASK_ID ────────────────┤
 ├─ MESSAGE_LENGTH ──────────────┤
 ├─ MESSAGE_TEXT ────────────────┤
 └─ RETURNED_SQLSTATE ───────────┘

Enhanced Diagnostics and Statistics

Chapter 5: SQL 185

Parameters

routine-parameter

Identifies an SQL routine parameter that is to receive the value of the specified
diagnostics item. Routine-parameter must be a parameter of the current SQL
routine and must be compatible for assignment with the specified diagnostic item.

For information about expanded syntax, see Expansion of Routine-parameter.

host-variable

Identifies a host variable that is to receive the value of the specified diagnostics
item. Host-variable must be a host variable previously declared in the application
program and must be compatible for assignment with the specified diagnostic item.

For information about expanded syntax, see Expansion of Host-variable in "Values
and Value Expressions" in the CA IDMS SQL Reference Guide.

local-variable

Identifies a local variable of an SQL routine that is to receive the value of the
specified diagnostics item. local-variable must be a local variable declared in the
current SQL routine and must be compatible for assignment with the specified
diagnostic item.

For information about expanded syntax, see Expansion of Local-variable.

statement-info

Identifies the type of statement information to be extracted and returned.
Statement-info names that begin with 'IDMS_' are extensions to the ISO standard.

COMMAND_FUNCTION

Returns a value with data type varchar(64) indicating the type of SQL command that
was last executed. The values that may be returned are listed under the Statement
Type column in Table Procedure Requests in the "Defining and Using Table
Procedures" chapter in the CA IDMS SQL Reference Guide.

COMMAND_FUNCTION_CODE

Returns a value with data type integer indicating the type of SQL command that
was last executed. The values that may be returned are listed under the Command
Number column in Table Procedure Requests in the "Defining and Using Table
Procedures" chapter in the CA IDMS SQL Reference Guide.

DYNAMIC_FUNCTION

Returns a value with data type varchar(64) indicating the type of SQL command that
was prepared or dynamically executed by the last command. The values that may
be returned are listed under the Statement Type column in Table Procedure
Requests in the "Defining and Using Table Procedures" chapter in the CA IDMS SQL
Reference Guide.

DYNAMIC_FUNCTION_CODE

Enhanced Diagnostics and Statistics

186 Release Summary

Returns a value with data type integer indicating the type of SQL command that
was prepared or dynamically executed by the last command. The values that may
be returned are listed under the Command Number column in Table Procedure
Requests in the "Defining and Using Table Procedures" chapter in the CA IDMS SQL
Reference Guide.

IDMS_RETURNED_RESULT_SETS

Returns a value with data type integer indicating the number of result sets returned
by a procedure invoked by the last command. This value is only valid if the
diagnosed statement is a call of an SQL invoked procedure.

MORE

Returns a value with data type char(1). A value of 'Y' indicates that the execution of
the previous SQL statement caused more conditions than have been set in the
diagnostics area. A value of 'N' means that the diagnostics area contains
information on all the completion and exception conditions.

NUMBER

Returns a value with data type integer indicating the number of the exceptions or
completion conditions set by the execution of the previous SQL statement for which
information is available in the diagnostics area.

ROW_COUNT

Returns a value with data type DEC(31). The value depends on the type of the
previously executed statement:

■ INSERT - Number of rows inserted

■ DELETE - Number of rows deleted

■ UPDATE - Number of rows updated

■ BULK FETCH - Number of rows fetched

■ FETCH - 1 or 0

CONDITION

Requests diagnostic information for a condition.

EXCEPTION

Specifies a synonym for CONDITION. While it is part of the current ISO standard, its
use is discouraged because it will not be in future ISO standards.

condition-nr

Specifies the number of the completion or exception condition for which
diagnostics information is being requested. An exception is raised if condition-nr
does not refer to a valid condition number.

condition-info

Identifies the type of condition-related information to be extracted and returned.
Condition-info names that begin with 'IDMS_' are extensions to the ISO standard.

Enhanced Diagnostics and Statistics

Chapter 5: SQL 187

IDMS_MESSAGE_COMMENTS

Returns a value with data type varchar(4000) containing the comments in the
message dictionary for the message associated with the condition.

IDMS_MESSAGE_DEFINITION

Returns a value with data type varchar(4000) containing the definition in the
message dictionary of the message associated with the condition.

IDMS_MESSAGE_ID

Returns a value with data type char(8) containing the message ID in the message
dictionary of the message associated with the condition.

IDMS_MODULE_NUMBER

Returns a value with data type integer containing the number of the module that
detected the condition.

IDMS_REASON_CODE

Returns a value with data type integer containing the reason code of the condition.

IDMS_SQLCODE

Returns a value with data type integer containing the SQLCODE value associated
with the condition. See the "SQL COMMUNICATION Area" appendix in the CA IDMS
SQL Reference Guide.

IDMS_TASK_ID

Returns a value with data type integer containing the IDMS task ID of the task that
encountered the condition.

MESSAGE_LENGTH

Returns a value with data type integer indicating the length of the message
associated with the specified condition.

MESSAGE_TEXT

Returns a value with data type varchar(256) containing the message text associated
with the specified condition.

RETURNED_SQLSTATE

Returns a value with data type char(5) indicating the SQLSTATE associated with the
specified condition.

Example

The procedure TGETDIAG1 executes a SELECT statement that causes a number of string
truncations. The first GET DIAGNOSTICS returns the number of conditions that the
SELECT statement raised. A WHILE LOOP containing the second GET DIAGNOSTICS
concatenates the message texts of all the raised conditions to the RESULT parameter of
the procedure.

set options command delimiter '++';

Enhanced Diagnostics and Statistics

188 Release Summary

drop procedure SQLROUT.TGETDIAG1++

commit++

create procedure SQLROUT.TGETDIAG1

 (TITLE varchar(10) with default

 , P_NAME char(18)

 , P_NUMBER integer

 , RESULT varchar(512)

)

 EXTERNAL NAME TGETDIAG LANGUAGE SQL

begin not atomic

 declare L_NUMBER integer default 1;

 declare L_MESSAGE varchar(256) default ' ';

 select NAME into P_NAME from system.schema

 where cast(NAME as char(12)) = P_NAME;

 /* retrieve the number of conditions raised */

 get diagnostics P_NUMBER = NUMBER;

 while (L_NUMBER < = P_NUMBER)

 do

 /* retrieve the message text of the raised condition */

 get diagnostics condition L_NUMBER

 L_MESSAGE = MESSAGE_TEXT

 set RESULT = RESULT || ' ' || L_MESSAGE;

 set L_NUMBER = L_NUMBER + 1;

 end while;

end

++

call SQLROUT.TGETDIAG1('TGETDIAG1', 'SYSTEM');

*+

*+ TITLE P_NAME P_NUMBER

*+ ----- ------ --------

*+ TGETDIAG1 SYSTEM 4

*+

*+ RESULT

*+ ------

*+ DB001043 T171 C1M322: String truncation DB001043 T171 C1M322:

*+ String truncation DB001043 T171 C1M322: String truncation

*+ DB001043 T171 C1M322: String truncation

GET STATISTICS

The GET STATISTICS statement returns statistical information for the current
transaction. It is a CA IDMS extension to the ISO SQL standard. Use this statement in SQL
that is embedded in a program, in the SQL command facility, and in the command
console of CA IDMS Visual DBA.

Syntax

►── GET STATISTICS ── transaction-info ───────────────────────────────────────►◄

Enhanced Diagnostics and Statistics

Chapter 5: SQL 189

Expansion of transaction-info

 ┌───────────────────────── , ──────────────────────────────────────┐
►─ ▼ ─┬───────────────────────────────┬┬─ SQL_COMMANDS ──────────────┬┴───────►◄
 ├─ routine-parameter ─────┬─ = ─┘├─ ROWS_FETCHED ──────────────┤
 ├─ host-variable ─────────┤ ├─ ROWS_INSERTED ─────────────┤
 └─ local-variable ────────┘ ├─ ROWS_UPDATED ──────────────┤
 ├─ ROWS_DELETED ──────────────┤
 ├─ SORT ──────────────────────┤
 ├─ ROWS_SORTED ───────────────┤
 ├─ MIN_ROWS_SORTED ───────────┤
 ├─ MAX_ROWS_SORTED ───────────┤
 ├─ AM_RECOMPILES ─────────────┤
 ├─ PAGES_READ ────────────────┤
 ├─ PAGES_WRITTEN ─────────────┤
 ├─ PAGES_REQUESTED ───────────┤
 ├─ CALC_TARGET ───────────────┤
 ├─ CALC_OVERFLOW ─────────────┤
 ├─ VIA_TARGET ────────────────┤
 ├─ VIA_OVERFLOW ──────────────┤
 ├─ RECORDS_REQUESTED ─────────┤
 ├─ RECORDS_CURRENT ───────────┤
 ├─ CALLS_DBMS ────────────────┤
 ├─ FRAGMENTS_STORED ──────────┤
 ├─ RECORDS_RELOCATED ─────────┤
 ├─ TOTAL_LOCKS ───────────────┤
 ├─ SHARE_LOCKS_HELD ──────────┤
 ├─ NON_SHARE_LOCKS_HELD ──────┤
 ├─ TOTAL_LOCKS_FREED ─────────┤
 ├─ SR8_SPLITS ────────────────┤
 ├─ SR8_SPAWNS ────────────────┤
 ├─ SR8_STORED ────────────────┤
 ├─ SR8_ERASED ────────────────┤
 ├─ SR7_STORED ────────────────┤
 ├─ SR7_ERASED ────────────────┤
 ├─ B_TREE_SEARCH ─────────────┤
 ├─ B_TREE_LEVELS_SEARCH ──────┤
 ├─ ORPHANS_ADOPTED ───────────┤
 ├─ LEVELS_SEARCH_BEST_CASE ───┤
 ├─ LEVELS_SEARCH_WORST_CAS ───┤
 ├─ RECORDS_UPDATED ───────────┤
 ├─ SHARE_LOCKS_ACQ_CALL ──────┤
 ├─ SHARE_LOCKS_FREED_CALL ────┤
 ├─ NON_SHARE_LOCKS_ACQ_CALL ──┤
 ├─ NON_SHARE_LOCKS_FREED_CALL ┤
 └─ * ┘

Enhanced Diagnostics and Statistics

190 Release Summary

Parameters

routine-parameter

Identifies an SQL routine parameter that is to receive the value of the specified
statistics item. Routine-parameter must be a parameter of the current SQL routine
and must be compatible for assignment with the specified statistics item.

For information about expanded syntax, see Expansion of Routine-parameter.

host-variable

Identifies a host variable that is to receive the value of the specified statistics item.
Host-variable must be a host variable previously declared in the application
program and must be compatible for assignment with the specified statistics item.

For information about expanded syntax, see Expansion of Host-variable in "Values
and Value Expressions" in the CA IDMS SQL Reference Guide.

local-variable

Identifies a local variable of an SQL routine that is to receive the value of the
specified statistics item. local-variable must be a local variable declared in the
SQL-invoked routine and must be compatible for assignment with the specified
statistics item.

For information about expanded syntax, see Expansion of Local-variable.

Note: A routine-parameter, host-variable or local-variable must be specified for each
transaction-info when the statement is embedded in a program. Otherwise, these must
not be specified.

transaction-info

Identifies the type of transaction information that is to be returned. Each item has
an integer data type and represents statistical information for the current
transaction. For more information about these items, see the DCMT DISPLAY
STATISTICS SYSTEM and DCMT DISPLAY TRANSACTION commands in the CA IDMS
System Tasks and Operator Commands Guide.

*

Requests that all transaction-info items to be retrieved. This is not allowed in
combination with the specification of a routine-parameter, host-variable, or
local-variable and therefore cannot be used in a program.

Example

The SQL procedure TGETSTA1 counts the number of rows of one of four tables:

■ SYSTEM.TABLE

■ SYSTEM.COLUMN

■ SYSTEM.SCHEMA

■ DEMOEMPL.EMPLOYEE

Enhanced Diagnostics and Statistics

Chapter 5: SQL 191

The actual table is selected through the value of the TITLE parameter. Besides returning
the count of rows, the procedure also returns the values of a number of statistical
information items for the transaction:

■ SQL_COMMANDS

■ PAGES_REQUESTED

■ PAGES_READ

■ CALLS_DBMS

■ TOTAL_LOCKS

set options command delimiter '++';

drop procedure SQLROUT.TGETSTA1++

commit++

create procedure SQLROUT.TGETSTA1

 (TITLE char(8) with default

 , P_COUNT integer

 , P_SQL_COMMANDS integer

 , P_PAGES_REQUESTED integer

 , P_PAGES_READ integer

 , P_CALLS_DBMS integer

 , P_TOTAL_LOCKS integer

)

 EXTERNAL NAME TGETSTA1 LANGUAGE SQL

Lab1: begin not atomic

 case TITLE

 when 'TABLE'

 then select count(*) into P_COUNT

 from SYSTEM.TABLE;

 when 'COLUMN'

 then select count(*) into P_COUNT

 from SYSTEM.COLUMN;

 when 'SCHEMA'

 then select count(*) into P_COUNT

 from SYSTEM.SCHEMA;

 when 'EMPLOYEE'

 then select count(*) into P_COUNT

 from DEMOEMPL.EMPLOYEE;

 end case;

 get statistics

 P_SQL_COMMANDS = sql_commands

 , P_PAGES_REQUESTED = pages_requested

 , P_PAGES_READ = pages_read

 , P_CALLS_DBMS = calls_dbms

 , P_TOTAL_LOCKS = total_locks;

end

++

set options command delimiter default ++

Enhanced Diagnostics and Statistics

192 Release Summary

call sqlrout.TGETSTA1('TABLE');

*+

*+ TITLE P_COUNT P_SQL_COMMANDS P_PAGES_REQUESTED P_PAGES_READ

*+ ----- ------- -------------- ----------------- ------------

*+ TABLE 808 2 836 9

*+

*+ P_CALLS_DBMS P_TOTAL_LOCKS

*+ ------------ -------------

*+ 813 1673

call sqlrout.TGETSTA1('COLUMN');

*+

*+ TITLE P_COUNT P_SQL_COMMANDS P_PAGES_REQUESTED P_PAGES_READ

*+ ----- ------- -------------- ----------------- ------------

*+ COLUMN 6450 3 8953 1068

*+

*+ P_CALLS_DBMS P_TOTAL_LOCKS

*+ ------------ -------------

*+ 8071 8300

call sqlrout.TGETSTA1('SCHEMA');

*+

*+ TITLE P_COUNT P_SQL_COMMANDS P_PAGES_REQUESTED P_PAGES_READ

*+ ----- ------- -------------- ----------------- ------------

*+ SCHEMA 56 4 59 2

*+

*+ P_CALLS_DBMS P_TOTAL_LOCKS

*+ ------------ -------------

*+ 61 130

call sqlrout.TGETSTA1('EMPLOYEE');

*+

*+ TITLE P_COUNT P_SQL_COMMANDS P_PAGES_REQUESTED P_PAGES_READ

*+ ----- ------- -------------- ----------------- ------------

*+ EMPLOYEE 55 5 58 2

*+

*+ P_CALLS_DBMS P_TOTAL_LOCKS

*+ ------------ -------------

*+ 60 128

Enhanced ANSI/ISO SQL JOIN Support

Chapter 5: SQL 193

Enhanced ANSI/ISO SQL JOIN Support

ANSI/ISO SQL join support extends the CA IDMS SQL language with the following <joined
table> SQL language element components:

■ <cross join> forms the Cartesian product of two tables.

■ <qualified join> allows users to specify an inner join or a left, right or full outer join
in a structured way.

■ <union join> combines two tables where values of columns originating from the
other table are set to NULL.

Expansion of Table-reference

The SQL language element table-reference is extended with the new joined-table
parameter as follows:

Syntax

►►──┬────────────────┬─┬─ table-identifier ──┬┬───────────────────────────────►◄
 ├─ schema-name. ─┘ └─ view-identifier ───┘│
 ├─ procedure-reference ───────────────────┤
 ├─ table-procedure-reference ─────────────┤
 ├─ joined-table ──────────────────────────┤
 └─ (joined-table) ──────────────────────┘

Parameter

joined-table

Defines a joined table.

Expansion of Joined-table

Joined-table represents a table that is derived from joining two specified tables. The
different types of join operations are specified through the following join types:

■ CROSS

■ UNION

■ INNER

■ LEFT OUTER

■ RIGHT OUTER

■ FULL OUTER

Syntax

►──────┬─ unqualified-joined-table ─┬───►◄
 └─ qualified-joined-table ───┘

Enhanced ANSI/ISO SQL JOIN Support

194 Release Summary

Expansion of unqualified-joined-table

►─── table-reference ─┬────────────────────┬──┬─ CROSS ──┬───────────── JOIN ──►
 └┬──────┬── alias-l ─┘ └─ UNION ──┘
 └─ AS ─┘
►─── table-reference ─┬────────────────────┬──────────────────────────────────►◄
 └┬──────┬── alias-r ─┘
 └─ AS ─┘

Expansion of qualified-joined-table

►─── table-reference ─┬────────────────────┬─┬──────────────────────┬─ JOIN ───►
 └┬──────┬── alias-l ─┘ ├───── INNER ──────────┤
 └─ AS ─┘ ├─ LEFT ───┬── outer ──┘
 ├─ RIGHT ──┤
 └─ FULL ───┘

►─── table-reference ─┬────────────────────┬──── ON ─ join-condition ─────────►◄
 └┬──────┬── alias-r ─┘
 └─ AS ─┘

Expansion of join-condition

►──── extended-search-condition ──►◄

Enhanced ANSI/ISO SQL JOIN Support

Chapter 5: SQL 195

Parameters

unqualified-joined-table

Specifies a joined-table where the join operation is a cross or union.

qualified-joined-table

Specifies a joined-table where the join operation is an inner, left outer, right outer,
or full outer.

table-reference

Represents a table-like object. In a joined-table specification, a left and a right
table-reference are required to define the left and right operands of the join
operation.

AS alias-l

Defines a new name used to identify the left table-like object within the
joined-table specification. Alias-l must be a 1-through 18-character name that
follows the conventions for SQL identifiers.

AS alias-r

Defines a new name used to identify the right table-like object within the
joined-table specification. Alias-r must be a 1-through 18-character name that
follows the conventions for SQL identifiers.

CROSS

Specifies a cross join. A cross join is the cross product of the left and right table.

UNION

Specifies a union join. A union join is equivalent to a full outer join where the
join-condition always evaluates to false.

INNER

Specifies an inner join. In an inner join, the cross product of the left and right
table-like objects is made, and only the rows for which join-condition evaluates to
true are kept in the result. This is the default.

LEFT outer

Specifies a left outer join. In a left outer join, the cross product of the left and right
table-like objects is made, and the rows for which join-condition evaluates to true
are kept. The result is extended with all the missing rows from the left table, and
the values of the columns in the result row, derived from the right table, are set to
NULL.

RIGHT outer

Specifies a right outer join. In a right outer join, the cross product of the left and
right table-like objects is made, and the rows for which join-condition evaluates to
true are kept. The result is extended with all the missing rows from the right table,
and the values of the columns in the result row, derived from the left table, are set
to NULL.

Enhanced ANSI/ISO SQL JOIN Support

196 Release Summary

FULL outer

Specifies a full outer join. In a full outer join, the cross product of the left and right
table-like objects is made, and the rows for which join-condition evaluates to true
are kept. The result is extended with all the missing rows from the left table, and
the values of the columns in the result row, derived from the right table, are set to
NULL. The result is further extended with all the missing rows from the right table,
and the values of the columns in the result row, derived from the left table, are set
to NULL.

join-condition

Represents the condition for joining two table-like objects in a qualified join.
Expanded syntax for join-condition appears immediately after the joined-table
syntax.

extended-search-condition

Specifies the condition used for joining two table-like objects in a qualified join.

Note: For more information about expanded syntax, see "Expansion of
Extended-search-condition" in the CA IDMS SQL Reference Guide.

Usage

Effect on updatability

A query expression that contains a joined-table is not updatable.

Nesting of joined-table expressions

Joined-table expressions can be nested. The table reference in either the left or right
operand of a joined-table expression can be another joined-table. The default order of
evaluation of nested joined-table expressions is left to right. You can use parenthesis for
clarity and to alter the default evaluation order.

Restrictions on the use of set-specification

Only the join-condition of the inner-most join can contain a set-specification, since both
the left and right table references in a set-specification must be to base tables of a
non-SQL-defined database.

Examples

Selecting all Departments and Employees in Department

The following examples list all the departments and the employees of the department.
The two statements give identical results.

select d.*, e.*

 from DEMOEMPL.DEPARTMENT d left join DEMOEMPL.EMPLOYEE e

 on d.dept_id = e.dept_id

SET Host-variable Assignment

Chapter 5: SQL 197

select d.*, e.*

 from DEMOEMPL.EMPLOYEE e right join DEMOEMPL.DEPARTMENT d

 on d.dept_id = e.dept_id

Selecting all Departments and Employees in Department With or Without Position

The following examples show nesting of joined tables. The two statements give identical
results.

select d.*, e.*, p.*

 from DEMOEMPL.DEPARTMENT d left join

 (DEMOEMPL.EMPLOYEE e left join DEMOEMPL.POSITION p

 on p.EMP_ID = e.EMP_ID)

 on e.DEPT_ID = d.DEPT_ID;

select d.*, e.*, p.*

 from DEMOEMPL.DEPARTMENT d left join

 (DEMOEMPL.POSITION p right join DEMOEMPL.EMPLOYEE e

 on p.EMP_ID = e.EMP_ID)

 on e.DEPT_ID = d.DEPT_ID;

More Information

For more information about Expansion of Table-reference, see the CA IDMS SQL
Reference Guide.

SET Host-variable Assignment

A new SET statement enables directly assigning the results of an SQL value expression to
a host variable. This statement can only be used in embedded SQL.

Syntax

►►── SET ──── host-variable ───────── = ────┬─ value-expression ─┬────────────►◄
 └─ NULL ─────────────┘

Extended Use of query-expression

198 Release Summary

Parameters

host-variable

Identifies a host-variable that is to receive the value of the specified value
expression or null. Host-variable must be a host variable previously declared in the
application program.

value-expression

Specifies the value to be assigned to the destination or receiving field of the
assignment statement.

NULL

Specifies that host-variable is set to the NULL value.

Usage

The rules for assignment are provided in Comparison, Assignment, Arithmetic, and
Concatenation Operations in the "Data Types and Null Values" chapter in the CA IDMS
SQL Reference Guide.

Example

The host-variable COMB-NAME is constructed from the values in the host-variables
FIRST-NAME and LAST-NAME.

EXEC SQL

 set:COMB-NAME=trim(:FIRST-NAME) ||' '|| trim(:LAST-NAME);

END-EXEC

Extended Use of query-expression

The UPDATE statement has been extended to allow a query-expression as a value for a
column. This permits the use of UNION (ALL) in the specification of value expression.

Syntax

►►─── UPDATE table-reference ──┬───────────┬───────────────────────────────────►
 └─ alias ─┘

 ┌─────────────────── , ───────────────────────────┐
 ►─── SET ─▼── column-name ── = ─┬─ value-expression ───────┬┴─. . .──────────►◄
 ├─ NULL ─────────────────┬─┘
 └─ (query-expression) ─┘

SET OPTIONS COMMAND DELIMITER

Chapter 5: SQL 199

Parameter

(query-expression)

Represents a value to be assigned to a column in an UPDATE statement. The
query-expression must return at most one row and the result table of the
query-expression must consist of a single column.

Note: For more information about expanded query-expression syntax, see the
chapter "Query Specifications, Subqueries, Query Expressions, and Cursor
Specifications" in the CA IDMS SQL Reference Guide.

Usage

Using a query-expression as a Source Value

If a query expression, used as the value to be assigned to a column, returns no rows,
then the column is set to the NULL value. If the column does not allow NULLs, an
exception is raised.

SET OPTIONS COMMAND DELIMITER

The SET OPTIONS statement of the command facility (OCF and IDMSBCF) has been
enhanced to support the specification of a character string different from the default
command terminator, the semi-colon (;).

The use of an alternate command delimiter is required when entering multi-statement
SQL routine bodies using the CREATE PROCEDURE or CREATE FUNCTION commands.
According to the SQL procedural language, multiple SQL statements must be separated
by the semi-colon. However, using the semi-colon also as the command terminator
would truncate the CREATE command after the first semi-colon, and any statements
thereafter would erroneously be interpreted as new commands for the command
facility and not as statements that make up the rest of the SQL routine body.

Note: Specifying a command terminator string replaces the one that is currently in
effect, which by default is the semi-colon. The specification of a command delimiter
remains in effect until a new SET OPTIONS COMMAND DELIMITER is issued or until the
end of the command facility session.

Syntax

 ┌──┐
►►── SET ──── OPTIONS ─▼──┬─ ... ──┬┴───►◄
 └─ COMMAND DELIMITER ────┬─ DEFAULT ────────┬──┘
 └─ 'delimiter' ────┘

Pseudo Table SYSCA.SINGLETON_NULL

200 Release Summary

Parameters

COMMAND DELIMITER

Specifies the character string whose value is used to delimit a command facility
statement.

'delimiter'

Specifies the character string literal to be used as a delimiter. 'Delimiter' must
be a 1- to 32-character string.

DEFAULT

Specifies that the default of a semicolon (;) be used as a delimiter.

Example

set options command delimiter '++';

drop procedure PRODUCTION.PROCESS ++

commit++

create procedure PRODUCTION.PROCESS

 (PROC_TYPE integer,PROC_VALUE char(20))

 external name DPROCESS language SQL

begin

 set PROC_TYPE = 12;

 set PROC_VALUE = 'High';

end

++

set options command delimiter DEFAULT ++

Pseudo Table SYSCA.SINGLETON_NULL

The SYSCA.SINGLETON_NULL is a pseudo table that can be used to return the results of
expressions whose parameters are constants. It has one row and no columns. This table
is a pseudo table because it does not exist in the catalog. It can be queried through a
SELECT statement. This table is used internally by CA IDMS, and it is also useful when
evaluating SQL functions and other expressions with constant parameters.

Example

select USER01.TLANG1('James ', 'Last ')

 from SYSCA.SINGLETON_NULL;

*+

*+ USER_FUNC

*+ ---------

*+ James Last

Chapter 6: TCP/IP 201

Chapter 6: TCP/IP

This chapter describes the new TCP/IP enhancements.

This section contains the following topics:

Port Number Independence (see page 201)
Enhanced Stack Selection (see page 206)
New TCP/IP System Entity (see page 208)
New TCP_NODELAY Option (see page 225)
New Socket Functions (see page 226)
DDS Connectivity Using TCP/IP (see page 232)

Port Number Independence

In r17, CA IDMS provides the ability for DC/UCF systems and applications that execute
within those systems to use logical service names in place of port numbers. The use of
logical names allows port numbers to be changed without impacting application code or
system definitions.

Port number independence is provided through the following facilities:

■ A CA IDMS services resolver that translates a service name into a port number or
vice versa.

■ The ability to specify a service name in place of a port number on LISTENER and
DDSTCPIP PTERM SYSGEN statements.

■ The ability to specify or change a service name using a DCMT VARY PTERM
statement.

■ The ability to display the service name for a PTERM using a DCMT DISPLAY PTERM
statement.

■ New socket functions for returning a port number associated with a service name
or the service name(s) associated with a port number.

The new socket functions are described in GETSERVBYNAME and GETSERVBYPORT. The
remainder of the new facilities are described below.

Port Number Independence

202 Release Summary

CA IDMS Services Resolver

The CA IDMS services resolver is a new component of r17 responsible for translating
service names to and from port numbers. It does this using the contents of a services
file that can be included in the execution JCL of a DC/UCF system. The DDNAME or
filename of the services file is specified in the new TCP/IP SYSGEN entity.

The services file contains a list of service names together with the port number, protocol
and optional alias names associated with each one. This information is used when
servicing a GETSERVBYNAME or GETSERVBYPORT socket function to retrieve the port
number associated with a service name or the service name associated with a port
number.

On z/OS, the default services data set is cataloged as <tcpip-hlq>.ETC.SERVICES. You can
use this data set, a customized data set containing the definitions of the services that
you want to use, or a combination of the two by concatenating the two files together.
To ensure that the customized entries take precedence, include the customized data set
before the system default data set.

During the initialization of the TCP/IP environment in a CA IDMS system, the services file
is read and its contents converted to an internal structure that is stored in memory for
efficient access. The contents of the in-core structure can be refreshed from the services
file using the new DCMT VARY TCP/IP command.

Note: To allow updating the services file while it is in use by a CV, make it a member of a
partitioned data set rather than a sequential file.

Each record within a services file defines a service name entry in character format.

Syntax

The syntax of the services data set records accepted by the CA IDMS services resolver
follows the general standards for such files. The format is as follows:

►─ name ─ port#/protocol ─┬────────────┬─┬─────────────┬─────────────────────►◄
 │ ┌─────────┐│ └─ # comment ─┘
 └─▼─ alias ─┴┘

Port Number Independence

Chapter 6: TCP/IP 203

Parameters

name

Identifies the official Internet service name.

port#

Identifies the port number. Port number is a positive number between 1 and 65535.

protocol

Identifies the protocol used for the service.

alias

Identifies an unofficial name for the service.

comment

Specifies comment text that continues until the end of the record.

Notes

■ Record size must be between 56 and 256.

■ Items in a record are separated by spaces or tabs.

■ name, protocol, and alias are case sensitive.

■ name must start in column 1.

■ Records with duplicate service names are ignored. The first definition of service
name takes precedence.

■ Maximum length for name and alias is normally 32 characters, but longer names
are accepted on all systems.

■ Comments begin with the number sign (#) character and continue until the end of
record.

■ The only protocols accepted in CA IDMS are TCP and UDP, in any combination of
uppercase and lowercase.

The following illustrates a standard TCPIP.ETC.SERVICES data set delivered with the
operating system:

Port Number Independence

204 Release Summary

Network services, Internet style

echo 7/tcp
echo 7/udp
discard 9/tcp sink null
discard 9/udp sink null
systat 11/tcp users
daytime 13/tcp
daytime 13/udp
netstat 15/tcp
qotd 17/tcp quote
chargen 19/tcp ttytst source
chargen 19/udp ttytst source
ftp 21/tcp
.

More Information

■ For more information about the GETSERVBYNAME and GETSERVBYPORT socket
functions, see New Socket Functions.

■ For more information about the new TCP/IP SYSGEN entity, see New TCP/IP System
Entity.

■ For more information about the DCMT VARY TCP/IP command, see DCMT VARY
TCP/IP Command.

Port Number Independence

Chapter 6: TCP/IP 205

Service Name for LISTENER and DDSTCPIP PTERMS

To allow DC/UCF system definitions to be independent of port numbers, you can now
specify a service name in place of a port number on LISTENER and DDSTCPIP PTERM
SYSGEN statements and alter a service name using a DCMT VARY PTERM statement.
Additionally the DCMT DISPLAY PTERM statement has been enhanced to report on the
service name associated with a PTERM.

The PORT (for a LISTENER PTERM) and TARGET PORT (for a DDSTCPIP PTERM)
parameters can now accept a service name in place of a port number value. The service
name must be the name of a service in the services file with an associated protocol of
TCP. Its length is limited to 32 characters.

When the corresponding PTERM is varied online, the CA IDMS services resolver tries to
retrieve the port number associated with the service name. Regardless of the TCP/IP
CASE option in effect for the system, CA IDMS always attempts to find the matching
entry using the CASE SENSITIVE option first and if not found will then search using the
CASE INSENSITIVE option. The same method is followed for the TCP protocol.

The output of a DCMT DISPLAY PTERM command displays the service name associated
with a LISTENER or DDSTCPIP PTERM as illustrated in the following example.

Example

DCMT DISPLAY PTERM SY71CA31

Logical Term ID SY71CA31
 Physical Term ID SY71CA31
 Physical Line ID TCPIP
 Physical Term Type DDS TCP/IP
 Physical Term Model
 Physical Term Status InSrv
 Logical Term Status InSrv
 IP stack name *none (*DEFAULT)
 Target node SYSTEM71
 Target host USILCA31
 Target port 3771/DDS-TO-SYSTEM71
 Port range OFF
 Idle interval 60
 Permanent connections 3
 Maximum connections OFF
 Active connections 1
 Connections rejected 0
 Number of Reads 0000000
 Number of Writes 0000000
 Number of Read Errors 0000000
 Number of Write Errors 0000000

More Information

■ For more information about the PORT and TARGET port parameters, see System
Generation PTERM Statement.

Enhanced Stack Selection

206 Release Summary

■ For more information about varying the service name for a PTERM, see DCMT VARY
PTERM Command.

■ For more information about the TCP/IP CASE option, see System Generation TCP/IP
Statement.

Enhanced Stack Selection

In a multiple TCP/IP stack environment, this feature lets you control or limit the stacks
that are usable by the socket applications running in the CA IDMS system. This
enhancement is primarily for CA IDMS systems running on z/OS with CINET active and
on z/VM. It is useful in an environment where certain applications need to use secured
sockets or some TCP/IP stacks are for testing only.

You can control or limit the TCP/IP stacks using the following methods:

■ At startup, through a new system generation TCP/IP statement

■ At startup, through new SYSIDMS parameters

■ Dynamically, through a new DCMT VARY TCP/IP command

The new SYSIDMS parameters are described below. For more information about the two
other methods, see New TCP/IP System Entity.

Enhanced Stack Selection

Chapter 6: TCP/IP 207

SYSIDMS Parameters

Use the new SYSIDMS parameters to create an INCLUDE list or an EXCLUDE list of TCP/IP
stack names to use at runtime. You can use these parameters to do the following:

■ (z/OS only) Create an INCLUDE or an EXCLUDE list of stack names to override the list
of stacks provided by the operating system

■ (z/OS and z/VM only) Create an INCLUDE or EXCLUDE list of stack names to override
the list of stacks defined through SYSGEN

■ (z/VM only) Include a new stack

Parameter Descriptions

EXCLUDE_TCP/IP_STACK

(z/OS and z/VM only) Creates an EXCLUDE list of up to eight TCP/IP stack names to
override the list of stacks supplied by the operating system or SYSGEN.

EXCLUDE_TCP/IP_STACK and INCLUDE_TCP/IP_STACK are mutually exclusive
parameters and support wildcards.

INCLUDE_TCP/IP_STACK

(z/OS and z/VM only) Creates an INCLUDE list of up to eight TCP/IP stack names to
override the list of stacks supplied by the operating system or SYSGEN.

EXCLUDE_TCP/IP_STACK and INCLUDE_TCP/IP_STACK are mutually exclusive
parameters and support wildcards.

Examples

The following examples illustrate how to specify SYSIDMS parameters to create an
INCLUDE list or an EXCLUDE list of TCP/IP stacks.

The SYSIDMS parameter that is processed first determines whether an INCLUDE list or
an EXCLUDE list is built; any parameters from the other group are rejected.

The following group of parameters specifies a list of TCP/IP stacks to include in the
INCLUDE list.

INCLUDE_TCP/IP_STACK=TCPIP31

INCLUDE_TCP/IP_STACK=TCPIP31A

INCLUDE_TCP/IP_STACK=TCPIP31B

The following group of parameters specifies an EXCLUDE list of parameters to reject
from the system list, the TCPIP31X stack and all the stacks starting with the RUNT
pattern:

EXCLUDE_TCP/IP_STACK=TCPIP31X

EXCLUDE_TCP/IP_STACK=RUNT*

More Information

New TCP/IP System Entity

208 Release Summary

For more information about SYSIDMS, see the CA IDMS Common Facilities Guide.

New TCP/IP System Entity

Support of TCP/IP in CA IDMS has been enhanced by enabling the TCP/IP runtime
environment to be defined independently from a socket line. This consolidates the
definition of the TCP/IP attributes that were previously specified in the SOCKET line
definition and various SYSIDMS parameters and enables them to be displayed and
varied using new DCMT DISPLAY TCP/IP and DCMT VARY TCP/IP commands.

The new TCP/IP entity provides the following benefits:

■ Multiple socket lines can be active at the same time, allowing specific listeners to be
associated with different lines.

■ Client programs can use TCP/IP services even if no SOCKET line is defined.

■ New system-wide attributes can be specified and altered dynamically.

You define the TCP/IP runtime environment for a DC/UCF system through the new
TCP/IP system generation statement or through the new DCMT VARY TCP/IP command.
Both methods are described in the following sections. Enhancements to related SYSGEN
and DCMT commands are also described.

New TCP/IP System Entity

Chapter 6: TCP/IP 209

System Generation TCP/IP Statement

The TCP/IP statement is used to define the TCP/IP runtime environment of a DC/UCF
system.

Syntax

ADD/MODIFY/DELETE TCP/IP Statement

►►─┬─ ADD ─┬──┬─ TCP/ip ─┬──►
 ├─ MODify ─┤ └─ TCPip ──┘
 └─ DELete ─┘

►──┬────────────────────────────────┬──────────────────────────────────────►
 └─ DEFault STATus is ─┬─ ON ◄──┬─┘
 └─ OFF ──┘
►──┬──┬──────────────────────────►
 └─ DEFault TCP_NODelay option is ─┬─ ON ───┬─┘
 └─ OFF ◄─┘
►──┬─────────────────────────────────────┬─────────────────────────────────►
 └─ DEFault STACk is ─┬─ DEFault ◄───┬─┘
 └─ stack-name ─┘
►──┬──┬──►
 │ ┌─────────────┐ ┌─────────────┐ │
 └─┬─ INClude ─┬─ STAck (─▼─ stack-spec ┴) EXCept (─▼─ stack-spec ┴) ─┘
 └─ EXClude ─┘
►──┬───┬─────────────────────►
 └─ MAXimum NUMber of SOCkets is ─┬─ DEFault ◄───┬─┘
 └─ max-socket ─┘
►──┬───┬───►
 └─ MAXimum NUMber of SOCkets PER TASk is ─┬─ DEFault ◄────────────┬─┘
 └─ max-socket-per-task ─┘
►──┬──┬──────────────────────────────►
 └─ PLUgin MODule is ─┬─ plugin-module ─┬─┘
 └─ RHDCD1IP ◄─────┘
►──┬───┬─────►◄
 └─ SERvices FILe is ─┬─ OFF ◄───────────────────────────────────┬─┘
 └─ file-name ─┬──────────────────────────┬─┘
 └─ CASe ─┬─ SENsitive ◄──┬─┘
 └─ INSensitive ─┘

DISPLAY/PUNCH TCP/IP Statement

►►─┬─ DISplay ─┬─┬─ TCP/ip ─┬───►
 └─ PUNch ───┘ └─ TCPip ──┘
►─┬───────────────────────────────────────┬──────────────────────────────────►
 │ ┌───────────────────────────────────┐ │
 │ │ ┌───────────────┐ │ │
 └─▼─┬─ WITh ──────┬─▼─┬─ DETails ─┬─┴─┴─┘
 ├─ ALSo WITh ─┤ ├─ HIStory ─┤
 └─ WITHOut ───┘ ├─ ALL ─────┤
 └─ NONe ────┘
►─┬─────────────────────┬──►
 └─ AS ─┬─ COMments ─┬─┘
 └─ SYNtax ───┘
►─┬─────────────────────────────────┬──►◄
 └─ TO ─┬─ module-specification ─┬─┘
 └─ SYSpch ───────────────┘

New TCP/IP System Entity

210 Release Summary

Parameters

TCP/ip and TCPip

These are equivalent keywords that can be used the same way everywhere. They
can be specified in SYSGEN definitions or DCMT commands.

DEFault STATus is

Specifies the status of TCP/IP support in CA IDMS. OFF disables TCP/IP support for
CA IDMS at startup. ON enables support. The default is ON if an ADD TCP/IP
statement is coded. If the TCP/IP entity is not defined to the system, the default is
OFF.

Note: For compatibility with earlier releases, if the TCP/IP entity is not defined to
SYSGEN, but the same system contains the definition of an enabled SOCKET line,
TCP/IP is automatically enabled during startup. A warning message is displayed to
the log recommending the use of the TCP/IP SYSGEN entity.

Note: The default TCP/IP status value defined to SYSGEN can be overwritten at
startup by the new TCP/IP_STATUS=ON/OFF SYSIDMS parameter, and/or it can be
changed dynamically at runtime using the new DCMT VARY TCP/IP command.

DEFault TCP_NODelay option is

Specifies the default value for the TCP_NODELAY socket option. Unless overridden
for a specific socket connection, this is the value that will be used for all
communication. The default value is OFF, meaning that a delay may be experienced
between consecutive sends in order to optimize overall data movement.

Note: On z/VSE, this option is ignored, as the TCP_NODELAYsocket option is not
supported.

 DEFault STACk is

Specifies the default stack to be used by the DC/UCF system.

stack-name

Identifies the name of the stack to be used as a default.

DEFault

Specifies that the CA IDMS assigned default stack is to be used. DEFAULT is the
default.

The default stack for a DC/UCF system varies by operating system.

■ On z/OS, the operating system assigns a specific stack as the default stack.
Unless that stack is explicitly excluded from use by SYSGEN or SYSIDMS
parameters, CA IDMS uses the operating-system assigned default stack. If
the default stack has been excluded, CA IDMS chooses the first active stack
from the list of stacks as the default.

■ On z/VM, the default stack is the first stack in the list of stacks.

INClude/EXClude STack stack-spec

New TCP/IP System Entity

Chapter 6: TCP/IP 211

Controls or limits the stacks that can be used by the socket applications running in
the CA IDMS system. This option is useful only in a multiple stack environment
where multiple TCP/IP stacks run concurrently; it is ignored on systems where only
one TCP/IP stack is active. It is used differently depending on the operating system:

■ On z/OS, the INCLUDE or EXCLUDE list is used to customize the default stacks
list returned by the operating system when CINET is active. Both lists are
mutually exclusive. If no INCLUDE or EXCLUDE list is specified, all stacks in the
list returned by the operating system are included.

If specified, the resulting list of stacks depends on the type of list being defined:

– INCLUDE List—This list is built by excluding all the stack names that are not
present in the SYSGEN INCLUDE list.

– EXCLUDE List—This list is built by excluding all the stack names that are
present in the SYSGEN EXCLUDE list.

Wildcards can be used as special names for stack-spec to define groups of stack
names starting with the same pattern. When wildcards are used in the
INCLUDE or EXCLUDE list, the EXCEPT list can be used to refine the set of
included or excluded stacks by excluding specific stacks.

Wildcards can also be used for stack-spec in the EXCEPT list if they represent a
sub-group of names from a larger group declared in the INCLUDE or EXCLUDE
list. See examples at the end of this section.

■ On z/VM, only an INCLUDE list is available. Use the INCLUDE list to define the
full list of stacks to use in the CA IDMS system. Wildcards are not accepted.

This list can be used to replace the r16 definitions using the SYSTCPD file and
the existing SYSIDMS parameters; these definitions are ignored when the
stacks are defined through SYSGEN.

An empty list can be specified for the INCLUDE, EXCLUDE or EXCEPT list in order to
remove all entries from the corresponding list. Duplicate names are ignored when
specified within the same list of stacks.

MAXimum NUMber of SOCkets is max-socket

Specifies the maximum number of sockets that can be created globally in the
DC/UCF system. max-socket is a positive number between 1 and 65535. If DEFAULT
is specified, a default value is assigned at startup. This default value depends on the
operating system: 65535 on z/OS, 8000 on z/VSE, and 512 on z/VM.

The maximum number of sockets that can be created in one address space can also
be limited by the operating system, for example, through USS definitions under
z/OS.

MAXimum NUMber of SOCkets per TASk is max-socket-per-task

Specifies the maximum number of sockets that can be created by a single task in
the DC/UCF system. The maximum value and the default value for this parameter
are both equal to the value assigned at runtime to max-socket. If the
max-socket-per-task value is greater than max-socket, it is truncated.

New TCP/IP System Entity

212 Release Summary

PLUgin MODule is plugin module

Specifies the name of the plug-in module that implements support for specific
TCP/IP stack implementations. The only plug-in module name that is accepted is
RHDCD1IP; this is also the default value.

SERvices FILe is

Defines the file to be used for translating service names to port numbers and vice
versa.

file-name

Specifies the ddname (z/OS and z/VM) or the file name (z/VSE) of the services
file.

If the data set or file corresponding to file-name cannot be found at runtime
(DD card not specified in the startup JCL or data set not cataloged), an error
message is written to the log file. Subsequent calls to the GETSERVBYNAME or
GETSERVBYPORT socket function returns a specific ERRNO code.

OFF

Indicates that no services file is available and port number/service name
resolution is not supported. OFF is the default.

CASe

Indicates whether the service name specified on input to a GETSERVBYNAME
socket function is case-sensitive or case-insensitive. The default value is
case-sensitive.

Example

Including or Excluding TCP/IP Stacks

This example illustrates a list of INCLUDE and EXCLUDE TCP/IP stack definitions and the
TCP/IP stacks generated from them.

Assume the special system call on z/OS returns the following list of TCP/IP stacks as
defined to CINET:

TCPSY100 - TCPSY110 - TCPSY200 - RUNTCP10 - RUNTCP11 - TESTTCP

The following SYSGEN definitions illustrate how to specify the TCP/IP stacks to include or
exclude in the CA IDMS system:

■ This statement

MOD TCPIP

 INCLUDE STACK (TCPSY*,RUNTCP*) EXCEPT (TCPSY2*,RUNTCP11).

produces the following list of stacks:

TCPSY100 - TCPSY110 - RUNTCP10

■ This statement

New TCP/IP System Entity

Chapter 6: TCP/IP 213

MOD TCPIP

 INCLUDE STACK (*) EXCEPT (TCPSY*,TESTTCP).

produces the following list of stacks:

RUNTCP10 - RUNTCP11

■ This statement

MOD TCPIP

 EXCLUDE STACK (TCP*) EXCEPT (TCPSY200).

produces the following list of stacks:

TCPSY200 - RUNTCP10 - RUNTCP11 - TESTTCP

More Information

For more information about the system generation statements, see the CA IDMS System
Generation Guide.

System Generation SOCKET LINE Statement

In prior releases, the name of the plug-in module was specified on the MODULE is
plug-in clause of the SOCKET LINE SYSGEN statement. While this clause is still supported
for upward compatibility, it is no longer required and the name of the plug-in module
should now be specified using the PLUGIN MODULE clause of the new system
generation TCP/IP statement.

Note: For more information about the PLUGIN MODULE clause, see

System Generation TCP/IP Statement.

New TCP/IP System Entity

214 Release Summary

DCMT DISPLAY TCP/IP Command

The DCMT DISPLAY TCP/IP command displays information about the TCP/IP runtime
environment of a DC/UCF system. In addition to current attribute settings, it can also
display TCP/IP-related statistics and a list of all the TCP/IP stacks and their
corresponding status.

Syntax

►►── DCMT ─┬───────────────────┬───►
 └─ broadcast-parms ─┘
►── Display ─┬─ TCP/ip ─┬───►
 └─ TCPip ──┘
►──┬─────────────────────┬───┬►◄
 ├─┬─── SUMmary ◄──────┤ │
 │ ├─┬─ STATistics ──┬─┤ │
 │ │ └─ STATS ───────┘ │ │
 │ ├─┬─ STACk TABle ─┬─┤ │
 │ │ └─ STACKS ──────┘ │ │
 │ └─── ALL ───────────┘ │
 │ │
 ├─ SERvices FILe ─┬────────────────────────────┬──────────────────────┤
 │ ├─ SORt ──┬─ BY ─┬─ NAMe ──┬─┘ │
 │ └─ ORDer ─┘ └─ PORt ◄─┘ │
 │ │
 ├─ SERvices ─┬─ NAMe service-name ──────────────────────────────────┬─┤
 │ └─ PORt port-number ─┬────────────────────────────────┬┘ │
 │ └┬─ THRough ┬─ PORt port-number ─┘ │
 │ └─ THRU ───┘ │
 │ │
 └─ SOCkets ─┬────────────────────┬──┬───────┬─────────────────────────┘
 ├─ LTErm lterm-id ───┤ └─ ALL ─┘
 └─ STAck stack-name ─┘

New TCP/IP System Entity

Chapter 6: TCP/IP 215

Parameters

broadcast-parms

Specifies to execute the DCMT command on all or a list of data sharing group
members.

Note: For more information about broadcasting and broadcast-parms, see How to
Broadcast System Tasks in the CA IDMS System Tasks and Operator Commands
Guide.

SUMmary

Displays summary information about this system's TCP/IP environment. This is the
default if no option is specified.

STATistics

Displays statistics information.

STACk TABle

Displays the TCP/IP stack table containing the name of all the stacks defined in the
system. The output table contains five columns that provide the following
information:

■ Hostname

■ IP address

■ Name of the stack (job name), designated with (D) if it is the default stack

■ Flag indicating the following values:

– Y—If stack is active

– N—If stack is not active

– Excl-D—If stack is excluded by DCMT Command

– Excl-G—If stack is excluded by SYSGEN

– Excl-I—If stack is excluded by SYSIDMS

– New—If stack is new in the list, after the execution of a DCMT VARY TCP/IP
STACK TABLE REFRESH command

■ Flag indicating if the stack supports IPv6

ALL

Displays all the information provided by the SUMMARY, STATISTICS, and STACK
TABLE options.

SERvices FILe

Displays the contents of the services file, if one is in use. The output table contains
three columns that provide the following information:

■ Port numbers

■ Protocol names

New TCP/IP System Entity

216 Release Summary

■ Service names

Aliases, if present, are displayed on secondary lines in the service name
column.

The output table can be sorted by the service name or by the port number. By
default, it is sorted by the port number.

SERvices NAMe or SERvices PORt

Displays the contents of the services file, if one is in use but restricts the output to
specific service names or specific port numbers.

service-name

Specifies the name of a specific service or a wildcard that displays all the
services with a name starting with the same pattern.

When using the SERVICES PORT clause, you can specify a specific port number
or a range of ports.

port-number

Specifies a port-number. port-number is a positive number between 1 and
65535. If the THROUGH PORT sub-clause is specified, the second port-number
value must be greater than or equal to the first one.

SOCkets LTErm or SOCkets STAck

Displays information about all LTERM's owning sockets in the system. The output
table contains six columns (no ALL option) or ten columns (with ALL option) that
display the following information:

■ Without the ALL option: the LTERM name, the PTERM name, the PTERM type,
the current stack affinity, the current socket function, and the total number of
sockets owned by the LTERM.

■ With the ALL option specified: the LTERM name, the PTERM name, the PTERM
type, and for each socket descriptor currently owned by the LTE, the stack
affinity, the socket function, the socket descriptor, the socket domain, an
indicator telling whether the TCP_NODELAY socket option applies, and the
socket timeout value.

Note: When the ALL option is specified and the current socket function is
SELECT or SELECTX, the name of the function is displayed for the first socket
descriptor only.

Examples

DCMT DISPLAY TCP/IP SUMMARY

New TCP/IP System Entity

Chapter 6: TCP/IP 217

SYSGEN definitions Run-time information
====================================== ======================================
Default status ON TCP/IP status Active
Default TCP_NODELAY option OFF TCP_NODELAY option OFF
Max number sockets 9999 Max number sockets 9999
Max number sockets per task 999 Max number sockets per task 999
Plugin module RHDCD1IP
Services file SERVICES
Services file case Sensitive Services file case Sensitive
Default stack DEFAULT Default stack TCPIP31
Include stack list TCP*

SYSIDMS parameters
======================================
EXCLUDE_TCP/IP_STACK TCPIP31V

DCMT DISPLAY TCP/IP STATISTICS

Statistics
===
Number of sockets currently open 10
Number of sockets created 11
HWM of concurrent open sockets (global) 11
HWM of concurrent open sockets (1 LTERM) 1
Number of socket reads 98
Number of socket writes 64
Number of accepted connections rejected 0
Number of DDS connections rejected 0
Number of listener connections rejected 0

DCMT DISPLAY TCP/IP STACK TABLE

Hostname IP address Job name Active IPv6
======== =============== =========== ====== ====
HOSTCA31 111.111.111.111 TCPIP31 (D) Y Y
HOSTCA32 222.222.222.222 TCPIP32 Y Y
 TCPIP33 N
 RUNTCP Excl-G
 TCPIP31V Excl-I

DCMT DISPLAY TCP/IP SERVICES FILE

New TCP/IP System Entity

218 Release Summary

Services file SERVICES
Services file case Sensitive

Port# Protocol Service name or alias
===== ======== =====================
 7 tcp echo
 7 udp echo
 13 tcp daytime
 13 udp daytime
 15 tcp netstat
 19 tcp chargen
 ttytst
 source
 19 udp chargen
 ttytst
 source
 21 tcp ftp
 23 tcp telnet

DCMT DISPLAY TCP/IP SERVICE NAME nameserv*

Services file SERVICES
Services file case Sensitive

Port# Protocol Service name or alias
===== ======== =====================
 42 tcp nameserver
 53 tcp nameserver
 53 udp nameserver

DCMT DISPLAY TCP/IP SERVICE PORT 10 THROUGH 20

Services file SERVICES
Services file case Sensitive

Port# Protocol Service name or alias
===== ======== =====================
 13 tcp daytime
 13 udp daytime
 15 tcp netstat
 19 tcp chargen
 ttytst
 source
 19 udp chargen
 ttytst
 source

DCMT DISPLAY TCP/IP SOCKETS

New TCP/IP System Entity

Chapter 6: TCP/IP 219

Lterm-ID Pterm-ID Type Stack Socket-call Count
======== ======== ==== ======== =============== =====
LD000001 *No-PTE* FRST TCPIP31 1
SY71CA31 SY71CA31 DTCP TCPIP31 RECV (async) 2
TCLJSRV TCPJSRV LIST TCPIP31 ACCEPT (async) 1
TCPLIS01 TCPLIS01 LIST TCPIP31 ACCEPT (async) 1
VL72002 VP72002 3279 TCPIP31 ACCEPT 2

DCMT DISPLAY TCP/IP SOCKETS ALL

Lterm-ID Pterm-ID Type Stack Socket-call Socket-desc Dom NDL Timeout
======== ======== ==== ======== =============== =========== === === =======
LD000001 *No-PTE* FRST TCPIP31 0 IN N Forever
SY71CA31 SY71CA31 DTCP TCPIP31 RECV 0 IN Y Forever
 TCPIP31 1 IN N Forever
TCLJSRV TCPJSRV LIST TCPIP31 ACCEPT (async) 0 IN6 N Forever
TCPLIS01 TCPLIS01 LIST TCPIP31 ACCEPT (async) 0 IN6 N Forever
VL72002 VP72002 3279 TCPIP31 0 IN N 300
 TCPIP31 ACCEPT 1 IN N 300

More Information

For more information about DCMT commands, see the CA IDMS System Tasks and
Operator Commands Guide.

New TCP/IP System Entity

220 Release Summary

DCMT DISPLAY LINE Command

The DCMT DISPLAY LINE IPINFO option is no longer supported for a SOCKET LINE. The
corresponding output can now be displayed using the DCMT DISPLAY TCP/IP ALL
command.

Example

DCMT DISPLAY LINE TCPIP

 *** Physical Line Display ***
PLine-ID TCPIP
 Status InSrv
 Opened 2007-04-15-05.55.20.092194
 Module IP
LTerm-ID PTerm-ID Type/M Status Port Target-host
SY71CA31 SY71CA31 DTCP OutSrv 00000 USILCA31
SY71CA11 SY71CA11 DTCP OutSrv 03771 USILCA11
TCPLIS01 TCPLIS01 LIST OutSrv 01234
TCLJSRV TCPJSRV LIST InSrv 03772
TCPIPB01 TCPIPB01 BULK Discon
TCPIPB02 TCPIPB02 BULK Discon

Note: If a PTERM has a service name assigned to it, andthe PTERM status is
out-of-service, the Port column shows the value 00000. You must issue an explicit DCMT
DISPLAY PTERM command to display the corresponding service name.

More Information

■ For more information about the DCMT DISPLAY LINE command, see the CA IDMS
System Tasks and Operator Commands Guide.

■ For more information about the new DCMT DISPLAY TCP/IP command, see DCMT
DISPLAY TCP/IP Command.

New TCP/IP System Entity

Chapter 6: TCP/IP 221

DCMT VARY TCP/IP Command

The DCMT VARY TCP/IP command enables all the parameters that are defined in the
system generation TCP/IP statement to be altered dynamically at runtime.

Syntax

►►── DCMT ─┬───────────────────┬──►
 └─ broadcast-parms ─┘

 ►── Vary ─┬─ TCP/ip ─┬───►
 └─ TCPip ──┘
 ►─┬─ STAtus ─┬─ ON ─┬──────────┬───────────────────────────────────────┬┬─►◄
 │ │ ├─ KEEp ◄──┤ ││
 │ │ └─ RESet ──┘ ││
 │ ├─ OFF ─┬───┬┤│
 │ │ ├─ QUIesce ◄──┬──────────────────────┬┬─────────┬─┤││
 │ │ │ └─ WAIt ─┬────────────┬┘├ KEEp ◄──┤ │││
 │ │ │ ├ FORever ◄──┤ └ FORce ──┘ │││
 │ │ │ └ wait-time ─┘ │││
 │ │ └─ FORce ──┘││
 │ └─ CANcel ─┬─────────┬─────────────────────────────────────┘│
 │ ├─ KEEp ──┤ │
 │ └─ FORce ─┘ │
 │ │
 ├─ TCP_NODelay ─┬─ ON ──┬──┤
 │ └─ OFF ─┘ │
 │ │
 ├─ DEFault STAck stack-name ───┤
 │ │
 ├─┬─ INClude ─┬─ STAck stack-name ─────────────────────────────────────┤
 │ └─ EXClude ─┘ │
 │ │
 ├─ MAXimum SOCkets max-socket ───┤
 │ │
 ├─ MAXimum SOCkets PER TASk max-socket-per-task ───────────────────────┤
 │ │
 ├─ SERvices FILe ─┬─ REFresh ────────────────┬─────────────────────────┤
 │ └─ CASe ─┬─ SENsitive ───┬─┘ │
 │ └─ INSensitive ─┘ │
 │ │
 └─┬─ STACk TABle ─┬─ REFresh ──┘
 └─ STACKS ──────┘

New TCP/IP System Entity

222 Release Summary

Parameters

broadcast-parms

Specifies to execute the DCMT command on all or a list of data sharing group
members.

Note: For more information about broadcasting and broadcast-parms, see How to
Broadcast System Tasks in the CA IDMS System Tasks and Operator Commands
Guide.

STAtus

Switches the status of the TCP/IP support ON or OFF in the DC/UCF system.

ON KEEp

Enables or reenables TCP/IP support in the DC/UCF system. If reenabling TCP/IP
support in the system, the latest value of each option is kept.

ON RESet

Enables or reenables TCP/IP support in the DC/UCF system. If reenabling TCP/IP
support in the system, the value of each option is set to its original value.

OFF QUIesce

Prevents the creation of any new sockets, but allows executing applications
using sockets to finish processing. All the LISTENER and DDSTCPIP PTERM's are
closed. QUIesce is the default option for a DCMT VARY TCP/IP STATUS OFF
command. By default, the QUIesce command waits indefinitely until all the
socket descriptors are closed.

 WAIt wait-time Sets a maximum time interval the QUIesce command
should wait for all socket descriptors to close. wait-time is a positive
number between 1 and 32767. When this time interval is exhausted or
when the quiesce request is canceled, the following occurs, depending on
the KEEp or FORce option specified on the WAIt clause:

If KEEp is specified (default value), TCP/IP is reenabled in the same way as using a DCMT
VARY TCP/IP STATUS ON KEEP command.

If FORCe is specified, TCP/IP is disabled in the same way as using a DCMT VARY TCP/IP
STATUS OFF FORCE command.

OFF FORce

Immediately terminates TCP/IP support in the DC/UCF system. All the LISTENER
and DDSTCPIP PTERM's are closed, including all active sockets. Applications
using sockets receive an error code on their next socket function call.

CANcel

Cancels an outstanding DCMT VARY TCP/IP STATUS OFF QUIESCE command.
The KEEp or FORCe option overwrites the KEEp or FORCe option specified on
the DCMT VARY TCP/IP STATUS OFF QUIESCE command.

New TCP/IP System Entity

Chapter 6: TCP/IP 223

TCP_NODelay

Switches the TCP_NODELAY socket global option ON or OFF.

DEFault STAck stack-name

Overwrites the default stack assigned by the system. Changing the default stack
dynamically has no effect on the existing sockets. Only the newly created sockets
that use the default stack affinity are affected. This option is useful only in a
multiple stack environment.

INClude STAck stack-name

Includes (activates) a TCP/IP stack in the DC/UCF system. stack-name is the job
name of a TCP/IP stack and is limited to eight characters. This option is used
differently depending on the operating system:

■ On z/OS, stack-name must be the name of a stack that belongs to the CINET
list. That is, it appears in the list of stacks displayed by the DCMT DISPLAY
TCP/IP STACK TABLE command.

If stack-name is active in the operating system, it becomes active in the CA
IDMS system; if not, it remains inactive in the DC/UCF system.

■ On z/VM, stack-name can be the name of any stack that is active in the
operating system.

EXClude STAck stack-name

Excludes a TCP/IP stack that is included (active) in the DC/UCF system. stack-name
is the job name of a TCP/IP stack. The stack-name is limited to eight characters.

MAXimum SOCkets max-socket

Specifies the maximum number of sockets that can be created globally in the
DC/UCF system. max-socket is a positive number between 1 and 65535. The
maximum number of sockets that can be created in one address space can also be
limited by the operating system, for example, through USS definitions under z/OS.

MAXimum SOCkets PER TASk max-socket-per-task

Specifies the maximum number of sockets that can be created by a single task in
the DC/UCF system. The maximum value and the default value for this parameter
are both equal to the value assigned at runtime to max-socket. If the max-
socket-per-task value is greater than max-socket, it is truncated.

SERvices FILe REFresh

Refreshes the internal copy of the services file in memory after the services file has
been updated.

Note: To make updates to the services file while the data set is currently defined in
the startup JCL with the DISP=SHR option, the file should be allocated as a member
from a PDS.

SERvices FILe CASe

New TCP/IP System Entity

224 Release Summary

Changes the case sensitivity that applies to the services names specified on the
GETSERVBYNAME function calls.

STACk TABle REFresh

(z/OS only) Refreshes the list of stacks currently defined to CINET without the need
to stop the TCP/IP support in the DC/UCF system. This command is accepted only
when the TCP/IP status is ON.

If a new stack has been added to the list, it will not be activated in the DC/UCF
system automatically. You must issue an explicit DCMT VARY TCP/IP INCLUDE
STACK command to activate it in the DC/UCF system. The DCMT DISPLAY TCP/IP
STACK TABLE shows the value New in the Active column from the corresponding
entry.

Usage

Specifying new socket values

New values can be assigned to max-sockets and max-socket-per-task when TCP/IP is
currently enabled in the DC/UCF system, only if the new value is lower than the
corresponding value at the time TCP/IP was enabled. In the other case, TCP/IP must be
recycled. That is, disabled first and then reenabled.

The checks on the maximum number of sockets allowed are always done when a new
socket is created. No sockets are forcibly closed if the maximum number of sockets is
set to a lower value.

More Information

For more information about DCMT commands, see the CA IDMS System Tasks and
Operator Commands Guide.

DCMT Help Command

The DCMT HELP command has been enhanced to display a help screen of the DCMT
DISPLAY TCP/IP and DCMT VARY TCP/IP syntax.

Syntax

►►─── DCMT ─┬───────────────────┬───►
 └─ broadcast-parms ─┘
►─────── Help ┬─ . . . ──────────────────────────┬───────────────────────────►
 └─ TCP/ip or TCPip ────────────────┘

New TCP_NODELAY Option

Chapter 6: TCP/IP 225

Parameters

Help

Displays syntax for the HELP command.

TCP/ip or TCPip

Displays the TCP/IP help screen.

More Information

For more information about the DCMT HELP command, see the CA IDMS System Tasks
and Operator Commands Guide.

New TCP_NODELAY Option

CA IDMS is enhanced with a new TCP/IP socket option, TCP_NODELAY. The
TCP_NODELAY socket option disables the Nagle's algorithm, enabling two consecutive
SEND socket functions to be executed without any delay between the two sends.

You can set the TCP_NODELAY socket option using the following methods:

■ At startup, through a new system generation TCP/IP statement

■ Dynamically, through a new DCMT VARY TCP/IP command

■ At the user application level (assembler, COBOL, PL/I, and CA ADS), through a new
option on the SETSOCKOPT socket function

The SETSOCKOPT socket function is described below. The two other methods are
described in New TCP/IP System Entity.

SETSOCKOPT Socket Function

Use the SETSOCKOPT socket function to explicitly set the TCP_NODELAY socket option
for a user application, thereby overriding the default value.

EQUate Symbol Field Name Description

TCP@NODL SOCKET-SOCKOPT-NODELAY TCP_NODELAY option

New Socket Functions

226 Release Summary

This section describes only the new option. For more information about the
SETSOCKOPT socket function, see the CA IDMS Callable Services Guide.

Notes

■ The EQUate symbol is generated by the #SOCKET TCPIPDEF macro call and the field
names are located in the SOCKET-MISC-DEFINITIONS record.

■ For PL/I programs, the SOCKET_MISC_DEFINITIONS is used and the dashes are
replaced by underscores.

New Socket Functions

CA IDMS is enhanced to support the following socket functions:

■ GETSERVBYNAME

■ GETSERVBYPORT

■ IOCTL

■ GETADDRINFO and GETNAMEINFO for z/VSE and z/VM

These new socket functions provide the following capabilities:

■ GETSERVBYNAME and GETSERVBYPORT socket functions—Let you retrieve the
port number associated with a service name, or retrieve the service name, with all
its aliases, associated with a specific port number.

These new functions allow a user application to be independent of a specific port
number. A user application program can make use of a service name and
dynamically retrieve the corresponding port number to use at runtime using the
GETSERVBYNAME socket function. The services file identified by the TCP/IP SYSGEN
statement is used to resolve this mapping.

■ IOCTL socket function—Lets you control or query the Application Transparent
Transport Layer Security (AT-TLS), a facility on z/OS that allows the use of secured
connections between different applications without the need to change the code of
the application to encrypt and decrypt the data that is exchanged.

New Socket Functions

Chapter 6: TCP/IP 227

GETSERVBYNAME

GETSERVBYNAME takes a service name and a protocol and tries to resolve them using
the services file. If successful, it returns the information in a SERVENT structure.

Assembler

Label #SOCKET GETSERVBYNAME,

 RETCODE=return-code,

 ERRNO=errno,

 RSNCODE=reason-code,

 SERVNAME=service-name,

 SERVNAML=service-name-length,

 PROTNAME=protocol-name,

 PROTNAML=protocol-name-length,

 SERVENTP=serventp,

 PLIST=parameter-list-area,

 RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-GETSERVBYNAME,

return-code,

errno,

reason-code,

service-name,

service-name-length,

protocol-name,

protocol-name-length,

serventp

Parameters

Parameter Description

service-name The name of an area containing the name of the service to resolve.

service-name-length The name of a fullword field containing the length of service-name.
service-name-length can be specified as an absolute expression.

The maximum value for this parameter is 256.

protocol-name The name of an area containing the name of the protocol to use.

protocol-name-length The name of a fullword field containing the length of protocol-name.
protocol-name-length can be specified as an absolute expression.

The maximum value for this parameter is 256.

serventp The name of a fullword field where the system returns the address of a
SERVENT structure containing the information about the service.

New Socket Functions

228 Release Summary

Notes

■ The services socket functions are supported by CA IDMS's internal services resolver.
For more information, see CA IDMS Services Resolver.

■ The SERVENT structure area is allocated by the system and associated with a CA
IDMS task. It is freed at task termination. It is reused by subsequent calls to a
services function: GETSERVBYNAME or GETSERVBYPORT.

Note: For more information about the SERVENT structure, see Socket Structure
Description.

■ When the CASE sub-clause in the SERVICES FILE clause is defined as SENSITIVE, then
the service-name and the protocol-name must be specified exactly as they are
defined in the services file.

If it is defined as INSENSITIVE, the internal services resolver always tries to first
retrieve the service-name and protocol-name as they are coded in the socket
function call. If they are not found, the first entry where the uppercase versions of
the service names and protocol names match are returned. In all cases, all the
strings returned in the SERVENT structure are always coded as they appear in the
services file.

GETSERVBYPORT

GETSERVBYPORT takes a port number and a protocol number and tries to resolve them
using the services file. If successful, it returns the information in a SERVENT structure.

Assembler

Label #SOCKET GETSERVBYPORT,

 RETCODE=return-code,

 ERRNO=errno,

 RSNCODE=reason-code,

 PORT=port-number,

 PROTNAME=protocol-name,

 PROTNAML=protocol-name-length,

 SERVENTP=serventp,

 PLIST=parameter-list-area,

 RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-GETSERVBYPORT,

return-code,

errno,

reason-code,

port-number,

protocol-name,

protocol-name-length,

serventp

New Socket Functions

Chapter 6: TCP/IP 229

Parameters

Parameter Description

port-number The name of a fullword field containing the port-number to resolve.

protocol-name The name of an area containing the name of the protocol to use.

protocol-name-length The name of a fullword field containing the length of protocol-name.
protocol-name-length can be specified as an absolute expression.

The maximum value for this parameter is 256.

serventp The name of a fullword field where the system returns the address of a
SERVENT structure containing the information about the service.

Notes

■ The services socket functions are supported by CA IDMS's internal services resolver.
For more information, see CA IDMS Services Resolver.

■ The SERVENT structure area is allocated by the system and associated with a CA
IDMS task. It is freed at task termination. It is reused by subsequent calls to a
services function: GETSERVBYNAME or GETSERVBYPORT.

Note: For more information about the SERVENT structure, see Socket Structure
Description.

■ When the CASE sub-clause in the SERVICES FILE clause is defined as SENSITIVE, then
the service-name and the protocol-name must be specified exactly as they are
defined in the services file.

If it is defined as INSENSITIVE, the internal services resolver always tries to first
retrieve the service-name and protocol-name as they are coded in the socket
function call. If they are not found, the first entry where the uppercase versions of
the service names and protocol names match are returned. In all cases, all the
strings returned in the SERVENT structure are always coded as they appear in the
services file.

New Socket Functions

230 Release Summary

IOCTL

IOCTL controls certain characteristics of a socket. Depending on the command, it can
retrieve or set control information.

Assembler

Label #SOCKET IOCTL,

 RETCODE=return-code,

 ERRNO=errno,

 RSNCODE=reason-code,

 SOCK=socket-descriptor,

 COMMAND=command,

 ARGUMENT=argument,

 ARGUMENL=argument-length,

 PLIST=parameter-list-area,

 RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-IOCTL,

return-code,

errno,

reason-code,

socket-descriptor,

command,

argument,

argument-length

Parameters

Parameter Description

socket-descriptor The name of a fullword field containing the socket-descriptor to process.

command The name of a fullword field containing the command to perform on the
socket. command can be specified as an absolute expression.

argument The name of a fullword field containing the address of the argument area
that is used by the corresponding command. The argument area usually
contains input and output fields.

argument-length The name of a fullword field that contains the length of the argument area.

The different commands and arguments allowed usually depend on the operating
system where the CA IDMS system is running. For a full description of these parameters,
see the corresponding socket API manual.

New Socket Functions

Chapter 6: TCP/IP 231

Notes

z/VSE systems: The IOCTL function is not supported.

The following table lists the commands that can be specified. The EQUate symbol is
generated by #SOCKET macro and the field names are associated with the
SOCKET-MISC-DEFINITIONS-2 record.

EQUate Symbol Field Name Description

IO@NREAD SOCKET-IOCTL-FIONREAD Sets or resets socket in
non-blocking mode

IO@NBIO SOCKET-IOCTL-FIONBIO Retrieves the number of
readable bytes available

IO@CTTLS SOCKET-IOCTL-SIOCTTLSCTL Allows an application to query
or control AT-TLS

PL/I programs: The SOCKET_MISC_DEFINITIONS_2 is used and the dashes are replaced
by underscores.

More information:

For more information about socket functions, see the CA IDMS Callable Services Guide.

GETADDRINFO and GETNAMEINFO socket functions

On z/OS, the GETADDRINFO and GETNAMEINFO socket functions are supported by the
operating system. On z/VSE and z/VM, the GETADDRINFO and GETNAMEINFO socket
functions are now supported by the CA IDMS DNS and Services Resolvers.

More information:

For more information about the CA IDMS DNS and Services Resolvers, see the CA IDMS
System Operations Guide.

DDS Connectivity Using TCP/IP

232 Release Summary

Socket Structure Description

SERVENT Structure

The SERVENT structure is returned by the GETSERVBYNAME and GETSERVBYPORT
function calls.

Field Description

Service name Address of a service name (null-terminated string).

Aliases Address of a zero-terminated array of pointers to aliases,
which are null-terminated strings.

Port Port number associated with a service.

Protocol Address of the protocol associated with a service
(null-terminated string).

DDS Connectivity Using TCP/IP

CA IDMS is enhanced to provide a new access method for CA IDMS DDS using the TCP/IP
protocol through the SOCKET interface. This enhancement improves the performance of
database requests to geographically distributed databases.

You can define the DDS connectivity using the following methods:

■ Through a new parameter on the NODE SYSGEN statement and a new DDSTCPIP
type on the PTERM statement from a SOCKET line

■ Dynamically, through new parameters on the DCMT VARY PTERM command

System Generation NODE Statement

Use the system generation NODE statement to specify the use of TCP/IP to access a
target node in the DC/UCF communications network.

Syntax

ADD/MODIFY/DELETE NODE Statement

►►─┬─ ADD ────┬─ NODe nodename ──►
 ├─ MODify ─┤
 └─ DELete ─┘

 ►──┬─ . . . ──┬───►
 ├─ TCP/ip ─┤
 └─ TCPip ──┘

DDS Connectivity Using TCP/IP

Chapter 6: TCP/IP 233

Parameters

TCP/ip or TCPip

(DDS users only) Specifies that the TCP/IP protocol is used to access the named
node.

More Information

For more information about the system generation NODE statement, see the CA IDMS
System Generation Guide.

System Generation PTERM Statement

In support of DDS communications through TCP/IP, a new DDSTCPIP type of PTERM can
now be associated with a SOCKET line and the maximum number of connections can be
specified for a LISTENER PTERM.

In support of port number independence, the LISTENER PTERM statement has also been
enhanced to allow the specification of a service name in place of a port number.

DDSTCPIP PTERM Statement

Use the DDSTCPIP PTERM statement in a SOCKET line to define the remote system
where the target node is running.

Syntax

►►─ TYPe is DDSTCPIP ──►

 ►─ TARget ┬ ADDress is 'target-ip-address'┬───────────────────────────────►
 └ NAMe is target-host-name ─────┘

 ►─ TARget PORt is target-port-identifier ─────────────────────────────────►

 ►─┬─────────────────────────────────┬─────────────────────────────────────►
 └ IP STAck NAMe is stack-ip-name ─┘

 ►─┬───┬─────►
 └ PORt RANge is ─┬ OFF ◄──┤
 └ start-port-number ─┬ THRu ───┬ end-port-number ┘
 └ THRough ┘

 ►─┬─────────────────────────────────┬─────────────────────────────────────►
 └ IDLe INTerval is idle-interval ─┘

 ►─┬──┬────────────────►
 └ MAXimum NUMber of CONnections is ─┬ OFF ◄────────────┤
 └ max-number-conn ─┘

 ►─┬──┬────────────────►◄
 └ NUMber of PERmanent CONnections is perm-conn-number ─┘

DDS Connectivity Using TCP/IP

234 Release Summary

Parameters

TARget

The target-ip-address and target-host-name parameters are mutually exclusive. You
must specify at least one of these parameters in the definition of a DDSTCPIP type
PTERM.

target-ip-address

Specifies the IP address of the target system enclosed in single quotes. The IP
address limit depends on whether IPv4 or IPv6 is used: IPv4 is 15 characters; IPv6 is
45 characters.

target-host-name

Specifies the host name of the target system. The maximum host name length is 64
characters.

target-port-identifier

Specifies the number of the target port or a service name. If target-port-identifier is
a port number, it must be a positive number, between 1 and 65535. If
target-port-identifier is a service name, it is limited to 32 characters and must be
the name of a service in the services file with an associated protocol of TCP.

stack-ip-name

Specifies the job name of the TCP/IP stack to use in the local system. The job name
is limited to 8 characters. Specify an empty string value (two single-quotes) to
remove an IP STACK NAME definition.

start-port-number and end-port-number

Defines a range of port numbers that are used to BIND the local sockets explicitly.
Each time a new connection is established, the first free port from the range is
selected and associated (bound) with the corresponding socket. If no free port is
found, the request is aborted.

The default value is OFF, indicating that the operating system will select a free port
from the pool and bind the socket implicitly during the connect processing.
start-port-number and end-port-number are positive numbers between 1 and
65535. start-port-number must be lower than or equal to end-port-number.

idle-interval

Defines the time interval a non-permanent connection stays in an idle state after
the corresponding DDS request has finished. This allows the same connection to be
reused if a new DDS request comes in before the timeout expires.

idle-interval is a positive number between 0 and 32767. The default value is 0.

max-number-conn

Defines the maximum number of active connections allowed from the local system.

max-number-conn is a positive number between 1 and 65535. The default value is
OFF, indicating that the maximum number of connections is unlimited.

DDS Connectivity Using TCP/IP

Chapter 6: TCP/IP 235

Note: The maximum number of connections depends on the number of free BULK
PTERMs in the SOCKET line on the target (remote) system.

perm-conn-number

Defines the number of permanent connections that can exist between the host and
the target systems.

perm-conn-number is a positive number between 0 and 65535. The default value is
0, indicating that permanent connections are not needed. In this case, the
connections are always established dynamically when a new DDS request arrives.

LISTENER PTERM Statement

Use the LISTENER PTERM statement in a SOCKET line to control the number of active
BULK PTERMs that can be started from a specific LISTENER PTERM and to alternatively
specify a service name instead of a port number.

Syntax

►►── TYPe is LISTENER ───►

 ►─┬──┬────────────────►
 └ MAXimum NUMber of CONnections is ─┬ OFF ◄────────────┤
 └ max-number-conn ─┘

 ►─── PORT is listener-port-identifier ────────────────────────────────────►

 ►─── . . . ───►

Parameters

max-number-conn

Defines the maximum number of active connections that can be started from the
corresponding listener program, that is, the maximum number of active BULK
PTERMs allocated by the specific LISTENER. When the number of connections
reaches the value specified for max-number-conn, any new connection accepted by
the listener program will be rejected.

max-number-conn is a positive number between 1 and 65535. The default value is
OFF, indicating that the maximum number of connections is unlimited.

listener-port-identifier

Specifies the number of the listener port or a service name. If listener-port-identifier
is a port number, it must be a positive number between 1 and 65535. If
listener-port-identifier is a service name, it is limited to 32 characters and must be
the name of a service in the services file with an associated protocol of TCP.

More Information

For more information about the system generation PTERM statement, see the CA IDMS
System Generation Guide.

DDS Connectivity Using TCP/IP

236 Release Summary

DCMT VARY PTERM Command

The DCMT VARY PTERM command has been enhanced to allow altering the attributes
specific to a DDSTCPIP PTERM.

Note: Only a few of the parameters can be changed without requiring the
corresponding PTERM to be varied OFFLINE first. For more information, see Usage.

Syntax

►─── DCMT ─┬───────────────────┬───►
 └─ broadcast-parms ─┘

►─── Vary PTErminal physical-terminal-id ──────────────────────────────────►

►─┬─ . . . ──┬─►◄
 ├─ IDLe INTerval idle-interval ──┤
 ├─ MAXimum CONnections max-number-conn ────────────────────────────────┤
 ├─ PERmanent CONnections perm-conn-number ─────────────────────────────┤
 ├─ PORt RANge ─┬─ OFF ◄──┬─┤
 │ └─ start-port-number ─┬─ THRU ────┬─ end-port-number ─┘ │
 │ └─ THRough ─┘ │
 ├─ TARget ─┬─ ADDress 'target-ip-address' ─┬───────────────────────────┤
 │ └─ NAMe 'target-host-name' ─────┘ │
 └─ TARget PORt target-port-identifier ─────────────────────────────────┘

DDS Connectivity Using TCP/IP

Chapter 6: TCP/IP 237

Parameters

IDLe INTerval idle-interval

Defines the time interval a non-permanent connection stays in an idle state after
the corresponding DDS request has finished. This allows the same connection to be
reused if a new DDS request comes in before the timeout expires.

idle-interval is a positive number between 0 and 32767. The default value is 0.

MAXimum CONnections max-number-conn

For a DDSTCPIP type PTERM, defines the maximum number of active connections
allowed from the local system. For a LISTENER type PTERM, defines the maximum
number of active BULK PTERM that can be started from that listener.

max-number-conn is a positive number between 1 and 65535. The default value is
OFF, indicating that the maximum number of connections is unlimited.

Note: The maximum number of connections depends on the number of free BULK
PTERMs in the SOCKET line on the target (remote) system.

PERmanent CONnections perm-conn-number

Defines the number of permanent connections that can exist between the host and
the target systems.

perm-conn-number is a positive number between 0 and 65535. The default value is
0, indicating that permanent connections are not needed. In this case, the
connections are always established dynamically when a new DDS request arrives.

PORt RANge start-port-number and end-port-number

Defines a range of port numbers that are used to BIND the local sockets explicitly.
Each time a new connection is established, the first free port from the range is
selected and associated (bound) with the corresponding socket. If no free port is
found, the request is aborted.

The default value is OFF, indicating that the operating system will select a free port
from the pool and bind the socket implicitly during the connect processing.
start-port-number and end-port-number are positive numbers between 1 and
65535. start-port-number must be lower than or equal to end-port-number.

TARget ADDress target-ip-address

Specifies the IP address of the target system enclosed in single quotes. The IP
address limit depends on whether IPv4 or IPv6 is used: IPv4 is 15 characters; IPv6 is
45 characters.

TARget NAMe target-host-name

Specifies the host name of the target system. The maximum host name length is 64
characters.

TARget PORt target-port-identifier

DDS Connectivity Using TCP/IP

238 Release Summary

Specifies the number of the target port or a service name. If target-port-identifier is
a port number, it must be a positive number between 1 and 65535. If
target-port-identifier is a service name, it is limited to 32 characters and must be
the name of a service in the services file with an associated protocol of TCP.

Usage

LISTENER or DDSTCPIP type PTERM OFFLINE Requirements

The following table contains the parameters that are accepted for a LISTENER or
DDSTCPIP type PTERM. The last column indicates if the owning PTERM must be OFFLINE
to allow the corresponding parameter to be changed dynamically.

LISTENER
PTERM

DDSTCPIP
PTERM

PTERM OFFLINE

BACKLOG X X

IDLE INTERVAL X

MAXIMUM
CONNECTIONS

X X

MODE SYSTEM/USER X X

PARM X X

PERMANENT
CONNECTIONS

 X

PORT X X

PORT RANGE OFF X

PORT RANGE <range> X *

TARGET ADDRESS X X

TARGET NAME X X

TARGET PORT X X

TASK X X

TCP/IP ADDRESS X X

TCP/IP NAME X X

TCP/IP STACK X X X

DDS Connectivity Using TCP/IP

Chapter 6: TCP/IP 239

*

If the corresponding PTERM is ONLINE, the <range> value can be changed
dynamically only if the port range parameter was not assigned to OFF at the time
the PTERM was opened.

More Information

For more information about the DCMT VARY PTERM command, see the CA IDMS System
Tasks and Operator Commands Guide.

DCMT DISPLAY DDS Command

Use the DCMT DISPLAY DDS command to display general information about the DDS
network or about a particular DDS line or physical terminal. It can now display a
DDSTCPIP type PTERM, if present.

Syntax

►►─── DCMT ┬───────────────────┬──►
 └─ broadcast-parms ─┘

 ►─── Display DDS ┬───────────────────────────────────────┬───────────────────►◄
 ├─ LINe line-id ────────────────────────┤
 └─ PTErm physical-terminal-id ┬───────┬─┘
 └─ ALL ─┘

DDS Connectivity Using TCP/IP

240 Release Summary

Parameters

PTErm

Displays information for the specified DDS physical terminal.

physical-terminal-id

The ID of a physical terminal defined on the system generation PTERM
statement.

 ALL (DDSTCPIP type PTERM only) Displays a list of all TCP/IP connections
with its owning LTERM, the corresponding expiration time (if the
connection is in the idle list only), and the local port used.

Examples

DCMT DISPLAY DDS

 *** Display DDS ***
 Line PTerm Node Name Weight BLKSIZE
DDSVTAM PDDSVT99 30 8192
 PDDSVT73 12 28000
 PDDSVT74 12 16500
 PDDSVX73 12 28000
 PDDSVX74 12 16500
 PDDSVX71 12 8176
 PDDSVT71 SYSTEM71 12 8192

 Line PTerm Node Name
SOCKET SY71CA31 SYSTEM71
 SY71CA11

DCMT DISPLAY DDS PTERM ddstcpip-pterm-id ALL

PTERM definitions Run-time information
====================================== ======================================
PTERM name SY71CA31 Target IDMS node SYSTEM71
LTERM name SY71CA31 Number connections requested 54
Line name SOCKET Number connections created 4
IP stack name *DEFAULT Number connections active 4
Target host USILCA31 HWM connections in-use 4
Target port 3771 Number connections found in
Port range OFF * permanent list 45
Maximum connections OFF * idle list 5
Permanent connections 1 Number retry for free port 0
Idle interval 60 Number connections rejected
 * max connection 0
 * no free port 0
 * socket error 0

TCP/IP connections Owning LTERM Expiration time Local port
================== ============ =============== ==========
Control connection SY71CA31 n/a 2138
In-use list LD000001 n/a 2152
Permanent list SY71CA31 n/a 2161
Idle list SY71CA31 45 2165

DDS Connectivity Using TCP/IP

Chapter 6: TCP/IP 241

Usage

DCMT DISPLAY DDS PTERM ddstcpip-pterm-id ALL displays global information and
statistics about a specific DDSTCPIP type PTERM. The display includes the following
PTERM definitions and run-time and ALL option information:

Field Value

PTERM Definitions

PTERM name Name of the DDS physical terminal

LTERM name Name of the DDS logical terminal

Line name Name of the line with which the physical
terminal is associated

IP stack name Job name of the TCP/IP stack in the local
system

Target host Host name of the target system

Target port Target port number or service name

Port range Range of port numbers

Maximum connections Maximum number of active connections
allowed from the local system

Permanent connections Number of permanent connections
between the host and the target systems

Idle interval Time interval that the non-permanent
connection stays in an idle state after the
corresponding DDS request has finished

Run-time Information

Target IDMS node Name of the CA IDMS node in the target
(remote) system

Number connections requested Number of DDS requests that have
already been processed to the target
system. Each DDS request is processed
through one TCP/IP connection.

Number connections created Number of connections that have been
created to satisfy all the DDS requests

Number connections active Number of connections currently active
between the client system and the
remote system

HWM connections in-use Maximum number of connections that
are processing DDS requests concurrently

DDS Connectivity Using TCP/IP

242 Release Summary

Number connections found in permanent
list/idle list

Number of times a free connection could
be found in the permanent list or idle list
to process a DDS request.

A small number in these fields in
comparison with the value displayed for
the Number connections created field
indicates that you may want to increase
the definitions for NUMber of PERmanent
CONnections or IDLe INTerval parameters
in SYSGEN.

Number retry for free port Number of times the system had to retry
to find a free port number from the port
range defined at the PTERM level. This
occurs only when a port from the port
range is in use by another application in
the system.

Number connections rejected Number of times the creation of a
connection has been rejected. A rejection
is caused by one of the following:

■ The maximum number of active
connections was reached

■ No free port could be found in the
port range

■ A socket call error (usually returned
after an error at the remote system)

DDS Connectivity Using TCP/IP

Chapter 6: TCP/IP 243

ALL Option Information

TCP/IP connections A type or list owning the connection as
follows:

■ Control connection always describes
the control connection between the
local and remote systems. It is
reserved for the system.

■ In-use list indicates that the
corresponding LTERM is currently
processing a DDS request.

■ Permanent list indicates that the
corresponding connection is free and
thus ready to be assigned to a LTERM
to process a DDS request.

■ Idle list indicates that the
corresponding connection has been
freed and remains in the list for the
number of seconds currently
displayed in the Expiration time
column. When the time has expired,
the connection is closed.

Owning LTERM
Name of the LTERM owning the
connection

Expiration time This field applies only to connections
belonging to the Idle list. It indicates the
remaining time, in seconds, before the
corresponding connection is closed. The
maximum value for this field is the value
assigned to the IDLe INTerval parameter
in SYSGEN.

Local port Port number used at the local side of the
connection

More Information

For more information about the DCMT DISPLAY DDS command, see the CA IDMS System
Tasks and Operator Commands Guide.

DDS Connectivity Using TCP/IP

244 Release Summary

DC Front-end System

The UCF DC front-end enables a terminal on one DC system to execute tasks on a
second DC system.

The ACCTYPE parameter on the #UCFOPTS macro can now accept TCP/IP parameters.

Syntax

►►─── label #UCFOPTS ──►

 ►─┬─ . . . ───────────────────────────────────┬───────────────────────────────►
 └─ NODE = nodename ,ACCTYPE= ─┬─ CCI ───────┤
 ├─ VTAM ──────┤
 ├─ TCP/IP ────┤
 └─ TCPIP ─────┘

Parameters

NODE=/ACCTYPE=

Identifies the back-end when access is via DC/DDS:

■ NODE=nodename specifies the one- to eight-character name of a system
defined to the DC/DDS communication network.

■ ACCTYPE=CCI/VTAM/TCPIP specifies the type of DDS communication that is to
be used for the UCF connection.

Note: This parameter applies only to DDS.

More Information

For more information about UCF support for a DC front-end, see the CA IDMS System
Operations Guide.

Chapter 7: Administrative and Operational Enhancements 245

Chapter 7: Administrative and Operational
Enhancements

This chapter describes administrative and operational enhancements.

This section contains the following topics:

Callable Security Cleanup (see page 246)
DISPLAY SEGMENT Enhancement (see page 247)
Enhanced Diagnostic Information (see page 248)
External Identity Auditing (see page 251)
IDD Display Load Modules by Type (see page 254)
Index Tuning Enhancements (see page 254)
LOCKMON Longterm Lock Display Enhancements (see page 271)
LOOK Display Enhancements (see page 275)
New Message Replacement Operand (see page 278)
New Startup Parameters (see page 278)
Online Print Log (OLP) Usability Enhancements (see page 283)
REORG Enhancements (see page 284)
Considerations for running REORG on z/VSE (see page 291)
Run-time DMCL File Management (see page 295)
Snap Enhancements (see page 296)
Support for Large and Extended Format Files (see page 306)
SVC Enhancements (see page 308)
Wait for In-Use Data Set (see page 310)
Forcing a Database File into Input Mode (see page 311)
Miscellaneous changes for z/VSE (see page 311)

Callable Security Cleanup

246 Release Summary

Callable Security Cleanup

The linkable RHDCSDEL enhancement allows a user program to clean up security
definitions for logically deleted users by linking to RHDCSDEL. To use this feature, you
must write a user program that links to RHDCSDEL.

Note: Securing the SDEL task code does not secure usage of the RHDCSDEL program. If
you want to limit the use of RHDCSDEL, that program must be secured.

RHDCSDEL LINK Statement The calling program links to program RHDCSDEL, passing the
addresses DICTNAME, RETCODE, and OUTAREA as parameters:

#LINK PGM='RHDCSDEL',PARMS=(DICTNAME,RETCODE,OUTAREA)

Parameters

DICTNAME

Specifies the dictionary name of the DDLDML and DDLCAT areas to be scanned for
security definitions associated with logically deleted users.

This is an 8-character field, left-justified, and padded with blanks. If DICTNAME is
set to blanks, DC/UCF processes the DDLDML and DDLCAT areas of the default
dictionary for the system. If DICTNAME is set to CL8'*ALL', all updatable DDLDML
and DDLCAT areas in the DMCL are processed.

RETCODE

Specifies a fullword in which RHDCSDEL provides a return code. The possible return
codes are as follows:

00

Specifies processing was successful. The OUTAREA contains informational
messages DC048004 and DC048008.

04

Specifies processing was successful but contains warnings. The possible causes
are as follows:

■ There were no logically deleted users to process. The OUTAREA contains
informational message DC048002.

■ The OUTAREA is too small to contain all output messages.

08

Specifies a processing error. The possible causes are as follows:

■ The DICTNAME is invalid. The outarea contains error message DC048001.

■ An unexpected database error was encountered. The OUTAREA contains
error message DC048003.

DISPLAY SEGMENT Enhancement

Chapter 7: Administrative and Operational Enhancements 247

■ A BIND failed. The OUTAREA contains error message DC048004 or
DC048006.

12

Specifies the fatal error, the DMCL module is invalid. The OUTAREA contains
error message DC048007.

OUTAREA

Specifies an area where RHDCSDEL puts messages. The first fullword of the
area must be initialized to the area length, which also includes the first full
word. Upon return, the first fullword contains the size of the messages. Each
message is in the following format:

AL1(L'message),C'message'

Note: The RETCODE is set to 04 if the output area is too small, unless a more
severe error occurred.

More Information

■ For more information about the LINK statement, see the CA IDMS DML
Reference Guide for the language of the calling program.

■ For more information about securing a program, see the CA IDMS Security
Administration Guide.

DISPLAY SEGMENT Enhancement
The DCMT DISPLAY SEGMENT command is enhanced to include the number of
areas in the segment in the output display.

Syntax

►►─── DCMT Display SEGments ───────────────────────────────────────►◄

Enhanced Diagnostic Information

248 Release Summary

Example

The following example shows the number of areas for each of the segments
displayed.

DCMT DISPLAY SEGMENTS

Segment-Name Schema-Name Type #areas Pg-Grp Radix Datetime-stamp
 AAA Network 1 25 8 2005-03-29-10.07.59
 DAR SQL 3 0 8 2005-03-29-10.07.59
 DBCR Network 2 15 8 2005-03-29-10.07.59
 EMPDEMO Network 3 0 8 2005-03-29-10.07.59
 ETOT Network 1 32 8 2005-03-29-10.07.59
 KJM Network 30 35 8 2005-03-29-10.07.59
 LRD Network 1 30 8 2005-03-29-10.07.59
 QADICT Network 2 0 8 2005-03-29-10.07.59
 QAMISC Network 1 0 8 2005-03-29-10.07.59
 R120DICT Network 2 0 8 2005-03-29-10.07.59
 SYSDAR SQL 3 0 8 2005-03-29-10.07.59
 SYSDEF Network 5 0 8 2005-03-29-10.07.59
 SYSDICT Network 2 0 8 2005-03-29-10.07.59
 SYSLOCAL Network 1 1 8 2005-03-29-10.07.59
 SYSMSG Network 1 0 8 2005-03-29-10.07.59
 SYSSQL SQL 3 0 8 2005-03-29-10.07.59
 SYSUSER Network 1 0 8 2005-03-29-10.07.59
 USERDB SQL 3 0 8 2005-03-29-10.07.59
 USERDB2 SQL 3 2 8 2005-03-29-10.07.59
 VSAMT Network 6 0 8 2005-03-29-10.07.59
V74 ENTER NEXT TASK CODE: CA IDMS release nn.n tape volser node SYSTEM74

More Information

For more information about the DCMT DISPLAY SEGMENT command, see the CA
IDMS System Tasks and Operator Commands Guide.

Enhanced Diagnostic Information
This section describes a number of improvements in the detection and reporting of
exceptional conditions in order to facilitate problem diagnosis and correction.

Display Data at the PSW

The 32 bytes of data at the PSW (16 bytes before and 16 bytes after) is included in
the #ACEDS (TCE ACE) and is displayed for system and task snaps when the abend
control element (ACE) control block is formatted and snapped, and the PSW
address is a valid storage address.

Enhanced Diagnostic Information

Chapter 7: Administrative and Operational Enhancements 249

GETMAIN Failure Message for Buffers

A GETMAIN command can fail at startup when the system is unable to acquire
storage for the database buffers from operating system storage. A new message is
issued indicating that the database buffers are being allocated from IDMS storage
pools. The message has the following format:

DC205029 Unable to allocate buffer in OPSYS storage. Trying IDMS storage pools.

Identification of Program Filling Journal

A new message is issued identifying the transaction that is filling the journal files
without issuing commits. This message displays the transaction's program name,
subschema name, and the number of BFOR image bytes written on behalf of the
transaction. The message has the following format:

DC205030 LID=<Local-Transaction-id> PROG=<Program-Name>
SUBS=<Subschema-Name> BFOR=<BFOR-Journal-Space-Usage>

It displays when the existing messages are displayed:

DC205003 Disk Journal is FULL. Submit ARCHIVE JOURNAL for <journal-file-name>

DC205024 Journal Write waiting on full Journal

Note: For more information, see the CA IDMS Messages and Codes Guide.

IDMSINTC CWADISP ABND Message

The IDMSINTC interface is enhanced to issue a new ABNDK007 error message when
the CWADISP value is greater than the CWASIZE value. Previously, unpredictable
results occurred.

IDMSINTC Maximum Run Units ABND Message

The IDMSINTC interface is enhanced to issue a new ABNDK214 error message when
the number of active run units exceeds the value specified in the CICSOPTS
USERCNT parameter. Previously, an AKEA abend occurred.

Journal Warning Message at Startup

A new warning message is issued at startup when the number of journal area
entries is within 10% of the maximum number of areas that the JHDA headers can
accommodate. This message identifies the number of used area entries and the
number of available area entries that the journal can hold. The message has the
following format:

DC205031 Warning - <number of area entries in JHDAs> area entries in journal
header nearing max of <total entries>

Enhanced Diagnostic Information

250 Release Summary

Validation and Shutdown Sysplex Messages

The following messages are now issued in a data sharing environment to track
certain events:

■ DB347052 message while doing area validation

■ DC200nnn messages during CV shutdown

VTAM Enhanced Error Reporting

For improved VTAM error reporting, the VTAM feedback code and return code have
been added to DC error message DC084109 as follows:

DC084109 PTERM <pterm-id> ON LINE <line-id> : SIMLOGON TO VTAM NODE
<vtam-node-name> MODEENT <vtam-modeent-name> FAILED, FDBK <vtam-feedback>
SENSE: <vtam-sense-code>

The additional data is returned for all VTAM-SNA lines that fail to open, resulting in the
DC084109 error message.

Note: For more information, see the CA IDMS Messages and Codes Guide.

XCF and XES Messages Written to Log

Messages relating to XCF/XES macro requests issued by CA IDMS are now written to the
DC log after it has been opened, in addition to being written to the console/system log.

The DC215999 message has the following format:

DC215999 <macro> RC=<retcode> Reason=<reason> name=<sname>

This message indicates that the DC/UCF system has issued the macro request identified
in the message text to the IBM Parallel Sysplex system. The IBM Parallel Sysplex system
processes the request and returns a return code and reason code for the named
structure also identified in the message text.

Note: For more information, see the CA IDMS Messages and Codes Guide.

External Identity Auditing

Chapter 7: Administrative and Operational Enhancements 251

External Identity Auditing
An external identity represents the end user of an application that uses a generic
internal user id to sign on to CA IDMS. The actual end user id is commonly stored as
a value but not used to authenticate access to the database. This technique is often
used in web applications. The CA IDMS Server r16.1 JDBC driver supports an
external identity audit feature that records the external identity in the journal when
a database record is updated on the entry CV.

CA IDMS r17 extends this feature by setting the external identity as a session profile
attribute and broadcasting it on remote database connections. This makes the
external identity visible to customer applications and ensures that it can be audited
on all CVs that take part in a transaction.

Note: The external identity is not propagated to or from an r16 CV. All CV's must be
r17 or later to successfully audit external identities on remote databases.

The external identity can be set in the following ways:

■ The CA IDMS JDBC driver obtains the identity of the user from the SiteMinder
Application Server Agent for J2EE applications managed by CA SiteMinder.

■ Standalone Java applications use a CA IDMS extension to the JDBC API to set
the external identity.

■ Online CA IDMS applications set the external identity as a session profile
attribute.

Journal reports are used to audit external user identities.

External Identity Auditing

252 Release Summary

Profile Attribute Key

The external user identity is set in the EXTIDENT session profile attribute. This
attribute is treated as if it were a built-in system profile attribute. EXTIDENT is now
a reserved attribute name.

As a profile attribute, the value of EXTIDENT can be established through a signon or
user profile or interactively by issuing a DCUF SET command. However, it is most
usefully established programmatically in one of the ways described below.

Usage

Java Applications

The session attribute is set by the JDBC driver for Java applications that use CA
IDMS Server. This is described in the CA IDMS Server r16.1 User Guide.

CA IDMS/DC Applications

CA IDMS/DC applications can use the IDMSINO1 SETPROF function to set the
session profile attribute and can use the IDMSINO1 GETPROF function to get the
current value of the attribute.

When this attribute is set in the current user session profile it is also sent to all
remote systems that are associated with the user session. The return code is set to
the highest error encountered. A nonzero return code indicates that the external
identity may not have been set on one or more CVs.

The DBA can disable this feature, either at the system or user level, by setting the
EXTIDENT attribute to blank and specifying that it cannot be overridden.

SQL Applications

SQL applications can use the PROFILE scalar function to retrieve the current value of
the attribute. SQL called procedures can use the IDMSINO1 GETPROF function to
get the current value of the attribute.

Journal Reports

The following journal reports are used to audit external user identities.

External Identity Auditing

Chapter 7: Administrative and Operational Enhancements 253

Journal Analyzer Chronological Event Report

The area of the report for the BGIN record includes the external user identity. If
present, it is included on the line that reports the user id.

---------EVENT--------- --------IDENT-------- ---QUIESCE LVL/USER/EXT
ID--

TIME TYPE DURATION RUN UNIT PROGRAM . . .

hh:mm:ss BGIN 1633 JAVAPROG ONL X . . .

 <user id> <external id>

JREPORT 000

JREPORT 000 supports a REC card for the external identity field to allow the use the
external identity as selection criteria when running existing JREPORTs.

JREPORT 008

JREPORT 008 displays the external identity information when reporting the BGIN
record. The external id heading and value are only printed when available.

BGIN TECHDC30 12/27/05 20.07.13.56 529276 170604

 USER ID EXTERNAL ID

 USER01 USER2007

JREPORT 010

JREPORT 010 lists the user id, external identity, date, time, program name, and run
unit id. This information provides a customer with enough information to run
'JREPORT 008' with SELECT criteria to provide details on all activity involving a
particular user.

REPORT NO. 10 IDMS JOURNAL REPORTS R16.0
JREPORT 010 EXTERNAL USER IDENTITY JOURNAL REPORT
 USER EXT TRANSACT PROGRAM LOCAL LOCAL
 ID ID IDX NAME DATE TIME

 USER01 USER2006 5 IDMSJDBC 12/22/05 14.19.29.66
 USER ID NOT CAPTURED EXT ID NOT CAPTURED 6 IDMSDDDL 12/22/05 14.19.29.67
 USER01 EXT ID NOT CAPTURED 7 RHDCRUAL 12/22/05 14.19.29.68
 NO USER SIGNON 8 RHDCRUAL 12/22/05 14.19.29.69
 USER01 USER123 9 JAVAPROG 12/22/05 14.19.29.70

C750009 RECORDS WRITTEN FOR REPORT 10 -- 8

IDD Display Load Modules by Type

254 Release Summary

IDD Display Load Modules by Type
IDD is enhanced to be able to do a DISPLAY ALL LOAD MODULES WHERE TYPE IS
'load-module-type'. This displays only the load modules for the specified type.

Example

The following example shows only the load modules for load module type
SUBSCHEMA:

DISPLAY ALL LOAD MODULES WHERE TYPE IS 'SUBSCHEMA' .
*+ DISPLAY LOAD MODULE NAME IS KJMTEST3 VERSION IS 1 .
*+ DISPLAY LOAD MODULE NAME IS KJMTEST VERSION IS 1 .
*+ DISPLAY LOAD MODULE NAME IS QA120SS2 VERSION IS 1 .
*+ DISPLAY LOAD MODULE NAME IS QA120SS1 VERSION IS 1 .
*+ DISPLAY LOAD MODULE NAME IS EMPSS01 VERSION IS 1 .
*+ DISPLAY LOAD MODULE NAME IS SS1 VERSION IS 1 .
*+ DISPLAY LOAD MODULE NAME IS VSUB01 VERSION IS 1 .
*+ DISPLAY LOAD MODULE NAME IS DBCRSSC1 VERSION IS 1 .
*+ DISPLAY LOAD MODULE NAME IS TOM2 VERSION IS 1 .
*+ DISPLAY LOAD MODULE NAME IS TOM VERSION IS 1 .
*+ DISPLAY LOAD MODULE NAME IS RXMLRF05 VERSION IS 1 .
*+ DISPLAY LOAD MODULE NAME IS RXMLRF04 VERSION IS 1 .
*+ DISPLAY LOAD MODULE NAME IS EMPL1 VERSION IS 1 .
*+ DISPLAY LOAD MODULE NAME IS JPD VERSION IS 1 .
000003*+ I DC601157 NO MORE ENTITY OCCURRENCES FOUND

Note: For more information, see the CA IDMS IDD DDDL Reference Guide.

Index Tuning Enhancements
Index tuning is enhanced in the following areas:

■ Index Structure Reporting—The PRINT INDEX utility now provides the ability to
better determine whether an index structure needs tuning. Additionally, you
can now report on a specific occurrence of a user-owned index, thus providing
an additional debugging aid.

■ Index Tuning—The TUNE INDEX utility now provides the ability to perform
more comprehensive index tuning as follows:

– Eliminate orphans at all levels within an index

– Relocate the top-level SR8 to its optimal location

– Optionally, rebalance an index with temporary values for IBC and PAGE
RESERVE

– Optionally, resequence an index with temporary values for IBC and PAGE
RESERVE

TUNE INDEX is also enhanced in its ability to tune indexes while they remain
available to online applications.

Index Tuning Enhancements

Chapter 7: Administrative and Operational Enhancements 255

PRINT INDEX

The PRINT INDEX utility reports on the structure of an indexed set. Using the PRINT
INDEX utility, you can review:

■ The number of levels in an index.

■ The contents of the fixed and variable portions of one or more SR8 records in
an index.

■ The amount of available space on the page containing each SR8 in an index.

■ The index structure efficiency.

Authorization

To You Need This
Privilege

On

Report on an index DBAREAD The area containing the
index and the area(s)
containing records
referenced by the index

Syntax

►►─── PRINT INDEX ─┬─ set-name set-specifications ─┬─────────────────────────►
 └─ SR8 occurrence-key ──────────┘

 ►────┬────────────────────────────────┬──┬──────────────┬───────────────────►◄
 ├─ ONLY ◄────────────────────────┤ ├─ DECIMAL ◄───┤
 ├─ TREE ─────────────────────────┤ ├─ HEX ────────┤
 ├─ FULL ─────────────────────────┤ └─ TERSE ──────┘
 ├─ LEG ──────────────────────────┤
 ├─ SUMMARY ───┬────────────┬─────┤
 │ ├─ ONLY ◄────┤ │
 │ └─ DETAILED ─┘ │
 └─┬─ NEXT ──┬─┬────────────────┬─┘
 ├─ PRIOR ─┤ └─ level-number ─┘
 └─ LVL ───┘

Expansion of set-specifications

►►─── SEGMENT segment-name ───►

 ►─┬─ USING subschema-name ─┬─────────────────────────────┬─────────────────┬─►◄
 │ ├─ OWNER ──┬─ occurrence-key ─┘ │
 │ └─ MEMBER ─┘ │
 │ │
 └─ TABLE schema-name.table-id ─┬──┬┘
 ├─ REFERENCED ──┬─ ROWID occurrence-key ─┘
 └─ REFERENCING ─┘

Expansion of occurrence-key

►►─┬───────────────┬─┬─ X'hex-database-key'──┬────────────────────────────────►◄
 └─ page-group: ─┘ └─ page-num:line-num ───┘

Index Tuning Enhancements

256 Release Summary

Parameters

SUMMARY

Requests a summary report for the target index. A summary report consists of
three parts:

■ Part 1 (header) provides general information on the index definition.

■ Part 2 (main body) provides information on index owner occurrence(s). A
system-owned index contains a single index owner; a user-owned index
can contain more than one index owner.

■ Part 3 (index overview) provides global statistical information for a
user-owned index only.

A summary report on a system-owned index contains parts 1 and 2.

A summary report on a user-owned index always contains parts 1 and 3. Part 2
is included only in a detailed summary report. :parml

ONLY

Requests a summary report with parts 1 and 3 for the target user-owned index.
This parameter is ignored for a system-owned index. ONLY is the default.

DETAILED

Requests a summary report with parts 1, 2, and 3 for the target user-owned
index. This parameter is ignored for a system-owned index.

REFERENCED ROWID

For the named table, directs the PRINT INDEX utility to report on the index
occurrence whose owner is the referenced row identified by occurrence-key.

REFERENCING ROWID

For the named table, directs the PRINT INDEX utility to report on the index
occurrence containing the row ID of the referencing row identified by
occurrence-key.

Index Tuning Enhancements

Chapter 7: Administrative and Operational Enhancements 257

Usage

How to submit the PRINT INDEX statement

You submit the PRINT INDEX statement by using the batch command facility or the
online command facility.

When to use PRINT INDEX

The PRINT INDEX utility can help you determine whether an index needs to be rebuilt.
For example, you should consider rebuilding an index when the PRINT INDEX utility
report on the index indicates one of the following:

■ The number of index levels is greater than anticipated for the original index
structure.

■ Twenty-five percent or more of the member records are orphans.

An index can be rebuilt using MAINTAIN INDEX or TUNE INDEX. For more information
about index rebuilding and indexing in general, see the CA IDMS Database
Administration Guide.

Note: The output of PRINT INDEX without the SUMMARY parameter is proportional to
the number of index members that are being reported. If PRINT INDEX is run online or in
batch through CV, the output is buffered in scratch. If the scratch area cannot contain all
the output, PRINT INDEX fails with a task abend.

Hexadecimal display of symbolic keys

The HEX parameter of the SET/SR8 statement is useful when the symbolic key for the
index is a non-displayable data type, such as binary or packed.

Examples

Printing a summary report of an index

The following example directs the PRINT utility to report on the DEPT_EMPL index using
the SUMMARY option.

PRINT INDEX DEPT_EMPL SEGMENT USERDB TABLE DEMO.DEPT SUMMARY;

Printing a REFERENCING ROWID summary report of an index

The following example directs the PRINT utility to report on the index occurrence
containing the row ID of the referencing row identified by X'0013D401'.

PRINT INDEX DEPT_EMPL SEGMENT USERDB TABLE DEMO.DEPT

 REFERENCING ROWID X'0013D401' SUMMARY;

Index Tuning Enhancements

258 Release Summary

Sample Output

Printing a summary report of an index

The report below illustrates the use of the SUMMARY option to request the printing of a
user-owned index.

Index Tuning Enhancements

Chapter 7: Administrative and Operational Enhancements 259

 PRINT INDEX DEPT_EMPL SEGMENT USERDB TABLE DEMO.DEPT SUMMARY;
SET Name: DEPT_EMPL
 IBC 3 Displacement 2
 Sort option SORTED SYM ASC Key length 10
 Duplicates FIRST Compression No
OWNER: DEPT
 AREA USERDB.ORG_AREA Low page 5051
 Page size 1024 High page 5100
MEMBER: EMPL Set membership Optional Manual
 Located VIA index No Index is Linked
 AREA USERDB.EMP_AREA Low page 5001
 Page size 1024 High page 5050

Index overview
 Nr of owner occurrences 5
 Nr of empty owners 1 20.0%
 Nr of displaced top level SR8s 1 20.0%
 Nr of SR8s: Total 62
 Average 12.4
 Highest 59 Owner X'0013D401'
 Min. nr of SR8s: Total 49
 Average 9.8
 Highest 46 Owner X'0013D401'
 Nr of levels: Average 1.6
 Highest 5 Owner X'0013D401'
 Min. nr of levels: Average 1.6
 Highest 5 Owner X'0013D401'
 Nr of pages: Average 2.2
 Highest 8 Owner X'0013D401'
 Min. nr of pages: Average 1.8
 Highest 6 Owner X'0013D401'
 Nr of occurrences with orphans 1
 Nr of Orphans: Total 42 27.8%
 Highest 42 Owner X'0013D401'
 Total size of all SR8s 5784
 Size of largest SR8 104
Distribution of Index Levels
 +....20...+....40...+....60...+....80...+....
 6+| 0 0.0%
 5 |********** 1 20.0%
 4 | 0 0.0%
 3 | 0 0.0%
 2 | 0 0.0%
 1 |****************************** 3 60.0%
 0 |********** 1 20.0%

Distribution of Minimum Index Levels
 +....20...+....40...+....60...+....80...+....
 6+| 0 0.0%
 5 |********** 1 20.0%
 4 | 0 0.0%
 3 | 0 0.0%
 2 | 0 0.0%
 1 |****************************** 3 60.0%
 0 |********** 1 20.0%

Distribution of Number of SR8s
 +....20...+....40...+....60...+....80...+....
 60+| 0 0.0%
 56 |********** 1 20.0%
 52 | 0 0.0%
 48 | 0 0.0%

Index Tuning Enhancements

260 Release Summary

 44 | 0 0.0%
 40 | 0 0.0%
 36 | 0 0.0%
 32 | 0 0.0%
 28 | 0 0.0%
 24 | 0 0.0%
 20 | 0 0.0%
 16 | 0 0.0%
 12 | 0 0.0%
 8 | 0 0.0%
 4 | 0 0.0%
 1 |****************************** 3 60.0%
 0 |********** 1 20.0%

Distribution of Number of Index Members
 +....20...+....40...+....60...+....80...+....
 90+| 0 0.0%
 85 |********** 1 20.0%
 80 | 0 0.0%
 75 | 0 0.0%
 70 | 0 0.0%
 65 | 0 0.0%
 60 | 0 0.0%
 55 | 0 0.0%
 50 | 0 0.0%
 45 | 0 0.0%
 40 | 0 0.0%
 35 | 0 0.0%
 30 | 0 0.0%
 25 | 0 0.0%
 20 | 0 0.0%
 15 | 0 0.0%
 10 | 0 0.0%
 5 | 0 0.0%
 1 |****************************** 3 60.0%
 0 |********** 1 20.0%
Distribution of Estimated IOs for Sequential Bottom Level Access Using 1 Buffer
 +....20...+....40...+....60...+....80...+....
 28+| 0 0.0%
 27 |********** 1 20.0%
 26 | 0 0.0%
 25 | 0 0.0%
 24 | 0 0.0%
 23 | 0 0.0%
 22 | 0 0.0%
 21 | 0 0.0%
 20 | 0 0.0%
 19 | 0 0.0%
 18 | 0 0.0%
 17 | 0 0.0%
 16 | 0 0.0%
 15 | 0 0.0%
 14 | 0 0.0%
 13 | 0 0.0%
 12 | 0 0.0%
 11 | 0 0.0%
 10 | 0 0.0%
 9 | 0 0.0%
 8 | 0 0.0%
 7 | 0 0.0%
 6 | 0 0.0%
 5 | 0 0.0%
 4 | 0 0.0%

Index Tuning Enhancements

Chapter 7: Administrative and Operational Enhancements 261

 3 | 0 0.0%
 2 | 0 0.0%
 1 |****************************** 3 60.0%
 0 |********** 1 20.0%

Distribution of Nr of Pages with Intermediate Level SR8s
 +....20...+....40...+....60...+....80...+....
 7+| 0 0.0%
 6 |********** 1 20.0%
 1+| 0 0.0%
 0 |** 4 80.0%

Distribution of Minimum Nr of Pages with Intermediate Level SR8s
 +....20...+....40...+....60...+....80...+....
 4+| 0 0.0%
 3 |********** 1 20.0%
 1+| 0 0.0%
 0 |** 4 80.0%

Distribution of % Displaced Intermediate Level SR8s
 +....20...+....40...+....60...+....80...+....
 48+|********** 1 20.0%
 1+| 0 0.0%
 0 |** 4 80.0%

Distribution of Nr of Pages with Bottom Level SR8s
 +....20...+....40...+....60...+....80...+....
 7+| 0 0.0%
 6 |********** 1 20.0%
 5 | 0 0.0%
 4 | 0 0.0%
 3 | 0 0.0%
 2 | 0 0.0%
 1 |****************************** 3 60.0%
 0 |********** 1 20.0%
Distribution of Minimum Nr of Pages with Bottom Level SR8s
 +....20...+....40...+....60...+....80...+....
 4+| 0 0.0%
 3 |********** 1 20.0%
 2 | 0 0.0%
 1 |****************************** 3 60.0%
 0 |********** 1 20.0%

Distribution of % Displaced Bottom Level SR8s
 +....20...+....40...+....60...+....80...+....
 1+| 0 0.0%
 0 |** 5 100.0%
Status = 0 SQLSTATE = 00000

Printing a REFERENCING ROWID summary report of an index

The report below illustrates the use of the REFERENCING ROWID option to request the
printing of the index occurrence containing the row ID of the referencing row identified
by X'0013D401'.

Index Tuning Enhancements

262 Release Summary

 PRINT INDEX DEPT_EMPL SEGMENT USERDB TABLE DEMO.DEPT
 REFERENCING ROWID X'0013D401' SUMMARY;
SET Name: DEPT_EMPL
 IBC 3 Displacement 2
 Sort option SORTED SYM ASC Key length 10
 Duplicates FIRST Compression No
OWNER: DEPT
 AREA USERDB.ORG_AREA Low page 5051
 Page size 1024 High page 5100
MEMBER: EMPL Set membership Optional Manual
 Located VIA index No Index is Linked
 AREA USERDB.EMP_AREA Low page 5001
 Page size 1024 High page 5050

OWNER X'0013D401' on page 5076
 Top level SR8 on page 5079 utilization 100.0%
Intermediate Level
 Nr of SR8s 26 17 Minimum
 Nr of pages with SR8s 6 3 Minimum
 Nr of displaced SR8s 15 57.6%
 Nr of entries in use 58 74.3%
 Nr of Orphans 18 31.0%
 Total size of all SR8s 2704
Bottom Level
 Nr of SR8s 33 29 Minimum
 Nr of pages with SR8s 6 3 Minimum
 Nr of displaced SR8s 0 0.0%
 Nr of entries in use 87 87.8%
 Nr of Orphans 24 27.5%
 Total size of all SR8s 2844
Index occurrence totals
 Nr of members 87
 Nr of levels 5 5 Minimum
 Size of largest SR8 104
 Nr of SR8s 59 46 Minimum
 Nr of pages with SR8s 8 5 Minimum
 Nr of displaced SR8s 15 25.4%
 Nr of entries in use 145 81.9%
 Nr of Orphans 42 28.9%
 Total size of all SR8s 5548

Nr of Buffers versus Estimated IOs for Sequential Bottom Level access
------------- -------------
 1 27
 2 21
 3 15
 4 10
 5 8
 6 - 20 6
Status = 0 SQLSTATE = 00000

Report Output Description

■ Part 1—Header

The report header provides general information on the index definition, the index
owner record or SQL table, and the index member record or SQL table.

■ Part 2—Details for each index occurrence

Index Tuning Enhancements

Chapter 7: Administrative and Operational Enhancements 263

A detailed report on index run-time data per index occurrence is always output for
a system-owned index. For a user-owned index, it is output only when explicitly
requested using SUMMARY DETAILED. The report provides the following:

– The DBKEY of the index owner record occurrence and its page number.

– The page number of the first (top level) SR8. Ideally, the top level SR8 should
reside on the same page as the index owner, except for an index with only one
level and a non-zero index displacement.

– At the intermediate and bottom level (output only if the index occurrence has
more than 1 level):

 Number of SR8's and its computed minimum value

 Number of pages with SR8's and its computed minimum value

 Number of displaced SR8's and as a percentage of SR8's

 Number of entries in use and as a percentage of available entries

 Number of orphans and as a percentage of used entries

 Total size of all SR8's

– Index occurrence totals:

 Number of levels in the index and its computed minimum value

 Number of members in the index

 Size of the largest SR8

 Number of SR8's and its computed minimum value

 Number of pages with SR8's and its computed minimum value

 Number of displaced SR8's and as a percentage of SR8's

 Number of entries in use and as a percentage of available entries

 Number of orphans and as a percentage of used entries

 Total size of all SR8's

– Estimated IO's versus number of database buffers for sequential bottom level
access indicates the physical "sequentiality" of the index. Ideally, the number of
I/O's should not vary with the number of buffers and should be equal to the
number of pages with bottom level SR8's.

A displaced SR8 is a bottom level SR8 located within the index displacement or a
non-bottom level SR8 located outside the index displacement.

A computed minimum value is obtained by using the current number of entries in
the index, filling SR8's to 100% using the current value of INDEX BLOCK CONTAINS
for the index, and assuming that all space on a database page is available to hold
the index owner and the associated SR8's.

■ Part 3—Index overview and distribution diagrams for a user-owned index

– Index overview

Index Tuning Enhancements

264 Release Summary

An index overview provides the following information:

 Number of owner occurrences

 Number of empty owners and as a percentage of owner occurrences

 Number of displaced (not on same page as owner) top level SR8's

 Total, average, and highest value of the number of SR8's

 Total, average, and highest value of the computed minimum number of
SR8's

 Average and highest value of the index level

 Average and highest value of the computed minimum level

 Average and highest value of the number of pages

 Average and highest values of the computed minimum number of pages

 Number of index occurrences with orphans

 Number of orphans: total and as a percentage of the number of entries
and highest plus its owner DBKey

 Total size of all SR8's

 Size of largest SR8

– Distribution diagrams

A distribution diagram provides the number and percentage of index
occurrences for a certain property in both a numeric and a pseudo-graphical
way. Properties for which a distribution diagram is output are:

 Index level

 Minimum index level

 Number of SR8's

 Number of members in the index occurrence

 Estimated IOs using 1 buffer for sequential bottom level access

 Number of pages with intermediate level SR8's

 Minimum number of pages with intermediate level SR8's

 Percentage displaced intermediate level SR8's

 Number of pages with bottom level SR8's

 Minimum number of pages with bottom level SR8's

 Percentage displaced bottom level SR8's

More Information

For more information about the PRINT INDEX utility, see the CA IDMS Utilities Guide.

Index Tuning Enhancements

Chapter 7: Administrative and Operational Enhancements 265

TUNE INDEX

The TUNE INDEX utility performs the following functions:

■ Adopts orphans in an index structure. An orphaned indexed record is a record
whose index pointer does not point back to the index record (SR8) that contains the
record's index entry. Orphans occur as the result of splitting an existing SR8 into
two records to accommodate a new entry. As part of the split, some of the entries
are moved to a new SR8, but the index pointer in their associated records is not
adjusted to reflect the change, resulting in "orphaned" records. By eliminating
orphans, runtime database performance is improved when traversing from an
indexed record to its associated index entry.

■ Moves the top level SR8 to its optimal location.

■ Optionally rebalances the index structure. Rebalancing ensures that the resulting
index structure is a balanced tree and has a minimal number of levels and SR8's.
You can temporarily override the index block contains value of the index and the
page reserve value of the area that contains the index structure. Using these
overrides allows tuning the index while allowing for future growth.

■ Optionally resequences the index structure. Resequencing puts the SR8 records in
physical sequence. By resequencing the index structure, database performance is
improved when accessing the index structure sequentially at the bottom level.

Authorization

A user must have DBAWRITE authority on all areas processed by the utility.

Syntax

►►─ TUNE INDEX FOR ───►

►─┬─ AREA sql-area-name ──┬─►
 │ │
 │ ┌───────────────────────────────,───────────────────────────────┐ │
 ├─ TABLE ─▼─┬──────────────┬ table-name ┬────────────────┬┬──────────────┬┴─┤
 │ └ schema-name. ┘ └ ix-or-con-spec ┘└ tune-options ┘ │
 │ │
 └─ DBNAME dbname SUBSCHEMA ss-name ─┬────────────┬──────────────────────────┘
 └─ set-spec ─┘

►─┬───┬───────────────────────────────►
 └─ DEFAULT ─┬────────────────┬─ tune-options ─┘
 └─ TUNE OPTIONS ─┘

►─┬──────────────────────────────────────┬──────────────────────────────────────►
 └─ COMMIT INTERVAL ─┬─ cmt-interval ─┬─┘
 └─ 100 ◄─────────┘

►─┬──────────────────────────────────────┬─────────────────────────────────────►◄
 └─ NOTIFY INTERVAL ─┬─ not-interval ─┬─┘
 └─ 1000 ◄────────┘

Index Tuning Enhancements

266 Release Summary

Expansion of ix-or-con-spec

 ┌───┐
►►─┴─┬─ CONSTRAINT ─┬─ constraint-name ──────────────────────────────┬─┬─┴─────►◄
 │ │ │ │
 │ │ ┌──────────────────,─────────────────┐ │ │
 │ └─ (─▼─ constraint-name ─┬───────────────┬┴─) ─┘ │
 │ └─ tune-options ┘ │
 └─ INDEX ─┬─ index-name ───────────────────────────────┬──────────┘
 │ │
 │ ┌──────────────,─────────────────┐ │
 └─ (─▼─ index-name ─┬────────────────┬┴─) ─┘
 └─ tune-options ─┘

Expansion of set-spec

►►─── SET ─┬─ set-name ──────────────────────────────┬─────────────────────────►◄
 │ │
 │ ┌───────────────,─────────────┐ │
 └─ (─▼─ set-name ┬────────────────┬┴─) ─┘
 └─ tune-options ─┘

Expansion of tune-options

 ┌───┐
►►──▼─┬─ REBALANCE ─┬─ NO ◄───┬───┬─┴─►◄
 │ └─ YES ───┘ │
 │ │
 ├─ RESEQUENCE ─┬─ NO ◄───┬──┤
 │ └─ YES ───┘ │
 │ │
 ├─ TEMPORARY INDEX UTILIZATION ┬────┬─┬ ixutil-pct ┬ PERCENT ─┬─┬───┤
 │ └ IS ┘ │ └─ % ──────┘ │ │
 │ └─ key-count ─────────────┘ │
 │ │
 └─ TEMPORARY PAGE RESERVE ┬────┬─┬ page-reserve-pct ┬ PERCENT ─┬─┬──┘
 └ IS ┘ │ └─ % ──────┘ │
 └─ reserve-character-count ─────┘

Index Tuning Enhancements

Chapter 7: Administrative and Operational Enhancements 267

Parameters

REBALANCE

Specifies whether to rebalance the index. A well-balanced index has the minimum
number of index levels and best performance if the index is frequently accessed
vertically from top to bottom.

YES

Rebalances the index.

Note: Rebalancing an index can be resource-intensive.

NO

No rebalancing is done.

RESEQUENCE

Specifies whether to resequence the index. A properly sequenced index is
important only if the index is frequently accessed sequentially at the bottom level.

YES

Resequences the index for optimum performance.

Note: Resequencing an index can be resource-intensive.

NO

No resequencing is done.

TEMPORARY INDEX UTILIZATION

Specifies a temporary override for the operation. If not specified, the current
run-time value for INDEX BLOCK CONTAINS is used and index blocks are used at
100%.

ixutil-pct

Specifies the percentage of the maximum number of entries that each index
block should contain after tuning is complete. ixutil-pct is an integer in the
range 10 through 100. The number of entries of an index block is computed as
index-block-contains * ixutil-pct / 100.

key-count

Specifies the maximum number of entries that each index block should contain
after tuning is complete. key-count is an integer in the range 3 through 8180.

TEMPORARY PAGE RESERVE

Specifies a temporary override of the page reserve for the area in which the index
resides. If not specified or specified as NULL, the page reserve of the area in which
the index resides is used.

page-reserve-pct

Index Tuning Enhancements

268 Release Summary

Specifies the percentage of each page to leave as free space if it contains a
portion of an index being tuned. page-reserve-pct is an integer in the range 0
through 30. The page reserve of the area is computed as area-page-size *
page-reserve-pct / 100.

reserve-character-count

Specifies the number of characters to reserve on each page to accommodate
increases in the length of records or rows stored on the page if it contains a
portion of an index being tuned. reserve-character-count is an integer with a
value not larger than 30% of the page size.

Index Tuning Enhancements

Chapter 7: Administrative and Operational Enhancements 269

Usage

General Considerations

The TUNE INDEX utility has the following usage considerations:

■ To use the TUNE INDEX utility, you must specify one of the following:

– One or more tables whose indexed constraints are to be tuned

– One or more areas containing tables whose indexed constraints are to be tuned

– A subschema and DBNAME and optionally a list of indexed sets to be tuned

■ If multiple indexes and/or multiple tables are processed in the same area,
increasing the number of buffers further improves performance.

■ Index tuning is a resource-intensive operation consisting mostly of CPU and I/O.

Operating modes

You can execute the TUNE INDEX utility both online (through the online command
facility) and in batch through central version or batch local. When index tuning is
executed by a central version, TUNE INDEX tries to minimize impact on other online
tasks as follows:

■ When a record or area lock conflict occurs with other applications, TUNE INDEX
takes the following actions:

– For record lock conflicts, TUNE INDEX commits the updates done so far.

– For area lock conflicts, TUNE INDEX finishes its database session and starts a
new one.

■ TUNE INDEX lowers its priority to one below its normally assigned priority. If a
deadlock occurs, the default deadlock selection algorithm selects the task with the
lowest priority as the deadlock victim. The TUNE INDEX utility can recover from a
deadlock by restarting the index tuning process of the current index occurrence.

Commit interval

You can specify a commit interval that determines the frequency with which the utility
will commit. The interval specifies the number of updates that can take place before a
commit is issued. You can disable committing and automatic restart by specifying a
0-commit interval. Regardless of the commit interval specified, the utility always issues a
COMMIT ALL at the end of the tune process of an index occurrence to release all record
locks. It also issues a COMMIT ALL if it detects that another task is waiting on a record
lock that it holds and it issues a FINISH if it detects that another task is waiting on an
area lock that it holds.

Notify interval

Index Tuning Enhancements

270 Release Summary

You can specify a time interval in minutes. Each time this interval expires, a message is
written indicating the index tuning progress. The message is written to the job log and
the operator's console if TUNE INDEX runs in local mode; otherwise, it is written to the
IDMS LOG and console. You can disable notification by specifying a 0-notify interval.

Examples

The following example directs the TUNE INDEX utility to adopt orphaned index records,
rebalance and resequence the index. It also shows how to temporarily override the
DMCL or subschema values for PAGE RESERVE and INDEX BLOCK CONTAINS.

TUNE INDEX FOR DBNAME EMPDEMO SUBSCHEMA EMPSS01

 SET (EMP-NAME-NDX)

 DEFAULT TUNE OPTIONS

 REBALANCE YES

 RESEQUENCE YES

 TEMPORARY INDEX UTILIZATION IS 80 %

 TEMPORARY PAGE RESERVE IS 15 PERCENT

 NOTIFY INTERVAL 1000;

Sample Output

The following is a sample of a report produced by the TUNE INDEX utility.

TUNE INDEX FOR DBNAME EMPDEMO SUBSCHEMA EMPSS01
 SET (EMP-NAME-NDX)
 DEFAULT TUNE OPTIONS
 REBALANCE YES
 RESEQUENCE YES
 TEMPORARY INDEX UTILIZATION IS 80 %
 TEMPORARY PAGE RESERVE IS 15 PERCENT
 NOTIFY INTERVAL 1000;
Status = 0 SQLSTATE = 00000 Messages follow:
DB002994 C0M333: IDMSTUNE - processing started
DB002994 C0M333: IDMSTUNE - Indexes selected for processing:
DB002994 C0M333: IDMSTUNE - EMP-NAME-NDX (IBC=32) in area EMPDEMO.EMP-DEMO-REGION
(PGRSV=644)
DB002994 C0M333: IDMSTUNE - Statistics for area EMP-DEMO-REGION
DB002994 C0M333: IDMSTUNE - Orphan adoption read 34 records (of which 6 SR8s)
DB002994 C0M333: IDMSTUNE - Orphan adoption adopted 20 index orphans
DB002994 C0M333: IDMSTUNE - Rebalancing read 65 records
DB002994 C0M333: IDMSTUNE - Resequencing read 35 records
DB002994 C0M333: IDMSTUNE - 134 total records read
DB002994 C0M333: IDMSTUNE - 20 total index orphans adopted
DB002994 C0M333: IDMSTUNE - 1 indexes/sets processed
DB002994 C0M333: IDMSTUNE - processing completed

LOCKMON Longterm Lock Display Enhancements

Chapter 7: Administrative and Operational Enhancements 271

More Information

■ For more information about the TUNE INDEX utility, see the CA IDMS Utilities Guide.

■ For more information about indexed constraints, see the CA IDMS SQL Reference
Guide.

■ For more information about indexing, dbnames, subschemas and sets, see the CA
IDMS Database Administration Guide.

LOCKMON Longterm Lock Display Enhancements

The Lock Monitor (LOCKMON) system task includes the following enhancements:

■ Reports the area portion of a keep longterm lock. This makes it easier to relate
longterm lock problems back to possible sources of contention for data and
potential deadlocks and bottlenecks.

■ Displays the longterm lock IDs. This helps to determine which tasks and LTEs (logical
terminal elements) are holding locks on which area and on which dbkey.

Syntax

►►── LOCKMON ──►◄

LOCKMON commands

►►─┬─ . . . ──────────────────────────────────────┬──────────────────────────►
 ├─ Watch ─┬─ . . . ─────────────┬──────────────┤
 │ └─ Term ─┬─ * ────────┤ │
 │ └─ lte-name ─┘ │
 ├─ SEt ─┬─ . . . ────────────────────────────┬─┤
 │ ├─ DISplay ─┬─────────┬─┬──────────┬─┤ │
 │ │ └─ EQual ─┘ ├─ DBKeys ─┤ │ │
 │ │ ├─ KEYs ───┤ │ │
 │ │ ├─ AReas ──┤ │ │
 │ │ └─ NAmes ──┘ │ │
 │ ├─ Filter ─┬─ OFf ─────────────────┬─┤ │
 │ │ └┬──────┬─┬─ Current ───┤ │ │
 │ │ └─ ON ─┘ ├─ * ─────────┤ │ │
 │ │ └─ AREA name ─┘ │ │
 │ └────────────────────────────────────┘ │
 └──┘

LOCKMON Longterm Lock Display Enhancements

272 Release Summary

Parameters

Term

Displays logical terminals holding longterm locks.

*

Displays all logical terminals holding longterm locks.

lte-name

Specifies the name of the logical terminal or a mask that identifies one or more
logical terminals. The display can be formatted in dbkeys or area names.

DISplay EQual

Changes the display format for the terminal detail displays.

DBKeys

Displays locked dbkeys in the detail information.

KEYs

A synonym for DBKeys.

AReas

Displays area names with locked dbkeys in the detail information.

NAmes

A synonym for AReas.

Filter

Specifies a filter change.

Note: Filters are "sticky" items.

OFf

Turns off filtering.

ON

Turns on filtering.

Current

Uses the current filter specified in the previous filter command.

*

Uses all filters previously set.

AREA name

Sets the filter to an area name or mask, resulting in using one or more area
names as the current filter.

LOCKMON Longterm Lock Display Enhancements

Chapter 7: Administrative and Operational Enhancements 273

DISPLAY Commands

This section shows the area name format and DBKey format displays generated by the
new WATCH TERMINAL command.

WATCH TERMINAL (Area name format) command

Enter this command to display a report of the terminals holding longterm locks, the
longterm lock ids, and the area names for which locks are being held. For each area, a
count of the notify, share and exclusive locks is reported.

CA IDMS DB/DC Lock Monitor Version nn.n LTE: * Tape: volser
Longterm_Lock_ID Segment.Area_Name__________ Notfy Share Excl
Terminal: LTEnnnn User: USER01
LOCK ID 1 EMPDEMO.EMP-DEMO-REGION 0 0 2
LOCK ID 2 EMPDEMO.INS-DEMO-REGION 0 0 2
LOCK ID 3 EMPDEMO.EMP-DEMO-REGION 1 1 0
 EMPDEMO.INS-DEMO-REGION 1 1 0
LOCK1 EMPDEMO.EMP-DEMO-REGION 0 0 2
LOCK2 EMPDEMO.INS-DEMO-REGION 0 0 2
LOCK3 EMPDEMO.EMP-DEMO-REGION 1 1 0
 EMPDEMO.ins-DEMO-REGION 1 1 0

CA IDMS DB/DC V300 Time: hh:mm:ss

WATCH TERMINAL (DBKey format) command

Enter this command to display a report of the terminals holding longterm locks, the
longterm lock ids, the DBKeys associated with the longterm lock id, and the locking level
of the lock held for each DBKey.

LOCKMON Longterm Lock Display Enhancements

274 Release Summary

CA IDMS DB/DC Lock Monitor Version nn.n LTE: * Tape: volser
Longterm_Lock_ID PgGrp Lock Mode/DBKey(s)......
Terminal: LTEnnnn User: USER01
LOCK ID 1 00000 EXCL 75007:001
LOCK ID 2 00000 EXCL 75106:001
LOCK ID 3 00000 NTFY 75106:001 75050:004
LOCK1 00000 EXCL 75007:001
LOCK2 00000 EXCL 75106:001
LOCK3 00000 NTFY 75106:001 75050:004

CA IDMS DB/DC V300 Time: hh:mm:ss

LOOK Display Enhancements

Chapter 7: Administrative and Operational Enhancements 275

Miscellaneous Commands

This section shows the INFO command screen with the new longterm lock information
displayed.

INFO command

Enter this command in the Lock Monitor command field to display information about
the version of LOCKMON that you are running.

CA IDMS DB/DC Lock Monitor Version nn.n Info/Status Details Tape: volser

System Information
CV Number: 300 Generation ID: TECHDC30

Task Information
Task Code: LOCKMON Program Name: LOCKMON

Program Information
Module Name: LOCKMON nn.n Assembled: mm/dd/yy @ hh:mm

Current Execution Information
Task ID: 76 Line: VTAM
Loaded at: 2324CC00 PTerm: PTEnnnn
Size: 00009F90 LTerm: LTEnnnn
Refresh Interval: 5 DCMT status: Usable
Longterm Lock Displays: Format: Area Names
 Filter Status: Off
 Filter: *

CA IDMS DB/DC V300 Time: hh:mm:ss

More Information

For more information about the Lock Monitor, see the CA IDMS System Tasks and
Operator Commands Guide.

LOOK Display Enhancements

New LOOK functions report on SQL-defined database attributes and converted time
stamps.

LOOK Display Enhancements

276 Release Summary

SQL-Defined Database Attributes

A new BIND SQL SEGMENT function has been added to the batch IDMSLOOK utility and
online LOOK system task to report on logical and physical attributes for areas, tables,
constraints, and indexes for a segment of an SQL-defined database. The output is similar
to that of the BIND SUBSCHEMA function.

Syntax

 ┌──┐
►►─▼─ BIND SQL SEGMENT=segment-name,DBNAME=database-name ─┴─────────────────►◄

Parameters

segment-name

Specifies the segment that contains the SQL database areas.

database-name

Specifies the database name that contains the segment where the catalog for the
SQL definitions reside.

Converted Date/Time Stamps

A new EXTERNAL DATETIME function has been added to the batch IDMSLOOK utility and
online LOOK system task to report on the internal value of an external date/time stamp.

Syntax

 ┌───┐
►►─▼─ EXTERNAL DATETIME=external-datetime-value ─┴──────────────────────────►◄

LOOK Display Enhancements

Chapter 7: Administrative and Operational Enhancements 277

Parameters

 external-datetime-value

The 26 characters that make up the external representation of the date/time
stamp. The format is yyyy-mm-dd-hh.mm.ss.ffffff.

■ yyyy specifies the year. yyyy must be an integer in the range 0001 through
9999.

■ mm specifies the month within the year. mm must be an integer in the range
01 through 12.

■ dd specifies the day within the month. dd must be an integer in the range 01
through 31.

■ hh specifies the hour on a 24-hour clock. hh must be an integer in the range 00
through 23.

■ mm specifies the number of minutes past the hour. mm must be an integer in
the range 00 through 59.

■ ss specifies the number of seconds past the minute. ss must be an integer in
the range 00 through 59.

■ ffffff specifies the number of millionths of a second past the specified second.

Example

Input

EXTERNAL DATETIME=2006-05-09-11.21.53.677107

Output

Internal datetime stamp=X'0165A2E9FD1A54F3'

More Information

■ For more information about the batch IDMSLOOK utility, see the CA IDMS Utilities
Guide.

■ For more information about the online LOOK system task, see the CA IDMS System
Tasks and Operator Commands Guide.

New Message Replacement Operand

278 Release Summary

New Message Replacement Operand

A new operand is provided to enable including the volser of the current CA IDMS
installation tape in the text of a message.

This section describes only the new operand. For more information, see the CA IDMS
IDD DDDL Reference Guide.

Message occurrence structure

Operand Replacement value

&$9. CA IDMS tape volser

New Startup Parameters

The following startup parameters have been added to CA IDMS and can be coded as
freeform or positional parameters:

■ Multitasking queue depth—Lets you set the multitasking queue depth at startup.

■ Operating system subpool—Lets you specify a different subpool to be used at
startup.

■ zIIP—Lets you force or forbid the use of zIIP processors.

Coding Options as Freeform Parameters

This section describes the multitasking queue depth, operating system subpool, and zIIP
freeform parameters.

Multitasking Queue Depth

In earlier releases, to override the default multitasking queue depth of 2, you had to
issue a DCMT VARY MT command after a DC/UCF system had started. You can now set
the desired queue depth at startup by using the MTQDEPTH parameter.

Syntax

 ┌───────────────────────,──────────────────────┐
►►──▼─┬┬─ MTQDEPTH= ─┬─ multitasking-queue-depth ─┬┴─────────────────────────►◄
 │└─ MTQD= ─────┘ │
 └── . . . ──────────────────────────────────┘

New Startup Parameters

Chapter 7: Administrative and Operational Enhancements 279

Parameter

MTQDEPTH|MTQD=multitasking-queue-depth

(z/OS systems only) Specifies the multitasking queue depth.

The optimum value for the MT queue depth is dependent on factors outside the
control of DC, such as other work on the CPUs, operating system dispatcher
parameters, paging rate, etc. Therefore, it is advised to experiment with the value
and watch the results. The value must be in a range of 0 to 255; however, the
advised value is in a range of 0 to 9. The default is 2.

Note: Specifying a low value causes more usage of subtasks. A too-low value causes
subtasks to wake up and go back to sleep again without doing any work because
the queue was already emptied by another subtask. A too-high value disables
multitasking, and most if not all work is processed by only one subtask.

Subpool Usage

If you want CA IDMS to use an operating system subpool other than subpool 1 when the
GETMAIN requests build the CA IDMS system at startup, you can now specify a different
subpool to be used at startup with a new SUBPOOL parameter.

Syntax

 ┌───────────────────────,─────────────────────┐
►►──▼─┬┬─ SUBPOOL= ─┬─ operating-system-subpool ─┬┴──────────────────────────►◄
 │└─ SP= ──────┘ │
 └── . . . ─────────────────────────────────┘

Parameter

SUBPOOL|SP=operating-system-subpool

(z/OS systems only) Specifies the operating system subpool to use for GETMAIN
requests. See your operating system documentation for information on operating
system subpools. The valid values for operating system subpools are from 1 to 127.
The default is 1.

zIIP

You can now control use of zIIP processors in z/OS through the new zIIP startup
parameter.

Syntax

 ┌───────────,───────────┐
►►──▼─┬── ZIIP= ─┬─ Y ──┬─┬─┴──►◄
 │ └─ N ◄─┘ │
 └── . . . ──────────┘

New Startup Parameters

280 Release Summary

Parameter

ZIIP=Y|N

(z/OS systems only) Specifies the type of zIIP support to provide in z/OS.

Valid values are the following:

■ Y specifies to use zIIP processors if present.

■ N specifies not to use zIIP processors. This is the default.

New Startup Parameters

Chapter 7: Administrative and Operational Enhancements 281

Coding Options as Positional Parameters

This section describes the positional parameter positions for the operating system
subpool, multitasking queue depth, and zIIP values.

 Column

 0 1 2 3

 12345678901234567890123456789012345678

PARM='S=sys#prompt tnnsclll###submqdz

Parameters

sub

Columns 32-34—(z/OS systems only) Specifies the operating system subpool value
to use for GETMAIN requests. See your operating system documentation for
information on operating system subpools. The valid values for operating system
subpools are from 1 to 127. The default is 1.

mqd

Columns 35-37—(z/OS systems only) Specifies the multitasking queue depth value.

The optimum value for the MT queue depth is dependent on factors outside the
control of DC, such as other work on the CPUs, operating system dispatcher
parameters, paging rate, etc. Therefore, it is advised to experiment with the value
and watch the results. The value must be in a range of 0 to 255; however, the
advised value is in a range of 0 to 9. The default is 2.

Note: Specifying a low value causes more usage of subtasks. A too-low value causes
subtasks to wake up and go back to sleep again without doing any work because
the queue was already emptied by another subtask. A too-high value disables
multitasking, and most if not all work is processed by only one subtask.

z

Column 38—(z/OS systems only) Specifies the type of zIIP support to provide in
z/OS.

Valid values are the following:

■ Y specifies to use zIIP processors if present.

■ N specifies not to use zIIP processors. This is the default.

New Startup Parameters

282 Release Summary

More Information

■ For more information about the DCMT VARY MT command, see the CA IDMS
System Tasks and Operator Commands Guide.

■ For more information about startup parameters, see the appendix "Specifying
Runtime Options" in the CA IDMS System Operations Guide.

■ For more information about zIIP exploitation, see zIIP Exploitation.

Online Print Log (OLP) Usability Enhancements

Chapter 7: Administrative and Operational Enhancements 283

Online Print Log (OLP) Usability Enhancements

OLP enhancements include the following:

■ You can specify seconds in FROM and TO time parameters.

■ Upon initial entry, OLP flushes the data in the log buffer so that the most recent
data will be included in the display.

FRom/TO

Specifies the log messages to be displayed according to the time when the
messages were issued.

OLP displays the current FROM/TO times and dates. The following partial screen
shows what you would see if you were searching for log records issued between
11:00 and 11:56 p.m. on 1/13/07:

 FROM ON TO ON COL PRT SKIP LOG TYPES ROLL STATUS

23:00:00 2007-01-13 23:56:00 2007-01-13 001 OFF 0000 (WT/TR/DU/) 040

begin-time

Specifies the time of the first log message to be displayed.

You can specify begin-time using any one of these formats (where hh specifies
hours based on a 24-hour clock, mm minutes, and ss seconds):

■ hh:mm:ss—For example, 13:04:07

■ hhmm—For example, 1304

■ hh:mm—For example, 4:23

■ hh—For example, 12

The following defaults are defined for begin-time:

■ 00:00:00 is the default time if you specify FROM without a time.

■ 30 minutes before the session began is the default time if you do not specify
FROM at all.

end-time

Specifies the time of the last log message to be displayed.

You can specify end-time using any one of these formats (where hh specifies hours
based on a 24-hour clock, mm minutes, and ss seconds):

■ hh:mm:ss—For example, 13:04:07

■ hhmmss—For example, 130407

■ hhmm—For example, 1304

■ hh:mm—For example, 4:23

■ hh—For example, 12

The following defaults are defined for end-time:

REORG Enhancements

284 Release Summary

■ 24:00:00 is the default time if you specify TO without a time.

■ The time at which the session began is the default time if you do not specify
TO at all.

More Information

For more information about the OLP command, see the CA IDMS System Tasks and
Operator Commands Guide.

REORG Enhancements

The REORG utility has been enhanced in the following areas:

■ Work file size estimation—REORG now estimates the size of all work files after
unloading the data, or if requested during a separate pass of the data. These sizes
are reported in the Work File Summary Report. They are also used to generate a
SPACE parameter when dynamically creating a work file if no primary space is
specified in its DSMODEL.

■ Reduced record overflows—If a database record will not fit on its intended page,
REORG now saves the record in a memory cache rather than writing it immediately
to the database. This allows more records to be written to their intended pages
because they are not displaced by earlier overflow records. New statistics are
reported to help determine cache effectiveness.

■ Reduced area sweeps when updating index UP pointers—REORG now makes only
one pass of the database when updating pointers in a record, even if that record
has multiple indexes defined to it.

■ New options for deleting work files—The CLEANUP phase normally only deletes
work files created by the current REORG operation. The new DELETEALL option
allows CLEANUP to delete a work file even if it was created by another operation.
The new DELETE OLD WORKFILES option directs REORG to delete all old work files
prior to allocating new files during its setup phase. See "Considerations for running
REORG on z/VSE".

■ REORG is now supported on z/VSE—Some processing options such deleting work
files, do not work the same on z/VSE as they do on z/OS. See "Considerations for
running REORG on z/VSE".

Syntax

The following new syntax options have been added:

►►── REORG setup-options ... ───────────────────────────────────────►◄

REORG Enhancements

Chapter 7: Administrative and Operational Enhancements 285

Expansion of setup-options

►───────────┬───┬──►
 ├─── ESTIMATE workfile sizes ─────────────────────────┤
 ├─── DELETE old workfiles ────────────────────────────┤
 ├─── OVERFLOW PERCENT nnn ────────────────────────────┤
 └─── OVERFLOW CACHE nnnnnnnn ───┬──────┬──────────────┘
 ├─ KB ─┤
 ├─ MB ─┤
 └─ GB ─┘

►►── REORG ESTIMATE workfile sizes ─────┬──────────┬────────────────►◄
 └─ SUBMIT ─┘

►►── REORG CLEANUP ... ──►

►───────────┬─────────────┬──►
 └─ DELETEALL ─┘

REORG Enhancements

286 Release Summary

Parameters

ESTIMATE workfile sizes

Directs REORG to estimate the size of work files by gathering statistics in a separate
pass of the database. This option generates estimates for both UNLOAD and
RELOAD work files.

By default, statistics are collected during the unload phase that can be used for
sizing RELOAD work files only. UNLOAD work files must be sized manually.

If specified together with setup-options, statistics gathering starts as soon as the
setup phase is complete and processing stops after the statistics have been
gathered. Additional jobs are automatically submitted to help gather statistics and
process the database by UNLOAD slice and index.

If specified independently of setup-options, it must be specified in a separate
execution of the REORG utility that occurs between the setup and UNLOAD phases.
Multiple jobs are submitted to gather statistics only if the SUBMIT option is
specified. Processing stops when file estimation is complete.

When file estimation is complete, processing must be restarted by specifying a new
STOP AFTER point.

File size estimates are automatically used when dynamically allocating work files if
no primary space value is specified for the file's DSMODEL.

DELETE old workfiles

Directs REORG setup to delete work files that may be left from a previous run. All
existing work files that match the name of a new work file are deleted, including
DBKEYS files.

By default, old work files are reused. See "Considerations for running REORG on
z/VSE".

OVERFLOW PERCENT nnn

Specifies the percentage used to estimate the size of SYSOF2 and SYSOF8 work files
and all output work files for the two overflow tasks: RELOAD2 and RELOAD5. The
size of these files cannot be predicted, so they are estimated to be a percentage of
related work files.

By default, 10% is used.

OVERFLOW CACHE nnnn

Specifies a limit on the size of the overflow cache used to temporarily hold records
that do not fit on their target page.

nnn is the maximum size of the overflow cache specified in bytes, Kilobytes (2**10),
Megabytes (2**20), or Gigabytes (2**30), depending on whether it is followed by
no qualifier or by KB, MB, or GB respectively.

A value larger than 2**31-1 is limited to 2**31-1 bytes.

By default, 32 KB is used.

REORG Enhancements

Chapter 7: Administrative and Operational Enhancements 287

DELETEALL

Directs an explicit cleanup job to delete all work files associated with the current
control file, including those that were not dynamically allocated by the current
REORG operation. This option does not apply to DBKEYS files.

By default, only files dynamically allocated by the current REORG operation are
deleted. See "Considerations for running REORG on z/VSE".

Usage

This section describes enhancements in the use of the REORG utility.

REORG tasks and phases

REORG processing is divided into tasks and grouped into phases. Each phase processes a
type of work needed to unload or reload a database or rebuild an index. Each task
processes a slice or index group within a phase.

For example, if a database were divided into two UNLOAD slices and had three index
groups, the UNLOAD phase could have up to five tasks: one for each slice and possibly
one for each index group. All UNLOAD tasks must successfully complete before REORG
can begin to process tasks in the RELOAD or REBUILD phases.

RELOAD contains six phases numbered 1 through 6. These phases reload slices, rebuild
user indexes, and reconnect pointers. Each RELOAD task in a given phase must
successfully complete before processing can move to the next RELOAD phase.

REBUILD can contain up to three phases numbered 1 through 3. Each index group has
one task per phase, but each index group can run independently of the others and
independently of RELOAD phases 3 through 5.

If a system index related page range conflict exists between tasks in RELOAD and
REBUILD or between REBUILD tasks, updates of the page range are serialized.

RELOAD Processing Phases

There is no longer a REBUILD4 phase. The updating of owner and UP pointers for system
owned indexes has been merged with the RELOAD6 phase to reduce the number of
passes of the database.

Eliminating the REBUILD4 phase also eliminates the SYSX10 and SYSX11 class of work
files. Instead, the REBUILD3 phase generates additional SYS010 files to be processed by
RELOAD6.

REORG Enhancements

288 Release Summary

Sample Output

This section contains the REORG enhancements made to the sample output.

REORG Status Report - Section 1

The following example shows the addition of the Overflow Percentage value to the
Status Report:

 **
 * *
 * REORG Status Report *
 * Identifying time stamp: 2005-11-17-13.44.06.388141 *
 * Unload subschema=EMPTSS01 Unload segment=EMPDEMO Unload DMCL=EMPTDMCL *
 * Reload subschema=EMPTSS01 Reload segment=EMPBDEMO Reload DMCL=EMPBDMCL *
 * *
 **
 Options in effect

Divide processing 3 ways Notify interval=1 Job submission=YES SHARE=YES
STOP AFTER CLEANUP CREATE ALL WORKFILES reuse workfiles=NO SORTEXIT=NO
Overflow Percentage=10 Concurrent jobs=5 GENERATE DBKEYS FILES=YES
 Current status

SETUP=completed UNLOAD=completed RELOAD=completed CLEANUP=completed
 total tasks=23 tasks completed=23 reload areas are not locked

REORG Status Report - Section 6

The following example shows the general-purpose files used during the UNLOAD and
RELOAD phases. Other sections show index files, sorted data files, and DBKEYS files.

All work file summary reports show the estimated size of each file and the attributes
used in determining those sizes. BPT is Blocks Per Track; TPC is Tracks Per Cylinder; and
3390 indicates that attributes were based on a generic 3390 device, as opposed to a
specific volume.

An asterisk (*) following a DDNAME indicates that the file was created by a REORG job
executing as part of the current operation and therefore will be deleted automatically
during cleanup.

REORG Enhancements

Chapter 7: Administrative and Operational Enhancements 289

 Unload/Reload work file summary

DDname DSN Estimated Size
------ --- --------------
WU00001 * USERA01.EMPDEMO.WORKFILE.WU00001 1 Trk
 Estimate based on: VOLSER=*3390* BLKSIZE=27998 BPT=02 TPC=15
 UNIT=SYSDA SPACE=Trk PRI=1 SEC=1
WU00002 * USERA01.EMPDEMO.WORKFILE.WU00002 1 Trk
 Estimate based on: VOLSER=*3390* BLKSIZE=27998 BPT=02 TPC=15
 UNIT=SYSDA SPACE=Trk PRI=1 SEC=1
&vellip.
WU00039 * USERA01.EMPDEMO.WORKFILE.WU00039 1 Trk
 Estimate based on: VOLSER=*3390* BLKSIZE=27998 BPT=02 TPC=15
 UNIT=SYSDA SPACE=Trk PRI=1 SEC=1
Total primary space: 0 Cyl 39 Trk 0 Blk

Database Load Statistics Report

The following example shows standard database statistics as returned from an ACCEPT
DATABASE STATISTICS command. The values reflect the processing done by the current
RELOAD1 or RELOAD2 task.

UT005002 DATABASE LOAD STATISTICS
 DATABASE LOADED ON 01/15/08 AT 21:24:53
PAGES READ 62
PAGES WRITTEN 59
PAGES REQUESTED 86
CALC RCDS IN TARGET PAGE 268
CALC RCDS OVERFLOWED 0
VIA RCDS IN TARGET PAGE 3,869
VIA RCDS OVERFLOWED 0
LINES REQUESTED BY IDMS 1,742
RCDS MADE CURRENT OF R/U 4,137
CALLS TO IDMS 4,144
FRAGMENTS STORED 0
RECORDS RELOCATED 0

RELOAD Statistics Report

The following example shows additional statistics produced by REORG when reloading a
database. The values reflect the processing done by the current RELOAD1 or RELOAD2
task.

 RELOAD STATS
RCDS READ 4,380
RCDS STORED IN DATABASE 4,137
RCDS STORED ON TARGET PAGE ... 3,998
RCDS STORED TARGET PERCENT ... 96
RCDS WRITTEN TO OVERFLOW 243
RCDS CACHED 357
RCDS STORED FROM CACHE 139
RCDS OVERFLOW FROM CACHE 218
CACHE STORAGE USED 16,384
CACHE STORAGE LIMIT 16,384

REORG Enhancements

290 Release Summary

The fields reported are the following:

RCDS READ

The total database records read from a work file. This does not include pointer and
other work records

RCDS STORED IN DATABASE

The number of database records stored in the database.

RCDS STORED ON TARGET PAGE

The number of database records stored on the intended target page.

RCDS STORED TARGET PERCENT

The percentage of database records stored on their target page.

RCDS WRITTEN TO OVERFLOW

The number of database records written to a SYSOF2 file, to be processed by the
RELOAD2 overflow task

RCDS CACHED

The number of database records written to the memory cache.

RCDS STORED FROM CACHE

The number of database records that were written to memory cache and then
stored in the database.

RCDS OVERFLOW FROM CACHE

The number of database records that were written to memory cache and then
written to the overflow work file.

CACHE STORAGE USED

The amount of allocated cache storage at the end of task. If this is the same as the
storage limit, the cache reached its limit and records may have been written to the
overflow file.

CACHE STORAGE LIMIT

The maximum storage allowed for the overflow cache. This can be changed using
the OVERFLOW CACHE option.

Considerations for running REORG on z/VSE

Chapter 7: Administrative and Operational Enhancements 291

Considerations for running REORG on z/VSE

Work File Creation and Deletion:

REORG on z/VSE does not support creating and deleting work files. It will create and
delete user labels, but the work files will not be created, a VTOC entry will not be
created, until the file is opened for output. When REORG processing is complete, work
files must be manually deleted, or overwritten to reclaim the space. The options:
DELETE OLD WORKFILES, CREATE WORKFILES, and DELETEALL, only apply to user labels
for the current job. Automatic deletion of work files during the CLEANUP phase will only
delete user labels.

CA DYNAM/D is required to create labels

The extent of a generated label will have a relative starting track of 1 for the number of
tracks based on the primary space value. These labels require CA DYNAM/D to convert
them to an actual track address at open time.

If CA DYNAM/D is not installed, labels for work files must be coded manually. The
recommended procedure in this case, is to use the ESTIMATE FILE SIZES option, which
does not use any work files. Code the JCL statements based on the reported file sizes;
and include them in all REORG jobs.

SYSIDMS

REORG requires the RORGCTL and RORGJCL files to be defined in SYSIDMS using
FILENAME= parameters.

FILENAME=RORGCTL RECFM=F BLKSIZE=4096

FILENAME=RORGJCL RECFM=F BLKSIZE=NNNN LRECL=80

DLBLMOD=ON

Where NNNN is the block size of the JCL file and must be a multiple of 80.

The SYSIDMS DLBLMOD=ON option must be specified to allow for sequential and
random processing of the RORGCTL file. Either a DA or SD label may be used for
RORGCTL.

Considerations for running REORG on z/VSE

292 Release Summary

DSMODEL

The only options which apply to z/VSE are: DSN; BLKSIZE; the allocation unit value and
primary value for the SPACE option; and the first volume of the VOLSER Option. The rest
may be coded, but will be ignored.

REORG will generate labels using track sizes. If CYL is codedfor a space allocation unit,
the primary value will be converted to tracks, but there will be no cylinder alignment. If
a block size is coded for an allocation unit, the coded value will be used to calculate the
number of tracks required. The coded value must match the BLKSIZE value, otherwise
the calculated number of tracks may not be accurate.

An example of a DSMODEL follows; note that the primary space value was not coded.
This allows REORG to generate the value for each file, using file size estimates. If a
primary space value had been coded, this value would be used for all files regardless of
the estimated size.

CREATE DSMODEL W*

 DSN 'USERID.EMPDB.WORKFILE.&DD'.

 BLKSIZE 4096

 SPACE TRK

 VOLSER IDMS05

 ;

Considerations for running REORG on z/VSE

Chapter 7: Administrative and Operational Enhancements 293

RORGJCL

JCL submitted by REORG is read from the RORGJCL file. This must be a sequential file
built on disk and contain all the JECL and JCL statements for the submitted job. However
the JECL and some JCL statements can't be directly copied to this file using normal JCL
because POWER will try to interpret these statements when the copy job is run. These
statements must be "hidden" from power by changing the first characters as follows:

* $$ statements must be coded as $ $$ statements

// JOB statements must be coded as #/ JOB statements

/* coded as #*

/& coded as #&

Any statement starting with a "/" may be coded as starting with a "#".

This is the same method used by the IESINSRT program to hide JCL, which is
documented in the IBM z/VSE Administration Guide.

The JCL will get stored on disk in the format it is coded. REORG will convert the hiding
characters back to their correct values prior to submitting the job to POWER. For
example the JCL to copy a job to the RORGJCL file might look like this:

// DLBL RORGJCL,'USERID.EMPDB.RORGJCL',1,SD

// EXTENT SYS020,CULLD9,,,1,50

// ASSGN SYS020,DISK,VOL=CULLD9,SHR

// EXEC IDCAMS,SIZE=386K

 REPRO INFILE(SYSIPT) -

 OUTFILE(RORGJCL ENV(BLKSZ(4080) RECFM(FB) RECSZ(80)))

$ $$ JOB JNM=RORGJOB,CLASS=B,DISP=D

$ $$ LST CLASS=R,DEST=(,USERID),JSEP=0

$ $$ PUN CLASS=R,DEST=(,USERID)

#/ JOB RORGJOB

* JCL THAT REORG SUBMITS

#/ DLBL SYSIDMS,'#SYSIPT'

#/ EXEC IDMSBCF,SIZE=256K

ECHO=ON JOURNAL=OFF DLBLMOD=ON

DMCL=IDMSDMCL DBNAME=EMPDEMO

FILENAME=RORGCTL RECFM=F BLKSIZE=4096

#*

REORG;

#*

#&

$ $$ EOJ

/* EOF for REPRO

Considerations for running REORG on z/VSE

294 Release Summary

REORG

DD statements for the batch command facility (z/VSE)

Defining the REORG control file, all jobs and job steps

// DLBL RORGCTL,'user.rorgctl',,SD

// EXTENT SYSnnn,vvvvvv,,,sssss,llll

// ASSGN SYSnnn,DISK,VOL=vvvvvv,SHR

Defining the REORG JCL file, required when submitting jobs

// DLBL RORGJCL,'user.jclfile',,SD

// EXTENT SYSnnn,vvvvvv,,,sssss,llll

// ASSGN SYSnnn,DISK,VOL=vvvvvv,SHR

Manual definition of work files, when not using DSMODELs

// DLBL wxnnnnn,'user.workfile',,SD

// EXTENT SYSnnn,vvvvvv,,,sssss,llll

// ASSGN SYSnnn,DISK,VOL=vvvvvv,SHR

DB File definitions when running the unload phase, if not using dynamic allocation

// DLBL unlddb,'user.unlddb',,DA

// EXTENT SYSnnn,vvvvvv

// ASSGN SYSnnn,DISK,VOL=vvvvvv,SHR

DB File definitions when running the reload phase, if not using dynamic allocation

// DLBL relddb,'user.relddb',,DA

// EXTENT SYSnnn,vvvvvv

// ASSGN SYSnnn,DISK,VOL=vvvvvv,SHR

SORT work file assignments when running the reload phase

// DLBL SORTWK1,'sort.work.file'

// EXTENT SYSnnn,vvvvvv,,,sssss,llll

// ASSGN SYSnnn,DISK,VOL=vvvvvv,SHR

Field Descriptions:

user.reldctl

File-ID of the REORG control file containing control information. The block size is
4096 bytes, and must be specified in SYSIDMS using the FILENAME=RORGCTL
RECFM=F BLKSIZE=4096 parameters. For a complete description of SYSIDMS
parameters, see the CA IDMS Common Facilities Guide.

user.jclfile

Run-time DMCL File Management

Chapter 7: Administrative and Operational Enhancements 295

File-ID of the file containing JCL for automatic job submission. The block size must
be a multiple of 80 bytes, and must be specified in SYSIDMS using the
FILENAME=RORGJCL RECFM=F BLKSIZE= parameters.

wxnnnnn

File name of the DLBL for a work file. It must match the name generated in the
Unload/Reload Work File Summary report.

user.workfile

File-ID of a work file when manually allocating work files.

unlddb

File name of the DLBL for an unload database file.

user.unlddb

File-ID of the unload database file, this is source database file.

relddb

File name of the DLBL for a reload database file.

user.relddb

File-ID of the reload database file, this is the target database file.

Run-time DMCL File Management

The internal run-time DMCL file structures have been enhanced. Storage for information
related to dynamic allocation is only allocated when needed. This storage can also be
added with DCMT commands even if the DMCL previously contained no dynamic
allocation information. Any DSN specified in the DMCL definition or through the JCL is
saved when changed with a DCMT VARY FILE command, and is reported by a DCMT
DISPLAY FILE command. Additionally, these changes enable dynamic allocation of
journal files.

To implement these changes, dynamic allocation information has been removed from
the file control block (FCB) and moved to a new FDSA control block. There can be
multiple FDSAs chained off the FCB: one representing the data set as it is defined in the
JCL, one representing the data set as it is defined in the DMCL, and one representing the
data set as defined by a DCMT command.

Snap Enhancements

296 Release Summary

Snap Enhancements

Snap enhancements include the following:

■ New parameters are provided on the system generation SYSTEM statement that let
you disable or enable snaps for system or task abends.

■ New parameters are provided on the DCMT VARY PROGRAM and DCMT VARY TASK
commands that let you dynamically enable snaps for an individual program or task
or disable snaps which have been dynamically enabled.

■ DCMT DISPLAY SNAP command displays are enhanced.

System Generation SYSTEM Statement

Use the system generation SYSTEM statement to specify whether to write system or
task snap dumps or system or task photo snaps for system or task abends on a DC/UCF
system.

Syntax

►►─┬──────────┬─ SYStem dc/ucf-version-number ─ . . . ──────────────────────────►
 ├─ ADD ────┤
 ├─ MODify ─┤
 └─ DELete ─┘
 ►─┬──────────────────────────┬───►
 └─ SNAp SYStem is ─┬─ ON ◄─┤
 └─ OFF ─┘

 ►─┬────────────────────────────────┬───►
 └─ SNAp SYStem PHOto is ─┬─ ON ◄─┤
 └─ OFF ─┘

 ►─┬────────────────────────┬───►
 └─ SNAp TASk is ─┬─ ON ◄─┤
 └─ OFF ─┘

 ►─┬──────────────────────────────┬───►
 └─ SNAp TASk PHOto is ─┬─ ON ◄─┤
 └─ OFF ─┘

Snap Enhancements

Chapter 7: Administrative and Operational Enhancements 297

Parameters

SNAp SYStem is

Specifies whether to write a system snap dump to the DC/UCF log file. A system
snap dump writes a formatted display of the resources allocated to all active tasks.

ON

Enables the writing of a system snap dump. This is the default for the ADD
SYSTEM statement.

OFF

Disables the writing of a system snap dump.

SNAp SYStem PHOto is

Specifies whether to write a system photo snap to the DC/UCF log file. A system
photo snap provides a summary of resources for all active tasks.

ON

Enables the writing of a system photo snap. This is the default for the ADD
SYSTEM statement.

OFF

Disables the writing of a system photo snap.

SNAp TASk is

Specifies whether to write a task snap dump to the DC/UCF log file. A task snap
dump writes a formatted display of the resources allocated to the task being
snapped.

ON

Enables the writing of a task snap dump. This is the default for the ADD SYSTEM
statement.

OFF

Disables the writing of a task snap dump.

SNAp TASk PHOto is

Specifies whether to write a task photo snap to the DC/UCF log file. A task photo
snap provides a summary of the resources for the task being snapped.

ON

Enables the writing of a task photo snap. This is the default for the ADD
SYSTEM statement.

OFF

Disables the writing of a task photo snap.

Usage

Snap Enhancements

298 Release Summary

Task Snap Dump and System Snap Dump

A task snap dump can provide useful information when developing and debugging user
programs. Typically, a task snap dump includes the following areas at a minimum:

■ System Registers Before #SNAP

■ Most Recent User Mode Registers

■ Task's TCE (Task Control Element)

■ TCE (Task Control Element) Stack

■ Task's Signon Storage

■ Task's DCE (Dispatch Control Element)

■ Task's LTE (Logical Terminal Element)

■ LTE's UAB (User Attribute Block, if a user is signed on to the LTE)

■ Task's PTE (Physical Terminal Element)

■ Task's PLE (Physical Line Element)

■ Task's Storage Chain

■ PDE (Program Definition Element) and Program Text

■ Last 33 Messages/Codes

■ Options (Startup Options Table)

■ CCE (Central Control Element)

■ SVC Parms

■ CSA (CA IDMS Common System Area)

If a task photo snap is requested, the following information is included in the beginning
of the task snap dump:

■ Task Code

■ Task ID

■ Dispatching Priority of the Task

■ Program Name and LTERM Name

For each allocated resource, the following information is included:

■ RCE (Resource Control Element) Address

■ RCE (Resource Control Element) TYPE

■ Resource Name

■ Resource Address and Resource Information

Snap Enhancements

Chapter 7: Administrative and Operational Enhancements 299

A system snap dump provides the same information for all active tasks that a task snap
dump provides for a single task. In addition to those areas, a system snap dump includes
information for the following areas at a minimum:

■ ESE (External Service Element) Area

■ ERE (External Request Element) Area

■ CSA (CA IDMS Common System Area)

■ TCA (Task Control Area) Header

■ DCE (Dispatch Control Element) Area

■ TCE (Task Control Element) Area

■ RCA (Resource Control Area) Header

■ RLE (Resource Link Element) Area

■ RCE (Resource Control Element) Area

■ DPE (Deadlock Prevention Element) Area

■ ILE (Interval Lock Element) Area

■ LMGR LKM (Lock Manager Main Control Block)

■ LMGR (Lock Manager) Area

■ LTERM (Logical Terminal) Table

■ TASK (Task Definition) Table

■ QUEUE Table Index

■ DEST (Destination) Table

■ SLL and PDE (System Library List and Program Definition Element) Area

■ SYS-RU-TAB (System Run Unit Table)

■ DMCL TABLE

■ OXXX Module (Operating System Dependent)

■ DBIO Module (IDMSDBIO Module)

■ DBMS Module (IDMSDBMS Module)

If a system photo snap is requested, the following information is included in the
beginning of the system snap dump for each active task:

■ Task Code

■ Task ID

■ Dispatching Priority of the Task

■ Program Name and LTERM name

For each allocated resource, the following information is included:

Snap Enhancements

300 Release Summary

■ RCE (Resource Control Element) Address

■ RCE (Resource Control Element) TYPE

■ Resource Name

■ Resource Address and Resource Information

More Information

■ For more information about the system generation SYSTEM statement, see the CA
IDMS System Generation Guide.

■ For more information about reading dumps, see the CA IDMS Navigational DML
Programming Guide.

■ For more information about how the system logs errors, see the CA IDMS System
Operations Guide.

DCMT VARY PROGRAM Command

Use the DCMT VARY PROGRAM command to dynamically enable system or task snap
dumps for a DC/UCF program or to disable snaps which have been dynamically enabled.

Syntax

►►─── DCMT ─┬───────────────────┬───►
 └─ broadcast-parms ─┘

 ►─── Vary PRogram program-specification ─────────────────────────────────────►

 ►─┬─ . . . ───────────────────┬──►◄
 └─ SNAp ─┬─ snap-options ─┬─┘
 └─ LIMit nnn ────┘

Expansion of snap-options

►─┬─ SYSTEM ─┬───┬─────────┬───┬─ ON ──┬──┬─────────────┬────────────────────►
 └─ TASK ───┘ └─ PHOTO ─┘ └─ OFF ─┘ └─ LIMIT nnn ─┘

Snap Enhancements

Chapter 7: Administrative and Operational Enhancements 301

Parameters

SNAp snap-options

Specifies the type of snap dump or photo snap to write to the DC/UCF log file.

Valid values are the following:

SYSTEM

Specifies whether to write a system snap dump for the specified program. A
system snap dump writes a formatted display of the resources allocated to all
active tasks.

 ON Enables the writing of a system snap dump.

 OFF Disables the writing of a system snap dump.

SYSTEM PHOTO

Specifies whether to write a system photo snap for the specified program. A
system photo snap provides a summary of resources for all active tasks.

 ON Enables the writing of a system photo snap.

 OFF Disables the writing of a system photo snap.

TASK

Specifies whether to write a task snap dump for the specified program. A task
snap dump writes a formatted display of the resources allocated to the task
being snapped.

 ON Enables the writing of a task snap dump.

 OFF Disables the writing of a task snap dump.

TASK PHOTO

Specifies whether to write a task photo snap for the specified program. A task
photo snap provides a summary of the resources for the task being snapped.

 ON Enables the writing of a task photo snap.

 OFF Disables the writing of a task photo snap.

LIMIT nnn

Specifies the total snaps allowed for the specified program. When the snap
limit is reached, snaps are disabled for the program. The maximum snap limit
value is 999.

Example

DCMT VARY PROGRAM program-id SNAP TASK ON LIMIT 5

 V PROGRAM ADSOMAIN SNAP TASK ON LIMIT 5
IDMS DC262015 V210 USER:JBC TASK SNAP VARIED ON FOR PROGRAM
IDMS DC262016 V210 USER:JBC SNAP LIMIT FOR PROGRAM VARIED FROM 000 TO 005

Snap Enhancements

302 Release Summary

More Information

■ For more information about the DCMT VARY PROGRAM command, see the CA IDMS
System Tasks and Operator Commands Guide.

■ For more information about reading dumps, see the CA IDMS Navigational DML
Programming Guide.

■ For more information about how the system logs errors, see the CA IDMS System
Operations Guide.

DCMT VARY TASK Command

Use the DCMT VARY TASK command to dynamically enable system or task snap dumps
for a DC/UCF task or to disable snaps which have been dynamically enabled.

Syntax

►►─── DCMT ─┬───────────────────┬───►
 └─ broadcast-parms ─┘

 ►─── Vary TAsk task-code ──►

 ►─┬─ . . . ───────────────────┬──►◄
 └─ SNAp ─┬─ snap-options ─┬─┘
 └─ LIMit nnn ────┘

Expansion of snap-options

►─┬─ SYSTEM ─┬───┬─────────┬───┬─ ON ──┬──┬─────────────┬────────────────────►
 └─ TASK ───┘ └─ PHOTO ─┘ └─ OFF ─┘ └─ LIMIT nnn ─┘

Snap Enhancements

Chapter 7: Administrative and Operational Enhancements 303

Parameters

SNAp snap-options

Specifies the type of snap dump or photo snap to write to the DC/UCF log file.

Valid values are the following:

SYSTEM

Specifies whether to write a system snap dump for the specified task. A system
snap dump writes a formatted display of the resources allocated to all active
tasks.

 ON Enables the writing of a system snap dump.

 OFF Disables the writing of a system snap dump.

SYSTEM PHOTO

Specifies whether to write a system photo snap for the specified task. A system
photo snap provides a summary of resources for all active tasks.

 ON Enables the writing of a system photo snap.

 OFF Disables the writing of a system photo snap.

TASK

Specifies whether to write a task snap dump for the specified task. A task snap
dump writes a formatted display of the resources allocated to the task being
snapped.

 ON Enables the writing of a task snap dump.

 OFF Disables the writing of a task snap dump.

TASK PHOTO

Specifies whether to write a task photo snap for the specified task. A task
photo snap provides a summary of the resources for the task being snapped.

 ON Enables the writing of a task photo snap.

 OFF Disables the writing of a task photo snap.

LIMIT nnn

Specifies the total snaps allowed for the specified task. When the snap limit is
reached, snaps are disabled for the task. The maximum snap limit value is 999.

Example

DCMT VARY TASK ADS SNAP SYSTEM ON LIMIT 3

 V TASK ADS SNAP SYSTEM ON LIMIT 3
IDMS DC261020 V209 USER:JBC SYSTEM SNAP VARIED ON FOR TASK
IDMS DC261021 V209 USER:JBC SNAP LIMIT FOR TASK VARIED FROM 000 TO 003

Snap Enhancements

304 Release Summary

More Information

■ For more information about the DCMT VARY TASK command, see the CA IDMS
System Tasks and Operator Commands Guide.

■ For more information about reading dumps, see the CA IDMS Navigational DML
Programming Guide.

■ For more information about how the system logs errors, see the CA IDMS System
Operations Guide.

Snap Enhancements

Chapter 7: Administrative and Operational Enhancements 305

DCMT DISPLAY SNAP Command

The DCMT D SNAPS command output is modified to include the status of all active snap
overrides entered for TASK or PROGRAMS.

Examples

DCMT DISPLAY SNAP

D SNAPS
 *** DISPLAY SNAP REQUEST ***
 SYSTEM SNAP STATUS IS OFF (DISABLED)
 SYSTEM SNAP PHOTO STATUS IS OFF (DISABLED)
 TASK SNAP STATUS IS OFF (DISABLED)
 TASK SNAP PHOTO STATUS IS OFF (DISABLED)

Snap Overrides
Pgm/Task Type Limit Task Task Photo System System Photo
JBC1 ASM 12 x x
ADSOMAIN ASM 3 x
RHDCD0EV ASM x x x
JBCABORT ADS 3 x x
JBCTASK2 TSK 999 x

DCMT DISPLAY SNAP With No Overrides Found

 D SNAPS
 *** DISPLAY SNAP REQUEST ***
 SYSTEM SNAP STATUS IS ON (ENABLED)
 SYSTEM SNAP PHOTO STATUS IS ON (ENABLED)
 TASK SNAP STATUS IS ON (ENABLED)
 TASK SNAP PHOTO STATUS IS ON (ENABLED)

No Program/Task Overrides Found

More Information

■ For more information about the DCMT DISPLAY SNAP command, see the CA IDMS
System Tasks and Operator Commands Guide

■ For more information about reading dumps, see the CA IDMS Navigational DML
Programming Guide.

■ For more information about how the system logs errors, see the CA IDMS System
Operations Guide.

Support for Large and Extended Format Files

306 Release Summary

Support for Large and Extended Format Files

CA IDMS now supports large format single volume files in z/OS for database and journal
files and both large and extended format for work files dynamically created by the
REORG utility. Both large and extended format files can have more than 65,535 tracks
on a single volume. For more information about large and extended format files, see the
IBM documentation.

This feature requires z/OS version 1.7 or later.

Large Format Database and Journal Files

The ability to allocate large format database and journal files means that fewer files
need to be defined, referenced, and managed leading to a reduction in the
administrative effort associated with large database environments.

To use this feature, define a database or journal file whose size in tracks exceeds 65,535.
When creating the file, specify DSNTYPE=LARGE in your JCL and be sure to allocate the
file on a single volume.

If you want to combine existing smaller files into fewer larger files, use the following
procedure:

1. Back up by area.

2. Change the file definitions and regenerate the DMCL.

3. Delete the existing files.

4. Reallocate with the new file sizes.

5. Format and then restore by area.

Support for Large and Extended Format Files

Chapter 7: Administrative and Operational Enhancements 307

Large and Extended Format Work Files

The ability for the REORG utility to dynamically create large and extended format files
makes work file allocation easier when reorganizing large databases.

To direct REORG to create large or extended format work files, specify the new DSNTYPE
parameter as described below in one or more associated DSMODEL statements.

CREATE DSMODEL Statement

The CREATE DSMODEL utility statement has been extended in r17 to allow the
specification of the DSNTYPE parameter as a data set attribute.

Syntax

Expansion of dataset-attribute-spec

►►──┬─ . . . ─────────────────┬───►◄
 └─ DSNTYPE ─┬─ EXTREQ ──┬─┘
 ├─ EXTPREF ─┤
 ├─ LARGE ───┤
 └─ BASIC ───┘

SVC Enhancements

308 Release Summary

Parameters

DSNTYPE

Specifies the type attribute for new SMS-managed data sets. DSNTYPE overrides the
DSNTYPE defined in the data class of a new data set. If SMS is not active, DSNTYPE is
ignored.

EXTREQ

Specifies extended format. This option is valid for VSAM and sequential data sets
only.

EXTPREF

Specifies extended as the preferred format. The data set will be allocated as
extended if it is either VSAM or sequential; otherwise, it will be allocated as a basic
format data set.

LARGE

Specifies large format. This option is valid for sequential non-VSAM data sets only.

BASIC

Specifies basic format. This option is valid for sequential non-VSAM data sets only.

Usage

Extended and large format files

Large and extended format data sets can have more than 65,535 tracks on a single
volume, making them particularly useful for storing large amounts of data. For more
information about the characteristics and limitations associated with extended and
large format files, refer to the appropriate IBM documentation.

More Information

For more information about the REORG and CREATE DSMODEL utility statements, see
the CA IDMS Utilities Guide.

SVC Enhancements

This section describes the enhancements made to the SVC.

SVC Enhancements

Chapter 7: Administrative and Operational Enhancements 309

Default to the Secured SVC

This feature prevents the unintentional installation of the unsecured version of the SVC
on z/OS systems only.

The CVKEY is now a mandatory parameter with no default value in both the SVC and the
install procedure. In addition to the existing valid values of 1 through 15, a value of * can
be used to indicate that the unsecured SVC should be generated.

The following steps are required prior to performing the install procedure and any
subsequent rebuilds of the SVC:

1. Study the "CA IDMS z/OS System Integrity Statement" in SAMPJCL.

2. Study and understand the CVKEY operand explanations in the CA IDMS Installation
and Maintenance Guide—z/OS and CA IDMS System Operations Guide.

3. Ensure the system startup module is now located in an authorized library.

4. Update SYS1.PAMLIB(SCHEDnn) to indicate the key chosen for CVKEY.

5. We recommend that AUTHREQ=YES also be coded.

Load the SVC Using CAIRIM

Module IDMSMSVA has been added to the list of modules required to be present when
CAIRIM is run to load an r17 SVC.

CAIRIM can now be used to refresh a copy of IDMSMSVA or RHDCSSFM without
replacing the SVC by using the following form of the REFRESH parameter:

PRODUCT(CA IDMS) VERSION(GJH0) INIT(GJH0INIT) PARM(REFRESH(module-name))

Note: When a module is refreshed, all CVs and batch IDMS jobs that are using the
module being refreshed must be ended prior to the REFRESH. Once the module has
been refreshed, CVs and batch jobs can be restarted.

The r17 version of RHDCSSFM is downward compatible. If you are using an earlier
release of CA IDMS, the previous version of this module may not have been refreshed
when the r17 SVC was installed. This module should be explicitly refreshed.

Note: For more information, see the CA IDMS Installation and Maintenance
Guide—z/OS.

Wait for In-Use Data Set

310 Release Summary

Wait for In-Use Data Set

When dynamically allocating a data set on z/OS, local jobs and CV startup will now
optionally wait for the DSN if it is in use by another job. To enable waiting, you must
specify one of the following new SYSIDMS parameters with the appropriate option
selected:

DYNALLOC_WAIT=ON|OFF

Specify ON to force dynamic allocation to do an ENQ wait for the DSN until it
becomes available.

Specify OFF to allow the dynamic allocation request to fail when a DSN is not
available.

When the DYNALLOC_WAIT_SECONDS option is specified with a non-zero value,
this option is ignored.

This option applies to local mode jobs and to CV startup.

DYNALLOC_WAIT_SECONDS=:pv.nnn:epv.

Specifies the number of seconds that dynamic allocation waits when a DSN is
unavailable. After waiting, the request is retried and if the DSN is still unavailable,
the process repeats until it is successful or the job is cancelled.

Specify zero seconds to allow the dynamic allocation request to fail. If specified, the
DYNALLOC_WAIT option can override this option.

If this option is specified with a non-zero value, it overrides the DYNALLOC_WAIT
option.

This option applies to local mode jobs and to CV startup.

Limits: 255 seconds

Note: The IDMSMSVA module is required to use this feature. It must beloaded with the
r17 SVC. See Load the SVC Using CAIRIM for a description of CAIRIM changes.

Note: For more information about SYSIDMS, see the CA IDMS Common Facilities Guide.

Forcing a Database File into Input Mode

Chapter 7: Administrative and Operational Enhancements 311

Forcing a Database File into Input Mode

The IDMSIOX2 Pre-Open exit call now supports forcing the database file to input mode
by setting a new IOX2INPUT flag. If the Pre-Open exit sets this flag, the database file is
opened in input mode and does not get reopened in update mode on a WRITE. If the
IDMSIOX2 Pre-Write exit does not intercept a write request, an error is issued.

The IDMSIOX2 Pre-Write exit also supports a new IOX2REOPEN flag that causes the
database file to be reopened on the next write call. The file open mode does not change
for the current write. If the IDMSIOX2 Pre-Open exit does not force the file to input
mode on the reopen, it is opened in update to satisfy the write. This allows the exit to
control the open mode for a database file.

The IOX2INPUT and IOX2REOPEN flags are documented in the #IOX2DS copy book.

The JCL LABEL=(,,,IN) option is now honored for EXCP files. When specified, the file is
opened in input mode. Any writes to this file result in a write error. This option is not
supported by dynamic allocation or preserved if a file is deallocated. This option is
independent of the IDMSIOX2 open mode support and overrides options set by the exit.

Miscellaneous changes for z/VSE

Change to operator communication

When CV starts up there will no longer be an automatic outstanding reply on the
operator console. This is the way it was prior to CA IDMS r15. If the operator wishes to
enter a command they must use the z/VSE MSG XX command in one of two ways.

Issue MSG XX,DATA=ABC where XX is the partition Id and ABC is a DC/UCF operator or
task command. The command will be processed and the results displayed. With this
form there will never be an outstanding reply id.

Issue MSG XX where is XX is the partition number. DC will respond with a "XX-nnnn
REPLY WITH REQUEST TO IDMS VNN" prompt where nnnn is the replid and NN is the
DC/UCF system number. The operator can then reply to this number and DC will prompt
for another reply. The outstanding reply will be reissued after passing each command to
DC/UCF until the operator replies with a null command. At this point the prompt will not
be reissued, and there will be no outstanding reply. This allows the operator to enter
multiple commands without having to enter MSG XX each time. The operator can leave
the outstanding reply on the console for as long as they wish, or can terminate it
whenever they wish.

Miscellaneous changes for z/VSE

312 Release Summary

Generating the SVC

You may now generate one SVC using the most recent release of CA IDMS and use that
SVC for previous releases of CA IDMS which are still supported. Generating an SVC for
each release is still supported but not recommended.

Chapter 8: Application Development 313

Chapter 8: Application Development

This chapter describes the application development enhancements.

This section contains the following topics:

Accept Extended Database Statistics DML Command (see page 313)
Accept System ID DML Command (see page 316)
ADSORPTS Enhancements (see page 316)
Assembler Programming Enhancements (see page 317)
Built-In Functions for Date-Time Stamp Conversions (see page 319)
COBOL Compiler Debugging Line Support (see page 333)
FIND/OBTAIN WITHIN SET USING SORT KEY DML Statement (see page 334)
IDMSIN01 Environment Information Function (see page 335)

Accept Extended Database Statistics DML Command

The ACCEPT database statistics command is enhanced with a new parameter that lets
you acquire the extended VIB statistics provided as part of the CA IDMS runtime system.
You can code this new parameter in a COBOL or PL/I program or in a CA ADS dialog.

If you manually coded the expansion of the ACCEPT database statistics verb in a
program and hard coded the extra parameter on the command to acquire the extended
numbers, you can remove this code and replace it with the appropriate new DML
command. In addition, you can replace the hard coded record structure with a copy of
the CA IDMS-provided record from the data dictionary. Implementing either one of
these options requires that you precompile the program, and compile and link the
appropriate load modules.

COBOL Syntax

►►─── ACCEPT db-statistics FROM IDMS-STATISTICS ──────────────────────────────►

 ►───┬─────────────────────────────┬─ . ──────────────────────────────────────►◄
 └─ EXTENDED db-stat-extended ─┘

PL/l Syntax

►►─── ACCEPT IDMS_STATISTICS INTO (db-statistics-field) ──────────────────────►

 ►───┬───────────────────────────────┬─ ; ────────────────────────────────────►◄
 └─ EXTENDED (db-stat-extended) ─┘

CA ADS Syntax

►►─── ACCept ─┬─ STATISTICS ─┬─ into db-statistics-variable ──────────────────►
 └─ STATS ──────┘

 ►─── FROM IDMS-STATISTICS ─┬─────────────────────────────┬ . ────────────────►◄
 └─ EXTENDED db-stat-extended ─┘

Accept Extended Database Statistics DML Command

314 Release Summary

Parameter

db-stat-extended

Specifies the name of a fullword-aligned 100-byte field in program variable storage.

The data copied from IDMS-STATISTICS to db-stat-extended is formatted as follows for
COBOL and CA ADS:

01 DB-STAT-EXTENDED

 03 SR8-SPLITS PIC S9(8) COMP.

 03 SR8-SPAWNS PIC S9(8) COMP.

 03 SR8-STORES PIC S9(8) COMP.

 03 SR8-ERASES PIC S9(8) COMP.

 03 SR7-STORES PIC S9(8) COMP.

 03 SR7-ERASES PIC S9(8) COMP.

 03 BINARY-SEARCHES-TOTAL PIC S9(8) COMP.

 03 LEVELS-SEARCHED-TOTAL PIC S9(8) COMP.

 03 ORPHANS-ADOPTED PIC S9(8) COMP.

 03 LEVELS-SEARCHED-BEST PIC S9(4) COMP.

 03 LEVELS-SEARCHED-WORST PIC S9(4) COMP.

 03 FILLER PIC X(60).

For COBOL, you can copy this record layout from the data dictionary by coding the
following statement in program variable storage:

COPY IDMS DB-STAT-EXTENDED.

For CA ADS, the record DB-STAT-EXTENDED is defined in the dictionary when CA IDMS is
installed and can be included as a dialog work record.

The data copied from IDMS_STATISTICS to db-stat-extended is formatted as follows for
PL/l:

DECLARE

 01 DB_STAT_EXTENDED,

 03 SR8_SPLITS FIXED BINARY(31),

 03 SR8_SPAWNS FIXED BINARY(31),

 03 SR8_STORES FIXED BINARY(31),

 03 SR8_ERASES FIXED BINARY(31),

 03 SR7_STORES FIXED BINARY(31),

 03 SR7_ERASES FIXED BINARY(31),

 03 BINARY_SEARCHES_TOTAL FIXED BINARY(31),

 03 LEVELS_SEARCHED_TOTAL FIXED BINARY(31),

 03 ORPHANS_ADOPTED FIXED BINARY(31),

 03 LEVELS_SEARCHED_BEST FIXED BINARY(15),

 03 LEVELS_SEARCHED_WORST FIXED BINARY(15),

 03 FILLER___1 CHARACTER(60);

You can copy this record layout from the data dictionary by coding the following
statement in program variable storage:

Accept Extended Database Statistics DML Command

Chapter 8: Application Development 315

INCLUDE IDMS (DB_STAT_EXTENDED).

Extended Statistics Fields

Field Description

SR8 splits The number of SR8 records that were split during
the life of the run-unit.

SR8 spawns The number of times that a new level of an index
was created due to the splitting of the index's
top level SR8.

SR8 stores The number of SR8 records of all levels that were
stored into the database.

SR8 erases The number of SR8 records of all levels that were
erased from the database.

SR7 stores The number of SR7 records stored into the
database.

SR7 erases The number of SR7 records erased from the
database.

Total binary searches The total number of times the DBMS initiated a
binary search against an index.

Total levels searched Incremented every time that the DBMS goes
down a level during a binary search throughout
the life of the entire run-unit across all accessed
indexes.

Orphans adopted The number of orphaned user records that were
adopted back to their referencing level-0 SR8.

Fewest levels searched (best) The fewest number of levels walked during a
binary search throughout the life of the run-unit.

Most levels searched (worst) The greatest number of levels walked during a
binary search throughout the life of the run-unit.

More Information

■ For more information about using the ACCEPT database statistics command in
COBOL programs, see the CA IDMS DML Reference Guide for COBOL.

■ For more information about using the ACCEPT database statistics command in PL/I
programs, see the CA IDMS DML Reference Guide for PL/I.

■ For more information about using the ACCEPT database statistics command in CA
ADS, see the CA ADS Reference Guide.

Accept System ID DML Command

316 Release Summary

Accept System ID DML Command

The ACCEPT command is enhanced to include a new SYSTEM ID parameter that lets you
retrieve the system ID of the current DC/UCF system. You can code the SYSTEM ID
parameter in a COBOL or PL/I program or in a CA ADS dialog.

COBOL Syntax

►►─── ACCEPT ─┬─ SYSTEM ID ──┬─ INTO return-location . ──────────────────────►◄
 └─ . . . ──────┘

PL/I Syntax

►►─── ACCEPT ─┬─ SYSTEM ID ──┬─ INTO return-location ; ──────────────────────►◄
 └─ . . . ──────┘

CA ADS Syntax

►►─── ACCEPT ─┬─ SYSTEM ID ──┬─ INTO location . ─────────────────────────────►◄
 └─ . . . ──────┘

Parameter

SYSTEM ID

Specifies the 8 character name (nodename) by which the DC/UCF system is known
to other nodes in the DC/UCF communications network.

More Information

■ For more information about using the ACCEPT command in COBOL programs, see
the CA IDMS DML Reference Guide for COBOL.

■ For more information about using the ACCEPT command in PL/I programs, see the
CA IDMS DML Reference Guide for PL/I.

■ For more information about using the ACCEPT command in CA ADS, see the CA ADS
Reference Guide.

ADSORPTS Enhancements

ADSORPTS enhancements include the following:

■ SQL table expansion

■ Unlimited dialog reporting

SQL Table Expansion

ADSORPTS is enhanced to report on SQL tables as it reports on records. When a RECORD
report is requested, ADSORPTS now provides column names and descriptions for SQL
tables in the same format that it provides field names and descriptions for records.

Assembler Programming Enhancements

Chapter 8: Application Development 317

Unlimited Dialog Reporting

ADSORPTS is enhanced to report on an unlimited number of dialogs and eliminate the
message: Dialog Name Table too small. This message was displayed in the previous
release when the total number of dialog names, masks, and ranges that were requested
in a single ADSORPTS job step exceeded a limit of 200.

You no longer need to break migrations into multiple steps of less than 200 requests
each.

More Information

For more information about ADSORPTS, see the CA ADS Reference Guide.

Assembler Programming Enhancements

This section describes the enhancements that are usable in Assembler programs.

#CHAP

The #CHAP DML statement is enhanced to change the dispatching priority of the issuing
task relative to its current priority.

Syntax

►►─┬─────────┬─ #CHAP PRI=priority ─┬────────────────────────┬─────────────►◄
 └─ label ─┘ └─ ACTION= ─┬─ SET ◄─────┤
 ├─ ADD ──────┤
 └─ SUBTRACT ─┘

Assembler Programming Enhancements

318 Release Summary

Parameters

PRI=

Specifies a new dispatching priority for the issuing task.

priority

A register that contains the priority in the low-order byte, the symbolic name of a
user-defined field that contains the priority, or an absolute expression in the range
0 through 240.

ACTION=

Specifies the meaning of the priority value using one of the following options:

SET

The priority is an absolute value. SET is the default.

ADD

The priority is a relative value and is added to the task's current priority.

SUBTRACT

The priority is a relative value and is subtracted from the task's current priority.

Example

The following example lowers the dispatching priority to one less than the current
dispatching priority:

#CHAP PRI=1,ACTION=SUBTRACT

Status Codes

The change-priority request is unconditional; any return code other than X'00' results in
an abend of the task.

More Information

For more information about the #CHAP DML statement, see the CA IDMS DML
Reference Guide for Assembler.

Built-In Functions for Date-Time Stamp Conversions

Chapter 8: Application Development 319

#GETSTG

The #GETSTG DML statement is enhanced to include a new parameter that requests the
system to allocate storage above the 16-megabyte line.

Syntax

 ►── #GETSTG TYPE= ─ . . . ───►

 ►─┬─────────────────────┬──►
 └─ ,LOC= ─┬─ ANY ◄ ──┬┘
 ├─ BELOW ──┤
 └─ XA ─────┘

Parameters

LOC=

Indicates where the system allocates storage.

ANY

(Default); indicates that storage can be allocated anywhere in the region.

BELOW

Requests that the system allocate storage below the 16-megabyte line.

XA

Requests that the system allocate storage above the 16-megabyte line. This option
is ignored if the system has no XA storage pools defined or if it is not XA-enabled.

More Information

For more information about the #GETSTG DML statement, see the CA IDMS DML
Reference Guide for Assembler.

Built-In Functions for Date-Time Stamp Conversions

CA IDMS is enhanced to enable CA ADS dialogs and CA OLQ procedures to call the
date-time functions of IDMSIN01 through new date-time stamp built-in functions.

CA ADS Built-In Functions

This section describes the new date-time stamp built-in functions that you can code into
existing or new CA ADS dialogs.

Built-In Functions for Date-Time Stamp Conversions

320 Release Summary

Date-Time Stamp Functions

Date-time stamp built-in functions convert external date-time stamps to internal
date-time stamps. Conversely, internal date-time stamps can be converted to external
date-time stamps. The date-time stamp built-in functions call the date-time functions of
IDMSIN01.

Note: For more information about IDMSIN01, see the CA IDMS Callable Services Guide.

In the following table, 8-byte binary fields are defined as PIC 9(16) COMPUTATIONAL
fields, while display fields are defined with PIC X definitions.

Note: For more information about the date-time stamp formats used by the date-time
stamp functions, see the chapter "Representation of Date/Time Values" in the CA IDMS
SQL Reference Guide.

Function Keyword What it does

External Date DATEEXT Returns a 10-byte external date stamp as an
8-byte internal binary date stamp

Internal Date DATEINT Returns an 8-byte internal binary date stamp
as a displayable 10-byte date stamp

Display Date Time DISPDT Returns the current date-time stamp as a
26-byte displayable date-time stamp

External Date-Time DATETIMX Returns a 26-byte external date-time stamp as
an 8-byte internal binary date-time stamp

Internal Date-Time DTINT Returns an 8-byte internal date-time stamp as
a 26-byte displayable date-time stamp

External Time TIMEEXT Returns an 8-byte displayable time stamp as
an 8-byte binary time stamp

Internal Time TIMEINT Returns an 8-byte internal time stamp as a
displayable 8-byte time stamp

DISPDT

Purpose

Returns the current date-time stamp as a 26-byte displayable date-time stamp. The
returned value is in the format CCYY-MM-DD-HH.MM.SS.NNNNNN.

Syntax

◄◄────┬─ DISPLAY-DATE-TIME ──┬────────── () ──────────────────────────────────►◄
 ├─ DISPDT ─────────────┤
 └─ DDAT ───────────────┘

Built-In Functions for Date-Time Stamp Conversions

Chapter 8: Application Development 321

Example

In the following example, the DISPDT function is used to move the current date-time
stamp to the field DATE-TIME-FIELD. The DISPDT function is executed on August 1, 2007
at approximately 3:37 p.m.

Statement:

 MOVE DISPDT() TO DATE-TIME-FIELD

Returned string:

 '2007-08-01-15.37.11.876526'

DATEEXT

Purpose

Returns a 10-byte external date stamp as an 8-byte internal binary date stamp.

Syntax

◄◄────┬─ DATE-EXTERNAL ──┬────────── (date-stamp) ────────────────────────────►◄
 ├─ DATEEXT ────────┤
 └─ DEXT ───────────┘

Parameter

date-stamp

Specifies the 10-byte representation of the date-stamp in the format CCYY-MM-DD.

date-stamp can be one of the following:

■ A string literal enclosed in single quotation marks

■ A name of a user-defined variable data field containing the date string

Example

In the following example, the DATEEXT function is used to convert a 10-byte string date,
with the format CCYY-MM-DD, to an 8-byte binary value:

Initial value:

 DATE-FIELD: '2007-08-01'

Statement:

 MOVE DATEEXT (DATE-FIELD) TO DATE-BINARY

Returned value:

 x0165DB0000000000

Built-In Functions for Date-Time Stamp Conversions

322 Release Summary

DATEINT

Purpose

Returns an 8-byte internal binary-date stamp as a displayable 10-byte date stamp. The
returned value is in the format CCYY-MM-DD.

Syntax

◄◄────┬─ DATE-INTERNAL ──┬────────── (binary-date) ───────────────────────────►◄
 ├─ DATEINT ────────┤
 └─ DINT ───────────┘

Parameter

binary-date

Specifies the user-defined variable that contains an 8-byte internal binary-date
stamp.

binary-date must be the name of a user-defined variable that contains an 8-byte
internal binary date stamp.

Example

In the following example, the DATEINT function converts an 8-byte internal date stamp
to a 10-byte displayable value. The returned value is in the format CCYY-MM-DD.

Initial value:

 DATE-STAMP-BINARY: x0165DB0000000000

Statement:

 MOVE DATEINT(DATE-STAMP-BINARY) TO DATE-FIELD

Returned string:

 '2007-08-01'

DATETIMX

Purpose

Returns a 26-byte external date-time stamp as an 8-byte date-time internal binary
stamp.

Syntax

◄◄────┬─ DATE-TIME-EXTERNAL ──┬────────── (date-time-stamp) ──────────────────►◄
 ├─ DATETIMX ────────────┤
 └─ DTEX ────────────────┘

Built-In Functions for Date-Time Stamp Conversions

Chapter 8: Application Development 323

Parameter

date-time-stamp

Specifies the 26-byte date-time-stamp to convert to an 8-byte binary
date-time-stamp.

date-time-stamp can be one of the following:

■ A string literal enclosed in quotation marks in the format
CCYY-MM-DD-HH.MM.SS.NNNNNN

■ The name of a user-defined variable containing the date-time string

Example

In the following example, the DATETIMX function converts a 26-byte string date-time,
with the format CCYY-MM-DD-HH.MM.SS.NNNNNN, to an 8-byte binary value:

Initial value:

 DT-FIELD: '2007-08-01-15.37.11.876526'

Statement:

 MOVE DATETIMX(DT-FIELD) TO DATE-TIME-BINARY

Returned value:

 x0165DB0DBA7D5FEE

DTINT

Purpose

Returns an 8-byte internal binary date-time stamp as a 26-byte displayable date-time
stamp.

Syntax

◄◄──┬─ DATE-TIME-INTERNAL ──┬─────── (binary-date-time-stamp) ────────────────►◄
 ├─ DTINT ───────────────┤
 └─ DTIN ────────────────┘

Built-In Functions for Date-Time Stamp Conversions

324 Release Summary

Parameter

binary-date-time-stamp

Specifies the user-defined variable that contains an 8-byte internal binary date-time
stamp.

binary-date-time stamp must be the name of a user-defined variable that contains
an 8-byte internal binary date-time stamp.

Example

In the following example, the DTINT function converts an 8-byte internal date-time
stamp to a 26-byte displayable date-time stamp. The returned value is in the format
CCYY-MM-DD-HH.MM.SS.NNNNNN.

Initial value:

 DATE-TIME-STAMP-BINARY: x0165DB0DBA7D5FEE

Statement:

 MOVE DTINT(DATE-TIME-STAMP-BINARY) TO DT-FIELD

Returned string:

 '2007-08-01-15.37.11.876526'

TIMEEXT

Purpose

Returns an 8-byte displayable time as an 8-byte internal binary time stamp.

Syntax

◄◄────┬─ TIME-EXTERNAL ──┬────────── (time-stamp) ────────────────────────────►◄
 ├─ TIMEEXT ────────┤
 └─ TIMX ───────────┘

Built-In Functions for Date-Time Stamp Conversions

Chapter 8: Application Development 325

Parameter

time-stamp

Specifies the 8-byte displayable time stamp to be converted into an 8-byte binary
internal time stamp.

time-stamp can be one of the following:

■ A string literal enclosed in quotation marks in the format HH.MM.SS

■ The name of a user-defined variable that contains the 8-byte time stamp string

Example

In the following example, the TIMEEXT function is used to convert an 8-byte displayable
time stamp to an 8-byte binary internal time stamp in the format HH.MM.SS:

Initial value:

 TIME-FIELD: '17.08.09'

Statement:

 MOVE TIMEEXT(TIME-FIELD) TO TIME-BINARY

Returned value:

 x0000000F0F900000

TIMEINT

Purpose

Returns an 8-byte internal binary time stamp as a displayable 8-byte time stamp.

Syntax

◄◄────┬─ TIME-INTERNAL ──┬────────── (binary-time-stamp) ─────────────────────►◄
 ├─ TIMEINT ────────┤
 └─ TINT ───────────┘

Built-In Functions for Date-Time Stamp Conversions

326 Release Summary

Parameters

binary-time-stamp

Specifies the 8-byte internal binary time stamp.

binary-time-stamp must be the name of a user-defined variable that contains an
8-byte internal binary time stamp.

Example

In the following example, the TIMEINT function converts an 8-byte internal binary time
stamp to an 8-byte displayable time stamp in the format HH.MM.SS:

Initial value:

 TIME-BINARY: x0000000F0F900000

Statement:

 MOVE TIMEINT (TIME-BINARY) TO TIME-FIELD

Returned string:

 '17.08.09'

More Information

For more information about built-in functions, see the CA ADS Reference Guide.

CA OLQ Procedures

This section describes the new date-time stamp built-in functions that you can code into
existing or new CA OLQ procedures. Date-time stamp built-in functions convert external
date-time stamps to internal date-time stamps. Conversely, internal date-time stamps
can be converted to external date-time stamps.

Built-In Functions for Date-Time Stamp Conversions

Chapter 8: Application Development 327

Invoking Built-In Functions

You can invoke the built-in functions by specifying an invocation name. These functions
call the date-time functions of IDMSIN01.

Note: For more information about IDMSIN01, see the CA IDMS Callable Services Guide.

Note: For more information about the date-time stamp formats used by the date-time
stamp functions, see the chapter "Representation of Date/Time Values" in the CA IDMS
SQL Reference Guide.

CA OLQ Date-Time Stamp Built-In Functions:

Function Invocation Example

Return a 10-byte external date
as an 8-byte internal binary
date stamp

DATE-EXTERNAL DATEEXT
DEXT

COMPUTE DATE-BINARY = DATEEXT(DATE-FIELD)

Return an 8-byte internal
binary date stamp as a
displayable 10-byte date stamp

DATE-INTERNAL DATEINT
DINT

COMPUTE DATE-FIELD =
DATEINT(DATE-STAMP-BINARY)

Return a 26-byte external
date-time stamp as an 8-byte
internal binary date-time stamp

DATE-TIME-EXTERNAL
DATETIMX DTEX

COMPUTE DATE-TIME-BINARY =
DATETIMX(DT-FIELD)

Return an 8-byte internal
binary date-time stamp as a
26-byte displayable date-time
stamp

DATE-TIME-INTERNAL
DTINT DTIN

COMPUTE DT-FIELD = DTINT(DATE-TIME-STAMP)

Return an 8-byte displayable
time as an 8-byte internal
binary time stamp

TIME-EXTERNAL TIMEEXT
TIMX

COMPUTE TIME-BINARY = TIMEEXT(TIME-FIELD)

Return an 8-byte internal
binary time stamp as a
displayable 8-byte time stamp

TIME-INTERNAL TIMEINT
TINT

COMPUTE TIME-FIELD = TIMEINT(TIME-BINARY)

Built-In Functions for Date-Time Stamp Conversions

328 Release Summary

DATEEXT

Purpose

The date external function returns a 10-byte external date as an 8-byte internal binary
date stamp.

Syntax

◄◄────┬─ DATE-EXTERNAL ─┬─ (date-stamp) ──────────────────────────────────────►◄
 ├─ DATEEXT ───────┤
 └─ DEXT ──────────┘

Invocation names:

DATE-EXTERNAL

DATEEXT

DEXT

Parameter

date-stamp

Represents the 10-byte date stamp in the format CCYY-MM-DD.

date-stamp can be one of the following:

■ A string literal enclosed in single quotation marks

■ A name of a user-defined variable data field containing the date string

Example

This example uses the DATEEXT function to convert a 10-byte string date, with the
format CCYY-MM-DD, to an 8-byte binary value.

Initial value:

 DATE-FIELD: '2007-08-01'

Statement:

 COMPUTE DATE-BINARY = DATEEXT(DATE-FIELD).

Returned value:

 x0165DB0000000000

Built-In Functions for Date-Time Stamp Conversions

Chapter 8: Application Development 329

DATEINT

Purpose

The date internal function returns an 8-byte internal binary date stamp as a displayable
10-byte date stamp. The returned value is in the format CCYY-MM-DD.

Syntax

◄◄──┬─ DATE-INTERNAL ──┬─────── (binary-date) ───────────────────────────────►◄
 ├─ DATEINT ────────┤
 └─ DINT ───────────┘

Invocation names:

DATE-INTERNAL

DATEINT

DINT

Parameter

binary-date

Specifies the name of a user-defined variable that contains an 8-byte internal binary
date.

Example

This example uses the DATEINT function to convert an 8-byte internal date stamp to a
10-byte displayable value. The returned value is in the format CCYY-MM-DD.

Initial value:

 DATE-STAMP-BINARY: x0165DB0000000000

Statement:

 COMPUTE DATE-FIELD = DATEINT(DATE-STAMP-BINARY).

Returned string:

 '2007-08-01'

DATETIMX

Purpose

The date-time external function returns a 26-byte external date-time stamp as an 8-byte
date-time internal binary stamp.

Syntax

◄◄────┬─ DATE-TIME-EXTERNAL ─┬─ (date-time-stamp) ────────────────────────────►◄
 ├─ DATETIMX ───────────┤
 └─ DTEX ───────────────┘

Built-In Functions for Date-Time Stamp Conversions

330 Release Summary

Invocation names:

DATE-TIME EXTERNAL

DATETIMX

DTEX

Parameter

date-time-stamp

Specifies the 26-byte date-time stamp to convert to an 8-byte binary date-time
stamp.

date-time-stamp can be one of the following:

■ A string literal enclosed in quotation marks in the format
CCYY-MM-DD-HH.MM.SS.NNNNNN

■ The name of a user-defined variable containing the date-time string

Example

This example uses the DATETIMX function to convert a 26-byte string date, with the
format CCYY-MM-DD-HH.MM.SS.NNNNNN, to an 8-byte binary value.

Initial value:

 DT-FIELD: '2007-08-01-15.37.11.876526'

Statement:

 COMPUTE DATE-TIME-BINARY = DATETIMX(DT-FIELD)

Returned value:

 x0165DB0DBA7D5FEE

DTINT

Purpose

The date internal function returns an 8-byte internal binary date-time stamp as a
26-byte displayable date-time stamp.

Syntax

◄◄──┬─ DATE-TIME-INTERNAL ──┬─ (binary-date-time-stamp) ─────────────────────►◄
 ├─ DTINT ───────────────┤
 └─ DTIN ────────────────┘

Built-In Functions for Date-Time Stamp Conversions

Chapter 8: Application Development 331

Invocation names:

DATE-TIME-INTERNAL

DTINT

DTIN

Parameter

binary-date-time-stamp

Specifies the name of a user-defined variable that contains an 8-byte internal binary
date-time stamp.

Example

This example uses the DTINT function to convert an 8-byte internal date-time stamp to a
26-byte displayable date-time stamp. The returned value is in the format
CCYY-MM-DD-HH.MM.SS.NNNNNN.

Initial value:

 DATE-TIME-STAMP-BINARY: x0165DB0DBA7D5FEE

Statement:

 COMPUTE DT-FIELD = DTINT(DATE-TIME-STAMP-BINARY)

Returned string:

 '2007-08-01-15.37.11.'

TIMEEXT

Purpose

The time external function returns an 8-byte displayable time as an 8-byte internal
binary time stamp.

Syntax

◄◄────┬─ TIME-EXTERNAL ─┬─ (time-stamp) ──────────────────────────────────────►◄
 ├─ TIMEEXT ───────┤
 └─ TIMX ──────────┘

Built-In Functions for Date-Time Stamp Conversions

332 Release Summary

Invocation names:

TIME-EXTERNAL

TIMEEXT

TIMX

Parameter

time-stamp

Specifies the 8-byte displayable time stamp to be converted into an 8-byte binary
internal time stamp.

time-stamp can be one of the following:

■ A string literal enclosed in quotation marks in the format HH.MM.SS

■ The name of a user-defined variable that contains the 8-byte time stamp string

Example

This example uses the TIMEEXT function to convert an 8-byte displayable time stamp to
an 8-byte binary internal time stamp in the format HH.MM.SS.

Initial value:

 TIME-FIELD: '17.08.09'

Statement:

 COMPUTE TIME-BINARY = TIMEEXT(TIME-FIELD)

Returned Value:

 x0000000F0F900000

TIMEINT

Purpose

The time internal function returns an 8-byte internal binary time stamp as a displayable
8-byte time stamp.

Syntax

◄◄────┬─ TIME-INTERNAL ─┬─ (binary-time-stamp) ───────────────────────────────►◄
 ├─ TIMEINT ───────┤
 └─ TINT ──────────┘

COBOL Compiler Debugging Line Support

Chapter 8: Application Development 333

Invocation names:

TIME-INTERNAL

TIMEINT

TINT

Parameters

binary-time-stamp

Specifies the 8-byte internal binary time stamp.

binary-time-stamp must be the name of a user-defined variable that contains an
8-byte internal binary time stamp.

Example

This example uses the TIMEINT function to convert an 8-byte internal binary time stamp
to an 8-byte displayable time stamp in the format HH.MM.SS.

Initial value:

 TIME-BINARY: x0000000F0F900000

Statement:

 COMPUTE TIME-FIELD = TIMEINT(TIME-BINARY)

Returned string:

 '17.08.09'

More Information

For more information about built-in functions, see the CA OLQ Reference Guide.

COBOL Compiler Debugging Line Support

Debugging line support is provided in COBOL programs so that DML commands can be
designated as debugging lines.

A debugging line is a statement that is compiled only when the compile-time switch is
activated through COBOL syntax. If the debugging switch is activated, the COBOL
compiler compiles the debugging lines into the object. If not activated, the debugging
lines are treated as comments.

If the debugging line is also a CA IDMS DML statement, the COBOL precompiler
propagates the "D" in column 7 on all generated lines, so that it is passed to the COBOL
compiler and processed properly. If a DML statement is continued over multiple lines,
you should only specify the "D" in column 7 of the first line of the DML statement.

FIND/OBTAIN WITHIN SET USING SORT KEY DML Statement

334 Release Summary

FIND/OBTAIN WITHIN SET USING SORT KEY DML Statement

A COBOL program containing the FIND/OBTAIN WITHIN SET USING SORT KEY DML
statement might compile with a syntax error although it compiled successfully on a prior
release. CA IDMS now ensures compliance with the following rules when processing a
FIND/OBTAIN WITHIN SET USING SORT KEY DML statement:

■ You cannot specify multiple field names as the sort key in the USING clause.

■ You must terminate the DML statement with a period or semicolon after specifying
the sort key in the USING clause, unless the statement is followed by an ON clause.

The IDMSDMLC precompiler is enhanced to detect extra parameters and issue a syntax
error at precompile time.

Note: For more information about the FIND/OBTAIN WITHIN SET USING SORT KEY DML
statement, see the CA IDMS DML Reference Guide for COBOL.

IDMSIN01 Environment Information Function

Chapter 8: Application Development 335

IDMSIN01 Environment Information Function

An application program can call IDMSIN01 with a new function to receive a block of
runtime information, such as the mode the CA IDMS application is running under.

When calling IDMSIN01 from a COBOL program, the first two parameters passed are
always the address of an RPB block and the address of the function REQUEST-CODE and
RETURN-CODE fields. The rest of the parameters depend on what service is being called.

COBOL programs can use standard calling conventions. The following is an example of
calling IDMSIN01 to retrieve a block of runtime information:

 ENVIRONMENT DIVISION.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

**

* The following is the 1st parameter on all IDMSIN01 calls

**

 01 RPB.

 02 FILLER PIC X(36).

**

* The following is the 2nd parameter on all IDMSIN01 calls

**

 01 REQ-WK.

 02 REQUEST-CODE PIC S9(8) COMP.

 88 IN01-FN-TRACE VALUE 00.

 88 IN01-FN-NOTRACE VALUE 01.

 88 IN01-FN-GETPROF VALUE 02.

 88 IN01-FN-SETPROF VALUE 03.

 88 IN01-FN-GETMSG VALUE 04.

 88 IN01-FN-GETDATE VALUE 05.

 88 IN01-FN-GETUSER VALUE 08.

 88 IN01-FN-SYSCTL VALUE 10.

 88 IN01-FN-TRINFO VALUE 16.

 88 IN01-FN-TXNSON VALUE 28.

 88 IN01-FN-TXNSOFF VALUE 29.

 88 IN01-FN-RRSCTX VALUE 30.

 88 IN01-FN-STRCONV VALUE 34.

 88 IN01-FN-ENVINFO VALUE 36.

 02 REQUEST-RETURN PIC S9(8) COMP.

**

* The following work fields are used by a variety of

* IDMSIN01 calls

**

 01 WORK-FIELDS.

IDMSIN01 Environment Information Function

336 Release Summary

 02 WK-DTS-FORMAT PIC S9(8) COMP VALUE 0.

 02 LINE-CNT PIC S9(4) COMP.

 02 WK-DTS PIC X(8).

 02 WK-CDTS PIC X(26).

 02 WK-KEYWD PIC X(8).

 02 WK-VALUE PIC X(32).

 02 WK-DBNAME PIC X(8).

 02 WK-USERID PIC X(32).

 02 WK-SYSCTL PIC X(8).

 02 WK-TIME-INTERNAL PIC X(8).

 02 WK-TIME-EXTERNAL PIC X(8).

 02 WK-DATE-INTERNAL PIC X(8).

 02 WK-DATE-EXTERNAL PIC X(10).

 02 WK-RRS-FAKE-FUNCTION PIC S9(4) COMP.

 88 IN01-FN-RRSCTX-GET VALUE 01.

 88 IN01-FN-RRSCTX-SET VALUE 02.

 02 WK-RRS-FUNCTION-REDEF REDEFINES WK-RRS-FAKE-FUNCTION.

 03 WK-RRS-FAKE-FILLER PIC X.

 03 WK-RRS-FUNCTION PIC X.

 02 WK-RRS-CONTEXT PIC X(16).

 02 WK-STRING-FUNCTION PIC X(4).

 88 CONVERT-EBCDIC-TO-ASCII VALUE 'ETOA'.

 88 CONVERT-ASCII-TO-EBCDIC VALUE 'ATOE'.

 02 WK-STRING PIC X(17)

 VALUE 'String to convert'.

 02 WK-STRING-LENGTH PIC S9(8) COMP VALUE 17.

**

* The following group item is only used by the call that

* returns runtime environment information.

**

 01 EVBLOCK.

 02 EV$SIZE PIC S9(4) COMP VALUE +31.

 02 EV$MODE PIC X.

 02 EV$TAPE# PIC X(6).

 02 EV$REL# PIC X(6).

 02 EV$SPACK PIC X(2).

 02 EV$DMCL PIC X(8).

 02 EV$NODE PIC X(8).

 PROCEDURE DIVISION.

* Call IDMSIN01 to request that it return runtime environment

* information.

*

* Parm 1 is the address of the RPB.

IDMSIN01 Environment Information Function

Chapter 8: Application Development 337

* Parm 2 is the address of the REQUEST-CODE and RETURN-CODE.

* Parm 3 is the address of the ENVINFO return area.

 SET IN01-FN-ENVINFO TO TRUE.

 CALL 'IDMSIN01' USING RPB REQ-WK EVBLOCK.

 DISPLAY 'Runtime mode is ' EV$MODE.

 DISPLAY 'CA/IDMS tape volser is ' EV$TAPE#.

 DISPLAY 'CA/IDMS release number is ' EV$REL#.

 DISPLAY 'CA/IDMS service pack number is ' EV$SPACK.

 DISPLAY 'DMCL name is ' EV$DMCL.

 DISPLAY 'System node name is ' EV$NODE.

Note: For more information about IDMSIN01, see the CA IDMS Callable Services Guide.

Chapter 9: CA IDMS Tools 339

Chapter 9: CA IDMS Tools

This chapter describes the enhancements to the CA IDMS Tools products.

This section contains the following topics:

CA ADS Alive RECORD Command Enhancement (see page 339)
CA IDMS Dictionary Migrator Enhancements (see page 340)
CA IDMS Journal Analyzer Enhancements (see page 341)
CA IDMS Online Log Display Enhancement (see page 343)
CA IDMS Tools Editor Enhancement (see page 343)
CA IDMS Tools Queue Record Deletion Enhancement (see page 345)
CA IDMS Tools Site-Specific Segment Name and Database Name Enhancement (see page
346)

CA ADS Alive RECORD Command Enhancement

The CA ADS Alive RECORD command is enhanced so that when records to be displayed
are subschema built, only those record elements that are contained in the subschema
view are displayed. Otherwise, all elements are displayed. The dictionary navigation
logic is updated to use the SSR-032 record as a dictionary entry point if present for the
record access.

Note: For more information about the RECORD command, see the CA ADS Alive User
Guide.

CA IDMS Dictionary Migrator Enhancements

340 Release Summary

CA IDMS Dictionary Migrator Enhancements

CA IDMS Dictionary Migrator is enhanced to include two new options:

■ MODIFY verb—This option can be used rather than the ADD verb when creating
syntax for dictionary entities.

■ REPLACE verb—This option can be used rather than the MODIFY or ADD verbs when
creating syntax for dictionary entities.

By default the MODIFY syntax is generated for DDDL entities in a CHANGEONLY
migration. If an entity does not exist in the target dictionary, the following message is
displayed: DC601014 xyz is not in the dictionary.

If the REPLACE verb is used and the entity does not exist, the entity is added to the
dictionary, and the following message is displayed: DC601210 Replace changed to Add.

You can set the MODIFY and REPLACE options by changing the installation parameters.
However, you do not have to change the options from their default values. The options
are not mutually exclusive; one or both or neither of them can be altered from their
default values. If required, you can adjust the options during installation or at a later
time by altering the source member USMTPARM and reassembling and relinking a new
USMTPARM module as documented in Usermod UMOD1.

The two new installation parameters are as follows:

DDLMOD Parameter

DDLMOD = Y or N (defaults to DDLMOD=N)

If set to Y, the syntax for the schema and subschema compiler entities is created using
the MODIFY verb rather than the ADD verb. In addition, if DDLMOD = Y, the schema and
subschema delete syntax file statements are commented out in the SCHMDEL and
SUBSDEL files.

If set to N, the syntax for the schema and subschema entities is created using the ADD
verb. This is the default and is consistent with behavior in prior releases.

For z/OS users, the value for this parameter is set by the WIMVPV49 VARBLIST variable.

DDDLREP Parameter

DDDLREP = Y or N (defaults to DDDLREP=N)

If set to Y, syntax for all DDDL entities is created using the REPLACE verb.

If set to N, the syntax for DDDL entities is created using the ADD or MODIFY verbs. This
is the default and is consistent with behavior in prior releases.

For z/OS users, the value for this parameter is set by the WIMVPV50 VARBLIST variable.

CA IDMS Journal Analyzer Enhancements

Chapter 9: CA IDMS Tools 341

More Information

■ For more information about CA IDMS Dictionary Migrator, see the CA IDMS
Dictionary Migrator User Guide.

■ For more information about changing installation parameters, see the CA IDMS
installation guide for your operating system.

CA IDMS Journal Analyzer Enhancements

CA IDMS Journal Analyzer enhancements include the following:

■ Enhanced decompression support

■ Management Ranking Report enhancement

Enhanced Decompression Support

CA IDMS Journal Analyzer is enhanced to allow data records that are compressed using
custom Data Characteristic Tables (DCTs) to be uncompressed and displayed in the JNLA
Display output. To decompress records using custom DCTs, the appropriate DCT load
modules must be available in the JNLA loadlib concatenation.

Only the highest version number schema record for a given schema within the OOAK-S
set is processed. This is consistent with behavior in prior releases.

Note: CA IDMS Journal Analyzer already supports decompression ofrecords that use the
generic or BUILTIN compression.

When a named DCT cannot be located, the following message is displayed: DICT - NO
PRESSPACK DCT TABLE NAME PROVIDED.

CA IDMS Journal Analyzer Enhancements

342 Release Summary

Management Ranking Report Enhancement

The CA IDMS Journal Analyzer Management Ranking Report is enhanced to provide
cumulative values for all like named program executions for the following attributes:

■ LOCKS REQUESTED

■ PAGES READ

■ PAGES WRITTEN

■ PAGES WRITTEN + PAGES READ (TOTAL I/O's)

■ RECORDS UPDATED

When any of these attributes are specified, an extra line is added on the Management
Ranking Report (ABSOLUTE value type). This line provides a cumulative value for the
specified attribute by program name.

Example

The following example shows the cumulative value of the PAGES READ and WRITTEN for
all program executions by program name.

 ID RELEASE CA IDMS JOURNAL ANALYZER DATE TIME PAGE

 Rnn.nn MANAGEMENT RANKINGS mm/dd/yy hh:mm:ss 23

 mm/dd/yy hh:mm - mm/dd/yy hh:mm

 ALL RUN UNITS RANKED HIGHEST (TO LOWEST) BY PAGES READ + WRITTEN

 RANK RUN UNIT PROGRAM START VALUE

 ---- -------- ------------ ----------------- ------------

 1 2090437 IDMSDDDL ONL mm/dd/yy hh:mm:ss 1,113

 TOTALS IDMSDDDL 1,113

 2 2092894 ADSOGEN1 ONL mm/dd/yy hh:mm:ss 403

 3 2092734 ADSOGEN1 ONL mm/dd/yy hh:mm:ss 389

 4 2090152 ADSOGEN1 ONL mm/dd/yy hh:mm:ss 379

 5 2092617 ADSOGEN1 ONL mm/dd/yy hh:mm:ss 375

 TOTALS ADSOGEN1 1,546

 6 2090589 RHDCSGEN ONL mm/dd/yy hh:mm:ss 366

 7 2090664 RHDCSGEN ONL mm/dd/yy hh:mm:ss 361

 8 2090509 RHDCSGEN ONL mm/dd/yy hh:mm:ss 358

 9 2090365 RHDCSGEN ONL mm/dd/yy hh:mm:ss 355

 10 2090269 RHDCSGEN ONL mm/dd/yy hh:mm:ss 351

 TOTALS RHDCSGEN 1,791

More Information

For more information, see the CA IDMS Journal Analyzer User Guide.

CA IDMS Online Log Display Enhancement

Chapter 9: CA IDMS Tools 343

CA IDMS Online Log Display Enhancement

CA IDMS Online Log Display forces the current DDLDCLOG buffer to be written at initial
task invocation. This ensures that the most recent log data is included in the display.

Note: For more information about CA IDMS Online Log Display, see the CA IDMS Online
Log Display User Guide.

CA IDMS Tools Editor Enhancement

The CA IDMS Tools Editor is enhanced to include the ECHO command. The ECHO
command preserves the primary command line when this option is set on. The Profile
command used to display all the environmental settings will include the ECHO setting.

The ECHO command is available for the following CA IDMS Tools online products in both
browse and edit modes:

■ CA ADS Alive

■ CA IDMS Extractor

■ CA IDMS Dictionary Migrator Assistant

■ CA IDMS DME

■ CA IDMS DMLO

■ CA IDMS Enforcer

■ CA IDMS SASO

In addition, if CA IDMS DME is entered using the ADSC Interface, the ECHO command is
also available.

ECHO Command

Use the ECHO command to preserve the primary command line. If ECHO is turned on,
the last command entered on the command line is preserved and redisplayed. If ECHO is
turned off, the last command entered is not preserved. The ECHO setting is maintained
in the Editor profile for the signed on CA IDMS/DC userid. The syntax for the ECHO
command is the following:

ECHO {ON

 OFF}

Default: OFF

This command is available in edit and browse modes.

CA IDMS Tools Editor Enhancement

344 Release Summary

More Information

For more information about any of the CA IDMS Tools online products, see the following
guides:

■ CA ADS Alive User Guide

■ CA IDMS Extractor User Guide

■ CA IDMS Dictionary Migrator User Guide

■ CA IDMS Dictionary Module Editor User Guide

■ CA IDMS DML Online User Guide

■ CA IDMS Enforcer User Guide

■ CA IDMS SASO User Guide

CA IDMS Tools Queue Record Deletion Enhancement

Chapter 9: CA IDMS Tools 345

CA IDMS Tools Queue Record Deletion Enhancement

CA IDMS is enhanced with a new PROKEEP installation parameter to allow queue
records to be deleted after a specified time for the following CA IDMS Tools online
products:

■ CA IDMS Dictionary Migrator Assistant

■ CA IDMS DME

■ CA IDMS Enforcer

■ CA IDMS Masterkey

■ CA IDMS SASO

Queue records are used to save settings that are used in the product's operation. These
settings include: module names, PF key values, caps, and tabs. A number of unused
queue records can accumulate over time.

PROKEEP=nnn

This installation parameter lets you specify a retention date for the CA IDMS Tools
online products when a retention date is not already provided.

nnn specifies the number of days to retain profile queue records in the dictionary.
You must specify an integer between 0 and 255. A value of 255 retains the queue
records indefinitely.

More Information

For more information about any of the CA IDMS Tools online products and specifying
installation parameters, see the following guides:

■ CA IDMS Dictionary Migrator User Guide

■ CA IDMS Dictionary Module Editor User Guide

■ CA IDMS Enforcer User Guide

■ CA IDMS installation guide for your operating system

■ CA IDMS Masterkey User Guide

■ CA IDMS SASO User Guide

CA IDMS Tools Site-Specific Segment Name and Database Name Enhancement

346 Release Summary

CA IDMS Tools Site-Specific Segment Name and Database
Name Enhancement

This installation enhancement allows CA IDMS Tools users to specify their own segment
name and database name values for each database associated with a CA IDMS Tools
product. By specifying these names as installation parameters, you no longer have to
alter the generated installation JCL to change the CA-supplied segment name and
database name values to match the existing names at your site.

To use this feature, override the default segment name and database name values using
the installation parameters listed in the following table.

When performing an upgrade installation, you need to know the existing segment name
and database name values. You can obtain them in one of the following ways:

■ If the installer is not a database administrator, the values can be obtained from the
DBA staff.

■ Log on to the appropriate CA IDMS system and display the values by doing the
following:

– Enter the DCMT DISPLAY SEGMENTS command to display information about
the segment names.

– Enter the DCMT DISPLAY DBTABLE command to display information about the
database names.

■ Log on to the appropriate CA IDMS system and enter the online LOOK DMCL system
task command to display information about the DMCL. The DMCL contains
information about the segment names and database names.

■ Run a batch job to execute the IDMSLOOK utility to report on the DMCL. The batch
report contains the same information as the online LOOK DMCL system task
command but can be printed for easier reference.

The following are the new installation variables for the CA IDMS Tools installation that
allow you to specify site-specific segment names and database names for each database
associated with a CA IDMS Tools product:

Product Name VARBLIST
Segment
Name
Variable

Default
Segment
Name

VARBLIST
Database
Name
Variable

Default
Database
Name

CA IDMS Dictionary
Migrator Assistant

DMA#SEG DMA DMA#DBN DMA

CA IDMS DMLO DMLO#SEG DMLO DMLO#DBN DMLO

CA IDMS Enforcer ENFR#SEG ENFORCER ENFR#DBN ENFORCER

CA IDMS Tools Site-Specific Segment Name and Database Name Enhancement

Chapter 9: CA IDMS Tools 347

Product Name VARBLIST
Segment
Name
Variable

Default
Segment
Name

VARBLIST
Database
Name
Variable

Default
Database
Name

CA IDMS Extractor DBX#SEG DBX DBX#DBN DBX

CA IDMS Masterkey MAST#SEG MASTRKEY MAST#DBN MASTRKEY

CA IDMS SASO SDS#SEG and
SDC#SEG

SASOSTR and
SASODOC

SASO#DBN SPG

Note: CA IDMS SASO defines 2 segments, SASODOC and SASOSTR. Both should be
included in a single database name.

Note: For more information about installation parameters, see the CA IDMS Installation
and Maintenance Guide—z/OS.

Chapter 10: DCMT Command Codes 349

Chapter 10: DCMT Command Codes

The following command codes apply to new and revised DCMT commands:

Code DCMT Command

N024
N024024

 VARY TASK SNAP snap-options

N025
N025020

 VARY PROGRAM SNAP snap-options

N029
N029010

 VARY PTERM tcp/ip-parameters

N035
N035047
N035048
N035049

 HELP SCRATCH TCP/IP CHANGE TRACKING

N104
N104001
N104002

 DISPLAY/VARY SCRATCH DISPLAY SCRATCH VARY SCRATCH

N105
N105002

 VARY CHANGE TRACKING FILE COUNT nnn/DELETE
ON/OFF/REFRESH/ACTIVE/INACTIVE/DISABLE/ENABLE

N106 DISPLAY CHANGE TRACKING

N107
N107001
N107002
N107003
N107004
N107005
N107006

 DISPLAY TCP/IP DISPLAY TCP/IP ALL DISPLAY TCP/IP SUMMARY
DISPLAY TCP/IP STATISTICS DISPLAY TCP/IP STACK TABLE DISPLAY
TCP/IP SERVICES DISPLAY TCP/IP SOCKETS

N108
N108001
N108002
N108003
N108004
N108005
N108006
N108007
N108008

 VARY TCP/IP VARY TCP/IP STATUS VARY TCP/IP TCP_NODELAY VARY
TCP/IP DEFAULT STACK VARY TCP/IP INCLUDE/EXCLUDE STACK VARY
TCP/IP MAXIMUM SOCKETS VARY TCP/IP MAXIMUM SOCKETS PER TASK
VARY TCP/IP SERVICES FILE VARY TCP/IP STACK TABLE

CA IDMS Tools Site-Specific Segment Name and Database Name Enhancement

350 Release Summary

Code DCMT Command

N109
N10900
N10901
N10905
N10906
N10907
N10910
N10913
N10914

 VARY JOURNAL FILE VARY JOURNAL FILE journal-file-name ACTIVE
VARY JOURNAL FILE journal-file-name INACTIVE VARY JOURNAL FILE
journal-file-name ALLOCATE VARY JOURNAL FILE journal-file-name
DEALLOCATE VARY JOURNAL FILE journal-file-name DEALLOCATE FORCE
VARY JOURNAL FILE journal-file-name DSNAME VARY JOURNAL FILE
journal-file-name ONLINE VARY JOURNAL FILE journal-file-name OFFLINE
(PERmanent)

Note: For more information about using command codes to secure DCMT commands,
see the CA IDMS Security Administration Guide.

The following command code has been removed:

Code DCMT Command

N048005 VARY LINE WEIGHT

	CA IDMS Release Summary
	CA Technologies Product References
	Contact CA Technologies
	Contents
	1: Introduction
	New and Changed Features
	New Features for SP1
	Syntax Diagram Conventions

	2: Upgrading to r17
	Overview
	Installing the Software
	Installing the SVC
	Formatting Journal Files
	Offloading the Log File
	Updating the CICS Interfaces
	Creating New CICS Interface Modules
	Using the New IDMSINTC CICS Interface
	Deprecated Macro Level Support
	Updating the CICS System
	Upgrading from Versions Earlier than r16

	Recompiling User-Written Programs
	Increasing Storage and Program Pools
	Updating Execution JCL
	Updating Task and Program Definitions
	Updating Dictionary Descriptions
	Updating Catalogs
	Updating the SYSTEM Schema
	SYSTEM Schema Changes
	Executing the Catalog Conversion Utility

	Updating the SYSCA Schema
	Fallback Considerations

	Deprecated and Stabilized Features
	Agent Technology Support
	BS2000/OSD Support
	CICS IDMSINTL Interface
	CICS Macro Level Support
	Optional APARs
	SYSIDMS Parameters
	DCMT DISPLAY LINE Parameter

	New Reserved Profile Attribute
	Changes in CV Startup

	3: Non-Stop Processing
	Change Tracking
	Change Tracking and SYSTRK Files
	Implementing Change Tracking
	Formatting SYSTRK Files
	Referencing SYSTRK Files in Execution JCL

	Managing Change Tracking
	DCMT DISPLAY CHANGE TRACKING Command
	DCMT VARY CHANGE TRACKING Command
	Expanding SYSTRK Files

	Change Tracking Impact
	DCMT DISPLAY DATABASE Command
	DCMT DISPLAY FILE Command
	DCMT VARY FILE Command
	DCMT VARY AREA/SEGMENT Command
	DCMT VARY DMCL Command
	New SYSIDMS Parameters

	Dynamic Journal Files
	Dynamically Adding or Removing a Journal File
	CREATE/ALTER DISK JOURNAL: New Parameters
	DCMT DISPLAY JOURNAL Command
	DCMT VARY JOURNAL Command

	Scratch Enhancements
	System Generation SYSTEM Statement
	DCMT DISPLAY SCRATCH Command
	DCMT VARY SCRATCH Command
	DCMT Help Command
	SYSIDMS Parameters

	4: Performance
	CICS Threadsafe Support
	Threadsafe Concepts
	CA IDMS Support for Threadsafe Applications
	IDMSINTC Interface Considerations
	UCF Front-end (#UCFCICS) Considerations
	Distributed Processing with #UDASCIC Considerations
	CICS Abort Session Program Considerations
	CICS Abort Session Program
	IDMSRSYN Resynchronization Program Considerations
	New CICSOPT Parameters

	Fast Journal Format Option
	LE System Mode Support
	Database Procedure
	SQL-invoked Routine
	TCP/IP Generic Listener

	Reduced 24-bit Storage Usage
	zIIP Exploitation
	zIIP Eligibility
	DCMT DISPLAY SUBTASK Command
	zIIP-Enabled Example Without a zIIP Processor
	zIIP-Enabled Examples with a zIIP Processor
	Usage
	Using the REORG Utility
	Special Database Considerations
	Work Files
	REORG Processing Details

	More Information

	DCPROFIL System Task
	Evaluating the zIIP Feature Benefits

	5: SQL
	SQL Procedural Language Support in Routines
	New Terminology
	Implementing SQL Routines
	Statement Components
	Bracketed Comment
	Expansion of language-clause
	Expansion of procedure-statement
	Local Variables
	Expansion of Local-variable
	Routine Parameter
	Expansion of Routine-parameter
	Expansion of value-expression

	Enhanced Data Description Statements
	ALTER FUNCTION
	ALTER PROCEDURE
	CREATE FUNCTION
	CREATE PROCEDURE
	DISPLAY/PUNCH FUNCTION
	DISPLAY/PUNCH PROCEDURE
	DROP FUNCTION
	DROP PROCEDURE
	DROP SCHEMA

	Control Statements
	CALL
	CASE
	Compound Statement
	EXEC ADS
	IF
	ITERATE
	LEAVE
	LOOP
	REPEAT
	RESIGNAL
	RETURN
	SET Assignment
	SIGNAL
	WHILE

	Result Sets from SQL-invoked Procedures
	ALLOCATE CURSOR
	ALTER PROCEDURE
	CALL
	CLOSE CURSOR
	CREATE PROCEDURE
	DECLARE CURSOR
	DESCRIBE CURSOR
	SQL Communication Area
	Catalog Extensions

	Enhanced Diagnostics and Statistics
	GET DIAGNOSTICS
	GET STATISTICS

	Enhanced ANSI/ISO SQL JOIN Support
	Expansion of Table-reference
	Expansion of Joined-table

	More Information

	SET Host-variable Assignment
	Extended Use of query-expression
	SET OPTIONS COMMAND DELIMITER
	Pseudo Table SYSCA.SINGLETON_NULL

	6: TCP/IP
	Port Number Independence
	CA IDMS Services Resolver
	Service Name for LISTENER and DDSTCPIP PTERMS

	Enhanced Stack Selection
	SYSIDMS Parameters

	New TCP/IP System Entity
	System Generation TCP/IP Statement
	System Generation SOCKET LINE Statement
	DCMT DISPLAY TCP/IP Command
	DCMT DISPLAY LINE Command
	DCMT VARY TCP/IP Command
	DCMT Help Command

	New TCP_NODELAY Option
	SETSOCKOPT Socket Function

	New Socket Functions
	GETSERVBYNAME
	Parameters
	Notes

	GETSERVBYPORT
	Parameters
	Notes

	IOCTL
	Parameters
	Notes

	GETADDRINFO and GETNAMEINFO socket functions
	Socket Structure Description
	SERVENT Structure

	DDS Connectivity Using TCP/IP
	System Generation NODE Statement
	System Generation PTERM Statement
	DDSTCPIP PTERM Statement
	LISTENER PTERM Statement
	More Information

	DCMT VARY PTERM Command
	DCMT DISPLAY DDS Command
	DC Front-end System

	7: Administrative and Operational Enhancements
	Callable Security Cleanup
	DISPLAY SEGMENT Enhancement
	Enhanced Diagnostic Information
	Display Data at the PSW
	GETMAIN Failure Message for Buffers
	Identification of Program Filling Journal
	IDMSINTC CWADISP ABND Message
	IDMSINTC Maximum Run Units ABND Message
	Journal Warning Message at Startup
	Validation and Shutdown Sysplex Messages
	VTAM Enhanced Error Reporting
	XCF and XES Messages Written to Log

	External Identity Auditing
	Profile Attribute Key
	Journal Reports
	Journal Analyzer Chronological Event Report
	JREPORT 000
	JREPORT 008
	JREPORT 010

	IDD Display Load Modules by Type
	Index Tuning Enhancements
	PRINT INDEX
	Usage
	Examples
	Sample Output
	More Information

	TUNE INDEX
	Usage
	Examples
	Sample Output
	More Information

	LOCKMON Longterm Lock Display Enhancements
	DISPLAY Commands
	Miscellaneous Commands
	More Information

	LOOK Display Enhancements
	SQL-Defined Database Attributes
	Converted Date/Time Stamps
	More Information

	New Message Replacement Operand
	New Startup Parameters
	Coding Options as Freeform Parameters
	Multitasking Queue Depth
	Subpool Usage
	zIIP

	Coding Options as Positional Parameters
	More Information

	Online Print Log (OLP) Usability Enhancements
	REORG Enhancements
	Usage
	REORG tasks and phases
	RELOAD Processing Phases

	Sample Output

	Considerations for running REORG on z/VSE
	Work File Creation and Deletion:
	CA DYNAM/D is required to create labels
	SYSIDMS
	DSMODEL
	RORGJCL
	REORG
	DD statements for the batch command facility (z/VSE)

	Run-time DMCL File Management
	Snap Enhancements
	System Generation SYSTEM Statement
	DCMT VARY PROGRAM Command
	DCMT VARY TASK Command
	DCMT DISPLAY SNAP Command

	Support for Large and Extended Format Files
	Large Format Database and Journal Files
	Large and Extended Format Work Files
	More Information

	SVC Enhancements
	Default to the Secured SVC
	Load the SVC Using CAIRIM

	Wait for In-Use Data Set
	Forcing a Database File into Input Mode
	Miscellaneous changes for z/VSE
	Change to operator communication
	Generating the SVC

	8: Application Development
	Accept Extended Database Statistics DML Command
	Accept System ID DML Command
	ADSORPTS Enhancements
	SQL Table Expansion
	Unlimited Dialog Reporting
	More Information

	Assembler Programming Enhancements
	#CHAP
	#GETSTG

	Built-In Functions for Date-Time Stamp Conversions
	CA ADS Built-In Functions
	Date-Time Stamp Functions
	DISPDT
	DATEEXT
	DATEINT
	DATETIMX
	DTINT
	TIMEEXT
	TIMEINT
	More Information

	CA OLQ Procedures
	Invoking Built-In Functions
	DATEEXT
	DATEINT
	DATETIMX
	DTINT
	TIMEEXT
	TIMEINT
	More Information

	COBOL Compiler Debugging Line Support
	FIND/OBTAIN WITHIN SET USING SORT KEY DML Statement
	IDMSIN01 Environment Information Function

	9: CA IDMS Tools
	CA ADS Alive RECORD Command Enhancement
	CA IDMS Dictionary Migrator Enhancements
	CA IDMS Journal Analyzer Enhancements
	Enhanced Decompression Support
	Management Ranking Report Enhancement
	More Information

	CA IDMS Online Log Display Enhancement
	CA IDMS Tools Editor Enhancement
	ECHO Command
	More Information

	CA IDMS Tools Queue Record Deletion Enhancement
	CA IDMS Tools Site-Specific Segment Name and Database Name Enhancement

	10: DCMT Command Codes

