Advantage™” CA-IDMS™

Release Summary
rl6 SP4

G

B01250-5E
Fifth Edition

This documentation (the "Documentation”) and related computer software program (the “Software”) (hereinafter
collectively referred to as the “Product”) is for the end user’s informational purposes only and is subject to change
or withdrawal by CA at any time.

This Product may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part,
without the prior written consent of CA. This Product is confidential and proprietary information of CA and protected
by the copyright laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of the Documentation for
their own internal use, and may make one copy of the Software as reasonably required for back-up and disaster
recovery purposes, provided that all CA copyright notices and legends are affixed to each reproduced copy. Only
authorized employees, consultants, or agents of the user who are bound by the provisions of the license for the
Software are permitted to have access to such copies.

The right to print copies of the Documentation and to make a copy of the Software is limited to the period during
which the license for the Product remains in full force and effect. Should the license terminate for any reason, it
shall be the user’s responsibility to certify in writing to CA that all copies and partial copies of the Product have
been returned to CA or destroyed.

EXCEPT AS OTHERWISE STATED IN THE APPLICABLE LICENSE AGREEMENT, TO THE EXTENT PERMITTED BY
APPLICABLE LAW, CA PROVIDES THIS PRODUCT “AS IS” WITHOUT WARRANTY OF ANY KIND, INCLUDING
WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO THE END USER OR ANY THIRD PARTY FOR ANY
LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS PRODUCT, INCLUDING WITHOUT LIMITATION,
LOST PROFITS, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED OF
SUCH LOSS OR DAMAGE.

The use of this Product and any product referenced in the Documentation is governed by the end user’s applicable
license agreement.

The manufacturer of this Product is CA.

This Product is provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government
is subject to the restrictions set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS
Section 252.227-7013(c)(1)(ii), as applicable, or their successors.

All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

Copyright © 2006 CA. All rights reserved.

Contents

Chapter 1. Introducing Advantage CA-IDMS16.0 1-1
1.1 Welcome 1-2
12 New Features 1-5
1.3 Two-Phase Commit Process 1-11
14 SQL Features 1-12
1.5 Adminigtrative and Operational Enhancements 1-14
1.6 Performance Enhancements 1-17
1.7 Non-Stop Processing Features 1-18
1.8 Tool Product Enhancements L. 1-19
19 TCPIPAPI Support 1-21
110 Type4 IDBC Driver 1-22
111 Upgradingto Release 16.0, 1-23
Chapter 2. UpgradingtoRelease16.0 2-1
21 OVEIVIEW 2-2
2.2 Ingtdling the Software 2-4
23 Ingtalingthe SVC 2-5
2.4 Formatting Journal Files 2-6
25 Offloading the Log File 2-7
2.6 Specifying a DCNAME for Cloned Systems 2-8
2.7 Updating Dictionary Descriptions 2-9
2.8 Updating Task and Program Definitions 2-10
2.9 Defining Destination Resources 2-11
2.10 Disabling Queue Area Sharing 2-12
211 Reassigning Initiator Classes L. 2-13
2.12 Activating the CMS Option, 2-14
2.13 Updating Advantage CA-IDMSSQL 2-15
2.13.1 Updating SYSCA Schema Definitions 2-15
2.13.2 Converting SQL Catalogs 2-16
21321 Release 160 Changes 2-17
2.13.2.2 Executing the Catalog Conversion Utility 2-17

2.14 Applyingan APARto Earlier Releases 2-18
215 Updating the CICS Interfaces 2-19
2.15.1 Creating New CICS Interface Modules 2-19
2152 ldentifyingaCICSSystem 2-19
2.15.3 Implementing Two-Phase Commit Support inCICS 2-19
2.16 Recompiling User-Written Programs 2-20
2.17 Credating a System Startup Module 2-21
Chapter 3. Two-Phase Commit Support 31
31 Overview ... 3-2
3.2 Two-Phase Commit Protocol 33
321 Terminology 3-3
322 Typica Commit Flows 34
3.2.3 Prepare and Commit Outcomes 35
3.24 Recovery from Failure 3-6
3.3 Two-Phase Commit Support Within Advantage CA-IDMS 3-7

Contents iii

3.3.1 Optimizations Supported 3-7

3.3.2 Support for External Coordinators 3-8
3.3.3 Support for External Resource Managers 3-8
3.3.4 Support for Pre-Release 16.0 Systems L. 39
3.3.5 Support for Batch Applications 39
3.3.6 Implementation Details 39
3.3.6.1 Transaction Branches 3-10
3.3.6.2 Transaction ldentifiers 3-10
33.6.3 Transaction States 311
3.3.6.4 Transaction Qutcomes 312
3.3.6.5 Resource Managers, Interfaces, and Exits 313
3.3.6.6 Interestsand Roles 3-14

3.4 Impact on System Definition L 3-15
3.4.1 System Generation Resource Table 315
3411 Syntax ... 3-15
3412 Parameters 3-16
3413 Usage 3-16
3414 Example 3-16

3.5 Impact on System Operations 317
35.1 RestatingaFailed System L 3-17
35.2 System Name During Warmstart 3-17
3.5.3 Incomplete Distributed Transactionsat Startup 317
3.5.4 Incomplete Distributed Transactions at Shutdown 3-18
3.5.5 Monitoring Distributed Commit Operations 3-18
3.5.5.1 DCMT DISPLAY DISTRIBUTED RESOURCE MANAGER . . 3-19
3.55.2 DCMT DISPLAY DISTRIBUTED TRANSACTION 3-19

36 ImpactonJournaling 3-20
3.6.1 New Journal Records and Formats 3-20
3.6.2 Journal File Formatting Considerations 321
3.7 Impact on Recovery 3-23
3.7.1 System Recovery Interdependence 3-23
3.7.2 Resynchronization Between Advantage CA-IDMS Systems 3-23
3721 WhenDoes It Occur? 3-23
3.722 What Does It Entail? 3-24
3.7.2.3 Responding to Resynchronization Failures 3-24
3.7.3 Completing Transactions Manually 3-26
3.7.4 Manua Recovery Considerations 3-27
3.7.4.1 InDoubt Transactions During Manual Recovery 3-27
3.75 Deleting Resource Managers L 3-28
3.8 Two-Phase Commit Support with CICS 3-29
3.8.1 Implementation Requirements 3-29
3.8.2 Programming Interfface 3-29
3.8.3 Optimizations Supported 3-30
3.8.4 Requesting the Use of Two-Phase Commit 3-30
3.8.5 Additional Two-Phase Commit Parameters 3-31
3.8.6 CICS System Name Requirements 3-32
3.8.7 Resynchronization between CICS and Advantage CA-IDMS 3-33
3.8.7.1 The Resynchronization Transaction and Program 3-33
3.8.7.2 How is Resynchronization Initiated? 3-33
3.8.7.3 When Should You Manually Resynchronize? 3-34
3.8.7.4 The Resynchronization Process 3-34

iv Advantage CA-IDMS Release Summary

3.8.7.5 OPTIXIT Considerations 334

3.9 Two-Phase Commit Support withRRS 3-35
3.9.1 Enabling RRS Support Within an Advantage CA-IDMS System . .. 3-35
3.9.2 Impact on System Startup 3-36
3.9.3 RRS Support for Batch Applications 3-36

3931 Example 3-37
3.9.3.2 Enabling RRS for Batch Applications 3-37
3.9.3.3 Batch RRS Transaction Boundaries and Application Design
Considerations 3-38
3.9.34 Example of a COBOL Batch Program 3-39
3.9.4 RRS Support for Online Applications 341
3941 Example 3-42
3.9.4.2 Programming Interfface L. 343
3943 Parameters 3-43
3.9.4.4 Application Design Considerations 3-44
3.95 Optimizations Supported 3-44
3.9.6 Resynchronization Between RRS and Advantage CA-IDMS 3-44
3.9.6.1 WhenDoes It Occur? 3-44
39.6.2 What Does It Entail? 3-45
3.9.6.3 Responding to Resynchronization Failures 3-45

Chapter 4. SQL Features 4-1

A1 OVEIVIBW . . . 4-2

42 Dynamic SQL Caching 4-3
421 SearchingtheCache 4-3
4.2.2 Impact of Database Definition Changes 4-4

4221 SQL-Defined Databases and Caching 4-4
4.2.2.2 Non-SQL Defined Databases and Caching 4-4
423 ControllingtheCache 4-5
4231 SET SESSION Statement 4-5
4232 SYSIDMS SQL_CACHE_ENTRIES Parameter 4-5
4.2.3.3 System Generation SQL CACHE Statement 4-6

4.3 SQL-Defined Database Enhancements 4-8

4.3.1 Logical/Physical Separation 4-8
4.3.1.1 Implementing Logical/Physical Separation 4-8
4.3.1.2 Changing a Referenced or Referencing Schema 4-9
4.3.1.3 Views and Logical/Physical Separation 4-9

432 Database Cloning 4-10
4.3.2.1 Specifying Synchronization Timestamps 4-11
4322 Specifying Tableand Index IDs 4-11
4323 CREATE/ALTER AREA Statement Syntax 4-12
4324 Parameters 4-12

4.3.3 Stamp Synchronization 4-12
4.3.3.1 SYNCHRONIZE STAMPS Utility 4-12
433.2 INSTALL STAMPS Utility 4-14

4.4 SQL Productivity Enhancements 4-16
4.4.1 User-Defined SQL Functions 4-16
4.4.2 Procedures and Functions Written as Advantage CA-ADS Mapless

Didlogs 4-17
4421 Protocol Clause 4-17

Contents v

4422 MaplessDidlog 4-17

4423 Work Records 4-17
4424 Additional Records 4-18
4.4.3 Database Name Inheritance for Table Procedures, Procedures, and
Functions 4-18
444 ROWID Pseudo-Column 4-19
445 Transaction Sharing 4-20
4451 Enabling Transaction Sharing 4-20
4452 Application Programming Considerations 4-21
4.45.3 System Generation SYSTEM Statement 4-23
4454 System Generation TASK Statement 4-23
4455 SYSIDMS TRANSACTION_SHARING Parameter 4-24
4456 IDMSINOLCall 4-24
4.5 Enhanced Compatibility with Open Standards 4-27
451 Numeric Functions 4-27
452 String Functions 4-28
453 Timeand Date Functions 4-30
454 System Functions 4-31
455 Conversion Functions 4-31
4.6 XML Publishing 4-32
4.6.1 SQL/XML Functions 4-32
4.6.2 XML DataTypeand XML Vaues 4-33
4621 SyntaX 4-34
4.6.3 XML-value-expression 4-34
4631 Syntax 4-34
4.6.3.2 Parameters 4-34
464 MappingS 4-35
4.6.4.1 Mapping Plain Text SQL to XML 4-35
4.6.4.2 Mapping SQL ldentifierto XML 4-35
4.6.4.3 Mapping SQL Data Type Values to XML Schema Data Type
Values 4-36
465 Example 4-37
46.6 SQLSTATEVauUes 4-39
Chapter 5. Administrative and Operational Enhancements 51
5.1 Overview 5-2
5.2 Online Execution of Utilities 53
5.2.1 Usage Considerations 5-3
53 LOCK AREA Statement 5-5
53.1 Authority 5-5
532 Syntax 55
533 Parameters 55
534 Usage 5-5
54 ALREADY LOCKED Option 5-6
54.1 FORMAT AREA Utility Statement 56
5411 Syntax 5-6
5412 Parameters 5-6
5413 Usage 5-6
54.2 FIX PAGE Utility Statement 56
5421 Syntax 57
5422 Parameters 57

vi Advantage CA-IDMS Release Summary

5423 Usage 57

55 Database Name for Utility Use 5-8
55.1 CREATE DBNAME Statement 5-8
5511 Syntax 5-8
55.1.2 Parameters 5-8
5513 Usage 5-8

56 FORMAT JOURNAL Utility Statement 5-9
56.1 Syntax 5-9
5.6.2 Parameters 5-9
563 Usage 5-9
5.7 Two-Phase Commit Enhancements 5-10
5.7.1 Reporting on Distributed Transactions 5-10
5.7.2 Manua Recovery Input Control File 5-12
5.7.3 Manual Recovery Output Control File 5-13
574 ExecutionJCL Changes 5-13
5.8 Cloning LTERM and PTERM Definitions 5-14
581 Syntax 5-14
582 Parameters 5-14
583 Usage 5-14
584 Example 5-14
5.9 Security Enhancements 5-16
59.1 Creating The Resource 5-16
5.9.2 Assigning OCF/BCF Activity Numbers 5-16
59.21 #UTABGEN Example 5-16
593 #UTABGEN 5-17
59.31 Purpose 5-17
5032 Syntax 5-17
5933 Parameters 5-17
5934 Usage 5-18
5035 Examples 5-19
5.9.3.6 For More Information L. 5-19
5.9.3.7 Utility Command Codes 5-20

5.10 IDMSBCF Input/Output Reassignment 5-22
5101 SyntaX 5-22
5.10.2 Parameters 5-22
5103 Usage 5-23
5104 Example 5-24
511 Online Compiler Enhancements 5-27
5.12 PRINT SPACE Utility Enhancement 5-28
5121 Syntax 5-28
5122 Parameters 5-28
5.13 EXTRACT JOURNAL Utility Enhancement 5-29
5131 Syntax 5-29
5132 Parameters 5-29
5.14 ROLLBACK Utility Enhancement 5-30
5141 SyntaX 5-30
5142 Parameters 5-30
5.15 ROLLFORWARD Utility Enhancement 531
5151 SyntaX 5-31
5152 Parameters 5-31

Contents vii

5.16 System Startup Enhancements L. 5-32

5.16.1 Syntax 5-33
5162 Parameters 5-33
5163 Examples 5-36
5.17 #WTL Macro Enhancements 5-38
5.18 International Character Set Enhancement 5-39
5.18.1 Customizing RHDCCODE 5-39
5182 #DEFBYTE 5-40
51821 Parameters 541
51822 Examples 541
5.18.3 Assemble and Link Edit RHDCCODE 5-42
5.19 Journa File Enhancement 5-45
520 REORG Utility Enhancement 5-46
521 CREATE DSMODEL Utility Enhancement 5-47
Chapter 6. Performance Enhancements 6-1
6.1 OVErview 6-2
6.2 FileCacheinMemory, 6-3
6.21 Terminology 6-3
6.2.2 Exploiting File Cachein Memory 6-3
6.2.3 Altering the DMCL Definition 6-4
6.2.3.1 Syntax 6-4
6.2.3.2 Parameters 6-5
6.233 Usage 6-5

6.3 Parallel Access Volume Exploitation 6-7
6.4 Improved PDSE Support 6-8
6.4.1 Startup JCL Parameters 6-8
6.4.2 Parameter Descriptions 6-8
6.43 General UsageRules 6-9
6.5 Improved Performance for LE COBOL Programs 6-10
6.5.1 System Generation SYSTEM Statement 6-10
6.51.1 Syntax 6-10
6.5.1.2 Parameters 6-10
6.5.2 System Generation PROGRAM Statement 6-11
6521 Syntax 6-11
6.5.2.2 Parameters 6-11

6.6 Improved Journaling Performance 6-12
6.7 Improved Recovery Performance 6-13
6.7.1 System Generation SYSTEM Statement 6-13
6.7.1.1 Syntax 6-13
6.7.1.2 Parameters 6-13
6.7.01.3 Usage 6-14
6.7.2 System Generation TASK Statement 6-15
6.7.21 Syntax 6-15
6.7.2.2 Parameters 6-15
6.7.23 Usage 6-16

6.8 High Performance Storage Protection 6-17
Chapter 7. Non-Stop Processing Features 7-1
71 OVEIVIEW . . . o 7-2
7.2 Dynamic Trace Control 7-3

viii Advantage CA-IDMS Release Summary

7.3 Modifying Program Attributes 7-4

7.4 Determining CPU Effectiveness 7-5
75 Shorton Storage Messageo 7-6
7.6 Waiting on Full Journal Message 7-7
Chapter 8. Tool Product Enhancements 8-1
81 Overview 8-2
8.2 Advantage CA-Culprit 8-3
8.2.1 Invoking the AllFusion CA-Librarian Interface 8-3
8.2.2 Invoking the AllFusion CA-Panvalet Interface 8-3
8.3 Advantage CA-IDMS Journal Analyzer, 8-4
8.3.1 RECORD and DBKEY Display Processing 8-4
83.2 Audit Report 8-4
8.3.3 Chronological Report 8-5
8.3.4 Advantage CA-IDMS Presspack Decompression Support 8-5
84 Advantage CA-IDMSDME 8-6
8.4.1 'Fast-In' Access Method 8-6
842 DMEPrintClass 8-6
84.3 BrowseScreen 8-6
85 Advantage CA-IDMSDMLO 8-7
8.5.1 Highlighted ExitKey 8-7
85.2 Help Dictionary 8-7
853 Dynamic Message Processingo 8-7
8.6 Advantage CA-ADSAlive 8-8
8.7 OnlineMapping 89
8.8 Advantage CA-IDMS PL/I Compiler Enhancements 8-10
88.1 Syntax 8-10
882 Parameters 8-10
883 Notes 8-10
8.9 Support for 31-Digit Zoned and Packed Decimal Elements 8-12
Chapter 9. TCP/IP API Support 9-1
9.1 Using TCP/IP with Advantage CA-IDMS 9-2
9.11 VSESystems 9-2
9.2 Generic Listener Service L 9-3
9.2.1 Introduction 9-3
9.2.2 Functionality 9-3
9.2.3 Implementation 9-3
9.3 TCP/IIP Considerations i 9-5
9.3.1 Establishing TCP/IP Support 9-5
9.3.2 Managing TCP/IP Support 9-7
9.3.3 Supporting DNS Functions Using the SYSTCPD File 9-7
9331 ZIOS 9-7
9332 VSE 9-7
9333 ZIVM . . 9-7
9.3.34 Advantage CA-IDMSDNSResolver 9-8

9.34 Link RHDCT1IP module (VSEOnly) 9-9
9.34.1 Parameters 9-10

9.4 TCP/IP Programming Support for Online Applications 9-11
9.4.1 Socket Macro Interface For Assembler Programs 9-11

Contents ix

9.4.1.1 Parameters 9-11

9412 NOtes 9-12

9.4.2 The Advantage CA-ADS Socket Interface 9-13
9.4.21 Parameters 9-14
9.4.2.2 Comparing IDMSOCKI and SOCKET 9-15
9423 Notes 9-15

9.4.3 Socket Call Interfface For COBOL 9-16
9431 Parameters 9-16
9432 Notes 9-17

9.4.4 Socket call interfacefor PL/1 L 9-18
9.4.41 Parameters 9-18
9442 NOteS 9-19

9.4.5 Application Design Considerations 9-20
9451 Using Stream Sockets 9-21
9452 ReceivingData 9-21
9453 SendingData 9-21
9.4.6 TCP/IP Coding Samples 9-21
9.5 Miscellaneous TCP/IP Considerations 9-23
9.5.1 Using the TCP/IP Trace Facility 9-23
9.5.2 Using Multiple TCP/IP Stacks 9-23
9.5.3 Associating Timeoutsto Sockets 9-24
Chapter 10. Type4 JDBC Driver, 10-1
10.1 Overview 10-2
10.2 Installing the Java Runtime Environment 10-3
10.3 Enabling the Type 4 JDBC Driver 10-4
10.3.1 Listener PTERM Options 10-4
10.3.2 Listener TASK Security 10-5
10.3.3 ldmsDataSource Options 10-5
10.3.4 DriverManager Options, 10-6
10.3.5 Additional Client Options 10-7
Appendix A. New and Revised DCMT Commands A-1
ALl OVerview A-2
A2 DCMT SHUTDOWN e, A-3
A21 Syntax A-3
A22 Parameters A-3
A.3 DCMT DISPLAY AREA A-4
A31 Syntax A-4
A.32 Parameters A-4
A.4 DCMT DISPLAY DBTRACE A-5
AdL SyntaxX A-5
A42 Parameters A-5
AA43 Example A-5
A5 DCMT DISPLAY DEADLOCK A-6
ADBL1 Syntax A-6
AB.2 Parameters A-6
A.6 DCMT DISPLAY DISTRIBUTED RESOURCE MANAGER A-7
ABLl Syntax A-7
A.6.2 Parameters A-7
A.6.3 Examples A-7

x Advantage CA-IDMS Release Summary

AB4 Usage A-8

A.7 DCMT DISPLAY DISTRIBUTED TRANSACTION A-9
AT71 Syntax A-9
A7.2 Paramelers A-9
A73 Examples A-9
AT74 Usage A-10

A.8 DCMT DISPLAY LINE A-14
ABL Syntax A-14
A.8.2 Parameters A-14
AB83 Example A-14

A.9 DCMT DISPLAY SEGMENT A-15
AL Syntax A-15
A.9.2 Parameters A-15
A93 Example A-15

A.10 DCMT DISPLAY SUBTASK A-16
A10.1 Syntax A-16
A.10.2 Example A-16

A.11 DCMT DISPLAY SYSTRACE A-17
A111 SyntaxX A-17
A.11.2 Parameters A-17
A113 Example A-17

A.12 DCMT DISPLAY TRANSACTION SHARING A-18
A121 Syntax A-18
A.12.2 Parameters A-18
A123 Example A-18

A.13 DCMT VARY AREA A-19
A131 Syntax A-19
A.13.2 Parameters A-19
Al33 Usage A-19

A.14 DCMT VARY DBTRACE A-20
A141 SyntaxX A-20
A.14.2 Parameters A-20
A.143 Examples A-20

A.15 DCMT VARY DEADLOCK A-21
A151 Syntax A-21
A.15.2 Parameters A-21
Ad53 Usage A-21

A.16 DCMT VARY DISTRIBUTED RESOURCE MANAGER A-22
A16.1 Syntax A-22
A.16.2 Parameters A-22
A.16.3 Example A-22
A16.4 Usage A-23

A.17 DCMT VARY DISTRIBUTED TRANSACTION A-24
AL7.1 SyntaX A-24
Al7.2 Paramelers A-24
A173 Example A-25
Al7.4 Usage A-25

A.18 DCMT VARY DMCL A-26
Ad81 Syntax A-26
A.18.2 Parameters A-26

Contents xi

A.183 Examples A-27

A.19 DCMT VARY DYNAMIC PROGRAM A-28
A19.1 Syntax A-28
A.19.2 Parameters A-28
A.19.3 For More Information A-28

A.20 DCMT VARY DYNAMICTASK A-29
A.20.1 Syntax A-29
A.20.2 Parameters A-29
A.203 Example A-30

A.21 DCMT VARY FILE A-31
A2L1 Syntax A-31
A.21.2 Parameters A-31
A213 Example A-31

A.22 DCMT VARY LTERM A-32
A221 Syntax A-32
A.222 Parameters A-32
A223 Example A-32

A.23 DCMT VARY PROGRAM A-33
A.231 Syntax A-33
A.232 Parameters A-34
A.233 Examples A-36

A.24 DCMT VARY PTERM A-37
A241 Syntax A-37
A242 Parameters A-37
A243 Usage A-38

A.25 DCMT VARY REPORT A-39
A251 Syntax A-39
A.252 Parameters A-39

A.26 DCMT VARY SEGMENT A-40
A26.1 Syntax A-40
A.26.2 Parameters A-40
A26.3 Usage A-40

A.27 DCMT VARY SUBTASK A-41
A27.1 Syntax A-41
A.27.2 Parameters A-41
A.27.3 Examples A-41

A.28 DCMT VARY SYSTRACE A-42
A28 1 Syntax A-42
A.282 Parameters A-42
A.283 Examples A-42

A.29 DCMT VARY TASK A-43
A20.1 Syntax A-43
A.20.2 Parameters A-43
A.203 Example A-44

A.30 DCMT VARY TRANSACTION SHARING A-45
A30.1 Syntax A-45
A.30.2 Parameters A-45
A30.3 Example A-45

A.31 How to Broadcast System Tasks A-46
A3L1 Syntax A-46
A3L2 Parameters A-46

xii Advantage CA-IDMS Release Summary

A3L3 Usage A-46

A.31.3.1 Restrictions on the Broadcastable Tasks A-47
A314 Examples A-47
A.32 Command Codes A-48
Appendix B. New and Revised SQL Statements B-1
B.1 User-Defined SQL Function Statements B-2
B.1.1 Function Invocation B-2
B.1.1.1 Purpose B-2
B.1.1.2 Authorization B-2
B.1.1.3 Syntax B-2
B.1.1.4 Parameters B-2
B.1.15 Usage B-3
B.1.1.6 Examples B-4
B.1.2 ALTER FUNCTION Statement B-4
B.1.2.1 Purpose B-4
B.1.2.2 Authorization B-4
B.1.23 Syntax B-4
B.1.2.4 Parameters B-5
B.1.25 Usage B-6
B.1.2.6 Example B-7
B.1.3 CREATE FUNCTION Statement B-7
B.1.3.1 Purpose B-7
B.1.3.2 Authorization B-7
B.1.33 Syntax B-7
B.1.3.4 Parameters B-8
B.1.35 Usage B-11
B.136 Example B-11
B.1.4 DISPLAY/PUNCH FUNCTION Statement B-11
B.1.41 Purpose B-11
B.1.4.2 Authorization B-11
B.1.43 Syntax B-11
B.1.4.4 Parameters B-12
B.145 Example B-13
B.1.5 DROP FUNCTION B-13
B.1.51 Purpose B-13
B.1.5.2 Authorization B-13
B.153 Syntax B-13
B.154 Parameters B-14
B.1.55 Example B-14
B.2 SQL Scalar Functions B-15
B.21 SyntaX B-15
B.2.1.1 ABSfunction B-16
B.2.1.2 ACOSfunction, B-16
B.2.1.3 ASIN-function B-16
B.2.1.4 ATAN-function B-17
B.2.1.5 ATAN2-function B-17
B.2.1.6 CEIL or CEILING-function B-18
B.2.1.7 CHAR-function B-18
B.2.1.8 DAYOFWEEK-function B-21

Contents xiii

B.2.1.9 DAYOFYEAR-function B-21

B.2.1.10 DEGREES-function B-22
B.2.1.11 EXP-function B-22
B.2.1.12 FLOOR-function B-22
B.2.1.13 IFNULL-function B-23
B.2.1.14 INSERT-function B-23
B.2.1.15 LOG-function B-25
B.2.1.16 LOGI10-function, . B-25
B.2.1.17 MOD-function B-25
B.2.1.18 MONTHNAME-function B-27
B.2.1.19 NOW-function B-27
B.2.1.20 Pl-function B-27
B.2.1.21 POWER-function B-28
B.2.1.22 QUARTER-function B-28
B.2.1.23 RADIANSfunction B-29
B.2.1.24 RAND-function B-29
B.2.1.25 REPEAT-function B-30
B.2.1.26 REPLACE-function B-30
B.2.1.27 RIGHT-function B-31
B.2.1.28 ROUND-function B-32
B.2.1.29 SIGN-function B-33
B.2.1.30 SIN-function B-33
B.2.1.31 SINH-function B-34
B.2.1.32 SPACE-function B-34
B.2.1.33 SQRT-function B-35
B.2.1.34 SUBSTR or SUBSTRING-function B-35
B.2.1.35 TAN-function B-36
B.2.1.36 TANH-function B-36
B.2.1.37 TRUNCATE-function B-37
B.2.1.38 USER-function B-37
B.2.1.39 WEEK-function B-38
B.3 Revised SQL Statements B-39
B.3.1 ALTER PROCEDURE Statement B-39
B.3.1.1 Syntax B-39
B.3.1.2 Parameters B-39
B.313 Usage B-40
B.3.2 ALTER SCHEMA Statement B-40
B.3.21 Syntax B-40
B.3.22 Parameters B-41
B.323 Usage B-41
B.3.3 ALTER TABLE Statement B-41
B.3.3.1 Syntax B-41
B.3.3.2 Parameters B-42
B.333 Usage B-42
B.3.4 ALTER TABLE PROCEDURE Statement B-42
B.3.4.1 Syntax B-42
B.3.4.2 Parameters B-43
B.343 Usage B-43
B.3.5 CREATE INDEX Statement B-44
B.35.1 Syntax B-44
B.35.2 Parameters B-44

xiv Advantage CA-IDMS Release Summary

B.353 Usage B-44

B.3.6 CREATE PROCEDURE Statement B-44
B.3.6.1 Syntax B-45
B.3.6.2 Parameters B-45
B.3.6.3 Usage B-46

B.3.7 CREATE SCHEMA B-46
B.3.7.1 Syntax B-46
B.3.7.2 Parameters B-46
B.3.7.3 Usage B-47
B.3.74 Example B-47

B.3.8 CREATE TABLE Statement B-48
B.3.81 Syntax B-48
B.3.8.2 Parameters B-48
B.383 Usage B-48

B.3.9 CREATE TABLE PROCEDURE Statement B-49
B.3.9.1 Syntax B-49
B.3.9.2 Parameters B-49
B.393 Usage B-50

B.3.10 CREATE VIEW Statement B-50
B.3.10.1 Syntax B-50
B.3.10.2 Parameters B-50
B.3103 Usage B-50

B.3.11 DISPLAY/PUNCH INDEX Statement B-51
B.3.11.1 Syntax B-51
B.3.11.2 Parameters B-51

B.3.12 DISPLAY/PUNCH PROCEDURE Statement B-51
B.3.12.1 Syntax B-51
B.3.12.2 Parameters B-52

B.3.13 DISPLAY/PUNCH SCHEMA Statement B-52
B.3.13.1 Syntax B-52
B.3.13.2 Parameters B-52

B.3.14 DISPLAY/PUNCH TABLE Statement B-53
B.3.14.1 Syntax B-53
B.3.14.2 Parameters B-53

B.3.15 DISPLAY/PUNCH TABLE PROCEDURE Statement B-53
B.3.15.1 Syntax B-54
B.3.15.2 Parameters B-54

B.3.16 DISPLAY/PUNCH VIEW Statement B-54
B.3.16.1 Syntax B-54
B.3.16.2 Parameters B-55

B.3.17 SET SESSION Statement B-55
B.3.17.1 Syntax B-55
B.3.17.2 Parameters B-55
B.3.17.3 Examples B-56

B.4 SQL/XML Functions and Table Procedure B-58

B.4.1 XMLAGG-function B-58
B.4.1.1 Syntax B-58
B.4.1.2 Parameters B-58
B.4.13 Examples B-59

B.4.2 XMLCOMMENT-function B-64

Contents xv

B.421 Syntax B-64

B.4.22 Parameters B-64
B.423 Example B-64
B.4.3 XMLCONCAT-function B-65
B.431 Syntax B-65
B.432 Example B-65
B.44 XMLELEMENT-function B-66
B.4.4.1 Syntax B-66
B.4.42 Parameters B-66
B.4.43 Examples B-68
B.45 XMLFOREST-function B-72
B.45.1 Syntax B-72
B.452 Parameters B-72
B.453 Example B-73
B.4.6 XMLPARSE-function B-74
B.4.6.1 Syntax B-74
B.4.6.2 Parameters B-74
B.4.6.3 Example B-74
B.4.7 XMLPI-function B-75
B.A47.1 Syntax B-75
B.4.7.2 Parameters B-75
B.473 Example B-76
B.4.8 XMLPOINTER-function B-76
B.4.81 Syntax B-76
B4.82 Example B-77
B.4.9 XMLROOT-function B-77
B.4.9.1 Syntax B-78
B.49.2 Parameters B-78
B.4.93 Example B-78
B.4.10 XMLSERIALIZE-function B-79
B.4.10.1 Syntax B-79
B.4.10.2 Parameters B-79
B.4.10.3 Example B-79
B.4.11 XMLSLICE Table Procedure B-80
B.4.11.1 Syntax B-80
B.4.112 Parameters B-80
B.4.11.3 Examples B-81
Appendix C. SQL Functions and SQL Procedure Enhancements C-1
Cl Overview C-2
C.2 When To Use a User-Defined Function C-3
C.3 DefiningaFunction C-4
C.3.1 For More Information C-4
C.4 Invoking aFunction C-5
C5 WritingaFunction C-6
Cb5.1 Cdling Arguments C-6
C5.2 Parameter Arguments C-7
C53 Loca Work Area C-8
C54 Global Work Area C-8
C.6 Advantage CA-ADS SQL Function and Procedure Examples C-9
C.6.1 FunctionExample C-9

xvi Advantage CA-IDMS Release Summary

C.6.1.1 Function Definition C-9

C6.12 Work Records C-9
C6.1.3 Premap Process C-10
C.6.14 Invokingthe Function C-10
C.6.2 Procedure Example C-10
C.6.21 Work Records Cc-11
C6.22 Premap Process C-11
C.6.2.3 Procedure Invocation C-12

C.7 COBOL SQL Function Example C-13
C.7.1 Function Definition C-13
C.72 SampleCOBOL Code C-13
C.7.3 Invoking the Function C-14
Appendix D. SQL ROWID Examples D-1
D.1 Overview D-2
D.2 ROWID inaSmple SELECT D-3
D.3 ROWID inaSearched UPDATE D-4
D.4 ROWID inaSELECT Usingadoin D-5
D.41 Examplel D-5
D.42 Example2 D-5
D.5 Searched Update of Records Without Primary Key D-7
D.6 Searched Delete of Records Without Primary Key D-8
Appendix E. SQL CacheTables E-1
El Overview E-2
E.2 Tables for Viewing, Monitoring, and Controlling the Cache E-3
E.21 DSCCACHEOPT i, E-3
E21.1 Notes E-3
E.22 DSCCACHECTRL E-4
E221 Notes E-5
E.23 DSCCACHE E-5
E231 Notes E-6
E.24 DSCCACHEV E-7
E.3 Allowable Operations on DSCCACHE Tables E-8
E.4 Examples of Displaying and Controlling the Cache E-9
E41 CACHE Options E-9
E.4.2 CACHE Control Parameters E-10
E4.3 CACHE Entries E-10
E.5 Securethe Display and Changes E-12
Appendix F. CICS Interface Enhancements for Two-Phase Commit Support F-1
F.1 Overview F-2
F.2 Resynchronization Task Execution F-3
F.21 Syntax F-3
F.22 Parameters F-3
F.23 Examples F-3
F.2.3.1 Successful Manual Resynchronization Example F-3
F.2.3.2 Unsuccessful Manual Resynchronization Examplel F-3
F.2.3.3 Unsuccessful Manual Resynchronization Example2 F-4
F.2.3.4 Successful Automatic Resynchronization Example F-4

Contents xvii

F.2.4 Creating the Resynchronization Program F-4

F.2.5 Resynchronization Program Link Edit (zZOS) F-4
F.2.6 Resynchronization Program Link Edit (VSE) F-5
F.2.7 Defining a Resynchronization Transaction F-6
F.2.8 De€fining the Resynchronization Program F-6
F.3 New CICSOPT and IDMSCINT Parameters F-7
F.3.1 New CICSOPT Parameters F-7
F3.L1 Syntax F-7
F.3.1.2 Parameters F-7
F.3.2 New IDMSCINT Parameters F-11
F.3.21 Syntax F-11
F.3.22 Parameters F-12
FA4 CICSOPTIXIT e F-15
F4.1 OPTIXIT Example F-15
Appendix G. TCP/IP API Commands, Error Codes, Socket Structures, and
String Conversion G-1
Gl Overview G-2
G.2 Function Descriptions G-3
G.21 ACCEPT . . . G-3
G.211 Parameters G-4
G212 NoOtes e G4
G.22 BIND . . . G4
G.221 Parameters G-5
G.23 CLOSE G-5
G.23.1 Parameters G-6
G.24 CONNECT G-6
G.24.1 Parameters G-6
G242 NOtes G-7
G.25 FCNTL . . . e G-7
G.251 Parameters G-8
G.252 NOteS G-8
G.26 FD_CLR G-9
G.26.1 Parameters G9
G.26.2 NOtes G-10
G.27 FD_ISSET G-10
G.27.1 Parameters G-10
G272 Notes G-11
G.28 FD_SET G-11
G.281 Parameters G-12
G.282 Notes G-12
G.29 FD_ZERO G-12
G.29.1 Parameters G-13
G.292 NOteS G-13
G.210 FREEADDRINFO G-13
G.210.1 Parameters G-14
G.2102 Notes G-14
G.211 GETADDRINFO G-14
G.211.1 Parameters G-15
G.2112 Notes G-15
G.212 GETHOSTBYADDR G-16

xviii Advantage CA-IDMS Release Summary

G.2.12.1 Parameters G-17

G.2122 Notes G-17
G.213 GETHOSTBYNAME G-18
G.2.13.1 Parameters G-18
G.213.2 Notes G-18
G.214 GETHOSTID G-19
G.2.14.1 Parameters G-19
G.214.2 NOtES G-19
G.215 GETHOSTNAME G-20
G.2.15.1 Parameters G-20
G.216 GETNAMEINFO G-20
G.2.16.1 Parameters G-21
G.216.2 Notes G-22
G.217 GETPEERNAME G-23
G.2.17.1 Parameters G-23
G.2.18 GETSOCKNAME G-24
G.218.1 Parameters G-24
G.219 GETSOCKOPT e G-25
G.2.19.1 Parameters G-25
G.219.2 Notes G-26
G.220 GETSTACKS G-27
G.2.20.1 Parameters G-27
G.2.20.2 Notes G-28
G.2.21 HTONL G-28
G.2.21.1 Parameters G-29
G.222 HTONS G-29
G.2.22.1 Parameters G-29
G.223 INET_ADDR G-29
G.2.231 Parameters G-30
G.224 INET_NTOA G-30
G.2.24.1 Parameters G-31
G.225 INET_NTOP e G-31
G.2.25.1 Parameters G-32
G.226 INET_PTON G-33
G.2.26.1 Parameters G-33
G.2.27 LISTEN G-34
G.2.27.1 Parameters G-34
G.228 NTOHL G-34
G.2.28.1 Parameters G-35
G.229 NTOHS G-35
G.2.29.1 Parameters G-35
G.230 READ G-36
G.2.30.1 Parameters G-36
G.2.30.2 Notes G-36
G.231 RECV . . . G-37
G.231.1 Parameters G-37
G.231.2 Notes G-38
G.2.32 RECVFROM G-38
G.2321 Parameters G-39
G.2322 Notes G-40

Contents xix

G.233 SELECT and SELECTX G-40

G.2.331 Parameters G-42
G.2.33.2 NOtes G-44
G.234 SEND G-44
G.2.34.1 Parameters G-45
G.2.34.2 NoOtesS G-46
G.2.35 SENDTO G-46
G.2.35.1 Parameters G-46
G.235.2 NOteS G-47
G.2.36 SETSOCKOPT s G-47
G.236.1 Parameters G-48
G.236.2 Notes G-48
G.2.37 SETSTACK G-48
G.237.1 Parameters G-49
G.2.37.2 NOteS G-49
G.238 SHUTDOWN G-49
G.2.38.1 Parameters G-50
G.2.382 NoOtes G-50
G.2.39 SOCKET G-51
G.2.39.1 Parameters G-51
G.239.2 Notes G-52
G.240 WRITE G-53
G.240.1 Parameters G-53
G.240.2 Notes G-54

G.3 Return, Errno, and Reason Codes G-55
G.3.1 ERRNO Numbers Set By The Socket Program Interface G-55
G.4 Socket Structure Descriptions G-61
G.4.1 ADDRINFO Structure G-61
G.4.2 HOSTENT Structure G-61
G.4.3 SOCKADDR Structure G-62
G.4.3.1 SOCKADDRforIPv4 G-62
G.432 SOCKADDRforlIPv6 G-62
G.4.4 TIMEVAL Structure G-62
G.5 String Conversion Functions G-63
G.5.1 Assembler G-63
G52 COBOL G-63
G.53 PL/Il . G-64
G54 Parameters G-64
Appendix H. Third-Party Acknowledgment H-1

xx Advantage CA-IDMS Release Summary

Chapter 1. Introducing Advantage CA-IDMS 16.0

1.1 Welcome 1-2
12 New Features 1-5
1.3 Two-Phase Commit Process 1-11
14 SQL Features 1-12
1.5 Administrative and Operational Enhancements 1-14
1.6 Performance Enhancements 1-17
1.7 Non-Stop Processing Features 1-18
1.8 Tool Product Enhancements 1-19
19 TCPIPAPI Support 1-21
110 Type4 IDBC Driver 1-22
111 Upgradingto Release 16.0 1-23

Chapter 1. Introducing Advantage CA-IDMS 16.0 1-1

1.1 Welcome

1.1 Welcome

Welcome to Advantage™ CA-IDMS™ Release 16.0. This release incorporates many
new features to enhance your use of Advantage CA-IDMS, including:

» Two-phase commit support

®n SQL features

. Administrative and operational features

® Performance features

= Non-stop processing features

® Tool product enhancements

» TCP/IP API support
. Type 4 IDBC Driver

This chapter includes a brief overview of each of the Release 16.0 features and
provides a high-level explanation of the upgrade requirements. The remaining parts of
this guide describe the features in detail.

Part

Content

Chapter 2, “Upgrading to
Release 16.0"

Describes actions and considerations related to
upgrading to Release 16.0.

Chapter 3, “Two-Phase
Commit Support”

Explains and illustrates the new Two-Phase Commit
process and considerations for its use.

Chapter 4, “SQL
Features’

Describes the new SQL features for improved
performance, productivity, and open access.

Chapter 5, “Administrative
and Operational
Enhancements’

Describes:

» Utility enhancements designed for improved DBA
productivity

» Utility and sysgen enhancements for the two-phase
commit feature and TCP/IP

® Security enhancements for the utility commands

® Batch command facility (IDMSBCF) enhancements
for the SET OPTIONS statement

® [nternational character set implementation
enhancement

= Journal file enhancement

Chapter 6, “Performance
Enhancements’

Explains the enhancements for z/Architecture and
DASD exploitation as well as journaling and recovery
performance enhancements.

Chapter 7, “Non-Stop
Processing Features’

Describes the new dynamic capabilities and improved
messaging for enhanced system availability.

1-2 Advantage CA-IDMS Release Summary

1.1 Welcome

Part

Content

Chapter 8, “Tool Product
Enhancements’

Describes the productivity enhancements made for:

. Advantage™ CA-Culprit™ for CA-IDMS™

. Advantage™ CA-IDMS™ Database Journa
Analyzer Option

. Advantage™ CA-IDMS™ Database Dictionary
Module Editor (DME) Option

= Advantage™ CA-IDMS™ Database DML Online

Option

Advantage™ CA-ADS™/Alive Option

Online Mapping Facility

Advantage CA-IDMS PL/I Compiler Enhancements

Support for 31-digit Packed Decimal Elements

Chapter 9, “TCP/IP AP
Support”

Describes the cross-platform capabilities available for
applications using TCP/IP support.

Chapter 10, “Type 4
JDBC Driver”

Describes how to use the Type 4 JDBC driver supplied
with Advantage CA-IDMS Server.

Appendix A, “New and
Revised DCMT
Commands’

Explains the DCMT commands that are new or
changed with Release 16.0.

Appendix B, “New and
Revised SQL Statements”

Describes the SQL statements and language elements
that are new or changed with Release 16.0.

Appendix C, “SQL
Functions and SQL
Procedure Enhancements’

Explains when and how to use a user-defined function
and provides samples for functions and procedures:

® SQL function definition and execution for
Advantage™ CA-ADS™ for CA-IDMS™ dialogs

® SQL procedure definition and execution for
Advantage CA-ADS for CA-IDMS dialogs

® SQL function definition and execution for COBOL

Appendix D, “SQL
ROWID Examples’

Provides several examples of how to use the new SQL
ROWID feature.

Appendix E, “SQL Cache
Tables’

Describes the tables that are involved in SQL caching
and provides examples for the administrators of how to
display and control the cache.

Chapter 1. Introducing Advantage CA-IDMS 16.0 1-3

1.1 Welcome

Part Content

Appendix F, “CICS Describes how to:

Interface EnhancemenFs m Define and execute the CICS RSYN task and
for Two-Phase Commit o
Support” program for resynchronization
® The changes for OPTIXIT to ensure
resynchronization requests are routed to the correct
back-end central version
= The new and enhanced parameters added to
CICSOPT and IDMSCINT to support Two-Phase
Commit

Appendix G, “TCP/IP API Describes:
Commands, Error Codes,
Socket Structures, and
String Conversion”

m Each of the TCP/IP functions and associated
parameters

m The TCP/IP error codes, reason codes and return
codes

» The ASCII to EBCDIC conversion tables

» The TCP/IP socket structures

1-4 Advantage CA-IDMS Release Summary

1.2 New Features

1.2 New Features

New for SP4:

Following are listed the new features added to Advantage CA-IDMS at r16 SP4 and
references to detailed descriptions about them.

Note: Be aware that updated information about Advantage CA-IDMS r16 that is not
part of the new r16 SP4 features is also found in this document. Updates and
new features are both marked by vertical revision bars in the margins.

New r16 SP4 Feature

Reference

A user ID field has been added to the
journal BGIN record for compliance and
audit reporting. JREPORT 008 and the
Advantage CA-IDMS Journal Analyzer
Chronological Event reports have been
updated to display the user ID. A new
JREPORT 009 is also provided to report
on user 1D, transaction ID, and program
name.

To take advantage of this feature, see the
Advantage CA-IDMS Database Journal
Analyzer Option User Guide and
Advantage CA-IDMS Reports.

For z/OS users, A REORG utility has
been added that provides an aternative to
UNLOAD/RELOAD for reorganizing
databases. This utility reduces the time
to do a reorganization of an Advantage
CA-IDMS database.

See 5.20, “REORG Utility Enhancement”
on page 5-46.

A new CREATE DSMODEL utility has
been added to allow defining a temporary
model of data set attributes to use for
dynamic file allocation in conjunction
with the REORG utility.

See 5.21, “CREATE DSMODEL Utility
Enhancement” on page 5-47.

New for SP3:

Following are listed the new features added to Advantage CA-IDMS at r16 SP3 and
references to detailed descriptions about them.

Note: Be aware that updated information about Advantage CA-IDMS r16 that is not
part of the new r16 SP3 features is also found in this document. Updates and
new features are both marked by vertical revision bars in the margins.

Chapter 1. Introducing Advantage CA-IDMS 16.0 1-5

1.2 New Features

New r16 SP3 Feature

Reference

Advantage CA-IDMS Journal Analyzer
has been enhanced to support
decompression of records that were
compressed using Advantage CA-IDMS
Presspack.

See 8.3.4, “Advantage CA-IDMS
Presspack Decompression Support” on

page 8-5.

Easier RHDCCODE customization is
now provided for implementation of a
character set other than the default for
activation of international characters.

See 5.18, “International Character Set
Enhancement” on page 5-39.

New for SP2:

Following are listed the new features added to Advantage CA-IDMS at r16 SP2 and
references to detailed descriptions about them.

Note: Be aware that updated information about Advantage CA-IDMS r16 that is not
part of the new r16 SP2 features is also found in this document. Updates and
new features are both marked by vertical revision bars in the margins.
However, only the updates and new features for the currently released service

pack are marked.

New r16 SP2 Feature

Reference

SQL Enhancement

SQL/XML functions are provided to
allow Advantage CA-IDMS data to be
easily published in XML documents.

See 4.6, “XML Publishing” on
page 4-32.

Administrative and Operational Enhancements

The batch command facility (IDMSBCF)
has been enhanced to allow input/output
reassignment to a file rather than to
SYSIPT and SYSLST.

See 5.10, “IDMSBCF Input/Output
Reassignment” on page 5-22.

The online compilers have been
enhanced to increase the maximum data
lines they can display from 20,916 lines
to 41,916 lines. Also, the CV node name
has been added in the command line
header.

See 5.11, “Online Compiler
Enhancements’ on page 5-27.

The PRINT SPACE utility has been
enhanced to provide space utilization
reporting on a SUBAREA within an area.

See 5.12, “PRINT SPACE Utility
Enhancement” on page 5-28.

1-6 Advantage CA-IDMS Release Summary

1.2 New Features

New r16 SP2 Feature

Reference

The EXTRACT JOURNAL,
ROLLBACK, and ROLLFORWARD
utilities have been enhanced to allow
processing of multiple segments.

See 5.13, “EXTRACT JOURNAL Utility
Enhancement” on page 5-29, 5.14,
“ROLLBACK Utility Enhancement” on
page 5-30, and 5.15, “ROLLFORWARD
Utility Enhancement” on page 5-31.

System setup and product maintenance in
Z/0OS, zZ/VM, VSE, and BS2000/0SD
have been made easier through
enhancements in the way runtime options
are specified.

For more information on this feature, see
5.16, “System Startup Enhancements’ on
page 5-32.

The IDMSLOOK utility and the LOOK
system task have been enhanced to:

m Display page reserve, SMP interval,
and symbolic values when using the
DMCL ALL function.

» Display area procedures when using
the SUBCHEMA and BIND
SUBCHEMA functions.

These features are transparent in using
the IDMSLOOK utility and the LOOK
system task. To take advantage of these
features, see the Advantage CA-IDMS
Utilities and Advantage CA-IDMS System
Tasks and Operator Commands guides.

The TUNE INDEX utility has been
enhanced to allow a COMMIT ALL at
the end of an area to free up shared
locks.

This feature is transparent in using the
TUNE INDEX utility. To take advantage
of this feature, see the Advantage
CA-IDMS Utilities guide.

The number of symbolics allowed in a
DMCL has been increased from 32,768
to 2,147,483,648.

This feature is transparent in using
DMCLs. To take advantage of this
feature, see the Advantage CA-IDMS
Database Administration Guide.

The DML trace facility has been
enhanced to also trace the following
functions:

= COMMIT TASK

= COMMIT TASK ALL

® FINISH TASK

= ROLLBACK TASK

= ROLLBACK TASK ALL

® ROLLBACK TASK CONTINUE

This feature is transparent in using the
DML trace facility. To take advantage of
this feature, see the Advantage CA-IDMS
Navigational DML Programming Guide.

The #WTL macro has been enhanced to
alow the passing of the CV node name
and the Advantage CA-IDMS/DC release
number.

See 5.17, “#WTL Macro Enhancements’
on page 5-38.

Chapter 1. Introducing Advantage CA-IDMS 16.0 1-7

1.2 New Features

New r16 SP2 Feature

Reference

The maximum number of pages that can
be generated by line-mode terminal 1/0
has been increased from 999 to 32,767.

This feature is transparent to using
line-mode /O and system commands
such as DCMT that rely on line-mode
1/0.

The hexadecimal to character trandation
has been enhanced in all modules that
perform memory snaps to use the

common RHDCCODE trandation tables.

This alows the trandation of additional
characters, such as lowercase |etters.

This feature is transparent in using the
affected modules.

Performance Enhancements

A MEMORY CACHE option has been
added to the ALTER DMCL statement
and DCMT VARY DMCL command to
allow dynamically changing options to
control where and how much memory
cache storage can be allocated.

For more information on using the
MEMORY CACHE option, see 6.2.3,
“Altering the DMCL Definition” on
page 6-4 and A.18, “DCMT VARY
DMCL" on page A-26 For updated
DCMT command codes, see A.32,
“Command Codes’ on page A-48.

A specia form of storage protect is how
available for the production system,
which provides negligible processing
overhead yet protects Advantage

CA-IDMS and the operating system from

user written code.

See 6.8, “High Performance Storage
Protection” on page 6-17.

TCP/IP API Support Ehancement

Additional sample TCP/IP client and
generic listener server programs are
provided in the following programming
languages:

® Advantage CA-ADS
. Assembler

= COBOL

n PL/I

For more information, see Advantage
CA-IDMS Callable Services.

JDBC Driver Ehancement

1-8 Advantage CA-IDMS Release Summary

1.2 New Features

New r16 SP2 Feature

Reference

A built-in TCP/IP server program is
provided that enables Advantage
CA-IDMS Server to function as a "Type
4" JDBC driver. This allows applications
to communicate directly to the
Advantage CA-IDMS address space
using the native "wire" protocol, with no
intervening middleware.

See Chapter 10, “Type 4 JDBC Driver.”

DCMT Command Ehancements

The DCMT SHUTDOWN command has
been enhanced to inhibit prompting for
permission to proceed with system
shutdown.

See A.2, “DCMT SHUTDOWN?" on
page A-3.

The DCMT DISPLAY AREA command
has been enhanced to allow the display
of al areas to be sorted alphabetically by
area hame or by page group and page
range.

See A3, “DCMT DISPLAY AREA” on
page A-4.

The DCMT DISPLAY DEADLOCK and
DCMT VARY DEADLOCK commands
have been enhanced to allow control over
whether additional information is
generated for deadlocked tasks.

See A5, “DCMT DISPLAY
DEADLOCK” on page A-6 and A.15,
“DCMT VARY DEADLOCK” on
page A-21.

The DCMT DISPLAY SEGMENT
command has been enhanced to
optionally list all segments.

See A9, “DCMT DISPLAY
SEGMENT” on page A-15.

The DCMT VARY AREA and DCMT
VARY SEGMENT commands have been
enhanced to allow allocation or
deallocation of all files associated with
an area or segment.

See A.13, “DCMT VARY AREA” on
page A-19 and A.26, “DCMT VARY
SEGMENT” on page A-40.

The DCMT VARY DMCL command has
been enhanced to inhibit prompting for
permission to proceed with changes.

See A.18, “DCMT VARY DMCL” on
page A-26.

The DCMT VARY REPORT command
has been enhanced to alow varying of
multiple reports.

See A.25, “DCMT VARY REPORT” on
page A-39.

Chapter 1. Introducing Advantage CA-IDMS 16.0 1-9

1.2 New Features

New r16 SP2 Feature

Reference

The DCMT DISPLAY ACTIVE
PROGRAMS command output display
has been enhanced to display the
program type.

This feature is transparent in using the
DCMT DISPLAY ACTIVE
PROGRAMS command. To take
advantage of this feature, see Advantage
CA-IDMS System Tasks and Operator
Commands.

The DCMT DISPLAY PROGRAM
command has been enhanced to show
MAINLINE as part of a mainline dialog's
type information.

This feature is transparent in using the
DCMT DISPLAY PROGRAM
command. To take advantage of this
feature, see Advantage CA-IDMS System
Tasks and Operator Commands.

New for SP1:

Following are listed the new features added to Advantage CA-IDMS at r16 SP1 and
references to detailed descriptions about them.

Note: Be aware that updated information about Advantage CA-IDMS r16 that is not
part of the new r16 SP1 features is also found in this document. Updates and
new features are both marked by vertical revision bars in the margins.
However, only the updates and new features for the currently released service

pack are marked.

New r16 SP1 Feature

Reference

The Advantage CA-IDMS socket
interface has been enhanced with the
FCNTL socket funtion to allow the
specification or retrieval of a socket's
timeout value.

See 9.5.3, “Associating Timeouts to
Sockets’ on page 9-24.

Support for the zZ/VM, VSE, and
BS2000/0OSD operating systems was
provided.

Any special requirements for use of a
feature or the availability of a feature
specific to each operating system is
documented in place with each feature.

1-10 Advantage CA-IDMS Release Summary

1.3 Two-Phase Commit Process

1.3 Two-Phase Commit Process

For enhanced open access, the new two-phase commit feature ensures that all changes
made during recovery are either applied or backed out.

Advantage CA-IDMS Release 16.0 provides full two-phase commit capability with
automatic resynchronization in the event that processing is interrupted during the
two-phase commit operation.

. Two-phase commit support is provided between Advantage CA-IDMS systems so
that an Advantage CA-IDMS batch or online application can safely update
resources on multiple Advantage CA-IDMS systems. This ensures that al updates
are either committed or rolled out.

» Advantage CA-IDMS is aso able to participate in distributed transactions that are
controlled by the CICS and RRS transaction managers. This enables a batch, TSO,
or CICS application to coordinate Advantage CA-IDMS updates with those made
through other resource managers, such as MQSeries and DB2, which support these
same protocols.

Chapter 1. Introducing Advantage CA-IDMS 16.0 1-11

1.4 SQL Features

1.4 SQL Features

Advantage CA-IDMS Release 16.0 includes many features for improved performance
and ease of use of the Advantage™ CA-IDMS™ Database SQL Option.

» The dynamic SQL statement-caching feature saves a copy of the SQL statement
together with the result of the SQL compilation in a cache. The CPU cycles for
parsing, reading the catalog and dictionary for metadata, and optimizing and
creating an access plan are eliminated for subsequent executions of the same SQL
statement. This feature provides a tremendous performance benefit for web
applications using ODBC or JDBC access to Advantage CA-IDMS data since
these open protocols are based on dynamic SQL.

n User-defined functions can now be defined for invocation within an SQL
statement. The function can have one or more input parameters and must return a
single value.

® The addition of several SQL scalar functions provides enhanced compatibility
with Open Standards. Many of the scalar functions are implemented as
user-defined functions and are automatically installed with Advantage CA-IDMS.
The new scalar functions complement the existing scalar functions that were
distributed with earlier releases of Advantage CA-IDMS.

= A pseudo-column (ROWID) is provided for unique access to a row in an SQL
table. The pseudo-column is the db-key for the underlying database record. It is
not persistent for the life of the database but can be used within a transaction.
ROWID can be used instead of writing a table procedure for a searched update or
delete where there is no primary key or foreign key.

® Procedure enhancements provide improved productivity. An SQL table
procedure or SQL procedure can now inherit the DBNAME of the current
transaction. An SQL procedure can be a mapless Advantage CA-ADS dialog that
allows existing business logic to be reused in new web or distributed applications.

» Application programmers are now able to use SQL to enhance existing non-SQL
applications. The transaction-sharing feature can be enabled to prevent deadlocks
at runtime when the same database records are being updated using both SQL and
native IDMS DML statements in a program or dialog. It can also prevent
deadlocks between access performed within an SQL procedure and its invoking
application.

» Logical/physical separation techniques can be employed for SQL -defined
databases eliminating the need for separate schemas and access modules for each
physical instance of an SQL-defined database. The specific instance that is
accessed at runtime is determined by the database to which the SQL session is
connected.

= Cloning of an SQL database provides improved productivity by alowing
physically identical databases to be easily defined and maintained.

= A new stamp synchronization utility is provided to facilitate the movement of
SQL data and definitions between Advantage CA-IDMS systems. The utility

1-12 Advantage CA-IDMS Release Summary

1.4 SQL Features

alows users to manually synchronize the timestamps in the data area and the
catalog for SQL-defined databases.

m XML Publishing is provided to alow XML data to be generated from data stored
in an Advantage CA-IDMS database.

Chapter 1. Introducing Advantage CA-IDMS 16.0 1-13

1.5 Administrative and Operational Enhancements

1.5 Administrative and Operational Enhancements

Advantage CA-IDMS Release 16.0 provides many features to improve DBA
productivity including the following:

Many database utilities that were previously only available for batch execution,
such as PRINT PAGE and FORMAT, are now available for online execution.

The DBA can define a DBNAME for utility use only in the DBNAME TABLE,
thereby eliminating validation warnings for arbitrarily grouped segments.

A new LOCK AREA utility command is available for locking an area in a batch
job.

A new parameter of ALREADY LOCKED is available on the FORMAT AREA
and FIX PAGE utility statements to allow the operation to take place even if the
areais locked.

The recovery utilities report on distributed transactions and support the use of a
manual recovery control file for use with the two-phase commit feature.

A new clause on the sysgen PTERM statement allows you to define multiple
terminals using a single statement.

Execution of utility commands can now be secured at the user level.

The batch command facility (IDMSBCF) now provides input/output reassignment
to afile rather than to SYSIPT and SYSLST.

Online compiler displays have been increased from 20,916 lines to 41,916 lines.
Also, the CV node name now displays in the command line header.

The PRINT SPACE utility now provides the capability to report on space
utilization on a SUBAREA within an area.

The EXTRACT JOURNAL, ROLLBACK, and ROLLFORWARD tilities now
provide multiple segment processing.

The IDMSLOOK utility has been enhanced to:

— Display page reserve, SMP interval, and symbolic values when using the
DMCL ALL function.

— Display area procedures when using the SUBCHEMA and BIND
SUBCHEMA functions.

The TUNE INDEX utility has been enhanced to allow a COMMIT ALL at the
end of an area to free up shared locks.

The number of symbolics allowed in a DMCL has been increased from 32,768 to
2,147,483,648.

1-14 Advantage CA-IDMS Release Summary

1.5 Administrative and Operational Enhancements

» The DML trace facility has been enhanced to also trace the following functions:
— COMMIT TASK
— COMMIT TASK ALL
— FINISH TASK
— ROLLBACK TASK
— ROLLBACK TASK ALL
— ROLLBACK TASK CONTINUE

» The DCMT VARY AREA and DCMT VARY SEGMENT commands have been
enhanced to allow allocation or deallocation of all files associated with an area or
segment.

» The DCMT DISPLAY AREA command has been enhanced to allow the display
of al areas to be sorted alphabetically by area name or by page group and page
range.

» The DCMT VARY REPORT command has been enhanced to allow varying of
multiple reports.

8 The DCMT DISPLAY DEADLOCK and DCMT VARY DEADLOCK commands
have been enhanced to allow control over whether additional information is
generated for deadlocked tasks.

® The DCMT DISPLAY ACTIVE PROGRAMS command output display has been
enhanced to display the program type.

» The DCMT VARY DMCL command has been enhanced to inhibit prompting for
permission to proceed with changes.

» The DCMT SHUTDOWN command has been enhanced to inhibit prompting for
permission to proceed with system shutdown.

® The DCMT DISPLAY PROGRAM command has been enhanced to show
MAINLINE as part of a mainline dialog's type information.

® The hexadecimal to character trandation has been enhanced in all modules that
perform memory snaps to use the common RHDCCODE trandation tables. This
alows the trandation of additional characters, such as lowercase letters.

. The maximum number of pages that can be generated by line-mode terminal 1/0O
has been increased from 999 to 32,767.

® The DCMT DISPLAY SEGMENT command has been enhanced to optionally list
al segments.

8 In Z/OS, zZ/VM, and VSE, system startup now supports additional runtime options
in the execution parameter and alows them to be specified as keyword/value
pairs.

» The #WTL macro has been enhanced to allow the passing of the CV node name
and the Advantage CA-IDMS/DC release number.

Chapter 1. Introducing Advantage CA-IDMS 16.0 1-15

1.5 Administrative and Operational Enhancements

» Additional sample TCP/IP client and generic listener server programs are provided
in various programming languages in Advantage CA-IDMS Callable Services.

» RHDCCODE customization has been enhanced for implementation of a character
set other than the default for activation of international characters.

» The BGIN checkpoint journal record now carries the user ID for compliance and
audit reporting. JREPORT 008 has been enhanced to display the user 1D, and a
new report, JREPORT 009 is also provided that reports on the user ID, transaction
ID, and program name.

» The unload and reload process has been enhanced with a new REORG utility.
This utility reduces the time to do a reorganization of an Advantage CA-IDMS
database.

» A new CREATE DSMODEL utility statement is available for specifying data set
attributes for dynamic file allocation in conjunction with the REORG utility.

1-16 Advantage CA-IDMS Release Summary

1.6 Performance Enhancements

1.6 Performance Enhancements

Release 16.0 provides many features for improving performance. These include:

Advantage CA-IDMS Release 16.0 exploits the 64-bit data addressing capabilities
in Z/OS V1R2 and above to utilize virtual storage above the 231 address logical
line known as "the bar." The File Cache in Memory feature, activated through a
new DMCL option, caches the contents of a database file in memory above the
bar. This improves overall Advantage CA-IDMS performance by reducing the
number of 1/O operations.

Advantage CA-IDMS Release 16.0 provides I/O performance improvements
through exploitation of the Parallel Access Volume feature on Enterprise Storage
System DASD devices such as IBM's Shark. This feature allows multiple jobs to
simultaneously access the same logical volume. The parallel 1/0 operations allow
higher /O rates, thereby increasing overall throughput and reducing response time.

A new sysgen option enables the sharing of Language Environment (LE) enclaves
for improved performance for LE COBOL programs.

New sysgen options controlling commit and rollback behavior provide faster
recovery during warmstart and rollback operations and reduce the likelihood of a
duplicate transaction ID when the local transaction ID values wrap.

More efficient processing during journaling 1/0 operations provides overall
improved throughput.

Advantage CA-IDMS load modules may now be accessed from PDSE data sets
without starting Advantage CA-IDMS as an authorized program. To load from a
PDSE, you can specify an SVC number on the execute parameter in columns
29-31.

A specia form of storage protect is now available for the production system,
which provides negligible processing overhead yet protects Advantage CA-IDMS
and the operating system from user written code.

Chapter 1. Introducing Advantage CA-IDMS 16.0 1-17

1.7 Non-Stop Processing Features

1.7 Non-Stop Processing Features

Severa features are available in Release 16.0 to provide enhanced availability of
Advantage CA-IDMSin a 24 x 7 environment. These include the ability to:

. Dynamically turn on/off tracing as well as the ability to vary the size of the trace
tables

= Dynamicaly vary any program attribute using the DCMT task

» Write a message to the console when a "Short on Storage" condition occurs so
that corrective action can be taken

1-18 Advantage CA-IDMS Release Summary

1.8 Tool Product Enhancements

1.8 Tool Product Enhancements

Many tool product enhancements are implemented as part of Release 16.0, including:

® Advantage™ CA-IDMS™ Database DML Online Option

Enhanced DMLO entry screen display to indicate which interrupt key is used
to exit DMLO.

HLPDICT now defaults to the current working dictionary if no setting is
specified in the Installation Parameter module USDTPARM when used in the
Advantage CA-IDMS/DC environment. Previously this defaulted to
TOOLDICT.

The User Exit Program USDMLXIT can dynamically pass back a message for
subsequent display on the DMLO command line. Previously only a numeric
return code was passed back. This provides the user with the capability to
dynamically alter message text.

. Advantage™ CA-IDMS™ Database Dictionary Module Editor (DME) Option

A new "fast in" installation parameter is provided for direct invocation of the
Module Edit Screen.

Any value (including nulls) can now be specified for the DME Print Class.

If any compile errors occur when using the Advantage CA-ADS ADSC
compiler, the user is presented with an edit browse screen that illustrates and
highlights the lines in error.

® Advantage™ CA-ADS™/Alive Option

The maximum number of records that can be processed per Advantage
CA-ADS didog is increased to 200.

An ingtallation parameter option is available to disable the Post Abort browse
screen feature. The abend details continue to be written to the
DEBUGQUEUE.

® Advantage™ CA-IDMS™ Database Journa Analyzer Option

Support for the new journal records and layouts for Advantage CA-IDMS
16.0.

Enhanced RECORD and DBKEY DISPLAY processing to allow for the
addition of START and STOP dates when ALL=Y isindicated on the
PROCESS statement. This allows the user to create RECORD and DBKEY
displays for a particular time period.

With r16 SP3, support has been added for decompression of records that were
compressed using Advantage CA-IDMS Presspack and displays them in the
Journal Displays.

With r16 SP4, for compliance and audit reporting, the Chronological Event
report now reports the user 1D associated with the transaction being reported
on the BGIN checkpoint entry.

Chapter 1. Introducing Advantage CA-IDMS 16.0 1-19

1.8 Tool Product Enhancements

® Advantage CA-Culprit for CA-IDMS

The use of Advantage CA-Culprit parameters stored in AllFusion®
CA-Librarian® or AllFusion® CA-Panvaet® libraries no longer requires that the
AllFusion CA-Librarian or AllFusion CA-Panvalet file access routines be linked
with Advantage CA-Culprit routines to form the respective interfaces. These
interfaces are now dynamically loaded.

1-20 Advantage CA-IDMS Release Summary

1.9 TCP/IP API Support

1.9 TCP/IP API Support

The TCP/IP feature provides support for the development and execution of
client/server Advantage™ CA-IDMS™/DC Transaction Server applications that use the
industry-standard TCP/IP communications protocol. A generic listener function and
callable sockets API allow client and server programs written in Advantage CA-ADS,
COBOL, PL/I or Assembler to communicate through TCP/IP with programs running
on the same or different platforms.

Chapter 1. Introducing Advantage CA-IDMS 16.0 1-21

1.10 Type 4 JDBC Driver

1.10 Type 4 JDBC Driver

A built-in TCP/IP server program is provided that enables the Advantage CA-IDMS

Server JDBC driver to function as a "Type 4" driver. This allows client applications

written in Java to communicate directly with the Advantage CA-IDMS address space
using the native "wire" protocol, with no intervening middleware.

1-22 Advantage CA-IDMS Release Summary

1.11 Upgrading to Release 16.0

1.11 Upgrading to Release 16.0

In general, to install Release 16.0, follow the instructions documented in the
Advantage CA-IDMS installation manual for your operating system.

Before starting the installation, carefully read Chapter 2, “Upgrading to Release 16.0.”
This helps to ensure that you are successful in your use of Advantage CA-IDMS 16.0
and are able to fall back to a previous release of Advantage CA-IDMS, if necessary.

Chapter 1. Introducing Advantage CA-IDMS 16.0 1-23

1-24 Advantage CA-IDMS Release Summary

Chapter 2. Upgrading to Release 16.0

21
2.2
2.3
24
2.5
2.6
2.7
2.8
29
2.10
211
212
213
214
2.15
2.16
217

Overview 2-2
Installing the Software 2-4
Ingtallingthe SVC 2-5
Formatting Journal Files 2-6
Offloading the Log File 2-7
Specifying a DCNAME for Cloned Systems 2-8
Updating Dictionary Descriptions 29
Updating Task and Program Definitions 2-10
Defining Destination Resources 2-11
Disabling Queue Area Sharing 2-12
Reassigning Initiator Classes 2-13
Activating the CMS Option 2-14
Updating Advantage CA-IDMSSQL 2-15
Applying an APAR to Earlier Releases 2-18
Updating the CICS Interfaces 2-19
Recompiling User-Written Programs 2-20
Creating a System Startup Module 2-21

Chapter 2. Upgrading to Release 16.0 2-1

2.1 Overview

2.1 Overview

This chapter describes the actions that must be taken and the considerations involved
in upgrading to Release 16.0 of the Advantage CA-IDMS family of products. You can
upgrade to Release 16.0 from Advantage CA-IDMS Release 10.x, 12.0, 14.0, 14.1, or
15.0. The conversion utilities provided for Releases 12.0, 14.0, 14.1, and 15.0 are
included on the Release 16.0 installation tape.

This is a summary of actions required to update the Advantage CA-IDMS software to
Release 16.0:

Install the software into a new environment.
Install the new SVC delivered with Release 16.0.

Initialize the journal files using the Release 16.0 FORMAT utility before starting a
Release 16.0 system for the first time.

Offload the log file using a pre-Release 16.0 ARCHIVE LOG dtility or initiaize
the log file before starting a Release 16.0 system for the first time.

For all Advantage CA-IDMS systems using the cloned system facility to share the
system definition with another system, add the SYSIDMS DCNAME parameter to
the startup JCL.

Run IDMSDIRL against each dictionary containing the IDMSNTWK schema
definition.

Update the Advantage CA-IDMS task and program definitions using the source
members provided on the installation tape and the sysgen compiler.

Customers employing dynamic routing of database connections may need to define
additional destinations to the system'’s resource table.

In a data sharing environment, where the queue area is shared between group
members, all sharing systems must be upgraded to Release 16.0 simultaneously or
sharing of the queue between Release 16.0 and pre-Release 16.0 systems must be
disabled.

For clients running zZ/OS 1.2 or later, if your Advantage CA-IDMS database files
are cached in dataspaces or you intend to exploit the 64-bit memory architecture
for file caching, it may be necessary to reassign initiator classes for Advantage
CA-IDMS systems and local mode batch jobs.

Warning: Advantage CA-IDMS and CICS cannot run in the same initiator class.

Z/OS customers using the CMS Option no longer need to set optional APAR bit
236 to activate CM S support.

Advantage CA-IDMS SQL customers and users of Advantage CA-IDMS Visud
DBA should:

— Update the CA-supplied SY SCA schema definition using the command
facility and the source members provided on the installation tape.

2-2 Advantage CA-IDMS Release Summary

2.1 Overview

— Execute the CONVERT CATALOG command against each SQL-enabled
dictionary.

Apply APARs to al prior versions of Advantage CA-IDMS that access or are
accessed by Release 16.0 software. This includes access from an external
teleprocessing monitor such as CICS.

Clients using CICS must create new IDMSINTC and IDMSINTL interface
modules before using Release 16.0 runtime libraries in their CICS systems.

Clients using the IDMSINTC CICS interface:

— May need to change TPNAME parameters or specify a new CICS NAME
SYSIDMS parameter to ensure that every CICS system has a consistent and
unique identifier.

— If you use the auto-commit feature so your Advantage CA-IDMS database
transactions can be committed through a CICS syncpoint operation, you must
take additional steps to implement two-phase commit support between CICS
and Advantage CA-IDMS.

Note: This requirement also applies to Advantage CA-IDMS Transparency
for VSAM users.

— Must define a new resynchronization task and program.

Recompile all user-written programs that reference Advantage CA-IDMS control
blocks or journa files.

Review the recovery and restart procedures for applications:
— Issuing remote database requests between Advantage CA-IDMS systems.
— Using IDMSINTC with the auto-commit feature enabled.

Z/0S, z/VM, and V SE users may need to alter the way in which they create their
startup modules or specify additional startup parameters in their execution JCL.

Chapter 2. Upgrading to Release 16.0 2-3

2.2 Installing the Software

2.2 Installing the Software

Follow the instructions documented in the Advantage CA-IDMS installation manual

for your operating system. Also, follow any specia installation instructions outlined in
the cover letter delivered with the installation tape. Be sure to install the Release 16.0
software into a new set of installation libraries. You cannot install Release 16.0 into an
existing Advantage CA-IDMS environment.

2-4 Advantage CA-IDMS Release Summary

2.3 Installing the SVC

2.3 Installing the SVC

A new SVC is delivered with Release 16.0. It should be used for all Release 16.0
systems. The SVC is downward compatible and can be used with Release 14.1 and
Release 15.0 systems. If you are sharing an SVC with multiple releases of Advantage
CA-IDMS, please refer to Chapter 8 of the Advantage CA-IDMS Installation and
Maintenance - ZOS manual to ensure that you are specifying the correct parameters to
CAIRIM. This ensures that all releases of Advantage CA-IDMS that are using the
SVC are identified.

Chapter 2. Upgrading to Release 16.0 2-5

2.4 Formatting Journal Files

2.4 Formatting Journal Files

Severa journal records are changed in Release 16.0. It is necessary to initialize the
journa files using the Release 16.0 FORMAT utility statement before the journa files
are used with a Release 16.0 system. At startup, the system verifies the journal files
are correctly formatted. If the files are not properly formatted a DC202037 message is
issued:

IDMSWARM — Journals not formatted correctly for the current release of IDMS
This is followed by another informational message and then a 3033 ABEND occurs.

If it is necessary to fall back to an earlier release of the software, the journal files must

be reinitialized using the FORMAT utility and runtime libraries from the earlier
release, otherwise warmstart fails.

2-6 Advantage CA-IDMS Release Summary

2.5 Offloading the Log File

2.5 Offloading the Log File

The format of the log file's statistics records is unchanged in Release 16.0, athough
the release identifier in these records is updated and contains the string 'R160'. If
Advantage CA-IDMS encounters a log record with an earlier release identifier, the
ARCHIVE LOG utility issues the warning message:

NON 16.0 RECORD HAS BEEN ENCOUNTERED IN THE LOG, RECORD WILL BE BYPASSED

To avoid these messages and to separate logs from prior releases, offload the log file
using the ARCHIVE LOG utility before installing Release 16.0 or initialize the log file
if you do not need the log information.

If it is necessary to fall back to an earlier release of the software, any log files that are
accessed by a Release 16.0 system must be offloaded or initialized prior to its use by a
pre-Release 16.0 system.

Chapter 2. Upgrading to Release 16.0 2-7

2.6 Specifying a DCNAME for Cloned Systems

2.6 Specifying a DCNAME for Cloned Systems

If an Advantage CA-IDMS system relies on the cloned system capability to share its
system definition with another Advantage CA-IDMS system, the SYSIDMS file in its
startup JCL must include a DCNAME parameter in order to uniquely identify the
system that is being started. For more information, see 3.5, “Impact on System

Operations’ on page 3-17.

2-8 Advantage CA-IDMS Release Summary

2.7 Updating Dictionary Descriptions

2.7 Updating Dictionary Descriptions

New fields were added to records in the DDLDML and DDLCAT areas using existing
filler space. Although no dictionary conversion is necessary, you should update the
definition of these records in every dictionary containing the IDMSNTWK schema
description. To do this, use the IDMSDIRL utility. For instructions on executing this
utility, refer to the Advantage CA-IDMS Utilities manual.

Chapter 2. Upgrading to Release 16.0 2-9

2.8 Updating Task and Program Definitions

2.8 Updating Task and Program Definitions

There are new CA-supplied task and program definitions for Release 16.0. Y ou should
update the system definition using the batch system generation compiler, RHDCSGEN,
and source members provided on the installation tape. This can be accomplished easily

by:
1. Performing an UPGRADE install to upgrade the definitions for SYSTEM 99.

2. Copying the task and program definitions from SYSTEM 99 to your system
definition.

For more information on the UPGRADE install process, see the Advantage CA-IDMS
installation manual for your operating system.

If it is necessary to fall back to an earlier release of the software, you can recreate the
earlier versions of the task and program definitions by reinstalling them from the
installation tape provided with the earlier release or by restoring the system dictionary
from a backup that was taken prior to the migration. If returning to Release 15.0 of
Advantage CA-IDMS, it is not necessary to restore the earlier versions of the task and
program definitions.

2-10 Advantage CA-IDMS Release Summary

2.9 Defining Destination Resources

2.9 Defining Destination Resources

If dynamic routing is used within a parallel sysplex environment to balance a workload
across multiple members of a DBGROUP, it may be necessary to add the group
members as destinations within a front-end system's resource table so that startup can
resynchronize with these systems. This must be done only for group members that are
not defined to the system through NODE statements. For more information see 3.4,
“Impact on System Definition” on page 3-15.

Chapter 2. Upgrading to Release 16.0 2-11

2.10 Disabling Queue Area Sharing

2.10 Disabling Queue Area Sharing

A Release 16.0 system cannot share its queue with a pre-Release 16.0 system. Clients
that are sharing the queue area must either:

» Upgrade al sharing systems within a data sharing group at the same time.
» Disable sharing of the queue between Release 16.0 and pre-Release 16.0 members.

2-12 Advantage CA-IDMS Release Summary

2.11 Reassigning Initiator Classes

2.11 Reassigning Initiator Classes

If running a zZ/OS 1.2 or later operating system, it may be necessary to reassign
initiator classes for central versions or local mode batch jobs that cache database files
in memory or in a dataspace. Under these circumstances, Release 16.0 allocates 64-bit
storage. Since 64-bit storage acquisition is incompatible with subspaces, you must
ensure that the same address space is not used for both Advantage CA-IDMS and
applications, such as CICS, that use subspaces. For more information, see 6.2, “File
Cache in Memory” on page 6-3.

Chapter 2. Upgrading to Release 16.0 2-13

2.12 Activating the CMS Option

2.12 Activating the CMS Option

When running a Release16.0 system, z/OS customers using the CMS Option are not
required to set optional APAR bit 236 to enable CM S support for the Advantage
CA-IDMS system. Activation of the CMS Option is now automatic for each system
using an SVC for which the CMS option is enabled

2-14 Advantage CA-IDMS Release Summary

2.13 Updating Advantage CA-IDMS SQL

2.13 Updating Advantage CA-IDMS SQL

2.13.1 Updating SYSCA Schema Definitions

Advantage CA-IDMS Visual DBA and SQL users should update their SY SCA schema
definitions in each catalog in which the SYSCA schema is defined. This process
varies dightly depending on your release of Advantage CA-IDMS. Details of the
required steps can be found in the installation materials received with your Release

16.0 installation tape.

The following changes have been made to the SY SCA schema for Release 16.0 and
are downward compatible with prior releases of Advantage CA-IDMS:

B SYSCA.ACCESSIBLE_TABLES view is updated and excludes functions.
m SYSCA.TABLES view is updated and excludes functions.

The following new views are defined:

SYSCA.ACCESSIBLE_PROCS
SYSCA.ACCESSIBLE_FUNCS
SYSCA.DSCCACHEV

The following new table procedures are defined:

SY SCA.DSCCACHEOPT
SYSCA.DSCCACHECTRL
SYSCA.DSCCACHE

The following new functions are defined:

SYSCA.ABS
SYSCA.ACOS
SYSCA.ASIN
SYSCA.ATAN
SYSCA.ATAN2
SYSCA.CEIL
SYSCA.CEILING
SYSCA.COS
SYSCA.COSH
SYSCA.COT

SY SCA.DEGREES
SYSCA.EXP

Chapter 2. Upgrading to Release 16.0 2-15

2.13 Updating Advantage CA-IDMS SQL

— SYSCA.FLOOR

— SYSCA.LOG

— SYSCA.LOGI0

— SYSCA.MOD

— SYSCA.P

— SYSCA.POWER

— SYSCA.RADIANS

— SYSCA.RAND

— SYSCA.ROUND

— SYSCA.SIGN

— SYSCA.SIN

— SYSCA.SINH

— SYSCA.SQRT

— SYSCA.TAN

— SYSCA.TANH

— SYSCA.TRUNCATE
— SYSCA.INSERT

— SYSCA.REPEAT

— SYSCA.REPLACE

— SYSCA.RIGHT

— SYSCA.SPACE

— SYSCA.DAYNAME
— SYSCA.DAYOFWEEK
— SYSCA.DAYOFYEAR
— SYSCA.MONTHNAME
— SYSCA.QUARTER

— SYSCA.WEEK

2.13.2 Converting SQL Catalogs

Advantage CA-IDMS Visual DBA and SQL users must use the CONVERT
CATALOG command to update the definitions of system tables in each catalog in
which the SYSTEM schema is defined.

The converted definitions are compatible with these Releases:

n 140

2-16 Advantage CA-IDMS Release Summary

2.13 Updating Advantage CA-IDMS SQL

141
® 150

Warning: If you are upgrading from Release 12.0 or 12.01, you should retain backup
files of the catalog.

If it is necessary to fall back to Release 14.0, 14.1, or 15.0 version of the software, no
special action needs to be taken regarding the catalog; however, if falling back to
Release 12.0 or 12.01, the catalog (and database areas containing tables that are
created or altered using Release 16.0) must be restored.

2.13.2.1 Release 16.0 Changes

When a catalog is converted, the definitions of the following tables are upgraded to
their Release 16.0 definitions and new columns in associated rows are initialized

appropriately:
= SYSTEM.SCHEMA
» SYSTEM.TABLE

® SYSTEM.DBNAME

Changes introduced in earlier releases of the software are applied if they have not
aready been made. Refer to the Advantage CA-IDMS Features Guide — Release 15.0
for a description of these prior changes.

2.13.2.2 Executing the Catalog Conversion Utility

The catalog conversion utility can be invoked using the online command facility
(OCF) or the batch command facility (IDMSBCF). If running in local mode or if
converting from Release 12.0 or 12.01, you should back up the target catalog before
executing this utility.

To convert a catalog enter the following statement:
»—— CONVERT CATALOG >

After successful execution, the Command Facility issues one of two informational
messages to indicate the status of the conversion.

If a catalog conversion is performed, the message indicates the number of rows of
each type that are changed. If a catalog conversion is not required, an appropriate
message is issued.

Chapter 2. Upgrading to Release 16.0 2-17

2.14 Applying an APAR to Earlier Releases

2.14 Applying an APAR to Earlier Releases

If a Release 16.0 system is accessed by a 14.1 or 15.0 version of Advantage
CA-IDMS or vice-versa, you must apply one of these APARs to the pre-Release 16.0

system:
B 141 — Q023507
® 150 — QO23506

Communications with releases earlier than 14.1 are not supported.

2-18 Advantage CA-IDMS Release Summary

2.15 Updating the CICS Interfaces

2.15 Updating the CICS Interfaces

2.15.1 Creating New CICS Interface Modules

Before a CICS system can use the Release 16.0 Advantage CA-IDMS runtime library,
you must create new IDMSINTC and IDMSINTL interface modules and UCF
front-ends (if applicable) using the Release 16.0 source and object libraries. There is
no need to create new IDMSCINT or IDMSCINL modules or relink user applications
when upgrading to an Advantage CA-IDMS Release 16.0 system.

2.15.2 Identifying a CICS System

Users of the IDMSINTC interface must ensure that each CICS system has a consistent
and unique identifier. By default, the name of a CICS system is determined by the
TPNAME parameter of the CICSOPT options table. If more than one IDMSINTC
interface is used within a CICS system they must all have the same TPNAME vaue in
their CICSOPT assembly or you must specify a new CICS NAME parameter in the
SYSIDMS file included in the CICS startup JCL. The name given to a CICS system
must be unique across all CICS systems accessing any one central version.

For more information on specifying a name for a CICS system, refer to 3.8,
“Two-Phase Commit Support with CICS’ on page 3-29.

2.15.3 Implementing Two-Phase Commit Support in CICS

In Release 16.0, a two-phase commit protocol is used whenever AUTOCMT is enabled
for an IDMSINTC CICS interface. The use of AUTOCMT causes a CICS syncpoint
operation to commit changes made by database sessions that are still active when the
syncpoint is taken. In order to support two-phase commit processing between CICS
and Advantage CA-IDMS, additional installation steps must be taken. These steps are
discussed in 3.8, “Two-Phase Commit Support with CICS’ on page 3-29.

Advantage CA-IDMS Transparency for VSAM forces the use of AUTOCMT in CICS.
Therefore users of this product must also perform these extra installation steps.

Chapter 2. Upgrading to Release 16.0 2-19

2.16 Recompiling User-Written Programs

2.16 Recompiling User-Written Programs

Severa control block formats are changed in Release 16.0. Although in most cases the
changes simply entail the addition of new fields, it is recommended that all programs
referencing Advantage CA-IDMS control blocks, such as user-written exits, be
recompiled using the Release 16.0 library.

2-20 Advantage CA-IDMS Release Summary

2.17 Creating a System Startup Module

2.17 Creating a System Startup Module

For zZ/OS, z/VM, and VSE users, the linkedit parameters used to create the startup
module for an Advantage CA-IDMS system may have changed depending on your
operating system and how you created these modules in the past. See Advantage
CA-IDMS System Operations for instructions on how to create a startup module
appropriate to your environment.

The IDMSDC module that is created during the installation process no longer includes
an RHDCPARM module. If you use the installed IDMSDC module as your system
startup module, you likely will need to specify additional startup parameters at
execution time. See the cover letter for your installation tape for more details and 5.16,
“System Startup Enhancements’ on page 5-32 for a description of the enhanced
startup parameters.

Chapter 2. Upgrading to Release 16.0 2-21

2-22 Advantage CA-IDMS Release Summary

Chapter 3. Two-Phase Commit Support

31 OvearvIW . .
3.2 Two-Phase Commit Protocol
3.3 Two-Phase Commit Support Within Advantage CA-IDMS
3.4 Impact on System Definition L.
3.5 Impact on System Operations
36 ImpactonJournaling
3.7 Impact on Recovery
3.8 Two-Phase Commit Support withCICS
3.9 Two-Phase Commit Support withRRS

Chapter 3. Two-Phase Commit Support 3-1

3.1 Overview

3.1 Overview

This chapter discusses the two-phase commit support provided in Advantage
CA-IDMS Release 16.0.

3-2 Advantage CA-IDMS Release Summary

3.2 Two-Phase Commit Protocol

3.2 Two-Phase Commit Protocol

Two-phase commit is a protocol used to ensure that all changes made within the scope
of a distributed unit of work are either applied (committed) or backed out.

As the name implies, a two-phase commit process is divided into two phases. In the
first phase, resource managers participating in the unit of recovery prepare their
resources to be committed. If they cannot do so, they inform the requestor of the
failure. In the second phase, the resource managers either make their changes
permanent or back them out based on the overall outcome of the transaction.

If a resource manager indicates that it has successfully prepared its resources to be
committed, it guarantees that the resources can be committed even if some adverse
condition, such as a system failure, occurs prior to completion of the commit process.
It is this guarantee that ensures that al changes are either applied or backed out in
their entirety.

3.2.1 Terminology
The following terms are associated with two-phase commit processing:

A resource manager is a software component that controls access to and the state of
one or more recoverable resources such as a database. An Advantage CA-IDMS
central version is an example of a resource manager.

A transaction manager is a software component that directs commit and backout
processes. Multiple transaction managers may be involved in a single commit or
backout operation. If so, their actions are coordinated to achieve transaction
consistency. Every Advantage CA-IDMS system has a transaction manager as a
component.

A coordinator is a transaction manager that initiates a two-phase commit operation
and is responsible for its overall outcome. A coordinator is sometimes referred to as an
initiator.

A participant is a resource manager or a transaction manager other than the
coordinator that participates in a two-phase commit operation. A participant is
sometimes referred to as an agent.

A distributed transaction is a unit of recovery in which more than one resource
manager participates.

Chapter 3. Two-Phase Commit Support 3-3

3.2 Two-Phase Commit Protocol

3.2.2 Typical Commit Flows
The following diagram illustrates the communications that take place during a typical

two-phase commit operation involving three systems. In this example, A is the
coordinator since it initiates the commit operation, and B and C are participants.

Commit Flow

A

_— Coordinator : Participant : Participant
Application A i B i c
Commit : :
Phase 1 > Prepé?re :
) OK
: Prepare :
| | >
< i OK i -
) | !
i [
___________________ e Rtk
Phase 2 Com:{nit ‘ :
) OK _
) i i
! Commit !
; : >
« ! OK i
OK « g -

The following diagram illustrates another typical commit flow. In this example, A is
again the overall transaction coordinator, and B and C are participants. However, in
this case B plays a dud role. It is both a participant with respect to A and a
coordinator with respect to C since it forwards the Prepare and Commit directives that
it receives from A to C. Such a situation might arise because an application on A
starts a remote SQL transaction on B that, in turn, updates resources on C through an
SQL procedure.

3-4 Advantage CA-IDMS Release Summary

3.2 Two-Phase Commit Protocol

Commit Flow

r 3

~

o Coordinator : Participant : Participant
Application A i B | c
Commit : :

Phase 1 » Prep %re :
i Prepare
i i I
oK __ _
« OK) !
___________________ ————
Phase 2 i i
Commit - g
: " Commit
i | —
: — oK _
OK OK

3.2.3 Prepare and Commit Outcomes

When a participant receives a Prepare request, it does whatever is necessary to
guarantee that a subsequent Commit reguest can be honored. This may involve such
things as flushing buffers or forwarding requests to other participants. If all of these
activities are completed successfully, the participant signals its willingness to commit
by responding OK to the Prepare request. If it is unable to successfully complete its
preparations, it indicates this by responding BACKOUT to the Prepare request.

The coordinator gathers the responses from its participants and determines the final
outcome for the commit operation. If all participants indicate that they are willing to
commit, then the coordinator proceeds with the second phase and the final outcome
will be OK. If any participant indicates that it cannot commit, then the coordinator
directs its participants to back out their changes instead of committing them. The final
commit outcome in this case is BACKOUT.

A participant can respond to a Prepare reguest in ways other than OK or BACKOUT.
It can respond FORGET to signal that it made no updates within the transaction being
committed and does not need to participate in the second phase. This has the potential
for reducing the number of communications needed to complete the commit operation.

Chapter 3. Two-Phase Commit Support 3-5

3.2 Two-Phase Commit Protocol

A participant can also respond "heuristically,” indicating that its resources have been
committed or backed out. A transaction might be completed heuristically because it
was forced to complete through some administrative action. Such heuristic actions
defeat the two-phase commit process and can lead to mixed outcomes in which some
changes are committed while others are backed out.

Note: While Advantage CA-IDMS does not make heuristic decisions on its own, it
does allow an administrator to commit or backout a transaction using a DCMT
command. Such administrator intervention might be required following an
interruption in the commit process.

3.2.4 Recovery from Failure

Failures in communications, operating systems, or resource or transaction managers
can interrupt the two-phase commit process. The point at which the failure occurs
determines whether a transaction's changes are committed or backed out. If the failure
occurs during the first phase in the process, changes are backed out. If the failure
occurs during the second phase, changes are committed.

Recovery from failure during a two-phase commit involves a process called
resynchronization, in which messages are exchanged between a coordinator and a
participant in order to complete transactions whose commit process was interrupted. To
facilitate resynchronization, both the coordinator and the participant write additional
journal records at critical points during the two-phase commit process.

3-6 Advantage CA-IDMS Release Summary

3.3 Two-Phase Commit Support Within Advantage CA-IDMS

3.3 Two-Phase Commit Support Within Advantage CA-IDMS

With Release 16.0, a central version always uses a two-phase commit protocol to
commit resources. The DML commands that an application issues to commit tasks and
database transactions (for example, FINISH TASK or COMMIT WORK) now follow a
two-phase commit protocol. When one of these commands is issued, the Advantage
CA-IDMS system to which the command is directed becomes the coordinator. Any
other Advantage CA-IDMS system involved in the transaction becomes a participant.

From a programming perspective, the semantics of these commands have not changed
since prior releases always attempted to commit all updates made within a distributed
transaction. However, because a two-phase commit protocol was not used in prior
releases, it was possible for some changes to be committed while others were backed
out. Release 16.0 eliminates this potential by always following a two-phase commit
protocol.

3.3.1 Optimizations Supported

To minimize the cost of doing a two-phase commit operation, Advantage CA-IDMS
supports the Read Only, Single Agent, and Presumed Abort optimizations.

The Read Only optimization reduces the communications needed to commit a
distributed transaction. A participant that has not updated resources within the scope of
the transaction can respond FORGET to a Prepare request. Advantage CA-IDMS does
not include such read-only participants in the second phase of the commit operation,
thus eliminating at least one communication. Additionally, the read-only participant
writes no journal records in support of the two-phase commit operation.

Advantage CA-IDMS uses the Single Agent optimization to reduce the flows needed
to commit a distributed transaction. At the point when a Prepare request is to be sent
to the last remaining participant, if al other participants have responded FORGET or if
this is the only participant in the transaction, then a OnePhaseCommit request is sent
instead of a Prepare. This results in only a single communication with the participant
to complete the commit operation. Furthermore, if there is only a single participant, the
coordinator writes no journal records in support of the distributed transaction.

Advantage CA-IDMS uses a Presumed Abort protocol to reduce journaling overhead.
Simply put, this means that while a coordinator retains knowledge of a committed
transaction until al of its participants indicate that they have completed the second
phase of the commit operation, the coordinator can immediately forget transactions
whose outcome is BACKOUT. Consequently, no journaling activity for a distributed
transaction takes place at a coordinator until all Prepare votes have been collected and
then only if the outcome is OK. The absence of knowledge of a transaction signifies
that its outcome is BACKOUT.

The dternative to Presumed Abort is Presumed Nothing. Under this protocol a
coordinator retains knowledge of the outcome of a commit operation until al
participants indicate that it can be forgotten, regardless of whether the final outcome is

Chapter 3. Two-Phase Commit Support 3-7

3.3 Two-Phase Commit Support Within Advantage CA-IDMS

OK or BACKOUT. Consequently, a coordinator must journal the existence of a
transaction prior to forwarding the first Prepare request, and it must retain knowledge
of backed out transactions longer. Advantage CA-IDMS does not support the
Presumed Nothing protocol.

3.3.2 Support for External Coordinators

Release 16.0 uses a two-phase commit protocol internally to commit its own resources,
and it can participate in a two-phase commit operation controlled by the following
external coordinators:

» CICS Transaction Server
1 RRS — IBM's system-level resource recovery platform for zZ/OS

= XA transaction managers supported by future releases of Advantage™
CA-IDMS™ Database Server Option

By participating in externally controlled transactions, updates to Advantage CA-IDMS
resources can safely be coordinated with those of other resource managers that are
supported by the above transaction managers.

For more information on:

® CICS Transaction Server — see 3.8, “Two-Phase Commit Support with CICS’ on
page 3-29

8 RRS — see 3.9, “Two-Phase Commit Support with RRS’ on page 3-35

Information on XA support will be provided in the future.

3.3.3 Support for External Resource Managers

Release 16.0 can coordinate transactions in which external resource managers are
participants. It does this in one of two ways: by enlisting the services of RRS or by
using a resource manager interface tailored to both the Advantage CA-IDMS
environment and the external resource manager.

If the external resource manager supports RRS as a coordinator, using RRS as an
intermediary is the easiest way to extend two-phase commit support to the external
resource manager. In this way, any resource manager that supports RRS as a
coordinator can potentially participate in an Advantage CA-IDMS-controlled
transaction.

If the resource manager does not support RRS as a coordinator, then an interface that
is tailored to the external resource manager and that supports the Advantage CA-IDMS
transaction manager protocol can be used to enable the resource manager to be a direct
participant in an Advantage CA-IDMS-controlled transaction.

Computer Associates will work with third-party vendors that provide online access
from Advantage CA-IDMS DC/UCF to resource managers such as DB2 and
MQ-Series to extend full two-phase commit participation to these products.

3-8 Advantage CA-IDMS Release Summary

3.3 Two-Phase Commit Support Within Advantage CA-IDMS

3.3.4 Support for Pre-Release 16.0 Systems

Pre-Release 16.0 systems do not support a two-phase commit protocol; however, they
can participate in a two-phase commit operation.

Pre-Release 16.0 systems support a one-phase commit protocol only. Hence, when
they are participants in a two-phase commit operation, they are sent OnePhaseCommit
requests, rather than separate Prepare and Commit requests. If only a single
pre-Release 16.0 system participates in the transaction, it is treated as a "last agent,”
meaning that all other participants are sent Prepare requests before the pre-Release
16.0 system is sent its OnePhaseCommit request. If this latter request is successful,
then the commit operation proceeds to a successful conclusion; otherwise, the
transaction is backed out. If more than one pre-Release 16.0 system participates in the
transaction, each one is sent a OnePhaseCommit request during the second phase of
the commit operation. Of course, this can result in some changes being committed
while other changes are backed out; however, this potential is eliminated once all
systems are converted to Release 16.0 and is no riskier than if al systems were
pre-Release 16.0 systems.

If a Release 16.0 system participates in a transaction that is controlled by a
pre-Release 16.0 system, then it is sent the same commit directives that a pre-Release
16.0 participant is sent. The Release 16.0 system treats these requests as if they came
from an application and uses a two-phase commit protocol to commit both local
resources and those updated by remote participants of its own.

3.3.5 Support for Batch Applications

All changes made by a batch application are committed or backed out as a single unit
provided at least one of the following is true:

» All updates are made through a single transaction.

» All updates are made through transactions executing on a single central version
and a task-level commit request is issued.

® Batch RRS support is enabled and all database sessions started by the batch
application are routed to central versions running within the same operating
system image as the batch application.

If these conditions are not present, then commit support functions effectively the same
as it would in a pre-Release 16.0 batch environment.

3.3.6 Implementation Details

This section provides details on certain aspects of the Advantage CA-IDMS two-phase
commit implementation. While knowledge of this material is not required to use
two-phase commit, it facilitates understanding of the output from recovery utilities and
DCMT commands and might prove useful in researching exceptional recovery
situations.

Chapter 3. Two-Phase Commit Support 3-9

3.3 Two-Phase Commit Support Within Advantage CA-IDMS

3.3.6.1 Transaction Branches

A transaction branch represents a separately identifiable portion of a transaction within
which deadlocks cannot occur. Unless transaction sharing is in effect, every database
session (every run unit or SQL database session) is associated with a separate
transaction branch. When transaction sharing is in effect, multiple database sessions
may share a single transaction branch. In so doing, they avoid deadlocking among
themselves, since deadlocks are not possible for work performed under a single
transaction branch.

An application is associated with multiple transaction branches if it opens concurrent,
non-sharing database sessions. Multiple branches can also result from the use of
system services that access a dictionary, such as loading from a load area or accessing
a queue area. If more than one transaction branch exists, they are organized
hierarchically, meaning that there is a single top-level branch and one or more
subordinate branches. The top-level branch represents either the work done by a
database session or all work done by a task (or user session if no task is active). A
subordinate branch always represents the work done by a database session. A
subordinate branch may in turn have subordinate branches of its own, perhaps as a
result of an SQL procedure that opens its own database session.

Every transaction branch is assigned a unique identifier that never changes. This
Branch Identifier (BID) is an eight-byte hexadecimal value that is sometimes
qualified by the node name of the local system to make it a globally unique value.

A commit operation is always targeted to a single transaction branch and encompasses
all of that branch's subordinates. The target branch becomes the top-level branch of
the transaction and its subordinates become the subordinate branches of the
transaction. If atask-level commit operation is initiated, the target branch is aways
the top-level branch in the task's branch hierarchy. If a database session-level commit
operation is initiated, the target branch is the one associated with the database session
through which the commit request is issued.

3.3.6.2 Transaction ldentifiers

Transactions can have multiple identifiers. Advantage CA-IDMS assigns two types of
identifiers: alocal transaction identifier and a distributed transaction identifier. Externa
transaction managers may assign transaction identifiers of their own, generically
referred to as external transaction identifiers.

A Local Transaction Identifier (LID) is a four-byte value that identifies the work
done by a branch within a transaction. It is used to distinguish the work done by one
branch from that of another and is recorded in the journal records that are used to
track local database changes (for example, BGIN, BFOR, AFTR). Local transaction
identifiers are unique only within a central version.

A Distributed Transaction Identifier (DTRID) is a 16-byte value that uniquely
identifies a distributed transaction across al participating nodes. It is assigned by the
Advantage CA-IDMS system that is acting as the coordinator for the transaction or by

3-10 Advantage CA-IDMS Release Summary

3.3 Two-Phase Commit Support Within Advantage CA-IDMS

a CICS interface. Every distributed transaction processed by an Advantage CA-IDMS
system is assigned a DTRID, regardless of whether the transaction also has externally
assigned identifiers. The DTRID is recorded in the distributed transaction journal
records that are written during the two-phase commit process (for example, DIND,
DCOM, DFGT).

A DTRID value is comprised of an 8-character prefix followed by an 8-byte
hexadecimal value. If assigned by an Advantage CA-IDMS system, the prefix is the
system's node name and the suffix is an 8-byte interna format timestamp.

If the DTRID is assigned by a CICS interface, the 8-character prefix consists of
"CICS" concatenated with the 4-character CICS system identifier specified in the
TPNAME parameter of the interface's CICSOPT macro. The 8-byte hexadecimal value
is the UOW (Unit Of Work) identifier assigned by CICS to the work unit being
committed.

External transaction managers may also assign their own identifiers to a distributed
transaction in which Advantage CA-IDMS is a participant. The following types of
external identifiers are recognized by Advantage CA-IDMS and are recorded in the
distributed transaction journal records written by the central version that interfaces
directly with the external transaction manager. These journa entries provide a cross
reference between the internal and externa identifiers.

. RRSURID — the Unit of Recovery Identifier (URID) assigned by RRS. A
URID is a 16-byte hexadecimal value.

m XA XID — the transaction identifier assigned by an XA transaction manager. An
XID is a hexadecimal value whose length can be up to 140-bytes.

3.3.6.3 Transaction States

Transaction state is an attribute of a distributed transaction that reflects its progress
through a two-phase commit operation. The Advantage CA-IDMS transaction manager
assigns the following transaction states for this purpose:

® InReset — This is the initial state prior to the start of a commit or backout
operation.

m [nFlight — This state is assigned at the start of a two-phase commit operation and
persists while the transaction manager is assessing the need for and the ability to
proceed with the two-phase commit operation.

® |InPrepare — This state is assigned when the transaction manager determines that a
two-phase protocol is needed to guarantee the integrity of a commit operation.

® LastAgent — This state is assigned by a coordinator's transaction manager when
there is only a single participant and consequently a full two-phase protocol is not
needed to guarantee the integrity of a commit operation.

® InDoubt — This state is assigned by a participant's transaction manager when it
writes a DIND journal record for the transaction.

Chapter 3. Two-Phase Commit Support 3-11

3.3 Two-Phase Commit Support Within Advantage CA-IDMS

= [nCommit — This state is assigned when a DCOM journa record is written for
the transaction.

® InBackout — This state is assigned when it is determined that the outcome of the
distributed transaction is BACKOUT.

» Forgotten — This state is assigned when the two-phase commit operation is
complete. The following diagram illustrates the transitions that can occur from
one state to another as a transaction proceeds through a two-phase commit
operation.

Transaction States

Phase 1
InPrepare
LastAgent
y \J
InBackout InCommiit
Phase 2 Forgotten

3.3.6.4 Transaction Outcomes

Fundamentally, a distributed transaction can have only one of the following three
outcomes: al changes were committed, all changes were backed out, or some changes
were committed while others were backed out. However, it is useful to support
variations of these basic three outcomes, especially as interim results.

Advantage CA-IDMS recognizes the following transaction outcomes:

3-12 Advantage CA-IDMS Release Summary

3.3 Two-Phase Commit Support Within Advantage CA-IDMS

m OK — The request is complete and the transaction's changes have been
committed.

8 FORGET — The request is complete, but no changes were committed since none
were made (that is, this is a read-only transaction).

» OK_PENDING — The request is not yet complete, but changes have been or will
be committed.

. BACKOUT — The request is complete but changes have been backed out.

» BACKOUT_PENDING — The request is not yet complete, but changes have been
or will be backed out.

» HC — The request is complete, and the transaction's changes have been
heuristically committed.

» HR — The request is complete, but the transaction's changes have been
heuristically backed out.

» HM — The request is complete, but some changes have been committed while
others have been backed out.

3.3.6.5 Resource Managers, Interfaces, and EXxits

When discussing commit protocols, the term "resource manager” traditionally refers to
a software component that manages recoverable resources. Advantage CA-IDMS uses
the term to refer to both resource and transaction managers and the specific interface
that is used to communicate with them.

For example, when access is made from one Advantage CA-IDMS system to another,
each system becomes a known resource manager on its partner. On the front-end, the
partner system is identified by its node name and an interface name of "DSI_CLI"; on
the back-end, the partner system is identified by its node name and an interface name
of "DSI_SRV". Consequently, a central version may have knowledge of severa
resource managers whose interface name is DSI_CLI or DSI_SRV, since it may
communicate with several other Advantage CA-IDMS systems. Furthermore, a central
version may have knowledge of two resource managers with the same node name, one
for each of the two interfaces, since a system can act as a front-end and a back-end to
another system.

When a CICS system is used to access a central version, it becomes a known resource
manager on that central version and is identified through a combination of its CICS
system name and the name of the IDMSINTC interface module through which it is
accessed.

To participate in a two-phase commit operation coordinated by Advantage CA-IDMS,
a resource manager makes its existence known by registering with the local transaction
manager. When registering, the resource manager interface identifies exit routines to be
invoked by the transaction manager during the commit process. In this way, the
resource manager interface acts as the bridge between the local transaction manager
and the resource or transaction manager to which it provides access. It is the resource

Chapter 3. Two-Phase Commit Support 3-13

3.3 Two-Phase Commit Support Within Advantage CA-IDMS

manager interface's responsibility to forward prepare, commit, and backout directives
and return appropriate responses to the local transaction manager.

When a resource manager's exit is invoked, it returns outcomes that are similar to the
transaction outcomes outlined above. For example, a resource manager's prepare exit
can return a FORGET outcome to signify that it has made no changes within the scope
of the transaction and therefore need not participate in the second phase of the commit
operation.

3.3.6.6 Interests and Roles

In order for a resource manager to participate in a transaction, it must register an
interest in that transaction. The existence of an interest informs the Advantage
CA-IDMS transaction manager that the resource manager's exits should be invoked
during commit and backout processing.

When an interest is registered, the role that the resource manager is to play with
respect to the transaction is specified. Advantage CA-IDMS recognizes the following
roles:

» Communications Resource Manager (CRM) — indicating that the resource
manager is a remote participant in the transaction.

® Server Distributed Resource Manager (SDSRM) — indicating that the resource
manager is the coordinator for the transaction.

» Participant (PART) — indicating that the resource manager is a local participant
in the transaction. When a central version application calls a resource manager
interface to access a remote resource, the interface registers a CRM interest in the
application's current transaction, since it is acting as a participant in that
transaction. When remote access to a central version is provided from an
environment controlled by an external transaction manager, the interface providing
that access registers an SDSRM interest in the transaction since the external
transaction manager is the transaction's coordinator.

As a two-phase commit operation proceeds, interests are assigned states similar to the
transaction states outlined above. For example, if an interest's prepare exit returns OK,
the state of the interest is set to InDoubt, reflecting the fact that the associated resource
manager is waiting for the final commit or backout directive.

3-14 Advantage CA-IDMS Release Summary

3.4 Impact on System Definition

3.4 Impact on System Definition

In order to be able to successfully resynchronize, a coordinator must be able to
communicate with participating systems. During resynchronization, the only
information that an Advantage CA-IDMS coordinator has about another Advantage
CA-IDMS system is its node name. The node name is used as the resource name in
opening a DTS connection and hence the coordinating system's resource table and
node definitions must be capable of supporting such a connection. To this end, ensure
that every partner system that can be a participant is defined to the coordinator in one
of the following ways.

1. Define the partner system as a NODE in the coordinator's system definition. This
option is appropriate if there is a direct communications path between the two
systems and dynamic routing through DBGROUPs is not used or if forcing a
specific access method with dynamic routing.

2. Define the partner system's node name as a destination in the coordinator's
resource name table and identify the DBGROUP to which new connections should
be routed by specifying a VIA parameter. This option is appropriate if dynamic
routing is in use and the default access method is acceptable. Wildcarding the
destination name can eliminate the need for defining a resource for every
DBGROUP member and thus allows additional members to be added to the group
without defining new resources.

3. Define the partner system's node name as a destination in the coordinator's
resource hame table and identify the intermediate node through which
communication should be routed by specifying a VIA parameter. This option
should be used only if there is no direct communications path between the two
systems.

To facilitate earlier resynchronization when a failed participating system is restarted, it
is advisable, though not required, to similarly define each potential coordinator within
the participating system's definition.

3.4.1 System Generation Resource Table

3.4.1.1 Syntax

Release 16.0 supports the ability to specify that database sessions targeted to a specific
node be routed via a DBGROUP. This enables startup to resynchronize with
participating nodes that are not defined by a NODE statement in the system definition.

»> RESource TABle >
ADD —
MODify —
DELete —
>— l — DEStination is destination-node | ><
VIA nodename —41

VIA group name

Chapter 3. Two-Phase Commit Support 3-15

3.4 Impact on System Definition

3.4.1.2 Parameters

3.4.1.3 Usage

3.4.1.4 Example

VIA nodename
Identifies the name of the DC/UCF system where the named resource is located or
the name of an intermediate node through which the request for data will be
routed.

Nodename is the system name identified on the SYSTEM ID parameter of the
SYSTEM statement or overridden by the DCNAME parameter in the SYSIDMS
file at startup and must match a nodename defined with the NODE statement.

VIA groupname
|dentifies the name of the DBGROUP to which the request for data will be

dynamically routed.

Groupname is the name of a DBGROUP defined in the database name table of one or
more DC/UCF systems, any of which are capable of servicing the request for data.
Groupname must match a nodename defined by a NODE statement specifying a
GROUP parameter.

Specifying Resources: The type of resource you specify is a database or a
destination (nodename). In most cases, you will specify a database name. The only
time you need to explicitly define a destination resource is when the target node is not
defined using a NODE statement. This can occur because:

® Thereis no direct communications path from the system being defined to the
target system, thus requiring database requests to be routed through an
intermediate node. I this is the case, the target node should be defined as a
destination resource and the intermediate node specified in its VIA parameter.

® Dynamic routing through DBGROUPs is used to direct database connections to
any of several systems capable of processing the request and the default access
method can be used to access the dynamically selected target node. If thisisthe
case, the members of the DBGROUP should be defined as destination resources
and the name of the DBGROUP specified in their VIA parameter. |If the node
names of all members of a DBGROUP follow a unique naming convention, then
wildcarding can be used in the destination's nodename to reduce the number of
required definitions and allow for the addition of new members without changing
the resource table.

Defining a Resource Table:

ADD RESOURCE TABLE
DBNAME IS SYS104 VIA EDCQAMO1
DESTINATION IS PRODC* VIA CUSTGRP
DBNAME IS MIS* VIA SYSTEM84.

3-16 Advantage CA-IDMS Release Summary

3.5 Impact on System Operations

3.5 Impact on System Operations

This section describes the impact that two-phase commit has on system operations.

3.5.1 Restarting a Failed System

When restarting a failed central version, it is advisable to restart it on the same logical
operating system image as the one on which it abnormally terminated. This ensures
that the restarted system can access (and be accessed by) the same systems with which
it was able to communicate prior to the abnormal termination regardless of the
intersystem access methods being used. If the restarted system cannot communicate
with another system, it is not able to resynchronize with that system. This may leave
incomplete transactions holding locks that prevent access to portions of the database.
Resynchronization eventually completes when the necessary intersystem
communications are reestablished. For more information on the resynchronization
process, refer to 3.7, “Impact on Recovery” on page 3-23.

3.5.2 System Name During Warmstart

A system must be restarted using the same name that it had at the time of failure. To
ensure that this is true, the name of an Advantage CA-IDMS system is recorded on its
journa files. During warmstart, the system name on the journal files is used as
follows:

= |f no DCNAME parameter is specified in the SYSIDMS file of the system's
startup JCL, the name of the system is taken from the value stored on the journal
files. Any value specified in the system definition is ignored.

® |f a DCNAME parameter is specified in the SYSIDMS file, it must match the
value stored on the journal files, otherwise warmstart fails

The use of a DCNAME parameter is optional except for systems that are members of
a data sharing group or that share a single system definition using the cloned system
capability. This latter requirement is new for Release 16.0.

3.5.3 Incomplete Distributed Transactions at Startup

When restarting a failed central version, warmstart identifies incomplete distributed
transactions that were active at the time of failure. Depending on where in the commit
process the failure occurred, these transactions are completed by warmstart or are
restarted later during the startup process. If restarted, the transactions remain active
until resynchronization takes place with the other resource or transaction managers
involved in the transaction or until the transactions are manually completed.

If arestarted transaction is in an InDoubt state, then any locks held by that transaction
at the time of failure are reacquired and held until the transaction is completed. Since
these locks prevent access to resources that were updated by the transaction, it is
important to restart all failed systems as soon as possible so resynchronization can
complete the transaction and free the locks.

Chapter 3. Two-Phase Commit Support 3-17

3.5 Impact on System Operations

The following sample messages might be displayed when a distributed transaction is
restarted:

IDMS DC202038 V74 In-Doubt Transaction-ID 1416 will be added to the unrecovered transaction Tist

IDMS DC202051 V74 Warmstart COMPLETE, but recovery of SOME transactions have been DEFERRED until later in startup.
IDMS DB342017 V74 T1 Will Tock Transaction-ID 1416

IDMS DB342019 V74 T1 DTRID SYSTEM74::01650C90A708A9B2-01650C8C4207D9FF active at startup

IDMS DB342020 V74 T1 DTRID SYSTEM74::01650C90A708A9B2-01650C8C4207D9FF has been restarted

IDMS DB342022 V74 T1 In-Doubt Transaction 1416 has been restarted

3.5.4 Incomplete Distributed Transactions at Shutdown

Distributed transactions whose commit process was interrupted will remain active until
resynchronization has completed successfully with all participants affected by the
failure. Such transactions are said to be "pending resynchronization." If transactions are
till pending resynchronization at the time a shutdown request is issued, the system
will not shutdown successfully. Instead, it displays the following message and
terminates abnormally with abend code 3937.

IDMS DC200241 V74 T1 Active transactions exist. Abending.

When the system is next restarted, the incomplete distributed transactions that were
pending resynchronization are restarted and their locks reacquired.

To avoid abnormal terminations at shutdown, you should ensure that no distributed
transactions are pending resynchronization before issuing the shutdown command. Y ou
can determine whether such transactions exist by issuing a DCMT DISPLAY
DISTRIBUTED RESOURCE MANAGER command. To complete these transactions,
you must restart the affected system and either alow it to resynchronize automatically
or force it to resynchronize by issuing a DCMT VARY DISTRIBUTED RESOURCE
MANAGER RESYNC command.

For more information on:
® Resynchronization — refer to 3.7, “Impact on Recovery” on page 3-23.

= DCMT DISPLAY DISTRIBUTED RESOURCE MANAGER command — refer
to 3.5.5, “Monitoring Distributed Commit Operations.”

® |ssuing the DCMT VARY DISTRIBUTED RESOURCE MANAGER RESYNC
command — refer to A.16, “DCMT VARY DISTRIBUTED RESOURCE
MANAGER.”

3.5.5 Monitoring Distributed Commit Operations

Recovery utilities such as PRINT JOURNAL and FIX ARCHIVE have been enhanced
to report on distributed transactions encountered during their processing. Journal report
8 reports any distributed transaction journal records that it encounters. For details on
these enhancements, see Chapter 5, “Administrative and Operational Enhancements.”

In addition, the following DCMT commands provide the ability to monitor various
aspects of distributed commit operations:

= DCMT DISPLAY DISTRIBUTED RESOURCE MANAGER

3-18 Advantage CA-IDMS Release Summary

3.5 Impact on System Operations

® DCMT DISPLAY DISTRIBUTED TRANSACTION
3.5.5.1 DCMT DISPLAY DISTRIBUTED RESOURCE MANAGER

This command displays information about resource and transaction managers that are
known to a system.

You can display summary information about al resource managers or details about an
individual resource manager.

The summary display is useful in determining whether there are resource managers for
which resynchronization has not completed and whether incomplete distributed
transactions are pending completion of that resynchronization.

The detailed display can be used to determine which transactions are pending
resynchronization with a particular resource manager.

For more information on this command, see A.6, “DCMT DISPLAY DISTRIBUTED
RESOURCE MANAGER.”

3.5.5.2 DCMT DISPLAY DISTRIBUTED TRANSACTION
This command displays information about distributed transactions.

You can display summary information about al active distributed transactions or those
pending resynchronization or details about an individual distributed transaction.

The summary display is useful in determining if any distributed transactions exist and
whether any are pending resynchronization.

The detailed display can be used to determine the coordinator and participants in a
distributed transaction. It aso shows an externa identifier if an external transaction
manager such as RRS has assigned one. This information might be useful in
determining how to complete a distributed transaction in the event of resynchronization
failure.

For more information on this command, see A.7, “DCMT DISPLAY DISTRIBUTED
TRANSACTION.”

Chapter 3. Two-Phase Commit Support 3-19

3.6 Impact on Journaling

3.6 Impact on Journaling

This section describes the new journal records that are written in support of a
two-phase commit operation and the changes to existing journal records. It also
describes a new journal format option that can be specified.

3.6.1 New Journal Records and Formats

Distributed transaction journal records are written during a two-phase commit
operation to record the various states of a distributed transaction and to facilitate
resynchronization in the event of failure. Each of them contains a Distributed
Transaction Identifier (DTRID), a 16-byte value that distinguishes one distributed
transaction from another.

The following new journal record types can be written in support of a two-phase
commit operation:

= DIND (In doubt) — Written by a participant after it has successfully prepared its
resources for commit and prior to returning an OK response to its coordinator.

» DCOM (Commit) — Written by a coordinator to signify that a transaction's
changes will be committed. Its existence separates the first and second phases of
the commit process. A participant also writes a DCOM immediately upon
receiving a Commit request from its coordinator.

» DBAK (Backout) — Written by a coordinator to signify that a transaction's
changes will be backed out. Its existence separates the first and second phases of
the commit process. A participant also writes a DBAK immediately upon
receiving a Backout request from its coordinator but only if a DIND had
previously been written.

» DPND (Pending) — Written by a coordinator during the second phase of a
commit operation if some participant is unable to complete its commit processing
due to a failure. By writing this record, the coordinator is able to forget some
participants while remembering others. A DPND can aso be written by either a
coordinator or a participant to record heuristic outcomes.

» DFGT (Forget) — Written by coordinators and participants when they have
completed their two-phase commit processing for a transaction. A DFGT record
is written only if some other Dxxx record was previously written.

DIND, DCOM, and DBAK records contain the Local Transaction Identifiers (LIDs)
identifying the work done by local transaction branches participating in a distributed
transaction. A LID is the 4-byte transaction identifier that is carried in the local
transaction-related journal records (for example, BFOR, AFTR, COMT). The journal
records for a distributed transaction are interspersed with associated local transaction
records as follows:

® BGIN — indicating the start of a local recovery unit
» BFOR/AFTR — one or more pairs

3-20 Advantage CA-IDMS Release Summary

3.6 Impact on Journaling

® DIND — on a participant only

= DCOM or DBAK — on a participant and a coordinator

B COMT or ENDJ — if a DCOM was written

» ABRT — if a DBAK was written

» DPND — on a coordinator if the commit operation was interrupted

. DFGT — on a participant and a coordinator if any other Dxxx record was
written

DIND, DCOM, DBAK, and DPND records contain information about a participant's
coordinator and about a coordinator's participants. The specific information that is
recorded varies depending on the type of the coordinator or participant. For example,
the node name, resource name, and remote transaction branch identifier are recorded
for Advantage CA-IDMS participants. The RRS URID (Unit of Recovery Identifier) is
recorded for an RRS coordinator or participant.

Dxxx records can be larger than a single disk journal block. If thisis the case, they are
split into as many journal blocks as are necessary to hold the entire Dxxx record. It is
aso possible for a Dxxx record to be split across disk journal files and, hence, across
archive files. The manual recovery utilities reassemble the record, provided that all
necessary archive files are processed in a single execution of the utility. They ignore
partial Dxxx records in which not all segments are present in the input file.

In addition to the above new journal records, the following journa records have been
expanded to support two-phase commit processing:

» JHD1 (Journal Header 1) — A record that occupies the first block of each disk
journd file. It was expanded to record information about other systems with which
this system communicates. This information includes the journal stamp of the
other system and how to communicate with it.

8 JHD2 (Journal Header 2) — An overflow block for a JHD1; it is optionally
alocated when a disk journa file is formatted.

m JSEG/DSEG/JSGX — Records that track active transactions across a journal swap
and other key points. They are used by warmstart during the automatic recovery
process and have been expanded to track active distributed transactions in addition
to active local transactions.

3.6.2 Journal File Formatting Considerations

When formatting journal files, it might be necessary to specify a size for the amount
of space to be reserved for recording information about other systems with which a
system communicates. In most cases, the default size is sufficient and no explicit size
parameter is needed; however, if a system's journal block size is very small or it
communicates with many other Advantage CA-IDMS or CICS systems, it may be
necessary to reserve additional space. For information on how to specify a storage size,
see Chapter 5, “Administrative and Operational Enhancements.”

Chapter 3. Two-Phase Commit Support 3-21

3.6 Impact on Journaling

If ajournal's available space is exhausted, it is necessary to shut down the system,
offload and format its journal files, and restart the system before communications with
new systems can take place.

3-22 Advantage CA-IDMS Release Summary

3.7 Impact on Recovery

3.7 Impact on Recovery

This section describes the impact that two-phase commit has on recovery operations. It
describes the automatic recovery that is provided through resynchronization as well as
considerations for manual recovery operations.

3.7.1 System Recovery Interdependence

In general, recovery from failures that occur during two-phase commit processing is
accomplished automatically through the resynchronization process, just as warmstart
automatically recovers from failures during local transaction processing. The one
important consideration when dealing with distributed transaction recovery is that
systems are no longer independent with respect to recovery. Information on a
coordinator's journa files might be needed to complete recovery for one or more of its
participants. If either system's journal files are formatted before resynchronization
between the two systems has completed after a failure, then manual intervention might
be needed to complete the recovery process.

3.7.2 Resynchronization Between Advantage CA-IDMS Systems

Resynchronization is a process in which information is exchanged between a
two-phase commit coordinator and a participant to establish attributes relevant to the
two-phase commit process and complete outstanding distributed transactions following
afailure.

Depending on the systems involved and the nature of the failure, resynchronization can
occur automatically or can require explicit action to be triggered. This chapter focuses
on resynchronization between Advantage CA-IDMS systems.

For information on resynchronization between CICS and Advantage CA-IDMS, see
3.8, “Two-Phase Commit Support with CICS’ on page 3-29.

For information on resynchronization between RRS and Advantage CA-IDMS, see 3.9,
“Two-Phase Commit Support with RRS’ on page 3-35.

3.7.2.1 When Does It Occur?

Resynchronization between Advantage CA-IDMS systems occurs as follows:

® When a central version is started, resynchronization is initiated with each known
back-end system. A back-end system is known if it was accessed since the last
time the journal files were formatted. Information about other systems is recorded
in a system's journal files (in the JHD1 record). If the started system cannot
communicate with one or more of its back-end systems, resynchronization is
retried on a periodic basis until communication is reestablished.

®» When a remote database session is started, resynchronization is initiated if the
back-end system was previously unknown (that is, if thisis the first time the
back-end system has been accessed since the journal files were formatted) or if the

Chapter 3. Two-Phase Commit Support 3-23

3.7 Impact on Recovery

back-end system has been recycled since resynchronization previously took place
between the two systems.

Note: A remote database session is started when an application binds a run unit
or connects an SQL session to a remote database. |t is also started when a
DCUF task is executed to establish a remote default dictionary.

® When resynchronization is manualy driven through a DCMT VARY
DISTRIBUTED RESOURCE MANAGER command. For more information, see
A.16, “DCMT VARY DISTRIBUTED RESOURCE MANAGER.”

3.7.2.2 What Does It Entail?

Resynchronization begins with an exchange of startup times and journal timestamps
between the two systems.

As the name implies, the startup time is the time at which a system was started and is
used to detect when a partner system is recycled.

The journal timestamp is assigned by a central version the first time it opens a set of
journa files after they have been formatted. It is subsequently used to detect when a
partner's journal files have been reformatted since the last time the two systems
resynchronized with each other.

If no distributed transactions involving the two systems exist at the time that
resynchronization takes place, the two systems simply exchange the above information,
update their journal files with new or changed partner information, and record each
other as open resource managers.

If distributed transactions involving the two systems do exist at the time of
resynchronization, each system compares its partner's current journal timestamp with
the one that it had saved previoudly. If the timestamps are the same, resynchronization
proceeds by exchanging information about the incomplete distributed transactions that
are pending resynchronization. If the timestamps are not the same, it is an indication
that one of the following has occurred:

® The partner system's journal files have been prematurely formatted.
® The partner system has been started with incorrect journal files.

® The partner system has been started with an incorrect DCNAME parameter.

Any of these conditions result in a resynchronization failure.

3.7.2.3 Responding to Resynchronization Failures

If resynchronization detects a journal stamp mismatch with a system for which
incomplete distributed transactions exist, resynchronization cannot complete. When
this occurs, messages are displayed that show the old and new journal stamps and the
incomplete distributed transactions that are impacted by the mismatch. The operator is
prompted as to what action should be taken. The following example shows the

3-24 Advantage CA-IDMS Release Summary

3.7 Impact on Recovery

messages that are displayed as a result of a mismatch in SYSTEM74's journal stamps
as they are known to SYSTEM73.

DC329621 V73 T23 Journal stamp mismatch for SYSTEM74::DSI_SRV *0LD yyyy-mm-dd-hh.mm.ss.ssssss
DC329021 V73 T23 Journal stamp mismatch for SYSTEM74::DSI_SRV *NEW yyyy-mm-dd-hh.mm.ss.ssssss
DC329022 V73 T23 RM Name Dtrid Branch State

DC3296023 V73 T23 SYSTEM74::DSI_SRV SYSTEM74::01650D6EDFB1AB93-01650D6A79F31E50 InDoubt

DC329024 V73 REPLY 01 T23 Reply with resynchronization action for SYSTEM74::DSI_SRV (Ignore,Defer):

Before replying to message DC329024, the cause of the mismatch should be
determined. The appropriate response should then be made as outlined in the following
table. Until a response is made to the DC329024 message, no database access is
permitted with the identified resource manager. Any task attempting such access waits
until a response has been made or its wait time is exceeded.

Reply Meaning and Considerations

IGNORE This reply specifies that resynchronization with the
resource manager should continue. The distributed
transactions listed in the preceding DC329023 messages
require manual completion.

IGNORE is appropriate if the partner system's journal
files have been prematurely formatted. In this case, the
only way to complete the affected transactions is to do
so manually, since the journal entries required to
complete the transactions automatically are no longer
available on the partner system's journal files.

For guidance on how to manualy complete the
transactions, see 3.7.3, “Completing Transactions
Manually” on page 3-26.

DEFER This reply specifies that resynchronization with the
resource manager should be postponed until a later
time. Database access with the identified resource
manager is disallowed until resynchronization has
completed successfully.

DEFER is appropriate if the mismatch can be corrected
by recycling one or the other system. Perhaps one of
the systems was started with incorrect journal files or
the partner system was started with an incorrect
DCNAME parameter.

After replying DEFER, the system in error should be
shutdown and restarted correctly. It may then be
necessary to initiate resynchronization using a DCMT
VARY DISTRIBUTED RESOURCE MANAGER
command.

Chapter 3. Two-Phase Commit Support 3-25

3.7 Impact on Recovery

3.7.3 Completing Transactions Manually

In certain circumstances, it may be necessary to complete a distributed transaction
manually. The need for this should be extremely rare and is a consequence of a failure
in resynchronization. The ability to manually complete distributed transactions is
provided for situations such as the permanent inaccessibility of a partner system or the
premature formatting of journal or non-Advantage CA-IDMS log files during a
recovery operation.

When manually completing a transaction whose state is InDoubt, you must specify
whether to commit or back out the transaction's changes. Y ou should research the
situation carefully before taking any action. If you make the wrong decision, the
distributed transaction will have a mixed outcome, meaning that some of its changes
are committed while others are backed out. The following sources of information may
be helpful in determining the correct action to take:

® The output from a DCMT DISPLAY DISTRIBUTED TRANSACTION command
indicates what system is acting as the coordinator for the transaction.

» Use the facilities provided by the coordinator to determine the outcome of the
transaction.

— If the coordinator is an Advantage CA-IDMS system, its journal files contain
a DCOM record for the transaction if its changes should be committed. The
PRINT JOURNAL summary report lists all incomplete distributed
transactions. If there is no entry for the transaction and no journa
information is missing, then the transaction's changes should be backed out.

— If the coordinator is RRS, the RRS ISPF panels can be used to determine the
outcome of the transaction. For more information on RRS panels, refer to the
IBM guide MVS Programming: Resource Recovery.

— If the coordinator is CICS, examine its log file or use CEMT commands to
determine the outcome of the transaction.

Once you have determined whether a transaction's changes should be committed or
backed out, issue a DCMT VARY DISTRIBUTED TRANSACTION command to
complete it specifying COMMIT or BACKOUT. Doing so marks the transaction as
heuristically committed or backed out accordingly. The transaction remains active,
holding no locks, until resynchronization is completed with the coordinator or a
DCMT VARY DISTRIBUTED TRANSACTION command is issued that specifies
FORGET. Waiting for resynchronization is recommended since the overal status of
the transaction can be checked for consistency...meaning that all changes are
committed or backed out. If a mixed outcome is detected, this is noted on the log and
the transaction remains active until a DCMT VARY DISTRIBUTED TRANSACTION
is issued specifying FORGET.

For more information on this command, see A.17, “DCMT VARY DISTRIBUTED
TRANSACTION.”

3-26 Advantage CA-IDMS Release Summary

3.7 Impact on Recovery

3.7.4 Manual Recovery Considerations

If manual recovery becomes necessary, the process is generally the same regardless of
whether the archive journal files contain distributed transaction journal records (Dxxx
records) or not.

However, special action may be needed when a ROLLFORWARD operation
terminates or a ROLLBACK operation begins at a point in time where a distributed
transaction is active and in an InDoubt state. The problem that arises in such a
situation is that the recovery utility does not know whether to commit the local
changes made by the InDoubt transaction or back them out. Since the utility has no
way of communicating with a coordinator to determine what action to take, it may be
necessary for the DBA to explicitly specify the final outcome for the transaction.

3.7.4.1 InDoubt Transactions During Manual Recovery

A distributed transaction is in an InDoubt state when the last journal record written for
that transaction is a DIND. Normally, a DCOM or a DBAK record follows a DIND,
and its presence determines whether a transaction's changes should be committed or
backed out. The absence of a DCOM or DBAK record may be because:

® |t has not been written because resynchronization with the transaction's coordinator
has not completed.

® |t exists but on a later archive journal file that is not being processed in the
current execution of the recovery utility.

B |t exists but is split between two archive journal files, only the first of which is
being processed in the current execution of the recovery utility.

By default, the recovery utilities leave an InDoubt transaction in its InDoubt state,
meaning that its changes are not rolled out. A DBA can override this default behavior
by adding an entry to a manual recovery control file to explicitly specify the action to
be taken for an InDoubt transaction.

Explicitly overriding the default action should normally not be necessary. In fact, the
presence of InDoubt transactions at the end of a ROLLFORWARD or ROLLBACK
operation should be researched to determine the reason for their existence and to
ensure that the recovery procedure being followed is valid and includes all necessary
journal input.

An InDoubt transaction might validly be encountered when recovering a damaged
database file. In this case, the transaction should be allowed to remain InDoubt. When
the recovered file is subsequently varied active to the central version, the transaction is
completed (backed out or committed) automatically.

Generally, the only time that an InDoubt transaction should be explicitly completed is
in exceptional situations such as:

®» When a coordinator is permanently inaccessible

Chapter 3. Two-Phase Commit Support 3-27

3.7 Impact on Recovery

®» When a coordinator's journal files have been prematurely formatted

= When a participant's journal files have been damaged.

Even in the first two situations, if the transaction is still active within the participant
central version it should be completed using a DCMT VARY DISTRIBUTED
TRANSACTION command rather than using a manual recovery control file override.

For more information on the format and use of the manual recovery control file, see
Chapter 5, “Administrative and Operational Enhancements.”

3.7.5 Deleting Resource Managers

If aresource manager becomes inaccessible or is removed from the network, it can be
deleted by issuing a DCMT command. Even in these cases, there is often no need to
explicitly delete a resource manager, since it disappears when the journa files are next
formatted. However, if incomplete distributed transactions exist that involve an
inaccessible resource manager as a participant, then you may want to explicitly delete
the resource manager in order to enable the transactions to be completed.

You can delete a resource manager by issuing a DCMT VARY DISTRIBUTED

RESOURCE MANAGER command, specifying DELETE. Doing so removes the
resource manager from the system, purges it from the journa files and deletes all
associated transaction interests. Clearly, this command should be used with care.

The following procedure should be followed to delete a resource manager:

1. Obtain alist of transactions in which the resource manager has an interest by
issuing a DCMT DISPLAY DISTRIBUTED RESOURCE MANAGER command
for the target resource manager.

2. For each listed transaction determine whether the resource manager is a
coordinator or a participant by displaying its detail using a DCMT DISPLAY
DISTRIBUTED TRANSACTION command.

3. Complete each transaction for which the resource manager is a coordinator by
issuing one or more DCMT VARY DISTRIBUTED TRANSACTION commands.

4. Issue a DCMT VARY RESOURCE MANAGER ... DELETE to delete the
resource manager.

5. Complete each transaction for which the resource manager was a participant by
issuing a DCMT VARY DISTRIBUTED TRANSACTION command.

For more information on this command, see A.17, “DCMT VARY
DISTRIBUTED TRANSACTION” on page A-24.

3-28 Advantage CA-IDMS Release Summary

3.8 Two-Phase Commit Support with CICS

3.8 Two-Phase Commit Support with CICS

A two-phase commit protocol can optionally be used when accessing an Advantage
CA-IDMS database from a CICS application. Using a two-phase commit protocol
ensures that updates made to Advantage CA-IDMS data are coordinated with those
made to other recoverable resources that the application accesses within the same
CICS UOW (Unit Of Work). Two-phase commit support is provided only when using
a Release 16.0 CICS interface (IDMSINTC) to access a Release 16.0 back-end CV.

Note: Two-phase commit is not supported through the IDMSINTL CICS interface.

3.8.1 Implementation Requirements

In order for successful two-phase commit operations between CICS and Advantage
CA-IDMS, the following steps must be taken:

® Review the new IDMSCINT and CICSOPT parameters. While there is no need to
create a new IDMSCINT and relink your application programs, you may want to
in order to take advantage of some of the new IDMSCINT options.

m Assemble a new CICSOPT options table and link an IDMSINTC interface module
for each interface for which you wish to enable two-phase commit processing.

Note: This must be done for all IDMSINTC interface modules when upgrading
to Release 16.0 even if two-phase commit processing is not enabled.

» Ensure that each CICS system is uniquely identified through the TPNAME
parameter of the CICSOPT macro or the new CICS_NAME SY SIDMS parameter.

m Ensure that the CICS system is logging transaction information. This requires the
use of a CICS log file. For more information, refer to the appropriate CICS
documentation.

m Create a CICS RSYN transaction and program for each CICS interface module
used within the CICS system.

m |f using an OPTIXIT or OPTIQXIT to route requests to different back-end central
versions, modify the OPTIXIT to recognize and correctly route resynchronization
requests.

The remainder of this chapter discusses these requirements and other aspects of
two-phase commit support between CICS and Advantage CA-IDMS.

3.8.2 Programming Interface

A CICS commit operation is initiated through an explicit CICS SYNCPOINT
command or at normal CICS task termination. Regardliess of how it is initiated, CICS
becomes the coordinator and the back-end Advantage CA-IDMS system(s) become
participants.

A CICS backout operation is initiated when one of the following occurs:

Chapter 3. Two-Phase Commit Support 3-29

3.8 Two-Phase Commit Support with CICS

® An explicit CICS BACKOUT command is issued.
A CICS task terminates abnormally.

® An Advantage CA-IDMS database session, for which the parameter AUTONLY is
enabled, is rolled back. See 3.8.4, “Requesting the Use of Two-Phase Commit”
for information about the AUTONLY parameter.

3.8.3 Optimizations Supported

In order to minimize the cost of doing a CICS syncpoint operation, the Advantage
CA-IDMS CICS interface supports the CICS single-update and read-only
optimizations.

The CICS single-update optimization permits CICS to make a single phase commit
request to the Advantage CA-IDMS CICS interface rather than separate Prepare and
Commit requests, if it is the only updating resource manager participating in the UOW.

The CICS read-only optimization permits CICS to make a single phase commit
request to the Advantage CA-IDMS CICS interface if it has made no updates within
the CICS transaction. Furthermore, if all resource managers but one are read-only,
CICS can avoid the overhead of a two-phase operation by directing the sole updater to
do a single phase commit.

These optimizations not only reduce communications with participating resource
managers, but also reduce log and journal overhead. For more information on the
single-update and read-only optimizations, refer to the appropriate CICS
documentation.

3.8.4 Reguesting the Use of Two-Phase Commit

Whether the work done by a database session is to be included in a CICS UOW is
determined at the time a database session is opened. A database session is opened
when a bind run unit or the first SQL statement is executed. When a session's work is
included in a CICS UOW, its changes are committed or backed out as directed by
CICS and the Advantage CA-IDMS interface uses a two-phase commit protocol to
achieve the desired outcome.

Severa new and enhanced IDMSCINT and CICSOPT parameters control whether a
database session is included in a CICS UOW and therefore if a two-phase commit
protocol is used.

= AUTOCMT — Enabling this option makes the work done by the database session
eligible for inclusion in a CICS UOW. The following determine if it is actually
included:

1. The AUTONLY setting

2. Whether the application issues its own commit or rollback DML requests
before the CICS syncpoint operation

3-30 Advantage CA-IDMS Release Summary

3.8 Two-Phase Commit Support with CICS

B AUTONLY — Enabling this option forces the work done by the database session
to be included in the CICS UOW. DML statements that would typically commit
work (such as FINISH or COMMIT WORK) do not cause changes to be
committed even if the session itself is terminated. The session’'s changes are
committed only when the CICS syncpoint occurs. On the other hand, if the
changes made by a session for which AUTONLY s enabled are backed out, either
as the result of a DML ROLLBACK request or because of some environmental
condition such as a deadlock, the entire CICS UOW is immediately backed out.
This ensures consistent behavior across all resources updated by the application.

If AUTONLY is not enabled and AUTOCMT is enabled, the work done by the
database session is included in the CICS UOW provided that the application does
not issue commit or rollback DML requests prior to the CICS syncpoint operation.

AUTONLY isignored if AUTOCMT is not enabled.

Note: If transaction sharing is enabled, AUTONLY and AUTOCMT are
automatically enabled.

. ONCOMT — This option specifies the effect that a CICS syncpoint operation has
on a database session whose work is included in the CICS UOW. The session can
optionally be treated as if a FINISH, COMMIT ALL or COMMIT CONTINUE
were issued, meaning that it can be terminated, remain active but have currencies
cleared or remain active with currencies left in-tact.

® ONBACK — This option specifies the effect that a CICS backout operation has
on a database session whose work is included in the CICS UOW. The session can
optionally be treated as if a ROLLBACK or a ROLLBACK CONTINUE were
issued, meaning that it can be terminated or remain active but have its currencies
cleared.

All of these options can be specified through both IDMSCINT and CICSOPT
parameters. The CICSOPT parameters can override their IDMSCINT counterparts or
be used as defaults. For more information on these new parameters, refer to
Appendix F, “CICS Interface Enhancements for Two-Phase Commit Support.”

3.8.5 Additional Two-Phase Commit Parameters

In addition to the parameters that control whether a two-phase commit protocol is
used, four new CICSOPT parameters affect two-phase commit processing.

® TRUE — Specifies a 5-character prefix used in forming TRUE (Task Related
User Exit) entry names. The prefix must be unique across all IDMSINTC
interface modules in use within a single CICS system.

B MAXCON — Specifies the maximum number of Advantage CA-IDMS systems
that can be concurrently accessed by an application using an IDMSINTC interface.
This limit applies only to systems accessed through database sessions for which
AUTOCMT is enabled.

. MAXIDMS — Specifies the maximum number of Advantage CA-IDMS systems
that an IDMSINTC interface can access during the life of a CICS system. This

Chapter 3. Two-Phase Commit Support 3-31

3.8 Two-Phase Commit Support with CICS

limit applies only to systems accessed through database sessions for which
AUTOCMT is enabled.

B RSYNTXN — Specifies the name of the resynchronization transaction defined to
CICS for this interface. A separate CICS transaction must be defined for each
interface in use within a CICS system. For more information on the CICS
resynchronization transaction, refer to The RSYN Transaction and Program
Appendix F, “CICS Interface Enhancements for Two-Phase Commit Support” on

page F-1.

For more information on these new parameters, refer to Appendix F, “CICS Interface
Enhancements for Two-Phase Commit Support.”

3.8.6 CICS System Name Requirements

An important consideration for successful two-phase commit operations between CICS
and Advantage CA-IDMS is that the name of every CICS system have a consistent
name that is unique across all CICS systems accessing a central version.

The name of the CICS system is established as:

» The value in the new CICS NAME parameter specified in the SYSIDMS file
included in the CICS startup JCL.

Or, if the CICS_ NAME parameter is not specified:

» The value of the TPNAME parameter associated with the first IDMSINTC
interface within a CICS system.

If the CICS name is alowed to default to the TPNAME of the first CICS interface, al
other IDMSINTC interface modules started within the CICS system must have the
same TPNAME value, otherwise they will fail with a K213 abend code.

When restarting a CICS system, its name must remain unchanged if it is involved in
incomplete distributed transactions that are still active on a central version. Changing
the name while incomplete transactions exist may make it necessary to complete those
transactions manually.

The description of the new SYSIDMS parameter for specifying a CICS system name is
as follows:

CICS_NAME=<CICS-name>
Where;
<CICS-name> — specifies a 1-4 character value that identifies the CICS system being

started. It must be unique across all CICS systems that access the same central
version.

3-32 Advantage CA-IDMS Release Summary

3.8 Two-Phase Commit Support with CICS

3.8.7 Resynchronization between CICS and Advantage CA-IDMS

Resynchronization is part of the recovery process that takes place following a failure
during a two-phase commit operation. It involves the exchange of information
between a coordinator and a participant in order to resolve incomplete units of work.
Release 16.0 provides a mechanism to resynchronize a CICS system (the coordinator)
and an Advantage CA-IDMS central version (the participant) following abnormal
terminations of either system.

Resynchronization between CICS and Advantage CA-IDMS is undertaken in the
context of a specific interface module (IDMSINTC). This means that if multiple
interface modules are used within a single CICS system to access a given back-end
CV, a separate resynchronization process takes place for each one. Consequently,
resynchronization actually takes place between a CICS interface running on a given
CICS system and a back-end CV rather than between a CICS system and a back-end
Cv.

3.8.7.1 The Resynchronization Transaction and Program

Resynchronization between a CICS interface and an Advantage CA-IDMS centra
version is done through execution of a resynchronization transaction defined to CICS.
The Advantage CA-IDMS installation default name for this transaction is RSYN. The
resynchronization transaction is associated with a resynchronization program whose
installation default name is IDMSCSYN. A separate resynchronization transaction and
program must be created for each CICS interface module (IDMSINTC) that is used
within a CICS system and the name of the transaction must be specified in the
RSYNTXN parameter of the interface's CICSOPT macro. Failure to define the CICS
resynchronization transaction causes any task attempting to open a database session for
which AUTOCMT is enabled to fail with an abend code of K209.

For details on defining the transaction and creating the resynchronization program,
refer to Appendix F, “CICS Interface Enhancements for Two-Phase Commit Support.”

3.8.7.2 How is Resynchronization Initiated?

Resynchronization between a CICS interface and an Advantage CA-IDMS central
version is initiated in the following ways:

® |n aCICS Transaction Server V1R (or later release) for z/OS resynchronization
takes place automatically when the interface is started. It resynchronizes with all
central versions accessed through the interface and known to CICS as participants
in incomplete UOWSs.

» When the first database session is connected through the interface to a back-end
central version after either system is started, resynchronization takes place
automatically for the central version being accessed.

= When the CICS resynchronization transaction (RSYN) is invoked manually,
resynchronization takes place for the central version identified in the transaction
invocation. For information about invoking a resynchronization transaction

Chapter 3. Two-Phase Commit Support 3-33

3.8 Two-Phase Commit Support with CICS

manually, refer to Appendix F, “CICS Interface Enhancements for Two-Phase
Commit Support.”

3.8.7.3 When Should You Manually Resynchronize?

Normally there is no need to manually initiate resynchronization since it occurs
automatically when the first connection is made following restart of the CICS or
Advantage CA-IDMS systems. However, if a particular back-end system is accessed
infrequently through a given interface and incomplete transactions on the back-end
system require resynchronization, you can invoke the RSYN task manually to force
resynchronization to occur immediately.

In non-CICS Transaction Server V1RL1 (or later release) for z/OS environments,
manually initiated resynchronization can only take place when no user applications are
accessing the back-end CV through the interface being resynchronized. Manual
resynchronization terminates if such active connections exist. This restriction does
not apply to CICS Transaction Server V1R1 (or later release) for z/OS.

3.8.7.4 The Resynchronization Process

When the resynchronization task is executed (either automatically or manually), it
retrieves a list of incomplete distributed transactions that are known to the central
version with which it is resynchronizing and that are pending resynchronization with
the associated CICS interface. It then issues a CICS RESYNC command to inform
CICS of the Units of Work (UOWSs) that are pending completion. CICS, in turn,
initiates a CRSY task for each affected UOW. The CRSY task drives the TRUE
syncpoint exit to inform the back-end central version as to whether to commit or back
out the distributed transaction.

If the resynchronization task is initiated automatically, back-end tasks that are still
awaiting communications from the CICS system are canceled with an abend code of
RSYN. During automatic resynchronization, such tasks can only exist following an
abnormal termination of the CICS system. While they eventualy time out, the
resynchronization process cannot proceed until they have terminated; therefore, it
cancels them. Back-end tasks are not canceled if resynchronization is driven manually
since there is no guarantee that activity between the two systems has been quiesced.

3.8.7.5 OPTIXIT Considerations

If an OPTIXIT or an OPTIQXIT program is used to route requests to different
back-end central versions, the OPTIXIT must be enhanced to recognize and correctly
route resynchronization requests. A resynchronization request is identified by a
program name of INTCRSYN and the OPTI block that is passed to the exit contains
the node name of the target system. The exit must use the node name to select an
OPTI (if multiple SYSCTL support is enabled) or modify the OPTI passed on the
request so that the resynchronization request is routed to the correct back-end system.
To see an example of the type of processing needed, refer to Appendix F, “CICS
Interface Enhancements for Two-Phase Commit Support.”

3-34 Advantage CA-IDMS Release Summary

3.9 Two-Phase Commit Support with RRS

3.9

Two-Phase Commit Support with RRS

RRS is IBM's resource recovery platform for Z/OS. Release 16.0 of Advantage
CA-IDMS can exploit RRS services in the following ways:

m A batch application can use RRS as a coordinator to ensure that the updates made
through one or more central versions are coordinated with those of other resource
managers such as MQSeries.

® An online application can update external resources through an RRS-enabled
interface to ensure that those updates are coordinated with those made to
Advantage CA-IDMS resources.

This section discusses how RRS support is enabled and describes considerations
associated with its use.

3.9.1 Enabling RRS Support Within an Advantage CA-IDMS System

To exploit RRS functionality through batch or online applications, you must enable
RRS support in one or more central versions. To do this, you specify parametersin
specific columns of the EXEC statement's PARM field in the system's startup JCL. If
the PARM field specifies the Advantage CA-IDMS DC/UCF system version number,
column numbering starts in the column after the system number.

You use the PARM field to:

= Enable RRS support by specifying a T or an R in column 21. Specify a T if the
system is to support multitasking; specify an R otherwise.

m Optionally specify one plus the number of subtasks that are capable of accessing
RRS in columns 22-23. The value specified must be between 2 and 99. If no
value is specified, the number of subtasks is determined as one plus the number of
processors. |f multitasking is also enabled, the value specified also represents the
number of subtasks that perform Advantage CA-IDMS work.

For example, the following PARM specification enables RRS support in a
uni-tasking system and specifies that two subtasks should support access to RRS.

Column Column Column
0 1 2
1 0 1
S S S S
//STARTUP EXEC PGM=DCUCFSYS,PARM="'S=91 RO3'

The DCMT DISPLAY SUBTASK command has been enhanced to show what type of
work a subtask can perform. A new DCMT VARY SUBTASK command can be used
to alter the type of work that a subtask can perform. For more information on these
commands, see A.27, “DCMT VARY SUBTASK.”

Chapter 3. Two-Phase Commit Support 3-35

3.9 Two-Phase Commit Support with RRS

3.9.2 Impact on System Startup

If RRS support is enabled, a central version registers with RRS during startup. In so
doing, it identifies itself as a resource manager with the following name:

IDMS.RM.nodename.CA

Nodename is the node name of the central version, padded with underscores (" ") if it
is less than eight characters in length. The node name is specified in the SYSTEM ID
parameter of the system definition's SY STEM statement and can be overridden by a
DCNAME parameter in the SYSIDMS file in the system'’s startup JCL. In order to use
RRS support, the node name must be unique within the sysplex in which the system is
executing.

The following message is displayed after a successful registration with RRS:
DC224001 V73 T23 Registered with RRS services as IDMS.RM.nodename.CA

Once registered, an Advantage CA-IDMS system typically remains so until shutdown.
The following message is displayed when a central version deregisters with RRS:

DC221001 V73 T1 IDMS.RM.nodename.CA Unregistered from RRS; return code = 00000000

After successful registration with RRS, a resynchronization process is started in order
to exchange information and complete recovery following a failure. Refer to 3.9.6,
“Resynchronization Between RRS and Advantage CA-IDMS’ on page 3-44 for more
information.

The operating system image on which a failed system is restarted can be significant.
For more details, see the IBM manual MVS Programming: Resource Recovery and the
specific topic "Resource Manager Environments.”

3.9.3 RRS Support for Batch Applications

A batch application updating resources controlled by multiple resource managers can
make use of RRS services to guarantee atomicity of the updates. Advantage CA-IDMS
supports RRS for batch applications that make their database updates through one or
more central versions running on the same operating system image as the batch job.

When RRS is used as the coordinator, each resource manager (RM) that is accessed to
perform work on behalf of a UR expresses an interest in it. To commit all changes as
a unit, the application issues a Commit_UR (or an HLL Application_Commit_UR)
request to RRS. The following diagram illustrates the flow of control that occurs:

3-36 Advantage CA-IDMS Release Summary

3.9 Two-Phase Commit Support with RRS

Batch: RRS as a Coordinator

Resource
Application ManagerA:
Ccvi

Resource
Manager B:

cv2
Commit_UR
Prepare
E xit
0K d Prepare
< Exit
0K
0K > Commit
‘ Exit
< 0K
_>RRS Request

éRRS Exit Invocation

3.9.3.1 Example

Consider a batch application that accesses Advantage CA-IDMS and MQSeries and
wishes to coordinate the work done on each. To do this the central version must be
accessed through an RRS-enabled batch interface. The interface passes a context
token to the central version so that it can express an interest in the UR associated with
the context. At commit time, RRS invokes the central version's prepare and commit
exits so that its work is coordinated with that of MQSeries.

3.9.3.2 Enabling RRS for Batch Applications

A batch application tells Advantage CA-IDMS that it wants to use RRS as a
coordinator by specifying a new SY SIDMS parameter:

ENABLE_RRS=0ON

Chapter 3. Two-Phase Commit Support 3-37

3.9 Two-Phase Commit Support with RRS

Advantage CA-IDMS then extracts the current context token and passes it on to the
central version, which expresses interest in it.

If ENABLE_RRS=ON is established as a default in a SYSIDMS load module, it can
be overridden at runtime by specifying:

ENABLE_RRS=0FF

Notes:

» The central version(s) to which the batch application's database sessions are
directed must be started with RRS support and must be running on the same
operating system image.

® |tisnot possible to access a pre-Release 16.0 central version if the batch job runs
with RRS enabled. Local access is supported but is not part of the RRS UR.

® The 10.2 services batch interface (also known as IDML) does not support RRS.

3.9.3.3 Batch RRS Transaction Boundaries and Application Design
Considerations

Batch applications that use RRS as a coordinator have to be carefully designed. The
usage of RRS implies these rules:

® The application verbs that mark a transaction boundary are the RRS verbs:
Commit_UR or Backout_UR.

® Prior to issuing a Commit_UR, al database sessions whose transaction is under
the control of RRS must be committed and optionally completed. This can be
accomplished by:

— Issuing a COMMIT TASK ALL or FINISH TASK DML command.

— Explicitly committing all active database sessions by issuing a COMMIT or
FINISH DML command for each session.

The following additional considerations apply:

— A COMMIT TASK or FINISH TASK must be issued if a BIND TASK was
issued.

— All remote subordinate database sessions initiated by SQL routines or
database procedures executing on behalf of a database session started by the
application must be completed before the RRS commit is issued. This can be
done by terminating the application's database session using a FINISH TASK
or COMMIT WORK RELEASE command or by issuing a COMMIT TASK
ALL or COMMIT WORK command.

Committing or finishing a database session does not impact its associated
transaction when it is under the control of RRS. Only the database session is
affected. For example, when a run unit is finished, the database session is closed
and currency locks are maintained until the RRS UR is committed or backed out.

3-38 Advantage CA-IDMS Release Summary

3.9 Two-Phase Commit Support with RRS

It is possible to serially create and finish database sessions within a single RRS
UR; however, unless transaction sharing is in effect, a deadlock may occur if a
later session attempts to access a record that was updated by a previous session.

® When a ROLLBACK WORK or ROLLBACK TASK CONTINUE DML
command is issued before a Backout UR request, it results in the back out of the
entire RRS UR, even if the application subsequently issues a Commit_UR request.
At the time the ROLLBACK command is issued, the changes made to the
Advantage CA-IDMS database are backed out and associated locks are released.
However, the RRS UR is not backed out until an RRS commit or backout
operation is initiated. |f necessary, Advantage CA-IDMS will vote "BACKOUT"
during the first phase of commit processing to cause the RRS UR to be backed
out.

If a Backout UR isissued prior to a ROLLBACK DML request, al active
database sessions must be rolled back (using an appropriate ROLLBACK
statement) before any further Advantage CA-IDMS work can be done.

= When an application program ends (normally or abnormally), the associated RRS
context is terminated by the operating system. RRS default actions are to commit
on normal context termination and backout on abnormal context termination.

3.9.3.4 Example of a COBOL Batch Program

The following extracts from a COBOL program show how to invoke the RRS
Commit_UR and Backout_UR services. The COBOL program is a subroutine that is
called to perform a certain action as defined in ACTION-CD. Only the Advantage
CA-IDMS task level and RRS actions are shown.

*RETRIEVAL

*NO-ACTIVITY-LOG

*DMLIST
IDENTIFICATION DIVISION.
PROGRAM-ID. MBINDSUB.

B e R R R R R R R R R S T S L

* SUBSCHEMA CONTROL IS PASSED FROM MAINLINE PROGRAM.
R R A AR AR A A A A kA Ak hhkhkkhhkk k))%k
ENVIRONMENT DIVISION.
IDMS-CONTROL SECTION.
PROTOCOL. MODE IS BATCH DEBUG
IDMS-RECORDS MANUAL.
DATA DIVISION.
SCHEMA SECTION.
DB EMPSSO1 WITHIN EMPSCHM VERSION 100.
WORKING-STORAGE SECTION.
01 WK-DATA.
02 I PIC S9(4) COMP.
01 COPY IDMS SUBSCHEMA-NAMES.
01 COPY IDMS SUBSCHEMA-RECORDS.
LINKAGE SECTION.

01 DB-PARM.
02 DBNAME-IN PIC X(8).
02 FILLER PIC X.
02 DBNODE-IN PIC X(8).
02 FILLER PIC X.

02 ACTION-CD PIC X.

Chapter 3. Two-Phase Commit Support 3-39

3.9 Two-Phase Commit Support with RRS

88 ACT-BIND VALUE 'R'.
88 ACT-BINDU VALUE 'U'.
88 ACT-DML1 VALUE 'I1'.
88 ACT-DML2 VALUE '2'.
88 ACT-DML3 ~ VALUE '3'.
88 ACT-UPDT VALUE '4'.
88 ACT-FIN VALUE 'F'.
88 ACT-TCOM VALUE 'C'.
88 ACT-RCOM VALUE 'D'.
88 ACT-TFIN VALUE 'X'.
88 ACT-TBAK VALUE 'B'.
88 ACT-RBAK VALUE 'Y'.
02 RETURN-CD PIC S9(8) COMP.

01 COPY IDMS SUBSCHEMA-CTRL.
PROCEDURE DIVISION USING DB-PARM, SUBSCHEMA-CTRL.
MAINLN SECTION.
MOVE O TO RETURN-CD.

IF ACT-BINDU
PERFORM BIND-IT
ELSE IF ACT-RCOM
PERFORM RCOM-IT
ELSE IF ACT-TFIN
PERFORM TFIN-IT
ELSE IF ACT-TBAK
PERFORM TBAK-IT
ELSE IF ACT-RBAK
PERFORM RBAK-IT
ELSE IF ...
ELSE
MOVE 32 TO RETURN-CD.
GOBACK.
BIND-IT SECTION.
MOVE SPACES TO SUBSCHEMA-CTRL.
MOVE 'MBINDSUB' TO PROGRAM-NAME.
BIND RUN-UNIT DBNODE DBNODE-IN
DBNAME DBNAME-IN.
READY USAGE-MODE UPDATE.
PERFORM CHECK-STAT.
BIND EMPLOYEE.
PERFORM CHECK-STAT.
BIND DEPARTMENT.
PERFORM CHECK-STAT.

TCOM-IT SECTION.
COMMIT TASK.
PERFORM CHECK-STAT.
RCOM-IT SECTION.
* Issue RRS Commit_UR
CALL 'SRRCMIT' USING RETURN-CD.
PERFORM CHECK-RRS.
TFIN-IT SECTION.
FINISH TASK.
PERFORM CHECK-STAT.
RBAK-IT SECTION.
* Issue RRS Backout_UR
CALL 'SRRBACK' USING RETURN-CD.

3-40 Advantage CA-IDMS Release Summary

3.9 Two-Phase Commit Support with RRS

PERFORM CHECK-RRS.

3.9.4 RRS Support for Online Applications

RRS can be used by an online application to ensure that updates made through

external resource managers such as MQSeries are coordinated with those of Advantage
CA-IDMS. In order to exploit this functionality, the external resource manager must be
accessed through its RRS-enabled interface.

Before accessing the external resource manager, the online task must establish a
private RRS context. This context can then be passed to any external resource manager
that wants to participate in the Advantage CA-IDMS controlled transaction. Typicaly,
online support for accessing external resources is provided by a third party vendor and,
consequently, it is the vendor's responsibility to establish the private context and
ensure that it is available to the external resource manager's RRS-enabled interface.
The RRS-enabled interface passes the context to its resource manager so that it can
register an interest in the context's UR.

To initiate a commit operation involving all interested resource managers, the online
application issues an Advantage CA-IDMS commit DML command (such as a FINISH
TASK or a COMMIT WORK). The local transaction manager then uses RRS as an
agent to coordinate its updates with those of the external resource managers.

Chapter 3. Two-Phase Commit Support 3-41

3.9 Two-Phase Commit Support with RRS

Online: Advantage CA-IDMS as a Coordinator Driving RRS

Advantage CA-
DMS
Resource Manager
within same CV

Advantage
GA-IDMS
Transaction
Manager

External
Resource
Manager

Application

FINISH TASK

Prepare I
0K

-

Prepare_Agent UR

0 Preplare
‘IIIIII E xit
0K

-
Comm it l

0K

-

Commit_Agent_UR

>

[

2zzzznsd)

. OK
OK

»Advantage CA-IDMS Request

— — —’.RRSRequest

IIIIISIIIISIIIIBIIIIIS’R RS ExitInvocation

3.9.4.1 Example

Consider an online application that accesses Advantage CA-IDMS and MQSeries and
wishes to coordinate the work done on each. To do this, a private context (referred to
as CTXPRIV) isfirst created by calling IDMSINOL1. MQSeries is then accessed
through its RRS-enabled interface, specifying CTXPRIV. When the transaction is
committed through a DML command such as FINISH TASK, the Advantage
CA-IDMS transaction manager becomes the coordinator and drives RRS as a
participant. RRS in turn directs the actions of MQSeries in support of the commit

operation.

3-42 Advantage CA-IDMS Release Summary

3.9 Two-Phase Commit Support with RRS

3.9.4.2 Programming Interface

The following IDMSINO1 function allows private context manipulation. It is designed
for third party vendors who want to exploit the two-phase commit functionality.

label IDMSINO1 RRSCTX, X
RRSFUNA=rrs-function-address,RRSCTXA=rrs-context-address

3.9.4.3 Parameters

RRSCTXA=rrs-context-address
Specifies the address of a 16-byte field for the RRS context token. Depending
upon the function, this field is input, output, or both.

RRSFUNA=rrs-function-addr ess
Specifies the address of a 1-byte field that contains the function to execute. Valid
function values and their return codes are:

® X'01: Get RRS context.

Return codes:

— 00 — An RRS context exists; the field pointed to by RRSCTXA contains the
current RRS context.

— 04 — No RRS context exists; the field pointed to by RRSCTXA is cleared.

— Any other return code — An interna error occurred. The content of the field
pointed to by RRSCTXA is undefined.

B X'02: Set RRS context. If the field pointed to by RRSCTXA contains binary
zeros, a new RRS context is created and returned; if the field is not binary zeros,
it must contain an RRS context token which is saved by the Advantage CA-IDMS
transaction manager. No attempt is made to validate the RRS context token.

Return codes:

— 00 — The RRS context token was successfully saved by the Advantage
CA-IDMS transaction manager.

— Any other return code — An error occurred. Return codes 103-107, 301, 701,
756, FOO, and FFF are from context services. Their description can be found
in the IBM guide MVS Programming: Resource Recovery in the specific topic
"Begin_Context."

m X'03: End RRS context. The field pointed to by RRSCTXA must contain the
token of the RRS context to be ended.

Return codes:

— 00 — The RRS context was successfully terminated. The field pointed to by
RRSCTXA is set to binary zeros.

— Any other return code — An error occurred. Return codes 103-107, 360-369,
703, 756, and FFF are from context services. Their description can be found
in the IBM guide MVS Programming: Resource Recovery in the specific topic
"End_Context."

Chapter 3. Two-Phase Commit Support 3-43

3.9 Two-Phase Commit Support with RRS

3.9.4.4 Application Design Considerations

The private context created by a call to IDMSINOL is terminated when the transaction
is ended. Therefore, after a commit or rollback operation, another context must be
created through a call to IDMSINO1 before another request can be made of the
external resource manager.

3.9.5 Optimizations Supported

To decrease the cost of a syncpoint operation using RRS, Advantage CA-IDMS
supports the RRS only-agent and read-only exit minimization optimizations. For more
information on RRS optimizations, see the IBM manual, MVS Programming: Resource
Recovery.

The RRS only-agent optimization permits RRS to make a single phase commit request
rather than separate Prepare and Commit requests, provided there is only one resource
manager participating in the transaction at the time that the syncpoint operation is
initiated. This optimization not only reduces communications between RRS and a
central version, but aso reduces both log and journal overhead.

The RRS read-only exit minimization optimization reduces the number of
communications with a central version provided that it performed no updates within
the RRS Unit of Recovery (UR) being committed.

3.9.6 Resynchronization Between RRS and Advantage CA-IDMS

Resynchronization is a process in which information is exchanged between a
two-phase commit coordinator and a participant to establish attributes relevant to the
two-phase commit process and complete outstanding distributed transactions following
afailure.

Depending on the nature of the failure, resynchronization may occur automatically or
may require explicit action to be triggered. This section focuses on resynchronization
between RRS and an Advantage CA-IDMS system.

3.9.6.1 When Does It Occur?

Resynchronization between RRS and an Advantage CA-IDMS system occurs:
= When a central version is started, as part of registering with RRS.

= When resynchronization is manually driven through a DCMT VARY
DISTRIBUTED RESOURCE MANAGER command. See A.16, “DCMT VARY
DISTRIBUTED RESOURCE MANAGER” on page A-22.

3-44 Advantage CA-IDMS Release Summary

3.9 Two-Phase Commit Support with RRS

3.9.6.2 What Does It Entail?

Resynchronization begins with validation of the LOG names: both the name with
which RRS knows the Advantage CA-IDMS system (the Advantage CA-IDMS log
name) and the RRS log name as known to the Advantage CA-IDMS system (the RRS
log name).

The Advantage CA-IDMS log hame has the following format:
IDMS.RM. jrnlstamp.nodename.CA

Where;

® Jrnlstamp is the central version's 26-character journal timestamp with dashes ("-")
replaced by underscores ("_"). This value is assigned by a central version the first
time it opens a set of journa files after they have been formatted.

®» Nodename is the central version's node name, padded with underscores (" ") if it
is less than eight characters in length.

The following messages are displayed during the resynchronization process:

DC224002 V73 T23 RRS log name ATR.B8909786A2A8AA40.1BM
DC224002 V73 T23 Resource Manager log name IDMS.LOG.yyyy mm_dd_hh.mm.ss.ssssss.nodename.CA
DC224006 V73 T23 Resynchronization with RRS complete

If no distributed transactions involving the two systems exist at the time that
resynchronization takes place, then the two systems simply accept each other's LOG
names.

If distributed transactions involving the two systems do exist at the time of
resynchronization, then the LOG names are compared. If they are the same,
resynchronization proceeds by exchanging information about the incomplete distributed
transactions that are pending resynchronization. If the LOG names are not the same, it
indicates that one of the following has occurred:

® The RRS LOG has been prematurely formatted.

® RRS has been started with incorrect LOG files.

. The Advantage CA-IDMS system's journal files have been prematurely formatted.
. The Advantage CA-IDMS system was started with incorrect journal files.

Any of these conditions result in a resynchronization failure.
3.9.6.3 Responding to Resynchronization Failures

If resynchronization detects a LOG name mismatch and incomplete distributed
transactions exist, resynchronization cannot complete. When this occurs, check whether
RRS and the Advantage CA-IDMS system were started with correct log and journal
files. If they were not, correct the situation. If premature formatting is the cause of the
resynchronization failure, the incomplete transactions must be manually completed:

Chapter 3. Two-Phase Commit Support 3-45

3.9 Two-Phase Commit Support with RRS

n |f the RRS LOG was formatted, complete the transactions once the central version
is up and running. For more information on how to do this, see 3.7.3, “Completing
Transactions Manually” on page 3-26.

n |f the Advantage CA-IDMS journal files were formatted, use the RRS ISPF panels
to complete the transactions. For more information on RRS panels, see the IBM
manua MVS Programming: Resource Recovery.

3-46 Advantage CA-IDMS Release Summary

Chapter 4. SQL Features

41 Overview . .. 4-2
4.2 Dynamic SQL Caching 4-3
4.3 SQL-Defined Database Enhancements 4-8
4.4 SQL Productivity Enhancements L. 4-16
4.5 Enhanced Compatibility with Open Standards 4-27
4.6 XML Publishing 4-32

Chapter 4. SQL Features 4-1

4.1 Overview

4.1 Overview

Release 16.0 provides the following new SQL features that are described in this
chapter:

®» Dynamic SQL caching

® SQL-defined database enhancements

® SQL productivity enhancements

» Enhanced compatibility with Open Standards
» XML Publishing

4-2 Advantage CA-IDMS Release Summary

4.2 Dynamic SQL Caching

4.2 Dynamic SQL Caching

Release 16.0 provides a dynamic SQL caching feature that dramatically improves
runtime performance when you are executing a dynamic SQL statement. This benefits
web access to data using the ODBC and JDBC drivers in the Advantage CA-IDMS
Server and the Advantage™ EDBC® for CA-IDMS™ products.

Dynamic SQL caching is a common technique used to improve performance in an
SQL environment. Caching works in the following manner: when a dynamic SQL
statement is compiled, a copy of the SQL statement and the result of the SQL
compilation are saved in a cache. For each subsequent SQL compilation request, the
cache is searched. If the statement is found, the matching compiled structures are used
instead of recompiling the statement. This improves performance by eliminating the
1/0 requests to read the catalog and the CPU usage required to invoke the SQL
optimizer for subsequent executions of the same dynamic SQL statement.

In most cases, the savings in resource consumption due to bypassing the SQL
compilation are significantly greater than the extra cost associated with caching the
SQL source, access plans, and related structures.

4.2.1 Searching the Cache

When a search is made in the cache for a matching SQL statement, a cache hit occurs
when a matching entry is found. The following factors are considered in determining
whether an SQL statement matches a cache entry:

® The text of the statement

® The default schema in effect for the SQL session

® The dictionary to which the SQL session is connected

m The presence of temporary table references within the statement
A literal comparison of the statement's text is made against each cache entry until a
match is found. A literal comparison avoids the overhead of parsing but has the
consequence that an entry may not match because of differences in such things as case

and spacing. For example, the following three statements are different if using a literal
comparison:

Select * from EMPLOYEE
Select * from EMPLOYEE

select * from employee

Specifying values as literals instead of as dynamic parameters can also result in
unequal comparisons. The following two statements would be textually identical if a
dynamic parameter had been used in place of the numeric values 100 and 101:

Chapter 4. SQL Features 4-3

4.2 Dynamic SQL Caching

select = from DEMOEMPL.EMPLOYEE where EMP_ID = 100

select = from DEMOEMPL.EMPLOYEE where EMP_ID = 101

Note: While the use of dynamic parameters can increase the frequency of finding a
matching cache entry, it may occasionally result in a less efficient access
strategy than one chosen for a specific value.

When a dynamic statement that relies on a default schema is cached, both the
statement text and the default schema are saved. When the cache is searched for a
statement that relies on a default schema, both the statement's text and the session's
default schema must be equal to their cached equivalents in order for the entry to
match. Consider the following two statements. The first matches a cached entry
regardless of the default schema in effect for the SQL session. The second matches
only if the default schema in effect for the SQL session is the same as that in the
cache:

select » from DEMOEMPL.EMPLOYEE
select = from EMPLOYEE

The name of the dictionary to which an SQL session is connected is always saved in
the cache and compared to the session’s dictionary during a search of the cache. If the
two are not the same, then the cache entry does not match.

If an SQL statement references a temporary table, it is not cached since each
temporary table instance can be structurally different from others of the same name.
Therefore, no statement that references a temporary table will match a cache entry.

4.2.2 Impact of Database Definition Changes

Database definition changes may or may not be detected automatically based on
whether the database is SQL-defined or non-SQL defined. This has consequences for
dynamic SQL caching as explained below.

4.2.2.1 SQL-Defined Databases and Caching

Because SQL-defined databases have an associated catalog and because areas for

SQL -defined databases have timestamps, Advantage CA-IDMS is able to automatically
detect definition-based changes that impact cached SQL statements. Whenever a
statement needs recompilation, Advantage CA-IDMS automatically detects this
condition and recompiles the affected statement dynamically.

4.2.2.2 Non-SQL Defined Databases and Caching

Non-SQL defined databases do not have timestamps for automatically determining
whether a database's definition accurately describes the underlying data. Consequently,
when changing the structure of a non-SQL defined database, it is the administrator's
responsibility to ensure that all SQL statements impacted by the change are
recompiled. If dynamic SQL caching is not used, then this entails recompiling access
modules that reference the affected database. If dynamic SQL caching is used, then it

4-4 Advantage CA-IDMS Release Summary

4.2 Dynamic SQL Caching

aso entails purging the cache of statements that reference the affected database. This
can be done by deleting rows from the SY SCA.DSCCACHE or
SYSCA.DSCCACHEY tables. For more information on these tables, see Appendix E,
“SQL Cache Tables.”

It is also recommended that dynamic SQL caching be disabled during the transition
period in which the definition-based changes are being implemented. For information
on how to do this, see 4.2.3, “Controlling the Cache.”

Advantage CA-IDMS detects the need to recompile cached SQL statements if a change
is made to the referencing SQL schema through which a non-SQL defined schema is
referenced. It does this by comparing the update stamp of the referencing SQL schema
to the compile stamp of the cached statement.

4.2.3 Controlling the Cache
There are various ways that an individual user and a DBA can control dynamic SQL
caching. Three ways are discussed below:

» Establishing caching attributes for an individual SQL session by issuing a SET
SESSION statement

» Establishing default caching attributes for a central version through a system
generation SQL CACHE statement

» Establishing default caching attributes for a local mode job by specifying a
SYSIDMS SQL_CACHE_ENTRIES parameter

For information on the various tables that control caching and examples of ways to
display and control the cache using SQL, see Appendix E, “SQL Cache Tables.”

4.2.3.1 SET SESSION Statement

Since there may be occasions when the cost of dynamic SQL caching outweighs its
benefit, the SET SESSION statement has been enhanced to allow control over caching
within an individual SQL session. For a description of the new syntax, see

Appendix B, “New and Revised SQL Statements.”

4.2.3.2 SYSIDMS SQL_CACHE_ENTRIES Parameter

Administrators and batch users can control SQL caching in local mode with the
following new SYSIDMS parameter.

Syntax
»»—— SQL_CACHE_ENTRIES=statement-count

\4
A

Parameters

SQL_CACHE_ENTRIES
Specifies the maximum number of SQL statements that can be placed in the SQL
statement cache. Specify O to disable caching.

Chapter 4. SQL Features 4-5

4.2 Dynamic SQL Caching

statement-count
A numeric value ranging from 0 to 2,147,483,647. The default value is 200. The
maximum value depends on available memory.

A site can establish a different default value for statement-count by creating a
SYSIDMS load module and using an SQL_CACHE_ENTRIES parameter to specify
the desired default value.

4.2.3.3 System Generation SQL CACHE Statement

In a central version, SQL caching is controlled through a new system generation SQL
CACHE statement.

Syntax

»> ADD SQL CACHE >
MOD1i fy j
DELete

\ 4

|— FOR statement-count statements —J

A\
\4

L DEFault caching is —[ON
OFF

A\

L EXCept connect to (—l— connect-name 1)J

Parameters

statement-count
Specifies the maximum number of SQL statements that can be placed in the SQL
statement cache. The default value is 100. The maximum theoretical value is
2,147,483,647. The actual maximum depends on available memory.

DEFault caching

ON
Specifies that caching of dynamic SQL statements is enabled. ON is the
default.

OFF
Specifies that caching of dynamic SQL statements is disabled.

connect-name
Specifies the name of a dictionary or catalog to which a user of the CV can
connect. You can specify multiple connect-names to form an exception list to the
default caching specification.

Usage:

4-6 Advantage CA-IDMS Release Summary

4.2 Dynamic SQL Caching

Dynamically changing caching attributes: All of the options that can be specified
in an SQL CACHE statement can be changed dynamically by issuing SQL DML
statements against CA-supplied tables. For more information, refer to Appendix E,
“SQL Cache Tables.”

Default caching status: If an SQL CACHE statement is not specified for a system,
dynamic SQL caching is disabled at system startup. SQL caching can be dynamically
enabled by inserting a row into the SY SCA.SQLCACHEOPT table. For more
information, refer to Appendix E, “SQL Cache Tables.”

Specifying an exception list: You can specify an exception list of connect-names
for which caching is enabled or disabled depending on what was implicitly or
explicitly specified in the DEFAULT CACHING clause. If default caching is enabled,
caching is disabled for any session connected to a dictionary or database whose name
appears in the exception list. Conversely, if default caching is disabled, caching is
enabled for any such session.

System currency: Before issuing an SQL CACHE statement, you must establish
currency on the target system to be modified.

Chapter 4. SQL Features 4-7

4.3 SQL-Defined Database Enhancements

4.3 SQL-Defined Database Enhancements

Release 16.0 includes the following SQL-defined database enhancements:
m Logical/physical separation
» Database cloning

® Stamp synchronization

These database enhancements are described in the sections that follow.

4.3.1 Logical/Physical Separation

Release 16.0 provides logical/physical separation for SQL-defined databases.
Logical/physical separation enables multiple instances of identically defined databases
to be represented by a single schema and accessed through a single set of access
modules. In so doing, it can significantly reduce the effort involved in administering
certain environments, such as the following:

» A development environment in which several copies of a test database need to be
maintained (possibly hundreds of copies, one for each developer). Without
logical/physical separation, the database administrator must maintain multiple
schema definitions as well as multiple sets of access modules, one for each
instance of the database.

® A staged implementation environment, in which access modules that have already
passed quality assurance testing can be moved into production without
recompilation.

® A production environment, in which multiple segments of a production database
can be accessed through a single set of access modules, with the target segment
determined by the database to which the SQL session connects.

The remainder of this section describes how to implement logical/physical separation
for SQL-defined databases and considerations associated with its use.

4.3.1.1 Implementing Logical/Physical Separation

In order to implement logical/physical separation for SQL-defined databases, you must
create a referencing schema. Release 16.0 extends the CREATE SCHEMA command
so that it can reference another SQL schema in the same way that it can reference a
non-SQL schema. Any SQL-defined schema can be referenced by another schema
except for schemas that:

® Are themselves referencing schemas
® Include constraints that reference tables in another schema
® Include tables that are referenced by constraints in another schema

Once a referencing schema is defined, any base table or routine (procedure, table
procedure, or function) defined in the referenced schema is automatically accessible as

4-8 Advantage CA-IDMS Release Summary

4.3 SQL-Defined Database Enhancements

an entity in the referencing schema. Views, however, are not. For more information,
see 4.3.1.3, “Views and Logical/Physical Separation” on page 4-9.

The referencing schema can be bound to a specific database instance or unbound by
not specifying a DBNAME as part of the referencing schema definition. Accessing
tables through an unbound referencing schema allows runtime determination of the
database instance to be accessed based on the database to which an SQL session
connects. Therefore, the same table names (and access modules) can be used to access
different database instances simply by connecting to different DBNAMES, provided
those DBNAMES include the appropriate database segment to be accessed.

For more information on referencing an SQL schema, see CREATE SCHEMA and
ALTER SCHEMA statements in Appendix B, “New and Revised SQL Statements.”

4.3.1.2 Changing a Referenced or Referencing Schema

4.3.1.3 Views and

If a change is made to one or more tables in the referenced SQL schema or the
referencing schema is changed to refer to a different SQL schema or DBNAME,
affected access modules are recompiled automatically when they are next used. Manual
recompilation is not necessary as is the case if reference is made to a non-SQL
schema

However, views that reference tables through a referencing schema require manual
redefinition if changes are made to the referenced or referencing schema. In order to
determine which views are affected, you can use the DISPLAY ALL VIEW statement
with the REFERENCED option. For example, the following statement displays all
views that access a table in schema FIN:

DISPLAY ALL VIEWS WHERE REFERENCED TABLE SCHEMA NAME = 'FIN'

In order to redefine these views, you must drop and recreate them. Before dropping
them, you can use the DISPLAY/PUNCH VIEW statement to generate the necessary
syntax to recreate them.

Logical/Physical Separation

Logical/physical separation impacts the use of views. If you wish to define a view that
can be used to access different database instances, then it must be defined in a schema
that is separate from both the referencing and referenced schemas. The view should
access tables through the referencing schema and may join the results with tables in
other schemas.

Suppose that there is a referencing schema called FINANCE that references an SQL
schema called FINBASE. In order to define a view that is independent of a specific
financial database instance, it must be defined in a third schema (CORP) and reference
financial base tables only through the FINANCE referencing schema as illustrated
below:

CREATE VIEW CORP.BUDGET AS SELECT ... FROM FINANCE.BUDGET ...

Chapter 4. SQL Features 4-9

4.3 SQL-Defined Database Enhancements

4.3.2 Database Cloning

Release 16.0 allows you to explicitly specify physical attributes whose values would
otherwise be automatically assigned when creating or altering SQL-defined entities
such as tables, procedures, and indexes. The ability to specify such physical attributes,
including the synchronization stamp that is used to detect definitional changes, enables
a DBA to create and maintain identically defined databases. This can be useful in
situations such as the following:

Taking a snapshot copy of a production database for testing purposes

Implementing database segmentation so that multiple segments can be accessed
through a single referencing schema and set of access modules

Restoring a back-version of a database and its definition

The following DDL statements have been enhanced to enable the specification of these
physical attributes:

CREATE AREA

ALTER AREA

CREATE TABLE

ALTER TABLE

CREATE VIEW

CREATE TABLE PROCEDURE
ALTER TABLE PROCEDURE
CREATE PROCEDURE
ALTER PROCEDURE
CREATE FUNCTION

ALTER FUNCTION

CREATE INDEX New DISPLAY and PUNCH options alow you to generate
syntax for these physical attributes. The new FULL PHYSICAL option generates
syntax for al attributes of an entity including physical attributes such as table IDs
and synchronization stamps. The new WITH TIMESTAMP option generates only
the syntax for specifying a synchronization timestamp.

The following statements have been modified to support these new options:

DISPLAY SCHEMA
PUNCH SCHEMA
DISPLAY TABLE
PUNCH TABLE
DISPLAY VIEW

4-10 Advantage CA-IDMS Release Summary

4.3 SQL-Defined Database Enhancements

= PUNCH VIEW

s DISPLAY TABLE PROCEDURE
= PUNCH TABLE PROCEDURE

= DISPLAY PROCEDURE

= PUNCH PROCEDURE

= DISPLAY FUNCTION

® PUNCH FUNCTION

m DISPLAY INDEX

= PUNCH INDEX

The enhanced CREATE and ALTER AREA statements are described below. For
more information on the other statements, see Appendix B, “New and Revised SQL
Statements.”

4.3.2.1 Specifying Synchronization Timestamps

While the ability to specify physical attributes can be useful in certain situations, it
should be used with care. If you change the value of a synchronization timestamp, you
can disable the ability for the database engine to detect definitional changes. This
could result in data corruption because an out-of-date access module updates the
database.

At a minimum, you should ensure that every version of an entity's definition has a
unigue synchronization timestamp associated with it. You should aso be aware that
while some entities, such as indexes and constraints, do not have an associated
timestamp, changing their definition is, in effect, changing the definition of their
associated table(s) and must also result in a unique synchronization stamp value.

If atable resides in an area that is controlled by area-level synchronization stamps, you
must update the area's synchronization timestamp. Updating the table's synchronization
stamp is optional but recommended. If a table resides in an area that is controlled by
table-level synchronization stamps, you must update the table's stamp and cannot
update that of the area.

4.3.2.2 Specifying Table and Index IDs

It is not always possible to create a table with a specific table ID or an index with a
specific index ID. You are able to do so only if the value specified is not assigned to
another table or index in the same area. Consequently, manipulation of physical
attributes is generally only appropriate for schemas that define the entire contents of a
database area or segment.

Chapter 4. SQL Features 4-11

4.3 SQL-Defined Database Enhancements

4.3.2.3 CREATE/ALTER AREA Statement Syntax

CREATE T physical AREA T area-name ———»

ALTER segment-name. J

»
>

\4
A

L TIMESTAMP timestamp-value i
4.3.2.4 Parameters

TIMESTAMP
Specifies the value of the synchronization stamp to be assigned to the area.

timestamp-value
A valid external representation of a timestamp. This clause is valid only for areas

for which area-level stamping isin effect.

4.3.3 Stamp Synchronization

Release 16.0 provides two new utility functions to alow a DBA to manipulate
synchronization timestamps. The new SYNCHRONIZE STAMPS utility lets you
compare stamps in the data area and the catalog and to update one from the other. A
new option of the INSTALL STAMPS utility allows you to replace existing
synchronization stamps in an area with the values from the catalog.

These new facilities are provided as an aternative mechanism for taking snapshot
copies of identically defined databases and also as an aid in recovery situations in
which either the catalog or a data area must be restored independently of the other.
Each of these utility enhancements is described below.

4.3.3.1 SYNCHRONIZE STAMPS Utility
Purpose: This new utility statement manipulates SQL synchronization stamps in the

following ways:

» Displays and compares the stamps in the catalog and the data area(s), issuing a
warning if stamps are inconsistent

» Updates the catalog with the stamps from the data area(s)
» Updates the data area(s) with the stamps from the catalog

Authorization: You must hold DBAWRITE authority on every area to be processed
by the SYNCHRONIZE STAMPS utility.

Syntax
»»—— SYNCHRONIZE STAMPS FOR —[AREA —— segment-namW
SEGMENT segment-name
UPDATE CATALOG ><
E UPDATE DATABASE —
COMPARE —M

4-12 Advantage CA-IDMS Release Summary

4.3 SQL-Defined Database Enhancements

Parameters

AREA
Specifies the area in which to synchronize stamps.

segment-name
Specifies the name of the segment associated with the area.

area-name
Specifies the name of an area included in the DMCL module.

SEGMENT
Specifies the segment whose areas will have their stamps synchronized.

segment-name
Specifies the name of a segment included in the DMCL module.

UPDATE CATALOG
Specifies that the catalog is to be updated with the stamps from the data area(s).

UPDATE DATABASE
Specifies that the data area(s) are to be updated with stamps from the catalog.

COMPARE
Displays and compares the stamps in the catalog and the data area(s) and issues a
warning if the stamps are inconsistent.

Usage:

How to submit a SYNCHRONIZE STAMPS statement: You submit a
SYNCHRONIZE STAMPS statement through OCF or IDMSBCF.

Use Caution When Updating Stamps. By using the SYNCHRONIZE STAMPS
utility to update stamps in a catalog or data area, you are asserting that the
definition in the catalog accurately describes data in the area. Y ou should be
sure that this is true before updating stamp values. No data validation is
performed by the utility.

Example: The following statement compares the synchronization stamps in the
USERDB.EMP_AREA with those in the catalog:

Chapter 4. SQL Features 4-13

4.3 SQL-Defined Database Enhancements

SYNCHRONIZE STAMPS FOR AREA USERDB.EMP_AREA COMPARE;
*+ Status = 0 SQLSTATE = 00000
*%% Current Stamps Report *x=*
Area:USERDB.EMP_AREA Table Stamping
Catalog Stamp: <null>
Database Stamp: <null>

Table ID:1024 TabTe:DEMO.EMPL
Catalog Stamp: yyyy-mm-dd-hh.mm.ss.ssssss
Database Stamp: yyyy-mm-dd-hh.mm.ss.ssssss

Table ID:1025 Table:DEMO.POSITION
Catalog Stamp: yyyy-mm-dd-hh.mm.ss.ssssss
Database Stamp: yyyy-mm-dd-hh.mm.ss.ssssss

Table ID:1026 TabTe:DEMO.MANAGERS
Catalog Stamp: yyyy-mm-dd-hh.mm.ss.ssssss
Database Stamp: yyyy-mm-dd-hh.mm.ss.ssssss

Table ID:1027 TabTe:INV.PART
Catalog Stamp: yyyy-mm-dd-hh.mm.ss.ssssss
Database Stamp: yyyy-mm-dd-hh.mm.ss.ssssss

Table ID:1028 TabTe:INV.COMPONENT
Catalog Stamp: yyyy-mm-dd-hh.mm.ss.ssssss
Database Stamp: yyyy-mm-dd-hh.mm.ss.ssssss

Table ID:1029 Table:EMP.T5
Catalog Stamp: yyyy-mm-dd-hh.mm.ss.ssssss
Database Stamp: yyyy-mm-dd-hh.mm.ss.ssssss

Table ID:1030 Table:LRD.EMPL
Catalog Stamp: yyyy-mm-dd-hh.mm.ss.ssssss
Database Stamp: yyyy-mm-dd-hh.mm.ss.ssssss

Table ID:1031 Table:JPD.T5

Catalog Stamp: yyyy-mm-dd-hh.mm.ss.ssssss
Database Stamp: yyyy-mm-dd-hh.mm.ss.ssssss

4.3.3.2 INSTALL STAMPS Utility
Purpose: This utility stores synchronization stamps in an SQL-defined area. In
Release 16.0, this utility has been enhanced to allow replacing stamps if they already

exist.

This section describes only the new parameter of this statement. For more information,
see the Advantage CA-IDMS Utilities.

Syntax

v

»»—— INSTALL STAMPS INTO _T:: AREA — segment-name.area-name
SEGMENT segment-name

>

\4
A

E INITIAL :‘
REPLACE

4-14 Advantage CA-IDMS Release Summary

4.3 SQL-Defined Database Enhancements

Parameters

INITIAL
Specifies that the area(s) contain no synchronization stamps because they were
formatted using the file or segment option of the FORMAT utility statement
executing in local mode. INITIAL is the default.

REPLACE
Specifies that the area(s) contain synchronization stamps that should be replaced
with those from the catalog.

Usage:

Use Caution When Replacing Stamps: By replacing stamps in an area, you are
asserting that the catalog's definition accurately describes data in the area. You
should be sure that this is true or that the area contains no data before
replacing stamp values. No data validation is performed by the utility.

Chapter 4. SQL Features 4-15

4.4 SQL Productivity Enhancements

4.4 SQL Productivity Enhancements

Release 16.0 includes the following SQL productivity enhancements:
. User-defined SQL functions
® SQL procedures written as Advantage CA-ADS mapless dialogs
» Database name inheritance
® ROWID pseudo-column

® Transaction sharing

These SQL productivity enhancements are described in the sections that follow.

4.4.1 User-Defined SQL Functions

Release 16.0 provides the ability for sites to define and invoke their own scalar SQL
functions. This new support is a subset of the SQL standard specification for external
functions. The function can have zero or more input parameters and must return a
single value. Such user-defined functions allow encapsulation and reuse of business
logic from within the SQL language, thus enabling the use of that logic from any
environment in which SQL can be issued.

To take advantage of this feature, follow the steps below:
» Define the function using the new CREATE FUNCTION statement.

» Write the function in COBOL, PL/I, Assembler, or Advantage CA-ADS following
the guidelines given in Appendix C, “SQL Functions and SQL Procedure
Enhancements.” You may be able to use an existing program as a template for a
function.

» |f necessary, define the function to an Advantage CA-IDMS system.

® Invoke the function as needed by specifying it anywhere that a value-expression
can be specified in an SQL statement, except in the check constraint of a table
definition.

Note: The number of user-defined function invocations and subqueries in a statement,
including those in referenced views, must not exceed 1024. The maximum
number of arguments in a user-defined function invocation is around 620 and
depends on the datatypes and the complexity of the expressions used in the
function invocation.

For the new CREATE FUNCTION DDL command syntax, see Appendix B, “New
and Revised SQL Statements.” For a comprehensive discussion and examples on
defining, using, and writing functions, see Appendix C, “SQL Functions and SQL
Procedure Enhancements.”

4-16 Advantage CA-IDMS Release Summary

4.4 SQL Productivity Enhancements

4.4.2 Procedures and Functions Written as Advantage CA-ADS
Mapless Dialogs

In Release 16.0, you can code an SQL procedure or an SQL function as an Advantage
CA-ADS mapless dialog. Use the protocol clause on the following SQL statements to
specify that the procedure or function is coded in Advantage CA-ADS.

» CREATE PROCEDURE
» CREATE FUNCTION

4.4.2.1 Protocol Clause

The syntax for the protocol clause in the CREATE statements is PROTOCOL
IDMS/ADS. There is no default and the protocol is required.

You must specify IDMS for SQL procedures or functions that are written in COBOL,
PL/I, or Assembler, and ADS for SQL procedures or functions that are written in
Advantage CA-ADS. The name of the dialog that is loaded and run when the SQL
procedure or function is invoked is specified in the EXTERNAL NAME clause of the
CREATE/ALTER PROCEDURE or CREATE/ALTER FUNCTION statements. If the
protocol is set to ADS, you must set the mode clause to SYSTEM. (See the examples
provided in Appendix C, “SQL Functions and SQL Procedure Enhancements.”)

The value of the protocol for procedures and functions is stored in the SQL catalog in
the COMPRESS column of SYSTEM.TABLE. The IDMS protocol is encoded as I; the
ADS protocol as A.

For more information on the CREATE FUNCTION and CREATE PROCEDURE
statements, see Appendix B, “New and Revised SQL Statements.”

4.4.2.2 Mapless Dialog

The Advantage CA-ADS dialog that implements the SQL procedure or function must
be mapless. To return to the SQL engine, the Advantage CA-ADS premap process
must issue a LEAVE ADS command.

4.4.2.3 Work Records

To access the procedure or function parameters, the dialog must include a work record
whose name is <schema>.<procedure_name> or <schema>.<function_name>. This
record is not read from the dictionary but instead is automatically constructed by the
Advantage CA-ADS dialog compiler (ADSC or ADSOBCOM) when it compiles the
dialog. You can refer to the procedure and function parameters and the corresponding
null indicators in the Advantage CA-ADS process code in the same way as you refer
to columns in any SQL table.

Within the function, the value to be returned must be moved to USER_FUNC data
element. The datatype of this data element is automatically defined in accordance with
the RETURNS <datatype> clause of the SQL function definition.

Chapter 4. SQL Features 4-17

4.4 SQL Productivity Enhancements

4.4.2.4 Additional

When parameters of a procedure or function are dropped, added, or altered, the dialog
that implements the procedure or function must be recompiled. Failure to do so may
result in a DC171066 error message when the procedure is next executed. The runtime
validation producing this message is based solely on the size of the record.

Records

Besides the above pseudo-work record, other records related to the procedure or
function can be included.

ADSO-SQLPROC-COM-AREA is a system-supplied record. The record layout is
given below:

ADD RECORD NAME ADSO-SQLPROC-COM-AREA.
03 FILLER PIC S9(8) COMP SYNC.
03 FILLER PIC X(3).

03 SQLPROC-SQLSTATE PIC X(5).
03 SQLPROC-NAME PIC X(18).
03 SQLPROC-SPECIFIC-NAME PIC X(8).
03 SQLPROC-MSG-TEXT PIC X(80).

03 SQLPROC-COMMAND-CODE PIC S9(8) COMP SYNC.
03 SQLPROC-OPERATION-CODE PIC S9(8) COMP SYNC.
03 SQLPROC-INSTANCE-ID PIC S9(8) COMP SYNC.
03 FILLER OCCURS 2.

The non-FILLER elements of the ADSO-SQLPROC-COM-AREA record are the
parameters that are common to al SQL procedures and functions. For a description of
these parameters, see the Advantage CA-IDMS Database SQL Option Reference Guide.

If the procedure or function definition contains a LOCAL or GLOBAL WORKAREA
clause, you can define corresponding records in the dictionary. While the layout of
these records is application dependent, the name must comply with the following rules
in order for the Advantage CA-ADS runtime to properly initialize these records:

n <diaog-name>-SQL PROC-GLOBAL-AREA
n <dialog-name>-SQLPROC-LOCAL-AREA
<dialog-name> is the name of the dialog as specified in the name clause of the

procedure or function definition. For more information and examples, see
Appendix C, “SQL Functions and SQL Procedure Enhancements.”

4.4.3 Database Name Inheritance for Table Procedures, Procedures,
and Functions

In Release 16.0, an SQL routine (a table procedure, procedure, or function) can inherit
the current database name of the encompassing SQL session as a default. To control
the inheritance, a new clause, DEFAULT DATABASE NULL/CURRENT, has been
added to the following SQL statements:

» ALTER PROCEDURE
» ALTER FUNCTION

4-18 Advantage CA-IDMS Release Summary

4.4 SQL Productivity Enhancements

ALTER TABLE PROCEDURE
CREATE PROCEDURE
CREATE FUNCTION

CREATE TABLE PROCEDURE

In the new clause (DEFAULT DATABASE NULL/CURRENT), NULL is the default
for the CREATE statements and guarantees compatibility with previous releases of
Advantage CA-IDMS. CURRENT makes the CURRENT DATABASE the default
database name for any subordinate database session started by the SQL routine.

For more information on using these SQL statements, see Appendix B, “New and
Revised SQL Statements.”

4.4.4 ROWID Pseudo-Column

The ROWID pseudo-column feature provides unique access to a row in an SQL table
or view. ROWID contains the db-key for an underlying database record. It is not
persistent for the life of the database, but it can be used within a transaction or other
controlled processes.

Although ROWID can be used for SQL-defined tables, it is most useful for updating
non-SQL defined databases. Since such databases tend to have record types with no
primary or foreign keys, identifying a specific row to be updated or deleted is often
difficult. For such record types, it was often necessary to implement a table procedure
to perform the update or deletion. The use of ROWID may eliminate the need for the
table procedure, since it uniquely identifies each row of the non-SQL defined table.

ROWID pseudo-column has the following properties:

® Every base table has a ROWID pseudo-column associated with it. ROWID is
defined automatically. Pseudo-columns are similar to, but not the same as, normal
columns.

= The value of ROWID is unique for each row of a base table; however, you cannot
consider it to be a table's primary key because its value can change over the
lifetime of the database. This could happen after unloading and rel oading the data.

® The value of ROWID does not change during an SQL transaction as long as the
row is not deleted and reinserted.

m ROWID provides the fastest access to a row.

» The datatype of ROWID is TID (tuple id); it has a length of 8 bytes. The first 4
bytes are the db-key. The last 4 bytes are reserved for future use and are currently
ignored.

® The value of ROWID can be null (for example, as the result of an outer join
operation).

® You can select ROWID values, but you cannot insert or update them.

m The ROWID column is not defined in the catalog.

Chapter 4. SQL Features 4-19

4.4 SQL Productivity Enhancements

® Views aso have a ROWID. The value of a view's ROWID is the ROWID of the
first base table in the decomposition of the view from left to right. The ROWID of
aview is not necessarily unique.

For examples of the use of ROWID, see Appendix D, “SQL ROWID Examples.”

4.4.5 Transaction Sharing

Release 16.0 provides a new facility called transaction sharing, which allows multiple
database sessions within a user session to share a single locking structure and recovery
unit, thereby eliminating inter-session deadlocks. While not strictly related to SQL, it
is primarily intended to facilitate the use of SQL to extend existing applications either
by adding SQL to traditional applications or by using SQL routines (table procedures,
procedures, and functions) to encapsulate business logic.

To illustrate how transaction sharing can assist in extending existing applications,
consider an Advantage CA-ADS application that uses navigational DML to access
data. An enhancement is planned in which the database is accessed using SQL instead
of navigational DML. If the SQL statements access different portions of the database
from that of the navigational requests, then intra-task deadlock is not an issue. If
however, both types of DML access the same data and update it, there is a strong
possibility of deadlock between the navigational and SQL database sessions.
Transaction sharing can eliminate this deadlock potential by enabling the two sessions
to share a single transaction.

Another area in which transaction sharing can benefit SQL users is in the development
of SQL routines. Table procedures, in particular, are used extensively to overcome
some of the limitations that SQL has in accessing non-SQL defined databases. They
are also used to encapsulate and reuse business logic, making it accessible from many
platforms. However, any access to a database from within a table procedure (or other
SQL routine) brings with it the potential for deadlocking if the same data is directly
accessed from within the encompassing SQL session. By having the routine and the
encompassing SQL session all share a single transaction, the deadlock potential is
eliminated.

4.4.5.1 Enabling Transaction Sharing

Transaction sharing can be enabled in the following ways:

» For an entire central version, through a new parameter on the system generation
SYSTEM statement or through the new DCMT VARY TRANSACTION
SHARING command.

n For all executions of a specific task, through a new parameter on the system
generation TASK statement or a new option on the DCMT VARY TASK
statement.

» For abatch job step, through a new SYSIDMS TRANSACTION_SHARING
parameter.

® For an SQL routine, through a new parameter on a corresponding CREATE or
ALTER DDL statement.

4-20 Advantage CA-IDMS Release Summary

4.4 SQL Productivity Enhancements

= Dynamicaly from within an application, through a call to IDMSINO1.

If transaction sharing is enabled for a system, it applies to al online tasks executing
within that system unless overridden for an individual task. If transaction sharing is
enabled for atask, it isinitially enabled for al tasks of that type. If transaction sharing
is enabled for an executing task or batch job step, it applies to all database sessions
started by that task or job step unless dynamically overridden by a call to IDMSINO1
or by a procedure or function specification. Whether transaction sharing is enabled for
a remote database session is determined by the front-end task or job step, not by the
back-end task.

Regardless of how transaction sharing is enabled, if it is in effect at the time a new
database session is started, then that database session is eligible to share its transaction
with other database sessions started by the same task or user session. The following
rules determine whether two sessions will share a transaction:

® A top-level database session will share its transaction with another top-level
session if they are both eligible for transaction sharing. A top-level database
session is one that is started by an application program rather than an SQL
routine.

® A subordinate database session that is eligible for transaction sharing will share its
parent's transaction even if the parent session is not eligible for transaction
sharing. A subordinate database session is one that is started by an SQL routine.

® A system run unit will never share its transaction with another session.

Refer to the following for more information on enabling transaction sharing:

= For the new system generation SYSTEM parameter, see 4.4.5.3, “System
Generation SYSTEM Statement” on page 4-23.

» For the new system generation TASK parameter, see 4.4.5.4, “ System Generation
TASK Statement” on page 4-23.

» For the new SYSIDMS parameter, see 4.4.5.5, “SYSIDMS
TRANSACTION_SHARING Parameter” on page 4-24.

= For the new call to IDMSINOL, see 4.4.5.6, “IDMSINO1 Call” on page 4-24.

m For the new DCMT command and option, see Appendix A, “New and Revised
DCMT Commands.”

» For the new SQL routine DDL parameter, see Appendix B, “New and Revised
SQL Statements.”
4.4.5.2 Application Programming Considerations

Transaction sharing affects applications in the following ways:

® An update made through a database session can impact other database sessions
sharing the same transaction.

m A rollback issued within one database session affects all sessions that share the
same transaction.

Chapter 4. SQL Features 4-21

4.4 SQL Productivity Enhancements

= A commit issued by a database session whose transaction is shared has no effect
on the transaction unless all other sharing sessions have also been committed.

Database sessions that share a transaction can impact each other in ways that would
not be possible if transaction sharing were not in effect, since locking would otherwise
prevent such interactions. For example, a record can be deleted by one database
session while it is current of another database session that is sharing the same
transaction. This can result in new and possibly unexpected error conditions. If a
database session's currency is impacted by an update made through another database
session, that currency is invalidated. If a subsequent DML request is issued that relies
on the invalidated currency, an error is returned:

® For navigational DML, an error status of xx03 is returned to the application.

» For SQL, the application receives an SQLCODE of -4 (statement failure) and an
SQLRSN of 1087 (conflicting activity within a shared transaction).

Before enabling transaction sharing for an application, you should ensure that affected
programs handle these errors appropriately.

If multiple database sessions share a transaction and one of those sessions issues a
rollback request, all changes made within the transaction are immediately rolled out.
Other sessions sharing the transaction must issue their own rollback requests before
issuing any other DML reguests. Failure to do so results in an error:

» For navigational DML, the run unit is terminated and an error status of xx19 is
returned to the application.

® For SQL, the application receives an SQLCODE of -5 (transaction failure) and an
SQLRSN of 1088 (transaction forced to back out).

A task-level rollback is equivalent to issuing individual rollback requests for each
shared or non-suspended database session associated with the task.

If multiple database sessions share a transaction, and one of those sessions issues a
commit request, no changes are committed until all top-level sharing sessions that have
had activity since the last commit, rollback, or start of transaction have issued a
commit or until a task-level commit is issued. The term "commit" refers to any DML
command that would normally result in committing changes (COMMIT CONTINUE,
FINISH, COMMIT WORK RELEASE, and so on). Unless a commit continue request
isissued (for which currency locks are retained), all currencies owned by the database
session are immediately released; however, update and kept locks acquired by the
database session remain until the transaction is committed, even if the request
terminates the database session. A task-level commit has no effect on non-shared
transactions if all associated top-level database sessions are suspended.

4-22 Advantage CA-IDMS Release Summary

4.4 SQL Productivity Enhancements

4.4.5.3 System Generation SYSTEM Statement

Use the system generation SYSTEM statement to establish the default transaction
sharing option for all tasks within the system.

Syntax

»—[ADD_—I_ SYStem — dc/ucf-version-number — . . .

» >
>«

|— TRAnsaction SHAring is —[OFF

v

ON
Parameters
OFF
Specifies transaction sharing is disabled for all tasks in the system.
ON

Specifies transaction sharing is enabled for all tasks in the system.

4.4.5.4 System Generation TASK Statement

Use the system generation TASK statement to establish the initial transaction sharing
option for all tasks of the given type.

Syntax
»—E ADD_—I— TASk —— task-code

v

»

- L TRAnsaction SHAring is —E OFF 1 B
ON
SYStem <
Parameters
OFF
Specifies that transaction sharing is initially disabled when a task of this type is
initiated.
ON
Specifies that the transaction sharing is initially enabled when a task of this type is
initiated.
SY Stem

Specifies that the initial transaction sharing setting for a task of this type is the
current system default setting.

Chapter 4. SQL Features 4-23

4.4 SQL Productivity Enhancements

4.4.5.5 SYSIDMS TRANSACTION_SHARING Parameter

A batch application tells Advantage CA-IDMS that it wants to use transaction sharing
for al of its database sessions by specifying a new SY SIDMS parameter:

TRANSACTION_SHARING=ON

If this is specified, Advantage CA-IDMS enables transaction sharing for every
database session started by the application unless a call to IDMSINO1 changes the
transaction sharing option.

If TRANSACTION_SHARING=ON is established as a default in a SYSIDMS load
module, it can be overridden at runtime by specifying:

TRANSACTION_SHARING=OFF

Notes:

1. Sharing transactions in local mode enables concurrent sharing sessions to ready
the same area in update mode.

2. Whether transaction sharing is in effect for a batch/CV database session is
determined from the front-end (that is, from the batch address space), regardiess of
whether transaction sharing is enabled for the back-end (RHDCNP3S) task.

4.4.5.6 IDMSINO1 Call

An application program calls IDMSINOL to override the current transaction sharing
setting for the task or job step. New IDMSINO1 functions enable or disable transaction
sharing as illustrated below. If a call is made from within an SQL routine, the
transaction sharing setting that was current on entry to the routine is reestablished on
exit. This means that the IDMSINOL call affects only the current routine and any
subordinate routines that it might invoke as a result of SQL commands that it issues.

ENVIRONMENT DIVISION.

DATA DIVISION.
WORKING-STORAGE SECTION.

B R
* The following is the 1st parameter on all IDMSINOl calls
khkkkkhkkhhkhhkhhhhhkhkhhhdhhhhhhhhhhhhhhhhhdhhdhhdhhdhhkhhrkhdhxkhhhkhxkx
01 RPB.

02 FILLER PIC X(36).

R e R R R R R R R R T R S T T T L T

* The following is the 2nd parameter on all IDMSINO1 calls

IhAI R AR AR A IR A AT Ak bk hhhhhhhhhhhdhhhddhddhhdhhhhhhhhhhhhhrhrrrx

01 REQ-WK.
02 REQUEST-CODE PIC S9(8) COMP.
88 INO1-FN-TRACE VALUE 00.
88 INO1-FN-NOTRACE VALUE 01.
88 INO1-FN-GETPROF VALUE 02.
88 INO1-FN-SETPROF VALUE 03.

4-24 Advantage CA-IDMS Release Summary

4.4 SQL Productivity Enhancements

88 INO1-FN-GETMSG VALUE 04.

88 INO1-FN-GETDATE VALUE 05.

88 INO1-FN-GETUSER VALUE 08.

88 INO1-FN-SYSCTL VALUE 10.

88 INOI-FN-TRINFO VALUE 16.

88 INO1-FN-TXNSON VALUE 28.

88 INO1-FN-TXNSOFF VALUE 29.

88 INO1-FN-RRSCTX VALUE 30.

88 INO1-FN-STRCONV VALUE 34.

02 REQUEST-RETURN PIC S9(8) COMP.

KAKRhkAARAA A Ak AR kA h Ak hhkhhhhhhkhhhkhdhhdhhdhhhhhdhhhhhhhhdrhdxhdhxkx
* The following work fields are used by a variety of

* IDMSINO1 calls

B e e e R S R R R R R g T T T et

01 WORK-FIELDS.

02
02
02
02
02
02
02
02
02
02
02
02
02
02

02

02
02

02

02

WK-DTS-FORMAT
LINE-CNT

WK-DTS

WK-CDTS

WK-KEYWD
WK-VALUE
WK-DBNAME
WK-USERID
WK-SYSCTL
WK-TIME-INTERNAL
WK-TIME-EXTERNAL
WK-DATE-INTERNAL
WK-DATE-EXTERNAL

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

WK-RRS-FAKE-FUNCTION PIC
88 INO1-FN-RRSCTX-GET
88 INO1-FN-RRSCTX-SET

WK-RRS-FUNCTION-REDEF

03 WK-RRS-FAKE-FILLER PIC

03 WK-RRS-FUNCTION

WK-RRS-CONTEXT

WK-STRING-FUNCTION
88 CONVERT-EBCDIC-TO-ASCII

PIC
PIC
PIC

S9(8) COMP VALUE 0.
S9(4) COMP.
X(8).
X(26).
X(8).
X(32).
X(8).
X(32).
X(8).
X(8).
X(8).
X(8).
X(10).
S9(4) COMP.
VALUE 01.
VALUE 02.

REDEFINES WK-RRS-FAKE-FUNCTION.

X.
X.
X(16).
X(4).
VALUE 'ETOA'.

88 CONVERT-ASCII-TO-EBCDIC VALUE 'ATOE'.

WK-STRING

WK-STRING-LENGTH

PIC

PIC

X(17)
VALUE 'String to convert'.
S9(8) COMP VALUE 17.

B e e R R R R g T T T e

* The following group item is only used by the call that

* retrieves SQL error messages
01 SQLMSGB.
02 SQLMMAX PIC S9(8) COMP VALUE +6.
02 SQLMSIZE PIC S9(8) COMP VALUE +80.
02 SQLMCNT PIC S9(8) COMP.
02 SQLMLINE OCCURS 6 TIMES PIC X(80).
AR AR KRR R AR R AR R A AR AR KRR AR A AR A AR A R A RN A AT AR A AR A AR kv hhddhhhhhhx*x
* The following SQL include statement is needed only for
* the call that retrieves SQL error messages, and is only
* required if the program contains no other SQL statements.
EXEC SQL

Chapter 4. SQL Features 4-25

4.4 SQL Productivity Enhancements

INCLUDE SQLCA
END-EXEC.

B S e R R R R T T T T

PROCEDURE DIVISION.

B R R R R R R R S e

B R

Call IDMSINO1 to activate Transaction Sharing for this
task.

Parm 1 is the address of the RPB.
Parm 2 is the address of the REQUEST-CODE and RETURN-CODE.

B S R R R R S R R T T T

*
*
*
*
*

SET INO1-FN-TXNSON TO TRUE.
CALL 'IDMSINOG1' USING RPB REQ-WK.

B e R R R R R R R T

Call IDMSINO1 to deactivate Transaction Sharing for this
task.

Parm 1 is the address of the RPB.
Parm 2 is the address of the REQUEST-CODE and RETURN-CODE.

B R

*
*
*
*
*

4-26 Advantage CA-IDMS Release Summary

4.5 Enhanced Compatibility with Open Standards

4.5 Enhanced Compatibility with Open Standards

Advantage CA-IDMS Release 16.0 provides enhanced compatibility with Open
Standards with the addition of several SQL scalar functions. The scalar functions are
automatically installed with Advantage CA-IDMS and many are implemented as
user-defined functions. The new scalar functions complement existing scalar functions
that were distributed with earlier releases of Advantage CA-IDMS.

The following tables list the scalar functions included with Advantage CA-IDMS/DB
and that are defined in the JDBC specification or are commonly used in the industry.
For a complete description of the functions, refer to Appendix B, “New and Revised
SQL Statements.”
The notations are coded as follows:

® B — Function is implemented as a true built-in function.

» U — Function is implemented as a user-defined function in the SYSCA schema.

® UN — Function is implemented as a user-defined function in the SY SCA schema,
but it is not included in the JDBC specification.

m X — Function was implemented in an earlier release of Advantage CA-IDMS.
There might be semantic differences between the Advantage CA-IDMS
implementation and the Open Standards definitions.

For complete descriptions of the functions marked U and B, see Appendix B, “New
and Revised SQL Statements.”

45.1 Numeric Functions

Notation Function Return Value

U ABS(number) Absolute value of number

U ACOS(float) Arccosing, in radians, of float

U ASIN(float) Arcsing, in radians, of float

U ATAN(float) Arctangent, in radians, of float

U ATANZ2(floatl, float2) Arctangent, in radians, of
float2/floatl

UN CEIL (number) Smallest integer greater than or
equal to number

U CEILING(number) Smallest integer greater than or

equal to number

U COS(float) Cosine of float radians

Chapter 4. SQL Features 4-27

4.5 Enhanced Compatibility with Open Standards

Notation Function Return Value
UN COSH(float) Hyperbolic cosine of float
radians
U COT(float) Cotangent of float radians
U DEGREES(number) Degrees in number radians
U EXP(float) Exponential function of float
U FLOOR(number) Largest integer less than or equal
to number
U L OG(float) Base e logarithm of float
U LOG10(float) Base 10 logarithm of float
U MOD(integerl, integer?2) Remainder for integer 1/integer2
U PI() The constant pi
U POWER(number, power) Number raised to (integer) power
U RADIANS(number) Radians in number degrees
U RAND(integer) Random floating point for seed
integer
ROUND(number, places) Number rounded to places
SIGN(nhumber) -1 to indicate number is less than
0 0 to indicate number is equal
to 0 1 to indicate number is
greater than O
UN SINH(float) Hyperbolic sine of float radians
SIN(float) Sine of float radians
SQRT (float) Square root of float
TAN(float) Tangent of float radians
UN TANH(float) Hyperbolic tangent of float
radians
U TRUNCATE(number, places) Number truncated to places

4.5.2 String Functions

Notation

Function

Return Value

B

CONCAT(stringl, string2)

Character string formed by
appending string2 to stringl; if a
string is null, the result is

DBM S-dependent

4-28 Advantage CA-IDMS Release Summary

4.5 Enhanced Compatibility with Open Standards

Notation

Function

Return Value

U

INSERT (stringl, start, length,
string2)

A character string formed by
deleting length characters from
stringl beginning at start, and
inserting string2 into stringl at
Start

LCASE(string)

A character string equal to string
in which all uppercase characters
are converted to lowercase

LEFT(string, count)

A character string equal to the
count leftmost characters from
string

LENGTH(string)

Integer representing the number
of characters in string, excluding
trailing blanks

LOCATE(stringl, string2,
start)

Position in string2 of the first
occurrence of stringl, searching
from the beginning of string2; if
start is specified, the search
begins from position start. 0 is
returned if string2 does not
contain stringl Position 1 is the
first character in string2.

LTRIM(string)

A character string equal to string
with leading blank spaces
removed

REPEAT (string, count)

A character string formed by
repeating string count times

REPLACE(stringl, string2,
string3)

A character sting equal to stringl
in which all occurrences of
string2 are replaced with string3

RIGHT(string, count)

The count rightmost characters in
string

RTRIM(string)

The characters of string with no
trailing blanks

SPACE(count)

A character string consisting of
count spaces

SUBSTRING(string, start,
length)

A character string formed by
extracting length characters from
string beginning at start

Chapter 4. SQL Features 4-29

4.5 Enhanced Compatibility with Open Standards

Notation Function

Return Value

X UCASE(string)

A character string equal to string
in which all lowercase characters
are converted to uppercase

45.3 Time and Date Functions

Notation Function

Return Value

B CURDATE()

The current date as a date value

B CURTIME()

The current local time as atime
value

U DAYNAME(date)

A character string representing
the day component of date; the
name for the day is specific to
the data source

B DAY OFMONTH(date)

An integer from 1 to 41
representing the day of the
month in date

U DAY OFWEEK (date)

An integer from 1to 7
representing the day of the week
in date; 1 represents Sunday

U DAY OFY EAR(date)

An integer from 1 to 366
representing the day of the year
in date

X HOUR(time)

An integer from 0 to 23
representing the hour component
of time

X MINUTE(time)

An integer from O to 59
representing the minute
component of time

X MONTH(date)

An integer from 1 to 12
representing the month
component of date

U MONTHNAME(date)

A character string representing
the month component of date;
the name for the month is
specific to the data source

B NOW()

A timestamp value representing
the current date and time

4-30 Advantage CA-IDMS Release Summary

4.5 Enhanced Compatibility with Open Standards

Notation Function

Return Value

U QUARTER(date)

An integer from 1 to 4
representing the quarter in date;
1 represents January 1 through
March 31

X SECOND(time)

An integer from O to 59
representing the second
component of time

U WEEK (date)

An integer from 1 to 53
representing the week of the year
in date

X YEAR(date)

An integer representing the year
component of date

4.5.4 System Functions

Notation Function Return Value
B DATABASE Current database
B IFNULL (expression, value) Value if expression is null;
expression if not null
B USER() Current user
4.5.5 Conversion Functions
Notation Function Return Value
B CONVERT (value, SQLtype) Value converted to SQLtype,

where SQLtype can be any valid
SQL data type.

Chapter 4. SQL Features 4-31

4.6 XML Publishing

4.6 XML Publishing

This feature implements XML Publishing. It allows applications to generate XML data
from data stored in an Advantage CA-IDMS database easily and with high
performance. Although the feature's API is based on SQL, Advantage CA-IDMS SQL
supports SQL DML on non-SQL defined databases. Thus, also allowing non-SQL
defined Advantage CA-IDMSS databases to be used as the data sources for XML
Publishing.

The feature is based on and implements a subset of the SQL/XML SO standard as
described in the 1SO publication WD ISO/IEC 9075-14:2007 (E), titled "Information
technology - Database languages - SQL - Part 14: XML-Related Specifications
(SQL/XML)". A few extensions have been made available. These are indicated in the
following section.

The XML Publishing capability is made available through a set of SQL functions, a
new internal XML data type, an SQL table procedure, and an XML encoding session
option.

4.6.1 SQL/XML Functions
The SQL/XML functions are not true SQL functions but pseudo functions. Some of
the SQL/XML functions:
® have a variable number of arguments
® use "AS' to specify an alias for an expression as an argument
» have arguments that can be of any type
® support subqueries as arguments
= have arguments that can be SQL identifiers
Following is a list of the SQL/XML routines (all functions except for one table
procedure) that can be used for XML Publishing purposes:
XML Value Functions
. XMLAGG — aggregates a set of XML values.

» XMLATTRIBUTES — function-like construct, only alowed as argument of
XMLELEMENT. Generates XML attributes.

8 XMLCOMMENT — generates an XML comment.

= XMLCONCAT — concatenates multiple XML values.

= XMLELEMENT — generates an XML element.

= XMLFOREST — generates a forest (collection) of XML elements.

= XMLNAMESPACES — function-like construct, only alowed as argument of
XMLELEMENT or XMLFOREST. Generates XML namespaces.

4-32 Advantage CA-IDMS Release Summary

4.6 XML Publishing

8 XMLPARSE — checks if an XML value is well-formed.

. XMLPI — generates an XML processing instruction, that is, an XML declaration
or style sheet specification.

. XMLROOT — sets the XML version and/or standalone option in the XML
declaration of aroot XML element. If an XML declaration is not yet present, one
is created with the ENCODING pseudo attribute set to the sessions current XML
encoding.

Advantage CA-IDMS Scalar Functions

. XMLPOINTER — returns a pointer to a character large object or CLOB,
representing a serialized XML value. This Advantage CA-IDMS extension can be
used in programs, running in the same address space as Advantage CA-IDMS.

. XMLSERIALIZE — returns a character or binary value with a maximum length
of 30,000, representing a serialized XML vaue.

Table Procedure

B XMLSLICE — retrieves character or binary slices of egqual length from the
serialization of an XML vaue.

For More Information: For detailed syntax and semantics of the above SQL/XML
routines, see B.4, “SQL/XML Functions and Table Procedure” on page B-58.

4.6.2 XML Data Type and XML Values

In this feature, the XML data type is a new internal only data type to represent XML
data. XML values usually are used as arguments to some of the SQL/XML functions.

The only way to produce an XML value is through the invocation of an XML value
function, possibly indirectly through using a subquery that returns an XML value. The
return value of all XML value functions is of the XML data type. A subquery used as
an XML -value-expression must be of the XML data type, which implies that its
SELECT list contains an XML value function.

Data of the XML type cannot be stored in a database or directly used in application
programs using the standard SQL API. Programs running in the Advantage CA-IDMS
CV address space or in batch local mode can access serialized XML data using the
XMLPOINTER function. After serialization and casting to CHAR or VARCHAR
through the XML SERIALIZE function, XML data can be accessed using any
supported SQL API on any platform.

To bypass the 30,000 length limit of the character string returned by
XMLSERIALIZE, use the XML SLICE table procedure.

Chapter 4. SQL Features 4-33

4.6 XML Publishing

Examples of valid XML values are:
® An XML element
A forest of XML elements
® Textua content of an XML element
® The NULL value

® An XML subquery (Select XMLAGG(XMLELEMENT(...)) from ATABLE where
)

4.6.2.1 Syntax

No syntax is available. Thisis a specid, internal only data type.

4.6.3 XML-value-expression

Specifies an XML vaue. For more information on XML values, see 4.6.2, “XML
Data Type and XML Vaues’ on page 4-33.

4.6.3.1 Syntax

\
A

XML-value-function
subquery

Expansion of XML-value-function

\ 4
A

»——— XMLAGG-function
— XMLCOMMENT-function
—— XMLCONCAT-function
—— XMLELEMENT-function
— XMLFOREST-function
—— XMLPARSE-function
— XMLPI-function

— XMLROOT-function

4.6.3.2 Parameters
XML -value-function
Specifies an XML -value-function that returns an XML value.

For a complete description of the syntax and parameters for the
XML -value-function, see B.4, “SQL/XML Functions and Table Procedure’ on
page B-58.

subquery
Specifies a subquery that must return a single XML value or the NULL value.

Note: If subquery is used as an XML value, it must return O or 1 row.

4-34 Advantage CA-IDMS Release Summary

4.6 XML Publishing

4.6.4 Mappings

SQL and XML are two different languages with their own specific language elements
and grammar. When using SQL to produce XML, SQL language elements must be
mapped to XML using appropriate rules.

This section describes the rules that are used for mapping of:
® Plain text SQL to XML

®m SQL identifier to XML
m SQL data type values to XML schema data type values

4.6.4.1 Mapping Plain Text SQL to XML
This mapping is between the character set(s) of the SQL language and Unicode.

This feature supports mapping from the SQL character set (EBCDIC) to Unicode using
encodings UTF-8, UTF-16-BE (big endian), and UTF-16-LE (little endian). This
mapping is implemented using the standard Advantage CA-IDMS code tables
(RHDCCODE) and is controlled through the XML encoding session option. The
default is not to map; the serialized XML values are encoded in EBCDIC.

For information on encoding XML values, see the XML encoding session option under
B.3.17, “SET SESSION Statement” on page B-55.

4.6.4.2 Mapping SQL Identifier to XML

You can use a much greater range of characters in an SQL identifier than in an XML
name. Note that any character can be used in an SQL identifier delimited by double
quotes.

The normative definition of valid XML Name characters is found in the SQL/XML
1SO standard. Valid first characters of XML Names are:

Letters, <underscore>, and <colon>

Valid XML Name characters, after the first character, are:

Letters, Digits, <period>, <minus sign>, <underscore>, <colon>,
CombiningChars, and Extenders

Note that the XML definition of Letter and Digit is broader than <simple Latin letter>
and <digit> respectively.

There are two types of XML names: XML NCName and XML QName. An XML
NCName is an XML non-colonized name, that is, an XML name that does not contain
any colon (:) character. An XML QName is an XML-qualified name that consists of
the XML namespace prefix and the local part of the name, separated by a colon (;)
character. The namespace prefix and the local part of the name must be XML

Chapter 4. SQL Features 4-35

4.6 XML Publishing

NCNames. For example, xsd:string is an XML Qname, where xsd is the namespace
prefix which must have been declared for a namespace URI, and string is the local
part of the name.

There are two types of mapping of SQL identifiers to XML: fully escaped and
partially escaped mapping. Fully escaped mapping is used for all SQL identifiers that
are derived from an SQL column name, that is, in the XMLATTRIBUTES and
XMLFOREST functions. Partially escaped mapping is used in all the other cases, that
is, in the AS clause of the XMLATTRIBUTES, XMLFOREST, and
XMLNAMESPACES functions, and in the NAME clause of the XMLELEMENT and
XMLPI functions.

XML names that begin with the characters "xml" (in any combination) are reserved by
W3C for use in future recommendations, and therefore, cannot be used.

The following table shows some mapping examples:

SQL Identifier Fully Escaped XML Partially Escaped XML
Name Name
department DEPARTMENT DEPARTMENT
"department” department department
"last name" last x0020_name last x0020 name
"last_xname" last xO05F name last XOO5F name
"dept:id" dept_x003A _id dept:id
"id" _X003A id _X003A_id
"xmlcolumn" _Xx0078_mlcolumn xmlcolumn
"Xmlcolumn" _X0058 _mlcolumn Xmlcolumn
xmlcolumn _x0058_ MLCOLUMN XMLCOLUMN

4.6.4.3 Mapping SQL Data Type Values to XML Schema Data Type Values

This feature supports mapping SQL data type values to XML schema data type values;
however, mapping of GRAPHIC and VARGRAPHIC are not supported.

You can map null values using absence or xsi:nil="true".
The complete mapping rules are described in the SQL/XML SO standard

specification. As an oversimplification, mapping can be described as the result of the
casting of the SQL data value to VARCHAR(max).

4-36 Advantage CA-IDMS Release Summary

4.6 XML Publishing

The following table shows some of the character value mappings:

SQL Character Value Mapped Value
< <

> >

& &
Carriage Return ,;

' & apos;

" "

This mapping does not apply to the characters belonging to an XML CDATA section;
a CDATA section begins with the string "<![CDATA[" and ends with the string "]]>".

4.6.5 Example

In the following example, the use of many of the SQL/XML functions is shown. The
result of the SELECT is an XML document that contains all the employees from the
DEMOEMPL.EMPLQY EE table, grouped by department. The
DEMOEMPL.EMPLQOY EE and DEMOEMPL.DEPARTMENT tables are equi-joined
on the DEPT_ID. Note aso how the SELECT statement clearly and naturally reflects
the structure of the XML document.

select
xmlserialize
(CONTENT
xmlroot
(xmlconcat
(xmlpi
(Name "xml-stylesheet"
, 'type="text/xsl1"
href="http://usilcall:26720/IDD/SQLXML_XSL2/xs1"'
)
, xmlelement
(Name "EmployeesByDepartment"
, xmInamespaces('http:/ca.com/nsl' as "nsl")
, xmlagg
(xmlelement
(Name "Department"
, xmlattributes(DEPT_ID as "DeptId")
, xmlelement
(Name "Employees"
, select xmlagg
(xmlelement
(Name "Employee"
, xmlattributes(EMP_ID as "EmpId")
, EMP_FNAME
, EMP_LNAME

Chapter 4. SQL Features 4-37

4.6 XML Publishing

, xmlelement
(Name "Address"
, xmlforest
(e.STREET as "Street"

, e.CITY as "City"
, e.STATE as "State"
)

)
)
)
from DEMOEMPL.EMPLOYEE e
where d.DEPT_ID = e.DEPT_ID
)
)
)
)
)
, version '1.0', standalone yes
)
as CHAR(3000)
)
from DEMOEMPL.DEPARTMENT d

The result, which has been formatted for clarity, is similar to this:

<?xml version="1.0" encoding="EBCDIC" standalone="yes"?>

<?XML-STYLESHEET TYPE="TEXT/XSL"
HREF="HTTP://USILCA11:26720/1DD/SQLXML_XSL2/XSL"?>

<EMPLOYEESBYDEPARTMENT xmlns:NS1="HTTP:/CA.COM/NS1">

<DEPARTMENT DEPTID="1120">PURCHASING - SERVICE
<EMPLOYEES>
<EMPLOYEE EMPID="2898">Mary Umidy
<ADDRESS><STREET>895A Braintree Circle </STREET>
<CITY>Medford </CITY>
<STATE>MA</STATE>
</ADDRESS>
</EMPLOYEE>

<EMPLOYEE EMPID="3338">Mark White
<ADDRESS><STREET>560 Camden St </STREET>
<CITY>Canton </CITY>
<STATE>MA</STATE>
</ADDRESS>
</EMPLOYEE>

<EMPLOYEE EMPID="3294">Carolyn Johnson
<ADDRESS><STREET>79 High St </STREET>
<CITY>Brookline </CITY>
<STATE>MA</STATE>
</ADDRESS>
</EMPLOYEE>

4-38 Advantage CA-IDMS Release Summary

4.6 XML Publishing

<EMPLOYEE EMPID="2004 ">Eleanor Johnson
<ADDRESS><STREET>225 Fisk St </STREET>
<CITY>Medford </CITY>
<STATE>MA</STATE></ADDRESS>
</EMPLOYEE>
</EMPLOYEES>
</DEPARTMENT>

<DEPARTMENT DEPTID="4200">LEASING - NEW CARS
<EMPLOYEES>
</EMPLOYEES>
</DEPARTMENT>
<DEPARTMENT DEPTID="2210">SALES - NEW CARS
<EMPLOYEES>
<EMPLOYEE EMPID="4027">Cecile Courtney
<ADDRESS><STREET>99 West Main St
</STREET>
<CITY>Natick </CITY>
<STATE>MA</STATE>
</ADDRESS>
</EMPLOYEE>
<EMPLOYEE EMPID="3991">Fred Wilkins
<ADDRESS><STREET>344 Stevens St </STREET>
<CITY>Taunton </CITY>
<STATE>MA</STATE>
</ADDRESS>
</EMPLOYEE>

</EMPLOYEES>
</DEPARTMENT></tt>
</EMPLOYEESBYDEPARTMENT>

4.6.6 SQLSTATE Values
This section contains the SQL/XML enhancements in the SQLSTATE variable.

»»> For more information on the SQLSTATE variable, see the Advantage CA-IDMS
Database SQL Option Reference Guide.

The following table contains the SQL/XML SQLSTATE values:

Category Condition Class Subcondition Subclass
X Data 22 (no subclass) 000
exception
invalid comment 00S
invalid processing 00T
instruction
invalid XML content OON

Chapter 4. SQL Features 4-39

4.6 XML Publishing

Category Condition Class Subcondition Subclass
invalid XML document 0oM
nonidentical notations 00J
with the same name
nonidentical unparsed 00K
entities with the same
name
not an XML document 0oL
XML value overflow O0R

X SQL/XML ON (no subclass) 000

mapping error
unmappable XML Name 001
invalid XML character 002

W Warning 01 (no subclass) 000

column cannot be mapped 010

4-40 Advantage CA-IDMS Release Summary

Chapter 5. Administrative and Operational

Enhancements
5.1 OVErview 52
5.2 Online Execution of Utilities 53
5.3 LOCK AREA Statement 55
54 ALREADY LOCKED Option 5-6
5.5 Database Name for Utility Use 5-8
5.6 FORMAT JOURNAL Utility Statement 59
5.7 Two-Phase Commit Enhancements 5-10
5.8 Cloning LTERM and PTERM Definitions 5-14
5.9 Security Enhancements 5-16
5.10 IDMSBCF Input/Output Reassignment 5-22
511 Online Compiler Enhancements 5-27
5.12 PRINT SPACE Utility Enhancement 5-28
5.13 EXTRACT JOURNAL Utility Enhancement 5-29
5.14 ROLLBACK Utility Enhancement 5-30
5.15 ROLLFORWARD Utility Enhancement 5-31
5.16 System Startup Enhancements 5-32
517 #WTL Macro Enhancements 5-38
5.18 International Character Set Enhancement 5-39
5.19 Journa File Enhancement 5-45
520 REORG Utility Enhancement 5-46
5.21 CREATE DSMODEL Utility Enhancement 5-47

Chapter 5. Administrative and Operational Enhancements 5-1

5.1 Overview

5.1 Overview

This chapter describes the following utility, sysgen, and security enhancements in
Release 16.0:

= Online execution of utilities

® LOCK AREA command

» ALREADY LOCKED option

» Database name for utility use

= Two-phase commit enhancements

® Cloning LTERM and PTERM sysgen definitions

® Security in IDMSBCF and OCF for the utility commands
» |IDMSBCEF input/output reassignment

= Online compiler enhancements

= PRINT SPACE utility enhancement

® Multiple segment processing using the EXTRACT JOURNAL, ROLLBACK, and
ROLLFORWARD utilities

® System startup enhancements

= #WTL macro enhancements

® International character set implementation enhancements
= Journa file enhancement

» REORG dutility enhancement

8 CREATE DSMODEL enhancement

5-2 Advantage CA-IDMS Release Summary

5.2 Online Execution of Utilities

5.2 Online Execution of Utilities

Release 16.0 enables many utilities to be executed online that previously could only be
executed through the batch command facility (IDMSBCF). By extending the
environment in which these utilities can be executed, the DBA is able to perform more
work from a single user interface, thus increasing their productivity.

The following utilities can now be run under a central version, using OCF or
IDMSBCF:

. CLEANUP SEGMENT

. FIX PAGE

= FORMAT AREA

= FORMAT SEGMENT

m INSTALL STAMPS

1 LOCK AREA

= PRINT INDEX

» PRINT PAGE

= PRINT SPACE FOR AREA

B PRINT SPACE FOR SEGMENT

= SYNCHRONIZE STAMPS

= TUNE INDEX

m UPDATE STATISTICS

5.2.1 Usage Considerations

Area usage mode: In order to execute a utility online, the affected areas must be
available to the central version in the appropriate mode. For utilities that perform
updates, the affected areas must be in update mode to the central version. For utilities
that perform only retrievals, the affected areas must be in either retrieval or update
mode. If the above reguirement is not met, you receive a DB002352 error message
indicating that the required lock mode is not available.

Committing prior work: Before executing certain utilities online, you must commit
any previous work that has been done within the current SQL session. This
requirement applies to the following utilities:

» FIX PAGE

= FORMAT AREA

= FORMAT SEGMENT
® LOCK AREA

Chapter 5. Administrative and Operational Enhancements 5-3

5.2 Online Execution of Utilities

® | OCK SEGMENT

The following sequence of statements illustrates how to commit prior work before
issuing a FORMAT AREA statement:
SELECT * FROM SYSTEM.TABLE;

COMMIT;
FORMAT AREA VSAMT.KSDS2;

If you omit the COMMIT, you receive a DB002043 error message:

Command not allowed with an open transaction

Log messages: If you run an online FORMAT statement or FIX PAGE statement,
an informational message is written to the log identifying the area name being updated
and the time of the update.

Batch-only utilities: If you attempt to execute a utility online that is supported only
in batch local mode, such as UNLOCK or FORMAT FILE, you receive a DB002990
error message indicating that the statement is not supported in central version.

5-4 Advantage CA-IDMS Release Summary

5.3 LOCK AREA Statement

5.3 LOCK AREA Statement

5.3.1 Authority

5.3.2 Syntax

Release 16.0 provides a new LOCK AREA/SEGMENT utility statement that allows a
DBA to explicitly lock an area. This enables an administrator to place a lock on an
area that remains in effect across several commands. In this way, access to an area by
other users can be prevented while a series of operations are performed on it.

In order to lock an area, you need DBAWRITE authority on the area.

»—— LOCK AREA segment-name.area-name >
—[SEGMENT segment-name —— 1L EXCLUSIVE UPDATE <J

5.3.3 Parameters

5.3.4 Usage

AREA
Directs the LOCK utility statement to lock a specified area.

segment-name
Specifies the name of the segment associated with the area to be locked.

area-name
Specifies the name of the area to be locked.

SEGMENT

segment-name
Specifies the name of the segment to be locked.

EXCLUSIVE UPDATE
Specifies the update mode. EXCLUSIVE UPDATE is the default mode and the
only mode currently supported.

Local mode execution: If the LOCK AREA statement is issued through IDMSBCF
executing in local mode, a physical lock is placed on the area. The lock remains in
effect until an explicit UNLOCK AREA is issued. If the area is already locked, the
LOCK AREA statement fails with a DB002035 error message as illustrated below:
LOCK AREA USERDB.EMP_AREA;

Status = -4 SQLSTATE = 50008 Messages follow:
DB002352 C-4M353: Area USERDB.EMP_AREA required area lock mode not available

Online execution: When the LOCK AREA dtility is run under a central version
using OCF or IDMSBCF, alogical lock is placed on the area. This lock prevents all
access to the area by other users until a commit or rollback is issued. If executing
online, a commit is automatically issued at end of task prior to the pseudo-converse
unless autocommit is disabled through a SET OPTIONS statement.

Chapter 5. Administrative and Operational Enhancements 5-5

5.4 ALREADY LOCKED Option

5.4 ALREADY LOCKED Option

Release 16.0 provides an optional ALREADY LOCKED clause for the FORMAT
AREA tility and the FIX PAGE utility. This parameter alows you to continue
processing the FORMAT AREA or FIX PAGE commands even if the target areais
currently locked.

5.4.1 FORMAT AREA Utility Statement

5.4.1.1 Syntax

v

»»—— FORMAT

AREA segment-name.area-name
LOCKED |

\4
A

5.4.1.2 Parameters

5.4.1.3 Usage

ALREADY LOCKED
Specifies that if the target area of a FORMAT command is locked, the FORMAT
command continues processing. If you omit the ALREADY LOCKED option and
the target area of a FORMAT is locked, you receive a DB002352 error message
and the command fails.

Formatting a locked area: If you are executing the format utility in local mode
against a target area that is physically locked, you must specify ALREADY LOCKED.
Otherwise, you'll receive a DB002352 error message. If ALREADY LOCKED is
specified, the area remains locked after the format is complete. The ALREADY
LOCKED option is not required if formatting an area under central version using OCF
or IDMSBCF and the option isignored, if specified. If formatting a segment or a
file, the ALREADY LOCKED option cannot be specified and no area lock validation
is performed.

Formatting an unlocked area: If executing the format utility against an area that is
not locked, ALREADY LOCKED is ignored if specified.

5.4.2 FIX PAGE Utility Statement

5-6 Advantage CA-IDMS Release Summary

5.4 ALREADY LOCKED Option

5.4.2.1 Syntax

A\
A

»— FIX |

LOCKED _

L ALREADY il

5.4.2.2 Parameters

ALREADY LOCKED
Specifies that if the target area or areas of a FIX PAGE are locked, the FIX
PAGE command continues processing. If you omit the ALREADY LOCKED
option and the target area of a FIX PAGE command is locked, you receive a
DB002352 error message, and the command falls.

5.4.2.3 Usage

Repairing a locked area: If executing the fix page utility in local mode against a
target area that is physically locked, you must specify ALREADY LOCKED otherwise
you receive a DB002352 error message. The ALREADY LOCKED option is not
required if repairing an area under central version using OCF or IDMSBCF and is
ignored if specified.

Unlocking a locked area: The fix page utility cannot be used to update an ared's
physical area lock. Instead use the LOCK and UNLOCK area utility statements to do
this.

Chapter 5. Administrative and Operational Enhancements 5-7

5.5 Database Name for Utility Use

5.5 Database Name for Utility Use

Release 16.0 alows you to designate a database name for utility-use-only. Doing so
has the following two effects:

» The DBNAME cannot be used to access data through SQL or navigational DML.
Any attempt to do so fails.

» The DBNAME is not validated during startup or by the LOOK utility for such
things as duplicate area names. By avoiding this validation, no warning messages
areissued. This feature enables the DBA to create database names for
administrative convenience while avoiding warning messages indicating an
incorrectly defined database name. For example, the DBA may wish to create a
utility-use-only database name that includes all segments in the DMCL for use
with the QUIESCE DBNAME system task.

5.5.1 CREATE DBNAME Statement

5.5.1.1 Syntax

> CREATE DBNAME db-name —8M»
ALTER ——’— L dbtable-name.]

A\
A

L FOR T GENERAL USE +—
UTILITY USE ONLY -

5.5.1.2 Parameters

FOR GENERAL USE
Specifies this DBNAME is for general use, such as accessing data through
navigational or SQL DML requests. FOR GENERAL USE is the default.

UTILITY USE ONLY
Specifies that this DBNAME is for administrative purposes only; for example, as
in the QUIESCE system task. The DBNAME cannot be used to access data
through SQL or navigational DML.

5.5.1.3 Usage

Utility-use-only DBNAMESs: The ability to designate a database name for
utility-use-only, alows the DBA to define arbitrary collections of areas for
administrative convenience while avoiding warnings for such things as duplicate area
names. Since a utility-use-only DBNAME cannot be used to access data through
navigational or SQL DML, there is no need to restrict the areas that it includes.

5-8 Advantage CA-IDMS Release Summary

5.6 FORMAT JOURNAL Utility Statement

5.6 FORMAT JOURNAL Utility Statement

To provide sufficient space in the journal files for recording information about other
systems with which a system communicates, the FORMAT JOURNAL command is
enhanced in Release 16.0. In most cases, the default size is sufficient and no explicit
size parameter is needed; however, if a system's journal block size is very small or it
communicates with many other Advantage CA-IDMS or CICS systems, it may be
necessary to reserve additional space.

5.6.1 Syntax

v

»»—— FORMAT JOURNAL —E journal-file-name
ALL
> STORAGE nnn
C DATA] L SIZE ——|

v
A

5.6.2 Parameters

DATA STORAGE SIZE nnn
Specifies the amount of space to reserve in 1K (1024 byte) increments for Data
Storage in a journal file, where nnn is an integer from 1 32,767.

5.6.3 Usage

Specifying a journal storage size: All journals must have the same amount of
space since the data in one journal is replicated to every other journal.

The actual size alocated may be higher than specified due to rounding. Space is
alocated in blocks whose size is (journa block size - 256). By default, one block is
allocated. Additional blocks are alocated if needed until the total size meets or
exceeds the size specified.

Chapter 5. Administrative and Operational Enhancements 5-9

5.7 Two-Phase Commit Enhancements

5.7 Two-Phase Commit Enhancements

Release 16.0 enhances the recovery utilities to report on distributed transactions and
support the use of a manual recovery control file for addressing incomplete distributed
transactions. This section describes these common enhancements as they apply to the
following recovery utility statements:

= EXTRACT JOURNAL
» FIX ARCHIVE

= MERGE ARCHIVE

= PRINT JOURNAL

= ROLLBACK

1 ROLLFORWARD

5.7.1 Reporting on Distributed Transactions

A distributed transaction journal checkpoint record consists of a fixed portion and up
to three variable arrays of data. The fixed portion contains the distributed transaction
identifier (DTRID) and a loca branch ID (BID), which identifies an individual branch
of the distributed transaction. The fixed portion can be followed by any combination of
the following:

® A list of local transaction identifiers (L1Ds), one for each transaction branch that
made local database changes

A list of externa transaction identifiers if the transaction is known externally by
another identifier, such as an XA XID or RRS URID.

® A list of interests that other resource or transaction managers have in the
distributed transaction

The recovery utilities report some or all of the above information in their detailed
report and list distributed transactions that were incomplete at stop time in their
summary report.

The example below shows the output that is produced by PRINT JOURNAL REPORT
FULL when it encounters a typical DCOM record. If the REPORT TERSE option is
specified, neither external transaction identifiers nor resource manager interests are
included. Other recovery utilities show similar information.

NODE SYSTEM74 DTRID-BID SYSTEM74::01650C9509CE38A3-01650C90A4CDAOBD DCOM

LOC_ID 10016 PGM_ID PROCDISM

RRS URID B8DEBCA57E84B6700000000D01020000 *ooov=doaa., *

RM NAME ~ SYSTEM74::RRS_RMI TYPE RRS ROLE SDSRM STATE InDoubt FLGI/Z 0001 EXITS 40 0034000000000000
DIDIE240C24040404040404040404040B8DEBCA57EB4B6700000000D01020000 *RRS B wadeooaa
18C1E3D94BC2F8FIFOF9F7F8F6C1F2C1F8CIC1F4FO4BCIC2D4 *.ATR. B8909786A2A8AA40 IBM *

RM NAME SYSTEM73::DSI_CLI ~ TYPE IDMS ROLE CRM STATE InDoubt FLG1/2 0000 EXITS 76 0000000000000000
E2E8E2E3C5D4F7F301650C90A4CDA9040000000080000001650C2E949172E101 *SYSTEM73. .. UeZeerunneenn.. mj...x
650C9509CE38A3800000000000000000E2E8E2E3C5D4F7F303D9C5C1D340C4C3 *..n...t.oeue.... SYSTEM73.REAL DC*
40000000000000000000D5C4E2E8E2E3C5D4F7F3000000000000000000000000 * NDSYSTEM73............ *
00000000 X, *

5-10 Advantage CA-IDMS Release Summary

5.7 Two-Phase Commit Enhancements

A brief description of the report's contents follows. For an in-depth discussion of the
meaning of this report, see Chapter 3, “Two-Phase Commit Support.”

®» Node SYSTEM74 — Identifies the name of the system that produced the journal
entry.

— DTRID-BID SYSTEM74::01650C9509CE38A 3-01650C90A4CDAOBD —
Identifies the DTRID and the BID of the top-level branch of the distributed
transaction for which the DCOM record was written. The DTRID is
SY STEM74::01650C9509CE38A3 and the BID is 01650C90A4CDAOBD.

— DCOM — The type of distributed transaction journal record that is being
reported.

» LOC _ID 10016 — ldentifies the work done by a local transaction branch that is
included in the distributed transaction. In this case, the loca transaction identifier
is 10016.

» PGM_ID PROCDISM — ldentifies the name of the application program that
started the local transaction branch. In this case, the program is PROCDISM.

= RRS URID BS8DEBCAS57E84B6700000000D01020000 — Identifies the
transaction, as it is known externally.

= RM NAME SYSTEM74::RRS RMI| — ldentifies a resource manager that has
registered an interest in the distributed transaction. In this case, the resource
manager is RRS.

— TYPE RRS — Indicates that the RM type is RRS.

— ROLE SDSRM — Indicates that this interest is the controlling interest for the
transaction, and therefore RRS is the transaction's coordinator.

— STATE InDoubt — Indicates the interest's state. In this case, the interest is in
an InDoubt state.

— FLGL/2 0001 — Displays flags that are used to restart the transaction
following a system failure.

— EXITS 40 0034000000000000 — Shows the exits that have been registered
by the resource manager and the responses returned by the exits that have
aready been called during the life of the transaction.

— D9D9E240C2... — Shows the data (in hex and character format) that the
resource manager wishes preserved should it be necessary to restart the
transaction following a system failure. This information varies depending on
the resource manager that registered the interest.

= RM NAME SYSTEM73::DSI_CLI — ldentifies a resource manager that has
registered an interest in the distributed transaction. In this case, the resource
manager is an Advantage CA-IDMS system named SY STEM73.

— TYPE IDMS — Indicates the type of the resource manager.

Chapter 5. Administrative and Operational Enhancements 5-11

5.7 Two-Phase Commit Enhancements

— ROLE CRM — Indicates that this interest is not a controlling interest for the
transaction. Therefore, the associated resource manager (SYSTEM73) isa
participant in the transaction.

— STATE InDoubt — Indicates the interest's state. In this case, the interest isin
an InDoubt state.

— FLGL/2 0000 — Displays flags that are used to restart the transaction
following a system failure.

— EXITS 76 0000000000000000 — Shows the exits that are registered by the
resource manager and the responses returned by the exits that have been
called during the life of the transaction.

— E2E8E2E3CS... — Shows the data (in hex and character format) that the
resource manager wishes to have preserved if it is necessary to restart the
transaction following a system failure. This information varies depending on
the resource manager that registered the interest.

5.7.2 Manual Recovery Input Control File

A manual recovery input control file can be used to specify if an InDoubt distributed
transaction should be committed or backed out. While considered optional, if this file
isincluded in a utility's execution JCL, it is used as input to the following recovery
operations:

. EXTRACT JOURNAL (unless ALL is specified)
1 FIX ARCHIVE

» MERGE ARCHIVE (if COMPLETE is specified)
= PRINT JOURNAL

1 ROLLBACK

® ROLLFORWARD (unless ALL is specified)

The file contains 80-byte records whose format is:

<Dtrid> <Action>

Where:

<Dtrid>is a 26-character display-format DTRID and <Action> is a COMMIT or
BACKOUT. If more than one record specifies the same DTRID value, all but the last
one are ignored.

The following example specifies that the transaction identified by DTRID
SY STEM74::01650C9509CE38A 3 should be backed out:

SYSTEM74::01650C9509CE38A3 BACKOUT

If manual control input entries are used in a recovery operation that creates an output
journa file (FIX ARCHIVE, EXTRACT JOURNAL and MERGE ARCHIVE), then

5-12 Advantage CA-IDMS Release Summary

5.7 Two-Phase Commit Enhancements

additional distributed transaction journal records are written to the output file to
complete the transaction in the specified way.

The following is a sample of the report generated by FIX ARCHIVE. It lists entries in
the manua recovery input control file and shows the effect of those entries in its
summary report. In this example, the distributed transaction identified by
CICSCICS::B8AD18E5A9BFOF41 is committed by the generation of new DCOM and
DFGT journal records.

Input Control Records:
CICSCICS::B8ADI8E5A9BE1300 BACKOUT
CICSCICS: :BBADI18E5A9BFOF41 COMMIT

Incomplete Distributed Transactions At Stop Time:

NODE DTRID-BID STATE ACTION

*x%% SYSTEM74 CICSCICS::BBAD18E5A9BFOF41-016507A67C2E6D53

InDoubt

*GEN SYSTEM74 DTRID-BID CICSCICS::B8AD18E5A9BFOF41-016507A67C2E6D53
LOC_ID 28 PGM_ID CICSDML1
*GEN SYSTEM74 DTRID-BID CICSCICS::B8AD18E5A9BFOF41-016507A67C2E6D53

Commit

DCOM

DFGT

5.7.3 Manual Recovery Output Control File

Since a manual recovery control file is an 80-byte card image file, you can create it
with a text editor. If a manual recovery output control file is specified in the
execution JCL, the following recovery options can create a prototype control file:

n FIX ARCHIVE

= MERGE ARCHIVE

= PRINT JOURNAL

= ROLLFORWARD (unless FROM EXTRACT is specified)
When a control file is generated, an entry is created for every distributed transaction
whose final state is InDoubt. Automatically generated entries always specify that the

transaction should be backed out. The resulting file should be edited prior to using it
as input to a recovery operation.

5.7.4 Execution JCL Changes

Manual recovery control files are optional, so no execution JCL changes are necessary
unless their use is desired.

To use a manua recovery input control file, include a CTRLIN file definition or DD
statement in the IDMSBCF execution JCL. To use a manual recovery output control
file, include a CTRLOUT file definition or DD statement in the IDMSBCF execution
JCL. The format for these files is fixed blocked with a record length of 80.

Chapter 5. Administrative and Operational Enhancements 5-13

5.8 Cloning LTERM and PTERM Definitions

5.8 Cloning LTERM and PTERM Definitions

A new clause on the PTERM sysgen statement facilitates the definition of multiple
physical and logical terminal definitions with identical characteristics. This eliminates
the need for using individual LTERM and PTERM statements for each terminal.

5.8.1 Syntax

\4
A

>—|: ADD—_I—PTErm—. ..
MODi fy L REPeat COUnt is repeat-count i

5.8.2 Parameters

r epeat-count
Specifies the number of times the physical and eventually associated logical

terminal should be cloned when a central version is started. Repeat-count must be
an integer in the range 0 through 32767. Repeat-count O means no cloning. If a
non-zero repeat-count is specified, the physical and logical terminal name should
end on a sequence number and the sum of that sequence number and the repeat
count should not cause a digit overflow.

5.8.3 Usage

Cloning PTERM/LTERM uses a naming convention: In order to clone
PTERM/LTERM definitions, their names must end with a numeric value called the
seguence number. This sequence number is incremented for each cloned PTERM and
its associated LTERM, if the LTERM exists. Sysgen ensures that enough digits are
available. It is the DBA's responsibility to ensure that a name conflict does not exist.
A conflict occurs if a PTERM/LTERM is defined with the same name as a cloned
PTERM/LTERM. If a name conflict is encountered, a warning message is generated
and the explicitly defined PTERM/LTERM s used instead of the cloned definition.

Note: A single record in the dictionary represents cloned PTERM/LTERMs. Cloning
starts after all dictionary PTERM/LTERM records are read and their associated
control blocks built. If there is a name conflict, the PTERM/LTERM with
conflicting name is built as defined by the dictionary record and the cloned
PTERM/LTERM is discarded.

5.8.4 Example

ADD PTERM BULKPO1
REPEAT COUNT 98
TYPE IS BULK.

ADD LTERM BULKLO1
PTERM BULKPO1.

This definition results in the creation of 99 PTERM/LTERM pairs:
» BULKPOL/BULKLOL,

5-14 Advantage CA-IDMS Release Summary

5.8 Cloning LTERM and PTERM Definitions

BULKP02/BULKLO02,
BULKPO3/BULKLO03

Until BULKP99/BULKL99

If a PTERM with name BULKP21 is also defined in the dictionary, this occurs:

» The PTERM BULKP21 and its associated LTERM (if any) is built according to
the dictionary definition of BULKP21.

® Warning message DC391009 is output.

® The clone pair BULKP21/BULKL21 is not built, but cloning proceeds with
BULKP22.

Chapter 5. Administrative and Operational Enhancements 5-15

5.9 Security Enhancements

5.9 Security Enhancements

Advantage CA-IDMS 16.0 provides the ability to secure the individual utility
commands that a user can execute in the Batch Command Facility (BCF) or the Online
Command Facility (OCF). This is provided as an alternative to securing the individual
resources that are accessed by a utility command.

A utility command may be secured by creating an activity resource for it. A user must
then be granted execution privilege to run the utility.

The #UTABGEN macro is provided so you can associate activity resource numbers
with utility commands.

5.9.1 Creating The Resource

The command: "CREATE RESOURCE ACTIVITY application-name.activity-name
NUMBER activity-number" is used to create an activity type resource.

application-name
When creating an activity resource for a utility command, specify an application
name of OCF for activities that are to be secured when running under OCF. To
secure batch utility activities specify BCF for an application-name. If the same
command is to be secured in both online and batch then two activity resources
must be created.

activity-name
A user defined name assigned to this activity number. It must be 1 to 18
characters in length.

activity-number
A user defined number in the range of 1-256. It is unique within the
application-name. It must match the number assigned in the #'UTABGEN macro.

5.9.2 Assigning OCF/BCF Activity Numbers

OCF/BCF security provides the #UTABGEN macro for assigning activity numbers to
OCF/BCF utility commands. In the #UTABGEN macro, you associate an activity
number with an OCF/BCF command code.

5.9.2.1 #UTABGEN Example

In this example, #UTABGEN assigns the activity number of 14 to the OCF/BCF
commands FORMAT and PRINTPAGE as represented by their command codes:

#UTABGEN (FORMAT,14,PRINTPAGE,14)

5-16 Advantage CA-IDMS Release Summary

5.9 Security Enhancements

5.9.3 #UTABGEN

5.9.3.1 Purpose

5.9.3.2 Syntax

Assigns activity numbers to utility commands.

»— #UTABGEN — l — (command-security-specification) |

A\
A

Expansion of command-security-specification

l— (- l — security-label , activity-number L) J

5.9.3.3 Parameters

— (— l — command-code : —E security-label TL) —————»«
BOTH <« — activity-number
BCF ——
0OCF ——

security-label

Defines a security label and associates it with a BCF or OCF activity number. A
security label can be used to classify utility commands by assigning a security
label to one or more utility command codes. All commands with the same security
label are associated with the security label's activity number.

A security label must be one alphabetic character (A through Z). You can define a
maximum of 26 security labels in the #UTABGEN macro.

activity-number
Valid activity-numbers range from 0 to 255.

Note: An activity number of zero means no security.

BOTH
Specifies that the following set of command code security assignments applies to
BCF and OCF commands. BOTH is the defaullt.

BCF
Specifies that the following set of command code security assignments applies to
BCF.

OCF
Specifies that the following set of command code security assignments applies to
OCF commands.

Note: The terms BCF and OCF are used to distinguish between operations processed
inside the CV from those processed in the batch address space. This means
that the term BCF applies to loca mode batch only, while the term OCF
applies to both OCF and batch to CV (that is, central mode batch).

Chapter 5. Administrative and Operational Enhancements 5-17

5.9 Security Enhancements

5.9.3.4 Usage

command-code
Identifies a utility command to be secured. Command-code must match a code in
the utility command code table, shown later in this section. For example,
FORMAT identifies the Format utility. PRINTSPACE identifies the Print Space
utility.

security-label
Specifies a previously defined security label that you are associating with
command-code.

activity-number
Specifies the BCF/OCF activity number you are associating with command-code.

Valid activity-numbers are in the range of 0-255.

Note: An activity number of zero means no security.

Coding Considerations

® All lines except the first one must start in column 16.

n All lines except the last one must have a non-blank character in column 72.
General: When you use the #UTABGEN macro, you can assign an OCF/BCF
activity number to one or more Utility commands.

® You can associate a specific OCF/BCF activity number (0 through 255) with a
utility command.

= You can associate a security label (A through Z) with a utility command.
An activity number of zero turns off security for that security-label or command-code.

Coding zero is a useful way to turn off security, without deleting the command-code
from the #UTABGEN source definition.

Only commands that are being secured must be coded. If omitted, they default to an
activity code of zero.

Security labels must be defined before they can be assigned to command codes.

Use of security labels makes it easier to maintain security definitions when several
commands are assigned the same OCF/BCF activity number. Y ou define a security
label in the #UTABGEN macro. You need only change the security label definition in
the #UTABGEN macro to modify the security for all associated DCMT commands.

Generating the #UTABGEN Macro: The source file that specifies the
#UTABGEN macro can only contain one macro. Once assembled, the resulting object
must be link edited with IDMSDDAM.

5-18 Advantage CA-IDMS Release Summary

5.9 Security Enhancements

5.9.3.5 Examples

Example 1

PRSP RRPRR RPUpS S SR P) PR PSS SRR SRR S
#UTABGEN (A,3,B,10), X
(OCF,FORMAT,A,LOCK,A,UNLOCK,A) , X
(BCF,ARCHIVEJOURNAL B, ARCHIVELOG,B) X
(FIXPAGE,50)
END

This example shows activity number 3 assigned to security-label A and activity
number 10 assigned to security-level B.

OCEF indicates that the commands that follow (within the parentheses) are assigned an
activity number only when running in the online command facility OCF or as part of
the batch command facility IDMSBCEF running in central mode. Commands
FORMAT, LOCK and UNLOCK are associated with security-label A. Since
security-label A is currently assigned to the OCF/BCF activity number 3, the
FORMAT, LOCK, and UNLOCK commands are assigned activity number 3.

BCF indicates that the commands within that group are only secured when invoked by
the batch command facility IDMSBCF running in local mode only. In this example,
the ARCHIVE JOURNAL and ARCHIVE LOG commands are assigned to activity
number 10, by the security-label B.

FIXPAGE is not qualified so activity number 50 is assigned to the FIX PAGE utility
in OCF and BCF.

Example 2

SRR Uy, JSPUU S PSR SR PSR S PSS SR RS Sy
#UTABGEN (FORMAT,14,FIXPAGE,14)
END

In this example, activity number 14 is assigned the utility command codes FORMAT
and FIXPAGE. Because the codes are not identified as being OCF or BCF, the
commands associated with these codes are secured in online and batch, and both use
the same activity number.

5.9.3.6 For More Information

For more information about the #UTABGEN macro and the JCL associated with it,
refer to the Advantage CA-IDMS Security Administration.

Chapter 5. Administrative and Operational Enhancements 5-19

5.9 Security Enhancements

5.9.3.7 Utility Command Codes

Code Utility Command
ARCHIVEJOURNAL Archive Journal
ARCHIVELOG Archive Log
BACKUP Backup

BUILD Build

CLEANUP Cleanup Segment/Area
CONVERTCATALOG Convert Catalog
CONVERTPAGE Convert Page
EXPANDPAGE Expand Page
FASTLOAD Fastload
FIXARCHIVE Fix Archive

FIXPAGE Fix Page

FORMAT Format Area/Segment/File
INSTALLSTAMPS Install Stamps

LOAD Load

LOCK Lock Area/Segment
MAINTAINASF Maintain ASF

MAINTAININDEX

Maintain Index

MERGEARCHIVE Merge Archive
PRINTINDEX Print Index
PRINTJOURNAL Print Journal
PRINTLOG Print Log
PRINTPAGE Print Page
PRINTSPACE Print Space
PUNCHLOADMODULE Punch Load Module
RELOAD Reload

RESTORE Restore
RESTRUCTURE Restructure Segment
RESTRUCTURECONNECT Restructure Connect
ROLLBACK Rollback
ROLLFORWARD Roallforward/Extract Journal

5-20 Advantage CA-IDMS Release Summary

5.9 Security Enhancements

Code Utility Command
SETOPTIONS Set BCF/OCF options
SYNCHRONIZESTAMPS Synchronize Stamps
TUNEINDEX Tune Index
UNLOAD Unload

UNLOCK Unlock Area/Segment
UPDATESTATISTICS Update Statistics
VALIDATE Validate

Chapter 5. Administrative and Operational Enhancements 5-21

5.10 IDMSBCF Input/Output Reassignment

5.10 IDMSBCF Input/Output Reassignment

This feature enhances IDM SBCF with the ability to:

» Direct the output of IDMSBCF commands to a file rather than to SYSLST. The
output file contains only the data, no headings. The data are represented in string
format, not in the native format.

® Read the input to IDMSBCF from a file other than SY SIPT.
This feature enables you to create output from IDMSBCEF that is not restricted to the
present SYSLST restrictions and then use this (or other input) as input to IDMSBCF

(without the restrictions of SY SIPT). The source of the input or target for the output is
controlled by the SET OPTIONS command.

5.10.1 Syntax
Expansion of format-option
E[' OUTPUT TO SYSLST «
L output-ddname —J

INPUT FROM _E SYSIPT «
input-ddname i

A\
A

5.10.2 Parameters

OUTPUT TO
(IDMSBCF batch only) Specifies where to write data output.

SYSLST
Writes data output to SYSLST. If the prior assignment of the OUTPUT
stream was not SY SLST, the prior OUTPUT assignment is closed.

output-ddname
Specifies the z/OS DD name, VSE file name, or BS2000/OSD link name of a
sequential data set to use for writing the data output.

When output is assigned to output-ddname, these rules apply:

» WIDTH PAGE is automatically set to the record length (or maximum
record length for variable record files) that was specified when the file
associated with output-ddname was created. If no record length and
record format were specified, the record format defaults to variable and
the record length to block size - 4; if no block size was specified, a block
size of 4096 is used.

8 HEADINGS are set to OFF.

= The "non-data" information like the echoed command, eventual headers,
the number of rows processed, and the SQL return code are output to
SYSLST.

» Qutput data are not prefixed by "*+".

5-22 Advantage CA-IDMS Release Summary

5.10 IDMSBCF Input/Output Reassignment

= The output-ddname file is closed on the next SET OPTIONS OUTPUT or
at program end.

INPUT FROM
(IDMSBCF batch only) Specifies where to read input.

SYSIPT
Reads input from SY SIPT.

input-ddname
Specifies the DD name of a sequentia data set to use for reading commands.

When input is assigned to input-ddname, these rules apply:

® Input from input-ddname can be any type and length supported by the
operating system, that is, input is not limited to 80 character lines.

® Columns 73 through 80 of the input are NOT considered as a line
sequence number, that is, they should contain valid input data.

» End-of-file on the input-ddname file automatically reassigns input to
SYSIPT.

5.10.3 Usage

Input and output assignment: You can use the OUTPUT TO parameter to output
the resulting data of, for example, SQL commands to an intermediate file, which can
then be used as input to IDMSBCF or a user written program.

Combining the OUTPUT TO and INPUT FROM parameters allow you to write
IDMSBCEF scripts to:

» Unload/Load or copy of selective table(s) using SQL DML.

® Automatic access module recompile script for all access modules that are affected
by an update statistics or change in table or any other condition that can be
detected by looking in the catalog/dictionary.

» Build LOAD file for loading data using SQL DML.

® Build XML scripts to unload/load data from/to Advantage CA-IDMS to/from
XML documents.

Output data:

® The data are represented in string format, not in the native format. For example, a
column defined as INT with value 12345678 is internally stored as a 4-byte binary
value X'00BC614E'; in the output data however, the column value is 8-byte
character string '12345678'.

® The width of each column in the output file is determined by the larger value of
the column width and the column header. For example, a column named "Date",
defined as CHAR(10) uses 10 positions in the output file; a column named
"Middlelnitial", defined as CHAR(1) uses 13 positions.

» |DMSBCEF inserts two blanks in between successive columns.

Chapter 5. Administrative and Operational Enhancements 5-23

5.10 IDMSBCF Input/Output Reassignment

5.10.4 Example

Sample IDMSBCF script: The IDMSBCF example below is a fairly generic script
to unload/load or copy atable or set of tables. The sample script alows null values,
however, it does not allow data containing quotes, more exotic data types, such as
GRAPHIC, VARGRAPHIC, BINARY, etc.

Input Script

-- This scripts copies the rows from a source table to a target table.
-- It is assumed that the target table is already defined

-- Helper view to set the params of the Table copy
drop view defje0l.CopyTabParm;
create view defje0l.CopyTabParm as

select SCHEMA as SrcSchema

, Name as SrcTable
, 'DEFJEO1' as TgtSchema -- Set value of TgtSchema
, 'EMPLOYEE' as TgtTable -- Set value of TgtTable

from SYSTEM.TABLE
where SCHEMA '"DEMOEMPL" -- Set value of SrcSchema
and NAME "EMPLOYEE' -- Set value of SrcTable

-- Create the Unload syntax

set options OUTPUT to Unload;

select 'select ''insert into '

|| trim(TgtSchema) || '." || trim(TgtTable)
[| ' VALUES('*'
, '='"||'-', 0 as sequence
from defje0l.CopyTabParm
union
SELECT
"'t || SUBSTR(', ', CAST(1/NUMBER as SMALLINT) + 1, 1)
[| """ || TRIM(VALUE("
||SUBSTR(|CAST(|||||||||| ||||||||||CAST(|
, (11 = (LOCATE(TYPE, 'CHARACTER ', 1)
+ LOCATE(TYPE, 'VARCHAR ', 1)
+ LOCATE(TYPE, ' DATE ', 1)) +1)
» 11)
|| trim(NAME) || '
|| SUBSTR(
|aschar(10)) |||||||||| aschar(lo))lllllllllll
, (18% (LOCATE(TYPE, 'CHARACTER ', 1)
+ LOCATE(TYPE, 'VARCHAR ', 1)
+ LOCATE(TYPE, ' DATE ', 1)) +1)
9]-8)
|| I,”NULL”))I
, '-'"|]'-", NUMBER as sequence

FROM SYSTEM.COLUMN, defjeOl.CopyTabParm
WHERE TABLE = SrcTable

5-24 Advantage CA-IDMS Release Summary

5.10 IDMSBCF Input/Output Reassignment

and schema = SrcSchema

union

select '[|'');'" from '
|| trim(SrcSchema) || '." || trim(SrcTable) || ';°
, =']t-', 99999 as sequence

from defje0l.CopyTabParm
order by sequence

B

-- Create the Load syntax for the new Table

set options OUTPUT to Load;
set options INPUT from Unload;

-- Load the new Table

set options OUTPUT to SYSLST;
set options INPUT from Load;

Output from Sample Generic Table Copy Script

Unload OUTPUT
select 'insert into DEFJEO1.EMPLOYEE VALUES(' -- 0

Load OUTPUT
insert into DEFJEO1.EMPLOYEE VALUES(2299,NULL,'Samuel

* | | TRIM(VALUE (CAST(EMP_ID as char(10)) ,"NULL")) -1

.| | TRIM(VALUE (CAST(MANAGER_ID as char(10)) ,"NULL')) - 2

Y| | TRIM(VALUE(' ! EMP_FNAME ||'''" ,'NULL")) - 3

"o [TRIM(VALUE(' ! EMP_LNAME ||'"'" ,'NULL")) - 4

", | | TRIM(VALUE (CAST(DEPT_ID as char(10)) ,'NULL")) - 5

Y[| TRIM(VALUE(' STREET ||''"" ,'NULL')) - 6

Y[| TRIM(VALUE(' CITY ||'** ,"NULL')) -7

Y[| TRIM(VALUE(' STATE ||''"! ,'NULL")) - 8

"' | | TRIM(VALUE(" """ ZIP_CODE ||''"! ,"NULL")) -9

Y| | TRIM(VALUE('+ PHONE ||'''" ,'NULL")) -- 10
', '| | TRIM(VALUE(" ' " STATUS ||'"'" ,"NULL")) -- 11
", "| | TRIM(VALUE (CAST(SS_NUMBER as char(10)) ,'NULL')) - 12
| | TRIM(VALUE(" "' ' | |CAST(START_DATE as char(10))]|''"", 'NULL")) -- 13
', | | TRIM(VALUE(" "' | | CAST(TERMINATION_DATE as char(10))||'''','NULL')) -- 14
',"| | TRIM(VALUE(" """ | |CAST(BIRTH_DATE as char(10))|]|"''"", 'NULL')) -~ 15
');' from DEMOEMPL.EMPLOYEE; -- 99999

' NULL,'L",33892200, '1991-02-04"' ,NULL, '1958-01-09");

',NULL,'A",83356561, '1993-09-30",NULL, '1967-10-28");

', 'Spade ',4600,'47 London St

', 'Canton ','MA', 02020

insert into DEFJEOQ1.EMPLOYEE VALUES(3411,2894,'Catherine
",'WiTlliams ',5200,'566 Lincoln St

', 'Boston ','MA','02010

insert into DEFJEQ1.EMPLOYEE VALUES(4773,3082,'Janice

', 'Dexter ',3510,'399 Pine St

', 'Medford ','MA','02432

','5083847566"','A',89675632, '1997-06-14"' ,NULL, '1969-11-19");

insert into DEFJEO1.EMPLOYEE VALUES(3118,3222,'Alan

, 'Wooding
,'Canton

',4500,'196 School St
','MA', 02020

','5083766984"','A',98746783, '1992-11-18" ,NULL, '1969-05-17");

Chapter 5. Administrative and Operational Enhancements 5-25

5.10 IDMSBCF Input/Output Reassignment

insert into DEFJEO1.EMPLOYEE VALUES(3769,2894,'Julie

', 'Donelson ',3520,'14 Atwood Rd

','Grover ','MA','02976
','5084850432','A',67783532,'1994-08-31" ,NULL, '1967-08-15");

5-26 Advantage CA-IDMS Release Summary

5.11 Online Compiler Enhancements

5.11 Online Compiler Enhancements

The online compilers (DDDL, SCHEMA, SUBSCHEMA, and SY SGEN) and the
online command facility (OCF) have been enhanced to increase the maximum data
lines they can display from 20,916 lines to 41,916 lines. Also, the CV node name has
been added in the command line header (line 1 on the display).

Example of IDD Online Compiler Display

Command area Compiler name Message Dictionary/ Current/ CV node
and release area database last Tine name
¥ ¥ v ¥ ¥ ¥

IDD 16.0 NO ERRORS DICT=SYSDICT 1/29497 SYSTEM72

*+

*+
*+
*+
*+
*+
*+
*+
*+
*+
*+
*+
*+
*+
*+
*+
*+
*+
*+
*+

DISPLAY RECORD NAME IS DC-AID-CONDITION-NAMES VERSION IS 1 .
ADD
RECORD NAME IS DC-AID-CONDITION-NAMES VERSION IS 1

DATE CREATED IS 11/30/93

TIME LAST UPDATED IS 11131732

PREPARED BY HARRUO1

RECORD LENGTH IS 1

PUBLIC ACCESS IS ALLOWED FOR ALL

RECORD NAME SYNONYM IS DC-AID-CONDITION-NAMES VERSION 1

RECORD ELEMENT IS DC-AID-IND-V VERSION 1
LINE IS 000100

LEVEL NUMBER IS 03

PICTURE IS X

USAGE IS DISPLAY

ELEMENT LENGTH IS 1

POSITION IS 1

SUBORDINATE ELEMENT IS ENTER-HIT VERSION 1
LINE IS 000200

LEVEL NUMBER IS 88

USAGE IS CONDITION-NAME

Chapter 5. Administrative and Operational Enhancements 5-27

5.12 PRINT SPACE Utility Enhancement

5.12 PRINT SPACE Utility Enhancement

The PRINT SPACE utility now provides the capability to report on space utilization
on a SUBAREA within an area.

5.12.1 Syntax

»»—— PRINT SPACE — . . .

v

T s
»— FOR AREA —{— segment-name.area-name |. J |
| SUBAREA subarea-name

[)
SEGMENT —{— segment-name

I

[s
FILE ——{— segment-name.file-name

5.12.2 Parameters

AREA
Directs the PRINT SPACE utility to report on space utilization in one or more
areas or subareas. If no SUBAREA clause is specified, this option produces a
report for the entire area plus a report for each file in the area. If a SUBAREA
clause is specified, reporting is restricted to the specified subarea.

subarea-name
Specifies the name of the subarea associated with the area.

5-28 Advantage CA-IDMS Release Summary

5.13 EXTRACT JOURNAL Utility Enhancement

5.13 EXTRACT JOURNAL Utility Enhancement

The EXTRACT JOURNAL utility now provides processing of multiple segments.

5.13.1 Syntax

»»—— EXTRACT JOURNAL FOR DMCL . . .
I s
FILE —\— segment-name.file-name 1
T
-

AREA —|— segment-name.area-name J—

[B
SEGMENT —l{— segment-name —J—

5.13.2 Parameters

SEGMENT
Includes dbkeys for all areas defined in the specified segments in the extract file.

Chapter 5. Administrative and Operational Enhancements 5-29

5.14 ROLLBACK Utility Enhancement

5.14 ROLLBACK Utility Enhancement

The ROLLBACK utility now provides processing of multiple segments.

5.14.1 Syntax

»»—— ROLLBACK . . .

[H
FILE —I— segment-name.file-name

T s
AREA —{— segment-name.area-name J—

[)
SEGMENT —{— segment-name J—
DMCL

5.14.2 Parameters

SEGMENT
Rolls back and unlocks all areas associated with the specified segments.

v

5-30 Advantage CA-IDMS Release Summary

5.15 ROLLFORWARD Utility Enhancement

5.15 ROLLFORWARD Utility Enhancement

The ROLLFORWARD uitility now provides processing of multiple segments.

5.15.1 Syntax

»—— ROLLFORWARD . . . >

|

v

[B
FILE —\— segment-name.file-name

T s
AREA —|— segment-name.area-name J—

[s
SEGMENT —{— segment-name J—
DMCL

5.15.2 Parameters

SEGMENT
Restores and unlocks all areas associated with the specified segments.

Chapter 5. Administrative and Operational Enhancements 5-31

5.16 System Startup Enhancements

5.16 System Startup Enhancements

In Z/OS, z/VM, and BS2000/0SD, system startup now allows runtime options to be
specified as keyword/value pairs making them easier to code and understand.
Additionally, in VSE, zZ/OS, and z/VM, startup supports the specification of additional
options which eliminate the need for coding a #DCPARM macro and linking exit
modules with the startup routine. This in turn enables a single startup module to be
used for multiple DC/UCF systems making product installation and maintenance
easier. On BS2000/0SD, IDMSMOD function DCPARM still has to be executed
once, but all parameters can be overridden with BS2KSTAR parameters.

Runtime options are specified through the PARM field of the EXEC statement in zZ/OS
and VSE, and in the PARM field of the OSRUN command in z/VM or as BS2KSTAR
parameters on BS2000/0OSD. The following z/OS EXEC statement shows how
runtime options are coded using freeform keyword/value pairs. This example starts
DC/UCF system version 74 as a multitasking system with 3 subtasks. It also specifies
to enable RRS and to use DMCL CVDMCL 74 to access the database.

//SYSTEM74 EXEC PGM=IDMSDC,PARM="'DMCL=CVDMCL74,S=74,MT=Y,RRS=Y,SUBTASKS=3"

Note: In z/OS, the positional format for specifying runtime options is still supported
for upward compatibility.

All options that can be specified through the #DCPARM macro can now be specified
as runtime options. This makes use of the #DCPARM macro optional. If used, the
values specified through the #DCPARM parameters are treated as defaults that can be
overridden through runtime options.

Additionally, runtime options can now be used to identify the write-to-operator and
write-to-operator-reply exit modules to be used. By identifying these at runtime, you
eliminate the need for linking these modules as part of the system startup routine.

Because neither a tailored #DCPARM macro assembly nor exit modules need to be
linked with the startup routine, it is now possible to use a single startup routine for
multiple DC/UCF systems. In zZ/OS and z/VM, a startup routine called IDMSDC is
now created during installation that has neither exit modules nor a #DCPARM module
included. You can use this as the startup routine for your DC/UCF systems provided
that you specify al necessary runtime options through the PARM parameter of the
EXEC or OSRUN statement.

Notes:

= |n z/VM, the IDMSDC startup routine is linked with the USVCOPT module that
was created by assembling the #SVCOPT macro during installation.

= In BS2000/0OSD, the CV startup module is created by IDMSMOD customization
during installation. Each BS2KSTAR input parameter must be specified on a
separate line, without any comma.

Following, is a description and examples of the new runtime option syntax.

5-32 Advantage CA-IDMS Release Summary

5.16 System Startup Enhancements

5.16.1 Syntax

A\
A

T pTSs) 1

T glé(z)NES=__—|— clone-count
[T

T QW T el

FREESTG= storage-size
'L Fste- —

— GVIS= Y
Lyd

— MT= Y
Loy
PROMPT= NO
L PRO= | N
PAR —
SYS —
YES —
Y

RMAPSIZE= region-map-entry-count —
L ape — 1

— RRS= Y
Ly
STEPLIB= Y
Lostep- — T Ly d
SUBTASKS= subtask-count
Losugre — 1 =
— SVC= — svc-number

— SWAP= Y
Tl

—E gZSTEM= :l_ dc/ucf-version-number

—[ngXIP——,— wto-exit-name ————————

WTOREXIT= wtor-exit-name
—[WTOR= —_I—

5.16.2 Parameters

AUTOTASKS/AUTO=Y/N
(zZ/0S, VM, and V SE systems only) Specifies whether to execute startup
autotasks.

Valid values are:
® Y specifies to execute startup autotasks
= N specifies not to execute startup autotasks

CLONES/CC=clone-count
(2/0S systems only) Specifies the maximum number of clones to use. clone-count
must be a positive integer.

CLONING/CLON=Y/N
(z/0S systems only) Specifies whether to activate system cloning.

Valid values are:

Chapter 5. Administrative and Operational Enhancements 5-33

5.16 System Startup Enhancements

® Y specifies to activate cloning
» N specifies not to activate cloning

DM CLNAM/DM CL=dmcl-module-name
Identifies the DMCL to be used by the DC/UCF system. dmcl-module-name must
be the name of a DMCL module residing in the DC/UCF load (core image)
library.

This parameter is optional; however if not specified, you must specify the DMCL
to use through a #DCPARM macro.

Note: The abbreviated form of this parameter is not valid for BS2000/OSD.

FREESTG/FST G=storage-size
Specifies the amount of storage, in K bytes, to be returned (freed) to the operating
system at DC/UCF startup time. The storage is freed for operating system use
during DC/UCF operations. storage-size must be a positive integer.

If not specified and a #DCPARM module is used, the amount of storage to be
freed defaults to that specified in the assembled #DCPARM macro; otherwise, if
no #DCPARM module is used, 512 is the default.

GVIS=Y/IN
(VSE systems only) Specifies the type of storage management to use.

Valid values are:
® Y gpecifies to use GETVIS storage management
N specifies to use COMREG storage management

MT=Y/N
(z/0S systems only) Specifies whether the system runs in multitasking mode.

Valid values are:
® Y gpecifies to run the system in multitasking mode
= N specifies to run the system in unitasking mode

PROM PT/PRO=NO/N/PAR/SYSIYESIY
(zZ/0S, z/VM, and V SE systems only) Specifies whether and for what information
to prompt the operator during startup.

Valid values are:
® NO/N specifies not to prompt the operator for any information during startup.
®» PAR specifies to prompt the operator for system generation related options.

m SYS specifies to prompt the operator for the version of the DC/UCF system
to be started.

. YES/Y specifies to prompt the operator for both system generation related
options and the DC/UCF system version number.

If no PROMPT option is specified and a #DCPARM module is used, the prompt
option defaults to that specified in the assembled #DCPARM macro; otherwise, if
no #DCPARM module is used, NO is the default.

5-34 Advantage CA-IDMS Release Summary

5.16 System Startup Enhancements

»» For information about how operators respond to the startup prompts, see
Advantage CA-IDMS System Tasks and Operator Commands.

RM APSI ZE/RM AP=r egion-map-entry-count
(zZ/0S, z/VM, and V SE systems only) Specifies the number of entries to allocate
in the DC/UCF region map. region-map-entry-count must be a positive integer.

If not specified and a #DCPARM module is used, the number of entries in the
region map defaults to that specified in the assembled #DCPARM macro;
otherwise, if no #DCPARM module is used, 30 is the default.

The default region map entry count should satisfy most sites; however, if a system
uses many optional features, (for example, many line drivers), you may have to
increase this value. Issue a DCMT DISPLAY MEMORY MAP command to
determine if the map displays all the modules you think it should.

RRS=Y/N
(2/0S systems only) Specifies whether to enable RRS support.

Valid vaues are;
® Y specifies to enable RRS support
m N specifies not to enable RRS support

STEPLIB/STEP=Y/N
(z/0OS systems only) Specifies from which library to load RHDCCKUR and
RHDCTCKR.

Valid values are:
m Y specifies to load from the STEPLIB concatenation
® N specifies to load from the CDMSLIB concatenation

SUBTASK S/SUBT=subtask-count
(z/0S systems only) Specifies the number of subtasks (TCBs) to use.
subtask-count must be a positive integer.

This parameter is ignored unless either multitasking or RRS is enabled. If not
specified and multitasking or RRS is enabled, the number of TCB's defaults to the
number of CPU's available to the operating system.

SV C=svc-number
(z/0S systems only) Identifies the Advantage CA-IDMS SVC number to use
during system startup and runtime. The value specified overrides any SVC
specified in the SYSGEN SYSTEM statement. svc-number must be the number of
an active Advantage CA-IDMS SVC. Specifying an SVC number alows
Advantage CA-IDMS load modules to reside in a PDSE without running
Advantage CA-IDMS as an authorized program.

SWAP=Y/N
(z/0S systems only) Specifies whether to run the system as swappable.

Valid values are:

® Y gpecifies to run the system as swappable

Chapter 5. Administrative and Operational Enhancements 5-35

5.16 System Startup Enhancements

® N specifies not to run the system as swappable

SY STEM/S=dc/ucf-ver sion-number

(Z/0S, z/VM, and V SE systems only) Identifies the DC/UCF system to be started.
dc/ucf- version-number must be the version number of the target system.

This parameter is optional; however if not specified, then you must either specify
the system to start through a #DCPARM macro or enable the operator to be
prompted for the system version number.

WTOEXIT/WTO=wto-exit-name

Identifies the write-to-operator (WTO) exit to be used by the DC/UCF system.
This value overrides any WTO exit module linked with the startup module.
wto-exit-name must be the name of a WTO exit module residing in the DC/UCF
load (core image) library.

For z/OS, z/VM, and BS2000/0OSD, if this parameter is not specified, you must
link the WTO exit module with the CV startup module if you want to exploit the
WTO exit.

For VSE, if this parameter is not specified and no WTO exit module is linked
with the startup module, the system tries to load the default WTO exit module
named WTOEXIT.

Note: The abbreviated form of this parameter is not valid for BS2000/OSD.

WTOREXIT/WTOR=wtor-exit-name

5.16.3 Examples

I dentifies the write-to-operator-reply (WTOR) exit to be used by the DC/UCF
system. This value overrides any WTOR exit module linked with the startup
module. wtor-exit-name must be the name of a WTOR exit module residing in the
DC/UCF load (core image) library.

For z/OS, z/VM, and BS2000/0SD, if this parameter is not specified, you must
link the WTOR exit module with the CV startup module if you want to exploit the
WTOR exit.

For VSE, if this parameter is not specified and no WTOR exit module is linked
with the startup module, the system tries to load the default WTOR exit module
named WTOREXIT.

Note: The abbreviated form of this parameter is not valid for BS2000/OSD.

The following OSRUN command in zZ/VM starts system version 400 with DMCL
DMCL400.

"OSRUN IDMSDC PARM='SYSTEM=400,DMCL=DMCL400""
In the VSE example below, the EXEC IDMSDC statement includes a PARM

parameter that requests the GETVIS storage allocation technique and overrides the
DMCL used by the DC/UCF system.

// EXEC IDMSDC,SIZE=40K,PARM='GVIS=Y,DMCL=CVDMCL'

The following zZ/OS example starts DC/UCF system version 74 with DMCL
CVDMCL74 and write-to-operator exit WTOEXIT.

5-36 Advantage CA-IDMS Release Summary

5.16 System Startup Enhancements

//SYSTEM74 EXEC PGM=IDMSDC,PARM='DMCL=CVDMCL74,S=74,WTO=WTOEXIT'

The following BS2000/0SD example starts DC/UCF system version 74 with
DMCL CVDMCL74 and write-to-operator exit PRODWTOX.

/ASSIGN-SYSDTA TO=*SYSCMD

/START-PROG*MOD (ELEM=BS2KSTAR, LIB=idms.dba.1oad1ib,RUN-MODE=*ADV)
DMCLNAM=CVDMCL74

WTOEXIT=PRODWTOX

SYSGEN OVERRIDES FOLLOW

74

END

Chapter 5. Administrative and Operational Enhancements 5-37

5.17 #WTL Macro Enhancements

5.17 #WTL Macro Enhancements

The #WTL macro has been enhanced with two new parameters to alow the passing of
the CV node name and the Advantage CA-IDMS/DC release number.

This section describes only the new parameters. For more information, see the
Advantage CA-IDMS IDD DDDL Reference Guide.

M essage occurrence structure

Operand Replacement value

&$7 Advantage CA-IDMSDC system node name (from the SDSNODE
field in the SDS block)

&3$8 Advantage CA-IDMS/DC release number

5-38 Advantage CA-IDMS Release Summary

5.18 International Character Set Enhancement

5.18 International Character Set Enhancement

Advantage CA-IDMS supports only one single-byte character set in the database
engine. The character set (also referred to as code page) definitions reside in module
RHDCCODE.

This section describes how to customize RHDCCODE to implement a character set
other than the default for activation of international characters.

5.18.1 Customizing RHDCCODE

On z/0S, VSE, and z/VM, the default RHDCCODE implements code page 1140 (US
EBCDIC) with al international characters (for example, a-grave, e-circumflex,
u-diaeresis, and c-cedilla) marked as non-alphabetic.

On BS2000/0SD, the default RHDCCODE implements code page EDF041
(international EBCDIC) with all international characters (for example, a-grave,
e-circumflex, u-diaeresis, and c-cedilla) marked as non-alphabetic.

The following sample members are provided with the installation tape on z/OS, V SE,
and z/VM:
. CP1140F—United States code page 1140 with al international characters enabled
n CP1141F—Germany code page 1141 with all international characters enabled
» CP1141R—Germany code page 1141 with only German characters enabled

» CP1142F—Denmark/Norway code page 1142 with all international characters
enabled

B CP1142R—Denmark/Norway code page 1142 with only Danish/Norwegian
characters enabled

® CP1143F—Finland/Sweden code page 1143 with al international characters
enabled

» CP1143R—Finland/Sweden code page 1143 with only Finnish/Swedish characters
enabled

» CP1147F—France code page 1147 with all international characters enabled
® CP1147R—France code page 1147 with only French characters enabled

. CP1148F—Belgium/Switzerland code page 1148 with all international characters
enabled

» CP1148R—Belgium/Switzerland code page 1148 with only Belgian/Swiss
characters enabled
The following sample member is provided with the installation tape on BS2000/OSD:
» EDFO3IRV—Germany code page with only German characters enabled.

Chapter 5. Administrative and Operational Enhancements 5-39

5.18 International Character Set Enhancement

The process of changing RHDCCODE can be divided into the following categories:

n |f the desired code page is one of the above sample members, copy the sample
member to source RHDCCODE.

n |f the installed RHDCCODE does not define the correct attributes you require for
your environment, edit source RHDCCODE and change the definitions.

» |If the desired code page is not delivered, identify the code page you want to
implement and modify source RHDCCODE accordingly.

In al cases, assemble and link RHDCCODE.
CAUTION:

The tables in RHDCCODE determine the validity of characters accepted by
applications and stored in the database. Therefore, as part of the database design,
answer these questions:

» Which code page should | implement?
» What is the list of valid characters within the selected code page?

Once a code page is selected and the list of valid characters is made, you should stay
with the same definitions because of the following reasons:

® Changing over to another code page might imply conversion of all databases built
with the original code page.

» Changing the list of valid characters within a code page is usually possible as long
as you add valid characters. However, removing valid characters is usually not
possible, unless the database does not contain any of the invalidated characters.

Another concern is uniqueness of data representation. An example is u-diaeresis, a
German character that is usually replaced by "ue" if it cannot be typed in. By making
the u-diaeresis a valid character, spelling of a word is no longer unique. For example,
"Muenchen" and "Minchen" both are valid German words for the city of Munich.
This problem has to be handled at the application level by, for example, disallowing
the "ue" representation of u-diaeresis.

5.18.2 #DEFBYTE

Source RHDCCODE must contain 256 #DEFBY TE macros, each defining the
attributes of a single byte from x'00' to x'FF.

»»— #DEFBYTE ebcdic-value,ASCII=ascii-value,TYPE=type——>

>
>

»
»

l—,UPPER=uppercase—va1ue-l |—,PRINT=-[Y]J
N

5-40 Advantage CA-IDMS Release Summary

5.18 International Character Set Enhancement

5.18.2.1 Parameters

ebcdic-value
The EBCDIC value of the byte in hexadecimal notation.

ASCI | =ascii-value
Defines ascii-value as the equivalent ASCII value of ebcdic-value and
consequently ebcdic-value as the equivalent EBCDIC value of ascii-value.
Specify ascii-value in hexadecimal notation. The ASCII to EBCDIC and EBCDIC
to ASCII tranglate tables are used by IDMSINO1 function STRCONV.

TYPE=type
Defines the attributes of ebcdic-value. Valid values are:

n ALPHA—ebcdic-value is an aphabetic character. For example, X'81'
(lowercase "a").

» HEX—ebcdic-value is a non-displayable, non-alphanumeric byte. For
example, X'0B' (vertical tab).

» NUM—ebcdic-value is a numeric value For example, X'FO' (zero).

n VALID—ebcdic-value is a valid, displayable non-alphanumeric byte. For
example, X'50' (ampersand).

PRINT=Y|N
PRINT is an optional parameter which allows marking ebcdic-value as a
non-printable byte. If PRINT is omitted, a byte of type HEX is considered
non-printable, while al other types are printable.

n Y—explicitly states that the byte is printable
B N—explicitly states that the byte is non-printable

UPPER=uppercase-value
UPPER is an optional parameter that defines uppercase-value as the uppercase
tranglation of ebcdic-value and consequently ebcdic-value as the lowercase
translation of uppercase-value. If UPPER is omitted, no tranglation takes place,
that is, uppercase-value = ebcdic-value. The uppercase and lowercase translate
tables are used to trandate input to uppercase, but also by, for example, built-in
functions like TOUPPER, TOLOWER, and WORDCAP.

5.18.2.2 Examples

#DEFBYTE 81,ASCII=61,TYPE=ALPHA,UPPER=C1

Defines hexadecimal EBCDIC byte X'81" with ASCII eguivalent X'61'. TY PESFALPHA
indicates that the byte is alphabetic, which implies non-numeric, displayable and
printable. UPPER=C1 indicates that the EBCDIC uppercase value is X'C1".

#DEFBYTE 05,ASCII=09,TYPE=HEX

Defines hexadecimal EBCDIC byte X'05' with ASCII equivalent X'09". TY PE=HEX
indicates that the byte is non-alphabetic, non-numeric, non-displayable and
non-printable.

Chapter 5. Administrative and Operational Enhancements 5-41

5.18 International Character Set Enhancement

#DEFBYTE FO,ASCII=30,TYPE=NUM

Defines hexadecimal EBCDIC byte X'FO' with ASCII equivalent X'30'. TYPE=NUM
indicates that the byte is numeric, which implies non-alphabetic, displayable and
printable.

#DEFBYTE 6F,ASCII=3F,TYPE=VALID

Defines hexadecimal EBCDIC byte X'6F with ASCII equivalent X'3F. TYPE=VALID
indicates that the byte is non-alphabetic, non-numeric, displayable and printable.

5.18.3 Assemble and Link Edit RHDCCODE

To make the customized RHDCCODE available for use, assemble and link edit the
RHDCCODE module for the system. The RHDCCODE module is loaded at system
startup as part of the nucleus. When link editing the RHDCCODE module:

® Include the RHDCCODT and RHDCCODE objects
» Specify that the RHDCCODE module entry point is CODEEP1

z/OS RHDCCODE assembly and link edit

Note: The following JCL does not use SMP/E. For examples of how to apply a
modification to an Advantage CA-IDMS load library using SMP/E, see
member UMODCODE in the SAMPJCL library delivered with the Advantage
CA-IDMS installation tape.

//ASMSTEP EXEC ASMACL

// PARM.C="ALIGN,XREF (SHORT) ,0BJECT,NODECK",
// PARM.L="LET,LIST,XREF,MAP,REUS=NONE"
//C.SYSLIB DD DSN=sysl.maclib,DISP=SHR

// DD DSN=idms.distmac,DISP=SHR

//C.SYSIN DD DSN=rhdccode.source,DISP=SHR

//*

//L.SYSLMOD DD DSN=rhdccode.loadlib,DISP=SHR
//L.DISTLOAD DD DSN=idms.distload,DISP=SHR
//L.SYSIN DD *

INCLUDE DISTLOAD (RHDCCODT)

ENTRY CODEEP1

NAME RHDCCODE (R)

rhdccode.loadlib data set name of the load library where you will link
the customized RHDCCODE (do NOT link this into
your SMP/E target load library)

idms.distload data set name of the Advantage CA-IDMS SMP/E
distribution load library

idms.distmac data set name of the Advantage CA-IDMS SMP/E
distribution macro library

sysl.maclib data set name of the system macro library

rhdccode. source name of the RHDCCODE source

5-42 Advantage CA-IDMS Release Summary

5.18 International Character Set Enhancement

VSE RHDCCODE assembly and link edit

// DLBL idmslib,'idms.library',2099/365,DA
// EXTENT ,nnnnnn
// LIBDEF *,SEARCH=(idms1ib.sublib)
// LIBDEF PHASE,CATALOG=(idmslib.sublib)
// OPTION CATAL
PHASE RHDCCODE
// EXEC ASMA90
rhdccode.source
/*
INCLUDE RHDCCODT
INCLUDE RHDCCODE
ENTRY CODEEP1
// EXEC LNKEDT

idms1ib filename of the file containing Advantage CA-IDMS
modules

idms1ib.sublib name of the sublibrary within the library containing
Advantage CA-IDMS modules

idms.Tibrary file ID associated with the file containing Advantage
CA-IDMS modules

nnnnnn volume serial number

rhdccode. source filename of the file containing the RHDCCODE source

z/VM RHDCCODE assembly and link edit

GLOBAL MACLIB idmslib
FILEDEF TEXT DISK RHDCCODE TEXT A
ASSEMBLE rhdccode.source (NODECK OBJECT

FILEDEF SYSLST PRINTER
FILEDEF SYSLMOD DISK idms1ib LOADLIB a2 (RECFM V LRECL 1024 BLKSIZE 1024
LKED Tinkctl

Linkage editor control statements (linkctl):

INCLUDE RHDCCODT
INCLUDE RHDCCODE
ENTRY CODEEPI

NAME RHDCCODE (R)

idms1ib filename of the Advantage CA-IDMS MACLIB library

idms1ib LOADLIB a2 file identifier of the Advantage CA-IDMS LOADLIB
library

Tinkctl filename of the file containing the linkage editor control
statements

Chapter 5. Administrative and Operational Enhancements 5-43

5.18 International Character Set Enhancement

BS2000/0SD RHDCCODE assembly and link edit
/CALL-PROC (LIB=idms.dba.srclib,ELEM=IDMSMOD),PROC-PAR=(RHDCCODE)

idms.dba.srclib filename of the Advantage CA-IDMS DBA source
library

5-44 Advantage CA-IDMS Release Summary

5.19 Journal File Enhancement

15.19 Journal File Enhancement

The user ID field has been added to the BGIN checkpoint journal record to enhance
customers' ability to respond to compliance and audit reporting requirements.
JREPORT 008 has been enhanced to display the user ID data and a new report,
JREPORT 009 has been added to provide a User ID report.

For more information, see the Advantage CA-IDMS Database Journal Analyzer Option
User Guide and Advantage CA-IDMS Reports.

Chapter 5. Administrative and Operational Enhancements 5-45

5.20 REORG Utility Enhancement

15.20 REORG Utility Enhancement

A REORG utility has been added to reduce the amount of time that it takes to unload
and reload a database in Z/OS. It does this by dlicing the database into multiple pieces
and processing each one independently and simultaneously. By processing sections of
the database in parallel, the total time to perform a reorganization of a database is
significantly reduced.

| For more information, see Advantage CA-IDMS Utilities and the Advantage CA-IDMS
| Database Administration Guide.

5-46 Advantage CA-IDMS Release Summary

5.21 CREATE DSMODEL Utility Enhancement

15.21 CREATE DSMODEL Utility Enhancement

| A new CREATE DSMODEL utility statement has been added. This utility alows you
| to define a set of data set attributes to be used for dynamic file allocation in
| conjunction with the REORG utility.

| For more information, see Advantage CA-IDMS Utilities.

Chapter 5. Administrative and Operational Enhancements 5-47

5-48 Advantage CA-IDMS Release Summary

Chapter 6. Performance Enhancements

6.1 OVEIVIEW
6.2 FileCacheinMemory
6.3 Paraldl Access Volume Exploitation
6.4 Improved PDSE Support
6.5 Improved Performance for LE COBOL Programs
6.6 Improved Journaling Performance L.
6.7 Improved Recovery Performance
6.8 High Performance Storage Protection

Chapter 6. Performance Enhancements 6-1

6.1 Overview

6.1 Overview

Release 16.0 provides the following performance enhancement features that are
described in this chapter:

File cache in memory

Parallel access volume exploitation

Improved PDSE support

Improved performance for LE COBOL programs
Improved journaling performance

Improved recovery performance

High performance storage protection

6-2 Advantage CA-IDMS Release Summary

6.2 File Cache in Memory

6.2 File Cache in Memory

With the introduction of 64-bit hardware and the z/OS 1.2 operating system, the
amount of virtual storage available to an application increased to an incomprehensible
amount of 16 exabytes. In Release 16.0, Advantage CA-IDMS can exploit this high
amount of storage by caching entire database files in memory.
The major benefits of this feature are:

® Reduced number of I/Os

® |ncreased throughput

® Less CPU usage

For more information on 64-bit addressing, see the IBM manual, ZOS MVS Extended
Addressability Guide.

6.2.1 Terminology

The following terms are used in this discussion of file cache in memory:

® The bar — The bar marks the 2-gigabyte limit of 31-bit addressing. Thisis
analogous to the line, which marks the 16-megabyte limit of 24-bit addressing.

m Z-storage — Virtual storage above the bar.

6.2.2 Exploiting File Cache in Memory

Database files with a high number of I/Os are good candidates for the file cache in
memory feature. The DBA should use standard performance-monitoring tools to
determine which database files these are. Once the decision is made as to which files
will use this feature, the DBA should perform these steps:

» Compute the total amount of storage that is needed to cache the selected files. To
do this, for each file multiply the number of blocks in the file by the file's block
size and sum all results. This sum is the total amount of Z-storage needed.

. Make sure that the jobs that use the modified DMCL have enough Z-storage (at
least the amount computed above) at their disposal. The amount of Z-storage
available to a job is limited by the MEMLIMIT parameter. For an explanation of
MEMLIMIT, see the IBM manual, ZOS MVS Extended Addressability Guide.

You can set MEMLIMIT in different ways:

— Through an installation default. For more information, refer to the IBM
manua z/0OS MVS Initialization and Tuning Reference.

— In the JOB and EXEC statements. For more information, see the IBM manual,
Z/OS MVS JCL Reference.

— Through an installation exit. For more information, see the IBM manual, ZOS
MVS Installation Exits.

Chapter 6. Performance Enhancements 6-3

6.2 File Cache in Memory

® Change the DMCL definition for each file to specify MEMORY CACHE YES.
For details, see 6.2.3, “Altering the DMCL Definition” on page 6-4.

Note: If your DMCL contains file overrides from a previous release directing the
use of dataspace caching, Release 16.0 automatically uses Z-storage
instead of dataspaces when executing in a z/OS 1.2 or later operating
system. As of Release 16.0, the term "memory cache" replaces "dataspace”
in syntax and on displays.

Note: Exploitation of 64-bit storage is incompatible with subspaces. If an attempt is
made to use 64-hit storage in an address space that previously used subspaces,
an ABEND (system DC2 with reason code 0012) is forced. Therefore, make
sure that a central version or batch application that caches files in memory
never reuses an address space in which subspaces were used. One way to
accomplish this is to define distinct job classes for Advantage CA-IDMS and
have address spaces that can execute only these job classes. CICS is known to
use subspaces. For more information about subspaces, see the IBM manual,
Z/OS MVS Extended Addressability Guide.

6.2.3 Altering the DMCL Definition

6.2.3.1 Syntax

To exploit memory caching, alter your DMCL definition as follows:

® Include afile override specification for each file that you want to cache in
memory.

» Specify the desired MEMORY CACHE options to set global control options.

Expansion of file-override-specification
FILE file-name

v

ADD

»
>

A\
A

L
MEMORY CACHE NO
L ves

Memory Cache Options

»
|

L MEMORY CACHE

vvYy

L LOCATION —[ANYWHERE <«]
64 BIT ONLY

Yy
\ 4
A

|— STORAGE LIMIT —E OPSYS «
nnn MB

6-4 Advantage CA-IDMS Release Summary

6.2 File Cache in Memory

6.2.3.2 Parameters

YES
Indicates the file is cached in memory.

NO
Indicates the file is not cached in memory.

MEMORY CACHE
Indicates global options for memory cache:

LOCATION
Indicates where to allocate the storage for memory cache:

ANYWHERE
Memory cache storage is alocated from 64-bit storage; if no or not
enough 64-hit storage is available, dataspace storage is acquired.

64 BIT ONLY
Memory cache storage is allocated from 64-bit storage; if no or not
enough 64-hit storage is available, memory caching fails.

STORAGE LIMIT
Controls the amount of storage used for memory caching:

OPSYS
Memory cache storage can be acquired until the operating system limit is
reached. For 64-hit storage, the operating system limit is set through the
MEMLIMIT parameter; for dataspace storage, the limit is optionally
imposed by an operating system exit.

nnn MB, GB, TB, PB, EB
Advantage CA-IDMS controls the amount of memory cache storage if the
value specified is smaller than the operating system limit. nnn must be a
positive value between 1 and 32767. MB, GB, TB, PB, EB indicate the
unit in which nnn is expressed. The abbreviations stand for Mega Byte
(2¥*20), Giga Byte (2**30), Tera Byte (2**40), Peta Byte (2**50), and
Exa Byte (2**60).

6.2.3.3 Usage

DATASPACE versus MEMORY CACHE: The MEMORY CACHE clause replaces
the use of the DATASPACE clause. The latter is still accepted for upward
compatibility, but is no longer generated on displays. The choice of whether to cache
afile in memory or in a dataspace is determined at runtime based on the operating
system:

® Inaz/0S 1.2 or later environment, files are cached in Z-storage.
m |n earlier releases of the operating system files are cached in dataspaces.

Controlling Memory Cache: Use the DMCL-wide MEMORY CACHE options to
control where and how much memory cache storage can be allocated.

Chapter 6. Performance Enhancements 6-5

6.2 File Cache in Memory

Insufficient storage for memory cache: If MEMORY CACHE YES is specified
and not enough storage is available to cache a file in memory, processing continues as
if MEMORY CACHE NO was specified.

Dynamically changing memory cache specification: The MEMORY CACHE
Y ES specification can be changed dynamically:
» Use DCMT VARY DMCL to change DMCL-wide MEMORY CACHE options
» Use DCMT VARY FILE to change the MEMORY CACHE specification for a
file.

For more information on DCMT VARY DMCL and DCMT VARY FILE, see
Appendix A, “New and Revised DCMT Commands.”

6-6 Advantage CA-IDMS

Release Summary

6.3 Parallel Access Volume Exploitation

6.3 Parallel Access Volume Exploitation

This feature provides Advantage CA-IDMS 1/0O performance improvements through
exploitation of the Parallel Access Volume feature on Enterprise Storage System
DASD devices, such as IBM's Shark. This feature allows multiple users and multiple
jobs to smultaneously access the same logical volume and perform concurrent 1/0s to
afile.

PAV devices support multiple concurrent 1/Os against the same disk unit. However, by
default PAV devices ensure that multiple I/Os to the same disk extent are
single-threaded. This is known as collision checking. Because Advantage CA-IDMS
routinely issues concurrent 1/Os to the same extent, collision checking prevented full
exploitation of PAV devices. Since Advantage CA-IDMS ensures that the 1/O requests
it issues do not conflict with each other, IDMS is able to disable collision checking,
allowing PAV devices to be fully exploited.

When disk 1/Os for the same file are waiting because of disk extent collision checking,
implementing PAV support reduces 1/0 wait times. Reduced 1/O wait times should
increase transaction throughput and improve response times.

PAV support occurs automatically when a file is on a properly defined PAV device
and does not occur otherwise. The systems programmer is responsible for defining the
device to the operating system correctly. For example, if no alias Unit Control Blocks
(UCBs) are defined for a PAV device, the I/Os are single threaded on the primary
UCB and negate the advantage of no collision checking.

Chapter 6. Performance Enhancements 6-7

6.4 Improved PDSE Support

6.4 Improved PDSE Support

PDSEs provide two primary capabilities:

n |tistheonly library capable of containing load modules of greater than 16
Megabytes. Although Advantage CA-IDMS does not require such support, it is
anticipated that clients will require this support in the future.

» PDSESs do not require condensing.

For Release 14.0 Advantage CA-IDMS added support for loading Advantage
CA-IDMS programs from a PDSE. This required early initialization of the Advantage
CA-IDMS program call (PC) environment; and you were required to start Advantage
CA-IDMS as an authorized program.

In Release 16.0, you can specify an IDMS SVC number on the execute parameter in
columns 29-31 of the startup JCL. This SVC acquires sufficient authorization to
construct a PC environment, without requiring you to start Advantage CA-IDMS as an
authorized program.

6.4.1 Startup JCL Parameters

S=nnn System version number, length is not counted in following info
+0 override options Passed to RHDCSTRT
+20 C'U' or blank Uni-tasking

C'Mm! Multi-tasking
C'R' Uni-tasking with RRS TCBs
c'T! Multi-tasking with RRS TCBs
+21 nn TCB 1imit count for Multi-tasking
+23 C'S! Run swappable
+24 C'C' Cloned system
+25 nnn Limit count for searching for available CV number.
+28 nnn IDMS SVC number

6.4.2 Parameter Descriptions

. Column 21 — By default, Advantage CA-IDMS runs in uni-tasking mode. A
value of:

— R — Activates Advantage CA-IDMS's interface to IBM's RRS facility while
retaining uni-tasking mode for all other Advantage CA-IDMS facilities.

— T — Activates Advantage CA-IDMS's interface to IBM's RRS facility and
also activates Advantage CA-IDMS's multi-tasking interface.

— M — Activates Advantage CA-IDMS's multi-tasking interface only.

® Column 22 — If 'M" was specified in column 21, then Advantage CA-IDMS
defaults to using one more TCB than the number of CPUs found in the machine
or LPAR. If 'M', 'R, or 'T" was specified in column 21, the number of TCBs are
specified in columns 22 and 23, left justified, blank filled.

6-8 Advantage CA-IDMS Release Summary

6.4 Improved PDSE Support

. Column 24 — By default Advantage CA-IDMS runs non-swappable. Specify a'S
to force Advantage CA-IDMS to run swappable.

. Columns 25 — To activate the cloned system feature, enter a'C' in this column.

= Column 26 — Enter a number between 1 and 255, left justified and blank filled,
to indicate the limit for the search to find an available CV number. The search
starts from the system number and wraps at 255. When using this option, the
system number and the CV number are identical.

® Column 29 — Specifying a valid Advantage CA-IDMS SV C number permits
using a PDSE to contain the Advantage CA-IDMS system load modules. Enter the
number of a valid IDMS SVC. The SVC specified overrides the SY SGEN defined
SVC number and is used during startup initialization and during runtime.

6.4.3 General Usage Rules

m All fields are optional and are only supplied to request the designated option.
m All fields are positional.

® Unused fields are left blank.

® All numeric fields are left justified and blank filled.

Chapter 6. Performance Enhancements 6-9

6.5 Improved Performance for LE COBOL Programs

6.5 Improved Performance for LE COBOL Programs

New system generation syntax in Release 16.0 enables control over whether multiple
COBOL programs in the same task can share a Language Environment (LE) enclave
within an Advantage CA-IDMS DC/UCF system. Since creating LE processes and
enclaves involves considerable storage and CPU overhead, the ability to eliminate this
processing when not needed may significantly improve performance.

The underlying support for this feature was implemented for Release 15.0. It enables
multiple LE COBOL programs executing within a task to share a single process and
enclave. Since not all programs are eligible to share an enclave, Release 16.0 provides
system generation syntax to:

» Controls whether enclave sharing is in effect for a system

® Controls whether an individual program shares an enclave with other programs
executing in the same task.

Note: Release 16.0 eliminates the use of optional PTF bit 232 for controlling whether
enclave sharing is in effect for a system.

6.5.1 System Generation SYSTEM Statement

Use the system generation SYSTEM statement to specify if multiple COBOL
programs within the same task can share an LE enclave.

6.5.1.1 Syntax

»_E ADD_—,— SYStem — dc/ucf-version-number — . . . ——

L MULtiple ENClave is OFF
L
ON

6.5.1.2 Parameters

MULtiple ENClave is
Specifies whether the system allows programs in the same task to share an LE
enclave. This parameter affects only COBOL programs.

OFF
Specifies multiple enclave support is disabled for the system. This is the
defaullt.

ON
Specifies multiple enclave support is enabled for the system.

6-10 Advantage CA-IDMS Release Summary

6.5 Improved Performance for LE COBOL Programs

6.5.2 System Generation PROGRAM Statement

Use the system generation PROGRAM statement to specify if an individual COBOL
program may share an LE enclave with other programs in the same task.

6.5.2.1 Syntax

\4

»—[ADD_—I— PROgram — program-name — . . .

L MULtiple ENClave is —[ON
OFF

6.5.2.2 Parameters

MULtiple ENClave is
Specifies if this program can use the same language enclave as other LE programs
in the same task. This parameter is only meaningful for COBOL programs.

ON
Specifies that this program can participate in a multiple program LE enclave.
This is the default. If enclave sharing is disabled for the system this
parameter is ignored.

OFF
Specifies that the program cannot participate in a multiple program LE
enclave.

Chapter 6. Performance Enhancements 6-11

6.6 Improved Journaling Performance

6.6 Improved Journaling Performance

Release 16.0 has improved journaling performance by extending the impact of a
non-zero setting for the journal transaction level. Specifying a journa transaction level
has the effect of deferring the write of a partially full journa buffer when a transaction
terminates provided that the number of active transactions in the system is greater than
the transaction level specified. Release 16.0 extends this effect to apply to partialy
full journal buffers that contain before images for database pages that are being flushed
from the buffer. By deferring the journa write, journal efficiency can be improved
thereby reducing the number of journaling 1/Os.

For more information on specifying a journal transaction level, see the Advantage
CA-IDMS Database Administration Guide.

6-12 Advantage CA-IDMS Release Summary

6.7 Improved Recovery Performance

6.7 Improved Recovery Performance

Release 16.0 lets you control the following commit and rollback behavior:

m The type of journa record written on a commit

» Whether a new local transaction ID is assigned on a rollback continue or commit
Exploiting these new capabilities may improve recovery time during warmstart and

rollback operations and reduce the likelihood of duplicate transaction IDs when the
local transaction ID values wrap.

You can implement this feature through new clauses on the system generation
SYSTEM and TASK statements. Extensions to the DCMT VARY TASK command

and the DCMT VARY DYNAMIC TASK command let you override this setting at
runtime.

The system generation statements are explained below. For more information on using
the DCMT commands, see Appendix A, “New and Revised DCMT Commands.”

6.7.1 System Generation SYSTEM Statement

Use the system generation SYSTEM statement to specify default commit and backup
behavior for a system.

6.7.1.1 Syntax

»—[ADD_—I_ SYStem — dc/ucf-version-number — . . . ——»

»
»

v

Lo -
N COMmit WRIte COMT <
L WRITe ENDJ t |

NEW ID «—
RETain ID —

L ON ROLTback continue RETain ID
_E
NEW ID

A\
A

\ 4

6.7.1.2 Parameters

ON COMmit
Specifies options that control commit behavior. These options apply only to
commit operations in which the database session remains active.

WRIte COMT
Specifies that a COMT journal record should be written.

WRIte ENDJ
Specifies that an ENDJ journal record should be written.

Chapter 6. Performance Enhancements 6-13

6.7 Improved Recovery Performance

NEW ID
Specifies that a new local transaction ID should be assigned to the next
transaction associated with the database session.

RETain ID
Specifies that the existing local transaction ID should be assigned to the next
transaction associated with the database session.

ON ROLIback continue
Specifies options that control rollback behavior. These options apply only to
rollback operations in which the database session remains active.

RETain ID
Specifies that following a rollback, the current local transaction ID should be
assigned to the next transaction associated with the database session.

NEW ID
Specifies that following a rollback, a new local transaction 1D should be
assigned to the next transaction associated with the database session.

6.7.1.3 Usage

Specifying commit and rollback options: You can specify options that control the
following commit and rollback behavior:

= The type of journal record written on a commit

» Whether a new local transaction ID is assigned on a rollback continue or commit

You can control whether a COMT or ENDJ journal record is written on a commit
operation in which the database session remains active. Writing an ENDJ can reduce
recovery time because less data has to be examined to locate the start of a recovery
unit. This benefit applies to online recovery, warmstart, and ROLLBACK and
ROLLFORWARD recovery operations. ENDJ is most beneficial in cases where
long-running sessions infrequently perform a burst of updates and then issue a commit.

Note: ENDJ journal records are always written when system run units are committed,
regardless of the ON COMMIT option specified.

You can control whether a new local transaction ID is assigned following a commit or
rollback operation in which the database session remains active. Assigning a new
transaction ID reduces the chance of duplicate IDs should this value wrap within a
single cycle of a central version. It also has the effect of recording journa statistics

for a database session using a different transaction identifier for each recovery unit.
You can assign a new ID on a commit operation only if you also specify that an ENDJ
checkpoint record be written.

Note: A new transaction ID is aways assigned when system run units are committed
or rolled out.

6-14 Advantage CA-IDMS Release Summary

6.7 Improved Recovery Performance

6.7.2 System Generation TASK Statement

Use the system generation TASK statement to specify commit and backup behavior for
transactions initiated by a specific task.

6.7.2.1 Syntax

»—[ADD_—I— TASk — task-code — . . . >

»
»

v

L ON COMmit SYStem
E WRITe COMT

WRITe ENDJ

NEW ID +—
RETain ID ——

»
>

NEW ID
RETain ID ——

L ON ROLTback continue —E SYStem <——|

6.7.2.2 Parameters

ON COMmit
Specifies options that control commit behavior. These options apply only to
commit operations in which the database session remains active.

SY Stem
Specifies that the commit behavior for the task should default to that specified
for the system.

WRIte COMT
Specifies that a COMT journal record should be written.

WRIte ENDJ
Specifies that an ENDJ journal record should be written.

NEW ID
Specifies that a new local transaction ID should be assigned to the next
transaction associated with the database session.

RETain ID
Specifies that the existing local transaction ID should be assigned to the next
transaction associated with the database session.

ON ROLIback continue
Specifies options that control rollback behavior. These options apply only to
rollback operations in which the database session remains active.

SY Stem
Specifies that the rollback behavior for the task should default to that
specified for the system.

Chapter 6. Performance Enhancements 6-15

6.7 Improved Recovery Performance

RETain ID
Specifies that following a rollback, the current local transaction ID should be
assigned to the next transaction associated with the database session.

NEW ID
Specifies that following a rollback, a new local transaction ID should be
assigned to the next transaction associated with the database session.

6.7.2.3 Usage

Specifying commit and rollback options: You can specify options that control the
following commit and rollback behavior:

» The type of journal record written on a commit

. Whether a new local transaction ID is assigned on a rollback continue or commit

You can control whether a COMT or ENDJ journal record is written on a commit
operation in which the database session remains active. Writing an ENDJ can reduce
recovery time because less data has to be examined to locate the start of a recovery
unit. This benefit applies to online recovery, warmstart, and ROLLBACK and
ROLLFORWARD recovery operations. ENDJ is most beneficial in cases where
long-running sessions infrequently perform a burst of updates and then issue a commit.

Note: ENDJ journal records are always written when system run units are committed,
regardless of the ON COMMIT option specified.

You can control whether a new local transaction ID is assigned following a commit or
rollback operation in which the database session remains active. Assigning a new
transaction ID reduces the chance of duplicate IDs should this value wrap within a
single cycle of a central version. It also has the effect of recording journal statistics
separately by commit recovery unit rather than across all recovery units within a
database transaction. You can assign a new 1D on a commit operation only if you also
specify that an ENDJ checkpoint record be written.

Note: A new transaction ID is aways assigned when system run units are committed
or rolled out.

6-16 Advantage CA-IDMS Release Summary

6.8 High Performance Storage Protection

6.8 High Performance Storage Protection

To avoid inadvertently utilizing the High Performance Storage Protection feature,
check the sysgens for al existing CV's to ensure that none of them are defaulting to
storage protect key 9. Regenerate any system using a storage protect key of 9 to
explicitly specify a key in the range of 10 through 15.

With the introduction of the z-architecture machines, the cost of providing storage
protect in the Advantage CA-IDMS region has increased dramatically. This is largely
due to a combination of the interna architecture of the "MV S-like" operating systems
and the number of processors supported in this hardware. The operating system
normally employs translation look-aside buffers (TLBSs) to improve performance by
retaining recently used pages. Unfortunately, this requires the use of processor signals
and TLB flushes every time the storage protect key of a page is changed.

However, storage protect key 9 is unique and behaves much differently than other
protect keys. By properly setting the control registers, a program can write in key 9
storage regardless of what key the program is currently executing with. This capability
has permitted making the use of storage protection much less costly and therefore
much more viable for use in the client's production CVs. It is now possible to
economically insulate Advantage CA-IDMS from any potential damage caused by user
written programs, as well as preventing user written code from invalidly or maliciously
invoking privileged functions, and thereby jeopardizing the integrity of both Advantage
CA-IDMS and the operating system.

To achieve these performance benefits, we do not make any attempt to protect the
non-reentrant user programs or the users storage from each other. The entire
non-reentrant program pool is swapped to key 9 during system startup, as well as
every storage pool that was generated to support any form of user storage. This
permits swapping to and from user mode to consist solely of changing the PSW key
from Advantage CA-IDMS's key to key 9, and back again when the user returns,
which results in a dramatically reduced CPU load compared to the use of standard
storage protect.

To enable this facility, the DBA must employ key 9 and segregate all user-oriented
storage from the Advantage CA-IDMS system storage. Storage types: user, user-kept,
shared, and shared-kept, can be together, but they must be defined to secondary
storage pools and must be isolated from any secondary pools that contain database or
terminal type storage. Use of this feature will probably be done only on the production
systems. The programmers still have full access to storage protection during coding
and debugging by generating their test systems to use some key other than 9.

An additional benefit is that the client is no longer forced to choose between speed and
operating system integrity. Performance testing has revealed that using this option is
virtually indistinguishable from running without storage protect in terms of CPU cost.

Chapter 6. Performance Enhancements 6-17

6.8 High Performance Storage Protection

Assuming that a storage protected system has already been successfully created, the
following steps can be used to enable this feature;

1. On the existing system, display all the storage pools (DCMT DISPLAY ALL
STORAGE POOLYS), taking note of what pools support any type of user storage,
that is, user, user-kept, shared, shared-kept, or ALL.

2. The storage pools must be defined in such a manner that all forms of user-oriented
storage are segregated from the system storage. In other words, define both an
XA and a non-XA storage pool for user storage types. Storage types. user,
user-kept, shared, and shared-kept, can be together, but they must be defined to
secondary storage pools and must be isolated from any storage pools which
contain database or termina type storage.

a. In sysgen, redefine at least one storage pool in the range 128 to 254 to
support types user, user-kept, shared, and shared-kept.

b. To remove user storage types from pool 0, you must sysgen at least one pool
in the range of 1 to 127 that supports types user, user-kept, shared, and
shared-kept.

Note: You cannot define a storage pool or user pool to support type ALL (the
default) or a mixture of types user, user-kept, shared, and shared-kept and
system (database or terminal) storage.

3. In sysgen, on the system statement, specify STORAGE KEY IS 9.

4. Generate and start the system. If the storage pool definitions have not been
properly set, message DC004001 HPSPO HAS BEEN DISABLED DUE TO
INCORRECT STORAGE POOL DEFINITIONS is issued at startup.

Note: Any user programs that attempt to perform 1/0O directly through operating
system facilities may need to be modified because they must run with storage
protection enabled. This ensures that the storage key and the execution key
match, which is an operating system requirement for I/O.

6-18 Advantage CA-IDMS Release Summary

Chapter 7. Non-Stop Processing Features

7.1
7.2
7.3
74
7.5
7.6

Overview 7-2
Dynamic Trace Control 7-3
Modifying Program Attributes 7-4
Determining CPU Effectiveness 7-5
Short on Storage Message 7-6
Waiting on Full Journal Message 7-7

Chapter 7. Non-Stop Processing Features 7-1

7.1 Overview

7.1 Overview

This chapter describes the following features of Release 16.0 that provide increased
non-stop processing capability:

» Dynamic trace control

= Ability to modify any program attribute

» New command for determining CPU effectiveness
® "Short on Storage" message

» Enhanced messaging for full journals

7-2 Advantage CA-IDMS Release Summary

7.2 Dynamic Trace Control

7.2 Dynamic Trace Control

Dynamic trace control enables the DBA to alter system and database trace attributes.
System and database tracing provide Computer Associates technical personnel with
diagnostic information that can be useful when researching problems. System trace
attributes are initially established through the SY STRACE parameter of the system
definition SYSTEM statement. Database trace attributes are initially established
through the SYSIDMS DB_TRACE_TABLE parameter.

New DCMT commands in Release 16.0 enable the DBA to:

® Display the status of the system trace and the number of entries in the system
trace table with the DCMT DISPLAY SYSTRACE command

» Disable the system trace with the DCMT VARY SY STRACE OFF command

» Enable the system trace or vary the number of entries in the system trace table
with the DCMT VARY SYSTRACE ON command

» Display the status of the database trace and the size of the database trace table
with the DCMT DISPLAY DBTRACE command

® Disable the database trace with the DCMT VARY DBTRACE OFF command

» Enable the database trace or vary the size of the database trace table with the
DCMT VARY DBTRACE ON command

For more detailed information on how to use these commands, see Appendix A,
“New and Revised DCMT Commands.”

Chapter 7. Non-Stop Processing Features 7-3

7.3 Modifying Program Attributes

7.3 Modifying Program Attributes

The DCMT VARY PROGRAM command has been extended in Release 16.0 to let
you modify any program attribute that was defined with the sysgen compiler. The new
attributes that you can now modify with this command are listed below:

CONCURRENT/NONCONCURRENT
OVERLAYABLE/NONOVERLAYABLE
REENTRANT/NONREENTRANT/QUASIREENTRANT
SAVEAREA/NOSAVEAREA
MAINLINE/NOMAINLINE

NEW COPY ENABLED/DISABLED

ISA SIZE nnn

LANGUAGE ADSO/ASSEMBLER/COBOL/PLI
MPMODE ANY/SYSTEM

TYPE DIALOG/MAP/PROGRAM/SUBSCHEMA/TABLE

For more detailed information on these attributes and on how to use the DCMT VARY
PROGRAM command, see Appendix A, “New and Revised DCMT Commands.”

7-4 Advantage CA-IDMS Release Summary

7.4 Determining CPU Effectiveness

7.4 Determining CPU Effectiveness

The CPU effectiveness of a central version represents the percentage of time the CPU
was available when one or more subtasks of the Advantage CA-IDMS system was
ready to run. You can display this CPU effectiveness with the new command DCMT
DISPLAY SUBTASK EFFECTIVENESS.

For more detailed information on this command, see Appendix A, “New and Revised
DCMT Commands.”

Chapter 7. Non-Stop Processing Features 7-5

7.5 Short on Storage Message

7.5 Short on Storage Message

Release 16.0 writes a new message if a short on storage condition occurs. This makes
it easier for a DBA to diagnose a system hang and implement automated emergency
procedures.

When a request to obtain storage is processed by the system, there may not be enough
storage available to service the request. One of two possibilities could occur:

® A short on storage condition:; After the system allocates storage, the total amount
of free storage remaining in the storage pool is less than the storage cushion for
that pool.

m A storage not available condition: After selecting a storage pool, the Advantage
CA-IDMS system determines that not enough contiguous storage was available in
the pooal to satisfy the request.

In these situations, message DC015007 is written to the console:
DCO15007 Pool &01: SOS condition &02

Where:
® &01 identifies the storage pool number
® &02is0 (short on storage) or 1 (storage not available)

The DC015007 message is output at the time the storage allocation algorithm
encounters either condition. If storage cannot be allocated from the first selected
storage pool, the storage allocation algorithm looks into aternate storage pools if they
are defined. As aresult, it is possible that one request for storage results in multiple
DCO015007 messages.

For performance reasons, the frequency with which the DC015007 message is output
is limited to one per storage pool per minute.

The DBA can set up automated procedures to send an alert when this error message is
detected.

7-6 Advantage CA-IDMS Release Summary

7.6 Waiting on Full Journal Message

7.6 Waiting on Full Journal Message

Release 16.0 provides enhanced handling for the situation in which the journal files fill
because long running transactions do not commit their changes. Such transactions can
fill the journals because the ARCHIVE JOURNAL utility is unable to remove the
BFOR images for uncommitted transactions. When the journals fill, the system comes
to ahalt. In order to correct the situation, the task that is filling the journals must be
canceled.

To assist in this process, Release 16.0 writes the following message for each task that
is waiting to write to a full journa file:

DC205024 Journal Write waiting on full Journal

The message is repeated every few seconds until tasks are no longer waiting on a full
journal.

To recover from this situation:

1. Identify the task that is filling the journal files and abort the task.

2. After its changes are rolled out and an ABRT checkpoint is written, issue a
DCMT VARY JOURNAL command so the central version swaps to a new journal
and the full journal can be offloaded and condensed by ARCHIVE JOURNAL.

Itislikely that DCMT VARY JOURNAL will need to be issued more than once, since
severa journa files may have filled and require offloading.

Once the system swaps back to the initial journal file on which tasks waited,
processing should continue without the need for further intervention.

Chapter 7. Non-Stop Processing Features 7-7

7-8 Advantage CA-IDMS Release Summary

Chapter 8. Tool Product Enhancements

8.1
8.2
8.3
84
85
8.6
8.7
8.8
8.9

Overview 8-2
Advantage CA-Culprit 8-3
Advantage CA-IDMS Journal Analyzer L. 8-4
Advantage CA-IDMSDME 8-6
Advantage CA-IDMSDMLO 8-7
Advantage CA-ADS Alive 8-8
Online Mapping 89
Advantage CA-IDMS PL/I Compiler Enhancements 8-10
Support for 31-Digit Zoned and Packed Decimal Elements 8-12

Chapter 8. Tool Product Enhancements 8-1

8.1 Overview

8.1 Overview

Release 16.0 provides several enhancements to Advantage CA-IDMS tool products.
These enhancements are described in this chapter.

8-2 Advantage CA-IDMS Release Summary

8.2 Advantage CA-Culprit

8.2 Advantage CA-Culprit

Advantage CA-Culprit is a batch utility that generates reports from conventional and
database files. You can store frequently used pieces of code for Advantage CA-Culprit
so that several reports or users can access them. Using these stored parameters helps
to establish standard file definitions, procedures, and reports. These parameters are
stored in the data dictionary (IDD), partitioned data sets (z/OS), source statement
libraries (VSE), AllFusion CA-Panvalet libraries, or AllFusion CA-Librarian libraries.

Prior to Release 16.0, the AllFusion CA-Librarian and AllFusion CA-Panvalet file
access routines were linked with Advantage CA-Culprit routines to form the respective
interfaces. For Release 16.0, the code for these interfaces has been changed to
dynamically load and call the AllFusion CA-Librarian or AllFusion CA-Panvalet
routines. You do not have to relink the Advantage CA-Culprit interface module when
you install a new maintenance release of AllFusion CA-Librarian or AllFusion
CA-Panvalet.

To the user, there is no difference in the AllFusion CA-Librarian or AllFusion
CA-Panvalet interfaces with the enhancements to Advantage CA-Culprit in Release
16.0.

8.2.1 Invoking the AllFusion CA-Librarian Interface

To invoke the AllFusion CA-Librarian interface, you must take the steps given below.
These procedures are the same as those required before Release 16.0:

® Specify PARMLIB=LIBRARIAN3 in the system profile or on the PROFILE
parameter.

®m Code =COPY, =MACRO, or USE statements to copy the stored code into the
Advantage CA-Culprit parameter input stream at runtime.

» Add a DDNAME for MASTER in the JCL that points to the Librarian library
where the source to be copied resides.

® [nclude the AllFusion CA-Librarian loadlib in the STEPLIB DDNAME.

8.2.2 Invoking the AllFusion CA-Panvalet Interface

To invoke the AllFusion CA-Panvalet interface, you must take the steps given below.
These procedures are the same as those required before Release 16.0:

® Specify PARMLIB=PANVALET in the system profile or on the PROFILE
parameter.

®» Code =COPY, =MACRO, or USE statements to copy the stored code into the
Culprit parameter input stream at runtime.

» Add a DDNAME for PANDDL1 in the JCL that points to the AllFusion
CA-Panvalet library where the source to be copied resides.

® Include the AllFusion CA-Panvalet loadlib in the STEPLIB DDNAME.

Chapter 8. Tool Product Enhancements 8-3

8.3 Advantage CA-IDMS Journal Analyzer

8.3 Advantage CA-IDMS Journal Analyzer

Advantage CA-IDMS Journal Analyzer is a comprehensive batch facility that gathers
and combines management and performance data from the archived Advantage
CA-IDMS journal and reports on it in precise logical formats. Advantage CA-IDMS
Journal Analyzer provides the following three distinct types of printed output: reports,
displays, and audit information.
Release 16.0 enhancements to Advantage CA-IDMS Journal Analyzer are listed below:

» Enhanced RECORD and DBKEY display processing

» Enhanced Audit Report

» Enhanced Chronological Report

® Decompression support for Advantage CA-IDMS Presspack compressed records
Note: The Release 16.0 version of Advantage CA-IDMS Journal Analyzer is not

compatible with previous releases. In addition, pre-release 16.0 versions of

Advantage CA-IDMS Journal Analyzer cannot operate with a Release 16.0
archived journal.

8.3.1 RECORD and DBKEY Display Processing

Release 16.0 enhances the parameters controlling the generation of RECORD and
DBKEY displays to alow the addition of start and stop dates and times. To add this
information to the displays, use the START= and STOP= fields and also specify
ALL=Y. If you do not include the new parameters, the displays are identical to those
in Release 15.0.

8.3.2 Audit Report

The Audit Report contains informative, error, and processing messages. Release 16.0
enhances this report so that it includes detail counts for all the new distributed
transaction record types. These new record types are listed below:

= DPRP: Prepare to Commit

= DIND: Commit In-Doubt

® DCOM: Transaction Committed

» DBAK: Transaction Being Rolled Back
» DPND: Forget Pending

» DFGT: Transaction Forgotten

No user action is required to generate the Distributed Transaction Record statistics in
the Audit Report.

8-4 Advantage CA-IDMS Release Summary

8.3 Advantage CA-IDMS Journal Analyzer

For more information on these new journa record types, see 3.6.2, “Journal File
Formatting Considerations’ on page 3-21.

8.3.3 Chronological Report

Release 16.0 enhances the Chronological Report so that it provides the timestamp and
Distributed Transaction Record ID (DTRID) field, as well as details on all distributed
transaction records encountered. The Chronological Report now also includes details
for any Local ID (LID) records included in each distributed transaction record.

This report is optional; you can request it by specifying REPORT=CHRONO on the
controlling parameters.

For more information on transaction identifiers, see 3.3.6.2, “ Transaction ldentifiers’
on page 3-10.

With r16 SP4, this report has been enhanced to display the user ID that is now
captured in the BGIN checkpoint journal record.

8.3.4 Advantage CA-IDMS Presspack Decompression Support

Advantage CA-IDMS Presspack is a tool for compression and decompression of
Advantage CA-IDMS records or tables. Its compression efficiency makes it ideal for
compressing large volume databases. Advantage CA-IDMS Journal Analyzer supports
decompression of records that were compressed using Advantage CA-IDMS Presspack
and displays them in the Journal Displays.

Advantage CA-IDMS Journal Analyzer supports compression techniques that use
BUILTIN or a generic Data Characteristic Table (DCT) only. Additionally, Advantage
CA-IDMS Presspack must be used for both record compression and record
decompression as indicated in the dictionary SRCALL-040 records.

Journal Displays can be created for both Advantage CA-IDMS Presspack and
non-Advantage CA-IDMS Presspack compressed records in the same run.

Chapter 8. Tool Product Enhancements 8-5

8.4 Advantage CA-IDMS DME

8.4 Advantage CA-IDMS DME

Advantage CA-IDMS DME is an online program development facility used to create,
edit, and browse modules stored in the dictionary. Release 16.0 enhancements to
Advantage CA-IDMS DME are listed below:

® |nvocation via a 'fast-in' access method
® Change in the print class to accept any value

» Browse screen error highlighting

8.4.1 'Fast-In' Access Method

The 'fast-in' access method jumps directly to the Module Selection screen, with an
Action Mode of 'E' for Edit selected. The default mode of operation is to display the
Main Menu screen as done in previous releases.

To set the 'fast-in' access method, the Database Administrator (DBA) must set the
EDITMOD parameter. This can be done at installation or any time thereafter. Set the
parameter to Y (Yes) for the 'fast-in' access method; set it to N (No) for the standard
access method. The default parameter is N. The DBA must then reassemble and relink
the USETPARM source module to create a USETPARM load module.

8.4.2 DME Print Class

In Release 16.0, you can specify any value, including a null value, for the print class.
The value selected is displayed on the Main Menu screen of Advantage CA-IDMS
DME.

To set the DME print class, the DBA must set the value of PRTCLASS in the
USETPARM source module. This can be done at installation or any time thereafter.
The DBA must then reassemble and relink the USETPARM source module to create a
USETPARM load module.

8.4.3 Browse Screen

Release 16.0 highlights any errors encountered on the compiler browse screen of
Advantage CA-ADS. If you are using this compiler and an error occurs, Advantage
CA-IDMS DME isinvoked (if present) and it displays and highlights the line in error.
No user action is required to activate this feature.

8-6 Advantage CA-IDMS Release Summary

8.5 Advantage CA-IDMS DMLO

8.5 Advantage CA-IDMS DMLO

Advantage CA-IDMS DMLO is an interactive productivity tool that allows on-demand
navigation, retrieval, and update of databases in Advantage CA-IDMS/DB Release
16.0 enhancements to Advantage CA-IDMS DMLO are listed below:

» Highlighted exit key
m Help Dictionary default to current working dictionary

® Dynamic message processing in the User Exit Program
8.5.1 Highlighted Exit Key

Release 16.0 alters the initial entry screen for Advantage CA-IDMS DMLO to
highlight the key that you should use to exit the tool. This key is the ATTNKEY or
the INTERRUPT key.

No user action is needed to activate this feature.

8.5.2 Help Dictionary

Release 16.0 modifies the HELP feature in Advantage CA-IDMS DMLO so that the

HELP modules are loaded from the current working dictionary if no HLPDICT setting
is specified in the USDTPARM installation parameter module. In previous releases, a
null setting for this parameter meant that the help dictionary defaulted to TOOLDICT.

To use the current working dictionary as the default help dictionary, the DBA must set
the value of HLPDICT in the installation parameter module USDTPARM to blanks.
This can be done at installation or any time thereafter. The DBA must then reassemble
and relink the USDTPARM source module to create a USDTPARM load module.

8.5.3 Dynamic Message Processing

Release 16.0 enhances the user exit program USDMLXIT to support dynamic message
processing. With this enhancement, USDMLXIT can pass a message to display on the
Advantage CA-IDMS DMLO command line.

To use the dynamic messaging feature in the user exit program, the DBA must set a
USERCODE value of 99 (decimal) when returning control to Advantage CA-IDMS
DMLO A message of up to 64 bytes can be passed for subsequent display. The
message text must be stored at address USERWORK. These fields are defined in the
USDGLOB2 DSECT.

Note: It isimportant to initialize the USERWORK field with spaces before passing
the message text. |f the USERWORK field is not initialized, it may contain
data from previous messages.

Chapter 8. Tool Product Enhancements 8-7

8.6 Advantage CA-ADS Alive

8.6 Advantage CA-ADS Alive

Advantage CA-ADS Alive is an online tool that allows developers to test dialogs and
intercept errors for review and analysis in an online environment. Release 16.0
provides the following enhancements to Advantage CA-ADS Alive:

® The number of records per dialog that Advantage CA-ADS Alive can handle has
been increased. Advantage CA-ADS Alive can now process up to 200 records per
dialog on the Record Display screen at runtime.

® An Installation Parameter option that disables the Post Abort Browse screen
feature has been added. If a dialog abend occurs and you have implemented this
disable option, no Process code is displayed. However, a USGO071E message is
displayed. The details of the dialog abend continue to be written to the queue
DEBUGQUEUE. You can later access these details using the QREVIEW task
code.

No action is required to use the increased number of records per dialog.

To set the Post Abort Browse screen option, the DBA must set the value of
ABRTSCR in the source module USGTPARM. This can be done at installation or any
time thereafter. The DBA must then reassemble and relink the USGTPARM source
module to create a USGTPARM load module.

8-8 Advantage CA-IDMS Release Summary

8.7 Online Mapping

8.7 Online Mapping

Advantage CA-IDMS Mapping Facility is an online and batch development facility
used to create, maintain, and display formatted terminal screens, called maps, for
communication between a terminal operator and an application program. The
formatted screen definitions created by this facility exist as a collection of database
records stored in a dictionary.

RHDCMAPL is the batch compiler that accepts the formatted screen source syntax and
creates a dictionary definition of the formatted screen from this syntax. RHDCMAP1
moves the dictionary definitions of the formatted screens from one dictionary to
another in the batch environment, for example, from a development dictionary to a QA
dictionary or to a production dictionary.

In Release 16.0, RHDCMAP1 has been enhanced to accept up to 40 database records
in one map. RHDCMAP1 could previously accept a maximum of only 20 database
record references.

Chapter 8. Tool Product Enhancements 8-9

8.8 Advantage CA-IDMS PL/I Compiler Enhancements

8.8 Advantage CA-IDMS PL/I Compiler Enhancements

The Advantage CA-IDMS Data Manipulation Language (DML) is comprised of
statements that direct Advantage CA-IDMS/DB and data communications processing.
DML statements are embedded in the program source as if they are a part of the host
language. The DML PL/I compiler, aso known as the DMLP processor or
pre-processor, performs these tasks:

» Trandates the DML statements into PL/I statements
» Retrieves data descriptions and source code from the IDD
» Vaidates the DML syntax

® Provides an output listing for errors

The INCLUDE IDMS statement directs the DMLP processor to retrieve a record
description from the IDD and include it in the application program. The DMLP
processor generates the appropriate declare statements for elements and their
redefinitions.

In prior releases of Advantage CA-IDMS, the DMLP pre-processor ignored level-88
condition names defined in the dictionary. With Release 16.0 you can specify a
parameter on the EXEC card or in an EDBPPARM module that directs the DMLP
processor to generate a named constant using the VALUE attribute for a level-88
condition name.

8.8.1 Syntax

\ 4
A

»— EXPAND88 —[YESA
NO

8.8.2 Parameters

YES
Directs the DMLP processor to generate a declare statement for each level-88
condition name defined to the record specified in the INCLUDE IDMS statement.

NO
Directs the DMLP processor to ignore level-88 condition names defined to a
record specified in the INCLUDE IDMS statement.

8.8.3 Notes

= A named constant can only represent a single value; therefore the DMLP
pre-processor ignores any level-88 condition names that specify more than one
value.

® To avoid compile errors, verify your PL/I compiler supports named constants
before using this feature.

8-10 Advantage CA-IDMS Release Summary

8.8 Advantage CA-IDMS PL/I Compiler Enhancements

®» When executing the DMLP processor against an existing program and using the
new EXPANDS88 parameter, the potential exists for a generated named constant to
be a duplicate of an existing field in the PL/I program, resulting in compile errors.
Modifications must be made to remove/rename the duplicate field or remove the
EXPANDBS88 parameter from the program.

Chapter 8. Tool Product Enhancements 8-11

8.9 Support for 31-Digit Zoned and Packed Decimal Elements

8.9 Support for 31-Digit Zoned and Packed Decimal
Elements

ELEMENT statements are used to define group or elementary data elements in IDD.
Also known as fields and data items, elements can participate in records. Currently, the
IDD supports COBOL picture options that allow for a maximum length of 18 digits
for zoned decimal and packed decimal elements, or COMP-3, fields. Newer

compilers, such as Enterprise COBOL for z/OS and Enterprise PL/I for zZ/OS, alow a
maximum length of 31 digits for these fields. In r16 SP1, IDD ELEMENT statements
are enhanced to support a maximum length of 31 digits for elements with a usage
clause of packed and zoned decimal. All Advantage CA-IDMS tools that access
records in the dictionary can access these elements.

Note: Caution should be used when exploiting the new 31-digit zoned and packed
decimal feature. The external picture clause in mapping provides a maximum of 32
bytes for displaying and formatting data.

8-12 Advantage CA-IDMS Release Summary

Chapter 9. TCP/IP API Support

9.1 Using TCP/IP with Advantage CA-IDMS 9-2
9.2 Generic Listener Service 9-3
9.3 TCP/IP Considerations 9-5
9.4 TCP/IP Programming Support for Online Applications 9-11
9.5 Miscellaneous TCP/IP Considerations 9-23

Chapter 9. TCP/IP API Support 9-1

9.1 Using TCP/IP with Advantage CA-IDMS

9.1 Using TCP/IP with Advantage CA-IDMS

TCP/IP is an industry standard communications protocol. In order to understand this
section, you should be familiar with the terminology and base concepts of TCP/IP.
Tutorials on TCP/IP can be found on the Internet by doing a search on a general
search web site with keywords "TCP/IP" and "tutorial”.

Release 16.0 of Advantage CA-IDMS can exploit TCP/IP in the following ways:

® An online application can use the TCP/IP socket program interface to
communicate with another TCP/IP application, possibly on another platform.

» Remote applications can directly access a central version and start an online task.
A "communication”" consists of two socket programs exchanging messages. The

program that initiates a service request is the client. The program receiving incoming
requests is the server.

Typically, the client communicates with one server at atime. However, a server
processes requests from multiple clients. The server type depends on how the client
requests are processed:

m [terative server — accepts a single client request, processes it and returns the
result to the client and waits for the next client request.

m Concurrent server — accepts a client requests and spawns a "child" task to process
it.
Advantage CA-IDMS TCP/IP functionality is available for these operating systems:
» Z/OS
= VSE
n zZ/VM

9.1.1 VSE Systems
There are limitations associated with the VSE implementation of TCP/IP. These
include:
® Domains — only AF_INET is supported
» Protocol — only TCP is supported
» Sockets — only streaming sockets are supported

9-2 Advantage CA-IDMS Release Summary

9.2 Generic Listener Service

9.2 Generic Listener Service

9.2.1 Introduction

The generic listener service facilitates the implementation of concurrent servers quickly
and easily.

9.2.2 Functionality

Generic listening performs these tasks:
m Creates a stream socket on a given port, optionally on a specific TCP/IP stack.
® Listens on the socket.

® Accepts connection requests, acquires a PTERM/LTERM pair and attaches a
server task on it. This continues until the service is stopped.

® Waits for input on the socket if a server task ends normally without closing its
socket. This alows implementation of suspend/resume processing, which is useful
when a client application wants to keep the connection alive without tying up an
Advantage CA-IDMS/DC task. Whenever the client application is ready to
proceed, it sends another message over the connection. When the generic listener
service receives this message it attaches a new server task on the same
PTERM/LTERM pair. The task code that is invoked on a resume can be specified
in the prior task by using the NEXT TASK clause of the DC RETURN statement.
If the next task code is not set, the task code specified in the listener PTERM
definition is invoked.

9.2.3 Implementation

Generic listening is a service provided by the SOCKET line driver. The parameters
that control the listener service are defined in:

n A listener PTERM: it defines the port on which to listen, the backlog, the task
code to invoke when a connection is established and the mode in which to invoke
the task. Optionally, if running on a multi-homed host, the TCP/IP stack can be
selected. Also optionally, a character string can be defined to pass to the attached
task.

® A task and associated program definition.
Note: The task and program should be defined to the security system so that
anyone can execute them.
The program associated with the server task receives control with a parameter list
containing:

® The address of an 80-byte character string set to the value of the string specified
in the listener PTERM definition or blanks if none was specified.

Chapter 9. TCP/IP API Support 9-3

9.2 Generic Listener Service

» The address of the socket descriptor.

» The address of a 4-byte field named the resume counter. The resume counter is
provided for suspend/resume processing.

Notes:

m |f the listener program is written in Advantage CA-ADS the parameters are
passed in the SOCKET-LISTENER-PARMS record. This record must be
included as work record in the dialog definition.

» |f MODE IS SYSTEM is specified in the LISTENER PTERM definition, the
listener program must be written using DC/UCF calling convention
conventions as described in Advantage CA-IDMS System Operations.

The program associated with the server task responds to the message sent from the
client application. In addition to performing the required business function, it is also
responsible for the following services:

® Security — When the program receives control, no user has been signed on to the
system. For security purposes, the executing program must immediately signon to
the system. To provide signon capabilities you must link to the RHDCSNON
program. Or, for Assembler programs, you can code a #SECSGON macro.

For more information:

— About linking to RHDCSNON, refer to Advantage CA-IDMS System Tasks
and Operator Commands

— About #SECSGON, refer to Advantage CA-IDMS Security Administration

» Character conversion — If the remote host sends text messages in a character set
other than the one used on the central version, these text messages might need
trandation. The program is responsible for performing this translation and
IDMSINOL1 functions are provided to assist in this process.

» Closing the socket — Once the conversation is over, the socket should be closed.
Closing the socket causes a sign off when the task terminates. If the task ends
normally without closing the socket, generic listening starts a "receive” on the
socket because it interprets this situation as a suspend. As aresult, the
LTERM/PTERM pair remains in use and long-term resources, such as the signon
element, remain allocated. These resources are subject to Advantage CA-IDMS
time-out processing and can be deleted with the DCMT VARY LTERM ...
RESOURCE DELETE command.

Note: If the task abends, Advantage CA-IDMS closes the socket and the
PTERM/LTERM pair is signed off automatically.

9-4 Advantage CA-IDMS Release Summary

9.3 TCP/IP Considerations

9.3

TCP/IP Considerations

This section describes how to setup and manage TCP/IP support within Advantage
CA-IDMS. TCP/IP is supported in the following environments:

 7/0OS
VSE
n zZ/VM

For information on how to use the TCP/IP API and the generic listener service, refer
to the Advantage CA-IDMS Callable Services.

9.3.1 Establishing TCP/IP Support

Setting up TCP/IP support within Advantage CA-IDMS requires these steps:

1. Updating the System Startup JCL For DNS functions to operate correctly, a
SYSTCPD card must be added to the central version JCL.

 7/0OS

This card is needed if either of the following is true:

— The TCP/IP run time is from IBM and the TCP/IP installation specified a
prefix different from the default ("TCPIP") prefix:

//SYSTCPD DD DISP=SHR,DSN=prefix.TCPIP.DATA
where prefix should be replaced by the TCP/IP installation prefix.

— The TCP/IP implementation is Unicenter TCPaccess Communications
Server: refer to the "Customization Guide".

Contact your systems programmer to obtain this information. See the
documentation from the TCP/IP vendor for information about the SY STCPD
content.

VSE

The Advantage CA-IDMS TCP/IP implementation supports TCP/IP stacks
from Connectivity Systems Incorporated (CSl) and Barnard Software
Incorporated (BSI). For details regarding the required JCL for their respective
BSD/C API support, refer to appropriate documentation.

Regardiess of the TCP/IP stack implementation, if the default stack id is not
'00', the following JCL statement is required:

// OPTION SYSPARM='nn' Set stack ID

DNS socket function calls are supported in the following implementations:
— Advantage CA-IDMS

— BS

- CSY

Chapter 9. TCP/IP API Support 9-5

9.3 TCP/IP Considerations

Comparing Advantage CA-IDMS and BS/CS DNS socket function calls

An advantage of using the BSI/CSI DNS implementation is the
GETHOSTBYNAME and GETHOSTBYADDR functions return names that
are defined to the local TCP/IP stack. However, only the primary name for
an |P address or primary IP address associated with the host name is returned.

An advantage of using the Advantage CA-IDMS DNS resolver is its ability to
return all alias names and IP addresses that are defined to the host name or
host |P address.

The BSI and CSI implementations support DNS socket function calls. but if
the following optional SYSTCPD file is coded, Advantage CA-IDMS uses its
internal DNS resolver instead of calling BSI or CSl.

// DLBL SYSTCPD, 'tcpip.tcpip.data',,SD

// EXTENT SYS001,vvvvvv
// ASSGN SYS001,DISK,VOL=vvvvvv,SHR

where tepip.tepip.data is the file-id of the file.

For more information about the SYSTCPD layout, refer to 9.3.3, “Supporting
DNS Functions Using the SY STCPD File” on page 9-7.

zZIVM

This SYSTCPD must be added to the startup EXEC:
FILEDEF SYSTCPD DISK fn ft fm

where the fn ft fmis the FILE ID of SYSTCPD file. The default value is
TCPIP DATA.

See 9.3.3, “Supporting DNS Functions Using the SYSTCPD File” on
page 9-7 for more information.

2. Modifying the Sysgen

Define the SOCKET line in sysgen — A communication line of type
SOCKET must be defined in sysgen to make DC/UCF available for TCP/IP
API programs.

® To enable generic listening on the DC/UCF system:

— For each generic listener, define a LTERM/PTERM pair and its
associated task code and program.

— Define a number of BULK PTERMSs. The system generation syntax
permits you to define one pair, and the REPEAT clause of the PTERM
statement can be used to facilitate the definition of multiple PTERMs and
LTERMs.

To determine the number of BULK PTERM/LTERM pairs:

— Each connection accepted by a generic listener uses one BULK
PTERM/LTERM pair.

— A server task, started by a generic listener, can exploit
psuedo-conversational programming. This means that the TCP/IP

9-6 Advantage CA-IDMS Release Summary

9.3 TCP/IP Considerations

connection remains open - and the BULK PTERM/LTERM pair -
without an associated active task.

»»> For more information about the system generation statements, refer to Advantage
CA-IDMS System Generation

9.3.2 Managing TCP/IP Support

There are severa DCMT commands that are enhanced to help you manage the TCP/IP
environment:

® DCMT DISPLAY LINE — a new parameter on this statement causes
TCP/IP-related information to be displayed.

» DCMT VARY LINE — allows you to dynamically enable and disable TCP/IP
support.

= DCMT VARY PTERM — enables you to manage the generic listener service
dynamically.

Note: Multiple lines of type SOCKET can be defined to the DC/UCF system, but
only one SOCKET line can be active at a time.

»»> Refer to Advantage CA-IDMS System Tasks and Operator Commands for more
information.

9.3.3 Supporting DNS Functions Using the SYSTCPD File

9.3.3.1 z/OS

9.3.3.2 VSE

9.3.3.3 z/VM

The DNS socket functions (GETHOSTBY ADDR and GETHOSTBYNAME) are
directly supported in the operating system dependant TCP/IP interface used by the
#SOCKET macro interface. The SYSTCPD file is used internally by the operating
system to process the DNS requests.

The SYSTCPD file is optional in the VSE environment. If the SYSTCPD file is
coded, the DNS socket functions are resolved using Advantage CA-IDMSs DNS
resolver. For more information about using Advantage CA-IDMS DNS resolver, see
9.3.3.4, “Advantage CA-IDMS DNS Resolver” on page 9-8.

The DNS socket functions are not supported by the operating system interface.
Therefore, an internal DNS resolver is implemented in Advantage CA-IDMS. The
resolver communicates with a name server to retrieve the requested DNS information.

Note: Local table lookup is not provided.

Chapter 9. TCP/IP API Support 9-7

9.3 TCP/IP Considerations

9.3.3.4 Advantage CA-IDMS DNS Resolver
The following information applies to z/VM and optionally VSE.

During the open of the socket line:
1. The file associated with the SY STCPD card is read.
2. The DNS specific parameters are parsed.
3. The Advantage CA-IDMS resolver is configured.

Coding the SYSTCPD file: The following syntax rules apply for this file:
® All records starting with a';' character are treated as comments.
» Blanks and <end-of-line> characters delimit the tokens.

® The format for each configuration statement is : Keyword Value.

The following table lists the SYSTCPD parameters:

Keyword Default Range of Meaning
Value values
DOMAINORIGIN Max 64 Suffix that is appended to a
chars hostname that doesn't contain
any dots
NSINTERADDR Up to 4 different

NSINTERADDR input lines
pointing to different DNS

servers
NSPORTADDR 53 1 to 65535 Port of the name server
RESOLVEVIA UbDP UDP or Protocol to use for the

TCP communication. Only TCP is

supported on VSE.

RESOLVERTIMEOUT 30 1 to 65535 Time in seconds that the
resolver waits for a response
from the server

RESOLVERUDPRETRIES 1 to 65535 Number of times the resolver
tries to communicate with the
name server

(when RESOLVEVIA is UDP
only)

9-8 Advantage CA-IDMS Release Summary

9.3 TCP/IP Considerations

Keyword Default Range of Meaning
Value values
TCPIPUSERID TCPIP Max 8 Userid of the default TCP/IP
chars virtual machine.

Note: — This entry defines the userid of the TCP/IP virtual machine that is used
as the default TCP/IP stack by Advantage CA-IDMS. Thisis only applicable for
zZIVM.

Sample SYSTCPD

DOMAINORIGIN CA.COM
NSINTERADDR 172.24.255.255
NSPORTADDR 53

RESOLVEVIA TCP
RESOLVERTIMEOUT 3
RESOLVERUDPRETRIES 1

VSE SYSTCPD File: The SYSTCPD file:
» Must contain 80-byte records

® Can be blocked up to a block size to 32720
Warning: Do not code the BLKSIZE= DLBL parameter.

zIVM SYSTCPD File: The SYSTCPD file:
® Can be fixed or variable length

¥ Can use the default file, TCPIP DATA *, or the user can create his own file with
specific definitions

® Contains the userid of the TCP/IP virtual machine that is used as the default
TCP/IP stack by the Advantage CA-IDMS system

® Can specify up to 8 additional TCP/IP stacks that can be defined to a Advantage
CA-IDMS system. These TCP/IP stacks can be used concurrently by programs
running under the DC/UCF system. For more information about the
TCP/IP_STACK_1 to TCP/IP_S TACK_8 SYSIDMS parameters, refer to
Advantage CA-IDMS Callable Services.

9.3.4 Link RHDCT1IP module (VSE Only)

A DOST1IP.OBJ module is delivered with the product. It must be linked with object
modules delivered by CSI or BSl as phase RHDCT1IP.

Linking RHDCTL1IP for CSI: When using TCP/IP from CSl, the following
INCLUDEsS are required to link the RHDCT1IP module. IPNRxxxx modules should
get autolinked.

Chapter 9. TCP/IP API Support 9-9

9.3 TCP/IP Considerations

// LIBDEF x,SEARCH=(tcpiplib.sublib,idmslib.sublib)
// LIBDEF PHASE,CATALOG=idmslib.sublib

// OPTION CATAL

PHASE RHDCT1IP,*

INCLUDE DOST1IP

ENTRY T1IPEP1

/*

// EXEC LNKEDT

/*

Linking RHDCT1IP for BSI: When using TCP/IP from BSI, the following
INCLUDEsS are required to link the RHDCT1IP module. The IPNRxxxx entry points
should get resolved in BSI module BSTTENVR.

// LIBDEF *,SEARCH=(tcpiplib.sublib,idmslib.sublib)
// LIBDEF PHASE,CATALOG=idmslib.sublib

// OPTION CATAL

PHASE RHDCTLIP,*

INCLUDE DOST1IP

INCLUDE BSTTENVR

ENTRY TI1IPEP1

/*

// EXEC LNKEDT

/*

9.3.4.1 Parameters

tcpiplib.sublib name of the sublibrary within the library containing
TCP/IP modules

idmslib.sublib name of the sublibrary within the library containing
Advantage CA-IDMS modules

9-10 Advantage CA-IDMS Release Summary

9.4 TCP/IP Programming Support for Online Applications

9.4 TCP/IP Programming Support for Online Applications

TCP/IP programming support within Advantage CA-IDMS allows an application to
communicate through TCP/IP protocols with a second application. The second
application can reside on the same platform or another platform.

The socket program interface depends upon the programming language used to write
the application:

® Programs written in Assembler use the #SOCKET macro interface.
® Programs written in COBOL or PL/I use a call interface to IDMSOCKI.

m Applications written in Advantage CA-ADS can use the SOCKET built-in
function or the call interface to IDMSOCKI.

9.4.1 Socket Macro Interface For Assembler Programs

Programs written in the assembler language use the #SOCKET macro to exploit
TCP/IP sockets. The #SOCKET macro takes this general form:

label #SOCKET function,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
PLIST=parameter-list-area,
RGSV=(rgsv),
CALL=call-value,
function-specific-parameters

>X XX X X X X X

9.4.1.1 Parameters

label

Optional assembler label.

function
The name of the function to execute. See Appendix G, “TCP/IP APl Commands,
Error Codes, Socket Structures, and String Conversion,” for alist of valid
functions..

return-code
The name of a fullword that receives the outcome of the operation. Possible
values are;

0
No error occurred

-1
A socket error was encountered; the errno and reason-code fields contain
more detailed information about the error.

Chapter 9. TCP/IP API Support 9-11

9.4 TCP/IP Programming Support for Online Applications

9.4.1.2 Notes

errno

The name of a fullword that receives the ERRNO value when return-code is -1.
See Appendix G, “TCP/IP APl Commands, Error Codes, Socket Structures, and
String Conversion,” for more information.

reason-code

The name of a fullword that receives the reason code value when return-code is
-1. See Appendix G, “TCP/IP API Commands, Error Codes, Socket Structures,
and String Conversion,” for more information.

par ameter -list-area

Name of an area or register pointing to the area that is used to build the
#SOCKET parameter list. The default is SYSPLIST. The length of the
parameter-list-area used by the macro depends on the #SOCKET function that is
called; the longest parameter-list currently needed for a #SOCKET call is 16
fullwords.

rgsv

Registers to be saved. This parameter applies only to system mode programs.
The default is (R2-R8).

call-value

Indicates whether to generate the parameter list and/or execute the function.
Possible values are

YES
Generate the parameter list and execute the function. This is the default.

NO
Generate the parameter list, but don't execute the function.

ONLY
Execute the function for which a parameter list is pre-built.

The syntax doesn't show Assembler column conventions (label starts in column 1;
statement in column 10; continuation line in column 16; continuation character in
column 72).

On return from the #SOCKET call, R15 is always 0, except in cases of a
parameter-list error where the RETCODE field cannot be found; in this case R15
is set to -1.

The parameter values assigned to the three return code parameters (RETCODE,
ERRNO and RSNCODE) and to al the function-specific-parameters can be
specified in data field notation or in register notation.

In data field notation, the program specifies the name of a variable field
containing the parameter value.

In register notation, the program specifies a register containing the address of the
variable field containing the parameter value (not the value itself). Genera

9-12 Advantage CA-IDMS Release Summary

9.4 TCP/IP Programming Support for Online Applications

registers 2 to 15 can be used in this notation; the register reference must be
enclosed in parentheses.

Some parameters also accept a value in the form of an absolute expression. Where
applicable, this is mentioned under the corresponding parameter's description.

Some parameters from the #SOCKET macro are optional. There are two ways to
address an optional parameter:

— Omit the parameter on the #SOCKET macro call.
— Assign anull value to the parameter. For example, HOSTNAME=NULL.
Both ways are equivalent.

The #SOCKET macro uses the following registers when building its parameter
list:
RO — A work register to build the parameter list

— R1 — Address the parameter list

— R14 and R15 — The branch and link registers for the call sequence to socket
services

#SOCKET TCPIPDEF generates DSECTs and EQUates needed to write a TCP/IP
program.

#SOCKET ERRNOS generates all EQUates for Advantage CA-IDMS specific
errno values.

9.4.2 The Advantage CA-ADS Socket Interface

Applications written in Advantage CA-ADS can use one of two methods to exploit
TCP/IP sockets:

Using an Advantage CA-ADS system-supplied built-in function, SOCKET. It
follows the same general rules as other Advantage CA-ADS built-in functions.
The following is an example of the code required to invoke the SOCKET built-in
function in your Advantage CA-ADS dialog:

SOCKET (function,
return-code,
errno,
reason-code,
function-dependent-parameterl,

Parameters can be records or record €l ements.

Using an Advantage CA-ADS control statement to invoke the socket call interface,
IDMSOCKI. IDMSOCKI is the same socket call interface that can be used with
COBOL programs. In this scenario, the LINK control statement is used to invoke
IDMSOCKI:

Chapter 9. TCP/IP API Support 9-13

9.4 TCP/IP Programming Support for Online Applications

LINK TO PROGRAM 'IDMSOCKI' USING
(function,
return-code,
errno,
reason-code,
function-dependent-parameterl,

..)

Each parameter must be a separate record.
9.4.2.1 Parameters

For both methods, the first four parameters are identical except that if linking to
IDMSOCKI, each parameter must be defined as a record whose first element is a field
described below. If using the SOCKET built-in function the parameters can be records
or record elements.

function
A 4-byte, full-word aligned, integer field that the program sets to the desired
socket function. A detailed description of the supported functions can be found in
Appendix G, “TCP/IP API Commands, Error Codes, Socket Structures, and String
Conversion.”

return-code
A 4-byte, full-word aligned, integer field that receives the outcome of the
operation. Returned values are:

0
No errors occurred

20
A parameter list error was encountered

-1
A socket error was encountered; the errno and reason-code fields contain
more detailed information about the error.

errno
A 4-byte, full-word aligned, integer field that receives the ERRNO value when
return-code is -1. Refer to Appendix G, “TCP/IP APl Commands, Error Codes,
Socket Structures, and String Conversion,” for more information.

reason-code
A 4-byte, full-word aligned, integer field that receives the reason code value when
return-code is -1. Refer to Appendix G, “TCP/IP APl Commands, Error Codes,
Socket Structures, and String Conversion,”for more information.

Depending on the function, zero or more parameters can follow.

9-14 Advantage CA-IDMS Release Summary

9.4 TCP/IP Programming Support for Online Applications

9.4.2.2 Comparing IDMSOCKI and SOCKET

While either of these methods allows you to utilize the TCP/IP API functionality, there
are benefits to using the SOCKET built-in function:

» Parameters can be a record element. When IDMSOCKI is used, each parameter
must be defined as a separate record.

® |tiseaSer to use.

® |t provides optimum performance. Calling a system-defined built-in function is
more efficient than LINKing to another program type.

m |t is possible to use the system-defined record SOCKET-CALL-INTERFACE,
which contains the definition of the first four parameters. To use this record, add
it to the dialog as a work record.

m SOCKET supports omitted parameters.

Because of these advantages, use of the SOCKET built-in function is recommended.

9.4.2.3 Notes

® To omit an optional parameter in the parameter list, replace the parameter with the
@ symbol.

®m An Advantage CA-ADS dialog associated with a server task (atask started by a
generic listener):

Must be a mapless dialog
Should include SOCKET-LISTENER-PARMS as a work record

m The following pre-defined records are provided during installation and can be
attached to a dialog as work records:

SOCKET-CALL-INTERFACE — describes the socket functions, return codes
and errno values used to issue al socket requests

SOCKET-MISC-DEFINITIONS — describes options and flags specific to
individual functions

SOCKET-SOCKADDR-IN, SOCKET-SOCKADDR-ING,
SOCKET-HOSTENT, SOCKET-TIMEVAL and SOCKET-ADDRINFO —
describe structures that may be useful for certain socket applications

The SOCKET-CALL-INTERFACE record contains fields that can be used for
SOCKET built-in function common parameters:

— function
— return-code
— errno

— reason-code

Each supported function is represented by a field, whose value is the function
number. The following example illustrates how to issue a READ socket

Chapter 9. TCP/IP API Support 9-15

9.4 TCP/IP Programming Support for Online Applications

request using the SOCKET hbuilt-in function and fields within the
SOCKET-CALL-INTERFACE record:

IF (SOCKET (SOCKET-FUNCTION-READ,
SOCKET-RETCD,
SOCKET-ERRNO,
SOCKET-RESNCD, . . .) = 0)

— For more information about Advantage CA-ADS and built-in functions, refer
to the Advantage CA-ADS for CA-IDMS Reference Guide.

9.4.3 Socket Call Interface For COBOL

Programs written in COBOL use the CALL statement to exploit TCP/IP sockets:

CALL 'IDMSOCKI' USING
function,
return-code,
errno,
reason-code,
function-dependent-parameterl,

9.4.3.1 Parameters

A call to IDMSOCKI must pass the following first four parameters:

function
A 4-byte, full-word aligned, integer field that the program sets to the desired
socket function. Sample definition of a function field:

01 SOCKET-FUNCTION PIC S9(8) COMP.

A detailed description of the supported functions can be found in Appendix G,
“TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion.”

return-code
A 4-byte, full-word aligned, integer field that receives the outcome of the
operation. Returned values are:

0
No errors occurred

20
A parameter list error was encountered

-1
A socket error was encountered; the errno and reason-code fields contain
more detailed information about the error.

Sample definition of a return-code field:

01 SOCKET-RETCD PIC S9(8) COMP.

errno

A 4-byte, full-word aligned, integer field that receives the ERRNO value when
return-code is -1. Sample definition of an errno field:

9-16 Advantage CA-IDMS Release Summary

9.4 TCP/IP Programming Support for Online Applications

9.4.3.2 Notes

01 SOCKET-ERRNO PIC S9(8) COMP.

Refer to Appendix G, “TCP/IP APl Commands, Error Codes, Socket Structures,
and String Conversion,” for more information.

r eason-code

A 4-byte, full-word aligned, integer field that receives the reason code value when
return-code is -1. Example definition of areason-code field:

01 SOCKET-RSNCD PIC S9(8) COMP.

Refer to Appendix G, “TCP/IP APl Commands, Error Codes, Socket Structures,
and String Conversion,”for more information.

Depending on the function, zero or more parameters can follow.

If an optional parameter is not specified in the parameter list, it should be replaced
by a parameter that depends on the COBOL compiler;

— For COBOL for z/OS, specify reserved keyword OMITTED.

— For ANSI COBOLS85, specify BY VALUE dummy-variable; dummy-variable
should be set to 0.

The following pre-defined records are provided during installation to assist in
writing socket applications:

SOCKET-CALL-INTERFACE — describes the socket functions, return codes and
errno values used to issue al socket requests

SOCKET-MISC-DEFINITIONS — describes options and flags specific to
individual functions

SOCKET-SOCKADDR-IN, SOCKET-SOCKADDR-IN6, SOCKET-HOSTENT,
SOCKET-TIMEVAL and SOCKET-ADDRINFO — describe structures that may
be useful for certain socket applications

The SOCKET-CALL-INTERFACE record contains fields that can be used for the
socket call common parameters:

— function

— return-code
— erno

— reason-code

Each supported function is represented by a field, whose value is the function
number. The following example illustrates how to issue a READ socket request
using the fields within the SOCKET-CALL-INTERFACE record:

CALL 'IDMSOCKI' USING SOCKET-FUNCTION-READ,
SOCKET-RETCD,
SOCKET-ERRNO,
SOCKET-RESNCD,

Chapter 9. TCP/IP API Support 9-17

9.4 TCP/IP Programming Support for Online Applications

Note: The SOCKET-CALL-INT record is identical to the
SOCKET-CALL-INTERFACE record except that function values are
defined as condition names instead of fields. Unless storage is critical, the
SOCKET-CALL-INTERFACE record should be used.

® The program associated with a server task (a task started by a generic listener)
must specify:

— Inthe LINKAGE SECTION:

01 SOCKET-PARMS PIC X(80).
01 SOCKET-DESCRIPTOR PIC S9(8) COMP.
01 SOCKET-RESUME-COUNT PIC S9(8) COMP.

— In the PROCEDURE DIVISION:

PROCEDURE DIVISION USING
SOCKET-PARMS,
SOCKET-DESCRIPTOR,
SOCKET-RESUME-COUNT.

9.4.4 Socket call interface for PL/I

Programs written in PL/l use the CALL statement to exploit TCP/IP sockets:

CALL 'IDMSOCKI'
(function,
return_code,
errno,
reason_code,
function_dependent_parameterl,

S
9.4.4.1 Parameters

A call to IDMSOCKI must pass the following first four parameters:

function
A 4-byte, full-word aligned, integer field that the program sets to the desired
socket function. Sample definition of a function field:

DCL SOCKET_FUNCTION FIXED BINARY(31);

A detailed description of the supported functions can be found in Appendix G,
“TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion.”

return_code
A 4-byte, full-word aligned, integer field that receives the outcome of the
operation. Returned values are:

0
No errors occurred

20
A parameter list error was encountered

9-18 Advantage CA-IDMS Release Summary

9.4 TCP/IP Programming Support for Online Applications

9.4.4.2 Notes

-1
A socket error was encountered; the errno and reason_code fields contain
more detailed information about the error.

Sample definition of areturn_code field:

DCL SOCKET_RETCD FIXED BINARY(31);

Value definitions for return codes can be found in Appendix G, “TCP/IP AP
Commands, Error Codes, Socket Structures, and String Conversion.”

errno
A 4-byte, full-word aligned, integer field that receives the ERRNO value when
return_code is -1. Sample definition of an errno field:

DCL SOCKET ERRNO FIXED BINARY(31);

Refer to Appendix G, “TCP/IP APl Commands, Error Codes, Socket Structures,
and String Conversion,” for more information.

reason_code

A 4-byte, full-word aligned, integer field that receives the reason code value when
return_code is -1. Sample definition of a reason_code field:

DCL SOCKET RSNCD FIXED BINARY(31);

Refer to Appendix G, “TCP/IP API Commands, Error Codes, Socket Structures,
and String Conversion,” for more information.

Depending on the function, zero or more parameters can follow.

. Some PL/I compilers limit the length of an external name to 7 characters. Since
IDMSOCKI contains 8 characters, this can lead to errors at compile time. Such
errors can be solved in these ways:

— Use the compile option LIMITS(EXTNAME(8))
— Use entry point IDMSOCK, which is defined as a synonym to IDMSOCKI.

® |f an optional parameter is not to be specified in the parameter list, replace it by
an asterisk (*).

» The following pre-defined records are provided during installation to assist in
writing socket applications:
— SOCKET_CALL_INTERFACE — describes the socket functions, return
codes and errno values used to issue all socket requests.

— SOCKET_MISC _DEFINITIONS — describes options and flags specific to
individual functions.

— SOCKET_SOCKADDR_IN, SOCKET_SOCKADDR_INS,
SOCKET_HOSTENT, SOCKET_TIMEVAL and SOCKET_ADDRINFO —
describe structures that may be useful for certain socket applications.

Chapter 9. TCP/IP API Support 9-19

9.4 TCP/IP Programming Support for Online Applications

Note: Some of these records contain condition names. To generate the
appropriate declare statements, specify the following pre-compiler option:

EXPAND88=YES

® The SOCKET_CALL_INTERFACE record contains fields that can be used for
socket call common parameters:

— function
— return_code
— errno

— reason_code

Each supported function is represented by a field whose value is the function
number. The following example illustrates how to issue a READ socket request
using the fields within the SOCKET_CALL_INTERFACE record:

CALL 'IDMSOCKI' USING (SOCKET_FUNCTION_READ,
SOCKET_RETCD,
SOCKET_ERRNO,
SOCKET_RESNCD,
L)

Note: The SOCKET_CALL_INT record is identical to the
SOCKET_CALL_INTERFACE record except that function values are
defined as condition names instead of fields. Unless storage is critical, the
SOCKET_CALL_INTERFACE record should be used.

® The program associated with a server task (a task started by a generic listener)
must specify:

PROCEDURE (P1, P2, P3)
OPTIONS (REENTRANT,FETCHABLE);

DCL (P1,P2,P3) POINTER;

DCL SOCKET_PARMS CHAR(80) BASED (ADDR(P1));
DCL SOCKET DESCRIPTOR FIXED BINARY(31) BASED (ADDR(P2));
DCL SOCKET_RESUME_COUNT FIXED BINARY(31) BASED (ADDR(P3));

9.4.5 Application Design Considerations

The TCP/IP socket program interface is available only to Advantage CA-IDMS/DC
applications running under a central version. A batch program trying to use the
interface receives a socket return code of RNOSLIND.

Server tasks started by a generic listener cannot do any terminal 1/0 such as #LINEIN,
#LINEOUT, #TREQ etc. If written in Advantage CA-ADS, they should be mapless
dialogs.

9-20 Advantage CA-IDMS Release Summary

9.4 TCP/IP Programming Support for Online Applications

9.4.5.1 Using Stream Sockets

TCP dlows for arbitrary amounts of data to be sent and received over a stream socket.
Since a stream is interpreted as a sequence of bits, TCP has no knowledge of the
organization, content or amount of data being processed. Therefore, a TCP application
should use its own protocol to logically divide a stream into messages. The most
common way of doing this is to prefix the data with the data length.

9.4.5.2 Receiving Data

TCP may choose to break a block of data into pieces and transmit each piece
separately or it may accumulate data in its buffer and send it in one block. Thus, the
data sent in a single "send" can be received in a single "receive", or it can be received
in small chunks. It is possible the receiving application may get the data of multiple
send requests in a single receive. TCP receives data until the expected message is
completely received.

9.4.5.3 Sending Data

As with receiving data, there is no guarantee that a send request is completely
serviced. TCP may decide that the amount of data in the send request is too large. If
so, it returns the amount of data already processed and the application must re-issue
the send with an updated data length and buffer pointer. TCP sends data until the
message is completely sent.

9.4.6 TCP/IP Coding Samples

The Advantage CA-IDMS installation media contains these sample programs, which
are intended for demonstration purposes only:

m TCPASMO1 — An Assembler program that tests the #SOCKET API calls.
TCPASMO1 can be invoked in one of two ways.

— Asauser task code at the "ENTER NEXT TASK CODE" prompt.
Depending on the command line parameters, a client or server program is
initiated. The program converses with a partner program using SEND and
RECV calls. If no parameters are specified, a HELP screen containing the full
syntax and its options is displayed.

— As aserver program started by a listener PTE.
Note: The listener's PTERM definition should specify MODE is USER.
m TCPADSO1 — A TCPI/IP client program written in Advantage CA-ADS.
m TCPCOBO01 — A TCP/IP generic listener server program written in COBOL.
B TCPPLIO1 — A TCP/IP generic listener server program written in PL/I.

TCPADS01 and TCPASMOL1 (as a client) provide the same functionality: they connect
to a port number that matches a port number of a generic listener PTERM.

Chapter 9. TCP/IP API Support 9-21

9.4 TCP/IP Programming Support for Online Applications

TCPPLI01, TCPCOBO01, and TCPASMOL (as a server) can be invoked by the task
code associated with the generic listener PTERM.

Note: The header section of each sample program contains compiler option
information that is required to successfully compile the program.

Sample TCP/IP programs can also be found in Advantage CA-IDMS Callable Services.

9-22 Advantage CA-IDMS Release Summary

9.5 Miscellaneous TCP/IP Considerations

9.5 Miscellaneous TCP/IP Considerations

The following sections provide information related to TCP/IP use, including:
. The TCP/IP trace facility
. Multiple TCP/IP stacks

= Assigning a timeout value to each TCP/IP socket

9.5.1 Using the TCP/IP Trace Facility

To help debug socket programs, a TCP/IP trace facility is available. It is activated
using the DCMT VARY LTERM command. For more information about this
command, refer to the Advantage CA-IDMS System Tasks and Operator Commands.

9.5.2 Using Multiple TCP/IP Stacks

In a multiple TCP/IP stack environment, an Advantage CA-IDMS system is able to
use several available TCP/IP stacks concurrently. Only z/OS and z/VM support
multiple TCP/IP stacks.

In the z/OS environment, the Common INET (CINET) configuration is required to run
multiple TCP/IP stacks concurrently. Advantage CA-IDMS uses special system calls
to get alist of the available TCP/IP stacks in the system. For more information about
the CINET feature, refer to the ZOS Communication Server |P Configuration Guide

For z/VM, multiple TCP/IP stacks are implemented by starting each stack in its own
virtual machine. The additional TCP/IP stacks are defined in the SYSIDMS parameters
TCP/IP_STACK_1to TCP/IP_STACK_8. For more information:

® About the SYSTCPD file, refer to Advantage CA-1IDMS System Operations.
= About the SYSIDMS parameters, refer to Advantage CA-IDMS Common Facilities.

Default TCP/IP stack: On z/OS and z/VM, the default TCP/IP stack for an
Advantage CA-IDMS system is displayed by using DCMT DISPLAY LINE <tcpip>
IPINFO command.

Current TCP/IP stack for a DC task: When a DC task is started, the current
TCP/IP stack for the DC task is the default TCP/IP stack from the Advantage
CA-IDMS system. The SETSTACK function can be used to assign another value to
the current TCP/IP stack or to restore the default value for the DC task.

Stack affinity: This concept refers to sockets. When a socket is created and it is
exclusively attached to a specific TCP/IP stack, it is said to have "stack affinity”. The
stack affinity is equal to the value of the current TCP/IP stack when the socket was
created. A socket that is not attached to a specific TCP/IP stack has no stack affinity.

Chapter 9. TCP/IP API Support 9-23

9.5 Miscellaneous TCP/IP Considerations

Default stack affinity: When a socket is created in the default DC task
environment, that is, no specific SETSTACK calls have been issued in the task yet, the
default stack affinity is the default TCP/IP stack.

When a socket has set stack affinity to *ALL and the application issues an ACCEPT
socket call with the IP address equal to INADDR_ANY in the corresponding socket
address structure, then the ACCEPT request is propagated to all available TCP/IP
stacks, and therefore the application can accept connections from clients specifying an
IP address from any of the available TCP/IP stacks. This configuration is possible on
Z/OS only. If the ACCEPT'ing socket is assigned a specific stack affinity, the client
must specify the IP address corresponding to that specific stack.

Two socket functions return values that are influenced by which TCP/IP stack is
current on the DC task.

® GETHOSTID — returns the |P address of the current TCP/IP stack.

. GETHOSTNAME — returns the hostname of the current TCP/IP stack.
The output from the DCMT DISPLAY LINE <tcpip-line-name> IPINFO command
shows the available TCP/IP stacks with their associated |P address and hostname. For

more information about DCMT DISPLAY LINE, refer to Advantage CA-IDMS System
Tasks and Operator Commands.

9.5.3 Associating Timeouts to Sockets

In the standard POSIX socket interface, timeout conditions can only be detected
through the use of the SELECT socket function. The socket interface provided by
Advantage CA-IDMS offers an extension that assigns a timeout value to each socket
created in the DC/UCF environment. The FCNTL socket function enables you to
specify or retrieve a socket's timeout value.

When a socket is created, a default timeout value is assigned. The default timeout
value depends on the type of socket:

» For a socket created by the SOCKET function, or "client socket", the default
timeout value is set to the corresponding DC task's INACTIVE INTERVAL
parameter.

» For a socket created by the ACCEPT function, or "server socket", the default
timeout value is set to the corresponding DC task's EXTERNAL WAIT parameter.

These socket functions:

. ACCEPT

® CONNECT

= READ

. RECV

1 RECVFROM

9-24 Advantage CA-IDMS Release Summary

9.5 Miscellaneous TCP/IP Considerations

. SEND

. SENDTO

. WRITE
check the timeout value at runtime. When a timeout condition occurs, the socket
function returns a ETIMEDOUT ERRNO code to the application.
For more information:

m About the FCNTL socket function, refer to G.2.5, “FCNTL” on page G-7.

= About the INACTIVE INTERVAL or EXTERNAL WAIT parameters of the
TASK statement, refer to the Advantage CA-IDMS System Generation.

Chapter 9. TCP/IP API Support 9-25

9-26 Advantage CA-IDMS Release Summary

Chapter 10. Type 4 JDBC Driver

101 Overview 10-2
10.2 Installing the Java Runtime Environment 10-3
10.3 Enabling the Type 4 JDBC Driver 10-4

Chapter 10. Type 4 JDBC Driver 10-1

10.1 Overview

10.1 Overview

IDMSJSRYV is the built-in TCP/IP server program that enables the JDBC driver
supplied with Advantage CA-IDMS Server 5.0 or later to function as a "Type 4"
driver. This allows client applications written in Java to communicate directly with the

Advantage CA-IDMS address space using the native "wire" protocol, with no
intervening middleware.

10-2 Advantage CA-IDMS Release Summary

10.2 Installing the Java Runtime Environment

10.2 Installing the Java Runtime Environment

The Type 4 JDBC driver performs all data conversion on the client platform, using the
character converter classes provided by the Java Runtime Environment (JRE). The JRE
includes converter classes for most of the character encodings in use around the world.
However, by default, the JRE installer installs only European language support on
machines that support only European languages. The mainframe encodings based on
EBCDIC, such as CP037, are not included.

When installing the JRE, select the "Custom™ option and then select " Support for
Additional Languages’. This installs the complete set of character encodings, contained
in the file charsets.jar.

This is generally not necessary when using the JRE included with the Java Software
Development Kit (SDK), which includes charsets.jar.

Chapter 10. Type 4 JDBC Driver 10-3

10.3 Enabling the Type 4 JDBC Driver

10.3 Enabling the Type 4 JDBC Driver

To enable the Type 4 JDBC driver, define a TCP/IP line and a listener PTERM on the
mainframe and specify the host name and port on the client. The Advantage CA-IDMS
System Generation guide contains detailed information on defining the TCP/IP line and
listener. The Advantage CA-IDMS Server 5.0 User Guide contains detailed information
on how to specify client settings. A Java application can use either an IdmsDataSource
object or the static DriverManager class to get a connection.

The Type 4 JDBC Driver supports a large number of concurrent connections and is
essentially limited only by the resources allocated to your Advantage CA-IDMS
system. In particular, you may need to increase the size of storage pools to support
high volume applications that create many concurrent connections. Advantage
CA-IDMS uses a minimum of approximately 250 KB of storage for each dynamic
SQL session, whether started by the Type 4 driver, the Type 2 or ODBC drivers, OCF,
or IDMSBCF.

10.3.1 Listener PTERM Options

To use the Advantage CA-IDMS Server "wire protocol” drivers, define a listener
PTERM/LTERM pair for the built-in server program, IDMSJSRV. This PTERM must
specify the RHDCNP3J task defined during installation, SY STEM mode, and the port
used by the driver. The default port, 3709, is used by the drivers and registered with
the Internet Assigned Number Authority (IANA) for Advantage CA-IDMS. This can
be used if only a single DC/UCF system is used on the host machine. Otherwise, a
recommended convention is to append the system number to 37.

Additional listener options parameters can be specified as keyword-values pairs in the
PARM string on the PTERM definition. The following are the PARM keyword
guidelines:

® Options are not case-sensitive.

® Options can appear in any order, separated by commas, with no embedded spaces
in the string (leading spaces are ignored).

» |f an error occurs, the server writes a message to the DC log and ignores the rest
of the options.

The parameters are:

ACCt=profile-key-name
Profile key name for accounting information. If specified, any accounting
information supplied by the client as part of the signon is added to the user
profile. This allows SQL statements access to the accounting information using the
PROFILE function. Procedures written in COBOL or Advantage CA-ADS can use
the IDMSINO1 GETPROF callable service to access the accounting information.

BUFL en=default-length
Length of the default buffer used for data received from and sent to the client. The
default buffer is allocated when the task starts and freed when the task ends.

10-4 Advantage CA-IDMS Release Summary

10.3 Enabling the Type 4 JDBC Driver

10.3.2 Listener

Larger buffers are allocated dynamically as needed for individual requests and
freed immediately after results are returned. The default is 1024 bytes. Specifying
alarger buffer can minimize storage allocation requests while using more of the
storage pool. The client can override this value.

BUFM ax=max-length
Maximum length the client interface can specify for the default buffer.

TASK =task-code
Specifies the default task code used for signon security, timeouts, and as the next
task after a pseudo converse. The IDMSISRV task is defined during installation as
a model task for this purpose. The client can override this task code.

ATTACH=Y
Causes IDMSISRV to end the initial task immediately after processing the signon
request. The specified task is attached on the next request from the client
interface. 1f not specified (or No), IDMSISRV copies the timeouts from specified
task to the current task, which ends when (and if) explicitly requested by the client
interface.

T1M eout=seconds
Specifies the maximum timeout the client can request for the external wait or
resource timeout interval. A value of -1 alows the client interface to specify any
value. A vaue of 0, the default, takes the value from the task or system default.

TASK Security

You must grant execute authority on task RHDCNP3J to group PUBLIC or al groups.
Alternatively, you can turn off security for task RHDCNP3J by including an entry in
the SRTT. The task specified in the PARM string, IDMSISRV for example, can be
restricted to specific users or groups. See Advantage CA-IDMS Security Administration
for detailed information on securing tasks.

10.3.3 IdmsDataSource Options

The following describes how to specify |dmsDataSource properties:

databaseName
Specify the DBNAME of the dictionary that contains table, view, and procedure
definitions. Note that on Windows and USS, this is interpreted as the name of an
ODBC style DSN in the registry or configuration file. The JDBC driver searches
for this DSN and overrides the DBNAME with the Dictionary value if found.

accountinfo
Specify optiona accounting information to be processed by the sign on user exit
in Advantage CA-IDMS.

nodeName
Do not specify the nodeName property. The nodeName property is used by the
native interfaces that communicate through CCI, and it is not compatible with the
Type 4 JDBC driver. When it is set, a connection attempt fails with a DB001070
message from Advantage CA-IDMS.

Chapter 10. Type 4 JDBC Driver 10-5

10.3 Enabling the Type 4 JDBC Driver

networ kPr otocol
Specify "TCP".

server Name
Specify the DNS name or TCP/IP address of the machine where Advantage
CA-IDMS/DC is running.

portNumber
Specify the port defined for the IDMSISRV listener in the SY SGEN PTERM
definition. Note that the default port for the JDBC driver is 3709, the number
registered with IANA, the Internet Assigned Numbers Authority. When more than
one CV runs on the same host, a recommended convention is to append the
system number to 37, for example, SY ST0099 would use port 3799.

taskCode
The IDMSISRV listener task does not recognize the alternate task code passed by
the Advantage CA-IDMS Server 5.0 JDBC driver. If it is necessary to use a
different task for different applications, define a separate listener PTERM with a
different port for each alternate task required and specify that port in the
DataSource definition. The next release of the Advantage CA-IDMS Server JDBC
driver will support specifying the alternate task code for the IDMSJISRV listener.

viaNodeName
This isignored by the IDMSISRV listener task. Equivalent routing is implemented
using the Advantage CA-IDMS DBNAME and RESOURCE tables, as it is for
mainframe clients.

10.3.4 DriverManager Options

Specify the DBNAME of the dictionary, the server name, and the server port in the
URL. When using the DriverManager, other properties can be specified with Properties
objects that correspond to the DataSource properties and follow the rules described
above. These Properties objects essentially contain keyword-value pairs with the
following keywords:

account
See accountinfo option described in previous section.

node

See nodeName option described in previous section.
via

Not used with the type 4 driver.
task

See taskCode option described in previous section. This option is not supported in
this release.

ccihost
Not used with the type 4 driver.

cciport
Not used with the type 4 driver.

10-6 Advantage CA-IDMS Release Summary

10.3 Enabling the Type 4 JDBC Driver

10.3.5 Additional Client Options

There are several new connection options:

® Alternate task code
n Default buffer size
» External wait and resource timeouts

» DC log and DBTRACE debugging

Default values for these options can be specified in the listener PTERM definition. The
JDBC driver included in Advantage CA-IDMS Server 5.0 does not support specifying
these options on the client platform. The JDBC driver included in Advantage

CA-IDMS Server 16.0 will support them.

Chapter 10. Type 4 JDBC Driver 10-7

10.3 Enabling the Type 4 JDBC Driver

10-8 Advantage CA-IDMS Release Summary

Appendix A. New and Revised DCMT Commands

Al

A2

A3

A4

A5

A.6

A7

A8

A9

A.10
A.11
A.12
A.13
A.14
A.15
A.16
A.17
A.18
A.19
A.20
A.21
A.22
A.23
A.24
A.25
A.26
A.27
A.28
A.29
A.30
A3l
A.32

OVEIVIEW A-2
DCMT SHUTDOWN s A-3
DCMT DISPLAY AREA A-4
DCMT DISPLAY DBTRACE A-5
DCMT DISPLAY DEADLOCK A-6
DCMT DISPLAY DISTRIBUTED RESOURCE MANAGER A-7
DCMT DISPLAY DISTRIBUTED TRANSACTION A-9
DCMT DISPLAY LINE A-14
DCMT DISPLAY SEGMENT A-15
DCMT DISPLAY SUBTASK A-16
DCMT DISPLAY SYSTRACE A-17
DCMT DISPLAY TRANSACTION SHARING A-18
DCMT VARY AREA A-19
DCMT VARY DBTRACE A-20
DCMT VARY DEADLOCK A-21
DCMT VARY DISTRIBUTED RESOURCE MANAGER A-22
DCMT VARY DISTRIBUTED TRANSACTION A-24
DCMT VARY DMCL, A-26
DCMT VARY DYNAMIC PROGRAM A-28
DCMT VARY DYNAMIC TASK A-29
DCMT VARY FILE A-31
DCMT VARY LTERM A-32
DCMT VARY PROGRAM A-33
DCMT VARY PTERM A-37
DCMT VARY REPORT A-39
DCMT VARY SEGMENT A-40
DCMT VARY SUBTASK A-41
DCMT VARY SYSTRACE e, A-42
DCMT VARY TASK . . . A-43
DCMT VARY TRANSACTION SHARING A-45
How to Broadcast System Tasks A-46
Command Codes, A-48

Appendix A. New and Revised DCMT Commands A-1

A.1 Overview

A.1 Overview

This appendix describes DCMT commands that are new or that have changed in
Release 16.0.

A-2 Advantage CA-IDMS Release Summary

A.2 DCMT SHUTDOWN

A.2 DCMT SHUTDOWN

This command has been enhanced to inhibit prompting for permission to proceed with
system shutdown.

This section describes only the new parameters of this command. For more
information, see Advantage CA-IDMS System Tasks and Operator Commands.

A.2.1 Syntax

A\
A

»»—— DCMT SHUTDOWN
L IMMediate 1L NOPrompt J

A.2.2 Parameters

NOPrompt
Requests that the system proceed to shutdown without prompting for permission to
proceed.

Appendix A. New and Revised DCMT Commands A-3

A.3 DCMT DISPLAY AREA

A.3 DCMT DISPLAY AREA

This command has been enhanced to allow sorting the display aphabetically by area
name or by page group and page range.

This section describes only the new parameters of this command. For more
information, see Advantage CA-IDMS System Tasks and Operator Commands.

A.3.1 Syntax

»»—— DCMT

v

L broadcast-parms il

v

»— Display
AReas
SOrted By Name —:ﬁ
SOrted By Pages

A.3.2 Parameters

v
A

SOrted By Name
Displays the areas sorted alphabetically by area name.

SOrted By Pages
Displays the areas sorted by page group and page range.

A-4 Advantage CA-IDMS Release Summary

A.4 DCMT DISPLAY DBTRACE

A.4 DCMT DISPLAY DBTRACE

This new command displays information about the database trace.

A.4.1 Syntax

»— DCMT

v

L broadcast-parms i

A\
A

»— Display DBTRace

A.4.2 Parameters

broadcast-parms
Indicates to execute the DCMT command on all or alist of data sharing group
members. Refer to A.31, “How to Broadcast System Tasks’ on page A-46 for
more information on broadcasting and broadcast-parms syntax.

A.4.3 Example

The following example illustrates the use of the DCMT DISPLAY DBTRACE
command to see whether the trace is on and, if it is on, the size of the trace table:

DCMT DISPLAY DBTRACE
DBTrace is ON size 5000

Appendix A. New and Revised DCMT Commands A-5

A.5 DCMT DISPLAY DEADLOCK

A.5 DCMT DISPLAY DEADLOCK

This command has been enhanced to display the deadlock details current setting.

To ater the deadlock details setting, see A.15, “DCMT VARY DEADLOCK” on
page A-21.

A.5.1 Syntax

v

»»—— DCMT

L broadcast-parms]

A\
A

Details

»— Display DEAdlock —E Detection Interval
Intervals

A.5.2 Parameters

Details
Displays the current ON/OFF setting for deadlock details.

A-6 Advantage CA-IDMS Release Summary

A.6 DCMT DISPLAY DISTRIBUTED RESOURCE MANAGER

A.6 DCMT DISPLAY DISTRIBUTED RESOURCE MANAGER

This new command displays information about resource managers that are known to a
system.

A.6.1 Syntax

»— DCMT

v

L broadcast-parms i

A\
A

»— Display DISTributed —[RESource MANager B B
RM 'rm-name’

A.6.2 Parameters

broadcast-parms
Indicates to execute the DCMT command on all or alist of data sharing group
members. Refer to A.31, “How to Broadcast System Tasks’ on page A-46 for
more information on broadcasting and broadcast-parms syntax.

RESource M ANager
Valid values are 'rm-name’ and spaces. If ‘rm-name' is not specified, a list of all
known resource managers is displayed.

rm-name
Specifies the name of the resource manager to display. The rm-name value
must be enclosed in single quotes using the format "XXXXXXXX::yyyyyyyy'.
The rm-name value must match a value that appears on the summary display.

A.6.3 Examples
The example below illustrates the use of the DCMT DISPLAY DISTRIBUTED

RESOURCE MANAGER command to obtain a summary of known resource
managers.

DCMT D DIST RM

RM Name Status Startup time (UTC) PndResync
SYSTEM73::RRS_RMI Open N/A 0
SYSTEM73::DSI_CLI Open 2003-01-30-11.36.05.368120 0
SYSTEM73::DSI_SRV Open 2003-01-30-11.36.05.368120 0
SYSTEM72::DSI_SRV Initial *Unknown 1
SYSTEM74::DSI_SRV ~ Open 2003-01-31-13.17.27.855555 1

The example below illustrates the use of the DCMT DISPLAY DISTRIBUTED
RESOURCE MANAGER command to obtain detailed information about an individual
resource manager and al distributed transactions in which it has an interest.

Appendix A. New and Revised DCMT Commands A-7

A.6 DCMT DISPLAY DISTRIBUTED RESOURCE MANAGER

DCMT D DIST RM 'SYSTEM74::DSI_SRV'

RM Name SYSTEM74::DSI_SRV

Status Open

Startup time (UTC) 2003-01-31-13.17.27.855555

Task/LTE |[Distributed transaction ID-Branch ID Ctr1|State|Ind|Qutcome
*none SYSTEM74::01650D6EDFB1AB93-01650D6A79F31E50 [IDMS | InDbt [Rsy [0K

A.6.4 Usage

Output from DCMT DISPLAY DISTRIBUTED RESOURCE MANAGER: Output
from this command shows the following summary information:

® The name of the resource manager
® The resource manager's status. Valid values are:

— Initial or Closed — Resynchronization of the resource manager has not
occurred.

— Open — Resynchronization with the identified resource manager completed
successfully.

— ResyncQued — Resynchronization is in-progress or abnormally terminated.

— ResyncCmpl — Resynchronization completed unsuccessfully, probably
because the resource manager is not active.

® The time the resource manager was last started, if known to the local system. The
time that is shown isa UTC (GMT) value.

» The number of distributed transactions pending resynchronization in which this
resource manager has an interest.

Output from DCMT DISPLAY DISTRIBUTED RM ‘rm-name’: Output from this
command includes the above summary information as well as a list of the distributed
transactions in which the resource manager has an interest. The latter information may
not always be available, depending on the type of resource manager being displayed.
For a description of the transaction-related information, refer to the DCMT DISPLAY
DISTRIBUTED TRANSACTION summary command.

A-8 Advantage CA-IDMS Release Summary

A.7 DCMT DISPLAY DISTRIBUTED TRANSACTION

A.7 DCMT DISPLAY DISTRIBUTED TRANSACTION

This new command displays information about distributed transactions.

A.7.1 Syntax

»— DCMT

v

L broadcast-parms i

A\
A

ID 'dist-tran-id' —
XID 'ext-tran-id' —

»— Display DISTributed TRansaction E
RESync

A.7.2 Parameters

broadcast-parms
Indicates to execute the DCMT command on all or alist of data sharing group
members. Refer to A.31, “How to Broadcast System Tasks’ on page A-46 for
more information on broadcasting and broadcast-parms syntax.

DISTributed Transaction
Provides a list of distributed transactions. |f no other options are entered, a list of
al distributed transactions is displayed. Valid options are:

ID dist-tran-id
Provides detailed information about the distributed transaction that is assigned
to this ID. The dist-tran-id value must be enclosed in single quotes, using the
format XXXXXXXX::YYYYYYYYYyyyyyyy'. The dist-tran-id value must match a
value that appears on the summary display.

XID ext-tran-id
Provides detailed information about the distributed transaction assigned to this

ID. The ext-tran-id value is the hexadecimal value of an XA XID or a RRS
URID. The ext-tran-id value must be enclosed in single quotes.

RESync
Displays a summary of al distributed transactions pending resynchronization.

A.7.3 Examples

The example below illustrates the use of the DCMT DISPLAY DISTRIBUTED
TRANSACTION command to obtain a summary of known distributed transactions.

DCMT D DIST TR

Task/LTE |Distributed transaction ID-Branch ID Ctr1|State|Ind|Outcome
*none SYSTEM74::01650D6EDFB1AB93-01650D6A79F31E50| IDMS | InDbt [Rsy | 0K
00123 SYSTEM74::01650D7920C25DE0-01650D75FOFC2550 | IDMS [InDbt |- |OK

Appendix A. New and Revised DCMT Commands A-9

A.7 DCMT DISPLAY DISTRIBUTED TRANSACTION

The example below illustrates the use of the DCMT DISPLAY DISTRIBUTED
TRANSACTION command to obtained detailed information about an individual
transaction.

DCMT D DIST TR ID 'SYSTEM74::01650D6EDFB1AB93' Top Tlevel transaction branch:

Task/LTE *none Res. indicator Rsy
Distr. tr. ID SYSTEM74::01650D6EDFB1AB93 Control IDMS
Branch ID 01650D6A79F31E50 State InDoubt
Local ID *none Outcome 0K
External ID *none

Controlling interest:

RM name SYSTEM74::DSI_SRV Role SDSRM

Interest state InDoubt Protocol Presumed Abort
One phase commit Not Supported Journal Yes

Resync Yes Manual Yes

Restart Yes

Subordinate transaction branch

Branch ID 01650DA79956B32B State InDoubt
Local ID 1416 Outcome 0K
External ID *none

A.7.4 Usage

Output from DCMT DISPLAY DISTRIBUTED TRANSACTION: The following
summary information is shown for distributed transactions included in this display.

®» The task or logical terminal element associated with the transaction. If an active
task is processing the transaction, the task ID is shown. If alogical terminal but
no task is associated with the transaction, the LTE's ID is shown. A distributed
transaction that is pending resynchronization or pending completion by RRS or an
XA transaction manager may have no associated task or logical terminal.

» The distributed transaction ID (DTRID) assigned to the transaction.
» Theidentifier of the top-level branch of the transaction.

® The type of the transaction manager, or coordinator, that isin control of the
transaction. Possible types are:

— IDMS — Advantage CA-IDMS
RRS — RRS

XA — XA transaction manager
— CICS — CICS system
® The state of the transaction. Possible states are:
— Reset — InReset
— InFH — InFlight
— InPrp — InPrepare

A-10 Advantage CA-IDMS Release Summary

A.7 DCMT DISPLAY DISTRIBUTED TRANSACTION

— InDbt — InDoubt
— LstAg — LastAgent
— InBck — InBackout
— InCmt — InCommit
— Forg — Forgotten

® Anindication of whether this transaction is pending resynchronization. Possible
values are;

— Rsy — The transaction is pending resynchronization
— Rst — The transaction was restarted and is pending resynchronization
® The transaction's outcome to date. Possible outcomes are:
- OK — OK
— OK_P — OK_Pending
— FGT — Forget
— BACK — Backout
— BK_P — Backout_Pending
— HC — Heuristic Commit
— HM — Heuristic Mixed
— HR — Heuristic Reset
For information on the following, see 3.3, “Two-Phase Commit Support Within
Advantage CA-IDMS’ on page 3-7:
» Distributed Transaction Identifier (DTRID)
® Transaction State
® Transaction Outcome
Output from DCMT DISPLAY DISTRIBUTED TRANSACTION ID/XID: The
detail displayed for a distributed transaction includes information on each of the

branches comprising the transaction. A transaction aways has one top-level branch and
may or may not have subordinate branches.

The information listed below is displayed for a top-level branch. See the description
above of the summary output for details on each of these fields:

m The task or logical terminal ID that is associated with the transaction.

® Anindication of whether this transaction is pending resynchronization.

» The DTRID assigned to the transaction.

® The type of the transaction manager that is in control of the transaction.

The following information is displayed for all transaction branches:

Appendix A. New and Revised DCMT Commands A-11

A.7 DCMT DISPLAY DISTRIBUTED TRANSACTION

The identifier assigned to the branch.
The state of the transaction branch.

The local transaction ID (LID) if database access was performed under control of
the branch.

The commit outcome to date for the transaction branch.
The external identifier assigned to the transaction branch if applicable.

Information on interests in the branch that have been registered by resource
managers

The following information is displayed for each interest associated with a transaction:

An indication of whether this is a controlling interest. A controlling interest is one
that was registered by the transaction's coordinator.

The name of the resource manager that registered the interest.

The role that the associated resource manager plays within the transaction.
Possible values are:

— SDSRM — Server Distributed Resource Manager
— CRM — Communications Resource Manager
— PART — Participant
The state of the interest.
The commit protocol used by the resource manager. Possible values are:
— Presumed Abort
— Presumed Nothing

Whether the resource manager supports a one-phase commit protocol. Possible
values are:

— Supported — Indicating that the resource manager is capable of processing a
one-phase commit request

— Not Supported — Indicating that the resource manager is not capable of
processing a one-phase commit request

— Only — Indicating that the resource manager is only capable of supporting a
one-phase commit request

An indication of whether the interest is to be journaled or not.

An indication of whether resynchronization is pending with the interest's resource
manager.

An indication of whether the transaction must be completed manually, due to a
resynchronization failure.

An indication of whether the interest was restarted following an abnormal system
termination.

A-12 Advantage CA-IDMS Release Summary

A.7 DCMT DISPLAY DISTRIBUTED TRANSACTION

For information on the following, see 3.3, “Two-Phase Commit Support Within
Advantage CA-IDMS’ on page 3-7:

» Distributed Transaction Identifier (DTRID)
® Transaction and interest states
® Transaction and interest outcomes

® Transaction branches and interests

Appendix A. New and Revised DCMT Commands A-13

A.8 DCMT DISPLAY LINE

A.8 DCMT DISPLAY LINE

The DCMT DISPLAY LINE command is enhanced with a new parameter that
provides TCP/IP information.

A.8.1 Syntax

A\
A

»— DCMT Display LINe line-id r]
IPInfo

A.8.2 Parameters
line-id
The ID of aline specified on the system generation line statement.

IPInfo
Optiona keyword to request output of TCP/IP information, which consists of:

m Statistics: central version global data
» Default and current TCP/IP stack.
® A table that describes the TCP/IP stacks defined to the operating system.

A.8.3 Example

Output from the command DCMT D LINE TCPIP IPINFO:

Number of sockets created

Number of sockets currently open

HWM of concurrent open sockets (global)
HWM of concurrent open sockets (1 LTERM)
Number of "no BULK PTE" connection rejects
Number of socket reads 506
Number of socket writes 253
Default tcp/ip stack job name RUNTCP1
Current tcp/ip stack job name

O~ MN NN

Hostname IP address Job name Active IPv6
HOST1CA 123.456.789.1 RUNTCP1 Y N
RUNTCP1B N
HOST1IBM 123.456.789.2 TCPIPH1I Y N
HOSTICF 123.456.789.3 TCPIPH1X Y N

A-14 Advantage CA-IDMS Release Summary

A.9 DCMT DISPLAY SEGMENT

A.9 DCMT DISPLAY SEGMENT

This command has been enhanced to allow all segments to be displayed.

A.9.1 Syntax

»»—— DCMT >
L broadcast-parms]

v

»—— Display

> SEGment segment-name
—[SEGments

A\
A

A.9.2 Parameters

SEGment
Displays information about the areas in a segment.

segment-name
The name of the segment whose information is to be displayed.

SEGments
Lists al segments known to the runtime system.

A.9.3 Example

DCMT DISPLAY SEGMENTS

Segment-Name Schema-Name Type Pg-Grp Radix Datetime-stamp
AAA Network 25 8 2004-03-02-09.28.15
DAR SQL 0 8 2004-03-02-09.28.14
DBCR Network 15 8 2004-03-02-09.28.15
EMPDEMO Network 0 8 2004-03-02-09.28.14
ETOT Network 32 8 2004-03-02-09.28.14
KJM Network 35 8 2004-03-02-09.28.15
LRD Network 30 8 2004-03-02-09.28.15
QADICT Network 0 8 2004-03-02-09.28.14
QAMISC Network 0 8 2004-03-02-09.28.14
R120DICT Network 0 8 2004-03-02-09.28.14
SYSDAR SQL 0 8 2004-03-02-09.28.14
SYSDEF Network 0 8 2004-03-02-09.28.14
SYSDICT Network 0 8 2004-03-02-09.28.14
SYSLOCAL Network 1 8 2004-03-02-09.28.14
SYSMSG Network 0 8 2004-03-02-09.28.14
SYSSQL SQL 0 8 2004-03-02-09.28.14
SYSUSER Network 0 8 2004-03-02-09.28.14
USERDB SQL 0 8 2004-03-02-09.28.14
USERDB2 SQL 2 8 2004-03-02-09.28.14
VSAMT Network 0 8 2004-03-02-09.28.14

V74 ENTER NEXT TASK CODE:

Appendix A. New and Revised DCMT Commands A-15

A.10 DCMT DISPLAY SUBTASK

A.10 DCMT DISPLAY SUBTASK

This modified command provides you with information about the CPU's effectiveness.

A.10.1 Syntax

\4
A

»— DCMT Display SUBTask EFFectiveness

A.10.2 Example

The following example illustrates the use of DISPLAY SUBTASK EFFECTIVENESS
to display CPU effectiveness:

DCMT D SUBTASK EFFECTIVENESS
**% Subtask display **x

Subtask % CPU
Name Elapsed time Total CPU time effectiveness
MAINTASK 00:02:41.9079 00:00:11.1475 66

A-16 Advantage CA-IDMS Release Summary

A.11 DCMT DISPLAY SYSTRACE

A.11 DCMT DISPLAY SYSTRACE

This new command displays information about the system trace.

A.11.1 Syntax

»— DCMT

\/

L broadcast-parms i

»— DISPLAY SYSTRace

\
A

A.11.2 Parameters

broadcast-parms
Indicates to execute the DCMT command on all or alist of data sharing group
members. Refer to A.31, “How to Broadcast System Tasks’ on page A-46 for
more information on broadcasting and broadcast-parms syntax.

A.11.3 Example

The following example illustrates the use of the DCMT DISPLAY SYSTRACE
command to see whether the trace is on and, if it is on, the number of entries in the
trace table:

DCMT DISPLAY SYSTRACE
System trace is ON entries 2500

Appendix A. New and Revised DCMT Commands A-17

A.12 DCMT DISPLAY TRANSACTION SHARING

A.12 DCMT DISPLAY TRANSACTION SHARING

This new command displays information about transaction sharing.

A.12.1 Syntax

»— DCMT

v

L broadcast-parms l

A\
A

»— Display TRansaction SHaring

A.12.2 Parameters

broadcast-par ms
Indicates to execute the DCMT command on all or alist of data sharing group
members. Refer to A.31, “How to Broadcast System Tasks’” on page A-46 for
more information on broadcasting and br oadcast-par ms syntax.

A.12.3 Example

The following example illustrates the use of the DCMT DISPLAY TRANSACTION
SHARING command to see whether transaction sharing is on:

DCMT D TRANSACTION SHARING
Transaction Sharing OFF

A-18 Advantage CA-IDMS Release Summary

A.13 DCMT VARY AREA

A.13 DCMT VARY AREA

This command has been enhanced to provide allocation or deallocation of all files
associated with a specified area.

This section describes only the new parameters of this command. For more
information, see Advantage CA-IDMS System Tasks and Operator Commands.

A.13.1 Syntax

Expansion of file-status

AlLlocate
Close ————————
DEallocate ———

Open —— T~
Update

v

A.13.2 Parameters

Al locate
Dynamically allocates al files associated with the specified area. The files are
alocated using their currently assigned data set name.

Note: This option applies to Z/OS, z/VM, and BS2000/0SD files only.

DEallocate
Dynamically deallocates al files associated with the specified area.

Note: This option applies to Z/OS, z/VM, and BS2000/0SD files only.
A.13.3 Usage

Dynamic file deallocation: In order to deallocate an area, it and any areas
contained in the same files must be offline.

Appendix A. New and Revised DCMT Commands A-19

A.14 DCMT VARY DBTRACE

A.14 DCMT VARY DBTRACE

This new command lets you turn the database trace on and off and set the size of the
trace table.

A.14.1 Syntax

»>— DCMT

v

L broadcast-parms J

<
Q
S
<
o
©
3
=
Q
[}
™
=)
=
a
1
(%]
N
(1)
v
A

A.14.2 Parameters

broadcast-par ms
Indicates to execute the DCMT command on all or alist of data sharing group
members. Refer to A.31, “How to Broadcast System Tasks’” on page A-46 for
more information on broadcasting and br oadcast-par ms syntax.

OFF
Disables database tracing.

ON
Enables database tracing.

Slze table-size
Specifies the size of the database trace table, where table-size is the size of the
table in kilobytes.

A.14.3 Examples

The following example illustrates the use of the DCMT VARY DBTRACE command
to turn the database trace off:

DCMT VARY DBTRACE OFF
DBTrace is OFF

The following example illustrates the use of the DCMT VARY DBTRACE command
to set the size of the database trace table:

DCMT VARY DBTRACE ON SIZE 6144
DBTrace is ON size 6144

A-20 Advantage CA-IDMS Release Summary

A.15 DCMT VARY DEADLOCK

A.15 DCMT VARY DEADLOCK

This command has been enhanced to allow control over whether to generate additional
information during deadlock resolution.

A.15.1 Syntax

v

»»—— DCMT

L broadcast-parms il

\4
A

»—— Vary DEAdlock —[detection Interval detection-interval |
Details ON
L orr]

A.15.2 Parameters

Details
Initiates or terminates the generation of additional messages during the resolution
of a deadlock.

ON
Initiates the generation of message DC001001.

OFF
Terminates the generation of message DC001001.

The system default option is OFF, unless overridden by a DEADLOCK _ DETAILS
parameter included in the SY SIDMS file.

Note: To display the deadlock details current setting, see A.5, “DCMT DISPLAY
DEADLOCK” on page A-6.

A.15.3 Usage

Generating additional deadlock information: If you vary deadlock details ON,
the deadlock detector provides additional information in the form of DC001001
messages during the processing of a deadlock. This information can prove useful in
researching the cause of a deadlock situation because it identifies the programs and
subschemas involved. However, it also increases the overhead of detecting deadlocks.
In an active system in which waits for resources are common, it is recommended that
the generation of deadlock details only be initiated when researching a specific
deadlock situation.

Appendix A. New and Revised DCMT Commands A-21

A.16 DCMT VARY DISTRIBUTED RESOURCE MANAGER

A.16 DCMT VARY DISTRIBUTED RESOURCE MANAGER

This new command initiates resynchronization with or deletes the specified resource
manager.

A.16.1 Syntax

»>— DCMT

v

L broadcast-parms J

»— Vary DISTributed RESource MANager :’—'rm-name' RESYNC <
—[RM —E DELete

A.16.2 Parameters

broadcast-par ms
Indicates to execute the DCMT command on all or alist of data sharing group
members. Refer to A.31, “How to Broadcast System Tasks’” on page A-46 for
more information on broadcasting and br oadcast-par ms syntax.

RESource M ANager
Valid values are 'rm-name’ and spaces. If 'rm-name’ is not specified, a list of al
known resource managers is displayed.

rm-name
Specifies the name of the resource manager to display. The rm-name value
must be enclosed in single quotes using the format "XXXXXXXX::YYyyyyyyy'.
The rm-name value must match a value that appears on the summary display.

RESYNC
Specifies that resynchronization be performed on the named resource manager.

DEL ete
Specifies that the named resource manager and any interests associated with it be
deleted.

A.16.3 Example

The following example illustrates the use of the DCMT VARY DISTRIBUTED
RESOURCE MANAGER command to initiate resynchronization with the
SYSTEM74::DSI_CLI resource manager.

DCMT V DIST RM 'SYSTEM74::DSI_CLI' RESYNC

Resource manager SYSTEM74::DSI_CLI RESYNC successfully initiated.

A-22 Advantage CA-IDMS Release Summary

A.16 DCMT VARY DISTRIBUTED RESOURCE MANAGER

A.16.4 Usage

Resource manager limitations: Not all resource managers support resynchronization
initiated through a DCMT VARY DISTRIBUTED RESOURCE MANAGER
command. This is the case for CICS resource managers and resource managers whose
name ends with "DSI_SRV". Resynchronization with such resource managers can be
initiated only from the associated front-end system. An error message is displayed if
the specified resource manager does not support resynchronization through this
command.

Deleting resource managers: When a resource manager is deleted, all record of
that resource manager is eliminated from the system. The DCMT VARY RESOURCE
MANAGER DELETE command should only be used when the resource manager no
longer exists. For example, when a DC/UCF system is removed from the network. By
deleting the resource manager, no further attempt is made to resynchronize with that
resource manager at startup.

Note: Only resource managers whose name ends in "DSI_CLI" or "DSI_SRV" can be
deleted.

For resource managers whose name ends in "DSI_SRV": Use the DCMT
DISPLAY DISTRIBUTED RESOURCE MANAGER command to determine if the
resource manager has associated interests, before deleting the resource manager. If the
resource manager's name ends in "DSI_SRV" the delete request fails if there are
outstanding interests. Use the DCMT VARY DISTRIBUTED TRANSACTION
command to manually complete each transaction before deleting the resource manager.

For resource managers whose name ends in "DSI_CLI": If the resource
manager's name ends in "DSI_CLI", its associated interests are deleted automatically
as part of deleting the resource manager. After deleting the resource manager, use the
DCMT VARY DISTRIBUTED TRANSACTION command to complete any
transactions whose interests were deleted. Since no further attempt will be made to
communicate with the deleted transaction manager, the transactions will now be able
to complete.

Appendix A. New and Revised DCMT Commands A-23

A.17 DCMT VARY DISTRIBUTED TRANSACTION

A.17 DCMT VARY DISTRIBUTED TRANSACTION

This new command forces the completion of a distributed transaction that either:
® |s pending resynchronization

® Has no associated or task or user session

A.17.1 Syntax

»»— DCMT Vary >

L broadcast-parms —J
»— DISTributed Transaction —[ID 'dist-tran-id' BACKout <
XID 'ext-tran-id' j—E COMmit ﬂ
FORget
A.17.2 Parameters

broadcast-parms
Indicates to execute the DCMT command on all or alist of data sharing group
members. Refer to A.31, “How to Broadcast System Tasks’ on page A-46 for
more information on broadcasting and br oadcast-par ms syntax.

DISTributed Transaction
Provides a list of distributed transactions. If no other options are entered, a list of
all distributed transactions is displayed. Valid options are:

ID dist-tran-id
Provides detailed information about the distributed transaction that is assigned
to this ID. The dist-tran-id value must be enclosed in single quotes, using the
format "XXXXXXXX::YYYYYYYYyyyyyyyy'. The dist-tran-id value must match a
value that appears on the summary display.

XID ext-tran-id
Provides detailed information about the distributed transaction assigned to this
ID. The ext-tran-id value is the hexadecimal value of an XA XID or a RRS
URID. The ext-tran-id value must be enclosed in single quotes.

BACkout
Specifies that the transaction should be backed out. BACkout can only be
specified if the transaction's state is InDoubt or InBackout.

COMmit
Specifies that the transaction should be committed. COMmit can only be specified
if the transaction's state is InDoubt or InCommit.

FORget
Specifies that the transaction should be forgotten. FORget can only be specified if
the transaction's state is InBackout or InCommit.

A-24 Advantage CA-IDMS Release Summary

A.17 DCMT VARY DISTRIBUTED TRANSACTION

A.17.3 Example

A.17.4 Usage

The example below illustrates the use of the DCMT VARY DISTRIBUTED
TRANSACTION command to complete a distributed transaction whose state is
InDoubt.

DCMT V DIST TR ID 'SYSTEM74::01650D6EDFB1AB93' COMMIT

Transaction COMMIT initiated.

Completing transactions manually: Only distributed transactions that are pending
resynchronization or have no task or user session can be completed manually using a
DCMT VARY DISTRIBUTED TRANSACTION command. The need for issuing this
command is extremely rare and only as a result of a resynchronization failure. For
more information regarding resynchronization and the need for completing transactions
manually, see 3.3, “Two-Phase Commit Support Within Advantage CA-IDMS’ on

page 3-7.

When a DCMT command is used to force an InDoubt transaction to commit or
backout, the transaction branch is flagged as being heuristically committed or backed
out and its outcome is HC or HR respectively. Heuristically completed transactions
must be explicitly forgotten by:

® |ssuing aDCMT command

Or
» Allowing the coordinator to direct that the branch be forgotten
The coordinator should be given the chance to do so, unless it is permanently disabled

or its journa files (in the case of Advantage CA-IDMS) were prematurely formatted
thereby eliminating the information required to complete the transaction.

Appendix A. New and Revised DCMT Commands A-25

A.18 DCMT VARY DMCL

A.18 DCMT VARY DMCL

DCMT VARY DMCL is extended to provide the following enhancements:
= Memory cache option to prevent memory cache overflow

= Noprompt option to inhibit prompting for permission to proceed with changes

This section describes only the new parameters of this command. For more
information, see Advantage CA-IDMS System Tasks and Operator Commands.

A.18.1 Syntax

»»—— DCMT Vary DMCL

E New Co
> L NOPrompt |

MEMory CAChe —|: LOCation —[ANYwhere]

v

A\
A

64 BIT only
STOrage LIMit OPSys
—[nnn MB
GB
B
PB
EB

A.18.2 Parameters

NOPrompt
Inhibits prompting for permission to proceed. If NOPROMPT is specified, the
changes are displayed and then immediately implemented.

MEMORY CACHE
Indicates global options for memory cache:
LOCATION
Indicates where to allocate the storage for memory cache:

ANYWHERE
Memory cache storage is alocated from 64-bit storage; if no or not
enough 64-hit storage is available, dataspace storage is acquired.
64 BIT only
Memory cache storage is alocated from 64-bit storage; if no or not
enough 64-bit storage is available, memory caching fails.
STORAGE LIMIT
Controls the amount of storage used for memory caching:

OPSYS

Memory cache storage can be acquired until the operating system limit is
reached. For 64-bit storage, the operating system limit is set through the
MEMLIMIT parameter; for dataspace storage, the limit is optionally
imposed by an operating system exit.

A-26 Advantage CA-IDMS Release Summary

A.18 DCMT VARY DMCL

nnn MB, GB, TB, PB, EB
Advantage CA-IDMS controls the amount of memory cache storage if the
value specified is smaller than the operating system limit. nnn must be a
positive value between 1 and 32767. MB, GB, TB, PB, EB indicate the
unit in which nnn is expressed. The abbreviations stand for Mega Byte
(2**20), Giga Byte (2**30), Tera Byte (2**40), Peta Byte (2**50), and
Exa Byte (2**60).

Note: A dynamic change to memory caching through DCMT VARY DMCL applies
only to files that are opened AFTER the DCMT VARY DMCL command was
issued.

A.18.3 Examples

The following examples illustrate the use of the DCMT VARY DMCL command to
set where and how much memory cache storage can be allocated.

DCMT VARY DMCL MEMORY CACHE LOCATION ANYWHERE

DCMT V DMCL MEMORY CACHE LOCATION ANYWHERE

DMCL MEMORY CACHE LOCATION ANYWHERE

DCMT VARY DMCL MEMORY CACHE STORAGE LIMIT OPSYS

DCMT vV DMCL MEMORY CACHE STORAGE LIMIT OPSYS

DMCL MEMORY CACHE STORAGE LIMIT OPSYS

Appendix A. New and Revised DCMT Commands A-27

A.19 DCMT VARY DYNAMIC PROGRAM

A.19 DCMT VARY DYNAMIC PROGRAM

DCMT VARY DYNAMIC PROGRAM defines programs to the system at system run
time (that is, dynamically). The system uses information supplied in the DCMT
VARY DYNAMIC PROGRAM command to build a program definition element
(PDE) for the program. Programs defined in this way exist only for the duration of
system execution and have no effect on the system definition stored in the data
dictionary. This command was modified to support the multiple enclave feature.

A.19.1 Syntax

»»>—— DCMT Vary Dynamic Program . . .

A

Yyv

L MULtiple ENClave is T OFF
ON «

A.19.2 Parameters

MULtiple ENClave is
Specifies whether the system allows the same language enclave as other LE
programs. This parameter is only meaningful for COBOL programs.

ON
Specifies that this program can participate in a multiple program LE enclave.
This is the defaullt.

Note: This vaue is effective only if MULTIPLE ENLAVE is ON is
specified on the SYSTEM statement in the sysgen.

OFF
Specifies that this program cannot participate in a multiple program LE
enclave.

A.19.3 For More Information

About program definition at system generation time and PDES, refer to documentation
of the PROGRAM statement in Advantage CA-IDMS System Generation Guide.

A-28 Advantage CA-IDMS Release Summary

A.20 DCMT VARY DYNAMIC TASK

A.20 DCMT VARY DYNAMIC TASK

A.20.1 Syntax

A.20.2 Parameters

This command allows the user to define tasks at system runtime, thereby allowing
tasks that are not defined in the sysgen to be used. DCMT VARY DYNAMIC TASK
is extended in Release 16.0 to include parameters that control transaction sharing and
commit and rollback behavior.

This section describes only the new parameters of this command. For more
information, see Advantage CA-IDMS System Tasks and Operator Commands.

»»— DCMT Vary Dynamic Task . . .

v

»
»

A\

v

WRIte COMT

L ON COMmit —E SYStem «
WRIte ENDJ

NEW ID <—
RETain ID —

\ 4

v

RETain ID —
NEW ID ——

L on RoLTback _E syStem «—r—vp

A\
A

L TRAnsaction SHAring OFF ——
I3
SYStem <

ON COMmit

Specifies options that control commit behavior. These options apply only to
commit operations in which the database session remains active.

SY Stem
Specifies that the commit behavior for the task should default to that specified
for the system.

WRIte COMT
Specifies that a COMT journal record should be written.

WRIte ENDJ
Specifies that an ENDJ journal record should be written.

NEW ID
Specifies that a new local transaction ID should be assigned to the next
transaction started by the database session.

RETain ID
Specifies that the current local transaction 1D should be assigned to the next
transaction started by the database session.

Appendix A. New and Revised DCMT Commands A-29

A.20 DCMT VARY DYNAMIC TASK

ON ROL Iback
Specifies options that control rollback behavior. These options apply only to
rollback operations in which the database session remains active.

SY Stem
Specifies that the rollback behavior for the task should default to that
specified for the system.

RETain ID
Specifies that the current local transaction 1D should be assigned to the next
transaction started by the database session.

NEW ID
Specifies that a new local transaction ID should be assigned to the next
transaction started by the database session.

TRAnNsaction SHaring
Specifies the setting for the transaction sharing option.

ON
Specifies that transaction sharing should be initially enabled for any task of
this type.

OFF
Specifies that transaction sharing should be initialy disabled for any task of
this type.

SY Stem
Specifies that the transaction sharing option for a task of this type is based on
the system default established in the sysgen or by a DCMT VARY
TRANSACTION SHARING command.

A.20.3 Example

The following example defines a new task code 'FOU'. Transaction sharing is initialy
enabled for the task.

DCMT V D T FOU INVOKES MYPROG TRANSACTION SHARING ON
IDMS DC273001 V73 USER:JSMITH Task FOU Added

A-30 Advantage CA-IDMS Release Summary

A.21 DCMT VARY FILE

A.21 DCMT VARY FILE

A.21.1 Syntax

This command changes the status of a specified file. This command is extended in
Release 16.0 to let you specify if the file is cached in memory.

This section describes only the new parameters of this command. For more
information, see Advantage CA-IDMS System Tasks and Operator Commands.

v

»»— DCMT Vary File ...

A\
A

»
»

L memory cac
NO
L

A.21.2 Parameters

YES
MEMORY
Specifies if the file is cached in memory.
NO

Specifies that the file is not cached in memory.

YES
Specifies that the file is cached in memory.

A.21.3 Example

The following example causes file EMPDEMO.EMPDEMO to be cached in memory:

DCMT V FILE EMPDEMO.EMPDEMO MEMORY CACHE YES

———————— Data File -------- Mode Stat Pg-Size FI1-Type M-Cache S-Cache DD-Name
EMPDEMO . EMPDEMO Ret 0 4276 non-VSAM Yes No EMPDEMO
Pre-fetch: Not-Allowed (DMCL) Pages per Track 11 DISP=SHR (DMCL)

DSname: (DMCL).. DBDC.SYSTEM71.EMPDEMO.EMPDEMO
DSname: (DMCL).. DBDC.SYSTEM71.EMPDEMO.EMPDEMO

—————————— Area ----------- Lock Lo-Page Hi-Page #Ret #Upd #Tret #Ntfy
EMPDEMO. EMP-DEMO-REGION Ret 75001 75100 0 0 0 0
Stamp: 1999-11-16-08.17.07.104886 Pg grp: 0 NoShare NoICVI NoPerm

Appendix A. New and Revised DCMT Commands A-31

A.22 DCMT VARY LTERM

A.22 DCMT VARY LTERM

This command has been enhanced to support tracing for TCP/IP socket programs.

A.22.1 Syntax

v

»»— DCMT Vary LTErminal logical-terminal-id

\4
A

ALL

CAL1s
E REAd data
WRIte data

L 1¢p/1p TRace —{f OFF |

A.22.2 Parameters

OFF
Terminates TCP/IP tracing.

CALLS
Activates TCP/IP function tracing. A record is output to the LOG.

READ data
Specifies an entry is written to the log when data is read through the TCP/IP
function.

WRITE data
Specifies an entry is written to the log when data is written using the TCP/IP
function.

ALL
Combines CALLS, READ data and WRITE data.

Note: Use the TCP/IP trace facility with care because it can generate a lot of output.

A.22.3 Example

This command activates the TCP/IP trace.

DCMT V LTE IPLTE@12 TCP/IP TRACE ALL

IDMS DC267016 Vnnnn USER:#*x LTERM IPLTEOQ12 TCP/IP TRACE VARIED TO ALL

A-32 Advantage CA-IDMS Release Summary

A.23 DCMT VARY PROGRAM

A.23 DCMT VARY PROGRAM

A.23.1 Syntax

This command changes attributes in the program definition element of an existing
program. VARY PROGRAM is extended in Release 16.0 to allow you to modify any
program attribute that is specified in the sysgen.

This section describes only the modified syntax of this command. For more
information, see Advantage CA-IDMS System Tasks and Operator Commands.

»»— DCMT Vary PRogram . . .

—

v

CONcurren

L DEFine T

—— ISA size

\ 4
A

t
NONCONcurrent i

nn

— LANguage

MAInline
NOMAINTin

T

COBol
PLI

ADSo
E ASSembTer —

e J

— MPMode

OVErlayab
NONOVEr1a

T

T

T

— TYPe

REEntrant
NONREEntr
QUAsireen

SAVearea
NOSAVEare

“— MULTiple ENClave —I:

— New Copy ————I:

ANY
L SYStem —J

ENabled

DIsabled]

le
yable]

ant __tj
trant

aJ

DIATog

MAP
PROgram —
SUBschema —
TABLe

ON «
OFF —

Note: The following restrictions apply:

® The only parameter that cannot be changed is the RESIDENT parameter.

® You can change the LANGUAGE or TYPE parameters of a program only if the

program is DISABLED.

Appendix A. New and Revised DCMT Commands A-33

A.23 DCMT VARY PROGRAM

A.23.2 Parameters

CONcurrent
Specifies that the program can be used by multiple tasks at the same time. If the
program is reentrant or quasi-reentrant, one copy of the program is used to process
all requests. If the program is nonreentrant, as many copies of the program are
used as necessary to process requests concurrently.

NONCONcurrent
Specifies that the program can be used by only one task.

ISA size nnn
For Assembler and PL/I programs only, specifies the amount of storage, in bytes,
allocated for the program's initial storage area (ISA). If an ISA is specified, GET
STORAGE statements are not required in the program because the system
automatically allocates the requested storage when the program begins executing.
The storage address is passed in register 11. nnn represents an integer in the range
0 through 2,147,483,647.

LANguage
Identifies the language in which the program is written:

» ADSo — Advantage CA-IDMS dialog
® ASSembler — an assembler program
® COBol — COBOL program

» PLI — PL/I program

MAInline
For Advantage CA-IDMS dialogs only, indicates the dialog is a mainline dialog.
Dialogs defined as MAINLINE are entry points into applications. The names of
mainline dialogs are eligible for display on the Advantage CA-IDMS menu screen
as alowed by ADSO statement specifications.

If you specify MAINLINE, the dialog must be generated with the MAINLINE
attribute but it does not have to be assigned a task code during system generation.

NOMAINIline
For Advantage CA-IDMS dialogs only, indicates the dialog is not a mainline
dialog.

MPM ode
Specifies the multiprocessing mode (MPMODE) for the program. SYSem directs
the system to assign an MPMODE to the program at execution time. ANY assigns
an MPMODE of ANY to the program. ANY is appropriate for reentrant and
guasi-reentrant programs that are defined without storage protection.

New Copy
Specifies whether the new copy facility is enabled for the program or subschema
ENable enables the new copy facility for the program or subschema. Disabled
disables the new copy facility for the program or subschema.

A-34 Advantage CA-IDMS Release Summary

A.23 DCMT VARY PROGRAM

OVErlayable
Specifies that the program can be overlaid in the program pool. Y ou should
specify OVERLAYABLE only for executable programs invoked through normal
DC mechanisms.

NONOVErlayable
Specifies that the program cannot be overlaid in the program pool. Y ou should
specify NONOVERLAY ABLE for nonexecutable programs (for example, tables)
to prevent such programs from being overwritten in the program pool while they
arein use.

REEntrant
Specifies that the program is reentrant. To be declared reentrant, the program must
acquire all variable storage dynamically and must not modify its own code.

NONREENtrant
Specifies that the program is nonreentrant. Programs that modify their own code
and do not ensure the modified code is returned to its original state when the
program is not in control must be declared NONREENTRANT.

QUAsSIreentrant
For COBOL programs only, specifies the program is quasi-reentrant. To be
declared quasi-reentrant, a program must not modify its own code unless the
program ensures the modified code is returned to its origina state when the
program is not in control. Quasi-reentrant programs are permitted to use working
storage because, each time the program is executed, the system creates a separate
copy of its working storage in the storage pool. This technique makes the
program, in effect, reentrant.

SAVearea
For Assembler programs only, specifies that the system will acquire a save area
automatically before each execution of the program. The save area address is
passed to the program in register 13. You should specify SAVEAREA or accept it
by default if the program uses normal IBM calling conventions and, at the start of
execution, saves registers in the save area.

NOSAVEarea
For Assembler programs only, specifies the system will not acquire a save area for
the program automatically.

TYPe
Specifies the program type: DIALog, MAP, PROgram, SUBschema, or TABLE.

MULtiple ENClaveis
Specifies whether the system allows the same language enclave as other LE
programs. This parameter is only meaningful for COBOL programs.

ON
Specifies that this program can participate in a multiple program LE enclave.
This is the defaullt.

Note: This value is effective only if MULTIPLE ENLAVE is ON is
specified on the SYSTEM statement in the sysgen.

Appendix A. New and Revised DCMT Commands A-35

A.23 DCMT VARY PROGRAM

OFF
Specifies that this program cannot participate in a multiple program LE
enclave.

A.23.3 Examples

The following example illustrates using the VARY PROGRAM command to change
the language:

DCMT VARY PROGRAM TESTPROG DEFINE LANGUAGE ASSEMBLER
IDMS DC262013 V71 USER:JSMITH PROGRAM TESTPROG CDMSLIB LANGUAGE CHANGED

The following example illustrates using the VARY PROGRAM command to change
the multiprocessing mode:

DCMT VARY PROGRAM TESTPROG DEFINE MPMODE ANY
IDMS DC262012 V71 USER:JSMITH PROGRAM TESTPROG CDMSLIB VARIED SUCCESSFULLY

The following example illustrates using the VARY PROGRAM command to change
the save area

DCMT VARY PROGRAM TESTPROG DEFINE NOSAVEAREA
IDMS DC262012 V71 USER:JSMITH PROGRAM TESTPROG CDMSLIB VARIED SUCCESSFULLY

A-36 Advantage CA-IDMS Release Summary

A.24 DCMT VARY PTERM

A.24 DCMT VARY PTERM

The DCMT VARY PTERM statement is used to manage generic listeners. Varying a
listener PTERM OFFLINE shuts down the generic listener, while varying ONLINE
starts the service. The DCMT VARY PTERM command is enhanced so you can
dynamically change parameters on a listener PTERM.

Note: Varying a generic listener OFFLINE only affects the listener but it does not
affect server tasks that are executing.

A.24.1 Syntax

v

»»— DCMT Vary PTErminal physical-terminal-id

A\
A

PORT Tistener-port-number
BACKLOG backlog
TASK task-code
MODE SYSTEM

E USER «- J
PARM 'string'
TCP/IP —E STACK stack-ip-name

ADDRess 'stack-ip-address' —
NAMe 'stack-host-name'

A.24.2 Parameters

listener-port-number
Number of the listener port. The port number is an integer in the range of 0
through 65535.

backlog
The value defines the maximum length for the queue of pending connections
TCP/IP alows before rejecting new connection requests. backlog is a positive
number between 1 and 1,147,483,647.

The value specified for backlog is not necessarily the value accepted by the
LISTEN call. Each TCP/IP implementation has a limit of its own. Advantage
CA-IDMS uses the lesser of the implementation's limit and the value specified for
the backlog parameter.

stack-ip-name
The job name of the TCP/IP stack. The name is limited to 8 characters.

Specifying *ALL on a multi-homed system (z/OS only) causes listening to all
active TCP/IP stacks. Specifying *DEFAULT causes listening to the default
TCP/IP stack.

stack-ip-address
IP address of the host. The limit of an IP address depends on whether IPv4 or
IPVv6 is used: the limit in IPv4 is 15 characters; in IPv6 it is 45 characters.

Appendix A. New and Revised DCMT Commands A-37

A.24 DCMT VARY PTERM

stack-host-name
Name of the host. The maximum length of the host name is 64 characters.

task-code
Name of the task code to invoke when a connection request is received.

MODE is USER/SYSTEM
Indicates whether the task attached by the listener runs in SYSTEM or USER
MODE. MODE is USER is the default. MODE is SYSTEM is only available
for application programs written in assembler.

string:
A character string that is passed to the task attached by generic listening. String is
limited to 80 characters.

A.24.3 Usage

Sack-ip-name, stack-ip-address and stack-host-name are mutually exclusive. Usually,
it is undesirable to specify any of these parameters because doing so might tie a
central version to an operating system image. The only situation in which specifying
one of the above parameters is useful is when the central version runs on a
multi-homed host and listening is to be restricted to a specific TCP/IP stack.

Note: Varying a generic listener OFFLINE only affects the listener but it does not
affect server tasks that are executing.

A-38 Advantage CA-IDMS Release Summary

A.25 DCMT VARY REPORT

A.25 DCMT VARY REPORT

This command has been enhanced to allow varying of multiple reports.

This section describes only the new parameters of this command. For more
information, see Advantage CA-IDMS System Tasks and Operator Commands.

A.25.1 Syntax

»»—— DCMT e >
L broadcast-parms |
»—— Vary REPort report-id >

Class from-class
Destination from-destination —

A.25.2 Parameters
Class
Varies al reports in the specified print class.

from-class
The name of the print class for which reports are to be varied.

Destination
Varies al reports queued to the specified destination.

from-destination
The name of the destination for which queued reports are to be varied.

Appendix A. New and Revised DCMT Commands A-39

A.26 DCMT VARY SEGMENT

A.26 DCMT VARY SEGMENT

This command has been enhanced to provide allocation or deallocation of all files
associated with a specified segment.

This section describes only the new parameters of this command. For more
information, see Advantage CA-IDMS System Tasks and Operator Commands.

A.26.1 Syntax

Expansion of file-status

AlLTocate
Close ———————
DEallocate ———

Open T—— T~
Update

v

A.26.2 Parameters

Al locate
Dynamically allocates all files associated with the specified segment. The files are
allocated using their currently assigned data set name.

Note: This option applies to z/OS, z/VM, and BS2000/0SD files only.

DEallocate
Dynamically deallocates al files associated with the specified segment.

Note: This option applies to zZ/OS, z/VM, and BS2000/0SD files only.
A.26.3 Usage

Dynamic file deallocation: In order to deallocate a segment, al of its areas must
be offline.

A-40 Advantage CA-IDMS Release Summary

A.27 DCMT VARY SUBTASK

A.27 DCMT VARY SUBTASK

This new command allows you to enable or disable the ability for a subtask to execute
calsto RRS.

A.27.1 Syntax

v

»»— DCMT

L broadcast-parms i

»— Vary SUBTask sub-task-no RRS ENabled
—E Disabled —J

v
A

A.27.2 Parameters

broadcast-parms
Indicates to execute the DCMT command on all or alist of data sharing group
members. Refer to A.31, “How to Broadcast System Tasks’ on page A-46 for
more information on broadcasting and broadcast-parms syntax.

SUBTask sub-task-no
Specifies the number of the subtask whose work type is to change. The
sub-task-no must be a value ranging from 2 through the maximum number of
subtasks specified for the system.

Notes:
m Subtask 1 (MAINTASK) can never execute cals to RRS.

= The number of subtasks cannot be changed. Therefore, if a system was started
with uni-tasking and without RRS support, the DCMT V SUBTASK command
will fail.

RRS
Specifies whether the subtask can execute calls to RRS.

ENabled
Specifies the subtask can execute calls to RRS.

Disabled
Specifies the subtask cannot execute calls to RRS.

A.27.3 Examples

This example illustrates the use of the DCMT VARY SUBTASK command to change
the type of work for subtask 2.

DCMT V SUBTASK 2 RRS DISABLED

IDMS DC285001 V73 USER:DEMO Subtask 002 RRS DISABLED

Appendix A. New and Revised DCMT Commands A-41

A.28 DCMT VARY SYSTRACE

A.28 DCMT VARY SYSTRACE

This new command lets you turn the system trace on and off and set the number of
entries in the trace table.

A.28.1 Syntax

»>— DCMT

v

L broadcast-parms J

»— DCMT VARY SYSTRace T OFF
ON ENTries nnn i

\4
A

A.28.2 Parameters

broadcast-par ms
Indicates to execute the DCMT command on all or alist of data sharing group
members. Refer to A.31, “How to Broadcast System Tasks’” on page A-46 for
more information on broadcasting and br oadcast-par ms syntax.

OFF
Disables the system trace.

ON
Enables the system trace.

ENTRIES nnn
Specifies the size of the system trace table, where nnn is the number of entries in
the table.

A.28.3 Examples

The following example illustrates the use of the DCMT VARY SYSTRACE command
to turn the system trace off:

DCMT VARY SYSTRACE OFF
System trace is OFF

The following example illustrates the use of the DCMT VARY SYSTRACE command
to set the number of entries in the system trace:

DCMT VARY SYSTRACE ON ENTRIES 5000
System trace is ON entries 5000

A-42 Advantage CA-IDMS Release Summary

A.29 DCMT VARY TASK

A.29 DCMT VARY TASK

This command changes attributes in the task definition element for a task that already
exists. DCMT VARY TASK has been extended in Release 16.0 to include parameters
that control transaction sharing and commit and rollback behavior.

This section describes only the new parameters of this command. For more
information, see Advantage CA-IDMS System Tasks and Operator Commands.

A.29.1 Syntax

»»— DCMT Vary TAsk . . .

v

—

L ON COMmit —E SYStem

\ 4
A

WRIte COMT
WRIte ENDJ t

NEW ID +—
RETain ID —

— ON ROLTback SYStem
—E RETain ID —

NEW ID —

— TRAnsaction SHAring ON
OFF —
SYSTEM —

A.29.2 Parameters

ON COMmit

Specifies options that control commit behavior. These options apply only to
commit operations in which the database session remains active.

SY Stem

Specifies that the commit behavior for the task should default to that specified
for the system.

WRIte COMT
Specifies that a COMT journal record should be written.

WRIte ENDJ
Specifies that an ENDJ journal record should be written.

NEW ID

Specifies that a new local transaction ID should be assigned to the next
transaction started by the database session.

RETain ID

Specifies that the current local transaction 1D should be assigned to the next
transaction started by the database session.

ON ROL Iback
Specifies options that control rollback behavior. These options apply only to
rollback operations in which the database session remains active.

Appendix A. New and Revised DCMT Commands A-43

A.29 DCMT VARY TASK

SYSTEM
Specifies that the rollback behavior for the task should default to that
specified for the system.

RETain ID
Specifies that the current local transaction 1D should be assigned to the next
transaction started by the database session.

NEW ID
Specifies that a new local transaction ID should be assigned to the next
transaction started by the database session.

TRAnNsaction SHaring
Specifies the setting for the transaction sharing option.

ON
Specifies that transaction sharing should initially be enabled for any task of
this type.

OFF
Specifies that transaction sharing should initially be disabled for any task of
this type.

SYStem
Specifies that the transaction sharing option for a task of this type is based on
the system default established by the sysgen's SYSTEM statement or by a
DCMT VARY TRANSACTION SHARING command.

A.29.3 Example

The following example alters task FOU so that it writes an ENDJ journal record on all
commit operations:

DCMT V TA FOU ON COMMIT WRITE ENDJ
IDMS DC261018 V73 USER:KKK ON COMMIT varied from SYSTEM to WRITE ENDJ NEW ID

A-44 Advantage CA-IDMS Release Summary

A.30 DCMT VARY TRANSACTION SHARING

A.30 DCMT VARY TRANSACTION SHARING

This new command lets you change the default transaction sharing option for the
system.

A.30.1 Syntax

»— DCMT

v

L broadcast-parms il

A\
A

»— VARY TRansaction SHaring —E ON a
OFF

A.30.2 Parameters

broadcast-parms
Indicates to execute the DCMT command on all or alist of data sharing group
members. Refer to A.31, “How to Broadcast System Tasks’ on page A-46 for
more information on broadcasting and broadcast-parms syntax.

ON
Specifies that, by default, transaction sharing is enabled for all tasks whose
transaction sharing option specifies SYSTEM.

OFF
Specifies that, by default, transaction sharing is disabled for all tasks whose
transaction sharing option specifies SYSTEM.

A.30.3 Example

The following example illustrates the use of the DCMT VARY TRANSACTION
SHARING command to activate transaction sharing:

DCMT V TRANSACTION SHARING ON
Transaction Sharing ON

Appendix A. New and Revised DCMT Commands A-45

A.31 How to Broadcast System Tasks

A.31 How to Broadcast System Tasks

A.31.1 Syntax

If the central version (CV) is a member of a data sharing group (DSG), system tasks
DCMT, DCUF and SEND can execute on other central versions that are members of
the same DSG. This is called broadcasting. Broadcasting can be done to al the DSG
members or alist of DSG members.

\ 4
A

»— task
L broadcast-parms —J

Expansion of broadcast-parms

»»— Broadcast >
L separator J
—f member-name name

A

A.31.2 Parameters

A.31.3 Usage

broadcast-parms
Specifies how to execute the task.

Broadcast
Indicates that the specified task must be executed on one or more members of the
data sharing group. If no list of members is given, the task is executed on ALL
members.

separator
Separates multiple member names. Use a comma or at least one space.

member-name
Identifies the data sharing member (or a list) on which the specified task is to be
executed.

Authorization: The issuing user must have the authority to execute the command on
all members of the group to which it is directed. If the needed authority is not held on
a member, the command will not execute on that member, but may on other members.

Output: The output from a broadcast command is segmented by member. All output
from one member is displayed before that of another member. When broadcasting to

all members, the output for the member on which the command is issued is displayed

first. A header indicating the name of the member identifies other member's output.

A-46 Advantage CA-IDMS Release Summary

A.31 How to Broadcast System Tasks

A.31.3.1 Restrictions on the Broadcastable Tasks

DCMT: All commands can be broadcast, except DCMT ABORT, DCMT
SHUTDOWN, DCMT VARY DMCL, DCMT QUIESCE, and DCMT

DISPLAY/VARY NUCLEUS.

DCUF: Only the DCUF SHOW USER command can be broadcast.

SEND: All commands can be broadcast. Parameter prompting is not possible when

broadcasting.

A.31.4 Examples

DCMT BV SEGMENT EMPDEMO

DCMT B V SEGMENT EMPDEMO OFFLINE

---------- Area ----------- Lock Lo-Page
EMPDEMO. EMP-DEMO-REGION 0f1 75001
Stamp: 2002-11-17-09.55.31.875826 Pg grp: 0
EMPDEMO. INS-DEMO-REGION 0f1 75101
Stamp: 2002-11-17-09.55.31.956231 Pg grp: 0
EMPDEMO.ORG-DEMO-REGION 0f1 75151
Stamp: 2002-11-17-09.55.31.887739 Pg grp: 0

===» Qutput from group member SYSTEM73

—————————— Area ----------- Lock Lo-Page
EMPDEMO . EMP-DEMO-REGION 0f1 75001
Stamp: 1001-08-07-14.58.14.855461 Pg grp: 0
EMPDEMO. INS-DEMO-REGION 0f1 75101
Stamp: 1001-08-07-14.58.14.896650 Pg grp: 0
EMPDEMO.ORG-DEMO-REGION 0f1 75151
Stamp: 1001-08-07-14.58.14.874287 Pg grp: 0

75100 0
NoShare NoICVI
75150 0
NoShare NoICVI
75200 0
NoShare NoICVI

75100 0
NoShare NoICVI
75150 0
NoShare NoICVI
75200 0
NoShare NoICVI

Hi-Page #Ret #Upd

0
0
0

Hi-Page #Ret #Upd

0
0
0

#Tret #Ntfy

0 0
NoPerm

0 0
NoPerm

0 0
NoPerm

#Tret #Ntfy

0 0
NoPerm

0 0
NoPerm

0 0
NoPerm

Appendix A. New and Revised DCMT Commands A-47

A.32 Command Codes

A.32 Command Codes

The following command codes apply to new and revissd DCMT commands available

in Release 16.0.

Code DCMT Command

NO09 VARY AREA

NO009016 DEALLOCATE

N009022 ALLOCATE

NO025 VARY PROGRAM

N025013 VARY PROGRAM MULTIPLE ENCLAVE ON

NO025014 VARY PROGRAM MULTIPLE ENCLAVE OFF

N025015 VARY PROGRAM DEFINE keyword

N025016 VARY PROGRAM DEFINE LANGUAGE

N025017 VARY PROGRAM DEFINE ISA SIZE

N025018 VARY PROGRAM DEFINE TYPE

N025019 VARY PROGRAM DEFINE MPMODE

NO064 DISPLAY or VARY DISTRIBUTED

N064001 DISPLAY DISTRIBUTED TRANSACTION

N064002 DISPLAY DISTRIBUTED TRANSACTION ID/XID

NO064006 DISPLAY DISTRIBUTED RESOURCE MANAGER

N064007 DISPLAY DISTRIBUTED RESOURCE MANAGER
rm-name

N064010 VARY DISTRIBUTED TRANSACTION ID/XID

N064011 VARY DISTRIBUTED RESOURCE MANAGER
rm-name

NO76 DISPLAY SUBTASK/MT

NO76005 DISPLAY SUBTASK EFFECTIVENESS

NO77 VARY SUBTASK

NO77001 VARY SUBTASK nnn RRS ENABLED

NO77002 VARY SUBTASK nnn RRS DISABLED

NO86 DISPLAY DEADLOCK

N086002 DISPLAY DEADLOCK DETAILS

NO87 VARY DEADLOCK

A-48 Advantage CA-IDMS Release Summary

A.32 Command Codes

Code DCMT Command

NO087003 VARY DEADLOCK DETAILS OFF

NO087004 VARY DEADLOCK DETAILS ON

NO089 VARY DMCL

N089006 VARY DMCL MEMORY CACHE STORAGE
LIMIT nnn xB

N089007 VARY DMCL MEMORY CACHE STORAGE
LIMIT OPSYS

N089008 VARY DMCL MEMORY CACHE LOCATION
64 BIT ONLY

N089009 VARY DMCL MEMORY CACHE LOCATION
ANYWHERE

N091 VARY SEGMENT

N091016 DEALLOCATE

N091022 ALLOCATE

N102 DISPLAY or VARY TRANSACTION SHARING

N102000 DISPLAY TRANSACTION SHARING

N102001 VARY TRANSACTION SHARING

N103 DISPLAY or VARY SYSTRACE or DBTRACE

N103001 DISPLAY SYSTRACE

N103002 VARY SYSTRACE OFF

N103003 VARY SYSTRACE ON

N103004 DISPLAY DBTRACE

N103005 VARY DBTRACE OFF

N103006 VARY DBTRACE ON

See the Advantage CA-IDMS Security Administration for information on how to use
these command codes to secure these DCMT commands.

Appendix A. New and Revised DCMT Commands A-49

A-50 Advantage CA-IDMS Release Summary

Appendix B. New and Revised SQL Statements

B.1 User-Defined SQL Function Statements B-2
B.2 SQL Scalar Functions B-15
B.3 Revised SQL Statements B-39
B.4 SQL/XML Functions and Table Procedure B-58

Appendix B. New and Revised SQL Statements B-1

B.1 User-Defined SQL Function Statements

B.1 User-Defined SQL Function Statements

This section discusses the new SQL statements available in Release 16.0 that let you
define external SQL functions. These functions are listed below:

ALTER FUNCTION

CREATE FUNCTION
DISPLAY/PUNCH FUNCTION
DROP FUNCTION

This section also explains how to invoke these functions.

B.1.1 Function Invocation

B.1.1.1 Purpose

Represents the invocation of a scalar function through a qualified or unqualified
function identifier together with an optional set of parameter values.

B.1.1.2 Authorization

To invoke a function, you must either own or hold the SELECT privilege on the
named function.

B.1.1.3 Syntax

L schema-name.J

»—

function-identifier

v

T
l— parameter-;pecification .

Expansion of parameter-specification:

>
»p>

B.1.1.4 Parameters

value-specification

\4
A

parameter-name = J

schema-name

Specifies the schema with which the function identified by function-identifier is
associated.

For information on using a schema name to qualify a function, see "ldentifying
Entities in Schemas" in the Advantage CA-IDMS Database SQL Option Reference
Guide.

B-2 Advantage CA-IDMS Release Summary

B.1 User-Defined SQL Function Statements

B.1.1.5 Usage

function-identifier
Identifies a function defined in the dictionary.

parameter-specification
Specifies a value to be assigned to a parameter of a function. Both the positional
(with NO parameter-name) and the non-positional (with parameter-name) forms of
parameter specification can be used in a single function invocation.

If a non-positional parameter specification is used, all remaining parameter
specifications in the parameter list MUST be non-positional. Positional parameter
specifications are assumed to correspond to the declared parameters of a function
in the sequence of their declaration.

parameter-name
Specifies the name of a parameter associated with the function.

value-specification
Any valid expression involving constants, host variables, database columns, and
scalar function invocations.

Passing and returning values to a function: During SQL function processing,
Advantage CA-IDMS issues a call to the corresponding external routine with the
values supplied in the function invocation. Before returning control, the external
routine must set a value for the implicitly defined output parameter USER_FUNC; this
then becomes the function return value.

For more information about assignment of values to function parameters, see
Appendix C, “SQL Functions and SQL Procedure Enhancements.”

CA-supplied versus user-defined functions: If the function invocation contains a
schema-name, the target function is the one contained within the schema derived by
applying the rules in "ldentifying Entities in Schemas" in the Advantage CA-IDMS
Database SQL Option Reference Guide.

If the function invocation does not contain a schema name, then Advantage CA-IDMS
identifies the target function as follows:

m | function-identifier matches the identifier of a scalar function distributed with
Advantage CA-IDMS, then the target is that function.

® Otherwise, the target function is the function identified by function-identifier in the
schema derived by applying the rules in "ldentifying Entities in Schemas" in the
Advantage CA-IDMS Database SQL Option Reference Guide.

User-defined function restrictions: You cannot include a user-defined function
invocation in the search condition of a table's check constraint.

Appendix B. New and Revised SQL Statements B-3

B.1 User-Defined SQL Function Statements

B.1.1.6 Examples

Select emp_id, fin.udf_funbonus(emp_id) from demoempl.employee;

Select power(sqrt(alpha_index), 3) from prod00l.measurement;

B.1.2 ALTER FUNCTION Statement

B.1.2.1 Purpose

ALTER FUNCTION is a data description statement that modifies the definition of a
function in the dictionary. The ALTER FUNCTION statement is an Advantage
CA-IDMS extension of ANSI-standard SQL. Using the ALTER FUNCTION
statement, you can:

B.1.2.2 Authorization

Revise the estimated row and 1/O counts

Change the external name of the function

Change the size and characteristics of the work areas passed to the function
Change the execution mode of the function

Change the timestamp

Change the default database

Change the transaction sharing mode

To issue an ALTER FUNCTION statement, you must own or hold the ALTER
privilege on the function named in the statement.

B.1.2.3 Syntax

»— ALTER FUNCTION

— EXTERNAL NAME external-routine-name
— ESTIMATED ROWS row-count
— ESTIMATED IOS io-count
— LOCAL WORK AREA local-stge-size

— GLOBAL WORK AREA global-stge-size B
KEY - kev-id

— USER MODE
— SYSTEM MODE

— TIMESTAMP timestamp-value
— DEFAULT DATABASE —E NULL a

— TRANSACTION SHARING ON

\/

function-identifier

|— schema-name. J

\4
A

NULL

CURRENT

OFF ——
DEFAULT —

B-4 Advantage CA-IDMS Release Summary

B.1 User-Defined SQL Function Statements

B.1.2.4 Parameters

function-identifier
Specifies the name of the function being modified. function-identifier must
identify a function defined in the dictionary.

schema-name
Identifies the schema associated with the named function. If you do not specify a
schema-name, it defaults to:

® The current schema associated with your SQL session if the statement is
entered through the Command Facility or executed dynamically

® The schema associated with the access module used at runtime if the
statement is embedded in an application program

external-routine-name
Specifies the one- to eight-character name of the program or mapless dialog that
Advantage CA-IDMS cdlls to process function invocations.

row-count
Specifies an integer value, in the range of O through 2,147,483,647 that represents
the average number of rows that the Advantage CA-IDMS optimizer uses for cost
calculation of the function invocation.

io-count
Specifies an integer value, in the range of O through 2,147,483,647 that represents
the average number of disk accesses that the function generates for a given set of
input parameters.

local-stge-size
Specifies an integer value, in the range of O through 32,767 that represents the
size, in bytes, of alocal storage area that Advantage CA-IDMS allocates at
runtime and passes to the function on each invocation.

Advantage CA-IDMS alocates a local storage area on each call to a function.

dlobal-stge-size
Specifies an integer value, in the range of 0 through 32,767 that represents the

size, in bytes, of a global storage area that Advantage CA-IDMS allocates at
runtime and passes to the function on each invocation.

A global storage area is allocated once within a transaction and is retained until
the transaction terminates.

key-id
Specifies the one- to four-character identifier for the global storage area.
Advantage CA-IDMS passes the same piece of global storage within a transaction
to al SQL routines that have the same global storage key.

If you do not specify a storage key, its value remains unchanged if a global
storage area was previously associated with the function. To remove a storage key,
specify NULL as the key.

Appendix B. New and Revised SQL Statements B-5

B.1 User-Defined SQL Function Statements

USER MODE
Specifies that the function should execute as a user-mode application program
within Advantage CA-IDMS. Do not specify USER MODE for functions written
as an Advantage CA-ADS mapless dialog.

SYSTEM MODE
Specifies that the function should execute as a system-mode application program.
To execute as a SYSTEM MODE application, the program must be written in
assembler or COBOL and be fully reentrant or a mapless dialog.

timestamp-value
Specifies the value of the synchronization stamp to be assigned to the function.

timestamp-value must be a valid externa representation of a timestamp.

DEFAULT DATABASE
Specifies whether a default database should be established for database sessions
started by the function.

NULL
Specifies that no default database should be established.

CURRENT
Specifies that the database to which the SQL session is connected should
become the default for any database session started by the function.

TRANSACTION SHARING
Specifies whether transaction sharing should be enabled for database sessions
started by the function. If transaction sharing is enabled for a function's database
session, it shares the current SQL session's transaction.

ON
Specifies that transaction sharing should be enabled.

OFF
Specifies that transaction sharing should be disabled.

DEFAULT
Specifies that the transaction sharing setting that is in effect when the function
is invoked should be retained.

B.1.2.5 Usage

Specifying a synchronization stamp: When defining or altering a function you can
specify a value for the synchronization stamp. |If explicitly specified, the
synchronization stamp should aways be set to a new value following the change so
that the change is detectible by the runtime system.

CAUTION:

Care should be exercised when explicitly specifying the synchronization stamp
value, since its purpose is to enable the detection of discrepancies between a
function and its definition.

If not specified, the synchronization stamp is automatically set to the current date and
time.

B-6 Advantage CA-IDMS Release Summary

B.1 User-Defined SQL Function Statements

B.1.2.6 Example

The example below shows the use of ALTER FUNCTION to change the external
name of a function.

alter function fin.udf_funbonus external name funbon09;

B.1.3 CREATE FUNCTION Statement

B.1.3.1 Purpose

The CREATE FUNCTION statement is a data description statement that stores the
definition of a function in the SQL catalog. Y ou can invoke the function in any
value-expression of an SQL statement except in the search condition of atable's check
congtraint. The function invocation results in Advantage CA-IDMS calling the
corresponding external routine. Such routines can perform any action and return a
single scalar value. You use the formal parameters of a function definition to specify
the datatype and format of the data to be passed to the function. Similarly, the datatype
of the return value is specified in the function definition.

B.1.3.2 Authorization

To issue a CREATE FUNCTION statement, you must own the schema in which the
function is being defined or hold the CREATE privilege on the named function.

B.1.3.3 Syntax

v

»»— CREATE FUNCTION function-identifier

L schema-name. i

— (—l— parameter-definition L) — RETURNS data-type >
»— EXTERNAL NAME external-routine-name — PROTOCOL IDMS >
L pps

v

»
»

L ESTIMATED ROMS row-count) | ESTIMATED 10S io-count —
USER MODE ﬂ
SYSTEM MODE

l— LOCAL WORK AREA Tocal-stge-size J

\ 4
v

\
v

\ 4

L GLOBAL WORK AREA global-stge-size |_ _l |
KEY key-id

\
v

L TransacTION SHARING —— ON —
OFF
DEFAULT <—

L DEFAULT DATABASE T NULL ‘j_J
CURRENT

\

Appendix B. New and Revised SQL Statements B-7

B.1 User-Defined SQL Function Statements

A\
A

L TIMESTAMP timestamp-value il

Expansion of parameter-definition:

»»—— parameter-name — data-type

A\
A

L Wit DEFAULT J
B.1.3.4 Parameters
function-identifier

Specifies the 1- to 18-character name of the function that you are creating.
Function-identifier must:

® Be unique among the function, procedure, table, table procedure, and view
identifiers within the schema associated with the function

» Follow conventions for SQL identifiers

schema-name
Specifies the schema name qualifier to be associated with the function.
Schema-name must identify a schema defined in the dictionary. If you do not
specify a schema-name, it defaults to:

® The current schema associated with your SQL session if the statement is
entered through the Command Facility or executed dynamically

® The schema associated with the access module used at runtime if the
statement is embedded in an application program

parameter-definition
Defines a parameter to be associated with the function. Parameters are passed to
the function in the order in which they are specified. The list of parameters must
be enclosed in parentheses. Commas must separate multiple parameter definitions.

Expanded syntax for parameter-definition is shown immediately following the
CREATE FUNCTION syntax.

RETURNS data-type
Specifies the datatype of the returned value. For more information, see the
Advantage CA-IDMS Database SQL Option Reference Guide. The returned value
is implicitly nullable and can be set to NULL in the external routine. The returned
value is accessible to the external routine as an extra parameter with the implicit
name USER_FUNC, which comes immediately after the function parameters.

external-routine-name
Specifies the one- to eight-character name of the program or mapless dialog that
Advantage CA-IDMS cadlls to process function invocations.

PROTOCOL
This is a required parameter that specifies the protocol that is used to invoke the
function.

IDMS
Use IDMS for SQL functions that are written in COBOL, PL/I, or Assembler
and that use the same protocol as in earlier Advantage CA-IDMS releases.

B-8 Advantage CA-IDMS Release Summary

B.1 User-Defined SQL Function Statements

ADS
Use ADS for SQL functions that are written in Advantage CA-ADS. The
name of the dialog that is loaded and run when the SQL function is invoked
is specified in the external-routine-name of the EXTERNAL NAME clause.
With the protocol set to ADS, the mode clause must be set to SYSTEM.

r ow-count
Specifies an integer value, in the range of O through 2,147,483,647 that represents
the average number of rows that the Advantage CA-IDMS optimizer uses for cost
calculation of the function invocation.

io-count
Specifies an integer value, in the range of O through 2,147,483,647 that represents
the average number of disk accesses that the function generates for a given set of
input parameters.

local-stge-size
Specifies an integer value, in the range of 0 through 32,767 that represents the

size, in bytes, of alocal storage area that Advantage CA-IDMS allocates at
runtime and passes to the function on each invocation. Advantage CA-IDMS
alocates a local storage area on each call to a function.

Note: If you do not code a LOCAL WORK AREA clause, the default local
storage size is 1024 bytes.

global-stge-size
Specifies an integer value, in the range of 0 through 32,767 that represents the

size, in bytes, of a global storage area that Advantage CA-IDMS allocates at
runtime and passes to the function on each invocation.

A global storage area is allocated once within a transaction and is retained until
the transaction terminates.

key-id
Specifies the one- to four-character identifier for the global storage area.
Advantage CA-IDMS passes the same piece of global storage within a transaction
to al SQL routines that have the same global storage key.

If you do not specify a storage key, Advantage CA-IDMS allocates a unique
global storage area for the function.

USER MODE
Specifies that the function should execute as a user-mode application program
within Advantage CA-IDMS. Do not specify user mode if the function is a
mapless dialog. This is the default.

SYSTEM MODE
Specifies that the function should execute as a system-mode application program.
To execute as a system mode application, the program must be written in
Assembler or COBOL and be fully reentrant or be a mapless dialog.

If PROTOCOL is set to ADS, you must specify SYSTEM MODE.

Appendix B. New and Revised SQL Statements B-9

B.1 User-Defined SQL Function Statements

timestamp-value
Specifies the value of the synchronization stamp to be assigned to the function.
timestamp-value must be a valid externa representation of a timestamp.

DEFAULT DATABASE
Specifies whether a default database should be established for database sessions
started by the function.

NULL
Specifies that no default database should be established.

CURRENT
Specifies that the database to which the SQL session is connected should
become the default for any database session started by the function.

TRANSACTION SHARING
Specifies whether transaction sharing should be enabled for database sessions
started by the function. If transaction sharing is enabled for a function's database
session, it shares the current SQL session's transaction.

ON
Specifies that transaction sharing should be enabled.

OFF
Specifies that transaction sharing should be disabled.

DEFAULT
Specifies that the transaction sharing setting that is in effect when the function
is invoked should be retained.

par ameter-name
Specifies a 1- to 32-character name of a parameter to be passed to the function.
Parameter-name must:

® Be unique within the function that you are defining
® Follow the conventions for SQL identifiers

All parameters are implicitly nullable and thus can be assigned NULL as a
parameter value.

data-type
Specifies the datatype of the parameter. For more information, see the Advantage
CA-IDMS Database SQL Option Reference Guide.

WITH DEFAULT
Directs Advantage CA-IDMS to pass a default value for the named parameter if
you do not specify a value for the parameter in a function invocation.

The default value for a parameter is based on its data type. For more information, see
"CREATE PROCEDURE Statement” in the Advantage CA-IDMS Database SQL
Option Reference Guide.

B-10 Advantage CA-IDMS Release Summary

B.1 User-Defined SQL Function Statements

B.1.3.5 Usage

B.1.3.6 Example

Specifying a synchronization stamp: When defining or atering a function you can
specify a value for the synchronization stamp. If explicitly specified, the
synchronization stamp should aways be set to a new value following the change so
that the change is detectible by the runtime system.

CAUTION:

Care should be exercised when explicitly specifying the synchronization stamp
value, since its purpose is to enable the detection of discrepancies between a
function and its definition.

If not specified, the synchronization stamp is automatically set to the current date and
time.

CREATE FUNCTION FIN.UDF_FUNBONUS
(F_EMP_ID DECIMAL(4))
RETURNS DECIMAL(10)
EXTERNAL NAME FUNBONUS PROTOCOL IDMS
DEFAULT DATABASE CURRENT
USER MODE
LOCAL WORK AREA 0O ;

B.1.4 DISPLAY/PUNCH FUNCTION Statement

B.1.4.1 Purpose

The DISPLAY/PUNCH FUNCTION statement lets you display or punch a
user-defined function definition.

B.1.4.2 Authorization

B.1.4.3 Syntax

To issue a DISPLAY/PUNCH FUNCTION statement, you must hold the DISPLAY
privilege for the named function.

v

»E DISplay FUNction
PUNch ——,— L schema-name.]

»— function-name

v
A

L FUL1 B] |
PHYsical

Appendix B. New and Revised SQL Statements B-11

B.1 User-Defined SQL Function Statements

B.1.4.4 Parameters

schema-name
Identifies the SQL schema associated with the named function. If you enter the
statement through the command facility or execute it dynamically, and if you do
not specify schema-name, it defaults to the current schema associated with your
SQL session.

function-name
Specifies the name of the function to display or punch. Function-name must be
the name of a function defined in the dictionary.

FULI
Directs Advantage CA-IDMS to display al attributes of the function except
physical attributes.

PHYsical
Directs Advantage CA-IDMS to display all attributes of the function including
its synchronization timestamp.

WITh
Lists the requested information in addition to the information that is always
included, such as the entity occurrence name.

WITHOut
Does not list the specified options. Other options in effect through the WITH or
ALSO WITH clauses in the current DISPLAY statement display.

ALSo WITh
Lists the requested information in addition to the information requested in
previously issued DISPLAY WITH and DISPLAY ALSO WITH statements for
the named entity.

AL So WITHOut
Does not list the specified options.

ALL
Specifies the display of all the information associated with the requested entity
occurrence.

NONe
Specifies the display of the name of the requested entity occurrence. NONE is
meaningful only when you specify the WITH clause.

DETails
Specifies the display of entity-specific descriptions, for example, the length of a
table.

TIMestamp
Specifies the display of the synchronization timestamp associated with the
function.

B-12 Advantage CA-IDMS Release Summary

B.1 User-Defined SQL Function Statements

B.1.4.5 Example

HlStory
Specifies the display of the chronological account of an entity's existence,
including PREPARED/REVISED BY specifications, date created, and date last
updated.

KEYs
Specifies the display of all keys associated with the requested function.

AS COMments
Outputs function syntax as comments with the characters *+ preceding the text of
the statement. AS COMMENTS is the default.

AS SYNtax
Outputs function syntax that you can edit and resubmit to the command facility.

VERB CREate/DI Splay/DROp/PUNCch
Specifies the verb with which the entity statement is displayed or punched. For
example, if VERB CREATE is specified, the output of the DISPLAY/PUNCH
statement is a CREATE statement; if VERB ALTER is specified, the output is an
ALTER statement, and so on. The default is VERB CREATE.

DISPLAY FUNCTION FIN.UDF_FUNBONUS FULL PHYSICAL;

B.1.5 DROP FUNCTION

B.1.5.1 Purpose

Deletes the definition of the referenced function from the dictionary. The DROP
FUNCTION statement is an Advantage CA-IDMS extension of ANSI-standard SQL.

B.1.5.2 Authorization

B.1.5.3 Syntax

To issue a DROP FUNCTION statement, you must own or have the DROP privilege
on the function named in the statement.

v

»»— DROP FUNCTION function-identifier

L schema-name. il

A\
A

L CASCADE |

Appendix B. New and Revised SQL Statements B-13

B.1 User-Defined SQL Function Statements

B.1.5.4 Parameters

function-identifier
Specifies the name of the function to be dropped. Function-identifier must
identify a function defined in the dictionary.

schema-name
Identifies the schema associated with the specified function. If you do not specify
a schema-name, the default value is:

® The current schema associated with your SQL session if the statement is
specified through the Command Facility or executed dynamically

® The schema associated with the access module used at runtime if the
statement is embedded in an application program

CASCADE
Directs Advantage CA-IDMS to delete any view definition that contains a
reference to the function, either directly or nested within another view reference.

B.1.5.5 Example

The DROP FUNCTION statement below removes the FIN.UDF_FUNBONUS function
from the SQL catalog and drops any view within which the function is invoked.

DROP FUNCTION FIN.UDF_FUNBONUS CASCADE;

B-14 Advantage CA-IDMS Release Summary

B.2 SQL Scalar Functions

B.2 SQL Scalar Functions

B.2.1 Syntax

This section provides details about the new SQL scalar functions available in Release
16.0. It also describes the enhancements that have been made to the existing CHAR
function.

»»—— ABS-function
— ACOS-function
— ASIN-function
— ATAN-function
— ATAN2-function
— CEIL-function
— CEILING-function
— CHAR-function
— CONCAT-function
— CONVERT-function
— COS-function
— COSH-function
— COT-function
— CURDATE-function
— CURTIME-function
— DATABASE-function
— DAYNAME-function
— DAYOFMONTH-function
— DAYOFWEEK-function
— DAYOFYEAR-function
— DEGREES-function
— EXP-function
— FLOOR-function
— IFNULL-function
— INSERT-function
— LCASE-function
— LOG-function
— LOG10-function
— MOD-function
— MONTHNAME-function
— NOW-function
— PI-function
— POWER-function
— QUARTER-function
— RADIANS-function
— RAND-function
— REPEAT-function
— REPLACE-function
— RIGHT-function
— ROUND-function
— SIGN-function
— SIN-function
— SINH-function
— SPACE-function
— SQRT-function
— SUBSTR-function
— SUBSTRING-function
— TAN-function
— TANH-function
— TRUNCATE-function
— USER-function
'— WEEK-function

\4
A

Appendix B. New and Revised SQL Statements B-15

B.2 SQL Scalar Functions

Note: All of the previous functions , except LCASE are implemented as user-defined
functions in schema SY SCA.

B.2.1.1 ABS-function

»— ABS (value-expression)

v

ABS returns the absolute value of the value-expression.

value-expression
A value with a numeric data type.

The result has the same data type as the value-expression. If the value-expression is
null, the result is a null value. If a data error occurs, an exception is raised.

Example: The following statement returns 125.

SELECT ABS(-125)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

B.2.1.2 ACOS-function

»— ACOS (value-expression) >

ACOS returns the arccosine of the value-expression as an angle expressed in radians.
ACOS is the inverse function of the COS function.

value-expression
Must be a numeric data type and must have a value in the range of -1 to 1. It is
converted to a double precision floating-point number for processing by this
function.

The result of the function is a double precision floating-point number. If the
value-expression is null, the result is a null value. If a data error occurs, an exception
is raised.

Example: The following statement returns 7.9539883018414370E-01:

SELECT AC0S(0.7)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

B.2.1.3 ASIN-function

»— ASIN (value-expression) ——»

ASIN returns the arcsine of the value-expression as an angle expressed in radians
ASIN is the inverse function of the SIN function.

value-expression
The value-expression must be of any numeric type and must have a value in the
range of -1 to 1. It is converted to a double precision floating-point number for
processing by this function.

B-16 Advantage CA-IDMS Release Summary

B.2 SQL Scalar Functions

The result of the function is a double precision floating-point number. If the
value-expression is null, the result is a null value. If a data error occurs, an exception
is raised.

Example: The following statement returns 1.5707963267948966E+00:

SELECT ASIN(1)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

B.2.1.4 ATAN-function

»— ATAN (value-expression) ——»

ATAN returns the arctangent of the value-expression as an angle expressed in radians.
ATAN is the inverse function of the TAN function.

value-expression
Must be of any numeric data type. It is converted to a double precision

floating-point number for processing by this function.

The result of the function is a double precision floating-point number. If the
value-expression is null, the result is a null value. If a data error occurs, an exception
is raised.

Example: The following statement returns 1.2490457723982544E+00

SELECT ATAN(3)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

B.2.1.5 ATAN2-function

»— ATAN2 (value-expressionl, value-expression2) —»

ATAN2 returns the arctangent of x and y coordinates, given by value-expressionl and
value-expression2 respectively, as an angle expressed in radians.

value-expressionl
Specifies a numeric value-expression.

value-expression2
Specifies a numeric value-expression.

Both value-expressions must be of any numeric data type and cannot both be 0. They
are converted to double precision floating-point numbers for processing by this
function.

The result of the function is a double precision floating-point number. If the
value-expression is null, the result is a null value. If a data error occurs, an exception
is raised.

Example: The following statement returns 1.2490457723982544E+00

Appendix B. New and Revised SQL Statements B-17

B.2 SQL Scalar Functions

SELECT ATAN2(1,3)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

B.2.1.6 CEIL or CEILING-function

CEIL T(va]ue-expression) —
CEILING

CEILING returns the smallest integer value that is greater than or equal to the
value-expression. CEIL and CEILING are identical.

value-expression
Must be a numeric data type.

The result of the function has the same data type as the value-expression except that
the scale is O if the value-expression is of type (UNSIGNED) DECIMAL or
(UNSIGNED) NUMERIC. For example, a value-expression with a data type of
NUMERIC (3,2) results in NUMERIC (3,0). If the value-expression is null, the result
isanull value. If a data error occurs, an exception is raised.

Example: The following statement returns: 13, 2.0000000000000000E+Q0, -12

SELECT CEILING(12.55), CEILING(123.1E-2), CEILING (-12.55)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

B.2.1.7 CHAR-function

»— CHAR (value-expression) —»>
— IS0
— USA
EUR
JIS
— exact-numeric-literal —

CHAR obtains a character string representation from the value in value-expression.
The syntax and semantics for the CHAR function depends on the data type of
val ue-expression.

value-expression

» Data type of value-expression is an exact numeric data: INTEGER,
SMALLINT, or LONGINT.

CHAR returns a fixed-length character string representation of the exact
numeric value of value-expression. Specifying a second parameter is not
allowed. The result is left-justified and contains n characters corresponding to
the digits of the value of value-expression with a preceding minus sign if the
value-expression is negative. The length of the returned string depends on the
data type of value-expression:

— SMALLINT — result length of 6
— INTEGER — result length of 11
— LONGINT — aresult length of 20.

B-18 Advantage CA-IDMS Release Summary

B.2 SQL Scalar Functions

Example

SELECT CHAR(FIXLENGTH), LENGTH(CHAR(FIXLENGTH)) AS LEN_SMALLINT ,
CHAR(NUMROWS) , LENGTH(CHAR(NUMROWS)) AS LEN_INTEGER
FROM SYSTEM.TABLE WHERE NAME = 'TABLE';

*+ CHAR(FUNCTION) LEN_SMALLINT CHAR(FUNCTION) LEN_INTEGER
S

Data type of value-expression is a fixed point, packed or zoned decimal:
(UNSIGNED) DECIMAL, (UNSIGNED) NUMERIC.

CHAR returns a fixed-length character string representation of the value of
value-expression. Specifying a second parameter is not allowed. If
value-expression has a precision of p and a scale of s, the result contains p+2
characters as follows: a blank or minus sign, depending on the sign of
value-expression, p-s digits followed by a period and finaly s digits. The
result is left-justified.

Example

SELECT VAC_TIME, CHAR(-VAC_TIME), LENGTH(CHAR(VAC_TIME))
FROM DEMOEMPL.EMP_VACATION WHERE VAC_TIME > 300

*+ VAC_TIME CHAR(FUNCTION) (CONST)

*+ mmmmmmme mmmmmmmmmmmmm= mmmmmem
*+ 340.00 -340.0 33
*+ 396.00 -396.0 33
*+ 484.00 -484.0 33

Data type of value-expression is a floating-point data type: REAL, FLOAT or
DOUBLE PRECISION

CHAR returns a fixed-length character string representation of the floating
point value of value-expression Specifying a second parameter is not allowed.
The result is left-justified and contains 24 characters.

Example

SELECT AVGROWLENGTH, CHAR(AVGROWLENGTH), LENGTH(CHAR(AVGROWLENGTH)) AS L24
FROM SYSTEM.TABLE WHERE NAME = 'TABLE';

*+ AVGROWLENGTH CHAR(FUNCTION) L24
%+ mmmmmmmmmmmn mmmmmmmmmmmeen —_—
*+ 2.5600000E+02 2.56E2 24
*+ 0.0000000E+00 0.0E0 24

Data type of value-expression is a character data type CHAR, VARCHAR.

CHAR returns a fixed-length character string representation of the value of
value-expression An exact-numeric-literal can be specified as a second
parameter, in which case it defines the length of the result. The value of
exact-numeric-literal must be in the range 0-255. When the:

— Length of value-expression is lower than exact-numeric-literal — the
result is padded with blanks on the right

— Length of value-expression is larger — truncation occurs, when nonblank
characters are truncated, a warning message is issued.

Example

Appendix B. New and Revised SQL Statements B-19

B.2 SQL Scalar Functions

SELECT CHAR(NAME,4), LENGTH(CHAR(NAME, 4)) AS LEN

FROM SYSTEM.TABLE WHERE NAME = 'TABLE';

*+ DB0O01043 T375 C1M322: String truncation
*+ DB001043 T375 CIM322: String truncation

*+ CHAR(FUNCTION) LEN
o S _—
*+ TABL 4
*+ TABL 4

» Data type of value-expression is DATE, TIME, or TIMESTAMP.

If aformat (1SO, USA, EUR, JIS) is not specified for the character string, the
result is returned in SO format or, if the SQL statement is embedded in a
program, the format specified in the precompiler options.

»»> Refer to the Advantage CA-IDMS Database SQL Option Programming Guide
for information about specifying precompiler options.

1SO

Specifies that the format of the result should comply with the standard of the
International Standards Organization (1SO). Use the following formats when 1SO

is specified:
Data type Format Example
DATE yyyy-mm-dd 1990-12-15
TIME hh.mm.ss 16.43.17
TIMESTAMP yyyy-mm-dd-hh.mm.ss.nnnnnn ~ 1990-12-15-16.43.17.123456
USA

Specifies that the format of the result should comply with the standard of the IBM
USA standard. Use the following formats when USA is specified:

Data type Format Example

DATE mm/dd/yyyy 12/15/1990

TIME hh:mm AM hh:mm PM 4:43 PM

TIMESTAMP yyyy-mm-dd-hh.mm.ss.nnnnnn ~ 1990-12-15-16.43.17.123456

EUR

Specifies that the format of the result should comply with the standard of the IBM
European standard. Use the following formats when EUR is specified:

Data type Format Example

DATE dd.mm.yyyy 15.12.1990

TIME hh.mm.ss 16.43.17

TIMESTAMP yyyy-mm-dd-hh.mm.ss.nnnnnn ~ 1990-12-15-16.43.17.123456

B-20 Advantage CA-IDMS Release Summary

B.2 SQL Scalar Functions

JIS
Specifies that the format of the result should comply with the standard of the
Japanese Industrial Standard Christian Era. Use the following formats when JIS is

specified:
Data type Format Example
DATE yyyy-mm-dd 1990-12-15
TIME hh:mm:ss 16:43:17

TIMESTAMP yyyy-mm-dd-hh.mm.ss.nnnnnn ~ 1990-12-15-16.43.17.123456

B.2.1.8 DAYOFWEEK-function

»— DAYOFWEEK (value-expression) —»

DAY OFWEEK returns the day of the week where 1 is Sunday and 7 is Saturday.

value-expression
Must be a DATE or TIMESTAMP data type or must be a CHARACTER or

VARCHAR data type and represent a valid string representation of a date or
timestamp.

The result is an INTEGER data type. The result is null if value-expression is null.

Example: The following statement returns 4, which represents Wednesday:

SELECT DAYOFWEEK ('2002-12-25')
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

B.2.1.9 DAYOFYEAR-function

»— DAYOFYEAR (value-expression) —»

DAY OFY EAR returns the day of the year where 1 is January 1.

value-expression
Must be a DATE or TIMESTAMP data type or must be a CHARACTER or

VARCHAR data type and represent a valid string representation of a date or
timestamp.

The result is an INTEGER data type and in the range of 1 to 366. The result is null if
value-expression is null.

Example: The following statement returns 365:

SELECT DAYOFYEAR ('2002-12-31')
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

Appendix B. New and Revised SQL Statements B-21

B.2 SQL Scalar Functions

B.2.1.10 DEGREES-function

»— DEGREES (value-expression) ——»

DEGREES returns the number of degrees calculated from the value-expression
expressed in radians.

value-expression
Must be of any numeric data type. It is converted to a double precision
floating-point number for processing by this function.

The result of the function is a double precision floating-point number. If the
value-expression is null, the result is a null value. If a data error occurs, an exception
is raised.

Example: The following statement returns 8.9999999999999985E+01.:

SELECT DEGREES(PI() / 2)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

B.2.1.11 EXP-function

»— EXP (value-expression) ——»

EXP returns a value that is calculated as the base of the natural logarithm (€), raised to
a power specified by the value-expression. EXP is the inverse function of LOG.

value-expression
Must be a numeric data type. It is converted to a double precision floating-point

number for processing by this function.

The result of the function is a double precision floating-point number. If the
value-expression is null, the result is a null value. If a data error occurs, an exception
is raised.

Example: The following statement returns 2.7182818284590451E+00:

SELECT EXP (1)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

B.2.1.12 FLOOR-function

»— FLOOR (value-expression) —»

FLOOR returns the largest integer value that is less than or equal to the
value-expression.

value-expression
Must be a numeric data type.

The result of the function has the same data type as the value-expression except that
the scale is O if the value-expression is of type (UNSIGNED) DECIMAL or
(UNSIGNED) NUMERIC. For example, a value-expression with a data type of

B-22 Advantage CA-IDMS Release Summary

B.2 SQL Scalar Functions

NUMERIC (3,2) results in NUMERIC(3,0). If the value-expression is null, the result is
anull value. If a data error occurs, an exception is raised.

Example: The following statement returns: 12, 1.0000000000000000E+00, -13

SELECT FLOOR (12.55), FLOOR (123.1E-2), FLOOR (-12.55)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

B.2.1.13 IFNULL-function

»— IFNULL (value-expressionl, value-expression2) —»

IFNULL returns the first value-expression that is not null. IFNULL is similar to the
VALUE and COALESCE scaar functions with the exception that IFNULL is limited
to only two value-expressions instead of multiple value-expressions.

value-expressionl
Specifies a value-expression

value-expression2
Specifies a value-expression.

Example: The following statement shows **NULL**' for any row with a null value
for SEGMENT, otherwise the name of the segment is shown:

SELECT SCHEMA, NAME, IFNULL (SEGMENT, '**NULL#**')
FROM SYSTEM.TABLE

B.2.1.14 INSERT-function

»— INSERT (value-expressionl, start, length, value-expression?2)—»

INSERT returns a string constructed from value-expressionl, where beginning at start,
length characters are deleted and value-expression? is inserted.

value-expressionl
Specifies a character string value-expression. value-expressionl specifies the
source string and must be a CHARACTER or VARCHAR data type. If the length
of value-expressionl is O, the result is a null value.

value-expression2
Specifies a character string value-expression.

value-expression2 specifies the string to be inserted into value-expressionl,
starting at start. The string to be inserted must be a CHARACTER or VARCHAR
data type.

Q@

t

Specifies a numeric value-expression. Sart must be of any numeric data type, but
only the integer part is considered. The integer part of start specifies the starting
point within value-expressionl where the deletion of characters and the insertion
of value-expression2 begins. The integer part of start must be in the range of 1 to

the length of value-expressionl plus one.

Appendix B. New and Revised SQL Statements B-23

B.2 SQL Scalar Functions

length
Specifies a numeric value-expression. Length must be of any numeric data type,

but only the integer part is considered. The integer part of length specifies the
number of characters that are to be deleted from value-expressionl, starting at
start. The integer part of length must be in the range of 0 to the length of
value-expressionl.

The result is always of VARCHAR data type. The length of the result is given by the
following formula:

LENGTH(value-expressionl) + LENGTH(value-expression2) -
min(length, LENGTH(value-expressionl) - start + 1)

If both start and length are constants, the maximum length of the result is calculated
during compilation of the INSERT invocation using the above formula, otherwise the
maximum length is 8000.

The result is null if value-expressionl or value-expression2 is null. If the insert cannot
be done because of invalid parameters, an exception is raised.

Example 1: The following statement appends the string 'DEF' to the string 'ABC'
giving 'ABCDEF"
SELECT SUBSTR(INSERT ('ABC', 4 , 0,'DEF')

FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

Because the start and length parameters of the INSERT function are constants, the
maximum length of the VARCHAR string is 6.

Example 2: The following statement prefixes the string 'DEF with the string 'ABC'
giving 'ABCDEF"
SELECT SUBSTR(INSERT ('DEF', 1 %1, 0,'ABC'), 1, 20)

FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

Because the start position is not a constant, but an expression, the maximum length of
the VARCHAR string is 8000. The SUBSTR function is used to limit the result to 20
characters.

Example 3: The following statement replaces the character at position 3 in string
'ABCDEF with the string 'XYZ' returning 'ABXY ZDEF":

SELECT INSERT ('ABCDEF', 3 , 1,'XYZ')
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

Because both the start and length parameters of the INSERT function are constants,
the maximum length of the result VARCHAR string is 8.

B-24 Advantage CA-IDMS Release Summary

B.2 SQL Scalar Functions

B.2.1.15 LOG-function

»— LOG (value-expression) ——»

LOG returns a value that is calculated as the natural logarithm of value-expression.
LOG is the inverse function of EXP.

value-expression
Must be of any numeric data type. It is converted to a double precision

floating-point number for processing by this function.

The result of the function is a double precision floating-point number. If the
value-expression is null, the result is a null value. If a data error occurs, an exception
is raised.

Example: The following statement returns 1.0986122886681095E+00:

SELECT LOG (3)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM'

B.2.1.16 LOG10-function

»— L0G10 (value-expression) ——»

LOGI10 returns a value that is calculated as the base 10 logarithm of value-expression.

value-expression
The value-expression must be of any numeric data type. It is converted to a

double precision floating-point number for processing by this function.

The result of the function is a double precision floating-point number. If the
value-expression is null, the result is a null value. If a data error occurs, an exception
is raised.

Example: The following statement returns 3.0000000000000000E+00:

SELECT LOG (1000)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM'

B.2.1.17 MOD-function

»— MOD (value-expressionl, value-expression2) ——»

MOD returns the remainder of dividing value-expressionl by value-expression2 using
the formula:

MOD(vl, v2) = vl - Truncated_Integer(vl/v2) * v2

with Truncated_Integer(v1 / v2) the truncated integer result of the division.

value-expressionl
Specifies a numeric value-expression and must be of any numeric data type.

Appendix B. New and Revised SQL Statements B-25

B.2 SQL Scalar Functions

value-expression2
Specifies a numeric value-expression and must be of any numeric data type.
value-expression2 cannot be zero.

If any of the value-expressions are null the result is a null value. If a data error occurs,
an exception is raised.

The data type of the result follows these rules:
» Both value-expressions are INTEGER or SMALLINT — the result is INTEGER.

= One of the value-expressions is LONGINT and the other is INTEGER,
SMALLINT, or LONGINT — the result is LONGINT.

= One value-expression is an INTEGER, SMALLINT, or LONGINT and the other
is an (UNSIGNED) DECIMAL or (UNSIGNED) NUMERIC — the result is
(UNSIGNED) DECIMAL or (UNSIGNED) NUMERIC with the same precision
and scale as the (UNSIGNED) DECIMAL or (UNSIGNED) NUMERIC
value-expression.

® Both value-expressions are (UNSIGNED) DECIMAL or (UNSIGNED)
NUMERIC — the result is equal to the data type of value-expressionl. The
precision and scale of the result are given by the following formulas:

Prec. result = min(prec.1-scale.l, prec.2-scale.2) + max(scale.1, scale.2)
Scaleresult = max(scalel, scale?)

» Either value-expression is a floating-point number, REAL, FLOAT, or DOUBLE
PRECISION — the result is double precision floating-point.

The processing of this function is always done in floating-point. Both
value-expressions are converted to double precision floating-point numbers.

Example 1: The following statement returns 1:

SELECT MOD(10, 3)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

Example 2: The following statement returns 1.0000000000000000E+0Q0:

SELECT MOD(10E0, 3)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

Example 3: The following statement returns 1.0:

SELECT MOD(10.0, 3)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

Example 4: The following statement returns 1.00:

SELECT MOD(10.00 , 3
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

B-26 Advantage CA-IDMS Release Summary

B.2 SQL Scalar Functions

B.2.1.18 MONTHNAME-function

»— MONTHNAME (value-expression) ——»

MONTHNAME returns a character string containing the English name of the month
specified by value-expression.

value-expression
Must be a DATE or TIMESTAMP data type or must be a CHARACTER or
VARCHAR data type and represent a valid string representation of a date or
timestamp.

The result is of CHARACTER(12) data type. The result is null if value-expression is
null.

Example: The following statement returns the names of al months from now to
now + 11 months: January, February, March, April, May, June, July, August,
September, October, November, December.

SELECT MONTHNAME(NOW() + © MONTH),
MONTHNAME (NOW() + 1 MONTH), MONTHNAME(NOW() + 2 MONTH),
MONTHNAME (NOW() + 3 MONTH), MONTHNAME(NOW() + 4 MONTH),
MONTHNAME (NOW() + 5 MONTH), MONTHNAME(NOW() + 6 MONTH),
MONTHNAME (NOW() + 7 MONTH), MONTHNAME(NOW() + 8 MONTH),
MONTHNAME (NOW() + 9 MONTH), MONTHNAME(NOW() + 10 MONTH),
MONTHNAME (NOW() + 11 MONTH), MONTHNAME(NOW() + 12 MONTH)

FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM'
B.2.1.19 NOW-function

— NOW () ———

NOW is equivalent to the special-register CURRENT TIMESTAMP. For more
information, see "Expansion of Special-register” in the Advantage CA-IDMS Database
L Option Reference Guide.

Example: The following statement returns the current date and time twice:

SELECT NOW(), CURRENT TIMESTAMP
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

B.2.1.20 PI-function

 PI () >

PI returns the constant value of pi as a floating point value. The value returned is
3.141592653589793238.

Example: The following statement returns 3.1415926535897933E+00:

SELECT PI()
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

Appendix B. New and Revised SQL Statements B-27

B.2 SQL Scalar Functions

B.2.1.21 POWER-function

»— POWER (value-expressionl, value-expression2)——

POWER returns the value of value-expressionl to the power of value-expression2.

value-expressionl
Specifies a numeric value-expression and must be of any numeric data type.

value-expression2
Specifies a numeric value-expression and must be of any numeric data type.

The interna processing of this function is done using double precision floating-point
arithmetic.

The data type of the result of the function depends on the data types of
value-expressionl and value-expression2. The result is:

® INTEGER — when value-expressionl and value-expression2 are SMALLINT or
INTEGER

® LONGINT — when one of the value-expressions is LONGINT and the other
LONGINT, INTEGER or SMALLINT,

1 DOUBLE PRECISION — all other cases

If value-expressionl or value-expression2 is null the result is a null value. If a data
error occurs a data exception is raised.

Example 1: The following statement returns the value 625:

SELECT POWER(25,2)
FROM SYSTEM.TABLE WHERE NAME = 'SCHEMA'

Example 2: The following statement returns the value 625: The following SELECT
returns the value 6.2500000000000000E+02:

SELECT POWER(25.0,2)
FROM SYSTEM.TABLE WHERE NAME = 'SCHEMA'

B.2.1.22 QUARTER-function

»— QUARTER (value-expression)——»

QUARTER returns the quarter of the year in which the date, specified by
val ue-expression, occurs.

value-expression
Must be a DATE or TIMESTAMP data type or must be a CHARACTER or

VARCHAR data type and represent a valid string representation of a date or
timestamp.

The result is an INTEGER data type and is in the range of 1 to 4. The result is null if
value-expression is null.

B-28 Advantage CA-IDMS Release Summary

B.2 SQL Scalar Functions

Example: The following statement returns 4 because December is in the last quarter
of the year:

SELECT QUARTER('2002-12-31")
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM'

B.2.1.23 RADIANS-function

»— RADIANS (value-expression)———»

RADIANS returns the number of radians corresponding to the number of degrees
specified by value-expression.

value-expression
The value-expression must be of any numeric data type. It is converted to a

double precision floating-point number for processing by this function.

The result of the function is a double precision floating-point number. If the
value-expression is null, the result is a null value. If a data error occurs, an exception
is raised.

Example: The following statement returns 3.1415926535897931E+00, which is an
approximate value of PI:

SELECT RADIANS(180)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

B.2.1.24 RAND-function

value-expression

RAND returns a random floating-point value between 0 and 1. value-expression is
optional and specifies a seed value. If no seed value is specified, 1 is used as seed
value.

value-expression
If specified, the value-expression must be of any numeric data type. It is converted

to an INTEGER number for processing by this function.

The result of the function is a double precision floating-point number. If a data
exception occurs an exception is raised.

Within the context of an Advantage CA-IDMS task, the optional seed value is only
evauated once during the very first call of the random generator with a seed value.
The series of generated random numbers is equal for equal seed values when executed
under different Advantage CA-IDMS tasks.

Example: The following statement returns random floating-point numbers between 0
and 1:

SELECT RAND (200), RAND()
FROM SYSTEM.SCHEMA;

Appendix B. New and Revised SQL Statements B-29

B.2 SQL Scalar Functions

B.2.1.25 REPEAT-function

»— REPEAT (value-expression, count) ——»

REPEAT returns a string constructed as count times value-expression repeated.

value-expression
Specifies the string to be repeated and must be a CHARACTER or CHAR data

type.
count

An expression of any numeric data type, but only the integer part is considered.
The integer part of count specifies the number of times to repeat value-expression.

The result of the function is VARCHAR. The length of the result is the length of
value-expression multiplied by count. If the actual length of the result string exceeds
the maximum for the return type, an error occurs. If count is a constant, the maximum
length of the result is calculated during compilation of the REPEAT function
invocation, otherwise the maximum is 16000. The result is null if value-expression or
count is null. If the insert cannot be done an exception is raised.

Example 1. The following statement returns 'ABCDABCDABCDABCD":

SELECT SUBSTR(REPEAT('ABCD', 4)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

Example 2: The following statement returns a string with length 0:
SELECT REPEAT('ABCD', 0)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

Example 3: The following statement returns <null> because count is negative:

SELECT REPEAT('ABCD', -2)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

B.2.1.26 REPLACE-function

»— REPLACE (value-expressionl, value-expression2, value-expression3) ——»

REPLACE substitutes all occurrences of value-expression2 in value-expressionl with
value-expression3. If value-expression2 was not found in value-expressionl,
value-expressionl is returned unchanged.

value-expressionl
Specifies a character string value-expression. value-expressionl is a non-null
expression that specifies the source string.

value-expression2
Specifies a character string value-expression. value-expression2 is a non-null
expression that specifies the string to be replaced in the source string.

B-30 Advantage CA-IDMS Release Summary

B.2 SQL Scalar Functions

value-expression3
Specifies a character string value-expression. value-expression3 is an expression
that specifies the replacement string. A null value causes value-expressionl to be
returned unchanged.

The arguments must all have data types that are compatible with VARCHAR, that is
CHARACTER or VARCHAR. The actual length of each string must be less than or
equal to 8000. The data type of the result is VARCHAR and the resulting length must
be less than or equal to 8000. The length of the result is given by the following
formula, where n is the number of occurrences of value-expression2 in
value-expressionl:

LENGTH(value-expressionl) + (n * (LENGTH(value-expression3)
- LENGTH(value-expression2)))

The result is null if value-expressionl, value-expression2, or value-expression3 is null.
If the replace cannot be done an exception is raised.

Example 1. Replace all characters *' in the string **123.0**99" with '$$. In this
example, the result is '$$$$123.0$$$$99'.

SELECT REPLACE('#%123.0%%99', 'x', '§§')
FROM SYSTEM.SCHEMA WHERE NAME ='SYSTEM'

Example 2: List the departments of the EMPSCHM.DEPARTMENT table in
alphabetical order, but ignore any spaces when sorting. The REPLACE function
removes al spaces in the SORT_NAME column of the result.

SELECT =, REPLACE

(DEPT_NAME_0410, ' ', '") SORT_NAME

FROM EMPSCHM.DEPARTMENT
ORDER BY SORT_NAME;

Example 3: Replace string 'FOQ' in the string 'LOTS OF FOOLISH TALK' with
** FQO**",

SELECT REPLACE('LOTS OF FOOLISH TALK', 'FO0', '**FQQOx*')
FROM SYSTEM.SCHEMA WHERE NAME ='SYSTEM'

B.2.1.27 RIGHT-function

»— RIGHT (value-expression, count) ——»

RIGHT returns a string constructed from the specified number of rightmost count
characters of value-expression.

value-expression
Specifies the string from which the result is constructed and must be a

CHARACTER or VARCHAR data type.

count
Any numeric data type, but only the integer part is considered. The integer part
of count specifies the length of the result. The integer part of count must be an
integer between 0 and n, where n is the length of value-expression.

Appendix B. New and Revised SQL Statements B-31

B.2 SQL Scalar Functions

The result is null if value-expression or count is null. If count is larger than the length
of value-expression an exception is raised.

Example 1: The following statement returns the string 'CD":

SELECT RIGHT ('ABCD', 2)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

Example 2: The following statement returns a string with length 0:

SELECT RIGHT ('ABCD', 0)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

B.2.1.28 ROUND-function

»— ROUND (value-expressionl, value-expression2) —»

ROUND returns value-expressionl rounded to value-expression2 places to the right of
the decimal point if value-expression2 is positive, or to the left of the decimal point if
value-expression2 is zero or negative.

value-expressionl
Specifies a numeric value-expression and must be of any numeric data type.

value-expression2
Specifies a numeric value-expression and must be of any numeric data type. The
value-expression2 must be of any numeric data type but is converted internally to
INTEGER.

The integer value of value-expression2 specifies the number of places to the right of
the decimal point for the result if value-expression2 is not negative. If
value-expression? is negative, value-expressionl is rounded to 1 + the absolute integer
value of value-expression2 number of places to the left of the decimal point. If the
absolute integer value of value-expression2 is larger than the number of digits to the
left of the decimal point, the result is O.

If value-expressionl is positive, rounding is to the next higher positive number. If
value-expressionl is negative, rounding is to the next lower negative number.

The result of the function has the same data type and attributes the value-expressionl
except that the precision is increased by one if value-expressionl is of (UNSIGNED)
DECIMAL or (UNSIGNED) NUMERIC data type and the precision is less than 31. If
any of the value-expressions are null, the result is a null value. If a data error occurs
an exception is raised.

Example 1:

The following statement returns: 627.46380. 627.46400, 627.46000, 50000,
627.00000, 630.00000, 600.00000, 1000.00000, 0.00000:

B-32 Advantage CA-IDMS Release Summary

B.2 SQL Scalar Functions

SELECT ROUND(627.46381, 4) , ROUND(627.46381, 3) ,
ROUND(627.46381, 2) , ROUND(627.46381, 1) ,
ROUND(627.46381, 0) , ROUND(627.46381,-1) ,
ROUND(627.46381,-2) , ROUND(627.46381,-3) ,

ROUND(627.46381,-4)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

Example 2: The following statement returns:-627.46380, -627.46400, -627.46000,
-627.50000, -627.00000, -630.00000, -600.00000

SELECT ROUND(-627.46381, 4) , ROUND(-627.46381, 3) ,
ROUND(-627.46381, 2) , ROUND(-627.46381, 1) ,
ROUND(-627.46381, 0) , ROUND(-627.46381,-1) ,
ROUND(-627.46381,-2) FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

B.2.1.29 SIGN-function

»— SIGN (value-expression) ————»

SIGN returns an indicator of the sign of value-expression. The possible values for the
indicator are:

-1 if value-expression is less than zero
® QOif value-expression is zero

m 1 if value-expression is greater than zero

value-expression
Must be of any numeric data type except (UNSIGNED) DECIMAL or

(UNSIGNED) NUMERIC with a scale and precision of 31. The data type and
attributes of the result of the function are the same as the value-expression except
when the value-expression is (UNSIGNED) DECIMAL or (UNSIGNED)
NUMERIC. The precision is incremented if the value-expression's precision and
scale are equal. Thisis to alow for the return values of the function.

If the value-expression is null, the result is a null value. If a data error occurs, an
exception is raised.

Example: The following statement returns:.-1, 0, 1:

SELECT SIGN (1 - 10), SIGN (©), SIGN (1 +10)
FROM SYSTEM.TABLE WHERE NAME = 'SYSTEM' ;

B.2.1.30 SIN-function

»— SIN (value-expression) ——— »

SIN returns the sine of the value-expression, which must be an angle expressed in
radians. SIN is the inverse function of the ASIN function.

value-expression
Must be of any numeric data type. It is converted to a double precision

floating-point number for processing by this function.

Appendix B. New and Revised SQL Statements B-33

B.2 SQL Scalar Functions

The result of the function is a double precision floating-point number. If the
value-expression is null, the result is a null value. If a data error occurs, an exception
is raised.

Example: The following statement returns 1.0000000000000000E+QO0:

SELECT SIN(PI() / 2)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

B.2.1.31 SINH-function

»— SINH (value-expression) ——»

SINH returns the hyperbolic sine of the value-expression, which must be an angle
expressed in radians.

value-expression
Must be of any numeric data type. It is converted to a double precision
floating-point number for processing by this function.

The result of the function is a double precision floating-point number. If the
value-expression is null, the result is a null value. If a data error occurs, an exception
is raised.

Example: The following statement returns 1.1548739357257750E+01:

SELECT SIN(PI())
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

B.2.1.32 SPACE-function

»— SPACE (value-expression) ——»

SPACE returns a character string that consists of value-expression number of blanks.

value-expression
Any numeric data type, but only the integer part is considered. The integer part
specifies the number of blanks that makes up the result, and it must be between 0
and 30000.

The result is of VARCHAR data type. The length of the result is the integer part of
val ue-expression.

If .value-expression. is a constant, the maximum length of the result is calculated
during compilation of the SPACE function invocation, otherwise the maximum is
30000.

The result is null if value-expression is null. An error occurs if value-expression is
larger than 30000.

Example: The following statement returns 10 blanks:

B-34 Advantage CA-IDMS Release Summary

B.2 SQL Scalar Functions

SELECT SPACE (10)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

B.2.1.33 SQRT-function

»— SQRT (value-expression) —»

SQRT returns the square root of the value-expression.

value-expression
Must be of any numeric data type. It is converted to a double precision

floating-point number for processing by this function.

The result of the function is a double precision floating-point number. If the
value-expression is null, the result is a null value. If a data error occurs, an exception
is raised.

Example 1: The following statement returns 4.0000000000000000E+00:

SELECT SQRT(16)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

Example 2: The following statement returns <null> because the square root of a
negative number does not exist:

SELECT SQRT(-16)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

B.2.1.34 SUBSTR or SUBSTRING-function

SUBSTR —_|— (value-expression, start _l_—_[) —>
SUBSTRING , length

) —»
length J

»— SUBSTRING (value-expression FROM start |_
FOR

SUBSTR or SUBSTRING obtains a substring of the value in value-expression. In 16.0
SUBSTRING alows the same syntax as SUBSTR.

value-expression
Must be a character or graphics string.

start
Specifies the position of the first character of the result. Sart is a value
expression that must be an integer less than or equal to the length of the string in

value-expression. If start is null, the result of the function is null.

length
Specifies the length of the result. Length is a value expression that must be an

integer not less than one. The sum of length and start must not exceed 1 + the
length of the string in value-expression. (The length of a value with a data type of
VARCHAR or VARGRAPHIC is its maximum length.) When:

® The substring is less than the specified length — Advantage CA-IDMS pads the
result with blanks

Appendix B. New and Revised SQL Statements B-35

B.2 SQL Scalar Functions

® |ength is not specified — the substring begins at start and ends at the end of the
string

® |ength is null — the result of the function is null

The result of the SUBSTR function is a character string when value-expression is a
character string; the result is a graphics string when value-expression is a graphics
string.

B.2.1.35 TAN-function

»— TAN (value-expression) ——»

TAN returns the tangent of the value-expression, which must be an angle expressed in
radians. TAN is the inverse function of the ATAN function.

value-expression
Must be of any numeric data type. It is converted to a double precision

floating-point number for processing by this function.

The result of the function is a double precision floating-point number. If the
value-expression is null, the result is a null value. If a data error occurs, an exception
is raised.

Example: The following statement returns 1.0000000000000000E+0Q0:

SELECT TAN (PI()/4)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

B.2.1.36 TANH-function

»— TANH (value-expression) —

TANH returns the hyperbolic tangent of the value-expression, which must be an angle
expressed in radians.

value-expression
Must be any numeric data type. It is converted to a double precision floating-point
number for processing by this function.

The result of the function is a double precision floating-point number. If the
value-expression is null the result is a null value. If a data error occurs an exception is
raised.

Example: The following statement returns 6.5579420263267255E-01:

SELECT TANH (PI()/4)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

B-36 Advantage CA-IDMS Release Summary

B.2 SQL Scalar Functions

B.2.1.37 TRUNCATE-function

»— TRUNCATE (value-expressionl, value-expression2) ——»

TRUNCATE returns value-expressionl truncated to value-expression2 places to the
right of the decimal point if value-expression2 is positive or 0. If value-expression2 is
negative, value-expressionl is truncated to the absolute value of value-expression2
places to the left of the decimal point. If the absolute value of value-expression2 is not
smaller than the number of digits to the left of the decimal point, the result is 0.

value-expressionl
Specifies a numeric value-expression and must be of any numeric data type.

value-expression2
Specifies a numeric value-expression and must be of any numeric data type.
value-expression2 must be of any numeric data type but is internaly converted to
INTEGER.

The result of the function has the same data type and attributes as value-expressionl.
The result is null if value-expressionl or value-expression2 is null. If an error occurs
an exception is raised.

Example: The following statement returns. 627.46380, 627.46300, 627.46000,
627.40000, 627.00000, 620.00000, 600.00000, 0.00000, 0.00000

SELECT TRUNCATE(627.46381, 4) ,
TRUNCATE(627.46381, 3)
TRUNCATE (627.46381, 2)
TRUNCATE(627.46381, 1)
TRUNCATE(627.46381, 0)
TRUNCATE(627.46381,-1)
TRUNCATE(627.46381,-2)
TRUNCATE (627.46381,-3)
TRUNCATE (627.46381,-4)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

L)

B.2.1.38 USER-function

»— USER ()

USER is equivaent to the special-register USER. For more information, see Advantage
CA-IDMS Database SQL Option Reference Guide.

Example: The following statement returns JSSMITH, the user executing the SELECT
statement:

SELECT USER()
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

Appendix B. New and Revised SQL Statements B-37

B.2 SQL Scalar Functions

B.2.1.39 WEEK-function

»— WEEK (value-expression) ——

WEEK returns the week of the year for the specified value-expression. The function
uses the 1SO definition: a week starts with Monday and comprises 7 days. Week 1 is
the first week of the year that contains a Thursday (or the first week that contains
January 4).

value-expression
Must be a DATE or TIMESTAMP data type or must be a CHARACTER or
VARCHAR data type and represent a valid string representation of a date or
timestamp.

The result is an INTEGER data type and is in the range of 1 to 53. The result is null
if value-expression is null.

Example: The following statement returns 52,1:

SELECT WEEK ('2000-01-01'), WEEK('2000-01-03')
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM'

B-38 Advantage CA-IDMS Release Summary

B.3 Revised SQL Statements

B.3 Revised SQL Statements

The SQL statements in this section have been revised for Release 16.0.

B.3.1 ALTER PROCEDURE Statement

The ALTER PROCEDURE statement is extended in Release 16.0 allowing you to:
» Update the procedure's synchronization timestamp
® Change the procedure's default database option
® Change the procedure's transaction sharing option

For a complete description of the syntax and parameters for the ALTER
PROCEDURE statement, see theAdvantage CA-IDMS Database SQL Option
Reference Guide.

B.3.1.1 Syntax

»— ALTER PROCEDURE

procedure-identifier —»

L schema-name. i

A\
\4
A

TIMESTAMP timestamp-value

DEFAULT DATABASE T NULL—_J—
CURRENT

TRANSACTION SHARING —— ON
OFF ——
DEFAULT —

B.3.1.2 Parameters

timestamp-value
Specifies the value of the synchronization stamp to be assigned to the procedure.

Timestamp-value must be a valid external representation of a timestamp.

DEFAULT DATABASE
Specifies whether a default database should be established for database sessions
started by the procedure.

NULL
Specifies that no default database should be established.

CURRENT
Specifies that the database to which the SQL session is connected should
become the default for any database session started by the procedure.

TRANSACTION SHARING
Specifies whether transaction sharing should be enabled for database sessions
started by the procedure. If transaction sharing is enabled for a procedure's
database session, it shares the current SQL session's transaction.

Appendix B. New and Revised SQL Statements B-39

B.3 Revised SQL Statements

B.3.

ON
Specifies that transaction sharing should be enabled.

OFF
Specifies that transaction sharing should be disabled.

DEFAULT
Specifies that the transaction sharing setting that is in effect when the
procedure is invoked should be retained.

1.3 Usage

Specifying a synchronization stamp: When defining or atering a procedure you
can specify a value for the synchronization stamp. If explicitly specified, the
synchronization stamp should aways be set to a new value following the change so
that the change is detectible by the runtime system.

CAUTION:

Care should be exercised when explicitly specifying the synchronization stamp
value, since its purpose is to enable the detection of discrepancies between a
procedure function and its definition.

If not specified, the synchronization stamp is automatically set to the current date and
time.

B.3.2 ALTER SCHEMA Statement

The ALTER SCHEMA statement is extended in Release 16.0 to alow you to update
the referenced SQL schema. For a complete description of the syntax and parameters
for the ALTER SCHEMA statement, see the Advantage CA-IDMS Database SQL
Option Reference Guide.

B.3.2.1 Syntax

»»>— ALTER SCHEMA schema-name

v

A\
A

L FOR SQL SCHEMA sql-schema-specification il

Expansion of sql-schema-specification:

v

»>> sgl-schema-name

\

»
>

’— DBNAME database-name —|

A

B-40

Advantage CA-IDMS Release Summary

B.3 Revised SQL Statements

B.3.2.2 Parameters

B.3.2.3 Usage

sql-schema-specification
Identifies an existing SQL-defined schema to which the new SQL schema refers.
Expanded syntax for sgl-schema-specification appears immediately following the
statement syntax.

sgl-schema-name

Names the referenced SQL -defined-schema. This named schema must not
reference another schema.

DBNAME database-name
Identifies the database containing the data described by the referenced
SQL-defined schema. Database-name must be a database name that is defined in
the database name table or a segment name defined in the DMCL.

Restricted changes: You cannot alter the type of a schema, meaning that you
cannot change a non-referencing schema to a referencing schema and vice versa, nor
can you change the type of schema being referenced (from SQL to non-SQL and vice
versa).

Changing referenced SQL schema information: If you change the name of the
SQL schema that is referenced, you must drop and recreate all views that reference
tables in the referencing schema (that is, the schema being altered). To determine
which views are affected, use the DISPLAY ALL VIEW statement with the
REFERENCED selection criteria. Before dropping the view, display its syntax by
using the DISPLAY or PUNCH VIEW statement.

B.3.3 ALTER TABLE Statement

B.3.3.1 Syntax

The ALTER TABLE statement is extended in Release 16.0 to allow you to update a
table's synchronization timestamp with a user-specified value. For a complete
description of the syntax and parameters for the ALTER TABLE statement, see the
Advantage CA-IDMS Database SQL Option Reference Guide.

»— ALTER TABLE

v

table-identifier

L schema-name. J

\4
A

l— TIMESTAMP timestamp-value —l

Appendix B. New and Revised SQL Statements B-41

B.3 Revised SQL Statements

B.3.3.2 Parameters

TIMESTAMP timestamp-value
Specifies the value of the synchronization stamp to be assigned to the table.
timestamp-value must be a valid externa representation of a timestamp.

B.3.3.3 Usage

Specifying a synchronization stamp: When defining or altering a table you can
specify a value for the synchronization stamp. If explicitly specified, the
synchronization stamp should aways be set to a new value following the change so
that the change is detectible by the runtime system.

CAUTION:

Care should be exercised when explicitly specifying the synchronization stamp
value, since its purpose is to enable the detection of discrepancies between a table
and its definition.

If not specified, the synchronization stamp is automatically set to the current date and
time.

B.3.4 ALTER TABLE PROCEDURE Statement
The ALTER TABLE PROCEDURE statement is extended in Release 16.0 to alow
you to:
» Update the table procedure's synchronization timestamp
» Change the table procedure's default database option
= Change the table procedure's transaction sharing option
For a complete description of the syntax and parameters for the ALTER TABLE

PROCEDURE statement, see the Advantage CA-IDMS Database SQL Option
Reference Guide.

B.3.4.1 Syntax

»— ALTER TABLE PROCEDURE

table-procedure-identifier —

L schema-name. J

A\
A\
A

1"Ih"IE§TAMP timestamp-value

DEFAULT DATABASE —E NULL—_I—
CURRENT

TRANSACTION SHARING —E ON

OFF ——
DEFAULT —

B-42 Advantage CA-IDMS Release Summary

B.3 Revised SQL Statements

B.3.4.2 Parameters

timestamp-value
Specifies the value of the synchronization stamp to be assigned to the table

procedure. timestamp-value must be a valid external representation of a timestamp.

DEFAULT DATABASE
Specifies whether a default database should be established for database sessions
started by the table procedure.

NULL
Specifies that no default database should be established.

CURRENT
Specifies that the database to which the SQL session is connected should
become the default for any database session started by the table procedure.

TRANSACTION SHARING
Specifies whether transaction sharing should be enabled for database sessions
started by the table procedure. If transaction sharing is enabled for a table
procedure's database session, it shares the current SQL session's transaction.

ON
Specifies that transaction sharing should be enabled.

OFF
Specifies that transaction sharing should be disabled.

DEFAULT
Specifies that the transaction sharing setting that is in effect when the
procedure is invoked should be retained.

B.3.4.3 Usage

Specifying a synchronization stamp: When defining or altering a table procedure
you can specify a value for the synchronization stamp. If explicitly specified, the
synchronization stamp should always be set to a new value following the change so
that the change is detectible by the runtime system.

CAUTION:

Care should be exercised when explicitly specifying the synchronization stamp
value, since its purpose is to enable the detection of discrepancies between a table
procedure and its definition.

If not specified, the synchronization stamp is automatically set to the current date and
time.

Appendix B. New and Revised SQL Statements B-43

B.3 Revised SQL Statements

B.3.5 CREATE INDEX Statement

B.3.5.1 Syntax

The CREATE INDEX statement is extended in Release 16.0 to allow you to assign an
index 1D value to the index being created. For a complete description of the syntax
and parameters for the CREATE INDEX statement, see the Advantage CA-IDMS
Database SQL Option Reference Guide.

v

»— CREATE —L—_I— INDEX index-name
UNIQUE

»— ON

v

table-identifier

L schema-name. il

\ 4
A

L INDEX ID index-id-number i

B.3.5.2 Parameters

B.3.5.3 Usage

INDEX ID index-id-number
Assigns an index ID value for the index being created. The index-id-number must
be in the range of 1 through 32, 767.

Specifying an INDEX ID: When defining an index, you can specify a value for its
numeric index identifier. If explicitly specified, it must be unique across all other
indexes residing in the same database area.

If not specified, the index's numeric identifier is automatically set to the next available
number in the range 1 through 32,767.

B.3.6 CREATE PROCEDURE Statement

The CREATE PROCEDURE statement is extended in Release 16.0 to alow you to:
» Specify the procedure's synchronization timestamp
» Specify the procedure's default database option
» Specify the procedure's transaction sharing option
m Specify ADS as a protocol in addition to IDMS
For a complete description of the syntax and parameters for the CREATE

PROCEDURE statement, see the Advantage CA-IDMS Database SQL Option
Reference Guide.

B-44 Advantage CA-IDMS Release Summary

B.3 Revised SQL Statements

B.3.6.1 Syntax

»»— CREATE PROCEDURE N] procedure-identifier — . . . —»
schema-name.
»— PROTOCOL IDMS >
L TRANSACTION SHARING ON
OFF
DEFAULT<—
L DEFAULT DATABASE T NULL <—
CURRENT —
L TIMESTAMP timestamp-value]
B.3.6.2 Parameters
PROTOCOL
This is a required parameter that specifies the protocol that is used to invoke the
procedure.
IDMS

Use IDMS for SQL procedures that are written in COBOL, PL/I, or
Assembler and that use the same protocol as in earlier Advantage CA-IDMS
releases.

ADS
Use ADS for SQL functions that are written in Advantage CA-ADS. The
name of the dialog that is loaded and run when the SQL function is invoked
is specified in the external-routine-name of the EXTERNAL NAME clause.
With the protocol set to ADS, the mode clause must be set to SY STEM.

TRANSACTION SHARING
Specifies whether transaction sharing should be enabled for database sessions
started by the procedure. If transaction sharing is enabled for a procedure's
database session, it shares the current SQL session's transaction.

ON
Specifies that transaction sharing should be enabled.

OFF
Specifies that transaction sharing should be disabled.

DEFAULT
Specifies that the transaction sharing setting that is in effect when the
procedure is invoked should be retained.

DEFAULT DATABASE
Specifies whether a default database should be established for database sessions
started by the procedure.

NULL
Specifies that no default database should be established.

Appendix B. New and Revised SQL Statements B-45

B.3 Revised SQL Statements

CURRENT
Specifies that the database to which the SQL session is connected should
become the default for any database session started by the procedure.

TIMESTAMP timestamp-value
Specifies the value of the synchronization stamp to be assigned to the procedure.
Timestamp-value must be a valid external representation of a timestamp.

B.3.6.3 Usage

Specifying a synchronization stamp: When defining or altering a procedure you
can specify a value for the synchronization stamp. If explicitly specified, the
synchronization stamp should always be set to a new value following the change so
that the change is detectible by the runtime system.

CAUTION:

Care should be exercised when explicitly specifying the synchronization stamp
value, since its purpose is to enable the detection of discrepancies between a
procedure and its definition.

If not specified, the synchronization stamp is automatically set to the current date and
time.

B.3.7 CREATE SCHEMA

The CREATE SCHEMA statement is extended in Release 16.0 to allow you to
reference an SQL schema as an aternative to a non-SQL schema. For a complete
description of the syntax and parameters for the CREATE SCHEMA statement, see the
Advantage CA-IDMS Database SQL Option Reference Guide.

B.3.7.1 Syntax

v

»»— CREATE SCHEMA schema-name

\
A

E F(')R.S(.)L SCHEMA sql-schema-specification i

Expansion of sql-schema-specification:

\ 4
A

»— sql-schema-name
L DBNAME database-name J

B.3.7.2 Parameters

sgl-schema-specification
Identifies an existing SQL-defined schema to which the new SQL schema refers.
Expanded syntax for sgl-schema-specification appears immediately following the
statement syntax.

sql-schema-name
Names the referenced SQL-defined-schema. This named schema must not itself
reference another schema.

B-46 Advantage CA-IDMS Release Summary

B.3 Revised SQL Statements

B.3.7.3 Usage

B.3.7.4 Example

DBNAME database-name
Identifies the database containing the data described by the referenced
SQL-defined schema. Database-name must be a database name that is defined in
the database name table or a segment name defined in the DMCL.

If you do not specify DBNAME, no database name is included in the definition of
schema-name. At runtime, the database to which the SQL session is connected must
include segments containing the areas described by the referenced SQL-defined
schema

Creating a referencing schema: If a FOR NONSQL SCHEMA or a FOR SQL
SCHEMA clause is specified, the new SQL-defined schema that is being created
references the specified schema and itself becomes a referencing schema. If a non-SQL
defined schema is specified, then creation of a referencing schema enables SQL access
to a non-SQL defined database described by the referenced schema. Similarly, if the
referenced schema is SQL-defined, then the creation of a referencing schema enables
SQL access to an SQL-defined database described by the referenced schema.

In either case, if a DBNAME is specified, the referencing schema provides access to
the database instance identified by database-name. If no DBNAME is specified, the
referencing schema is unbound and the instance of the database to be accessed is
determined at runtime. Access modules that reference tables through an unbound
referencing schema can therefore be used to access more than one instance of a
database.

You cannot define either a table or a view in a referencing schema; however, you can
define a view in another schema that references a table through a referencing schema.

Specifying DBNAME: When you create a referencing schema, you use the
DBNAME parameter to specify the name of the database containing the data. The
name specified can be either the name of a database name defined in the database
name table or the name of a segment included in the DMCL.

If you do not specify a database name, the database to which your SQL session is
connected when accessing the data through the referencing schema must include the
segments containing the data.

Defining a referencing schema for an SQL-defined schema:
CREATE SCHEMA EMPDEMO1 FOR SQL SCHEMA DEMO DBNAME USERDB;

Appendix B. New and Revised SQL Statements B-47

B.3 Revised SQL Statements

B.3.8 CREATE TABLE Statement

B.3.8.1 Syntax

The CREATE TABLE statement is extended in Release 16.0 to alow you to:
® Specify the table's synchronization timestamp
» Specify the tabl€'s identification number

For a complete description of the syntax and parameters for the CREATE TABLE
statement, see the Advantage CA-IDMS Database SQL Option Reference Guide.

»— CREATE TABLE

table-identifier >

L schema-name. i

> . —><
|— TABLE ID table-id-number J |— TIMESTAMP timestamp-value J

B.3.8.2 Parameters

B.3.8.3 Usage

TABLE ID table-id-number
Assigns a table ID value for the table being created. The table-id-number must be
in the range of 1024 through 4095.

TIMESTAMP timestamp-value
Specifies the value of the synchronization stamp to be assigned to the table.
Timestamp-value must be a valid external representation of a timestamp.

Specifying a synchronization stamp: When defining or atering a table you can
specify a value for the synchronization stamp. If explicitly specified, the
synchronization stamp should always be set to a new value following the change so
that the change is detectible by the runtime system.

CAUTION:

Care should be exercised when explicitly specifying the synchronization stamp
value, since its purpose is to enable the detection of discrepancies between a table
and its definition.

If not specified, the synchronization stamp is automatically set to the current date and
time.

Specifying a TABLE ID: When defining a table, you can specify a value for its
numeric table identifier. If explicitly specified, the TABLE ID must be unique across
all other tables whose rows are stored in the same database area.

If the TABLE ID is not specified, the table's numeric identifier is automatically set to
the next available number in the range 1024 through 4095.

B-48 Advantage CA-IDMS Release Summary

B.3 Revised SQL Statements

B.3.9 CREATE TABLE PROCEDURE Statement

The CREATE TABLE PROCEDURE statement is extended in Release 16.0 to allow
you to:

m Specify the table procedure's synchronization timestamp

m Specify the table procedure's default database option

» Specify the table procedure's transaction sharing option
For a complete description of the syntax and parameters for the CREATE TABLE

PROCEDURE statement, see the Advantage CA-IDMS Database SQL Option
Reference Guide.

B.3.9.1 Syntax

»— CREATE TABLE PROCEDURE

procedure-identifier . . . —»

’— schema-name. —l

\ 4

v

L TRaNSACTION SHARING ON
OFF
DEFAULT<—

A\

l— DEFAULT DATABASE —[NULL <+— ’— TIMESTAMP timestamp-value J
CURRENT —

B.3.9.2 Parameters

DEFAULT DATABASE
Specifies whether a default database should be established for database sessions
started by the table procedure.

NULL
Specifies that no default database should be established.

CURRENT
Specifies that the database to which the SQL session is connected should
become the default for any database session started by the table procedure.

TRANSACTION SHARING
Specifies whether transaction sharing should be enabled for database sessions
started by the table procedure. If transaction sharing is enabled for a table
procedure's database session, it shares the current SQL session's transaction.

ON
Specifies that transaction sharing should be enabled.

OFF
Specifies that transaction sharing should be disabled.

DEFAULT
Specifies that the transaction sharing setting that is in effect when the
procedure is invoked should be retained.

Appendix B. New and Revised SQL Statements B-49

B.3 Revised SQL Statements

B.3.9.3 Usage

TIMESTAMP timestamp-value
Specifies the value of the synchronization stamp to be assigned to the table
procedure. Timestamp-value must be a valid external representation of a
timestamp.

Specifying a synchronization stamp: When defining or atering a table procedure
you can specify a value for the synchronization stamp. If explicitly specified, the
synchronization stamp should aways be set to a new value following the change so
that the change is detectible by the runtime system.

CAUTION:

Care should be exercised when explicitly specifying the synchronization stamp
value, since its purpose is to enable the detection of discrepancies between a table
procedure and its definition.

If not specified, the synchronization stamp is automatically set to the current date and
time.

B.3.10 CREATE VIEW Statement

B.3.10.1 Syntax

The CREATE VIEW statement is extended in Release 16.0 to allow you to specify a
view's synchronization timestamp. For a complete description of the syntax and
parameters for the CREATE VIEW statement, see the Advantage CA-IDMS Database
L Option Reference Guide.

»—— CREATE VIEW

v

|_ J view-identifier . . .
schema-name.

\ 4
A

»
»

L TIMESTAMP timestamp-value J

B.3.10.2 Parameters

B.3.10.3 Usage

TIMESTAMP timestamp-value
Specifies the value of the synchronization stamp to be assigned to the view.
Timestamp-value must be a valid external representation of a timestamp.

Specifying a synchronization stamp: When defining or altering a view you can
specify a value for the synchronization stamp. If explicitly specified, the
synchronization stamp should always be set to a new value following the change so
that the change is detectible by the runtime system.

B-50 Advantage CA-IDMS Release Summary

B.3 Revised SQL Statements

CAUTION:

Care should be exercised when explicitly specifying the synchronization stamp
value, since its purpose is to enable the detection of discrepancies between a view
and its definition.

If not specified, the synchronization stamp is automatically set to the current date and
time.

B.3.11 DISPLAY/PUNCH INDEX Statement

B.3.11.1 Syntax

The DISPLAY/PUNCH INDEX statement is extended in Release 16.0 to alow you to
view the index ID. For a complete description of the syntax and parameters for the
DISPLAY/ PUNCH INDEX statement, see the Advantage CA-IDMS Database SQL
Option Reference Guide.

> DISpla INDex index-name — ON table-name —»
T ounen T L

PUNch schema-name. i

B.3.11.2 Parameters

FULI
Directs Advantage CA-IDMS to display all attributes of the index except physica
attributes.

PHYsical
Directs Advantage CA-IDMS to display all attributes of the index including
its physical attributes. This includes the internal index ID.

B.3.12 DISPLAY/PUNCH PROCEDURE Statement

B.3.12.1 Syntax

The DISPLAY/PUNCH PROCEDURE statement is extended in Release 16.0 to allow
you to view the procedure's synchronization timestamp. For a complete description of
the syntax and parameters for the DISPLAY/ PUNCH PROCEDURE statement, see
the Advantage CA-IDMS Database SQL Option Reference Guide.

Appendix B. New and Revised SQL Statements B-51

B.3 Revised SQL Statements

v

»—[DISplay PROcedure proc-name
PUNch ——I— L schema-name. il

A\

v

|— FULT |_ J |
PHYsical

A\

WITh AS COMmM—‘
ALSo WITh —— L TIMestamp 1L SYNtax

WITHOut
ALSo WITHOQut —

B.3.12.2 Parameters

FULI
Directs Advantage CA-IDMS to display all attributes of the procedure except
physical attributes.

PHYsical
Directs Advantage CA-IDMS to display al attributes of the index including its
physical attributes. This includes the procedure's synchronization timestamp.

TIMestamp
Specifies the display of the synchronization timestamp for the procedure.

B.3.13 DISPLAY/PUNCH SCHEMA Statement

The DISPLAY/PUNCH SCHEMA statement is extended in Release 16.0 to allow you
to view the physical attributes of a schema's entities. For a complete description of the
syntax and parameters for the DISPLAY/PUNCH SCHEMA statement, see the
Advantage CA-IDMS Database SQL Option Reference Guide.

B.3.13.1 Syntax

v

»—I: DISplay SCHema name
PUNch) |: FUL1

ALL 1L PHYsical —

> e/
WITh AS (20Mmen‘c54<—,—J
ALSo WITh — L TIMestamp 1L SYNtax

WITHOut
ALSo WITHOut —

B.3.13.2 Parameters

ALL or FULI
Directs Advantage CA-IDMS to display all attributes of the schema except
physical attributes.

PHYsical
Directs Advantage CA-IDMS to display all attributes of the schema including
its physical attributes. This includes table IDs, index IDs, and synchronization
timestamps for functions, procedures, tables, table procedures, and views.

B-52 Advantage CA-IDMS Release Summary

B.3 Revised SQL Statements

TIMestamp
Specifies the display of the synchronization timestamps for the schema entities.

B.3.14 DISPLAY/PUNCH TABLE Statement

The DISPLAY/PUNCH TABLE statement is extended in Release 16.0 to allow you to
view the tabl€e's synchronization timestamp and table ID. For a complete description
of the syntax and parameters for the DISPLAY/PUNCH TABLE statement, see the
Advantage CA-IDMS Database SQL Option Reference Guide.

B.3.14.1 Syntax

v

»»— DISplay TABTe table-name
]: PUNch ——l— L schema-name. ——|

\ 4

L FUL1 |_ _| '
PHYsical

. >
WITh AS COMment;ﬁ,—I
ALSo WITh — L TIMestamp 1L SYNtax
WITHOUt
ALSo WITHOut —
B.3.14.2 Parameters
FULI
Directs Advantage CA-IDMS to display al attributes of the table except physical
atributes.
PHYsical
Directs Advantage CA-IDMS to display all attributes of the table including its
physical attributes. This includes the table's synchronization timestamp and
table ID
TIMestamp

Specifies the display of the synchronization timestamp for the table.

B.3.15 DISPLAY/PUNCH TABLE PROCEDURE Statement

The DISPLAY/PUNCH TABLE PROCEDURE statement is extended in Release 16.0
to alow you to view the table procedure's synchronization timestamp. For a complete
description of the syntax and parameters for the DISPLAY/ PUNCH TABLE
PROCEDURE statement, see the Advantage CA-IDMS Database SQL Option
Reference Guide.

Appendix B. New and Revised SQL Statements B-53

B.3 Revised SQL Statements

B.3.15.1 Syntax

»—[DISp]ay TABTe PROcedure table-proc-name ———»

PUNch L schema-name. i

» >
>

L FULT N] |
PHYsical

\ 4

WITh AS COMments4<—|—‘
ALSo WITh — L TIMestamp 1L SYNtax

WITHOut
ALSo WITHOut —

B.3.15.2 Parameters

FULI
Directs Advantage CA-IDMS to display all attributes of the table procedure except
physical attributes.

PHYsical
Directs Advantage CA-IDMS to display all attributes of the table procedure
including its physical attributes. This includes the table procedure's
synchronization timestamp.

TIMestamp
Specifies the display of the synchronization timestamp for the table procedure.

B.3.16 DISPLAY/PUNCH VIEW Statement

The DISPLAY/PUNCH VIEW statement is extended in Release 16.0 to allow you to
display the view's synchronization timestamp. For a complete description of the syntax
and parameters for the DISPLAY/PUNCH VIEW statement, see the Advantage
CA-IDMS Database SQL Option Reference Guide.

B.3.16.1 Syntax

v

»—[DISp1ay VIEW N] view-name
PUNch schema-name.

>
>

v

L FULT N] |
PHYsical

\ 4

WITh AS COMmM
ALSo WITh —— L TIMestamp 1L SYNtax

WITHOut
ALSo WITHOut -

B-54 Advantage CA-IDMS Release Summary

B.3 Revised SQL Statements

B.3.16.2 Parameters

ALL or FULI
Directs Advantage CA-IDMS to display all attributes of the view except physical
attributes.

PHYsical
Directs Advantage CA-IDMS to display all attributes of the view including its
physical attributes. This includes the view's synchronization timestamp.

TIMestamp
Specifies the display of the synchronization timestamp for the view.

B.3.17 SET SESSION Statement

The SET SESSION statement is extended to provide the following enhancements:
m Controlling dynamic SQL statement caching
= Encoding XML values

For a complete description of the syntax and parameters for the SET SESSION
statement, see the Advantage CA-IDMS Database SQL Option Reference Guide.

B.3.17.1 Syntax

»— SET SESSION

v
A

SQL CACHING —— ON
OFF
DEFAULT <—

XML ENCODING UTF8
—E UTF16BE —

UTF16LE —
EBCDIC «—

B.3.17.2 Parameters

SQL CACHING
Specifies dynamic SQL statement caching.

ON
If SQL caching is globally enabled, the session uses caching until the session
option is changed or until the caching is disabled at the system level.

OFF
Regardless of the global setting for SQL caching, the session will not use
caching until the session option is changed.

DEFAULT
Same as ON.

Appendix B. New and Revised SQL Statements B-55

B.3 Revised SQL Statements

XML ENCODING
Specifies the type of encoding to use for XML values.

XML ENCODING remains valid until the end of session or until a new SET
SESSION command is executed.

UTF8
Specifies UTF-8 Unicode encoding.

UTF16BE
Specifies UTF-16 Big Endian Unicode encoding.

UTF16LE
Specifies UTF-16 Little Endian Unicode encoding.

EBCDIC
Specifies EBCDIC encoding. This is the default.

B.3.17.3 Examples

Example 1: The following example shows EBCDIC encoding:

set session XML ENCODING ebcdic ;

select cast(SLICE as BIN (27)) as EBCDIC
from SYSCA.XMLSLICE

where SLICESIZE = 27 and XMLVALUE =

XMLCOMMENT (' 0123456789ABCDEF ');

The result looks like this:
*+ EBCDIC

*t ——mmm-

*+ 4C5A60604040FOF1F2F3F4F5F6F7F8F9C1C2C3C4C5C6404060606E

Example 2: The following example shows UTF-8 encoding:

set session XML ENCODING UTF8 ;

%+ Status = 0 SQLSTATE = 00000

select cast(SLICE as BIN (27)) as "UTF-8"
from SYSCA.XMLSLICE

where SLICESIZE = 27 and XMLVALUE =

XMLCOMMENT (' 0123456789ABCDEF ');

The result looks like this:

«+ UTF-8
*t -

*+ 3C212D2D20203031323334353637383941424344454620202D2D3E

Example 3: The following example shows UTF-16 Big Endian encoding:

set session XML ENCODING UTF16BE ;

*+ Status = 0 SQLSTATE = 00000

select cast(SLICE as BIN (27)) as "UTF-16 BE"
from SYSCA.XMLSLICE

where SLICESIZE = 27 and XMLVALUE =

XMLCOMMENT (' 0123456789ABCDEF ');

B-56 Advantage CA-IDMS Release Summary

B.3 Revised SQL Statements

The result looks like this:

*+ UTF-16 BE
L3 ST —
*+ 003€0021002D002D00200020003000310032003300340035003600
*+ 370038003900410042004300440045004600200020002D002DO0O3E

Example 4: The following example shows UTF-16 Little Endian encoding:

set session XML ENCODING UTF16LE ;

*+ Status = 0 SQLSTATE = 00000

select cast(SLICE as BIN (27)) as "UTF-16 LE"
from SYSCA.XMLSLICE

where SLICESIZE = 27 and XMLVALUE =

XMLCOMMENT (' 0123456789ABCDEF ')}

The result looks like this:

«+ UTF-16 LE
*t mmmmmmm e
*+ 300021002D002D0020002000300031003200330034003500360037
«+ 0038003900410042004300440045004600200020002D002D003E00

Appendix B. New and Revised SQL Statements B-57

B.4 SQL/XML Functions and Table Procedure

B.4 SQL/XML Functions and Table Procedure

This section contains the SQL/XML functions and table procedure supplied in the
XML Publishing enhancement.

»»> For more information on using XML Publishing, see 4.6, “XML Publishing” on
page 4-32.

B.4.1 XMLAGG-function

B.4.1.1 Syntax

Returns an XML value that is computed from a collection of rows. The result is the
XML concatenation of alist of XML elements, aggregated in the statement containing
the XMLAGG-function.

XMLAGG — (—— XML-value-expression

A

) >«

»
»

B.4.1.2 Parameters

[’
L ORDER BY —v col-nm
[table-name. - ﬁ ASC <j
alias. DESC
column-number

ORDER BY

Before the aggregation takes place, the XML elements, specified by

XML -value-expression, are sorted in ascending or descending order by the values
in the specified columns. XML elements are ordered first by the first column
specified, then by the second column specified within the ordering established by
the first column, then by the third column specified, and so on.

col-nm
Specifies the name of column.

table-name.
Specifies the table, view, procedure, or table procedure that includes the
named column.

alias
Specifies the alias associated with the table, view, procedure, or table
procedure that includes the named column. The alias must be defined in the
FROM parameter of the subquery, query specification, or SELECT statement
that includes the XMLAGG function.

column-number
Specifies a column number. You can specify from 1 through 254 columns.
Multiple columns must be separated by commas.

B-58 Advantage CA-IDMS Release Summary

B.4 SQL/XML Functions and Table Procedure

B.4.1.3 Examples

Example 1: Use of the XMLAGG function to display all employees belonging to
each department.

SELECT XMLSERIALIZE(CONTENT
XMLELEMENT (NAME "dept",
XMLATTRIBUTES (e.DEPT_ID AS "id"),
XMLAGG (XMLELEMENT (NAME "1name",
e.EMP_LNAME)))
AS VARCHAR(256)) AS "EMP_NAME_COL"
FROM DEMOEMPL.EMPLOYEE e GROUP BY DEPT_ID ;

The result is similar to the following. Note that the content of the EMP_NAME_COL
column has been formatted for convenience.

EMP_NAME_COL

<dept id="1100">
<Iname>Fordman</Tname>
<lname>Halloran</1name>
<1name>Hame1</1name>

</dept>

<dept id="1110">
<Tname>Widman</Tname>
<1name>Alexander</Tname>

</dept>

<dept d="1120">
<Iname>Umidy</Tname>
<Iname>White</Iname>
<Iname>Johnson</Tname>

</dept>

Example 2: Use of the XMLAGG function to display all employees belonging to
each department. For each employee, the positions and jobs are included. This example
shows that the use of the XMLAGG function together with the ability to specify
subqueries as arguments for the SQL/XML functions allows creating very complex

XML structures.

select xmlpointer (
xmlelement
(Name "Employees"
, xmlagg
(xmlelement
(NAME "Department"
, xmlattributes (DEPT_ID as "DeptId")
, xmlelement
(NAME "EmployeesInDepartment"
, select xmlagg
(xmlelement
(name "Employee"
, xmlattributes(EMP_ID as "EmpId")
, EMP_FNAME
, EMP_LNAME
, xmlelement

Appendix B. New and Revised SQL Statements B-59

B.4 SQL/XML Functions and Table Procedure

(name "Address"
, XMLFOREST
(e.STREET as "Street"

, e.CITY as "City"
, e.STATE as "State"
)

)
, xmlelement
(name "Positions"
, select xmlagg
(xmlelement
(name "Position"
, xmlattributes
(p.JOB_ID as "JobId")
, JOB_TITLE
» SALARY_AMOUNT
» BONUS_PERCENT
)
)
from DEMOEMPL.POSITION p, DEMOEMPL.JOB j
where p.EMP_ID = e.EMP_ID
and p.JOB_ID = j.JOB_ID
)

)
)

from DEMOEMPL.EMPLOYEE e
where d.DEPT_ID = e.DEPT_ID

)

)
)
)
) from DEMOEMPL.DEPARTMENT d

The result is similar to the following. It has been formatted and displayed with an
"XML-enabled" Web browser that allows collapsing and expanding XML elements in
an XML tree

- <Employees>

+ <Department Deptld=">1120">

- <Department Deptld="5000">

- <EmployeesInDepartment>

- <Employee Empld="3449">
Cynthia Taylor

- <Address>
<Street>201 Washington St</Street>
<City>Concord</City>
<State>MA</State>
</Address>

- <Positions>
<Position JobId="4023">Accountant 74776.0</Position>
</Positions>
</Employee>

+ <Employee EmpIld="5103">

B-60 Advantage CA-IDMS Release Summary

B.4 SQL/XML Functions and Table Procedure

</EmployeesInDepartment>
</Department>

+ <Department DeptId="4500">
</Employees>

Example 3: Use of the XMLAGG function and subqueries to display part of an
SQL catalog as an XML document.

select xmlpointer (
xmlelement
(Name "Catalog"
, xmlagg
(xmlelement
(Name "Schema"
, xmlattributes
(s.NAME as "Name"
, S.TYPE as "Type"
)
, 'Referencing SQL Schema:'
, S.REFDSQLSCHEMA
, 'Referencing Non SQL Schema:'
, S.NTWKSCHEMA
, select
xmlagg
(xmlelement
(Name "TablesInSchema"
, xmlattributes
(t.NAME as "Name"
, t.TYPE as "Type"
, t.LENGTH as "Length"
)
, SEGMENT
, 'AREA'
, xmlelement
(Name "TableStats"
, xmlattributes
(' t.NUMCOLS as "NumCols"
, t.NUMINDEXES as "NumIndexes"

, t.NUMREFERENCING as "NumReferencing"
» t.NUMROWS as "NumRows"
, t.NUMPAGES as "NumPages"
, t.NUMSYNTAX as "NumSyntax"
» T.ESTROWS as "EstRows"
)
)

, select

xmlagg

(xmlelement
(Name "ColumnsInTable"
, xmlattributes
(c.NAME as "Name"

Appendix B. New and Revised SQL Statements B-61

B.4 SQL/XML Functions and Table Procedure

, C.NUMBER as "Nr"
)
. TYPE
, xmlelement
(Name "DataTypeDetails"
, xmlattributes
(c.TYPECODE as "Code"
, C.PRECISION as "Precision"
, C.SCALE as "Scale"
)
)

, xmlelement
(Name "OtherDetails"
, xmlattributes
(c.NULLS as "Null"
, C.DEFAULT as "Default"

, C.VOFFSET as "VOffset"

» C.VLENGTH as "VLength"

, C.NOFFSET as "NOffset"

, C.NLENGTH as "NLength"

, C.NUMVALUES as "NumValues"
)

)
)
)

from SYSTEM.COLUMN c
where c.TABLE = t.NAME
and c.SCHEMA = t.SCHEMA

)
)
from SYSTEM.TABLE t
where t.SCHEMA = s.NAME
and TYPE = 'T'
)
)

)
)from SYSTEM.SCHEMA s

The result is similar to the following. It has been formatted and displayed with an
"XML-enabled" Web browser that allows collapsing and expanding XML elements in
an XML tree

B-62 Advantage CA-IDMS Release Summary

B.4 SQL/XML Functions and Table Procedure

+ + + +

+

<Catalog>
<Schema Name="EMPSCHM" Type="N">
Referencing SQL Schema: Referencing Non SQL Schema:EMPSCHM</Schema>
<Schema Name="DEMOEMPL" Type="R">
Referencing SQL Schema:Referencing Non SQL Schema:
<TablesInSchema Name="DEPARTMENT" Type="T" Length="68">
<TablesInSchema Name="DIVISION" Type="T" Length="56">
<TablesInSchema Name="EMPL_MANAGER_INFO" Type="T" Length="56">
<TablesInSchema Name="EMPLOYEE" Type="T" Length="204">
SQLDEMO .AREA
<TableStats NumCols="15" NumIndexes="4" NumReferencing="2" NumRows="55"
NumPages="40" NumSyntax="1" EstRows="0" />
<ColumnsInTable Name="DEPT_ID" Nr="5">
UNSIGNED NUMERIC
<DataTypeDetails Code="128" Precision="4" Scale="0" />
<OtherDetails Null="N" Default="N" VOffset="49" VLength="4" NOffset="0"
NLength="0" NumValues="14" />
</ColumnsInTable>
<ColumnsInTable Name="EMP_FNAME" Nr="3">
CHARACTER
<DataTypeDetails Code="1" Precision="0" Scale="0" />
<OtherDetails Null="N" Default="N" VOffset="9" VlLength="20" NOffset="0"
NLength="0" NumValues="0" />
</ColumnsInTable>

<ColumnsInTable Name="EMP_ID" Nr="1">
UNSIGNED NUMERIC

<DataTypeDetails Code="128" Precision="4" Scale="0" />

<OtherDetails Null="N" Default="N" VOffset="0" VLength="4" NOffset="0"
NLength="0" NumValues="0" />

</ColumnsInTable>

;/TablesInSchema>

<TablesInSchema Name="INSURANCE_PLAN" Type="T" Length="168">
<TablesInSchema Name="JOB" Type="T" Length="188">
<TablesInSchema Name="POSITION" Type="T" Length="64">
</Schema>

</Catalog>

Appendix B. New and Revised SQL Statements B-63

B.4 SQL/XML Functions and Table Procedure

B.4.2 XMLCOMMENT-function

Returns an XML value that is an XML comment, generated from
string-value-expression. The XML value consists of an XML root information item
with one child, an XML comment information item whose [content] property is
string-value-expression.

B.4.2.1 Syntax

A\
A

XMLCOMMENT — (—— string-value-expression —)

B.4.2.2 Parameters

string-value-expression
Specifies a character string value-expression, that is a value-expression that
returns a value of type character.

If string-value-expression is NULL, XMLCOMMENT returns a NULL value.
string-value-expression cannot contain a hyphen (--) sequence of characters and
cannot end with a hyphen (-) character.

B.4.2.3 Example

The following statement returns a single XML comment:

SELECT XMLSERIALIZE(CONTENT XMLCOMMENT('My personal opinion')
AS CHAR(80)) as "Comment Only"
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

The result is similar to the following:

Comment Only

<!--My personal opinion-->

B-64 Advantage CA-IDMS Release Summary

B.4 SQL/XML Functions and Table Procedure

B.4.3 XMLCONCAT-function

B.4.3.1 Syntax

B.4.3.2 Example

Returns an XML value that is the concatenation of all the XML -value-expressions. If
al the XML-value-expressions are NULL or empty, a NULL value is returned.

XMLCONCAT —(XML-value-expression >

|
»——v—,— XML-value-expression |) >«

Use of the XMLCONCAT function to concatenate two XML elements defined using
the XMLELEMENT function.

SELECT e.EMP_ID,
XMLSERTALIZE (CONTENT
XMLCONCAT (XMLELEMENT (NAME " fname"
e.EMP_FNAME),
XMLELEMENT (NAME ™1name"
e.EMP_LNAME))
AS VARCHAR(64)) AS "EMP_NAME_COL"
FROM DEMOEMPL.EMPLOYEE e WHERE EMP_ID < 1500 ;

The result is similar to the following:
EMP_ID EMP_NAME_COL

1003 <fname>James</fname><Iname>Baldwin</1name>
1034 <fname>James</fname><lname>Gallway</Iname>
1234 <fname>Thomas</fname><1name>Mil1s</Tname>

Appendix B. New and Revised SQL Statements B-65

B.4 SQL/XML Functions and Table Procedure

B.4.4 XMLELEMENT-function

Returns an XML value that is a single XML element information item as a child of its
XML root information. Provided are an XML element name, an optiona list of XML
namespace declarations, an optional list of attributes, and an optional list of values as
the content of the new element.

The XMLATTRIBUTES pseudo function can be used to specify XML attributes in an
XML element. The XMLNAMESPACES pseudo function can be used to declare XML
namespace in an XML element.

B.4.4.1 Syntax

v

XMLELEMENT —(NAME — XML-element-name

[
»

L » XML-namespace-declaration _ L , XML-attributes _

\4
A

»
| 2

l

[’
L—v— XML-content-val-exp

L OPTION — NULL ON NULL]
EMPTY ON NULL <+—
ABSENT ON NULL —
NIL ON NULL
NIL ON NO CONTENT -

Expansion of XML-namespace-declaration

[’
XMLNAMESPACES —(—v— XML-namespace-declaration-item J—)—N

Expansion of XML-namespace-declaration-item

XML-namespace-URI-char-1it — AS — XML-namespace-prefix-id <«

DEFAULT — XML-namespace-URI-char-1it

NO DEFAULT

Expansion of XML-attributes

[
XMLATTRIBUTES —(—v— XML-att-val-exp

|_’ _ll) >«
AS — XML-att-name

B.4.4.2 Parameters

XML -element-name
Specifies an identifier that is used as an XML element name. This name must be
an XML QName. If the name is qualified, the namespace prefix must be declared
within the scope. The maximum length of the identifier is 128 characters.

B-66 Advantage CA-IDMS Release Summary

B.4 SQL/XML Functions and Table Procedure

XM L -content-val-exp
Specifies a value-expression or an XM L -value-expression that after mapping
according to 4.6.4.3, “Mapping SQL Data Type Values to XML Schema Data
Type Vaues’ on page 4-36, is used as the content of the generated XML element.

XML -namespace-URI -char-lit
Specifies a character string literal of an XML namespace through a URI. For
example, http://www.w3.0rg/2001/ XML Schema. This character string literal can
be empty when used with the DEFAULT option only.

XML -namespace-pr efix-id
Specifies an identifier that is used as a namespace prefix that is bound to the
XML namespace given by XML-namespace-URI-char-lit. The maximum length of
the identifier is 128 characters.

This identifier must be an XML NCName. It cannot be equal to "xml" or "xmins",
and it cannot start with the characters "xml" (in any combination). Be sure that no
duplicate namespace prefixes are declared in the same XMLNAMESPACES
function call.

XML -att-name
Specifies an identifier that is used as the XML attribute name. The maximum
length of the identifier is 128 characters. The attribute name must be an XML
QName. It cannot be equal to "xmins' or start with "xmins.". Be sure that no
duplicate attribute names are declared in the same XMLATTRIBUTES function
cal.

XML -att-val-exp
Specifies a value-expression that is used as the value of the XML attribute. The
value-expression can be of any type except GRAPHIC or VARGRAPHIC. The
length of the value is limited to 512 characters.

If XML-att-name is not specified, the attribute name is derived from the
XML-att-val-exp value. The XML-att-val-exp value must be a valid SQL column
name, optionally qualified with table-name or alias The fully escaped mapping is
applied on the SQL column name to create the attribute name.

OPTION
Specifies the processing of null values for XML-content-val-exp as follows:

ABSENT ON NULL
The returned value is never null, but element is completely absent when all
XML-content-val-exp are NULL.

EMPTY ON NULL
The returned value is never null. Element has no content for each NULL
value of XML-content-val-exp that is NULL. This is the default.

NIL ON NO CONTENT
The returned value is not null. When the [children] property of the element
does not contain at least one XML element information item or at least one
XML character information item, the element is:

<XML-element-name xsi:nil="true"/>

Appendix B. New and Revised SQL Statements B-67

B.4 SQL/XML Functions and Table Procedure

NIL ON NULL
The returned value is not null, but when all XML-content-val-exp are NULL,
element is

<XML-element-name xsi:nil="true"/>
with implicit xmlns:xsi=http://www.w3.0rg/2001/X ML Schema-instance.

NULL ON NULL
The returned value is NULL when al XML-content-val-exp are NULL.

Notes:

. XMLATTRIBUTES look like any other SQL/XML function, but it is not an SQL
function. It is a function-like construct that can only be used in an
XMLELEMENT invocation.

® An XML-namespace-declaration can have only one
XML-namespace-declaration-item containing the literal DEFAULT or NO
DEFAULT.

» XML-element-name is an identifier in the SQL language. Some valid XML
names, that is, all XML QNames with a non-null prefix, require this identifier to
be delimited by double quotes.

B.4.4.3 Examples

Example 1. The following SELECT statement produces a row for each employee
with one column representing an 'emp’ XML element containing the employee's last
name. The datatype of the result column is VARCHAR(64).

SELECT XMLSERIALIZE(CONTENT
XMLELEMENT (NAME "emp", EMP_LNAME)
AS VARCHAR(64)) AS "EMP_NAME_COL"
FROM DEMOEMPL.EMPLOYEE ;

The result is similar to the following:
EMP_NAME_COL

<emp>Baldwin</emp>
<emp>Gallway</emp>
<emp>Mi11s</emp>

Example 2: Same as Example 1, but this example includes a first column containing
the employee 1D, which uses the "e" alias for the table name and a WHERE clause on
the SELECT statement.

SELECT e.EMP_ID,
XMLSERIALIZE (CONTENT
XMLELEMENT (NAME "emp", e.EMP_LNAME)
AS VARCHAR(64)) AS "EMP_NAME_COL"
FROM DEMOEMPL.EMPLOYEE e WHERE EMP_ID < 1500 ;

The result is similar to the following:

B-68 Advantage CA-IDMS Release Summary

B.4 SQL/XML Functions and Table Procedure

EMP_ID EMP_NAME_COL
1003 <emp>Baldwin</emp>
1034 <emp>Gallway</emp>
1234 <emp>Mills</emp>

Example 3: Same as Example 2, but this example also includes the employee ID as
an attribute within the <emp> tag.

SELECT e.EMP_ID,
XMLSERIALIZE (CONTENT
XMLELEMENT (NAME "emp",
XMLATTRIBUTES (e.EMP_ID AS "id"),
e.EMP_LNAME)
AS VARCHAR(64)) AS "EMP_NAME_COL"
FROM DEMOEMPL.EMPLOYEE e WHERE EMP_ID < 1500 ;

The result is similar to the following:
EMP_ID EMP_NAME_COL

1003 <emp id="1003">Baldwin</emp>
1034 <emp id="1034">Gallway</emp>
1234 <emp id="1234">Mi11s</emp>

Example 4: Same as Example 3, but this example includes a second attribute within
the <emp> tag with the employee's first name.

SELECT e.EMP_ID,
XMLSERIALIZE(CONTENT

XMLELEMENT (NAME "emp",

XMLATTRIBUTES (e.EMP_ID AS "id",
e.EMP_FNAME AS "fname"),

e.EMP_LNAME)

AS VARCHAR(64)) AS "EMP_NAME_COL"

FROM DEMOEMPL.EMPLOYEE e WHERE EMP_ID < 1500 ;

The result is similar to the following. Note that the content of the EMP_NAME_COL
column has been formatted for convenience.

EMP_ID EMP NAME COL
1003 <emp id="1003" fname="James">Baldwin</emp>
1034 <emp id="1034" fname="James">Gallway</emp>
1234 <emp id="1234" fname="Thomas">Mil1s</emp>

Example 5: Same as Example 4, but this example removes the attributes and uses
the employee's first name and last name as sub-elements of <emp>.

SELECT e.EMP_ID,
XMLSERIALIZE (CONTENT
XMLELEMENT (NAME "emp",
XMLELEMENT (NAME "fname", e.EMP_FNAME),
XMLELEMENT (NAME "Tname", e.EMP_LNAME))
AS VARCHAR(64)) AS "EMP_NAME_COL"
FROM DEMOEMPL.EMPLOYEE e WHERE EMP_ID < 1500 ;

Appendix B. New and Revised SQL Statements B-69

B.4 SQL/XML Functions and Table Procedure

The result is similar to the following. Note that the content of the EMP_NAME_COL
column has been formatted for convenience.

EMP_ID EMP_NAME_COL
1003 <emp>
<fname>James</fname>
<Iname>Baldwin</Tname>
</emp>
1034 <emp>
<fname>James</fname>
<Iname>Gallway</Tname>
</emp>
1234 <emp>
<fname>Thomas</fname>
<1name>Mi11s</1name>
</emp>

Example 6: Same as Example 5, but this example concatenates the employee's first
name and last name into one sub-element of <emp>.

SELECT e.EMP_ID,
XMLSERIALIZE (CONTENT
XMLELEMENT (NAME "emp",
XMLELEMENT (NAME "name",
e.EMP_FNAME ||"' '|| e.EMP_LNAME))
AS VARCHAR(64)) AS "EMP_NAME_COL"
FROM DEMOEMPL.EMPLOYEE e WHERE EMP_ID < 1500 ;

The result is similar to the following. Note that the content of the EMP_NAME_COL
column has been formatted for convenience.

EMP_ID EMP_NAME COL
1003 <emp>
<name>James Baldwin</name>
</emp>
1034 <emp>
<name>James Gallway</name>
</emp>
1234 <emp>
<name>Thomas Mills</name>
</emp>

Example 7: Same as Example 6, but this example uses XMLNAMESPACES.

SELECT e.EMP_ID,
XMLSERIALIZE (CONTENT
XMLELEMENT (NAME “emp",
XMLNAMESPACES (
DEFAULT 'http://ca.com/hr/globalxml',
"http://ca.com/hr/frenchxml' AS "fr"),
XMLELEMENT (NAME "fr:nom",
e.EMP_FNAME ||" '|| e.EMP_LNAME))
AS VARCHAR(64)) AS "EMP_NAME_COL"
FROM DEMOEMPL.EMPLOYEE e WHERE EMP_ID < 1500 ;

B-70 Advantage CA-IDMS Release Summary

B.4 SQL/XML Functions and Table Procedure

The result is similar to the following. Note that the content of the EMP_NAME_COL
column has been formatted for convenience.

EMP_ID EMP_NAME_COL
1003 <emp xmlns="http://ca.com/hr/globalxml"
xmins:fr="http://ca.com/hr/frenchxml">
<fr:nom>James Baldwin</fr:nom>
</emp>
1034 <emp xmlns="http://ca.com/hr/globalxml"
xmins:fr="http://ca.com/hr/frenchxml">
<fr:nom>James Gallway</fr:nom>
</emp>
1234 <emp xmlns="http://ca.com/hr/globalxml"
xmins:fr="http://ca.com/hr/frenchxml">
<fr:nom>Thomas Mills</fr:nom>
</emp>

Example 8: This example illustrates the use of a subquery as an argument of
XMLELEMENT.

SELECT
XMLSERIALIZE
(CONTENT
XMLELEMENT
(NAME "Employee"
,XMLATTRIBUTES (e.EMP_ID as "Id")
, e.EMP_FNAME
, e.EMP_LNAME
, SELECT
XMLELEMENT
(NAME "Manager"
, XMLATTRIBUTES(m.EMP_ID as "MgrId")
, m.EMP_FNAME || m.EMP_LNAME
)

FROM DEMOEMPL.employee m
WHERE e.MANAGER _ID = m.EMP_ID
) AS VARCHAR(120)) AS "EmployeeManager"
FROM DEMOEMPL.EMPLOYEE e

The result is similar to the following:

EmployeeManager
<Employee Id="5008">Timothy Fordman

<Manager MgrId="2246">Marylou Hamel</Manager></Employee>
<Employee Id="4703">Martin Halloran

<Manager MgrlId="2246">Marylou Hamel</Manager></Employee>

Appendix B. New and Revised SQL Statements B-71

B.4 SQL/XML Functions and Table Procedure

B.4.5 XMLFOREST-function

Returns an XML value that is a list of XML element information items as the children
of its XML root information. An XML element is produced from each
XML-forest-val-exp, using the column name or, if provided, the XML-forest-elem-ident
as the XML eement name and the XML-forest-val-exp as the element content. The
value of XML-forest-val-exp can be any value that has a mapping to an XML value.

The XMLNAMESPACES pseudo function can be used to declare XML namespace in
an XML element.

B.4.5.1 Syntax

v

XMLFOREST—(

L XML-namespace-declaration — , _

|
»—v— XML-forest-val-exp

\4

L AS — XML-forest-elem-ident i

>) ——><
L OPTION NULL ON NULL —

EMPTY ON NULL —
ABSENT ON NULL —
NIL ON NULL

NIL ON NO CONTENT —

Expansion of XML-namespace-declaration: See B.4.4,
“XMLELEMENT-function” on page B-66.

B.4.5.2 Parameters

XML -forest-elem-ident
Specifies an identifier that is used as an XML element name. The identifier must
be an XML QName. If a namespace prefix is used, it must have been declared in
the scope of the element. The maximum length of the identifier is 128 characters.

XML -forest-val-exp
Specifies a value-expression that is used as the element content of an XML
element. If XML-forest-elem-ident is not specified, the forest element name is
derived from the XML-forest-val-exp value. The XML-forest-val-exp value must
be a valid SQL column name, optionally qualified with table-name or alias. The
fully escaped mapping is applied on the SQL column name to create the forest
element name.

OPTION
Specifies the processing of null values for XML-forest-val-exp as follows:

ABSENT ON NULL
The returned value is never null, but element is completely absent from the
list when XML-forest-val-exp is NULL.

B-72 Advantage CA-IDMS Release Summary

B.4 SQL/XML Functions and Table Procedure

B.4.5.3 Example

EMPTY ON NULL
The returned value is never null. Element has no content for each NULL
value of XML-forest-val-exp.

NIL ON NO CONTENT
The returned value is not null. When the [children] property of element does
not contain at least one XML element information item or at least one XML
character information item, the element is:

<XML-forest-element-name xsi:nil="true"/>.

NIL ON NULL
The returned value is not null, but when an XML-forest-val-exp is NULL,
element becomes

<XML-forest-element-name xsi:nil="true"/>
with implicit xmlins:xsi=http://www.w3.0rg/2001/X ML Schema-instance.

NULL ON NULL
The returned value is NULL when all XML-forest-val-exp are NULL. Thisis
the default.

Note: XML-element-name is an identifier in the SQL language. Some valid XML
names, that is, all XML QNames with non-null namespace prefix, requires this
identifier to be delimited by double quotes.

Similar to “Example 5" on page B-69 in B.4.4, “XMLELEMENT-function,” but the
use of two XMLELEMENT invocations to declare two sub-elements of <emp> is
replaced by a single XMLFOREST invocation.

SELECT e.EMP_ID,
XMLSERIALIZE (CONTENT
XMLELEMENT (NAME "emp",
XMLFOREST (e.EMP_FNAME AS "fname",
e.EMP_LNAME AS "Tname"))
AS VARCHAR(64)) AS "EMP_NAME_COL"
FROM DEMOEMPL.EMPLOYEE e WHERE EMP_ID < 1500 ;

The result is similar to the following. Note that the content of the EMP_NAME_COL
column has been formatted for convenience.

Appendix B. New and Revised SQL Statements B-73

B.4 SQL/XML Functions and Table Procedure

EMP_ID EMP_NAME_COL
1603 <emp>
<fname>James</fname>
<1name>Baldwin</1name>
</emp>
1034 <emp>
<fname>James</fname>
<Iname>Gallway</1name>
</emp>
1234 <emp>
<fname>Thomas</fname>
<Iname>Mi11s</Tname>
</emp>

B.4.6 XMLPARSE-function

Returns an XML value as the result of performing a non-validating parse of a
character string. Parsing is the inverse operation of serializing.

B.4.6.1 Syntax

XMLPARSE — (CONTENT string-value-expression ——»
[DOCUMENT ——,
)—>«

STRIP T WHITESPACE <—|

PRESERVE

B.4.6.2 Parameters

string-value-expression
Specifies a character string value-expression, that is a value-expression that
returns a value of type character. If string-value-expression is NULL,
XMLPARSE returns a NULL value.

Note: The DOCUMENT and STRIP WHITESPACE options are not functiona in this
feature. This means that CONTENT and PRESERVE WHITESPACE should
always be specified.

B.4.6.3 Example

The following statement causes an SQL statement exception because the XML is not
completely serialized. The serialization is truncated after 20 characters.

B-74 Advantage CA-IDMS Release Summary

B.4 SQL/XML Functions and Table Procedure

SELECT
XMLPARSE
(CONTENT
XMLSERIALIZE
(CONTENT
XMLELEMENT
(NAME "EMP", EMP_LNAME
) AS CHAR(20)

)
FROM DEMOEMPL.EMPLOYEE ;
*+ Status = -4 SQLSTATE = 38000 Messages follow:

*+ DB001075 C-4M321: Procedure IDMSQFUX exception 38000 XMLPARSE: Premature end
*+ of data in tag EMP line 1

B.4.7 XMLPI-function
Returns an XML value that is an XML processing instruction (Pl). The XML value
consists of:
® An XML root information item with one child

m An XML processing information item whose [target] property is the partially
escaped mapping of identifier to an XML Name, and whose [content] property is
string-value-expression, trimmed of leading blanks.

B.4.7.1 Syntax

XMLPI —(NAME — identifier)—>
|— , String-value-expression J

B.4.7.2 Parameters

Identifier
Specifies the target in the processing instruction. It must be a valid NCName.
The maximum length of the identifier is 128 characters.

string-value-expression
Specifies a character string value-expression, that is a value-expression that
returns a value of type character. It can be NULL or empty, but if present, it
cannot contain the "?2>" sequence.

A processing instruction takes the following syntactical form in XML 1.0:

<?target data?>

Processing instructions instruct applications to perform some type of extra processing
on a given document.

An example of a processing instruction, which is supported by most Web browsers is:

<?xml-stylesheet href="mystyle.xs1" type="text/xs1"?>

Appendix B. New and Revised SQL Statements B-75

B.4 SQL/XML Functions and Table Procedure

When the browser loads an XML document and recognizes the processing instruction,
it performs a transformation using the specified XSLT file and displays the result of
the transformation instead of the raw XML file. This processing instruction has been
accepted as a W3C recommendation (for more information, see
http://www.w3.0rg/TR/xml-styleshest.)

Another example of a processing instruction accepted as a W3C recommendation is the
use of the XML declaration:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

The pseudo-attribute version currently must have value "1.0". The pseudo-attribute
standalone specifies whether any markup declarations are defined in separate
documents. Finally, the pseudo-attribute encoding specifies the encoding of the XML
document. XML parsers are required to support at least encoding UTF-8 and UTF-16.

B.4.7.3 Example

The following statement returns only a single processing instruction:

SELECT XMLSERIALIZE(CONTENT XMLPI (NAME “"xml" ,
' version="1.0" encoding="UTF-8" standalone="yes"')
AS CHAR(80)) as "PI Instruction"
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

The result is similar to the following:

PI Instruction

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

B.4.8 XMLPOINTER-function

Returns a BINARY (4) value that is a pointer to a LOB (Large Object) that holds the
seridlized value of XML -value-expression.

The XMLPOINTER function is used in programs that need to process serialized XML
values. The structure of the LOB is a variable-length storage object. It starts with a
signed integer of 32 bit and contains the LOB data length (max 2 GB), followed by
the LOB data.

B.4.8.1 Syntax

XMLPOINTER — (—— XML-value-expression —)

A\
A

Notes:

n |f XML-value-expression is NULL or empty, XMLPOINTER returns a NULL
value.

® The storage object of the LOB is alocated from an Advantage CA-IDMS CV
storage pool or from the batch address space for local mode programs. The

B-76 Advantage CA-IDMS Release Summary

B.4 SQL/XML Functions and Table Procedure

storage object is only addressable in client programs that run in the same
Advantage CA-IDMS CV as the database server or in batch local mode programs.

® The program invoking the XMLPOINTER function must free the storage of the
LOB when it is no longer needed. If no free storage is done, the storage
associated with the LOB is freed at task termination.

» Client programs that cannot access the LOB returned by XMLPOINTER can use
XMLSERIALIZE (returns a maximum of 30,000 characters) or the table procedure
SYSCA.XMLSLICE to process XML values.

® XMLPOINTER is not part of the SQL/XML 1SO standard. It is an Advantage
CA-IDMS extension to facilitate access to XML LOBSs.

B.4.8.2 Example

The following statement returns pointers to XML LOB objects:

SELECT XMLPOINTER(XMLFOREST(NAME as "Name"
, SCHEMA as "Schema")
) AS "PointerTolLob"
FROM SYSTEM.TABLE

where schema = 'DEMOPROJ

The result is similar to the following:

*+

*+ PointerTolLob
Kt mmmmmmmm e

*+ 20003008
*+ 20003088

B.4.9 XMLROOT-function

Returns an XML vaue by modifying the properties of the XML root information item
of another XML value.

All XML documents must have at least one well-formed root element. The root
element, often called the document tag, must follow the prolog (XML declaration plus
DTD) and must be a non-empty tag that encompasses the entire document.

Notes:

» The Encoding property cannot be specified in the XMLROOT function. However,
the XMLROOT function sets the value of the property by using the value from
the XML ENCODING parameter in the SQL SET SESSION statement, unless the
given XML value aready has a non-null value for its Encoding property.

m |f the input XML -value-expression is NULL or empty, XMLROOT returns a
NULL value.

Appendix B. New and Revised SQL Statements B-77

B.4 SQL/XML Functions and Table Procedure

B.4.9.1 Syntax

XMLROOT —(— XML-value-expression >

»——— , — VERSION __I:: string-value-expression ——T———————>
NO VALUE

> |)—>«

L » — STANDALONE YES
g gh—
NO VALUE —

B.4.9.2 Parameters

string-value-expression
Specifies a character string value-expression, that is a value-expression that
returns a value of type character.

B.4.9.3 Example

Use of the XMLROQOT function to generate the XML declaration in an XML
document.

set session XML ENCODING UTF8;

select
XMLSERIALIZE (CONTENT
XMLROOT (
XMLELEMENT (NAME "Employee",
XMLATTRIBUTES (EMP_ID AS "Id",
DEPT_ID AS "DeptId",
MANAGER ID AS "MgrId"),
TRIM(EMP_FNAME) | |' "|Ttrim(EMP_LNAME),
' from ', CITY),
VERSION '1.0', STANDALONE YES)
AS VARCHAR(256)) AS "EmployeeData"
from DEMOEMPL.EMPLOYEE where EMP_ID = 1003;

The result is similar to the following. Note that the content of the EmployeeData
column has been formatted for convenience:

*+ EmployeeData

*t e

*+ <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<Employee Id="1003" DeptId="6200">James Baldwin from Boston </Employee>

B-78 Advantage CA-IDMS Release Summary

B.4 SQL/XML Functions and Table Procedure

B.4.10 XMLSERIALIZE-function

B.4.10.1 Syntax

Returns a value of character string or binary string. Serialization is an operation on an
XML value that transforms the XML value in a continous character string
representation. Serialization is the inverse operation of parsing.

v

XMLSERIALIZE — (1 CONTENT
DOCUMENT J

»—— XML-value-expression — AS string-data-type —) ——>«

B.4.10.2 Parameters

B.4.10.3 Example

string-data-type
Must be one of the character data types of data type: CHAR(n), CHARACTER(n),
VARCHAR(n), CHAR VARYING(n).

Note: The DOCUMENT option is not functiona in this feature. This means that
CONTENT should always be specified.

Use of XMLSERIALIZE to serialize an XML value as a character string of 50
characters.

SELECT NAME
, XMLSERIALIZE(CONTENT
XMLELEMENT (NAME "Schema"
, XMLATTRIBUTES (NAME AS "Name"
, CUSER AS "User"))
AS CHAR(50)) AS "Serialized XML"
FROM SYSTEM.SCHEMA WHERE NAME IN ('SYSTEM', 'SYSDICT') ;

NAME Serialized XML

SYSTEM <Schema Name="SYSTEM" User="DEFJEQ1"</Schema>
SYSDICT <Schema Name="SYSDICT" User="DEKD0O1"</Schema>

Appendix B. New and Revised SQL Statements B-79

B.4 SQL/XML Functions and Table Procedure

B.4.11 XMLSLICE Table Procedure

SYSCA.XMLSLICE is atable procedure used to retrieve character or binary dlices of
equal length from the serialization of an XML value. It is an Advantage CA-IDMS
extension that has been made available to alow any client program to process large
serialized XML values. It is used when neither XMLSERIALIZE (limited to 30,000
characters) nor XMLPOINTER (requires client to run in same address space as
Advantage CA-IDMYS) can be used.

B.4.11.1 Syntax

v

SELECT — CAST— (— SLICE AS BIN (slice-size
(L AS CHAR((s11'ce-s1‘21)e) _)

»
»

v

|—,— TOTLENGTH _ |—,— RESTLENGTH _

»— FROM SYSCA.XMLSLICE

v

L (<1icocsi J
(slice-size) B J)

, X'pad-hex'
»— WHERE

v

[
| 2

v

L SLICESIZE = slice-size B 7 AND il
AND PADDING = X'pad-hex'

A\
A

»— XMLVALUE = XML-value-expression
B.4.11.2 Parameters

TOTLENGTH
The total length of the serialized XML value, without padding characters.

RESTLENGTH
The XML data length, without padding characters, that have not been returned yet.

SYSCAXMLSLICE
Specifies a table procedure that slices XM L -value-expression, after serialization,
into slices of equal size, specified by slice-size. Each row returned by
SYSCA.XMLSLICE represents a dlice.

dice-size
Specifies an integer value-expression, with a positive value <= 8192. A dice-size
must always be present, either as the first positional parameter of the table
procedure or as the right operand in the equal predicate for SLICESIZE.

pad-hex
Specifies an optional two-byte hexadecimal literal that is used to pad the last dice
of the serialized XML value. The default depends on the XML ENCODING
parameter of the SQL SET SESSION statement. Two spaces are used for
EBCDIC (X'4040") and UTF8 (X'2020"); one space is used for UTF16LE (X'20007)
and UTF16BE (X'0020).

B-80 Advantage CA-IDMS Release Summary

B.4 SQL/XML Functions and Table Procedure

If XML-value-expression is specified as a subquery, it must be enclosed in
parentheses.

The content of the dlice is available in the SLICE column of the table procedure.
Optionally, you can specify additional columns in the SELECT statement.

B.4.11.3 Examples

Example 1. In the following SELECT statement, al the employees in
DEMOEMP.EMPLOYEE are aggregated in one XML value. This XML vaue is
serialized, and each row returned is a 40-character dlice of the serialized XML value.

select cast(slice as char(40)) from SYSCA.XMLSLICE
where slicesize = 40
and xmlvalue =
(
select xmlelement(name "employee",
xmlagg(xmlelement (name "Name",
E.EMP_LNAME)))
from DEMOEMPL.EMPLOYEE e

)

The result is similar to the following:
*+ (EXPR)

*t —mmm——

*+ <employee><Name>Albertini </Na
*+ me><Name>Alexander </Name><Nam
*+ e>Anderson </Name><Name>Baldw
*+ 1in </Name><Name>Bennett

*+ </Name><Name>Bradley

*+ </Name><Name>Brooks </Name
*+ ><Name>Carlson </Name><Name>
%+ Catlin </Name><Name>CTlark
*+ </Name><Name>Courtney

*+ </Name><Name>Crane <
*+ /Name><Name>Cromwel] </Name><
*+ Name>Dexter </Name><Name>Do
*+ nelson </Name><Name>Ferguson
*+ </Name><Name>Ferndale

*+ </Name><Name>Fordman </N
*+ ame><Name>Gallway </Name><Na
*+ me>Griffin </Name><Name>Ha11l

Example 2: This example shows the zZ/OS JCL for the batch command facility
IDMSBCF and the SQL statements to create the z/OS data set
"CAIDMS.SAMPLE.XML" holding an XML document encoded in Unicode UTF-16
Little Endian.

The XML document contains the id and name of all employees as present in the
DEMOEMPL.EMPLOYEE table.

With a binary file transfer, the data set can be copied to other platforms for further
processing. The use of the XMLSLICE table procedure alows for creating XML
documents up to 2 GB.

Appendix B. New and Revised SQL Statements B-81

B.4 SQL/XML Functions and Table Procedure

//BCFLOCAL EXEC PGM=IDMSBCF,REGION=7500K
//STEPLIB DD DSN=CAIDMS.R160.LOADLIB,DISP=SHR

//SYSLST DD SYSOUT=A
//SYSOUT DD SYSOUT=A
//OUTPUT DD DSN=CAIDMS.SAMPLE.XML,DISP=(NEW,CATLG),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=16000),
// UNIT=SYSDA,SPACE=(TRK, (10,10))
//SYSIPT DD =
set options OUTPUT to OUTPUT; -- redirects output of BCF
set session XML Encoding utfl6LE;-- requests UTF-16 LE encoding
select cast(slice as char(80))
from sysca.xmlslice(80, X'2000')-- defines slices of 80 bytes
-- padding with space in UTF-16 LE
where xmlvalue =
(select xmlroot(xmlelement(name "Al1Employees"
, xmlagg(xmlelement (name "Emp"
, xmlattributes(EMP_ID as "Id")
, EMP_FNAME ||EMP_LNAME)))
, version '1.0")
from DEMOEMPL.EMPLOYEE
)

B-82 Advantage CA-IDMS Release Summary

Appendix C. SQL Functions and SQL Procedure

Enhancements
Cl Overview C-2
C.2 When To Use a User-Defined Function C-3
C.3 DefiningaFunction C-4
C.4 Invoking aFunction C-5
C5 WritingaFunction C-6
C.6 Advantage CA-ADS SQL Function and Procedure Examples C-9
C.7 COBOL SQL Function Example C-13

Appendix C. SQL Functions and SQL Procedure Enhancements C-1

C.1 Overview

C.1 Overview

This appendix:
» Describes the procedures for developing user-defined SQL functions

® Provides examples of SQL functions and procedures written in Advantage
CA-ADS

® Provides an example of an SQL function written in COBOL

C-2 Advantage CA-IDMS Release Summary

C.2 When To Use a User-Defined Function

C.2 When To Use a User-Defined Function

You can use a user-defined SQL function (currently only of scalar type) just as you
would use any SQL scalar function. A scalar function is a function whose argument
includes zero or more value expressions on which the function operates. The result of
a scalar function is a single value. This value is derived from the expression or
expressions forming the arguments to the function.

To use this feature, follow the steps below:

» Define the function using the new CREATE FUNCTION statement.

m Write the function in COBOL, PL/I, Assembler, or Advantage CA-ADS following
the guidelines outlined below. You may also be able to use an existing program as
a function.

® |f necessary, define the program to an Advantage CA-IDMS system.

® |Invoke the SQL function. You invoke the SQL function in a way very similar to
the way in which you invoke built-in functions. The only restriction is that you
cannot invoke a user-defined function from within a table's check constraint.

Appendix C. SQL Functions and SQL Procedure Enhancements C-3

C.3 Defining a Function

C.3 Defining a Function

Y ou define a function using the CREATE FUNCTION statement. An example is

shown below:
CREATE FUNCTION JSMITH.UDF_FUNBONUS
(EMP ID DECIMAL(4))

RETURNS DECIMAL(10)

EXTERNAL NAME FUNBONUS PROTOCOL IDMS
DEFAULT DATABASE CURRENT

USER MODE

LOCAL WORK AREA 0

Similarly, use the new ALTER FUNCTION and DROP FUNCTION statements to
modify and delete the definition of existing functions.

C.3.1 For More Information

® About the syntax and parameters used in defining functions, see CREATE
FUNCTION, ALTER FUNCTION, and DROP FUNCTION in Appendix B, “New
and Revised SQL Statements.”

® About detailed examples of using CREATE FUNCTION, see C.6, “Advantage
CA-ADS SQL Function and Procedure Examples’ on page C-9 and C.7,
“COBOL SQL Function Example” on page C-13.

C-4 Advantage CA-IDMS Release Summary

C.4 Invoking a Function

C.4 Invoking a Function

User-defined SQL functions are invoked using the user function invocation syntax.
See the User Function Invocation topic in Appendix B, “New and Revised SQL
Statements.”

Access to user-defined functions is controlled the same way as procedures. GRANT
and REVOKE statements on a resource type of TABLE are used to give and remove
SELECT or DEFINE privileges on a function.

Appendix C. SQL Functions and SQL Procedure Enhancements C-5

C.5 Writing a Function

C.5 Writing a Function

You can write the program associated with a function in COBOL, PL/l, Assembler, or
Advantage CA-ADS. When called, the program is passed a fixed parameter list
consisting of the parameters specified in the function definition, as well as additional
parameters used for communication between Advantage CA-IDMS and the function.

Whenever a function is invoked, Advantage CA-IDMS calls the program associated
with the function to service the request. The function responds by processing the input
parameters. By setting SQLSTATE appropriately you can optionally indicate an error
condition.

Advantage CA-IDMS performs transaction and session management automatically in
response to requests that the originating application issues. Changes to the database
made by a function are committed or rolled out together with other changes made
within the SQL transaction. No special action is required of the function in order to
ensure that this occurs.

The following section discusses writing a function in detail.

For an example of a function written in COBOL, see C.7, “COBOL SQL Function
Example” on page C-13. For an example of a function written in Advantage
CA-ADS, see C.6, “Advantage CA-ADS SQL Function and Procedure Examples’ on
page C-9.

C.5.1 Calling Arguments

The following sets of arguments are passed when a function is called:;

= One argument for each of the parameters specified on the function definition,
passed in the order in which the parameters were declared. These arguments vary
from function to function; they are used to pass values to the function.

= One argument to contain the return value of the function. The implicit name for
this argument is USER_FUNC.

® One argument for each null indicator associated with a parameter specified in the
procedure definition, passed in the order in which the parameters were declared.
These arguments vary from function to function; they are used to pass values to
the function.

® One argument for the null indicator associated with the return value of the
function (the null indicator for the USER_FUNC parameter).

® A set of common arguments used for communications between Advantage
CA-IDMS and the function. This set of arguments, shown in the table below, is
the same for all functions.

C-6 Advantage CA-IDMS Release Summary

C.5 Writing a Function

Argument

Contents

Result Indicator (fullword)

Not used

SQLSTATE (CHAR (5))

Status code returned by the procedure: The initia value
is always 00000.

00000 — Indicates success
01Hxx — Indicates a warning
02000 — Indicates no more rows
38xxx — Indicates an error

Function Name (CHAR
(18)

Name of the function

Explicit Name

Not used

Message Text (CHAR
(80))

Message text returned by the function and displayed by
Advantage CA-IDMS in the event of an error or
warning

SQL Command Code

Always 16, indicating a Fetch SQL request

(fullword)

SQL Operation Code Always 16, indicating a "next row" request

(fullword)

Instance Identifier Not meaningful for functions

(fullword)

Loca Work Area A user-defined working storage area

(user-defined)

Global Work Area A user-defined storage area that can be shared by one
(user-defined) or more functions or by other SQL routines

C.5.2 Parameter Arguments

On entry to the function, the values of the arguments corresponding to the parameters
defined in the CREATE FUNCTION statement are as follows:

® Non-null parameters contain one of the following:

— The parameter values specified on the function reference

— The datatype-specific default value if WITH DEFAULT was specified in the
function definition, and no value was specified in the function invocation

® All other parameters contain nulls (that is, the null indicator for the parameter is

negative).

On exit, the function is expected either to have set the value of the parameter
USER_FUNC and the corresponding indicator appropriately or to have set an
SQLSTATE value indicating no-more-rows. If the indicator parameter is set to -1,
Advantage CA-IDMS ignores the value of the USER_FUNC parameter.

Appendix C. SQL Functions and SQL Procedure Enhancements C-7

C.5 Writing a Function

C.5.3 Local Work Area
Another parameter passed on each call to a function is a local work area.

Advantage CA-IDMS alocates the local work area prior to caling the function and
frees it immediately after the function exits. When the local work area is alocated, it
isinitialized to binary zeros.

C.5.4 Global Work Area

A global work area is a storage area that can be shared across one or more functions,
or other SQL routines, within a transaction. Each global work area has an associated
key that is either:

® The four-character identifier specified on the GLOBAL WORK AREA clause

» The fully-qualified name of the function if no identifier was specified All SQL
routines executing within a transaction and having the same global storage key
share the same global work area.

C-8 Advantage CA-IDMS Release Summary

C.6 Advantage CA-ADS SQL Function and Procedure Examples

C.6 Advantage CA-ADS SQL Function and Procedure
Examples

In Release 16.0, an SQL procedure or function can be coded as an Advantage
CA-ADS mapless dialog.

C.6.1 Function Example

This example invokes the SQL function ASIND, which returns the arcsine in degrees
of the supplied value. The SQL function is implemented using an Advantage CA-ADS
dialog that invokes the Advantage CA-ADS built-in function ARCSINE-DEGREES().

C.6.1.1 Function Definition

The SQL function definition is shown below:

CREATE FUNCTION JSMITH.ASIND
(ARG DOUBLE PRECISION)

RETURNS DOUBLE PRECISION
EXTERNAL NAME ASIND
PROTOCOL ADS
SYSTEM MODE
LOCAL WORK AREA 0
GLOBAL WORK AREA 0

t

C.6.1.2 Work Records
To access the function parameters, the Advantage CA-ADS diaog should include these
work records:
® <schema>.<function_name>

Note: This record does not reside in the dictionary; it is built automatically by

the Advantage CA-ADS dialog compiler (ADSC or ADSOBCOM) when
the dialog is compiled.

» ADSO-SQLPROC-COM-AREA — A system-supplied record. See Chapter 4,
“SQL Features’ for the record layout.

These work records are included in the ASIND mapless dialog:
® JSMITH.ASIND
1 ADSO-SQLPROC-COM-AREA

Appendix C. SQL Functions and SQL Procedure Enhancements C-9

C.6 Advantage CA-ADS SQL Function and Procedure Examples

C.6.1.3 Premap Process

The premap process performs the actions required for the SQL function. The code for
the function is provided below:

ADD MODULE NAME IS ASIND-PROC VERSION IS 1
LANGUAGE PROCESS
PROCESS SOURCE FOLLOWS
IF ARG LE 1.0
THEN
DO.
MOVE @ TO USER_FUNC-I
MOVE ARCSINE-DEGREES(ARG) TO USER_FUNC
END.
ELSE
Do.
MOVE '38099' TO SQLPROC-SQLSTATE.
MOVE 'Arg must be <= 1.0' to SQLPROC-MSG-TEXT.
END.
LEAVE ADS.
MSEND;

C.6.1.4 Invoking the Function

The SELECT clause is used to invoke the function. The first example illustrates a
correctly executing function:

SELECT JSMITH.ASIND (1)
FROM SYSTEM.TABLE WHERE NAME = 'ASIND'

*+

o+ USER_FUNC
> memmmm————
*+ 9.0000000000000000E+01

*+

*+ 1 row processed

The second example illustrates a function that results in an error message:

SELECT JSMITH.ASIND (2)

FROM SYSTEM.TABLE WHERE NAME = 'ASIND'

*+ Status = -4 SQLSTATE = 38000 Messages follow:

*+ DB001075 C-4M321: Table Procedure ASIND exception 38099 ARG MUST BE <= 1.0

C.6.2 Procedure Example

The following SQL procedure, GET_PROC_AREA, writes any supplied message to a
global area. The contents of the global area are shown when no input is supplied. The
procedure definition is given below:

C-10 Advantage CA-IDMS Release Summary

C.6 Advantage CA-ADS SQL Function and Procedure Examples

CREATE PROCEDURE JSMITH.GET_PROC_AREA
(IN_AREA CHARACTER (25),
GLOBAL_AREA CHARACTER (25)

)
EXTERNAL NAME GETPAREA

PROTOCOL ADS

SYSTEM MODE

LOCAL WORK AREA 0

GLOBAL WORK AREA 25 KEY GGLA

C.6.2.1 Work Records

To access the procedure parameters, the Advantage CA-ADS dialog should include
these work records:

m <schema>.<function_name>

Note: This record does not reside in the dictionary; it is built automatically by
the Advantage CA-ADS dialog compiler (ADSC or ADSOBCOM) when
the dialog is compiled.

A globa work area similar to the one listed below:

ADD RECORD NAME GETPAREA-SQLPROC-GLOBAL-AREA.
03 AREA-C PIC X OCCURS 25.

The work records included in the mapless dialog GETPAREA are given below:
® JSMITH.GET_PROC_AREA
» GETPAREA-SQLPROC-GLOBAL-AREA

C.6.2.2 Premap Process

The premap process performs the actions of the SQL procedure. The premap process
for the sample procedure is given below:

ADD
PROCESS NAME IS GETPAREA_PROC VERSION IS 1
PUBLIC ACCESS IS ALLOWED FOR ALL
PROCESS SOURCE FOLLOWS
IF IN-AREA-I GE 0

THEN
Do.
MOVE O TO GLOBAL-AREA-I.
MOVE IN-AREA TO GLOBAL-AREA.
MOVE IN-AREA TO GETPAREA-SQLPROC-GLOBAL-AREA.
MOVE 'WRITING TO GLOBAL AREA' TO IN-AREA.
END.
ELSE
Do.
MOVE O TO IN-AREA-I.
MOVE 'READING FROM GLOBAL-AREA' TO IN-AREA.
MOVE O TO GLOBAL-AREA-I.
MOVE GETPAREA-SQLPROC-GLOBAL-AREA TO GLOBAL-AREA.
END.
LEAVE ADS.

Appendix C. SQL Functions and SQL Procedure Enhancements C-11

C.6 Advantage CA-ADS SQL Function and Procedure Examples

MSEND

C.6.2.3 Procedure Invocation

The GET_PROC_AREA invocation is given below. The first example illustrates
writing to the global area:

CALL JSMITH.GET_PROC_AREA ('HELLO FROM ADS DIALOG');

*+

*+ IN_AREA GLOBAL_AREA

Kt mmmmmee e

*+ WRITING TO GLOBAL AREA HELLO FROM ADS DIALOG

*+
*+ 1 row processed

The second example illustrates reading from the global area:
CALL JSMITH.GET_PROC_AREA ();

*+

«+ IN_AREA GLOBAL_AREA
*+F —m---. ;e emmmmm—————

*+ READING FROM GLOBAL_AREA HELLO FROM ADS DIALOG

*+
*+ 1 row processed

C-12 Advantage CA-IDMS Release Summary

C.7 COBOL SQL Function Example

C.7 COBOL SQL Function Example

This section contains:
A sample SQL function definition.

A sample SQL function written in COBOL. It requires the employee demo
database and assumes use of a VS COBOL Il compiler.

. An example of the SQL function invocation.

C.7.1 Function Definition

The example below illustrates an SQL function definition:

CREATE FUNCTION FIN.UDF_FUNBONUS
(F_EMP_ID DECIMAL(4)

)
RETURNS DECIMAL(10)

EXTERNAL NAME FUNBONUS PROTOCOL IDMS
DEFAULT DATABASE CURRENT

USER MODE

LOCAL WORK AREA 0

C.7.2 Sample COBOL Code

The sample program shown below is included on the Advantage CA-IDMS installation
tape. This program requires the SQL employee demo database.

*COBOL PGM SOURCE FOR FUNBONUS

*RETRIEVAL
*DMLIST

IDENTIFICATION DIVISION.

PROGRAM-1D. FUNBONUS.

AUTHOR. JSMITH.

INSTALLATION. SYSTEM71.

DATE-WRITTEN. 01/02/2003.
K o o *
* *
* CA-IDMS SQL 16.0 *
* *
* FUNBONUS implements the SQL function FUNBONUS *
* *
L e e e e Y e] *
ENVIRONMENT DIVISION.

*

CONFIGURATION SECTION.

*SOURCE-COMPUTER. IBM WITH DEBUGGING MODE.

*

DATA DIVISION.

*

WORKING-STORAGE SECTION.

K o o *
* *
L e e e T e e e] *

Appendix C. SQL Functions and SQL Procedure Enhancements C-13

C.7 COBOL SQL Function Example

LINKAGE SECTION.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.

EXEC SQL
INCLUDE TABLE FIN.UDF_FUNBONUS NO STRUCTURE
END-EXEC.
EXEC SQL END DECLARE SECTION END-EXEC.
77 RESULT-IND PIC $9(04) COMP SYNC.
01 FUN-SQLSTATE.
02 FUN-SQLSTATE-CLASS PIC X(02).
02 FUN-SQLSTATE-SUBCLASS PIC X(03).
K o o *
PROCEDURE DIVISION USING F-EMP-ID
, USER-FUNC
, F-EMP-ID-I
, USER-FUNC-I
, RESULT-IND

FUN-SQLSTATE.
0000-MAINLINE.
IF F-EMP-ID-I NOT < 0
THEN
EXEC SQL
SELECT SUM(BONUS_AMOUNT) INTO :USER-FUNC
FROM DEMOEMPL.BENEFITS
WHERE EMP_ID = :F-EMP-ID
END-EXEC

IF SQLSTATE NOT = '00000'
MOVE -1 TO USER-FUNC-I
MOVE '38901' TO FUN-SQLSTATE
ELSE
MOVE O TO USER-FUNC-I
ELSE
MOVE -1 TO USER-FUNC-I
MOVE '38902' TO FUN-SQLSTATE.
EXIT PROGRAM.
STOP RUN.

C.7.3 Invoking the Function

The example below illustrates invoking the SQL function defined earlier:

SELECT EMP_ID, FIN.UDF_FUNBONUS (EMP_ID)
FROM DEMOEMPL.EMPLOYEE
WHERE EMP_ID = 3411

*+
*+ EMP_ID USER_FUNC
*t mmmmme mmmmmme—m
x+ 3411 5100
*+

*+ 1 row processed

C-14 Advantage CA-IDMS Release Summary

Appendix D. SQL ROWID Examples

D.1
D.2
D.3
D.4
D.5
D.6

OVEIVIEW D-2
ROWID inaSimple SELECT D-3
ROWID in a Searched UPDATE D-4
ROWID inaSELECT UsingadJoin D-5
Searched Update of Records Without Primary Key D-7
Searched Delete of Records Without Primary Key D-8

Appendix D. SQL ROWID Examples D-1

D.1 Overview

D.1 Overview

This appendix provides several examples of how to use ROWID.

D-2 Advantage CA-IDMS Release Summary

D.2 ROWID in a Simple SELECT

D.2 ROWID in a Simple SELECT

This example illustrates using ROWID in a simple SELECT statement:
SELECT ROWID, OFFICE_CODE_0450, OFFICE CITY 0450

*+
*+
*+
*+
*+
*+
*+
*+
*+

X'01259701"
X'0125A001"
X'0125A301"
X'0125A601"
X'0125A901"

FROM EMPSCHM.OFFICE;

OFFICE_CODE_0450 OFFICE_CITY 0450

002 BOSTON

001 SPRINGFIELD
005 GLASSTER
012 CAMBRIDGE
008 WESTON

*+ 5 rows processed

Appendix D. SQL ROWID Examples D-3

D.3 ROWID in a Searched UPDATE

D.3 ROWID in a Searched UPDATE

This example illustrates using ROWID in a WHERE clause of an UPDATE statement:

UPDATE EMPNSQL.EMPLOYEE SET EMP _CITY = 'BRUSSELS'
WHERE ROWID = X'0124FF01';

*+ Status = 0 SQLSTATE = 00000

*+ 1 row processed

D-4 Advantage CA-IDMS Release Summary

D.4 ROWID in a SELECT Using a Join

D.4 ROWID in a SELECT Using a Join

These examples illustrate using a SELECT statement that uses a join between a base
table and a view. They show that the ROWID of a view is the ROWID of the first
component in the view.

D.4.1 Example 1

In this example, the returned ROWID for the view is the ROWID of the
EMPSCHM.OFFICE base table:

DROP VIEW JSMITH.EMPOFFV;

*+ Status = 0 SQLSTATE = 00000

CREATE VIEW JSMITH.EMPOFFV

AS SELECT EV.*, 0.*
FROM EMPSCHM.OFFICE O, JSMITH.EMPLOYEEV EV

WHERE "OFFICE-EMPLOYEE";

*+ Status = 0 SQLSTATE = 00000

SELECT EOV.ROWID, D.ROWID, D.*, EMP_ID, OFFICE_CODE_0450
FROM JSMITH.EMPOFFV EQV, EMPSCHM.DEPARTMENT D

WHERE "DEPT-EMPLOYEE" AND EMP_ID < 5;

*+

*+ ROWID ROWID DEPT_ID_0410
*+ 0 mmmmmmee mmmmmmme mmmmmmm————m

x+ X'0125A001' X'0125BDO1" 100

x+ X'0125A001' X'0125BCO1" 3100

x+ X'0125A001' X'0125ABO1" 3200

*+

x+ DEPT_NAME_0410 DEPT_HEAD_ID 0410 EMP_ID
Kt mmmmmmmmmm———— e emmmmm———e e
*+ EXECUTIVE ADMINISTRATION 30 1
*+ INTERNAL SOFTWARE 3 3
x+ COMPUTER OPERATIONS 4 4

*+

«+ OFFICE_CODE_0450

FF mmmmm e
*+ 001
*+ 001
*+ 001

*+
*+ 3 rows processed

D.4.2 Example 2

In the following example, the returned ROWID for the view is the ROWID of the
EMPSCHM.EMPLOY EE base table:

Appendix D. SQL ROWID Examples D-5

D.4 ROWID in a SELECT Using a Join

DROP VIEW JSMITH.EMPOFFV;
*+ Status = 0 SQLSTATE = 00000
CREATE VIEW JSMITH.EMPOFFV
AS SELECT EV.*, 0.*

FROM JSMITH.EMPLOYEEV EV, EMPSCHM.OFFICE O
WHERE "OFFICE-EMPLOYEE";
*+ Status = 0 SQLSTATE = 00000
SELECT EOV.ROWID, D.ROWID, D.*, EMP_ID, OFFICE_CODE_0450

FROM JSMITH.EMPOFFV EQV, EMPSCHM.DEPARTMENT D
WHERE "DEPT-EMPLOYEE" AND EMP_ID < 5;
*+
*+ ROWID ROWID DEPT_ID 0410
L Ty
*+ X'01252801' X'0125BDO1’ 100
*+ X'01253B01' X'0125BCO1' 3100
*+ X'01255301' X'0125ABO1' 3200
*+
*+ DEPT_NAME_ 0410 DEPT_HEAD ID 0410 EMP_ID
*F mmmmmeee———— e ;e e e e mmm————e mm————
*+ EXECUTIVE ADMINISTRATION 30 1
*+ INTERNAL SOFTWARE 3 3
*+ COMPUTER OPERATIONS 4 4
*+
*+ OFFICE_CODE_0450
[T (T
*+ 001
*+ 001
*+ 001
*+
*+ 3 rows processed

+ +

D-6 Advantage CA-IDMS Release Summary

D.5 Searched Update of Records Without Primary Key

D.5 Searched Update of Records Without Primary Key

This example updates all the COVERAGE records of the employee with EMP_ID =
23

UPDATE EMPSCHM.COVERAGE C
SET SELECTION_YEAR 0400 = 20
WHERE C.ROWID IN (
SELECT CI.ROWID
FROM EMPSCHM.EMPLOYEE E, EMPSCHM.COVERAGE CI
WHERE "EMP-COVERAGE"

AND EMP_ID = 23);
*+ Status = 0 SQLSTATE = 00000
*+ 2 rows processed

Appendix D. SQL ROWID Examples D-7

D.6 Searched Delete of Records Without Primary Key

D.6 Searched Delete of Records Without Primary Key

This example deletes all the COVERAGE records of the employee with EMP_ID =
23

DELETE FROM EMPSCHM.COVERAGE C
WHERE C.ROWID IN (
SELECT CI.ROWID

FROM EMPSCHM.EMPLOYEE E, EMPSCHM.COVERAGE CI
WHERE "EMP-COVERAGE"

AND EMP_ID = 23);
*+ Status = 0 SQLSTATE = 00000
*+ 2 rows processed

D-8 Advantage CA-IDMS Release Summary

Appendix E. SQL Cache Tables

El Overview E-2
E.2 Tables for Viewing, Monitoring, and Controlling the Cache E-3
E.3 Allowable Operations on DSCCACHE Tables E-8
E.4 Examples of Displaying and Controlling theCache E-9
E.5 Securethe Display and Changes E-12

Appendix E. SQL Cache Tables E-1

E.1 Overview

E.1 Overview

This appendix describes the tables (actualy table procedures) that are used for
displaying and controlling the SQL cache. It also provides some examples of how the
DBA can display and control the cache. The SQL cache is used in conjunction with
the dynamic SQL statement caching feature. Dynamic SQL statement caching is
explained in 4.2, “Dynamic SQL Caching” on page 4-3.

E-2 Advantage CA-IDMS Release Summary

E.2 Tables for Viewing, Monitoring, and Controlling the Cache

E.2 Tables for Viewing, Monitoring, and Controlling the
Cache

SQL is the Application Programming Interface (API) used to view, monitor, and
change the cache and the cache configuration. This means that cache administration,
configuration, and dynamic SQL cache monitoring is available in any environment that
supports Advantage CA-IDMS SQL, such as IDMSBCF, OCF, Advantage CA-IDMS
Visual DBA, and Advantage CA-IDMS SQL programs, among others.

This section describes the SY SCA tables (specifically, three table procedures and one
view) defined for dynamic SQL cache management.

E.2.1 DSCCACHEOPT

The DSCCACHEOPT table manages the SQL cache options.

Column Data Type Description

CACHEMAXCNT INTEGER The maximum number of entries that the cache can
contain.

DEFAULT CHAR(4) Default for caching: ON/OFF. This specifies if

caching is enabled or disabled for any connect name
that does not appear in the EXCEPTCON column.

EXCEPTCNT INTEGER Count of rows in the DSCCACHEORPT relation with
non-NULL value for the EXCEPTCON column. It is
the number of connect names in the list of exceptions.

EXCEPTCON CHAR(8) Connect name that forms an exception to the default
caching.

E.2.1.1 Notes

n After startup of central version, DSCCACHEOPT reflects the parameters of the
sysgen SQL CACHE statement. In absence of an SQL CACHE statement there are
no rows in DSCCACHEOPT and SQL caching is disabled, but can be activated by
inserting a DSCACHEOPT row. Updates to the DSCCACHEOPT table have no
impact on the CV's sysgen.

= |nloca mode when no DSCCACHEOPT row exists, a DSCCACHEOPT row is
automatically inserted with values derived from the SYSIDMS parameter
SQL_CACHE_ENTRIES.

® There can be 0 to n rows in this table. If there are 0 rows, this means that SQL
statement caching is not active and not defined to the system. If there are rows,
then the first row contains non-NULL values for CACHEMAXCNT, DEFAULT
and EXCEPTCNT and a NULL value for EXCEPTCON. The first row contains
the main SQL cache parameters. Other rows in the DSCCACHEOPT relation

Appendix E. SQL Cache Tables E-3

E.2 Tables for Viewing, Monitoring, and Controlling the Cache

contain only non-NULL values for the EXCEPTCON column. These rows form
the list of exception connect names.

= You can issue select, insert, update and delete commands against
DSCCACHEORPT.

» Deleting the first row automatically deletes all other rows and removes all SQL
cache structures from the system, effectively disabling caching until a new
DSCCACHEOPT row is inserted. Deleting other rows removes exception connect
names from the exception list.

® |nserting a row is always possible. When one or more rows exist, an insert can
only specify a value for EXCEPTCON, this is the way to add connect names to
the list. When no rows exigt, the first insert must specify values for
CACHEMAXCNT and DEFAULT. Other values are not allowed. A successful
insertion of the first row enables SQL caching.

® Updating of CACHEMAXCNT and DEFAULT columns automatically applies to
the first row only, so that a WHERE clause is not needed to filter the first row.
When CACHEMAXCNT is decreased, the entries in the SQL cache with the
highest AGE (see the description of the DSCCACHE table) are removed. Increase
CACHEMAXCNT to enlarge the size of the cache. You cannot update
EXCEPTCON for the first row. You cannot update EXCEPTCNT as thisis
automatically calculated.

® The size of the cache is specified in terms of number of entries. Each entry
represents a single cached statement. The cache is allocated from the storage pool
within a central version and from operating system storage in local mode. By
selecting from the DSSCACHECTRL table you can determine the amount of
storage being consumed.

E.2.2 DSCCACHECTRL

The DSCCACHECTRL table controls SQL caching

Column Data Type Description

REQUEST CHAR Future use

STATUS CHAR Future use

CACHEMAXCNT INTEGER Maximum count of entries
CACHECURCNT INTEGER Current count of entries used
CURRENT INTEGER Current entry

OLDEST INTEGER Oldest entry
STORAGEUSEKB INTEGER Total storage used by the cache

E-4 Advantage CA-IDMS Release Summary

E.2 Tables for Viewing, Monitoring, and Controlling the Cache

E.2.2.1 Notes

m There can be 0 or 1 row in this table. If no rows are present, no SQL statements
have been cached.
= You can only issue SELECT and DELETE statements against this table.

m Ddeting the row in DSCCACHECTRL clears the SQL cache structures. It does
not disable caching, which is controlled through the DSSCACHEOPT table.

E.2.3 DSCCACHE

The DSCCACHE table represents the SQL cache. Each row is a cache entry.

Column Data Type Description

KEY INTEGER Non-unique key

LOCK BINARY (4) Lock word for access to entry

DBNAME CHAR(8) DBNAME of SQL session

DEFAULTSCHEMA CHAR(18) Default schema of session if statement contains at
least one unqualified table reference

USECNT INTEGER Usage count

AGE INTEGER Age: A valued used in determining which entry to

purge from a full cache when a new entry is inserted.
The longer an entry has remained in the cache without
being used, the higher is age.

COMPILECOST INTEGER Compilation cost
ACCPLANSCANCOST FLOAT Cost of scan in access plan
ACCPLANCPUCOST FLOAT Cost of CPU in access plan
ACCPLANROWCNT FLOAT Count of rows in access plan
EXECCOST INTEGER Cost of last execution of statement
COMPILECNT INTEGER Count of (re)compilations
COMPILESTAMP TIMESTAMP Timestamp of compilation
STMTSIZE INTEGER Size of statement

STATEMENT VARCHAR(8192) Statement

SQLDIBSIZE INTEGER Size of SQLDIB

SQLCMD INTEGER Type of SQL command

SQLITCL INTEGER Combined Itree/TELL table length
SQLARG INTEGER Bit flags for argument usage
SQLOPT INTEGER Session options flags

Appendix E. SQL Cache Tables E-5

E.2 Tables for Viewing, Monitoring, and Controlling the Cache

Column Data Type Description

SQLTBL INTEGER Length of tuple buffer row
SQLPBL INTEGER Length of parameter buffer
SQLCID INTEGER Cursor identifier

SQLSID INTEGER Section identifier
SQLNM1 CHAR(32) Literal value 1

SQLNM2 CHAR(32) Literal value 2

SQLITL INTEGER Size of Itree
SQLITBADDR BINARY (4) Address of Itree
RTREESIZE INTEGER Size of Rtree
RTREEOFFSET INTEGER Offset of Rtree for relocation purposes
RTREEDOFAOFF INTEGER Offset of DOFA in Rtree
RTREEADDR BINARY (4) Address of Rtree

FIBSIZE INTEGER Size of FIB

FIBADDR BINARY (4) Address of FIB

FOPSIZE INTEGER Size of FOP

GSTSIZE INTEGER Size of GST

FOPADDR BINARY (4) Address of FOP
LASTUSER CHAR(8) Reserved
GLOBALCURSORNAME CHAR(18) Reserved

FCRC BINARY (4) FCRC flags
SQLDAADDR BINARY (4) Address of cached input SQLDA
E.2.3.1 Notes

One row of this table represents one cached statement.

Rows cannot be inserted or updated.

Because of the size of the STATEMENT column in DSCCACHE and because
many of these columns are for internal use only, it is advisable to use a view on
this table procedure. The supplied DSCCACHEV view below is an example of

such a view.

The following acronyms are used in the table above.

Itree — A data structure that contains the internal input representation of an SQL

statement

E-6 Advantage CA-IDMS Release Summary

E.2 Tables for Viewing, Monitoring, and Controlling the Cache

m Rtree — A data structure that contains the internal runtime instruction of an SQL
statement. The SQL runtime engine IDMSHLDB uses the Rtree.

» FIB — A data structure that contains runtime metadata.

» FOB/FOP — FIB objects list data structure

m GST — Globa Security Table

» FCRC — Fixed part of Compiled Relational Command data structure

» SQLDA — The SQL Descriptor Area (SQLDA) is a data structure used to
describe variable data passed as part of a dynamic SQL statement.

E.2.4 DSCCACHEV

SYSCA.DSCCACHEV is created during installation. It defines a view on the
SY SCA.DSCCACHE table procedure as follows:

create view SYSCA.DSCCACHEV as
select KEY, DBNAME, DEFAULTSCHEMA, USECNT, AGE
, COMPILECNT as "#C", compilestamp
, ACCPLANSCANCOST, ACCPLANCPUCOST
, ACCPLANROWCNT, FIBSIZE, FIBADDR
, SUBSTR(STATEMENT, 1, 72) as STMT1
from SYSCA.DSCCACHE;

Y ou have the option to define your own views.

Appendix E. SQL Cache Tables E-7

E.3 Allowable Operations on DSCCACHE Tables

E.3 Allowable Operations on DSCCACHE Tables

DSCCACHOPT DSCCACHECTRL DSCCACHE DSCCACHEV
Table Procedure Table Procedure Table Procedure View
SELECT X X X X
INSERT X
UPDATE X
DELETE X X X X

E-8 Advantage CA-IDMS Release Summary

E.4 Examples of Displaying and Controlling the Cache

E.4 Examples of Displaying and Controlling the Cache

E.4.1 CACHE Options

To display the cache options:

Select = from SYSCA.DSCCACHEOPT;
*+

*+ CACHEMAXCNT DEFAULT EXCEPTCNT EXCEPTCON
Sy

*+ 1000 OFF 2 <null>
*+ <null> <null> <null> SYSTEM
*+ <null> <null> <nul1> APPLDICT

To change the default for caching:
Update SYSCA.DSCCACHEOPT set DEFAULT = 'ON';

To add the dictionary 'TSTDICT' to the exception list:
Insert into SYSCA.DSCCACHEOPT (EXCEPTCON) values ('TSTDICT');

To remove the connect name 'SY STEM' from the exception list:
Delete from SYSCA.DSCCACHEOPT where EXCEPTCON = 'SYSTEM';

To remove all the connect names from the exception list:
Delete from SYSCA.DSCCACHEOPT where EXCEPTCON is not null;

To decrease the number of entries in the cache from 1000 to 5:
Update SYSCA.DSCCACHEOPT set CACHEMAXCNT = 5;

Only the last 5 used entries are kept in the cache.

To increase the number of entries in the cache from 5 to 9999:
Update SYSCA.DSCCACHEOPTset CACHEMAXCNT = 9999;

The cache is extended with 9994 new dlots.

To clear the SQL cache and remove al the SQL cache structures from the system,
effectively disallowing any SQL caching:

Delete from SYSCA.DSCCACHEOPT;

To rebuild the SQL cache environment or to build the SQL cache environment in a
system that has no SQL CACHE statement in its sysgen:
Insert into SYSCA.DSCCACHEOPT (CACHEMAXCNT, DEFAULT) values (1000, 'ON');

Insert into SYSCA.DSCCACHEOPT (EXCEPTCON) values ('APPLDICT');
Insert into SYSCA.DSCCACHEOPT (EXCEPTCON) values ('SYSTEM');

Appendix E. SQL Cache Tables E-9

E.4 Examples of Displaying and Controlling the Cache

E.4.2 CACHE Control Parameters

To display cache control parameters:
Select * from SYSCA.DSCCACHECTRL;

*+

*+REQUEST STATUS CACHEMAXCNT CACHECURCNT CURRENT OLDEST

*t o mmmmmm

To clear the cache, but alow caching to continue as defined by the option in
DSCCACHEOPT:

Delete from SYSCA.DSCCACHECTRL;

E.4.3 CACHE Entries

To display key columns of all cache entries:
Select * from SYSCA.DSCCACHEV;

*+

*+ KEY DBNAME DEFAULTSCHEMA USECNT AGE
*+ mmm | mmmmms || mmmmmmmmmm——= | mmm——— -
*+ 29 SYSDICT <null> 4 0
*+ 32 SYSDICT <null> 1 1
*+ 28 SYSDICT <null> 2 1
*+ 32 SYSDICT <null> 7 7
*+ 29 SYSDICT <null> 6 6
*+

*+ #C COMPILESTAMP FIBSIZE FIBADDR
*+ _— mmmmmmmm————— mmmmmms mmm—————
*+ 1 2002-09-04-10.05.20.740186 736 12AC6208
*+ 1 2002-09-04-10.07.20.009275 2528 12ACD088
*+ 1 2002-09-04-10.06.19.785231 2580 12A(CB888
*+ 1 2002-09-04-10.02.39.729463 552 12AC0A08
*+ 1 2002-09-04-10.03.00.735305 736 12ABFD88
%+

*+ STMT1

*t -

*+ Select * from SYSCA.DSCCACHEV

*
*+ select * from empnsql.department
*+ select * from empnsql.office
*+ select * from SYSCA.DSCCACHECTRL
*+ select * from sysca.dsccachev

To display cache entries with AGE > 1:
Select * from SYSCA.DSCCACHEV where AGE > 1;

To display cache entries for DBNAME SY SDICT:
Select * from SYSCA.DSCCACHEV where DBNAME = 'SYSDICT';

E-10 Advantage CA-IDMS Release Summary

E.4 Examples of Displaying and Controlling the Cache

To display cache entries for statements that use schema EMPNSQL.:
Select * from SYSCA.DSCCACHEV where STMT1 1ike '%EMPNSQL.%';

To remove cache entries that use schema EMPNSQL :
Delete from SYSCA.DSCCACHE where STATEMENT 1like '%empnsql.%';

Appendix E. SQL Cache Tables E-11

E.5 Secure the Display and Changes

E.5 Secure the Display and Changes

To secure the display of and any changes to SQL caching, the DSCCACHE tables
(table procedures and views) must be secured using the standard Advantage CA-IDMS
security mechanism.

Note: The SQL cache contains SQL source statements, which might include
confidential information.

E-12 Advantage CA-IDMS Release Summary

Appendix F. CICS Interface Enhancements for
Two-Phase Commit Support

F.1 Overview F-2
F.2 Resynchronization Task Execution F-3
F.3 New CICSOPT and IDMSCINT Parameters F-7
F4 CICSOPTIXIT e F-15

Appendix F. CICS Interface Enhancements for Two-Phase Commit Support F-1

F.1 Overview

F.1 Overview

This appendix describes:

® Executing a resynchronization task in order to resynchronize with a back-end
central version.

» Creating the resynchronization program.

» Defining the resynchronization transaction to CICS
® New CICSOPT and IDMSCINT parameters

= CICS OPTIXIT Example

F-2 Advantage CA-IDMS Release Summary

F.2 Resynchronization Task Execution

F.2 Resynchronization Task Execution

The following syntax is used to execute a resynchronization task:

F.2.1 Syntax

A\
A

»—— rsyn—transaction — nodename
F.2.2 Parameters

rsyn-transaction
The name of a CICS resynchronization transaction defined to the CICS system.

Nodename
The name of the Advantage CA-IDMS central version for which resynchronization
is to be performed. The identified system must be accessible through the CICS
interface for which the resynchronization transaction was defined.

F.2.3 Examples

F.2.3.1 Successful Manual Resynchronization Example

The following example shows how manual resynchronization is initiated with central
version SYSTEM74 using a resynchronization task called RSYN whose interface
module is named IDMSINTC. The resulting messages identify the target node name,
the name of the interface module being used, the number of incomplete units of work
that need to be recovered and the final outcome of the resynchronization process.

RSYN SYSTEM74

CA-IDMS Manual 2-PC Resync for IDMSINTC for CV node SYSTEM74 date 10/14/2003
1 CA-IDMS in doubt units of work need recovery for CV node SYSTEM74
1 CA-IDMS in doubt units of work recovery started for CV node SYSTEM74
CA-IDMS Two Phase Commit Resync startup completed for CV node SYSTEM74

F.2.3.2 Unsuccessful Manual Resynchronization Example 1

This example shows an error condition that occurred during a manual
resynchronization because the central version nodename was not specified.

RSYN

IDMSCSYN error - CV node not specified

Appendix F. CICS Interface Enhancements for Two-Phase Commit Support F-3

F.2 Resynchronization Task Execution

F.2.3.3 Unsuccessful Manual Resynchronization Example 2

This example depicts an error condition that occurred during a manual
resynchronization because the central version nodename that was specified was not
available through the CICS interface for which the resynchronization was defined.

RSYN SYSTEM81

CA-IDMS Manual 2-PC Resync for IDMSINTC for CV node SYSTEM81 date 10/14/2003
IDMSCSYN error - Requested CV node SYSTEM81 - Connected CV node SYSTEM74
CA-IDMS Two Phase Commit Resync aborted

F.2.3.4 Successful Automatic Resynchronization Example

The following example shows the output from an automatic resynchronization initiated
when the first request is made to a back-end central version through a CICS interface
module or when the interface is started in a CICS Transaction Server for z/OS or
0S/390 V1R1 (or later).

CA-IDMS Auto 2-PC Resync for IDMSINTC for CV node SYSTEM74 date 10/14/2003
1 CA-IDMS in doubt units of work need recovery for CV node SYSTEM74
1 CA-IDMS in doubt units of work recovery started for CV node SYSTEM74
CA-IDMS Two Phase Commit Resync startup completed for CV node SYSTEM74

F.2.4 Creating the Resynchronization Program

Linking the IDMSCSYN module with an IDMSCINT module creates the
resynchronization program. A separate resynchronization program must be created for
each version of the Advantage CA-IDMS interface module (IDMSINTC) that is used
within a given CICS system.

F.2.5 Resynchronization Program Link Edit (z/OS)

[] *mm e m m e e e e
/1% LINK IEWL

27y Sy
//LINK EXEC PGM=IEWL,

// PARM="LET,LIST,XREF,RENT',

// REGION=128K,

// COND=(8,LT,ASMSTEP)

//SYSLMOD DD DSN=idms.loadlib,DISP=SHR

//SYSPRINT DD SYSOUT=+

//SYSUT1 DD DSN=&&SYSUT1,

// UNIT=SYSDA,

// SPACE=(6400, (80)),

// DISP=(NEW,PASS)

//1IN1 DD DSN=idms.distload,DISP=SHR

//IN2 DD DSN=user.objlib,DISP=SHR

//IN3 DD DSN=cics.loadlib,DISP=SHR

F-4 Advantage CA-IDMS Release Summary

F.2 Resynchronization Task Execution

//SYSLIN DD DDNAME=SYSIN
//SYSIN DD =*

ORDER DFHEAI

INCLUDE IN3(DFHEAI)

INCLUDE IN1(IDMSCSYN)

INCLUDE IN2(idmscint)

INCLUDE IN3(DFHEAIO)

ENTRY CSYNEP1
MODE AMODE (31) ,RMODE (ANY)
NAME usercsyn(R)

J /o m m e e e e e mimemimee ememms

Field Description

cicsloadlib Data set name of the CICS load library

idms.distload Data set name of the Advantage CA-IDMS SMP/E
distribution load library

idms.loadlib Data set name of the Advantage CA-IDMS loadlib

user.objlib Data set name of the user object library containing the
idmscint module.

idmscint Name of the idmscint object module

usercsyn User specified name of the RSYN load module

F.2.6 Resynchronization Program Link Edit (VSE)

// DLBL idmslib,
// EXTENT ,nnnnnn
// LIBDEF *,SEARCH=(idmslib.sublib,user.sublib,cicslib.sublib)
// LIBDEF PHASE,CATALOG=idms1ib.sublib
// OPTION CATAL

PHASE usercsyn,*

INCLUDE DFHEAI

INCLUDE IDMSCSYN

INCLUDE idmscint

INCLUDE DFHEAIO

ENTRY CSYNEP1

// EXEC LNKEDT,SIZE=128K

/*

Field Description

cicdlib.sublib Name of the sublibrary within the library containing
CICS modules

idmglib Filename of the file containing the Advantage
CA-IDMS modules

idmslib.sublib Name of the sublibrary within the library containing

Advantage CA-IDMS modules

Appendix F. CICS Interface Enhancements for Two-Phase Commit Support F-5

F.2 Resynchronization Task Execution

Field Description

nnnnnn Volume seria identifier of the appropriate disk volume

user.sublib Name of the user object library where the idmscint
module resides

idmscint Name of the idmscint object module

usercsyn User specified name of the RSYN load module

F.2.7 Defining a Resynchronization Transaction

A resynchronization transaction must be defined for each IDMSINTC interface to be
used within a CICS system. Define the resynchronization transaction to CICS as
follows:

DEFINE TRANSACTION(rsyn-transaction-name) PROGRAM(usercsyn)
GROUP (IDMSGRP) PROFILE (IDMSPRF)
TASKDATAKEY (CICS)

Where:

rsyn-transaction-name is the name chosen for the resynchronization transaction.
usercsyn is the name chosen for the resynchronization program.

The installation default transaction name is RSY N, but another name can be chosen.
The name specified in the transaction definition must be identical to the value for the

RSYNTXN parameter of the associated interface's CICSOPT macro. Refer to "New
IDMSCINT and CICSOPT Parameters' for a description of the RSYNTXN parameter.

F.2.8 Defining the Resynchronization Program

A resynchronization program must be defined for each IDMSINTC interface to be
used within a CICS system. Define the resynchronization program to CICS as follows:

DEFINE PROGRAM(usercsyn) GROUP(IDMSGRP) LANGUAGE(ASSEMBLER) CEDF(NO) EXECKEY(CICS)

Where:

usercsyn is the name chosen for the resynchronization program.

F-6 Advantage CA-IDMS Release Summary

F.3 New CICSOPT and IDMSCINT Parameters

F.3 New CICSOPT and IDMSCINT Parameters

F.3.1 New CICSOPT Parameters

The new or enhanced CICSOPT parameters available in Release 16.0 are described
below.

F.3.1.1 Syntax

»————— CICSOPT — . . . >

»
»

L ,AUTOCMT=— (E ON B) il
OFF — ,ALWAYS
— ,DEFAULT «- —
L LAUTONLY=— (T ON .) J
OFF — ,ALWAYS
— ,DEFAULT «- —
l— ,MAXCON=maximum-connections J
L ,MAXIDMS=maximum-IDMS-systems —l
L ,ONCOMT=— (COMMIT-CONTINUE) J
COMMIT-ALL —— — ,ALWAYS
FINISH «- ——— ' — _DEFAULT < —
L ,ONBACK=— (E ROLLBACK «-]) —J
ROLLBACK-CONTINUE — LALWAYS
— ,DEFAULT < —
L ,RSYNTXN=rsyn-transaction-name J
l— , TPNAME=system-name J
L ,TRUE=true-prefix-name il
> :] ><

F.3.1.2 Parameters

L » TXNSHR=—(E ON a
OFF t »ALWAYS
,DEFAULT «- —

AUTOCMT

Specifies whether or not database sessions opened by a program using this
interface module are €eligible for participation in a CICS UOW (Unit of Work).

ON
Specifies that database sessions are dligible to participate in a CICS Unit Of
Work (UOW). If the database session is active at the time a CICS syncpoint

Appendix F. CICS Interface Enhancements for Two-Phase Commit Support F-7

F.3 New CICSOPT and IDMSCINT Parameters

operation is performed, the session's updates are committed as part of the
CICS UOW.

OFF

Specifies that database sessions are not eligible to participate in a CICS Unit
Of Work (UOW).

If TXNSHR=ON is specified, the default for AUTOCMT is ON; otherwise it
is OFF. An assembly error results if TXNSHR=ON and AUTOCM T=0OFF
are specified.

ALWAYS
Specifies that the AUTOCMT behavior specified in the CICSOPT parameter
overrides whatever was specified in the IDMSCINT module with which the
application is linked.

DEFAULT
Specifies that the AUTOCMT behavior specified in the CICSOPT parameter

applies only if the corresponding IDMSCINT parameter specifies DEFAULT.
This is the defaullt.

AUTONLY

Specifies if database sessions opened by a program using this interface module are
forced to participate in a CICS UOW.

ON
Specifies that database sessions are forced to participate in a CICS Unit Of
Work (UOW). Even if the database session is terminated prior to the CICS
syncpoint operation, the session's updates are committed as part of the CICS
UOW. DML commands that would normally cause the session's updates to
be committed (such as FINISH or COMMIT WORK) have no impact on the
session's transaction, although they do impact the session. Conversely, if the
session's transaction is forced to back out (either because of a DML
ROLLBACK request or because of events such as a deadlock), a CICS
SYNCPOINT BACKOUT is issued forcing the entire CICS UOW to be
backed out.

OFF

Specifies that database sessions are not forced to participate in a CICS Unit
Of Work (UOW).

If TXNSHR=ON is specified, the default for AUTONLY is ON; otherwise it
is OFF. An assembly error results if TXNSHR=ON and AUTONLY =OFF
are specified.

ALWAYS
Specifies that the AUTONLY behavior specified in the CICSOPT parameter
overrides the specifications in the IDMSCINT module with which the
application is linked.

DEFAULT
Specifies that the AUTONLY behavior specified in the CICSOPT parameter

applies only if the corresponding IDMSCINT parameter specifies DEFAULT.
This is the defaullt.

F-8 Advantage CA-IDMS Release Summary

F.3 New CICSOPT and IDMSCINT Parameters

MAXCON
Specifies the maximum number of different back-end central versions that a CICS
task can access simultaneously through this CICS interface module. This limit
applies only to database sessions for which AUTOCMT is enabled. If an
application uses different interface modules, each one has its own limit.

maximum-connections
Must be a numeric value between 1 and 1000. If maximum-connections is not
specified, the default maximum number of connectionsis 2.

MAXIDMS
Specifies the maximum number of different back-end central versions that a CICS
interface module can access throughout the life of a CICS system. This limit
applies only to database sessions for which AUTOCMT is enabled. If an
application uses different interface modules, each one has its own limit.

maximum-1DM S-systems
Must be a numeric value between 1 and 1000. The default maximum number
of back-end systems is the larger of 2 and 2 * the value of the MAXCVNO
parameter.

ONBACK
Specifies the action that should be taken for database sessions opened by a
program using this interface module when they participate in a CICS backout
operation.

ROLLBACK
Specifies that database sessions should be terminated. This is the default.

ROLLBACK-CONTINUE
Specifies that database sessions should continue but currencies freed.

ALWAYS
Specifies that the ONBACK behavior specified in the CICSOPT parameter
overrides whatever was specified in the IDMSCINT module with which the
application is linked.

DEFAULT
Specifies that the ONBACK behavior specified in the CICSOPT parameter
applies only if the corresponding IDMSCINT parameter specifies DEFAULT.
This is the default.

ONCOMT
Specifies the action that should be taken for database sessions opened by a
program using this interface module when they participate in a CICS syncpoint
operation.

COMMIT-ALL
Specifies that database sessions should continue but currencies freed.

COMMIT-CONTINUE
Specifies that database sessions should continue and currencies retained.

FINISH
Specifies that database sessions should be terminated. This is the default.

Appendix F. CICS Interface Enhancements for Two-Phase Commit Support F-9

F.3 New CICSOPT and IDMSCINT Parameters

ALWAYS
Specifies that the ONCOMT behavior specified in the CICSOPT parameter
overrides the specification in the IDMSCINT module with which the
application is linked.

DEFAULT
Specifies that the ONCOMT behavior specified in the CICSOPT parameter
applies only if the corresponding IDMSCINT parameter specifies DEFAULT.
This is the default.

TPNAME
Specifies the name by which DC/UCF will identify all tasks running under this
CICS system.

stem-name
Specify a four character name.

All interface modules executing within a single CICS system must use the same value
for TPNAME. Any attempt to start another occurrence of the interface with a
different tpname value than the one specified in the first interface that is currently
executing in the CICS system will fail unless a CICS_NAME parameter is specified in
the SYSIDMS file included in the CICS startup JCL.

The system-name forms the first part of the local transaction ID for database requests
and the first four characters of the front-end system ID for external reguest units.
"BULK" is appended to system-name to create the front-end system ID. The front-end
system ID is used for several purposes:

® Determines the packet size for communications

» Determines the maximum number of simultaneous requests from this CICS system
to Advantage CA-IDMS.

® Can aso be used as an aternate task code for controlling external request unit
processing

If the TPNAME parameter is omitted, the CICS sysid as defined during the CICS
system startup becomes the system-name.

TRUE
Specifies a prefix to be used in forming Task Related User Exit (TRUE) entry
names.

true-prefix
Must be a one to five character value that is unique across all interface

modules in use within a CICS system. If true-prefix is less than five
characters, it is padded on the right with $'s. If not specified, the default
prefix is constructed as the last five characters of the IDMSINTC module
name, padded on the right with $'s if necessary.

RSYNTXN
Specifies the name of the CICS resynchronization transaction defined for this
interface.

F-10 Advantage CA-IDMS Release Summary

F.3 New CICSOPT and IDMSCINT Parameters

rsyn-transaction-name
Must be the name of a transaction defined to CICS and associated with a
resynchronization program. If not specified, the default transaction name is
RSYN.

TXNSHR
Specifies whether or not database sessions opened by a program using this
interface module should share the same transaction as other sessions started by the
same CICS task.

ON
Specifies that database sessions should share transactions.

OFF
Specifies that database sessions should not share transactions. This is the
defaullt.

ALWAYS
Specifies that the TXNSHR behavior specified in the CICSOPT parameter
overrides whatever was specified in the IDMSCINT module with which the
application is linked.

DEFAULT
Specifies that the TXNSHR behavior specified in the CICSOPT parameter
applies only if the corresponding IDMSCINT parameter specifies DEFAULT.
This is the defaullt.

F.3.2 New IDMSCINT Parameters

The new or enhanced IDMSCINT parameters available in Release 16.0 are described
below.

F.3.2.1 Syntax

Appendix F. CICS Interface Enhancements for Two-Phase Commit Support F-11

F.3 New CICSOPT and IDMSCINT Parameters

\4
A

»> IDMSCINT — . . .
|: module-name :|
IDMSCINT «-

v

»
»

OFF ——
DEFAULT —

|— ,AUTOCMT=—E ON

\ 4
v

OFF ——
DEFAULT —

|— LAUTON LY=—E ON

A\
v

L »ONBACK=—— ROLLBACK «-
— ROLLBACK-CONTINUE —
— DEFAULT

A\
v

L »ONCOMT=—— COMMIT-CONTINUE —
— COMMIT-ALL
— FINISH «-
— DEFAULT

A\
\4

L TxsHR=—— oN
— OFF <- —
L DEFAULT —

F.3.2.2 Parameters

AUTOCMT
Specifies whether or not database sessions opened by a program linked with this
IDMSCINT module are eligible for participation in a CICS UOW (Unit of Work).

ON
Specifies that database sessions are €ligible to participate in a CICS Unit Of
Work (UOW). If the database session is active at the time a CICS syncpoint
operation is performed, the session's updates are committed as part of the
CICS UOW.

OFF
Specifies that database sessions are not eligible to participate in a CICS Unit
Of Work (UOW).

DEFAULT
Specifies that whether or not database sessions are eligible for participation in
a CICS Unit Of Work (UOW) is determined by the AUTOCMT parameter of
the interface's CICSOPT macro.

If TXNSHR=ON is specified, the default for AUTOCMT is ON; otherwise it is OFF.
An assembly error results if TXNSHR=ON and AUTOCMT=0OFF are specified.

AUTONLY
Specifies whether or not database sessions opened by a program linked with this
IDMSCINT module are forced to participate in a CICS UOW.

ON
Specifies that database sessions are forced to participate in a CICS Unit Of
Work (UOW). Even if a database session is terminated prior to the CICS
syncpoint operation, the session's updates are committed as part of the CICS

F-12 Advantage CA-IDMS Release Summary

F.3 New CICSOPT and IDMSCINT Parameters

UOW. DML commands that would normally cause the session's updates to
be committed (such as FINISH or COMMIT WORK) have no impact on the
session's transaction, although they do impact the session. Conversely, if the
session's transaction is forced to back out (either because of a DML
ROLLBACK request or because of events such as a deadlock), a CICS
SYNCPOINT BACKOUT is issued forcing the entire CICS UOW to be
backed out.

OFF
Specifies that database sessions are not forced to participate in a CICS Unit
Of Work (UOW).

DEFAULT
Specifies that whether or not database sessions are forced to participate in a
CICS Unit Of Work (UOW) is determined by the AUTONLY parameter of
the interface’'s CICSOPT macro.

If TXNSHR=ON is specified, the default for AUTONLY is ON; otherwise it is OFF.
An assembly error results if TXNSHR=ON and AUTONLY =OFF are specified.

ONBACK
Specifies the action that should be taken for database sessions opened by a
program linked with this IDMSCINT module when they participate in a CICS
backout operation.

ROLLBACK
Specifies that database sessions should be terminated. This is the default.

ROLLBACK-CONTINUE
Specifies that database sessions should continue but currencies freed.

DEFAULT
Specifies that the backout action for sessions is determined by the ONBACK
parameter of the interface's CICSOPT macro.

ONCOMT
Specifies the action that should be taken for database sessions opened by a
program linked with this IDMSCINT module when they participate in a CICS
syncpoint operation.
COMMIT-ALL
Specifies that database sessions should continue but currencies freed.

COMMIT-CONTINUE
Specifies that database sessions should continue and currencies retained.

FINISH
Specifies that database sessions should be terminated. This is the default.

DEFAULT
Specifies that the commit action for sessions be determined by the ONCOMT
parameter of the interface's CICSOPT macro.

Appendix F. CICS Interface Enhancements for Two-Phase Commit Support F-13

F.3 New CICSOPT and IDMSCINT Parameters

TXNSHR
Specifies whether or not database sessions opened by a program linked with this
IDMSCINT module should share the same transaction as other sessions started by
the same CICS task.

ON
Specifies that database sessions should share transactions.

OFF
Specifies that database sessions should not share transactions. This is the
defaullt.

DEFAULT
Specifies that whether or not database sessions share transactions is
determined by the TXNSHR parameter of the interface's CICSOPT macro.

F-14 Advantage CA-IDMS Release Summary

F.4 CICS OPTIXIT

F.4 CICS OPTIXIT

OPTIXIT programs enable users to dynamically route database sessions to different
back-end central versions. In order to support two-phase commit processing with

CICS, OPTIXIT users must enhance their exit code to be able to route
resynchronization requests to the correct back-end central version. In order to
facilitate this, resynchronization requests are identified by an SSC program name of
INTCRSYN and the name of the node to which the request must be routed is
contained in the OPTI control block passed as a second parameter to the exit.

The following is an example of the type of coding necessary to recognize and route

resynchronization requests successfully.

F.4.1 OPTIXIT Example

TITLE 'OPTIXIT - example of CICS OPTI exit needed for CICS RESYNC'

OPTIXIT CSECT
USING OPTIXIT,R15
B START
DROP R15
#MOPT CSECT=OPTIXIT,ENV=USER
START DS OH
STM R14,R12,12(R13)
LR R12,R15
USING OPTIXIT,R12
USING OPTXPLST,RI
L R2,0PTXSSCA
USING SSC,R2
L R3,0PTXOPTA
USING OPI,R3
CLC SSCPNAME,=C'INTCRSYN'
BE CICSRSYN

---> Base
Go processs OPTI exit call

Save callers registers

Swap base to R12

---> Base

---> Parameter list

Get address of Subschema Control
---> SSC

Get address of OPTI structure

---> OPTI structure

Pseudo SSC for CICS RESYNC?

Yes, special process for CICS RESYNC

R R R R R S R R R R T R R T R T R T R R L L T

*

* perform normal OPTIXIT logic for real SSC

*

B R R R R R R R R S R R R R R R R R R R R R R R R R R T R R R R

B RETURN
CICSRSYN DS OH
LA R5,0PINODE
LA R4,SYSLIST
USING SYSTABLE,R4
LOoP DS OH
CLI ~ SYSNAME,C'='

BE RETURN

CLC SYSNAME,O(R5)
BE MATCH

LA R4,SYSTSIZE(R4)
B LOOP

MATCH DS OH
MVC OPICVNUM,SYSCV#
MVC OPISVCNO,SYSSVC#
B RETURN

RETURN DS OH
LM R14,R12,12(R13)

Exit

Point at name of backend CV
Get table of known backend CVs
---> SYSTABLE

Is this end of CV table ?
Yes, just exit

Is this CV one of my CVs ?
Yes, we have a match

Bump to next CV in the table
Keep Tooking for my CVs

Update OPTI with CV number
Update OPTI with SVC number
Exit

Restore callers registers

Appendix F. CICS Interface Enhancements for Two-Phase Commit Support F-15

F.4 CICS OPTIXIT

BR R14
DROP R2,R3,R4,R12
EJECT
SYSLIST EQU =
DC C'SYSTEM71',AL1(71),AL1(173)
DC C'SYSTEM72',AL1(72),AL1(176)
DC C'SYSTEM73',AL1(73),AL1(176)
DC C'SYSTEM74',AL1(74),AL1(173)
DC C'#'
SPACE 2
LTORG ,
SPACE 2
OPTXPLST DSECT
OPTXSSCA DS A(0)
OPTXOPTA DS A(0)
SPACE 2
SYSTABLE DSECT
SYSNAME DS CL8
SYSCV# DS XL1
SYSSVC# DS XL1
SYSTSIZE EQU #-SYSTABLE
EJECT
COPY #OPTIDS
COPY #SSCDS
END

Return to caller
Drop SSC, OPI, SYSTABLE, base

CV table
uses SVC
uses SVC
CV 73 uses SVC number
CV 74 uses SVC number
End of backend CV table

Backend
Cv 71
Cv 72

173
176
176
173

number
number

Literal pool

OPTI exit PLIST
A(SSC)
A(OPTI)

Backend CV table dsect
Backend CV node name
Backend CV number

Backend CV SVC number

Size of one SYSTABLE entry

OPTI dsect
Subschema control dsect

F-16 Advantage CA-IDMS Release Summary

Appendix G. TCP/IP APl Commands, Error Codes,
Socket Structures, and String

Conversion
Gl Overview G-2
G.2 Function Descriptions G-3
G.3 Return, Errmo, and Reason Codes G-55
G.4 Socket Structure Descriptions G-61
G.5 String Conversion Functions L G-63

Appendix G. TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G-1

G.1 Overview

G.1 Overview

This appendix provides information about TCPF/IP, including:
» Detailed description of each supported socket function
® ERRNO codes associated with sockets
® Socket structure description

® String conversion functions

G-2 Advantage CA-IDMS Release Summary

G.2 Function Descriptions

G.2 Function Descriptions

This section describes the socket functions that are supported by Advantage CA-IDMS.
The following information is provided for each function:

® An assembler #SOCKET macro invocation showing al of the parameters that can
be specified.

m A list of parameters that can be passed when invoking the function in COBOL,
PL/I, and Advantage CA-ADS. The first of these parameters is the function name
as defined in the SOCKET-CALL-INTERFACE record.

m A description of the function-dependent parameters.

m Additional notes if applicable to a specific function.

G.2.1 ACCEPT

ACCEPT accepts the first connection request on the queue of pending connection
requests. If the queue is empty, the call waits until the first connection request arrives
or fails with an EWOULDBLOCK condition if the socket had been marked as
non-blocking. If successful, a new socket descriptor is returned.

Assembler

label #SOCKET ACCEPT,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
SOCK=socket-descriptor,
SOCKADDR=sockaddr,
SOCKADDL=sockaddr-Tength,
NEWSOCK=new-socket-descriptor,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-ACCEPT,
return-code,

errno,

reason-code,
socket-descriptor,
sockaddr,
sockaddr-length,
new-socket-descriptor

Appendix G. TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G-3

G.2 Function Descriptions

G.2.1.1 Parameters

Parameter

Description

socket-descriptor

The name of a fullword field containing the socket descriptor that was
used on the BIND and LISTEN functions

sockaddr

The name of an area in which to return the sockaddr structure of the
connecting client. The format of that structure depends on the domain of
the corresponding socket. This parameter can be assigned to NULL if the
caller is not interested in the connector's address.

sockaddr-length

The name of a fullword field containing the length of sockaddr. If
SOCKADDR is assigned to NULL, sockaddr-length must be 0. On
return, sockaddr-length contains the size required to represent the
connecting socket. If the value is O, the contents of sockaddr are
unchanged. If the sockaddr is too small to contain the full sockaddr
structure, it is truncated. The maximum value for this parameter is 4096.

new-sock et-descriptor

The name of the fullword field where the socket descriptor of the new
connection is returned.

G.2.1.2 Notes

G.2.2 BIND

When the timeout value associated with the socket expires, the socket function
terminates with the ETIMEDOUT errno code. For more information about socket
timeouts, refer to 9.5.3, “Associating Timeouts to Sockets’ on page 9-24.

BIND assigns a local name to an unnamed socket.

Assembler

label #SOCKET BIND,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
SOCK=socket-descriptor,
SOCKADDR=sockaddr,
SOCKADDL=sockaddr-1ength,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

G-4 Advantage CA-IDMS Release Summary

G.2 Function Descriptions

SOCKET-FUNCTION-BIND,
return-code,

errno,

reason-code,
socket-descriptor,
sockaddr,
sockaddr-length

G.2.2.1 Parameters

Parameter Description
socket-descriptor The name of a fullword field containing the socket descriptor to bind.
sockaddr The name of an area that contains the sockaddr structure to be bound to

the socket. The format of the sockaddr structure depends on the domain
of the corresponding socket.

VSE systems: Only the domain AF_INET is supported.

sockaddr -length The name of a fullword field containing the length of sockaddr.
sockaddr-length can be specified as an absolute expression.

The maximum value for this parameter is domain dependent. If the
domain is:
» AF INET — it is the length of the SOCKET-SOCKADDR-IN
record (SIN#LEN for assembler)

» AF_INET6 — it is the length of the SOCKET-SOCKADDR-IN6
record (SING#LEN for assembler)

G.2.3 CLOSE

CLOSE deletes the socket descriptor from the internal descriptor table maintained for
the application program and terminates the existence of the communications endpoint.
If the socket was connected, the connection is terminated in an orderly fashion.

Assembler

label #SOCKET CLOSE,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
SOCK=socket-descriptor,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

Appendix G. TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G-5

G.2 Function Descriptions

SOCKET-FUNCTION-CLOSE,
return-code,

errno,

reason-code,
socket-descriptor

G.2.3.1 Parameters

Parameter Description

socket-descriptor The name of a fullword field containing the socket descriptor to close.

G.2.4 CONNECT
CONNECT initiates a connection on a socket.

Assembler

label #SOCKET CONNECT,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
SOCK=socket-descriptor,
SOCKADDR=sockaddr,
SOCKADDL=sockaddr-Tength,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-CONNECT,
return-code,

errno,

reason-code,
socket-descriptor,
sockaddr,
sockaddr-length

G.2.4.1 Parameters

Par ameter Description
socket-descriptor The name of a fullword containing the socket descriptor to which to
connect.

G-6 Advantage CA-IDMS Release Summary

G.2 Function Descriptions

Par ameter Description

sockaddr The name of an area that contains the sockaddr structure to which to
connect. The format of the sockaddr structure depends on the domain of
the corresponding socket.

VSE systems: Only the domain AF_INET is supported. Specify family
AF@INET when building the sockaddr structure.

sockaddr-length The name of a fullword field containing the length of sockaddr.
sockaddr-length can be specified as an absolute expression.

The maximum value for this parameter is domain dependent. If the
domain is:
= AF_INET — it is the length of the SOCKET-SOCKADDR-IN
record (SIN#LEN for assembler)

n AF INET6 — it is the length of the SOCKET-SOCKADDR-IN6
record (SING#LEN for assembler)

G.2.4.2 Notes

®» When the timeout value associated with the socket expires, the socket function
terminates with the ETIMEDOUT errno code. For more information about socket
timeouts, refer to 9.5.3, “Associating Timeouts to Sockets’ on page 9-24.

. After a CONNECT error, including a timeout condition, the corresponding socket
cannot be used. For the application to continue processing, it must close the
current socket and create a new socket.

G.2.5 FCNTL

FCNTL provides control over a socket descriptor. Depending on the command, it
retrieves or sets control information.

Assembler

label #SOCKET FCNTL,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
SOCK=socket-descriptor,
COMMAND=command,
ARGUMENT=argument,
RETVAL=returned-value,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

Appendix G. TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G-7

G.2 Function Descriptions

G.2.5.1 Parameters

SOCKET-FUNCTION-FCNTL,
return-code,

errno,

reason-code,
socket-descriptor,
command,

argument,
returned-value

Parameter

Description

socket-descriptor

The name of a fullword field containing the socket descriptor to process.

command The name of a fullword field containing the command to perform on the
socket. command can be specified as an absolute expression.
argument The name of a fullword field containing the argument that applies to

some commands. argument can be specified as an absolute expression.
While argument is optional, it must be specified for setting functions.

retur ned-value

The name of a fullword field that contains the returned information from
any retrieval commands. While returned-value is optional , it must be

specified for retrieval function.

G.2.5.2 Notes
VSE systems. The F@GETFL and F@SETFL commands are not supported.
The following table lists the commands and arguments that can be specified. The
EQUate symbol is generated by #SOCKET macro and the field names are
associated with the SOCKET-MISC-DEFINITIONS record.
EQUate Symboal Field Name Description
F@GETFL SOCKET-FCNTL-GET Get file status command
F@SETFL SOCKET-FCNTL-SET Set file status command
F@GETIMO SOCKET-FCNTL-GETIMO Get timeout value
associated with a socket
F@SETIMO?! SOCKET-FCNTL-SETIMO Associate a timeout value

with a socket

G-8 Advantage CA-IDMS Release Summary

G.2 Function Descriptions

EQUate Symbol Field Name Description

NONBLOCK SOCKET-FCNTL-NONBLOCK Set socket in
non-blocking mode

Note: ! — Acceptable argument values for the F@SETIMO command:
® 1 through 32767 — the timeout value in seconds
» 0 — no timeout processing is wanted, but a task abend

-1 — indefinite wait (equivalent for FOREVER)

PL/l programs; The SOCKET_MISC_DEFINITIONS is used and the dashes are
replaced by underscores.

G.2.6 FD_CLR
FD_CLR clears a socket descriptor's hit in a bit list.

Assembler

label #SOCKET FD_CLR,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
SOCK=socket-descriptor,
BITLIST=bit-1ist,
BITLISTL=bit-1ist-Tength,
BITORDER=bit-order,
PLIST=parameter-list-area

G.2.6.1 Parameters

Par ameter Description

socket-descriptor The name of a fullword field containing the socket descriptor whose bit
must be cleared (set to zero) in the bit list.

bit-list The name of the area containing the bit list.

bit-list-length The name of a fullword field containing the length of the bit-list in
bytes.

bit-list-length can be specified as an absolute expression. bit-list-length
must be a multiple of 4.

Appendix G. TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G-9

G.2 Function Descriptions

Parameter Description

bit-order The name of the fullword containing the order in which the bits are
addressed in the bit list. This order should be the same as the value
specified on the option parameter of the SELECT or SELECTX function.

bit-order can be specified as an absolute expression. The accepted
values are:

" SEL@BBKW (default)
» SEL@BFWD

G.2.6.2 Notes

» This function is only available to the Assembler interface.

» For performance reasons, FD_CLR does not call the RHDCSOCK processor to
execute the function. Instead, the corresponding code is expanded in your
program. This code is substantial, so it is best to code the function call in a
subroutine.

G.2.7 FD_ISSET
FD_ISSET tests a socket descriptor's bit in a bit list to see if it is ON or OFF

Assembler

label #SOCKET FD_ISSET,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
SOCK=socket-descriptor,
BITLIST=bit-1ist,
BITLISTL=bit-1ist-Tength,
BITORDER=bit-order,
RETVAL=returned-bit-status,
PLIST=parameter-list-area

G.2.7.1 Parameters

Par ameter Description

socket-descriptor The name of a fullword field containing the socket descriptor whose bit
needs testing in the bit list.

bit-list The name of the area containing the hit list.

G-10 Advantage CA-IDMS Release Summary

G.2 Function Descriptions

Par ameter Description
bit-list-length The name of a fullword field containing the length of the hit-list in
bytes.

bit-list-length can be specified as an absolute expression. bit-list-length
must be a multiple of 4.

bit-order The name of a fullword containing the order in which the bits are
addressed in the bit list. This order should be the same as the value
specified on the option parameter of the SELECT or SELECTX function.

bit-order can be specified as an absolute expression. The accepted
values are;

" SEL@BBKW (default)
" SEL@BFWD

returned-bit-status The name of a fullword field that will contain the status of the tested bit:

n 0— OFF
» 1—ON

G.2.7.2 Notes
® This function is only available to the Assembler interface.
» For performance reasons, FD_ISSET does not call the RHDCSOCK processor to
execute the function. Instead, the corresponding code is expanded in your
program. This code is substantial, so it is best to code the function cal in a
subroutine.
G.2.8 FD_SET

FD_SET sets a socket descriptor's bit in a bit list ON.

Assembler

label #SOCKET FD_SET,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
SOCK=socket-descriptor,
BITLIST=bit-Tist,
BITLISTL=bit-1ist-Tength,
BITORDER=bit-order,
PLIST=parameter-list-area

Appendix G. TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G-11

G.2 Function Descriptions

G.2.8.1 Parameters

Parameter

Description

socket-descriptor

The name of a fullword field containing the socket descriptor whose bit
must be set ON in the bit list.

bit-list The name of the area containing the hit list.
bit-list-length The name of a fullword field containing the length of the bit-list in
bytes.
bit-list-length can be specified as an absolute expression. bit-list-length
must be a multiple of 4.
bit-order The name of the fullword containing the order in which the bits are
addressed in the bit list. This order should be the same as the value
specified on the option parameter of the SELECT or SELECTX function.
bit-order can be specified as an absolute expression. The accepted
values are:
" SEL@BBKW (default)
» SEL @BFWD
G.2.8.2 Notes

G.29 FD_ZERO

This function is only available to the Assembler interface.

For performance reasons, FD_SET does not call the RHDCSOCK processor to
execute the function. Instead, the corresponding code is expanded in your
program. This code is substantial, so it is best to code the function call in a
subroutine.

FD_ZERO clears dl bitsin a bit list.

Assembler

label

#SOCKET FD_ZERO,

RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
BITLIST=bit-1ist,
BITLISTL=bit-1ist-Tength,
PLIST=parameter-list-area

G-12 Advantage CA-IDMS Release Summary

G.2 Function Descriptions

G.2.9.1 Parameters

Par ameter Description

bit-list The name of the area containing the bit list.

bit-list-length The name of a fullword field containing the length of the hit-list in
bytes.

bit-list-length can be specified as an absolute expression. bit-list-length
must be a multiple of 4.

G.2.9.2 Notes

m This function is only available to the Assembler interface.

» For performance reasons, FD_ZERO does not call the RHDCSOCK processor to
execute the function. Instead, the corresponding code is expanded in your
program. This code is substantial, so it is best to code the function cal in a
subroutine.

G.2.10 FREEADDRINFO

FREEADDRINFO frees the ADDRINFO structure that has been allocated by the
system during the processing of a previous call to the GETADDRINFO #SOCKET
function.

Assembler

label #SOCKET FREEADDRINFO,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
AINFOIN=pointer-to-addrinfo-structure,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-FREEADDRINFO,
return-code,

errno,

reason-code,
pointer-to-addrinfo-structure

Appendix G. TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G-13

G.2 Function Descriptions

G.2.10.1 Parameters

Par ameter Description

pointer-to-addrinfo-structure The name of a fullword field containing the address of the ADDRINFO
structure to release.

G.2.10.2 Notes

» The FREEADDRINFO function is supported as of zZ/OS V1R4.

» The FREEADDRINFO function is not supported in these operating environments:
- VSE
- zZIVM

G.2.11 GETADDRINFO

GETADDRINFO converts a host name and/or a service name into a set of socket
addresses and other associated information. This information can be used to open a
socket and connect to the specified service.

Assembler

label #SOCKET GETADDRINFO,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
HOSTNAME=hostname,
HOSTNAML=hostname-1ength,
SERVNAME=service-name,
SERVNAML=service-name-length,
AINFOIN=pointer-to-input-addrinfo-structure,
AINFOOUT=pointer-to-output-addrinfo-structure,
CANONAML=canonical-name-length,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-GETADDRINFO,
return-code,

errno,

reason-code,

hostname,

hostname-length,

service-name,

service-name-length,
pointer-to-input-addrinfo-structure,
pointer-to-output-addrinfo-structure,
canonical-name-length

G-14 Advantage CA-IDMS Release Summary

G.2 Function Descriptions

G.2.11.1 Parameters

Parameter

Description

hostname

The name of an area containing the name of the host to resolve.

hostname-length

The name of a fullword field containing the length of hostname.
hostname-length can be specified as an absolute expression.

hostname and hosthname-length are optional. If they are not specified,
service-name and service-name-length must be specified.

The maximum value for this parameter is 256.

Service-name

The name of an area containing the name of the service.

service-name-length

The name of a fullword field containing the length of service-name.
service-name-length can be specified as an absolute expression.

service-name and service-name-length are optional. If they are not
specified, hostname and hostname-length must be specified.

The maximum value for this parameter is 32.

pointer -to-input-addrinfo-str ucture

The name of a fullword field containing the address of an input
ADDRINFO structure. The following fields in the ADDRINFO structure
can be set: flags, family, socket type, and protocol. If this pointer is
assigned to NULL, it is equivalent to an ADDRINFO structure where all
fields are set to 0.

pointer-to-output-addrinfo-structure

The name of a fullword field that contains the address of the output

ADDRINFO structure returned by the system. This structure has to be
explicitly released by the user using the FREEADDRINFO #SOCKET
cal.

canonical-name-length

The name of a fullword field in which the system returns the length of
the canonical name. The system returns the canonical name in the first
output ADDRINFO structure if hostname is specified and the
Al_CANONNAMEOK flag is set in the input ADDRINFO structure. If
the canonical name length is not needed, canonical-name-length can be
omitted.

G.2.11.2 Notes

For more information on the ADDRINFO structure, refer to A.4, “DCMT
DISPLAY DBTRACE” on page A-5.

The GETADDRINFO function is supported as of ZOS V1R4.

The GETADDRINFO function is not supported in these operating environments:

VSE

Appendix G. TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G-15

G.2 Function Descriptions

- zZIVM

» The following table lists the flags that can be set or returned in the ADDRINFO
structure. The EQUate symbol is generated by the #SOCKET TCPIPDEF macro
call and the field names are associated with the SOCKET-MISC-DEFINITIONS

record.
EQUate Symboal Field Name TCP Protocol Value
Al@PASSV SOCKET-AIFLAGS-PASSIVE Al_PASSIVE
Al@CANOK SOCKET-AIFLAGS-CANONNAMEOK Al_CANONNAMEOK
Al@NHOST SOCKET-AIFLAGS-NUMERICHOST AlI_NUMERICHOST
AI@NSERV SOCKET-AIFLAGS-NUMERICSERV AlI_NUMERICSERV
Al@VAMAP SOCKET-AIFLAGS-V4AMAPPED Al_V4AMAPPED
Al@ALL SOCKET-AIFLAGS-ALL Al_ALL
Al@ADDRC SOCKET-AIFLAGS-ADDRCONFIG Al_ADDRCONFIG

PL/I programs: The SOCKET_MISC_DEFINITIONS is used and the dashes are
replaced by underscores.

G.2.12 GETHOSTBYADDR

GETHOSTBYADDR takes an IP address and domain and tries to resolve it through a
name server. |If successful, it returns the information in a HOSTENT structure.

Assembler

label #SOCKET GETHOSTBYADDR,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
IPADDR=1ip-address,
IPADDRL=ip-address-1ength,
DOMAIN=domain,
HOSTENTP=hostentp,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-GETHOSTBYADDR,
return-code,

errno,

reason-code,

ip-address,

ip-address-length,

domain,

hostentp

G-16 Advantage CA-IDMS Release Summary

G.2 Function Descriptions

G.2.12.1 Parameters

Par ameter Description
ip-address The name of a fullword field containing the binary format |P address to

resolve.

ip-address-length

The name of a fullword field containing the length of ip-address.
ip-address-length can be specified as an absolute expression.

The maximum value for this parameter is defined by IPADDRAL in
assembler and SOCKET-IPADDRAL in other languages.

domain The name of a fullword field containing the domain. domain can be
specified as an absolute expression. Currently, only AF_INET is
supported.

hostentp The name of a fullword field in which the system returns the address of

a HOSTENT structure containing the information about the host.

G.2.12.2 Notes

m The HOSTENT structure area is alocated by the system at the Advantage

CA-IDMS task level, and freed at task termination. It is reused by subsegquent
calls to a DNS function: GETHOSTBYADDR or GETHOSTBY NAME.

For more information on the HOSTENT structure, refer to A.4, “DCMT
DISPLAY DBTRACE” on page A-5.

zZIVM systems. The DNS socket functions are supported by Advantage CA-IDMS's

internal DNS resolver. Refer to the TCP/IP Considerations section of the
Advantage CA-IDMS System Operations manual for information about
configuring the DNS resolver.

VSE systems. The DNS socket functions can be supported by Advantage CA-IDMS's

internal DNS resolver. If the socket functions are supported by:

® Advantage CA-IDMS — Refer to the TCP/IP Considerations section of

Advantage CA-IDMS System Operations for information about configuring
the DNS resolver.

Barnard Software Inc. or Connectivity Systems Inc. — Refer to the
appropriate TCP/IP stack documentation for configuring DNS support.

Appendix G. TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G-17

G.2 Function Descriptions

G.2.13 GETHOSTBYNAME

GETHOSTBYNAME takes a host name and tries to resolve it through a name server.
If successful, it returns the information in a HOSTENT structure.

Assembler

label #SOCKET GETHOSTBYNAME,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
HOSTNAME=hostname,
HOSTNAML=hostname-1length,
HOSTENTP=hostentp,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-GETHOSTBYNAME,
return-code,

errno,

reason-code,

hostname,

hostname-length,

hostentp

G.2.13.1 Parameters

Parameter Description
hosthame The name of an area containing the name of the host to resolve.
hosthame-length The name of a fullword field containing the length of hostname.

hostname-length can be specified as an absolute expression.

The maximum value for this parameter is 256.

hostentp The name of a fullword field where the system returns the address of a
HOSTENT structure containing the information about the host.

G.2.13.2 Notes

» The HOSTENT structure area is alocated by the system at the Advantage
CA-IDMS task level, and freed at task termination. It is reused by subsequent
cals to a DNS function: GETHOSTBYADDR or GETHOSTBYNAME.

® For more information on the HOSTENT structure, refer to the A.4, “DCMT
DISPLAY DBTRACE" on page A-5.

Z/VM systems. The DNS socket functions are supported by Advantage CA-IDMS's
internal DNS resolver. Refer to the TCP/IP Considerations section of the

G-18 Advantage CA-IDMS Release Summary

G.2 Function Descriptions

Advantage CA-IDMS System Operations manual for information about
configuring the DNS resolver.

VSE systems. The DNS socket functions can be supported by Advantage CA-IDMS's
internal DNS resolver. If the socket functions are supported by:

» Advantage CA-IDMS — Refer to the TCP/IP Considerations section of
Advantage CA-IDMS System Operations for information about configuring
the DNS resolver.

® Barnard Software Inc. or Connectivity Systems Inc. — Refer to the
appropriate TCP/IP stack documentation for configuring DNS support.

G.2.14 GETHOSTID

GETHOSTID retrieves the IP address of the local host corresponding to the current
TCP/IP stack.

Assembler

label #SOCKET GETHOSTID,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
IPADDR=1ip-address,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-GETHOSTID,
return-code,

errno,

reason-code,

ip-address

G.2.14.1 Parameters

Parameter Description
ip-address The name of a fullword field in which the service returns the |P address

in binary format.

G.2.14.2 Notes

This service only supports IPv4.

Appendix G. TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G-19

G.2 Function Descriptions

G.2.15 GETHOSTNAME

GETHOSTNAME retrieves the name of the local host corresponding to the current
TCP/IP stack.

Assembler

label #SOCKET GETHOSTNAME,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
HOSTNAME=hostname,
HOSTNAML=hostname-1length,
RETLEN=returned-hostname-length,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-GETHOSTNAME,
return-code,

errno,

reason-code,

hostname,

hostname-length,
returned-hostname-1ength

G.2.15.1 Parameters

Parameter Description
hosthame The name of an area in which the service returns the host name.
hosthame-length The name of a fullword field containing the length of hostname.

hostname-length can be specified as an absolute expression.

The maximum value for this parameter is 256.

retur ned-hostname-length The name of a fullword field in which the actual length of the host name
is returned.

G.2.16 GETNAMEINFO
GETNAMEINFO resolves a socket address into a hostname and a service name.

Assembler

G-20 Advantage CA-IDMS Release Summary

G.2 Function Descriptions

label #SOCKET GETNAMEINFO,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
SOCKADDR=sockaddr,
SOCKADDL=sockaddr-1ength,
SERVNAME=service-name,
SERVNAML=service-name-length,
RETSNAML=returned-service-name-length,
HOSTNAME=hostname,
HOSTNAML=hostname-1ength,
RETHNAML=returned-hostname-Tength,
FLAGS=flags,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-GETNAMEINFO,
return-code,

errno,

reason-code,

sockaddr,

sockaddr-length,
service-name,
service-name-length,
returned-service-name-length,
hostname,

hostname-length,
returned-hostname-length,

flags

G.2.16.1 Parameters

Par ameter Description

sockaddr The name of the sockaddr structure containing the information that must
be resolved: the domain (or socket family), the port number and the IP
address.

sockaddr -length The name of a fullword field containing the length of sockaddr.

sockaddr-length can be specified as an absolute expression.

The maximum value for this parameter is domain dependent. If the
domain is:
n AF _INET — it is the length of the SOCKET-SOCKADDR-IN
record (SIN#LEN for assembler)

. AF_INET6 — it is the length of the SOCKET-SOCKADDR-IN6
record (SING6#LEN for assembler)

Service-name The name of an area where the system returns the service name
corresponding to the port number specified in the sockaddr structure.

Appendix G. TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G-21

G.2 Function Descriptions

Parameter

Description

service-name-length

The name of a fullword field containing the length of service-name.
service-name-length can be specified as an absolute expression.

The maximum value for this parameter is 4096.

r etur ned-service-name-length

The name of a fullword field into which the actual length of the service
name is returned.

service-name, service-name-length and returned-service-name-length are
optional; specify al 3 parameters, or none of them. If none of these
parameters are specified, hostname, hostname-length, and
returned-hostname-length must be specified.

hosthame

The name of an area where the system returns the hostname
corresponding to the IP address specified in the sockaddr structure.

hostname-length

The name of a fullword field containing the length of hostname.
hostname-length can be specified as an absolute expression.

The maximum value for this parameter is 4096.

retur ned-hostname-length

The name of a fullword field into which the length of the host name is
returned.

hosthame, hostname-length and returned-hostname-length are optional;
specify al 3 parameters, or none of them. If none of these parameters
are specified, service-name, service-name-length, and
returned-service-name-length must be specified.

flags

The name of a fullword field containing flags to control the resolution of
the socket address.

G.2.16.2 Notes

The GETNAMEINFO function is supported as of ZOS V1R4.

The GETNAMEINFO function is not supported in these operating environments:

- VSE

- zZIVM

The following table lists the flags that can be passed. The EQUate symboal is
generated by the #SOCKET TCPIPDEF macro call and the field names are
associated with the SOCKET-MISC-DEFINITIONS.

EQUate Symboal Field Name Description
NI@NFDQN SOCKET-NIFLAGS-NOFQDN Returns the node name
portion only

G-22 Advantage CA-IDMS Release Summary

G.2 Function Descriptions

EQUate Symbol Field Name Description

NI@NREQD SOCKET-NIFLAGS-NAMEREQD Returns an error if the
host is not located

NI@NHOST SOCKET-NIFLAGS-NUMERICHOST Returns the numeric form
of the host

NI@NSERV SOCKET-NIFLAGS-NUMERICSERV Returns the numeric form
of the server

NI@DGRAM SOCKET-NIFLAGS-DGRAM The service is a datagram
service

PL/I programs. The SOCKET_MISC DEFINITIONS is used and the dashes are
replaced by underscores.

G.2.17 GETPEERNAME

GETPEERNAME retrieves the name of the peer connected to a socket.

Assembler

label #SOCKET GETPEERNAME,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
SOCK=socket-descriptor,
SOCKADDR=sockaddr,
SOCKADDL=sockaddr-Tlength,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-GETPEERNAME,
return-code,

errno,

reason-code,
socket-descriptor,

sockaddr,

sockaddr-length

G.2.17.1 Parameters

Par ameter Description

socket-descriptor The name of a fullword field containing the socket descriptor from which
to retrieve the peer name.

Appendix G. TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G-23

G.2 Function Descriptions

Parameter Description

sockaddr The name of an area in which to return the sockaddr structure of the
peer. The format of this structure depends on the domain of the
corresponding socket. This parameter can be assigned to NULL if the
caler is not interested in the peer's address.

sockaddr -length The name of a fullword field containing the length of sockaddr. If
SOCKADDR is assigned to NULL, sockaddr-length must be 0. On
return, sockaddr-length contains the size required to represent the peer. If
the size of sockaddr is too small to contain the full sockaddr structure, it
is truncated.

The maximum value for this parameter is 4096

G.2.18 GETSOCKNAME
GETSOCKNAME retrieves the current name of a socket into a sockaddr structure.

Assembler

label #SOCKET GETSOCKNAME,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
SOCK=socket-descriptor,
SOCKADDR=sockaddr,
SOCKADDL=sockaddr-Tength,
PLIST=parameter-list-area,

RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-GETSOCKNAME ,
return-code,

errno,

reason-code,
socket-descriptor,

sockaddr,

sockaddr-Tength

G.2.18.1 Parameters

Parameter Description

socket-descriptor The name of a fullword field containing the socket descriptor from which
to retrieve the name.

G-24 Advantage CA-IDMS Release Summary

G.2 Function Descriptions

Par ameter Description

sockaddr The name of an area in which to return the sockaddr structure of the
socket. The format of this structure depends on the domain of the
corresponding socket. This parameter can be assigned to NULL if the
caler is not interested in the socket's address.

sockaddr -length The name of a fullword field containing the length of sockaddr. If
SOCKADDR is assigned to NULL, sockaddr-length must be 0. On
return, sockaddr-length contains the size required to represent the socket.
If the size of sockaddr is too small to contain the full sockaddr structure,
it is truncated. .

The maximum value for this parameter is 4096

G.2.19 GETSOCKOPT

GETSOCKORPT retrieves the options currently associated with a socket.

Assembler

label #SOCKET GETSOCKOPT,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
SOCK=socket-descriptor,
LEVEL=Tevel,
OPTNAME=option-name,
OPTVAL=option-value,
OPTLEN=option-value-length,
PLIST=parameter-list-area,

RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-GETSOCKOPT,
return-code,

errno,

reason-code,
socket-descriptor,

level,

option-name,

option-value,
option-value-length

G.2.19.1 Parameters

Parameter Description

socket-descriptor The name of a fullword field containing the socket descriptor for which
the service is to be performed.

Appendix G. TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G-25

G.2 Function Descriptions

Parameter Description

level The name of a fullword field containing the level for the option. level
can be specified as an absolute expression.

option-name The name of a fullword field indicating the option to retrieve.
option-name can be specified as an absolute expression.

option-value The name of an area that will contain the requested data.

option-value-length The name of a fullword field that contains the length of option-value. On
return, option-value-length contains the size of the data returned in
option-value.

The maximum value for this parameter is 4096.

G.2.19.2 Notes

n VSE systems. The GETSOCKOPT function is not supported.

» The following table lists the options that can be specified. The EQUate symboal is
generated by the #SOCKET TCPIPDEF macro call and the field names are
associated with the SOCKET-MISC-DEFINITIONS.

EQUate Symboal Field Names Description

S@SOCKET SOCKET-SOCKOPT-SOLSOCKET Level number for socket
options

SO@REUSE SOCKET-SOCKOPT-REUSEADDR Allows local address
reuse

SO@KEEPA SOCKET-SOCKOPT-KEEPALIVE Activate the keep-alive
mechanism.

SO@OO0BIN SOCKET-SOCKOPT-OOBINLINE Accept out-of-band data.

SO@SNBUF SOCKET-SOCKOPT-SNDBUF Reports send buffer size
information

SO@RCBUF SOCKET-SOCKOPT-RCVBUF Reports receive buffer

size information

PL/I programs. The SOCKET_MISC DEFINITIONS is used and the dashes are
replaced by underscores.

G-26 Advantage CA-IDMS Release Summary

G.2 Function Descriptions

G.2.20 GETSTACKS

GETSTACKS retrieves the list of al the TCP/IP stacks currently defined in the
system.

Assembler

label #SOCKET GETSTACKS,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
BUFFER=buffer,
BUFFERL=buffer-length,
FORMAT=output-format

RETLEN=output-Tength,
RETNSTKS=stacks-count,

PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-GETSTACKS,
return-code,

errno,

reason-code,

buffer,

buffer-length,
output-format,

output-Tength,
stacks-count

G.2.20.1 Parameters

Parameter Description

buffer The name of a buffer that receives the list of al the stacks. This
parameter is optional.

buffer-length The name of a fullword field containing the length of buffer.
buffer-length can be specified as an absolute expression. This parameter
is optional.

If the size of buffer is too small to contain the full output, it is truncated.

The maximum value for this parameter is 4096.

Appendix G. TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G-27

G.2 Function Descriptions

Parameter

Description

output-format

The name of a fullword field indicating the format desired for the output.
output-format can be specified as an absolute expression. If the
output-format value is:

1 — All the names of the different stacks are listed in a sequence of
8-byte character string.

m 2 — All the names of the different stacks are listed in a sequence of
the following structure: a 1-byte field containing the length of the
name followed by the name itself.

This is an optional parameter. If it is not specified, output-format 1 is

assumed.

output-length The name of a fullword field containing the actual length required to
hold all the output in the requested format..

stacks-count The name of a fullword field containing the number of TCP/IP stacks

currently defined (but not necessarily active) in the system.

G.2.20.2 Notes

G.2.21 HTONL

» The buffer and buffer-length parameters are optional. |If these parameters are not
specified, only the output-length and stacks-count values are returned.

® Refer to 9.5.2, “Using Multiple TCP/IP Stacks’ on page 9-23 for more
information.

HTONL converts a fullword integer from host byte order to network byte order.
Within Advantage CA-IDMS, host and network byte order are the same. Therefore,
the HTONL function does not apply to the mainframe environment; it is implemented
for the application programmer's convenience.

Assembler

label #SOCKET HTONL,

FIELDIN=input-field,
FIELDOUT=output-field,
PLIST=parameter-list-area,

RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-HTONL,
input-field,
output-field

G-28 Advantage CA-IDMS Release Summary

G.2 Function Descriptions

G.2.21.1 Parameters

Par ameter Description
input-field The name of a fullword field containing the integer to convert.
output-field The name of a fullword field that receives the converted integer.

G.2.22 HTONS

HTONS converts a halfword integer from host byte order to network byte order.
Within Advantage CA-IDMS, host and network byte order are the same. Therefore,
the HTONS function does not apply to the mainframe environment; it is implemented
for the application programmer's convenience.

Assembler

label #SOCKET HTONS,
FIELDIN=input-field,

FIELDOUT=output-field,
PLIST=parameter-list-area,

RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-HTONS,
input-field,
output-field

G.2.22.1 Parameters

Par ameter Description
input-field The name of a halfword field containing the integer to convert.
output-field The name of a halfword field that receives the converted integer.

G.2.23 INET_ADDR

INET_ADDR trandates an IP address in standard dotted string format into its binary
format.

Assembler

Appendix G. TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G-29

G.2 Function Descriptions

label #SOCKET INET_ADDR,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
IPADDRS=ip-address string,
IPADDRSL=ip-address-string-length,
IPADDR=1ip-address,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-INETADDR,
return-code,

errno,

reason-code,
ip-address-string,
ip-address-string-length,
ip-address

G.2.23.1 Parameters

Parameter Description

ip-address-string The name of an area containing the IP address in standard dotted string
format.

ip-address-string-length The name of a fullword field containing the length of ip-address-string,

which can be specified as an absolute expression.

The maximum value for this parameter is defined by IPADDSAL in
assembler and SOCKET-IPADDSAL in other languages.

ip-address The name of a fullword field that will contain the IP address in binary
format.

G.2.24 INET_NTOA

INET_NTOA trandates an IP address in binary format into standard dotted string
format. The IP address isin IPv4 format.

Note: INET_NTOA does not support IPv6 format. For new applications use
INET_NTORP, which supports IPv6 and |Pv4 formats.

Assembler

G-30 Advantage CA-IDMS Release Summary

G.2 Function Descriptions

label #SOCKET INET_NTOA,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
IPADDR=1ip-address,
IPADDRS=ip-address-string,
IPADDRSL=ip-address-string-length,
RETIPASL=returned-ip-address-string-length,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-INETNTOA,
return-code,

errno,

reason-code,

ip-address,

ip-address-string,
ip-address-string-length,
returned-ip-address-string-length

G.2.24.1 Parameters

Parameter Description

ip-address The name of a fullword field containing the 1P address in binary format.

ip-address-string The name of an area in which to return the IP address in standard dotted
string format.

ip-addr ess-string-length The name of a fullword field containing the length of ip-address-string.

ip-address-string-length can be specified as an absolute expression.

The maximum value for this parameter is 4096.

retur ned-ip-address-string-length The name of a fullword field in which the actual length of the IP address
string is returned.

G.2.25 INET_NTOP
INET_NTOP tranglates an IP address in binary format into standard string format.

Assembler

Appendix G. TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G-31

G.2 Function Descriptions

label

#SOCKET INET_NTOP,

RETCODE=return-code,

ERRNO=errno,

RSNCODE=reason-code,

DOMAIN=domain,

IPADDR=1ip-address,
IPADDRS=ip-address-string,
IPADDRSL=1ip-address-string-length,
RETIPASL=returned-ip-address-string-length,
PLIST=parameter-list-area,

RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-INETNTOP,
return-code,

errno,

reason-code,

domain,

ip-address,
ip-address-string,

ip-address-string-length,

returned-ip-address-string-length

G.2.25.1 Parameters

Parameter Description

domain The name of a fullword field containing the domain. domain can be
specified as an absolute expression. Possible values are AF@INET and
AF@INETS6.

ip-address The name of an area containing the IP address in binary format: a

fullword for an Ipv4 address, or a 16-byte area for an Ipv6 address.

ip-addr ess-string

The name of an area in which to return the IP address in standard string
format.

ip-address-string-length

The name of a fullword field containing the length of ip-address-string.
ip-address-string-length can be specified as an absolute expression.

The maximum value for this parameter is 4096.

retur ned-ip-addr ess-string-length

The name of a fullword field in which the actua length of the IP address
string is returned.

G-32 Advantage CA-IDMS Release Summary

G.2 Function Descriptions

G.2.26 INET_PTON

INET_PTON trandlates an IP address in standard string format into its binary format.

Assembler

label

#SOCKET INET_PTON,

RETCODE=return-code,

ERRNO=errno,

RSNCODE=reason-code,
DOMAIN=domain,

IPADDRS=ip-address area,
IPADDRSL=ip-address-string-length,
IPADDR=1ip-address,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-INETPTON,
return-code,

errno,

reason-code,

domain,

ip-address-string,

returned-ip-address-string-length,

ip-address

G.2.26.1 Parameters

Parameter

Description

domain

The name of a fullword field containing the domain. domain can be
specified as an absolute expression. Possible values are AF@INET and
AF@INETS6.

ip-address-string

The name of an area containing the IP address in standard string format.

ip-address-string-length

The name of a fullword field containing the length of ip-address-string.
ip-address-string-length can be specified as an absolute expression.

The maximum value for this parameter is determined by the type of
address:

® |Pv4 address — IPADDSAL in assembler and SOCKET-IPADDSAL
in other languages

® |Pv6 address — IPADDS6L in assembler and SOCKET-IPADDS6L
in other languages

ip-address

The name of an area in which to return the IP address in binary format:
a fullword for an 1Pv4 address, or a 16-bytes area for an |Pv6 address.

Appendix G. TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G-33

G.2 Function Descriptions

G.2.27 LISTEN

LISTEN indicates that an application is ready to accept client connection requests and
defines the maximum length of the connection request queue.

Assembler

label #SOCKET LISTEN,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
SOCK=socket-descriptor,
BACKLOG=backlog,
PLIST=parameter-list-area,

RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-LISTEN,
return-code,

errno,

reason-code,
socket-descriptor,

backlog

G.2.27.1 Parameters

Parameter Description

socket-descriptor The name of a fullword field containing the socket descriptor on which
to listen.

backlog The name of a fullword field containing the backlog value. backlog can

be specified as an absolute expression. It defines the maximum number
of pending connections that may be queued. The value cannot exceed
the maximum number of connections allowed by the installed TCP/IP.

VSE systems. The BACKLOG parameter is ignored. The installed
TCP/IP determines the backlog value for a given socket.

G.2.28 NTOHL

NTOHL converts a fullword integer from network byte order to host byte order.
Within Advantage CA-IDMS, host and network byte order are the same. Therefore, the
NTOHL function does not apply to the mainframe environment; it is implemented for
the application programmer's convenience.

Assembler

G-34 Advantage CA-IDMS Release Summary

G.2 Function Descriptions

label #SOCKET NTOHL,
FIELDIN=input-field,

FIELDOUT=output-field,
PLIST=parameter-list-area,

RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-NTOHL,
input-field,
output-field

G.2.28.1 Parameters

Parameter Description
input-field The name of a fullword field containing the integer to convert.
output-field The name of a fullword field that receives the converted integer.

G.2.29 NTOHS

NTOHS converts a halfword integer from network byte order to host byte order.
Within Advantage CA-IDMS, host and network byte order are the same. Therefore,
the NTOHS function does not apply to the mainframe environment; it is implemented
for the application programmer's convenience.

Assembler

label #SOCKET NTOHS,
FIELDIN=input-field,

FIELDOUT=output-field,
PLIST=parameter-list-area,

RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-NTOHS,
input-field,
output-field

G.2.29.1 Parameters

Parameter Description
input-field The name of a halfword field containing the integer to convert.
output-field The name of a halfword field that receives the converted integer.

Appendix G. TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G-35

G.2 Function Descriptions

G.2.30 READ
READ reads a number of bytes from a socket into an area.

Assembler

label #SOCKET READ,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
SOCK=socket-descriptor,
BUFFER=buffer,
BUFFERL=buffer-length,
RETLEN=read-length,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-READ,
return-code,

errno,

reason-code,
socket-descriptor,
buffer,
buffer-length,
read-length

G.2.30.1 Parameters

Parameter Description

socket-descriptor The name of a fullword field containing the socket descriptor to read
from.

buffer The name of the area where the data is to be placed.

buffer-length The name of a fullword field containing the length of the buffer.
buffer-length can be specified as an absolute expression.

read-length The name of a fullword field in which the actual length of the data read
is returned.

G.2.30.2 Notes

When the timeout value associated with the socket expires, the socket function
terminates with the ETIMEDOUT errno code. For more information about socket
timeouts, refer to 9.5.3, “Associating Timeouts to Sockets’ on page 9-24.

G-36 Advantage CA-IDMS Release Summary

G.2 Function Descriptions

G.2.31 RECV

G.2.31.1 Parameters

RECV reads a number of bytes from a connected socket into an area.

#SOCKET RECV,

RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
SOCK=socket-descriptor,
BUFFER=buffer,
BUFFERL=buffer-length,
FLAGS=flags,
RETLEN=read-length,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-RECV,
return-code,

reason-code,
socket-descriptor,

buffer-length,

read-length

Parameter

Description

socket-descriptor

The name of a fullword field containing the socket descriptor from which
to read.

buffer The name of the area where the data is to be placed.

buffer-length The name of a fullword field containing the length of the buffer.
buffer-length can be specified as an absolute expression.

flags The name of a fullword field containing information on how the data is
to be received.
VSE systems:. MSG@PEEK is the only flag value that is supported.
The remaining flags are not supported and returns an error if specified.
When the MSG@PEEK flag is specified only the first byte of the RECV
buffer is returned, even if a larger buffer size is specified.
ZIVM systems. MSG@WALL is not supported.

read-length The name of a fullword field in which the actual length of the data read

is returned.

Appendix G. TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G-37

G.2 Function Descriptions

G.2.31.2 Notes

= When the timeout value associated with the socket expires, the socket function
terminates with the ETIMEDOUT errno code. For more information about socket
timeouts, refer to 9.5.3, “Associating Timeouts to Sockets’ on page 9-24.

® The following table lists the flags that can be specified. The EQUate symbol is
generated by the MSGFLAGS DSECT by the #SOCKET TCPIPDEF macro call
and the field names are associated with the SOCKET-MISC-DEFINITIONS.

EQUate Symboal Field Name Description

MSG@DROU SOCKET-MSGFLAGS-DONTROUTE Send without network
routing

MSG@OOB SOCKET-MSGFLAGS-O0B Send and receive
out-of-band data

MSG@PEEK SOCKET-MSGFLAGS-PEEK Peek at incoming data

MSG@WALL SOCKET-MSGFLAGS-WAITALL Wait until al data

returned

PL/I programs. The SOCKET_MISC _DEFINITIONS is used and the dashes are

replaced by underscores.

G.2.32 RECVFROM

RECVFROM reads a number of bytes from a datagram socket into an area.

Assembler

label #SOCKET RECVFROM,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,

SOCK=socket-descriptor,

BUFFER=buffer,

BUFFERL=buffer-length,

FLAGS=flags,
SOCKADDR=sockaddr,

SOCKADDL=sockaddr-T1ength,

RETLEN=read-length,

PLIST=parameter-list-area,

RGSV=(rgsv)

List of USING Parameters

G-38 Advantage CA-IDMS Release Summary

G.2 Function Descriptions

SOCKET-FUNCTION-RECVFROM,
return-code,

errno,

reason-code,
socket-descriptor,

buffer,

buffer-length,

flags,
sockaddr,

sockaddr-

length,

read-length

G.2.32.1 Parameters

Parameter

Description

socket-descriptor

The name of a fullword field containing the socket descriptor from which
to read.

buffer The name of the area where the data is to be placed.

buffer-length The name of a fullword field containing the length of the buffer.
buffer-length can be specified as an absolute expression.

flags The name of a fullword field containing information on how the data is
to be received. The list of the different flags supported can be found in
the MSGFLAGS DSECT generated by the #SOCKET TCPIPDEF macro
call and in the SOCKET-MISC-DEFINITIONS record for other
languages. See the RECV function description for an explanation of flags
that can be specified.

sockaddr The name of an area in which to return the sockaddr structure of the

sender of the data. The format of this structure depends on the domain
of the corresponding socket. This parameter can be assigned to NULL if
the caller is not interested in the sender's address.

sockaddr-length

The name of a fullword field containing the length of sockaddr. If
SOCKADDR is assigned to NULL, sockaddr-length must be 0. On
return, sockaddr-length contains the size required to represent the socket.
If the size of sockaddr is too small to contain the full sockaddr structure,
it is truncated.

The maximum value for this parameter is 4096.

read-length

The name of a fullword field in which the actual length of the data read
is returned.

Appendix G. TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G-39

G.2 Function Descriptions

G.2.32.2 Notes

= When the timeout value associated with the socket expires, the socket function
terminates with the ETIMEDOUT errno code. For more information about socket
timeouts, refer to 9.5.3, “Associating Timeouts to Sockets’ on page 9-24.

n VSE systems. The RECVFROM function is not supported.

G.2.33 SELECT and SELECTX

SELECT synchronizes processing of several sockets operating in non-blocking mode.
Sockets that are ready for reading, ready for writing, or have a pending exceptional
condition can be selected. If no sockets are ready for processing, SELECT can block
indefinitely or wait for a specified period of time (which may be zero) and then return.

SELECT examines the socket descriptors specified by read-list, write-list, and
exception-list to see if some are ready for reading, ready for writing, or have an
exceptional condition pending, respectively. On return, SELECT updates each of the
lists to indicate which socket descriptors are ready for the requested operation. The
total number of ready descriptorsin al the lists is returned.

SELECTX has the same functionality as SELECT with the additional capability of
waiting on one or more ECBs in addition to a time interval. This alows interruption

of await if an external event occurs.

Assembler

G-40 Advantage CA-IDMS Release Summary

G.2 Function Descriptions

label #SOCKET SELECT,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
NFDS=number-of-socket-descriptors,
READLST=read-1list,
READLSTL=read-list-1ength,
WRITLST=write-1ist,
WRITLSTL=write-list-length,
EXCELST=exception-Tist,
EXCELSTL=exception-1ist-length,
OPTION=option,
TIMEOUT=timeval-structure,
RETNFDS=returned-number-of-descriptors,
PLIST=parameter-list-area,
RGSV=(rgsv)

label #SOCKET SELECTX,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
NFDS=number-of-socket-descriptors,
READLST=read-Tist,
READLSTL=read-Tlist-length,
WRITLST=write-1ist,
WRITLSTL=write-list-length,
EXCELST=exception-Tist,
EXCELSTL=exception-1ist-length,
OPTION=option,
TIMEOUT=timeval-structure,
ECB=ech,
ECBLIST=ecb-1ist,
RETNFDS=returned-number-of-descriptors,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

Appendix G. TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G-41

G.2 Function Descriptions

SOCKET-FUNCTION-SELECT,
return-code,

errno,

reason-code,
number-of-socket-descriptors,
read-list,

read-list-length,

write-1ist,
write-1ist-Tength,
exception-Tist,
exception-list-Tength,
option,

timeval-structure,
returned-number-of-descriptors

SOCKET-FUNCTION-SELECTX,
return-code,

errno,

reason-code,
number-of-socket-descriptors,
read-list,

read-list-length,

write-list,
write-Tist-Tength,
exception-list,
exception-list-Tength,
option,

timeval-structure,

ecb,

ecbh-1ist,
returned-number-of-descriptors

G.2.33.1 Parameters

Parameter Description

number -of -sock et-descriptors The name of a field containing the highest socket descriptor specified in
any of the lists + 1. Only socket descriptors whose value is less than
number -of-socket-descriptors are considered in servicing the request.

read-list The name of an area containing a bit list identifying the socket
descriptors to be examined for a "ready to read" condition. Only socket
descriptors whose corresponding bit in the bit list is on are considered.
On return, the bits that are set indicate the descriptors that are ready to
read. Specify NULL if the read-list is to be ignored.

read-list-length The name of a fullword field containing the length in bytes of read-list.

read-list-length can be specified as an absolute expression.
read-list-length must be a multiple of 4; specify 0 if the read-list is to be
ignored.

G-42 Advantage CA-IDMS Release Summary

G.2 Function Descriptions

Par ameter Description

write-list The name of an area containing a bit list identifying the socket
descriptors to be examined for a "ready to write" condition. Only socket
descriptors whose corresponding bit in the bit list is on are considered.
On return, the bits that are set indicate the descriptors that are ready to
write. Specify NULL if the write-list is to be ignored.

write-list-length The name of a fullword field containing the length in bytes of write-list.
write-list-length can be specified as an absolute expression.
write-list-length must be a multiple of 4; specify O if the write-list is to
be ignored.

exception-list The name of an area containing a bit list identifying the socket

descriptors to be examined for an exception condition. Only socket
descriptors whose corresponding bit in the bit list is on are considered.
On return, the bits that are set indicate the descriptors that have had
exceptions. Specify NULL if the exception-list is to be ignored.

exception-list-length

The name of a fullword field containing the length in bytes of
exception-list.

exception-list-length can be specified as an absolute expression.
exception-list-length must be a multiple of 4; specify O if the
exception-list is to be ignored.

option

Name of a fullword field containing the way the different bits are
interpreted in the different bit-lists. option can be specified as an absolute
expression. See G.2.33.2, “Notes’ on page G-44 for alist of options
that can be specified.

timeval-structure

The name of the area containing the TIMEVAL structure. If the
parameter is assigned to NULL, SELECT waits until at least one of the
descriptors is ready. [If the timeout value (number of seconds + number
of microseconds) is 0, SELECT checks the descriptors and returns
immediately without waiting. The TIMEVAL structure is generated by
the #SOCKET TCPIPDEF macro call and described in the
SOCKET-TIMEVAL record.

retur ned-number -of-descriptors

The name of a fullword field in which the total number of ready
descriptors is returned.

ecb

The name of an area containing an Advantage CA-IDMS ECB.

ecb-list

The name of an area containing an Advantage CA-IDMS ECB list. Each
entry in the ECB list is represented by two fullwords:

» The first fullword is a pointer to the ECB.

® The second fullword is zero, except for the last entry in the list. In
this case the high-order bit is turned ON to identify the end of the
ECB list.

Appendix G. TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G-43

G.2 Function Descriptions

G.2.33.2 Notes

» Refer to FD_ZERO, FD_CLR, FD_SET and FD_ISSET #SOCKET function for
more information about manipulating bits in bit lists.

» For programming languages like COBOL and Advantage CA-ADS where it is
difficult to manipulate bits in bit lists, byte lists can be used by specifying a
SOCKET-SELECT-BYTELIST for option. In this case, the read-list, write-list and
exception-list are byte lists instead of bit lists. In byte lists, each byte represents
one socket descriptor. A socket descriptor will be processed if its corresponding
byte is set to the character '1'. A socket descriptor's corresponding byte is the nth
byte relative to 1 in the list, where n is equal to the value of socket descriptor + 1.

» ECB and ECBLIST are mutually exclusive parameters.

n zZ/VM systems: |If multiple TCP/IP stacks are used, all the sockets represented by
a bit in the 3 bit lists must be created in the same TCP/IP stack.

n VSE systems. The SELECT and SELECTX functions are not supported.

» The following table lists the options that can be specified. The EQUate symboal is
generated by the #SOCKET TCPIPDEF macro call and the field names are
associated with the SOCKET-MISC-DEFINITIONS.

EQUate Symboal Field Name Description

SEL @BBKW SOCKET-SELECT-BITBACKWARD Specifies the bits in the
fullwords are in the
backward order. Thisis
the default value if the
parameter is assigned to
NULL.

SEL @BFRW SOCKET-SELECT-BITFORWARD Specifies the bits in each
fullword are in the
forward order

SEL@BYTV SOCKET-SELECT-BYTELIST The read-list, write-list,
and exception-list are byte
lists instead of bit lists.

PL/I programs: The SOCKET_MISC_DEFINITIONS is used and the dashes are
replaced by underscores.

G.2.34 SEND

SEND sends data on a connected socket.

Assembler

G-44 Advantage CA-IDMS Release Summary

G.2 Function Descriptions

label #SOCKET SEND,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
SOCK=socket-descriptor,
BUFFER=buffer,
BUFFERL=buffer-Tength,
FLAGS=flags,
RETLEN=sent-Tength,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-SEND,
return-code,

errno,

reason-code,
socket-descriptor,
buffer,
buffer-length,

flags,

sent-length

G.2.34.1 Parameters

Parameter Description

socket-descriptor The name of a fullword field containing the socket descriptor on which
to do the send.

buffer The name of the area containing the data to be sent.

buffer-length The name of a fullword field containing the length of the buffer.

buffer-length can be specified as an absolute expression.

flags The name of a fullword field containing information on how the data is
to be sent. The list of the different flags supported can be found in the
MSGFLAGS DSECT generated by the #SOCKET TCPIPDEF macro
cal and in the SOCKET-MISC-DEFINITIONS record for other
languages. See the RECV function description for an explanation of
flags that can be specified.

VSE systems. No flag values are supported and an error is returned if a

value is specified.
sent-length The name of a fullword field in which the actual length of the data sent
is returned.

Appendix G. TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G-45

G.2 Function Descriptions

G.2.34.2 Notes

When the timeout value associated with the socket expires, the socket function
terminates with the ETIMEDOUT errno code. For more information about socket
timeouts, refer to 9.5.3, “Associating Timeouts to Sockets’ on page 9-24.

G.2.35 SENDTO
SENDTO sends data on a datagram socket.

Assembler

label #SOCKET SENDTO,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
SOCK=socket-descriptor,
BUFFER=buffer,
BUFFERL=buffer-length,
FLAGS=flags,
SOCKADDR=sockaddr,
SOCKADDL=sockaddr-Tength,
RETLEN=sent-Tength,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-SENDTO,
return-code,

errno,

reason-code,
socket-descriptor,
buffer,

buffer-length,

flags,

sockaddr,
sockaddr-length,

sent-length

G.2.35.1 Parameters

Parameter Description

socket-descriptor The name of a fullword field containing the socket descriptor on which
to do the send.

buffer The name of the area containing the data to be sent.

buffer-length The name of a fullword field containing the length of the buffer.

buffer-length can be specified as an absolute expression.

G-46 Advantage CA-IDMS Release Summary

G.2 Function Descriptions

Par ameter Description
flags The name of a fullword field containing information on how the data is

to be sent. The list of the different flags supported can be found in the
MSGFLAGS DSECT generated by the #SOCKET TCPIPDEF macro
call and in the SOCKET-MISC-DEFINITIONS record for other
languages. See the RECV function description for an explanation of
flags that can be specified.

sockaddr The name of an area containing the sockaddr structure describing where
data is to be sent. The format of this structure depends on the domain of
the corresponding socket.

sockaddr -length The name of a fullword field containing the length of sockaddr.
Sockaddr-length can be specified as an absolute expression.

The maximum value for this parameter is domain dependent. If the
domain is:
n AF INET — it is the length of the SOCKET-SOCKADDR-IN
record (SIN#LEN for assembler)
» AF_INET6 — it is the length of the SOCKET-SOCKADDR-IN6
record (SING6#LEN for assembler)

sent-length The name of a fullword field in which the actual length of the data sent
is returned.

G.2.35.2 Notes

= When the timeout value associated with the socket expires, the socket function
terminates with the ETIMEDOUT errno code. For more information about socket
timeouts, refer to 9.5.3, “Associating Timeouts to Sockets’ on page 9-24.

m VSE systems. The SENDTO function is not supported.

G.2.36 SETSOCKOPT
SETSOCKOPT sets options associated with a socket.

Assembler

label #SOCKET SETSOCKOPT,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
SOCK=socket-descriptor,
LEVEL=Tevel,
OPTNAME=option-name,
OPTVAL=option-value,
OPTLEN=option-value-length,
PLIST=parameter-list-area,

RGSV=(rgsv)

Appendix G. TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G-47

G.2 Function Descriptions

List of USING Parameters

SOCKET-FUNCTION-SETSOCKOPT,
return-code,

errno,

reason-code,
socket-descriptor,

level,

option-name,

option-value,
option-value-length

G.2.36.1 Parameters

Parameter Description

socket-descriptor The name of a fullword field containing the socket descriptor for which
the service is to be performed.

level The name of a fullword field containing the level for the option. level
can be specified as an absolute expression.

option-name The name of a fullword field indicating the option to set. option-name
can be specified as an absolute expression.

option-value The name of an area containing the data to associate with the socket.

option-value-length The name of a fullword field containing the length of option-value.

option-value-length can be specified as an absolute expression. The
maximum value for this parameter is 16.

G.2.36.2 Notes

® Thelist of level and options currently supported are listed by the #SOCKET
TCPIPDEF macro call for assembler and in the SOCKET-MISC-DEFINITIONS
record for other languages. See GETSOCKOPT for a description of the options
that can be specified.

n VSE systems. Only the SO@REUSE option is supported.

G.2.37 SETSTACK

SETSTACK sets the requested TCP/IP stack affinity for the current executing
Advantage CA-IDMS task.

Assembler

G-48 Advantage CA-IDMS Release Summary

G.2 Function Descriptions

label #SOCKET SETSTACK,

RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
NAME=stack-name,
NAMEL=stack-name-length,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-SETSTACK,

return-code,

errno,

reason-code,
stack-name,

stack-name-length

G.2.37.1 Parameters

Parameter

Description

stack-name

The area containing the name of the TCP/IP stack to set. This name can
be the JOBNAME of the corresponding TCPIP stack, a hostname or an
IP-address in binary or string format.

stack-name-length

The name of a fullword field containing the length of stack-name.

stack-name-length can be specified as an absolute expression. The
maximum value for this parameter is 256.

G.2.37.2 Notes

To clear TCP/IP stack affinity for the current task, call the SETSTACK function
using stack-name value equal to *ALL".

To restore the default TCP/IP stack affinity for the current task, call the
SETSTACK function using stack-name value equal to *DEFAULT".

Refer to 9.5.2, “Using Multiple TCP/IP Stacks’ on page 9-23 for more
information.

G.2.38 SHUTDOWN

SHUTDOWN gracefully shuts down al or part of a duplex socket connection.

Assembler

Appendix G.

TCP/IP API Commands, Error Codes, Socket Structures, and String Conversion G-49

G.2 Function Descriptions

label #SOCKET SHUTDOWN,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
SOCK=socket-descriptor,
HOW=how-condition,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-SHUTDOWN,
return-code,

errno,

reason-code,
socket-descriptor,
how-condition

G.2.38.1 Parameters

Parameter Description

socket-descriptor The name of a fullword field containing the socket descriptor to shut
down.

how-condition The name of a fullword field indicating the effect of the shutdown on
read and write operations. how-condition can be specified as an absolute
expression.

G.2.38.2 Notes

The following table lists the conditions that can be specified. The EQUate symbol is
generated by the #SOCKET TCPIPDEF macro call and the field names are located in
the SOCKET-MISC-DEFINITIONS record. They are:

EQUate Symboal Field Name Description

SHUT_R SOCKET-SHUTDOWN-READ Terminate read
communication (from the
socket)

SHUT_W SOCKET-SHUTDOWN-WRITE Terminate write
communication (to the
socket)

SHUT_RW SOCKET-SHUTDOWN-READ-WRITE Terminate both read and

write communication

PL/I programs. The SOCKET_MISC _DEFINITIONS is used and the dashes are
replaced by underscores.

G-50 Advantage CA-IDMS Release Summary

G.2 Function Descriptions

G.2.39 SOCKET

SOCKET creates a socket in a communications domain.

Assembler

label

#SOCKET SOCKET,

RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
DOMAIN=domain,

TYPE=type,
PROTNUM=protocol-number,
NEWSOCK=new-socket-descriptor,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-SOCKET,
return-code,

errno,

reason-code,

domain,

b

g

protocol-number,

new-socket-descriptor

G.2.39.1 Parameters

Par ameter Description

domain The name of a fullword field containing the domain or address family of
the socket. See the G.2.39.2, “Notes’ on page G-52 for alist of
domains that can be specified.

type The name of a fullword field containing the type of the socket. type can

be specified as an absolute expression. See the G.2.39.2, “Notes’ on
page G-52 for alist of socket types that can be specified.

protocol-number

The name of a fullword field containing the protocol. protocol-number
can be specified as an absolute expression. See the G.2.39.2, “Notes’ on
page G-52 for alist of supported protocols.

new-socket-descriptor

The name of a fullword field where the newly created socket descriptor
is returned.

Appendix G. TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G-51

G.2 Function Descriptions

G.2.39.2 Notes

. These SYSIDMS parameters can be used to control sockets:

— TCPIP_MAXIMUM_SOCKETS — Specifies the maximum number of
sockets created globally in the DC/UCF system.

— TCPIP_MAXIMUM_SOCKETS_PER_TASK — Specifies the maximum
number of sockets created by a single task.

Refer to Advantage CA-IDMS Common Facilities for more information.

» The following table lists the domains that can be specified. The EQUate symbol
is generated by the #SOCKET TCPIPDEF macro call and the field names are
located in the SOCKET-MISC-DEFINITIONS record. They are:

EQUate Symboal Field Name Description
AF@INET 1 SOCKET-FAMILY-AFINET AF_INET address family
AF@INET6 SOCKET-FAMILY-AFINET6 AF_INET6 address family

VSE systems. ! — Only supports DOMAIN=AF@INET

» The following table lists the socket types that can be specified. The EQUate
symbol is generated by the #SOCKET TCPIPDEF macro call and the field names
are located in the SOCKET-MISC-DEFINITIONS record. They are:

EQUate Symboal Field Name Description

STREAM 1 SOCKET-TYPE-STREAM Stream — connection
oriented and reliable

DATAGRAM SOCKET-TYPE-DATAGRAM Datagram —
connectionless and
unreliable

VSE systems: 1 — Only supports TY PE=STREAM.

» The following table lists the protocols that can be specified. The EQUate symbol
is generated by the #SOCKET TCPIPDEF macro call and the field names are
located in the SOCKET-MISC-DEFINITIONS record. They are:

EQUate Symbol Field Name Description
PROTIP SOCKET-PROTOCOL-IP Default protocol
PROTTCP 1 SOCKET-PROTOCOL-TCP TCP protocol
PROTUDP SOCKET-PROTOCOL-UDP UDP protocol

G-52 Advantage CA-IDMS Release Summary

G.2 Function Descriptions

EQUate Symbol Field Name Description
PROTIPV6 SOCKET-PROTOCOL-IPV6 IPv6 protocol
VSE systems. ! — Only supports PROTNUM=PROTTCP

PL/I programs. The SOCKET_MISC DEFINITIONS is used and the dashes are
replaced by underscores.

G.2.40 WRITE
WRITE sends data on a socket.

Assembler

label #SOCKET WRITE,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
SOCK=socket-descriptor,
BUFFER=buffer,
BUFFERL=buffer-Tength,
RETLEN=sent-Tength,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-WRITE,
return-code,

errno,

reason-code,
socket-descriptor,
buffer,

buffer-length,
sent-length

G.2.40.1 Parameters

Parameter Description

socket-descriptor The name of a fullword field containing the socket descriptor on which
to send.

buffer The name of the area containing the data to be sent.

buffer-length The name of a fullword field containing the length of the buffer.
buffer-length can be specified as an absolute expression.

sent-length The name of a fullword field in which the actual length of the data sent
is returned.

Appendix G. TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G-53

G.2 Function Descriptions

G.2.40.2 Notes

When the timeout value associated with the socket expires, the socket function
terminates with the ETIMEDOUT errno code. For more information about socket
timeouts, refer to 9.5.3, “Associating Timeouts to Sockets’ on page 9-24.

G-54 Advantage CA-IDMS Release Summary

G.3 Return, Errno, and Reason Codes

G.3 Return, Errno, and Reason Codes

The return code value returned by a call to the socket program interface can be a
binary 0 (call successfully executed) or non-zero (an error occurred). In the latter
case, the errno field explains why the function call failed. Two different situations
arise:

= Advantage CA-IDMS generates the error. Errno is set to a value in the range
12000-12999 as documented below. The reason code is not used and is O.

® The error is generated by operating system services. Errno and (where applicable)
reason-code are documented in the appropriate operating system services
documentation.

— z/0S — Refer to the UNIX System Services - Messages and Codes
— z2IVM — refer to the zZVM TCP/IP Programmer's Reference
— VSE— refer to the following resources:
— Connectivity Systems TCP/IP for VSE: Programmer's Guide
— Barnard Systems TCP/IP Tools
— TCP/IP for VSE - IBM Program Setup and Supplementary Information

B 7z/VM systems: For some ERRNO codes returned by Advantage CA-IDMS, the
variable assigned to the RSNCODE parameter may contain the IPRCODE
extracted from the corresponding IUCV parameter list. See the IPARML DSECT
for the complete list of values.

» VSE and zZ/VM systems: The value of some ERRNO codes can differ from the
equivaent standard POSIX value that is returned on zZ/OS. For example, the
standard value for ETIMEDOUT ERRNO code (connection timed out) is 1127,
but is 60 on zZ/VM. The standard ERRNO code is returned to the variable
assigned to the ERRNO parameter. Applications must check the variable for
common ERRNO codes that are handled programatically. The ERRNO code
value returned by the operating system is saved in a variable assigned to the
RSNCODE parameter.

G.3.1 ERRNO Numbers Set By The Socket Program Interface

The name shown in the following table is the EQUate symbol generated by the
#SOCKET macro. The equivalent condition name in the
SOCKET-CALL-INTERFACE record is prefixed with:

" SOCKET-ERRNO- — for COBOL and Advantage CA-ADS
" SOCKET_ERRNO_ — for PL/I

Appendix G. TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G-55

G.3 Return, Errno, and Reason Codes

Name Value Description

1- 11999 The ERRNO is generated by the
operating system. Refer to the
appropriate operating system
documentation.

RNOINPL 12000 Invalid #SOCKET parameter list
RNOINAEC 12001 Invalid ASYNCECB parameter
RNOINAII 12002 Invalid AINFOIN parameter
RNOINAIO 12003 Invalid AINFOOUT parameter
RNOINBF 12004 Invalid BUFFER parameter
RNOINBFL 12005 Invalid BUFFERL parameter
RNOINBKL 12006 Invalid BACKLOG parameter
RNOINCAL 12007 Invalid CANONAML parameter
RNOINCMD 12008 Invalid COMMAND parameter
RNOINDOM 12009 Invalid DOMAIN parameter
RNOINEL 12010 Invalid EXCELST parameter
RNOINELL 12011 Invalid EXCELSTL parameter
RNOINFLG 12012 Invalid FLAGS parameter
RNOINFMT 12013 Invalid FORMAT parameter
RNOINFLT 12014 Invalid FROMLTE parameter
RNOINHDL 12015 Invalid HANDLE parameter
RNOINHNA 12016 Invalid HOSTNAME parameter
RNOINHNL 12017 Invalid HOSTNAML parameter
RNOINHNT 12018 Invalid HOSTENTP parameter
RNOINHOW 12019 Invalid HOW parameter
RNOINIL 12020 Invalid IPADDRL parameter
RNOINIP 12021 Invalid IPADDR parameter
RNOINIPS 12022 Invalid IPADDRS parameter
RNOINISL 12023 Invalid IPADDRSL parameter
RNOINLEV 12024 Invalid LEVEL parameter
RNOINMXP 12025 Invalid MAXPTERM parameter
RNOINMXT 12026 Invalid MAXTASK parameter
RNOINNA 12027 Invalid NAME parameter

G-56 Advantage CA-IDMS Release Summary

G.3 Return, Errno, and Reason Codes

Name Value Description

RNOINNAL 12028 Invalid NAMEL parameter
RNOINNS 12029 Invalid NEWSOCK parameter
RNOINNSD 12030 Invalid NFDS parameter
RNOINONA 12031 Invalid OPTNAME parameter
RNOINOVA 12032 Invalid OPTVAL parameter
RNOINOVL 12033 Invalid OPTLEN parameter
RNOINPNA 12034 Invalid PROTNAME parameter
RNOINPNL 12035 Invalid PROTNAML parameter
RNOINPNT 12036 Invalid PROTENTP parameter
RNOINPNU 12037 Invalid PROTNUM parameter
RNOINPOR 12038 Invalid PORT parameter
RNOINRHL 12039 Invalid RETHNAML parameter
RNOINRIL 12040 Invalid RETIPASL parameter
RNOINRL 12041 Invalid READLST parameter
RNOINRLL 12042 Invalid READLSTL parameter
RNOINRLN 12043 Invalid RETLEN parameter
RNOINRND 12044 Invalid RETNFDS parameter
RNOINRNS 12045 Invalid RETNSTKS parameter
RNOINSA 12046 Invalid SOCKADDR parameter
RNOINSAL 12047 Invalid SOCKADDL parameter
RNOINSNA 12048 Invalid SERVNAME parameter
RNOINSNL 12049 Invalid SERVNAML parameter
RNOINSNT 12050 Invalid SERVENTP parameter
RNOINSOC 12051 Invalid SOCK parameter
RNOINTLT 12052 Invalid TOLTE parameter
RNOINTYP 12053 Invalid TY PE parameter
RNOINWL 12054 Invalid WRITLST parameter
RNOINWLL 12055 Invalid WRITLSTL parameter
RNOINOPT 12056 Invalid OPTION parameter
RNOINTIM 12057 Invalid TIMEOUT parameter
RNOINARG 12058 Invalid ARGUMENT PARAMETER

Appendix G. TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G-57

G.3 Return, Errno, and Reason Codes

Name Value Description

RNOINRV 12059 Invalid RETVAL parameter

RNOINECB 12060 Invalid ECB parameter

RNOINECL 12061 Invalid ECBLIST parameter

RNOINRSL 12062 Invalid RETSNAML parameter

RNOINBL 12063 Invalid BITLIST parameter

RNOINBLL 12064 Invalid BITLISTL parameter

RNOINBOR 12065 Invalid BITORDER parameter

RNO2BUFF 12100 Specify BUFFER and BUFFERL, or
none of them

RNO2HNAM 12101 Specify HOSTNAME and HOSTNAML,
or none of them

RNO2NAME 12102 Specify NAME and NAMEL, or none of
them

RNO2PNAM 12103 Specify PROTNAME and PROTNAML,
or none of them

RNO2SNAM 12104 Specify SERVNAME and SERVNAML,
or none of them

RNO3HNAM 12105 Specify HOSTNAME/HOSTNAML/
RETHNAML, or none

RNO3SNAM 12106 Specify SERVNAME/SERVNAML/
RETSNAML, or none

RNORQHS 12107 HOSTNAME or SERVNAME (or both)
is required

RNORQECB 12108 ECB or ECBLIST is required

RNOXCECB 12109 ECB and ECBLIST are mutually
exclusive

RNOIECBL 12110 Invalid ECB in ECBLIST

RNOINARQ 12111 Invalid asynchronous command request

RNOINAIS 12112 Invalid ADDRINFO structure

RNOSY SP1 12113 ASYNCECB and HANDLE are system
parms

RNOINHDA 12114 Invalid area pointed to by HANDLE

RNOIIPA 12115 Invalid format for |P-address

RNOIIPAG 12116 Invalid format for |P-address (V6)

G-58 Advantage CA-IDMS Release Summary

G.3 Return, Errno, and Reason Codes

Name Value Description
RNOFNS 12200 Function not supported by interface
RNOFRSVD 12201 Function reserved for the system
RNOCAAIO 12202 Cannot alocate an AlO parameter list
RNOCANSU 12203 Cannot assign new socket to user
RNOCRSFU 12204 Cannot remove socket from user table
RNOCSHNT 12205 Cannot save HOSTENT structure info
RNOCSAIO 12206 Cannot save ADDRINFO structure info
RNONAINF 12207 Cannot find ADDRINFO to free
RNONOLTE 12208 No LTE available from current TCE
RNOSLIND 12209 SOCKET line not defined
RNOSLINO 12210 SOCKET line not opened
RNOSLRCY 12211 SOCKET line has been recycled
RNOPINL 12212 Plug-in module not loaded
RNODRTCE 12213 Driver's TCE doesn't point to the PLE
RNOINEPI 12214 Invalid environment when entering the
plug-in
RNOSENA 12215 Socket environment not active
RNOUSTCA 12216 User's socket table cannot be allocated
RNOUSTNE 12217 User's socket table does not exist
RNOSSTCA 12218 System's socket table cannot be allocated
RNOSSTNE 12219 System'’s socket table does not exist
RNOSTKNF 12220 Requested stack not found
RNOSTKNA 12221 Requested stack not active
RNOSDTCE 12222 Socket Descriptor table cannot be
extended
RNOCASWA 12223 Cannot allocate SELECT work area
RNOINSWA 12224 Inconsistent fields in SELECT work area
RNOSBLEM 12225 All SELECT bit lists are empty
RNOSNCSS 12226 All sockets not created under same stack
RNOCASBL 12227 Cannot allocate socket's bit list
RNOMAXSO 12228 Maximun number of sockets reached

Appendix G. TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G-59

G.3 Return, Errno, and Reason Codes

Name Value Description
RNOMAXST 12229 Maximum number of sockets per task
reached

RNOCADNS 12230 Cannot allocate DNS work area

RNOINDNS 12231 Invalid response from DNS server

RNOPITNL 12232 Plugin table module not loaded

RNOHIUCV 12300 HNDIUCV error

RNOCIUCV 12301 CMSIUCV error

RNOIUCVS 12302 IUCV error for a socket function

RNOSEVER 12303 IUCV connection severed by TCP/IP

RNOTOIUC 12304 Time out during ITUCV connection
>12999 The ERRNO is generated by the

operation system. Refer to the
appropriate operating system
documentation.

Note: — VSE only

G-60 Advantage CA-IDMS Release Summary

G.4 Socket Structure Descriptions

G.4 Socket Structure Descriptions

G.4.1 ADDRINFO Structure

The ADDRINFO structure is input and output to the GETADDRINFO function call.

Field Description

Flags A set of flags

Family Address family (AF_INET or AF_INET6)
Socket type Type of socket (STREAM or DATAGRAM)
Protocol Protocol in use for the socket

SOCKADDR length

Length of SOCKADDR structure

Canonica name

Address of canonical name associated with input node
name

SOCKADDR structure

Address of the SOCKADDR structure

New ADDRINFO

Address of next ADDRINFO structure

G.4.2 HOSTENT Structure

The HOSTENT structure is returned by the GETHOSTBY ADDR and
GETHOSTBYNAME function calls.

Field

Description

Hostname

Address of hosthame (null-terminated string)

Aliases

Address of a zero-terminated array of pointers to
aliases, which are null-terminated strings

Address type

Address family of returned IP addresses (AF_INET or
AF_INET6)

Address length

Length of returned IP addresses

Addresses

Address of a zero-terminated array of pointers to IP
addresses

Appendix G. TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G-61

G.4 Socket Structure Descriptions

G.4.3 SOCKADDR Structure

The SOCKADDR structure describes the address of a socket. There are two versions
of this structure: 1Pv4 and |Pv6.

G.4.3.1 SOCKADDR for IPv4

Field Description

Family A 2-byte field describing the socket address family
type: AF_INET

Port number The port number for this socket

Address The 4-byte |P address of the TCP/IP stack

Zeros Eight bytes of binary zeros

G.4.3.2 SOCKADDR for IPv6

Field Description

Family A 2-byte field describing the socket address family
type: AF_INET6

Port number The port number for this socket

Flow Flow information

Address The 16-byte IP address of the TCP/IP stack

Scope ID Scope identifier

G.4.4 TIMEVAL Structure

The TIMEVAL structure may be passed as input to the SELECT and SELECTX
function calls in order to specify a wait interval.

Field Description
Seconds Number of seconds to wait
Microseconds Number of microseconds to wait.

G-62 Advantage CA-IDMS Release Summary

G.5 String Conversion Functions

G.5 String Conversion Functions

Different encoding schemes exist for representing strings. On mainframe computers,
EBCDIC is often used, while on other platforms ASCII or UNICODE is used.
Currently, Advantage CA-IDMS does not support UNICODE. However, conversion
from EBCDIC to ASCII and vice versa can be implemented with the new IDMSINO1
function STRCONV, which is described below. For more information about
IDMSINOL, refer to "Advantage CA-IDMS Callable Services."

STRCONV converts a string in a buffer by replacing the old string with the new one.
The conversion uses tables defined in RHDCCODE:

m To convert from ASCII to EBCDIC, EBCTAB is used.

® To convert from EBCDIC to ASCII, ASCTAB is used.

The tables delivered on the installation tape contain the EBCDIC IBM-037 and ASCII
1S08859-1 tables.

G.5.1 Assembler

G.5.2 COBOL

Assembler programs use the IDMSINO1 macro to invoke the character conversion
functionality as follows:

IDMSINO1 STRCONV,CONVFUN=convfun, X
BUFFER=buffer,BUFFERL=bufferl

COBOL programs use the CALL IDMSINOL1 interface to invoke the character
conversion functionality as follows:

Define these variables:

01 RPB PIC X(36).
01 INO1-REQ.
02 REQUEST-CODE PIC S9(8) COMP.
02 REQUEST-RETURN PIC S9(8) COMP.
01 INO1-STRFUNC PIC X(4).
01 buffer PIC X(80).
01 bufferl PIC S9(8) COMP.

Code the call as follows:

MOVE 34 TO REQUEST-CODE.

MOVE 'convfun' TO INO1-STRFUNC.

CALL 'IDMSINO1' USING RPB,
INO1-REQ,
INO1-STRFUNC,
buffer,
bufferl.

Appendix G. TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G-63

G.5 String Conversion Functions

G.5.3 PL/I

PL/I programs use the CALL IDMSINOL interface to invoke the character conversion
functionality as follows:

Define these variables:

DCL RPB CHAR (36);
DCL 01 INO1_REQ,
02 REQUEST_CODE FIXED BINARY(31),
02 REQUEST_RETURN FIXED BINARY(31);
DCL INOG1_STRFUNC FIXED BINARY(31);
DCL buffer CHAR (80);
DCL bufferl FIXED BINARY(31);

Code the cdl as follows:

REQUEST_CODE = 34;

INO1_STRFUNC = 'convfun';

CALL 'IDMSINO1' (RPB,
INO1_REQ,
INO1_STRFUNC,
buffer,
bufferl);

G.5.4 Parameters

convfun
The function to execute. To convert a string from ASCII to EBCDIC, specify
'ATOE'. To convert a string from EBCDIC to ASCII, specify 'ETOA".

buffer
The name of the area that contains the string to convert.

buffer|
The name of a fullword field containing the length in bytes of the string.

G-64 Advantage CA-IDMS Release Summary

Appendix H. Third-Party Acknowledgment

Portions of this product include software developed by the Daniel Veillard. The
libxml2 software is distributed in accordance with the following license agreement:

Copyright © 1998-2002 Daniel Veillard. All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions: The
above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE DANIEL
VEILLARD BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of Danidl Veillard shall not be used in
advertising or otherwise to promote the sale, use or other dealings in this Software
without prior written authorization from him.

Appendix H. Third-Party Acknowledgment H-1

H-2 Advantage CA-IDMS Release Summary

	Advantage CA-IDMS Release Summary
	Contents
	Chapter 1. Introducing Advantage CA-IDMS 16.0
	1.1 Welcome
	1.2 New Features
	1.3 Two-Phase Commit Process
	1.4 SQL Features
	1.5 Administrative and Operational Enhancements
	1.6 Performance Enhancements
	1.7 Non-Stop Processing Features
	1.8 Tool Product Enhancements
	1.9 TCP/IP API Support
	1.10 Type 4 JDBC Driver
	1.11 Upgrading to Release 16.0

	Chapter 2. Upgrading to Release 16.0
	2.1 Overview
	2.2 Installing the Software
	2.3 Installing the SVC
	2.4 Formatting Journal Files
	2.5 Offloading the Log File
	2.6 Specifying a DCNAME for Cloned Systems
	2.7 Updating Dictionary Descriptions
	2.8 Updating Task and Program Definitions
	2.9 Defining Destination Resources
	2.10 Disabling Queue Area Sharing
	2.11 Reassigning Initiator Classes
	2.12 Activating the CMS Option
	2.13 Updating Advantage CA-IDMS SQL
	2.13.1 Updating SYSCA Schema Definitions
	2.13.2 Converting SQL Catalogs
	2.13.2.1 Release 16.0 Changes
	2.13.2.2 Executing the Catalog Conversion Utility

	2.14 Applying an APAR to Earlier Releases
	2.15 Updating the CICS Interfaces
	2.15.1 Creating New CICS Interface Modules
	2.15.2 Identifying a CICS System
	2.15.3 Implementing Two-Phase Commit Support in CICS

	2.16 Recompiling User-Written Programs
	2.17 Creating a System Startup Module

	Chapter 3. Two-Phase Commit Support
	3.1 Overview
	3.2 Two-Phase Commit Protocol
	3.2.1 Terminology
	3.2.2 Typical Commit Flows
	3.2.3 Prepare and Commit Outcomes
	3.2.4 Recovery from Failure

	3.3 Two-Phase Commit Support Within Advantage CA-IDMS
	3.3.1 Optimizations Supported
	3.3.2 Support for External Coordinators
	3.3.3 Support for External Resource Managers
	3.3.4 Support for Pre-Release 16.0 Systems
	3.3.5 Support for Batch Applications
	3.3.6 Implementation Details
	3.3.6.1 Transaction Branches
	3.3.6.2 Transaction Identifiers
	3.3.6.3 Transaction States
	3.3.6.4 Transaction Outcomes
	3.3.6.5 Resource Managers, Interfaces, and Exits
	3.3.6.6 Interests and Roles

	3.4 Impact on System Definition
	3.4.1 System Generation Resource Table
	3.4.1.1 Syntax
	3.4.1.2 Parameters
	3.4.1.3 Usage
	3.4.1.4 Example

	3.5 Impact on System Operations
	3.5.1 Restarting a Failed System
	3.5.2 System Name During Warmstart
	3.5.3 Incomplete Distributed Transactions at Startup
	3.5.4 Incomplete Distributed Transactions at Shutdown
	3.5.5 Monitoring Distributed Commit Operations
	3.5.5.1 DCMT DISPLAY DISTRIBUTED RESOURCE MANAGER
	3.5.5.2 DCMT DISPLAY DISTRIBUTED TRANSACTION

	3.6 Impact on Journaling
	3.6.1 New Journal Records and Formats
	3.6.2 Journal File Formatting Considerations

	3.7 Impact on Recovery
	3.7.1 System Recovery Interdependence
	3.7.2 Resynchronization Between Advantage CA-IDMS Systems
	3.7.2.1 When Does It Occur?
	3.7.2.2 What Does It Entail?
	3.7.2.3 Responding to Resynchronization Failures

	3.7.3 Completing Transactions Manually
	3.7.4 Manual Recovery Considerations
	3.7.4.1 InDoubt Transactions During Manual Recovery

	3.7.5 Deleting Resource Managers

	3.8 Two-Phase Commit Support with CICS
	3.8.1 Implementation Requirements
	3.8.2 Programming Interface
	3.8.3 Optimizations Supported
	3.8.4 Requesting the Use of Two-Phase Commit
	3.8.5 Additional Two-Phase Commit Parameters
	3.8.6 CICS System Name Requirements
	3.8.7 Resynchronization between CICS and Advantage CA-IDMS
	3.8.7.1 The Resynchronization Transaction and Program
	3.8.7.2 How is Resynchronization Initiated?
	3.8.7.3 When Should You Manually Resynchronize?
	3.8.7.4 The Resynchronization Process
	3.8.7.5 OPTIXIT Considerations

	3.9 Two-Phase Commit Support with RRS
	3.9.1 Enabling RRS Support Within an Advantage CA-IDMS System
	3.9.2 Impact on System Startup
	3.9.3 RRS Support for Batch Applications
	3.9.3.1 Example
	3.9.3.2 Enabling RRS for Batch Applications
	3.9.3.3 Batch RRS Transaction Boundaries and Application Design Considerations
	3.9.3.4 Example of a COBOL Batch Program

	3.9.4 RRS Support for Online Applications
	3.9.4.1 Example
	3.9.4.2 Programming Interface
	3.9.4.3 Parameters
	3.9.4.4 Application Design Considerations

	3.9.5 Optimizations Supported
	3.9.6 Resynchronization Between RRS and Advantage CA-IDMS
	3.9.6.1 When Does It Occur?
	3.9.6.2 What Does It Entail?
	3.9.6.3 Responding to Resynchronization Failures

	Chapter 4. SQL Features
	4.1 Overview
	4.2 Dynamic SQL Caching
	4.2.1 Searching the Cache
	4.2.2 Impact of Database Definition Changes
	4.2.2.1 SQL-Defined Databases and Caching
	4.2.2.2 Non-SQL Defined Databases and Caching

	4.2.3 Controlling the Cache
	4.2.3.1 SET SESSION Statement
	4.2.3.2 SYSIDMS SQL_CACHE_ENTRIES Parameter
	4.2.3.3 System Generation SQL CACHE Statement

	4.3 SQL-Defined Database Enhancements
	4.3.1 Logical/Physical Separation
	4.3.1.1 Implementing Logical/Physical Separation
	4.3.1.2 Changing a Referenced or Referencing Schema
	4.3.1.3 Views and Logical/Physical Separation

	4.3.2 Database Cloning
	4.3.2.1 Specifying Synchronization Timestamps
	4.3.2.2 Specifying Table and Index IDs
	4.3.2.3 CREATE/ALTER AREA Statement Syntax
	4.3.2.4 Parameters

	4.3.3 Stamp Synchronization
	4.3.3.1 SYNCHRONIZE STAMPS Utility
	4.3.3.2 INSTALL STAMPS Utility

	4.4 SQL Productivity Enhancements
	4.4.1 User-Defined SQL Functions
	4.4.2 Procedures and Functions Written as Advantage CA-ADS Mapless Dialogs
	4.4.2.1 Protocol Clause
	4.4.2.2 Mapless Dialog
	4.4.2.3 Work Records
	4.4.2.4 Additional Records

	4.4.3 Database Name Inheritance for Table Procedures, Procedures, and Functions
	4.4.4 ROWID Pseudo-Column
	4.4.5 Transaction Sharing
	4.4.5.1 Enabling Transaction Sharing
	4.4.5.2 Application Programming Considerations
	4.4.5.3 System Generation SYSTEM Statement
	4.4.5.4 System Generation TASK Statement
	4.4.5.5 SYSIDMS TRANSACTION_SHARING Parameter
	4.4.5.6 IDMSIN01 Call

	4.5 Enhanced Compatibility with Open Standards
	4.5.1 Numeric Functions
	4.5.2 String Functions
	4.5.3 Time and Date Functions
	4.5.4 System Functions
	4.5.5 Conversion Functions

	4.6 XML Publishing
	4.6.1 SQL/XML Functions
	4.6.2 XML Data Type and XML Values
	4.6.2.1 Syntax

	4.6.3 XML-value-expression
	4.6.3.1 Syntax
	4.6.3.2 Parameters

	4.6.4 Mappings
	4.6.4.1 Mapping Plain Text SQL to XML
	4.6.4.2 Mapping SQL Identifier to XML
	4.6.4.3 Mapping SQL Data Type Values to XML Schema Data Type Values

	4.6.5 Example
	4.6.6 SQLSTATE Values

	Chapter 5. Administrative and Operational Enhancements
	5.1 Overview
	5.2 Online Execution of Utilities
	5.2.1 Usage Considerations

	5.3 LOCK AREA Statement
	5.3.1 Authority
	5.3.2 Syntax
	5.3.3 Parameters
	5.3.4 Usage

	5.4 ALREADY LOCKED Option
	5.4.1 FORMAT AREA Utility Statement
	5.4.1.1 Syntax
	5.4.1.2 Parameters
	5.4.1.3 Usage

	5.4.2 FIX PAGE Utility Statement
	5.4.2.1 Syntax
	5.4.2.2 Parameters
	5.4.2.3 Usage

	5.5 Database Name for Utility Use
	5.5.1 CREATE DBNAME Statement
	5.5.1.1 Syntax
	5.5.1.2 Parameters
	5.5.1.3 Usage

	5.6 FORMAT JOURNAL Utility Statement
	5.6.1 Syntax
	5.6.2 Parameters
	5.6.3 Usage

	5.7 Two-Phase Commit Enhancements
	5.7.1 Reporting on Distributed Transactions
	5.7.2 Manual Recovery Input Control File
	5.7.3 Manual Recovery Output Control File
	5.7.4 Execution JCL Changes

	5.8 Cloning LTERM and PTERM Definitions
	5.8.1 Syntax
	5.8.2 Parameters
	5.8.3 Usage
	5.8.4 Example

	5.9 Security Enhancements
	5.9.1 Creating The Resource
	5.9.2 Assigning OCF/BCF Activity Numbers
	5.9.2.1 #UTABGEN Example

	5.9.3 #UTABGEN
	5.9.3.1 Purpose
	5.9.3.2 Syntax
	5.9.3.3 Parameters
	5.9.3.4 Usage
	5.9.3.5 Examples
	5.9.3.6 For More Information
	5.9.3.7 Utility Command Codes

	5.10 IDMSBCF Input/Output Reassignment
	5.10.1 Syntax
	5.10.2 Parameters
	5.10.3 Usage
	5.10.4 Example

	5.11 Online Compiler Enhancements
	5.12 PRINT SPACE Utility Enhancement
	5.12.1 Syntax
	5.12.2 Parameters

	5.13 EXTRACT JOURNAL Utility Enhancement
	5.13.1 Syntax
	5.13.2 Parameters

	5.14 ROLLBACK Utility Enhancement
	5.14.1 Syntax
	5.14.2 Parameters

	5.15 ROLLFORWARD Utility Enhancement
	5.15.1 Syntax
	5.15.2 Parameters

	5.16 System Startup Enhancements
	5.16.1 Syntax
	5.16.2 Parameters
	5.16.3 Examples

	5.17 #WTL Macro Enhancements
	5.18 International Character Set Enhancement
	5.18.1 Customizing RHDCCODE
	5.18.2 #DEFBYTE
	5.18.2.1 Parameters
	5.18.2.2 Examples

	5.18.3 Assemble and Link Edit RHDCCODE

	5.19 Journal File Enhancement
	5.20 REORG Utility Enhancement
	5.21 CREATE DSMODEL Utility Enhancement

	Chapter 6. Performance Enhancements
	6.1 Overview
	6.2 File Cache in Memory
	6.2.1 Terminology
	6.2.2 Exploiting File Cache in Memory
	6.2.3 Altering the DMCL Definition
	6.2.3.1 Syntax
	6.2.3.2 Parameters
	6.2.3.3 Usage

	6.3 Parallel Access Volume Exploitation
	6.4 Improved PDSE Support
	6.4.1 Startup JCL Parameters
	6.4.2 Parameter Descriptions
	6.4.3 General Usage Rules

	6.5 Improved Performance for LE COBOL Programs
	6.5.1 System Generation SYSTEM Statement
	6.5.1.1 Syntax
	6.5.1.2 Parameters

	6.5.2 System Generation PROGRAM Statement
	6.5.2.1 Syntax
	6.5.2.2 Parameters

	6.6 Improved Journaling Performance
	6.7 Improved Recovery Performance
	6.7.1 System Generation SYSTEM Statement
	6.7.1.1 Syntax
	6.7.1.2 Parameters
	6.7.1.3 Usage

	6.7.2 System Generation TASK Statement
	6.7.2.1 Syntax
	6.7.2.2 Parameters
	6.7.2.3 Usage

	6.8 High Performance Storage Protection

	Chapter 7. Non-Stop Processing Features
	7.1 Overview
	7.2 Dynamic Trace Control
	7.3 Modifying Program Attributes
	7.4 Determining CPU Effectiveness
	7.5 Short on Storage Message
	7.6 Waiting on Full Journal Message

	Chapter 8. Tool Product Enhancements
	8.1 Overview
	8.2 Advantage CA-Culprit
	8.2.1 Invoking the AllFusion CA-Librarian Interface
	8.2.2 Invoking the AllFusion CA-Panvalet Interface

	8.3 Advantage CA-IDMS Journal Analyzer
	8.3.1 RECORD and DBKEY Display Processing
	8.3.2 Audit Report
	8.3.3 Chronological Report
	8.3.4 Advantage CA-IDMS Presspack Decompression Support

	8.4 Advantage CA-IDMS DME
	8.4.1 'Fast-In' Access Method
	8.4.2 DME Print Class
	8.4.3 Browse Screen

	8.5 Advantage CA-IDMS DMLO
	8.5.1 Highlighted Exit Key
	8.5.2 Help Dictionary
	8.5.3 Dynamic Message Processing

	8.6 Advantage CA-ADS Alive
	8.7 Online Mapping
	8.8 Advantage CA-IDMS PL/I Compiler Enhancements
	8.8.1 Syntax
	8.8.2 Parameters
	8.8.3 Notes

	8.9 Support for 31-Digit Zoned and Packed Decimal Elements

	Chapter 9. TCP/IP API Support
	9.1 Using TCP/IP with Advantage CA-IDMS
	9.1.1 VSE Systems

	9.2 Generic Listener Service
	9.2.1 Introduction
	9.2.2 Functionality
	9.2.3 Implementation

	9.3 TCP/IP Considerations
	9.3.1 Establishing TCP/IP Support
	9.3.2 Managing TCP/IP Support
	9.3.3 Supporting DNS Functions Using the SYSTCPD File
	9.3.3.1 z/OS
	9.3.3.2 VSE
	9.3.3.3 z/VM
	9.3.3.4 Advantage CA-IDMS DNS Resolver

	9.3.4 Link RHDCT1IP module (VSE Only)
	9.3.4.1 Parameters

	9.4 TCP/IP Programming Support for Online Applications
	9.4.1 Socket Macro Interface For Assembler Programs
	9.4.1.1 Parameters
	9.4.1.2 Notes

	9.4.2 The Advantage CA-ADS Socket Interface
	9.4.2.1 Parameters
	9.4.2.2 Comparing IDMSOCKI and SOCKET
	9.4.2.3 Notes

	9.4.3 Socket Call Interface For COBOL
	9.4.3.1 Parameters
	9.4.3.2 Notes

	9.4.4 Socket call interface for PL/I
	9.4.4.1 Parameters
	9.4.4.2 Notes

	9.4.5 Application Design Considerations
	9.4.5.1 Using Stream Sockets
	9.4.5.2 Receiving Data
	9.4.5.3 Sending Data

	9.4.6 TCP/IP Coding Samples

	9.5 Miscellaneous TCP/IP Considerations
	9.5.1 Using the TCP/IP Trace Facility
	9.5.2 Using Multiple TCP/IP Stacks
	9.5.3 Associating Timeouts to Sockets

	Chapter 10. Type 4 JDBC Driver
	10.1 Overview
	10.2 Installing the Java Runtime Environment
	10.3 Enabling the Type 4 JDBC Driver
	10.3.1 Listener PTERM Options
	10.3.2 Listener TASK Security
	10.3.3 IdmsDataSource Options
	10.3.4 DriverManager Options
	10.3.5 Additional Client Options

	Appendix A. New and Revised DCMT Commands
	A.1 Overview
	A.2 DCMT SHUTDOWN
	A.2.1 Syntax
	A.2.2 Parameters

	A.3 DCMT DISPLAY AREA
	A.3.1 Syntax
	A.3.2 Parameters

	A.4 DCMT DISPLAY DBTRACE
	A.4.1 Syntax
	A.4.2 Parameters
	A.4.3 Example

	A.5 DCMT DISPLAY DEADLOCK
	A.5.1 Syntax
	A.5.2 Parameters

	A.6 DCMT DISPLAY DISTRIBUTED RESOURCE MANAGER
	A.6.1 Syntax
	A.6.2 Parameters
	A.6.3 Examples
	A.6.4 Usage

	A.7 DCMT DISPLAY DISTRIBUTED TRANSACTION
	A.7.1 Syntax
	A.7.2 Parameters
	A.7.3 Examples
	A.7.4 Usage

	A.8 DCMT DISPLAY LINE
	A.8.1 Syntax
	A.8.2 Parameters
	A.8.3 Example

	A.9 DCMT DISPLAY SEGMENT
	A.9.1 Syntax
	A.9.2 Parameters
	A.9.3 Example

	A.10 DCMT DISPLAY SUBTASK
	A.10.1 Syntax
	A.10.2 Example

	A.11 DCMT DISPLAY SYSTRACE
	A.11.1 Syntax
	A.11.2 Parameters
	A.11.3 Example

	A.12 DCMT DISPLAY TRANSACTION SHARING
	A.12.1 Syntax
	A.12.2 Parameters
	A.12.3 Example

	A.13 DCMT VARY AREA
	A.13.1 Syntax
	A.13.2 Parameters
	A.13.3 Usage

	A.14 DCMT VARY DBTRACE
	A.14.1 Syntax
	A.14.2 Parameters
	A.14.3 Examples

	A.15 DCMT VARY DEADLOCK
	A.15.1 Syntax
	A.15.2 Parameters
	A.15.3 Usage

	A.16 DCMT VARY DISTRIBUTED RESOURCE MANAGER
	A.16.1 Syntax
	A.16.2 Parameters
	A.16.3 Example
	A.16.4 Usage

	A.17 DCMT VARY DISTRIBUTED TRANSACTION
	A.17.1 Syntax
	A.17.2 Parameters
	A.17.3 Example
	A.17.4 Usage

	A.18 DCMT VARY DMCL
	A.18.1 Syntax
	A.18.2 Parameters
	A.18.3 Examples

	A.19 DCMT VARY DYNAMIC PROGRAM
	A.19.1 Syntax
	A.19.2 Parameters
	A.19.3 For More Information

	A.20 DCMT VARY DYNAMIC TASK
	A.20.1 Syntax
	A.20.2 Parameters
	A.20.3 Example

	A.21 DCMT VARY FILE
	A.21.1 Syntax
	A.21.2 Parameters
	A.21.3 Example

	A.22 DCMT VARY LTERM
	A.22.1 Syntax
	A.22.2 Parameters
	A.22.3 Example

	A.23 DCMT VARY PROGRAM
	A.23.1 Syntax
	A.23.2 Parameters
	A.23.3 Examples

	A.24 DCMT VARY PTERM
	A.24.1 Syntax
	A.24.2 Parameters
	A.24.3 Usage

	A.25 DCMT VARY REPORT
	A.25.1 Syntax
	A.25.2 Parameters

	A.26 DCMT VARY SEGMENT
	A.26.1 Syntax
	A.26.2 Parameters
	A.26.3 Usage

	A.27 DCMT VARY SUBTASK
	A.27.1 Syntax
	A.27.2 Parameters
	A.27.3 Examples

	A.28 DCMT VARY SYSTRACE
	A.28.1 Syntax
	A.28.2 Parameters
	A.28.3 Examples

	A.29 DCMT VARY TASK
	A.29.1 Syntax
	A.29.2 Parameters
	A.29.3 Example

	A.30 DCMT VARY TRANSACTION SHARING
	A.30.1 Syntax
	A.30.2 Parameters
	A.30.3 Example

	A.31 How to Broadcast System Tasks
	A.31.1 Syntax
	A.31.2 Parameters
	A.31.3 Usage
	A.31.3.1 Restrictions on the Broadcastable Tasks

	A.31.4 Examples

	A.32 Command Codes

	Appendix B. New and Revised SQL Statements
	B.1 User-Defined SQL Function Statements
	B.1.1 Function Invocation
	B.1.1.1 Purpose
	B.1.1.2 Authorization
	B.1.1.3 Syntax
	B.1.1.4 Parameters
	B.1.1.5 Usage
	B.1.1.6 Examples

	B.1.2 ALTER FUNCTION Statement
	B.1.2.1 Purpose
	B.1.2.2 Authorization
	B.1.2.3 Syntax
	B.1.2.4 Parameters
	B.1.2.5 Usage
	B.1.2.6 Example

	B.1.3 CREATE FUNCTION Statement
	B.1.3.1 Purpose
	B.1.3.2 Authorization
	B.1.3.3 Syntax
	B.1.3.4 Parameters
	B.1.3.5 Usage
	B.1.3.6 Example

	B.1.4 DISPLAY/PUNCH FUNCTION Statement
	B.1.4.1 Purpose
	B.1.4.2 Authorization
	B.1.4.3 Syntax
	B.1.4.4 Parameters
	B.1.4.5 Example

	B.1.5 DROP FUNCTION
	B.1.5.1 Purpose
	B.1.5.2 Authorization
	B.1.5.3 Syntax
	B.1.5.4 Parameters
	B.1.5.5 Example

	B.2 SQL Scalar Functions
	B.2.1 Syntax
	B.2.1.1 ABS-function
	B.2.1.2 ACOS-function
	B.2.1.3 ASIN-function
	B.2.1.4 ATAN-function
	B.2.1.5 ATAN2-function
	B.2.1.6 CEIL or CEILING-function
	B.2.1.7 CHAR-function
	B.2.1.8 DAYOFWEEK-function
	B.2.1.9 DAYOFYEAR-function
	B.2.1.10 DEGREES-function
	B.2.1.11 EXP-function
	B.2.1.12 FLOOR-function
	B.2.1.13 IFNULL-function
	B.2.1.14 INSERT-function
	B.2.1.15 LOG-function
	B.2.1.16 LOG10-function
	B.2.1.17 MOD-function
	B.2.1.18 MONTHNAME-function
	B.2.1.19 NOW-function
	B.2.1.20 PI-function
	B.2.1.21 POWER-function
	B.2.1.22 QUARTER-function
	B.2.1.23 RADIANS-function
	B.2.1.24 RAND-function
	B.2.1.25 REPEAT-function
	B.2.1.26 REPLACE-function
	B.2.1.27 RIGHT-function
	B.2.1.28 ROUND-function
	B.2.1.29 SIGN-function
	B.2.1.30 SIN-function
	B.2.1.31 SINH-function
	B.2.1.32 SPACE-function
	B.2.1.33 SQRT-function
	B.2.1.34 SUBSTR or SUBSTRING-function
	B.2.1.35 TAN-function
	B.2.1.36 TANH-function
	B.2.1.37 TRUNCATE-function
	B.2.1.38 USER-function
	B.2.1.39 WEEK-function

	B.3 Revised SQL Statements
	B.3.1 ALTER PROCEDURE Statement
	B.3.1.1 Syntax
	B.3.1.2 Parameters
	B.3.1.3 Usage

	B.3.2 ALTER SCHEMA Statement
	B.3.2.1 Syntax
	B.3.2.2 Parameters
	B.3.2.3 Usage

	B.3.3 ALTER TABLE Statement
	B.3.3.1 Syntax
	B.3.3.2 Parameters
	B.3.3.3 Usage

	B.3.4 ALTER TABLE PROCEDURE Statement
	B.3.4.1 Syntax
	B.3.4.2 Parameters
	B.3.4.3 Usage

	B.3.5 CREATE INDEX Statement
	B.3.5.1 Syntax
	B.3.5.2 Parameters
	B.3.5.3 Usage

	B.3.6 CREATE PROCEDURE Statement
	B.3.6.1 Syntax
	B.3.6.2 Parameters
	B.3.6.3 Usage

	B.3.7 CREATE SCHEMA
	B.3.7.1 Syntax
	B.3.7.2 Parameters
	B.3.7.3 Usage
	B.3.7.4 Example

	B.3.8 CREATE TABLE Statement
	B.3.8.1 Syntax
	B.3.8.2 Parameters
	B.3.8.3 Usage

	B.3.9 CREATE TABLE PROCEDURE Statement
	B.3.9.1 Syntax
	B.3.9.2 Parameters
	B.3.9.3 Usage

	B.3.10 CREATE VIEW Statement
	B.3.10.1 Syntax
	B.3.10.2 Parameters
	B.3.10.3 Usage

	B.3.11 DISPLAY/PUNCH INDEX Statement
	B.3.11.1 Syntax
	B.3.11.2 Parameters

	B.3.12 DISPLAY/PUNCH PROCEDURE Statement
	B.3.12.1 Syntax
	B.3.12.2 Parameters

	B.3.13 DISPLAY/PUNCH SCHEMA Statement
	B.3.13.1 Syntax
	B.3.13.2 Parameters

	B.3.14 DISPLAY/PUNCH TABLE Statement
	B.3.14.1 Syntax
	B.3.14.2 Parameters

	B.3.15 DISPLAY/PUNCH TABLE PROCEDURE Statement
	B.3.15.1 Syntax
	B.3.15.2 Parameters

	B.3.16 DISPLAY/PUNCH VIEW Statement
	B.3.16.1 Syntax
	B.3.16.2 Parameters

	B.3.17 SET SESSION Statement
	B.3.17.1 Syntax
	B.3.17.2 Parameters
	B.3.17.3 Examples

	B.4 SQL/XML Functions and Table Procedure
	B.4.1 XMLAGG-function
	B.4.1.1 Syntax
	B.4.1.2 Parameters
	B.4.1.3 Examples

	B.4.2 XMLCOMMENT-function
	B.4.2.1 Syntax
	B.4.2.2 Parameters
	B.4.2.3 Example

	B.4.3 XMLCONCAT-function
	B.4.3.1 Syntax
	B.4.3.2 Example

	B.4.4 XMLELEMENT-function
	B.4.4.1 Syntax
	B.4.4.2 Parameters
	B.4.4.3 Examples

	B.4.5 XMLFOREST-function
	B.4.5.1 Syntax
	B.4.5.2 Parameters
	B.4.5.3 Example

	B.4.6 XMLPARSE-function
	B.4.6.1 Syntax
	B.4.6.2 Parameters
	B.4.6.3 Example

	B.4.7 XMLPI-function
	B.4.7.1 Syntax
	B.4.7.2 Parameters
	B.4.7.3 Example

	B.4.8 XMLPOINTER-function
	B.4.8.1 Syntax
	B.4.8.2 Example

	B.4.9 XMLROOT-function
	B.4.9.1 Syntax
	B.4.9.2 Parameters
	B.4.9.3 Example

	B.4.10 XMLSERIALIZE-function
	B.4.10.1 Syntax
	B.4.10.2 Parameters
	B.4.10.3 Example

	B.4.11 XMLSLICE Table Procedure
	B.4.11.1 Syntax
	B.4.11.2 Parameters
	B.4.11.3 Examples

	Appendix C. SQL Functions and SQL Procedure Enhancements
	C.1 Overview
	C.2 When To Use a User-Defined Function
	C.3 Defining a Function
	C.3.1 For More Information

	C.4 Invoking a Function
	C.5 Writing a Function
	C.5.1 Calling Arguments
	C.5.2 Parameter Arguments
	C.5.3 Local Work Area
	C.5.4 Global Work Area

	C.6 Advantage CA-ADS SQL Function and Procedure Examples
	C.6.1 Function Example
	C.6.1.1 Function Definition
	C.6.1.2 Work Records
	C.6.1.3 Premap Process
	C.6.1.4 Invoking the Function

	C.6.2 Procedure Example
	C.6.2.1 Work Records
	C.6.2.2 Premap Process
	C.6.2.3 Procedure Invocation

	C.7 COBOL SQL Function Example
	C.7.1 Function Definition
	C.7.2 Sample COBOL Code
	C.7.3 Invoking the Function

	Appendix D. SQL ROWID Examples
	D.1 Overview
	D.2 ROWID in a Simple SELECT
	D.3 ROWID in a Searched UPDATE
	D.4 ROWID in a SELECT Using a Join
	D.4.1 Example 1
	D.4.2 Example 2

	D.5 Searched Update of Records Without Primary Key
	D.6 Searched Delete of Records Without Primary Key

	Appendix E. SQL Cache Tables
	E.1 Overview
	E.2 Tables for Viewing, Monitoring, and Controlling the Cache
	E.2.1 DSCCACHEOPT
	E.2.1.1 Notes

	E.2.2 DSCCACHECTRL
	E.2.2.1 Notes

	E.2.3 DSCCACHE
	E.2.3.1 Notes

	E.2.4 DSCCACHEV

	E.3 Allowable Operations on DSCCACHE Tables
	E.4 Examples of Displaying and Controlling the Cache
	E.4.1 CACHE Options
	E.4.2 CACHE Control Parameters
	E.4.3 CACHE Entries

	E.5 Secure the Display and Changes

	Appendix F. CICS Interface Enhancements for Two-Phase Commit Support
	F.1 Overview
	F.2 Resynchronization Task Execution
	F.2.1 Syntax
	F.2.2 Parameters
	F.2.3 Examples
	F.2.3.1 Successful Manual Resynchronization Example
	F.2.3.2 Unsuccessful Manual Resynchronization Example 1
	F.2.3.3 Unsuccessful Manual Resynchronization Example 2
	F.2.3.4 Successful Automatic Resynchronization Example

	F.2.4 Creating the Resynchronization Program
	F.2.5 Resynchronization Program Link Edit (z/OS)
	F.2.6 Resynchronization Program Link Edit (VSE)
	F.2.7 Defining a Resynchronization Transaction
	F.2.8 Defining the Resynchronization Program

	F.3 New CICSOPT and IDMSCINT Parameters
	F.3.1 New CICSOPT Parameters
	F.3.1.1 Syntax
	F.3.1.2 Parameters

	F.3.2 New IDMSCINT Parameters
	F.3.2.1 Syntax
	F.3.2.2 Parameters

	F.4 CICS OPTIXIT
	F.4.1 OPTIXIT Example

	Appendix G. TCP/IP API Commands, Error Codes, Socket Structures, and StringConversion
	G.1 Overview
	G.2 Function Descriptions
	G.2.1 ACCEPT
	G.2.1.1 Parameters
	G.2.1.2 Notes

	G.2.2 BIND
	G.2.2.1 Parameters

	G.2.3 CLOSE
	G.2.3.1 Parameters

	G.2.4 CONNECT
	G.2.4.1 Parameters
	G.2.4.2 Notes

	G.2.5 FCNTL
	G.2.5.1 Parameters
	G.2.5.2 Notes

	G.2.6 FD_CLR
	G.2.6.1 Parameters
	G.2.6.2 Notes

	G.2.7 FD_ISSET
	G.2.7.1 Parameters
	G.2.7.2 Notes

	G.2.8 FD_SET
	G.2.8.1 Parameters
	G.2.8.2 Notes

	G.2.9 FD_ZERO
	G.2.9.1 Parameters
	G.2.9.2 Notes

	G.2.10 FREEADDRINFO
	G.2.10.1 Parameters
	G.2.10.2 Notes

	G.2.11 GETADDRINFO
	G.2.11.1 Parameters
	G.2.11.2 Notes

	G.2.12 GETHOSTBYADDR
	G.2.12.1 Parameters
	G.2.12.2 Notes

	G.2.13 GETHOSTBYNAME
	G.2.13.1 Parameters
	G.2.13.2 Notes

	G.2.14 GETHOSTID
	G.2.14.1 Parameters
	G.2.14.2 Notes

	G.2.15 GETHOSTNAME
	G.2.15.1 Parameters

	G.2.16 GETNAMEINFO
	G.2.16.1 Parameters
	G.2.16.2 Notes

	G.2.17 GETPEERNAME
	G.2.17.1 Parameters

	G.2.18 GETSOCKNAME
	G.2.18.1 Parameters

	G.2.19 GETSOCKOPT
	G.2.19.1 Parameters
	G.2.19.2 Notes

	G.2.20 GETSTACKS
	G.2.20.1 Parameters
	G.2.20.2 Notes

	G.2.21 HTONL
	G.2.21.1 Parameters

	G.2.22 HTONS
	G.2.22.1 Parameters

	G.2.23 INET_ADDR
	G.2.23.1 Parameters

	G.2.24 INET_NTOA
	G.2.24.1 Parameters

	G.2.25 INET_NTOP
	G.2.25.1 Parameters

	G.2.26 INET_PTON
	G.2.26.1 Parameters

	G.2.27 LISTEN
	G.2.27.1 Parameters

	G.2.28 NTOHL
	G.2.28.1 Parameters

	G.2.29 NTOHS
	G.2.29.1 Parameters

	G.2.30 READ
	G.2.30.1 Parameters
	G.2.30.2 Notes

	G.2.31 RECV
	G.2.31.1 Parameters
	G.2.31.2 Notes

	G.2.32 RECVFROM
	G.2.32.1 Parameters
	G.2.32.2 Notes

	G.2.33 SELECT and SELECTX
	G.2.33.1 Parameters
	G.2.33.2 Notes

	G.2.34 SEND
	G.2.34.1 Parameters
	G.2.34.2 Notes

	G.2.35 SENDTO
	G.2.35.1 Parameters
	G.2.35.2 Notes

	G.2.36 SETSOCKOPT
	G.2.36.1 Parameters
	G.2.36.2 Notes

	G.2.37 SETSTACK
	G.2.37.1 Parameters
	G.2.37.2 Notes

	G.2.38 SHUTDOWN
	G.2.38.1 Parameters
	G.2.38.2 Notes

	G.2.39 SOCKET
	G.2.39.1 Parameters
	G.2.39.2 Notes

	G.2.40 WRITE
	G.2.40.1 Parameters
	G.2.40.2 Notes

	G.3 Return, Errno, and Reason Codes
	G.3.1 ERRNO Numbers Set By The Socket Program Interface

	G.4 Socket Structure Descriptions
	G.4.1 ADDRINFO Structure
	G.4.2 HOSTENT Structure
	G.4.3 SOCKADDR Structure
	G.4.3.1 SOCKADDR for IPv4
	G.4.3.2 SOCKADDR for IPv6

	G.4.4 TIMEVAL Structure

	G.5 String Conversion Functions
	G.5.1 Assembler
	G.5.2 COBOL
	G.5.3 PL/I
	G.5.4 Parameters

	Appendix H. Third-Party Acknowledgment

