Advantage' CA-IDMS
[|

Release Summary
16.0

a)

Computer Associatese

B01250-1E

Contents

Chapter 1: Infroducing Advantage CA-IDMS 16.0

WeElCome. 1-1
Two-Phase Commit Process i 1-4
SOL Featureso 1-4
Utility and Sysgen Enhancements 1-5
Performance Enhancements 1-6
Non-Stop Processing Features 1-7
Tool Product Enhancements 1-7
TCP/IP APLSUPPOTt. . ..o e 1-8
Upgrading to Release 16.0 1-9

Chapter 2: Upgrading to Release 16.0

Installing the Software 2-2
Installing the SVC 2-3
Formatting Journal Files. 2-3
Offloading the Log File. 2-3
Specifying a DCNAME for Cloned Systems 2-4
Updating Dictionary Descriptions. 2-4
Updating Task and Program Definitions 2-4
Defining Destination Resources 2-5
Disabling Queue Area Sharing.......... 2-5
Reassigning Initiator Classes. 2-5
Activating the CMS Option 2-5
Updating Advantage CA-IDMS Database SQL Optiono . 2-6

Updating SYSCA Schema Definitions 2-6

Converting SQL Catalogso 2-8
Applying an APAR to Earlier Releases. 2-9
Updating the CICS Interfaces 2-9

Creating New CICS Interface Modules 2-9

Identifying a CICS System i 2-9

Contents i

Implementing Two-Phase Commit Supportin CICS 2-10
Recompiling User-Written Programs. i i 2-10

Chapter 3: Two-Phase Commit Support

Two-Phase Commit Protocol 3-1
Terminology 3-1
Typical Commit Flows 3-2
Prepare and Commit Qutcomes. 3-3
Recovery from Failure 3-4

Two-Phase Commit Support Within Advantage CA-IDMS...... it 3-4
Optimizations Supported 3-5
Support for External Coordinators 3-6
Support for External Resource Managers 3-6
Support for Pre-Release 16.0 Systems. 3-7
Support for Batch Applications 3-7
Implementation Details 3-8

Impact on System Definition 3-13
System Generation Resource Table............ 3-14

Impact on System Operations 3-16
Restarting a Failed System. 3-16
System Name During Warmstart. 3-16
Incomplete Distributed Transactions at Startup. i 3-16
Incomplete Distributed Transactions at Shutdown................. 3-17
Monitoring Distributed Commit Operations 3-18

Impacton Journaling 3-19
New Journal Records and Formats 3-19
Journal File Formatting Considerations. i i 3-21

Impact on Recovery 3-22
System Recovery Interdependence 3-22
Resynchronization Between Advantage CA-IDMS Systems. 3-22
Completing Transactions Manually 3-25
Manual Recovery Considerations 3-26
Deleting Resource Managers i 3-28

Two-phase Commit Support with CICS 3-29
Implementation Requirements. 3-29
Programming Interface 3-30
Optimizations Supported 3-30
Requesting the Use of Two-Phase Commit.. 3-30
Additional Two-phase Commit Parameters i, 3-32
CICS System Name Requirements. 3-33
Resynchronization between CICS and Advantage CA-IDMS. 3-33

iv. Advantage CA-IDMS Release Summary

Two-Phase Commit Support with RRS. 3-36

Enabling RRS Support Within an Advantage CA-IDMSSystem 3-36
Impacton System Startup......... 3-37
RRS Support for Batch Applications 3-38
RRS Support for Online Applications i 3-43
Optimizations Supported 3-46
Resynchronization Between RRS and Advantage CA-IDMS. 3-46

Chapter 4: SQL Features

Dynamic SQL Caching 4-1
Searching the Cache. 4-1
Impact of Database Definition Changes 4-3
Controlling the Cache 4-3

SQL-Defined Database Enhancementst 4-6
Logical/Physical Separation 4-6
Database CIONING 4-8
Stamp Synchronization....... 4-10

SQL Productivity Enhancements 4-14
User-Defined SQL FUNCHONSo 4-14
Procedures and Functions Written as Advantage CA-ADS Mapless Dialogs 4-15
Database Name Inheritance for Table Procedures, Procedures, and Functions. 4-17
ROWID Pseudo-Colummn 4-17
Transaction Sharing 4-18

Enhanced Compatibility with Open Standards 4-25
Numeric FUNCHONS. 4-26
String Functions 4-27
Time and Date Functions 4-28
System Functions 4-29
Conversion FUNCHONS 4-29

Chapter 5: Utility and Sysgen Enhancements

Online Execution of Utilities 5-1
Usage Considerations 5-2
LOCK AREA Statement 5-3
Authority 5-3
74 1= D 5-3
Parameters 5-3
Usage. . ..o 5-3
ALREADY LOCKED Option. 5-4

Contents v

FORMAT AREA Utility Statement 5-4

FIX PAGE Utility Statement 5-5
Database Name for Utility Use 5-5
CREATE DBNAME Statement. 5-6
FORMAT JOURNAL Utility Statement. e 5-6
74 4= D 5-6
Parameters. 5-7
Usage ... 5-7
Two-Phase Commit Enhancements 5-7
Reporting on Distributed Transactions i 5-7
Manual Recovery Input Control File. 5-10
Manual Recovery Output Control File. 5-11
Execution JCL Changes i e 5-11
Cloning LTERM and PTERM Definitions 5-11
SyMtaX. . 5-11
Parameters. 5-12
Usage ... 5-12
Example 5-12
Security Enhancements 5-13
Creating The Resource 5-13
Assigning OCF/BCF Activity Numbers i, 5-13
HUTABGEN. . . . 5-14

Chapter 6: Performance Enhancements

File Cachein Memory 6-1
Terminology 6-2
Exploiting File Cache in MEMOTIY i 6-2
Altering the DMCL Definition 6-3

Parallel Access Volume Exploitation 6-4

Improved PDSE SUppOrt. 6-5
Startup JCL Parameters 6-5

Improved Performance for LE COBOL Programs. i, 6-6
System Generation SYSTEM Statement 6-7
System Generation PROGRAM Statement 6-7

Improved Journaling Performance 6-8

Improved Recovery Performance 6-8
System Generation SYSTEM Statement 6-8
System Generation TASK Statement. 6-10

vi Advantage CA-IDMS Release Summary

Chapter 7: Non-Stop Processing Features

Dynamic Trace Control. 7-1
Modifying Program Attributes. 7-2
Determining CPU Effectiveness 7-2
Short on Storage Message 7-2
Waiting on Full Journal Message i 7-3

Chapter 8: Tool Product Enhancements

Advantage CA-Culprit for CA-IDMS 8-1
Invoking the AllFusion CA-Librarian Interface............. 8-1
Invoking the AllFusion CA-Panvalet Interface 8-2

Advantage CA-IDMS Database Journal Analyzer Option............... 8-2
RECORD and DBKEY Display Processing.............o 8-3
Audit Report 8-3
Chronological Report. 8-3

Advantage CA-IDMS Database Dictionary Module Editor (DME) Option....................... ... 8-4
‘Fast-In” Access Method 8-4
DME Print Class 8-4
Browse Screen 8-4

Advantage CA-IDMS DML Online Option (DMLO). 8-5
Highlighted Exit Key. 8-5
Help Dictionary. 8-5
Dynamic Message Processing 8-5

Advantage CA-ADS Alive Option. e 8-6

Online Mapping 8-6

Advantage CA-IDMS PL/I Compiler Enhancements ... 8-7
SYNtAX . .o 8-7
Parameters 8-7
NoOtes . .o 8-7

Support for 31-digit Packed Decimal Elements., 8-8

Chapter 9: TCP/IP API Support

Using TCP/IP with Advantage CA-IDMS. 9-1
Generic Listener Service 9-2
Introductiono o 9-2
Functionality 9-2
Implementation. 9-2
Establishing TCP/IP Support 9-3

Contents i

Updating the Startup JCL 9-4

Defining the SOCKET Line in Sysgen. 9-4
Defining Physical Terminals (PTERMS) inSysgen 9-5
Setting up BULK PTERMSs. 9-7
Managing TCP/IP SUPPOIt.o 9-7
TCP/IP Programming Support for Online Applications. 9-7
Socket Macro Interface For Assembler Programs ... 9-8
The Advantage CA-ADS Socket Interface........... 9-10
Socket Call Interface For COBOL. 9-12
Socket call interface for PL /L. o 9-15
Application Design Considerations. 9-17
TCP/IP Coding Samples 9-18
Using the TCP/IP Trace Facility 9-18

Appendix A: New and Revised DCMT Commands

DCMT DISPLAY DBTRACE e A-1
Syntax. A-1
Parameters. A-1
Example A-1

DCMT DISPLAY DISTRIBUTED RESOURCE MANAGER A-2
Syntax. A-2
Parameters. A-2
Examples A-2
USage . A-3

DCMT DISPLAY DISTRIBUTED TRANSACTION A4
Sy NtaX. . A-4
Parameters. A-4
Examples A-4
Usage .. . A-5

DCMT DISPLAY LINE A-9
74 41 = D A-9
Parameters. A-9
Example A-9

DCMT DISPLAY SUBTASK A-10
74 1= A-10
Example A-10

DCMT DISPLAY SYSTRACE A-10
Sy NtAX. . A-10
Parameters. A-10
Example A-11

DCMT DISPLAY TRANSACTION SHARING A-11

vii Advantage CA-IDMS Release Summary

Sy NtAX . . A-11

Parameters A-11
Exampleo A-11
DCMT VARY DBTRACE A-12
SYNtAX . . A-12
Parameters A-12
Examples. A-12
DCMT VARY DISTRIBUTED RESOURCE MANAGER. A-13
Sy NtAX . . A-13
Parameters A-13
Example A-13
Usage. . . o A-14
DCMT VARY DISTRIBUTED TRANSACTION o e A-15
74 4= D A-15
Parameters A-15
Example A-16
Usage. ... oo A-16
DCMT VARY DYNAMIC PROGRAM A-17
SyMtaX .. A-17
Parameters A-17
For More Information A-17
DCMT VARY DYNAMIC TASK . . o A-18
SyMtaX .. A-18
Parameters A-18
Example ... A-19
DCMT VARY FILE. . . . A-20
SyMtaX .. A-20
Parameters A-20
Example ... A-20
DCMT VARY LTERM . . .o A-21
SyMtaX .. A-21
Parameters A-21
Example ... A-21
DCMT VARY PROGRAM . .. A-22
SyMtaX .. A-22
Parameters A-23
Examples.o A-25
DCMT VARY PTERM . . .o A-26
SyMtaX .. A-26
Parameters A-26
U . oo A-27
DCMT VARY SUBT ASK .. . A-27

Contents ix

Parameters. A-27
Exampleso A-28
DCMT VARY SYSTRACE A-28
Sy NtAX. . A-28
Parameters. A-28
Exampleso A-29
DCMT VARY TASK . . . A-29
Sy NtAX. . A-29
Parameters. A-29
Exampleo A-30
DCMT VARY TRANSACTION SHARING A-31
Sy NtAX. . A-31
Parameters. A-31
Exampleo A-31
How to Broadcast System Tasks A-32
Sy NtAX. . A-32
Parameters. A-32
USage . A-32
Examples A-33
Command COdES. A-33

Appendix B: New and Revised SQL Statements

User-Defined SQL Function Statements i B-1
Function Invocation B-1
ALTER FUNCTION Statement. e B-3
CREATE FUNCTION Statement e e B-6
DISPLAY /PUNCH FUNCTION Statementt B-10
DROP FUNCTION o B-12

SQL Scalar FUNCHONS oot e B-13

Revised SQL Statementst B-38
ALTER PROCEDURE Statement ittt B-38
ALTER SCHEMA Statement. e e B-40
ALTER TABLE Statement e e B-41
ALTER TABLE PROCEDURE Statement. e B-42
CREATE INDEX Statement. B-43
CREATE PROCEDURE Statement o B-44
CREATE SCHEMA . . . B-46
CREATE TABLE Statement. o e B-47
CREATE TABLE PROCEDURE Statement i B-48
CREATE VIEW Statement. e e B-50

x Advantage CA-IDMS Release Summary

DISPLAY/PUNCH INDEX Statementouittt e B-51

DISPLAY/PUNCH PROCEDURE Statementooiiiii i, B-52
DISPLAY/PUNCH SCHEMA Statementttt B-53
DISPLAY/PUNCH TABLE Statemento i B-54
DISPLAY/PUNCH TABLE PROCEDURE Statementttt .. B-55
DISPLAY/PUNCH VIEW Statement.t B-56
SET SESSION Statement B-57

Appendix C: SQL Functions and SQL Procedure
Enhancements

When To Use a User-Defined Function i, C-1
Defining a FUNCHON. C-2
Invoking a Function. C-2
Writinga Function. C-3
Calling ATgUIMENES. C-3
Parameter Arguments C-4
Local Work Area. C-5
Global Work Area. C-5
Advantage CA-ADS SQL Function and Procedure Examples C-5
Function Example. C-5
Procedure Example C-7
COBOL SQL Function Example C-9
Function Definition C-9
Sample COBOL Code C-9
Invoking the Function C-10

Appendix D: SQL ROWID Examples

ROWID ina Simple SELECT D-1
ROWID in a Searched UPDATE. D-1
ROWID ina SELECT Using aJoin........ e D-1

Example 1. . ..o D-2

Example 2. . . D-2
Searched Update of Records Without Primary Key........... D-3
Searched Delete of Records Without Primary Key............... D-3

Appendix E: SQL Cache Tables

About this Appendix. E-1

Contents xi

Tables for Viewing, Monitoring, and Controlling the Cache E-1

DSCCACHEOPT E-2
DSCCACHECTRLt E-4
DSCCACHE E-5
DSCCACHEV . . E-7
Allowable Operations on DSCCACHE Tables. E-7
Examples of Displaying and Controlling the Cache.............. E-8
CACHE Options E-8
CACHE Control Parameters. E-9
CACHE ENtries E-9
Secure the Display and Changes E-10

Appendix F: CICS Interface Enhancements for Two-Phase

Commit Support

Resynchronization Task Execution. F-1
74 4= D F-1
Parameters. F-1
Examples F-2
Creating the Resynchronization Program o o, F-3
Resynchronization Program Link Edit (z/OSand OS/390) oo, F-3
Resynchronization Program Link Edit (VSE/ESA) F-4
Defining a Resynchronization Transaction F-4
Defining the Resynchronization Program i F-5

New CICSOPT and IDMSCINT Parameters. i F-6
New CICSOPT Parameters F-6
New IDMSCINT Parameters e F-11

CICS OPTIXIT ... F-13
OPTIXIT Exampleo F-13

Appendix G: TCP/IP APl Commands, Error Codes, Socket
Structures, and String Conversion

Function Descriptions G-1
ACCEPT. . . G-1
BIN D . .. G-2
CLOSE . . G-3
CONNECT . .. G-3
FCONTL .. G-4
FD_CLR . . G-5

xii Advantage CA-IDMS Release Summary

B S T . G-7
FD_ZERO . .. G-8
FREEADDRINFO G-9
GETADDRINFO G-10
GETHOSTBYADDR. G-12
GETHOSTBYNAME . . G-13
GETHOSTID . .. o G-14
GETHOSTNAME G-14
GETNAMEINEFO. G-15
GETPEERN AME. . .. G-17
GETSOCKNAME G-18
GETSOCKOPT . ..o G-19
GETSTACKS . .. G-21
HTON L . . G-22
HTONS . G-22
INET_ADDR . .. o G-23
INET _INTOA . . G-24
INET _INTOP. . .. G-25
INET_PTON. . .. G-26
LISTEN .o G-27
NTOHL G-27
NTOHS . . G-28
READD. . G-28
RECV . G-29
RECVEROM. . .. G-30
SELECT and SELECTX G-32
SEN D . . G-35
SEN DT O . . o G-36
SETSOCKOPT . . . G-37
SETST ACK . . . G-38
SHUTDOW N . . . G-39
SOCKET .. G-40
WRITE . . . G-42
Return, Errno, and Reason Codes G-43
ERRNO Numbers Set By The Socket Program Interface...................................... G-43
Socket Structure Descriptions G-48
AsSembIer. G-48
COBOL, PL/Iand Advantage CA-ADS G-48
ADDRINFO Structure G-48
HOSTENT Structure G-49
SOCKADDR Structure e G-49

Contents xiii

TIMEVAL StrucCtUre e G-50

String Conversion Functions G-51
Assembler G-51
COBOL. .ot G-51
P L G-52
Parameters. G-52

xiv. Advantage CA-IDMS Release Summary

sl Infroducing Advantage CA-IDMS
(1l 16.0

Welcome

Welcome to Advantage™ CA-IDMS® Release 16.0. This release incorporates
many new features to enhance your use of Advantage CA-IDMS, including:

Two-phase commit support
SQL features

Utility enhancements
Performance features
Non-stop processing features

Tool product enhancements

This chapter includes a brief overview of each of the Release 16.0 features and
provides a high-level explanation of the upgrade requirements. The remaining
parts of this guide describe the features in detail.

Part Content

Chapter 2: Describes actions and considerations related to
Upgrading to Release 16.0 upgrading to Release 16.0.

Chapter 3: Explains and illustrates the new Two-Phase
Two-Phase Commit Support ~ Commit process and considerations for its use.
Chapter 4: Describes the new SQL features for improved
SQL Features performance, productivity, and open access.
Chapter 5: Describes:

Utility and Sysgen m Utility enhancements designed for

Enhancements improved DBA productivity

m Utility and sysgen enhancements for the
two-phase commit feature and TCP/IP

m Security enhancements for the utility
commands

Infroducing Advantage CA-IDMS 16.0 14

Welcome

Part

Content

Chapter 6:
Performance Enhancements

Explains the enhancements for z/ Architecture
and DASD exploitation as well as journaling
and recovery performance enhancements.

Chapter 7:
Non-Stop Processing Features

Describes the new dynamic capabilities and
improved messaging for enhanced system
availability.

Chapter 8:
Tool Product Enhancements

Describes the productivity enhancements made
for:

m Advantage™ CA-Culprit for CA-IDMS®

s Advantage™ CA-IDMS® Database Journal
Analyzer Option

m Advantage™ CA-IDMS® Database
Dictionary Module Editor (DME) Option

m Advantage™ CA-IDMS® Database DML
Online Option

m Advantage™ CA-ADS®/Alive Option
= Online Mapping Facility
m Advantage CA-IDMS PL/I Compiler

Enhancements
m Support for 31-digit Packed Decimal
Elements
Chapter 9: Describes the cross-platform capabilities
TCP/IP API Support available for applications using TCP/IP
support.
Appendix A: Explains the DCMT commands that are new or
New and Revised DCMT changed with Release 16.0.
Commands
Appendix B: Describes the SQL statements and language
New and Revised SQL elements that are new or changed with Release
Statements 16.0.
Appendix C: Explains when and how to use a user-defined
SQL Function and SQL function and provides samples for functions

Procedure Enhancements

and procedures:

m SQL function definition and execution for
Advantage™ CA-ADS® for IDMS® dialogs

m SQL procedure definition and execution for
Advantage™ CA-ADS® for IDMS® dialogs

m SQL function definition and execution for
COBOL

12 Advantage CA-IDMS Release Summary

Welcome

Part Content
Appendix D: Provides several examples of how to use the
SQL ROWID Examples new SQL ROWID feature.
Appendix E: Describes the tables that are involved in SQL
SQL Cache Tables caching and provides examples for the
administrators of how to display and control
the cache.
Appendix F: Describes how to:
CICS Interface Enhanc;ements m Define and execute the CICS RSYN task
for Two-Phase Commit and program for resynchronization
Support m The changes for OPTIXIT to ensure
resynchronization requests are routed to
the correct back-end central version
m The new and enhanced parameters added
to CICSOPT and IDMSCINT to support
Two-Phase Commit
Appendix G: Describes:
TCP/IP APl Commands, Error 3 Each of the TCP/IP functions and
Codes, Socket Structures, and associated parameters
String Conversion s The TCP/IP error codes, reason codes and

return codes
The ASCII to EBCDIC conversion tables
The TCP/IP socket structures

Infroducing Advantage CA-IDMS 160 13

Two-Phase Commit Process

Two-Phase Commit Process

SQL Features

For enhanced open access, the new two-phase commit feature ensures that all
changes made during recovery are either applied or backed out.

Advantage CA-IDMS Release 16.0 provides full two-phase commit capability
with automatic resynchronization in the event that processing is interrupted
during the two-phase commit operation.

Two-phase commit support is provided between Advantage CA-IDMS
systems so that an Advantage CA-IDMS batch or online application can
safely update resources on multiple Advantage CA-IDMS systems. This
ensures that all updates are either committed or rolled out.

Advantage CA-IDMS is also able to participate in distributed transactions
that are controlled by the CICS and RRS transaction managers. This enables
a batch, TSO, or CICS application to coordinate Advantage CA-IDMS
updates with those made through other resource managers, such as
MQSeries and DB2, which support these same protocols.

Advantage CA-IDMS Release 16.0 includes many features for improved
performance and ease of use of the Advantage CA-IDMS Database SQL Option.

The dynamic SQL statement-caching feature saves a copy of the SQL
statement together with the result of the SQL compilation in a cache. The
CPU cycles for parsing, reading the catalog and dictionary for metadata, and
optimizing and creating an access plan are eliminated for subsequent
executions of the same SQL statement. This feature provides a tremendous
performance benefit for web applications using ODBC or JDBC access to
Advantage CA-IDMS data since these open protocols are based on dynamic
SQL.

User-defined functions can now be defined for invocation within an SQL
statement. The function can have one or more input parameters and must
return a single value.

The addition of several SQL scalar functions provides enhanced
compatibility with Open Standards. Many of the scalar functions are
implemented as user-defined functions and are automatically installed with
Advantage CA-IDMS. The new scalar functions complement the existing
scalar functions that were distributed with earlier releases of Advantage CA-
IDMS.

14 Advantage CA-IDMS Release Summary

Utility and Sysgen Enhancements

A pseudo-column (ROWID) is provided for unique access to a row in an
SQL table. The pseudo-column is the db-key for the underlying database
record. Itis not persistent for the life of the database but can be used within
a transaction. ROWID can be used instead of writing a table procedure for a
searched update or delete where there is no primary key or foreign key.

Procedure enhancements provide improved productivity. An SQL table
procedure or SQL procedure can now inherit the DBNAME of the current
transaction. An SQL procedure can be a mapless Advantage CA-ADS dialog
that allows existing business logic to be reused in new web or distributed
applications.

Application programmers are now able to use SQL to enhance existing
non-SQL applications. The transaction-sharing feature can be enabled to
prevent deadlocks at runtime when the same database records are being
updated using both SQL and native IDMS DML statements in a program or
dialog. It can also prevent deadlocks between access performed within an
SQL procedure and its invoking application.

Logical/physical separation techniques can be employed for SQL-
defined databases eliminating the need for separate schemas and access
modules for each physical instance of an SQL-defined database. The specific
instance that is accessed at runtime is determined by the database to which
the SQL session is connected.

Cloning of an SQL database provides improved productivity by allowing
physically identical databases to be easily defined and maintained.

A new stamp synchronization utility is provided to facilitate the movement
of SQL data and definitions between Advantage CA-IDMS systems. The
utility allows users to manually synchronize the timestamps in the data area
and the catalog for SQL-defined databases.

Utility and Sysgen Enhancements

Advantage CA-IDMS Release 16.0 provides many features to improve DBA
productivity including the following:

Many database utilities that were previously only available for batch
execution, such as PRINT PAGE and FORMAT, are now available for online
execution.

The DBA can define a DBNAME for utility use only in the DBNAME
TABLE, thereby eliminating validation warnings for arbitrarily grouped

KEATTOCK AREA utility command is available for locking an area in a
batch job.

A new parameter of ALREADY LOCKED is available on the FORMAT
AREA and FIX PAGE utility statements to allow the operation to take place
even if the area is locked.

Infroducing Advantage CA-IDMS 16.0 16

Performance Enhancements

The recovery utilities report on distributed transactions and support the use
of a manual recovery control file for use with the two-phase commit feature.

A new clause on the sysgen PTERM statement allows you to define multiple
terminals using a single statement.

Execution of utility commands can now be secured at the user level.

Performance Enhancements

Release 16.0 provides many features for improving performance. These include:

Advantage CA-IDMS Release 16.0 exploits the 64-bit data addressing
capabilities in z/OS VIR2 and above to utilize virtual storage above the 2
address logical line known as “the bar.” The File Cache in Memory feature,
activated through a new DMCL option, caches the contents of a database file
in memory above the bar. This improves overall Advantage CA-IDMS
performance by reducing the number of I/O operations.

Advantage CA-IDMS Release 16.0 provides I/O performance improvements
through exploitation of the Parallel Access Volume feature on Enterprise
Storage System DASD devices such as IBM’s Shark. This feature allows
multiple jobs to simultaneously access the same logical volume. The parallel
I/0 operations allow higher I/O rates, thereby increasing overall
throughput and reducing response time.

A new sysgen option enables the sharing of Language Environment (LE)
enclaves for improved performance for LE COBOL programs.

New sysgen options controlling commit and rollback behavior provide faster
recovery during warmstart and rollback operations and reduce the
likelihood of a duplicate transaction ID when the local transaction ID values

KISH efficient processing during journaling I/O operations provides overall
improved throughput.

Advantage CA-IDMS load modules may now be accessed from PDSE
datasets without starting Advantage CA-IDMS as an authorized program.
To load from a PDSE, you can specify an SVC number on the execute
parameter in columns 28-30.

1-6 Advantage CA-IDMS Release Summary

Non-Stop Processing Features

Non-Stop Processing Features

Several features are available in Release 16.0 to provide enhanced availability of
Advantage CA-IDMS in a 24 x 7 environment. These include the ability to:

Dynamically turn on/off tracing as well as the ability to vary the size of the
trace tables

Dynamically vary any program attribute using the DCMT task

Write a message to the console when a “Short on Storage” condition occurs
so that corrective action can be taken

Tool Product Enhancements

Many tool product enhancements are implemented as part of Release 16.0,
including;:

Advantage™ CA-IDMS® Database DML Online Option

Advantage CA-IDMS DMLO Release 16.0 incorporates many enhancement
requests including;:

— Enhanced DMLO entry screen display to indicate which interrupt key is
used to exit DMLO.

— HLPDICT now defaults to the current working dictionary if no setting is
specified in the Installation Parameter module USDTPARM when used
in the Advantage CA-IDMS/DC environment. Previously this defaulted
to TOOLDICT.

— The User Exit Program USDMLXIT can dynamically pass back a
message for subsequent display on the DMLO command line. Previously
only a numeric return code was passed back. This provides the user with
the capability to dynamically alter message text.

Advantage™ CA-IDMS® Database Dictionary Module Editor (DME) Option

The following enhancements are available in Advantage CA-IDMS DME
Release 16.0:

— Anew “fastin” installation parameter is provided for direct invocation
of the Module Edit Screen.

- Any value (including nulls) can now be specified for the DME Print
Class.

— If any compile errors occur when using the Advantage CA-ADS ADSC
compiler, the user is presented with an edit browse screen that illustrates
and highlights the lines in error.

Infroducing Advantage CA-IDMS 16.0 17

TCP/IP API Support

s Advantage™ CA-ADS®/Alive Option

The following enhancements are provided with Advantage CA-ADS
Alive Release 16.0:

- The maximum number of records that can be processed per Advantage
CA-ADS dialog is increased to 200.

— An installation parameter option is available to disable the Post Abort
browse screen feature. The abend details continue to be written to the
DEBUGQUEUE.

m Advantage™ CA-IDMS® Database Journal Analyzer Option
Advantage CA-IDMS Journal Analyzer Release 16.0 delivers:

- Support for the new journal records and layouts for Advantage CA-
IDMS 16.0.

- Enhanced RECORD and DBKEY DISPLAY processing to allow for the
addition of START and STOP dates when ALL=Y is indicated on the
PROCESS statement. This allows the user to create RECORD and
DBKEY displays for a particular time period.

m Advantage™ CA-Culprit

The use of Advantage CA-Culprit parameters stored in AllFusion™ CA-
Librarian® or AllFusion™ CA-Panvalet® libraries no longer requires that
the AllFusion CA-Librarian or AllFusion CA-Panvalet file access routines be
linked with Advantage CA-Culprit routines to form the respective interfaces.
These interfaces are now dynamically loaded.

TCP/IP API Support

The TCP/IP feature provides support for the development and execution of
client/server Advantage” CA-IDMS’/DC Transaction Server applications that
use the industry-standard TCP/IP communications protocol. A generic listening
function and callable sockets API allows client and server programs written in
Advantage CA-ADS®, COBOL, PL/I or Assembler to communicate through
TCP/IP with programs running on the same or different platforms.

18 Advantage CA-IDMS Release Summary

Upgrading to Release 16.0

Upgrading to Release 16.0

In general, to install Release 16.0, follow the instructions documented in the
Advantage CA-IDMS Installation and Maintenance guide for your operating
system.

Before starting the installation, carefully read Chapter 2 in this Release
Summary, “Upgrading to Release 16.0.” This helps to ensure that you are
successful in your use of Advantage CA-IDMS 16.0 and are able to fall back to a
previous release of Advantage CA-IDMS, if necessary.

Infroducing Advantage CA-IDMS 16.0 19

Chapter

2 Upgrading to Release 16.0

This chapter describes the actions that must be taken and the considerations
involved in upgrading to Release 16.0 of the Advantage CA-IDMS family of
products. You can upgrade to Release 16.0 from Advantage CA-IDMS Release
10.x, 12.0, 14.0, 14.1, or 15.0. The conversion utilities provided for Releases 12.0,
14.0, 14.1, and 15.0 are included on the Release 16.0 installation tape.

This is a summary of actions required to update the Advantage CA-IDMS
software to Release 16.0:

m Install the software into a new environment.
m Install the new SVC delivered with Release 16.0.

m Initialize the journal files using the Release 16.0 FORMAT utility before
starting a Release 16.0 system for the first time.

m Offload the log file using a pre-Release 16.0 ARCHIVE LOG utility or
initialize the log file before starting a Release 16.0 system for the first time.

m For all Advantage CA-IDMS systems using the cloned system facility to
share the system definition with another system, add the SYSIDMS
DCNAME parameter to the startup JCL.

m Run IDMSDIRL against each dictionary containing the IDMSNTWK schema
definition.

m Update the Advantage CA-IDMS task and program definitions using the
source members provided on the installation tape and the sysgen compiler.

m Customers employing dynamic routing of database connections may need to
define additional destinations to the system’s resource table.

m In a data sharing environment, where the queue area is shared between
group members, all sharing systems must be upgraded to Release 16.0
simultaneously or sharing of the queue between Release 16.0 and pre-
Release 16.0 systems must be disabled.

m For clients running z/OS 1.2 or later, if your Advantage CA-IDMS database
files are cached in dataspaces or you intend to exploit the 64-bit memory
architecture for file caching, it may be necessary to reassign initiator classes
for Advantage CA-IDMS systems and local mode batch jobs.

Important! Advantage CA-IDMS and CICS cannot run in the same initiator
class.

Upgrading to Release 16.0 2-1

Installing the Software

m z/0S and OS/390 customers using the CMS Option no longer need to set
optional APAR bit 236 to activate CMS support.

m Advantage CA-IDMS Database SQL Option customers and users of
Advantage CA-IDMS Visual DBA should:

- Update the CA-supplied SYSCA schema definition using the command
facility and the source members provided on the installation tape.

- Execute the CONVERT CATALOG command against each SQL-enabled
dictionary.

m Apply APARs to all prior versions of Advantage CA-IDMS that access or are
accessed by Release 16.0 software. This includes access from an external
teleprocessing monitor such as CICS.

m Clients using CICS must create new IDMSINTC and IDMSINTL interface
modules before using Release 16.0 runtime libraries in their CICS systems.

m Clients using the IDMSINTC CICS interface:

— May need to change TPNAME parameters or specify a new
CICS_NAME SYSIDMS parameter to ensure that every CICS system has
a consistent and unique identifier.

— If you use the auto-commit feature so your Advantage CA-IDMS
database transactions can be committed through a CICS syncpoint
operation, you must take additional steps to implement two-phase
commit support between CICS and Advantage CA-IDMS.

Note: This requirement also applies to Advantage CA-IDMS
Transparency for VSAM users.

— Must define a new resynchronization task and program.

m Recompile all user-written programs that reference Advantage CA-IDMS
control blocks or journal files.

m Review the recovery and restart procedures for applications:

— Issuing remote database requests between Advantage CA-IDMS
systems.

— Using IDMSINTC with the auto-commit feature enabled.

Installing the Software

Follow the instructions documented in the Advantage CA-IDMS Installation and
Maintenance guide for your operating system. Also, follow any special
installation instructions outlined in the cover letter delivered with the
installation tape. Be sure to install the Release 16.0 software into a new set of
installation libraries. You cannot install Release 16.0 into an existing Advantage
CA-IDMS environment.

22 Advantage CA-IDMS Release Summary

Installing the SVC

Installing the SVC

A new SVC is delivered with Release 16.0. It should be used for all Release 16.0
systems. The SVC is downward compatible and can be used with Release 14.1
and Release 15.0 systems. If you are sharing an SVC with multiple releases of
Advantage CA-IDMS, please refer to Chapter 8 of the Advantage CA-IDMS
Installation and Maintenance for z/0OS and OS/390 manual to ensure that you
are specifying the correct parameters to CAIRIM. This ensures that all releases of
Advantage CA-IDMS that are using the SVC are identified.

Formatting Journal Files

Several journal records are changed in Release 16.0. It is necessary to initialize
the journal files using the Release 16.0 FORMAT utility statement before the
journal files are used with a Release 16.0 system. At startup, the system verifies
the journal files are correctly formatted. If the files are not properly formatted a
DC202037 message is issued:

IDMSWARM—Journals not formatted correctly for the current release of IDMS

This is followed by another informational message and then a 3033 ABEND
occurs.

If it is necessary to fall back to an earlier release of the software, the journal files
must be reinitialized using the FORMAT utility and runtime libraries from the
earlier release, otherwise warmstart fails.

Offloading the Log File

The format of the log file’s statistics records is unchanged in Release 16.0,
although the release identifier in these records is updated and contains the string
‘R160". If Advantage CA-IDMS encounters a log record with an earlier release
identifier, the ARCHIVE LOG utility issues the warning message:

NON 16.0 RECORD HAS BEEN ENCOUNTERED IN THE LOG, RECORD WILL BE BYPASSED

To avoid these messages and to separate logs from prior releases, offload the log
file using the ARCHIVE LOG utility before installing Release 16.0 or initialize
the log file if you do not need the log information.

If it is necessary to fall back to an earlier release of the software, any log files that
are accessed by a Release 16.0 system must be offloaded or initialized prior to its
use by a pre-Release 16.0 system.

Upgrading to Release 16.0 23

Specifying a DCNAME for Cloned Systems

Specifying a DCNAME for Cloned Systems

If an Advantage CA-IDMS system relies on the cloned system capability to share
its system definition with another Advantage CA-IDMS system, the SYSIDMS
file in its startup JCL must include a DCNAME parameter in order to uniquely
identify the system that is being started. For more information, see “Impact on
System Operations” in Chapter 3, “Two-Phase Commit Support.”

Updating Dictionary Descriptions

New fields were added to records in the DDLDML and DDLCAT areas using
existing filler space. Although no dictionary conversion is necessary, you should
update the definition of these records in every dictionary containing the
IDMSNTWK schema description. To do this, use the IDMSDIRL utility. For
instructions on executing this utility, refer to the Advantage CA-IDMS Utilities
manual.

Updating Task and Program Definitions

There are new CA-supplied task and program definitions for Release 16.0. You
should update the system definition using the batch system generation compiler,
RHDCSGEN, and source members provided on the installation tape. This can be
accomplished easily by:

1. Performing an UPGRADE install to upgrade the definitions for SYSTEM 99.

2. Copying the task and program definitions from SYSTEM 99 to your system
definition.

For more information on the UPGRADE install process, see the Advantage CA-
IDMS Installation and Maintenance guide for your site’s operating system.

If it is necessary to fall back to an earlier release of the software, you can recreate
the earlier versions of the task and program definitions by reinstalling them from
the installation tape provided with the earlier release or by restoring the system
dictionary from a backup that was taken prior to the migration. If returning to
Release 15.0 of Advantage CA-IDMS, it is not necessary to restore the earlier
versions of the task and program definitions.

24 Advantage CA-IDMS Release Summary

Defining Destination Resources

Defining Destination Resources

If dynamic routing is used within a parallel sysplex environment to balance a
workload across multiple members of a DBGROUP, it may be necessary to add
the group members as destinations within a front-end system’s resource table so
that startup can resynchronize with these systems. This must be done only for
group members that are not defined to the system through NODE statements.
For more information see “Impact on System Definition” in Chapter 3, “Two-
Phase Commit Support”.

Disabling Queue Area Sharing

A Release 16.0 system cannot share its queue with a pre-Release 16.0 system.
Clients that are sharing the queue area must either:

m Upgrade all sharing systems within a data sharing group at the same time.

m Disable sharing of the queue between Release 16.0 and pre-Release 16.0
members.

Reassigning Initiator Classes

If running a z/OS 1.2 or later operating system, it may be necessary to reassign
initiator classes for central versions or local mode batch jobs that cache database
files in memory or in a dataspace. Under these circumstances, Release 16.0
allocates 64-bit storage. Since 64-bit storage acquisition is incompatible with
subspaces, you must ensure that the same address space is not used for both
Advantage CA-IDMS and applications, such as CICS, that use subspaces. For
more information, see Chapter 6, “File Cache in Memory.”

Activating the CMS Option

When running a Release16.0 system, z/OS and OS/390 customers using the
CMS Option are not required to set optional APAR bit 236 to enable CMS
support for the Advantage CA-IDMS system. Activation of the CMS Option is
now automatic for each system using an SVC for which the CMS option is
enabled

Upgrading to Release 16.0 2-6

Updating Advantage CA-IDMS Database SQL Option

Updating Advantage CA-IDMS Database SQL Option

Updating SYSCA Schema Definitions

Advantage CA-IDMS Visual DBA and SQL users should update their SYSCA
schema definitions in each catalog in which the SYSCA schema is defined. This
process varies slightly depending on your release of Advantage CA-IDMS.
Details of the required steps can be found in the installation materials received
with your Release 16.0 installation tape.

The following changes have been made to the SYSCA schema for Release 16.0
and are downward compatible with prior releases of Advantage CA-IDMS:

SYSCA.ACCESSIBLE_TABLES view is updated and excludes functions.
SYSCA.TABLES view is updated and excludes functions.
The following new views are defined:

- SYSCA.ACCESSIBLE_PROCS

- SYSCA.ACCESSIBLE_FUNCS

- SYSCA.DSCCACHEV

The following new table procedures are defined:
- SYSCA.DSCCACHEOPT

- SYSCA.DSCCACHECTRL

- SYSCA.DSCCACHE

The following new functions are defined:

- SYSCA.ABS

- SYSCA.ACOS

- SYSCA.ASIN

- SYSCA.ATAN

- SYSCA.ATAN?2

- SYSCA.CEIL

- SYSCA.CEILING

- SYSCA.COS

- SYSCA.COsSH

- SYSCA.COT

- SYSCA.DEGREES

- SYSCA.EXP

- SYSCA.FLOOR

26 Advantage CA-IDMS Release Summary

Updating Advantage CA-IDMS Database SQL Option

SYSCA.LOG
SYSCA.LOGI10
SYSCA.MOD
SYSCA.PI
SYSCA.POWER
SYSCA.RADIANS
SYSCA.RAND
SYSCA.ROUND
SYSCA.SIGN
SYSCA.SIN
SYSCA.SINH
SYSCA.SQRT
SYSCA.TAN
SYSCA.TANH
SYSCA.TRUNCATE
SYSCA.INSERT
SYSCA.REPEAT
SYSCA.REPLACE
SYSCA.RIGHT
SYSCA.SPACE
SYSCA.DAYNAME
SYSCA.DAYOFWEEK
SYSCA.DAYOFYEAR
SYSCA.MONTHNAME
SYSCA.QUARTER
SYSCA.WEEK

Upgrading to Release 16.0 27

Updating Advantage CA-IDMS Database SQL Option

Converting SQL Catalogs
Advantage CA-IDMS Visual DBA and SQL users must use the CONVERT
CATALOG command to update the definitions of system tables in each catalog
in which the SYSTEM schema is defined.

The converted definitions are compatible with these Releases:

m 140
141
s 150

Important!If you are upgrading from Release 12.0 or 12.01, you should retain
backup files of the catalog.

If it is necessary to fall back to Release 14.0, 14.1, or 15.0 version of the software,
no special action needs to be taken regarding the catalog; however, if falling back
to Release 12.0 or 12.01, the catalog (and database areas containing tables that are
created or altered using Release 16.0) must be restored.

Release 16.0 Changes

When a catalog is converted, the definitions of the following tables are upgraded
to their Release 16.0 definitions and new columns in associated rows are
initialized appropriately:

m SYSTEM.SCHEMA

s SYSTEM.TABLE

s SYSTEM.DBNAME

Changes introduced in earlier releases of the software are applied if they have

not already been made. Refer to the Release 15.0 Features Guide for a description
of these earlier changes.

Executing the Catalog Conversion Utility
The catalog conversion utility can be invoked using the online command facility
(OCF) or the batch command facility (IDMSBCF). If running in local mode or if
converting from Release 12.0 or 12.01, you should back up the target catalog

before executing this utility.

To convert a catalog enter the following statement:

2-8 Advantage CA-IDMS Release Summary

Applying an APAR to Earlier Releases

»»—— CONVERT CATALOG >

After successful execution, the Command Facility issues one of two
informational messages to indicate the status of the conversion.

If a catalog conversion is performed, the message indicates the number of rows
of each type that are changed. If a catalog conversion is not required, an
appropriate message is issued.

Applying an APAR to Earlier Releases

If a Release 16.0 system is accessed by a 14.1 or 15.0 version of Advantage CA-
IDMS or vice-versa, you must apply one of these APARs to the pre-Release 16.0
system:

. 14.1—Q023507
m 15.0—Q023506

Communications with releases earlier than 14.1 are not supported.

Updating the CICS Interfaces

Creating New CICS Interface Modules

Before a CICS system can use the Release 16.0 Advantage CA-IDMS runtime
library, you must create new IDMSINTC and IDMSINTL interface modules and
UCEF front-ends (if applicable) using the Release 16.0 source and object libraries.
There is no need to create new IDMSCINT or IDMSCINL modules or relink user
applications when upgrading to an Advantage CA-IDMS Release 16.0 system.

Identifying a CICS System

Users of the IDMSINTC interface must ensure that each CICS system has a
consistent and unique identifier. By default, the name of a CICS system is
determined by the TPNAME parameter of the CICSOPT options table. If more
than one IDMSINTC interface is used within a CICS system they must all have
the same TPNAME value in their CICSOPT assembly or you must specify a new
CICS_NAME parameter in the SYSIDMS file included in the CICS startup JCL.
The name given to a CICS system must be unique across all CICS systems
accessing any one central version.

Upgrading to Release 16.0 29

Recompiling User-Written Programs

For more information on specifying a name for a CICS system, refer to the
section Two-Phase Commit Support with CICS in Chapter 3, “Two-Phase
Commit Support”.

Implementing Two-Phase Commit Support in CICS

In Release 16.0, a two-phase commit protocol is used whenever AUTOCMT is
enabled for an IDMSINTC CICS interface. The use of AUTOCMT causes a CICS
syncpoint operation to commit changes made by database sessions that are still
active when the syncpoint is taken. In order to support two-phase commit
processing between CICS and Advantage CA-IDMS, additional installation steps
must be taken. These steps are discussed in “Two-Phase Commit Support with

CICS” in Chapter 3, “Two-Phase Commit Support”.

Advantage CA-IDMS Transparency for VSAM forces the use of AUTOCMT in
CICS. Therefore users of this product must also perform these extra installation
steps.

Recompiling User-Written Programs

Several control block formats are changed in Release 16.0. Although in most
cases the changes simply entail the addition of new fields, it is recommended
that all programs referencing Advantage CA-IDMS control blocks, such as user-
written exits, be recompiled using the Release 16.0 library.

2-10 Advantage CA-IDMS Release Summary

Chapter

3 Two-Phase Commit Support

This chapter discusses the two-phase commit support provided in Advantage
CA-IDMS Release 16.0.

Two-Phase Commit Protocol

Terminology

Two-phase commit is a protocol used to ensure that all changes made within the
scope of a distributed unit of work are either applied (committed) or backed out.

As the name implies, a two-phase commit process is divided into two phases. In
the first phase, resource managers participating in the unit of recovery prepare
their resources to be committed. If they cannot do so, they inform the requestor
of the failure. In the second phase, the resource managers either make their
changes permanent or back them out based on the overall outcome of the
transaction.

If a resource manager indicates that it has successfully prepared its resources to
be committed, it guarantees that the resources can be committed even if some
adverse condition, such as a system failure, occurs prior to completion of the
commit process. It is this guarantee that ensures that all changes are either
applied or backed out in their entirety.

The following terms are associated with two-phase commit processing:

A resource manager is a software component that controls access to and the
state of one or more recoverable resources such as a database. An Advantage
CA-IDMS central version is an example of a resource manager.

A transaction manager is a software component that directs commit and
backout processes. Multiple transaction managers may be involved in a single
commit or backout operation. If so, their actions are coordinated to achieve
transaction consistency. Every Advantage CA-IDMS system has a transaction
manager as a component.

Two-Phase Commit Support 3-1

Two-Phase Commit Protocol

A coordinator is a transaction manager that initiates a two-phase commit
operation and is responsible for its overall outcome. A coordinator is sometimes
referred to as an initiator.

A participant is a resource manager or a transaction manager other than the
coordinator that participates in a two-phase commit operation. A participant is
sometimes referred to as an agent.

A distributed transaction is a unit of recovery in which more than one resource
manager participates.

Typical Commit Flows

The following diagram illustrates the communications that take place during a
typical two-phase commit operation involving three systems. In this example, A
is the coordinator since it initiates the commit operation, and B and C are

participants.
Commit Flow
! |
o Coordinator ! Participant 5 Participant
Application A : B : C
i i
Commit : :
Phase 1 Prepare :
OKi i
: Prepare :
—_——— — —_— — — >
— OK - — -
___________________ e
Phase 2 Com; it :
« _OK__ __ 5
i i
i Commit i
—_— — —_— — — — >
J OK i
OK < - - - =

A

32

Advantage CA-IDMS Release Summary

Two-Phase Commit Protocol

The following diagram illustrates another typical commit flow. In this example,
A is again the overall transaction coordinator, and B and C are participants.
However, in this case B plays a dual role. It is both a participant with respect to A
and a coordinator with respect to C since it forwards the Prepareand Commit
directives that it receives from A to C. Such a situation might arise because an
application on A starts a remote SQL transaction on B that, in turn, updates
resources on C through an SQL procedure.

Commit Flow

A

! !
. i - i -
Application Coordinator ; Participant i Participant
A i B i C
! !
Commit : :
Phase 1 ” Prepare 5
—_——— — i
i Prepare
| :
|
H h — — —
— =
___________________ ;__________5__________
Phase 2 i i
Cominit i
i Commit
i i
! !
| oK __ _
OK < _OK___ __
|
i
i

Prepare and Commit Outcomes

When a participant receives a Freparerequest, it does whatever is necessary to
guarantee that a subsequent Commitrequest can be honored. This may involve
such things as flushing buffers or forwarding requests to other participants. If all
of these activities are completed successfully, the participant signals its
willingness to commit by responding OK to the Prepare request. If it is unable to
successfully complete its preparations, it indicates this by responding BACKOUT
to the Preparerequest.

The coordinator gathers the responses from its participants and determines the
final outcome for the commit operation. If all participants indicate that they are
willing to commit, then the coordinator proceeds with the second phase and the
final outcome will be OK. If any participant indicates that it cannot commit, then
the coordinator directs its participants to back out their changes instead of
committing them. The final commit outcome in this case is BACKOUT.

Two-Phase Commit Support 33

Two-Phase Commit Support Within Advantage CA-IDMS

A participant can respond to a Prepare request in ways other than OK or
BACKOUT. It can respond FORGET to signal that it made no updates within the
transaction being committed and does not need to participate in the second
phase. This has the potential for reducing the number of communications needed
to complete the commit operation.

A participant can also respond “heuristically,” indicating that its resources have
been committed or backed out. A transaction might be completed heuristically
because it was forced to complete through some administrative action. Such
heuristic actions defeat the two-phase commit process and can lead to mixed
outcomes in which some changes are committed while others are backed out.

Note: While Advantage CA-IDMS does not make heuristic decisions on its own,
it does allow an administrator to commit or backout a transaction using a DCMT
command. Such administrator intervention might be required following an
interruption in the commit process.

Recovery from Failure

Failures in communications, operating systems, or resource or transaction
managers can interrupt the two-phase commit process. The point at which the
failure occurs determines whether a transaction’s changes are committed or
backed out. If the failure occurs during the first phase in the process, changes are
backed out. If the failure occurs during the second phase, changes are committed.

Recovery from failure during a two-phase commit involves a process called
resynchronization, in which messages are exchanged between a coordinator and
a participant in order to complete transactions whose commit process was
interrupted. To facilitate resynchronization, both the coordinator and the
participant write additional journal records at critical points during the two-
phase commit process.

Two-Phase Commit Support Within Advantage CA-IDMS

With Release 16.0, a central version always uses a two-phase commit protocol to
commit resources. The DML commands that an application issues to commit
tasks and database transactions (for example, FINISH TASK or COMMIT
WORK) now follow a two-phase commit protocol. When one of these commands
is issued, the Advantage CA-IDMS system to which the command is directed
becomes the coordinator. Any other Advantage CA-IDMS system involved in the
transaction becomes a participant.

34 Advantage CA-IDMS Release Summary

Two-Phase Commit Support Within Advantage CA-IDMS

From a programming perspective, the semantics of these commands have not
changed since prior releases always attempted to commit all updates made
within a distributed transaction. However, because a two-phase commit protocol
was not used in prior releases, it was possible for some changes to be committed
while others were backed out. Release 16.0 eliminates this potential by always
following a two-phase commit protocol.

Optimizations Supported

To minimize the cost of doing a two-phase commit operation, Advantage CA-
IDMS supports the Read Only, Single Agent, and Presumed Abort optimizations.

The Read Only optimization reduces the communications needed to commit a
distributed transaction. A participant that has not updated resources within the
scope of the transaction can respond FORGET to a Preparerequest. Advantage
CA-IDMS does not include such read-only participants in the second phase of
the commit operation, thus eliminating at least one communication.
Additionally, the read-only participant writes no journal records in support of
the two-phase commit operation.

Advantage CA-IDMS uses the Single Agent optimization to reduce the flows
needed to commit a distributed transaction. At the point when a Prepare request
is to be sent to the last remaining participant, if all other participants have
responded FORGET or if this is the only participant in the transaction, then a
OnePhaseCommitrequest is sent instead of a Prepare. This results in only a
single communication with the participant to complete the commit operation.
Furthermore, if there is only a single participant, the coordinator writes no
journal records in support of the distributed transaction.

Advantage CA-IDMS uses a Presumed Abort protocol to reduce journaling
overhead. Simply put, this means that while a coordinator retains knowledge of
a committed transaction until all of its participants indicate that they have
completed the second phase of the commit operation, the coordinator can
immediately forget transactions whose outcome is BACKOUT. Consequently, no
journaling activity for a distributed transaction takes place at a coordinator until
all Prepare votes have been collected and then only if the outcome is OK. The
absence of knowledge of a transaction signifies that its outcome is BACKOUT.

The alternative to Presumed Abort is Presumed Nothing. Under this protocol a
coordinator retains knowledge of the outcome of a commit operation until all
participants indicate that it can be forgotten, regardless of whether the final
outcome is OK or BACKOUT. Consequently, a coordinator must journal the
existence of a transaction prior to forwarding the first Prepare request, and it
must retain knowledge of backed out transactions longer. Advantage CA-IDMS
does not support the Presumed Nothing protocol.

Two-Phase Commit Support 3-5

Two-Phase Commit Support Within Advantage CA-IDMS

Support for External Coordinators

Release 16.0 uses a two-phase commit protocol internally to commit its own
resources, and it can participate in a two-phase commit operation controlled by
the following external coordinators:

m CICS Transaction Server
m RRS—IBM'’s system-level resource recovery platform for z/OS and OS/390

m XA transaction managers supported by future releases of Advantage CA-
IDMS Server

By participating in externally controlled transactions, updates to Advantage CA-
IDMS resources can safely be coordinated with those of other resource managers
that are supported by the above transaction managers.

For more information on CICS Transaction Server, see “Two-Phase Commit
Support with CICS” later in this chapter. For more information on RRS, see
“Two-Phase Commit Support with RRS” later in this chapter. Information on XA
support will be provided in the future.

Support for External Resource Managers

Release 16.0 can coordinate transactions in which external resource managers are
participants. It does this in one of two ways: by enlisting the services of RRS or
by using a resource manager interface tailored to both the Advantage CA-IDMS
environment and the external resource manager.

If the external resource manager supports RRS as a coordinator, using RRS as an
intermediary is the easiest way to extend two-phase commit support to the
external resource manager. In this way, any resource manager that supports RRS
as a coordinator can potentially participate in an Advantage CA-IDMS-
controlled transaction.

If the resource manager does not support RRS as a coordinator, then an interface
that is tailored to the external resource manager and that supports the
Advantage CA-IDMS transaction manager protocol can be used to enable the
resource manager to be a direct participant in an Advantage CA-IDMS-
controlled transaction.

Computer Associates will work with third-party vendors that provide online
access from Advantage CA-IDMS DC/UCEF to resource managers such as DB2
and MQ-Series to extend full two-phase commit participation to these products.

36 Advantage CA-IDMS Release Summary

Two-Phase Commit Support Within Advantage CA-IDMS

Support for Pre-Release 16.0 Systems

Pre-Release 16.0 systems do not support a two-phase commit protocol; however,
they can participate in a two-phase commit operation.

Pre-Release 16.0 systems support a one-phase commit protocol only. Hence,
when they are participants in a two-phase commit operation, they are sent
OnePhaseCommit requests, rather than separate Prepare and Commitrequests.
If only a single pre-Release 16.0 system participates in the transaction, it is
treated as a “last agent,” meaning that all other participants are sent Prepare
requests before the pre-Release 16.0 system is sent its OnePhaseCommitrequest.
If this latter request is successful, then the commit operation proceeds to a
successful conclusion; otherwise, the transaction is backed out. If more than one
pre-Release 16.0 system participates in the transaction, each one is sent a
OnePhaseCommit request during the second phase of the commit operation. Of
course, this can result in some changes being committed while other changes are
backed out; however, this potential is eliminated once all systems are converted
to Release 16.0 and is no riskier than if all systems were pre-Release 16.0 systems.

If a Release 16.0 system participates in a transaction that is controlled by a pre-
Release 16.0 system, then it is sent the same commit directives that a pre-Release
16.0 participant is sent. The Release 16.0 system treats these requests as if they
came from an application and uses a two-phase commit protocol to commit both
local resources and those updated by remote participants of its own.

Support for Batch Applications
All changes made by a batch application are committed or backed out as a single
unit provided at least one of the following is true:
m All updates are made through a single transaction.

m All updates are made through transactions executing on a single central
version and a task-level commit request is issued.

m Batch RRS support is enabled and all database sessions started by the batch
application are routed to central versions running within the same operating
system image as the batch application.

If these conditions are not present, then commit support functions effectively the
same as it would in a pre-Release 16.0 batch environment.

Two-Phase Commit Support 37

Two-Phase Commit Support Within Advantage CA-IDMS

Implementation Details

Transaction Branches

This section provides details on certain aspects of the Advantage CA-IDMS two-
phase commit implementation. While knowledge of this material is not required
to use two-phase commit, it facilitates understanding of the output from
recovery utilities and DCMT commands and might prove useful in researching
exceptional recovery situations.

A transaction branch represents a separately identifiable portion of a transaction
within which deadlocks cannot occur. Unless transaction sharing is in effect,
every database session (every run unit or SQL database session) is associated
with a separate transaction branch. When transaction sharing is in effect,
multiple database sessions may share a single transaction branch. In so doing,
they avoid deadlocking among themselves, since deadlocks are not possible for
work performed under a single transaction branch.

An application is associated with multiple transaction branches if it opens
concurrent, non-sharing database sessions. Multiple branches can also result
from the use of system services that access a dictionary, such as loading from a
load area or accessing a queue area. If more than one transaction branch exists,
they are organized hierarchically, meaning that there is a single top-level branch
and one or more subordinate branches. The top-level branch represents either the
work done by a database session or all work done by a task (or user session if no
task is active). A subordinate branch always represents the work done by a
database session. A subordinate branch may in turn have subordinate branches
of its own, perhaps as a result of an SQL procedure that opens its own database
session.

Every transaction branch is assigned a unique identifier that never changes. This
Branch Identifier (BID) is an eight-byte hexadecimal value that is sometimes
qualified by the node name of the local system to make it a globally unique
value.

A commit operation is always targeted to a single transaction branch and
encompasses all of that branch’s subordinates. The target branch becomes the
top-level branch of the transaction and its subordinates become the subordinate
branches of the transaction. If a task-level commit operation is initiated, the
target branch is always the top-level branch in the task’s branch hierarchy. If a
database session-level commit operation is initiated, the target branch is the one
associated with the database session through which the commit request is issued.

3-8 Advantage CA-IDMS Release Summary

Two-Phase Commit Support Within Advantage CA-IDMS

Transaction Identifiers

Transactions can have multiple identifiers. Advantage CA-IDMS assigns two
types of identifiers: a local transaction identifier and a distributed transaction
identifier. External transaction managers may assign transaction identifiers of
their own, generically referred to as external transaction identifiers.

A Local Transaction Identifier (LID) is a four-byte value that identifies the
work done by a branch within a transaction. It is used to distinguish the work
done by one branch from that of another and is recorded in the journal records
that are used to track local database changes (for example, BGIN, BFOR, AFTR).
Local transaction identifiers are unique only within a central version.

A Distributed Transaction Identifier (DTRID) is a 16-byte value that uniquely
identifies a distributed transaction across all participating nodes. It is assigned by
the Advantage CA-IDMS system that is acting as the coordinator for the
transaction or by a CICS interface. Every distributed transaction processed by an
Advantage CA-IDMS system is assigned a DTRID, regardless of whether the
transaction also has externally assigned identifiers. The DTRID is recorded in the
distributed transaction journal records that are written during the two-phase
commit process (for example, DIND, DCOM, DFGT).

A DTRID value is comprised of an 8-character prefix followed by an 8-byte
hexadecimal value. If assigned by an Advantage CA-IDMS system, the prefix is
the system’s node name and the suffix is an 8-byte internal format timestamp.

If the DTRID is assigned by a CICS interface, the 8-character prefix consists of
“CICS” concatenated with the 4-character CICS system identifier specified in the
TPNAME parameter of the interface’s CICSOPT macro. The 8-byte hexadecimal
value is the UOW (Unit Of Work) identifier assigned by CICS to the work unit
being committed.

External transaction managers may also assign their own identifiers to a
distributed transaction in which Advantage CA-IDMS is a participant. The
following types of external identifiers are recognized by Advantage CA-IDMS
and are recorded in the distributed transaction journal records written by the
central version that interfaces directly with the external transaction manager.
These journal entries provide a cross reference between the internal and external
identifiers.

m RRS URID—the Unit of Recovery Identifier (URID) assigned by RRS. A
URID is a 16-byte hexadecimal value.

m XA XID—the transaction identifier assigned by an XA transaction manager.
An XID is a hexadecimal value whose length can be up to 140-bytes.

Two-Phase Commit Support 39

Two-Phase Commit Support Within Advantage CA-IDMS

Transaction States

Transaction state is an attribute of a distributed transaction that reflects its
progress through a two-phase commit operation. The Advantage CA-IDMS
transaction manager assigns the following transaction states for this purpose:

InReset—This is the initial state prior to the start of a commit or backout
operation.

InFlight—This state is assigned at the start of a two-phase commit operation
and persists while the transaction manager is assessing the need for and the
ability to proceed with the two-phase commit operation.

InPrepare—This state is assigned when the transaction manager determines
that a two-phase protocol is needed to guarantee the integrity of a commit
operation.

LastAgent—This state is assigned by a coordinator’s transaction manager
when there is only a single participant and consequently a full two-phase
protocol is not needed to guarantee the integrity of a commit operation.

InDoubt—This state is assigned by a participant’s transaction manager when
it writes a DIND journal record for the transaction.

InCommit—This state is assigned when a DCOM journal record is written
for the transaction.

InBackout—This state is assigned when it is determined that the outcome of
the distributed transaction is BACKOUT.

Forgotten—This state is assigned when the two-phase commit operation is
complete.

The following diagram illustrates the transitions that can occur from one state to
another as a transaction proceeds through a two-phase commit operation.

3-10 Advantage CA-IDMS Release Summary

Two-Phase Commit Support Within Advantage CA-IDMS

Transaction States

Phase 1 @

LastAgent

InBackout

Phase 2 Forgotten

Transaction Outcomes

Fundamentally, a distributed transaction can have only one of the following
three outcomes: all changes were committed, all changes were backed out, or
some changes were committed while others were backed out. However, it is
useful to support variations of these basic three outcomes, especially as interim
results.

Advantage CA-IDMS recognizes the following transaction outcomes:

m OK—The request is complete and the transaction’s changes have been
committed.

m FORGET—The request is complete, but no changes were committed since
none were made (that is, this is a read-only transaction).

m OK_PENDING—The request is not yet complete, but changes have been or
will be committed.

m BACKOUT—The request is complete but changes have been backed out.

m BACKOUT_PENDING—The request is not yet complete, but changes have
been or will be backed out.

s HC—The request is complete, and the transaction’s changes have been
heuristically committed.

Two-Phase Commit Support 3-11

Two-Phase Commit Support Within Advantage CA-IDMS

m HR—The request is complete, but the transaction’s changes have been
heuristically backed out.

m HM—The request is complete, but some changes have been committed while
others have been backed out.

Resource Managers, Interfaces, and Exits

When discussing commit protocols, the term “resource manager” traditionally
refers to a software component that manages recoverable resources. Advantage
CA-IDMS uses the term to refer to both resource and transaction managers and
the specific interface that is used to communicate with them.

For example, when access is made from one Advantage CA-IDMS system to
another, each system becomes a known resource manager on its partner. On the
front-end, the partner system is identified by its node name and an interface
name of “DSI_CLI”; on the back-end, the partner system is identified by its node
name and an interface name of “DSI_SRV”. Consequently, a central version may
have knowledge of several resource managers whose interface name is DSI_CLI
or DSI_SRYV, since it may communicate with several other Advantage CA-IDMS
systems. Furthermore, a central version may have knowledge of two resource
managers with the same node name, one for each of the two interfaces, since a
system can act as a front-end and a back-end to another system.

When a CICS system is used to access a central version, it becomes a known
resource manager on that central version and is identified through a combination
of its CICS system name and the name of the IDMSINTC interface module
through which it is accessed.

To participate in a two-phase commit operation coordinated by Advantage CA-
IDMS, a resource manager makes its existence known by registering with the
local transaction manager. When registering, the resource manager interface
identifies exit routines to be invoked by the transaction manager during the
commit process. In this way, the resource manager interface acts as the bridge
between the local transaction manager and the resource or transaction manager
to which it provides access. It is the resource manager interface’s responsibility to
forward prepare, commit, and backout directives and return appropriate
responses to the local transaction manager.

When a resource manager’s exit is invoked, it returns outcomes that are similar
to the transaction outcomes outlined above. For example, a resource manager’s
prepare exit can return a FORGET outcome to signify that it has made no
changes within the scope of the transaction and therefore need not participate in
the second phase of the commit operation.

3-12

Advantage CA-IDMS Release Summary

Impact on System Definition

Interests and Roles

In order for a resource manager to participate in a transaction, it must register an
interest in that transaction. The existence of an interest informs the Advantage
CA-IDMS transaction manager that the resource manager’s exits should be
invoked during commit and backout processing.

When an interest is registered, the role that the resource manager is to play with
respect to the transaction is specified. Advantage CA-IDMS recognizes the
following roles:

m Communications Resource Manager (CRM)—indicating that the resource
manager is a remote participant in the transaction.

m Server Distributed Resource Manager (SDSRM)—indicating that the
resource manager is the coordinator for the transaction.

m Participant (PART)—indicating that the resource manager is a local
participant in the transaction.

When a central version application calls a resource manager interface to access a
remote resource, the interface registers a CRM interest in the application’s
current transaction, since it is acting as a participant in that transaction. When
remote access to a central version is provided from an environment controlled by
an external transaction manager, the interface providing that access registers an
SDSRM interest in the transaction since the external transaction manager is the
transaction’s coordinator.

As a two-phase commit operation proceeds, interests are assigned states similar
to the transaction states outlined above. For example, if an interest’s prepare exit
returns OK, the state of the interest is set to InDoubt, reflecting the fact that the
associated resource manager is waiting for the final commit or backout directive.

Impact on System Definition

In order to be able to successfully resynchronize, a coordinator must be able to
communicate with participating systems. During resynchronization, the only
information that an Advantage CA-IDMS coordinator has about another
Advantage CA-IDMS system is its node name. The node name is used as the
resource name in opening a DTS connection and hence the coordinating system’s
resource table and node definitions must be capable of supporting such a
connection. To this end, ensure that every partner system that can be a
participant is defined to the coordinator in one of the following ways.

1. Define the partner system as a NODE in the coordinator’s system definition.
This option is appropriate if there is a direct communications path between
the two systems and dynamic routing through DBGROUPs is not used or if
forcing a specific access method with dynamic routing.

Two-Phase Commit Support 3-13

Impact on System Definition

2. Define the partner system’s node name as a destination in the coordinator’s
resource name table and identify the DBGROUP to which new connections
should be routed by specifying a VIA parameter. This option is appropriate
if dynamic routing is in use and the default access method is acceptable.
Wildcarding the destination name can eliminate the need for defining a
resource for every DBGROUP member and thus allows additional members
to be added to the group without defining new resources.

3. Define the partner system’s node name as a destination in the coordinator’s
resource name table and identify the intermediate node through which
communication should be routed by specifying a VIA parameter. This
option should be used only if there is no direct communications path
between the two systems.

To facilitate earlier resynchronization when a failed participating system is
restarted, it is advisable, though not required, to similarly define each potential
coordinator within the participating system’s definition.

System Generation Resource Table

Release 16.0 supports the ability to specify that database sessions targeted to a
specific node be routed via a DBGROUP. This enables startup to resynchronize
with participating nodes that are not defined by a NODE statement in the system

definition.
Syntax
> RESource TABle >
ADD —
MODify —
DELete —
' |
»—Vv-—— DEStination is destination-node >«
i: VIA nodename t'
VIA groupname
3-14 Advantage CA-IDMS Release Summary

Impact on System Definition

Parameters

VIA nodename

VIA groupname

Usage

Example

Identifies the name of the DC/UCF system where the named resource is located
or the name of an intermediate node through which the request for data will be
routed.

Nodename is the system name identified on the SYSTEM ID parameter of the
SYSTEM statement or overridden by the DCNAME parameter in the SYSIDMS
file at startup and must match a nodename defined with the NODE statement.

Identifies the name of the DBGROUP to which the request for data will be
dynamically routed.

Groupname is the name of a DBGROUP defined in the database name table of
one or more DC/UCEF systems, any of which are capable of servicing the request
for data. Groupname must match a nodename defined by a NODE statement
specifying a GROUP parameter.

Specitying Resources: The type of resource you specify is a database or a
destination (nodename). In most cases, you will specify a database name. The
only time you need to explicitly define a destination resource is when the target
node is not defined using a NODE statement. This can occur because:

m There is no direct communications path from the system being defined to the
target system, thus requiring database requests to be routed through an
intermediate node. If this is the case, the target node should be defined as a
destination resource and the intermediate node specified in its VIA
parameter.

m Dynamic routing through DBGROUPs is used to direct database connections
to any of several systems capable of processing the request and the default
access method can be used to access the dynamically selected target node. If
this is the case, the members of the DBGROUP should be defined as
destination resources and the name of the DBGROUP specified in their VIA
parameter. If the node names of all members of a DBGROUP follow a
unique naming convention, then wildcarding can be used in the destination’s
nodename to reduce the number of required definitions and allow for the
addition of new members without changing the resource table.

Defining a Resource Table:

ADD RESOURCE TABLE
DBNAME IS SYS104 VIA EDCQAMO1
DESTINATION IS PRODC* VIA CUSTGRP
DBNAME IS MIS* VIA SYSTEM84.

Two-Phase Commit Support 3-15

Impact on System Operations

Impact on System Operations

This section describes the impact that two-phase commit has on system
operations.

Restarting a Failed System

When restarting a failed central version, it is advisable to restart it on the same
logical operating system image as the one on which it abnormally terminated.
This ensures that the restarted system can access (and be accessed by) the same
systems with which it was able to communicate prior to the abnormal
termination regardless of the intersystem access methods being used. If the
restarted system cannot communicate with another system, it is not able to
resynchronize with that system. This may leave incomplete transactions holding
locks that prevent access to portions of the database. Resynchronization
eventually completes when the necessary intersystem communications are
reestablished. For more information on the resynchronization process, refer to
“Impact on Recovery” later in this chapter.

System Name During Warmstart

A system must be restarted using the same name that it had at the time of failure.
To ensure that this is true, the name of an Advantage CA-IDMS system is
recorded on its journal files. During warmstart, the system name on the journal
files is used as follows:

m If no DCNAME parameter is specified in the SYSIDMS file of the system’s
startup JCL, the name of the system is taken from the value stored on the
journal files. Any value specified in the system definition is ignored.

m If a DCNAME parameter is specified in the SYSIDMS file, it must match the
value stored on the journal files, otherwise warmstart fails

The use of a DCNAME parameter is optional except for systems that are
members of a data sharing group or that share a single system definition using
the cloned system capability. This latter requirement is new for Release 16.0.

Incomplete Distributed Transactions at Startup

When restarting a failed central version, warmstart identifies incomplete
distributed transactions that were active at the time of failure. Depending on
where in the commit process the failure occurred, these transactions are
completed by warmstart or are restarted later during the startup process. If
restarted, the transactions remain active until resynchronization takes place with
the other resource or transaction managers involved in the transaction or until
the transactions are manually completed.

3-16

Advantage CA-IDMS Release Summary

Impact on System Operations

If a restarted transaction is in an InDoubt state, then any locks held by that
transaction at the time of failure are reacquired and held until the transaction is
completed. Since these locks prevent access to resources that were updated by
the transaction, it is important to restart all failed systems as soon as possible so
resynchronization can complete the transaction and free the locks.

The following sample messages might be displayed when a distributed
transaction is restarted:

IDMS DC202038 V74 In-Doubt Transaction-ID 1416 will be added to the unrecovered transaction
list

IDMS DC202051 V74 Warmstart COMPLETE, but recovery of SOME transactions have been DEFERRED
until later in startup.

IDMS DB342017 V74 T1 Will lock Transaction-ID 1416

IDMS DB342019 V74 T1 DTRID SYSTEM74::01650C90A708A9B2-01650C8C4207D9FF active at startup
IDMS DB342020 V74 T1 DTRID SYSTEM74::01650C90A708A9B2-01650C8C4207D9FF has been restarted
IDMS DB342022 V74 T1 In-Doubt Transaction 1416 has been restarted

Incomplete Distributed Transactions at Shutdown

Distributed transactions whose commit process was interrupted will remain
active until resynchronization has completed successfully with all participants
affected by the failure. Such transactions are said to be “pending
resynchronization.” If transactions are still pending resynchronization at the time
a shutdown request is issued, the system will not shutdown successfully.
Instead, it displays the following message and terminates abnormally with abend
code 3937.

IDMS DC200241 V74 T1 Active transactions exist. Abending.

When the system is next restarted, the incomplete distributed transactions that
were pending resynchronization are restarted and their locks reacquired.

To avoid abnormal terminations at shutdown, you should ensure that no
distributed transactions are pending resynchronization before issuing the
shutdown command. You can determine whether such transactions exist by
issuing a DCMT DISPLAY DISTRIBUTED RESOURCE MANAGER command.
To complete these transactions, you must restart the affected system and either
allow it to resynchronize automatically or force it to resynchronize by issuing a
DCMT VARY DISTRIBUTED RESOURCE MANAGER RESYNC command.

For more information on resynchronization, refer to “Impact on Recovery” later
in this chapter. For more information on the DCMT DISPLAY DISTRIBUTED
RESOURCE MANAGER command, refer to “Monitoring Distributed Commit
Operations.” For more information on issuing the DCMT VARY DISTRIBUTED
RESOURCE MANAGER RESYNC command, refer to Appendix A, “New and
Revised DCMT Commands.”

Two-Phase Commit Support 3-17

Impact on System Operations

Monitoring Distributed Commit Operations

Recovery utilities such as PRINT JOURNAL and FIX ARCHIVE have been
enhanced to report on distributed transactions encountered during their
processing. Journal report 8 reports any distributed transaction journal records
that it encounters. For details on these enhancements, see Chapter 5, “Utility
Enhancements.”

In addition, the following DCMT commands provide the ability to monitor
various aspects of distributed commit operations:
s DCMT DISPLAY DISTRIBUTED RESOURCE MANAGER

s DCMT DISPLAY DISTRIBUTED TRANSACTION

DCMT DISPLAY DISTRIBUTED RESOURCE MANAGER

This command displays information about resource and transaction managers
that are known to a system.

You can display summary information about all resource managers or details
about an individual resource manager.

The summary display is useful in determining whether there are resource
managers for which resynchronization has not completed and whether
incomplete distributed transactions are pending completion of that
resynchronization.

The detailed display can be used to determine which transactions are pending
resynchronization with a particular resource manager.

For more information on this command, see Appendix A, “New and Revised
DCMT Commands.”

DCMT DISPLAY DISTRIBUTED TRANSACTION

This command displays information about distributed transactions.

You can display summary information about all active distributed transactions
or those pending resynchronization or details about an individual distributed
transaction.

The summary display is useful in determining if any distributed transactions
exist and whether any are pending resynchronization.

3-18

Advantage CA-IDMS Release Summary

Impact on Journaling

The detailed display can be used to determine the coordinator and participants
in a distributed transaction. It also shows an external identifier if an external
transaction manager such as RRS has assigned one. This information might be
useful in determining how to complete a distributed transaction in the event of
resynchronization failure.

For more information on this command, see Appendix A, “New and Revised
DCMT Commands.”

Impact on Journaling

This section describes the new journal records that are written in support of a
two-phase commit operation and the changes to existing journal records. It also
describes a new journal format option that can be specified.

New Journal Records and Formats

Distributed transaction journal records are written during a two-phase commit
operation to record the various states of a distributed transaction and to facilitate
resynchronization in the event of failure. Each of them contains a Distributed
Transaction Identifier (DTRID), a 16-byte value that distinguishes one distributed
transaction from another.

Two-Phase Commit Support 3-19

Impact on Journaling

The following new journal record types can be written in support of a two-phase
commit operation:

DIND (In doubt)—Written by a participant after it has successfully prepared
its resources for commit and prior to returning an OK response to its
coordinator.

DCOM (Commit)—Written by a coordinator to signify that a transaction’s
changes will be committed. Its existence separates the first and second
phases of the commit process. A participant also writes a DCOM
immediately upon receiving a Commitrequest from its coordinator.

DBAK (Backout)—Written by a coordinator to signify that a transaction’s
changes will be backed out. Its existence separates the first and second
phases of the commit process. A participant also writes a DBAK immediately
upon receiving a Backoutrequest from its coordinator but only if a DIND
had previously been written.

DPND (Pending)—Written by a coordinator during the second phase of a
commit operation if some participant is unable to complete its commit
processing due to a failure. By writing this record, the coordinator is able to
forget some participants while remembering others. A DPND can also be
written by either a coordinator or a participant to record heuristic outcomes.

DFGT (Forget)—Written by coordinators and participants when they have
completed their two-phase commit processing for a transaction. A DFGT
record is written only if some other Dxxx record was previously written.

DIND, DCOM, and DBAK records contain the Local Transaction Identifiers
(LIDs) identifying the work done by local transaction branches participating in a
distributed transaction. A LID is the 4-byte transaction identifier that is carried
in the local transaction-related journal records (for example, BFOR, AFTR,
COMT). The journal records for a distributed transaction are interspersed with
associated local transaction records as follows:

BGIN—indicating the start of a local recovery unit
BFOR/AFTR—one or more pairs

DIND—on a participant only

DCOM or DBAK—on a participant and a coordinator

COMT or ENDJ—if a DCOM was written

ABRT—if a DBAK was written

DPND—on a coordinator if the commit operation was interrupted

DFGT—on a participant and a coordinator if any other Dxxx record was
written

320

Advantage CA-IDMS Release Summary

Impact on Journaling

DIND, DCOM, DBAK, and DPND records contain information about a
participant’s coordinator and about a coordinator’s participants. The specific
information that is recorded varies depending on the type of the coordinator or
participant. For example, the node name, resource name, and remote transaction
branch identifier are recorded for Advantage CA-IDMS participants. The RRS
URID (Unit of Recovery Identifier) is recorded for an RRS coordinator or
participant.

Dxxx records can be larger than a single disk journal block. If this is the case,
they are split into as many journal blocks as are necessary to hold the entire Dxxx
record. It is also possible for a Dxxx record to be split across disk journal files
and, hence, across archive files. The manual recovery utilities reassemble the
record, provided that all necessary archive files are processed in a single
execution of the utility. They ignore partial Dxxx records in which not all
segments are present in the input file.

In addition to the above new journal records, the following journal records have
been expanded to support two-phase commit processing:

m JHDI1 (Journal Header 1) —A record that occupies the first block of each disk
journal file. It was expanded to record information about other systems with
which this system communicates. This information includes the journal
stamp of the other system and how to communicate with it.

m JHD2 (Journal Header 2) —An overflow block for a JHD1; it is optionally
allocated when a disk journal file is formatted.

m JSEG/DSEG/JSGX—Records that track active transactions across a journal
swap and other key points. They are used by warmstart during the
automatic recovery process and have been expanded to track active
distributed transactions in addition to active local transactions.

Journal File Formatting Considerations

When formatting journal files, it might be necessary to specify a size for the
amount of space to be reserved for recording information about other systems
with which a system communicates. In most cases, the default size is sufficient
and no explicit size parameter is needed; however, if a system’s journal block
size is very small or it communicates with many other Advantage CA-IDMS or
CICS systems, it may be necessary to reserve additional space. For information
on how to specify a storage size, see Chapter 5, “Utility Enhancements.”

If a journal’s available space is exhausted, it is necessary to shut down the
system, offload and format its journal files, and restart the system before
communications with new systems can take place.

Two-Phase Commit Support 321

Impact on Recovery

Impact on Recovery

This section describes the impact that two-phase commit has on recovery
operations. It describes the automatic recovery that is provided through
resynchronization as well as considerations for manual recovery operations.

System Recovery Interdependence

In general, recovery from failures that occur during two-phase commit
processing is accomplished automatically through the resynchronization process,
just as warmstart automatically recovers from failures during local transaction
processing. The one important consideration when dealing with distributed
transaction recovery is that systems are no longer independent with respect to
recovery. Information on a coordinator’s journal files might be needed to
complete recovery for one or more of its participants. If either system’s journal
files are formatted before resynchronization between the two systems has
completed after a failure, then manual intervention might be needed to complete
the recovery process.

Resynchronization Between Advantage CA-IDMS Systems

Resynchronization is a process in which information is exchanged between a
two-phase commit coordinator and a participant to establish attributes relevant
to the two-phase commit process and complete outstanding distributed
transactions following a failure.

Depending on the systems involved and the nature of the failure,
resynchronization can occur automatically or can require explicit action to be
triggered. This chapter focuses on resynchronization between Advantage CA-
IDMS systems.

For information on resynchronization between CICS and Advantage CA-IDMS,
see “Two-Phase Commit Support with CICS” later in this chapter.

For information on resynchronization between RRS and Advantage CA-IDMS,
see “Two-Phase Commit Support with RRS” later in this chapter.

322

Advantage CA-IDMS Release Summary

Impact on Recovery

When Does It Occur?

What Does It Entail?

Resynchronization between Advantage CA-IDMS systems occurs as follows:

m When a central version is started, resynchronization is initiated with each
knownback-end system. A back-end system is known if it was accessed
since the last time the journal files were formatted. Information about other
systems is recorded in a system’s journal files (in the JHD1 record). If the
started system cannot communicate with one or more of its back-end
systems, resynchronization is retried on a periodic basis until
communication is reestablished.

m When a remote database session is started, resynchronization is initiated if
the back-end system was previously unknown (that is, if this is the first time
the back-end system has been accessed since the journal files were formatted)
or if the back-end system has been recycled since resynchronization
previously took place between the two systems.

Note: A remote database session is started when an application binds a run
unit or connects an SQL session to a remote database. It is also started when
a DCUF task is executed to establish a remote default dictionary.

m When resynchronization is manually driven through a DCMT VARY
DISTRIBUTED RESOURCE MANAGER command. For more information,
see DCMT VARY DISTRIBUTED in Appendix A, “New and Revised DCMT
Commands.”

Resynchronization begins with an exchange of startup times and journal
timestamps between the two systems.

As the name implies, the startup time is the time at which a system was started
and is used to detect when a partner system is recycled.

The journal timestamp is assigned by a central version the first time it opens a set
of journal files after they have been formatted. It is subsequently used to detect
when a partner’s journal files have been reformatted since the last time the two
systems resynchronized with each other.

If no distributed transactions involving the two systems exist at the time that
resynchronization takes place, the two systems simply exchange the above
information, update their journal files with new or changed partner information,
and record each other as open resource managers.

Two-Phase Commit Support 323

Impact on Recovery

If distributed transactions involving the two systems do exist at the time of
resynchronization, each system compares its partner’s current journal timestamp
with the one that it had saved previously. If the timestamps are the same,
resynchronization proceeds by exchanging information about the incomplete
distributed transactions that are pending resynchronization. If the timestamps
are not the same, it is an indication that one of the following has occurred:

m The partner system’s journal files have been prematurely formatted.
m The partner system has been started with incorrect journal files.

m The partner system has been started with an incorrect DCNAME parameter.

Any of these conditions result in a resynchronization failure.

Responding to Resynchronization Failures

If resynchronization detects a journal stamp mismatch with a system for which
incomplete distributed transactions exist, resynchronization cannot complete.
When this occurs, messages are displayed that show the old and new journal
stamps and the incomplete distributed transactions that are impacted by the
mismatch. The operator is prompted as to what action should be taken. The
following example shows the messages that are displayed as a result of a
mismatch in SYSTEM74’s journal stamps as they are known to SYSTEM73.
DC329021 V73 T23 Journal stamp mismatch for SYSTEM74::DSI_SRV *OLD 2002-12-14-07.20.36.376737
DC329021 V73 T23 Journal stamp mismatch for SYSTEM74::DSI_SRV *NEW 2003-01-30-8.07.42.278334
DC329022 V73 T23 RM Name Dtrid Branch State

DC329023 V73 T23 SYSTEM74::DSI_SRV SYSTEM74::0165@D6EDFB1ABI3-01650D6A79F31E50 InDoubt

DC329024 V73 REPLY 01 T23 Reply with resynchronization action for SYSTEM74::DSI_SRV
(Ignore,Defer):

Before replying to message DC329024, the cause of the mismatch should be
determined. The appropriate response should then be made as outlined in the
following table. Until a response is made to the DC329024 message, no database
access is permitted with the identified resource manager. Any task attempting
such access waits until a response has been made or its wait time is exceeded.

324 Advantage CA-IDMS Release Summary

Impact on Recovery

Reply Meaning and Considerations

IGNORE This reply specifies that resynchronization with the resource
manager should continue. The distributed transactions listed in the
preceding DC329023 messages require manual completion.

IGNORE is appropriate if the partner system’s journal files have
been prematurely formatted. In this case, the only way to complete
the affected transactions is to do so manually, since the journal
entries required to complete the transactions automatically are no
longer available on the partner system’s journal files.

For guidance on how to manually complete the transactions, see
“Completing Transactions Manually” later in this chapter.

DEFER This reply specifies that resynchronization with the resource
manager should be postponed until a later time. Database access
with the identified resource manager is disallowed until
resynchronization has completed successfully.

DEFER is appropriate if the mismatch can be corrected by recycling
one or the other system. Perhaps one of the systems was started with
incorrect journal files or the partner system was started with an
incorrect DCNAME parameter.

After replying DEFER, the system in error should be shutdown and
restarted correctly. It may then be necessary to initiate
resynchronization using a DCMT VARY DISTRIBUTED RESOURCE
MANAGER command.

Completing Transactions Manually

In certain circumstances, it may be necessary to complete a distributed
transaction manually. The need for this should be extremely rare and is a
consequence of a failure in resynchronization. The ability to manually complete
distributed transactions is provided for situations such as the permanent
inaccessibility of a partner system or the premature formatting of journal or non-
Advantage CA-IDMS log files during a recovery operation.

When manually completing a transaction whose state is InDoubt, you must
specify whether to commit or back out the transaction’s changes. You should
research the situation carefully before taking any action. If you make the wrong
decision, the distributed transaction will have a mixed outcome, meaning that
some of its changes are committed while others are backed out. The following
sources of information may be helpful in determining the correct action to take:

Two-Phase Commit Support 325

Impact on Recovery

m The output from a DCMT DISPLAY DISTRIBUTED TRANSACTION
command indicates what system is acting as the coordinator for the
transaction.

m Use the facilities provided by the coordinator to determine the outcome of
the transaction.

- If the coordinator is an Advantage CA-IDMS system, its journal files
contain a DCOM record for the transaction if its changes should be
committed. The PRINT JOURNAL summary report lists all
incomplete distributed transactions. If there is no entry for the
transaction and no journal information is missing, then the transaction’s
changes should be backed out.

— If the coordinator is RRS, the RRS ISPF panels can be used to determine
the outcome of the transaction. For more information on RRS panels,
refer to the IBM guide MVS5 Programming: Resource Recovery.

— If the coordinator is CICS, examine its log file or use CEMT commands to
determine the outcome of the transaction.

Once you have determined whether a transaction’s changes should be committed
or backed out, issue a DCMT VARY DISTRIBUTED TRANSACTION command
to complete it specifying COMMIT or BACKOUT. Doing so marks the
transaction as heuristically committed or backed out accordingly. The
transaction remains active, holding no locks, until resynchronization is
completed with the coordinator or a DCMT VARY DISTRIBUTED
TRANSACTION command is issued that specifies FORGET. Waiting for
resynchronization is recommended since the overall status of the transaction can
be checked for consistency...meaning that all changes are committed or backed
out. If a mixed outcome is detected, this is noted on the log and the transaction
remains active until a DCMT VARY DISTRIBUTED TRANSACTION is issued
specifying FORGET.

For more information on this command, see Appendix A, “New and Revised
DCMT Commands.”

Manual Recovery Considerations

If manual recovery becomes necessary, the process is generally the same
regardless of whether the archive journal files contain distributed transaction
journal records (Dxxx records) or not.

326 Advantage CA-IDMS Release Summary

Impact on Recovery

However, special action may be needed when a ROLLFORWARD operation
terminates or a ROLLBACK operation begins at a point in time where a
distributed transaction is active and in an InDoubt state. The problem that arises
in such a situation is that the recovery utility does not know whether to commit
the local changes made by the InDoubt transaction or back them out. Since the
utility has no way of communicating with a coordinator to determine what
action to take, it may be necessary for the DBA to explicitly specify the final
outcome for the transaction.

InDoubt Transactions During Manual Recovery

A distributed transaction is in an InDoubt state when the last journal record
written for that transaction is a DIND. Normally, a DCOM or a DBAK record
follows a DIND, and its presence determines whether a transaction’s changes
should be committed or backed out. The absence of a DCOM or DBAK record
may be because:

m It has not been written because resynchronization with the transaction’s
coordinator has not completed.

m It exists but on a later archive journal file that is not being processed in the
current execution of the recovery utility.

m It exists but is split between two archive journal files, only the first of which
is being processed in the current execution of the recovery utility.

By default, the recovery utilities leave an InDoubt transaction in its InDoubt
state, meaning that its changes are not rolled out. A DBA can override this
default behavior by adding an entry to a manual recovery control file to
explicitly specify the action to be taken for an InDoubt transaction.

Explicitly overriding the default action should normally not be necessary. In fact,
the presence of InDoubt transactions at the end of a ROLLFORWARD or
ROLLBACK operation should be researched to determine the reason for their
existence and to ensure that the recovery procedure being followed is valid and
includes all necessary journal input.

An InDoubt transaction might validly be encountered when recovering a
damaged database file. In this case, the transaction should be allowed to remain
InDoubt. When the recovered file is subsequently varied active to the central
version, the transaction is completed (backed out or committed) automatically.

Generally, the only time that an InDoubt transaction should be explicitly
completed is in exceptional situations such as:

m When a coordinator is permanently inaccessible

m When a coordinator’s journal files have been prematurely formatted

m When a participant’s journal files have been damaged.

Two-Phase Commit Support 327

Impact on Recovery

Even in the first two situations, if the transaction is still active within the
participant central version it should be completed using a DCMT VARY
DISTRIBUTED TRANSACTION command rather than using a manual recovery
control file override.

For more information on the format and use of the manual recovery control file,
see Chapter 5, “Utility Enhancements.”

Deleting Resource Managers

If a resource manager becomes inaccessible or is removed from the network, it
can be deleted by issuing a DCMT command. Even in these cases, there is often
no need to explicitly delete a resource manager, since it disappears when the
journal files are next formatted. However, if incomplete distributed transactions
exist that involve an inaccessible resource manager as a participant, then you
may want to explicitly delete the resource manager in order to enable the
transactions to be completed.

You can delete a resource manager by issuing a DCMT VARY DISTRIBUTED
RESOURCE MANAGER command, specifying DELETE. Doing so removes the
resource manager from the system, purges it from the journal files and deletes all
associated transaction interests. Clearly, this command should be used with
care.

The following procedure should be followed to delete a resource manager:

1. Obtain a list of transactions in which the resource manager has an
interest by issuing a DCMT DISPLAY DISTRIBUTED RESOURCE
MANAGER command for the target resource manager.

2. For each listed transaction determine whether the resource manager is a
coordinator or a participant by displaying its detail using a DCMT
DISPLAY DISTRIBUTED TRANSACTION command.

3. Complete each transaction for which the resource manager is a
coordinator by issuing one or more DCMT VARY DISTRIBUTED
TRANSACTION commands.

4. Issue a DCMT VARY RESOURCE MANAGER ... DELETE to delete the
resource manager.

5. Complete each transaction for which the resource manager was a
participant by issuing a DCMT VARY DISTRIBUTED TRANSACTION
command.

For more information on these commands, see Appendix A, “New and Revised
DCMT Commands”.

328 Advantage CA-IDMS Release Summary

Two-Phase Commit Support with CICS

Two-Phase Commit Support with CICS

A two-phase commit protocol can optionally be used when accessing an
Advantage CA-IDMS database from a CICS application. Using a two-phase
commit protocol ensures that updates made to Advantage CA-IDMS data are
coordinated with those made to other recoverable resources that the application
accesses within the same CICS UOW (Unit Of Work). Two-phase commit
support is provided only when using a Release 16.0 CICS interface (IDMSINTC)
to access a Release 16.0 back-end CV.

Note: Two-phase commit is not supported through the IDMSINTL CICS
interface.

Implementation Requirements

In order for successful two-phase commit operations between CICS and
Advantage CA-IDMS, the following steps must be taken:

m Review the new IDMSCINT and CICSOPT parameters. While there is no
need to create a new IDMSCINT and relink your application programs, you
may want to in order to take advantage of some of the new IDMSCINT
options.

m Assemble a new CICSOPT options table and link an IDMSINTC interface
module for each interface for which you wish to enable two-phase commit
processing.

Note: This must be done for all IDMSINTC interface modules when
upgrading to Release 16.0 even if two-phase commit processing is not
enabled.

m Ensure that each CICS system is uniquely identified through the TPNAME
parameter of the CICSOPT macro or the new CICS_NAME SYSIDMS
parameter.

m Ensure that the CICS system is logging transaction information. This
requires the use of a CICS log file. For more information, refer to the
appropriate CICS documentation.

m Create a CICS RSYN transaction and program for each CICS interface
module used within the CICS system.

m If using an OPTIXIT or OPTIQXIT to route requests to different back-end
central versions, modify the OPTIXIT to recognize and correctly route
resynchronization requests.

The remainder of this chapter discusses these requirements and other aspects of
two-phase commit support between CICS and Advantage CA-IDMS.

Two-Phase Commit Support 329

Two-Phase Commit Support with CICS

Programming Interface

A CICS commit operation is initiated through an explicit CICS SYNCPOINT
command or at normal CICS task termination. Regardless of how it is initiated,
CICS becomes the coordinator and the back-end Advantage CA-IDMS system(s)

become participants.

A CICS backout operation is initiated when one of the following occurs:
m An explicit CICS BACKOUT command is issued.
m A CICS task terminates abnormally.

m An Advantage CA-IDMS database session, for which the parameter
AUTONLY is enabled, is rolled back. See the section, Requesting the Use of
Two-Phase Commit, later in this chapter for information about the
AUTONLY parameter.

Optimizations Supported

In order to minimize the cost of doing a CICS syncpoint operation, the
Advantage CA-IDMS CICS interface supports the CICS single-update and read-
only optimizations.

The CICS single-update optimization permits CICS to make a single phase
commit request to the Advantage CA-IDMS CICS interface rather than separate
Prepare and Commit requests, if it is the only updating resource manager
participating in the UOW.

The CICS read-only optimization permits CICS to make a single phase commit
request to the Advantage CA-IDMS CICS interface if it has made no updates
within the CICS transaction. Furthermore, if all resource managers but one are
read-only, CICS can avoid the overhead of a two-phase operation by directing
the sole updater to do a single phase commit.

These optimizations not only reduce communications with participating resource
managers, but also reduce log and journal overhead. For more information on
the single-update and read-only optimizations, refer to the appropriate CICS
documentation.

Requesting the Use of Two-Phase Commit

Whether the work done by a database session is to be included in a CICS UOW is
determined at the time a database session is opened. A database session is
opened when a bind run unit or the first SQL statement is executed. When a
session’s work is included in a CICS UOW, its changes are committed or backed
out as directed by CICS and the Advantage CA-IDMS interface uses a two-phase
commit protocol to achieve the desired outcome.

330

Advantage CA-IDMS Release Summary

Two-Phase Commit Support with CICS

Several new and enhanced IDMSCINT and CICSOPT parameters control
whether a database session is included in a CICS UOW and therefore if a two-
phase commit protocol is used.

AUTOCMT—Enabling this option makes the work done by the database
session eligible for inclusion in a CICS UOW. The following determine if it is
actually included:

1. The AUTONLY setting

2. Whether the application issues its own commit or rollback DML requests
before the CICS syncpoint operation

AUTONLY—Enabling this option forces the work done by the database
session to be included in the CICS UOW. DML statements that would
typically commit work (such as FINISH or COMMIT WORK) do not cause
changes to be committed even if the session itself is terminated. The
session’s changes are committed only when the CICS syncpoint occurs. On
the other hand, if the changes made by a session for which AUTONLY is
enabled are backed out, either as the result of a DML ROLLBACK request or
because of some environmental condition such as a deadlock, the entire CICS
UOW is immediately backed out. This ensures consistent behavior across all
resources updated by the application.

If AUTONLY is not enabled and AUTOCMT is enabled, the work done by
the database session is included in the CICS UOW provided that the
application does not issue commit or rollback DML requests prior to the
CICS syncpoint operation.

AUTONLY is ignored if AUTOCMT is not enabled.

Note: If transaction sharing is enabled, AUTONLY and AUTOCMT are
automatically enabled.

Two-Phase Commit Support 331

Two-Phase Commit Support with CICS

m ONCOMT—This option specifies the effect that a CICS syncpoint operation
has on a database session whose work is included in the CICS UOW. The
session can optionally be treated as if a FINISH, COMMIT ALL or COMMIT
CONTINUE were issued, meaning that it can be terminated, remain active
but have currencies cleared or remain active with currencies left in-tact.

m ONBACK—This option specifies the effect that a CICS backout operation has
on a database session whose work is included in the CICS UOW. The
session can optionally be treated as if a ROLLBACK or a ROLLBACK
CONTINUE were issued, meaning that it can be terminated or remain active
but have its currencies cleared.

All of these options can be specified through both IDMSCINT and CICSOPT
parameters. The CICSOPT parameters can override their IDMSCINT
counterparts or be used as defaults. For more information on these new
parameters, refer to Appendix F, “CICS Interface Enhancements for Two-Phase
Commit Support.”

Additional Two-Phase Commit Parameters

In addition to the parameters that control whether a two-phase commit protocol
is used, four new CICSOPT parameters affect two-phase commit processing.

m TRUE—Specifies a 5-character prefix used in forming TRUE (Task Related
User Exit) entry names. The prefix must be unique across all IDMSINTC
interface modules in use within a single CICS system.

. MAXCON—Specifies the maximum number of Advantage CA-IDMS
systems that can be concurrently accessed by an application using an
IDMSINTC interface. This limit applies only to systems accessed through
database sessions for which AUTOCMT is enabled.

» MAXIDMS—Specifies the maximum number of Advantage CA-IDMS
systems that an IDMSINTC interface can access during the life of a CICS
system. This limit applies only to systems accessed through database
sessions for which AUTOCMT is enabled.

m RSYNTXN—Specifies the name of the resynchronization transaction defined
to CICS for this interface. A separate CICS transaction must be defined for
each interface in use within a CICS system. For more information on the
CICS resynchronization transaction, refer to The RSYN Transaction and
Program later in this chapter.

For more information on these new parameters, refer to Appendix F, “CICS
Interface Enhancements for Two-Phase Commit Support”

332

Advantage CA-IDMS Release Summary

Two-Phase Commit Support with CICS

CICS Systemm Name Requirements

An important consideration for successful two-phase commit operations between
CICS and Advantage CA-IDMS is that the name of every CICS system have a
consistent name that is unique across all CICS systems accessing a central
version.

The name of the CICS system is established as:

m The value in the new CICS_NAME parameter specified in the SYSIDMS file
included in the CICS startup JCL.

Or, if the CICS_NAME parameter is not specified,

m The value of the TPNAME parameter associated with the first IDMSINTC
interface within a CICS system.

If the CICS name is allowed to default to the TPNAME of the first CICS interface,
all other IDMSINTC interface modules started within the CICS system must have
the same TPNAME value, otherwise they will fail with a K213 abend code.

When restarting a CICS system, its name must remain unchanged if it is involved
in incomplete distributed transactions that are still active on a central version.
Changing the name while incomplete transactions exist may make it necessary to
complete those transactions manually.

The description of the new SYSIDMS parameter for specifying a CICS system
name is as follows:

CICS_NAME=<CICS-name>

Where:

<CICS-name>—specifies a 1-4 character value that identifies the CICS system
being started. It must be unique across all CICS systems that access the same
central version.

Resynchronization between CICS and Advantage CA-IDMS

Resynchronization is part of the recovery process that takes place following a
failure during a two-phase commit operation. It involves the exchange of
information between a coordinator and a participant in order to resolve
incomplete units of work. Release 16.0 provides a mechanism to resynchronize
a CICS system (the coordinator) and an Advantage CA-IDMS central version (the
participant) following abnormal terminations of either system.

Two-Phase Commit Support 3-33

Two-Phase Commit Support with CICS

Resynchronization between CICS and Advantage CA-IDMS is undertaken in the
context of a specific interface module IDMSINTC). This means that if multiple
interface modules are used within a single CICS system to access a given back-
end CV, a separate resynchronization process takes place for each one.
Consequently, resynchronization actually takes place between a CICS interface
running on a given CICS system and a back-end CV rather than between a CICS
system and a back-end CV.

The Resynchronization Transaction and Program

Resynchronization between a CICS interface and an Advantage CA-IDMS central
version is done through execution of a resynchronization transaction defined to
CICS. The Advantage CA-IDMS installation default name for this transaction is
RSYN. The resynchronization transaction is associated with a resynchronization
program whose installation default name is IDMSCSYN. A separate
resynchronization transaction and program must be created for each CICS
interface module (IDMSINTC) that is used within a CICS system and the name of
the transaction must be specified in the RSYNTXN parameter of the interface’s
CICSOPT macro. Failure to define the CICS resynchronization transaction
causes any task attempting to open a database session for which AUTOCMT is
enabled to fail with an abend code of K209.

For details on defining the transaction and creating the resynchronization
program, refer to Appendix F, “CICS Interface Enhancements for Two-Phase
Commit.”

How is Resynchronization Initiated?

Resynchronization between a CICS interface and an Advantage CA-IDMS central
version is initiated in the following ways:

m Ina CICS Transaction Server V1R1 (or later release) for z/OS or OS/390,
resynchronization takes place automatically when the interface is started. It
resynchronizes with all central versions accessed through the interface and
known to CICS as participants in incomplete UOWs.

m When the first database session is connected through the interface to a back-
end central version after either system is started, resynchronization takes
place automatically for the central version being accessed.

m When the CICS resynchronization transaction (RSYN) is invoked manually,
resynchronization takes place for the central version identified in the
transaction invocation. For information about invoking a resynchronization
transaction manually, refer to Appendix F, “CICS Interface Enhancements
for Two-Phase Commit Support.”

334

Advantage CA-IDMS Release Summary

Two-Phase Commit Support with CICS

When Should You Manually Resynchronize?

Normally there is no need to manually initiate resynchronization since it occurs
automatically when the first connection is made following restart of the CICS or
Advantage CA-IDMS systems. However, if a particular back-end system is
accessed infrequently through a given interface and incomplete transactions on
the back-end system require resynchronization, you can invoke the RSYN task
manually to force resynchronization to occur immediately.

In non-CICS Transaction Server V1R1 (or later release) for z/OS or OS/390
environments, manually initiated resynchronization can only take place when no
user applications are accessing the back-end CV through the interface being
resynchronized. Manual resynchronization terminates if such active connections
exist. This restriction does not apply to CICS Transaction Server VIR1 (or later
release) for z/OS or OS/390.

The Resynchronization Process

When the resynchronization task is executed (either automatically or manually),
it retrieves a list of incomplete distributed transactions that are known to the
central version with which it is resynchronizing and that are pending
resynchronization with the associated CICS interface. It then issues a CICS
RESYNC command to inform CICS of the Units of Work (UOWs) that are
pending completion. CICS, in turn, initiates a CRSY task for each affected UOW.
The CRSY task drives the TRUE syncpoint exit to inform the back-end central
version as to whether to commit or back out the distributed transaction.

If the resynchronization task is initiated automatically, back-end tasks that are
still awaiting communications from the CICS system are canceled with an abend
code of RSYN. During automatic resynchronization, such tasks can only exist
following an abnormal termination of the CICS system. While they eventually
time out, the resynchronization process cannot proceed until they have
terminated; therefore, it cancels them. Back-end tasks are not canceled if
resynchronization is driven manually since there is no guarantee that activity
between the two systems has been quiesced.

Two-Phase Commit Support 335

Two-Phase Commit Support with RRS

OPTIXIT Considerations

If an OPTIXIT or an OPTIQXIT program is used to route requests to different
back-end central versions, the OPTIXIT must be enhanced to recognize and
correctly route resynchronization requests. A resynchronization request is
identified by a program name of INTCRSYN and the OPTI block that is passed to
the exit contains the node name of the target system. The exit must use the node
name to select an OPTI (if multiple SYSCTL support is enabled) or modify the
OPTI passed on the request so that the resynchronization request is routed to the
correct back-end system. To see an example of the type of processing needed,
refer to Appendix F, “CICS Interface Enhancements for Two-Phase Commit
Support.”

Two-Phase Commit Support with RRS

RRS is IBM’s resource recovery platform for z/OS and OS/390. Release 16.0 of
Advantage CA-IDMS can exploit RRS services in the following ways:

m A batch application can use RRS as a coordinator to ensure that the updates
made through one or more central versions are coordinated with those of
other resource managers such as MQSeries.

m An online application can update external resources through an RRS-enabled
interface to ensure that those updates are coordinated with those made to
Advantage CA-IDMS resources.

This section discusses how RRS support is enabled and describes considerations
associated with its use.

Enabling RRS Support Within an Advantage CA-IDMS System

To exploit RRS functionality through batch or online applications, you must
enable RRS support in one or more central versions. To do this, you specify
parameters in specific columns of the EXEC statement’s PARM field in the
system’s startup JCL. If the PARM field specifies the Advantage CA-
IDMS/DC/UCEF system version number, column numbering starts in the column
after the system number.

336

Advantage CA-IDMS Release Summary

Two-Phase Commit Support with RRS

You use the PARM field to:

m Enable RRS support by specifying a T or an R in column 21. Specify a T if the
system is to support multitasking; specify an R otherwise.

m Optionally specify one plus the number of subtasks that are capable of
accessing RRS in columns 22-23. The value specified must be between 2 and
99. If no value is specified, the number of subtasks is determined as one plus
the number of processors. If multitasking is also enabled, the value specified
also represents the number of subtasks that perform Advantage CA-IDMS
work.

For example, the following PARM specification enables RRS support in a
uni-tasking system and specifies that two subtasks should support access to

RRS.
Column Column Column
0 1 2
1 0 1
S SEpp
//STARTUP EXEC PGM=DCUCFSYS,PARM="'5=91 RO3'

The DCMT DISPLAY SUBTASK command has been enhanced to show what
type of work a subtask can perform. A new DCMT VARY SUBTASK command
can be used to alter the type of work that a subtask can perform. For more
information on these commands, see Appendix A, “New and Revised DCMT
Commands.”

Impact on System Startup

If RRS support is enabled, a central version registers with RRS during startup. In
so doing, it identifies itself as a resource manager with the following name:

IDMS.RM.nodename.CA

Nodename is the node name of the central version, padded with underscores
(“_") if it is less than eight characters in length. The node name is specified in the
SYSTEM ID parameter of the system definition’s SYSTEM statement and can be
overridden by a DCNAME parameter in the SYSIDMS file in the system’s startup
JCL. In order to use RRS support, the node name must be unique within the
sysplex in which the system is executing.

The following message is displayed after a successful registration with RRS:

DC224001 V73 T23 Registered with RRS services as IDMS.RM.nodename.CA

Once registered, an Advantage CA-IDMS system typically remains so until
shutdown. The following message is displayed when a central version
deregisters with RRS:

DC221001 V73 T1 IDMS.RM.nodename.CA Unregistered from RRS; return code = 00000000

Two-Phase Commit Support 337

Two-Phase Commit Support with RRS

After successful registration with RRS, a resynchronization process is started in
order to exchange information and complete recovery following a failure. Refer
to “Resynchronization between RRS and Advantage CA-IDMS” for more
information.

The operating system image on which a failed system is restarted can be
significant. For more details, see the IBM manual MVS5 Programming: Resource
Recovery and the specific topic “Resource Manager Environments.”

RRS Support for Batch Applications

A batch application updating resources controlled by multiple resource
managers can make use of RRS services to guarantee atomicity of the updates.
Advantage CA-IDMS supports RRS for batch applications that make their
database updates through one or more central versions running on the same
operating system image as the batch job.

When RRS is used as the coordinator, each resource manager (RM) that is
accessed to perform work on behalf of a UR expresses an interest in it. To commit
all changes as a unit, the application issues a Commit_UR (or an HLL
Application_Commit_UR) request to RRS. The following diagram illustrates the
flow of control that occurs:

338

Advantage CA-IDMS Release Summary

Two-Phase Commit Support with RRS

Batch: RRS as a Coordinator

Resource Resource

Application Manager A: Manager B:
CV1 CV2
Commit_UR
Prepare
OK Exit
<
OK > Prepare
< Exit
Commit
OK .
< Exit
OK > Commit
< Exit
' OK
—— P RRS Request
=P RRS Exit Invocation

Example

Consider a batch application that accesses Advantage CA-IDMS and MQSeries
and wishes to coordinate the work done on each. To do this the central version
must be accessed through an RRS-enabled batch interface. The interface passes a
context token to the central version so that it can express an interest in the UR
associated with the context. At commit time, RRS invokes the central version’s
prepare and commit exits so that its work is coordinated with that of MQSeries.

Enabling RRS for Batch Applications

A batch application tells Advantage CA-IDMS that it wants to use RRS as a
coordinator by specifying a new SYSIDMS parameter:

Two-Phase Commit Support 339

Two-Phase Commit Support with RRS

ENABLE_RRS=0ON

Advantage CA-IDMS then extracts the current context token and passes it on to
the central version, which expresses interest in it.

If ENABLE_RRS=ON is established as a default in a SYSIDMS load module, it
can be overridden at runtime by specifying:

ENABLE_RRS=0FF

Notes:

m The central version(s) to which the batch application’s database sessions are
directed must be started with RRS support and must be running on the same
operating system image.

m It is not possible to access a pre-Release 16.0 central version if the batch job
runs with RRS enabled. Local access is supported but is not part of the RRS
UR.

m The 10.2 services batch interface (also known as IDML) does not support
RRS.

Batch RRS Transaction Boundaries and Application Design Considerations

Batch applications that use RRS as a coordinator have to be carefully designed.
The usage of RRS implies these rules:

1. The application verbs that mark a transaction boundary are the RRS verbs:
Commit_UR or Backout_UR.

2. Prior to issuing a Commit_UR, all database sessions whose transaction is
under the control of RRS must be completed. This can be accomplished by:

m Issuing a FINISH TASK DML command

m Explicitly finishing all active database sessions by issuing a FINISH or
COMMIT RELEASE DML command for each one

Note: A FINISH TASK must be issued if a BIND TASK was issued.

Finishing a database session does not terminate its associated transaction
when it is under the control of RRS; instead, the database session is closed
and currency locks are released, but the transaction remains active and
update locks are maintained until the RRS UR is committed or backed out.

It is possible to serially create and finish database sessions within a single
RRS UR; however, unless transaction sharing is in effect, a deadlock may
occur if a latter session attempts to access a record that was updated by a
previous session.

3-40

Advantage CA-IDMS Release Summary

Two-Phase Commit Support with RRS

3. When a ROLLBACK [TASK] DML command is issued, it ultimately results
in the back out of the entire RRS UR, even if the application subsequently
issues a Commit_UR request. At the time the ROLLBACK command is
issued, the changes made to the Advantage CA-IDMS database are backed
out and the associated locks are released. However, the RRS UR is not
backed out until an RRS commit or backout operation is initiated. If
necessary, Advantage CA-IDMS will vote “BACKOUT” during the first
phase of commit processing to cause the RRS UR to be backed out.

4. When an application program ends (normally or abnormally), the associated
RRS context is terminated by the operating system. RRS default actions are to
commit on normal context termination and backout on abnormal context
termination.

Example of a COBOL Batch Program

The following extracts from a COBOL program show how to invoke the RRS
Commit_UR and Backout_UR services. The COBOL program is a subroutine that
is called to perform a certain action as defined in ACTION-CD. Only the
Advantage CA-IDMS task level and RRS actions are shown.

*RETRIEVAL
*NO-ACTIVITY-LOG
*DMLIST
IDENTIFICATION DIVISION.
PROGRAM-ID. MBINDSUB.

3K X XK %k %k %k 5K X XK %k %k 3 5 X X % %k % 5 X X % %k % 5 % X % % % 5 % X % % % % % X X % % % % X X % % % % X X % % % % X X % % % % % X X % %

* SUBSCHEMA CONTROL IS PASSED FROM MAINLINE PROGRAM.
3K X XK %k 3k %k 5k X XK %k %k % 5k X Xk %k %k 3 5 X X % %k % 3 % X % % % 5 % X % % % % % X X % % % % X X % % % % X X % % % % X X % % % % % X X % %
ENVIRONMENT DIVISION.
IDMS-CONTROL SECTION.
PROTOCOL . MODE IS BATCH DEBUG
IDMS-RECORDS MANUAL.

DATA DIVISION.
SCHEMA SECTION.
DB EMPSSO1 WITHIN EMPSCHM VERSION 100.

WORKING-STORAGE SECTION.
01 WK-DATA.
02 I PIC S9(4) COMP.
01 COPY IDMS SUBSCHEMA-NAMES.
01 COPY IDMS SUBSCHEMA-RECORDS.

LINKAGE SECTION.

01 DB-PARM.
02 DBNAME-IN PIC X(8).
02 FILLER PIC X.
02 DBNODE-IN PIC X(8).
02 FILLER PIC X.

02 ACTION-CD PIC X.
88 ACT-BIND VALUE 'R'.
88 ACT-BINDU VALUE 'U".
88 ACT-DML1 VALUE '1'.
88 ACT-DML2 VALUE '2'.
88 ACT-DML3 VALUE '3'.
88 ACT-UPDT VALUE '4".

Two-Phase Commit Support 341

Two-Phase Commit Support with RRS

88 ACT-FIN VALUE 'F'.
88 ACT-TCOM VALUE 'C".
88 ACT-RCOM VALUE 'D'.
88 ACT-TFIN VALUE 'X".
88 ACT-TBAK VALUE 'B'.
88 ACT-RBAK VALUE 'Y'.
02 RETURN-CD PIC S9(8) COMP.

01 COPY IDMS SUBSCHEMA-CTRL.
PROCEDURE DIVISION USING DB-PARM, SUBSCHEMA-CTRL.
MAINLN SECTION.
MOVE ©@ TO RETURN-CD.

IF ACT-BINDU
PERFORM BIND-IT
ELSE IF ACT-RCOM
PERFORM RCOM-IT
ELSE IF ACT-TFIN
PERFORM TFIN-IT
ELSE IF ACT-TBAK
PERFORM TBAK-IT
ELSE IF ACT-RBAK
PERFORM RBAK-IT
ELSE IF ...
ELSE
MOVE 32 TO RETURN-CD.
GOBACK.

BIND-IT SECTION.

MOVE SPACES TO SUBSCHEMA-CTRL.

MOVE 'MBINDSUB' TO PROGRAM-NAME.

BIND RUN-UNIT DBNODE DBNODE-IN
DBNAME DBNAME-IN.

READY USAGE-MODE UPDATE.

PERFORM CHECK-STAT.

BIND EMPLOYEE.

PERFORM CHECK-STAT.

BIND DEPARTMENT.

PERFORM CHECK-STAT.

TCOM-IT SECTION.
COMMIT TASK.
PERFORM CHECK-STAT.

RCOM-IT SECTION.

* Issue RRS Commit_UR
CALL 'SRRCMIT' USING RETURN-CD.
PERFORM CHECK-RRS.

TFIN-IT SECTION.
FINISH TASK.
PERFORM CHECK-STAT.

RBAK-IT SECTION.

* TIssue RRS Backout_UR
CALL 'SRRBACK' USING RETURN-CD.
PERFORM CHECK-RRS.

342 Advantage CA-IDMS Release Summary

Two-Phase Commit Support with RRS

RRS Support for Online Applications

RRS can be used by an online application to ensure that updates made through
external resource managers such as MQSeries are coordinated with those of
Advantage CA-IDMS. In order to exploit this functionality, the external resource
manager must be accessed through its RRS-enabled interface.

Before accessing the external resource manager, the online task must establish a
private RRS context. This context can then be passed to any external resource
manager that wants to participate in the Advantage CA-IDMS controlled
transaction. Typically, online support for accessing external resources is
provided by a third party vendor and, consequently, it is the vendor’s
responsibility to establish the private context and ensure that it is available to the
external resource manager’s RRS-enabled interface. The RRS-enabled interface
passes the context to its resource manager so that it can register an interest in the
context’s UR.

To initiate a commit operation involving all interested resource managers, the
online application issues an Advantage CA-IDMS commit DML command (such
as a FINISH TASK or a COMMIT WORK). The local transaction manager then
uses RRS as an agent to coordinate its updates with those of the external resource
managers.

Two-Phase Commit Support 3-43

Two-Phase Commit Support with RRS

Online: Advantage CA-IDMS as a Coordinator Driving RRS

Advantage CA Advantage CA-

IDMS IDMS External
— Transaction Resource Manager Resource
Application Manager within same CV/ Manager
FINISH TASK
Prepare >
< OK
Prepare_Agent_UR _»
Prepare
‘llllll Exit
OK
Commit >
< OK
Commit_Agent_UR _»
SSSSSSE
‘ OK
. OK
OK

—’Advantage CA-IDMS Request
— —}RRS Request

ssszassssssssfPr oS Fyit Invocation

Example

Consider an online application that accesses Advantage CA-IDMS and MQSeries
and wishes to coordinate the work done on each. To do this, a private context
(referred to as CTXPRIV) is first created by calling IDMSINO1. MQSeries is then
accessed through its RRS-enabled interface, specifying CTXPRIV. When the
transaction is committed through a DML command such as FINISH TASK, the
Advantage CA-IDMS transaction manager becomes the coordinator and drives

RRS as a participant. RRS in turn directs the actions of MQSeries in support of
the commit operation.

344 Advantage CA-IDMS Release Summary

Two-Phase Commit Support with RRS

Programming Interface

The following IDMSINO1 function allows private context manipulation. It is
designed for third party vendors who want to exploit the two-phase commit
functionality.

label

Parameters

IDMSINO®1 RRSCTX, X
RRSFUNA=rrs-function-address,RRSCTXA=rrs-context-address

RRSCTXA=rrs-context-address
Specifies the address of a 16-byte field for the RRS context token. Depending
upon the function, this field is input, output, or both.

RRSFUNA=rrs-function-address
Specifies the address of a 1-byte field that contains the function to execute. Valid
function values and their return codes are:

X’01": Get RRS context.

Return codes:

00—An RRS context exists; the field pointed to by RRSCTXA contains
the current RRS context.

04—No RRS context exists; the field pointed to by RRSCTXA is cleared.

Any other return code—An internal error occurred. The content of the
field pointed to by RRSCTXA is undefined.

X'02": Set RRS context. If the field pointed to by RRSCTXA contains binary
zeros, a new RRS context is created and returned; if the field is not binary
zeros, it must contain an RRS context token which is saved by the Advantage
CA-IDMS transaction manager. No attempt is made to validate the RRS
context token.

Return codes:

00—The RRS context token was successfully saved by the Advantage
CA-IDMS transaction manager.

Any other return code—An error occurred. Return codes 103-107, 301,
701, 756, FOO, and FFF are from context services. Their description can be
found in the IBM guide MVS Programming: Resource Recovery in the
specific topic “Begin_Context.”

X'03": End RRS context. The field pointed to by RRSCTXA must contain the
token of the RRS context to be ended.

Two-Phase Commit Support 3-45

Two-Phase Commit Support with RRS

Return codes:

— 00—The RRS context was successfully terminated. The field pointed to
by RRSCTXA is set to binary zeros.

- Any other return code—An error occurred. Return codes 103-107, 360-
369, 703, 756, and FFF are from context services. Their description can be
found in the IBM guide MVS Programming: Resource Recovery in the
specific topic “End_Context.”

Application Design Considerations

The private context created by a call to IDMSINO1 is terminated when the
transaction is ended. Therefore, after a commit or rollback operation, another
context must be created through a call to IDMSINO1 before another request can
be made of the external resource manager.

Optimizations Supported

To decrease the cost of a syncpoint operation using RRS, Advantage CA-IDMS
supports the RRS only-agent and read-only exit minimization optimizations. For
more information on RRS optimizations, see the IBM manual, MV5
Programming: Resource Recovery.

The RRS only-agent optimization permits RRS to make a single phase commit
request rather than separate Prepare and Commit requests, provided there is
only one resource manager participating in the transaction at the time that the
syncpoint operation is initiated. This optimization not only reduces
communications between RRS and a central version, but also reduces both log
and journal overhead.

The RRS read-only exit minimization optimization reduces the number of
communications with a central version provided that it performed no updates
within the RRS Unit of Recovery (UR) being committed.

Resynchronization Between RRS and Advantage CA-IDMS

Resynchronization is a process in which information is exchanged between a
two-phase commit coordinator and a participant to establish attributes relevant
to the two-phase commit process and complete outstanding distributed
transactions following a failure.

Depending on the nature of the failure, resynchronization may occur
automatically or may require explicit action to be triggered. This chapter focuses
on resynchronization between RRS and an Advantage CA-IDMS system.

3-46

Advantage CA-IDMS Release Summary

Two-Phase Commit Support with RRS

When Does It Occur?

What Does It Entail?

Resynchronization between RRS and an Advantage CA-IDMS system occurs:
m When a central version is started, as part of registering with RRS.

m When resynchronization is manually driven through a DCMT VARY
DISTRIBUTED RESOURCE MANAGER command. See DCMT VARY
DISTRIBUTED RESOURCE MANAGER in Appendix A, “New and Revised
DCMT Commands.”

Resynchronization begins with validation of the LOG names: both the name with
which RRS knows the Advantage CA-IDMS system (the Advantage CA-IDMS
log name) and the RRS log name as known to the Advantage CA-IDMS system
(the RRS log name).

The Advantage CA-IDMS log name has the following format:
IDMS.RM.jrnlstamp.nodename.CA

where:

m Jrnlstamp is the central version’s 26-character journal timestamp with dashes
(“~") replaced by underscores (“_"). This value is assigned by a central
version the first time it opens a set of journal files after they have been
formatted.

m Nodenameis the central version’s node name, padded with underscores
(“_") it it is less than eight characters in length.

The following messages are displayed during the resynchronization process:

DC224002 V73 T23 RRS log name ATR.B8909786A2A8AA40.IBM
DC224002 V73 T23 Resource Manager log name IDMS.L0G.2003_02_12_11.26.07.675350.nodename.CA
DC224006 V73 T23 Resynchronization with RRS complete

If no distributed transactions involving the two systems exist at the time that
resynchronization takes place, then the two systems simply accept each other’s
LOG names.

If distributed transactions involving the two systems do exist at the time of
resynchronization, then the LOG names are compared. If they are the same,
resynchronization proceeds by exchanging information about the incomplete
distributed transactions that are pending resynchronization. If the LOG names
are not the same, it indicates that one of the following has occurred:

The RRS LOG has been prematurely formatted.
RRS has been started with incorrect LOG files.

Two-Phase Commit Support 3-47

Two-Phase Commit Support with RRS

m The Advantage CA-IDMS system’s journal files have been prematurely
formatted.

m The Advantage CA-IDMS system was started with incorrect journal files.

Any of these conditions result in a resynchronization failure.

Responding to Resynchronization Failures

If resynchronization detects a LOG name mismatch and incomplete distributed
transactions exist, resynchronization cannot complete. When this occurs, check
whether RRS and the Advantage CA-IDMS system were started with correct log
and journal files. If they were not, correct the situation.

If premature formatting is the cause of the resynchronization failure, the
incomplete transactions must be manually completed:

m If the RRS LOG was formatted, complete the transactions once the central
version is up and running. For more information on how to do this, see
“Completing Transactions Manually” in the section “Impact on Recovery”
earlier in this chapter.

m If the Advantage CA-IDMS journal files were formatted, use the RRS ISPF
panels to complete the transactions. For more information on RRS panels, see
the IBM manual MV5 Programming: Resource Recovery.

348 Advantage CA-IDMS Release Summary

Chapter

A SQL Features

Release 16.0 provides the following new SQL features that are described in this
chapter:

m Dynamic SQL caching
m SQL-defined database enhancements
m SQL productivity enhancements

m Enhanced compatibility with Open Standards

Dynamic SQL Caching

Release 16.0 provides a dynamic SQL caching feature that dramatically improves
runtime performance when you are executing a dynamic SQL statement. This
benefits web access to data using the ODBC and JDBC drivers in the Advantage
CA-IDMS Server and the Advantage EDBC products.

Dynamic SQL caching is a common technique used to improve performance in
an SQL environment. Caching works in the following manner: when a dynamic
SQL statement is compiled, a copy of the SQL statement and the result of the
SQL compilation are saved in a cache. For each subsequent SQL compilation
request, the cache is searched. If the statement is found, the matching compiled
structures are used instead of recompiling the statement. This improves
performance by eliminating the I/O requests to read the catalog and the CPU
usage required to invoke the SQL optimizer for subsequent executions of the
same dynamic SQL statement.

In most cases, the savings in resource consumption due to bypassing the SQL
compilation are significantly greater than the extra cost associated with caching
the SQL source, access plans, and related structures.

Searching the Cache
When a search is made in the cache for a matching SQL statement, a cache hit

occurs when a matching entry is found. The following factors are considered in
determining whether an SQL statement matches a cache entry:

SQL Features 44

Dynamic SQL Caching

m The text of the statement
m The default schema in effect for the SQL session
m The dictionary to which the SQL session is connected

m The presence of temporary table references within the statement

A literal comparison of the statement’s text is made against each cache entry
until a match is found. A literal comparison avoids the overhead of parsing but
has the consequence that an entry may not match because of differences in such
things as case and spacing. For example, the following three statements are
different if using a literal comparison:

Select * from EMPLOYEE
Select * from EMPLOYEE

select * from employee

Specifying values as literals instead of as dynamic parameters can also result in
unequal comparisons. The following two statements would be textually identical
if a dynamic parameter had been used in place of the numeric values 100 and

101:
select * from DEMOEMPL.EMPLOYEE where EMP_ID = 100

101

select * from DEMOEMPL.EMPLOYEE where EMP_ID

Note: While the use of dynamic parameters can increase the frequency of
finding a matching cache entry, it may occasionally result in a less efficient
access strategy than one chosen for a specific value.

When a dynamic statement that relies on a default schema is cached, both the
statement text and the default schema are saved. When the cache is searched for
a statement that relies on a default schema, both the statement’s text and the
session’s default schema must be equal to their cached equivalents in order for
the entry to match. Consider the following two statements. The first matches a
cached entry regardless of the default schema in effect for the SQL session. The
second matches only if the default schema in effect for the SQL session is the
same as that in the cache:

select * from DEMOEMPL.EMPLOYEE
select * from EMPLOYEE

The name of the dictionary to which an SQL session is connected is always saved
in the cache and compared to the session’s dictionary during a search of the
cache. If the two are not the same, then the cache entry does not match.

If an SQL statement references a temporary table, it is not cached since each
temporary table instance can be structurally different from others of the same
name. Therefore, no statement that references a temporary table will match a
cache entry.

42 Advantage CA-IDMS Release Summary

Dynamic SQL Caching

Impact of Database Definition Changes

Database definition changes may or may not be detected automatically based on
whether the database is SQL-defined or non-SQL defined. This has consequences
for dynamic SQL caching as explained below.

SQL-Defined Databases and Caching

Because SQL-defined databases have an associated catalog and because areas for
SQL-defined databases have timestamps, Advantage CA-IDMS is able to
automatically detect definition-based changes that impact cached SQL
statements. Whenever a statement needs recompilation, Advantage CA-IDMS
automatically detects this condition and recompiles the affected statement
dynamically.

Non-SQL Defined Databases and Caching

Non-SQL defined databases do not have timestamps for automatically
determining whether a database’s definition accurately describes the underlying
data. Consequently, when changing the structure of a non-SQL defined database,
it is the administrator’s responsibility to ensure that all SQL statements impacted
by the change are recompiled. If dynamic SQL caching is not used, then this
entails recompiling access modules that reference the affected database. If
dynamic SQL caching is used, then it also entails purging the cache of statements
that reference the affected database. This can be done by deleting rows from the
SYSCA.DSCCACHE or SYSCA.DSCCACHEYV tables. For more information on
these tables, see Appendix E, “SQL Cache Tables.”

It is also recommended that dynamic SQL caching be disabled during the
transition period in which the definition-based changes are being implemented.
For information on how to do this, see the following section, “Controlling the
Cache.”

Advantage CA-IDMS detects the need to recompile cached SQL statements if a
change is made to the referencing SQL schema through which a non-SQL
defined schema is referenced. It does this by comparing the update stamp of the
referencing SQL schema to the compile stamp of the cached statement.

Controlling the Cache

There are various ways that an individual user and a DBA can control dynamic
SQL caching. Three ways are discussed below:

SQL Features 43

Dynamic SQL Caching

m Establishing caching attributes for an individual SQL session by issuing a
SET SESSION statement

m Establishing default caching attributes for a central version through a system
generation SQL CACHE statement

m Establishing default caching attributes for a local mode job by specifying a
SYSIDMS SQL_CACHE_ENTRIES parameter

For information on the various tables that control caching and examples of ways
to display and control the cache using SQL, see Appendix E, “SQL Cache
Tables.”

SET SESSION Statement

Since there may be occasions when the cost of dynamic SQL caching outweighs
its benefit, the SET SESSION statement has been enhanced to allow control over
caching within an individual SQL session. For a description of the new syntax,
see Appendix B, “New and Revised SQL Statements.”

SYSIDMS SQL_CACHE_ENTRIES Parameter

Syntax

Parameters

SQL_CACHE_ENTRIES

statement-count

Administrators and batch users can control SQL caching in local mode with the
following new SYSIDMS parameter.

»»—— SQL_CACHE_ENTRIES=statement-count »<

Specifies the maximum number of SQL statements that can be placed in the SQL
statement cache. Specify 0 to disable caching.

A numeric value ranging from 0 to 2,147,483,647. The default value is 200. The
maximum value depends on available memory.

A site can establish a different default value for statement-count by creating a
SYSIDMS load module and using an SQL_CACHE_ENTRIES parameter to
specify the desired default value.

System Generation SQL CACHE Statement

In a central version, SQL caching is controlled through a new system generation
SQL CACHE statement.

44 Advantage CA-IDMS Release Summary

Dynamic SQL Caching

Syntax

Parameters

statement-count

DEFault caching

connect-name

Usage

v

ADD SQL CACHE
E MODify 3
DELete

|— FOR statement-count statements J

v

v

|— DEFault caching is —E ON
OFF

v

']
L EXCept connect to (—v— connect-name —I—)

Specifies the maximum number of SQL statements that can be placed in the SQL
statement cache. The default value is 100. The maximum theoretical value is
2,147,483,647. The actual maximum depends on available memory.

ON Specifies that caching of dynamic SQL statements is
enabled. ON is the default.

OFF Specifies that caching of dynamic SQL statements is
disabled.

Specifies the name of a dictionary or catalog to which a user of the CV can
connect. You can specify multiple connect-names to form an exception list to the
default caching specification.

Dynamically changing caching attributes: All of the options that can be specified
in an SQL CACHE statement can be changed dynamically by issuing SQL DML
statements against CA-supplied tables. For more information, refer to Appendix
E, “SQL Cache Tables.”

Default caching status: If an SQL CACHE statement is not specified for a system,
dynamic SQL caching is disabled at system startup. SQL caching can be
dynamically enabled by inserting a row into the SYSCA.SQLCACHEQOPT table.
For more information, refer to Appendix E, “SQL Cache Tables.”

SQL Features 4-5

SQL-Defined Database Enhancements

Specifying an exception list: You can specify an exception list of connect-names
for which caching is enabled or disabled depending on what was implicitly or
explicitly specified in the DEFAULT CACHING clause. If default caching is
enabled, caching is disabled for any session connected to a dictionary or
database whose name appears in the exception list. Conversely, if default
caching is disabled, caching is enabled for any such session.

System currency: Before issuing an SQL CACHE statement, you must establish
currency on the target system to be modified.

SQLl-Defined Database Enhancements

Release 16.0 includes the following SQL-defined database enhancements:
m Logical/physical separation
m Database cloning

m Stamp synchronization

These database enhancements are described in the sections that follow.

Logical/Physical Separation

Release 16.0 provides logical / physical separation for SQL-defined databases.
Logical/physical separation enables multiple instances of identically defined
databases to be represented by a single schema and accessed through a single set
of access modules. In so doing, it can significantly reduce the effort involved in
administering certain environments, such as the following;:

m A development environment in which several copies of a test database need
to be maintained (possibly hundreds of copies, one for each developer).
Without logical /physical separation, the database administrator must
maintain multiple schema definitions as well as multiple sets of access
modules, one for each instance of the database.

m A staged implementation environment, in which access modules that have
already passed quality assurance testing can be moved into production
without recompilation.

m A production environment, in which multiple segments of a production
database can be accessed through a single set of access modules, with the
target segment determined by the database to which the SQL session
connects.

The remainder of this section describes how to implement logical/physical
separation for SQL-defined databases and considerations associated with its use.

4-6 Advantage CA-IDMS Release Summary

SQL-Defined Database Enhancements

Implementing Logical/Physical Separation

In order to implement logical/physical separation for SQL-defined databases,
you must create a referencing schema. Release 16.0 extends the CREATE
SCHEMA command so that it can reference another SQL schema in the same
way that it can reference a non-SQL schema. Any SQL-defined schema can be
referenced by another schema except for schemas that:

m Are themselves referencing schemas
m Include constraints that reference tables in another schema

m Include tables that are referenced by constraints in another schema

Once a referencing schema is defined, any base table or routine (procedure, table
procedure, or function) defined in the referenced schema is automatically
accessible as an entity in the referencing schema. Views, however, are not. For
more information, see “Views and Logical /Physical Separation” later in this
section.

The referencing schema can be bound to a specific database instance or unbound
by not specifying a DBNAME as part of the referencing schema definition.
Accessing tables through an unbound referencing schema allows runtime
determination of the database instance to be accessed based on the database to
which an SQL session connects. Therefore, the same table names (and access
modules) can be used to access different database instances simply by
connecting to different DBNAMESs, provided those DBNAME:s include the
appropriate database segment to be accessed.

For more information on referencing an SQL schema, see CREATE SCHEMA
and ALTER SCHEMA statements in Appendix B, “New and Revised SQL
Statements.”

Changing a Referenced or Referencing Schema

If a change is made to one or more tables in the referenced SQL schema or the
referencing schema is changed to refer to a different SQL schema or DBNAME,
affected access modules are recompiled automatically when they are next used.
Manual recompilation is not necessary as is the case if reference is made to a
non-SQL schema.

However, views that reference tables through a referencing schema require
manual redefinition if changes are made to the referenced or referencing schema.
In order to determine which views are affected, you can use the DISPLAY ALL
VIEW statement with the REFERENCED option. For example, the following
statement displays all views that access a table in schema FIN:

DISPLAY ALL VIEWS WHERE REFERENCED TABLE SCHEMA NAME = 'FIN'

SQL Features 47

SQL-Defined Database Enhancements

In order to redefine these views, you must drop and recreate them. Before
dropping them, you can use the DISPLAY /PUNCH VIEW statement to generate
the necessary syntax to recreate them.

Views and Logical/Physical Separation

Logical/physical separation impacts the use of views. If you wish to define a
view that can be used to access different database instances, then it must be
defined in a schema that is separate from both the referencing and referenced
schemas. The view should access tables through the referencing schema and may
join the results with tables in other schemas.

Suppose that there is a referencing schema called FINANCE that references an
SQL schema called FINBASE. In order to define a view that is independent of a
specific financial database instance, it must be defined in a third schema (CORP)
and reference financial base tables only through the FINANCE referencing
schema as illustrated below:

CREATE VIEW CORP.BUDGET AS SELECT .. FROM FINANCE.BUDGET ..

Database Cloning

Release 16.0 allows you to explicitly specify physical attributes whose values
would otherwise be automatically assigned when creating or altering SQL-
defined entities such as tables, procedures, and indexes. The ability to specify
such physical attributes, including the synchronization stamp that is used to
detect definitional changes, enables a DBA to create and maintain identically
defined databases. This can be useful in situations such as the following:

m Taking a snapshot copy of a production database for testing purposes

m Implementing database segmentation so that multiple segments can be
accessed through a single referencing schema and set of access modules

m Restoring a back-version of a database and its definition

The following DDL statements have been enhanced to enable the specification of
these physical attributes:

m CREATE AREA

s ALTER AREA

m CREATE TABLE

s ALTERTABLE

m CREATE VIEW

m CREATE TABLE PROCEDURE

s ALTER TABLE PROCEDURE

48 Advantage CA-IDMS Release Summary

SQL-Defined Database Enhancements

m CREATE PROCEDURE

s ALTER PROCEDURE

m CREATE FUNCTION

s ALTER FUNCTION

m CREATE INDEX

New DISPLAY and PUNCH options allow you to generate syntax for these
physical attributes. The new FULL PHYSICAL option generates syntax for all
attributes of an entity including physical attributes such as table IDs and
synchronization stamps. The new WITH TIMESTAMP option generates only the
syntax for specifying a synchronization timestamp.

The following statements have been modified to support these new options:

s DISPLAY SCHEMA

s PUNCH SCHEMA

s DISPLAY TABLE

s PUNCHTABLE

m DISPLAY VIEW

s PUNCH VIEW

s DISPLAY TABLE PROCEDURE

s PUNCH TABLE PROCEDURE

s DISPLAY PROCEDURE

s PUNCH PROCEDURE

s DISPLAY FUNCTION

s PUNCH FUNCTION

s DISPLAY INDEX

s PUNCH INDEX

The enhanced CREATE and ALTER AREA statements are described below. For

more information on the other statements, see Appendix B, “New and Revised
SQL Statements.”

Specifying Synchronization Timestamps

While the ability to specify physical attributes can be useful in certain situations,
it should be used with care. If you change the value of a synchronization
timestamp, you can disable the ability for the database engine to detect
definitional changes. This could result in data corruption because an out-of-date
access module updates the database.

SQL Features 49

SQL-Defined Database Enhancements

At a minimum, you should ensure that every version of an entity’s definition has
a unique synchronization timestamp associated with it. You should also be
aware that while some entities, such as indexes and constraints, do not have an
associated timestamp, changing their definition is, in effect, changing the
definition of their associated table(s) and must also result in a unique
synchronization stamp value.

If a table resides in an area that is controlled by area-level synchronization
stamps, you must update the area’s synchronization timestamp. Updating the
table’s synchronization stamp is optional but recommended. If a table resides in
an area that is controlled by table-level synchronization stamps, you must
update the table’s stamp and cannot update that of the area.

Specifying Table and Index IDs

It is not always possible to create a table with a specific table ID or an index with
a specific index ID. You are able to do so only if the value specified is not
assigned to another table or index in the same area. Consequently, manipulation
of physical attributes is generally only appropriate for schemas that define the
entire contents of a database area or segment.

CREATE/ALTER AREA Statement Syntax

Parameters

TIMESTAMP

timestamp-value

>>—|: CREATE physical AREA
ALTER :l_ L

»
»

] area-name —»
segment-name.

I

I— TIMESTAMP timestamp-value J

Specifies the value of the synchronization stamp to be assigned to the area.

A valid external representation of a timestamp. This clause is valid only for areas
for which area-level stamping is in effect.

Stamp Synchronization

Release 16.0 provides two new utility functions to allow a DBA to manipulate
synchronization timestamps. The new SYNCHRONIZE STAMPS utility lets you
compare stamps in the data area and the catalog and to update one from the
other. A new option of the INSTALL STAMPS utility allows you to replace
existing synchronization stamps in an area with the values from the catalog.

410 Advantage CA-IDMS Release Summary

SQL-Defined Database Enhancements

These new facilities are provided as an alternative mechanism for taking
snapshot copies of identically defined databases and also as an aid in recovery
situations in which either the catalog or a data area must be restored
independently of the other. Each of these utility enhancements is described
below.

SYNCHRONIZE STAMPS Utility

Purpose

Authorization

Syntax

Parameters
AREA
segment—name
area-name
SEGMENT

segment-name

UPDATE CATALOG

This new utility statement manipulates SQL synchronization stamps in the
following ways:

m Displays and compares the stamps in the catalog and the data area(s),
issuing a warning if stamps are inconsistent

m Updates the catalog with the stamps from the data area(s)
m Updates the data area(s) with the stamps from the catalog

You must hold DBAWRITE authority on every area to be processed by the
SYNCHRONIZE STAMPS utility.

»»—— SYNCHRONIZE STAMPS FOR —E AREA segment-name.area-name

SEGMENT segment-name
UPDATE CATALOG
E UPDATE DATABASE —
COMPARE ————

X

Specifies the area in which to synchronize stamps.

Specifies the name of the segment associated with the area.

Specifies the name of an area included in the DMCL module.

Specifies the segment whose areas will have their stamps synchronized.
Specifies the name of a segment included in the DMCL module.

Specifies that the catalog is to be updated with the stamps from the data area(s).

SQL Features 4-1

SQL-Defined Database Enhancements

UPDATE DATABASE Specifies that the data area(s) are to be updated with stamps from the catalog.

COMPARE Displays and compares the stamps in the catalog and the data area(s) and issues

a warning if the stamps are inconsistent.

Usage

How to submit a SYNCHRONIZE STAMPS statement: You submit a
SYNCHRONIZE STAMPS statement through OCF or IDMSBCF.

Use caution when updating stamps: By using the SYNCHRONIZE STAMPS
utility to update stamps in a catalog or data area, you are asserting that the
definition in the catalog accurately describes data in the area. You should be sure
that this is true before updating stamp values. No data validation is performed
by the utility.

Example

The following statement compares the synchronization stamps in the
USERDB.EMP_AREA with those in the catalog:

SYNCHRONIZE STAMPS FOR AREA USERDB.EMP_AREA COMPARE;
*+ Status = 0 SQLSTATE = 00000
*¥** Current Stamps Report ***
Area:USERDB.EMP_AREA Table Stamping
Catalog Stamp: <null>
Database Stamp: <null>

Table ID:1024 Table:DEMO.EMPL
Catalog Stamp: 1993-03-08-14.50.01.952955
Database Stamp: 1993-03-08-14.50.01.952955

Table ID:1025 Table:DEMO.POSITION
Catalog Stamp: 1993-03-08-14.50.01.668147
Database Stamp: 1993-03-08-14.50.01.668147

Table ID:1026 Table:DEMO.MANAGERS
Catalog Stamp: 1993-03-08-14.50.01.952955
Database Stamp: 1993-03-08-14.50.01.952955

Table ID:1027 Table:INV.PART
Catalog Stamp: 1996-06-18-10.40.51.839925
Database Stamp: 1996-06-18-10.40.51.839925

Table ID:1028 Table:INV.COMPONENT
Catalog Stamp: 1996-06-18-10.40.51.839925
Database Stamp: 1996-06-18-10.40.51.839925

Table ID:1029 Table:EMP.T5
Catalog Stamp: 2001-11-05-09.31.31.638046
Database Stamp: 2001-11-05-09.31.31.638046

Table ID:1030 Table:LRD.EMPL
Catalog Stamp: 2002-06-28-15.11.18.494317
Database Stamp: 2002-06-28-15.11.18.494317

Table ID:1031 Table:JPD.T5

Advantage CA-IDMS Release Summary

SQL-Defined Database Enhancements

INSTALL STAMPS Utility

Purpose

Syntax

Parameters

INITIAL

REPLACE

Usage

Catalog Stamp: 1999-06-21-13.04.08.968700
Database Stamp: 1999-06-21-13.04.08.968700

This utility stores synchronization stamps in an SQL-defined area. In Release
16.0, this utility has been enhanced to allow replacing stamps if they already
exist.

This section describes only the new parameter of this statement. For more
information, see the Advantage CA-IDMS Utilities guide.

v

»»—— INSTALL STAMPS INTO —I—: AREA — segment-name.area-name

SEGMENT segment-name
I: INITIAL :I
REPLACE

X

Specifies that the area(s) contain no synchronization stamps because they were
formatted using the file or segment option of the FORMAT utility statement
executing in local mode. INITIAL is the default.

Specifies that the area(s) contain synchronization stamps that should be replaced
with those from the catalog.

Use caution when replacing stamps: By replacing stamps in an area, you are
asserting that the catalog’s definition accurately describes data in the area. You
should be sure that this is true or that the area contains no data before replacing
stamp values. No data validation is performed by the utility.

SQL Features 4-13

SQL Productivity Enhancements

SQL Productivity Enhancements

Release 16.0 includes the following SQL productivity enhancements:
m User-defined SQL functions

m SQL procedures written as Advantage CA-ADS mapless dialogs
m Database name inheritance

s ROWID pseudo-column

m Transaction sharing

These SQL productivity enhancements are described in the sections that follow.

User-Defined SQL Functions

Release 16.0 provides the ability for sites to define and invoke their own scalar
SQL functions. This new support is a subset of the SQL standard specification for
external functions. The function can have zero or more input parameters and
must return a single value. Such user-defined functions allow encapsulation and
reuse of business logic from within the SQL language, thus enabling the use of
that logic from any environment in which SQL can be issued.

To take advantage of this feature, follow the steps below:
m Define the function using the new CREATE FUNCTION statement.

m Write the function in COBOL, PL/I, Assembler, or Advantage CA-ADS
following the guidelines given in Appendix C, “SQL Functions and SQL
Procedure Enhancements.” You may be able to use an existing program as a
template for a function.

m If necessary, define the function to an Advantage CA-IDMS system.

m Invoke the function as needed by specifying it anywhere that a value-
expression can be specified in an SQL statement, except in the check
constraint of a table definition.

Note: The number of user-defined function invocations and subqueries in a
statement, including those in referenced views, must not exceed 32.

For the syntax for the new CREATE FUNCTION DDL command, see Appendix
B, “New and Revised SQL Statements.” For a comprehensive discussion and
examples on defining, using, and writing functions, see Appendix C, “SQL
Functions and SQL Procedure Enhancements.”

414 Advantage CA-IDMS Release Summary

SQL Productivity Enhancements

Procedures and Functions Written as Advantage CA-ADS Mapless Dialogs

Protocol Clause

Mapless Dialog

In Release 16.0, you can code an SQL procedure or an SQL function as an
Advantage CA-ADS mapless dialog. Use the protocol clause on the following
SQL statements to specify that the procedure or function is coded in Advantage
CA-ADS.

m CREATE PROCEDURE
m CREATE FUNCTION

The syntax for the protocol clause in the CREATE statements is PROTOCOL
IDMS/ADS. There is no default and the protocol is required.

You must specify IDMS for SQL procedures or functions that are written in
COBOL, PL/I, or Assembler, and ADS for SQL procedures or functions that are
written in Advantage CA-ADS. The name of the dialog that is loaded and run
when the SQL procedure or function is invoked is specified in the EXTERNAL
NAME clause of the CREATE/ALTER PROCEDURE or CREATE/ALTER
FUNCTION statements. If the protocol is set to ADS, you must set the mode
clause to SYSTEM. (See the examples provided in Appendix C, “SQL Functions
and SQL Procedure Enhancements.”)

The value of the protocol for procedures and functions is stored in the SQL
catalog in the COMPRESS column of SYSTEM.TABLE. The IDMS protocol is
encoded as I; the ADS protocol as A.

For more information on the CREATE FUNCTION and CREATE PROCEDURE
statements, see Appendix B, “New and Revised SQL Statements.”

The Advantage CA-ADS dialog that implements the SQL procedure or function
must be mapless. To return to the SQL engine, the Advantage CA-ADS premap
process must issue a LEAVE ADS command.

SQL Features 4-15

SQL Productivity Enhancements

Work Records

Additional Records

To access the procedure or function parameters, the dialog must include a work
record whose name is <schema>.<procedure_name> or
<schema>.<function_name>. This record is not read from the dictionary but
instead is automatically constructed by the Advantage CA-ADS dialog compiler
(ADSC or ADSOBCOM) when it compiles the dialog. You can refer to the
procedure and function parameters and the corresponding null indicators in the
Advantage CA-ADS process code in the same way as you refer to columns in
any SQL table.

Within the function, the value to be returned must be moved to USER_FUNC
data element. The datatype of this data element is automatically defined in
accordance with the RETURNS <datatype> clause of the SQL function definition.

When parameters of a procedure or function are dropped, added, or altered, the
dialog that implements the procedure or function must be recompiled. Failure to
do so may result in a DC171066 error message when the procedure is next
executed. The runtime validation producing this message is based solely on the
size of the record.

Besides the above pseudo-work record, other records related to the procedure or
function can be included.

ADSO-SQLPROC-COM-AREA is a system-supplied record. The record layout is
given below:

ADD RECORD NAME ADSO-SQLPROC-COM-AREA.

03 FILLER PIC S9(8) COMP SYNC.
03 FILLER PIC X(3).
03 SQLPROC-SQLSTATE PIC X(5).
03 SQLPROC-NAME PIC X(18).
03 SQLPROC-SPECIFIC-NAME PIC X(8).
03 SQLPROC-MSG-TEXT PIC X(80).

03 SQLPROC-COMMAND-CODE PIC S9(8) COMP SYNC.
03 SQLPROC-OPERATION-CODE PIC S9(8) COMP SYNC.
03 SQLPROC-INSTANCE-ID PIC S9(8) COMP SYNC.
03 FILLER OCCURS 2.

The non-FILLER elements of the ADSO-SQLPROC-COM-AREA record are the
parameters that are common to all SQL procedures and functions. For a
description of these parameters, see the Advantage CA-IDMS Database SQL
Option Reference Guide.

If the procedure or function definition contains a LOCAL or GLOBAL
WORKAREA clause, you can define corresponding records in the dictionary.
While the layout of these records is application dependent, the name must
comply with the following rules in order for the Advantage CA-ADS runtime to
properly initialize these records:

416 Advantage CA-IDMS Release Summary

SQL Productivity Enhancements

m <dialog-name>-SQLPROC-GLOBAL-AREA
m <dialog-name>-SQLPROC-LOCAL-AREA

<dialog-name> is the name of the dialog as specified in the name clause of the
procedure or function definition.

For more information and examples, see Appendix C, “SQL Functions and SQL
Procedure Enhancements.”

Database Name Inheritance for Table Procedures, Procedures, and Functions

In Release 16.0, an SQL routine (a table procedure, procedure, or function) can
inherit the current database name of the encompassing SQL session as a default.
To control the inheritance, a new clause, DEFAULT DATABASE
NULL/CURRENT, has been added to the following SQL statements:

s ALTER PROCEDURE

s ALTER FUNCTION

m ALTER TABLE PROCEDURE

s CREATE PROCEDURE

m CREATE FUNCTION

s CREATE TABLE PROCEDURE

In the new clause (DEFAULT DATABASE NULL/CURRENT), NULL is the
default for the CREATE statements and guarantees compatibility with previous
releases of Advantage CA-IDMS. CURRENT makes the CURRENT DATABASE

the default database name for any subordinate database session started by the
SQL routine.

For more information on using these SQL statements, see Appendix B, “New and
Revised SQL Statements.”

ROWID Pseudo-Column

The ROWID pseudo-column feature provides unique access to a row in an SQL
table or view. ROWID contains the db-key for an underlying database record. It
is not persistent for the life of the database, but it can be used within a
transaction or other controlled processes.

SQL Features 4-17

SQL Productivity Enhancements

Although ROWID can be used for SQL-defined tables, it is most useful for
updating non-SQL defined databases. Since such databases tend to have record
types with no primary or foreign keys, identifying a specific row to be updated
or deleted is often difficult. For such record types, it was often necessary to
implement a table procedure to perform the update or deletion. The use of
ROWID may eliminate the need for the table procedure, since it uniquely
identifies each row of the non-SQL defined table.

ROWID pseudo-column has the following properties:

m Every base table has a ROWID pseudo-column associated with it. ROWID is
defined automatically. Pseudo-columns are similar to, but not the same as,
normal columns.

m The value of ROWID is unique for each row of a base table; however, you
cannot consider it to be a table’s primary key because its value can change
over the lifetime of the database. This could happen after unloading and
reloading the data.

m The value of ROWID does not change during an SQL transaction as long as
the row is not deleted and reinserted.

s ROWID provides the fastest access to a row.

m The datatype of ROWID is TID (tuple id); it has a length of 8 bytes. The first
4 bytes are the db-key. The last 4 bytes are reserved for future use and are
currently ignored.

m The value of ROWID can be null (for example, as the result of an outer join
operation).

m You can select ROWID values, but you cannot insert or update them.
m The ROWID column is not defined in the catalog.

m Views also have a ROWID. The value of a view’s ROWID is the ROWID of
the first base table in the decomposition of the view from left to right. The
ROWID of a view is not necessarily unique.

For examples of the use of ROWID, see Appendix D, “SQL ROWID Examples.”

Transaction Sharing

Release 16.0 provides a new facility called transaction sharing, which allows
multiple database sessions within a user session to share a single locking
structure and recovery unit, thereby eliminating inter-session deadlocks. While
not strictly related to SQL, it is primarily intended to facilitate the use of SQL to
extend existing applications either by adding SQL to traditional applications or
by using SQL routines (table procedures, procedures, and functions) to
encapsulate business logic.

418

Advantage CA-IDMS Release Summary

SQL Productivity Enhancements

To illustrate how transaction sharing can assist in extending existing
applications, consider an Advantage CA-ADS application that uses navigational
DML to access data. An enhancement is planned in which the database is
accessed using SQL instead of navigational DML. If the SQL statements access
different portions of the database from that of the navigational requests, then
intra-task deadlock is not an issue. If however, both types of DML access the
same data and update it, there is a strong possibility of deadlock between the
navigational and SQL database sessions. Transaction sharing can eliminate this
deadlock potential by enabling the two sessions to share a single transaction.

Another area in which transaction sharing can benefit SQL users is in the
development of SQL routines. Table procedures, in particular, are used
extensively to overcome some of the limitations that SQL has in accessing non-
SQL defined databases. They are also used to encapsulate and reuse business
logic, making it accessible from many platforms. However, any access to a
database from within a table procedure (or other SQL routine) brings with it the
potential for deadlocking if the same data is directly accessed from within the
encompassing SQL session. By having the routine and the encompassing SQL
session all share a single transaction, the deadlock potential is eliminated.

Enabling Transaction Sharing

Transaction sharing can be enabled in the following ways:

m For an entire central version, through a new parameter on the system
generation SYSTEM statement or through the new DCMT VARY
TRANSACTION SHARING command.

m For all executions of a specific task, through a new parameter on the system
generation TASK statement or a new option on the DCMT VARY TASK
statement.

m For a batch job step, through a new SYSIDMS TRANSACTION_SHARING
parameter.

m For an SQL routine, through a new parameter on a corresponding CREATE
or ALTER DDL statement.

m Dynamically from within an application, through a call to IDMSINO1.

If transaction sharing is enabled for a system, it applies to all online tasks
executing within that system unless overridden for an individual task. If
transaction sharing is enabled for a task, it is initially enabled for all tasks of that
type. If transaction sharing is enabled for an executing task or batch job step, it
applies to all database sessions started by that task or job step unless
dynamically overridden by a call to IDMSINO1 or by a procedure or function
specification. Whether transaction sharing is enabled for a remote database
session is determined by the front-end task or job step, not by the back-end task.

SQL Features 4-19

SQL Productivity Enhancements

Regardless of how transaction sharing is enabled, if it is in effect at the time a
new database session is started, then that database session is eligible to share its
transaction with other database sessions started by the same task or user session.
The following rules determine whether two sessions will share a transaction:

A top-level database session will share its transaction with another top-level
session if they are both eligible for transaction sharing. A fop-level database
session is one that is started by an application program rather than an SQL
routine.

A subordinate database session that is eligible for transaction sharing will
share its parent’s transaction even if the parent session is not eligible for
transaction sharing. A subordinate database session is one that is started by
an SQL routine.

A system run unit will never share its transaction with another session.

Refer to the following for more information on enabling transaction sharing:

For the new system generation SYSTEM parameter, see “System Generation
SYSTEM Statement” later in this section.

For the new system generation TASK parameter, see “System Generation
TASK Statement” later in this section.

For the new SYSIDMS parameter, see “SYSIDMS
TRANSACTION_SHARING Parameter” later in this section.

For the new call to IDMSINO01, see “IDMSINO1 Call” later in this section.

For the new DCMT command and option, see Appendix A, “New and
Revised DCMT Commands.”

For the new SQL routine DDL parameter, see Appendix B, “New and
Revised SQL Statements.”

Application Programming Considerations

Transaction sharing affects applications in the following ways:

An update made through a database session can impact other database
sessions sharing the same transaction.

A rollback issued within one database session affects all sessions that share
the same transaction.

A commit issued by a database session whose transaction is shared has no
effect on the transaction unless all other sharing sessions have also been
committed.

420

Advantage CA-IDMS Release Summary

SQL Productivity Enhancements

Database sessions that share a transaction can impact each other in ways that
would not be possible if transaction sharing were not in effect, since locking
would otherwise prevent such interactions. For example, a record can be deleted
by one database session while it is current of another database session that is
sharing the same transaction. This can result in new and possibly unexpected
error conditions. If a database session’s currency is impacted by an update made
through another database session, that currency is invalidated. If a subsequent
DML request is issued that relies on the invalidated currency, an error is
returned:

m For navigational DML, an error status of xx03 is returned to the application.

m For SQL, the application receives an SQLCODE of —4 (statement failure) and
an SQLRSN of 1087 (conflicting activity within a shared transaction).

Before enabling transaction sharing for an application, you should ensure that
affected programs handle these errors appropriately.

If multiple database sessions share a transaction and one of those sessions issues
a rollback request, all changes made within the transaction are immediately
rolled out. Other sessions sharing the transaction must issue their own rollback
requests before issuing any other DML requests. Failure to do so results in an
error:

m For navigational DML, the run unit is terminated and an error status of xx19
is returned to the application.

m For SQL, the application receives an SQLCODE of -5 (transaction failure)
and an SQLRSN of 1088 (transaction forced to back out).

A task-level rollback is equivalent to issuing individual rollback requests for
each shared or non-suspended database session associated with the task.

If multiple database sessions share a transaction, and one of those sessions issues
a commit request, no changes are committed until all top-level sharing sessions
that have had activity since the last commit, rollback, or start of transaction have
issued a commit or until a task-level commit is issued. The term “commit” refers
to any DML command that would normally result in committing changes
(COMMIT CONTINUE, FINISH, COMMIT WORK RELEASE, and so on). Unless
a commit continue request is issued (for which currency locks are retained), all
currencies owned by the database session are immediately released; however,
update and kept locks acquired by the database session remain until the
transaction is committed, even if the request terminates the database session. A
task-level commit has no effect on non-shared transactions if all associated top-
level database sessions are suspended.

System Generation SYSTEM Statement

Use the system generation SYSTEM statement to establish the default transaction
sharing option for all tasks within the system.

SQL Features 421

SQL Productivity Enhancements

Syntax

Parameters
OFF

ON

v

>>——T: ADE_:I_ SYStem — dc/ucf-version-number — . . .

Specifies transaction sharing is disabled for all tasks in the system.

Specifies transaction sharing is enabled for all tasks in the system.

System Generation TASK Statement

Syntax

Parameters

OFF

ON

SYStem

»—[ADDj—— TASk

Use the system generation TASK statement to establish the initial transaction
sharing option for all tasks of the given type.

v

task-code

»

L
X

ON
SYStem <«

L— TRAnsaction SHAring is —IE OFF

Specifies that transaction sharing is initially disabled when a task of this type is
initiated.

Specifies that the transaction sharing is initially enabled when a task of this type
is initiated.

Specifies that the initial transaction sharing setting for a task of this type is the
current system default setting.

SYSIDMS TRANSACTION_SHARING Parameter

A batch application tells Advantage CA-IDMS that it wants to use transaction
sharing for all of its database sessions by specifying a new SYSIDMS parameter:

TRANSACTION_SHARING=ON

422 Advantage CA-IDMS Release Summary

SQL Productivity Enhancements

IDMSINO1 Call

If this is specified, Advantage CA-IDMS enables transaction sharing for every
database session started by the application unless a call to IDMSINO1 changes
the transaction sharing option.

If TRANSACTION_SHARING=ON is established as a default in a SYSIDMS
load module, it can be overridden at runtime by specifying;:

TRANSACTION_SHARING=OFF

Note:

m Sharing transactions in local mode enables concurrent sharing sessions to
ready the same area in update mode.

m Whether transaction sharing is in effect for a batch/CV database session is
determined from the front-end (that is, from the batch address space),
regardless of whether transaction sharing is enabled for the back-end
(RHDCNP3S) task.

An application program calls IDMSINO1 to override the current transaction
sharing setting for the task or job step. New IDMSINO1 functions enable or
disable transaction sharing as illustrated below. If a call is made from within an
SQL routine, the transaction sharing setting that was current on entry to the
routine is reestablished on exit. This means that the IDMSINO1 call affects only
the current routine and any subordinate routines that it might invoke as a result
of SQL commands that it issues.

ENVIRONMENT DIVISION.

DATA DIVISION.
WORKING-STORAGE SECTION.

KK K oK K K K K KK KK K K K K K K K oK K K K K K K K K oK K K oK K K K oK K K K K K K oK K K K oK K K K KK K K K KK K K KK K

* The following is the 1lst parameter on all IDMSINO1 calls
3K 3k 3k %k % 3K 5k 3k 3k 3 3K 5k 3K 3k 3k % 5k 5K 3k 3k 3 K 5k 5k 3k 3 3 5k 5k 3k 3k 3 K 5k 5k 3k 3% % 5k 5k 3k 3% 3% K 5k 3k 3 3 % % 5 3 % % % 5k K k % X Kk
01 RPB.
02 FILLER PIC X(36).
3K 3k 3k % % 3K 5k 3k 3k 3k 3K 5k 3k 3k 3k %K 5k 5K 3k 3k 3 K 5k 5k 3k 3 3 5k 5k 3k 3k 3 3k 5k 5k 3k 3 % 5k 5k 3k 3% % K 5k 3 3 3 % % 5 3 % % % % 5k k % X Kk
* The following is the 2nd parameter on all IDMSINO1 calls
3k 3k 3k %k % 3K 3k 3K 3k 3 3K 5k 3K 3k 3k % 3K 5k 3k 3k 3 K 5k 5k 3k 3 3 3k 5k 3k 3k 3 3k 5k 5k 3k 3% % 5k 5k 3k 3% % 3K 5k 3k % 3 % % 5 3 % % % K K * % X Kk %
01 REQ-WK.
02 REQUEST-CODE PIC S9(8) COMP.

88 INO1-FN-TRACE VALUE 00.

88 INO1-FN-NOTRACE VALUE 01.

88 INO1-FN-GETPROF VALUE 02.

88 INO1-FN-SETPROF VALUE 03.

88 INO1-FN-GETMSG VALUE 04.

88 INO1-FN-GETDATE VALUE 05.

88 INO1-FN-GETUSER VALUE 08.

88 INO1-FN-SYSCTL VALUE 10.

88 INO1-FN-TRINFO VALUE 16.

88 INO1-FN-TXNSON VALUE 28.

88 INO1-FN-TXNSOFF VALUE 29.

88 INO1-FN-RRSCTX VALUE 30.

88 INO1-FN-STRCONV VALUE 34.

SQL Features 423

SQL Productivity Enhancements

02 REQUEST-RETURN PIC S9(8) COMP.

KK K oK K K K K KK oK K K K K K K K K oK K K K K K K K K oK K K oK K K K K K K K K oK K K K K K oK K K K KK K K K KK K K KK K

* The following work fields are used by a variety of
* IDMSINO1 calls
% 3k 3K K X XK %k % % %k 5 5 X X %k %k % 3 5 X X X %k %k % 3% 3% % X X %k % % 3% 3% % X X % % % % 3% % X X % % % 3% % % X X X% % % % % % X X
01 WORK-FIELDS.

02 WK-DTS-FORMAT PIC S9(8) COMP VALUE 0.

02 LINE-CNT PIC S9(4) COMP.

02 WK-DTS PIC X(8).

02 WK-CDTS PIC X(26).

02 WK-KEYWD PIC X(8).

02 WK-VALUE PIC X(32).

02 WK-DBNAME PIC X(8).

02 WK-USERID PIC X(32).

02 WK-SYSCTL PIC X(8).

02 WK-TIME-INTERNAL PIC X(8).

02 WK-TIME-EXTERNAL PIC X(8).

02 WK-DATE-INTERNAL PIC X(8).

02 WK-DATE-EXTERNAL PIC X(10).

02 WK-RRS-FAKE-FUNCTION PIC S9(4) COMP.

88 INO1-FN-RRSCTX-GET VALUE 0O1.
88 INO1-FN-RRSCTX-SET VALUE 02.

02 WK-RRS-FUNCTION-REDEF REDEFINES WK-RRS-FAKE-FUNCTION.
03 WK-RRS-FAKE-FILLER PIC X.
03 WK-RRS-FUNCTION PIC X.
02 WK-RRS-CONTEXT PIC X(16).
02 WK-STRING-FUNCTION PIC X(4).
88 CONVERT-EBCDIC-TO-ASCII VALUE 'ETOA'.
88 CONVERT-ASCII-TO-EBCDIC VALUE 'ATOE'.

02 WK-STRING PIC X(17)
VALUE 'String to convert'.

02 WK-STRING-LENGTH PIC S9(8) COMP VALUE 17.
3k 3k 3k %k % 3K 5k 3k 3k 3 3K 5k 3k 3k 3k % 5k 5k 3k 3k 3 % 5k 5k 3k 3k 3 5k 5k 3k 3k 3k 3k 5k 5k 3k 3 % 5k 5k 3k 3% % 3K 5k 3k % 3 % % 5 % % % % 5k 5k k % % kX
* The following group item is only used by the call that
* retrieves SQL error messages
3k 3k %k %k X %k >k >k %k 3k %k %k % %k %k %k 3k 3k % % % %k %k %k 3k 3% 3 % % % %k %k %k 3% % % % % % %k %k 3% % % % % % %k %k % % % % % % %k %k % % % % %
01 SQLMSGB.

02 SQLMMAX PIC S9(8) COMP VALUE +6.

02 SQLMSIZE PIC S9(8) COMP VALUE +80.

02 SQLMCNT PIC S9(8) COMP.

02 SQLMLINE OCCURS 6 TIMES PIC X(80).
3k 3k 3k % % 3K 5k 3k %k 3 3K 5k 3k 3k 3k % 3k 5k 3k 3k 3 K 5k 5k 3k 3% 3 5k 5k 3k 3 3 3k 5k 3k 3 3% % 5k 5k 3k % 3% K 5k 3 % 3 % % 5 % % % % % k % % % k%
* The following SQL include statement is needed only for
* the call that retrieves SQL error messages, and is only
* required if the program contains no other SQL statements.
3 3k 3k % K 3K 5k 3k %k 3 3K 5k 3k 3k 3k % 5k 5k 3k 3k 3 % 5k 5k 3k 3 3 5k 5k 3k 3 3 3k 5k 3k 3k 3% % 5k 5k 3k % % K 5k 3 % 3 % % 5 3 % % % 5k 5k k % % kX
EXEC SQL

INCLUDE SQLCA
END-EXEC.

KK K 3K K K K K KK oK K K K K K K K K oK K K oK K oK K oK K K K K K K K K oK K K K K K K K K K K K K K K K K K KK K K

PROCEDURE DIVISION.

3K K oK K K K K KK oK K K K K K K K K oK K K oK K oK K oK K K K K K K K K oK K K K K K K K K K K K K K K K K K KK K K

3K K 3K K K K K oK K oK K K K K K K K K oK K K oK K K K oK K K K K K K K K oK K K oK K K K oK K K K K K K K K K K KK K K

Call IDMSINO1 to activate Transaction Sharing for this
task.

Parm 1 is the address of the RPB.
Parm 2 is the address of the REQUEST-CODE and RETURN-CODE.

424 Advantage CA-IDMS Release Summary

Enhanced Compatibility with Open Standards

KK K oK K K K K KK oK K K K K K K K K oK K K K K oK K oK K K K K K K K K oK K K K K K K K K K K K K KK K K K KK K K

SET IN®1-FN-TXNSON TO TRUE.
CALL 'IDMSINO1' USING RPB REQ-WK.

KK K oK K K K K KK oK K K K K K K K K oK K K K K K K K K K K K K K K K oK K K K K K K K K K K K K KK K oK K K K K K

Call IDMSINO1 to deactivate Transaction Sharing for this
task.

Parm 1 is the address of the RPB.
Parm 2 is the address of the REQUEST-CODE and RETURN-CODE.

KK K oK K K K K KK oK K K K K K K K K oK K K oK K K K K K K K K K K K K oK K K K K K K K K K K K K KK K K K KK K K

*
*
*
*
*

SET IN®1-FN-TXNSOFF TO TRUE.
CALL 'IDMSINO1' USING RPB REQ-WK.

Enhanced Compatibility with Open Standards

Advantage CA-IDMS Release 16.0 provides enhanced compatibility with Open
Standards with the addition of several SQL scalar functions. The scalar functions
are automatically installed with Advantage CA-IDMS and many are
implemented as user-defined functions. The new scalar functions complement
existing scalar functions that were distributed with earlier releases of Advantage
CA-IDMS.

The following tables list the scalar functions included with Advantage CA-
IDMS/DB and that are defined in the JDBC specification or are commonly used
in the industry. For a complete description of the functions, refer to Appendix B,
“New and Revised SQL Statements.”

The notations are coded as follows:

m B—Function is implemented as a true built-in function.

m U—Function is implemented as a user-defined function in the SYSCA
schema.

m UN—Function is implemented as a user-defined function in the SYSCA
schema, but it is not included in the JDBC specification.

m X—Function was implemented in an earlier release of Advantage CA-IDMS.
There might be semantic differences between the Advantage CA-IDMS
implementation and the Open Standards definitions.

For complete descriptions of the functions marked Uand B, see Appendix B,
“New and Revised SQL Statements.”

SQL Features 425

Enhanced Compatibility with Open Standards

Numeric Functions

Notation Function

Return Value

U ABS(number) Absolute value of number

U ACOS(floaft) Arccosine, in radians, of float

U ASIN(float) Arcsine, in radians, of foat

U ATAN(float) Arctangent, in radians, of float

U ATAN2(float1, float2) Arctangent, in radians, of
float?/ floatl

UN CEIL(number) Smallest integer greater than or equal
to number

U CEILING(number) Smallest integer greater than or equal
to number

U COS(float) Cosine of floatradians

UN COSH(floa?) Hyperbolic cosine of floatradians

U COT(floab) Cotangent of floatradians

U DEGREES(number) Degrees in numberradians

U EXP(fload Exponential function of float

U FLOOR(number) Largest integer less than or equal to
number

U LOG(fload) Base e logarithm of float

U LOG10(foad) Base 10 logarithm of float

U MOD(integerl, integer2) Remainder for integerl/ integer2

U PI() The constant pi

8) POWER(number, power) Numberraised to (integer) power

U RADIANS(number) Radians in number degrees

U RAND(integer) Random floating point for seed
Integer

U ROUND(number, places) Numberrounded to places

U SIGN(number) -1 to indicate number is less than 0
0 to indicate number is equal to 0
1 to indicate number is greater than 0

UN SINH(foat) Hyperbolic sine of floatradians

U SIN(floab) Sine of floatradians

426 Advantage CA-IDMS Release Summary

Enhanced Compatibility with Open Standards

String Functions

Notation Function Return Value

U SQRT(floaft) Square root of float

U TAN(foat) Tangent of float radians

UN TANH(foat) Hyperbolic tangent of floatradians
U TRUNCATE(number, places) Number truncated to places

Notation

Function

Return Value

B

CONCAT(stringl, string?2)

Character string formed by appending
string2to stringl; if a string is null,
the result is DBMS-dependent

INSERT((stringl, start, length,
string2)

A character string formed by deleting
length characters from stringl
beginning at sfart, and inserting
string2into sfringl] at start

LCASE(string)

A character string equal to stringin
which all uppercase characters are
converted to lowercase

LEFT(string, count)

A character string equal to the count
leftmost characters from string

LENGTH(string)

Integer representing the number of
characters in string, excluding trailing
blanks

LOCATE(stringl,
string2,starf])

Position in string?2 of the first
occurrence of stringl, searching from
the beginning of stringZ, if startis
specified, the search begins from
position start. 0 is returned if string?
does not contain stringl Position 1 is
the first character in sfring?2.

LTRIM(string)

A character string equal to sfring with
leading blank spaces removed

REPEAT(string, count)

A character string formed by
repeating string count times

REPLACE(stringl, string2,
string3)

A character sting equal to string? in
which all occurrences of string2 are
replaced with string3

SQL Features 427

Enhanced Compatibility with Open Standards

Notation Function Return Value

U RIGHT (string, count) The countrightmost characters in
string

X RTRIM(string) The characters of sfring with no
trailing blanks

U SPACE(cound) A character string consisting of count
spaces

X SUBSTRING(string, start, A character string formed by

length) extracting length characters from

string beginning at start

X UCASE(string) A character string equal to stringin
which all lowercase characters are
converted to uppercase

Time and Date Functions

Notation Function Return Value

B CURDATE() The current date as a date value

B CURTIME() The current local time as a time value

U DAYNAME(date) A character string representing the
day component of date; the name for
the day is specific to the data source

B DAYOFMONTH(date) An integer from 1 to 41 representing
the day of the month in date

U DAYOFWEEK(date) An integer from 1 to 7 representing
the day of the week in date; 1
represents Sunday

U DAYOFYEAR(date) An integer from 1 to 366 representing
the day of the year in date

X HOUR(¢me) An integer from 0 to 23 representing
the hour component of #/me

X MINUTE(#me) An integer from 0 to 59 representing
the minute component of #me

X MONTH(date) An integer from 1 to 12 representing

the month component of date

428 Advantage CA-IDMS Release Summary

Enhanced Compatibility with Open Standards

System Functions

Notation Function Return Value

U MONTHNAME(date) A character string representing the
month component of dafe; the name
for the month is specific to the data
source

B NOW() A timestamp value representing the
current date and time

U QUARTER(date) An integer from 1 to 4 representing
the guarterin date; 1 represents
January 1 through March 31

X SECOND(time) An integer from 0 to 59 representing
the second component of fime

U WEEK(date) An integer from 1 to 53 representing
the week of the year in date

X YEAR(date) An integer representing the year
component of date

Notation Function Return Value

B DATABASE Current database

B IFNULL(expression, value) Valueif expression is null; expression
if notnull

B USER() Current user

Conversion Functions

Notation Function

Return Value

B CONVERT(value, SQLtype)

Value converted to SQLtype, where
SQLtype can be any valid SQL data

type.

SQL Features 429

Chapter

5 Utility and Sysgen Enhancements

This chapter describes the following utility, sysgen, and security enhancements
in Release 16.0:

Online execution of utilities

LOCK AREA command

ALREADY LOCKED option

Database name for utility use

Two-phase commit enhancements

Cloning LTERM and PTERM sysgen definitions
Security in IDMSBCF and OCF for the utility commands

Online Execution of Utilities

Release 16.0 enables many utilities to be executed online that previously could
only be executed through the batch command facility (IDMSBCF). By extending
the environment in which these utilities can be executed, the DBA is able to
perform more work from a single user interface, thus increasing their
productivity.

The following utilities can now be run under a central version, using OCF or
IDMSBCE:

CLEANUP SEGMENT
FIX PAGE

FORMAT AREA
FORMAT SEGMENT
INSTALL STAMPS

LOCK AREA

PRINT INDEX

PRINT PAGE

PRINT SPACE FOR AREA

Utility and Sysgen Enhancements 5-1

Online Execution of Utilities

m PRINT SPACE FOR SEGMENT
. SYNCHRONIZE STAMPS

s TUNE INDEX

m UPDATE STATISTICS

Usage Considerations

Area usage mode: In order to execute a utility online, the affected areas must be
available to the central version in the appropriate mode. For utilities that
perform updates, the affected areas must be in update mode to the central
version. For utilities that perform only retrievals, the affected areas must be in
either retrieval or update mode. If the above requirement is not met, you receive
a DB002352 error message indicating that the required lock mode is not
available.

Committing prior work: Before executing certain utilities online, you must
commit any previous work that has been done within the current SQL session.
This requirement applies to the following utilities:

m FIXPAGE

s FORMAT AREA

s FORMAT SEGMENT
s LOCK AREA

s LOCK SEGMENT

The following sequence of statements illustrates how to commit prior work
before issuing a FORMAT AREA statement:
SELECT * FROM SYSTEM.TABLE;

COMMIT;
FORMAT AREA VSAMT.KSDS2;

If you omit the COMMIT, you receive a DB002043 error message:

Command not allowed with an open transaction

Log messages: If you run an online FORMAT statement or FIX PAGE statement,
an informational message is written to the log identifying the area name being
updated and the time of the update.

Batch-only utilities: If you attempt to execute a utility online that is supported
only in batch local mode, such as UNLOCK or FORMAT FILE, you receive a
DB002990 error message indicating that the statement is not supported in central
version.

52

Advan tage CA-IDMS Release Summary

LOCK AREA Statement

LOCK AREA Statement

Release 16.0 provides a new LOCK AREA /SEGMENT utility statement that
allows a DBA to explicitly lock an area. This enables an administrator to place a
lock on an area that remains in effect across several commands. In this way,
access to an area by other users can be prevented while a series of operations are
performed on it.

Authority
In order to lock an area, you need DBAWRITE authority on the area.
Syntax
TR QEEGEﬁi angrtnéﬂirfﬁsﬁgem L excLusve uppaTe « "
Parameters
AREA Directs the LOCK utility statement to lock a specified area.
segment-name Specifies the name of the segment associated with the area
to be locked.
area-name Specifies the name of the area to be locked.
SEGMENT
segment-name Specifies the name of the segment to be locked.
EXCLUSIVE UPDATE Specifies the update mode. EXCLUSIVE UPDATE is the default mode and the
only mode currently supported.
Usage

Local mode execution: If the LOCK AREA statement is issued through IDMSBCF
executing in local mode, a physical lock is placed on the area. The lock remains
in effect until an explicit UNLOCK AREA is issued. If the area is already locked,
the LOCK AREA statement fails with a DB002035 error message as illustrated
below:

LOCK AREA USERDB.EMP_AREA;

Status = -4 SQLSTATE = 5000B Messages follow:
DB002352 C-4M353: Area USERDB.EMP_AREA required area lock mode not available

Utility and Sysgen Enhancements 53

ALREADY LOCKED Option

Online execution: When the LOCK AREA utility is run under a central version
using OCF or IDMSBCEF, a logical lock is placed on the area. This lock prevents
all access to the area by other users until a commit or rollback is issued. If
executing online, a commit is automatically issued at end of task prior to the
pseudo-converse unless autocommit is disabled through a SET OPTIONS
statement.

ALREADY LOCKED Option

Release 16.0 provides an optional ALREADY LOCKED clause for the FORMAT
AREA utility and the FIX PAGE utility. This parameter allows you to continue
processing the FORMAT AREA or FIX PAGE commands even if the target area
is currently locked.

FORMAT AREA Utility Statement

Syntax

Parameters

ALREADY LOCKED

Usage

»»—— FORMAT
AREA segment-name.area-name
LOCKED 4

v

Specifies that if the target area of a FORMAT command is locked, the FORMAT
command continues Brocessing. If you omit the ALREADY LOCKED option and
the target area of a FORMAT is locked, you receive a DB002352 error message
and the command fails.

Formatting a locked area: If you are executing the format utility in local mode
against a target area that is physically locked, you must specify ALREADY
LOCKED. Otherwise, you'll receive a DB002352 error message. If ALREADY
LOCKED is specified, the area remains locked after the format is complete. The
ALREADY LOCKED option is not required if formatting an area under central
version using OCF or IDMSBCF and the option is ignored, if specified.

If formatting a segment or a file, the ALREADY LOCKED option cannot be
specified and no area lock validation is performed.

Formatting an unlocked area: 1f executing the format utility against an area that
is not locked, ALREADY LOCKED is ignored if specified.

54 Advantage CA-IDMS Release Summary

Database Name for Utility Use

FIX PAGE Utility Statement

Syntax

Parameters

ALREADY LOCKED

Usage

)4

»— FIX
| LOCKED _

L ALREADY il

Specifies that if the target area or areas of a FIX PAGE are locked, the FIX PAGE
command continues I]g(rocessing. If you omit the ALREADY LOCKED option and
the target area of a FIX PAGE command is locked, you receive a DB002352 error
message, and the command fails.

Repairing a locked area: If executing the fix page utility in local mode against a
target area that is physically locked, you must specify ALREADY LOCKED
otherwise you receive a DB002352 error message. The ALREADY LOCKED
option is not required if repairing an area under central version using OCF or
IDMSBCF and is ignored if specified.

Unlocking a locked area: The fix page utility cannot be used to update an area’s
physical area lock. Instead use the LOCK and UNLOCK area utility statements
to do this.

Database Name for Utility Use

Release 16.0 allows you to designate a database name for utility-use-only. Doing
so has the following two effects:

m The DBNAME cannot be used to access data through SQL or navigational
DML. Any attempt to do so fails.

m The DBNAME is not validated during startup or by the LOOK utility for
such things as duplicate area names. By avoiding this validation, no warning
messages are issued.

This feature enables the DBA to create database names for administrative
convenience while avoiding warning messages indicating an incorrectly defined
database name. For example, the DBA may wish to create a utility-use-only
database name that includes all segments in the DMCL for use with the
QUIESCE DBNAME system task.

Utility and Sysgen Enhancements 55

FORMAT JOURNAL Utility Statement

CREATE DBNAME Statement

Syntax

Parameters

FOR GENERAL USE

UTILITY USE ONLY

Usage

>>—|: CREATE DBNAME db-name —»
ALTER ——I_ |— dbtable-name. J

»

M

L FoR —— GENERAL USE «——|
L
UTILITY USE ONLY -

Specifies this DBNAME is for general use, such as accessing data through
navigational or SQL DML requests. FOR GENERAL USE is the default:

Specifies that this DBNAME is for administrative purposes only; for example, as
in the QUIESCE system task. The DBNAME cannot be used to access data
through SQL or navigational DML.

Utility-use-only DBNAMES: The ability to designate a database name for utility-
use-only, allows the DBA to define arbitrary collections of areas for
administrative convenience while avoiding warnings for such things as
duplicate area names. Since a utility-use-only DBNAME cannot be used to access
data through navigational or SQL DML, there is no need to restrict the areas that
it includes.

FORMAT JOURNAL Utility Statement

Syntax

To provide sufficient space in the journal files for recording information about
other systems with which a system communicates, the FORMAT JOURNAL
command is enhanced in Release 16.0. In most cases, the default size is sufficient
and no explicit size parameter is needed; however, if a system’s journal block
size is very small or it communicates with many other Advantage CA-IDMS or
CICS systems, it may be necessary to reserve additional space.

»»—— FORMAT JOURNAL —E journal-file-name >
ALL

STORAGE nnn
DATA L SIZE J

M

56 Advantage CA-IDMS Release Summary

Two-Phase Commit Enhancements

Parameters

DATA STORAGE SIZE nnn

Usage

Specifies the amount of space to reserve in 1K (1024 byte) increments for Data
Storage in a journal file, where nnn is an integer from 1 32,767.

Specitying a journal storage size. All journals must have the same amount of
space since the data in one journal is replicated to every other journal.

The actual size allocated may be higher than specified due to rounding. Space is
allocated in blocks whose size is (journal block size - 256). By default, one block
is allocated. Additional blocks are allocated if needed until the total size meets or
exceeds the size specified.

Two-Phase Commit Enhancements

Release 16.0 enhances the recovery utilities to report on distributed transactions
and support the use of a manual recovery control file for addressing incomplete
distributed transactions. This section describes these common enhancements as
they apply to the following recovery utility statements:

s EXTRACT JOURNAL
s FIX ARCHIVE

s MERGE ARCHIVE

s PRINT JOURNAL

s ROLLBACK

s ROLLFORWARD

Reporting on Distributed Transactions

A distributed transaction journal checkpoint record consists of a fixed portion
and up to three variable arrays of data. The fixed portion contains the distributed
transaction identifier (DTRID) and a local branch ID (BID), which identifies an
individual branch of the distributed transaction. The fixed portion can be
followed by any combination of the following;:

Utility and Sysgen Enhancements 5-7

Two-Phase Commit Enhancements

m A list of local transaction identifiers (LIDs), one for each transaction branch
that made local database changes

m A list of external transaction identifiers if the transaction is known externally
by another identifier, such as an XA XID or RRS URID.

m Alist of interests that other resource or transaction managers have in the
distributed transaction

The recovery utilities report some or all of the above information in their
detailed report and list distributed transactions that were incomplete at stop time
in their summary report.

The example below shows the output that is produced by PRINT JOURNAL
REPORT FULL when it encounters a typical DCOM record. If the REPORT
TERSE option is specified, neither external transaction identifiers nor resource
manager interests are included. Other recovery utilities show similar

information.
NODE SYSTEM74 DTRID-BID SYSTEM74::01650C9509CE38A3-01650C90A4CDAGBD DCOM

LOC_ID 16016 PGM_ID PROCDISM

RRS URID BSDEBCA57E84B6700800008DO1020000 e *

RM NAME SYSTEM74: :RRS_RMI TYPE RRS ROLE SDSRM STATE InDoubt FLG1/2 0001 EXITS 40 0034000000000000
DIDIE240C24040404040404040404040B8DEBCAS7E84B6700000000D01020000 *RRS B v *
18C1E3D94BC2F8FIFOF9F 7F8F6C1F2C1F8C1CIFAFO4BCIC2D4 *.ATR.B8909786A2A8AA40 . IBM *

RM NAME SYSTEM73::DSI_CLI TYPE IDMS ROLE CRM STATE InDoubt FLG1/2 0000 EXITS 76 0000000000000000
E2E8E2E3C5D4F7F301650C90A4CDAI040000000080000001650C2E949172E101 *SYSTEM73. ... U.Z.\ ... mj...*
650C9509CE 38A3800000000000000000E2EBE2E3C5DAF7F303D9C5C1D340CAC3 *..n.. . t. SYSTEM73.REAL DC*
40000000000000000000D5CAE2EBE2E3C5DAF7F3 o NDSYSTEM73............ *
00000000 L *

A brief description of the report’s contents follows. For an in-depth discussion of
the meaning of this report, see Chapter 3, “Two-Phase Commit Support.”

m Node SYSTEM74—Identifies the name of the system that produced the
journal entry.

- DTRID-BID SYSTEM74::01650C9509CE38A3-01650C90A4CDAOBD—
Identifies the DTRID and the BID of the top-level branch of the
distributed transaction for which the DCOM record was written. The
DTRID is SYSTEM74::01650C9509CE38A3 and the BID is
01650C90A4CDAOBD.

- DCOM—The type of distributed transaction journal record that is being
reported.

m LOC_ID 10016—Identifies the work done by a local transaction branch that
is included in the distributed transaction. In this case, the local transaction
identifier is 10016.

m PGM_ID PROCDISM—Identifies the name of the application program that
started the local transaction branch. In this case, the program is PROCDISM.

= RRS URID BSDEBCA57E84B6700000000D01020000—Identifies the
transaction, as it is known externally.

58 Advantage CA-IDMS Release Summary

Two-Phase Commit Enhancements

RM NAME SYSTEM74::RRS_RMI—Identifies a resource manager that has
registered an interest in the distributed transaction. In this case, the resource
manager is RRS.

TYPE RRS—Indicates that the RM type is RRS.

ROLE SDSRM—Indicates that this interest is the controlling interest for
the transaction, and therefore RRS is the transaction’s coordinator.

STATE InDoubt—Indicates the interest’s state. In this case, the interest is
in an InDoubt state.

FLG1/2 0001—Displays flags that are used to restart the transaction
following a system failure.

EXITS 40 0034000000000000—Shows the exits that have been registered
by the resource manager and the responses returned by the exits that
have already been called during the life of the transaction.

D9D9E240C2...—Shows the data (in hex and character format) that the
resource manager wishes preserved should it be necessary to restart the
transaction following a system failure. This information varies
depending on the resource manager that registered the interest.

RM NAME SYSTEM73::DSI_CLI—Identifies a resource manager that has
registered an interest in the distributed transaction. In this case, the resource
manager is an Advantage CA-IDMS system named SYSTEM73.

TYPE IDMS—Indicates the type of the resource manager.

ROLE CRM—Indicates that this interest is not a controlling interest for
the transaction. Therefore, the associated resource manager (SYSTEM73)
is a participant in the transaction.

STATE InDoubt—Indicates the interest’s state. In this case, the interest is
in an InDoubt state.

FLG1/2 0000—Displays flags that are used to restart the transaction
following a system failure.

EXITS 76 0000000000000000—Shows the exits that are registered by the
resource manager and the responses returned by the exits that have been
called during the life of the transaction.

E2ESE2E3C5...—Shows the data (in hex and character format) that the
resource manager wishes to have preserved if it is necessary to restart
the transaction following a system failure. This information varies
depending on the resource manager that registered the interest.

Utility and Sysgen Enhancements 59

Two-Phase Commit Enhancements

Manual Recovery Input Control File

A manual recovery input control file can be used to specify if an InDoubt
distributed transaction should be committed or backed out. While considered
optional, if this file is included in a utility’s execution JCL, it is used as input to
the following recovery operations:

m EXTRACT JOURNAL (unless ALL is specified)
s FIX ARCHIVE

s MERGE ARCHIVE (if COMPLETE is specified)
s PRINT JOURNAL

s ROLLBACK

s ROLLFORWARD (unless ALL is specified)

The file contains 80-byte records whose format is:

<Dtrid> <Action>

Where <Dtrid> is a 26-character display-format DTRID and <Action> is either
COMMIT or BACKOUT. If more than one record specifies the same DTRID
value, all but the last one are ignored.

The following example specifies that the transaction identified by DTRID
SYSTEM74::01650C9509CE38A3 should be backed out:

SYSTEM74::01650C9509CE38A3 BACKOUT

If manual control input entries are used in a recovery operation that creates an
output journal file (FIX ARCHIVE, EXTRACT JOURNAL and MERGE
ARCHIVE), then additional distributed transaction journal records are written to
the output file to complete the transaction in the specified way.

The following is a sample of the report generated by FIX ARCHIVE. It lists
entries in the manual recovery input control file and shows the effect of those
entries in its summary report. In this example, the distributed transaction
identified by CICSCICS::BSAD18E5A9BF0F41 is committed by the generation of
new DCOM and DFGT journal records.

Input Control Records:

CICSCICS::BBAD18E5ASBE1300 BACKOUT
CICSCICS: :BBAD18E5ASBFOF41 COMMIT

Incomplete Distributed Transactions At Stop Time:

NODE DTRID-BID STATE ACTION

*¥xx% SYSTEM74 CICSCICS::BBAD18ESAIBFOF41-016507A67C2E6D53 InDoubt — Commit

*GEN SYSTEM74 DTRID-BID CICSCICS::BBAD18ESAIBFOF41-016507A67C2E6DS3 DCOM
LOC_ID 28 PGM_ID CICSDML1

*GEN SYSTEM74 DTRID-BID CICSCICS::B8AD18ESA9BFOF41-016507A67C2E6D53 DFGT

510 Advantage CA-IDMS Release Summary

Cloning LTERM and PTERM Definitions

Manual Recovery Output Control File

Since a manual recovery control file is an 80-byte card image file, you can create
it with a text editor. If a manual recovery output control file is specified in the
execution JCL, the following recovery options can create a prototype control file:

s FIX ARCHIVE

s MERGE ARCHIVE

s PRINT JOURNAL

s ROLLFORWARD (unless FROM EXTRACT is specified)

When a control file is generated, an entry is created for every distributed
transaction whose final state is InDoubt. Automatically generated entries always

specify that the transaction should be backed out. The resulting file should be
edited prior to using it as input to a recovery operation.

Execution JCL Changes

Manual recovery control files are optional, so no execution JCL changes are
necessary unless their use is desired.

To use a manual recovery input control file, include a CTRLIN file definition or
DD statement in the IDMSBCF execution JCL. To use a manual recovery output
control file, include a CTRLOUT file definition or DD statement in the IDMSBCF
execution JCL. The format for these files is fixed blocked with a record length of
80.

Cloning LTERM and PTERM Definitions

Syntax

A new clause on the PTERM sysgen statement facilitates the definition of
multiple physical and logical terminal definitions with identical characteristics.
This eliminates the need for using individual LTERM and PTERM statements for
each terminal.

M

»—[ADD—_l—PTErm—. .
MODi fy L REPeat COUnt 1is repeat-count il

Utility and Sysgen Enhancements 5-11

Cloning LTERM and PTERM Definitions

Parameters

repeat-count

Usage

Example

Specifies the number of times the physical and eventually associated logical
terminal should be cloned when a central version is started. Repeat-count must
be an integer in the range 0 through 32767. Repeat-count 0 means no cloning. If
a non-zero repeat-count is specified, the physical and logical terminal name
should end on a sequence number and the sum of that sequence number and the
repeat count should not cause a digit overflow.

Cloning PTERM/LTERM uses a naming convention: In order to clone
PTERM/LTERM definitions, their names must end with a numeric value called
the sequence number. This sequence number is incremented for each cloned
PTERM and its associated LTERM, if the LTERM exists. Sysgen ensures that
enough digits are available. It is the DBA's responsibility to ensure that a name
conflict does not exist. A conflict occurs if a PTERM/LTERM is defined with the
same name as a cloned PTERM/LTERM. If a name conflict is encountered, a
warning message is generated and the explicitly defined PTERM/LTERM is
used instead of the cloned definition.

Note: A single record in the dictionary represents cloned PTERM/LTERMs.
Cloning starts after all dictionary PTERM/LTERM records are read and their
associated control blocks built. If there is a name conflict, the PTERM/LTERM
with conflicting name is built as defined by the dictionary record and the cloned
PTERM/LTERM is discarded.

ADD PTERM BULKPO1
REPEAT COUNT 98
TYPE IS BULK.

ADD LTERM BULKLO1
PTERM BULKPO1.

This definition results in the creation of 99 PTERM/LTERM pairs:
s BULKPO01/BULKLO1,

s BULKP02/BULKLO02,

s BULKP03/BULKLO03

s Until BULKP99/BULKL99

512 Advantage CA-IDMS Release Summary

Security Enhancements

If a PTERM with name BULKP21 is also defined in the dictionary, this occurs:

m The PTERM BULKP21 and its associated LTERM (if any) is built according
to the dictionary definition of BULKP21.

m Warning message DC391009 is output.

m The clone pair BULKP21/BULKL21 is not built, but cloning proceeds with
BULKP22.

Security Enhancements

Advantage CA-IDMS 16.0 provides the ability to secure the individual utility
commands that a user can execute in the Batch Command Facility (BCF) or the
Online Command Facility (OCF). This is provided as an alternative to securing
the individual resources that are accessed by a utility command.

A utility command may be secured by creating an activity resource for it. A user
must then be granted execution privilege to run the utility.

The #UTABGEN macro is provided so you can associate activity resource
numbers with utility commands.

Creating The Resource

application-name

activity-name

activity-number

The command: "CREATE RESOURCE ACTIVITY application-name.activity-
name NUMBER activity-number' is used to create an activity type resource.

When creating an activity resource for a utility command, specify an application
name of OCF for activities that are to be secured when running under OCF. To
secure batch utility activities specify BCF for an application-name. If the same
command is to be secured in both online and batch then two activity resources
must be created.

A user defined name assigned to this activity number. It must be 1 to 18
characters in length.

A user defined number in the range of 1-256. It is unique within the application-
name. It must match the number assigned in the #UTABGEN macro.

Assigning OCF/BCF Activity Numbers

OCE/BCEF security provides the #UTABGEN macro for assigning activity
numbers to OCF/BCF utility commands. In the #UTABGEN macro, you
associate an activity number with an OCF/BCF command code.

Utility and Sysgen Enhancements 5-13

Security Enhancements

#UTABGEN Example

#UTABGEN

Purpose

Syntax

In this example, #UTABGEN assigns the activity number of 14 to the OCF/BCF
commands FORMAT and PRINTPAGE as represented by their command codes:

#UTABGEN (FORMAT, 14,PRINTPAGE, 14)

Assigns activity numbers to utility commands.

T
»»— #UTABGEN — v — (command-security-specification) —

M

Expansion of command-security-specification

Parameters

security-label

activity-number

BOTH

BCF

b I
P

. ,]
L (— v — security-label , activity-number —J—)

I ,
> (— ¥V — command-code , —E security-label j—L) —>«
BOTH <« — activity-number
BCF
OCF

Defines a security label and associates it with a BCF or OCF activity number. A
security label can be used to classify utility commands by assigning a security
label to one or more utility command codes. All commands with the same
security label are associated with the security label's activity number.

A security label must be one alphabetic character (A through Z). You can define
a maximum of 26 security labels in the #UTABGEN macro.

Valid activity-numbers range from 0 to 255.

Note: An activity number of zero means no security.

Specifies that the following set of command code security assignments applies to
BCF and OCF commands. BOTH is the default.

Specifies that the following set of command code security assignments applies to
BCF.

514 Advantage CA-IDMS Release Summary

Security Enhancements

OCF

command-code

security-label

activity-number

Usage

Coding Considerations

General

Specifies that the following set of command code security assignments applies to
OCF commands.

Identifies a utility command to be secured. Command-code must match a code
in the utility command code table, shown later in this section. For example,
FORMAT identifies the Format utility. PRINTSPACE identifies the Print Space
utility.

Specifies a previously defined security label that you are associating with
command-code.

Specifies the BCF/OCF activity number you are associating with command-
code. Valid activity-numbers are in the range of 0-255.

Note: An activity number of zero means no security.

All lines except the first one must start in column 16.

All lines except the last one must have a non-blank character in column 72.

When you use the #UTABGEN macro, you can assign an OCF/BCF activity
number to one or more Utility commands.

m You can associate a specific OCF/BCF activity number (0 through 255) with
a utility command.

m You can associate a security label (A through Z) with a utility command.

An activity number of zero turns off security for that security-label or command-
code.

Coding zero is a useful way to turn off security, without deleting the command-
code from the #UTABGEN source definition.

Only commands that are being secured must be coded. If omitted, they default to
an activity code of zero.

Security labels must be defined before they can be assigned to command codes.

Utility and Sysgen Enhancements 5-15

Security Enhancements

Use of security labels makes it easier to maintain security definitions when
several commands are assigned the same OCF/BCF activity number. You define
a security label in the #UTABGEN macro. You need only change the security
label definition in the #UTABGEN macro to modify the security for all associated
DCMT commands.

Generating the #UTABGEN Macro

Examples

Example 1

Example 2:

The source file that specifies the #UTABGEN macro can only contain one macro.
Once assembled, the resulting object must be link edited with IDMSDDAM.

B R e A e R e LR e LR SR VAT
#UTABGEN (A,3,B,1.), X
(OCF,FORMAT,A,LOCK,A,UNLOCK,A), X
(BCF,ARCHIVEJOURNAL ,B,ARCHIVELOG,B) , X
(FIXPAGE,5_)

END

This example shows activity number 3 assigned to security-label A and activity
number 10 assigned to security-level B.

OCF indicates that the commands that follow (within the parentheses) are
assigned an activity number only when running in the online command facility
OCF. Commands FORMAT, LOCK and UNLOCK are associated with security-
label A. Since security-label A is currently assigned to the OCF/BCF activity
number 3, the FORMAT, LOCK, and UNLOCK commands are assigned activity
number 3.

BCF indicates that the commands within that group are only secured when
invoked by the batch command facility: IDMSBCF. In this example, the
ARCHIVE JOURNAL and ARCHIVE LOG commands are assigned to activity
number 10, by the security-label B.

FIXPAGE is not qualified so activity number 50 is assigned to the FIX PAGE
utility in OCF and BCF.

s e B e B . T T
#UTABGEN (FORMAT, 14,FIXPAGE, 14)
END

In this example, activity number 14 is assigned the utility command codes
FORMAT and FIXPAGE. Because the codes are not identified as being OCF or
BCF, the commands associated with these codes are secured in online and batch,
and both use the same activity number.

516 Advantage CA-IDMS Release Summary

Security Enhancements

For More Information

For more information about the #UTABGEN macro and the JCL associated with
it, refer to the Advantage CA-IDMS Security Administration Guide.

Utility Command Codes

Code Utility Command
ARCHIVEJOURNAL Archive Journal
ARCHIVELOG Archive Log
BACKUP Backup

BUILD Build

CLEANUP Cleanup Segment/Area
CONVERTCATALOG Convert Catalog
CONVERTPAGE Convert Page
EXPANDPAGE Expand Page
FASTLOAD Fastload
FIXARCHIVE Fix Archive
FIXPAGE Fix Page

FORMAT Format Area/Segment/File
INSTALLSTAMPS Install Stamps
LOAD Load

LOCK Lock Area/Segment
MAINTAINASF Maintain ASF
MAINTAININDEX Maintain Index
MERGEARCHIVE Merge Archive
PRINTINDEX Print Index
PRINTJOURNAL Print Journal
PRINTLOG Print Log
PRINTPAGE Print Page
PRINTSPACE Print Space
PUNCHLOADMODULE Punch Load Module
RELOAD Reload

Utility and Sysgen Enhancements

517

Security Enhancements

Code Utility Command
RESTORE Restore
RESTRUCTURE Restructure Segment
RESTRUCTURECONNECT Restructure Connect
ROLLBACK Rollback
ROLLFORWARD Rollforward /Extract Journal
SETOPTIONS Set BCF/OCEF options
SYNCHRONIZESTAMPS Synchronize Stamps
TUNEINDEX Tune Index

UNLOAD Unload

UNLOCK Unlock Area/Segment
UPDATESTATISTICS Update Statistics
VALIDATE Validate

518 Advantage CA-IDMS Release Summary

6 Performance Enhancements

Release 16.0 provides the following performance enhancement features that are
described in this chapter:

m File cache in memory

m Parallel access volume exploitation

m Improved PDSE support

m Improved performance for LE COBOL programs
m Improved journaling performance

m Improved recovery performance

File Cache in Memory

With the introduction of 64-bit hardware and the z/OS 1.2 operating system, the
amount of virtual storage available to an application increased to an
incomprehensible amount of 16 exabytes. In Release 16.0, Advantage CA-IDMS
can exploit this high amount of storage by caching entire database files in
memory.

The major benefits of this feature are:
m Reduced number of I/Os

m Increased throughput

m Less CPU usage

For more information on 64-bit addressing, see the IBM manual, z/O5 MVS
Extended Addressability Guide.

Performance Enhancements 6-1

File Cache in Memory

Terminology

The following terms are used in this discussion of file cache in memory:

The bar: The bar marks the 2-gigabyte limit of 31-bit addressing. This is
analogous to the line, which marks the 16-megabyte limit of 24-bit
addressing.

Z-storage: Virtual storage above the bar.

Exploiting File Cache in Memory

Database files with a high number of I/Os are good candidates for the file cache
in memory feature. The DBA should use standard performance-monitoring tools
to determine which database files these are. Once the decision is made as to
which files will use this feature, the DBA should perform these steps:

Compute the total amount of storage that is needed to cache the selected
files. To do this, for each file multiply the number of blocks in the file by the
file’s block size and sum all results. This sum is the total amount of Z-storage
needed.

Make sure that the jobs that use the modified DMCL have enough Z-storage
(at least the amount computed above) at their disposal. The amount of Z-
storage available to a job is limited by the MEMLIMIT parameter. For an
explanation of MEMLIMIT, see the IBM manual, z/OS MV5 Extended
Addressability Guide.

You can set MEMLIMIT in different ways:

— Through an installation default. For more information, refer to the IBM
manual z/OS MVS Initialization and Tuning Reference.

— In the JOB and EXEC statements. For more information, see the IBM
manual, z/OS MVS JCL Reference.

— Through an installation exit. For more information, see the IBM manual,
z/0S MVS Installation Exits.

Change the DMCL definition for each file to specify MEMORY CACHE YES.
For details, see “Altering the DMCL Definition” below.

Note: If your DMCL contains file overrides from a previous release directing
the use of dataspace caching, Release 16.0 automatically uses Z-storage
instead of dataspaces when executing in a z/OS 1.2 or later operating
system. As of Release 16.0, the term “memory cache” replaces “dataspace” in
syntax and on displays.

62 Advantage CA-IDMS Release Summary 16.0

File Cache in Memory

Note: Exploitation of 64-bit storage is incompatible with subspaces. If an attempt
is made to use 64-bit storage in an address space that previously used subspaces,
an ABEND (system DC2 with reason code 0012) is forced. Therefore, make sure
that a central version or batch application that caches files in memory never
reuses an address space in which subspaces were used. One way to accomplish
this is to define distinct job classes for Advantage CA-IDMS and have address
spaces that can execute only these job classes. CICS is known to use subspaces.
For more information about subspaces, see the IBM manual, z/0OS MVS
Extended Addressability Guide.

Altering the DMCL Definition

Syntax

To enable memory caching, alter your DMCL definition and include a file
override specification as described below for each file that is to be cached in
memory.

Expansion of file-override-specification:

Parameters
YES

NO

Usage

FILE file-name

v

ADD

L MEMORY CACHE —[NO

YES

Indicates the file is cached in memory.

Indicates the file is not cached in memory.

DATASPACE versus MEMORY CACHE: The MEMORY CACHE clause replaces
the use of the DATASPACE clause. The latter is still accepted for upward
compatibility, but is no longer generated on displays.

The choice of whether to cache a file in memory or in a dataspace is determined
at runtime based on the operating system:
m Inaz/OS 1.2 or later environment, files are cached in Z-storage.

m In earlier releases of the operating system files are cached in dataspaces.

Performance Enhancements 63

Parallel Access Volume Exploitation

Insufficient storage for memory cache: If MEMORY CACHE YES is specified and
not enough Z-storage is available to cache a file in memory, processing continues
as if MEMORY CACHE NO was specified.

Dynamically changing memory cache specification: The MEMORY CACHE
specification for a file can be changed dynamically with the DCMT VARY FILE
command. For more information on DCMT VARY FILE, see Appendix A, “New
and Revised DCMT Commands. “

Parallel Access Volume Exploitation

This feature provides Advantage CA-IDMS 1/O performance improvements
through exploitation of the Parallel Access Volume feature on Enterprise Storage
System DASD devices, such as IBM’s Shark. This feature allows multiple users
and multiple jobs to simultaneously access the same logical volume and perform
concurrent I/Os to a file.

PAV devices support multiple concurrent I/Os against the same disk unit.
However, by default PAV devices ensure that multiple I/Os to the same disk
extent are single-threaded. This is known as collision checking. Because
Advantage CA-IDMS routinely issues concurrent I/Os to the same extent,
collision checking prevented full exploitation of PAV devices. Since Advantage
CA-IDMS ensures that the I/O requests it issues do not conflict with each other,
IDMS is able to disable collision checking, allowing PAV devices to be fully
exploited.

When disk I/Os for the same file are waiting because of disk extent collision
checking, implementing PAV support reduces I/O wait times. Reduced 1/0 wait
times should increase transaction throughput and improve response times.

PAV support occurs automatically when a file is on a properly defined PAV
device and does not occur otherwise. The systems programmer is responsible for
defining the device to the operating system correctly. For example, if no alias
Unit Control Blocks (UCBs) are defined for a PAV device, the I/Os are single
threaded on the primary UCB and negate the advantage of no collision checking.

64 Advantage CA-IDMS Release Summary 16.0

Improved PDSE Support

Improved PDSE Support

PDSEs provide two primary capabilities:

m Itis the only library capable of containing load modules of greater than 16
Megabytes. Although Advantage CA-IDMS does not require such support,
it is anticipated that clients will require this support in the future.

m PDSEs do not require condensing.

For Release 14.0 Advantage CA-IDMS added support for loading Advantage
CA-IDMS programs from a PDSE. This required early initialization of the
Advantage CA-IDMS program call (PC) environment; and you were required to
start Advantage CA-IDMS as an authorized program.

In Release 16.0, you can specify an IDMS SVC number on the execute parameter
in columns 28-30 of the startup JCL. This SVC acquires sufficient authorization to
construct a PC environment, without requiring you to start Advantage CA-IDMS
as an authorized program.

Startup JCL Parameters

S=nnn System version number, length is not counted in following info
+0 override options Passed to RHDCSTRT
+20 C'U' or blank Uni-tasking
c'm Multi-tasking
C'R’ Uni-tasking with RRS TCBs
cT Multi-tasking with RRS TCBs
+21 nn TCB 1imit count for Multi-tasking
+23 C'S' Run swappable
+24 C'C' Cloned system
+25 nnn Limit count for searching for available CV number.
+28 nnn IDMS SVC number

Parameter Descriptions

m Column 20—By default, Advantage CA-IDMS runs in uni-tasking mode. A
value of:

- R—Activates Advantage CA-IDMS’s interface to IBM’s RRS facility
while retaining uni-tasking mode for all other Advantage CA-IDMS
facilities.

- T—Activates Advantage CA-IDMS’s interface to IBM’s RRS facility and
also activates Advantage CA-IDMS’s multi-tasking interface.

- M—Activates Advantage CA-IDMS’s multi-tasking interface only.

Performance Enhancements 6-5

Improved Performance for LE COBOL Programs

General Usage Rules

Column 21—If ‘M’ was specified in column 20, then Advantage CA-IDMS
defaults to using one more TCB than the number of CPUs found in the
machine or LPAR. If ‘M’, ‘R’, or “T” was specified in column 20, the number
of TCBs are specified in columns 21 and 22, left justified, blank filled.

Column 23—By default Advantage CA-IDMS runs non-swappable. Specify
a ‘S’ to force Advantage CA-IDMS to run swappable.

Columns 24—To activate the cloned system feature, enter a ‘C” in this
column.

Column 25—Enter a number between 1 and 255, left justified and blank
filled, to indicate the limit for the search to find an available CV number.
The search starts from the system number and wraps at 255. When using
this option, the system number and the CV number are identical.

Column 28—Specifying a valid Advantage CA-IDMS SVC number permits
using a PDSE to contain the Advantage CA-IDMS system load modules.
Enter the number of any valid IDMS SVC. It may be the one the system runs
with, however it is not required.

All fields are optional and are only supplied to request the designated
option.

All fields are positional.
Unused fields are left blank.
All numeric fields are left justified and blank filled.

Improved Performance for LE COBOL Programs

New system generation syntax in Release 16.0 enables control over whether
multiple COBOL programs in the same task can share a Language Environment
(LE) enclave within an Advantage CA-IDMS DC/UCEF system. Since creating LE
processes and enclaves involves considerable storage and CPU overhead, the
ability to eliminate this processing when not needed may significantly improve
performance.

The underlying support for this feature was implemented for Release 15.0. It
enables multiple LE COBOL programs executing within a task to share a single
process and enclave. Since not all programs are eligible to share an enclave,
Release 16.0 provides system generation syntax to:

Controls whether enclave sharing is in effect for a system

Controls whether an individual program shares an enclave with other
programs executing in the same task.

6-6 Advantage CA-IDMS Release Summary 16.0

Improved Performance for LE COBOL Programs

Note: Release 16.0 eliminates the use of optional PTF bit 232 for controlling
whether enclave sharing is in effect for a system.

System Generation SYSTEM Statement

Syntax

Parameters

MULtiple ENClave is

Use the system generation SYSTEM statement to specify if multiple COBOL
programs within the same task can share an LE enclave.

>>—|: ADDj— SYStem — dc/ucf-version-number — . . . ——»

» >

l— MULtiple ENClave is —-E OFF
ON

Specifies whether the system allows programs in the same task to share an LE
enclave. This parameter affects only COBOL programs.

OFF Specifies multiple enclave support is disabled for the
system. This is the default.

ON Specifies multiple enclave support is enabled for the
system.

System Generation PROGRAM Statement

Syntax

Parameters

MULtiple ENClave is

Use the system generation PROGRAM statement to specify if an individual
COBOL program may share an LE enclave with other programs in the same task.

v

>>—|: ADD_—I_ PROgram —— program-name — . . .

Specifies if this program can use the same language enclave as other LE
programs in the same task. This parameter is only meaningful for COBOL
programs.

Performance Enhancements 6-7

Improved Journaling Performance

ON Specifies that this program can participate in a multiple
program LE enclave. This is the default. If enclave sharing
is disabled for the system this parameter is ignored.

OFF Specifies that the program cannot participate in a multiple
program LE enclave.

Improved Journaling Performance

Release 16.0 has improved journaling performance by extending the impact of a
non-zero setting for the journal transaction level. Specifying a journal
transaction level has the effect of deferring the write of a partially full journal
buffer when a transaction terminates provided that the number of active
transactions in the system is greater than the transaction level specified. Release
16.0 extends this effect to apply to partially full journal buffers that contain
before images for database pages that are being flushed from the buffer. By
deferring the journal write, journal efficiency can be improved thereby reducing
the number of journaling I/Os.

For more information on specifying a journal transaction level, see the
Advantage CA-IDMS Database Administration manual.

Improved Recovery Performance

Release 16.0 lets you control the following commit and rollback behavior:
m The type of journal record written on a commit

m Whether a new local transaction ID is assigned on a rollback continue or
commit

Exploiting these new capabilities may improve recovery time during warmstart
and rollback operations and reduce the likelihood of duplicate transaction IDs
when the local transaction ID values wrap.

You can implement this feature through new clauses on the system generation
SYSTEM and TASK statements. Extensions to the DCMT VARY TASK command
and the DCMT VARY DYNAMIC TASK command let you override this setting
at runtime.

The system generation statements are explained below. For more information on
using the DCMT commands, see Appendix A, “New and Revised DCMT
Commands.”

68 Advantage CA-IDMS Release Summary 16.0

Improved Recovery Performance

System Generation SYSTEM Statement

Syntax

Parameters

ON COMmit

ON ROL1back continue

Use the system generation SYSTEM statement to specify default commit and
backup behavior for a system.

>>—|: ADD_—I_ SYStem — dc/ucf-version-number — . . . ——»

»
»

L ON COMmit _E WRIte COMT <« I

v

WRITe ENDJ |:

NEW ID «—
RETain ID ——

L— ON ROL1lback continue __I: RETain EE_::]——J
NEW ID

Specifies options that control commit behavior. These options apply only to
commit operations in which the database session remains active.

WRIte COMT

WRIte ENDJ

NEW ID

RETain ID

Specifies that a COMT journal record should be written.
Specifies that an ENDJ journal record should be written.

Specifies that a new local transaction ID should be assigned
to the next transaction associated with the database
session.

Specifies that the existing local transaction ID should be
assigned to the next transaction associated with the
database session.

Specifies options that control rollback behavior. These options apply only to
rollback operations in which the database session remains active.

RETain ID

NEW ID

Specifies that following a rollback, the current local
transaction ID should be assigned to the next transaction
associated with the database session.

Specifies that following a rollback, a new local transaction
ID should be assigned to the next transaction associated
with the database session.

Performance Enhancements 69

Improved Recovery Performance

Usage

Specitying commit and rollback options. You can specify options that control the
following commit and rollback behavior:

m The type of journal record written on a commit

m Whether a new local transaction ID is assigned on a rollback continue or
commit

You can control whether a COMT or ENDJ journal record is written on a commit
operation in which the database session remains active. Writing an END] can
reduce recovery time because less data has to be examined to locate the start of a
recovery unit. This benefit applies to online recovery, warmstart, and
ROLLBACK and ROLLFORWARD recovery operations. END] is most beneficial
in cases where long-running sessions infrequently perform a burst of updates
and then issue a commit.

Note: ENDJ journal records are always written when system run units are
committed, regardless of the ON COMMIT option specified.

You can control whether a new local transaction ID is assigned following a
commit or rollback operation in which the database session remains active.
Assigning a new transaction ID reduces the chance of duplicate IDs should this
value wrap within a single cycle of a central version. It also has the effect of
recording journal statistics for a database session using a different transaction
identifier for each recovery unit. You can assign a new ID on a commit
operation only if you also specify that an ENDJ checkpoint record be written.

Note: A new transaction ID is always assigned when system run units are
committed or rolled out.

System Generation TASK Statement

Syntax

Use the system generation TASK statement to specify commit and backup
behavior for transactions initiated by a specific task.

v

>>—|: ADD_—I_ TASk —— task-code — . . .

»
»

v

l— ON COMmit SYStem <«
E WRITe COMT
WRITe ENDJ I:

NEW ID €—]
RETain ID ——

X

L ON ROL1lback continue —g— SYStem <—|—,

6-10 Advantage CA-IDMS Release Summary 16.0

Improved Recovery Performance

Parameters

ON COMmit

ON ROL1back continue

Usage

NEW ID

Specifies options that control commit behavior. These options apply only to
commit operations in which the database session remains active.

SYStem Specifies that the commit behavior for the task should
default to that specified for the system.

WRIte COMT Specifies that a COMT journal record should be written.

WRIte ENDJ Specifies that an ENDJ journal record should be written.

NEW ID Specifies that a new local transaction ID should be assigned
to the next transaction associated with the database
session.

RETain ID Specifies that the existing local transaction ID should be

assigned to the next transaction associated with the
database session.

Specifies options that control rollback behavior. These options apply only to
rollback operations in which the database session remains active.

SYStem Specifies that the rollback behavior for the task should
default to that specified for the system.

RETain ID Specifies that following a rollback, the current local
transaction ID should be assigned to the next transaction
associated with the database session.

NEW ID Specifies that following a rollback, a new local transaction
ID should be assigned to the next transaction associated
with the database session.

Specitying commit and rollback options. You can specify options that control the
following commit and rollback behavior:

m The type of journal record written on a commit

m Whether a new local transaction ID is assigned on a rollback continue or
commit

Performance Enhancements 6-11

Improved Recovery Performance

You can control whether a COMT or ENDJ journal record is written on a commit
operation in which the database session remains active. Writing an END]J can
reduce recovery time because less data has to be examined to locate the start of a
recovery unit. This benefit applies to online recovery, warmstart, and
ROLLBACK and ROLLFORWARD recovery operations. ENDJ is most beneficial
in cases where long-running sessions infrequently perform a burst of updates
and then issue a commit.

Note: ENDJ journal records are always written when system run units are
committed, regardless of the ON COMMIT option specified.

You can control whether a new local transaction ID is assigned following a
commit or rollback operation in which the database session remains active.
Assigning a new transaction ID reduces the chance of duplicate IDs should this
value wrap within a single cycle of a central version. It also has the effect of
recording journal statistics separately by commit recovery unit rather than across
all recovery units within a database transaction. You can assign a new ID on a
commit operation only if you also specify that an END]J checkpoint record be
written.

Note: A new transaction ID is always assigned when system run units are
committed or rolled out.

6-12 Advantage CA-IDMS Release Summary 16.0

Chapter

7 Non-Stop Processing Features

This chapter describes the following features of Release 16.0 that provide
increased non-stop processing capability:

Dynamic trace control

Ability to modify any program attribute

New command for determining CPU effectiveness
“Short on Storage” message

Enhanced messaging for full journals

Dynamic Trace Control

Dynamic trace control enables the DBA to alter system and database trace
attributes. System and database tracing provide Computer Associates technical
personnel with diagnostic information that can be useful when researching
problems. System trace attributes are initially established through the
SYSTRACE parameter of the system definition SYSTEM statement. Database
trace attributes are initially established through the SYSIDMS
DB_TRACE_TABLE parameter.

New DCMT commands in Release 16.0 enable the DBA to:

Display the status of the system trace and the number of entries in the
system trace table with the DCMT DISPLAY SYSTRACE command

Disable the system trace with the DCMT VARY SYSTRACE OFF command

Enable the system trace or vary the number of entries in the system trace
table with the DCMT VARY SYSTRACE ON command

Display the status of the database trace and the size of the database trace
table with the DCMT DISPLAY DBTRACE command

Disable the database trace with the DCMT VARY DBTRACE OFF command

Enable the database trace or vary the size of the database trace table with the
DCMT VARY DBTRACE ON command

For more detailed information on how to use these commands, see Appendix A,
“New and Revised DCMT Commands.”

Non-Stop Processing Features 7-1

Modifying Program Aftributes

Modifying Program Attributes

The DCMT VARY PROGRAM command has been extended in Release 16.0 to let
you modify any program attribute that was defined with the sysgen compiler.
The new attributes that you can now modify with this command are listed
below:

s CONCURRENT/NONCONCURRENT

s OVERLAYABLE/NONOVERLAYABLE

s REENTRANT/NONREENTRANT/QUASIREENTRANT

m SAVEAREA/NOSAVEAREA

s MAINLINE/NOMAINLINE

s NEW COPY ENABLED/DISABLED

m ISASIZE nnn

m LANGUAGE ADSO/ASSEMBLER/COBOL/PLI

s MPMODE ANY/SYSTEM

s TYPE DIALOG/MAP/PROGRAM/SUBSCHEMA /TABLE
For more detailed information on these attributes and on how to use the DCMT

VARY PROGRAM command, see Appendix A, “New and Revised DCMT
Commands.”

Determining CPU Effectiveness

The CPU effectiveness of a central version represents the percentage of time the
CPU was available when one or more subtasks of the Advantage CA-IDMS
system was ready to run. You can display this CPU effectiveness with the new
command DCMT DISPLAY SUBTASK EFFECTIVENESS.

For more detailed information on this command, see Appendix A, “New and
Revised DCMT Commands.”

Short on Storage Message

Release 16.0 writes a new message if a short on storage condition occurs. This
makes it easier for a DBA to diagnose a system hang and implement automated
emergency procedures.

72 Advantage CA-IDMS Release Summary 16.0

Waiting on Full Journal Message

When a request to obtain storage is processed by the system, there may not be
enough storage available to service the request. One of two possibilities could
occur:

m A short on storage condition: After the system allocates storage, the total
amount of free storage remaining in the storage pool is less than the storage
cushion for that pool.

m A storage not available condition: After selecting a storage pool, the
Advantage CA-IDMS system determines that not enough contiguous storage
was available in the pool to satisfy the request.

In these situations, message DC015007 is written to the console:

DCO15007 Pool &P1: SOS condition &O2

where:
m &O01 identifies the storage pool number

m &02is 0 (short on storage) or 1 (storage not available)

The DC015007 message is output at the time the storage allocation algorithm
encounters either condition. If storage cannot be allocated from the first selected
storage pool, the storage allocation algorithm looks into alternate storage pools if
they are defined. As a result, it is possible that one request for storage results in
multiple DC015007 messages.

For performance reasons, the frequency with which the DC015007 message is
output is limited to one per storage pool per minute.

The DBA can set up automated procedures to send an alert when this error
message is detected.

Waiting on Full Journal Message

Release 16.0 provides enhanced handling for the situation in which the journal
files fill because long running transactions do not commit their changes. Such
transactions can fill the journals because the ARCHIVE JOURNAL utility is
unable to remove the BFOR images for uncommitted transactions. When the
journals fill, the system comes to a halt. In order to correct the situation, the task
that is filling the journals must be canceled.

To assist in this process, Release 16.0 writes the following message for each task
that is waiting to write to a full journal file:

DC205024 Journal Write waiting on full Journal

The message is repeated every few seconds until tasks are no longer waiting on a
full journal.

Non-Stop Processing Features 73

Waiting on Full Journal Message

To recover from this situation:
1. Identify the task that is filling the journal files and abort the task.

2. After its changes are rolled out and an ABRT checkpoint is written, issue a
DCMT VARY JOURNAL command so the central version swaps to a new
journal and the full journal can be offloaded and condensed by ARCHIVE
JOURNAL.

It is likely that DCMT VARY JOURNAL will need to be issued more than once,
since several journal files may have filled and require offloading.

Once the system swaps back to the initial journal file on which tasks waited,
processing should continue without the need for further intervention.

7-4 Advantage CA-IDMS Release Summary 16.0

Chapter

g Tool Product Enhancementis

Release 16.0 provides several enhancements to Advantage CA-IDMS tool
products. These enhancements are described in this chapter.

Advantage CA-Culprit for CA-IDMS

Advantage CA-Culprit is a batch utility that generates reports from conventional
and database files. You can store frequently used pieces of code for Advantage
CA-Culprit so that several reports or users can access them. Using these stored
parameters helps to establish standard file definitions, procedures, and reports.
These parameters are stored in the data dictionary (IDD), partitioned datasets
(z/0OS), source statement libraries (VSE/ESA), AllFusion CA-Panvalet libraries,
or AllFusion CA-Librarian libraries.

Prior to Release 16.0, the AllFusion CA-Librarian and AllFusion CA-Panvalet file
access routines were linked with Advantage CA-Culprit routines to form the
respective interfaces. For Release 16.0, the code for these interfaces has been
changed to dynamically load and call the AllFusion CA-Librarian or AllFusion
CA-Panvalet routines. You do not have to relink the Advantage CA-Culprit
interface module when you install a new maintenance release of AllFusion CA-
Librarian or AllFusion CA-Panvalet.

To the user, there is no difference in the AllFusion CA-Librarian or AllFusion
CA-Panvalet interfaces with the enhancements to Advantage CA-Culprit in
Release 16.0.

Invoking the AllFusion CA-Librarian Interface

To invoke the AllFusion CA-Librarian interface, you must take the steps given
below. These procedures are the same as those required before Release 16.0:

m Specify PARMLIB=LIBRARIANG in the system profile or on the PROFILE
parameter.

m Code =COPY, =MACRO, or USE statements to copy the stored code into the
Advantage CA-Culprit parameter input stream at runtime.

Tool Product Enhancements 8-l

Advantage CA-IDMS Database Journal Analyzer Option

s Add a DDNAME for MASTER in the JCL that points to the Librarian library
where the source to be copied resides.

m Include the AllFusion CA-Librarian loadlib in the STEPLIB DDNAME.

Invoking the AllFusion CA-Panvalet Interface

To invoke the AllFusion CA-Panvalet interface, you must take the steps given
below. These procedures are the same as those required before Release 16.0:

m Specify PARMLIB=PANVALET in the system profile or on the PROFILE
parameter.

m Code =COPY, =MACRO, or USE statements to copy the stored code into the
Culprit parameter input stream at runtime.

m Add a DDNAME for PANDDI in the JCL that points to the AllFusion CA-
Panvalet library where the source to be copied resides.

m Include the AllFusion CA-Panvalet loadlib in the STEPLIB DDNAME.

Advantage CA-IDMS Database Journal Analyzer Option

Advantage CA-IDMS Journal Analyzer is a comprehensive batch facility that
gathers and combines management and performance data from the archived
Advantage CA-IDMS journal and reports on it in precise logical formats.
Advantage CA-IDMS Journal Analyzer provides the following three distinct
types of printed output: reports, displays, and audit information.

Release 16.0 enhancements to Advantage CA-IDMS Journal Analyzer are listed
below:

m Enhanced RECORD and DBKEY display processing

m Enhanced Audit Report

m Enhanced Chronological Report

Note: The Release 16.0 version of Advantage CA-IDMS Journal Analyzer is not
compatible with previous releases. In addition, pre-release 16.0 versions of

Advantage CA-IDMS Journal Analyzer cannot operate with a Release 16.0
archived journal.

82 Advantage CA-IDMS Release Summary 16.0

Advantage CA-IDMS Database Journal Analyzer Option

RECORD and DBKEY Display Processing

Audit Report

Release 16.0 enhances the parameters controlling the generation of RECORD and
DBKEY displays to allow the addition of start and stop dates and times. To add
this information to the displays, use the START= and STOP= fields and also
specify ALL=Y. If you do not include the new parameters, the displays are
identical to those in Release 15.0.

The Audit Report contains informative, error, and processing messages. Release
16.0 enhances this report so that it includes detail counts for all the new
distributed transaction record types. These new record types are listed below:

m DPRP: Prepare to Commit

m DIND: Commit In-Doubt

m DCOM: Transaction Committed

s DBAK: Transaction Being Rolled Back
m DPND: Forget Pending

s DFGT: Transaction Forgotten

No user action is required to generate the Distributed Transaction Record
statistics in the Audit Report.

For more information on these new journal record types, see Chapter 3, “New
Journal Records and Formats.”

Chronological Report

Release 16.0 enhances the Chronological Report so that it provides the timestamp
and Distributed Transaction Record ID (DTRID) field, as well as details on all
distributed transaction records encountered. The Chronological Report now also
includes details for any Local ID (LID) records included in each distributed
transaction record.

This report is optional; you can request it by specifying REPORT=CHRONO on
the controlling parameters.

For more information on transaction identifiers, see Chapter 3, “Transaction
Identifiers.”

Tool Product Enhancements 83

Advantage CA-IDMS Database Dictionary Module Editor (DME) Option

Advantage CA-IDMS Database Dictionary Module Editor

(DME) Option

Advantage CA-IDMS DME is an online program development facility used to
create, edit, and browse modules stored in the dictionary. Release 16.0
enhancements to Advantage CA-IDMS DME are listed below:

m Invocation via a ‘fast-in” access method
m Change in the print class to accept any value

m Browse screen error highlighting

‘Fast-In’ Access Method

DME Print Class

Browse Screen

The “fast-in” access method jumps directly to the Module Selection screen, with
an Action Mode of ‘E’ for Edit selected. The default mode of operation is to
display the Main Menu screen as done in previous releases.

To set the ‘fast-in” access method, the Database Administrator (DBA) must set
the EDITMOD parameter. This can be done at installation or any time thereafter.
Set the parameter to Y (Yes) for the ‘fast-in” access method; set it to N (No) for
the standard access method. The default parameter is N. The DBA must then
reassemble and relink the USETPARM source module to create a USETPARM
load module.

In Release 16.0, you can specify any value, including a null value, for the print
class. The value selected is displayed on the Main Menu screen of Advantage
CA-IDMS DME.

To set the DME print class, the DBA must set the value of PRTCLASS in the
USETPARM source module. This can be done at installation or any time
thereafter. The DBA must then reassemble and relink the USETPARM source
module to create a USETPARM load module.

Release 16.0 highlights any errors encountered on the compiler browse screen of
Advantage CA-ADS. If you are using this compiler and an error occurs,
Advantage CA-IDMS DME is invoked (if present) and it displays and highlights
the line in error. No user action is required to activate this feature.

84 Advantage CA-IDMS Release Summary 16.0

Advantage CA-IDMS DML Online Option (DMLO)

Advantage CA-IDMS DML Online Option (DMLO)

Advantage CA-IDMS DMLO is an interactive productivity tool that allows on-
demand navigation, retrieval, and update of databases in Advantage CA-
IDMS/DB. Release 16.0 enhancements to Advantage CA-IDMS DMLO are listed
below:

» Highlighted exit key
m Help Dictionary default to current working dictionary

s Dynamic message processing in the User Exit Program

Highlighted Exit Key

Help Dictionary

Release 16.0 alters the initial entry screen for Advantage CA-IDMS DMLO to
highlight the key that you should use to exit the tool. This key is the ATTNKEY
or the INTERRUPT key.

No user action is needed to activate this feature.

Release 16.0 modifies the HELP feature in Advantage CA-IDMS DMLO so that
the HELP modules are loaded from the current working dictionary if no
HLPDICT setting is specified in the USDTPARM installation parameter module.
In previous releases, a null setting for this parameter meant that the help
dictionary defaulted to TOOLDICT.

To use the current working dictionary as the default help dictionary, the DBA
must set the value of HLPDICT in the installation parameter module
USDTPARM to blanks. This can be done at installation or any time thereafter.
The DBA must then reassemble and relink the USDTPARM source module to
create a USDTPARM load module.

Dynamic Message Processing

Release 16.0 enhances the user exit program USDMLXIT to support dynamic
message processing. With this enhancement, USDMLXIT can pass a message to
display on the Advantage CA-IDMS/DMLO command line.

To use the dynamic messaging feature in the user exit program, the DBA must
set a USERCODE value of 99 (decimal) when returning control to Advantage
CA-IDMS DMLO. A message of up to 64 bytes can be passed for subsequent
display. The message text must be stored at address USERWORK. These fields
are defined in the USDGLOB2 DSECT.

Tool Product Enhancements 8-5

Advantage CA-ADS Alive Option

Note: It is important to initialize the USERWORK field with spaces before
passing the message text. If the USERWORK field is not initialized, it may
contain data from previous messages.

Advantage CA-ADS Alive Option

Advantage CA-ADS Alive is an online tool that allows developers to test dialogs
and intercept errors for review and analysis in an online environment. Release
16.0 provides the following enhancements to Advantage CA-ADS Alive:

m The number of records per dialog that Advantage CA-ADS Alive can handle
has been increased. Advantage CA-ADS Alive can now process up to 200
records per dialog on the Record Display screen at runtime.

m An Installation Parameter option that disables the Post Abort Browse screen
feature has been added. If a dialog abend occurs and you have implemented
this disable option, no Process code is displayed. However, a USG0071E
message is displayed. The details of the dialog abend continue to be written
to the queue DEBUGQUEUE. You can later access these details using the
QREVIEW task code.

No action is required to use the increased number of records per dialog.

To set the Post Abort Browse screen option, the DBA must set the value of
ABRTSCR in the source module USGTPARM. This can be done at installation or
any time thereafter. The DBA must then reassemble and relink the USGTPARM
source module to create a USGTPARM load module.

Online Mapping

Advantage CA-IDMS Mapping Facility is an online and batch development
facility used to create, maintain, and display formatted terminal screens, called
maps, for communication between a terminal operator and an application
program. The formatted screen definitions created by this facility exist as a
collection of database records stored in a dictionary.

RHDCMAP1 is the batch compiler that accepts the formatted screen source
syntax and creates a dictionary definition of the formatted screen from this
syntax. RHDCMAP1 moves the dictionary definitions of the formatted screens
from one dictionary to another in the batch environment, for example, from a
development dictionary to a QA dictionary or to a production dictionary.

In Release 16.0, RHDCMAP1 has been enhanced to accept up to 40 database
records in one map. RHDCMAP1 could previously accept a maximum of only 20
database record references.

86 Advantage CA-IDMS Release Summary 16.0

Advantage CA-IDMS PL/I Compiler Enhancements

Advantage CA-IDMS PL/I Compiler Enhancements

Syntax

Parameters

YES

NO

Notes

The Advantage CA-IDMS Data Manipulation Language (DML) is comprised of
statements that direct Advantage CA-IDMS/DB database and data
communications processing. DML statements are embedded in the program
source as if they are a part of the host language. The DML PL/I compiler, also
known as the DMLP processor or pre-processor, performs these tasks:

m Translates the DML statements into PL/I statements
m Retrieves data descriptions and source code from the IDD
m Validates the DML syntax

m Provides an output listing for errors

The INCLUDE IDMS statement directs the DMLP processor to retrieve a record
description from the IDD and include it in the application program. The DMLP
processor generates the appropriate declare statements for elements and their
redefinitions.

In prior releases of Advantage CA-IDMS, the DMLP pre-processor ignored level-
88 condition names defined in the dictionary. With Release 16.0 you can specify
a parameter on the EXEC card or in an EDBPPARM module that directs the
DMLP processor to generate a named constant using the VALUE attribute for a
level-88 condition name.

)4

»— EXPAND88 —E YES
NO

Directs the DMLP processor to generate a declare statement for each level-88
condition name defined to the record specified in the INCLUDE IDMS
statement.

Directs the DMLP processor to ignore level-88 condition names defined to a
record specified in the INCLUDE IDMS statement.

m A named constant can only represent a single value; therefore the DMLP
pre-processor ignores any level-88 condition names that specify more than
one value.

m To avoid compile errors, verify your PL/I compiler supports named
constants before using this feature.

Tool Product Enhancements 8-/

Support for 31-digit Packed Decimal Elements

m When executing the DMLP processor against an existing program and using
the new EXPANDS8 parameter, the potential exists for a generated named
constant to be a duplicate of an existing field in the PL/I program, resulting
in compile errors. Modifications must be made to remove/rename the
duplicate field or remove the EXPANDS88 parameter from the program.

Support for 31-digit Packed Decimal Elements

ELEMENT statements are used to define group or elementary data elements in
IDD. Also known as fields and data items, elements can participate in records.
Currently, the IDD supports COBOL picture options that allow for a maximum
length of 18 digits for packed decimal, or COMP-3, fields. Newer compilers,
such as Enterprise COBOL for z/OS and OS390 and Enterprise PL/I for z/OS
and OS/390, allow a maximum length of 31 digits for packed decimal fields. In
Release 16.0, IDD ELEMENTS are enhanced to support a maximum length of 31
digits for elements with a usage clause of packed decimal. All Advantage CA-
IDMS tools that access records in the dictionary can access these elements.

Note: Caution should be used when exploiting the new 31-digit packed decimal
feature. The external picture clause in mapping provides a maximum of 32 bytes
for displaying and formatting data.

8-8 Advantage CA-IDMS Release Summary 16.0

Chapter

o TCP/IP API Support

Using TCP/IP with Advantage CA-IDMS

TCP/IP is an industry standard communications protocol. In order to
understand this section, you should be familiar with the terminology and base
concepts of TCP/IP. Tutorials on TCP/IP can be found on the Internet by doing
a search on a general search web site with keywords “TCP/IP” and “tutorial”.

Release 16.0 of Advantage CA-IDMS can exploit TCP/IP in the following ways:

m An online application can use the TCP/IP socket program interface to
communicate with another TCP/IP application, possibly on another
platform.

m Remote applications can directly access a central version and start an online
task.

A “communication” consists of two socket programs exchanging messages. The
program that initiates a service request is the client. The program receiving
incoming requests is the server.

Typically, the client communicates with one server at a time. However, a server
processes requests from multiple clients. The server type depends on how the
client requests are processed:

m [terative server—accepts a single client request, processes it and returns the
result to the client and waits for the next client request.

m Concurrent server—accepts a client requests and spawns a “child” task to
process it.

TCP/IP API Support 9-

Generic Listener Service

Generic Listener Service

Infroduction

The generic listener service facilitates the implementation of concurrent servers
quickly and easily.

Functionality

Generic listening performs these tasks:

Implementation

Creates a stream socket on a given port, optionally on a specific TCP/IP
stack.

Listens on the socket.

Accepts connection requests, acquires a PTERM/LTERM pair and attaches a
server task on it. This continues until the service is stopped.

Waits for input on the socket if a server task ends normally without closing
its socket. This allows implementation of suspend/resume processing,
which is useful when a client application wants to keep the connection alive
without tying up an Advantage CA-IDMS/DC task. Whenever the client
application is ready to proceed, it sends another message over the
connection. When the generic listener service receives this message it
attaches a new server task on the same PTERM/LTERM pair. The task code
that is invoked on a resume can be specified in the prior task by using the
NEXT TASK clause of the DC RETURN statement. If the next task code is
not set, the task code specified in the listener PTERM definition is invoked.

Generic listening is a service provided by the SOCKET line driver. The
parameters that control the listener service are defined in:

A listener PTERM: it defines the port on which to listen, the backlog, the task
code to invoke when a connection is established and the mode in which to
invoke the task. Optionally, if running on a multi-homed host, the TCP/IP
stack can be selected. Also optionally, a character string can be defined to
pass to the attached task.

A task and associated program definition.

Note: The task and program should be defined to the security system so
that anyone can execute them.

The program associated with the server task receives control with a parameter
list containing:

92

Advantage CA-IDMS Release Summary

Establishing TCP/IP Support

The address of an 80-byte character string set to the value of the string
specified in the listener PTERM definition or blanks if none was specified.

The address of the socket descriptor.

The address of a 4-byte field named the resume counter. The resume counter
is provided for suspend/resume processing.

Note: If the listener program is written in Advantage CA-ADS, the parameters
are passed in the SOCKET-LISTENER-PARMS record. This record must be
included as work record in the dialog definition.

The program associated with the server task responds to the message sent from
the client application. In addition to performing the required business function,
it is also responsible for the following services:

Security—When the program receives control, no user has been signed onto
the system. For security purposes, the executing program must immediately
signon to the system.

Character conversion—If the remote host sends text messages in a character
set other than the one used on the central version, these text messages might
need translation. The program is responsible for performing this translation
and IDMSINO1 functions are provided to assist in this process.

Closing the socket—Once the conversation is over, the socket should be
closed. Closing the socket causes a sign off when the task terminates. If the
task ends normally without closing the socket, generic listening starts a
“receive” on the socket because it interprets this situation as a suspend. As a
result, the LTERM/PTERM pair remains in use and long-term resources,
such as the signon element, remain allocated. These resources are subject to
Advantage CA-IDMS time-out processing and can be deleted with the
DCMT VARY LTERM ... RESOURCE DELETE command.

Note: If the task abends, Advantage CA-IDMS closes the socket and the
PTERM/LTERM pair is signed off automatically.

Establishing TCP/IP Support

To implement TCP/IP socket support within Advantage CA-IDMS take the
following steps:

Update the system startup JCL

Define the SOCKET line in sysgen—A communication line of type SOCKET
must be defined in sysgen. The DCMT VARY LINE statement can be used to
dynamically activate and de-activate TCP/IP support.

TCP/IP API Support 93

Establishing TCP/IP Support

m Define Physical Terminals (PTERMS) in sysgen—Generic listening requires
definition of physical terminals of type LISTENER and BULK in sysgen. The
DCMT VARY PTERM statement can be used to dynamically manage generic
listening.

Updating the Startup JCL

A SYSTCPD card must be added to the central version JCL if either of the
following is true:

m The TCP/IP run time is from IBM and the TCP/IP installation specified a
prefix different from the default (“TCPIP”) prefix:

//SYSTCPD DD DISP=SHR,DSN=prefix.TCPIP.DATA
where prefix should be replaced by the TCP/IP installation prefix.
m The TCP/IP implementation is Unicenter TCPaccess Communications

Server: refer to the “ Customization Guide”.

Contact your systems programmer to obtain this information. See the
documentation from the TCP/IP vendor for information about the SYSTCPD
content.

Defining the SOCKET Line in Sysgen

A line of type SOCKET must be defined as described below. Only those
parameters specific to a SOCKET line are shown.

Syntax
LINE statement parameter:
»— TYPe 1is SOCKET >
L MODule is plug-in il .
Parameters
plug-in Name of the p/ug-in module that implements support for specific TCP/IP stack

implementations. Possible values are:

RHDCD1IP Unicenter TCPaccess Communications Server and IBM
TCP/IP (z/0S and OS/390). RHDCDI1IP is the default.

RHDCD2IP, RHDCD3IP and RHDCD4IP
Names reserved for future implementations.

94 Advantage CA-IDMS Release Summary

Establishing TCP/IP Support

Note

On z/0S and OS/390, support for TCP/IP is implemented using UNIX System
Services kernel functions. The userid assigned to central version should be
granted access to these functions. Depending on your security environment, this
might require defining an OMVS segment for the userid. For more information,
refer to the appropriate security documentation.

Defining Physical Terminals (PTERMS) in Sysgen

Syntax

Parameters

TYPE IS LISTENER

listener-port-number

Definition of physical terminals is required only for generic listening. You must
define at least one PTERM of type LISTENER and a number of BULK PTERMs.
In order to be usable, an LTERM must be associated with each PTERM.

PTERM statement parameters:
»— TYPe 1is LISTENER

v

»— PORT is listener-port-number

\ 4

v

L BACklog is backlog —J

v

t; IP STAck NAMe is stack-ip-name —

ADDRess is stack-ip-address
NAMe is stack-host-name

»— TASk 1is task-code L_ >
MODe is —I: USER <
SYSTem

>
L PARM ‘string’ —J

Indicates that the physical terminal is a TCP/IP listener.

Number of the listener port. The port number is an integer in the range of 0 and
65536. You should select a port number greater than 5000 because:

m Ports 0 - 255 are reserved for official Internet services
m Ports 256 - 1023 are reserved for other well-known services

m Ports 1024 - 5000 are ephemeral ports (dynamically assigned by TCP/IP)

Contact your system administrator to find out which ports are available for use
on your system.

TCP/IP API Support 95

Establishing TCP/IP Support

backlog

stack-ip-name

stack-ip-address

stack-host-name

task-code

MODE 1is USER\SYSTEM

string

Usage

Example

The value defines the maximum length for the queue of pending connections
TCP/IP allows before rejecting new connection requests. backlog is a positive
number between 1 and 1,147,483,647. The default is 5.

The value specified for backlog is not necessarily the value accepted by the
LISTEN call. Each TCP/IP implementation has a limit of its own. Advantage
CA-IDMS uses the lesser of the implementation’s limit and the value specified
for the backlog parameter.

The job name of the TCP/IP stack. The name is limited to 8 characters.

IP address of the host. The limit of an IP address depends on whether IPv4 or
IPv6 is used: the limit in IPv4 is 15 characters; in IPv6 it is 45 characters.

Name of the host. The maximum host name length is 64 characters.

Name of the task code to invoke when a connection request is received. This is
also the task code that is invoked when resuming a connection where the task
code was not specified by the prior task.

Indicates whether the task attached by the listener runs in SYSTEM or USER
MODE. MODE is USER is the default. MODE is SYSTEM is only available for
application programs written in assembler.

A character string that is passed to the task attached by generic listening. String
is limited to 80 characters.

Stack-ip-name, stack-ip-address and stack-host-name are mutually exclusive.
Usually, it is undesirable to specify any of these parameters because doing so
might tie a central version to an operating system image. The only situation in
which specifying one of the above parameters is useful is when the central
version runs on a multi-homed host and listening is restricted to a specific
TCP/IP stack.

The following sysgen statements define the program, task, PTERM and LTERM
for a generic listener:
ADD PROGRAM PRGLISO1

LANGUAGE IS ASSEMBLER

MPMODE IS ANY
NOPROTECT.

ADD TASK TSKLISO1
INVOKES PROGRAM PRGLISO1.

ADD PTERM TCPLISO1

96 Advantage CA-IDMS Release Summary

Managing TCP/IP Support

TYPE IS LISTENER

TASK IS TSKLISO1

MODE IS USER

PORT IS 12345

BACKLOG 1is 999

PARM 1is ‘Parameters for TSKLISO1’.

ADD LTERM TCPLISO1
PTERM TCPLISO1.

Setting up BULK PTERMs

Each task started by a listener requires the use of a BULK PTERM/LTERM pair
associated with the TCP/IP line. As a minimum, you must define one pair for
each active task that uses TCP/IP services. If you are exploiting the

suspend /resume capability and tasks terminate without closing their socket, the
required number of PTERM/LTERMs is larger.

The new REPEAT clause of the PTERM statement can be used to facilitate the
definition of multiple PTERMs and LTERMSs. Refer to Chapter 5, “Utility and
Sysgen Enhancements” for more information on this new clause.

Managing TCP/IP Support

There are several DCMT commands that are enhanced to help you managing the
TCP/IP environment:

m DCMT DISPLAY LINE—a new parameter on this statement causes TCP /IP-
related information to be displayed.

s DCMT VARY LINE—allows you to dynamically enable and disable TCP/IP
support

s DCMT VARY PTERM—enables you to manage the generic listener service
dynamically. The DCMT VARY PTERM command is enhanced so you can
dynamically change parameters on a listener PTERM.

See Appendix A, “New and Revised DCMT Commands,” for more information.

TCP/IP Programming Support for Online Applications

TCP/IP programming support within Advantage CA-IDMS allows an
application to communicate through TCP/IP protocols with a second
application. The second application can reside on the same platform or another
platform.

TCP/IP API Support 97

TCP/IP Programming Support for Online Applications

The socket program interface depends upon the programming language used to
write the application:

m Programs written in Assembler use the #SOCKET macro interface.
m Programs written in COBOL or PL/I use a call interface to IDMSOCKI

m Applications written in Advantage CA-ADS can use the SOCKET built-in
function or the call interface to IDMSOCKI.

Socket Macro Interface For Assembler Programs

Parameters

label

function

return-code

errno

reason-code

Programs written in the assembler language use the #SOCKET macro to exploit
TCP/1IP sockets. The #SOCKET macro takes this general form:

label #SOCKET function,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
PLIST=parameter-list-area,
RGSV=(rgsv),
CALL=call-value,
function-specific-parameters

XX X X X X X

Optional assembler label.

The name of the function to execute. See Appendix G, “TCP/IP API Commands,
Error Codes, Socket Structures and String Conversion Functions” for a list of
valid functions..

The name of a fullword that receives the outcome of the operation. Possible
values are:

0 No error occurred

-1 A socket error was encountered; the errno and reason-code
fields contain more detailed information about the error.

The name of a fullword that receives the ERRNO value when return-code is -1.
See Appendix G, “TCP/IP API Commands, Error Codes, Socket Structures and
String Conversion Functions,” for more information.

The name of a fullword that receives the reason code value when refurn-codeis —
1. See Appendix G, “TCP/IP API Commands, Error Codes, Socket Structures
and String Conversion Functions,” for more information.

98 Advantage CA-IDMS Release Summary

TCP/IP Programming Support for Online Applications

parameter-1ist-area Name of an area or register pointing to the area that is used to build the
#SOCKET parameter list. The default is SYSPLIST. The length of the parameter-
list-area used by the macro depends on the #SOCKET function that is called; the
longest parameter-list currently needed for a #SOCKET call is 16 fullwords.

rgsv Registers to be saved. This parameter applies only to system mode programs.
The default is (R2-R8).

call-value Indicates whether to generate the parameter list and/or execute the function.
Possible values are

YES Generate the parameter list and execute the function. This
is the default.

NO Generate the parameter list, but don’t execute the function.

ONLY Execute the function for which a parameter list is pre-built.

Notes

m The syntax doesn’t show Assembler column conventions (label starts in
column 1; statement in column 10; continuation line in column 16;
continuation character in column 72).

m Onreturn from the #SOCKET call, R15 is always 0, except in cases of a
parameter-list error where the RETCODE field cannot be found; in this case
R15is set to 1.

m The parameter values assigned to the three return code parameters
(RETCODE, ERRNO and RSNCODE) and to all the function-specific-
parameters can be specified in data field notation or in register notation.

In data field notation, the program specifies the name of a variable field
containing the parameter value.

In register notation, the program specifies a register containing the address
of the variable field containing the parameter value (not the value itself).
General registers 2 to 15 can be used in this notation; the register reference
must be enclosed in parentheses.

= Some parameters also accept a value in the form of an absolute expression.
Where applicable, this is mentioned under the corresponding parameter’s
description.

m Some parameters from the #SOCKET macro are optional. There are two ways
to address an optional parameter:

— Omit the parameter on the #SOCKET macro call

— Assign a null value to the parameter. For example,
HOSTNAME=NULL.

Both ways are equivalent.

TCP/IP API Support 99

TCP/IP Programming Support for Online Applications

The #SOCKET macro uses the following registers when building its
parameter list:

- RO—A work register to build the parameter list
— R1—Address the parameter list

- R14 and R15—The branch and link registers for the call sequence to
socket services

#SOCKET TCPIPDEF generates DSECTs and EQUates needed to write a
TCP/IP program.

#SOCKET ERRNOS generates all EQUates for Advantage CA-IDMS-specific
errno values.

The Advantage CA-ADS Socket Interface

Parameters

Applications written in Advantage CA-ADS can use one of two methods to
exploit TCP/IP sockets:

Using an Advantage CA-ADS system-supplied built-in function, SOCKET. It
follows the same general rules as other Advantage CA-ADS built-in
functions. The following is an example of the code required to invoke the
SOCKET built-in function in your Advantage CA-ADS dialog;:

SOCKET (function,
return-code,
errno,
reason-code,
function-dependent-parameterl,

L)

Parameters can be records or record elements.

Using an Advantage CA-ADS control statement to invoke the socket call
interface, IDMSOCKI. IDMSOCKI is the same socket call interface that can
be used with COBOL programs. In this scenario, the LINK control statement
is used to invoke IDMSOCKI:

LINK TO PROGRAM 'IDMSOCKI' USING
(function,
return-code,
errno,
reason-code,
function-dependent-parameterl,

L)

Each parameter must be a separate record.

For both methods, the first four parameters are identical except that if linking to

IDMSOCK], each parameter must be defined as a record whose first element is a
field described below. If using the SOCKET built-in function the parameters can
be records or record elements.

9-10 Advantage CA-IDMS Release Summary

TCP/IP Programming Support for Online Applications

function A 4-byte, full-word aligned, integer field that the program sets to the desired
socket function. A detailed description of the supported functions can be found
in Appendix G, “TCP/IP API Commands, Error Codes, Socket Structures and
String Conversion Functions.”

return-code A 4-byte, full-word aligned, integer field that receives the outcome of the
operation. Returned values are:

0 No errors occurred
20 A parameter list error was encountered
-1 A socket error was encountered; the errno and reason-code

fields contain more detailed information about the error.

errno A 4-byte, full-word aligned, integer field that receives the ERRNO value when
return-codeis -1. Refer to Appendix G, “TCP/IP API Commands, Error Codes,
Socket Structures and String Conversion Functions,” for more information.

reason-code A 4-byte, full-word aligned, integer field that receives the reason code value
when refurn-codeis -1. Refer to Appendix G, “TCP/IP API Commands, Error
Codes, Socket Structures and String Conversion Functions,” for more
information.

Depending on the function, zero or more parameters can follow.

Comparing IDMSOCKI and SOCKET
While either of these methods allows you to utilize the TCP/IP API functionality,
there are benefits to using the SOCKET built-in function:

m Parameters can be a record element. When IDMSOCKI is used, each
parameter must be defined as a separate record.

m Itis easier to use.

m It provides optimum performance. Calling a system-defined built-in
function is more efficient than LINKing to another program type.

m Itis possible to use the system-defined record SOCKET-CALL-INTERFACE,
which contains the definition of the first four parameters. To use this record,
add it to the dialog as a work record.

m SOCKET supports omitted parameters.

Because of these advantages, use of the SOCKET built-in function is
recommended.

TCP/IP API Support 91

TCP/IP Programming Support for Online Applications

Notes

To omit an optional parameter in the parameter list, replace the parameter
with the @ symbol.

An Advantage CA-ADS dialog associated with a server task (a task started
by a generic listener):

— Must be a mapless dialog
— Should include SOCKET-LISTENER-PARMS as a work record

The following pre-defined records are provided during installation and can
be attached to a dialog as work records:

— SOCKET-CALL-INTERFACE—describes the socket functions, return
codes and errno values used to issue all socket requests

— SOCKET-MISC-DEFINITIONS—describes options and flags specific to
individual functions

— SOCKET-SOCKADDR-IN, SOCKET-SOCKADDR-IN6, SOCKET-
HOSTENT, SOCKET-TIMEVAL and SOCKET-ADDRINFO—describe
structures that may be useful for certain socket applications

The SOCKET-CALL-INTERFACE record contains fields that can be used for
SOCKET built-in function common parameters:

— function

— return-code
— errno

— reason-code

Each supported function is represented by a field, whose value is the
function number. The following example illustrates how to issue a READ
socket request using the SOCKET built-in function and fields within the
SOCKET-CALL-INTERFACE record:
IF (SOCKET (SOCKET-FUNCTION-READ,

SOCKET-RETCD,

SOCKET-ERRNO,
SOCKET-RESNCD, . . .) =0)

For more information about Advantage CA-ADS and built-in functions, refer
to the Advantage CA-ADS for CA-IDMS Reference Guide.

Socket Call Interface For COBOL

Programs written in COBOL use the CALL statement to exploit TCP/IP sockets:

“IDMSOCKI’ USING

function,

return-code,

errno,

reason-code,
function-dependent-parameterl,

9-12

Advantage CA-IDMS Release Summary

TCP/IP Programming Support for Online Applications

Parameters

function

return-code

errno

reason-code

Notes

A call to IDMSOCKI must pass the following first four parameters:

A 4-byte, full-word aligned, integer field that the program sets to the desired
socket function. Sample definition of a function field:

01 SOCKET-FUNCTION PIC S9(8) COMP.

A detailed description of the supported functions can be found in Appendix G,
“TCP/IP API Commands, Error Codes, Socket Structures and String Conversion
Functions.”

A 4-byte, full-word aligned, integer field that receives the outcome of the
operation. Returned values are:

0 No errors occurred
20 A parameter list error was encountered
-1 A socket error was encountered; the errno and reason-code

fields contain more detailed information about the error.

Sample definition of a refurn-code field:

01 SOCKET-RETCD PIC S9(8) COMP.

A 4-byte, full-word aligned, integer field that receives the ERRNO value when
return-codeis -1. Sample definition of an errno field:

01 SOCKET-ERRNO PIC S9(8) COMP.

Refer to Appendix G, “TCP/IP API Commands, Error Codes, Socket Structures
and String Conversion Functions,” for more information.

A 4-byte, full-word aligned, integer field that receives the reason code value
when refurn-codeis -1. Example definition of a reason-code field:

01 SOCKET-RSNCD PIC S9(8) COMP.

Refer to Appendix G, “TCP/IP API Commands, Error Codes, Socket Structures
and String Conversion Functions,” for more information.

Depending on the function, zero or more parameters can follow.

m If an optional parameter is not specified in the parameter list, it should be
replaced by a parameter that depends on the COBOL compiler:

TCP/IP API Support 9-13

TCP/IP Programming Support for Online Applications

- For COBOL for z/0OS and OS/390, specify reserved keyword OMITTED.

— For ANSI COBOLSS, specify BY VALUE dummy-variable; dummy-
variable should be set to 0.

m The following pre-defined records are provided during installation to assist
in writing socket applications:

— SOCKET-CALL-INTERFACE—describes the socket functions, return
codes and errno values used to issue all socket requests

— SOCKET-MISC-DEFINITIONS—describes options and flags specific to
individual functions

— SOCKET-SOCKADDR-IN, SOCKET-SOCKADDR-IN6, SOCKET-
HOSTENT, SOCKET-TIMEVAL and SOCKET-ADDRINFO—describe
structures that may be useful for certain socket applications

m The SOCKET-CALL-INTERFACE record contains fields that can be used for
the socket call common parameters:

— function

— return-code
— errno

— reason-code

Each supported function is represented by a field, whose value is the
function number. The following example illustrates how to issue a READ
socket request using the fields within the SOCKET-CALL-INTERFACE
record:
CALL “IDMSOCKI’ USING SOCKET-FUNCTION-READ,

SOCKET-RETCD,

SOCKET-ERRNO,
SOCKET-RESNCD,

Note: The SOCKET-CALL-INT record is identical to the SOCKET-CALL-
INTERFACE record except that function values are defined as condition
names instead of fields. Unless storage is critical, the SOCKET-CALL-
INTERFACE record should be used.

m The program associated with a server task (a task started by a generic
listener) must specify:

— In the LINKAGE SECTION:

01 SOCKET-PARMS PIC X(80).
01 SOCKET-DESCRIPTOR PIC S9(8) COMP.
01 SOCKET-RESUME-COUNT PIC S9(8) COMP.

- In the PROCEDURE DIVISION:

PROCEDURE DIVISION USING
SOCKET-PARMS,
SOCKET-DESCRIPTOR,
SOCKET-RESUME-COUNT.

9-14 Advantage CA-IDMS Release Summary

TCP/IP Programming Support for Online Applications

Socket call interface for PL/I

Parameters

function

return_code

errno

reason_code

Programs written in PL /I use the CALL statement to exploit TCP/IP sockets:

CALL ‘IDMSOCKI’
(function,
return_code,
errno,
reason_code,
function_dependent_parameterl,
-)

A call to IDMSOCKI must pass the following first four parameters:

A 4-byte, full-word aligned, integer field that the program sets to the desired
socket function. Sample definition of a function field:

DCL SOCKET_FUNCTION FIXED BINARY(31);

A detailed description of the supported functions can be found in Appendix G,
“TCP/IP API Commands, Error Codes, Socket Structures and String Conversion
Functions.”

A 4-byte, full-word aligned, integer field that receives the outcome of the
operation. Returned values are:

0 No errors occurred
20 A parameter list error was encountered
-1 A socket error was encountered; the errno and reason_code

fields contain more detailed information about the error.

Sample definition of a refurn_code field:

DCL SOCKET_RETCD FIXED BINARY(31);

Value definitions for return codes can be found in Appendix G, “TCP/IP API
Commands, Error Codes, Socket Structures and String Conversion Functions.”

A 4-byte, full-word aligned, integer field that receives the ERRNO value when
return_codeis -1. Sample definition of an errno field:

DCL SOCKET_ERRNO FIXED BINARY(31);

Refer to Appendix G, “TCP/IP API Commands, Error Codes, Socket Structures
and String Conversion Functions,” for more information.

A 4-byte, full-word aligned, integer field that receives the reason code value
when refurn codeis -1. Sample definition of a reason_code field:

TCP/IP API Support 9-15

TCP/IP Programming Support for Online Applications

Notes

DCL SOCKET_RSNCD FIXED BINARY(31);

Refer to Appendix G, “TCP/IP API Commands, Error Codes, Socket Structures
and String Conversion Functions,” for more information.

Depending on the function, zero or more parameters can follow.

m Some PL/I compilers limit the length of an external name to 7 characters.
Since IDMSOCKI contains 8 characters, this can lead to errors at compile
time. Such errors can be solved in these ways:

- Use the compile option LIMITS(EXTNAME(8))

- Use entry point IDMSOCK, which is defined as a synonym to
IDMSOCKI.

m If an optional parameter is not to be specified in the parameter list, replace it

by an asterisk (*).

m The following pre-defined records are provided during installation to assist
in writing socket applications:

— SOCKET_CALL_INTERFACE—describes the socket functions, return
codes and errno values used to issue all socket requests

— SOCKET_MISC_DEFINITIONS—describes options and flags specific to
individual functions

— SOCKET_SOCKADDR_IN, SOCKET_SOCKADDR_ING6,
SOCKET_HOSTENT, SOCKET_TIMEVAL and SOCKET_ADDRINFO—
describe structures that may be useful for certain socket applications

Note: Some of these records contain condition names. To generate the
appropriate declare statements, specify the following pre-compiler option:
EXPAND88=YES

m The SOCKET CALL_INTERFACE record contains fields that can be used for
socket call common parameters:

— function

— return_code
— errno

— reason_code

Each supported function is represented by a field whose value is the function
number. The following example illustrates how to issue a READ socket
request using the fields within the SOCKET_CALL_INTERFACE record:

CALL “IDMSOCKI’ USING (SOCKET_FUNCTION_READ,
SOCKET_RETCD,
SOCKET_ERRNO,
SOCKET_RESNCD,

9-16

Advantage CA-IDMS Release Summary

TCP/IP Programming Support for Online Applications

)5
Note: The SOCKET_CALL_INT record is identical to the
SOCKET_CALL_INTERFACE record except that function values are defined

as condition names instead of fields. Unless storage is critical, the
SOCKET_CALL_INTERFACE record should be used.

m The program associated with a server task (a task started by a generic

listener) must specify:
PROCEDURE (P1, P2, P3)
OPTIONS (REENTRANT,FETCHABLE) ;

DCL (P1,P2,P3) POINTER;

DCL SOCKET_PARMS CHAR(80) BASED (ADDR(P1));
DCL SOCKET_DESCRIPTOR FIXED BINARY(31) BASED (ADDR(P2));
DCL SOCKET_RESUME_COUNT FIXED BINARY(31) BASED (ADDR(P3));

Application Design Considerations

Using Stream Sockets

Receiving Data

The TCP/IP socket program interface is available only to Advantage CA-
IDMS/DC applications running under a central version. A batch program trying
to use the interface receives a socket return code of RNOSLIND.

Server tasks started by a generic listener cannot do any terminal I/O such as
#LINEIN, #LINEOUT, #TREQ etc. If written in Advantage CA-ADS, they should
be mapless dialogs.

TCP allows for arbitrary amounts of data to be sent and received over a stream
socket. Since a stream is interpreted as a sequence of bits, TCP has no knowledge
of the organization, content or amount of data being processed. Therefore, a TCP
application should use its own protocol to logically divide a stream into
messages. The most common way of doing this is to prefix the data with the data
length.

TCP may choose to break a block of data into pieces and transmit each piece
separately or it may accumulate data in its buffer and send it in one block. Thus,
the data sent in a single “send” can be received in a single “receive”, or it can be
received in small chunks. It is possible the receiving application may get the data
of multiple send requests in a single receive. TCP receives data until the expected
message is completely received.

TCP/IP API Support 917

Using the TCP/IP Trace Facility

Sending Data

As with receiving data, there is no guarantee that a send request is completely
serviced. TCP may decide that the amount of data in the send request is too
large. If so, it returns the amount of data already processed and the application
must re-issue the send with an updated data length and buffer pointer. TCP
sends data until the message is completely sent.

TCP/IP Coding Samples

The Advantage CA-IDMS installation media contains these sample programs,
which are intended for demonstration purposes only:

s TCPASMO1 — An Assembler program that tests the #SOCKET API calls.
TCPASMO1 can be invoked in one of two ways:

1. Asauser task code at the “ENTER NEXT TASK CODE” prompt.
Depending on the command line parameters, a client or server program
is initiated. The program converses with a partner program using SEND
and RECV calls. If no parameters are specified, a HELP screen containing
the full syntax and its options is displayed.

2. Asaserver program started by a listener PTE.
Note: The listener's PTERM definition should specify MODE is USER.
m TCPADS(01 — A TCP/IP client program written in Advantage CA-ADS.
s TCPCOB01 — A TCP/IP generic listener server program written in COBOL.
m TCPPLIO1 — A TCP/IP generic listener server program written in PL/I.
TCPADS01 and TCPASMO1 (as a client) provide the same functionality: they
connect to a port number that matches a port number of a generic listener

PTERM. TCPPLIO1, TCPCOBO01, and TCPASMO]1 (as a server) can be invoked by
the task code associated with the generic listener PTERM.

Using the TCP/IP Trace Facility

To help debug socket programs, a TCP/IP trace facility is available. It is
activated using the DCMT VARY LTERM command. For more information
about this command, refer to the Advantage CA-IDMS System Tasks and
Operator Commands.

9-18 Advantage CA-IDMS Release Summary

Appendix New qnd ReVised DCMT
ANl Commands

This appendix describes DCMT commands that are new or that have changed in
Release 16.0.

DCMT DISPLAY DBTRACE

This new command displays information about the database trace.

Syntax
»»— DCMT I_ T >
broadcast-parms —!
»— Display DBTRace >«
Parameters
broadcast-parms Indicates to execute the DCMT command on all or a list of data sharing group
members. Refer to the section, “How to Broadcast System Tasks” for more
information on broadcasting and broadcast-parms syntax.
Example

The following example illustrates the use of the DCMT DISPLAY DBTRACE
command to see whether the trace is on and, if it is on, the size of the trace table:

DCMT DISPLAY DBTRACE
DBTrace is ON size 5000

New and Revised DCMT Commands Al

DCMT DISPLAY DISTRIBUTED RESOURCE MANAGER

DCMT DISPLAY DISTRIBUTED RESOURCE MANAGER

Syntax

Parameters

broadcast-parms

RESource MANager

Examples

This new command displays information about resource managers that are
known to a system.

»»— DCMT

v

|
L broadcast-parms —!

»— Display DISTributed _I: RESource MANager _J
RM 'rm-name’

)

Indicates to execute the DCMT command on all or a list of data sharing group
members. Refer to the section, “How to Broadcast System Tasks” for more
information on broadcasting and broadcast-parms syntax.

Valid values are ‘rm-name’ and spaces. If ‘rm-name’ is not specified, a list of all
known resource managers is displayed.

rm-name Specifies the name of the resource manager to display. The
rm-name value must be enclosed in single quotes using the
format “ooooxxxx:yyyyyyyy’. The rm-name value must
match a value that appears on the summary display.

The example below illustrates the use of the DCMT DISPLAY DISTRIBUTED
RESOURCE MANAGER command to obtain a summary of known resource
managers.

DCMT D DIST RM

RM Name Status Startup time (UTC) PndResync
SYSTEM73::RRS_RMI Open N/A 0
SYSTEM73::DSI_CLI Open 2003-01-30-11.36.05.368120 0
SYSTEM73::DSI_SRV ~ Open 2003-01-30-11.36.05.368120 0
SYSTEM72::DSI_SRV Initial *Unknown 1
SYSTEM74::DSI_SRV Open 2003-01-31-13.17.27.855555 1

The example below illustrates the use of the DCMT DISPLAY DISTRIBUTED
RESOURCE MANAGER command to obtain detailed information about an
individual resource manager and all distributed transactions in which it has an
interest.

A2 Advantage CA-IDMS Release Summary

DCMT DISPLAY DISTRIBUTED RESOURCE MANAGER

Usage

DCMT D DIST RM 'SYSTEM74::DSI_SRV'

RM Name SYSTEM74::DSI_SRV

Status Open

Startup time (UTC) 2003-01-31-13.17.27.855555

Task/LTE |Distributed transaction ID-Branch ID |Ctr1|State|Ind|Outcome
*none | SYSTEM74: :01650D6EDFB1AB93-01650D6A79F31E50 | IDMS | InDbt |Rsy |OK

Output from DCMT DISPLAY DISTRIBUTED RESOURCE MANAGER: Output
from this command shows the following summary information:

m The name of the resource manager
m The resource manager’s status. Valid values are:

- Initial or Closed—Resynchronization of the resource manager has not
occurred.

- Open—Resynchronization with the identified resource manager
completed successfully.

- ResyncQued—Resynchronization is in-progress or abnormally
terminated.

— ResyncCmpl—Resynchronization completed unsuccessfully, probably
because the resource manager is not active.

m The time the resource manager was last started, if known to the local system.
The time that is shown is a UTC (GMT) value.

m The number of distributed transactions pending resynchronization in which
this resource manager has an interest.

Output from DCMT DISPLAY DISTRIBUTED RM rm-name* Output from this
command includes the above summary information as well as a list of the
distributed transactions in which the resource manager has an interest. The
latter information may not always be available, depending on the type of
resource manager being displayed. For a description of the transaction-related
information, refer to the DCMT DISPLAY DISTRIBUTED TRANSACTION
summary command.

New and Revised DCMT Commands A3

DCMT DISPLAY DISTRIBUTED TRANSACTION

DCMT DISPLAY DISTRIBUTED TRANSACTION

This new command displays information about distributed transactions.

Syntax
»»— DCMT B I >
broadcast-parms —
»— Display DISTributed TRansaction >«

ID 'dist-tran-id' —
XID 'ext-tran-id' —
RESync

Parameters

broadcast-parms Indicates to execute the DCMT command on all or a list of data sharing group

members. Refer to the section, “How to Broadcast System Tasks” for more
information on broadcasting and broadcast-parms syntax.

DISTributed Transaction

Provides a list of distributed transactions. If no other options are entered, a list
of all distributed transactions is displayed. Valid options are:

ID dist-tran-id

XID ext-tran-id

RESync

Examples

Provides detailed information about the distributed
transaction that is assigned to this ID. The dist-tran-id
value must be enclosed in single quotes, using the format
XOOXXXXXYYYYYYYYYYYYYYYY . The dist-tran-id value
must match a value that appears on the summary display.

Provides detailed information about the distributed
transaction assigned to this ID. The ext-tran-id value is the
hexadecimal value of an XA XID or a RRS URID. The ext-
tran-id value must be enclosed in single quotes.

Displays a summary of all distributed transactions pending
resynchronization.

The example below illustrates the use of the DCMT DISPLAY DISTRIBUTED
TRANSACTION command to obtain a summary of known distributed

transactions.

A4 Advantage CA-IDMS Release Summary

DCMT DISPLAY DISTRIBUTED TRANSACTION

Usage

DCMT D DIST TR

Task/LTE |Distributed transaction ID-Branch ID |Ctrl|State|Ind|Outcome
*none | SYSTEM74: :01650D6EDFB1AB93-01650D6A79F31E50 | IDMS | InDbt |Rsy | OK
00123 | SYSTEM74::01650D7920C25DEQ-01650D75FOFC2550 | IDMS | InDbt |- |OK

The example below illustrates the use of the DCMT DISPLAY DISTRIBUTED
TRANSACTION command to obtained detailed information about an individual
transaction.

DCMT D DIST TR ID 'SYSTEM74::01650D6EDFB1AB93'

Top level transaction branch:

Task/LTE *none Res. indicator Rsy
Distr. tr. ID SYSTEM74: :01650D6EDFB1AB93 Control IDMS
Branch ID 01650D6A79F31E50 State InDoubt
Local ID *none Outcome 0K
External ID *none
Controlling interest:

RM name SYSTEM74::DSI_SRV Role SDSRM

Interest state InDoubt Protocol Presumed Abort

One phase commit Not Supported Journal Yes

Resync Yes Manual Yes

Restart Yes

Subordinate transaction branch

Branch ID 01650DA79956B32B State InDoubt
Local ID 1416 Outcome 0K
External ID *none

Output from DCMT DISPLAY DISTRIBUTED TRANSACTION: The following
summary information is shown for distributed transactions included in this
display.

m The task or logical terminal element associated with the transaction. If an
active task is processing the transaction, the task ID is shown. If a logical
terminal but no task is associated with the transaction, the LTE’s ID is
shown. A distributed transaction that is pending resynchronization or
pending completion by RRS or an XA transaction manager may have no
associated task or logical terminal.

m The distributed transaction ID (DTRID) assigned to the transaction.
m The identifier of the top-level branch of the transaction.

m The type of the transaction manager, or coordinator, that is in control of the
transaction. Possible types are:

New and Revised DCMT Commands A-5

DCMT DISPLAY DISTRIBUTED TRANSACTION

- IDMS—Advantage CA-IDMS
- RRS—RRS
- XA— XA transaction manager
- CICS—CICS system
m The state of the transaction. Possible states are:
— Reset—InReset
- InFl—InFlight
- InPrp—InPrepare
— InDbt—InDoubt
— LstAg—LastAgent
- InBck—InBackout
- InCmt—InCommit
- Forg—Forgotten

m Anindication of whether this transaction is pending resynchronization.
Possible values are:

— Rsy—The transaction is pending resynchronization
— Rst—The transaction was restarted and is pending resynchronization

m The transaction’s outcome to date. Possible outcomes are:

- OK—OK
- OK_P—OK_Pending
- FGT—Forget

- BACK— Backout
- BK_P—Backout_Pending
- HC—Heuristic Commit
— HM—Heuristic Mixed
— HR—Heuristic Reset
For information on the following , see “Two-Phase Commit Support within
Advantage CA-IDMS” in Chapter 3:
m Distributed Transaction Identifier (DTRID)
m Transaction State

m Transaction Outcome

A-6 Advantage CA-IDMS Release Summary

DCMT DISPLAY DISTRIBUTED TRANSACTION

Output from DCMT DISPLAY DISTRIBUTED TRANSACTION ID/XID. The
detail displayed for a distributed transaction includes information on each of the
branches comprising the transaction. A transaction always has one top-level
branch and may or may not have subordinate branches.

The information listed below is displayed for a top-level branch. See the
description above of the summary output for details on each of these fields:
m The task or logical terminal ID that is associated with the transaction.

m Anindication of whether this transaction is pending resynchronization.
s The DTRID assigned to the transaction.

m The type of the transaction manager that is in control of the transaction.
The following information is displayed for all transaction branches:

m The identifier assigned to the branch.

m The state of the transaction branch.

m The local transaction ID (LID) if database access was performed under
control of the branch.

m The commit outcome to date for the transaction branch.

m The external identifier assigned to the transaction branch if applicable.

m Information on interests in the branch that have been registered by resource
managers

The following information is displayed for each interest associated with a

transaction:

m Anindication of whether this is a controlling interest. A controlling interest
is one that was registered by the transaction’s coordinator.

m The name of the resource manager that registered the interest.

m The role that the associated resource manager plays within the transaction.
Possible values are:

— SDSRM—Server Distributed Resource Manager
— CRM—Communications Resource Manager
— PART—Participant
m The state of the interest.
s The commit protocol used by the resource manager. Possible values are:
— Presumed Abort
— Presumed Nothing

m Whether the resource manager supports a one-phase commit protocol.
Possible values are:

New and Revised DCMT Commands A~/

DCMT DISPLAY DISTRIBUTED TRANSACTION

- Supported—Indicating that the resource manager is capable of
processing a one-phase commit request

- Not Supported—Indicating that the resource manager is not capable of
processing a one-phase commit request

— Only—Indicating that the resource manager is only capable of
supporting a one-phase commit request

m Anindication of whether the interest is to be journaled or not.

m Anindication of whether resynchronization is pending with the interest’s
resource manager.

m Anindication of whether the transaction must be completed manually, due
to a resynchronization failure.

m Anindication of whether the interest was restarted following an abnormal
system termination.

For information on the following, see “Two-Phase Commit Support Within

Advantage CA-IDMS” in Chapter 3:

m Distributed Transaction Identifier (DTRID)

m Transaction and interest states

m Transaction and interest outcomes

m Transaction branches and interests

A8 Advantage CA-IDMS Release Summary

DCMT DISPLAY LINE

DCMT DISPLAY LINE

Syntax

Parameters
line-id

IPInfo

Example

The DCMT DISPLAY LINE command is enhanced with a new parameter that
provides TCP/IP information.

)

»»— DCMT Display LINe line-id L_ _J
IPInfo

The ID of a line specified on the system generation line statement.

Optional keyword to request output of TCP/IP information, which consists of:
m Statistics: central version global data

m Default and current TCP/IP stack.

m A table that describes the TCP/IP stacks defined to the operating system.

Output from the command DCMT D LINE TCPIP IPINFO:

Number of sockets created

Number of sockets currently open

HWM of concurrent open sockets (global)
HWM of concurrent open sockets (1 LTERM)
Number of “no BULK PTE” connection rejects
Number of socket reads 506
Number of socket writes 253
Default tcp/ip stack job name RUNTCP1
Current tcp/ip stack job name

O NNN

Hostname IP address Job name Active IPv6
HOST1ICA 123.456.789.1 RUNTCP1 Y N
RUNTCP1B N
HOST1IBM 123.456.789.2 TCPIPH1I Y N
HOST1CF 123.456.789.3 TCPIPH1X Y

New and Revised DCMT Commands A9

DCMT DISPLAY SUBTASK

DCMT DISPLAY SUBTASK

This modified command provides you with information about the CPU’s
effectiveness.

Syntax

»»— DCMT Display SUBTask EFFectiveness

)

Example

The following example illustrates the use of DISPLAY SUBTASK
EFFECTIVENESS to display CPU effectiveness:

DCMT D SUBTASK EFFECTIVENESS
*¥** Subtask display ***

Subtask % CPU
Name Elapsed time Total CPU time effectiveness
MAINTASK 00:02:41.9079 00:00:11.1475 66

DCMT DISPLAY SYSTRACE

This new command displays information about the system trace.

Syntax
broadcast-parms —!
»— DISPLAY SYSTRace >«
Parameters
broadcast-parms Indicates to execute the DCMT command on all or a list of data sharing group

members. Refer to the section, “How to Broadcast System Tasks” for more
information on broadcasting and broadcast-parms syntax.

A-10 Advantage CA-IDMS Release Summary

DCMT DISPLAY TRANSACTION SHARING

Example

The following example illustrates the use of the DCMT DISPLAY SYSTRACE
command to see whether the trace is on and, if it is on, the number of entries in
the trace table:

DCMT DISPLAY SYSTRACE
System trace is ON entries 2500

DCMT DISPLAY TRANSACTION SHARING

Syntax

Parameters

broadcast-parms

Example

This new command displays information about transaction sharing.

»»— DCMT

v

|
L broadcast-parms —!

I

»— Display TRansaction SHaring

Indicates to execute the DCMT command on all or a list of data sharing group
members. Refer to the section, “How to Broadcast System Tasks” for more
information on broadcasting and broadcast-parms syntax.

The following example illustrates the use of the DCMT DISPLAY
TRANSACTION SHARING command to see whether transaction sharing is on:

DCMT D TRANSACTION SHARING
Transaction Sharing OFF

New and Revised DCMT Commands A-11

DCMT VARY DBTRACE

DCMT VARY DBTRACE

Syntax

Parameters

broadcast-parms

OFF

ON

SIze table-size

Examples

This new command lets you turn the database trace on and off and set the size of
the trace table.

v

broadcast-parms —

)

»— Vary DBTRace OFF
—[ON SIze table-size J

Indicates to execute the DCMT command on all or a list of data sharing group
members. Refer to the section, “How to Broadcast System Tasks” for more
information on broadcasting and broadcast-parms syntax.

Disables database tracing.

Enables database tracing.

Specifies the size of the database trace table, where table-size is the size of the
table in kilobytes.

The following example illustrates the use of the DCMT VARY DBTRACE
command to turn the database trace off:

DCMT VARY DBTRACE OFF
DBTrace is OFF

The following example illustrates the use of the DCMT VARY DBTRACE
command to set the size of the database trace table:

DCMT VARY DBTRACE ON SIZE 6144
DBTrace is ON size 6144

A-12 Advantage CA-IDMS Release Summary

DCMT VARY DISTRIBUTED RESOURCE MANAGER

DCMT VARY DISTRIBUTED RESOURCE MANAGER

This new command initiates resynchronization with or deletes the specified
resource manager.

Syntax
>>— DCHT —— . >
broadcast-parms —
»— Vary DISTributed RESource MANager]—' rm-name' RESYNC
= RM = DELete
Parameters
broadcast-parms Indicates to execute the DCMT command on all or a list of data sharing group
members. Refer to the section, “How to Broadcast System Tasks” for more
information on broadcasting and broadcast-parms syntax.
RESource MANager Valid values are ‘rm-name’ and spaces. If ‘rm-name’ is not specified, a list of all
known resource managers is displayed.
rm-name Specifies the name of the resource manager to display. The
rm-name value must be enclosed in single quotes using the
format “xx00xxx::yyyyyyyy’. The rm-name value must
match a value that appears on the summary display.
RESYNC Specifies that resynchronization be performed on the named resource manager.
DELete Specifies that the named resource manager and any interests associated with it
be deleted.
Example

The following example illustrates the use of the DCMT VARY DISTRIBUTED
RESOURCE MANAGER command to initiate resynchronization with the
SYSTEM74::DSI_CLI resource manager.

DCMT V DIST RM 'SYSTEM74::DSI_CLI' RESYNC

Resource manager SYSTEM74::DSI_CLI RESYNC successfully initiated.

New and Revised DCMT Commands A-13

DCMT VARY DISTRIBUTED RESOURCE MANAGER

Usage

Resource manager limitations: Not all resource managers support
resynchronization initiated through a DCMT VARY DISTRIBUTED RESOURCE
MANAGER command. This is the case for CICS resource managers and resource
managers whose name ends with “DSI_SRV”. Resynchronization with such
resource managers can be initiated only from the associated front-end system.
An error message is displayed if the specified resource manager does not
support resynchronization through this command.

Deleting resource managers: When a resource manager is deleted, all record of
that resource manager is eliminated from the system. The DCMT VARY
RESOURCE MANAGER DELETE command should only be used when the
resource manager no longer exists. For example, when a DC/UCEF system is
removed from the network. By deleting the resource manager, no further
attempt is made to resynchronize with that resource manager at startup.

Note: Only resource managers whose name ends in “DSI_CLI” or “DSI_SRV”
can be deleted.

For resource managers whose name ends in “DSI_ SRV Use the DCMT
DISPLAY DISTRIBUTED RESOURCE MANAGER command to determine if the
resource manager has associated interests, before deleting the resource manager.
If the resource manager's name ends in “DSI_SRV” the delete request fails if
there are outstanding interests. Use the DCMT VARY DISTRIBUTED
TRANSACTION command to manually complete each transaction before
deleting the resource manager.

For resource managers whose name ends in “DS[_CLI" If the resource
manager's name ends in “DSI_CLI”, its associated interests are deleted
automatically as part of deleting the resource manager. After deleting the
resource manager, use the DCMT VARY DISTRIBUTED TRANSACTION
command to complete any transactions whose interests were deleted. Since no
further attempt will be made to communicate with the deleted transaction
manager, the transactions will now be able to complete.

A-14 Advantage CA-IDMS Release Summary

DCMT VARY DISTRIBUTED TRANSACTION

DCMT VARY DISTRIBUTED TRANSACTION

Syntax

Parameters

broadcast-parms

This new command forces the completion of a distributed transaction that either:
m s pending resynchronization

m Has no associated or task or user session

»»— DCMT — Vary

v

L broadcast-parms —

»— DISTributed Transaction —E ID 'dist-tran-id' BACKout
XID 'ext-tran-id' :'—E COMmit ﬂ
FORget

Indicates to execute the DCMT command on all or a list of data sharing group
members. Refer to the section, “How to Broadcast System Tasks” for more
information on broadcasting and broadcast-parms syntax.

DISTributed Transaction

BACkout

COMmit

FORget

Provides a list of distributed transactions. If no other options are entered, a list
of all distributed transactions is displayed. Valid options are:

ID dist-tran-id Provides detailed information about the distributed
transaction that is assigned to this ID. The dist-tran-id
value must be enclosed in single quotes, using the format

XXXXXXXX:YYYYYYYYYYYYYYYY . The dist-tran-id value
must match a value that appears on the summary display.

XID ext-tran-id Provides detailed information about the distributed
transaction assigned to this ID. The ext-tran-id value is the
hexadecimal value of an XA XID or a RRS URID. The ext-
tran-id value must be enclosed in single quotes.

Specifies that the transaction should be backed out. BACkout can only be
specified ifthe transaction’s state is InDoubt or InBackout.

Specifies that the transaction should be committed. COMmit can only be
specified ifthe transaction’s state is InDoubt or InCommit.

Specifies that the transaction should be forgotten. FORget can only be specified
if the transaction’s state is InBackout or InCommit.

New and Revised DCMT Commands A-15

DCMT VARY DISTRIBUTED TRANSACTION

Example
The example below illustrates the use of the DCMT VARY DISTRIBUTED
TRANSACTION command to complete a distributed transaction whose state is
InDoubt.
DCMT V DIST TR ID 'SYSTEM74::01650D6EDFB1AB93' COMMIT
Transaction COMMIT initiated.
Usage

Completing transactions manually: Only distributed transactions that are
pending resynchronization or have no task or user session can be completed
manually using a DCMT VARY DISTRIBUTED TRANSACTION command. The
need for issuing this command is extremely rare and only as a result of a
resynchronization failure. For more information regarding resynchronization
and the need for completing transactions manually, see “Two-Phase Commit
Support within Advantage CA-IDMS” in Chapter 3.

When a DCMT command is used to force an InDoubt transaction to commit or
backout, the transaction branch is flagged as being heuristically committed or
backed out and its outcome is HC or HR respectively. Heuristically completed
transactions must be explicitly forgotten by:

m Issuing a DCMT command

Or

= Allowing the coordinator to direct that the branch be forgotten

The coordinator should be given the chance to do so, unless it is permanently
disabled or its journal files (in the case of Advantage CA-IDMS) were
prematurely formatted thereby eliminating the information required to complete
the transaction.

A-16 Advantage CA-IDMS Release Summary

DCMT VARY DYNAMIC PROGRAM

DCMT VARY DYNAMIC PROGRAM

Syntax

Parameters

MULtiple ENClave is

DCMT VARY DYNAMIC PROGRAM defines programs to the system at system
run time (that is, dynamically). The system uses information supplied in the
DCMT VARY DYNAMIC PROGRAM command to build a program definition
element (PDE) for the program. Programs defined in this way exist only for the
duration of system execution and have no effect on the system definition stored
in the data dictionary. This command was modified to support the multiple
enclave feature.

»»—— DCMT Vary Dynamic Program . . .

} M

|— MULtiple ENClave is —E OFF
ON «

Specifies whether the system allows the same language enclave as other LE
programs. This parameter is only meaningful for COBOL programs.

ON Specifies that this program can participate in a multiple
program LE enclave. This is the default.

Note: This value is effective only if MULTIPLE ENLAVE is ON is specified on
the SYSTEM statement in the sysgen.

OFF Specifies that this program cannot participate in a multiple
program LE enclave.

For More Information

About program definition at system generation time and PDEs, refer to
documentation of the PROGRAM statement in Advantage CA-IDMS System
Generation Guide.

New and Revised DCMT Commands A-17

DCMT VARY DYNAMIC TASK

DCMT VARY DYNAMIC TASK

This command allows the user to define tasks at system runtime, thereby
allowing tasks that are not defined in the sysgen to be used. DCMT VARY
DYNAMIC TASK is extended in Release 16.0 to include parameters that control
transaction sharing and commit and rollback behavior.

This section describes only the new parameters of this command. For more
information, see Advantage CA-IDMS System Tasks and Operator Commands.

Syntax
»»— DCMT Vary Dynamic Task . . . >
L ON COMmit SYStem <
E WRIte COMT
WRIte ENDJ
I: NEW ID €—
RETain ID —
L ON ROL1back SYStem <—g
—E RETain ID —
NEW ID ——
I— TRAnsaction SHAring —E OFF —l
ON
SYStem <
Parameters
ON COMmit Specifies options that control commit behavior. These options apply only to
commit operations in which the database session remains active.
SYStem Specifies that the commit behavior for the task should
default to that specified for the system.
WRIte COMT Specifies that a COMT journal record should be written.
WRIte ENDJ Specifies that an ENDJ journal record should be written.
NEW ID Specifies that a new local transaction ID should be assigned
to the next transaction started by the database session.
RETain ID Specifies that the current local transaction ID should be
assigned to the next transaction started by the database
session.
A-18 Advantage CA-IDMS Release Summary

DCMT VARY DYNAMIC TASK

ON ROL1back

TRAnsaction SHaring

Example

Specifies options that control rollback behavior. These options apply only to
rollback operations in which the database session remains active.

SYStem

RETain ID

NEW ID

Specifies that the rollback behavior for the task should
default to that specified for the system.

Specifies that the current local transaction ID should be
assigned to the next transaction started by the database
session.

Specifies that a new local transaction ID should be assigned
to the next transaction started by the database session.

Specifies the setting for the transaction sharing option.

ON

OFF

SYStem

Specifies that transaction sharing should be initially
enabled for any task of this type.

Specifies that transaction sharing should be initially
disabled for any task of this type.

Specifies that the transaction sharing option for a task of
this type is based on the system default established in the
sysgen or by a DCMT VARY TRANSACTION SHARING
command.

The following example defines a new task code ‘FOU’. Transaction sharing is
initially enabled for the task.

DCMT V D T FOU INVOKES MYPROG TRANSACTION SHARING ON
IDMS DC273001 V73 USER:JKK Task FOU Added

New and Revised DCMT Commands A-19

DCMT VARY FILE

DCMT VARY FILE

This command changes the status of a specified file. This command is extended
in Release 16.0 to let you specify if the file is cached in memory.

This section describes only the new parameters of this command. For more
information, see Advantage CA-IDMS System Tasks and Operator Commands.

Syntax
»»— DCMT Vary File ... >
g L MEMORY CACHE NO "
Lo
Parameters
MEMORY Specifies if the file is cached in memory.
NO Specifies that the file is not cached in memory.
YES Specifies that the file is cached in memory.
Example

The following example causes file EMPDEMO.EMPDEMO to be cached in
memory:

DCMT V FILE EMPDEMO.EMPDEMO MEMORY CACHE YES

-------- Data File -------- Mode Stat Pg-Size F1-Type M-Cache S-Cache DD-Name
EMPDEMO . EMPDEMO Ret 0 4276 non-VSAM Yes No EMPDEMO
Pre-fetch: Not-Allowed (DMCL) Pages per Track 11 DISP=SHR (DMCL)

DSname: (DMCL).. DBDC.SYSTEM71.EMPDEMO.EMPDEMO
DSname: (DMCL).. DBDC.SYSTEM71.EMPDEMO.EMPDEMO

—————————— Area ----------- Lock Lo-Page Hi-Page #Ret #Upd #Tret #Ntfy
EMPDEMO. EMP-DEMO-REGION Ret 75001 75100 0 0 0 0
Stamp: 1999-11-16-08.17.07.104886 Pg grp: 0O NoShare NoICVI NoPerm

A20 Advantage CA-IDMS Release Summary

DCMT VARY LTERM

DCMT VARY LTERM

This command has been enhanced to support tracing for TCP/IP socket
programs.

Syntax
»»— DCMT Vary LTErminal logical-terminal-id >
L 1¢p/1p TRace —— OFF | | a
_{f ALL
CALlS
REAd data
WRIte data
Parameters
OFF Terminates TCP/IP tracing.
CALLS Activates TCP/IP function tracing. A record is output to the LOG.
READ data Specifies an entry is written to the log when data is read through the TCP/IP
function.
WRITE data Specifies an entry is written to the log when data is written using the TCP/IP
function.
ALL Combines CALLS, READ data and WRITE data.
Note: Use the TCP/IP trace facility with care because it can generate a lot of
output.
Example

This command activates the TCP/IP trace.

DCMT V LTE IPLTE@12 TCP/IP TRACE ALL
IDMS DC267016 Vnnnn USER:*** LTERM IPLTE®12 TCP/IP TRACE VARIED TO ALL

New and Revised DCMT Commands A-21

DCMT VARY PROGRAM

DCMT VARY PROGRAM

This command changes attributes in the program definition element of an
existing program. VARY PROGRAM is extended in Release 16.0 to allow you to

Syntax

modify any program attribute that is specified in the sysgen.

This section describes only the modified syntax of this command. For more
information, see Advantage CA-IDMS System Tasks and Operator Commands.

»»— DCMT Vary PRogram . . .

—

v

L DEFine —

—E CONcurrent J
NONCONcurrent

— ISA size nnn

— LANguage ADSo
ASSembler —
COBol
PLI

—E MAInline]

NOMAIN1line
— MPMode ANY
I— SYStem J

— New Co _E ENabled __l_
P DIsabled

—E OVErlayable J
NONOVErlayable

REEntrant
E NONREEntrant ﬂ
QUAsireentrant

—E SAVearea J
NOSAVEarea

— MULTiple ENClave —|: ON <J

— TYPe DIAlog
MAP
PROgram —
SUBschema —
TABLe

OFF

M

A22 Advantage CA-IDMS Release Summary

DCMT VARY PROGRAM

Parameters

CONcurrent

NONCONcurrent

ISA size nnn

LANguage

MAInline

NOMAINline

MPMode

Note: The following restrictions apply:
m The only parameter that cannot be changed is the RESIDENT parameter.

m You can change the LANGUAGE or TYPE parameters of a program only if
the program is DISABLED.

Specifies that the program can be used by multiple tasks at the same time. If the
program is reentrant or quasi-reentrant, one copy of the program is used to
process all requests. If the program is nonreentrant, as many copies of the
program are used as necessary to process requests concurrently.

Specifies that the program can be used by only one task.

For Assembler and PL/I programs only, specifies the amount of storage, in
bytes, allocated for the program’s initial storage area (ISA). If an ISA is specified,
GET STORAGE statements are not required in the program because the system
automatically allocates the requested storage when the program begins
executing. The storage address is passed in register 11. nnn represents an integer
in the range 0 through 2,147,483,647.

Identifies the language in which the program is written:
m ADSo—Advantage CA-ADS dialog

m ASSembler—an assembler program

s COBol—COBOL program

m PLI—PL/I program

For Advantage CA-ADS dialogs only, indicates the dialog is a mainline dialog.
Dialogs defined as MAINLINE are entry points into applications. The names of
mainline dialogs are eligible for display on the Advantage CA-ADS menu screen
as allowed by ADSO statement specifications.

If you specify MAINLINE, the dialog must be generated with the MAINLINE
attribute but it does not have to be assigned a task code during system
generation.

For Advantage CA-ADS dialogs only, indicates the dialog is not a mainline
dialog.

Specifies the multiprocessing mode (MPMODE) for the program. SYStem directs
the system to assign an MPMODE to the program at execution time. ANY
assigns an MPMODE of ANY to the program. ANY is appropriate for reentrant
and quasi-reentrant programs that are defined without storage protection.

New and Revised DCMT Commands A-23

DCMT VARY PROGRAM

New Copy

OVErlayable

NONOVErlayable

REEntrant

NONREEntrant

QUAsireentrant

SAVearea

NOSAVEarea

TYPe

MULtiple ENClave is

Specifies whether the new copy facility is enabled for the program or subschema.
ENable enables the new copy facility for the program or subschema. DIsabled
disables the new copy facility for the program or subschema.

Specifies that the program can be overlaid in the program pool. You should
specify OVERLAYABLE only for executable programs invoked through normal
DC mechanisms.

Specifies that the program cannot be overlaid in the program pool. You should
specify NONOVERLAYABLE for nonexecutable programs (for example, tables)
to prevent such programs from being overwritten in the program pool while
they are in use.

Specifies that the program is reentrant. To be declared reentrant, the program
must acquire all variable storage dynamically and must not modify its own code.

Specifies that the program is nonreentrant. Programs that modify their own code
and do not ensure the modified code is returned to its original state when the
program is not in control mustbe declared NONREENTRANT.

For COBOL programs only, specifies the program is quasi-reentrant. To be
declared quasi-reentrant, a program must not modify its own code unless the
program ensures the modified code is returned to its original state when the
program is not in control. Quasi-reentrant programs are permitted to use
working storage because, each time the program is executed, the system creates a
separate copy of its working storage in the storage pool. This technique makes
the program, in effect, reentrant.

For Assembler programs only, specifies that the system will acquire a save area
automatically before each execution of the program. The save area address is
passed to the program in register 13. You should specify SAVEAREA or accept it
by default if the program uses normal IBM calling conventions and, at the start
of execution, saves registers in the save area.

For Assembler programs only, specifies the system will not acquire a save area
for the program automatically.

Specifies the program type: DIALog, MAP, PROgram, SUBschema, or TABLe.

Specifies whether the system allows the same language enclave as other LE
programs. This parameter is only meaningful for COBOL programs.

ON Specifies that this program can participate in a multiple
program LE enclave. This is the default.

Note: This value is effective only if MULTIPLE ENLAVE is ON is specified on
the SYSTEM statement in the sysgen.

A24 Advantage CA-IDMS Release Summary

DCMT VARY PROGRAM

Examples

OFF Specifies that this program cannot participate in a multiple
program LE enclave.

The following example illustrates using the VARY PROGRAM command to
change the language:

DCMT VARY PROGRAM TESTPROG DEFINE LANGUAGE ASSEMBLER
IDMS DC262013 V71 USER:GUY PROGRAM TESTPROG CDMSLIB LANGUAGE CHANGED

The following example illustrates using the VARY PROGRAM command to
change the multiprocessing mode:

DCMT VARY PROGRAM TESTPROG DEFINE MPMODE ANY
IDMS DC262012 V71 USER:GUY PROGRAM TESTPROG CDMSLIB VARIED SUCCESSFULLY

The following example illustrates using the VARY PROGRAM command to
change the save area:

DCMT VARY PROGRAM TESTPROG DEFINE NOSAVEAREA
IDMS DC262012 V71 USER:GUY PROGRAM TESTPROG CDMSLIB VARIED SUCCESSFULLY

New and Revised DCMT Commands A-25

DCMT VARY PTERM

DCMT VARY PTERM

Syntax

Parameters

listener-port-number

The DCMT VARY PTERM statement is used to manage generic listeners.

Varying a listener PTERM OFFLINE shuts down the generic listener, while
varying ONLINE starts the service. The DCMT VARY PTERM command is
enhanced so you can dynamically change parameters on a listener PTERM.

Note: Varying a generic listener OFFLINE only affects the listener but it does not
affect server tasks that are executing.

v

»»— DCMT Vary PTErminal physical-terminal-id

M

PORT 1listener-port-number
BACKLOG backlog
TASK task-code
MODE SYSTEM

E USER «- il
PARM ‘string’
TCP/IP ~E STACK stack-ip-name

ADDRess ‘stack-ip-address’ —
NAMe ‘stack-host-name’

backlog

stack-ip-name

stack-ip-address

stack-host-name

Number of the listener port. The port number is an integer in the range of 0
through 65535.

The value defines the maximum length for the queue of pending connections
TCP/IP allows before rejecting new connection requests. backlog is a positive
number between 1 and 1,147,483,647.

The value specified for backlog is not necessarily the value accepted by the
LISTEN call. Each TCP/IP implementation has a limit of its own. Advantage
CA-IDMS uses the lesser of the implementation’s limit and the value specified
for the backlog parameter.

The job name of the TCP/IP stack. The name is limited to 8 characters.

IP address of the host. The limit of an IP address depends on whether IPv4 or
IPv6 is used: the limit in IPv4 is 15 characters; in IPv6 it is 45 characters.

Name of the host. The maximum length of the host name is 64 characters.

A26 Advantage CA-IDMS Release Summary

DCMT VARY SUBTASK

task-code Name of the task code to invoke when a connection request is received.

MODE is USER/SYSTEM
Indicates whether the task attached by the listener runs in SYSTEM or USER

MODE. MODE is USER is the default. MODE is SYSTEM is only available for
application programs written in assembler.

string: A character string that is passed to the task attached by generic listening. String
is limited to 80 characters.

Usage

Stack-ip-name, stack-ip-address and stack-host-name are mutually exclusive.
Usually, it is undesirable to specify any of these parameters because doing so
might tie a central version to an operating system image. The only situation in
which specifying one of the above parameters is useful is when the central
version runs on a multi-homed host and listening is to be restricted to a specific
TCP/IP stack.

Note: Varying a generic listener OFFLINE only affects the listener but it does not
affect server tasks that are executing.

DCMT VARY SUBTASK

This new command allows you to enable or disable the ability for a subtask to
execute calls to RRS.

Syntax
»»— DCMT I_ T 1
broadcast-parms —!
—»— Vary SUBTask sub-task-no RRS ENabled >«
—E Disabled |
Parameters
broadcast-parms Indicates to execute the DCMT command on all or a list of data sharing group

members. Refer to the section, “How to Broadcast System Tasks” for more
information on broadcasting and broadcast-parms syntax.

SUBTask sub-task-no Specifies the number of the subtask whose work type is to change. The sub-task-
no must be a value ranging from 2 through the maximum number of subtasks
specified for the system.

New and Revised DCMT Commands A=27

DCMT VARY SYSTRACE

RRS

Examples

Notes:
m Subtask 1 (MAINTASK) can never execute calls to RRS.

m The number of subtasks cannot be changed. Therefore, if a system was
started with uni-tasking and without RRS support, the DCMT V SUBTASK
command will fail.

ENabled Specifies the subtask can execute calls to RRS.

Disabled Specifies the subtask cannot execute calls to RRS.

This example illustrates the use of the DCMT VARY SUBTASK command to
change the type of work for subtask 2.

DCMT V SUBTASK 2 RRS DISABLED
IDMS DC285001 V73 USER:DEMO Subtask 002 RRS DISABLED

DCMT VARY SYSTRACE

Syntax

Parameters

broadcast-parms

OFF
ON

ENTRIES nnn

This new command lets you turn the system trace on and off and set the number
of entries in the trace table.

v

broadcast-parms —!

I

»— DCMT VARY SYSTRace —E OFF J
ON ENTries nnn

Indicates to execute the DCMT command on all or a list of data sharing group
members. Refer to the section, “How to Broadcast System Tasks” for more
information on broadcasting and broadcast-parms syntax.

Disables the system trace.

Enables the system trace.

Specifies the size of the system trace table, where nnn is the number of entries in
the table.

A28 Advantage CA-IDMS Release Summary

DCMT VARY TASK

Examples

The following example illustrates the use of the DCMT VARY SYSTRACE
command to turn the system trace off:

DCMT VARY SYSTRACE OFF
System trace is OFF

The following example illustrates the use of the DCMT VARY SYSTRACE
command to set the number of entries in the system trace:

DCMT VARY SYSTRACE ON ENTRIES 5000
System trace is ON entries 5000

DCMT VARY TASK

Syntax

Parameters

ON COMmit

This command changes attributes in the task definition element for a task that
already exists. DCMT VARY TASK has been extended in Release 16.0 to include
parameters that control transaction sharing and commit and rollback behavior.

This section describes only the new parameters of this command. For more
information, see Advantage CA-IDMS System 1asks and Operator Commands.

»»— DCMT Vary TAsk . . .

v

— ON COMmit SYStem
—E WRIte COMT

WRIte ENDJ I:

I

NEW ID <—
RETain ID —

RETain ID —
NEW ID ——
'— TRAnsaction SHAring —E ON

— ON ROL1back —E SYStem

OFF ——
SYSTEM —

Specifies options that control commit behavior. These options apply only to
commit operations in which the database session remains active.

SYStem Specifies that the commit behavior for the task should
default to that specified for the system.

WRIte COMT Specifies that a COMT journal record should be written.

New and Revised DCMT Commands A-29

DCMT VARY TASK

WRIte ENDJ Specifies that an ENDJ journal record should be written.

NEW ID Specifies that a new local transaction ID should be assigned
to the next transaction started by the database session.

RETain ID Specifies that the current local transaction ID should be
assigned to the next transaction started by the database
session.

ON ROL1back Specifies options that control rollback behavior. These options apply only to

rollback operations in which the database session remains active.

SYSTEM Specifies that the rollback behavior for the task should
default to that specified for the system.

RETain ID Specifies that the current local transaction ID should be
assigned to the next transaction started by the database
session.

NEW ID Specifies that a new local transaction ID should be assigned

to the next transaction started by the database session.
TRAnsaction SHaring Specifies the setting for the transaction sharing option.

ON Specifies that transaction sharing should initially be
enabled for any task of this type.

OFF Specifies that transaction sharing should initially be
disabled for any task of this type.

SYStem Specifies that the transaction sharing option for a task of
this type is based on the system default established by the
sysgen's SYSTEM statement or by a DCMT VARY
TRANSACTION SHARING command.

Example

The following example alters task FOU so that it writes an ENDJ journal record
on all commit operations:

DCMT V TA FOU ON COMMIT WRITE ENDJ
IDMS DC261018 V73 USER:KKK ON COMMIT varied from SYSTEM to WRITE ENDJ NEW ID

A30 Advantage CA-IDMS Release Summary

DCMT VARY TRANSACTION SHARING

DCMT VARY TRANSACTION SHARING

Syntax

Parameters

broadcast-parms

ON

OFF

Example

This new command lets you change the default transaction sharing option for
the system.

»»— DCMT

v

|
L broadcast-parms —

)

»— VARY TRansaction SHaring _I: ON]
OFF

Indicates to execute the DCMT command on all or a list of data sharing group
members. Refer to the section, “How to Broadcast System Tasks” for more
information on broadcasting and broadcast-parms syntax.

Specifies that, by default, transaction sharing is enabled for all tasks whose
transaction sharing option specifies SYSTEM.

Specifies that, by default, transaction sharing is disabled for all tasks whose
transaction sharing option specifies SYSTEM.

The following example illustrates the use of the DCMT VARY TRANSACTION
SHARING command to activate transaction sharing:

DCMT V TRANSACTION SHARING ON
Transaction Sharing ON

New and Revised DCMT Commands A-31

How to Broadcast System Tasks

How to Broadcast System Tasks

Syntax

Parameters
broadcast-parms

Broadcast

separator

member-name

Usage

If the central version (CV) is a member of a data sharing group (DSG), system
tasks DCMT, DCUF and SEND can execute on other central versions that are
members of the same DSG. This is called broadcasting. Broadcasting can be
done to all the DSG members or a list of DSG members.

»»— task

)

|
L broadcast-parms —

Expansion of broadcast-parms

»»— Broadcast L >

— separator J
(—v— member-name name_—l—

Specifies how to execute the task.

Indicates that the specified task must be executed on one or more members of the
data sharing group. If no list of members is given, the task is executed on ALL
members.

Separates multiple member names. Use a comma or at least one space.

Identifies the data sharing member (or a list) on which the specified task is to be
executed.

Authorization: The issuing user must have the authority to execute the command
on all members of the group to which it is directed. If the needed authority is
not held on a member, the command will not execute on that member, but may
on other members.

Output. The output from a broadcast command is segmented by member. All
output from one member is displayed before that of another member. When
broadcasting to all members, the output for the member on which the command
is issued is displayed first. A header indicating the name of the member
identifies other member’s output.

A32 Advantage CA-IDMS Release Summary

Command Codes

Restrictions on the Broadcastable Tasks

DCMT: All commands can be broadcast, except DCMT ABORT, DCMT
SHUTDOWN, DCMT VARY DMCL, DCMT QUIESCE, and DCMT
DISPLAY/VARY NUCLEUS.

DCUEF: Only the DCUF SHOW USER command can be broadcast.

SEND: All commands can be broadcast. Parameter prompting is not possible
when broadcasting.

Examples

DCMT B V SEGMENT EMPDEMO
DCMT B V SEGMENT EMPDEMO OFFLINE
---------- Area ----------- lLock Lo-Page Hi-Page #Ret #Upd
EMPDEMO. EMP-DEMO-REGION 0fl 75001 75100 0 0
Stamp: 2002-11-17-09.55.31.875826 Pg grp: O NoShare NoICVI
EMPDEMO. INS-DEMO-REGION 0fl 75101 75150 0 0
Stamp: 2002-11-17-09.55.31.956231 Pg grp: 0O NoShare NoICVI
EMPDEMO . ORG-DEMO-REGION 0fl 75151 75200 0 0
Stamp: 2002-11-17-09.55.31.887739 Pg grp: 0O NoShare NoICVI

=== Qutput from group member SYSTEM73

---------- Area ----------- lLock

Lo-Page

Hi-Page #Ret #Upd

EMPDEMO. EMP-DEMO-REGION 0f1l 75001 75100 0 0
Stamp: 1001-08-07-14.58.14.855461 Pg grp: 0 NoShare NoICVI
EMPDEMO. INS-DEMO-REGION 0f1 75101 75150 0 0
Stamp: 1001-08-07-14.58.14.896650 Pg grp: 0O NoShare NoICVI
EMPDEMO . ORG-DEMO-REGION 0f1l 75151 75200 0 0
Stamp: 1001-08-07-14.58.14.874287 Pg grp: © NoShare NoICVI

#Tret #Ntfy
0 0

NoPerm

0 0
NoPerm

0 0
NoPerm

#Tret #Ntfy
0 0

NoPerm

0 0
NoPerm

0 0
NoPerm

Command Codes

The following command codes apply to new and revised DCMT commands
available in Release 16.0.

Code DCMT Command

NO025 VARY PROGRAM

N025013 VARY PROGRAM MULTIPLE ENCLAVE ON
NO025014 VARY PROGRAM MULTIPLE ENCLAVE OFF
N025015 VARY PROGRAM DEFINE keyword

NO025016 VARY PROGRAM DEFINE LANGUAGE
N025017 VARY PROGRAM DEFINE ISA SIZE

New and Revised DCMT Commands

A33

Command Codes

Code DCMT Command

NO025018 VARY PROGRAM DEFINE TYPE

N025019 VARY PROGRAM DEFINE MPMODE

NO064 DISPLAY or VARY DISTRIBUTED

N064001 DISPLAY DISTRIBUTED TRANSACTION
N064002 DISPLAY DISTRIBUTED TRANSACTION ID/XID
N064006 DISPLAY DISTRIBUTED RESOURCE MANAGER
N064007 DISPLAY DISTRIBUTED RESOURCE MANAGER rm-name
N064010 VARY DISTRIBUTED TRANSACTION ID/XID
N064011 VARY DISTRIBUTED RESOURCE MANAGER rm-name
NO076 DISPLAY SUBTASK/MT

N076005 DISPLAY SUBTASK EFFECTIVENESS

NO077 VARY SUBTASK

NO077001 VARY SUBTASK nnn RRS ENABLED

N077002 VARY SUBTASK nnn RRS DISABLED

N102 DISPLAY or VARY TRANSACTION SHARING
N102000 DISPLAY TRANSACTION SHARING

N102001 VARY TRANSACTION SHARING

N103 DISPLAY or VARY SYSTRACE or DBTRACE

N103001 DISPLAY SYSTRACE

N103002 VARY SYSTRACE OFF

N103003 VARY SYSTRACE ON

N103004 DISPLAY DBTRACE

N103005 VARY DBTRACE OFF

N103006 VARY DBTRACE ON

See the Advantage CA-IDMS Security Administration Guide for information on
how to use these command codes to secure these DCMT commands.

A34 Advantage CA-IDMS Release Summary

Appendix

B New and Revised SQL Statements

This appendix describes SQL statements and language elements that are new or
that have changed in Release 16.0.

User-Defined SQL Function Statements

This section discusses the new SQL statements available in Release 16.0 that let
you define external SQL functions. These functions are listed below:

m ALTER FUNCTION

m CREATE FUNCTION

s DISPLAY/PUNCH FUNCTION
s DROP FUNCTION

This section also explains how to invoke these functions.

Function Invocation

Purpose

Authorization

Represents the invocation of a scalar function through a qualified or unqualified
function identifier together with an optional set of parameter values.

To invoke a function, you must either own or hold the SELECT privilege on the
named function.

User-Defined SQL Function Statements

Syntax

v

> |_ _J function-identifier
schema-name.

 ()

X

| . |
L—v— parameter-specification ——!

Expansion of parameter-specification:

Parameters

schema-name

function-identifier

)4

»p L_ _J value-specification
parameter-name =

Specifies the schema with which the function identified by function-identifier is
associated.

For information on using a schema name to qualify a function, see “Identifying

Entities in Schemas” in the Advantage CA-IDMS Database SQL Option
Reference Guide.

Identifies a function defined in the dictionary.

parameter-specification

parameter-name

value-specification

Specifies a value to be assigned to a parameter of a function. Both the positional
(with NO parameter-name) and the non-positional (with parameter-name) forms
of parameter specification can be used in a single function invocation.

If a non-positional parameter specification is used, all remaining parameter
specifications in the parameter list MUST be non-positional. Positional
parameter specifications are assumed to correspond to the declared parameters
of a function in the sequence of their declaration.

Specifies the name of a parameter associated with the function.

Any valid expression involving constants, host variables, database columns, and
scalar function invocations.

B2 Advantage CA-IDMS Release Summary 16.0

User-Defined SQL Function Statements

Usage

Examples

Passing and returning values to a function: During SQL function processing,
Advantage CA-IDMS issues a call to the corresponding external routine with the
values supplied in the function invocation. Before returning control, the external
routine must set a value for the implicitly defined output parameter
USER_FUNC; this then becomes the function return value.

For more information about assignment of values to function parameters, see
Appendix C, “SQL Functions and SQL Procedure Enhancements.”

CA-supplied versus user-defined functions: If the function invocation contains a

schema-name, the target function is the one contained within the schema derived
by applying the rules in “Identifying Entities in Schemas” in the Advantage CA-

IDMS Database SQL Options Reference Guide.

If the function invocation does not contain a schema name, then Advantage CA-
IDMS identifies the target function as follows:

m If function-identifier matches the identifier of a scalar function distributed
with Advantage CA-IDMS, then the target is that function.

m Otherwise, the target function is the function identified by function-identifier
in the schema derived by applying the rules in “Identifying Entities in
Schemas” in the Advantage CA-IDMS Database SQL Options Reference
Guide.

User-defined function restrictions: You cannot include a user-defined function

invocation in the search condition of a table’s check constraint.

Select emp_id, fin.udf_funbonus(emp_id) from demoempl.employee;

Select power(sqgrt(alpha_index), 3) from prod@0l.measurement;

ALTER FUNCTION Statement

Purpose

ALTER FUNCTION is a data description statement that modifies the definition
of a function in the dictionary. The ALTER FUNCTION statement is an
Advantage CA-IDMS extension of ANSI-standard SQL. Using the ALTER
FUNCTION statement, you can:

m Revise the estimated row and I/O counts
m Change the external name of the function
m Change the size and characteristics of the work areas passed to the function

m Change the execution mode of the function

New and Revised SQL Statements B3

User-Defined SQL Function Statements

Authorization

Syntax

Parameters

function-identifier

schema-name

external-routine-name

row-count

io-count

m Change the timestamp
m Change the default database

m Change the transaction sharing mode

To issue an ALTER FUNCTION statement, you must own or hold the ALTER
privilege on the function named in the statement.

»»— ALTER FUNCTION function-identifier

\ 4

I— schema-name. J

»—— EXTERNAL NAME external-routine-name »<
— ESTIMATED ROWS row-count
— ESTIMATED IOS io-count
— LOCAL WORK AREA local-stge-size

— GLOBAL WORK AREA global-stge-size |_
KEY —E ke){—'ld_“ri

— USER MODE
— SYSTEM MODE
— TIMESTAMP timestamp-value
— DEFAULT DATABASE NULL:

—E CURRENT —|
'— TRANSACTION SHARING AE ON

OFF
DEFAULT —

Specifies the name of the function being modified. function-identifier must
identify a function defined in the dictionary.

Identifies the schema associated with the named function. If you do not specify a
schema-name, it defaults to:

m The current schema associated with your SQL session if the statement is
entered through the Command Facility or executed dynamically

m The schema associated with the access module used at runtime if the
statement is embedded in an application program

Specifies the one- to eight-character name of the program or mapless dialog that
Advantage CA-IDMS calls to process function invocations.

Specifies an inte%)er value, in the range of 0 through 2,147,483,647 that represents
the average number of rows that the’ Advantage CA-IDMS optimizer uses for
cost calculation of the function invocation.

Specifies an integer value, in the range of 0 through 2,147,483,647 that represents
the average number of disk accesses that the function generates for a given set of
input parameters.

B4 Advantage CA-IDMS Release Summary 16.0

User-Defined SQL Function Statements

local-stge-size

global-stge-size

key-id

USER MODE

SYSTEM MODE

timestamp-value

DEFAULT DATABASE

TRANSACTION SHARING

Specifies an integer value, in the range of 0 through 32,767 that represents the
size, in bytes, of a local storage area that Advantage CA-IDMS allocates at
runtime and passes to the function on each invocation.

Advantage CA-IDMS allocates a local storage area on each call to a function.

Specifies an integer value, in the range of 0 through 32,767 that represents the
size, in bytes, of a global storage area that Advantage CA-IDMS allocates at
runtime and passes to the function on each invocation.

A global storage area is allocated once within a transaction and is retained until
the transaction terminates.

Specifies the one- to four-character identifier for the global storage area.
Advantage CA-IDMS passes the same piece of global storage within a
transaction to all SQL routines that have the same global storage key.

If you do not specify a storage key, its value remains unchanged if a global
storage area was previously associated with the function. To remove a storage
key, specify NULL as the key.

Specifies that the function should execute as a user-mode apfplication program
within Advantage CA-IDMS. Do not specify USER MODE for functions written
as an Advantage CA-ADS mapless dialog.

Specifies that the function should execute as a system-mode application
program. To execute as a SYSTEM MODE application, the program must be
written in assembler or COBOL and be fully reentrant or a mapless dialog.

Specifies the value of the synchronization stamp to be assigned to the function.
timestamp-value must be a valid external representation of a timestamp.

Specifies whether a default database should be established for database sessions
started by the function.

NULL Specifies that no default database should be established.

CURRENT Specifies that the database to which the SQL session is
connected should become the default for any database
session started by the function.

Specifies whether transaction sharing should be enabled for database sessions
started by the function. If transaction sharing is enabled for a function’s database
session, it shares the current SQL session’s transaction.

ON Specifies that transaction sharing should be enabled.
OFF Specifies that transaction sharing should be disabled.
DEFAULT Specifies that the transaction sharing setting that is in effect

when the function is invoked should be retained.

New and Revised SQL Statements B-5

User-Defined SQL Function Statements

Usage

Example

Specifying a synchronization stamp: When defining or altering a function you
can specify a value for the synchronization stamp. If explicitly specified, the
synchronization stamp should always be set to a new value following the change
so that the change is detectible by the runtime system.

Important! Care should be exercised when explicitly specifying the
synchronization stamp value, since its purpose is to enable the detection of
discrepancies between a function and its definition.

If not specified, the synchronization stamp is automatically set to the current
date and time.

The example below shows the use of ALTER FUNCTION to change the external
name of a function.

alter function fin.udf_funbonus external name funbon09;

CREATE FUNCTION Statement

Purpose

Authorization

The CREATE FUNCTION statement is a data description statement that stores
the definition of a function in the SQL catalog. You can invoke the function in
any value-expression of an SQL statement except in the search condition of a
table’s check constraint. The function invocation results in Advantage CA-IDMS
calling the corresponding external routine. Such routines can perform any action
and return a single scalar value. You use the formal parameters of a function
definition to specify the datatype and format of the data to be passed to the
function. Similarly, the datatype of the return value is specified in the function
definition.

To issue a CREATE FUNCTION statement, you must own the schema in which
the function is being defined or hold the CREATE privilege on the named
function.

B-6 Advantage CA-IDMS Release Summary 16.0

User-Defined SQL Function Statements

Syntax
»»— CREATE FUNCTION

function-identifier

v

|— schema-name. —J

T ,
»— (—v— parameter-definition .) — RETURNS data-type

v

v

»— EXTERNAL NAME external-routine-name — PROTOCOL—E IDMS_J
ADS

v

»
| 2

|— ESTIMATED ROWS row-count —J |— ESTIMATED IOS io-count —J
I: USER MODE 4—4—|
SYSTEM MODE

|— LOCAL WORK AREA local-stge-size J

v
v

v

\4

L GLOBAL WORK AREA global-stge-size C] |
KEY key-id

v
v

OFF
DEFAULT <—

L TRANSACTION SHARING AE ON I

v
v

L DEFAULT DATABASE —E NULL ‘j—J
CURRENT

I

|— TIMESTAMP timestamp-value J

Expansion of parameter-definition

)4

»»—— parameter-name — data-type |_ J
WITH DEFAULT

Parameters

function-identifier 1S:_pecifies the 1- to 18-character name of the function that you are creating.
unction-identifier must:

m Be unique among the function, procedure, table, table procedure, and view
identifiers within the schema associated with the function

m Follow conventions for SQL identifiers

schema-name Specifies the schema name qualifier to be associated with the function. Schema-
name must identify a schema defined in the dictionary. If you do not specify a
schema-name, it defaults to:
m The current schema associated with your SQL session if the statement is
entered through the Command Facility or executed dynamically

m The schema associated with the access module used at runtime if the
statement is embedded in an application program

New and Revised SQL Statements B~/

User-Defined SQL Function Statements

parameter-definition

RETURNS data-type

external-routine-name

PROTOCOL

row-count

io-count

local-stge-size

Defines a parameter to be associated with the function. Parameters are passed to

the function in the order in which they are specified. The list of parameters must

gefenclosed in parentheses. Commas must separate multiple parameter
efinitions.

Expanded syntax for parameter-definition is shown immediately following the
CREATE FUNCTION syntax.

Specifies the datatype of the returned value. For more information, see the
Advantage CA-IDMS Database SQL Option Reference Guide. The returned
value is implicitly nullable and can be set to NULL in the external routine. The
returned value is accessible to the external routine as an extra parameter with the
implicit name USER_FUNC, which comes immediately after the function
parameters.

Specifies the one- to eight-character name of the program or mapless dialog that
Advantage CA-IDMS calls to process function invocations.

This is a required parameter that specifies the protocol that is used to invoke the
function.

IDMS Use IDMS for SQL functions that are written in COBOL,
PL/1, or Assembler and that use the same protocol as in
earlier Advantage CA-IDMS releases.

ADS Use ADS for SQL functions that are written in Advantage
CA-ADS. The name of the dialog that is loaded and run
when the SQL function is invoked is specified in the
external-routine-name of the EXTERNAL NAME clause.
With the protocol set to ADS, the mode clause must be set
to SYSTEM.

Specifies an integer value, in the range of 0 through 2,147,483,647 that represents
the average number of rows that the Advantage CA-IDMS optimizer uses for
cost calculation of the function invocation.

Specifies an integer value, in the range of 0 through 2,147,483,647 that represents
the average number of disk accesses that the function generates for a given set of
input parameters.

Specifies an integer value, in the range of 0 through 32,767 that represents the
size, in bytes, of a local storage area that Advantage CA-IDMS allocates at
runtime and passes to the function on each invocation. Advantage CA-IDMS
allocates a local storage area on each call to a function.

Note: If you do not code a LOCAL WORK AREA clause, the default local
storage size is 1024 bytes.

B-8 Advantage CA-IDMS Release Summary 16.0

User-Defined SQL Function Statements

global-stge-size

key-id

USER MODE

SYSTEM MODE

timestamp-value

DEFAULT DATABASE

TRANSACTION SHARING

parameter-name

Specifies an integer value, in the range of 0 through 32,767 that represents the
size, in bytes, of a global storage area that Advantage CA-IDMS allocates at
runtime and passes to the function on each invocation.

A global storage area is allocated once within a transaction and is retained until
the transaction terminates.

Specifies the one- to four-character identifier for the global storage area.
Advantage CA-IDMS passes the same piece of global storage within a
transaction to all SQL routines that have the same global storage key.

If you do not specify a storage key, Advantage CA-IDMS allocates a unique
global storage area for the function.

Specifies that the function should execute as a user-mode application program
within Advantage CA-IDMS. Do not specify user mode if the function is a
mapless dialog. This is the default.

Specifies that the function should execute as a system-mode application
program. To execute as a system mode application, the program must be written
in Assembler or COBOL and be fully reentrant or be a mapless dialog.

If PROTOCOL is set to ADS, you must specify SYSTEM MODE.

Specifies the value of the synchronization stamp to be assigned to the function.
timestamp-value must be a valid external representation of a timestamp.

Specifies whether a default database should be established for database sessions
started by the function.

NULL Specifies that no default database should be established.

CURRENT Specifies that the database to which the SQL session is
connected should become the default for any database
session started by the function.

Specifies whether transaction sharing should be enabled for database sessions
started by the function. If transaction sharing is enabled for a function’s database
session, it shares the current SQL session’s transaction.

ON Specifies that transaction sharing should be enabled.
OFF Specifies that transaction sharing should be disabled.
DEFAULT Specifies that the transaction sharing setting that is in effect

when the function is invoked should be retained.

Specifies a 1- to 32-character name of a parameter to be passed to the function.
Parameter-name must:

New and Revised SQL Statements B9

User-Defined SQL Function Statements

m Be unique within the function that you are defining

m Follow the conventions for SQL identifiers

All parameters are implicitly nullable and thus can be assigned NULL as a
parameter value.

data-type Specifies the datatype of the parameter. For more information, see the
Advantage CA-IDMS Database SQL Option Reference Guide.

WITH DEFAULT Directs Advantage CA-IDMS to pass a default value for the named parameter if
you do not specify a value for the parameter in a function invocation.

The default value for a parameter is based on its data type. For more
information, see “CREATE PROCEDURE Statement” in the Advantage CA-
IDMS Database SQL Options Reference Guide.

Usage

Specitying a synchronization stamp: When defining or altering a function you
can specify a value for the synchronization stamp. If explicitly specified, the
synchronization stamp should always be set to a new value following the change
so that the change is detectible by the runtime system.

Important! Care should be exercised when explicitly specifying the
synchronization stamp value, since its purpose is to enable the detection of
discrepancies between a function and its definition.

If not specified, the synchronization stamp is automatically set to the current
date and time.

Example

CREATE FUNCTION FIN.UDF_FUNBONUS
(F_EMP_ID DECIMAL (4))
RETURNS DECIMAL(10)
EXTERNAL NAME FUNBONUS PROTOCOL IDMS
DEFAULT DATABASE CURRENT
USER MODE
LOCAL WORK AREA 0O ;

DISPLAY/PUNCH FUNCTION Statement

Purpose

The DISPLAY/PUNCH FUNCTION statement lets you display or punch a user-
defined function definition.

B-10 Advantage CA-IDMS Release Summary 16.0

User-Defined SQL Function Statements

Authorization

Syntax

Parameters

schema-name

function-name

FUL1

WITh

WITHOut

ALSo WITh

ALSo WITHOut

ALL

NONe

To issue a DISPLAY /PUNCH FUNCTION statement, you must hold the
DISPLAY privilege for the named function.

v

>>T: DISplay FUNction
PUNch L— schema-name. —J

»— function-name

v

|—FULl I_ J |
PHYsical

Identifies the SQL schema associated with the named function. If you enter the
statement through the command facility or execute it dynamically, and if you do
not specify schema-name, it defaults to the current schema associated with your
SQL session.

Specifies the name of the function to display or punch. Function-name must be
the name of a function defined in the dictionary.

Directs Advantage CA-IDMS to display all attributes of the function except
physical attributes.

PHYsical Directs Advantage CA-IDMS to display all attributes of the
function including its synchronization timestamp.

Lists the requested information in addition to the information that is always
included, such as the entity occurrence name.

Does notlist the specified options. Other options in effect through the WITH or
ALSO WITH clauses in the current DISPLAY statement display.

Lists the requested information in addition to the information requested in
previously issued DISPLAY WITH and DISPLAY ALSO WITH statements for
the named entity.

Does notlist the specified options.

Specifies the display of all the information associated with the requested entity
occurrence.

Specifies the display of the name of the requested entity occurrence. NONE is
meaningful only when you specify the WITH clause.

New and Revised SQL Statements B-11

User-Defined SQL Function Statements

DETails Specifies the display of entity-specific descriptions, for example, the length of a
table.

TIMestamp Specifies the display of the synchronization timestamp associated with the
function.

HIStory Specifies the display of the chronological account of an entity’s existence,
including PREPARED/REVISED BY specifications, date created, and date last
updated.

KEYs Specifies the display of all keys associated with the requested function.

AS COMments Outputs function syntax as comments with the characters *+ preceding the text

of the statement. AS COMMENTS is the default.
AS SYNtax Outputs function syntax that you can edit and resubmit to the command facility.

VERB CREate/DISplay/DROp/PUNch
Specifies the verb with which the entity statement is displayed or punched. For
example, if VERB CREATE is specified, the output of the DISPLAY /PUNCH
statement is a CREATE statement; if VERB ALTER is specified, the output is an
ALTER statement, and so on. The default is VERB CREATE.

Example
DISPLAY FUNCTION FIN.UDF_FUNBONUS FULL PHYSICAL;

DROP FUNCTION

Purpose
Deletes the definition of the referenced function from the dictionary. The DROP
FUNCTION statement is an Advantage CA-IDMS extension of ANSI-standard
SQL.

Authorization

To issue a DROP FUNCTION statement, you must own or have the DROP
privilege on the function named in the statement.

B-12 Advantage CA-IDMS Release Summary 16.0

SQL Scalar Functions

Syntax

Parameters

function-identifier

schema-name

CASCADE

Example

»»— DROP FUNCTION function-identifier

v

|— schema-name. —J

X

L CASCADE —J

Specifies the name of the function to be dropped. Function-identifier must
identify a function defined in the dictionary.

Identifies the schema associated with the specified function. If you do not specify
a schema-name, the default value is:

m The current schema associated with your SQL session if the statement is
specified through the Command Facility or executed dynamically

m The schema associated with the access module used at runtime if the
statement is embedded in an application program

Directs Advantage CA-IDMS to delete any view definition that contains a
reference to the function, either directly or nested within another view reference.

The DROP FUNCTION statement below removes the FIN.UDF_FUNBONUS
function from the SQL catalog and drops any view within which the function is
invoked.

DROP FUNCTION FIN.UDF_FUNBONUS CASCADE;

SQL Scalar Functions

This section provides details about the new SQL scalar functions available in
Release 16.0. It also describes the enhancements that have been made to the
existing CHAR function.

New and Revised SQL Statements B-13

SQL Scalar Functions

Syntax

»»—— ABS-function

— ACOS-function
— ASIN-function
— ATAN-function
— ATAN2-function
— CEIL-function
— CEILING-function
— CHAR-function
— CONCAT-function
— CONVERT-function
— COS-function
— COSH-function
— COT-function
— CURDATE-function
— CURTIME-function
— DATABASE-function
— DAYNAME-function
— DAYOFMONTH-function
— DAYOFWEEK-function
— DAYOFYEAR-function
— DEGREES-function
— EXP-function
— FLOOR-function
— IFNULL-function
— INSERT-function
— LCASE-function
— LOG-function
— LOG1O-function
— MOD-function
— MONTHNAME-function
— NOW-function
— PI-function
— POWER-function
— QUARTER-function
— RADIANS-function
— RAND-function
— REPEAT-function
— REPLACE-function
— RIGHT-function
— ROUND-function
— SIGN-function
— SIN-function
— SINH-function
— SPACE-function
— SQRT-function
— SUBSTR-function
— SUBSTRING-function
— TAN-function
— TANH-function
— TRUNCATE-function
— USER-function
— WEEK-function

Note: All of the previous functions , except LCASE are implemented as user-
defined functions in schema SYSCA.

B-14 Advantage CA-IDMS Release Summary 16.0

M

SQL Scalar Functions

ABS-function

value-expression

ACOS-function

value-expression

ASIN-function

value-expression

»— ABS (value-expression)

v

ABS returns the absolute value of the value-expression.
A value with a numeric data type.

The result has the same data type as the value-expression. If the value-
expression is null, the result is a null value. If a data error occurs, an exception is
raised.

Example:
The following statement returns 125.

SELECT ABS(-125)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

»— ACOS (value-expression) >

ACOS returns the arccosine of the value-expression as an angle expressed in
radians. ACOS is the inverse function of the COS function.

Must be a numeric data type and must have a value in the range of -1 to 1. It is
converted to a double precision floating-point number for processing by this
function.

The result of the function is a double precision floating-point number. If the
value-expression is null, the result is a null value. If a data error occurs, an
exception is raised.

Example:
The following statement returns 7.9539883018414370E-01:

SELECT ACO0S(0.7)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

»— ASIN (value-expression) —»

ASIN returns the arcsine of the value-expression as an angle expressed in
radians ASIN is the inverse function of the SIN function.

The value-expression must be of any numeric type and must have a value in the
range of -1 to 1. It is converted to a double precision floating-point number for
processing by this function.

New and Revised SQL Statements B-15

SQL Scalar Functions

ATAN-function

value-expression

ATAN2-function

value-expressionl

value-expression2

The result of the function is a double precision floating-point number. If the
value-expression is null, the result is a null value. If a data error occurs, an
exception is raised.

Example:
The following statement returns 1.5707963267948966E+00:

SELECT ASIN(1)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

»— ATAN (value-expression) —»

ATAN returns the arctangent of the value-expression as an angle expressed in
radians. ATAN is the inverse function of the TAN function.

Must be of any numeric data type. It is converted to a double precision floating-
point number for processing by this function.

The result of the function is a double precision floating-point number. If the
value-expression is null, the result is a null value. If a data error occurs, an
exception is raised.

Example: The following statement returns 1.2490457723982544E+00

SELECT ATAN(3)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

»— ATAN2 (value-expressionl, value-expression2) —»

ATAN2 returns the arctangent of x and y coordinates, given by value-
expressionl and value-expression2 respectively, as an angle expressed in
radians.

Specifies a numeric value-expression.

Specifies a numeric value-expression.

Both value-expressions must be of any numeric data type and cannot both be 0.
They are converted to double precision floating-point numbers for processing by
this function.

The result of the function is a double precision floating-point number. If the
value-expression is null, the result is a null value. If a data error occurs, an
exception is raised.

Example: The following statement returns 1.2490457723982544E+00

B-16 Advantage CA-IDMS Release Summary 16.0

SQL Scalar Functions

SELECT ATAN2(1,3)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

CEIL or CEILING-function

value-expression

CHAR-function

value-expression

CEIL —_l—(value—expression)—>
CEILING

CEILING returns the smallest integer value that is greater than or equal to the
value-expression. CEIL and CEILING are identical.

Must be a numeric data type.

The result of the function has the same data type as the value-expression except
that the scale is 0 if the value-expression is of type (UNSIGNED) DECIMAL or
(UNSIGNED) NUMERIC. For example, a value-expression with a data type of
NUMERIC (3,2) results in NUMERIC (3,0). If the value-expression is null, the
result is a null value. If a data error occurs, an exception is raised.

Example:
The following statement returns: 13, 2.0000000000000000E+00, -12

SELECT CEILING(12.55), CEILING(123.1E-2), CEILING (-12.55)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

»— CHAR (value-expression — —) >
— IS0
— USA
— EUR
— JIS

exact-numeric-literal —

CHAR obtains a character string representation from the value in value-
expression. The syntax and semantics for the CHAR function depends on the
data type of value-expression.

m Data type of value-expression is an exact numeric data: INTEGER,
SMALLINT, or LONGINT.

CHAR returns a fixed-length character string representation of the exact
numeric value of value-expression. Specifying a second parameter is not
allowed. The result is left-justified and contains n characters corresponding
to the digits of the value of value-expression with a preceding minus sign if
the value-expression is negative. The length of the returned string depends

on the data type of value-expression:
— SMALLINT—result length of 6

— INTEGER—result length of 11

New and Revised SQL Statements B-17

SQL Scalar Functions

— LONGINT—a result length of 20.

B-18 Advantage CA-IDMS Release Summary 16.0

SQL Scalar Functions

Example:

SELECT CHAR(FIXLENGTH), LENGTH(CHAR(FIXLENGTH)) AS LEN_SMALLINT ,
CHAR (NUMROWS) , LENGTH(CHAR(NUMROWS)) AS LEN_INTEGER
FROM SYSTEM.TABLE WHERE NAME = 'TABLE';

*+ CHAR(FUNCTION) LEN_SMALLINT CHAR(FUNCTION) LEN_INTEGER

Data type of value-expression is a fixed point, packed or zoned decimal:
(UNSIGNED) DECIMAL, (UNSIGNED) NUMERIC.

CHAR returns a fixed-length character string representation of the value of
value-expression. Specifying a second parameter is not allowed. If value-
expression has a precision of p and a scale of s, the result contains p+2
characters as follows: a blank or minus sign, depending on the sign of value-
expression, p-s digits followed by a period and finally s digits. The result is
left-justified.

Example:

SELECT VAC_TIME, CHAR(-VAC_TIME), LENGTH(CHAR(VAC_TIME))
FROM DEMOEMPL.EMP_VACATION WHERE VAC_TIME > 300

*+ VAC_TIME CHAR(FUNCTION) (CONST)
¥+ e e mmmmmmmmmeee o
*+ 340.00 -340.0 33
*4 396.00 -396.0 33
4 484.00 -484.0 33

Data type of value-expression is a floating-point data type: REAL, FLOAT or
DOUBLE PRECISION

CHAR returns a fixed-length character string representation of the floating
point value of value-expression. Specifying a second parameter is not
allowed. The result is left-justified and contains 24 characters.

Example:

SELECT AVGROWLENGTH, CHAR(AVGROWLENGTH), LENGTH(CHAR(AVGROWLENGTH)) AS L24
FROM SYSTEM.TABLE WHERE NAME = 'TABLE';

*+ AVGROWLENGTH CHAR(FUNCTION) L24
K e mme e I
*+ 2.5600000E+02 2.56E2 24
*+ 0.0000000E+00 0.0EO 24

Data type of value-expression is a character data type CHAR, VARCHAR.

CHAR returns a fixed-length character string representation of the value of
value-expression. An exact-numeric-literal can be specified as a second
parameter, in which case it defines the length of the result. The value of
exact-numeric-literal must be in the range 0-255. When the:

— Length of value-expression is lower than exact-numeric-literal—the
result is padded with blanks on the right

— Length of value-expression is larger—truncation occurs, when nonblank
characters are truncated, a warning message is issued.

New and Revised SQL Statements B-19

SQL Scalar Functions

Example:

SELECT CHAR(NAME,4), LENGTH(CHAR(NAME, 4)) AS LEN
FROM SYSTEM.TABLE WHERE NAME = 'TABLE';

*+ DBOO1043 T375 C1M322: String truncation
*+ DBOO1043 T375 C1M322: String truncation

*+ CHAR(FUNCTION) LEN
Kb e .
*+ TABL 4
*+ TABL 4

m Data type of value-expression is DATE, TIME, or TIMESTAMP.

If a format (ISO, USA, EUR, JIS) is not specified for the character string, the result
is returned in ISO format or, if the SQL statement is embedded in a program, the
format specified in the precompiler options.

e o Refer to the Advantage CA-IDMS Database SQL Option Programming Guide
for information about specifying precompiler options.

ISO

Specifies that the format of the result should comply with the standard of the
International Standards Organization (ISO). Use the following formats when

ISO is specified:

Data type Format Example
DATE yyyy-mm-dd 1990-12-15
TIME hh.mm.ss 16.43.17

TIMESTAMP yyyy-mm-dd-hh.mm.ssnnnnnn ~ 1990-12-15-16.43.17.123456

USA

Specifies that the format of the result should comply with the standard of the
IBM USA standard. Use the following formats when USA is specified:

B20 Advantage CA-IDMS Release Summary 16.0

SQL Scalar Functions

DAYOFWEEK-function

value-expression

Data type Format Example

DATE mm/dd/yyyy 12/15/1990

TIME hh:mm AM 4:43 PM
hh:mm PM

TIMESTAMP yyyy-mm-dd-hh.mm.ssnnnnnn ~ 1990-12-15-16.43.17.123456

EUR

Specifies that the format of the result should comply with the standard of the
IBM European standard. Use the following formats when EUR is specified:

Data type Format Example
DATE dd.mm.yyyy 15.12.1990
TIME hh.mm.ss 16.43.17

TIMESTAMP yyyy-mm-dd-hh.mm.ssnnnnnn ~ 1990-12-15-16.43.17.123456

JIS

Specifies that the format of the result should comply with the standard of the
Japanese Industrial Standard Christian Era. Use the following formats when JIS
is specified:

Data type Format Example
DATE yyyy-mm-dd 1990-12-15
TIME hh:mm:ss 16:43:17

TIMESTAMP yyyy-mm-dd-hh.mm.ssnnnnnn ~ 1990-12-15-16.43.17.123456

»— DAYOFWEEK (value-expression) ——»

DAYOFWEEK returns the day of the week where 1 is Sunday and 7 is Saturday.
Must be a DATE or TIMESTAMP data type or must be a CHARACTER or
VARCHAR data type and represent a valid string representation of a date or

timestamp.

The result is an INTEGER data type. The result is null if value-expression is null.

New and Revised SQL Statements B-21

SQL Scalar Functions

Example:
The following statement returns 4, which represents Wednesday:

SELECT DAYOFWEEK ('2002-12-25")
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

DAYOFYEAR-function
»— DAYOFYEAR (value-expression) —»

DAYOFYEAR returns the day of the year where 1 is January 1.

value-expression Must be a DATE or TIMESTAMP data type or must be a CHARACTER or
VARCHAR data type and represent a valid string representation of a date or
timestamp.

The result is an INTEGER data type and in the range of 1 to 366. The result is
null if value-expression is null.

Example:
The following statement returns 365:

SELECT DAYOFYEAR ('2002-12-31")
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

DEGREES-function
»— DEGREES (value-expression) —»

DEGREES returns the number of degrees calculated from the value-expression
expressed in radians.

value-expression Must be of any numeric data type. It is converted to a double precision floating-
point number for processing by this function.

The result of the function is a double precision floating-point number. If the
value-expression is null, the result is a null value. If a data error occurs, an
exception is raised.

Example:
The following statement returns 8.9999999999999985E+01:

SELECT DEGREES(PI() / 2)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

B22 Advantage CA-IDMS Release Summary 16.0

SQL Scalar Functions

EXP-function

value-expression

FLOOR-function

value-expression

IFNULL-function

»— EXP (value-expression) —»

EXP returns a value that is calculated as the base of the natural logarithm (e),
raised to a power specified by the value-expression. EXP is the inverse function
of LOG.

Must be a numeric data type. It is converted to a double precision floating-point
number for processing by this function.

The result of the function is a double precision floating-point number. If the
value-expression is null, the result is a null value. If a data error occurs, an
exception is raised.

Example:
The following statement returns 2.7182818284590451E+00:

SELECT EXP (1)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

»— FLOOR (value-expression) —»

FLOOR returns the largest integer value that is less than or equal to the value-
expression.

Must be a numeric data type.

The result of the function has the same data type as the value-expression except
that the scale is 0 if the value-expression is of type (UNSIGNED) DECIMAL or
(UNSIGNED) NUMERIC. For example, a value-expression with a data type of
NUMERIC (3,2) results in NUMERIC(3,0). If the value-expression is null, the
result is a null value. If a data error occurs, an exception is raised.

Example:
The following statement returns: 12, 1.0000000000000000E+00, -13

SELECT FLOOR (12.55), FLOOR (123.1E-2), FLOOR (-12.55)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

»— IFNULL (value-expressionl, value-expression2) —»

IFNULL returns the first value-expression that is not null. IFNULL is similar to
the VALUE and COALESCE scalar functions with the exception that IFNULL is
limited to only two value-expressions instead of multiple value-expressions.

New and Revised SQL Statements B-23

SQL Scalar Functions

value-expressionl

value-expression2

INSERT-function

value-expressionl

value-expression2

start

length

Specifies a value-expression.

Specifies a value-expression.

Example:
The following statement shows "*NULL**' for any row with a null value for
SEGMENT, otherwise the name of the segment is shown:

SELECT SCHEMA, NAME, IFNULL (SEGMENT, '**NULL**")
FROM SYSTEM.TABLE

»— INSERT (value-expressionl, start, length, value-expression2) —»

INSERT returns a string constructed from value-expressionl, where beginning at
start, length characters are deleted and value-expression? is inserted.

Specifies a character string value-expression. value-expressionl specifies the
source string and must be a CHARACTER or VARCHAR data type. If the length
of value-expressionl is 0, the result is a null value.

Specifies a character string value-expression. value-expression? specifies the
string to be inserted into value-expressionl, starting at start. The string to be
inserted must be a CHARACTER or VARCHAR data type.

Specifies a numeric value-expression. Start must be of any numeric data type,
but only the integer part is considered. The integer part of start specifies the
starting point within value-expressionl where the deletion of characters and the
insertion of value-expression2 begins. The integer part of start must be in the
range of 1 to the length of value-expressionl plus one.

Specifies a numeric value-expression. Length must be of any numeric data type,
but only the integer part is considered. The integer part of length specifies the
number of characters that are to be deleted from value-expressionl, starting at
start. The integer part of length must be in the range of 0 to the length of value-

expressionl.

The result is always of VARCHAR data type. The length of the result is given by
the following formula:

LENGTH(value-expressionl) + LENGTH(value-expression2) -
min(length, LENGTH(value-expressionl) - start + 1)

If both start and length are constants, the maximum length of the result is
calculated during compilation of the INSERT invocation using the above
formula, otherwise the maximum length is 8000.

The result is null if value-expressionl or value-expression? is null. If the insert
cannot be done because of invalid parameters, an exception is raised.

B24 Advantage CA-IDMS Release Summary 16.0

SQL Scalar Functions

LOG-function

value-expression

Example 1:
The following statement appends the string 'DEF' to the string 'ABC' giving
'ABCDEF":

SELECT SUBSTR(INSERT ('ABC', 4 , O,'DEF")
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

Because the start and length parameters of the INSERT function are constants,
the maximum length of the VARCHAR string is 6.

Example 2:
The following statement prefixes the string 'DEF' with the string 'ABC' giving
'ABCDEF":

SELECT SUBSTR(INSERT ('DEF', 1 *1, 0,'ABC'), 1, 20)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

Because the start position is not a constant, but an expression, the maximum
length of the VARCHAR string is 8000. The SUBSTR function is used to limit the
result to 20 characters.

Example 3:
The following statement replaces the character at position 3 in string 'ABCDEF'
with the string 'XYZ' returning 'ABXYZDEF":

SELECT INSERT ('ABCDEF', 3 , 1,'XYZ'")
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

Because both the start and length parameters of the INSERT function are
constants, the maximum length of the result VARCHAR string is 8.

»— LOG (value-expression) ——»

LOG returns a value that is calculated as the natural logarithm of value-
expression. LOG is the inverse function of EXP.

Must be of any numeric data type. It is converted to a double precision floating-
point number for processing by this function.

The result of the function is a double precision floating-point number. If the
value-expression is null, the result is a null value. If a data error occurs, an
exception is raised.

Example:
The following statement returns 1.0986122886681095E+00:

SELECT LOG (3)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM'

New and Revised SQL Statements B-25

SQL Scalar Functions

LOG10-function

value-expression

MOD-function

value-expressionl

value-expression2

»— LOG1O (value-expression) —»

LOG10 returns a value that is calculated as the base 10 logarithm of value-
expression.

The value-expression must be of any numeric data type. It is converted to a
double precision floating-point number for processing by this function.

The result of the function is a double precision floating-point number. If the
value-expression is null, the result is a null value. If a data error occurs, an
exception is raised.

Example:
The following statement returns 3.0000000000000000E+00:

SELECT LOG (1000)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM'

»— MOD (value-expressionl, value-expression2) —»

MOD returns the remainder of dividing value-expressionl by value-expression2

using the formula:

MOD(v1l, v2) = vl - Truncated_Integer(vl/v2) * v2
with Truncated Integer(vl / v2) the truncated integer result of the division.

Specifies a numeric value-expression and must be of any numeric data type.

Specifies a numeric value-expression and must be of any numeric data type.
value-expression2 cannot be zero.

If any of the value-expressions are null the result is a null value. If a data error
occurs, an exception is raised.
The data type of the result follows these rules:

m Both value-expressions are INTEGER or SMALLINT—the result is
INTEGER.

m One of the value-expressions is LONGINT and the other is INTEGER,
SMALLINT, or LONGINT—the result is LONGINT.

m One value-expression is an INTEGER, SMALLINT, or LONGINT and the

other is an (UNSIGNED) DECIMAL or (UNSIGNED) NUMERIC—the result

is (UNSIGNED) DECIMAL or (UNSIGNED) NUMERIC with the same
precision and scale as the (UNSIGNED) DECIMAL or (UNSIGNED)
NUMERIC value-expression.

B26 Advantage CA-IDMS Release Summary 16.0

SQL Scalar Functions

m Both value-expressions are (UNSIGNED) DECIMAL or (UNSIGNED)
NUMERIC—the result is equal to the data type of value-expressionl. The
precision and scale of the result are given by the following formulas:

Prec. result = min(prec.1-scale.1, prec.2-scale.2) + max(scale.l, scale.2)
Scale.result = max(scalel, scale2)

m Either value-expression is a floating-point number, REAL, FLOAT, or
DOUBLE PRECISION—the result is double precision floating-point.

The processing of this function is always done in floating-point. Both value-
expressions are converted to double precision floating-point numbers.

Example 1:
The following statement returns 1:

SELECT MOD(10, 3
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

Example 2:
The following statement returns 1.0000000000000000E+00:
SELECT MOD(1@E@, 3)

FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

Example 3:
The following statement returns 1.0:
SELECT MOD(10.0, 3)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

Example 4:
The following statement returns 1.00:

SELECT MOD(10.60 , 3
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

MONTHNAME-function

value-expression

»— MONTHNAME (value-expression) —»

MONTHNAME returns a character string containing the English name of the
month specified by value-expression.

Must be a DATE or TIMESTAMP data type or must be a CHARACTER or
VARCHAR data type and represent a valid string representation of a date or
timestamp.

The result is of CHARACTER(12) data type. The result is null if value-
expression is null.

New and Revised SQL Statements B-27

SQL Scalar Functions

Example:

The following statement returns the names of all months from now to now + 11
months: January, February, March, April, May, June, July, August, September,
October, November, December.

SELECT MONTHNAME (NOW() + @ MONTH),

MONTHNAME (NOW() + 1 MONTH), MONTHNAME (NOW() + 2 MONTH),
MONTHNAME (NOW() + 3 MONTH), MONTHNAME (NOW() + 4 MONTH),
MONTHNAME (NOW() + 5 MONTH), MONTHNAME (NOW() + 6 MONTH),
MONTHNAME (NOW() + 7 MONTH), MONTHNAME (NOW() + 8 MONTH),
MONTHNAME (NOW() + 9 MONTH), MONTHNAME (NOW() + 10 MONTH),
MONTHNAME (NOW() + 11 MONTH), MONTHNAME (NOW() + 12 MONTH)

FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM'

NOW-function

— NOW () ———»

NOW is equivalent to the special-register CURRENT TIMESTAMP. For more
information, see “Expansion of Special-register” in the Advantage CA-IDMS
Database SQL Option Reference Guide.

Example:
The following statement returns the current date and time twice:

SELECT NOW(), CURRENT TIMESTAMP
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

Pl-function

»— PI () >

PI returns the constant value of pi as a floating point value. The value returned is
3.141592653589793238.

Example:
The following statement returns 3.1415926535897933E+00:

SELECT PI()
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

POWER-function

»— POWER (value-expressionl, value-expression2)—/»

POWER returns the value of value-expressionl to the power of value-
expression2.

value-expressionl Specifies a numeric value-expression and must be of any numeric data type.

value-expression2 Specifies a numeric value-expression and must be of any numeric data type.

B28 Advantage CA-IDMS Release Summary 16.0

SQL Scalar Functions

QUARTER-function

value-expression

RADIANS-function

The internal processing of this function is done using double precision floating-
point arithmetic.

The data type of the result of the function depends on the data types of value-
expressionl and value-expression2. The result is:

m INTEGER—when value-expressionl and value-expression2 are SMALLINT
or INTEGER

s LONGINT—when one of the value-expressions is LONGINT and the other
LONGINT, INTEGER or SMALLINT,

s DOUBLE PRECISION—all other cases

If value-expressionl or value-expression? is null the result is a null value. If a
data error occurs a data exception is raised.

Example 1:
The following statement returns the value 625:

SELECT POWER(25,2)
FROM SYSTEM.TABLE WHERE NAME = 'SCHEMA'

Example 2:
The following SELECT returns the value 6.2500000000000000E+02:

SELECT POWER(25.0,2)
FROM SYSTEM.TABLE WHERE NAME = 'SCHEMA'

»— QUARTER (value-expression)—/»

QUARTER returns the quarter of the year in which the date, specified by value-
expression, occurs.

Must be a DATE or TIMESTAMP data type or must be a CHARACTER or
VARCHAR data type and represent a valid string representation of a date or
timestamp.

The result is an INTEGER data type and is in the range of 1 to 4. The result is
null if value-expression is null.

Example:
The following statement returns 4 because December is in the last quarter of the
year:

SELECT QUARTER('2002-12-31")
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM'

»— RADIANS (value-expression)—/»

New and Revised SQL Statements B-29

SQL Scalar Functions

value-expression

RAND-function

value-expression

REPEAT-function

value-expression

RADIANS returns the number of radians corresponding to the number of
degrees specified by value-expression.

The value-expression must be of any numeric data type. It is converted to a
double precision floating-point number for processing by this function.

The result of the function is a double precision floating-point number. If the
value-expression is null, the result is a null value. If a data error occurs, an
exception is raised.

Example:
The following statement returns 3.1415926535897931E+00, which is an
approximate value of PI:

SELECT RADIANS(180)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

v

»— RAND (L J)

value-expression
RAND returns a random floating-point value between 0 and 1. value-expression
is optional and specifies a seed value. If no seed value is specified, 1 is used as
seed value.

If specified, the value-expression must be of any numeric data type. It is
converted to an INTEGER number for processing by this function.

The result of the function is a double precision floating-point number. If a data
exception occurs an exception is raised.

Within the context of an Advantage CA-IDMS task, the optional seed value is
only evaluated once during the very first call of the random generator with a
seed value. The series of generated random numbers is equal for equal seed
values when executed under different Advantage CA-IDMS tasks.

Example:
The following statement returns random floating-point numbers between 0 and

ELECT RAND (200), RANDO)
FROM SYSTEM.SCHEMA;

»— REPEAT (value-expression, count) —»

REPEAT returns a string constructed as count times value-expression repeated.

Specifies the string to be repeated and must be a CHARACTER or CHAR data
type.

B30 Advantage CA-IDMS Release Summary 16.0

SQL Scalar Functions

count

REPLACE-function

value-expressionl

value-expression2

value-expression3

An expression of any numeric data type, but only the integer part is considered.
The integer part of count specifies the number of times to repeat value-

expression.

The result of the function is VARCHAR. The length of the result is the length of
value-expression multiplied by count. If the actual length of the result string
exceeds the maximum for the return type, an error occurs. If count is a constant,
the maximum length of the result is calculated during compilation of the
REPEAT function invocation, otherwise the maximum is 16000. The result is null
if value-expression or count is null. If the insert cannot be done an exception is
raised.

Example 1:
The following statement returns 'ABCDABCDABCDABCD":
SELECT SUBSTR(REPEAT('ABCD', 4)

FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

Example 2:
The following statement returns a string with length 0:
SELECT REPEAT('ABCD', 0)

FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

Example 3:
The following statement returns <null> because count is negative:

SELECT REPEAT('ABCD', -2)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

»— REPLACE (value-expressionl, value-expression2, value-expression3) —»

REPLACE substitutes all occurrences of value-expression2 in value-expressionl
with value-expression3. If value-expression2 was not found in value-
expressionl, value-expressionl is returned unchanged.

Specifies a character string value-expression. value-expressionl is a non-null
expression that specifies the source string.

Specifies a character string value-expression. value-expression? is a non-null
expression that specifies the string to be replaced in the source string.

Specifies a character string value-expression. value-expression3 is an expression
that specifies the replacement string. A null value causes value-expressionl to be
returned unchanged.

New and Revised SQL Statements B-31

SQL Scalar Functions

RIGHT-function

value-expression

count

The arguments must all have data types that are compatible with VARCHAR,
that is CHARACTER or VARCHAR. The actual length of each string must be
less than or equal to 8000. The data type of the result is VARCHAR and the
resulting length must be less than or equal to 8000. The length of the result is
given by the following formula, where n is the number of occurrences of value-

expression? in value-expressionl:

LENGTH(value-expressionl) + (n * (LENGTH(value-expression3)
- LENGTH(value-expression2)))

The result is null if value-expressionl, value-expression2, or value-expression3 is
null. If the replace cannot be done an exception is raised.

Example 1:
Replace all characters ' in the string **123.0**99' with '$$'. In this example, the
result is '$$$$123.0$$$$99'".

SELECT REPLACE('**123.0**99', '*' '$3')
FROM SYSTEM.SCHEMA WHERE NAME ='SYSTEM'

Example 2:

List the departments of the EMPSCHM.DEPARTMENT table in alphabetical
order, but ignore any spaces when sorting. The REPLACE function removes all
spaces in the SORT_NAME column of the result. SELECT *, REPLACE

(DEPT_NAME_0410, "', ") SORT_NAME
FROM EMPSCHM.DEPARTMENT
ORDER BY SORT_NAME;

Example 3:
Replace string 'FOO' in the string 'LOTS OF FOOLISH TALK' with **FOO**",

SELECT REPLACE('LOTS OF FOOLISH TALK', 'FOO', '**FOO**')
FROM SYSTEM.SCHEMA WHERE NAME ='SYSTEM'

»— RIGHT (value-expression, count) —»

RIGHT returns a string constructed from the specified number of rightmost
count characters of value-expression.

Specifies the string from which the result is constructed and must be a
CHARACTER or VARCHAR data type.

Any numeric data type, but only the integer part is considered. The integer part
of count specifies the length of the result. The integer part of count must be an
integer between 0 and n, where n is the length of value-expression.

The result is null if value-expression or count is null. If count is larger than the
length of value-expression an exception is raised.

B32 Advantage CA-IDMS Release Summary 16.0

SQL Scalar Functions

ROUND-function

value-expressionl

value-expression2

Example 1:
The following statement returns the string 'CD":
SELECT RIGHT ('ABCD', 2)

FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

Example 2:
The following statement returns a string with length 0:

SELECT RIGHT ('ABCD', 0)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

»— ROUND (value-expressionl, value-expression2) —»

ROUND returns value-expressionl rounded to value-expression2 places to the
right of the decimal point if value-expression?2 is positive, or to the left of the
decimal point if value-expression? is zero or negative.

Specifies a numeric value-expression and must be of any numeric data type.

Specifies a numeric value-expression and must be of any numeric data type. The
value-expression2 must be of any numeric data type but is converted internally
to INTEGER.

The integer value of value-expression?2 specifies the number of places to the right
of the decimal point for the result if value-expression2 is not negative. If value-
expression? is negative, value-expressionl is rounded to 1 + the absolute integer
value of value-expression2 number of places to the left of the decimal point. If
the absolute integer value of value-expression2 is larger than the number of
digits to the left of the decimal point, the result is 0.

If value-expressionl is positive, rounding is to the next higher positive number.
If value-expressionl is negative, rounding is to the next lower negative number.

The result of the function has the same data type and attributes the value-
expressionl except that the precision is increased by one if value-expressionl is
of (UNSIGNED) DECIMAL or (UNSIGNED) NUMERIC data type and the
precision is less than 31. If any of the value-expressions are null, the result is a
null value. If a data error occurs an exception is raised.

Example 1:
The following statement returns: 627.46380. 627.46400, 627.46000, 50000,
627.00000, 630.00000, 600.00000, 1000.00000, 0.00000:

SELECT ROUND(627.46381, 4) , ROUND(627.46381, 3) ,
ROUND(627.46381, 2) , ROUND(627.46381, 1) ,
ROUND(627.46381, 0) , ROUND(627.46381,-1) ,
ROUND(627.46381,-2) ROUND(627.46381,-3) ,

ROUND(627.46381,-4)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

New and Revised SQL Statements B-33

SQL Scalar Functions

SIGN-function

value-expression

SIN-function

value-expression

Example 2:
The following statement returns:-627.46380, -627.46400, -627.46000, -627.50000, -
627.00000, -630.00000, -600.00000

SELECT ROUND(-627.46381, 4) , ROUND(-627.46381, 3) ,
ROUND(-627.46381, 2) , ROUND(-627.46381, 1) ,
ROUND(-627.46381, 0) , ROUND(-627.46381,-1) ,
ROUND(-627.46381,-2) FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

»— SIGN (value-expression) ——»

SIGN returns an indicator of the sign of value-expression. The possible values
for the indicator are:

m -1 if value-expression is less than zero

m 0 if value-expression is zero

m 1if value-expression is greater than zero

Must be of any numeric data type except (UNSIGNED) DECIMAL or
(UNSIGNED) NUMERIC with a scale and precision of 31. The data type and
attributes of the result of the function are the same as the value-expression
except when the value-expression is (UNSIGNED) DECIMAL or (UNSIGNED)
NUMERIC. The precision is incremented if the value-expression's precision and
scale are equal. This is to allow for the return values of the function.

If the value-expression is null, the result is a null value. If a data error occurs, an
exception is raised.

Example:
The following statement returns:-1, 0, 1:

SELECT SIGN (1 - 10), SIGN (@), SIGN (1 +10)
FROM SYSTEM.TABLE WHERE NAME = 'SYSTEM' ;

»— SIN (value-expression) — »

SIN returns the sine of the value-expression, which must be an angle expressed
in radians. SIN is the inverse function of the ASIN function.

Must be of any numeric data type. It is converted to a double precision floating-
point number for processing by this function.

The result of the function is a double precision floating-point number. If the
value-expression is null, the result is a null value. If a data error occurs, an
exception is raised.

B34 Advantage CA-IDMS Release Summary 16.0

SQL Scalar Functions

Example:
The following statement returns 1.0000000000000000E+00:

SELECT SIN(C PI() / 2)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

New and Revised SQL Statements B-35

SQL Scalar Functions

SINH-function

value-expression

SPACE-function

value-expression

SQRT-function

»— SINH (value-expression) —»

SINH returns the hyperbolic sine of the value-expression, which must be an
angle expressed in radians.

Must be of any numeric data type. It is converted to a double precision floating-
point number for processing by this function.

The result of the function is a double precision floating-point number. If the
value-expression is null, the result is a null value. If a data error occurs, an
exception is raised.

Example:
The following statement returns 1.1548739357257750E+01:

SELECT SIN(PI())
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

»— SPACE (value-expression) —»

SPACE returns a character string that consists of value-expression number of
blanks.

Any numeric data type, but only the integer part is considered. The integer part
specifies the number of blanks that makes up the result, and it must be between
0 and 30000.

The result is of VARCHAR data type. The length of the result is the integer part
of value-expression.

If value-expression is a constant, the maximum length of the result is calculated
during compilation of the SPACE function invocation, otherwise the maximum
is 30000.

The result is null if value-expression is null. An error occurs if value-expression
is larger than 30000.

Example:
The following statement returns 10 blanks:

SELECT SPACE (10)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

»— SQRT (value-expression) —»

B36 Advantage CA-IDMS Release Summary 16.0

SQL Scalar Functions

value-expression

SQRT returns the square root of the value-expression.

Must be of any numeric data type. It is converted to a double precision floating-
point number for processing by this function.

The result of the function is a double precision floating-point number. If the
value-expression is null, the result is a null value. If a data error occurs, an
exception is raised.

Example 1:
The following statement returns 4.0000000000000000E+00:

SELECT SQRT(16)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

Example 2:
The following statement returns <null> because the square root of a negative
number does not exist:

SELECT SQRT(-16)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

SUBSTR or SUBSTRING-function

value-expression

start

length

SUBSTR ___|_ (value-expression, start ——) —»
SUBSTRING L, length —!
»— SUBSTRING (value-expression FROM start — T) —»

- FOR length —

SUBSTR or SUBSTRING obtains a substring of the value in value-expression. In
16.0 SUBSTRING allows the same syntax as SUBSTR.

Must be a character or graphics string.

Specifies the position of the first character of the result. Start is a value
expression that must be an integer less than or equal to the length of the string in
value-expression. If start is null, the result of the function is null.

Specifies the length of the result. Length is a value expression that must be an
integer not less than one. The sum of length and start must not exceed 1 + the
length of the string in value-expression. (The length of a value with a data type
of VARCHAR or VARGRAPHIC is its maximum length.) When:

m The substring is less than the specified length—Advantage CA-IDMS pads
the result with blanks

m length is not specified—the substring begins at start and ends at the end of
the string

m length is null—the result of the function is null

New and Revised SQL Statements B-37

SQL Scalar Functions

TAN-function

value-expression

TANH-function

value-expression

TRUNCATE-function

The result of the SUBSTR function is a character string when value-expression is
a character string; the result is a graphics string when value-expression is a
graphics string.

»— TAN (value-expression) ——»

TAN returns the tangent of the value-expression, which must be an angle
expressed in radians. TAN is the inverse function of the ATAN function.

Must be of any numeric data type. It is converted to a double precision floating-
point number for processing by this function.

The result of the function is a double precision floating-point number. If the
value-expression is null, the result is a null value. If a data error occurs, an
exception is raised.

Example:
The following statement returns 1.0000000000000000E+00:

SELECT TAN (PI()/4)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

»— TANH (value-expression) —»

TANH returns the hyperbolic tangent of the value-expression, which must be an
angle expressed in radians.

Must be any numeric data type. It is converted to a double precision floating-
point number for processing by this function.

The result of the function is a double precision floating-point number. If the
value-expression is null the result is a null value. If a data error occurs an
exception is raised.

Example:
The following statement returns 6.5579420263267255E-01:

SELECT TANH (PI()/4)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

»— TRUNCATE (value-expressionl, value-expression2) —»

B38 Advantage CA-IDMS Release Summary 16.0

SQL Scalar Functions

value-expressionl

value-expression2

USER-function

WEEK-function

TRUNCATE returns value-expressionl truncated to value-expression? places to
the right of the decimal point if value-expression? is positive or 0. If value-
expression? is negative, value-expressionl is truncated to the absolute value of
value-expression? places to the left of the decimal point. If the absolute value of
value-expression? is not smaller than the number of digits to the left of the
decimal point, the result is 0.

Specifies a numeric value-expression and must be of any numeric data type.

Specifies a numeric value-expression and must be of any numeric data type.
value-expression2 must be of any numeric data type but is internally converted
to INTEGER.

The result of the function has the same data type and attributes as value-

expressionl. The result is null if value-expressionl or value-expression?2 is null.
If an error occurs an exception is raised.

Example:
The following statement returns: 627.46380, 627.46300, 627.46000, 627.40000,
627.00000, 620.00000, 600.00000, 0.00000, 0.00000

SELECT TRUNCATE(627.46381, 4) ,
TRUNCATE (627.46381, 3) ,
TRUNCATE (627.46381, 2) ,
TRUNCATE (627.46381, 1) ,
TRUNCATE (627.46381, 0) ,
TRUNCATE (627.46381,-1) ,
TRUNCATE (627.46381,-2) ,
TRUNCATE (627.46381,-3) ,
TRUNCATE (627.46381,-4)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

»— USER)— >

USER is equivalent to the special-register USER. For more information, see
Advantage CA-IDMS Database SQL Option Reference Guide.

Example:
The following statement returns JSMITH, the user executing the SELECT
statement:

SELECT USER(Q)
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM';

»— WEEK (value-expression) —»

New and Revised SQL Statements B-39

Revised SQL Statements

WEEK returns the week of the year for the specified value-expression. The
function uses the ISO definition: a week starts with Monday and comprises 7
days. Week 1 is the first week of the year that contains a Thursday (or the first
week that contains January 4).

value-expression Must be a DATE or TIMESTAMP data type or must be a CHARACTER or

VARCHAR data type and represent a valid string representation of a date or
timestamp.

The result is an INTEGER data type and is in the range of 1 to 53. The result is
null if value-expression is null.

Example:
The following statement returns 52,1:

SELECT WEEK ('2000-01-01'), WEEK('2000-01-03")
FROM SYSTEM.SCHEMA WHERE NAME = 'SYSTEM'

Revised SQL Statements

The SQL statements in this section have been revised for Release 16.0.

ALTER PROCEDURE Statement

The ALTER PROCEDURE statement is extended in Release 16.0 allowing you to:
m Update the procedure’s synchronization timestamp

m Change the procedure’s default database option

m Change the procedure’s transaction sharing option

For a complete description of the syntax and parameters for the ALTER
PROCEDURE statement, see the Advantage CA-IDMS Database SQL Option
Reference Guide.

Syntax
»»— ALTER PROCEDURE B] procedure-identifier —»
schema-name.
fII"’IEéTAMP timestamp-value ——————
DEFAULT DATABASE —E NULL—_’—
CURRENT
TRANSACTION SHARING ON
T o
DEFAULT —
B-40 Advantage CA-IDMS Release Summary 16.0

Revised SQL Statements

Parameters

timestamp-value

DEFAULT DATABASE

TRANSACTION SHARING

Usage

Specifies the value of the synchronization stamp to be assigned to the procedure.
Timestamp-value must be a valid external representation of a timestamp.

Specifies whether a default database should be established for database sessions
started by the procedure.

NULL Specifies that no default database should be established.

CURRENT Specifies that the database to which the SQL session is
connected should become the default for any database
session started by the procedure.

Specifies whether transaction sharing should be enabled for database sessions
started by the procedure. If transaction sharing is enabled for a procedure’s
database session, it shares the current SQL session’s transaction.

ON Specifies that transaction sharing should be enabled.
OFF Specifies that transaction sharing should be disabled.
DEFAULT Specifies that the transaction sharing setting that is in effect

when the procedure is invoked should be retained.

Specitying a synchronization stamp: When defining or altering a procedure you
can specify a value for the synchronization stamp. If explicitly specified, the
synchronization stamp should always be set to a new value following the change
so that the change is detectible by the runtime system.

Important! Care should be exercised when explicitly specifying the
synchronization stamp value, since its purpose is to enable the detection of
discrepancies between a procedure and its definition.

If not specified, the synchronization stamp is automatically set to the current
date and time.

New and Revised SQL Statements B-41

Revised SQL Statements

ALTER SCHEMA Statement

Syntax

The ALTER SCHEMA statement is extended in Release 16.0 to allow you to
update the referenced SQL schema. For a complete description of the syntax and
parameters for the ALTER SCHEMA statement, see the Advantage CA-IDMS
Database SQL Option Reference Guide.

»»— ALTER SCHEMA schema-name

v

M

T e T
FOR SQL SCHEMA sql-schema-specification —

Expansion of sql-schema-specification:

Parameters

v

> sgl-schema-name

4

»
| 2

|— DBNAME database-name —J

sql-schema specification

sgl-schema-name

DBNAME database-name

Usage

Identifies an existing SQL-defined schema to which the new SQL schema refers.
Expanded syntax for sql-schema-specification appears immediately following
the statement syntax.

Names the referenced SQL-defined-schema. This named schema must not
reference another schema.

Identifies the database containing the data described by the referenced SQL-
defined schema. Database-name must be a database name that is defined in the
database name table or a segment name defined in the DMCL.

Restricted changes: You cannot alter the type of a schema, meaning that you
cannot change a non-referencing schema to a referencing schema and vice versa,
nor can you change the type of schema being referenced (from SQL to non-SQL
and vice versa).

Changing referenced SQL schema information: If you change the name of the
SQL schema that is referenced, you must drop and recreate all views that
reference tables in the referencing schema (that is, the schema being altered). To
determine which views are affected, use the DISPLAY ALL VIEW statement
with the REFERENCED selection criteria. Before dropping the view, display its
syntax by using the DISPLAY or PUNCH VIEW statement.

B-42 Advantage CA-IDMS Release Summary 16.0

Revised SQL Statements

ALTER TABLE Statement

Syntax

Parameters

The ALTER TABLE statement is extended in Release 16.0 to allow you to update
a table’s synchronization timestamp with a user-specified value. For a complete
description of the syntax and parameters for the ALTER TABLE statement, see
the Advantage CA-IDMS Database SQL Option Reference Guide.

»»— ALTER TABLE

v

|_ J table-identifier
schema-name.

)4

L— TIMESTAMP timestamp-value —J

TIMESTAMP timestamp-value

Usage

Specifies the value of the synchronization stamp to be assigned to the table.
timestamp-value must be a valid external representation of a timestamp.

Specitying a synchronization stamp: When defining or altering a table you can
specify a value for the synchronization stamp. If explicitly specified, the
synchronization stamp should always be set to a new value following the change
so that the change is detectible by the runtime system.

Important! Care should be exercised when explicitly specifying the
synchronization stamp value, since its purpose is to enable the detection of
discrepancies between a table and its definition.

If not specified, the synchronization stamp is automatically set to the current
date and time.

New and Revised SQL Statements B-43

Revised SQL Statements

ALTER TABLE PROCEDURE Statement

Syntax

Parameters

timestamp-value

DEFAULT DATABASE

TRANSACTION SHARING

The ALTER TABLE PROCEDURE statement is extended in Release 16.0 to allow
you to:

m Update the table procedure’s synchronization timestamp

m Change the table procedure’s default database option

m Change the table procedure’s transaction sharing option

For a complete description of the syntax and parameters for the ALTER TABLE

PROCEDURE statement, see the Advantage CA-IDMS Database SQL Option
Reference Guide.

»»— ALTER TABLE PROCEDURE

table-procedure-identifier —»

|— schema-name. J

v
M

TIMESTAMP timestamp-value

DEFAULT DATABASE —[NULL—_I—
CURRENT

TRANSACTION SHARING —E ON

OFF
DEFAULT —

Specifies the value of the synchronization stamp to be assigned to the table
procedure. timestamp-value must be a valid external representation of a
timestamp.

Specifies whether a default database should be established for database sessions
started by the table procedure.

NULL Specifies that no default database should be established.

CURRENT Specifies that the database to which the SQL session is
connected should become the default for any database
session started by the table procedure.

Specifies whether transaction sharing should be enabled for database sessions

started by the table procedure. If transaction sharing is enabled for a table

procedure’s database session, it shares the current SQL session’s transaction.

ON Specifies that transaction sharing should be enabled.

B-44 Advantage CA-IDMS Release Summary 16.0

Revised SQL Statements

OFF Specifies that transaction sharing should be disabled.

DEFAULT Specifies that the transaction sharing setting that is in effect
when the procedure is invoked should be retained.

Usage

Specitying a synchronization stamp: When defining or altering a table procedure
you can specify a value for the synchronization stamp. If explicitly specified, the
synchronization stamp should always be set to a new value following the change
so that the change is detectible by the runtime system.

Important! Care should be exercised when explicitly specifying the
synchronization stamp value, since its purpose is to enable the detection of
discrepancies between a table procedure and its definition.

If not specified, the synchronization stamp is automatically set to the current
date and time.

CREATE INDEX Statement

The CREATE INDEX statement is extended in Release 16.0 to allow you to assign
an index ID value to the index being created. For a complete description of the
syntax and parameters for the CREATE INDEX statement, see the Advantage
CA-IDMS Database SQL Option Reference Guide.

Syntax
»»— CREATE —’_—_I_ INDEX index-name >
UNIQUE
»— ON table-identifier >
L— schema-name. —J
L— INDEX ID index-id-number —J
Parameters

INDEX ID index-id-number
Assigns an index ID value for the index being created. The index-id-number
must be in the range of 1 through 32, 767.

New and Revised SQL Statements B-45

Revised SQL Statements

Usage

Specitying an INDEX ID: When defining an index, you can specify a value for its
numeric index identifier. If explicitly specified, it must be unique across all other
indexes residing in the same database area.

If not specified, the index’s numeric identifier is automatically set to the next
available number in the range 1 through 32,767.

CREATE PROCEDURE Statement

Syntax

Parameters

PROTOCOL

The CREATE PROCEDURE statement is extended in Release 16.0 to allow you
to:

m Specify the procedure’s synchronization timestamp

m Specify the procedure’s default database option

m Specify the procedure’s transaction sharing option

m Specify ADS as a protocol in addition to IDMS

For a complete description of the syntax and parameters for the CREATE

PROCEDURE statement, see the Advantage CA-IDMS Database SQL Option
Reference Guide.

»»— CREATE PROCEDURE

procedure-identifier — . . . —»

|— schema-name. J

v

»— PROTOCOL —|: IDMS_I
ADS

v

»
»-

OFF
DEFAULT<—

L TRANSACTION SHARING —E ON

v
v

L DEFAULT DATABASE —[NULL <€—
CURRENT —

v
M

I— TIMESTAMP timestamp-value J

This is a required parameter that specifies the protocol that is used to invoke the
procedure.

IDMS Use IDMS for SQL procedures that are written in COBOL,
PL/1, or Assembler and that use the same protocol as in
earlier Advantage CA-IDMS releases.

B-46 Advantage CA-IDMS Release Summary 16.0

Revised SQL Statements

ADS Use ADS for SQL functions that are written in Advantage
CA-ADS. The name of the dialog that is loaded and run
when the SQL function is invoked is specified in the
external-routine-name of the EXTERNAL NAME clause.
With the protocol set to ADS, the mode clause must be set
to SYSTEM.

TRANSACTION SHARING

DEFAULT DATABASE

Specifies whether transaction sharing should be enabled for database sessions
started by the procedure. If transaction sharing is enabled for a procedure’s
database session, it shares the current SQL session’s transaction.

ON Specifies that transaction sharing should be enabled.
OFF Specifies that transaction sharing should be disabled.
DEFAULT Specifies that the transaction sharing setting that is in effect

when the procedure is invoked should be retained.

Specifies whether a default database should be established for database sessions
started by the procedure.

NULL Specifies that no default database should be established.

CURRENT Specifies that the database to which the SQL session is
connected should become the default for any database
session started by the procedure.

TIMESTAMP timestamp-value

Usage

Specifies the value of the synchronization stamp to be assigned to the procedure.
Timestamp-value must be a valid external representation of a timestamp.

Specitying a synchronization stamp: When defining or altering a procedure you
can specify a value for the synchronization stamp. If explicitly specified, the
synchronization stamp should always be set to a new value following the change
so that the change is detectible by the runtime system.

Important! Care should be exercised when explicitly specifying the
synchronization stamp value, since its purpose is to enable the detection of
discrepancies between a procedure and its definition.

If not specified, the synchronization stamp is automatically set to the current
date and time.

New and Revised SQL Statements B-47

Revised SQL Statements

CREATE SCHEMA

Syntax

The CREATE SCHEMA statement is extended in Release 16.0 to allow you to
reference an SQL schema as an alternative to a non-SQL schema. For a complete
description of the syntax and parameters for the CREATE SCHEMA statement,
see the Advantage CA-IDMS Database SQL Option Reference Guide.

»»— CREATE SCHEMA schema-name

v

M

. . . I
L FOR SQL SCHEMA sql-schema-specification —

Expansion of sql-schema-specification

Parameters

»»— sql-schema-name
I— DBNAME database-name J

sql-schema-specification

sql-schema-name

DBNAME database-name

Usage

Identifies an existing SQL-defined schema to which the new SQL schema refers.
Expanded syntax for sql-schema-specification appears immediately following
the statement syntax.

Names the referenced SQL-defined-schema. This named schema must not itself
reference another schema.

Identifies the database containing the data described by the referenced SQL-
defined schema. Database-name must be a database name that is defined in the
database name table or a segment name defined in the DMCL.

If you do not specify DBNAME, no database name is included in the definition
of schema-name. At runtime, the database to which the SQL session is connected
must include segments containing the areas described by the referenced SQL-
defined schema.

Creating a referencing schema: If a FOR NONSQL SCHEMA or a FOR SQL
SCHEMA clause is specified, the new SQL-defined schema that is being created
references the specified schema and itself becomes a referencing schema. If a
non-SQL defined schema is specified, then creation of a referencing schema
enables SQL access to a non-SQL defined database described by the referenced
schema. Similarly, if the referenced schema is SQL-defined, then the creation of a
referencing schema enables SQL access to an SQL-defined database described by
the referenced schema.

B-48 Advantage CA-IDMS Release Summary 16.0

Revised SQL Statements

In either case, if a DBNAME is specified, the referencing schema provides access
to the database instance identified by database-name. If no DBNAME is
specified, the referencing schema is unbound and the instance of the database to
be accessed is determined at runtime. Access modules that reference tables
through an unbound referencing schema can therefore be used to access more
than one instance of a database.

You cannot define either a table or a view in a referencing schema; however, you
can define a view in another schema that references a table through a referencing
schema.

Specifying DBNAME: When you create a referencing schema, you use the
DBNAME parameter to specify the name of the database containing the data.
The name specified can be either the name of a database name defined in the
database name table or the name of a segment included in the DMCL.

If you do not specify a database name, the database to which your SQL session is
connected when accessing the data through the referencing schema must include
the segments containing the data.

Example
Defining a referencing schema for an SQL-defined schema:
CREATE SCHEMA EMPDEMO1 FOR SQL SCHEMA DEMO DBNAME USERDB;
CREATE TABLE Statement

The CREATE TABLE statement is extended in Release 16.0 to allow you to:
m Specify the table’s synchronization timestamp

m Specify the table’s identification number

For a complete description of the syntax and parameters for the CREATE

TABLE statement, see the Advantage CA-IDMS Database SQL Option Reference
Guide.

New and Revised SQL Statements B-49

Revised SQL Statements

Syntax
»»— CREATE TABLE n] table-identifier >
schema-name.
» .—>d
L— TABLE ID table-id-number —J L— TIMESTAMP timestamp-value —J
Parameters

TABLE ID table-id-number
Assigns a table ID value for the table being created. The table-id-number must be
in the range of 1024 through 4095.

TIMESTAMP timestamp-value
Specifies the value of the synchronization stamp to be assigned to the table.
Timestamp-value must be a valid external representation of a timestamp.

Usage

Specitying a synchronization stamp: When defining or altering a table you can
specify a value for the synchronization stamp. If explicitly specified, the
synchronization stamp should always be set to a new value following the change
so that the change is detectible by the runtime system.

Important! Care should be exercised when explicitly specifying the
synchronization stamp value, since its purpose is to enable the detection of
discrepancies between a table and its definition.

If not specified, the synchronization stamp is automatically set to the current
date and time.

Specifying a TABLE ID: When defining a table, you can specify a value for its
numeric table identifier. If explicitly specified, the TABLE ID must be unique
across all other tables whose rows are stored in the same database area.

If the TABLE ID is not specified, the table’s numeric identifier is automatically
set to the next available number in the range 1024 through 4095.

CREATE TABLE PROCEDURE Statement

The CREATE TABLE PROCEDURE statement is extended in Release 16.0 to
allow you to:

m Specify the table procedure’s synchronization timestamp
m Specify the table procedure’s default database option

m Specify the table procedure’s transaction sharing option

B-50 Advantage CA-IDMS Release Summary 16.0

Revised SQL Statements

Syntax

Parameters

DEFAULT DATABASE

TRANSACTION SHARING

For a complete description of the syntax and parameters for the CREATE TABLE
PROCEDURE statement, see the Advantage CA-IDMS Database SQL Option
Reference Guide.

»»— CREATE TABLE PROCEDURE procedure-identifier . . . —»

|— schema-name. J

v
v

OFF

L TRANSACTION SHARING —E ON
DEFAULT<—

v

L DEFAULT DATABASE —E NULL <€— L TIMESTAMP timestamp-value il
CURRENT —

Specifies whether a default database should be established for database sessions
started by the table procedure.

NULL Specifies that no default database should be established.

CURRENT Specifies that the database to which the SQL session is
connected should become the default for any database
session started by the table procedure.

Specifies whether transaction sharing should be enabled for database sessions
started by the table procedure. If transaction sharing is enabled for a table
procedure’s database session, it shares the current SQL session’s transaction.

ON Specifies that transaction sharing should be enabled.
OFF Specifies that transaction sharing should be disabled.
DEFAULT Specifies that the transaction sharing setting that is in effect

when the procedure is invoked should be retained.

TIMESTAMP timestamp-value

Specifies the value of the synchronization stamp to be assigned to the table
procedure. Timestamp-value must be a valid external representation of a
timestamp.

New and Revised SQL Statements B-51

Revised SQL Statements

Usage
Specifying a synchronization stamp: When defining or altering a table procedure
you can specify a value for the synchronization stamp. If explicitly specified, the
synchronization stamp should always be set to a new value following the change
so that the change is detectible by the runtime system.
Important! Care should be exercised when explicitly specifying the
synchronization stamp value, since its purpose is to enable the detection of
discrepancies between a table procedure and its definition.
If not specified, the synchronization stamp is automatically set to the current
date and time.
CREATE VIEW Statement
The CREATE VIEW statement is extended in Release 16.0 to allow you to specify
a view’s synchronization timestamp. For a complete description of the syntax
and parameters for the CREATE VIEW statement, see the Advantage CA-IDMS
Database SQL Option Reference Guide.
Syntax
»»—— CREATE VIEW view-identifier . . . >
L schema-name. J
- L TIMESTAMP timestamp-value J B
Parameters

TIMESTAMP timestamp-value

Usage

Specifies the value of the synchronization stamp to be assigned to the view.
Timestamp-value must be a valid external representation of a timestamp.

Specifying a synchronization stamp: When defining or altering a view you can
specify a value for the synchronization stamp. If explicitly specified, the
synchronization stamp should always be set to a new value following the change
so that the change is detectible by the runtime system.

Important! Care should be exercised when explicitly specifying the
synchronization stamp value, since its purpose is to enable the detection of
discrepancies between a view and its definition.

B-52 Advantage CA-IDMS Release Summary 16.0

Revised SQL Statements

If not specified, the synchronization stamp is automatically set to the current
date and time.

DISPLAY/PUNCH INDEX Statement

Syntax

Parameters

FUL1

The DISPLAY/PUNCH INDEX statement is extended in Release 16.0 to allow
you to view the index ID. For a complete description of the syntax and
parameters for the DISPLAY/ PUNCH INDEX statement, see the Advantage
CA-IDMS Database SQL Option Reference Guide.

>>—‘: DISplay INDex index-name — ON table-name ——»
PUNch —_I_ I— schema-name. J

» »<
L FUL1 |

Directs Advantage CA-IDMS to display all attributes of the index except
physical attributes.

PHYsical Directs Advantage CA-IDMS to display all attributes of the
index including its physical attributes. This includes the
internal index ID.

New and Revised SQL Statements B-53

Revised SQL Statements

DISPLAY/PUNCH PROCEDURE Statement

The DISPLAY/PUNCH PROCEDURE statement is extended in Release 16.0 to
allow you to view the procedure’s synchronization timestamp. For a complete
description of the syntax and parameters for the DISPLAY/ PUNCH
PROCEDURE statement, see the Advantage CA-IDMS Database SQL Option
Reference Guide.

Syntax
>>—[DISplay PROcedure proc-name >
PUNch I L schema-name. J
L FUL1 B] !
PHYsical
WITh AS COMmmJ a
ALSo WITh — L TIMestamp L SYNtax
WITHOut
ALSo WITHOut —
Parameters
FUL1 Directs Advantage CA-IDMS to display all attributes of the procedure except
physical attributes.
PHYsical Directs Advantage CA-IDMS to display all attributes of the index including its
physical attributes. This includes the procedure’s synchronization timestamp.
TIMestamp Specifies the display of the synchronization timestamp for the procedure.

B-54 Advantage CA-IDMS Release Summary 16.0

Revised SQL Statements

DISPLAY/PUNCH SCHEMA Statement

The DISPLAY /PUNCH SCHEMA statement is extended in Release 16.0 to allow
you to view the physical attributes of a schema’s entities. For a complete
description of the syntax and parameters for the DISPLAY/PUNCH SCHEMA
statement, see the Advantage CA-IDMS Database SQL Option Reference Guide.

Syntax
>>—‘: DISplay SCHema name >
PUNch — I: FULL -
ALL PHYsical —
~ | wrm AS COMmM a
ALSo WITh — |— TIMestamp J |— SYNtax
WITHOUt
ALSo WITHOut —
Parameters
ALL or FUL1 Directs Advantage CA-IDMS to display all attributes of the schema except
physical attributes.
PHYsical Directs Advantage CA-IDMS to display all attributes of the
schema including its physical attributes. This includes table
IDs, index IDs, and synchronization timestamps for
functions, procedures, tables, table procedures, and views.
TIMestamp Specifies the display of the synchronization timestamps for the schema entities.

New and Revised SQL Statements B-55

Revised SQL Statements

DISPLAY/PUNCH TABLE Statement

The DISPLAY /PUNCH TABLE statement is extended in Release 16.0 to allow
you to view the table’s synchronization timestamp and table ID. For a complete
description of the syntax and parameters for the DISPLAY/PUNCH TABLE
statement, see the Advantage CA-IDMS Database SQL Option Reference Guide.

Syntax
>>-|: DISplay TABle table-name >
PUNch T L schema-name. J
"T FUL1 | g
L PHYsical J
b wrm AS COMmM a
ALSo WITh — |— TIMestamp J |— SYNtax
WITHOUt
ALSo WITHOut —
Parameters
FUL1 Directs Advantage CA-IDMS to display all attributes of the table except physical
attributes.
PHYsical Directs Advantage CA-IDMS to display all attributes of the
table including its physical attributes. This includes the
table’s synchronization timestamp and table ID
TIMestamp Specifies the display of the synchronization timestamp for the table.

B-56 Advantage CA-IDMS Release Summary 16.0

Revised SQL Statements

DISPLAY/PUNCH TABLE PROCEDURE Statement

The DISPLAY/PUNCH TABLE PROCEDURE statement is extended in Release
16.0 to allow you to view the table procedure’s synchronization timestamp. For a
complete description of the syntax and parameters for the DISPLAY/ PUNCH
TABLE PROCEDURE statement, see the Advantage CA-IDMS Database SQL
Option Reference Guide.

Syntax

>>—|: DISplay TABle PROcedure table-proc-name —»
PUNch ——I_ L schema-name. J

»

|—FULl |_] !
PHYsical

WITh AS COMmmJ

ALSo WITh — L TIMestamp L SYNtax

WITHOut
ALSo WITHOut —

Parameters

FUL1 Directs Advantage CA-IDMS to display all attributes of the table procedure
except physical attributes.

PHYsical Directs Advantage CA-IDMS to display all attributes of the
table procedure including its physical attributes. This

includes the table procedure’s synchronization timestamp.

TIMestamp Specifies the display of the synchronization timestamp for the table procedure.

New and Revised SQL Statements B-57

Revised SQL Statements

DISPLAY/PUNCH VIEW Statement

The DISPLAY/PUNCH VIEW statement is extended in Release 16.0 to allow you
to display the view’s synchronization timestamp. For a complete description of
the syntax and parameters for the DISPLAY /PUNCH VIEW statement, see the
Advantage CA-IDMS Database SQL Option Reference Guide.

Syntax
>>—‘: DISplay VIEW view-name >
PUNch L schema-name. J
g L FUL1 ! g
L PHYsical J
WITh AS COMmM a
ALSo WITh — |— TIMestamp J |— SYNtax
WITHOut
ALSo WITHOut —
Parameters
ALL or FUL1 Directs Advantage CA-IDMS to display all attributes of the view except physical
attributes.

PHYsical Directs Advantage CA-IDMS to display all attributes of the
view including its physical attributes. This includes the
view’s synchronization timestamp.

TIMestamp Specifies the display of the synchronization timestamp for the view.

B-58 Advantage CA-IDMS Release Summary 16.0

Revised SQL Statements

SET SESSION Statement

Syntax

Parameters

ON

OFF

DEFAULT

The SET SESSION statement is extended in Release 16.0 to allow you to control
dynamic SQL statement caching. For a complete description of the syntax and
parameters for the SET SESSION statement, see the Advantage CA-IDMS
Database SQL Option Reference Guide.

)4

»— SET SESSION SQL CACHING ON
t OFF
DEFAULT <—

If SQL caching is globally enabled, the session uses caching until the session
option is changed or until the caching is disabled at the system level.

Regardless of the global setting for SQL caching, the session will not use caching
until the session option is changed.

Same as ON.

New and Revised SQL Statements B-59

gl SQL Functions and SQL Procedure
@l Enhancements

This appendix:
m Describes the procedures for developing user-defined SQL functions

m Provides examples of SQL functions and procedures written in Advantage
CA-ADS

m Provides an example of an SQL function written in COBOL

When To Use a User-Defined Function

You can use a user-defined SQL function (currently only of scalar type) just as
you would use any SQL scalar function. A scalar function is a function whose
argument includes zero or more value expressions on which the function
operates. The result of a scalar function is a single value. This value is derived
from the expression or expressions forming the arguments to the function.

To use this feature, follow the steps below:
m Define the function using the new CREATE FUNCTION statement.

m Write the function in COBOL, PL/I, Assembler, or Advantage CA-ADS
following the guidelines outlined below. You may also be able to use an
existing program as a function.

m If necessary, define the program to an Advantage CA-IDMS system.

m Invoke the SQL function. You invoke the SQL function in a way very similar
to the way in which you invoke built-in functions. The only restriction is
that you cannot invoke a user-defined function from within a table’s check
constraint.

SQL Functions and SQL Procedure Enhancements C-l

Defining a Function

Defining a Function

You define a function using the CREATE FUNCTION statement. An example is
shown below:
CREATE FUNCTION JSMITH.UDF_FUNBONUS
(EMP_ID DECIMAL (4))

RETURNS DECIMAL (10)

EXTERNAL NAME FUNBONUS PROTOCOL IDMS

DEFAULT DATABASE CURRENT

USER MODE

LOCAL WORK AREA 0

Similarly, use the new ALTER FUNCTION and DROP FUNCTION statements to
modify and delete the definition of existing functions.

For More Information

For information:

m About the syntax and parameters used in defining functions, see CREATE
FUNCTION, ALTER FUNCTION, and DROP FUNCTION in Appendix B,
“New and Revised SQL Statements.”

m About detailed examples of using CREATE FUNCTION, see the section,
“Advantage CA-ADS Function and Procedure Examples,” and the section,
“COBOL Function Example.”

Invoking a Function

User-defined SQL functions are invoked using the user function invocation
syntax. See the User Function Invocation topic in Appendix B, “New and
Revised SQL Statements.”

Access to user-defined functions is controlled the same way as procedures.
GRANT and REVOKE statements on a resource type of TABLE are used to give
and remove SELECT or DEFINE privileges on a function.

C-2 Advantage CA-IDMS Release Summary 16.0

Writing a Function

Writing a Function

You can write the program associated with a function in COBOL, PL/I,
Assembler, or Advantage CA-ADS. When called, the program is passed a fixed
parameter list consisting of the parameters specified in the function definition, as
well as additional parameters used for communication between Advantage CA-
IDMS and the function.

Whenever a function is invoked, Advantage CA-IDMS calls the program
associated with the function to service the request. The function responds by
processing the input parameters. By setting SQLSTATE appropriately you can
optionally indicate an error condition.

Advantage CA-IDMS performs transaction and session management
automatically in response to requests that the originating application issues.
Changes to the database made by a function are committed or rolled out together
with other changes made within the SQL transaction. No special action is
required of the function in order to ensure that this occurs.

The following section discusses writing a function in detail.

For an example of a function written in COBOL, see the section, COBOL SQL
Function Example. For an example of a function written in Advantage CA-ADS,
see the topic, Advantage CA-ADS SQL Function and Procedure Examples.

Calling Arguments

The following sets of arguments are passed when a function is called:

m One argument for each of the parameters specified on the function
definition, passed in the order in which the parameters were declared. These
arguments vary from function to function; they are used to pass values to the
function.

m One argument to contain the return value of the function. The implicit name
for this argument is USER_FUNC.

m One argument for each null indicator associated with a parameter specified
in the procedure definition, passed in the order in which the parameters
were declared. These arguments vary from function to function; they are
used to pass values to the function.

m One argument for the null indicator associated with the return value of the
function (the null indicator for the USER_FUNC parameter).

m A set of common arguments used for communications between Advantage
CA-IDMS and the function. This set of arguments, shown in the table below,
is the same for all functions.

SQL Functions and SQL Procedure Enhancements C-3

Writing a Function

Argument

Contents

Result Indicator (fullword)

Not used

SQLSTATE (CHAR (5))

Status code returned by the procedure:
The initial value is always 00000

00000 — Indicates success

01Hxx — Indicates a warning

02000 — Indicates no more rows
38xxx — Indicates an error

Function Name (CHAR (18))

Name of the function

Explicit Name

Not used

Message Text (CHAR (80))

Message text returned by the function
and displayed by Advantage CA-IDMS
in the event of an error or warning

SQL Command Code (fullword)

Always 16, indicating a Fetch SQL
request

SQL Operation Code (fullword)

Always 16, indicating a “next row”
request

Instance Identifier (fullword)

Not meaningful for functions

Local Work Area (user-defined)

A user-defined working storage area

Global Work Area (user-defined)

A user-defined storage area that can be
shared by one or more functions or by
other SQL routines

Parameter Arguments

On entry to the function, the values of the arguments corresponding to the
parameters defined in the CREATE FUNCTION statement are as follows:

m Non-null parameters contain one of the following:

— The parameter values specified on the function reference

— The datatype-specific default value if WITH DEFAULT was specified in
the function definition, and no value was specified in the function

invocation

m All other parameters contain nulls (that is, the null indicator for the

parameter is negative).

C4 Advantage CA-IDMS Release Summary 16.0

Advantage CA-ADS SQL Function and Procedure Examples

On exit, the function is expected either to have set the value of the parameter
USER_FUNC and the corresponding indicator appropriately or to have set an
SQLSTATE value indicating no-more-rows. If the indicator parameter is set to
-1, Advantage CA-IDMS ignores the value of the USER_FUNC parameter.

Local Work Area
Another parameter passed on each call to a function is a local work area.

Advantage CA-IDMS allocates the local work area prior to calling the function
and frees it immediately after the function exits. When the local work area is
allocated, it is initialized to binary zeros.

Global Work Area

A global work area is a storage area that can be shared across one or more
functions, or other SQL routines, within a transaction. Each global work area has
an associated key that is either:

m The four-character identifier specified on the GLOBAL WORK AREA clause

m The fully-qualified name of the function if no identifier was specified

All SQL routines executing within a transaction and having the same global
storage key share the same global work area.

Advantage CA-ADS SQL Function and Procedure Examples

In Release 16.0, an SQL procedure or function can be coded as an Advantage
CA-ADS mapless dialog.

Function Example

This example invokes the SQL function ASIND, which returns the arcsine in
degrees of the supplied value. The SQL function is implemented using an
Advantage CA-ADS dialog that invokes the Advantage CA-ADS built-in
function ARCSINE-DEGREES().

SQL Functions and SQL Procedure Enhancements C-5

Advantage CA-ADS SQL Function and Procedure Examples

Function Definition

Work Records

Premap Process

The SQL function definition is shown below:

CREATE FUNCTION JSMITH.ASIND

(ARG DOUBLE PRECISION)
RETURNS DOUBLE PRECISION
EXTERNAL NAME ASIND
PROTOCOL ADS
SYSTEM MODE
LOCAL WORK AREA 0
GLOBAL WORK AREA 0

To access the function parameters, the Advantage CA-ADS dialog should
include these work records:

m <schema>.<function_name>

Note: This record does not reside in the dictionary; it is built automatically
by the Advantage CA-ADS dialog compiler (ADSC or ADSOBCOM) when
the dialog is compiled.

m ADSO-SQLPROC-COM-AREA—A system-supplied record. See Chapter 4,
“SQL Features”, for the record layout.

These work records are included in the ASIND mapless dialog:
s JSMITH.ASIND
s ADSO-SQLPROC-COM-AREA

The premap process performs the actions required for the SQL function. The
code for the function is provided below:

ADD MODULE NAME IS ASIND-PROC VERSION IS 1
LANGUAGE PROCESS
PROCESS SOURCE FOLLOWS
IF ARG LE 1.0
THEN
DO.
MOVE @ TO USER_FUNC-I
MOVE ARCSINE-DEGREES(ARG) TO USER_FUNC
END.
ELSE
DO.
MOVE '38099' TO SQLPROC-SQLSTATE.
MOVE 'Arg must be <= 1.0" to SQLPROC-MSG-TEXT.
END.
LEAVE ADS.
MSEND;

C-6 Advantage CA-IDMS Release Summary 16.0

Advantage CA-ADS SQL Function and Procedure Examples

Invoking the Function

The SELECT clause is used to invoke the function. The first example illustrates a
correctly executing function:

SELECT JSMITH.ASIND (1)
FROM SYSTEM.TABLE WHERE NAME = 'ASIND'

*+

*+ USER_FUNC
+ ehemm e aaaa
*+ 9.0000000000000000E+01

*+

*+ 1 row processed

The second example illustrates a function that results in an error message:

SELECT JSMITH.ASIND (2)

FROM SYSTEM.TABLE WHERE NAME = 'ASIND'

*+ Status = -4 SQLSTATE = 38000 Messages follow:

*+ DBOO1075 C-4M321: Table Procedure ASIND exception 38099 ARG MUST BE <= 1.0

Procedure Example

Work Records

The following SQL procedure, GET_PROC_AREA, writes any supplied message
to a global area. The contents of the global area are shown when no input is
supplied. The procedure definition is given below:
CREATE PROCEDURE JSMITH.GET_PROC_AREA

(IN_AREA CHARACTER (25),

GLOBAL_AREA CHARACTER (25)
)
EXTERNAL NAME GETPAREA
PROTOCOL ADS
SYSTEM MODE
LOCAL WORK AREA 0
GLOBAL WORK AREA 25 KEY GGLA

To access the procedure parameters, the Advantage CA-ADS dialog should
include these work records:

m <schema>.<function_name>

Note: This record does not reside in the dictionary; it is built automatically
by the Advantage CA-ADS dialog compiler (ADSC or ADSOBCOM) when
the dialog is compiled.

m A global work area similar to the one listed below:

ADD RECORD NAME GETPAREA-SQLPROC-GLOBAL-AREA.
03 AREA-C PIC X OCCURS 25.

SQL Functions and SQL Procedure Enhancements C-7

Advantage CA-ADS SQL Function and Procedure Examples

The work records included in the mapless dialog GETPAREA are given below:
s JSMITH.GET_PROC_AREA
s GETPAREA-SQLPROC-GLOBAL-AREA

Premap Process

The premap process performs the actions of the SQL procedure. The premap
process for the sample procedure is given below:

ADD
PROCESS NAME IS GETPAREA_PROC VERSION IS 1
PUBLIC ACCESS IS ALLOWED FOR ALL
PROCESS SOURCE FOLLOWS
IF IN-AREA-I GE 0
THEN
DO.
MOVE O TO GLOBAL-AREA-I.
MOVE IN-AREA TO GLOBAL-AREA.
MOVE IN-AREA TO GETPAREA-SQLPROC-GLOBAL-AREA.
MOVE 'WRITING TO GLOBAL AREA' TO IN-AREA.
END.
ELSE
DO.
MOVE ©@ TO IN-AREA-I.
MOVE 'READING FROM GLOBAL-AREA' TO IN-AREA.
MOVE @ TO GLOBAL-AREA-I.
MOVE GETPAREA-SQLPROC-GLOBAL-AREA TO GLOBAL-AREA.
END.
LEAVE ADS.
MSEND

Procedure Invocation

The GET_PROC_AREA invocation is given below. The first example illustrates
writing to the global area:

CALL JSMITH.GET_PROC_AREA ('HELLO FROM ADS DIALOG');

*4

*+ IN_AREA GLOBAL_AREA

Xf o ___-o-- o ...

*+ WRITING TO GLOBAL AREA HELLO FROM ADS DIALOG
*4

*+ 1 row processed

The second example illustrates reading from the global area:
CALL JSMITH.GET_PROC_AREA ();

*4

*+ IN_AREA GLOBAL_AREA

Xf o ___-o-- o ...

*+ READING FROM GLOBAL_AREA HELLO FROM ADS DIALOG
*4

*+ 1 row processed

C-8 Advantage CA-IDMS Release Summary 16.0

COBOL SQL Function Example

COBOL SQLl Function Example

This section contains:
m A sample SQL function definition.

m A sample SQL function written in COBOL. It requires the employee demo
database and assumes use of a VS COBOL II compiler.

m An example of the SQL function invocation.

Function Definition

The example below illustrates an SQL function definition:

CREATE FUNCTION FIN.UDF_FUNBONUS
(F_EMP_ID DECIMAL (4)
)
RETURNS DECIMAL (10)
EXTERNAL NAME FUNBONUS PROTOCOL IDMS
DEFAULT DATABASE CURRENT
USER MODE
LOCAL WORK AREA 0

Sample COBOL Code

The sample program shown below is included on the Advantage CA-IDMS
installation tape. This program requires the SQL employee demo database.

*COBOL PGM SOURCE FOR FUNBONUS

*RETRIEVAL

*DMLIST

IDENTIFICATION DIVISION.

PROGRAM-1ID. FUNBONUS .

AUTHOR. JSMITH.

INSTALLATION. SYSTEM71.

DATE-WRITTEN. 01/02/2003.

K L o e e e e e e e e e e *
* *
* CA-IDMS SQL 16.0 *
* *
* FUNBONUS implements the SQL function FUNBONUS *
* *
K o e e e e e e e e e *
ENVIRONMENT DIVISION.
*

CONFIGURATION SECTION.
*SOURCE-COMPUTER. IBM WITH DEBUGGING MODE.
*

DATA DIVISION.
*

WORKING-STORAGE SECTION.
K o e e e e e e e o ————— e —————— - — *
* *

LINKAGE SECTION.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.

SQL Functions and SQL Procedure Enhancements C-9

COBOL SQL Function Example

EXEC SQL
INCLUDE TABLE FIN.UDF_FUNBONUS NO STRUCTURE
END-EXEC.

EXEC SQL END DECLARE SECTION END-EXEC.

77 RESULT-IND PIC S9(064) COMP SYNC.
01 FUN-SQLSTATE.
02 FUN-SQLSTATE-CLASS PIC X(02).
02 FUN-SQLSTATE-SUBCLASS PIC X(03).
K L L L L L o o o o o o o o o o o o o o o e e e e e e e e e e e e e mmmmmm o2 *
PROCEDURE DIVISION USING F-EMP-ID
, USER-FUNC
, F-EMP-ID-I
, USER-FUNC-I
, RESULT-IND

, FUN-SQLSTATE.
0000-MAINLINE.

IF F-EMP-ID-I NOT < ©
THEN
EXEC SQL
SELECT SUM(BONUS_AMOUNT) INTO :USER-FUNC
FROM DEMOEMPL.BENEFITS
WHERE EMP_ID = :F-EMP-ID
END-EXEC

IF SQLSTATE NOT = 'G0000'
MOVE -1 TO USER-FUNC-I
MOVE '38901' TO FUN-SQLSTATE
ELSE
MOVE @ TO USER-FUNC-I
ELSE
MOVE -1 TO USER-FUNC-I
MOVE '38902' TO FUN-SQLSTATE.
EXIT PROGRAM.
STOP RUN.

Invoking the Function

The example below illustrates invoking the SQL function defined earlier:

SELECT EMP_ID, FIN.UDF_FUNBONUS (EMP_ID)
FROM DEMOEMPL.EMPLOYEE
WHERE EMP_ID = 3411

*+
*+ EMP_ID USER_FUNC
Ky oo oo ..
*+ 3411 5100
*+

*+ 1 row processed

C-10 Advantage CA-IDMS Release Summary 16.0

D SQL ROWID Examples

This appendix provides several examples of how to use ROWID.

ROWID in a Simple SELECT

This example illustrates using ROWID in a simple SELECT statement:

SELECT ROWID, OFFICE_CODE_0450, OFFICE_CITY 0450
FROM EMPSCHM.OFFICE;

*+

*+ ROWID OFFICE_CODE_0450 OFFICE_CITY_0450
2
*+ X'01259701' 002 BOSTON

*+ X'0125A001' 001 SPRINGFIELD

*+ X'0125A301' 005 GLASSTER

*+ X'0125A601' 012 CAMBRIDGE

*+ X'0125A901' 008 WESTON

*+

*+ 5 rows processed

ROWID in a Searched UPDATE

This example illustrates using ROWID in a WHERE clause of an UPDATE
statement:

UPDATE EMPNSQL.EMPLOYEE SET EMP_CITY = 'BRUSSELS'
WHERE ROWID = X'Q124FF01';

*+ Status = 0 SQLSTATE = 00000

*+ 1 row processed

ROWID in a SELECT Using a Join

These examples illustrate using a SELECT statement that uses a join between a
base table and a view. They show that the ROWID of a view is the ROWID of the
first component in the view.

SQL ROWID Examples D-l

ROWID in a SELECT Using a Join

Example 1

In this example, the returned ROWID for the view is the ROWID of the
EMPSCHM.OFFICE base table:

DROP VIEW JSMITH.EMPOFFV;
*+ Status = 0 SQLSTATE = 00000
CREATE VIEW JSMITH.EMPOFFV
AS SELECT EV.*, 0.*
FROM EMPSCHM.OFFICE O, JSMITH.EMPLOYEEV EV
WHERE “OFFICE-EMPLOYEE”;
*+ Status = 0 SQLSTATE = 00000
SELECT EOV.ROWID, D.ROWID, D.*, EMP_ID, OFFICE_CODE_0450
FROM JSMITH.EMPOFFV EQV, EMPSCHM.DEPARTMENT D
WHERE “DEPT-EMPLOYEE” AND EMP_ID < 5;
*+

*+ ROWID ROWID DEPT_ID_0410

*+ X'0125A001"' X'0125BDO1’ 100
*+ X'0125A001" X'0125BCO1’ 3100
*+ X'0125A001"' X'0125ABO1' 3200

*+ DEPT_NAME_0410 DEPT_HEAD_ID 0410 EMP_ID

*+ EXECUTIVE ADMINISTRATION 30 1
*+ INTERNAL SOFTWARE 3 3
*+ COMPUTER OPERATIONS 4 4

*+ OFFICE_CODE_0450

*+ 3 rows processed

Example 2

In the following example, the returned ROWID for the view is the ROWID of the
EMPSCHM.EMPLOYEE base table:

DROP VIEW JSMITH.EMPOFFV;

*+ Status = 0 SQLSTATE = 00000

CREATE VIEW JSMITH.EMPOFFV

AS SELECT EV.*, 0.*
FROM JSMITH.EMPLOYEEV EV, EMPSCHM.OFFICE O

WHERE “OFFICE-EMPLOYEE”;

*+ Status = 0 SQLSTATE = 00000

SELECT EOV.ROWID, D.ROWID, D.*, EMP_ID, OFFICE_CODE_04560
FROM JSMITH.EMPOFFV EOV, EMPSCHM.DEPARTMENT D

WHERE “DEPT-EMPLOYEE” AND EMP_ID < 5;

*4

x4 ROWID ROWID DEPT_ID 0410

Kb mmmmmm e e e

*+ X'01252801' X'©125BDOL' 100

*+ X'01253B01' X'©125BCOL' 3100

*+ X'01255301' X'©125ABOL' 3200

*4

*+ DEPT_NAME_0410 DEPT_HEAD_ID 0410 EMP_ID
Kb e e e e
*+ EXECUTIVE ADMINISTRATION 30 1
*+ INTERNAL SOFTWARE 3 3

D2 Advantage CA-IDMS Release Summary

Searched Update of Records Without Primary Key

*
*4

*+ OFFICE_CODE_0450
K e mm e
*+ 001

*+ 001

*+ 001

*4

*+ 3 rows processed

+

COMPUTER OPERATIONS 4 4

Searched Update of Records Without Primary Key

This example updates all the COVERAGE records of the employee with
EMP_ID = 23:

UPDATE EMPSCHM.COVERAGE C
SET SELECTION_YEAR 0400 = 20
WHERE C.ROWID IN (
SELECT CI.ROWID
FROM EMPSCHM.EMPLOYEE E, EMPSCHM.COVERAGE CI
WHERE “EMP-COVERAGE”

AND EMP_ID = 23);
*+ Status = 0 SQLSTATE = 00000
*+ 2 rows processed

Searched Delete of Records Without Primary Key

This example deletes all the COVERAGE records of the employee with
EMP_ID = 23:

DELETE FROM EMPSCHM.COVERAGE C
WHERE C.ROWID IN (
SELECT CI.ROWID

FROM EMPSCHM.EMPLOYEE E, EMPSCHM.COVERAGE CI
WHERE “EMP-COVERAGE”

AND EMP_ID = 23);
*+ Status = 0 SQLSTATE = 00000
*+ 2 rows processed

SQL ROWID Examples D-3

Appendix

= SQL Cache Tables

About this Appendix

This appendix describes the tables (actually table procedures) that are used for
displaying and controlling the SQL cache. It also provides some examples of how
the DBA can display and control the cache. The SQL cache is used in conjunction
with the dynamic SQL statement caching feature. Dynamic SQL statement
caching is explained in the topic Dynamic SQL Caching in Chapter 4, “SQL
Features”.

Tables for Viewing, Monitoring, and Controlling the Cache

SQL is the Application Programming Interface (API) used to view, monitor, and
change the cache and the cache configuration. This means that cache
administration, configuration, and dynamic SQL cache monitoring is available in
any environment that supports Advantage CA-IDMS SQL, such as IDMSBCF,
OCF, Advantage CA-IDMS Visual DBA, and Advantage CA-IDMS SQL
programs, among others.

This section describes the SYSCA tables (specifically, three table procedures and
one view) defined for dynamic SQL cache management.

SQL Cache Tables E-l

Tables for Viewing, Monitoring, and Controlling the Cache

DSCCACHEOPT

The DSCCACHEOPT table manages the SQL cache options.

Column Data Type Description

CACHEMAXCNT INTEGER The maximum number of entries that the
cache can contain.

DEFAULT CHAR(®4) Default for caching: ON/OFF. This
specifies if caching is enabled or disabled
for any connect name that does not
appear in the EXCEPTCON column.

EXCEPTCNT INTEGER Count of rows in the DSCCACHEOPT
relation with non-NULL value for the
EXCEPTCON column. It is the number
of connect names in the list of
exceptions.

EXCEPTCON CHAR(8) Connect name that forms an exception to
the default caching.

Notes

m After startup of central version, DSCCACHEOPT reflects the parameters of
the sysgen SQL CACHE statement. In absence of an SQL CACHE statement
there are no rows in DSCCACHEOPT and SQL caching is disabled, but can
be activated by inserting a DSCACHEOPT row. Updates to the
DSCCACHEOPT table have no impact on the CV's sysgen.

m Inlocal mode when no DSCCACHEOPT row exists, a DSCCACHEOPT row
is automatically inserted with values derived from the SYSIDMS parameter
SQL_CACHE_ENTRIES.

m There can be 0 to n rows in this table. If there are 0 rows, this means that SQL
statement caching is not active and not defined to the system. If there are
rows, then the first row contains non-NULL values for CACHEMAXCNT,
DEFAULT and EXCEPTCNT and a NULL value for EXCEPTCON. The first
row contains the main SQL cache parameters. Other rows in the
DSCCACHEOPT relation contain only non-NULL values for the
EXCEPTCON column. These rows form the list of exception connect names.

m You can issue select, insert, update and delete commands against
DSCCACHEOPT.

E2

Advantage CA-IDMS Release Summary

Tables for Viewing, Monitoring, and Controlling the Cache

Deleting the first row automatically deletes all other rows and removes all
SQL cache structures from the system, effectively disabling caching until a
new DSCCACHEOPT row is inserted. Deleting other rows removes
exception connect names from the exception list.

Inserting a row is always possible. When one or more rows exist, an insert
can only specify a value for EXCEPTCON, this is the way to add connect
names to the list. When no rows exist, the first insert must specify values for
CACHEMAXCNT and DEFAULT. Other values are not allowed. A
successful insertion of the first row enables SQL caching.

Updating of CACHEMAXCNT and DEFAULT columns automatically
applies to the first row only, so that a WHERE clause is not needed to filter
the first row. When CACHEMAXCNT is decreased, the entries in the SQL
cache with the highest AGE (see the description of the DSCCACHE table) are
removed. Increase CACHEMAXCNT to enlarge the size of the cache. You
cannot update EXCEPTCON for the first row. You cannot update
EXCEPTCNT as this is automatically calculated.

The size of the cache is specified in terms of number of entries. Each entry
represents a single cached statement. The cache is allocated from the storage
pool within a central version and from operating system storage in local
mode. By selecting from the DSCCACHECTRL table you can determine the
amount of storage being consumed.

SQL Cache Tables E-3

Tables for Viewing, Monitoring, and Controlling the Cache

DSCCACHECTRL
The DSCCACHECTRL table controls SQL caching
Column Data Type Description
REQUEST CHAR Future use
STATUS CHAR Future use
CACHEMAXCNT INTEGER Maximum count of entries
CACHECURCNT INTEGER Current count of entries used
CURRENT INTEGER Current entry
OLDEST INTEGER Oldest entry
STORAGEUSEKB INTEGER Total storage used by the cache
Notes

m There can be 0 or 1 row in this table. If no rows are present, no SQL
statements have been cached.

m You can only issue SELECT and DELETE statements against this table.

m Deleting the row in DSCCACHECTRL clears the SQL cache structures. It
does not disable caching, which is controlled through the DSSCACHEOPT

table.

E4 Advantage CA-IDMS Release Summary

Tables for Viewing, Monitoring, and Controlling the Cache

DSCCACHE

The DSCCACHE table represents the SQL cache. Each row is a cache entry.

Column Data Type Description

KEY INTEGER Non-unique key

LOCK BINARY(4) Lock word for access to entry
DBNAME CHAR(8) DBNAME of SQL session
DEFAULTSCHEMA CHAR(18) Default schema of session if

statement contains at least one
unqualified table reference

USECNT INTEGER Usage count

AGE INTEGER Age: A valued used in
determining which entry to
purge from a full cache when a
new entry is inserted. The
longer an entry has remained
in the cache without being
used, the higher is age.

COMPILECOST INTEGER Compilation cost

ACCPLANSCANCOST FLOAT Cost of scan in access plan

ACCPLANCPUCOST FLOAT Cost of CPU in access plan

ACCPLANROWCNT FLOAT Count of rows in access plan

EXECCOST INTEGER Cost of last execution of
statement

COMPILECNT INTEGER Count of (re)compilations

COMPILESTAMP TIMESTAMP Timestamp of compilation

STMTSIZE INTEGER Size of statement

STATEMENT VARCHAR(8192) Statement

SQLDIBSIZE INTEGER Size of SQLDIB

SQLCMD INTEGER Type of SQL command

SQLITCL INTEGER Combined Itree/TELL table
length

SQLARG INTEGER Bit flags for argument usage

SQLOPT INTEGER Session options flags

SQL Cache Tables E-5

Tables for Viewing, Monitoring, and Controlling the Cache

Notes

Column Data Type Description

SQLTBL INTEGER Length of tuple buffer row

SQLPBL INTEGER Length of parameter buffer

SQLCID INTEGER Cursor identifier

SQLSID INTEGER Section identifier

SQLNM1 CHAR(32) Literal value 1

SQLNM2 CHAR(32) Literal value 2

SQLITL INTEGER Size of Itree

SQLITBADDR BINARY(4) Address of Itree

RTREESIZE INTEGER Size of Rtree

RTREEOFFSET INTEGER Offset of Rtree for relocation
purposes

RTREEDOFAOFF INTEGER Offset of DOFA in Rtree

RTREEADDR BINARY(4) Address of Rtree

FIBSIZE INTEGER Size of FIB

FIBADDR BINARY(4) Address of FIB

FOPSIZE INTEGER Size of FOP

GSTSIZE INTEGER Size of GST

FOPADDR BINARY(4) Address of FOP

LASTUSER CHAR(8) Reserved

GLOBALCURSORNAME CHAR(18) Reserved

FCRC BINARY(4) FCRC flags

SQLDAADDR BINARY(4) Address of cached input
SQLDA

m One row of this table represents one cached statement.

m Rows cannot be inserted or updated.

m Because of the size of the STATEMENT column in DSCCACHE and because
many of these columns are for internal use only, it is advisable to use a view
on this table procedure. The supplied DSCCACHEYV view below is an
example of such a view.

E6 Advantage CA-IDMS Release Summary

Allowable Operations on DSCCACHE Tables

The following acronyms are used in the table above.

m Itree: A data structure that contains the internal input representation of an
SQL statement

m Rtree: A data structure that contains the internal runtime instruction of an
SQL statement. The SQL runtime engine IDMSHLDB uses the Rtree.

m FIB: A data structure that contains runtime metadata.

m FOB/FOP: FIB objects list data structure

m GST: Global Security Table

m FCRC: Fixed part of Compiled Relational Command data structure

m SQLDA: the SQL Descriptor Area (SQLDA) is a data structure used to
describe variable data passed as part of a dynamic SQL statement.

DSCCACHEV

SYSCA.DSCCACHEYV is created during installation. It defines a view on the
SYSCA.DSCCACHE table procedure as follows:

create view SYSCA.DSCCACHEV as
select KEY, DBNAME, DEFAULTSCHEMA, USECNT, AGE
, COMPILECNT as “#C”, compilestamp
, ACCPLANSCANCOST, ACCPLANCPUCOST
, ACCPLANROWCNT, FIBSIZE, FIBADDR
, SUBSTR(STATEMENT, 1, 72) as STMT1
from SYSCA.DSCCACHE;

You have the option to define your own views.

Allowable Operations on DSCCACHE Tables

DSCCACHOPT DSCCACHECTRL DSCCACHE DSCCACHEV

Type Table Procedure Table Procedure Table View
Procedure

SELECT X X X X

INSERT X

UPDATE X

DELETE X X X X

SQL Cache Tables E-7

Examples of Displaying and Controlling the Cache

Examples of Displaying and Controlling the Cache

CACHE Options

To display the cache options:
Select * from SYSCA.DSCCACHEOPT;

*+

*+ CACHEMAXCNT DEFAULT EXCEPTCNT EXCEPTCON
P
*+ 1000 OFF 2 <null>

*+ <null> <null> <null> SYSTEM

*+ <null> <null> <null> APPLDICT

To change the default for caching:
Update SYSCA.DSCCACHEOPT set DEFAULT = 'ON';

To add the dictionary 'TSTDICT' to the exception list:
Insert into SYSCA.DSCCACHEOPT (EXCEPTCON) values ('TSTDICT');

To remove the connect name 'SYSTEM' from the exception list:

Delete from SYSCA.DSCCACHEOPT where EXCEPTCON = 'SYSTEM';

To remove all the connect names from the exception list:

Delete from SYSCA.DSCCACHEOPT where EXCEPTCON is not null;

To decrease the number of entries in the cache from 1000 to 5:

Update SYSCA.DSCCACHEOPT set CACHEMAXCNT = 5;
Only the last 5 used entries are kept in the cache.

To increase the number of entries in the cache from 5 to 9999:
Update SYSCA.DSCCACHEOPTset CACHEMAXCNT = 9999;

The cache is extended with 9994 new slots.

To clear the SQL cache and remove all the SQL cache structures from the system,
effectively disallowing any SQL caching:

Delete from SYSCA.DSCCACHEOPT;

To rebuild the SQL cache environment or to build the SQL cache environment in
a system that has no SQL CACHE statement in its sysgen:
Insert into SYSCA.DSCCACHEOPT (CACHEMAXCNT, DEFAULT) values (1000, 'ON');

Insert into SYSCA.DSCCACHEOPT (EXCEPTCON) values ('APPLDICT');
Insert into SYSCA.DSCCACHEOPT (EXCEPTCON) values ('SYSTEM');

E-8 Advantage CA-IDMS Release Summary

Examples of Displaying and Controlling the Cache

CACHE Control Parameters

To display cache control parameters:

Select * from SYSCA.DSCCACHECTRL;

*+

*+REQUEST STATUS CACHEMAXCNT CACHECURCNT CURRENT OLDEST
*+

e

*+ 138

To clear the cache, but allow caching to continue as defined by the option in
DSCCACHEOPT:

Delete from SYSCA.DSCCACHECTRL;

CACHE Entries

To display key columns of all cache entries:

Select * from SYSCA.DSCCACHEV;

*+

*+ KEY DBNAME DEFAULTSCHEMA USECNT AGE
Kb mme mmmmme e mmmmmmmmmeemmmee- R
*+ 29 SYSDICT <null> 4 0
*+ 32 SYSDICT <null> 1 1
*+ 28 SYSDICT <null> 2 1
*+ 32 SYSDICT <null> 7 7
*+ 29 SYSDICT <null> 6 6
*+

*+ #C COMPILESTAMP FIBSIZE FIBADDR
*4 e = hddmmmm) mmmmmae
*+ 1 2002-09-04-10.05.20.740186 736 12AC6208
*+ 1 2002-09-04-10.07.20.009275 2528 12ACD0O88
*+ 1 2002-09-04-10.06.19.785231 2580 12ACB838
*+ 1 2002-09-04-10.02.39.729463 552 12AC0A08
*+ 1 2002-09-04-10.03.00.735305 736 12ABFD88
*+

*+ STMT1

¥4+ oo

*+ Select * from SYSCA.DSCCACHEV

*+ select * from empnsql.department

*+ select * from empnsql.office

*+ select * from SYSCA.DSCCACHECTRL

*+ select * from sysca.dsccachev

To display cache entries with AGE > 1:
Select * from SYSCA.DSCCACHEV where AGE > 1;

To display cache entries for DBNAME SYSDICT:
Select * from SYSCA.DSCCACHEV where DBNAME = 'SYSDICT';

SQL Cache Tables E9

Secure the Display and Changes

To display cache entries for statements that use schema EMPNSQL:
Select * from SYSCA.DSCCACHEV where STMT1 like '%EMPNSQL.%";

To remove cache entries that use schema EMPNSQL:

Delete from SYSCA.DSCCACHE where STATEMENT 1like '%empnsql.%';

Secure the Display and Changes

To secure the display of and any changes to SQL caching, the DSCCACHE tables
(table procedures and views) must be secured using the standard Advantage
CA-IDMS security mechanism.

Note: The SQL cache contains SQL source statements, which might include
confidential information.

E-10 Advantage CA-IDMS Release Summary

atadidll CICS Interface Enhancements for
=8 Two-Phase Commit Support

This appendix describes:

m Executing a resynchronization task in order to resynchronize with a back-
end central version.

m Creating the resynchronization program.

m Defining the resynchronization transaction to CICS
m New CICSOPT and IDMSCINT parameters

m CICS OPTIXIT Example

Resynchronization Task Execution

The following syntax is used to execute a resynchronization task:

Syntax

»»—— rsyn—transaction — nodename >«
Parameters
rsyn-transaction The name of a CICS resynchronization transaction defined to the CICS system.
Nodename The name of the Advantage CA-IDMS central version for which

resynchronization is to be performed. The identified system must be accessible

through the CICS interface for which the resynchronization transaction was
defined.

CICS Interface Enhancements for Two-Phase Commit Support F-

Resynchronization Task Execution

Examples

Successful Manual Resynchronization Example

The following example shows how manual resynchronization is initiated with
central version SYSTEM74 using a resynchronization task called RSYN whose
interface module is named IDMSINTC. The resulting messages identify the
target node name, the name of the interface module being used, the number of
incomplete units of work that need to be recovered and the final outcome of the
resynchronization process.

RSYN SYSTEM74

CA-IDMS Manual 2-PC Resync for IDMSINTC for CV node SYSTEM74 date 10/14/2003
1 CA-IDMS in doubt units of work need recovery for CV node SYSTEM74
1 CA-IDMS in doubt units of work recovery started for CV node SYSTEM74
CA-IDMS Two Phase Commit Resync startup completed for CV node SYSTEM74

Unsuccessful Manual Resynchronization Example 1

This example shows an error condition that occurred during a manual
resynchronization because the central version nodename was not specified.

RSYN
IDMSCSYN error - CV node not specified

Unsuccessful Manual Resynchronization Example 2

This example depicts an error condition that occurred during a manual
resynchronization because the central version nodename that was specified was
not available through the CICS interface for which the resynchronization was
defined.

RSYN SYSTEM81

CA-IDMS Manual 2-PC Resync for IDMSINTC for CV node SYSTEM81 date 10/14/2003
IDMSCSYN error - Requested CV node SYSTEM81 - Connected CV node SYSTEM74
CA-IDMS Two Phase Commit Resync aborted

Successful Automatic Resynchronization Example

The following example shows the output from an automatic resynchronization
initiated when the first request is made to a back-end central version through a
CICS interface module or when the interface is started in a CICS Transaction
Server for OS/390 V1R1 (or later) for z/OS or OS/390.

CA-IDMS Auto 2-PC Resync for IDMSINTC for CV node SYSTEM74 date 10/14/2003
1 CA-IDMS in doubt units of work need recovery for CV node SYSTEM74
1 CA-IDMS in doubt units of work recovery started for CV node SYSTEM74

F2 Advantage CA-IDMS Release Summary

Resynchronization Task Execution

CA-IDMS Two Phase Commit Resync startup completed for CV node SYSTEM74

Creating the Resynchronization Program

Resynchronization

Linking the IDMSCSYN module with an IDMSCINT module creates the
resynchronization program. A separate resynchronization program must be
created for each version of the Advantage CA-IDMS interface module
(IDMSINTC) that is used within a given CICS system.

Program Link Edit (z/OS and OS/390)

/¥ e m e m e e e e e
/1% LINK IEWL

/] ¥ e m o e oo
//LINK EXEC PGM=IEWL,

/1 PARM="LET,LIST,XREF,RENT",

/7 REGION=128K,

/1 COND=(8,LT,ASMSTEP)

//SYSLMOD DD DSN=idms.loadlib,DISP=SHR

//SYSPRINT DD SYsSouT=*

//SYSUT1 DD DSN=8&SYSUT1,

/1 UNIT=SYSDA,

/7 SPACE=(6400, (80)),

// DISP=(NEW, PASS)

//IN1 DD DSN=idms.distload,DISP=SHR

//IN2 DD DSN=user.objlib,DISP=SHR

//IN3 DD DSN=cics.loadlib,DISP=SHR

//SYSLIN DD DDNAME=SYSIN

//SYSIN DD *

ORDER DFHEAI

INCLUDE IN3(DFHEAI)
INCLUDE IN1(IDMSCSYN)
INCLUDE IN2(idmscint)
INCLUDE IN3(DFHEAIO)

ENTRY CSYNEP1
MODE AMODE (31) ,RMODE (ANY)
NAME usercsyn(R)

/7%

Field Description

cics.loadlib Data set name of the CICS load library

idms.distload Data set name of the Advantage CA-IDMS
SMP/E distribution load library

idms.loadlib Data set name of the Advantage CA-IDMS
loadlib

user.objlib Data set name of the user object library

containing the idmscint module.

CICS Interface Enhancements for Two-Phase Commit Support F3

Resynchronization Task Execution

Field Description
idmscint Name of the idmscint object module
usercsyn User specified name of the RSYN load

module

Resynchronization Program Link Edit (VSE/ESA)

// DLBL idmslib,
// EXTENT ,nnnnnn

// LIBDEF *,SEARCH=(idmslib.sublib,user.sublib,cicslib.sublib)

// LIBDEF PHASE,CATALOG=1idmslib.sublib

// OPTION CATAL
PHASE usercsyn,*
INCLUDE DFHEAI
INCLUDE IDMSCSYN
INCLUDE idmscint
INCLUDE DFHEAIO

ENTRY CSYNEP1
// EXEC LNKEDT,SIZE=128K

/ *

Field Description

cicslib.sublib Name of the sublibrary within the
library containing CICS modules

idmslib Filename of the file containing the
Advantage CA-IDMS modules

idmslib.sublib Name of the sublibrary within the
library containing Advantage CA-
IDMS modules

nnnnnn Volume serial identifier of the

appropriate disk volume

user.sublib

Name of the user object library where
the idmscint module resides

idmscint

Name of the idmscint object module

usercsyn

User specified name of the RSYN load
module

Defining a Resynchronization Transaction

A resynchronization transaction must be defined for each IDMSINTC interface
to be used within a CICS system. Define the resynchronization transaction to

CICS as follows:

F4 Advantage CA-IDMS Release Summary

Resynchronization Task Execution

DEFINE TRANSACTION(rsyn-transaction-name) PROGRAM(usercsyn)
GROUP (IDMSGRP) PROFILE (IDMSPRF)
TASKDATAKEY (CICS)

Where:

rsyn-transaction-nameis the name chosen for the resynchronization transaction.
usercsyn is the name chosen for the resynchronization program.

The installation default transaction name is RSYN, but another name can be
chosen. The name specified in the transaction definition must be identical to the
value for the RSYNTXN parameter of the associated interface’s CICSOPT macro.

Refer to “New IDMSCINT and CICSOPT Parameters” for a description of the
RSYNTXN parameter.

Defining the Resynchronization Program

A resynchronization program must be defined for each IDMSINTC interface to
be used within a CICS system. Define the resynchronization program to CICS as

follows:

DEFINE PROGRAM(usercsyn) GROUP(IDMSGRP) LANGUAGE (ASSEMBLER) CEDF (NO)
EXECKEY (CICS)

Where:

usercsyn is the name chosen for the resynchronization program.

CICS Interface Enhancements for Two-Phase Commit Support F-5

New CICSOPT and IDMSCINT Parameters

New CICSOPT and IDMSCINT Parameters

New CICSOPT Parameters

The new or enhanced CICSOPT parameters available in Release 16.0 are

described below.

Syntax
pp——— CICSOPT — . . . >
I— ,AUTOCMT=— (-|: ON J) J
OFF — ,ALWAYS
— ,DEFAULT <« —
I— ,AUTONLY=— (-|: ON J) J
OFF — ,ALWAYS
— ,DEFAULT <« —
,MAXCON=maximum-connections J
,MAXIDMS=maximum-IDMS-systems J
,ONCOMT=—(COMMIT_CONTINUE) J
E COMMIT_ALL — ,ALWAYS
FINISH «- — ,DEFAULT <« —
I— ,ONBACK=—"(-|: ROLLBACK «- J) J
ROLLBACK_CONTINUE — ,ALWAYS
‘— ,DEFAULT <« —
I— ,RSYNTXN=rsyn-transaction-name J
I— , TPNAME=system-name J
I— ,TRUE=true-prefix-name J
I— , TXNSHR=—(-|: ON J) J
OFF t ,ALWAYS
,DEFAULT < —
Parameters
AUTOCMT Specifies whether or not database sessions opened by a program using this

interface module are eligible for participation in a CICS UOW (Unit of Work).

F6 Advantage CA-IDMS Release Summary

New CICSOPT and IDMSCINT Parameters

AUTONLY

ON Specifies that database sessions are eligible to participate in
a CICS Unit Of Work (UOW). If the database session is
active at the time a CICS syncpoint operation is performed,
the session’s updates are committed as part of the CICS
UOW.

OFF Specifies that database sessions are not eligible to
participate in a CICS Unit Of Work (UOW).

If TXNSHR=ON is specified, the default for AUTOCMT is ON; otherwise it is
OFF. An assembly error results if TXNSHR=ON and AUTOCMT=OFF are
specified.

ALWAYS Specifies that the AUTOCMT behavior specified in the
CICSOPT parameter overrides whatever was specified in
the IDMSCINT module with which the application is
linked.

DEFAULT Specifies that the AUTOCMT behavior specified in the
CICSOPT parameter applies only if the corresponding
IDMSCINT parameter specifies DEFAULT. This is the
default.

Specifies if database sessions opened by a program using this interface module
are forced to participate in a CICS UOW.

ON Specifies that database sessions are forced to participate in
a CICS Unit Of Work (UOW). Even if the database session
is terminated prior to the CICS syncpoint operation, the
session’s updates are committed as part of the CICS UOW.
DML commands that would normally cause the session’s
updates to be committed (such as FINISH or COMMIT
WORK) have no impact on the session’s transaction,
although they do impact the session. Conversely, if the
session’s transaction is forced to back out (either because of
a DML ROLLBACK request or because of events such as a
deadlock), a CICS SYNCPOINT BACKOUT is issued
forcing the entire CICS UOW to be backed out.

OFF Specifies that database sessions are not forced to
participate in a CICS Unit Of Work (UOW).

If TXNSHR=ON is specified, the default for AUTONLY is ON; otherwise it is
OFF. An assembly error results if TXNSHR=ON and AUTONLY=OFF are
specified.

ALWAYS Specifies that the AUTONLY behavior specified in the
CICSOPT parameter overrides the specifications in the
IDMSCINT module with which the application is linked.

CICS Interface Enhancements for Two-Phase Commit Support F7

New CICSOPT and IDMSCINT Parameters

MAXCON

MAXIDMS

ONBACK

ONCOMT

DEFAULT Specifies that the AUTONLY behavior specified in the
CICSOPT parameter applies only if the corresponding
IDMSCINT parameter specifies DEFAULT. This is the
default.

Specifies the maximum number of different back-end central versions that a
CICS task can access simultaneously through this CICS interface module. This
limit applies only to database sessions for which AUTOCMT is enabled. If an
application uses different interface modules, each one has its own limit.

maximum-connections
Must be a numeric value between 1 and 1000. If maximum-
connections is not specified, the default maximum number
of connections is 2.

Specifies the maximum number of different back-end central versions that a
CICS interface module can access throughout the life of a CICS system. This
limit applies only to database sessions for which AUTOCMT is enabled. If an
application uses different interface modules, each one has its own limit.

maximum-IDMS-systems
Must be a numeric value between 1 and 1000. The default
maximum number of back-end systems is the larger of 2
and 2 * the value of the MAXCVNO parameter.

Specifies the action that should be taken for database sessions opened by a
program using this interface module when they participate in a CICS backout
operation.

ROLLBACK Specifies that database sessions should be terminated. This
is the default.

ROLLBACK_CONTINUE
Specifies that database sessions should continue but
currencies freed.

ALWAYS Specifies that the ONBACK behavior specified in the
CICSOPT parameter overrides whatever was specified in
the IDMSCINT module with which the application is
linked.

DEFAULT Specifies that the ONBACK behavior specified in the
CICSOPT parameter applies only if the corresponding
IDMSCINT parameter specifies DEFAULT. This is the
default.

Specifies the action that should be taken for database sessions opened by a
program using this interface module when they participate in a CICS syncpoint
operation.

F8 Advantage CA-IDMS Release Summary

New CICSOPT and IDMSCINT Parameters

TPNAME

TRUE

COMMIT_ALL Specifies that database sessions should continue but
currencies freed.

COMMIT_CONTINUE Specifies that database sessions should continue and
currencies retained.

FINISH Specifies that database sessions should be terminated. This
is the default.
ALWAYS Specifies that the ONCOMT behavior specified in the

CICSOPT parameter overrides the specification in the
IDMSCINT module with which the application is linked.

DEFAULT Specifies that the ONCOMT behavior specified in the
CICSOPT parameter applies only if the corresponding
IDMSCINT parameter specifies DEFAULT. This is the
default.

Specifies the name by which DC/UCF will identify all tasks running under this
CICS system.

system-name Specify a four character name.

All interface modules executing within a single CICS system must use the same
value for TPNAME. Any attempt to start another occurrence of the interface
with a different tpname value than the one specified in the first interface that is
currently executing in the CICS system will fail unless a CICS_NAME parameter
is specified in the SYSIDMS file included in the CICS startup JCL.

The system-name forms the first part of the local transaction ID for database
requests and the first four characters of the front-end system ID for external
request units. “BULK” is appended to system-name to create the front-end
system ID. The front-end system ID is used for several purposes:

m Determines the packet size for communications

m Determines the maximum number of simultaneous requests from this CICS
system to Advantage CA-IDMS.

m Can also be used as an alternate task code for controlling external request
unit processing

If the TPNAME parameter is omitted, the CICS sysid as defined during the CICS
system startup becomes the system-name.

Specifies a prefix to be used in forming Task Related User Exit (TRUE) entry
names.

CICS Interface Enhancements for Two-Phase Commit Support F9Q

New CICSOPT and IDMSCINT Parameters

true-prefix

RSYNTXN Specifies the name of
interface.

Must be a one to five character value that is unique across
all interface modules in use within a CICS system. If frue-
prefixis less than five characters, it is padded on the right
with $’s. If not specified, the default prefix is constructed
as the last five characters of the IDMSINTC module name,
padded on the right with $’s if necessary.

the CICS resynchronization transaction defined for this

rsyn-transaction-name

Must be the name of a transaction defined to CICS and
associated with a resynchronization program. If not
specified, the default transaction name is RSYN.

TXNSHR Specifies whether or not database sessions opened by a program using this
interface module should share the same transaction as other sessions started by

the same CICS task.

ON

OFF

ALWAYS

DEFAULT

Specifies that database sessions should share transactions.

Specifies that database sessions should not share
transactions. This is the default.

Specifies that the TXNSHR behavior specified in the
CICSOPT parameter overrides whatever was specified in
the IDMSCINT module with which the application is
linked.

Specifies that the TXNSHR behavior specified in the
CICSOPT parameter applies only if the corresponding
IDMSCINT parameter specifies DEFAULT. This is the
default.

F-10 Advantage CA-IDMS Release Summary

New CICSOPT and IDMSCINT Parameters

New IDMSCINT Parameters

The new or enhanced IDMSCINT parameters available in Release 16.0 are
described below.

Syntax
> IDMSCINT — . . . ><
I: module-name :I
IDMSCINT «-
L ,AUTOCMT=—— ON
| o
DEFAULT —
L ,AUTONLY=—— ON
| o
DEFAULT —
L ,ONBACK=—— ROLLBACK <-
ROLLBACK_CONTINUE —|
L DEFAULT
L ,ONCOMT=—— COMMIT_CONTINUE —
— COMMIT_ALL
— FINISH <«
L DEFAULT
L , TXNSHR=—— ON
— OFF <4- —
L DEFAULT —
Parameters
AUTOCMT Specifies whether or not database sessions opened by a program linked with this

IDMSCINT module are eligible for participation in a CICS UOW (Unit of Work).

ON Specifies that database sessions are eligible to participate in
a CICS Unit Of Work (UOW). If the database session is
active at the time a CICS syncpoint operation is performed,
the session’s updates are committed as part of the CICS
UOW.

OFF Specifies that database sessions are not eligible to
participate in a CICS Unit Of Work (UOW).

DEFAULT Specifies that whether or not database sessions are eligible
for participation in a CICS Unit Of Work (UOW) is
determined by the AUTOCMT parameter of the interface’s
CICSOPT macro.

CICS Interface Enhancements for Two-Phase Commit Support F-11

New CICSOPT and IDMSCINT Parameters

AUTONLY

ONBACK

ONCOMT

If TXNSHR=ON is specified, the default for AUTOCMT is ON; otherwise it is
OFF. An assembly error results if TXNSHR=ON and AUTOCMT=OFF are
specified.

Specifies whether or not database sessions opened by a program linked with this
IDMSCINT module are forced to participate in a CICS UOW.

ON Specifies that database sessions are forced to participate in
a CICS Unit Of Work (UOW). Even if a database session is
terminated prior to the CICS syncpoint operation, the
session’s updates are committed as part of the CICS UOW.
DML commands that would normally cause the session’s
updates to be committed (such as FINISH or COMMIT
WORK) have no impact on the session’s transaction,
although they do impact the session. Conversely, if the
session’s transaction is forced to back out (either because of
a DML ROLLBACK request or because of events such as a
deadlock), a CICS SYNCPOINT BACKOUT is issued
forcing the entire CICS UOW to be backed out.

OFF Specifies that database sessions are not forced to
participate in a CICS Unit Of Work (UOW).

DEFAULT Specifies that whether or not database sessions are forced
to participate in a CICS Unit Of Work (UOW) is
determined by the AUTONLY parameter of the interface’s
CICSOPT macro.

If TXNSHR=ON is specified, the default for AUTONLY is ON; otherwise it is
OFF. An assembly error results if TXNSHR=ON and AUTONLY=OFF are
specified.

Specifies the action that should be taken for database sessions opened by a
program linked with this IDMSCINT module when they participate in a CICS
backout operation.

ROLLBACK Specifies that database sessions should be terminated. This
is the default.

ROLLBACK_CONTINUE Specifies that database sessions should continue but
currencies freed.

DEFAULT Specifies that the backout action for sessions is determined
by the ONBACK parameter of the interface’s CICSOPT
macro.

Specifies the action that should be taken for database sessions opened by a
program linked with this IDMSCINT module when they participate in a CICS
syncpoint operation.

F-12 Advantage CA-IDMS Release Summary

CICS OPTIXIT

TXNSHR

CICS OPTIXIT

OPTIXIT Example

COMMIT_ALL Specifies that database sessions should continue but
currencies freed.

COMMIT_CONTINUE Specifies that database sessions should continue and
currencies retained.

FINISH Specifies that database sessions should be terminated. This
is the default.

DEFAULT Specifies that the commit action for sessions be determined
by the ONCOMT parameter of the interface’s CICSOPT
macro.

Specifies whether or not database sessions opened by a program linked with this
IDMSCINT module should share the same transaction as other sessions started
by the same CICS task.

ON Specifies that database sessions should share transactions.

OFF Specifies that database sessions should not share
transactions. This is the default.

DEFAULT Specifies that whether or not database sessions share
transactions is determined by the TXNSHR parameter of
the interface’s CICSOPT macro.

OPTIXIT programs enable users to dynamically route database sessions to
different back-end central versions. In order to support two-phase commit
processing with CICS, OPTIXIT users must enhance their exit code to be able to
route resynchronization requests to the correct back-end central version. In
order to facilitate this, resynchronization requests are identified by an SSC
program name of INTCRSYN and the name of the node to which the request
must be routed is contained in the OPTI control block passed as a second
parameter to the exit.

The following is an example of the type of coding necessary to recognize and
route resynchronization requests successfully.

TITLE 'OPTIXIT - example of CICS OPTI exit needed for CICS RESYNC'
OPTIXIT CSECT

USING OPTIXIT,R15 ---> Base
B START Go processs OPTI exit call
DROP R15

#MOPT CSECT=OPTIXIT,ENV=USER

CICS Interface Enhancements for Two-Phase Commit Support F-13

CICS OPTIXIT

START DS OH

STM R14,R12,12(R13)
LR R12,R15

USING OPTIXIT,R12
USING OPTXPLST,R1

L R2,0PTXSSCA
USING SSC,R2

L R3,0PTXOPTA
USING OPI,R3

CLC SSCPNAME,=C'INTCRSYN'
BE CICSRSYN

Save callers registers

Swap base to R12

---> Base

---> Parameter list

Get address of Subschema Control
---> SSC

Get address of OPTI structure

---> OPTI structure

Pseudo SSC for CICS RESYNC?

Yes, special process for CICS RESYNC

%K XK XK K 3k 3k %k 5k K XK Xk %k %k %k 3k 5K X X XK % %k 3% % 5k X X Xk % % % 3% 5% X X X % % % % % % X X % % % % % % X X % % % % % % X X % % % % % % X X X % % %

*

* perform normal OPTIXIT logic for real SSC

*

%K XK XK %k 3k %k %k 5K K XK XK %k %k %k 3 5K X X X % %k 3% 3 5k X X X % % % 3% 5% X X X % %k % % % % X X% % % % % % % X X % % % % % % X X % % % % % % X X X % % %

B RETURN
CICSRSYN DS OH
LA R5,0PINODE
LA R4,SYSLIST
USING SYSTABLE,R4
LooP DS OH
CLI ~ SYSNAME,C'*'

BE RETURN

CLC SYSNAME,O(R5)
BE MATCH

LA R4,SYSTSIZE (R4)
B LooP

MATCH DS OH
MVC ~ OPICVNUM,SYSCV#
MVC OPISVCNO, SYSSVC#
B RETURN

RETURN DS OH
LM R14,R12,12(R13)

BR R14
DROP R2,R3,R4,R12
EJECT

SYSLIST EQU *

DC C'SYSTEM71"' ,AL1(71),AL1(173)
DC C'SYSTEM72' ,AL1(72) ,AL1(176)
DC C'SYSTEM73"' ,AL1(73) ,AL1(176)
DC C'SYSTEM74' ,AL1(74) ,AL1(173)

DC cr*!

SPACE 2

LTORG ,

SPACE 2
OPTXPLST DSECT
OPTXSSCA DS A(0)
OPTXOPTA DS A(0)

SPACE 2
SYSTABLE DSECT
SYSNAME DS CL8
SYSCV# DS XL1
SYSSVC# DS XL1
SYSTSIZE EQU *-SYSTABLE

EJECT

COPY #OPTIDS

COPY #SSCDS

END

Exit

Point at name of backend CV
Get table of known backend CVs
---> SYSTABLE

Is this end of CV table ?
Yes, just exit

Is this CV one of my CVs ?
Yes, we have a match

Bump to next CV in the table
Keep looking for my CVs

Update OPTI with CV number
Update OPTI with SVC number
Exit

Restore callers registers
Return to caller
Drop SSC, OPI, SYSTABLE, base

Backend CV table
CV 71 uses SVC number 173
CV 72 uses SVC number 176
CV 73 uses SVC number 176
CV 74 uses SVC number 173
End of backend CV table

Literal pool

OPTI exit PLIST
A(SSC)
A(OPTI)

Backend CV table dsect
Backend CV node name
Backend CV number

Backend CV SVC number

Size of one SYSTABLE entry

OPTI dsect
Subschema control dsect

F-14 Advantage CA-IDMS Release Summary

G

sl TCP/IP APl Commands, Error

Codes, Socket Structures, and
String Conversion

This section describes the socket functions that are supported by Advantage CA-
IDMS. The following information is provided for each function:

m Anassembler #SOCKET macro invocation showing all of the parameters that
can be specified.

m A list of parameters that can be passed when invoking the function in
COBOL, PL/1, and Advantage CA-ADS. The first of these parameters is the
function name as defined in the SOCKET-CALL-INTERFACE record.

m A description of the function-dependent parameters.

m Additional notes if applicable to a specific function.

Function Descriptions

ACCEPT

ACCEPT accepts the first connection request on the queue of pending connection
requests. If the queue is empty, the call waits until the first connection request
arrives or fails with an EWOULDBLOCK condition if the socket had been
marked as non-blocking. If successful, a new socket descriptor is returned.

Assembler

label #SOCKET ACCEPT,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
SOCK=socket-descriptor,
SOCKADDR=sockaddr,
SOCKADDL=sockaddr-length,
NEWSOCK=new-socket-descriptor,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-ACCEPT,
return-code,

errno,

reason-code,

TCP/IP API Commands, Error Codes, Socket Structures, and String Conversion G-l

Function Descriptions

Parameters

socket-descriptor

sockaddr

sockaddr-length

socket-descriptor,
sockaddr,

sockaddr-length,
new-socket-descriptor

The name of a fullword field containing the socket descriptor that was used on
the BIND and LISTEN functions

The name of an area in which to return the sockaddr structure of the connecting
client. The format of that structure depends on the domain of the corresponding
socket. This parameter can be assigned to NULL if the caller is not interested in
the connector’s address.

The name of a fullword field containing the length of sockaddr. If SOCKADDR
is assigned to NULL, sockaddr-length must be 0. On return, sockaddr-length
contains the size required to represent the connecting socket. If the value is 0, the
contents of sockaddrare unchanged. If the sockaddris too small to contain the

full sockaddr structure, it is truncated. The maximum value for this parameter is
4096.

new-socket-descriptor

BIND

The name of the fullword field where the socket descriptor of the new connection
is returned.

BIND assigns a local name to an unnamed socket.

Assembler

label #SOCKET BIND,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
SOCK=socket-descriptor,
SOCKADDR=sockaddr,
SOCKADDL=sockaddr-length,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-BIND,
return-code,

errno,

reason-code,
socket-descriptor,
sockaddr,
sockaddr-length

G2 Advantage CA-IDMS Release Summary

Function Descriptions

Parameters
socket-descriptor The name of a fullword field containing the socket descriptor to bind.

sockaddr The name of an area that contains the sockaddr structure to be bound to the
socket. The format of the sockaddr structure depends on the domain of the
corresponding socket.

sockaddr-length The name of a fullword field containing the length of sockaddr. sockaddr-length
can be specified as an absolute expression.

The maximum value for this parameter is domain dependent. If the domain is:

m AF_INET—it is the length of the SOCKET-SOCKADDR-IN record (SIN#LEN
for assembler)

m AF_INET6—it is the length of the SOCKET-SOCKADDR-ING6 record
(SIN6#LEN for assembler)

CLOSE

CLOSE deletes the socket descriptor from the internal descriptor table
maintained for the application program and terminates the existence of the
communications endpoint. If the socket was connected, the connection is
terminated in an orderly fashion.

Assembler

label #SOCKET CLOSE,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
SOCK=socket-descriptor,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-CLOSE,
return-code,

errno,

reason-code,
socket-descriptor

Parameters

socket-descriptor Thename of a fullword field containing the socket descriptor to close.

CONNECT

CONNECT initiates a connection on a socket.

TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G-3

Function Descriptions

Assembler

label #SOCKET CONNECT,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
SOCK=socket-descriptor,
SOCKADDR=sockaddr,
SOCKADDL=sockaddr-length,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-CONNECT,
return-code,

errno,

reason-code,
socket-descriptor,
sockaddr,
sockaddr-length

Parameters
socket-descriptor Thename of a fullword containing the socket descriptor to which to connect.

sockaddr The name of an area that contains the sockaddr structure to which to connect.
The format of the sockaddr structure depends on the domain of the
corresponding socket.

sockaddr-length The name of a fullword field containing the length of sockaddr. sockaddr-length
can be specified as an absolute expression.

The maximum value for this parameter is domain dependent. If the domain is:

m AF_INET—it is the length of the SOCKET-SOCKADDR-IN record (SIN#LEN
for assembler)

m AF_INET6—it is the length of the SOCKET-SOCKADDR-IN6 record
(SIN6#LEN for assembler)

FCNTL

FCNTL provides control over a socket descriptor. Depending on the command,
it retrieves or sets control information.

Assembler

label #SOCKET FCNTL,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
SOCK=socket-descriptor,
COMMAND=command,
ARGUMENT=argument,
RETVAL=returned-value,

G4 Advantage CA-IDMS Release Summary

Function Descriptions

Parameters
socket-descriptor

command

argument

returned-value

Notes

FD_CILR

PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-FCNTL,
return-code,

errno,

reason-code,
socket-descriptor,
command,

argument,
returned-value

The name of a fullword field containing the socket descriptor to process.

The name of a fullword field containing the command to perform on the socket.
command can be specified as an absolute expression.

The name of a fullword field containing the argument that applies to some
commands. argument can be specified as an absolute expression. While
argumentis optional, it must be specified for setting functions.

The name of a fullword field that contains the returned information from any
retrieval commands. While returned-valueis optional , it must be specified for
retrieval function.

m The following table lists the commands and arguments that can be specified.
The EQUate symbol is generated by #SOCKET macro and the field names
are associated with the SOCKET-MISC-DEFINITIONS record.

EQUate Symbol Field Name Description

F@GETFL SOCKET-FCNTL-GET Get file status command

F@SETFL SOCKET-FCNTL-SET Set file status command

NONBLOCK SOCKET-FCNTL- Set socket in non-blocking
NONBLOCK mode

Note: For PL/I, the record is SOCKET_MISC_DEFINITIONS and the dashes are
replaced by underscores.

FD_CLR clears a socket descriptor’s bit in a bit list.

TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G-5

Function Descriptions

Parameters

socket-descriptor

bit-17st

bit-17ist-length

bit-order

Notes

FD_ISSET

Assembler

label #SOCKET FD_CLR,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
SOCK=socket-descriptor,
BITLIST=bit-1ist,
BITLISTL=bit-1ist-length,
BITORDER=bit-order,

PLIST=parameter-list-area

The name of a fullword field containing the socket descriptor whose bit must be
cleared (set to zero) in the bit list.

The name of the area containing the bit list.
The name of a fullword field containing the length of the bit-list in bytes.

bit-list-length can be specified as an absolute expression. bit-list-length must be a
multiple of 4.

The name of the fullword containing the order in which the bits are addressed in
the bit list. This order should be the same as the value specified on the option
parameter of the SELECT or SELECTX function.

bit-order can be specified as an absolute expression. The accepted values are:

m SEL@BBKW (default)
s SEL@BFWD

m This function is only available to the Assembler interface.

m For performance reasons, FD_CLR does not call the RHDCSOCK processor
to execute the function. Instead, the corresponding code is expanded in your
program. This code is substantial, so it is best to code the function call in a
subroutine.

FD_ISSET tests a socket descriptor’s bit in a bit list to see if it is ON or OFF

Assembler

label #SOCKET FD_ISSET,
RETCODE=return-code,
ERRNO=errno,

G646 Advantage CA-IDMS Release Summary

Function Descriptions

Parameters

socket-descriptor

bit-17st

bit-1ist-length

bit-order

returned-bit-status

Notes

FD_SET

RSNCODE=reason-code,
SOCK=socket-descriptor,
BITLIST=bit-1ist,
BITLISTL=bit-1ist-length,
BITORDER=bit-order,
RETVAL=returned-bit-status,

PLIST=parameter-list-area

The name of a fullword field containing the socket descriptor whose bit needs
testing in the bit list.

The name of the area containing the bit list.
The name of a fullword field containing the length of the bit-list in bytes.

bit-list-length can be specified as an absolute expression. bit-list-length must be a
multiple of 4.

The name of a fullword containing the order in which the bits are addressed in
the bit list. This order should be the same as the value specified on the option
parameter of the SELECT or SELECTX function.

bit-order can be specified as an absolute expression. The accepted values are:

m SEL@BBKW (default)
s SEL@BFWD

The name of a fullword field that will contain the status of the tested bit:
s 0—OFF
s 1—ON

m This function is only available to the Assembler interface.

m For performance reasons, FD_ISSET does not call the RHDCSOCK processor
to execute the function. Instead, the corresponding code is expanded in your
program. This code is substantial, so it is best to code the function call in a
subroutine.

FD_SET sets a socket descriptor’s bit in a bit list ON.

Assembler
label #SOCKET FD_SET,

TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G-/

Function Descriptions

Parameters

socket-descriptor

bit-17st

bit-17ist-length

bit-order

Notes

FD_ZERO

RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
SOCK=socket-descriptor,
BITLIST=bit-1ist,
BITLISTL=bit-1ist-length,
BITORDER=bit-order,

PLIST=parameter-list-area

The name of a fullword field containing the socket descriptor whose bit must be
set ON in the bit list.

The name of the area containing the bit list.

The name of a fullword field containing the length of the bit-list in bytes.

bit-list-length can be specified as an absolute expression. bit-list-length must be a
multiple of 4.

The name of the fullword containing the order in which the bits are addressed in
the bit list. This order should be the same as the value specified on the option
parameter of the SELECT or SELECTX function.

bit-order can be specified as an absolute expression. The accepted values are:

SEL@BBKW (default)
SEL@BFWD

This function is only available to the Assembler interface.

For performance reasons, FD_SET does not call the RHDCSOCK processor to
execute the function. Instead, the corresponding code is expanded in your
program. This code is substantial, so it is best to code the function call in a
subroutine.

FD_ZERO clears all bits in a bit list.

Assembler

label #SOCKET FD_ZERO,

RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
BITLIST=bit-1list,
BITLISTL=bit-1ist-length,

G-8 Advantage CA-IDMS Release Summary

Function Descriptions

Parameters
bit-1ist

bit-1ist-length

Notes

FREEADDRINFO

Parameters

PLIST=parameter-list-area

The name of the area containing the bit list.
The name of a fullword field containing the length of the bit-list in bytes.

bit-list-length can be specified as an absolute expression. bit-list-length must be a
multiple of 4.

m This function is only available to the Assembler interface.

m For performance reasons, FD_ZERO does not call the RHDCSOCK processor
to execute the function. Instead, the corresponding code is expanded in your
program. This code is substantial, so it is best to code the function call in a
subroutine.

FREEADDRINFO frees the ADDRINFO structure that has been allocated by the
system during the processing of a previous call to the GETADDRINFO
#SOCKET function.

Assembler

label #SOCKET FREEADDRINFO,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
AINFOIN=pointer-to-addrinfo-structure,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-FREEADDRINFO,
return-code,

errno,

reason-code,
pointer-to-addrinfo-structure

pointer-to-addrinfo-structure

The name of a fullword field containing the address of the ADDRINFO structure
to release.

TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G-9

Function Descriptions

Notes

The FREEADDRINFO function is supported as of z/OS VI1R4.

GETADDRINFO

GETADDRINFO converts a host name and/or a service name into a set of socket
addresses and other associated information. This information can be used to
open a socket and connect to the specified service.

Assembler

label #SOCKET GETADDRINFO,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
HOSTNAME=hostname,
HOSTNAML=hostname-length,
SERVNAME=service-name,
SERVNAML=service-name-length,
AINFOIN=pointer-to-input-addrinfo-structure,
AINFOOUT=pointer-to-output-addrinfo-structure,
CANONAML=canonical-name-length,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-GETADDRINFO,
return-code,

errno,

reason-code,

hostname,

hostname-length,

service-name,

service-name-length,
pointer-to-input-addrinfo-structure,
pointer-to-output-addrinfo-structure,
canonical-name-length

Parameters
hostname The name of an area containing the name of the host to resolve.
hostname-1length The name of a fullword field containing the length of hostname. hostname-length
can be specified as an absolute expression.
hostname and hostname-length are optional. If they are not specified, service-
name and service-name-length must be specified.
The maximum value for this parameter is 256.
service-name The name of an area containing the name of the service.

G-10 Advantage CA-IDMS Release Summary

Function Descriptions

service-name-1length The name of a fullword field containing the length of service-name. service-
name-length can be specified as an absolute expression.

service-name and service-name-length are optional. If they are not specified,
hostname and hostname-length must be specified.

The maximum value for this parameter is 32.

pointer-to-input-addrinfo-structure
The name of a fullword field containing the address of an input ADDRINFO
structure. The following fields in the ADDRINFO structure can be set: flags,
family, socket type, and protocol. If this pointer is assigned to NULL, it is
equivalent to an ADDRINFO structure where all fields are set to 0.

pointer-to-output-addrinfo-structure
The name of a fullword field that contains the address of the output ADDRINFO
structure returned by the system. This structure has to be explicitly released by
the user using the FREEADDRINFO #SOCKET call.

canonical-name-length
The name of a fullword field in which the system returns the length of the
canonical name. The system returns the canonical name in the first output
ADDRINFO structure if hostnameis specified and the AL CANONNAMEOK
flag is set in the input ADDRINFO structure. If the canonical name length is not
needed, canonical-name-length can be omitted.

Notes

m For more information on the ADDRINFO structure, refer to the Structure
Descriptions topic.

m The GETADDRINFO function is supported as of z/OS V1R4.

m The following table lists the flags that can be set or returned in the
ADDRINFO structure. The EQUate symbol is generated by the #SOCKET
TCPIPDEF macro call and the field names are associated with the SOCKET-
MISC-DEFINITIONS record.

EQUate Field Name TCP Protocol
Symbol Value
AI@PASSV SOCKET-AIFLAGS-PASSIVE AI PASSIVE

AI@CANOK SOCKET-AIFLAGS-CANONNAMEOK Al CANONNAMEOK
AI@NHOST SOCKET-AIFLAGS-NUMERICHOST AI_NUMERICHOST
AI@NSERV SOCKET-AIFLAGS-NUMERICSERV AI_NUMERICSERV
Al@V4AMAP SOCKET-AIFLAGS-VAMAPPED AI_VAMAPPED
Al@ALL SOCKET-AIFLAGS-ALL AIl_ALL

TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G-1

Function Descriptions

GETHOSTBYADDR

Parameters
ip-address

ip-address-length

domain

EQUate Field Name TCP Protocol
Symbol Value

AI@ADDRC SOCKET-AIFLAGS-ADDRCONFIG AI_ADDRCONFIG

Note: For PL/I, the record is SOCKET_MISC_DEFINITIONS and the dashes are
replaced by underscores.

GETHOSTBYADDR takes an IP address and domain and tries to resolve it
through a name server. If successful, it returns the information in a HOSTENT
structure.

Assembler

label #SOCKET GETHOSTBYADDR,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
IPADDR=1ip-address,
IPADDRL=1ip-address-length,
DOMAIN=domain,
HOSTENTP=hostentp,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-GETHOSTBYADDR,
return-code,

errno,

reason-code,

ip-address,

ip-address-length,

domain,

hostentp

The name of a fullword field containing the binary format IP address to resolve.

The name of a fullword field containing the length of ip-address. ip-address-
length can be specified as an absolute expression.

The maximum value for this parameter is defined by IPADDRA4L in assembler
and SOCKET-IPADDRAL in other languages.

The name of a fullword field containing the domain. domain can be specified as
an absolute expression. Currently, only AF_INET is supported.

G-12 Advantage CA-IDMS Release Summary

Function Descriptions

hostentp

Notes

GETHOSTBYNAME

Parameters
hostname

hostname-length

hostentp

The name of a fullword field in which the system returns the address of a
HOSTENT structure containing the information about the host.

m The HOSTENT structure area is allocated by the system at the Advantage
CA-IDMS task level, and freed at task termination. It is reused by subsequent
calls to a DNS function: GETHOSTBYADDR or GETHOSTBYNAME.

m For more information on the HOSTENT structure, refer to the “Structure
Descriptions” section.

GETHOSTBYNAME takes a host name and tries to resolve it through a name
server. If successful, it returns the information in a HOSTENT structure.

Assembler

label #SOCKET GETHOSTBYNAME,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
HOSTNAME=hostname,
HOSTNAML=hostname-length,
HOSTENTP=hostentp,

PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-GETHOSTBYNAME,
return-code,

errno,

reason-code,

hostname,

hostname-length,
hostentp

The name of an area containing the name of the host to resolve.

The name of a fullword field containing the length of hostname. hostname-length
can be specified as an absolute expression.

The maximum value for this parameter is 256.

The name of a fullword field where the system returns the address of a
HOSTENT structure containing the information about the host.

TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G-13

Function Descriptions

Notes

m The HOSTENT structure area is allocated by the system at the Advantage
CA-IDMS task level, and freed at task termination. It is reused by subsequent
calls to a DNS function: GETHOSTBYADDR or GETHOSTBYNAME.

m For more information on the HOSTENT structure, refer to the “Structure
Descriptions” section.

GETHOSTID

GETHOSTID retrieves the IP address of the local host corresponding to the
current TCP/IP stack.

Assembler

label #SOCKET GETHOSTID,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
IPADDR=ip-address,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-GETHOSTID,
return-code,

errno,

reason-code,

ip-address

Parameters

ip-address The name of a fullword field in which the service returns the IP address in binary

Notes

format.

This service only supports IPv4.

GETHOSTNAME

GETHOSTNAME retrieves the name of the local host corresponding to the
current TCP/IP stack.

Assembler

label #SOCKET GETHOSTNAME,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,

G-14

Advantage CA-IDMS Release Summary

Function Descriptions

HOSTNAME=hostname,

HOSTNAML=hostname-length,
RETLEN=returned-hostname-length,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-GETHOSTNAME,
return-code,

errno,

reason-code,

hostname,

hostname-length,
returned-hostname-length

Parameters
hostname The name of an area in which the service returns the host name.
hostname-length The name of a fullword field containing the length of hostname. hostname-length

can be specified as an absolute expression.

The maximum value for this parameter is 256.

returned-hostname-length
The name of a fullword field in which the actual length of the host name is
returned.

GETNAMEINFO

GETNAMEINFO resolves a socket address into a hostname and a service name.

Assembler

label #SOCKET GETNAMEINFO,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
SOCKADDR=sockaddr,
SOCKADDL=sockaddr-length,
SERVNAME=service-name,
SERVNAML=service-name-length,
RETSNAML=returned-service-name-length,
HOSTNAME=hostname,
HOSTNAML=hostname-length,
RETHNAML=returned-hostname-length,
FLAGS=flags,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-GETNAMEINFO,
return-code,

errno,

reason-code,

TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G-15

Function Descriptions

Parameters

sockaddr

sockaddr-length

service-name

service-name-length

sockaddr,

sockaddr-length,
service-name,
service-name-length,
returned-service-name-length,
hostname,

hostname-length,
returned-hostname-length,

flags

The name of the sockaddr structure containing the information that must be
resolved: the domain (or socket family), the port number and the IP address.

The name of a fullword field containing the length of sockaddr. sockaddr-length
can be specified as an absolute expression.

The maximum value for this parameter is domain dependent. If the domain is:

m AF_INET—it is the length of the SOCKET-SOCKADDR-IN record (SIN#LEN
for assembler)

m AF_INET6—it is the length of the SOCKET-SOCKADDR-IN6 record
(SIN6#LEN for assembler)

The name of an area where the system returns the service name corresponding to
the port number specified in the sockaddr structure.

The name of a fullword field containing the length of service-name. service-
name-length can be specified as an absolute expression.

The maximum value for this parameter is 4096.

returned-service-name-length

hostname

hostname-length

The name of a fullword field into which the actual length of the service name is
returned.

service-name, service-name-length and returned-service-name-length are
optional ; specify all 3 parameters, or none of them. If none of these parameters
are specified, hostname, hostname-length, and returned-hostname-length must
be specified.

The name of an area where the system returns the Aostname corresponding to
the IP address specified in the sockaddr structure.

The name of a fullword field containing the length of hostname. hostname-length
can be specified as an absolute expression.

The maximum value for this parameter is 4096.

G-16 Advantage CA-IDMS Release Summary

Function Descriptions

returned-hostname-length
The name of a fullword field into which the length of the host name is returned.

flags

Notes

GETPEERNAME

hostname, hostname-length and refurned-hostname-length are optional; specify
all 3 parameters, or none of them. If none of these parameters are specified,
service-name, service-name-length, and returned-service-name-length must be

specified.

The name of a fullword field containing flags to control the resolution of the

socket address.

m The GETNAMEINFO function is supported as of z/OS V1R4.

m The following table lists the flags that can be passed. The EQUate symbol is
generated by the #SOCKET TCPIPDEF macro call and the field names are

associated with the SOCKET-MISC-DEFINITIONS.

EQUate Field Name
Symbol

Description

NI@NFDON SOCKET-NIFLAGS-NOFQDN

Returns the node name
portion only

NI@NREQD SOCKET-NIFLAGS-NAMEREQD

Returns an error if the
host is not located

NI@NHOST SOCKET-NIFLAGS-NUMERICHOST

Returns the numeric
form of the host

NI@NSERV SOCKET-NIFLAGS-NUMERICSERV

Returns the numeric
form of the server

NI@DGRAM SOCKET-NIFLAGS-DGRAM

The service is a
datagram service

Note: For PL/I, the record SOCKET_MISC_DEFINITIONS is used and the

dashes are replaced by underscores.

GETPEERNAME retrieves the name of the peer connected to a socket.

Assembler

label #SOCKET GETPEERNAME,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
SOCK=socket-descriptor,

TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G-17

Function Descriptions

Parameters

socket-descriptor

sockaddr

sockaddr-length

GETSOCKNAME

SOCKADDR=sockaddr,
SOCKADDL=sockaddr-length,

PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-GETPEERNAME,
return-code,

errno,

reason-code,
socket-descriptor,

sockaddr,

sockaddr-length

The name of a fullword field containing the socket descriptor from which to
retrieve the peer name.

The name of an area in which to return the sockaddr structure of the peer. The
format of this structure depends on the domain of the corresponding socket. This
parameter can be assigned to NULL if the caller is not interested in the peer’s
address.

The name of a fullword field containing the length of sockaddr. If SOCKADDR
is assigned to NULL, sockaddr-length must be 0. On return, sockaddr-length
contains the size required to represent the peer. If the size of sockaddris too
small to contain the full sockaddr structure, it is truncated.

The maximum value for this parameter is 4096

GETSOCKNAME retrieves the current name of a socket into a sockaddr
structure.

Assembler

label #SOCKET GETSOCKNAME,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
SOCK=socket-descriptor,
SOCKADDR=sockaddr,
SOCKADDL=sockaddr-length,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-GETSOCKNAME,
return-code,

errno,

reason-code,

G-18 Advantage CA-IDMS Release Summary

Function Descriptions

Parameters

socket-descriptor

sockaddr

sockaddr-length

GETSOCKOPT

socket-descriptor,
sockaddr,
sockaddr-length

The name of a fullword field containing the socket descriptor from which to
retrieve the name.

The name of an area in which to return the sockaddr structure of the socket. The
format of this structure depends on the domain of the corresponding socket. This
parameter can be assigned to NULL if the caller is not interested in the socket’s
address.

The name of a fullword field containing the length of sockaddr. If SOCKADDR
is assigned to NULL, sockaddr-length must be 0. On return, sockaddr-length
contains the size required to represent the socket. If the size of sockaddris too
small to contain the full sockaddr structure, it is truncated. .

The maximum value for this parameter is 4096

GETSOCKOPT retrieves the options currently associated with a socket.

Assembler

label #SOCKET GETSOCKOPT,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
SOCK=socket-descriptor,
LEVEL=1evel,
OPTNAME=option-name,
OPTVAL=option-value,
OPTLEN=option-value-length,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-GETSOCKOPT,
return-code,

errno,

reason-code,
socket-descriptor,

level,

option-name,

option-value,
option-value-length

TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G-19

Function Descriptions

Parameters

socket-descriptor

level

option-name

option-value

option-value-length

The name of a fullword field containing the socket descriptor for which the
service is to be performed.

The name of a fullword field containing the level for the option. level can be
specified as an absolute expression.

The name of a fullword field indicating the option to retrieve. option-name can
be specified as an absolute expression.

The name of an area that will contain the requested data.

The name of a fullword field that contains the length of option-value. On return,
option-value-length contains the size of the data returned in option-value.

The maximum value for this parameter is 4096.

Notes
The following table lists the options that can be specified. The EQUate symbol is
generated by the #SOCKET TCPIPDEF macro call and the field names are
associated with the SOCKET-MISC-DEFINITIONS.
EQUate Field Names Description
Symbol
S@SOCKET SOCKET-SOCKOPT-SOLSOCKET Level number for
socket options
SO@REUSE SOCKET-SOCKOPT-REUSEADDR Allows local address
reuse
SO@KEEPA SOCKET-SOCKOPT-KEEPALIVE Activate the keep-alive
mechanism.
SO@OOBIN SOCKET-SOCKOPT-OOBINLINE Accept out-of-band
data.
SO@SNBUF SOCKET-SOCKOPT-SNDBUF Reports send buffer
size information
SO@RCBUF SOCKET-SOCKOPT-RCVBUF Reports receive buffer
size information
Note: For PL/I, the use the SOCKET_MISC_DEFINITIONS record and the
dashes are replaced by underscores.
G20 Advantage CA-IDMS Release Summary

Function Descriptions

GETSTACKS

Parameters

buffer

buffer-length

output-format

GETSTACKS retrieves the list of all the TCP/IP stacks currently defined in the
system.

Assembler

label #SOCKET GETSTACKS,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
BUFFER=buffer,
BUFFERL=buffer-length,
FORMAT=output-format
RETLEN=output-length,
RETNSTKS=stacks-count,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-GETSTACKS,
return-code,

errno,

reason-code,

buffer,

buffer-length,
output-format,

output-length,
stacks-count

The name of a buffer that receives the list of all the stacks. This parameter is
optional.

The name of a fullword field containing the length of buffer. buffer-length can be
specified as an absolute expression. This parameter is optional.

If the size of bufferis too small to contain the full output, it is truncated.
The maximum value for this parameter is 4096.

The name of a fullword field indicating the format desired for the output.
output-format can be specified as an absolute expression. If the output-format
value is:

1—All the names of the different stacks are listed in a sequence of 8-byte
character string.

2—All the names of the different stacks are listed in a sequence of the following
structure: a 1-byte field containing the length of the name followed by the
name itself.

This is an optional parameter. If it is not specified, output-format 1 is assumed.

TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G221

Function Descriptions

output-length

stacks-count

Notes

HTONL

Parameters
input-field

output-field

HTONS

The name of a fullword field containing the actual length required to hold all the
output in the requested format..

The name of a fullword field containing the number of TCP/IP stacks currently
defined (but not necessarily active) in the system.

The buffer and buffer-length parameters are optional. If these parameters are not
specified, only the output-length and stacks-count values are returned.

HTONL converts a fullword integer from host byte order to network byte order.
Within Advantage CA-IDMS, host and network byte order are the same.
Therefore, the HTONL function does not apply to the mainframe environment; it
is implemented for the application programmer’s convenience.

Assembler

label #SOCKET HTONL,
FIELDIN=input-field,
FIELDOUT=output-field,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-HTONL,
input-field,
output-field

The name of a fullword field containing the integer to convert.

The name of a fullword field that receives the converted integer.

HTONS converts a halfword integer from host byte order to network byte order.
Within Advantage CA-IDMS, host and network byte order are the same.
Therefore, the HTONS function does not apply to the mainframe environment; it
is implemented for the application programmer’s convenience.

Assembler

label #SOCKET HTONS,
FIELDIN=input-field,

G22 Advantage CA-IDMS Release Summary

Function Descriptions

FIELDOUT=output-field,

PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-HTONS,
input-field,
output-field

Parameters
input-field The name of a halfword field containing the integer to convert.

output-field The name of a halfword field that receives the converted integer.

INET_ADDR

INET_ADDR translates an IP address in standard dotted string format into its
binary format.

Assembler

label #SOCKET INET_ADDR,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
IPADDRS=ip-address string,
IPADDRSL=1ip-address-string-length,
IPADDR=ip-address,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-INETADDR,
return-code,

errno,

reason-code,
ip-address-string,
ip-address-string-length,
ip-address

Parameters

ip-address-string The name of an area containing the IP address in standard dotted string format.

ip-address-string-length
The name of a fullword field containing the length of ip-address-string, which
can be specified as an absolute expression.

The maximum value for this parameter is defined by IPADDS4L in assembler
and SOCKET-IPADDSA4L in other languages.

TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G223

Function Descriptions

ip-address The name of a fullword field that will contain the IP address in binary format.

INET_NTOA

INET_NTOA translates an IP address in binary format into standard dotted
string format. The IP address is in IPv4 format.

Note: INET_NTOA does not support IPv6 format. For new applications use
INET_NTOP, which supports IPv6 and IPv4 formats.

Assembler

label #SOCKET INET_NTOA,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
IPADDR=ip-address,
IPADDRS=1ip-address-string,
IPADDRSL=ip-address-string-length,
RETIPASL=returned-ip-address-string-length,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-INETNTOA,
return-code,

errno,

reason-code,

ip-address,

ip-address-string,
ip-address-string-length,
returned-ip-address-string-length

Parameters
ip-address The name of a fullword field containing the IP address in binary format.

ip-address-string The name of an area in which to return the IP address in standard dotted string
format.

ip-address-string-length
The name of a fullword field containing the length of ip-address-string. ip-
address-string-length can be specified as an absolute expression.

The maximum value for this parameter is 4096.

returned-ip-address-string-length
The name of a fullword field in which the actual length of the IP address string is
returned.

G24 Advantage CA-IDMS Release Summary

Function Descriptions

INET_NTOP
INET_NTOP translates an IP address in binary format into standard string
format.
Assembler
label #SOCKET INET_NTOP,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
DOMAIN=domain,
IPADDR=1ip-address,
IPADDRS=ip-address-string,
IPADDRSL=ip-address-string-length,
RETIPASL=returned-ip-address-string-length,
PLIST=parameter-list-area,
RGSV=(rgsv)
List of USING Parameters
SOCKET-FUNCTION-INETNTOP,
return-code,
errno,
reason-code,
domain,
ip-address,
ip-address-string,
ip-address-string-length,
returned-ip-address-string-length
Parameters
domain The name of a fullword field containing the domain. domain can be specified as
an absolute expression. Possible values are AF@INET and AF@INET®6.
ip-address The name of an area containing the IP address in binary format: a fullword for an

Ipv4 address, or a 16-byte area for an Ipv6 address.

ip-address-string The name of an area in which to return the IP address in standard string format.

ip-address-string-length
The name of a fullword field containing the length of jp-address-string. ip-
address-string-length can be specified as an absolute expression.

The maximum value for this parameter is 4096.

returned-ip-address-string-length
The name of a fullword field in which the actual length of the IP address string is
returned.

TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G225

Function Descriptions

INET_PTON
INET_PTON translates an IP address in standard string format into its binary
format.
Assembler
label #SOCKET INET_PTON,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
DOMAIN=domain,
IPADDRS=1ip-address_area,
IPADDRSL=ip-address-string-length,
IPADDR=1ip-address,
PLIST=parameter-list-area,
RGSV=(rgsv)
List of USING Parameters
SOCKET-FUNCTION-INETPTON,
return-code,
errno,
reason-code,
domain,
ip-address-string,
returned-ip-address-string-length,
ip-address
Parameters
domain The name of a fullword field containing the domain. domain can be specified as

an absolute expression. Possible values are AF@INET and AF@INET®6.

ip-address-string The name of an area containing the IP address in standard string format.

ip-address-string-length
The name of a fullword field containing the length of ip-address-string. ip-
address-string-length can be specified as an absolute expression.

The maximum value for this parameter is determined by the type of address:

m [Pv4 address—IPADDS4L in assembler and SOCKET-IPADDS4L in other

languages
m IPv6 address—IPADDS6L in assembler and SOCKET-IPADDS6L in other
languages
ip-address The name of an area in which to return the IP address in binary format: a

fullword for an IPv4 address, or a 16-bytes area for an IPv6 address.

G26 Advantage CA-IDMS Release Summary

Function Descriptions

LISTEN

LISTEN indicates that an application is ready to accept client connection requests
and defines the maximum length of the connection request queue.

Assembler

label #SOCKET LISTEN,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
SOCK=socket-descriptor,
BACKLOG=backlog,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-LISTEN,
return-code,

errno,

reason-code,
socket-descriptor,
backlog

Parameters
socket-descriptor The name of a fullword field containing the socket descriptor on which to listen.

backlog The name of a fullword field containing the backlog value. backl/og can be
specified as an absolute expression. It defines the maximum number of pending
connections that may be queued. The value cannot exceed the maximum
number of connections allowed by the installed TCP/IP.

NTOHL

NTOHL converts a fullword integer from network byte order to host byte order.
Within Advantage CA-IDMS, host and network byte order are the same.
Therefore, the NTOHL function does not apply to the mainframe environment; it
is implemented for the application programmer’s convenience.

Assembler

label #SOCKET NTOHL,
FIELDIN=input-field,
FIELDOUT=output-field,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-NTOHL,
input-field,
output-field

TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G227

Function Descriptions

Parameters
input-field

output-field

NTOHS

Parameters
input-field

output-field

READ

The name of a fullword field containing the integer to convert.

The name of a fullword field that receives the converted integer.

NTOHS converts a halfword integer from network byte order to host byte order.
Within Advantage CA-IDMS, host and network byte order are the same.
Therefore, the NTOHS function does not apply to the mainframe environment; it
is implemented for the application programmer’s convenience.

Assembler

label #SOCKET NTOHS,
FIELDIN=input-field,
FIELDOUT=output-field,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-NTOHS,
input-field,
output-field

The name of a halfword field containing the integer to convert.

The name of a halfword field that receives the converted integer.

READ reads a number of bytes from a socket into an area.

Assembler

label #SOCKET READ,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
SOCK=socket-descriptor,
BUFFER=buffer,
BUFFERL=buffer-length,
RETLEN=read-length,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters
SOCKET-FUNCTION-READ,

G28 Advantage CA-IDMS Release Summary

Function Descriptions

Parameters
socket-descriptor
buffer

bufrfer-length

read-length

RECV

Parameters

socket-descriptor

return-code,
errno,
reason-code,
socket-descriptor,
buffer,
buffer-length,
read-length

The name of a fullword field containing the socket descriptor to read from.
The name of the area where the data is to be placed.

The name of a fullword field containing the length of the buffer. buffer-length
can be specified as an absolute expression.

The name of a fullword field in which the actual length of the data read is
returned.

RECYV reads a number of bytes from a connected socket into an area.

Assembler

label #SOCKET RECV,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
SOCK=socket-descriptor,
BUFFER=buffer,
BUFFERL=buffer-length,
FLAGS=flags,
RETLEN=read-length,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-RECV,
return-code,

errno,

reason-code,
socket-descriptor,
buffer,
buffer-length,

flags,

read-length

The name of a fullword field containing the socket descriptor from which to
read.

TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G-29

Function Descriptions

buffer

buffer-length

flags

read-length

Notes

RECVFROM

The name of the area where the data is to be placed.

The name of a fullword field containing the length of the buffer. buffer-length
can be specified as an absolute expression.

The name of a fullword field containing information on how the data is to be
received.

The name of a fullword field in which the actual length of the data read is
returned.

The following table lists the flags that can be specified. The EQUate symbol is
generated by the MSGFLAGS DSECT by the #SOCKET TCPIPDEF macro call
and the field names are associated with the SOCKET-MISC-DEFINITIONS.

EQUate Field Name Description

Symbol

MSG@DROU SOCKET-MSGFLAGS-DONTROUTE Send without network
routing

MSG@OOB SOCKET-MSGFLAGS-OOB Send and receive out-
of-band data

MSG@PEEK SOCKET-MSGFLAGS-PEEK Peek at incoming data

MSG@WALL SOCKET-MSGFLAGS-WAITALL Wait until all data
returned

Note: For PL/I, the use the SOCKET_MISC_DEFINITIONS record and the
dashes are replaced by underscores.

RECVFROM reads a number of bytes from a datagram socket into an area.

Assembler

label #SOCKET RECVFROM,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
SOCK=socket-descriptor,
BUFFER=buffer,
BUFFERL=buffer-length,
FLAGS=flags,
SOCKADDR=sockaddr,
SOCKADDL=sockaddr-length,
RETLEN=read-length,

G830 Advantage CA-IDMS Release Summary

Function Descriptions

Parameters

socket-descriptor

burfer

bufrfer-length

flags

sockaddr

sockaddr-length

read-length

PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-RECVFROM,
return-code,
errno,
reason-code,
socket-descriptor,
buffer,
buffer-length,
flags,

sockaddr,
sockaddr-length,
read-length

The name of a fullword field containing the socket descriptor from which to
read.

The name of the area where the data is to be placed.

The name of a fullword field containing the length of the buffer. buffer-length
can be specified as an absolute expression.

The name of a fullword field containing information on how the data is to be
received. The list of the different flags supported can be found in the MSGFLAGS
DSECT generated by the #SOCKET TCPIPDEF macro call and in the SOCKET-
MISC-DEFINITIONS record for other languages. See the RECV function
description for an explanation of flags that can be specified.

The name of an area in which to return the sockaddr structure of the sender of
the data. The format of this structure depends on the domain of the
corresponding socket. This parameter can be assigned to NULL if the caller is not
interested in the sender’s address.

The name of a fullword field containing the length of sockaddr. If SOCKADDR
is assigned to NULL, sockaddr-length must be 0. On return, sockaddr-length
contains the size required to represent the socket. If the size of sockaddris too
small to contain the full sockaddr structure, it is truncated.

The maximum value for this parameter is 4096.

The name of a fullword field in which the actual length of the data read is
returned.

TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G-31

Function Descriptions

SELECT and SELECTX

SELECT synchronizes processing of several sockets operating in non-blocking
mode. Sockets that are ready for reading, ready for writing, or have a pending
exceptional condition can be selected. If no sockets are ready for processing,
SELECT can block indefinitely or wait for a specified period of time (which may
be zero) and then return.

SELECT examines the socket descriptors specified by read-/ist, write-list, and
exception-Iistto see if some are ready for reading, ready for writing, or have an
exceptional condition pending, respectively. On return, SELECT updates each of
the lists to indicate which socket descriptors are ready for the requested
operation. The total number of ready descriptors in all the lists is returned.

SELECTX has the same functionality as SELECT with the additional capability of
waiting on one or more ECBs in addition to a time interval. This allows
interruption of a wait if an external event occurs.

Assembler

label #SOCKET SELECT,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
NFDS=number-of-socket-descriptors,
READLST=read-1ist,
READLSTL=read-1list-length,
WRITLST=write-list,
WRITLSTL=write-list-length,
EXCELST=exception-list,
EXCELSTL=exception-list-length,
OPTION=option,
TIMEOUT=timeval-structure,
RETNFDS=returned-number-of-descriptors,
PLIST=parameter-list-area,
RGSV=(rgsv)

label #SOCKET SELECTX,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
NFDS=number-of-socket-descriptors,
READLST=read-1ist,
READLSTL=read-1list-length,
WRITLST=write-list,
WRITLSTL=write-list-length,
EXCELST=exception-list,
EXCELSTL=exception-list-length,
OPTION=option,
TIMEOUT=timeval-structure,
ECB=ecb,
ECBLIST=ecb-1ist,
RETNFDS=returned-number-of-descriptors,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-SELECT,
return-code,

G32 Advantage CA-IDMS Release Summary

Function Descriptions

Parameters

errno,
reason-code,
number-of-socket-descriptors,
read-list,

read-list-length,

write-list,

write-list-length,
exception-list,
exception-list-length,

option,

timeval-structure,
returned-number-of-descriptors

SOCKET-FUNCTION-SELECTX,
return-code,

errno,

reason-code,
number-of-socket-descriptors,
read-list,

read-list-length,

write-list,
write-list-length,
exception-list,
exception-list-length,
option,

timeval-structure,

echb,

ecb-1ist,
returned-number-of-descriptors

number-of-socket-descriptors

read-1ist

read-1ist-length

write-17st

write-1ist-length

The name of a field containing the highest socket descriptor specified in any of
the lists + 1. Only socket descriptors whose value is less than number-of-socket-
descriptors are considered in servicing the request.

The name of an area containing a bit list identifying the socket descriptors to be
examined for a “ready to read” condition. Only socket descriptors whose
corresponding bit in the bit list is on are considered. On return, the bits that are
set indicate the descriptors that are ready to read. Specify NULL if the read-list
is to be ignored.

The name of a fullword field containing the length in bytes of read-/ist.

read-list-length can be specified as an absolute expression. read-list-length must
be a multiple of 4; specify 0 if the read-/istis to be ignored.

The name of an area containing a bit list identifying the socket descriptors to be
examined for a “ready to write” condition. Only socket descriptors whose
corresponding bit in the bit list is on are considered. On return, the bits that are
set indicate the descriptors that are ready to write. Specify NULL if the write-list
is to be ignored.

The name of a fullword field containing the length in bytes of write-/ist

TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G-33

Function Descriptions

exception-1ist

write-list-length can be specified as an absolute expression. write-/ist-length must
be a multiple of 4; specify 0 if the write-listis to be ignored.

The name of an area containing a bit list identifying the socket descriptors to be
examined for an exception condition. Only socket descriptors whose
corresponding bit in the bit list is on are considered. On return, the bits that are
set indicate the descriptors that have had exceptions. Specify NULL if the
exception-Iistis to be ignored.

exception-list-length

option

timeval-structure

The name of a fullword field containing the length in bytes of exception-/ist.

exception-Iist-length can be specified as an absolute expression. exception-list-
length must be a multiple of 4; specify 0 if the exception-Iistis to be ignored.

Name of a fullword field containing the way the different bits are interpreted in
the different bit-lists. option can be specified as an absolute expression.

See the Notes section for a list of options that can be specified.

The name of the area containing the TIMEVAL structure. If the parameter is
assigned to NULL, SELECT waits until at least one of the descriptors is ready. If
the timeout value (number of seconds + number of microseconds) is 0, SELECT
checks the descriptors and returns immediately without waiting. The TIMEVAL
structure is generated by the #SOCKET TCPIPDEF macro call and described in
the SOCKET-TIMEVAL record.

returned-number-of-descriptors

ecb

ecb-17st

Notes

The name of a fullword field in which the total number of ready descriptors is
returned.

The name of an area containing an Advantage CA-IDMS ECB.

The name of an area containing an Advantage CA-IDMS ECB list. Each entry in
the ECB list is represented by two fullwords:

m The first fullword is a pointer to the ECB.

m The second fullword is zero, except for the last entry in the list. In this case
the high-order bit is turned ON to identify the end of the ECB list.

m Refer to FD_ZERO, FD_CLR, FD_SET and FD_ISSET #SOCKET function for
more information about manipulating bits in bit lists.

G834 Advantage CA-IDMS Release Summary

Function Descriptions

m For programming languages like COBOL and Advantage CA-ADS where it
is difficult to manipulate bits in bit lists, byte lists can be used by specifying a
SOCKET-SELECT-BYTELIST for option. In this case, the read-list, write-list
and exception-listare byte lists instead of bit lists. In byte lists, each byte
represents one socket descriptor. A socket descriptor will be processed if its
corresponding byte is set to the character ‘1’. A socket descriptor’s
corresponding byte is the nth byte relative to 1 in the list, where nis equal to
the value of socket descriptor + 1.

m ECB and ECBLIST are mutually exclusive parameters.

m The following table lists the options that can be specified. The EQUate
symbol is generated by the #SOCKET TCPIPDEF macro call and the field
names are associated with the SOCKET-MISC-DEFINITIONS.

EQUate Field Name Description
Symbo

SEL@BBKW SOCKET-SELECT- Specifies the bits in the fullwords are in the
BITBACKWARD backward order. This is the default value if
the parameter is assigned to NULL.

SEL@BFRW SOCKET-SELECT- Specifies the bits in each fullword are in the

BITFORWARD forward order
SEL@BYTV SOCKET-SELECT- The read-list, write-list, and exception-list
BYTELIST are byte lists instead of bit lists. See

“Notes” section for more information.

Note: For PL/I, use the SOCKET_MISC_DEFINITIONS record and the
dashes are replaced by underscores.

SEND

SEND sends data on a connected socket.

Assembler

label #SOCKET SEND,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
SOCK=socket-descriptor,
BUFFER=buffer,
BUFFERL=buffer-length,
FLAGS=flags,
RETLEN=sent-length,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-SEND,
return-code,

TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G-35

Function Descriptions

errno,
reason-code,
socket-descriptor,
buffer,
buffer-length,
flags,

sent-length

Parameters

socket-descriptor Thename of a fullword field containing the socket descriptor on which to do the

send.
buffer The name of the area containing the data to be sent.
burfer-length The name of a fullword field containing the length of the buffer. buffer-length

can be specified as an absolute expression.

flags The name of a fullword field containing information on how the data is to be
sent. The list of the different flags supported can be found in the MSGFLAGS
DSECT generated by the #SOCKET TCPIPDEF macro call and in the SOCKET-
MISC-DEFINITIONS record for other languages. See the RECV function
description for an explanation of flags that can be specified.

sent-length The name of a fullword field in which the actual length of the data sent is
returned.

SENDTO
SENDTO sends data on a datagram socket.

Assembler

label #SOCKET SENDTO,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
SOCK=socket-descriptor,
BUFFER=buffer,
BUFFERL=buffer-length,
FLAGS=flags,
SOCKADDR=sockaddr,
SOCKADDL=sockaddr-1length,
RETLEN=sent-1length,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-SENDTO,
return-code,

errno,

reason-code,
socket-descriptor,
buffer,

G836 Advantage CA-IDMS Release Summary

Function Descriptions

Parameters

socket-descriptor

burfer

buffer-length

flags

sockaddr

sockaddr-length

sent-length

SETSOCKOPT

buffer-length,
flags,

sockaddr,
sockaddr-length,
sent-length

The name of a fullword field containing the socket descriptor on which to do the
send.

The name of the area containing the data to be sent.

The name of a fullword field containing the length of the buffer. buffer-length
can be specified as an absolute expression.

The name of a fullword field containing information on how the data is to be
sent. The list of the different flags supported can be found in the MSGFLAGS
DSECT generated by the #SOCKET TCPIPDEF macro call and in the SOCKET-
MISC-DEFINITIONS record for other languages. See the RECV function
description for an explanation of flags that can be specified.

The name of an area containing the sockaddr structure describing where data is
to be sent. The format of this structure depends on the domain of the
corresponding socket.

The name of a fullword field containing the length of sockaddr. Sockaddr-length
can be specified as an absolute expression.

The maximum value for this parameter is domain dependent. If the domain is:

m AF_INET—it is the length of the SOCKET-SOCKADDR-IN record (SIN#LEN
for assembler)

m AF_INET6—it is the length of the SOCKET-SOCKADDR-ING6 record
(SIN6#LEN for assembler)

The name of a fullword field in which the actual length of the data sent is
returned.

SETSOCKOPT sets options associated with a socket.

Assembler

label #SOCKET SETSOCKOPT,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
SOCK=socket-descriptor,

TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G-37

Function Descriptions

Parameters

socket-descriptor

level

option-name

option-value

option-value-length

Notes

SETSTACK

LEVEL=1evel,
OPTNAME=option-name,
OPTVAL=option-value,
OPTLEN=option-value-length,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-SETSOCKOPT,
return-code,

errno,

reason-code,
socket-descriptor,

level,

option-name,

option-value,
option-value-length

The name of a fullword field containing the socket descriptor for which the
service is to be performed.

The name of a fullword field containing the level for the option. level can be
specified as an absolute expression.

The name of a fullword field indicating the option to set. option-name can be
specified as an absolute expression.

The name of an area containing the data to associate with the socket.
The name of a fullword field containing the length of option-value.

option-value-length can be specified as an absolute expression. The maximum
value for this parameter is 16.

The list of level and options currently supported are listed by the #SOCKET
TCPIPDEF macro call for assembler and in the SOCKET-MISC-DEFINITIONS
record for other languages. See GETSOCKOPT for a description of the options
that can be specified.

SETSTACK sets the requested TCP/IP stack affinity for the current executing
Advantage CA-IDMS task.

Assembler

G38 Advantage CA-IDMS Release Summary

Function Descriptions

label #SOCKET SETSTACK,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
NAME=stack-name,
NAMEL=stack-name-length,

PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-SETSTACK,
return-code,

errno,

reason-code,

stack-name,
stack-name-length

Parameters

stack-name The area containing the name of the TCP/IP stack to set. This name can be the
JOBNAME of the corresponding TCPIP stack, a ~ostname or an IP-address in
binary or string format.

stack-name-length The name of a fullword field containing the length of stack-name.

stack-name-length can be specified as an absolute expression. The maximum
value for this parameter is 256.

Notes
To restore the default TCP/IP stack affinity for the current task, call the
SETSTACK function with the:
NAME=NULL parameter
Or
stack-name value equal to eight blank characters
SHUTDOWN

SHUTDOWN gracefully shuts down all or part of a duplex socket connection.

Assembler

label #SOCKET SHUTDOWN,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
SOCK=socket-descriptor,
HOW=how-condition,
PLIST=parameter-list-area,
RGSV=(rgsv)

TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G-39

Function Descriptions

Parameters
socket-descriptor

how-condition

Notes

SOCKET

List of USING Parameters

SOCKET-FUNCTION-SHUTDOWN,
return-code,

errno,

reason-code,
socket-descriptor,
how-condition

The name of a fullword field containing the socket descriptor to shut down.

The name of a fullword field indicating the effect of the shutdown on read and
write operations. how-condition can be specified as an absolute expression.

The following table lists the conditions that can be specified. The EQUate
symbol is generated by the #SOCKET TCPIPDEF macro call and the field names
are located in the SOCKET-MISC-DEFINITIONS record. They are:

EQUate Field Name Description

Symbol

SHUT_R SOCKET-SHUTDOWN- Terminate read communication
READ (from the socket)

SHUT W SOCKET-SHUTDOWN- Terminate write communication
WRITE (to the socket)

SHUT_RW SOCKET-SHUTDOWN- Terminate both read and write
READ-WRITE communication

Note: For PL/I, use the SOCKET_MISC_DEFINITIONS record and the dashes
are replaced by underscores.

SOCKET creates a socket in a communications domain.

Assembler

label #SOCKET SOCKET,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
DOMAIN=domain,
TYPE=type,

PROTNUM=protocol-number,
NEWSOCK=new-socket-descriptor,

G40 Advantage CA-IDMS Release Summary

Function Descriptions

PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-SOCKET,
return-code,

errno,

reason-code,

domain,

lype,

protocol-number,
new-socket-descriptor

Parameters

domain The name of a fullword field containing the domain or address family of the
socket. See the Notes section for a list of domains that can be specified.

type The name of a fullword field containing the type of the socket. #ype can be
specified as an absolute expression. See the Notes section for a list of socket types
that can be specified.

protocol-number The name of a fullword field containing the protocol. protocol-number can be
specified as an absolute expression. See the Notes section for a list of supported
protocols.

new-socket-descriptor
The name of a fullword field where the newly created socket descriptor is
returned.

Notes

m The following table lists the domains that can be specified. The EQUate
symbol is generated by the #SOCKET TCPIPDEF macro call and the field
names are located in the SOCKET-MISC-DEFINITIONS record. They are:

EQUate Symbol Field Name Description
AF@INET SOCKET-FAMILY-AFINET AF_INET address family
AF@INET6 SOCKET-FAMILY-AFINET6 AF_INET6 address family

m The following table lists the socket types that can be specified. The EQUate
symbol is generated by the #SOCKET TCPIPDEF macro call and the field
names are located in the SOCKET-MISC-DEFINITIONS record. They are:

TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G+41

Function Descriptions

EQUate Field Name Description
Symbol
STREAM SOCKET-TYPE-STREAM Stream —connection oriented and
reliable
DATAGRAM SOCKET-TYPE- Datagram—connectionless and
DATAGRAM unreliable

m The following table lists the protocols that can be specified. The EQUate
symbol is generated by the #SOCKET TCPIPDEF macro call and the field
names are located in the SOCKET-MISC-DEFINITIONS record. They are:

EQUate Symbol Field Name Description
PROTIP SOCKET-PROTOCOL-IP Default protocol
PROTTCP SOCKET-PROTOCOL-TCP TCP protocol
PROTUDP SOCKET-PROTOCOL-UDP UDP protocol
PROTIPV6 SOCKET-PROTOCOL-IPV6 IPv6 protocol

Note: For PL/I, use the SOCKET_MISC_DEFINITIONS record and the dashes
are replaced by underscores.

WRITE
WRITE sends data on a socket.

Assembler

label #SOCKET WRITE,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
SOCK=socket-descriptor,
BUFFER=buffer,
BUFFERL=buffer-length,
RETLEN=sent-length,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-WRITE,
return-code,

errno,

reason-code,
socket-descriptor,
buffer,

buffer-length,
sent-length

G42 Advantage CA-IDMS Release Summary

Return, Errno, and Reason Codes

Parameters
socket-descriptor
buffer

buffer-length

sent-length

The name of a fullword field containing the socket descriptor on which to send.
The name of the area containing the data to be sent.

The name of a fullword field containing the length of the buffer. buffer-length
can be specified as an absolute expression.

The name of a fullword field in which the actual length of the data sent is
returned.

Return, Errno, and Reason Codes

The return code value returned by a call to the socket program interface can be a
binary 0 (call successfully executed) or non-zero (an error occurred). In the latter
case, the errno field explains why the function call failed. Two different
situations arise:

m Advantage CA-IDMS generates the error. Errno is set to a value in the range
12000-12999 as documented below. The reason code is not used and is 0.

m The error is generated by operating system services. Errno and (where
applicable) reason-code are documented in the appropriate operating system
services documentation.

For z/0OS and OS/390, the document is “UNIX System Services — Messages
and Codes”.

ERRNO Numbers Set By The Socket Program Interface

The name shown in the following table is the EQUate symbol generated by the
#SOCKET macro. The equivalent condition name in the SOCKET-CALL-
INTERFACE record is prefixed with:

m SOCKET-ERRNO- —for COBOL and Advantage CA-ADS
s SOCKET_ERRNO_ —for PL/I

Name Value Description

1-11999 The ERRNO is generated by the operating
system. Refer to the appropriate operating
system documentation.

RNOINPL 12000 Invalid #SOCKET parameter list
RNOINAEC 12001 Invalid ASYNCECB parameter

TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G-43

Return, Errno, and Reason Codes

Name Value Description

RNOINAII 12002 Invalid AINFOIN parameter
RNOINAIO 12003 Invalid AINFOOUT parameter
RNOINBF 12004 Invalid BUFFER parameter
RNOINBFL 12005 Invalid BUFFERL parameter
RNOINBKL 12006 Invalid BACKLOG parameter
RNOINCAL 12007 Invalid CANONAML parameter
RNOINCMD 12008 Invalid COMMAND parameter
RNOINDOM 12009 Invalid DOMAIN parameter
RNOINEL 12010 Invalid EXCELST parameter
RNOINELL 12011 Invalid EXCELSTL parameter
RNOINFLG 12012 Invalid FLAGS parameter
RNOINFMT 12013 Invalid FORMAT parameter
RNOINFLT 12014 Invalid FROMLTE parameter
RNOINHDL 12015 Invalid HANDLE parameter
RNOINHNA 12016 Invalid HOSTNAME parameter
RNOINHNL 12017 Invalid HOSTNAML parameter
RNOINHNT 12018 Invalid HOSTENTP parameter
RNOINHOW 12019 Invalid HOW parameter
RNOINIL 12020 Invalid IPADDRL parameter
RNOINIP 12021 Invalid IPADDR parameter
RNOINIPS 12022 Invalid IPADDRS parameter
RNOINISL 12023 Invalid IPADDRSL parameter
RNOINLEV 12024 Invalid LEVEL parameter
RNOINMXP 12025 Invalid MAXPTERM parameter
RNOINMXT 12026 Invalid MAXTASK parameter
RNOINNA 12027 Invalid NAME parameter
RNOINNAL 12028 Invalid NAMEL parameter
RNOINNS 12029 Invalid NEWSOCK parameter
RNOINNSD 12030 Invalid NFDS parameter
RNOINONA 12031 Invalid OPTNAME parameter

G44 Advantage CA-IDMS Release Summary

Return, Errno, and Reason Codes

Name Value Description
RNOINOVA 12032 Invalid OPTVAL parameter
RNOINOVL 12033 Invalid OPTLEN parameter
RNOINPNA 12034 Invalid PROTNAME parameter
RNOINPNL 12035 Invalid PROTNAML parameter
RNOINPNT 12036 Invalid PROTENTP parameter
RNOINPNU 12037 Invalid PROTNUM parameter
RNOINPOR 12038 Invalid PORT parameter
RNOINRHL 12039 Invalid RETHNAML parameter
RNOINRIL 12040 Invalid RETIPASL parameter
RNOINRL 12041 Invalid READLST parameter
RNOINRLL 12042 Invalid READLSTL parameter
RNOINRLN 12043 Invalid RETLEN parameter
RNOINRND 12044 Invalid RETNFDS parameter
RNOINRNS 12045 Invalid RETNSTKS parameter
RNOINSA 12046 Invalid SOCKADDR parameter
RNOINSAL 12047 Invalid SOCKADDL parameter
RNOINSNA 12048 Invalid SERVNAME parameter
RNOINSNL 12049 Invalid SERVNAML parameter
RNOINSNT 12050 Invalid SERVENTP parameter
RNOINSOC 12051 Invalid SOCK parameter
RNOINTLT 12052 Invalid TOLTE parameter
RNOINTYP 12053 Invalid TYPE parameter
RNOINWL 12054 Invalid WRITLST parameter
RNOINWLL 12055 Invalid WRITLSTL parameter
RNOINOPT 12056 Invalid OPTION parameter
RNOINTIM 12057 Invalid TIMEOUT parameter
RNOINARG 12058 Invalid ARGUMENT PARAMETER
RNOINRV 12059 Invalid RETVAL parameter
RNOINECB 12060 Invalid ECB parameter
RNOINECL 12061 Invalid ECBLIST parameter

TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G-45

Return, Errno, and Reason Codes

Name Value Description

RNOINRSL 12062 Invalid RETSNAML parameter

RNOINBL 12063 Invalid BITLIST parameter

RNOINBLL 12064 Invalid BITLISTL parameter

RNOINBOR 12065 Invalid BITORDER parameter

RNO2BUFF 12100 Specify BUFFER and BUFFERL, or none of
them

RNO2HNAM 12101 Specify HOSTNAME and HOSTNAML, or
none of them

RNO2NAME 12102 Specify NAME and NAMEL, or none of them

RNO2PNAM 12103 Specify PROTNAME and PROTNAML, or
none of them

RNO2SNAM 12104 Specify SERVNAME and SERVNAML, or none
of them

RNO3HNAM 12105 Specify HOSTNAME/HOSTNAML/
RETHNAML, or none

RNO3SNAM 12106 Specify SERVNAME/SERVNAML/
RETSNAML, or none

RNORQHS 12107 HOSTNAME or SERVNAME (or both) is
required

RNORQECB 12108 ECB or ECBLIST is required

RNOXCECB 12109 ECB and ECBLIST are mutually exclusive

RNOIECBL 12110 Invalid ECB in ECBLIST

RNOINARQ 12111 Invalid asynchronous command request

RNOINAIS 12112 Invalid ADDRINFO structure

RNOSYSP1 12113 ASYNCECB and HANDLE are system parms

RNOINHDA 12114 Invalid area pointed to by HANDLE

RNOIIPA 12115 Invalid format for IP-address

RNOIIPA6 12116 Invalid format for IP-address (V6)

RNOEFNS 12200 Function not supported by interface

RNOFRSVD 12201 Function reserved for the system

RNOCAAIO 12202 Cannot allocate an AIO parameter list

RNOCANSU 12203 Cannot assign new socket to user

G-46

Advantage CA-IDMS Release Summary

Return, Errno, and Reason Codes

Name Value Description
RNOCRSFU 12204 Cannot remove socket from user table
RNOCSHNT 12205 Cannot save HOSTENT structure info
RNOCSAIO 12206 Cannot save ADDRINFO structure info
RNONAINF 12207 Cannot find ADDRINFO to free
RNONOLTE 12208 No LTE available from current TCE
RNOSLIND 12209 SOCKET line not defined
RNOSLINO 12210 SOCKET line not opened
RNOSLRCY 12211 SOCKET line has been recycled
RNOPINL 12212 Plug-in module not loaded
RNODRTCE 12213 Driver's TCE doesn't point to the PLE
RNOINEPI 12214 Invalid environment when entering the plug-in
RNOSENA 12215 Socket environment not active
RNOUSTCA 12216 User's socket table cannot be allocated
RNOUSTNE 12217 User's socket table doesn't exist
RNOSSTCA 12218 System's socket table cannot be allocated
RNOSSTNE 12219 System's socket table doesn't exist
RNOSTKNEF 12220 Requested stack not found
RNOSTKNA 12221 Requested stack not active
RNOSDTCE 12222 Socket Descriptor table cannot be extended
RNOCASWA 12223 Cannot allocate SELECT work area
RNOINSWA 12224 Inconsistent fields in SELECT work area
RNOSBLEM 12225 All SELECT bit lists are empty

>12999 The ERRNO is generated by the operation

system. Refer to the appropriate operating
system documentation.

TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G-47

Socket Structure Descriptions

Socket Structure Descriptions

Assembler

In assembler programs, the following DSECTs can be generated by coding a
#SOCKET TCPIPDEF statement

s SOCK@IN—describes the SOCKADDR structure for IPv4
m SOCK@IN6—describes the SOCKADDR structure for IPv6
m HOSTENTD—describes the HOSTENT structure

m TIMEVAL—describes the TIMEVAL structure

m ADDRINFO—describes the ADDRINFO structure

Each of these structures is described later in this section.

COBOL, PL/I and Advantage CA-ADS

For COBOL, PL/I and Advantage CA-ADS, the following records are installed to
describe structures related to SOCKET processing;:

m SOCKET-SOCKADDR-IN—describes the SOCKADDR structure for I[Pv4
s SOCKET-SOCKADDR-IN6—describes the SOCKADDR structure for IPv6
m SOCKET-HOSTENT—describes the HOSTENT structure

m SOCKET-TIMEVAL—describes the TIMEVAL structure

m SOCKET-ADDRINFO—describes the ADDRINFO structure

Note: Record synonyms have been defined for PL/I; the dashes are replaced by
underscores.

ADDRINFO Structure

The ADDRINFO structure is input and output to the GETADDRINFO function

call.

Field Description

Flags A set of flags

Family Address family (AF_INET or

AF_INET6)

G48

Advantage CA-IDMS Release Summary

Socket Structure Descriptions

Field Description

Socket type Type of socket (STREAM or
DATAGRAM)

Protocol Protocol in use for the socket

SOCKADDR length Length of SOCKADDR structure

Canonical name Addpress of canonical name associated
with input node name

SOCKADDR structure Addpress of the SOCKADDR structure

New ADDRINFO Address of next ADDRINFO structure

HOSTENT Structure

The HOSTENT structure is returned by the GETHOSTBYADDR and

GETHOSTBYNAME function calls.

Field Description

Hostname Address of hostname (null-terminated
string)

Aliases Address of a zero-terminated array of
pointers to aliases, which are null-
terminated strings

Address type Address family of returned IP
addresses (AF_INET or AF_INET6)

Address length Length of returned IP addresses

Addresses Address of a zero-terminated array of
pointers to IP addresses

SOCKADDR Structure

The SOCKADDR structure describes the address of a socket. There are two
versions of this structure: IPv4 and IPvé6.

TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G-49

Socket Structure Descriptions

SOCKADDR for IPv4

Field

Description

Family

A 2-byte field describing the socket
address family type: AF_INET

Port number

The port number for this socket

Address

The 4-byte IP address of the TCP/IP
stack

Zeros

Eight bytes of binary zeros

SOCKADDR for IPvé6

Field

Description

Family

A 2-byte field describing the socket
address family type: AF_INET6

Port number

The port number for this socket

Flow

Flow information

Address

The 16-byte IP address of the TCP/IP
stack

Scope ID

Scope identifier

TIMEVAL Structure

The TIMEVAL structure may be passed as input to the SELECT and SELECTX
function calls in order to specify a wait interval.

Field

Description

Seconds

Number of seconds to wait

Microseconds

Number of microseconds to wait.

G50 Advantage CA-IDMS Release Summary

String Conversion Functions

String Conversion Functions

Assembler

COBOL

Different encoding schemes exist for representing strings. On mainframe
computers, EBCDIC is often used, while on other platforms ASCII or UNICODE
is used. Currently, Advantage CA-IDMS does not support UNICODE.
However, conversion from EBCDIC to ASCII and vice versa can be implemented
with the new IDMSINO1 function STRCONYV, which is described below. For
more information about IDMSINO1, refer to “ Advantage CA-IDMS Callable
Services.”

STRCONYV converts a string in a buffer by replacing the old string with the new
one. The conversion uses tables defined in RHDCCODE:
m To convert from ASCII to EBCDIC, EBCTAB is used.
m To convert from EBCDIC to ASCII, ASCTAB is used.

The tables delivered on the installation tape contain the EBCDIC IBM-037 and
ASCII ISO8859-1 tables.

Assembler programs use the IDMSINO1 macro to invoke the character
conversion functionality as follows:

IDMSIN®1 STRCONV,CONVFUN=convfun, X
BUFFER=buffer,BUFFERL=bufferl

COBOL programs use the CALL IDMSINO1 interface to invoke the character
conversion functionality as follows:

Define these variables:

01 RPB PIC X(36).
01 INO1-REQ.
02 REQUEST-CODE PIC S9(8) COMP.
02 REQUEST-RETURN PIC S9(8) COMP.
01 IN®1-STRFUNC PIC X(4).
01 buffer PIC X(80).
01 bufferl PIC S9(8) COMP.

Code the call as follows:

MOVE 34 TO REQUEST-CODE.

MOVE 'convfun' TO INO1-STRFUNC.

CALL 'IDMSINO1' USING RPB,
INO1-REQ,
INO1-STRFUNC,
buffer,
bufferl.

TCP/IP APl Commands, Error Codes, Socket Structures, and String Conversion G-51

String Conversion Functions

PL/I

PL/I programs use the CALL IDMSINOL1 interface to invoke the character
conversion functionality as follows:

Define these variables:

DCL RPB CHAR (36);
DCL 01 IN®1_REQ,
02 REQUEST_CODE FIXED BINARY(31),
02 REQUEST_RETURN FIXED BINARY(31);
DCL IN®1_STRFUNC FIXED BINARY(31);
DCL buffer CHAR (80);
DCL bufferl FIXED BINARY(31);

Code the call as follows:

REQUEST_CODE 34;

INO1_STRFUNC 'convfun';

CALL 'IDMSINO1' (RPB,
INO1_REQ,
INO1_STRFUNC,
buffer,
bufferl);

Parameters

convfun The function to execute. To convert a string from ASCII to EBCDIC, specify
"ATOE’. To convert a string from EBCDIC to ASCII, specify ‘TETOA’.

buffer The name of the area that contains the string to convert.

bufferl The name of a fullword field containing the length in bytes of the string.

G52 Advantage CA-IDMS Release Summary

	Bookshelf
	Advantage CA-IDMS Release Summary
	Contents
	Chapter 1: Introducing Advantage CA-IDMS 16.0
	Welcome
	Two-Phase Commit Process
	SQL Features
	Utility and Sysgen Enhancements
	Performance Enhancements
	Non-Stop Processing Features
	Tool Product Enhancements
	TCP/IP API Support
	Upgrading to Release 16.0

	Chapter 2: Upgrading to Release 16.0
	Installing the Software
	Installing the SVC
	Formatting Journal Files
	Offloading the Log File
	Specifying a DCNAME for Cloned Systems
	Updating Dictionary Descriptions
	Updating Task and Program Definitions
	Defining Destination Resources
	Disabling Queue Area Sharing
	Reassigning Initiator Classes
	Activating the CMS Option
	Updating Advantage CA-IDMS Database SQL Option
	Updating SYSCA Schema Definitions
	Converting SQL Catalogs

	Applying an APAR to Earlier Releases
	Updating the CICS Interfaces
	Creating New CICS Interface Modules
	Identifying a CICS System
	Implementing Two-Phase Commit Support in CICS

	Recompiling User-Written Programs

	Chapter 3: Two-Phase Commit Support
	Two-Phase Commit Protocol
	Terminology
	Typical Commit Flows
	Prepare and Commit Outcomes
	Recovery from Failure

	Two-Phase Commit Support Within Advantage CA-IDMS
	Optimizations Supported
	Support for External Coordinators
	Support for External Resource Managers
	Support for Pre-Release 16.0 Systems
	Support for Batch Applications
	Implementation Details

	Impact on System Definition
	System Generation Resource Table

	Impact on System Operations
	Restarting a Failed System
	System Name During Warmstart
	Incomplete Distributed Transactions at Startup
	Incomplete Distributed Transactions at Shutdown
	Monitoring Distributed Commit Operations

	Impact on Journaling
	New Journal Records and Formats
	Journal File Formatting Considerations

	Impact on Recovery
	System Recovery Interdependence
	Resynchronization Between Advantage CA-IDMS Systems
	Completing Transactions Manually
	Manual Recovery Considerations
	Deleting Resource Managers

	Two-Phase Commit Support with CICS
	Implementation Requirements
	Programming Interface
	Optimizations Supported
	Requesting the Use of Two-Phase Commit
	Additional Two-Phase Commit Parameters
	CICS System Name Requirements
	Resynchronization between CICS and Advantage CA-IDMS

	Two-Phase Commit Support with RRS
	Enabling RRS Support Within an Advantage CA-IDMS System
	Impact on System Startup
	RRS Support for Batch Applications
	RRS Support for Online Applications
	Optimizations Supported
	Resynchronization Between RRS and Advantage CA-IDMS

	Chapter 4: SQL Features
	Dynamic SQL Caching
	Searching the Cache
	Impact of Database Definition Changes
	Controlling the Cache

	SQL-Defined Database Enhancements
	Logical/Physical Separation
	Database Cloning
	Stamp Synchronization

	SQL Productivity Enhancements
	User-Defined SQL Functions
	Procedures and Functions Written as Advantage CA-ADS Mapless Dialogs
	Database Name Inheritance for Table Procedures, Procedures, and Functions
	ROWID Pseudo-Column
	Transaction Sharing

	Enhanced Compatibility with Open Standards
	Numeric Functions
	String Functions
	Time and Date Functions
	System Functions
	Conversion Functions

	Chapter 5: Utility and Sysgen Enhancements
	Online Execution of Utilities
	Usage Considerations

	LOCK AREA Statement
	Authority
	Syntax
	Parameters
	Usage

	ALREADY LOCKED Option
	FORMAT AREA Utility Statement
	FIX PAGE Utility Statement

	Database Name for Utility Use
	CREATE DBNAME Statement

	FORMAT JOURNAL Utility Statement
	Syntax
	Parameters
	Usage

	Two-Phase Commit Enhancements
	Reporting on Distributed Transactions
	Manual Recovery Input Control File
	Manual Recovery Output Control File
	Execution JCL Changes

	Cloning LTERM and PTERM Definitions
	Syntax
	Parameters
	Usage
	Example

	Security Enhancements
	Creating The Resource
	Assigning OCF/BCF Activity Numbers
	#UTABGEN

	Chapter 6: Performance Enhancements
	File Cache in Memory
	Terminology
	Exploiting File Cache in Memory
	Altering the DMCL Definition

	Parallel Access Volume Exploitation
	Improved PDSE Support
	Startup JCL Parameters

	Improved Performance for LE COBOL Programs
	System Generation SYSTEM Statement
	System Generation PROGRAM Statement

	Improved Journaling Performance
	Improved Recovery Performance
	System Generation SYSTEM Statement
	System Generation TASK Statement

	Chapter 7: Non-Stop Processing Features
	Dynamic Trace Control
	Modifying Program Attributes
	Determining CPU Effectiveness
	Short on Storage Message
	Waiting on Full Journal Message

	Chapter 8: Tool Product Enhancements
	Advantage CA-Culprit for CA-IDMS
	Invoking the AllFusion CA-Librarian Interface
	Invoking the AllFusion CA-Panvalet Interface

	Advantage CA-IDMS Database Journal Analyzer Option
	RECORD and DBKEY Display Processing
	Audit Report
	Chronological Report

	Advantage CA-IDMS Database Dictionary Module Editor (DME) Option
	‘Fast-In’ Access Method
	DME Print Class
	Browse Screen

	Advantage CA-IDMS DML Online Option (DMLO)
	Highlighted Exit Key
	Help Dictionary
	Dynamic Message Processing

	Advantage CA-ADS Alive Option
	Online Mapping
	Advantage CA-IDMS PL/I Compiler Enhancements
	Syntax
	Parameters
	Notes

	Support for 31-digit Packed Decimal Elements

	Chapter 9: TCP/IP API Support
	Using TCP/IP with Advantage CA-IDMS
	Generic Listener Service
	Introduction
	Functionality
	Implementation

	Establishing TCP/IP Support
	Updating the Startup JCL
	Defining the SOCKET Line in Sysgen
	Defining Physical Terminals (PTERMS) in Sysgen
	Setting up BULK PTERMs

	Managing TCP/IP Support
	TCP/IP Programming Support for Online Applications
	Socket Macro Interface For Assembler Programs
	The Advantage CA-ADS Socket Interface
	Socket Call Interface For COBOL
	Socket call interface for PL/I
	Application Design Considerations
	TCP/IP Coding Samples

	Using the TCP/IP Trace Facility

	Appendix A: New and Revised DCMT Commands
	DCMT DISPLAY DBTRACE
	Syntax
	Parameters
	Example

	DCMT DISPLAY DISTRIBUTED RESOURCE MANAGER
	Syntax
	Parameters
	Examples
	Usage

	DCMT DISPLAY DISTRIBUTED TRANSACTION
	Syntax
	Parameters
	Examples
	Usage

	DCMT DISPLAY LINE
	Syntax
	Parameters
	Example

	DCMT DISPLAY SUBTASK
	Syntax
	Example

	DCMT DISPLAY SYSTRACE
	Syntax
	Parameters
	Example

	DCMT DISPLAY TRANSACTION SHARING
	Syntax
	Parameters
	Example

	DCMT VARY DBTRACE
	Syntax
	Parameters
	Examples

	DCMT VARY DISTRIBUTED RESOURCE MANAGER
	Syntax
	Parameters
	Example
	Usage

	DCMT VARY DISTRIBUTED TRANSACTION
	Syntax
	Parameters
	Example
	Usage

	DCMT VARY DYNAMIC PROGRAM
	Syntax
	Parameters
	For More Information

	DCMT VARY DYNAMIC TASK
	Syntax
	Parameters
	Example

	DCMT VARY FILE
	Syntax
	Parameters
	Example

	DCMT VARY LTERM
	Syntax
	Parameters
	Example

	DCMT VARY PROGRAM
	Syntax
	Parameters
	Examples

	DCMT VARY PTERM
	Syntax
	Parameters
	Usage

	DCMT VARY SUBTASK
	Syntax
	Parameters
	Examples

	DCMT VARY SYSTRACE
	Syntax
	Parameters
	Examples

	DCMT VARY TASK
	Syntax
	Parameters
	Example

	DCMT VARY TRANSACTION SHARING
	Syntax
	Parameters
	Example

	How to Broadcast System Tasks
	Syntax
	Parameters
	Usage
	Examples

	Command Codes

	Appendix B: New and Revised SQL Statements
	User-Defined SQL Function Statements
	Function Invocation
	ALTER FUNCTION Statement
	CREATE FUNCTION Statement
	DISPLAY/PUNCH FUNCTION Statement
	DROP FUNCTION

	SQL Scalar Functions
	Revised SQL Statements
	ALTER PROCEDURE Statement
	ALTER SCHEMA Statement
	ALTER TABLE Statement
	ALTER TABLE PROCEDURE Statement
	CREATE INDEX Statement
	CREATE PROCEDURE Statement
	CREATE SCHEMA
	CREATE TABLE Statement
	CREATE TABLE PROCEDURE Statement
	CREATE VIEW Statement
	DISPLAY/PUNCH INDEX Statement
	DISPLAY/PUNCH PROCEDURE Statement
	DISPLAY/PUNCH SCHEMA Statement
	DISPLAY/PUNCH TABLE Statement
	DISPLAY/PUNCH TABLE PROCEDURE Statement
	DISPLAY/PUNCH VIEW Statement
	SET SESSION Statement

	Appendix C: SQL Functions and SQL Procedure Enhancements
	When To Use a User-Defined Function
	Defining a Function
	Invoking a Function
	Writing a Function
	Calling Arguments
	Parameter Arguments
	Local Work Area
	Global Work Area

	Advantage CA-ADS SQL Function and Procedure Examples
	Function Example
	Procedure Example

	COBOL SQL Function Example
	Function Definition
	Sample COBOL Code
	Invoking the Function

	Appendix D: SQL ROWID Examples
	ROWID in a Simple SELECT
	ROWID in a Searched UPDATE
	ROWID in a SELECT Using a Join
	Example 1
	Example 2

	Searched Update of Records Without Primary Key
	Searched Delete of Records Without Primary Key

	Appendix E: SQL Cache Tables
	About this Appendix
	Tables for Viewing, Monitoring, and Controlling the Cache
	DSCCACHEOPT
	DSCCACHECTRL
	DSCCACHE
	DSCCACHEV

	Allowable Operations on DSCCACHE Tables
	Examples of Displaying and Controlling the Cache
	CACHE Options
	CACHE Control Parameters
	CACHE Entries

	Secure the Display and Changes

	Appendix F: CICS Interface Enhancements for Two-Phase Commit Support
	Resynchronization Task Execution
	Syntax
	Parameters
	Examples
	Creating the Resynchronization Program
	Resynchronization Program Link Edit (z/OS and OS/390)
	Resynchronization Program Link Edit (VSE/ESA)
	Defining a Resynchronization Transaction
	Defining the Resynchronization Program

	New CICSOPT and IDMSCINT Parameters
	New CICSOPT Parameters
	New IDMSCINT Parameters

	CICS OPTIXIT
	OPTIXIT Example

	Appendix G: TCP/IP API Commands, Error Codes, Socket Structures, and String Conversion
	Function Descriptions
	ACCEPT
	BIND
	CLOSE
	CONNECT
	FCNTL
	FD_CLR
	FD_ISSET
	FD_SET
	FD_ZERO
	FREEADDRINFO
	GETADDRINFO
	GETHOSTBYADDR
	GETHOSTBYNAME
	GETHOSTID
	GETHOSTNAME
	GETNAMEINFO
	GETPEERNAME
	GETSOCKNAME
	GETSOCKOPT
	GETSTACKS
	HTONL
	HTONS
	INET_ADDR
	INET_NTOA
	INET_NTOP
	INET_PTON
	LISTEN
	NTOHL
	NTOHS
	READ
	RECV
	RECVFROM
	SELECT and SELECTX
	SEND
	SENDTO
	SETSOCKOPT
	SETSTACK
	SHUTDOWN
	SOCKET
	WRITE

	Return, Errno, and Reason Codes
	ERRNO Numbers Set By The Socket Program Interface

	Socket Structure Descriptions
	Assembler
	COBOL, PL/I and Advantage CA-ADS
	ADDRINFO Structure
	HOSTENT Structure
	SOCKADDR Structure
	TIMEVAL Structure

	String Conversion Functions
	Assembler
	COBOL
	PL/I
	Parameters

