

Features Guide
14.0

B01136-1E

Advantage™ CA-IDMS

This documentation and related computer software program (hereinafter referred to as the “Documentation”) is
for the end user's informational purposes only and is subject to change or withdrawal by Computer Associates
International, Inc. (“CA”) at any time.

THIS DOCUMENTATION MAY NOT BE COPIED, TRANSFERRED, REPRODUCED, DISCLOSED, OR
DUPLICATED, IN WHOLE OR IN PART, WITHOUT THE PRIOR WRITTEN CONSENT OF CA. THIS
DOCUMENTATION IS PROPRIETARY INFORMATION OF CA AND PROTECTED BY THE COPYRIGHT
LAWS OF THE UNITED STATES AND INTERNATIONAL TREATIES.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS
IS” WITHOUT WARRANTY OF ANY KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGE-
MENT. IN NO EVENT WILL CA BE LIABLE TO THE END USER OR ANY THIRD PARTY FOR ANY
LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION,
INCLUDING WITHOUT LIMITATION, LOST PROFITS, BUSINESS INTERRUPTION, GOODWILL, OR
LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED OF SUCH LOSS OR DAMAGE.

THE USE OF ANY PRODUCT REFERENCED IN THIS DOCUMENTATION AND THIS DOCUMENTA-
TION IS GOVERNED BY THE END USER'S APPLICABLE LICENSE AGREEMENT.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with “Restricted Rights” as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1)
and (2) or DFARS Section 252.227.7013(c)(1)(ii) or applicable successor provisions.

First Edition, October 1996

One Computer Associates Plaza, Islandia, NY 11749
All rights reserved.

All trademarks, trade names, service marks, or logos referenced herein belong to their respective companies.

 Contents

How to use this manual . vii

Chapter 1. About CA-IDMS Release 14.0 . 1-1
1.1 Overview . 1-3
1.2 Release 14.0 objectives . 1-4
1.3 Enhance performance and productivity . 1-5
1.4 Exploit new hardware and software technology 1-7

1.4.1 Extended multitasking support . 1-7
1.4.2 IBM Parallel Sysplex . 1-7

1.5 Simple upgrade path . 1-8
1.6 What's next . 1-9

Chapter 2. Upgrading to Release 14.0 . 2-1
2.1 Overview . 2-3
2.2 Installing the SVC under MVS . 2-4
2.3 Recompiling the RHDCSRTT module . 2-5
2.4 Extended multitasking support . 2-6
2.5 TCE stack access . 2-7
2.6 Catalog conversion for SQL definitions . 2-8

2.6.1 Running the Catalog Conversion Utility 2-9
2.7 Performance Monitor map and record changes 2-10
2.8 Linking COBOL/370 programs . 2-11
2.9 Review PROGRAM statement ERROR THRESHOLD parameter 2-12
2.10 Monitoring resource management control blocks 2-13
2.11 Dictionary record changes . 2-14
2.12 Applying optional functionality . 2-15

Chapter 3. IBM Parallel Sysplex Exploitation 3-1
3.1 Overview . 3-3
3.2 About a Parallel Sysplex environment . 3-4
3.3 Exploiting Parallel Sysplex functionality . 3-5
3.4 Using dynamic database session routing . 3-6

3.4.1 Planning to use dynamic database session routing 3-7
3.4.2 Implementing dynamic database session routing 3-7

3.4.2.1 Using groups . 3-8
3.4.2.2 Backend CV definitions . 3-8
3.4.2.3 Frontend CV definitions . 3-9
3.4.2.4 Sample group definitions . 3-11

3.4.3 Cloning backend CVs . 3-12
3.4.3.1 Cloning CVs . 3-12

3.4.4 Managing dynamic database session routing 3-14
3.4.4.1 Using the DCMT VARY DBGROUP command 3-14

3.4.5 Monitoring and tuning dynamic database session routing 3-15
3.4.5.1 Using DCMT DISPLAY DBGROUP 3-16
3.4.5.2 Using the Interval Monitor's DBGROUP Detail screen 3-17

3.5 Using shared cache . 3-19
3.5.1 Defining shared cache in the Coupling Facility 3-20

Contents iii

3.5.2 Defining shared cache in CA-IDMS 3-21
3.5.2.1 Assigning files using DMCL file override 3-21

3.5.3 Usage . 3-22
3.5.3.1 Assigning files to a shared cache dynamically 3-22

3.5.4 Monitoring shared cache . 3-23
3.5.4.1 DCMT DISPLAY commands . 3-23
3.5.4.2 CA-IDMS Performance Monitor 3-25
3.5.4.3 CA-IDMS System Statistics Report 3-28

3.5.5 Tuning a shared cache . 3-28

Chapter 4. CA-IDMS/DB and CA-IDMS/DC 4-1
4.1 Overview . 4-3
4.2 Extended multitasking support . 4-4

4.2.1 Implementing multitasking support . 4-4
4.3 Extended 24-hour processing support . 4-6

4.3.1 Dynamic lines, terminals, and printers 4-6
4.3.2 Dynamic security refresh . 4-7
4.3.3 Dynamic resource allocation . 4-8

4.4 Utility enhancements . 4-11
4.4.1 SEGMENT support in BACKUP, RESTORE, and UNLOCK 4-11

4.4.1.1 BACKUP and RESTORE utility syntax 4-11
4.4.1.2 UNLOCK syntax . 4-12

4.4.2 Enhanced area support in FORMAT JOURNAL 4-12
4.4.3 NonSQL data support in UPDATE STATISTICS 4-13
4.4.4 File support in PRINT SPACE . 4-14

4.5 Date and Year 2000 support in DISPLAY/PUNCH statements 4-16
4.6 Security enhancements . 4-17

4.6.1 Default signon and user ID options in RHDCSRTT 4-17
4.6.2 DISPLAY/PUNCH ALL syntax for security definitions 4-19

4.6.2.1 DISPLAY and PUNCH ALL statement syntax 4-20
4.6.3 Usage . 4-23
4.6.4 Example . 4-27
4.6.5 Verifying signons for APPC applications 4-28

4.7 Using LE/370-compliant language compilers with CA-IDMS/DC 4-30
4.7.1 Considerations about LE/370 runtime 4-30
4.7.2 Running LE/370-compliant compiler programs under CA-IDMS/DC . 4-31
4.7.3 Supported LE/370 functions . 4-32
4.7.4 Unsupported LE/370 functions . 4-32
4.7.5 COBOL 370 support . 4-32

4.8 IDMSIOX2 DB Exit . 4-34
4.9 Enhancements to CICS-reentrant programs 4-39

Chapter 5. CA-IDMS SQL Option . 5-1
5.1 Overview . 5-3
5.2 DISPLAY and PUNCH syntax . 5-4

5.2.1 DISPLAY/PUNCH ALL statement . 5-5
5.2.2 Usage . 5-8
5.2.3 Example . 5-12
5.2.4 DISPLAY/PUNCH ACCESS MODULE 5-12
5.2.5 DISPLAY/PUNCH CALC KEY . 5-14
5.2.6 DISPLAY/PUNCH CONSTRAINT 5-15

iv CA-IDMS Release 14.0 Features Guide

5.2.7 DISPLAY/PUNCH INDEX . 5-17
5.2.8 DISPLAY/PUNCH KEY . 5-18
5.2.9 DISPLAY/PUNCH SCHEMA . 5-20
5.2.10 DISPLAY/PUNCH TABLE . 5-22
5.2.11 Usage . 5-24
5.2.12 DISPLAY/PUNCH TABLE PROCEDURE 5-24
5.2.13 DISPLAY/PUNCH VIEW . 5-26
5.2.14 Usage . 5-28

5.3 Dynamic SQL syntax changes . 5-29
5.3.1 Dynamic positioned UPDATE and DELETE 5-29
5.3.2 Dynamically-assigned names . 5-29
5.3.3 Global statements and cursors . 5-30
5.3.4 Dynamic parameters . 5-31
5.3.5 Dynamic SQL statements and expressions 5-35
5.3.6 Expansion of cursor-name . 5-35
5.3.7 Usage . 5-36
5.3.8 Example . 5-37
5.3.9 Expansion of cursor-specification . 5-38
5.3.10 Usage . 5-39
5.3.11 Example . 5-40
5.3.12 Expansion of statement-name . 5-41
5.3.13 Usage . 5-41
5.3.14 Example . 5-42
5.3.15 ALLOCATE CURSOR statement 5-43
5.3.16 Usage . 5-43
5.3.17 Examples . 5-43
5.3.18 CLOSE statement . 5-44
5.3.19 Example . 5-44
5.3.20 DEALLOCATE PREPARE statement 5-44
5.3.21 Usage . 5-45
5.3.22 Examples . 5-45
5.3.23 DELETE statement . 5-45
5.3.24 Usage . 5-46
5.3.25 Examples . 5-47
5.3.26 DESCRIBE statement . 5-47
5.3.27 Usage . 5-48
5.3.28 EXECUTE statement . 5-49
5.3.29 Usage . 5-51
5.3.30 FETCH statement . 5-51
5.3.31 OPEN statement . 5-52
5.3.32 PREPARE statement . 5-53
5.3.33 Usage . 5-54
5.3.34 UPDATE statement . 5-55
5.3.35 Usage . 5-57
5.3.36 Examples . 5-57

5.4 ALTER INDEX support . 5-59
5.4.1 Usage . 5-60
5.4.2 Example . 5-60

5.5 Establishing default transaction options . 5-61
5.6 SQLSTATE field in SQLCA . 5-62

Contents v

5.6.1 SQLSTATE values . 5-62
5.6.2 SQLSTATE field placement in the SQLCA 5-65

5.7 Optimization enhancements . 5-67
5.8 Migration of SQL syntax by CA-IDMS/Dictionary Migrator 5-68

Chapter 6. CA-ADS and the Mapping Facility 6-1
6.1 Overview . 6-3
6.2 Concurrent checkout of maps and dialogs 6-4
6.3 Name and disable dialogs abending on program checks 6-5
6.4 Using IDD record syntax for tables and view 6-6

Chapter 7. CA-OLQ . 7-1
7.1 Overview . 7-3
7.2 Display report line length . 7-4
7.3 HOME and LEFTMAX scroll commands 7-5
7.4 DISTINCT option in Menu Mode . 7-6
7.5 Specify report column for aggregate columns 7-7
7.6 Override column length on columns with code tables 7-9

Chapter 8. CA-IDMS Tools . 8-1
8.1 Overview . 8-3
8.2 CA-IDMS/Dictionary Migrator . 8-4

8.2.1 Migrating SQL Entities . 8-4
8.2.1.1 Catalog Navigation Report . 8-5

8.3 CA-IDMS/ADS Alive . 8-6
8.4 CA-IDMS/DB Analyzer, CA-IDMS/DB Audit, CA-IDMS/DB Reorg 8-7

8.4.1 Additional CA-IDMS/DB Reorg features 8-7
8.4.2 Interface to DB/EZReorg . 8-7
8.4.3 Specifying a blocking factor for work files 8-8

8.5 Year 2000 support . 8-9

Index . X-1

vi CA-IDMS Release 14.0 Features Guide

How to use this manual

How to use this manual vii

What this document is about

CA-IDMS refers to the complete line of systems software products in the CA-IDMS
product family. This document describes Release 14.0 features for these CA-IDMS
products:

 ■ CA-IDMS/DB

 ■ CA-IDMS/DC

 ■ CA-IDMS/UCF

■ CA-IDMS SQL Option

■ CA-ADS and the Mapping Facility

 ■ CA-OLQ

 ■ CA-IDMS Tools

The purpose of this document is to describe how to use the new features of Release
14.0.

viii CA-IDMS Release 14.0 Features Guide

Who should use this document

This document is for existing CA-IDMS DBAs, System Administrators, System Pro-
grammers, Security Administrators, Application Programmers, and CA-OLQ End Users
who want to learn how to:

■ Use the features of Release 14.0

■ Upgrade to Release 14.0 from Release 12.01

This document assumes you have experience using CA-IDMS Release 12.01.

How to use this manual ix

How this document is organized

This document presents Release 14.0 features by product. Each product or product
group is addressed in a separate chapter as follows:

■ Chapter 1, “About CA-IDMS Release 14.0” on page 1-1, — Describes the
objectives for Release 14.0 and summarizes new features and enhancements to
existing features.

■ Chapter 2, “Upgrading to Release 14.0” on page 2-1, — Describes how to
upgrade to Release 14.0 from Release 12.01.

■ Chapter 3, “IBM Parallel Sysplex Exploitation” on page 3-1, — Provides an
overview of how CA-IDMS exploits IBM's Parallel Sysplex to allow the dynamic
routing of retrieval database sessions, the cloning of Central Versions, and the
sharing of data in a global cache. These features are available if you use IBM
Parallel Sysplex hardware and software. For a complete discussion of using Par-
allel Sysplex in your CA-IDMS environment, see the CA-IDMS Parallel Sysplex
User Guide.

■ Chapter 4, “CA-IDMS/DB and CA-IDMS/DC” on page 4-1, — Describes the
new features of CA-IDMS/DB and CA-IDMS/DC, including CA-IDMS Security.

■ Chapter 5, “CA-IDMS SQL Option” on page 5-1, — Describes the enhance-
ments to the CA-IDMS SQL Option.

■ Chapter 6, “CA-ADS and the Mapping Facility” on page 6-1, — Describes
the enhancements to CA-ADS and the Mapping Facility.

■ Chapter 7, “CA-OLQ” on page 7-1, — Presents the new features of CA-OLQ.

■ Chapter 8, “CA-IDMS Tools” on page 8-1, — Describes enhancements to the
CA-IDMS Tools, including the Dictionary Migrator.

x CA-IDMS Release 14.0 Features Guide

 Related documentation

New Release 14.0 document: In addition to this document, the CA-IDMS Par-
allel Sysplex User Guide, is available to support Release 14.0. It describes how to use
CA-IDMS to exploit Parallel Sysplex functionality.

Existing CA-IDMS documents: Because some Release 14.0 features are exten-
sions of existing CA-IDMS features, you may want to reference the following existing
CA-IDMS Release 12.0 or 12.01 documents to find out more about a feature:

■ CA-IDMS System Operations

■ CA-IDMS System Generation

■ CA-IDMS System Tasks and Operator Commands

■ CA-IDMS Security Administration

■ CA-IDMS SQL Reference

 ■ CA-ADS Reference

■ CA-OLQ Online Menu Facility

■ CA-IDMS/Dictionary Migrator User Guide

How to use this manual xi

Understanding syntax diagrams

Look at the list of notation conventions below to see how syntax is presented in this
manual. The example following the list shows how the conventions are used.

UPPERCASE

OR

SPECIAL CHARACTERS

Represents a required keyword, partial keyword,
character, or symbol that must be entered com-
pletely as shown.

lowercase Represents an optional keyword or partial keyword
that, if used, must be entered completely as
shown.

underlined lowercase Represents a value that you supply.

← Points to the default in a list of choices.

lowercase bold

Represents a portion of the syntax shown in
greater detail at the end of the syntax or elsewhere
in the document.

��────────────────────── Shows the beginning of a complete piece of
syntax.

──────────────────────�� Shows the end of a complete piece of syntax.

──────────────────────� Shows that the syntax continues on the next line.

�────────────────────── Shows that the syntax continues on this line.

──────────────────────�─ Shows that the parameter continues on the next
line.

─�────────────────────── Shows that a parameter continues on this line.

�── parameter ─────────� Shows a required parameter.

 �─┬─ parameter ─┬─────�

└─ parameter ─┘
Shows a choice of required parameters. You must
select one.

 �─┬─────────────┬─────�

└─ parameter ─┘
Shows an optional parameter.

 �─┬─────────────┬─────�

├─ parameter ─┤

└─ parameter ─┘

Shows a choice of optional parameters. Select
one or none.

 ┌─────────────┐

 �─(─ parameter ─┴─────�
Shows that you can repeat the parameter or
specify more than one parameter.

┌───── , ─────┐

 �─(─ parameter ─┴─────�
Shows that you must enter a comma between
repetitions of the parameter.

xii CA-IDMS Release 14.0 Features Guide

Sample syntax diagram

How to use this manual xiii

Chapter 1. About CA-IDMS Release 14.0

1.1 Overview . 1-3
1.2 Release 14.0 objectives . 1-4
1.3 Enhance performance and productivity . 1-5
1.4 Exploit new hardware and software technology 1-7

1.4.1 Extended multitasking support . 1-7
1.4.2 IBM Parallel Sysplex . 1-7

1.5 Simple upgrade path . 1-8
1.6 What's next . 1-9

Chapter 1. About CA-IDMS Release 14.0 1-1

1-2 CA-IDMS Release 14.0 Features Guide

1.1 Overview

 1.1 Overview

This chapter describes the objectives for CA-IDMS Release 14.0 and provides an over-
view of Release 14.0 features.

Chapter 1. About CA-IDMS Release 14.0 1-3

1.2 Release 14.0 objectives

1.2 Release 14.0 objectives

The objectives for Release 14.0 are to:

■ Enhance system performance and user productivity

■ Exploit new and existing hardware and software technology

■ Provide a simple upgrade path to the release

The features that support these objectives are discussed next.

1-4 CA-IDMS Release 14.0 Features Guide

1.3 Enhance performance and productivity

1.3 Enhance performance and productivity

The following CA-IDMS products include new features that provide improved system
performance and user productivity:

■ CA-IDMS/DB and CA-IDMS/DC — More internal modules now run in multi-
tasking mode to increase transaction throughput. Also, you can now make the
following dynamic changes to a runtime environment without cycling a central
version (CV):

– Add or modify new line definitions and add new PTERM and LTERM defi-
nitions to new or existing lines

– Change security definitions

Additionally, while a CV is active, CA-IDMS now dynamically allocates resource
management control blocks when the initial allocation is depleted.

CA-IDMS Release 14.0 also provides for easier maintenance. Patch space has
been added to each module, thereby reducing the dependence on the shared CSA
for maintenance application. In addition, the need to apply optional APARs is
dramatically decreased through the use of a new RHDCOPTF module.

For CA-IDMS utilities, you can now:

– Backup, restore, and unlock by segment

– Specify the number of areas a journal is required to handle

– Report on space usage by file

– Update statistics for nonSQL data

This release also lets you apply and remove optional APARs more easily as well
as preserve them across maintenance updates.

■ CA-IDMS Security — DISPLAY/PUNCH ALL syntax support is now available
to make it easier to create and migrate security definitions and to report on
existing security definitions.

For sites without an external security system, a new parameter on the #SECRTT
macro allows you to extract a user ID, which is used to sign on to all startup and
shutdown autotasks.

For APPC applications, this release provides a system generation feature that
checks whether a PTERM supports an already verified user ID; that is, a user ID
that has already been verified by the requesting system.

■ CA-IDMS SQL option — DISPLAY and PUNCH syntax support is now avail-
able for logical entities to make it easier to create and migrate definitions and to
report on existing SQL definitions. Also, the SQLSTATE field is now in the
SQLCA to enhance application portability.

Additional features for the SQL Option include:

– Support for both dynamic parameters and dynamic positioned updates and
deletes

Chapter 1. About CA-IDMS Release 14.0 1-5

1.3 Enhance performance and productivity

– ALTER INDEX support

– Ability to collect statistics about nonSQL-defined data with the UPDATE
STATISTICS utility

– The SET SESSION statement, which lets you establish default transaction
options for an SQL session.

■ CA-ADS and the Mapping Facility — These two new features are available,
which make it easier to use CA-ADS and Mapping:

– The checkout facility for maps and dialogs now recognizes dictionary name as
a qualifier.

– Dialogs abending with a program check are individually reported and disa-
bled. That is, the entire ADS runtime environment is not disabled if a dialog
abends excessively.

■ CA-OLQ — Several new features are now available in Menu Mode to simplify
the viewing and formatting of reports.

■ CA-IDMS Tools — The CA-IDMS/Dictionary Migrator product now supports
logical SQL definitions, and the CA-IDMS/DB ANALYZER, CA-IDMS/DB
AUDIT, and CA-IDMS/DB REORG products now use all features of CA-IDMS
database I/O processing; such as, ESA dataspaces and XA database buffers. Also,
all tools provide year 2000 support.

1-6 CA-IDMS Release 14.0 Features Guide

1.4 Exploit new hardware and software technology

1.4 Exploit new hardware and software technology

In Release 14.0, CA-IDMS continues to exploit new and existing hardware and soft-
ware technology to provide enhanced system performance and user productivity.
Multitasking support is extended to include more system tasks and CA-IDMS systems
can exploit IBM's Parallel Sysplex.

1.4.1 Extended multitasking support

More CA-IDMS system tasks can execute concurrently when running in MVS, MSP,
and BS2000 environments for increased transaction throughput. For more information,
see Chapter 4, “CA-IDMS/DB and CA-IDMS/DC” on page 4-1.

1.4.2 IBM Parallel Sysplex

Features: CA-IDMS Release 14.0 exploits IBM's Parallel Sysplex hardware and
software to provide these features:

■ Dynamic routing of retrieval database sessions

■ Cloned central versions (CVs)

■ Shared database buffers across multiple CVs

Benefits: CA-IDMS systems that use these features in a Sysplex can realize these
benefits:

■ Continuous availability of systems

■ Dynamic workload balancing

■ Increased transaction throughput

■ Improved response time during heavy system load

■ Easier management of multiple systems

■ Less database I/O when using a shared cache

For complete information, see Chapter 3, “IBM Parallel Sysplex Exploitation” on
page 3-1.

Chapter 1. About CA-IDMS Release 14.0 1-7

1.5 Simple upgrade path

1.5 Simple upgrade path

To upgrade to Release 14.0, you simply install CA-IDMS software from the Release
14.0 installation tape. If you have SQL definitions stored in your catalog, then you
must run a catalog conversion utility to convert your 12.01 catalog(s) to run in Release
14.0. Also, if you use the CA-IDMS Performance Monitor, you should initialize the
log area.

You must also install a new SVC and reassemble the RHDCSRTT module to include
the new SVC number. Because DSECTs for this release have changed, you should
recompile Assembler programs and exits that reference DSECTs. If you use multi-
tasking, you must examine user exits and database procedures for compliance.

Upgrade requirements are feature-dependent: Additional upgrade require-
ments are dependent upon the new features you want to use.

You don't need to make any changes to use some of the new features. For example,
CA-IDMS dynamically allocates resource management control blocks when the initial
allocation is depleted.

For a complete discussion of upgrade requirements, see Chapter 2, “Upgrading to
Release 14.0” on page 2-1.

1-8 CA-IDMS Release 14.0 Features Guide

1.6 What's next

 1.6 What's next

If you will use CA-IDMS in IBM's Parallel Sysplex, you can begin by reading
Chapter 3, “IBM Parallel Sysplex Exploitation” on page 3-1; otherwise, begin by
reading Chapter 4, “CA-IDMS/DB and CA-IDMS/DC” on page 4-1, to learn about
new features in CA-IDMS/DB and CA-IDMS/DC.

Chapter 1. About CA-IDMS Release 14.0 1-9

Chapter 2. Upgrading to Release 14.0

2.1 Overview . 2-3
2.2 Installing the SVC under MVS . 2-4
2.3 Recompiling the RHDCSRTT module . 2-5
2.4 Extended multitasking support . 2-6
2.5 TCE stack access . 2-7
2.6 Catalog conversion for SQL definitions . 2-8

2.6.1 Running the Catalog Conversion Utility 2-9
2.7 Performance Monitor map and record changes 2-10
2.8 Linking COBOL/370 programs . 2-11
2.9 Review PROGRAM statement ERROR THRESHOLD parameter 2-12
2.10 Monitoring resource management control blocks 2-13
2.11 Dictionary record changes . 2-14
2.12 Applying optional functionality . 2-15

Chapter 2. Upgrading to Release 14.0 2-1

2-2 CA-IDMS Release 14.0 Features Guide

2.1 Overview

 2.1 Overview

This chapter describes tasks that may be necessary to upgrade to CA-IDMS Release
14.0.

The following topics are presented:

■ Installing the SVC under MVS

■ Recompiling the RHDCSRTT module

■ Extended multitasking support

■ TCE stack access

■ Catalog conversion for SQL definitions

■ Performance Monitor record and map changes

■ Linking COBOL/370 programs

■ Review ERROR THRESHOLD for CA-ADS dialogs

■ Monitoring resource management control blocks

■ Dictionary record changes

Note: Migration of the DDLDML dictionary area is not required,

■ Applying optional functionality

Chapter 2. Upgrading to Release 14.0 2-3

2.2 Installing the SVC under MVS

2.2 Installing the SVC under MVS

You must change the CAIRIM parameter for loading your SVC. The INIT parameter
must specify GJE0INIT as the program to be executed.

GJE0INIT loads the SVC, RHDCSSFM, and CAS9SEC (a CA90s module) programs.
These programs must be in a library available to CAIRIM. To simplify this process,
the CA-IDMS install process allocates a new SMP/E target load library with a low-
level qualifier of APFLIB. This library contains GJE0INIT, RHDCSSFM, and the
SVC. Since most sites copy the SVC modules to a protected area, this new library
was created to let you copy the contents of the library without having to decide what
members are needed.

In addition, you must specify an SVC number in the RHDCSRTT module. The
default RHDCSRTT module, with no security enabled, is assembled during the install
process, using the SVC number specified in the installation parameters.

2-4 CA-IDMS Release 14.0 Features Guide

2.3 Recompiling the RHDCSRTT module

2.3 Recompiling the RHDCSRTT module

The code generated by the #SECRTT macro is extended for Release 14; therefore, you
must recompile the RHDCSRTT module with the Release 14.0 macro library. Be sure
that you add the SVC number to the #SECRTT macro before you recompile the
RHDCSRTT module. The source to be used is in your PPOPTION file.

Possible error conditions: You may encounter these error conditions if you
specify an incorrect SVC:

■ If the RHDCSRTT module does not point to an SVC, all jobs will receive an
S200 abend.

■ If the RHDCSRTT module points to an invalid SVC, batch jobs will receive an
SFxx abend, where xx is the hexadecimal equivalent of the SVC number.

■ If your CA-IDMS central version does not point to the correct SVC, you will
receive an SFxx abend.

Chapter 2. Upgrading to Release 14.0 2-5

2.4 Extended multitasking support

2.4 Extended multitasking support

Because the major database component modules now run in a multitasking environ-
ment (i.e., with an MPMODE=ANY), you must verify that any database procedures
and user exits 14, 15, 23, 27, 28, 29, and 31 running in your environment can run with
an MPMODE of ANY.

Note: We recommend that you write DB procedures in assembly language to run in a
multitasking environment. The DB procedures must also be reentrant.

��See CA-IDMS System Operations for specific information on writing user exits that
can run with an MPMODE of ANY. See CA-IDMS Database Administration for spe-
cific information about writing database procedures with an MPMODE of ANY.

2-6 CA-IDMS Release 14.0 Features Guide

2.5 TCE stack access

2.5 TCE stack access

The Task Control Element (TCE) stack now resides in XA storage. The TCE stack is
used internally by CA-IDMS as a save area. This frees up non XA storage for client
applications.

If you have user exits that access the TCE stack, you must change them to run in
31-bit mode.

Chapter 2. Upgrading to Release 14.0 2-7

2.6 Catalog conversion for SQL definitions

2.6 Catalog conversion for SQL definitions

If the SQL Option was previously installed, you must run the catalog conversion utility
against each 12.0 catalog in your environment, after you install CA-IDMS Release
14.0.

CAUTION:
Be sure to backup your existing catalogs before you convert them. The converted
catalogs are not downward compatible with Release 12.0 or 12.01.

You must run the catalog conversion utility from the Command Facility on your
Release 14.0 system. The catalog conversion utility performs the following tasks
against your 12.0 catalogs:

■ Rebuilds all SYSTEM.SYNTAX table rows associated with table definitions con-
taining CHECK CONSTRAINTS and all view definitions to eliminate the mainte-
nance of redundant syntax and to conform to the ANSI standard on catalog
definitions.

■ Adjusts existing table definitions in the following tables to include columns
described in some DSECTs that are not currently defined:

 – SYSTEM.COLUMN

 – SYSTEM.DBNAME

 – SYSTEM.DBTABLE

 – SYSTEM.DMCLFILE

 – SYSTEM.INDEX

 – SYSTEM.SCHEMA

 – SYSTEM.TABLE

■ Adjusts existing CALC key table rows to initialize columns described by the
SYSTEM.INDEX table definition.

Rebuilds syntax in SYSTEM.SYNTAX table: Consistent with the catalog defi-
nition in the ANSI standard, the SYSTEM.SYNTAX table now contains the SELECT
statement for a view and only the CHECK CONSTRAINT syntax for tables containing
them. Previously, the complete syntax for a CREATE and ALTER TABLE statement
that included a CHECK CONSTRAINT and the complete syntax for a CREATE
VIEW statement was stored in the SYSTEM.SYNTAX table.

The catalog conversion utility rebuilds the rows in the SYSTEM.SYNTAX table con-
taining CHECK CONSTRAINT syntax and all VIEW statements. This should signif-
icantly reduce the number of rows stored in the SYSTEM.SYNTAX table.

Note: To see the complete syntax for a table definition, use the DISPLAY TABLE
table-name or DISPLAY ALL TABLE syntax, which is new in Release 14 and
discussed in Chapter 5, “CA-IDMS SQL Option” on page 5-1.

2-8 CA-IDMS Release 14.0 Features Guide

2.6 Catalog conversion for SQL definitions

2.6.1 Running the Catalog Conversion Utility

The catalog conversion utility is installed in the Release 14.0 load library.

Back up the DDLCAT area: The catalog conversion utility reformats tables in the
DDLCAT area. It does not change any other area in the catalog. Before you run it,
back up the DDLCAT area in each 12.0 catalog you will convert.

Running the Catalog Conversion Utility: You run the catalog conversion utility
from the Release 14.0 Batch Command Facility using this statement:

��─── CONVERT CATALOG ──��

After a successful run of the Catalog conversion utility, the Command Facility issues
one of two informational messages to indicate the status of the conversion.

■ If a catalog conversion is performed, the message indicates the type and number
of each type of occurrences converted as shown below:

DB002900 Catalog Conversion Completed CALC KEYS n TABLES n SYNTAX n

The type of information displayed will vary depending on the contents of the
catalog.

■ If a conversion was not required, the following message is displayed:

DB002900 Catalog Conversion Completed — NO CONVERSION REQUIRED

Chapter 2. Upgrading to Release 14.0 2-9

2.7 Performance Monitor map and record changes

2.7 Performance Monitor map and record changes

Record changes: The Performance Monitor records listed below contain additional
fields in this release. Some of them have also been split up. If you have user-written
programs that use these records, you need to recompile them with the Release 14.0
macro library. Programs that use records that have been split will have to be adapted.

#PMARADS (PMIM area wait) This record has also been split

into two parts.

#PMBUFDS (PMIM buffer wait)

#PMDBKDS (PMIM db-key wait)

#PMHDRDS (Performance Monitor record header)

#PMINTDS (PMIM interval wait summary)

#PMJRLDS (PMIM journal wait)

#PMRUSDS (PMIM run units information)

#PMSMHDS (SMF header)

#PMSTLDS (DC log record data)

#PMTASDS (PMAM task) This record has also been split

into three parts (instead of two).

#PMTAWDS (PMAM task wait)

#PMDBGDS (PMIM DBGroup wait) This record is new for release 14.0

Map changes: The Performance Monitor screens listed below contain additional
fields in this release. All screens in the list that were edited and saved in your 12.01
dictionary load area will have to be recompiled for Release 14.0.

PMAMMBST : PMAM DB Statistics screen

PMAMMTKL : PMAM Task List screen

PMIMMARE : PMIM Area Detail screen

PMIMMBUF : PMIM Buffer Detail screen

PMIMMDBK : PMIM DBkey/Area Detail screen

PMIMMIO : PMIM IO Detail screen

PMIMMMNU : PMIM Menu Interval Monitor screen

PMIMMRUN : PMIM Transaction Statistics screen

PMIMMSRU : PMIM Specific Transaction Information screen

PMRTMBUF : PMRM Buffer I/O Summary screen

PMRTMIOD : PMRM Database I/O Driver Detail screen

PMRTMLTR : PMRM Lterm Resource Usage Summary screen

PMRTMRUS : PMRM Transaction Detail screen

PMRTMSBF : PMRM Buffer I/O Detail screen

PMRTMSCR : PMRM Scratch Manager Detail screen

PMRTMSPE : PMRM Specific System Transaction Detail screen

PMRTMSQA : PMRM SQL Detail screen

PMRTMSTK : PMRM Active System Task Detail screen

PMRTMTKO : PMRM Task + Prog Pool Overview screen

PMRTMTSK : PMRM Active User Task Detail screen

The following Performance Monitor screens are new for Release 14.0.

PMIMMDG1 : PMIM DBGroup Detail screen

PMIMMDG2 : PMIM DBGroup Node Detail screen

PMIMMSH1 : PMIM Shared Cache Detail screen

PMIMMSH2 : PMIM Shared Cache Files Detail screen

2-10 CA-IDMS Release 14.0 Features Guide

2.8 Linking COBOL/370 programs

2.8 Linking COBOL/370 programs

Any programs compiled by IBM COBOL/370 compilers for use with CA-IDMS/DC
should be relinked using the procedure described in Chapter 4, “CA-IDMS/DB and
CA-IDMS/DC” on page 4-1.

Chapter 2. Upgrading to Release 14.0 2-11

2.9 Review PROGRAM statement ERROR THRESHOLD parameter

2.9 Review PROGRAM statement ERROR THRESHOLD
parameter

Now that dialogs abending on program checks are disabled and reported, you need to
examine and, if necessary, adjust the ERROR THRESHOLD parameter on the
PROGRAM statement for CA-ADS dialogs.

If you want to enable error thresholds for ADSOMAIN and ADSORUN1 for abends
caused by internal errors, issue a DCMT command after the system is started to
change the error threshold to a nonzero value.

2-12 CA-IDMS Release 14.0 Features Guide

2.10 Monitoring resource management control blocks

2.10 Monitoring resource management control blocks

With the automatic secondary allocation of resource management control blocks, you
may want to monitor the usage of resource management control blocks and, if neces-
sary, change the values defined in your system definition for the following parameters
of the SYSTEM statement:

 ■ DPE COUNT

 ■ RCE COUNT

 ■ RLE COUNT

Monitoring tools: Using the OPER WATCH CRITICAL RESOURCES command,
the DCMT DISPLAY STATISTICS SYSTEM command, or the Real Time Monitor's
Storage Pool Overview screen monitor the number of DPEs, RCEs, and RLEs your
system is using and the number of times it has issued a secondary allocation of them.
Additionally, look for the DC010007 message in the CV's SYSOUT file or the job
console log file for the number of DPEs, RCEs, and RLEs used in secondary allo-
cations.

For sample screens showing these statistics, see Chapter 4, “CA-IDMS/DB and
CA-IDMS/DC” on page 4-1.

What to modify: After monitoring the use of resource management control blocks,
you may want to modify relevant system generation parameters. As a guideline, set
the value of the DPE COUNT, RCE COUNT, and RLE COUNT at the value of the
high water mark (HWM) displayed in response to the OPER WATCH CRITICAL
RESOURCES command. The minimum sysgenned count for these control blocks
must be sufficient to start the system. See CA-IDMS System Generation for more
information on these parameters.

Chapter 2. Upgrading to Release 14.0 2-13

2.11 Dictionary record changes

2.11 Dictionary record changes

The dictionary records listed below have changed in Release 14.0:

 ■ CVGDEFS-142

 ■ DBNAME-1031

 ■ DBTABLE-1034

 ■ DMCLFILE-1037

 ■ MODCMT-084

 ■ NAMEDES-186

 ■ QUEUE-DCQ-138

 ■ SA-018

 ■ SCR-054

 ■ SRCD-113

 ■ SDES-044

 ■ SMR-052

If you have user-written programs that access these records, you may want to run the
IDMSDIRL utility to include the new fields in your Release 14.0 dictionary environ-
ment. This step is optional. You are only required to run IDMSDIRL if you want to
access the new fields by name in the updated records. The changes to the dictionary
records have all been to replace FILLER fields with data-bearing fields. There are no
structural changes to any dictionary records.

2-14 CA-IDMS Release 14.0 Features Guide

2.12 Applying optional functionality

2.12 Applying optional functionality

Before this release, optional functionality was made available through the use of
optional APARs. This release lets you apply and remove optional functionality more
easily as well as preserve it across maintenance updates. Optional APARs from pre-
vious releases that do not need to change any specific values within IDMS can be
activated by setting one bit in an optional functionality bitmap table; other optional
APARs will still be applied as program modifications. The bitmap table is generated
in a new RHDCOPTF module that is loaded during central version or mini-cv startup
processing, and anchored in the CSA.

To create a new RHDCOPTF module, assemble and link a RHDCOPTF source
module that contains #DEFOPTF macros that will activate optional functionality. The
last #DEFOPTF macro has to contain the TYPE=GENERATE parameter in order to
generate the code.

#DEFOPTF macro: #DEFOPTF accepts two parameters:

■ One is positional and can be an internal function number, in the form OPTnnnnn,
or a list of internal function numbers, allowing functions to be grouped by subject
or module in one macro. An internal function number will be associated with
each optional function that can be activated this way.

■ The second parameter is the TYPE=keyword that can get the value DEFINE,
which is the default, or GENERATE, in the last input macro.

 Example

TITLE 'User optional bitmap table'

#DEFOPTF OPT00002

#DEFOPTF OPT00010,OPT00011

#DEFOPTF (OPT00020,OPT00021,OPT00022)

#DEFOPTF TYPE=GENERATE

The following list shows the association between the CA-IDMS 12.x optional APARs
and the CA-IDMS 14.0 internal function numbers. Any of the internal function
numbers may be used with the OPT prefix as a parameter to the #DEFOPTF macro to
activate the functionality of the corresponding Release 12.x optional APAR.

CA-IDMS 12.x
Product/Problem

CA-IDMS 12.x
Optional APAR

CA-IDMS 14.0 Function
Number

COMPLR 0023 CS74316 00001

IDMSDC 0051 CS76640 00002

IDMSDC 0030 CS76649 00003

IDMS 0173 CS81862 00005

MAPS 0023 CS81905 00006

Chapter 2. Upgrading to Release 14.0 2-15

2.12 Applying optional functionality

CA-IDMS 12.x
Product/Problem

CA-IDMS 12.x
Optional APAR

CA-IDMS 14.0 Function
Number

MAPS 0024 CS81906 00007

MAPS 0025 CS81907 00008

OLQ 0013 CS82062 00009

IDMSDC 0079 CS82065 00010

ADS370 0044 CS82230 00011

OLQ 0014 CS82257 00012

OLQ 0026 CS88588 00016

ADS370 0033 CS88593 00017

PERF 0004 CS89116 00018

IDMSDC 0106 CS89183 00020

OLQ 0016 CS90910 00021

MAPS 0058 CS90975 00022

IDMS 0364 CS97386 00025

OLQ 0030 CS98815 00027

OLQ 0031 CS98817 00028

OLQ 0034 CS98820 00029

OLQ 0035 CS98821 00030

ADS370 0094 CS98971 00031

OLQ 0036 GS03086 00033

PERF 0027 GS06142 00034

IDMSDC 0343 GS08592 00038

IDMS 0478 GS08798 00039

ADS370 0144 GS09888 00042

ADS370 0149 GS09891 00043

MAPS 0130 GS09894 00044

IDMSDC 0444 GS18646 00047

IDMSDC 0490 GS19348 00049

IDMSDC 0508 GS19358 00050

IDMSDC 0492 GS20620 00051

IDMSDC 0510 GS20621 00052

2-16 CA-IDMS Release 14.0 Features Guide

2.12 Applying optional functionality

CA-IDMS 12.x
Product/Problem

CA-IDMS 12.x
Optional APAR

CA-IDMS 14.0 Function
Number

IDMS 0741 GS23943 00054

IDMS 0787 GS26902 00058

IDMSDC 0546 GS27074 00059

IDMS 0773 GS27455 00061

MAPS 0161 GS29244 00067

MAPS 0207 GS29265 00068

OLQ 0045 GS29271 00069

MAPS 0206 GS29594 00070

ADS370 0178 GS29598 00071

ADS370 0210 GS29600 00072

ADS370 0183 GS30903 00073

OLQ 0055 GS33436 00074

OLQ 0057 GS33439 00075

ADS370 0255 GS33451 00076

ADS370 0097 GS33477 00077

OLQ 0046 GS33482 00078

IDMSDC 0702 GS36402 00079

COMPLR 0280 GS37899 00080

IDMS 0989 GS37943 00081

IDMS 0993 GS37957 00083

OLQ 0070 GS39784 00085

ADSB 0208 GS39792 00086

ADS370 0208 GS39794 00087

ADS370 0172 GS40519 00089

OLQ 0060 GS40553 00091

MAPS 0234 GS40570 00092

IDMS 1116 GS41974 00093

ADS370 0266 GS42284 00094

OLQ 0069 GS42557 00095

OLQ 0071 GS42558 00096

Chapter 2. Upgrading to Release 14.0 2-17

2.12 Applying optional functionality

CA-IDMS 12.x
Product/Problem

CA-IDMS 12.x
Optional APAR

CA-IDMS 14.0 Function
Number

OLQ 0072 GS42565 00097

OLQ 0073 GS42567 00098

OLQ 0074 GS42573 00099

OLQ 0081 GS42915 00100

IDMSDC 0829 GS44049 00102

IDMSDC 0852 GS48947 00108

ADS370 0339 GS49031 00111

MAPS 9999 GS53962 00112

IDMSDC 0738 GS53981 00114

OLQ 0093 GS59938 00115

OLQ 0097 GS59939 00116

IDMS 1302 GS77233 00118

IDMS 1358 GS77552 00119

IDMSDC 1034 GS81227 00121

IDMS 1456 GS81238 00122

ADS370 0401 GS81410 00124

ICMS 0009 GS81866 00125

ICMS 0010 GS81870 00126

IDMS 1298 GS82027 00127

OLQ 0100 GS82047 00128

OLQ 0108 GS82057 00129

IDMS 1418 GS82063 00130

OLQ 0110 GS82126 00131

IDMS 1318 GS82179 00132

ICMS 0008 GS82239 00134

IDMS 1477 GS82587 00135

IDMS 1527 GS87630 00136

IDMSDC 0882 GS90621 00139

IDMSDC 1138 GS91059 00140

IDMSDC 1021 GS91072 00141

2-18 CA-IDMS Release 14.0 Features Guide

2.12 Applying optional functionality

CA-IDMS 12.x
Product/Problem

CA-IDMS 12.x
Optional APAR

CA-IDMS 14.0 Function
Number

OLQ 0112 GS96457 00142

IDMSDC 1223 GS96487 00145

OLQ 0120 GS96940 00146

IDMS 1613 GS97248 00148

PERF 0041 GS32791 00163

Chapter 2. Upgrading to Release 14.0 2-19

Chapter 3. IBM Parallel Sysplex Exploitation

3.1 Overview . 3-3
3.2 About a Parallel Sysplex environment . 3-4
3.3 Exploiting Parallel Sysplex functionality . 3-5
3.4 Using dynamic database session routing . 3-6

3.4.1 Planning to use dynamic database session routing 3-7
3.4.2 Implementing dynamic database session routing 3-7

3.4.2.1 Using groups . 3-8
3.4.2.2 Backend CV definitions . 3-8
3.4.2.3 Frontend CV definitions . 3-9
3.4.2.4 Sample group definitions . 3-11

3.4.3 Cloning backend CVs . 3-12
3.4.3.1 Cloning CVs . 3-12

3.4.4 Managing dynamic database session routing 3-14
3.4.4.1 Using the DCMT VARY DBGROUP command 3-14

3.4.5 Monitoring and tuning dynamic database session routing 3-15
3.4.5.1 Using DCMT DISPLAY DBGROUP 3-16
3.4.5.2 Using the Interval Monitor's DBGROUP Detail screen 3-17

3.5 Using shared cache . 3-19
3.5.1 Defining shared cache in the Coupling Facility 3-20
3.5.2 Defining shared cache in CA-IDMS 3-21

3.5.2.1 Assigning files using DMCL file override 3-21
3.5.3 Usage . 3-22

3.5.3.1 Assigning files to a shared cache dynamically 3-22
3.5.4 Monitoring shared cache . 3-23

3.5.4.1 DCMT DISPLAY commands . 3-23
3.5.4.2 CA-IDMS Performance Monitor 3-25
3.5.4.3 CA-IDMS System Statistics Report 3-28

3.5.5 Tuning a shared cache . 3-28

Chapter 3. IBM Parallel Sysplex Exploitation 3-1

3-2 CA-IDMS Release 14.0 Features Guide

3.1 Overview

 3.1 Overview

CA-IDMS Release 14.0 includes new features that work with the parallel processing
and shared cache components of IBM's Parallel Sysplex to provide:

■ Increased transaction throughput

■ Improved response time during heavy system load

■ Dynamic workload balancing to use system resources more effectively

■ Cloned central versions (CVs), which you can start and stop in response to
changing processing requirements to provide continuous system availability

■ Shared data with data integrity across multiple systems to minimize the number of
disk I/O's to the database

This chapter briefly describes how CA-IDMS exploits these Parallel Sysplex compo-
nents. For detailed information on how to use Parallel Sysplex components with
CA-IDMS, see the CA-IDMS Parallel Sysplex User Guide.

Chapter 3. IBM Parallel Sysplex Exploitation 3-3

3.2 About a Parallel Sysplex environment

3.2 About a Parallel Sysplex environment

A Parallel Sysplex is a multisystem environment that acts like a single system. It's a
combination of hardware and software products that cooperate to process work without
interruption.

CA-IDMS exploits these parallel processing and Coupling Facility components of
IBM's Parallel Sysplex:

■ Parallel processing — Parallel processing in a Sysplex allows several copies of
the MVS/ESA operating system to process work concurrently. For example, mul-
tiple applications requesting retrieval access to the same CA-IDMS database can
be processed concurrently on different processors using dynamic workload bal-
ancing.

■ Coupling Facility — The Coupling Facility is a dedicated processor in the
Sysplex that is connected to other processors in the Sysplex using high speed fiber
optic Coupling Facility Links. It allows high speed access to shared data across
applications running on different systems in a Sysplex. For example, CA-IDMS
exploits the shared cache feature of the Coupling Facility by allowing multiple
CVs running in a Sysplex to share global database buffers.

For more information on these components and Sysplex, see the appropriate documen-
tation for IBM's MVS/ESA SP5.

3-4 CA-IDMS Release 14.0 Features Guide

3.3 Exploiting Parallel Sysplex functionality

3.3 Exploiting Parallel Sysplex functionality

CA-IDMS uses the parallel processing and Coupling Facility components of IBM's
Parallel Sysplex to provide these features:

■ Dynamic routing of database sessions — A retrieval database session can be
dynamically routed to a CV in the Sysplex that has the CPU cycles available to
process it. Using this feature, workload balancing is dynamic, which provides
improved performance and more effective use of system resources. CA-IDMS
environments that are configured with frontend and backend CVs are ideally
suited to take advantage of this feature.

■ Cloning CVs — With simple changes to existing system definitions and startup
JCL, you can clone CVs and run them simultaneously in a Sysplex. Using this
feature, you can respond quickly to changes in your processing requirements by
making more backend systems available to service database transactions and
improve transaction throughput and response time. This feature is designed to
work in a Sysplex with the dynamic routing of database sessions feature.

■ Shared cache — Multiple CVs can share global database buffers by accessing a
shared cache in the Coupling Facility. CA-IDMS maintains the consistency of
data across CVs participating in the cache. Using this feature, the number of
physical I/Os to a database is reduced by accessing the shared cache instead of
disk.

Each of these features is discussed in separate sections below.

Chapter 3. IBM Parallel Sysplex Exploitation 3-5

3.4 Using dynamic database session routing

3.4 Using dynamic database session routing

What is dynamic database session routing: The CA-IDMS client/server com-
munications architecture for database sessions is extended to allow a frontend CV to
route a retrieval database session to a backend CV that is identified, at run time, to
have the CPU cycles available to service the session. The database session can be an
SQL transaction or a run unit.

In a non-Sysplex environment, the routing of retrieval database sessions is "static;"
database sessions are routed to an explicit, predetermined CV regardless of its avail-
ability.

Benefits: Dynamic database session routing provides these benefits:

■ Dynamic workload balancing — Workload balancing is dynamic and based on
actual system load and resource availability; you don't need to predetermine data-
base routing to balance workloads across CVs to get maximum throughput and
shorter response time. Retrieval database sessions are routed to a CV with avail-
able processing cycles.

■ Parallel processing of retrieval database sessions — Retrieval database sessions
are processed in parallel to reduce elapsed processing time.

■ Automatic routing of retrieval database sessions to an available CV —
Retrieval database sessions are routed to an available CV instead of being routed
to the same system whether it's available or not.

■ Use with cloned CVs to make multiple copies of systems available — You can
implement dynamic database session routing with the cloned CV feature to start
and stop systems in response to changes in workloads to increase transaction
throughput and decrease response time.

Use with CV cloning: This feature is designed to work in a Sysplex with the
dynamic routing of database sessions feature so that retrieval database sessions can be
dynamically routed to cloned copies of the same CV. See Cloning backend CVs later
in this chapter for more information on cloning CVs.

Use with shared cache: You can also use the dynamic database session routing
feature with the shared cache feature to share database buffers across multiple CVs.
Using the shared cache feature allows CVs to share buffers, minimizes I/O operations
to disk, and keeps data current across the retrieval and update CVs running in a
Sysplex. See Using shared cache later in this chapter for more information on the
shared cache feature.

3-6 CA-IDMS Release 14.0 Features Guide

3.4 Using dynamic database session routing

3.4.1 Planning to use dynamic database session routing

Dynamic routing of retrieval database sessions is designed to work with CA-IDMS
environments configured with the following minimum requirements:

■ The ability to identify database sessions that perform only retrieval processing
against a database. Typically you do this for database run units by assigning a
retrieval-only subschema to retrieval run units. Since updates to an area can be
performed by only one CV at a time, only retrieval database sessions are available
for dynamic routing.

■ CVs set up to process terminal and application services separate from database
services. This is accomplished by defining frontend CVs to process terminal
activities and other application-specific services, and backend CVs to process data-
base requests. Using this configuration, frontend CVs can route database requests
to an available backend CV where requests can then be serviced.

■ Backend CVs set up to process retrieval-only database sessions separate from
update sessions. With this set up, multiple CVs can process retrieval requests for
a database while one designated CV can process update requests at the same time.

If your current CA-IDMS environment is configured as described above, you need to
make a few simple changes to use dynamic database session routing; otherwise, you
need to set up frontend and backend CVs to use dynamic database session routing in a
Sysplex. For more information on configuring frontend and backend CVs, see
CA-IDMS System Operations.

3.4.2 Implementing dynamic database session routing

To implement dynamic database session routing, you assign the backend CVs that will
service retrieval database sessions to one or more groups. You also define these
groups on the resource name table of each frontend CV that can route requests to
them. At run time, database sessions are routed to a group to determine which CV in
the group has the CPU cycles available to process the request. Once a CV volunteers
to service the request, the request is directed to it and it processes the request on the
identified node.

Using cloned backend CVs: To exploit the parallel processing and dynamic
workload balancing features of dynamic database session routing, you must have
enough backend retrieval CVs available to process any run unit or SQL transaction
that may be dynamically routed to them. You can use the CV cloning feature, dis-
cussed below, to make multiple copies of retrieval CVs available.

This section describes how to set up your CA-IDMS environment to use dynamic data-
base session routing, beginning with the concept of a group and how it is used to
implement dynamic database session routing.

Chapter 3. IBM Parallel Sysplex Exploitation 3-7

3.4 Using dynamic database session routing

 3.4.2.1 Using groups

What is a group A group contains one or more CVs. You assign CVs to groups
based on the databases they service. At run time, a request for access to a database is
routed to a group, instead of a node. The group name is then replaced with the node
name for a CV assigned to it that volunteers (i.e. has the CPU cycles) to service the
request.

Planning groups: Before you define any groups, you need to plan how you want
to group CVs to meet your processing requirements. For example, you can create one
group for all backend CVs, if all databases are accessible by all CVs.

3.4.2.2 Backend CV definitions

Assign backend CVs to groups: To assign each backend CV to one or more
groups, you update its database name table by adding a DBGROUP statement for each
group in which it will participate. This makes the CV a member of the specified
group. Be sure that you assign all backend CVs to all groups in which they will
participate. When each backend CV is started, it is eligible to process dynamic
retrieval database sessions for the databases defined in its database name table.

Note: You can dynamically assign a CV to a group using the DCMT VARY
DBGROUP group-name JOIN command. See Managing dynamic database
session routing, later in this chapter for more information.

DBGROUP syntax: The syntax for the CREATE DBGROUP statement is shown
below.

��─┬─ CREATE ─┬─ DBGROUP ──┬─────────────────┬── group-name ──────────────────�

├─ ALTER ──┤ └─ dbtable-name. ─┘

└─ DROP ───┘

 �─┬──────────────┬───��

├─ ENABLED ← ──┤

└─ DISABLED ───┘

 Parameters

Group-name
Specifies the name of a group in which the CV will participate.

Group-name is a 1- through 8-character name that conforms to the naming con-
ventions for node names defined in a system definition. The group-name is also
added as a node name on the resource name table of each frontend CV that can
route requests to it. See CA-IDMS System Generation for specific information on
defining node names.

Enabled
Specifies that the CV will be an active member of the group and available to
process dynamic retrieval database sessions when the CV is started.

Once the CV is started, if you need to disable its active participation in the group,
you can do so dynamically using the DCMT VARY DBGROUP command, which

3-8 CA-IDMS Release 14.0 Features Guide

3.4 Using dynamic database session routing

is described in the Managing dynamic database session routing section later in this
chapter.

Disabled
Specifies that the CV will not be an active member of the group and will not be
eligible to process database sessions dynamically when the CV is started.

After the CV is started, you can dynamically enable its active participation in the
group using the DCMT VARY DBGROUP command, which is described in the
Managing dynamic database session routing section later in this chapter.

Sample group definitions: The following example shows a DBGROUP definition
for the EMPGROUP group. EMPGROUP is a group to which CV IDMS071 is
assigned.

Group definition in database name table for IDMS071 CV

CREATE DBGROUP SYS71TBL.EMPGROUP

ENABLED;

GENERATE DBTABLE SYS71TBL;

3.4.2.3 Frontend CV definitions

In dynamic database session processing, a frontend CV routes requests for database
services to groups. To do this, it must know about the groups to which it can route
requests. Groups are defined as nodes in a frontend CV's resource name table using
the NODE statement.

Note: Applications executing from CICS, batch, Windows, and any other non
CA-IDMS/DC client must first be routed to a specific frontend CV, which can
then dynamically route it to a backend CV for servicing.

Adding groups to a resource name table: The resource name table for each
frontend CV must contain both of the following:

■ The name of each group to which it can route requests. The group name is added
as a node name on the system generation NODE statement with a type of
GROUP.

■ For each backend CV that can service requests for a group, a NODE entry speci-
fying the communication method to use to access it.

Using NODE statement to identify groups: The NODE statement syntax and
parameters specific to defining groups are shown below. For a complete description of
the NODE statement, see CA-IDMS System Generation.

Chapter 3. IBM Parallel Sysplex Exploitation 3-9

3.4 Using dynamic database session routing

��─┬─ ADD ────┬─ NODe nodename ───�

├─ MODify ─┤

└─ DELete ─┘

 �─┬──┬───────────────────────────��

├─ CCI ──┤

├─ CVNumber is cv-number ─┬──────────────────┬─┤

│ └─ SVC svc-number ─┘ │

├─ LOCal ← ────────────────────────────────────┤

├─ GROup ──┬──────────────────────────────┬────┤

│ └─ DEFault NODe ─┬─ nodename ──┤ │

│ ├─ LOCal ─────┤ │

│ └─ NULl ──────┘ │

└─ VTAm ───────────────────────────────────────┘

 Parameters

Nodename
When using a type of GROUP, specify the name of a group to which the current
CV can route database sessions.

GROup
Specifies that the named node is a group. This is the group name specified on the
database name table DBGROUP statement.

DEFault NODe
Specifies the node to use if access to the group fails (i.e., there are no active CVs
available to service a group request).

Nodename
Specifies a node name to use if access to the group fails. This node must
also be defined with an access type of either CCI, CVNUMBER, or VTAM.

LOCal
Specifies that the node to use is local, which is the current system. The data-
base session will be processed by the system being defined.

NULl
Specifies that there is no default node. If a database session is routed to the
named group, and there are no CVs available to service the request, the data-
base session will fail.

Example: The following example adds a group to the front-end definition for CV
IDMS070. Since the default node for the group is not defined on IDMS070's resource
name table, it is also added.

MODIFY SYSTEM IDMS070

ADD NODE EMPGROUP

GROUP DEFAULT NODE IDMS071.

ADD NODE IDMS071

CCI.

GENERATE.

3-10 CA-IDMS Release 14.0 Features Guide

3.4 Using dynamic database session routing

3.4.2.4 Sample group definitions

This section describes how a sample group is defined and used at run time.

The following illustration shows the use of the EMPGROUP group. It contains CV1
and CV2, which can access the EMPDB database in retrieval mode. CV3 has access
to EMPDB for update purposes. Applications updating EMPDB do so by accessing
node CV3 explicitly. CV3 is not assigned to a group.

Modifying database name table: The following example illustrates how the
EMPGROUP group is defined to the existing system definitions for the CV1 and CV2
backend CVs and the CV4 frontend CV.

Group definition in database name table for CV1

CREATE DBGROUP CV1TABLE.EMPGROUP

ENABLED;

GENERATE DBTABLE CV1TABLE;

Group definition on database name table for CV2

CREATE DBGROUP CV2TABLE.EMPGROUP

ENABLED;

GENERATE DBTABLE CV2TABLE;

Modifying resource name table: In this example nodes CV1 and CV2 can be
reached via dynamic database session routing. Node CV3 can be reached explicitly:

MODIFY SYSTEM CV4.

ADD NODE EMPGROUP

GROUP DEFAULT NODE LOCAL.

ADD NODE CV1 CCI.

ADD NODE CV2 VTAM.

ADD NODE CV3 CCI.

GENERATE.

Chapter 3. IBM Parallel Sysplex Exploitation 3-11

3.4 Using dynamic database session routing

How EMPGROUP is used at run time: At run time, using either the resource
name table or user exit 23, retrieval requests for database services are identified to be
serviced by node EMPGROUP using an access type of GROUP.

Note: Exit 23 may be used to override the specified node name on the bind.

The access type of GROUP directs CA-IDMS to solicit a backend CV in the
EMPGROUP to service the request. An available CV in the EMPGROUP group vol-
unteers to service the request. From this point on, processing takes place as it
normally does in CA-IDMS using the node name of the CV that volunteered to service
the database request. Coupling Facility list structures are used in the Coupling Facility
to determine which backend CV will be the volunteer.

For a complete discussion of using dynamic database session routing, see the
CA-IDMS Parallel Sysplex User Guide.

3.4.3 Cloning backend CVs

The backend CVs in a group can be clones of an existing CV. This allows you to run
multiple copies of the same backend CV to service the same database. This section
describes how to set up backend CVs so they can be cloned.

What is a cloned CV? A cloned CV uses an existing system definition for a
CA-IDMS system. It does not exist as another generated system definition in the dic-
tionary. A cloned CV is created by CA-IDMS when an operator starts a CV that is
identified as one that can be cloned, using a system number that is reserved for
cloning.:

Note: CV cloning is designed to clone backend CVs running in a Parallel Sysplex.

Benefits: You can start and stop cloned CVs to respond to changes in your
CA-IDMS workload to increase transaction throughput and improve response time.

For example, when you see a degradation in performance while monitoring your
CA-IDMS environment, you can start cloned CVs, as necessary, to increase application
throughput and improve response time.

Using this feature with the dynamic routing of retrieval run units, you can make mul-
tiple CVs continuously available to process retrieval requests.

 3.4.3.1 Cloning CVs

To clone a CV, its system definition must conform to specific naming conventions and
its startup JCL must include parameters for cloning. You must also assign the cloned
CVs to a group(s) and define them to the resource name table of the frontend CVs that
can route requests to them.

The system definition and startup JCL requirements are discussed in this section. For
information on setting up backend CVs for dynamic database session routing, see the
sections Backend CV definitions and Front-end CV definitions presented earlier in this
chapter.

3-12 CA-IDMS Release 14.0 Features Guide

3.4 Using dynamic database session routing

System definition requirements: System definitions for CVs that you want to
clone must conform to these naming conventions:

■ The DC system number must match the CV number and be in the range from 0
through 255. At CV startup, this number is incremented as necessary to locate an
available number to assign to each cloned CV.

Note: You are limited to 255 CVs within your entire Sysplex environment,
regardless of how many SVCs you have installed or how many MVS
images you are running.

The DC system number is the value specified on the first parameter of the system
definition SYSTEM statement, SYSTEM dc-ucf-version-number. CV number is
the value specified on the CVNUMBER parameter of the SYSTEM statement.

■ All VTAM ACB names must follow the convention, xxxxxnnn, where xxxxx can
be any five characters you assign to make the name unique within your environ-
ment; for example, to allow multiple lines within the same CA-IDMS system.
Nnn is the sysgenned CV number and is overlaid at runtime with the number
determined during start up of the cloned CV.

■ CA-IDMS system node names must follow the pattern, yyyyynnn, where the first
five characters can be any characters you need to make the name unique within
your environment and the nnn is the sysgenned CV number, which is overlaid at
run time with the CV number determined during start up of the cloned CV.

Startup JCL requirements: The startup JCL for each backend CV you wish to
clone must include a C on the EXEC PARM statement and an upper limit value,
which is used to select a system number.

The sample startup JCL below is for IDMS090. It specifies an upper limit value of 10
indicating that a maximum of 10 clones can be created. CA-IDMS also uses this
value to search for an available system number to assign to a clone, starting with the
system number specified on the S PARM. For example, the first system number
CA-IDMS uses to search for an available system ID for a clone of IDMS090 is 91. If
91 is used, it uses 92 and so forth, until it finds an available number or reaches 100.

Sample startup JCL showing C parm

 Column Column Column

 0 1 2

 1 0 1

 ----+----+----+----+----+---- +

//STARTUP EXEC PGM=DCUCFSYS,PARM='S=91 C10'

 .

 .

 .

Chapter 3. IBM Parallel Sysplex Exploitation 3-13

3.4 Using dynamic database session routing

3.4.4 Managing dynamic database session routing

You can manage a CV's participation dynamically using the DCMT VARY
DBGROUP command.

What you can do: You issue the DCMT VARY DBGROUP command to activate
and inactivate dynamic database session routing and to manage a CV's participation in
a group. The tasks you can perform are summarized in the table below.

To do this Use these DCMT VARY DBGROUP
parameters

Enable and disable dynamic database
session routing on an executing
frontend CV

ACTIVE/INACTIVE

Join a CV to a group or disable it
from a group

JOIN/LEAVE

Activate dynamic database session
routing and enable the CV to partic-
ipate in the named group or inactivate
dynamic database session routing and
disable the CV from participating in
the named group

ON/OFF

ON is the same as using the ACTIVE and
JOIN parameters.

OFF is the same as using the INACTIVE
and LEAVE parameters.

3.4.4.1 Using the DCMT VARY DBGROUP command

Syntax: The syntax for the DCMT VARY DBGROUP command is shown below.

��── DCMT Vary DBGroup group-name ───┬─┬─ ACtive ─┬─────┬────────────────��

│ ├─── JOin ─┤ │

│ └─── ON ───┘ │

└─┬─ INactive ──┬──┘

 ├── LEave ───┤

 └── OFf ─────┘

 Parameters

Group-name
Specifies the name of a group. Group-name must be a 1- through 8-character
name that conforms to the naming conventions for node names defined in a
system definition.

ACtive
Enables dynamic database session routing to the named group. ACTIVE affects
the frontend status of a CV. By default, dynamic database session routing is
active at CV startup. Use the ACTIVE parameter if the INACTIVE parameter has
been previously issued since the startup of the currently executing CV.

INactive
Disables dynamic database session to the named group; all database sessions
routed to the named group are statically routed to the default node name specified

3-14 CA-IDMS Release 14.0 Features Guide

3.4 Using dynamic database session routing

for the named group in the NODE statement on the Resource Name table. INAC-
TIVE affects the frontend status of a CV.

JOin
Joins the currently executing CV to the named group. Use the JOIN parameter to
make the CV a member of the named group, even if there is no DBGROUP state-
ment in the DBTABLE for the CV. JOIN affects the backend status of a CV.

LEave
Specifies that the currently executing CV is no longer a member of the named
group. LEAVE affects the backend status of a CV.

ON
Enables dynamic database session routing and joins the currently executing CV to
the named group. ON is equivalent to issuing a DCMT V group-name ACTIVE
and a DCMT V group-name JOIN. It affects the currently executing CV's status
as both a frontend and a backend CV. It results in a CV acting as both a frontend
CV and a backend CV

OFf
Disables the currently executing CV from the named group and inactivates
dynamic database session routing to the named group. OFF is the same as issuing
a DCMT V group-name INACTIVE and a DCMT V group-name LEAVE.

 Usage

Joining a CV to a group: In the example below, the JOIN option is used to join the
currently executing CV to the DBDCGR group. Database sessions can now be
dynamically routed to the currently executing CV through the DBDCGR group.
Notice that the DBDCGR contains three backend CVs.

VARY DBGROUP DBDCGR JOIN

UUU Vary DBGroup request UUU

DBGroup DBDCGR has 003 backends

Backend status: Active; Number of requests processed: 0000000000

Frontend status: Active; Number of requests processed: 0000000000

3.4.5 Monitoring and tuning dynamic database session routing

Using DCMT commands and the CA-IDMS Performance Monitor, you can monitor
how database sessions are being serviced by dynamic database session routing, and as
appropriate, modify parameters to suit your processing needs.

The tools you can use are summarized in the table below. Samples of some of them
are provided after the table. For complete information on monitoring and tuning the
use of dynamic database session routing, see the CA-IDMS Parallel Sysplex User
Guide.

Chapter 3. IBM Parallel Sysplex Exploitation 3-15

3.4 Using dynamic database session routing

Tool Description

DCMT DISPLAY DBGROUP Displays statistics for all groups to which the cur-
rently executing CV can direct requests or for the
specified group. Statistics include the number of
active backend CVs assigned to groups and the
total number of requests processed by each.

DCMT DISPLAY DBTABLE Lists each group defined in the table and its status.

DCMT DISPLAY NODE Displays the name of each node with its associated
type. You can issue this command on the
frontend CV to show all backend CVs to which it
can route database sessions.

DCMT VARY DBGROUP Lets you vary the status of a CV's participation in
a group and turn dynamic database session routing
on and off.

LOOK DBTABLE (DC) Lists each group defined in the table and its status.

IDMSLOOK DBTABLE
(batch)

Lists each group defined in the table and its status.

CA-IDMS Performance Monitor
Interval Monitor (online and
batch)

Displays detailed statistics (using DBGROUP cate-
gory) and wait statistics (using SUMMARY
HISTORY, SUMMARY DETAIL, and WAIT
Screens).

3.4.5.1 Using DCMT DISPLAY DBGROUP

You can use the DCMT DISPLAY DBGROUP command to display statistics about a
currently executing CV's role in dynamic database session routing as follows:

■ To display statistics for the CV as both a frontend and a backend CV, including
the number of requests processed

■ To display statistics on the groups to which it can route requests as a frontend CV

You can display information for all groups to which a currently executing CV can
route requests or for a specific group. Each option is discussed next.

Displaying all groups: The DCMT DISPLAY DBGROUP * command displays
information about all groups defined to the currently executing CV. It also shows the
CV's status as both a frontend and a backend CV in dynamic database session routing.

The example below shows that there are two groups to which the currently executing
CV can route requests, DBDCGR and IDMSGR. Dynamic database session routing is
active on the currently executing frontend CV and both groups are active as indicated
by the ACTIVE status in the STATUS column under FRONTEND. The BACKEND
STATUS of INACTIVE indicates that the currently executing CV is not available as a
backend CV.

3-16 CA-IDMS Release 14.0 Features Guide

3.4 Using dynamic database session routing

DCMT DISPLAY DBG U

UUU Display DBGroup request UUU

DBGroup U Number of U Backend U Frontend

U backends U Status ; Requests U Status ; Requests

UU

DBDCGR U 002 U Inactive N/A U Active ; 0000000001

IDMSGR U 002 U Inactive N/A U Active ; 0000001020

Displaying information about a specific group: The DCMT DISPLAY
DBGROUP group-name command displays information about the named group and
also displays the back-end and front-end status of the currently executing CV.

The example below displays information about the IDMSGR group. It shows that it is
comprised of two backends, IDMS073 and IDMS072, and the number of times each
has replied to a request for services from the currently executing CV. IDMS073 has
responded to 492 requests and IDMS072 has responded to 528. Additionally, statistics
about the currently executing CV as both a backend and a frontend CV are displayed.
The total number of requests processed by this frontend CV is 1020.

 DCMT DISPLAY DBGROUP IDMSGR

UUU Display DBGroup request UUU

DBGroup IDMSGR has 002 backends

Backend status: Inactive; Number of requests processed: N/A

Frontend status: Active; Number of requests processed: 0000001020

Replies on frontend requests distribution: IDMS073 : 0000000492

IDMS072 : 0000000528

3.4.5.2 Using the Interval Monitor's DBGROUP Detail screen

The DBGROUP Detail screen displays statistics on the use of groups. The number of
requests processed by each group and wait statistics are displayed. The sample screen
below displays statistics on the DBDCGR and IDMSGR groups defined to frontend
CV IDMS071.

 PM-R14.0 IDMS071 Computer Associates Intl. V71 96.010

10:19:05.28

 CMD──� Window : 02

02 08:30 DGDT DBGroup Detail

DBGroup DBGroup Number Wait Average

Name Requests Waits Time Time

 _ DBDCGR 0 0 .0000S .0000S

 _ IDMSGR 104 42 2.6059S .0250S

You can also use Report 10, DBGroup Summary Report, in the Interval Monitor to
monitor statistics on DBGroup usage:

Chapter 3. IBM Parallel Sysplex Exploitation 3-17

3.4 Using dynamic database session routing

 REPORT NO. 10 COMPUTER ASSOCIATES INTL. 30/09/96 PAGE 1

 CA-IDMS/PM 14.0 CAGJE0 DBGROUP SUMMARY REPORT

 DC SYSTEM VERSION #: 71 CUSTOMER COMPANY NAME TITLE DATA FROM: 30/09/96

 DBGROUP AVG DBGROUP

START DBGROUP NUMBER OF DBGROUP WAIT TIME WAIT TIME SERVER NODE # REQUESTS

 TIME NAME REQUESTS WAITS (SECS) (SECS) NAME PROCESSED

8:00:00 DBDCGR 1 1 .002 .0022 SYSTEM71 1

8:10:00 DBDCGR 1019 820 25.904 .0316 SYSTEM71 472

 SYSTEM74 547

3-18 CA-IDMS Release 14.0 Features Guide

3.5 Using shared cache

3.5 Using shared cache

You can run CA-IDMS systems in a Parallel Sysplex for the purpose of sharing data-
base buffers across multiple CVs running in a Sysplex. Buffers are shared across CVs
using a global or shared cache in a Coupling Facility.

What is a shared cache: A shared cache is basically a large, high-speed buffer in
a Coupling Facility containing database pages that are accessible by multiple CVs
running in a Parallel Sysplex.

How shared cache works: CA-IDMS manages a shared cache using Coupling
Facility list structures. The list structures are used to manage the files participating in
the shared cache and the updates made to pages in the cache.

At system startup, CA-IDMS connects to the cache list structure when the first file
assigned to a shared cache is opened. CVs containing at least one file assigned to a
shared cache will connect to the list structure.

Here is how update and retrieval access to the shared cache and local buffers works at
run time:

■ When an update CV writes a page to disk, it also updates the page in the shared
cache. This causes invalidation of that page in all other CVs that ever read the
page.

The illustration below shows how a CV updates a shared cache and invalidates the
updated page in all CV buffers in which it exists.

■ When a CV needs to access a database page and shared cache is turned on for a
file, a current copy of a page is obtained by performing one or more of the fol-
lowing:

– If the page in the local buffer is still valid, it is retrieved.

– If the page is not in the local buffer or is no longer valid, the CV looks for it
in the shared cache.

– If the page is found in the shared cache, it is retrieved.

Chapter 3. IBM Parallel Sysplex Exploitation 3-19

3.5 Using shared cache

– If it is not found in the shared cache, it is read from disk and placed in both
the shared cache and the local buffer.

Benefits In addition to the benefit of having access to current data from multiple
CVs, accessing data from a shared cache requires less overhead than accessing data
from disk. Because access to data in the Coupling Facility uses high-speed, fiber optic
links, accessing pages from the shared cache greatly reduces the overhead otherwise
incurred by doing an I/O to the database.

XA storage and shared cache: When the first CA-IDMS file using shared cache
is opened, CA-IDMS allocates 300K work space and buffers in XA opsys storage. If
the storage is not available, message DC215002 is displayed in the IDMS log and job
console log. The open-file-for-shared-cache request fails and CA-IDMS continues
without shared cache.

This means that you should always verify that the file is really using shared cache
which you can do by issuing these DCMT commands:

DCMT D SHAred CAche U

DCMT D FILE file-name

XA storage and buffers: During operation under heavy load, it is possible that
CA-IDMS needs more buffers. It acquires 260K of XA opsys storage. If the storage
is not available, CA-IDMS displays message DC215002 and the read from/write-to
shared-cache request fails in such a way that operation continues. When this occurs,
CA-IDMS:

■ Does not find the page in shared-cache for the read request

■ Deletes the pages from shared cache for the write request to insure database integ-
rity

Set up requirements: To implement the shared cache feature, you need to perform
these tasks:

■ In the Coupling Facility, define a structure that is used to manage the shared cache
and define each shared cache you'll use in CA-IDMS

■ In CA-IDMS, identify the files to participate in the shared cache and define the
name of the shared cache using a file override in the DMCL or dynamically using
the DCMT VARY FILE SHARED CACHE command

These requirements are described separately below.

3.5.1 Defining shared cache in the Coupling Facility

To use the shared cache feature, you must define a list structure in the Coupling
Facility with the name ZIDMSCACHE0001.

You also need to define each shared cache that you'll implement in CA-IDMS. See
the IBM document MVS/ESA SP 5 Setting Up a SYSPLEX, for more information on
defining shared cache components to the Coupling Facility.

3-20 CA-IDMS Release 14.0 Features Guide

3.5 Using shared cache

3.5.2 Defining shared cache in CA-IDMS

To implement shared cache in CA-IDMS, you need to identify the files that will par-
ticipate in the cache using a DMCL or dynamically using a DCMT VARY command.
You assign files to a cache by specifying either the name of a cache or the AVAIL-
ABLE option. AVAILABLE indicates that the file will use the shared cache defined
for it by another CV when that CV opens the file.

3.5.2.1 Assigning files using DMCL file override

You assign a file to a cache using the SHARED CACHE parameter on the FILE over-
ride specification of the ALTER DMCL statement. The syntax for the FILE override
specification of the ALTER DMCL statement appears below. Parameter descriptions
for SHARED CACHE follow. For a complete description of the FILE override spec-
ification syntax see CA-IDMS Database Administration.

��─┬───────────────┬─ FILE segment-name.file-name ────────────────────────────�

├─┬─ ADD ← ───┬─┤

│ └─ INClude ─┘ │

└─┬─ DROP ────┬─┘

└─ EXClude ─┘

 �─┬─────────────────────────────────────┬────────────────────────────────────�

└─ BUFFER ─┬─ database-buffer-name ─┬─┘

└─ DEFAULT ← ────────────┘

 �─┬─────────────────────────────┬──�

└─ ASSIGN TO ─┬─ ddname ────┬─┘

├─ filename ──┤

├─ linkname ──┤

├─ DEFAULT ← ─┤

└─ NULL ──────┘

 �─┬───────────────────────────────┬──�

└─┬─ DISP ─┬─ SHR ───────┬────┬─┘

│ ├─ OLD ───────┤ │

│ └─ DEFAULT ← ─┘ │

└─ SHARUPD ─┬─ NO ────────┬─┘

├─ YES ───────┤

├─ WEAK ──────┤

└─ DEFAULT ← ─┘

 �─┬────────────────────────┬───�

└─ DATASPACE ─┬─ NO ← ─┬─┘

└─ YES ──┘

 �─┬─────────────────────────────────┬──��

└─ SHARED CACHE ─┬─ cache-name ─┬─┘

├─ AVAILABLE ──┤

└─ NO ← ───────┘

 Parameters

cache-name
Specifies the name of a shared cache to which the file is assigned.

AVAILABLE
Specifies that the file is to join an existing shared cache when one is allocated for
the same file by another CV, either at startup or dynamically.

Chapter 3. IBM Parallel Sysplex Exploitation 3-21

3.5 Using shared cache

NO
Specifies that the file is not to participate in a shared cache, even if another CV
has the shared cache option enabled for this file. NO is the default.

 3.5.3 Usage

Use only one cache option for a file: If the shared cache file override is used for a
file, it is recommended that the dataspace file override is not used. Conversely, if the
dataspace file override is used for a file, it is recommended that shared cache is not
used.

Example: The example below shows how to modify a DMCL to include the file
override SHARED CACHE parameter to do each of the following:

■ Indicate that a file is to use the specified cache name

■ Indicate that a file can use shared cache when the shared cache becomes available

ALTER DMCL CVDMCL

 INCLUDE FILE FILE1

SHARED CACHE CACHE1

 INCLUDE FILE FILE2

SHARED CACHE CACHE1

 INCLUDE FILE FILE3

SHARED CACHE CACHE2

 INCLUDE FILE FILE4

SHARED CACHE NO

 INCLUDE FILE FILE5

SHARED CACHE AVAILABLE

 INCLUDE FILE FILE6

SHARED CACHE AVAILABLE

;

3.5.3.1 Assigning files to a shared cache dynamically

You can also alter the shared cache option for a CV at run time using the SHARED
CACHE parameter on these DCMT VARY commands:

■ AREA — Assign a shared cache status to all files associated with the area

■ FILE — Assign a shared cache status to a file

■ SEGMENT — Assign a shared cache status to all the files associated with a
segment

Syntax: The syntax for the DCMT VARY FILE SHARED CACHE syntax is shown
below. This parameter is also available on the DCMT VARY AREA and DCMT
VARY SEGMENT commands. The option descriptions are the same as for those pre-
sented above for the SHARED CACHE DMCL override parameter on the FILE state-
ment.

�� For more information on DCMT commands, use the DCMT HELP command or see
CA-IDMS System Tasks and Operator Commands.

3-22 CA-IDMS Release 14.0 Features Guide

3.5 Using shared cache

��─── DCMT Vary File SHAred CAche ──┬─ cache-name ─┬──────────────────────────��

├─ AVAILABLE ──┤

└─ NO ─────────┘

 Examples

Assigning a single file to a shared cache: In the example below, the
DBCR.ACCOUNTC file is assigned to the CACHE1 shared cache using the DCMT
VARY FILE SHARED CACHE command.

dcmt vary file dbcr.accountc shared cache cache1

Assigning all files in a segment to a shared cache: You can also use the
SHARED CACHE option with the DCMT VARY SEGMENT command to assign all
files in a segment to a shared cache as shown in the example below.

dcmt vary segment dbcr shared cache cache1

3.5.4 Monitoring shared cache

You can use the following CA-IDMS tools to monitor the use of shared cache by an
executing CV:

■ DCMT DISPLAY commands

■ CA-IDMS Performance Monitor

■ CA-IDMS System Statistics Report

You can also use monitoring tools for the Coupling Facility to monitor the global use
of a shared cache. See IBM Coupling Facility documentation for more information.

3.5.4.1 DCMT DISPLAY commands

Commands: The table below lists the DCMT DISPLAY commands you can use to
monitor a shared cache. For complete syntax, use the DCMT HELP command.

Chapter 3. IBM Parallel Sysplex Exploitation 3-23

3.5 Using shared cache

You can also use the LOOK DMCL (for DC) and IDMSLOOK DMCL (for batch) to
monitor shared cache. Both commands display the status of the shared cache (Yes,
No, or Available) and the name of the cache, if applicable, for each file.

Examples: The examples below show how to use DCMT DISPLAY commands to
get statistics on shared cache usage by the executing CV.

DCMT DISPLAY SHARED CACHE: To display the status of each shared cache
defined to a CV, use the DCMT DISPLAY SHARED CACHE command. This
command also displays, in a separate section, files with a cache status of AVAIL-
ABLE. A file with a cache status of AVAILABLE begins using a cache when another
CV, with a cache enabled, opens it.

 DCMT DISPLAY SHARED CACHE

UUU Display SHAred CAche request UUU

List structure: ZIDMSCACHE0001

Files waiting for cache to become available:

 None.

Cache name: IDMSCACHE00001 Reads: 0000000048 Writes: 0000000048 Status: ON

 File DBDC.SYSTEMXX.DBCRACCA.X on MVHP91

 File DBDC.SYSTEMXX.DBCRACCB.X on MVHP91

 File DBDC.SYSTEMXX.DBCRACCE.X on MVHP91

 File DBDC.SYSTEM71.EMPDEMO.EMPDEMO on MVHP91

Cache name: IDMSCACHE00002 Reads: 0000000021 Writes: 0000000007 Status: ON

 File DBDC.SYSTEMXX.DBCRBRAA.X on MVHP91

 File DBDC.SYSTEMXX.DBCRBRAD.X on MVHP91

 File DBDC.SYSTEMXX.DBCRACCC.X on MVHP91

 File DBDC.SYSTEMXX.DBCRBRAC.X on MVHP91

Using DCMT DISPLAY FILE to display shared cache status: You can use the
DCMT DISPLAY FILE command to display the shared cache status for specific files
defined to a CV as shown in the example below.

DCMT DISPLAY Description

SHARED CACHE Displays the names of the files participating in a
shared cache and shows the cache status for each
file. It also displays files with a status of AVAIL-
ABLE, which are not currently using a shared
cache.

FILE file-name

AREA area-name FILE

BUFFER buffer-name FILE

Displays the status of the shared cache (Yes, No,
or Available) and the name of the cache, if appli-
cable, for the named file or files to which the
named area or buffer is mapped.

STATISTICS AREA

STATISTICS BUFFER

STATISTICS FILE

Displays the FND-IN-CACHE column, which
shows the number of read requests that were satis-
fied using pages from a shared cache or ESA
dataspace.

3-24 CA-IDMS Release 14.0 Features Guide

3.5 Using shared cache

 DCMT DISPLAY FILE DBCRU

DBCR.BRANCHA Upd 0 4000 non-VSAM No Yes BRANCHA

Pre-fetch: Not-Allowed (DMCL) Pages per Track 12 DISP=SHR (DCMT)

DSname: (DMCL).. DBDC.SYSTEMXX.DBCRBRAA.X

DSname: (JCL)... DBDC.SYSTEMXX.DBCRBRAA.X VOLSER: MVHP91

 Cache-name: IDMSCACHE00002

DBCR.BRANCHB Upd 0 4000 non-VSAM No Yes BRANCHB

Pre-fetch: Not-Allowed (DMCL) Pages per Track 12 DISP=SHR (DCMT)

DSname: (DMCL).. DBDC.SYSTEMXX.DBCRBRAB.X

DSname: (JCL)... DBDC.SYSTEMXX.DBCRBRAB.X VOLSER: MVHP91

 Cache-name: IDMSCACHE00002

DBCR.BRANCHC Upd 0 4000 non-VSAM No Yes BRANCHC

Pre-fetch: Not-Allowed (DMCL) Pages per Track 12 DISP=SHR (DCMT)

DSname: (DMCL).. DBDC.SYSTEMXX.DBCRBRAC.X

DSname: (JCL)... DBDC.SYSTEMXX.DBCRBRAC.X VOLSER: MVHP91

 Cache-name: IDMSCACHE00002

DBCR.BRANCHD Upd 0 4000 non-VSAM No Yes BRANCHD

PAGE 002 - NEXT PAGE:

DCMT DISPLAY STATISTICS FILE: The DISPLAY STATS FILE command
below shows the number of pages found in the cache in the FND-IN-CACHE column.
The FND-IN-CACHE statistic represents the number of pages found in a shared cache
or an ESA dataspace. Also, the PHY-READS column includes the value in the
FND-IN-CACHE. For example, seven physical reads were done against the
DBCR.BRANCHA file, four of them were found in the cache. For a specific file, you
can compare the value in the FND-IN-CACHE to the number of physical reads to see
how efficiently a cache is being used.

DISPLAY STAT FILE DBCRU

---------- File ----------- Fnd-in-Buf Phy-Reads Fnd-in-Cache Phy-Writes

DBCR.BRANCHA 5 7 4 2

DBCR.BRANCHB 18 18 10 0

DBCR.BRANCHC 10 10 6 0

DBCR.BRANCHD 15 15 9 0

DBCR.ACCOUNTA 0 2 1 2

DBCR.ACCOUNTB 0 19 15 0

DBCR.ACCOUNTC 0 10 8 0

DBCR.ACCOUNTD 0 5 4 0

DBCR.ACCOUNTE 0 14 11 0

3.5.4.2 CA-IDMS Performance Monitor

You can use the CA-IDMS Performance Monitor to display statistics on shared cache
usage.

Fields displaying shared cache statistics are included on the screens listed in the fol-
lowing table. Samples of some screens are shown after the table.

Chapter 3. IBM Parallel Sysplex Exploitation 3-25

3.5 Using shared cache

In addition, the Interval Monitor provides a new report, Report 9, Shared Cache
Summary, that you can use to monitor statistics on shared cache usage:

Tool Screens/Reports Description

Real Time Monitor Buffer IO Summary

Buffer IO Detail

Displays the FND-IN-CACHE sta-
tistic showing the total number of
times a requested page was read
from either a shared cache or ESA
dataspace

Interval Monitor Shared Cache (PF24)
Detail

Displays detailed statistics on how
shared cache is used during an
interval

Summary History Displays summary statistics on the
number of waits for a shared
cache and the total wait time on a
shared cache

Summary Detail Displays the number of waits and
the total wait time for a shared
cache

Wait Type Detail Displays the number of waits for a
shared cache and the total wait
time on a shared cache, if these
statistics are greater than 0 on
Summary Detail

Buffer Detail

DBKey/Area Detail

I/O Detail

Categories corre-
sponding to System
area statistics

Displays these types of statistics:
number of reads and writes from a
shared cache, number of times a
page is read from cache, and the
number of times a page is not
found in cache

Application Monitor Task Wait Block Displays the number of waits for a
shared cache and the total wait
time on a shared cache

3-26 CA-IDMS Release 14.0 Features Guide

3.5 Using shared cache

 REPORT NO. 09 COMPUTER ASSOCIATES INTL. 30/09/96 PAGE 1

 CA-IDMS/PM 14.0 CAGJE0 SHARED CACHE SUMMARY REPORT

 DC SYSTEM VERSION #: 71 CUSTOMER COMPANY NAME TITLE DATA FROM: 30/09/96

 SH-CACHE AVG SH-CACHE

 START SHARED CACHE FILE NAME NUMBER OF FOUND IN NUMBER OF SH-CACHE WAIT TIME WAIT TIME

TIME NAME READS CACHE WRITES WAITS (SECS) (SECS)

 7:54:10 IDMSCACHE00001 DBCR.ACCOUNTA 1 1

 DBCR.ACCOUNTB

 DBCR.ACCOUNTD

 DBCR.ACCOUNTE

 IDMSCACHE00002 DBCR.ACCOUNTC

 DBCR.BRANCHA 1 1

 DBCR.BRANCHB

 DBCR.BRANCHC

 DBCR.BRANCHD

 8:00:00 IDMSCACHE00001 DBCR.ACCOUNTA

 DBCR.ACCOUNTB 1 1 2 .011 .0055

 DBCR.ACCOUNTD

 DBCR.ACCOUNTE

 IDMSCACHE00002 DBCR.ACCOUNTC

 DBCR.BRANCHA 1 1 2 .037 .0184

 DBCR.BRANCHB

 DBCR.BRANCHC

 DBCR.BRANCHD

8:10:00 IDMSCACHE00001 DBCR.ACCOUNTA 31 17 14 43 .276 .0064

DBCR.ACCOUNTB 39 21 18 56 .476 .0085

DBCR.ACCOUNTD 49 20 29 76 .400 .0053

DBCR.ACCOUNTE 32 12 20 51 .404 .0079

IDMSCACHE00002 DBCR.ACCOUNTC 38 6 32 70 .490 .0070

 DBCR.BRANCHA

 DBCR.BRANCHB

 DBCR.BRANCHC 1 1 2 .037 .0187

 DBCR.BRANCHD 2 2 4 .041 .0102

Real Time Monitor — Buffer I/O Summary: The following is a sample Buffer
I/O Summary screen from the Real Time Monitor. The number of actual disk I/Os is
the READ COUNT minus the FND-IN-CACHE count. If the page is not found in the
local buffer, then a read is required, which might be satisfied by the shared cache.
Using statistics on this screen, you can compare the number of pages found in the
cache with the READ COUNT.

 PM-R14.0 IDMS071 Computer Associates Intl. V71 96.010 10:32:52.48

 CMD──� Window : 03

 Refresh: 10

03 Buffer I/O Summary >

 Fnd_In Read Fnd_In Write Forced Prefetch

Buffer_Name Buffer Count Cache Count Write Hits

_ DBCR_BRCH_BUFFER 48 50 29 2

 _ DBCR_ACCT_BUFFER 50 39 2

 _ LOG_BUFFER

 _ DEFAULT_BUFFER 3738 1123 22

Interval Monitor — Summary Detail: The Summary Detail screen shows wait
statistics for a shared cache.

Chapter 3. IBM Parallel Sysplex Exploitation 3-27

3.5 Using shared cache

 PM-R14.0 IDMS071 Computer Associates Intl. V71 96.010 10:35:34.90

 CMD──� Window : 02

02 08:40 SUM Summary Detail <

Start DBGroup DBGroup Sh-Cache Sh-Cache External External Internal Internal

Time Waits Time Waits Time Waits Time Waits Time

 _ 08:07 0 .0000S 0 .0000S 0 .0000S 0 .0000S

 _ 08:10 0 .0000S 0 .0000S 0 .0000S 0 .0000S

 _ 08:20 0 .0000S 148 2.21S 58 .9092S 2 .0008S

 _ 08:30 42 2.60S 0 .0000S 104 1.34S 0 .0000S

 _ 08:40 0 .0000S 148 1.90S 14 .2063S 4 .0022S

 _ 08:50 0 .0000S 22 .1513S 4 .0639S 10 .0060S

 _ 09:00 0 .0000S 0 .0000S 0 .0000S 26 .0125S

Interval Monitor — Shared Cache Detail: The following screen shows the
Shared Cache Detail for an interval in the Interval Monitor.

 PM-R14.0 IDMS071 Computer Associates Intl. V71 96.010 10:22:59.75

 CMD──� Window : 02

02 08:40 SHDT Shared Cache Detail <

Shared Cache Name Fnd-In Number Failed Number Wait Average

Cache Writes Writes Waits Time Time

 _ CACHE2 24 12 0 68 .8956S .0186S

_ CACHE1 16 8 0 80 1.0079S .0314S

3.5.4.3 CA-IDMS System Statistics Report

The CA-IDMS System Statistics Report contains the number of pages found in cache
(both shared cache and ESA dataspaces) statistic for a DC system.

3.5.5 Tuning a shared cache

Tuning a shared cache involves monitoring its usage and, as necessary, modifying its
definition and implementation to use it as efficiently as possible.

You can make the following changes to tune your use of shared cache:

■ Change the shared cache status for a file and either assign it to a new or existing
cache, or drop it from participating in a shared cache

■ Define another shared cache and assign files to it

■ Increase the size of an existing cache

For detailed information on tuning a shared cache, see the CA-IDMS Parallel Sysplex
User Guide.

3-28 CA-IDMS Release 14.0 Features Guide

Chapter 4. CA-IDMS/DB and CA-IDMS/DC

4.1 Overview . 4-3
4.2 Extended multitasking support . 4-4

4.2.1 Implementing multitasking support . 4-4
4.3 Extended 24-hour processing support . 4-6

4.3.1 Dynamic lines, terminals, and printers 4-6
4.3.2 Dynamic security refresh . 4-7
4.3.3 Dynamic resource allocation . 4-8

4.4 Utility enhancements . 4-11
4.4.1 SEGMENT support in BACKUP, RESTORE, and UNLOCK 4-11

4.4.1.1 BACKUP and RESTORE utility syntax 4-11
4.4.1.2 UNLOCK syntax . 4-12

4.4.2 Enhanced area support in FORMAT JOURNAL 4-12
4.4.3 NonSQL data support in UPDATE STATISTICS 4-13
4.4.4 File support in PRINT SPACE . 4-14

4.5 Date and Year 2000 support in DISPLAY/PUNCH statements 4-16
4.6 Security enhancements . 4-17

4.6.1 Default signon and user ID options in RHDCSRTT 4-17
4.6.2 DISPLAY/PUNCH ALL syntax for security definitions 4-19

4.6.2.1 DISPLAY and PUNCH ALL statement syntax 4-20
4.6.3 Usage . 4-23
4.6.4 Example . 4-27
4.6.5 Verifying signons for APPC applications 4-28

4.7 Using LE/370-compliant language compilers with CA-IDMS/DC 4-30
4.7.1 Considerations about LE/370 runtime 4-30
4.7.2 Running LE/370-compliant compiler programs under CA-IDMS/DC . 4-31
4.7.3 Supported LE/370 functions . 4-32
4.7.4 Unsupported LE/370 functions . 4-32
4.7.5 COBOL 370 support . 4-32

4.8 IDMSIOX2 DB Exit . 4-34
4.9 Enhancements to CICS-reentrant programs 4-39

Chapter 4. CA-IDMS/DB and CA-IDMS/DC 4-1

4-2 CA-IDMS Release 14.0 Features Guide

4.1 Overview

 4.1 Overview

This chapter describes general enhancements to CA-IDMS/DB and CA-IDMS/DC for
Release 14.0, including CA-IDMS Security.

The enhancements are grouped and presented as follows:

■ Extended multitasking support

■ Extended 24-hour processing support

 ■ Utility enhancements

■ Date and Year 2000 support in DISPLAY ALL statements

 ■ Security enhancements

■ Programming language enhancements

■ A new DB exit, IDMSIOX2

■ Enhancements to CICS-reentrant programs

Chapter 4. CA-IDMS/DB and CA-IDMS/DC 4-3

4.2 Extended multitasking support

4.2 Extended multitasking support

With extended multitasking support, more CA-IDMS system tasks can execute concur-
rently, each task using a different predefined operating system subtask. Scratch,
storage, and security manager modules, as well as CA-IDMS/DB engine modules, can
take advantage of multitasking support. The code for these components now run with
an MPMODE of ANY.

Benefits: Operating environments that use multitasking should experience enhanced
throughput in the areas of security, scratch, and storage management, as well as in the
retrieval and updating of CA-IDMS databases. This includes CICS and batch pro-
grams as well as CA-IDMS/DC online applications.

Note: Multitasking support is documented in CA-IDMS System Operations. If you
are a new user of this feature, please refer to this document before imple-
menting it. The discussion of multitasking here is limited to how it is
extended in Release 14.0.

4.2.1 Implementing multitasking support

Run CA-IDMS in MVS, BS2000, or MSP: To use multitasking support, you must
run CA-IDMS in an environment that supports it: MVS, BS2000, or MSP.

Assign Scratch area to XA storage or ESA dataspace: To get maximum
benefit from running scratch manager modules in multitasking mode, assign the
Scratch area to XA storage or an ESA dataspace. To assign the Scratch area to XA
storage, set the SCRATCH in XA STORAGE parameter on the SYSTEM system gen-
eration statement to YES. To assign the scratch area to an ESA dataspace, select the
DATASPACE option on the Scratch file definition in the DMCL.

Modify startup JCL: If you have not used multitasking support in a previous
release, you implement it in your system startup execution JCL. You specify parame-
ters in specific columns of the job card you use to start your CA-IDMS system. You
can optionally specify the number of subtasks to use. The default number of subtasks
is the number of processors plus one.

�� See CA-IDMS System Operations for Release 12.01 for specific information on
implementing multitasking including, setting up your JCL and monitoring a multi-
tasking environment.

For example, in an MVS environment the following PARM specification enables
multitasking support for the specified DC/UCF system and defines 8 subtasks:

4-4 CA-IDMS Release 14.0 Features Guide

4.2 Extended multitasking support

 Column Column Column

 0 1 2

 1 0 1

 ----+----+----+----+---

//STARTUP EXEC PGM=DCUCFSYS,PARM='S=91 M8'

 .

 .

 .

If you are currently using multitasking in your CA-IDMS environment, you don't need
to modify your system startup JCL.

Confirm database procedures and user exits can run in MT Because
CA-IDMS/DB engine modules now take advantage of multitasking, you need to
confirm that existing database procedures and certain user exit programs that access
CA-IDMS internal control blocks can run with an MPMODE of ANY. For more
information, see Chapter 2, “Upgrading to Release 14.0” on page 2-1.

Note: You should write DB procedures in assembly language to run in a multitasking
environment. They must also be reentrant. For more information about
writing DB procedures, see CA-IDMS Database Administration.

Chapter 4. CA-IDMS/DB and CA-IDMS/DC 4-5

4.3 Extended 24-hour processing support

4.3 Extended 24-hour processing support

You can now perform the following tasks without cycling a central version (CV):

■ Add newly generated LINE, LTERM, and PTERM definitions

■ Activate new or modified security entities in a security definition

In addition, while a CV remains active, CA-IDMS now dynamically allocates resource
management control blocks when the initial allocation is depleted.

Each of these dynamic features is discussed next.

4.3.1 Dynamic lines, terminals, and printers

You can activate the following changes to a system definition without cycling a CV:

■ Add new line definitions or modify existing LINE definitions

■ Add PTERM and associated LTERM definitions to an existing or new line defi-
nition

■ Add new printer destinations or modify existing ones

■ Add new printer LTERMs to existing or new printer destinations

After generating changes to line, terminal, and printer definitions in your system defi-
nition, you issue a new DCMT command to refresh the SYSGEN so that all new or
modified lines or a specified line is available for use by a CV.

Note: Only newly generated line, terminal, and printer definitions are activated when
you issue the DCMT VARY SYSGEN REFRESH command. Modifications to
existing PTERM or LTERM definitions and deletions of any line, terminal, or
printer definitions are not processed until you cycle the CV.

Benefit You can make newly generated lines, terminals, and printers available to a
CV while it remains active.

New DCMT commands To activate newly generated line, terminal, and printer defi-
nitions, issue the new DCMT DISPLAY and VARY SYSGEN REFRESH LINE com-
mands shown below.: To see the new line definitions that you will activate, issue a
DISPLAY SYSGEN REFRESH LINES command before you activate the newly-
generated definitions.

��─── DCMT Vary SYSgen refresh ──┬─ Lines ──────────┬─────────────────────────��

└─ Line line-name ─┘

��─── DCMT Display SYSgen refresh ──┬─ Lines ──────────┬──────────────────────��

└─ Line line-name ─┘

 Parameters

Lines
Specifies that you want to process all newly added line, terminal, and printer defi-
nitions, since the last refresh.

4-6 CA-IDMS Release 14.0 Features Guide

4.3 Extended 24-hour processing support

Line line-name
Specifies that you want to process the named line.

Example: For example, if you want to add a new printer to an active DC/UCF
system without cycling a CV, perform these tasks:

■ Add the appropriate entities to the system definition

■ Regenerate the system definition

■ Issue a DCMT DISPLAY SYSGEN REFRESH LINES command to see the newly
generated definition as shown below.

dcmt d sysgen refresh lines

UUU Display Sysgen request UUU

Line UCFLINE was modified

Added Pterm/Lterm: UCFPT05 / UCFLT05

■ Issue a DCMT VARY SYSGEN REFRESH LINES command to make the defi-
nition available to the CV as shown below.

dcmt v sysgen refresh lines

UUU Vary Sysgen request UUU

Line UCFLINE was modified

Added Pterm/Lterm: UCFPT05 / UCFLT05

4.3.2 Dynamic security refresh

You can make changes to your security scheme and then activate those changes
without cycling a CV. After changing security definitions using the #SECRTT macro
and reassembling the RHDCSRTT module, you issue existing DCMT commands to
vary the RHDCSRTT nucleus module to new copy and reload it.

Benefit: You can respond to changes in your security environment without bringing
down a system and cycling a CV. For example, you can change the security mapping
for a resource type or you can make changes to category and activity definitions.

What gets refreshed: When you reload the RHDCSRTT module, the following
security definitions are refreshed and any changes you made to them are immediately
implemented:

■ Access module table

 ■ Category tables

■ Activity and category bit map tables

Signon security changes not immediately implemented: Signon and system
group security definitions are not refreshed when RHDCSRTT is reloaded; users
signed on to the system remain signed on even after the reload. Any changes made to
signon and system group security for users signed on to a system when a reload is
done, do not take place until those users sign off of the system and then sign on again.

Chapter 4. CA-IDMS/DB and CA-IDMS/DC 4-7

4.3 Extended 24-hour processing support

Example: After you change a security scheme and modify the RHDCSRTT module,
perform the following to activate the changes:

■ Issue the DCMT VARY NUCLEUS syntax to vary module RHDCSRTT to new
copy

■ Issue the DCMT VARY NUCLEUS RELOAD command to reload the changed
(new) RHDCSRTT nucleus module

The following example shows these commands.

dcmt vary nucleus module rhdcsrtt n c

VARY NUCLEUS MODULE RHDCSRTT NEW COPY

IDMS DC283001 V104 USER:ABBTH01 NUCLEUS MODULE RHDCSRTT MARKED TO NEW COPY

VARY NUCLEUS RELOAD

IDMS DC283003 V104 USER:ABBTH01 NUCLEUS MODULE RHDCSRTT RELOADED

IDMS DC283004 V104 USER:ABBTH01 CSA/NUCLEUS VECTOR TABLE UPDATED

FOR NUCLEUS MODULE RHDCSRTT

IDMS DC283007 V104 USER:ABBTH01 SECURITY TABLES REFRESHED SUCCESSFULLY

For more information

■ On the DCMT VARY NUCLEUS command, see CA-IDMS System Tasks and
Operator Commands.

■ On modifying security definitions, see CA-IDMS Security Administration.

4.3.3 Dynamic resource allocation

When an executing CA-IDMS system exhausts its primary allocation of resource man-
agement control blocks (RCEs, RLEs, and DPEs), it now automatically creates a sec-
ondary allocation in XA storage while the system remains active.

Benefit: CA-IDMS systems remain active and do not abend if resource management
control blocks are depleted. CA-IDMS systems can accommodate new applications
that may consume resources that you didn't account for in your initial resource esti-
mate.

Size of secondary allocation: When CA-IDMS determines that a secondary allo-
cation of resource management control blocks is needed, it allocates the following:

■ Under a CV, it allocates a quarter of the primary allocation defined in the system
definition

■ In batch mode, it allocates twice the primary allocation. This primary allocation,
defined internally, is typically large enough to accommodate most of the batch
programs so that a secondary allocation is not needed.

4-8 CA-IDMS Release 14.0 Features Guide

4.3 Extended 24-hour processing support

Monitoring secondary allocation: You can monitor secondary allocation usage
using the following tools:

■ Issue the OPER WATCH CRITICAL RESOURCES command and look at the
Resource Management statistics as shown below.

IDMS-DC Release 14.0 DC Critical Resource Usage Display

 STORAGE PROGRAMS TASKS

Pools: 4 # Pools: 3 Maximum Tasks: 43

Pools now SOS: 0 # Rolled out pgms: 0 Active Tasks: 19

Times SOS: 0 # Programs loaded: 225 System: 18

Amount Available: 9060k Amount Available: 6800k Online: 1

 Amount Used: 8.52% Amount Used: 49.04% External: 0

 Amount Fixed: .00%

 RESOURCE MANAGEMENT

RCEs RLEs DPEs

 Number

 Avail: 3020 3020 1220

 In Use 13.14% 14.76% 10.90%

 HWM: 15.43% 17.51% 13.60%

 Threshold

 Times: 0 0 0

Now: NO NO NO

 IDMS DB/DC V81 - Tasks active:19 Time: 16:36:26

■ Issue a DCMT DISPLAY STATISTICS SYSTEM command and look at the
Internal statistics as shown below.

0 Tuples Sorted 0 Sort Max

JOURNAL: 0 Buff Waits 0 User Putjrnl

 Page 311 0-10 3 11-20 151 21-30 5 31-40 0 41-50

 Dist 145 51-60 1 61-70 6 71-80 0 81-90 17 91-100

INTERNAL: RLEs RCEs DPEs Stack

529 466 166 724 HWM

3000 3000 1200 2000 Sysgen Threshold

0 0 0 Times Exceeded

STORAGE: 12436 Gets 10200 Frees Gets for type

 0 PGFIXs 0 PGFREEs 765 DB

0 Pages Fxd 0 Pages Freed 344 SHK

9032 Scan 1 0 PGRLSEs 0 SHR

3404 Scan 2 0 Pages Relsd 3809 SYS

 30 USK

0 SOS COUNT 7488 USR

PROGRAM: Act Loads Pages Load Wait/Space

 Non-Reent 8 85 0

Reent 36 803 0

XA Reent 188 5810 0

PAGE 002 - NEXT PAGE:

■ Look at the number of DPEs, RCEs, and RLEs allocated at startup and the HWM
(high-water mark) on the Storage Pool Overview screen in CA-IDMS Performance
Monitor's Real time monitor as shown below.

Chapter 4. CA-IDMS/DB and CA-IDMS/DC 4-9

4.3 Extended 24-hour processing support

 PM-R14.0 SYSTEM71 Computer Associates Intl. V71 96.037 12:13:31.57

 CMD──� Window : 03

 Refresh: 10

03 Storage Pool Overview

_ Storage Pool Summary

 Pools # Times Pools

 Genned Sys SOS SOS

3 1 0

 Genned HWM

 RLE 3000 757

 RCE 3000 636

 DPE 5000 438

 Stack 1700 817

■ Look for the DC010007 message in the CV's SYSOUT file or the job console log
file for the number of DPEs, RCEs, and RLEs used in secondary allocations.

How to use it: You don't need to make any changes to your system definitions to
take advantage of this feature. The control blocks are automatically allocated when
they are needed. However, you may want to review the DPE COUNT, RCE COUNT,
and RLE COUNT parameters on the system generation SYSTEM statement and
optionally adjust them. See Chapter 2, “Upgrading to Release 14.0” on page 2-1 for
more information.

4-10 CA-IDMS Release 14.0 Features Guide

4.4 Utility enhancements

 4.4 Utility enhancements

The following features are now available to simplify performing database maintenance
tasks:

■ SEGMENT entity support in UNLOCK, BACKUP, and RESTORE utilities

■ Increased area support in the FORMAT utility

■ NonSQL data support in the UPDATE STATISTICS utility

■ File support for the PRINT SPACE utility

4.4.1 SEGMENT support in BACKUP, RESTORE, and UNLOCK

The BACKUP, RESTORE, and UNLOCK utilities now support operation requests by
segment.

Benefit: When you want to back up, restore, or unlock all the data in a segment,
you can simply specify the segment name, and by default, all areas defined to the
segment are processed. For BACKUP and RESTORE, you can alternatively specify
that all files defined to the segment are processed. This simplifies performing database
administration tasks.

4.4.1.1 BACKUP and RESTORE utility syntax

The complete syntax for the BACKUP and RESTORE utilities is shown below. The
parameter description for only SEGMENT is provided. For a description of the com-
plete syntax, see CA-IDMS Utilities.

When you run BACKUP or RESTORE and specify SEGMENT, you can choose either
the default AREA to process all areas defined to the segment, or specify FILE to
process all files defined to the segment.

 BACKUP Syntax

┌─────────── , ────────────┐

��─── BACKUP ─┬─ AREA ─────↓─ segment-name.area-name ─┴─┬─────────┬─────────┬─��

│ └─ SHARE ─┘ │

│ ┌─────────── , ────────────┐ │

├─ FILE ─────↓─ segment-name.file-name ─┴─────────────────────┤

 │ │

│ ┌────── , ────────┐ │

└─ SEGMENT ──↓─ segment-name ──┴──┬─────────────┬─┬─────────┬─┘

├─ BY AREA ← ─┤ └─ SHARE ─┘

└─ BY FILE ───┘

SEGMENT segment-name
The name of the segment to be backed up.

BY AREA
Specifies that each area defined within the segment is to be backed up. AREA is
the default.

Chapter 4. CA-IDMS/DB and CA-IDMS/DC 4-11

4.4 Utility enhancements

BY FILE
Specifies that each file within the segment is to be backed up.

 RESTORE Syntax

┌─────────── , ────────────┐

��─── RESTORE ─┬─ AREA ─↓─ segment-name.area-name ─┴──────────────┬───────────��

 │ │

│ ┌─────────── , ────────────┐ │

├─ FILE ─↓─ segment-name.file-name ─┴──────────────┤

 │ │

│ ┌────── , ────────┐ │

└─ SEGMENT ──↓─ segment-name ──┴─┬─────────────┬───┘

├─ BY AREA ← ─┤

└─ BY FILE ───┘

SEGMENT segment-name
The name of the segment to be restored.

BY AREA
Specifies that each area defined within the segment is to be restored. AREA is
the default.

BY FILE
Specifies that each file within the segment is to be restored.

 4.4.1.2 UNLOCK syntax

When you run UNLOCK and specify SEGMENT, all areas in the segment are
unlocked.

��─── UNLOCK ─┬─ AREA segment-name.area-name ─┬──────────────────────────────��

└─ SEGMENT segment-name ────────┘

SEGMENT segment-name
The name of the segment to be unlocked.

4.4.2 Enhanced area support in FORMAT JOURNAL

The FORMAT JOURNAL utility now lets you format a journal that can handle more
areas without increasing the size of a journal block.

Benefit: Normally when a journal is formatted, CA-IDMS creates a fixed number of
JHDA blocks. A JHDA block stores the ready status of areas for warmstart purposes.
The size of a journal block and the number of JHDAs limit the number of areas that
CA-IDMS can handle.

The new MAX AREA option lets you format a journal that can handle more areas
without increasing the size of a journal block. Ideally, the size of a journal block
should be optimized to improve runtime efficiency, and should not be affected by the
number of areas that may exist.

4-12 CA-IDMS Release 14.0 Features Guide

4.4 Utility enhancements

The MAX AREA option can also reduce the number of default JHDA blocks that
CA-IDMS creates, which frees journal space.

Syntax: The complete syntax for the FORMAT utility is shown below. The
description for only the MAX AREA parameter is provided. For a description of the
complete syntax, see CA-IDMS Utilities.

If you do not specify the MAX AREA option, CA-IDMS creates a fixed number of
JHDAs.

��─── FORMAT ───�

 �─┬─ FILE segment-name.file-name ─────────────────────────────┬──────────────��

├─ AREA segment-name.area-name ─────────────────────────────┤

├─ SEGMENT segment-name ────────────────────────────────────┤

└─ JOURNAL ─┬─ journal-file-name ─┬────┬──────────────────┬─┘

└─ ALL ───────────────┘ └─ MAX AREA nnnn ──┘

 Parameters

MAX AREA nnn
The maximum number of areas to define for the journal, where nnn is an integer
from 1 to 32,767. The actual number of areas that CA-IDMS can handle may be
higher because of rounding and the size of a journal block.

4.4.3 NonSQL data support in UPDATE STATISTICS

The UPDATE STATISTICS utility collects statistics for SQL-defined databases. With
this release, it now collects statistics for nonSQL-defined databases too.

Benefit: Statistics for nonSQL-defined databases lets the optimizer select better
access strategies. Without such statistics, the optimizer must make assumptions, which
may not always be valid.

Syntax: The complete syntax for the UPDATE STATISTICS utility is shown below.
The descriptions for only the TABLE and SCHEMA parameters are provided. For a
description of the complete syntax, see CA-IDMS Utilities.

��─── UPDATE STATISTICS ──�

┌────────────────── , ──────────────────┐

 �─── FOR ─┬─ TABLE ─↓─┬────────────────┬─ table-identifier ─┴─┬──────────────�

 │ └─ schema-name. ─┘ │

│ ┌─────────── , ────────────┐ │

├─ AREA ─↓─ segment-name.area-name ─┴───────────────┤

 │ │

└─ SCHEMA schema-name ──┬─────────────────────────┬─┘

│ ┌───── , ─────┐ │

└─ AREA─↓─ area-name ─┴───┘

 �─┬──────────────────┬───��

└─ SAMPLE percent ─┘

 Parameters

Chapter 4. CA-IDMS/DB and CA-IDMS/DC 4-13

4.4 Utility enhancements

TABLE
Specifies one or more SQL-defined tables and non-SQL-defined tables for which
the UPDATE STATISTICS utility is to update statistics.

SCHEMA schema-name
Identifies that SQL-defined schema that references a nonSQL defined-schema.

AREA area-name
Identifies areas of the nonSQL schema from which to collect statistics.

Authorization: To use the SCHEMA option of the UPDATE STATISTICS utility,
you must have ALTER authority for the schema.

4.4.4 File support in PRINT SPACE

The PRINT SPACE utility now lets you specify a specific file to report on when proc-
essing a multi-file area. Previously, you could only select a specific area to process.

For a multi-area file, PRINT SPACE prints a report for each area or portion of an area
contained in the file.

Syntax: The complete syntax for the PRINT SPACE utility is shown below. The
descriptions for only the AREA and FILE parameters are provided. For a description
of the complete syntax, see CA-IDMS Utilities.

��─── PRINT SPACE ──�

┌─────────── , ────────────┐

 �─── FOR ─┬─ AREA ─↓─ segment-name.area-name ─┴────┬─────────────────────────�

 │ ┌────── , ───────┐ │

├─ SEGMENT ─↓─ segment-name ─┴───────────┤

 │ ┌─────────── , ────────────┐ │

└─ FILE ────↓─ segment-name.file-name ─┴─┘

 �─┬───────────┬───��

└─ FULL ────┘

 Parameters

FOR AREA
Directs the PRINT SPACE utility to report on space utilization in one or more
areas. This option produces a report for the entire area plus a report for each file
in the area.

segment-name
The name of the segment associated with the area.

area-name
The name of the area.

FOR FILE
Directs the PRINT SPACE utility to report on space utilization for each area or
portion of an area contained in the file. This option always produces a full report,
whether or not you specify the FULL parameter.

4-14 CA-IDMS Release 14.0 Features Guide

4.4 Utility enhancements

segment-name
The name of the segment associated with the file.

file-name
The name of the file.

Authorization: To use the PRINT SPACE BY FILE option, you need DBAREAD
authority for each area in the file.

 Usage

Logically-deleted records and reports: PRINT SPACE BY FILE sequentially reads
the files, letting you include only the files in the JCL stream that you want to process.

When you use this option, PRINT SPACE does not report relocated logically-deleted
records as logically deleted. These records are reported as normal records. Therefore,
record space utilization reports for an area can produce different results when com-
pared to the file report for the same page range.

Chapter 4. CA-IDMS/DB and CA-IDMS/DC 4-15

4.5 Date and Year 2000 support in DISPLAY/PUNCH statements

4.5 Date and Year 2000 support in DISPLAY/PUNCH
statements

With this release, you can use date selection criteria as well as year 2000 support in
DISPLAY ALL statements to display dictionary, database, SQL, and security entities.

You implement date selection criteria in these WHERE clause options:

 ■ DATE CREATED

■ DATE LAST UPDATED

■ DATE COMPILED (in IDD)

■ DATE LAST CRITICAL CHANGE (in physical database statements)

You can specify the date as a value-comparison string in the form 'MM/DD/YY' in the
right-hand side of the conditional expression. CA-IDMS extracts it in CCMMDDYY
form to accurately determine the relationship of dates. For example, this DISPLAY
ALL statement:

DISPLAY ALL RECORDS WHERE DATE CREATED > '01/01/96'.

establishes a search criteria to identify the RECORD whose DATE CREATED values
are greater than the specified string. The DISPLAY ALL process determines that the
date '01/01/96' is greater than the date '12/31/95'.

Alternatively, you may specify the value-comparison string on either side of the condi-
tional expression in the form 'CCYYMMDD' to achieve the same results.

You can also substitute day, month, or year for each of these WHERE clause options.
For example, this DISPLAY ALL statement specifies a search condition that is based
on month and year:

DISPLAY ALL RECORDS

WHERE MONTH CREATED = '01'

AND YEAR CREATED > '95'.

4-16 CA-IDMS Release 14.0 Features Guide

4.6 Security enhancements

 4.6 Security enhancements

With Release 14, CA-IDMS provides these new security enhancements:

■ Default signon and user ID options in RHDCSRTT

■ DISPLAY/PUNCH ALL syntax for security definitions

■ User ID verification for LU6.2/APPC applications

Each topic is described in detail below.

4.6.1 Default signon and user ID options in RHDCSRTT

DFLTSGN parameter: You can now specify the default signon CA-IDMS is to use
when a security check is issued and the terminal operator has not signed on using a
new DFLTUID parameter in the #SECRTT macro.

Previously, if the DFLTSGN parameter was enabled (set to YES), the following
default signons were used:

■ For VTAM terminals, the VTAM node name

■ For non-VTAM terminals, the physical terminal name (PTERM ID) or the logical
terminal name (LTERM ID) if no physical terminal existed

These defaults could be overridden using two Release 12.01 optional APARs
(TE20067 and TE20080). The APARs let you override the enabled default signon by
specifying either one of the following:

■ An explicit user ID (TE20067)

■ For users working from VTAM terminals, a PTERM ID (TE20080) instead of the
VTAM node name

DFLTUID parameter: Use the DFLTUID parameter to specify the default user ID
that CA-IDMS is to use to signon when the DFLTSGN parameter is set to YES, a
security check is issued, and the terminal operator has not signed on.

You can specify an explicit user ID or a maximum of three list options:
(VTAMNODE, PTERMID, or LTERMID). The sequence in which the list options are
specified is not meaningful; the presence of an option determines the way CA-IDMS
selects the default signon. If none of the options in the list can satisfy a request (i.e.,
LTERMID is not specified and the PTERM is not available), then a default signon is
not performed.

EXTRUID parameter: For sites that do not have an external security system, you
can use the EXTRUID parameter to extract the user ID for the #SECRTT macro call.
During the security system initialization phase, CA-IDMS issues an extract call to the
external security system to retrieve the current user ID. If no external security system
is available, no user ID can be extracted. This parameter allows sites without an

Chapter 4. CA-IDMS/DB and CA-IDMS/DC 4-17

4.6 Security enhancements

external security system to extract a user ID, which can be used by all startup and
shutdown autotasks to signon.

Syntax: The syntax for the #SECRTT macro is shown below, following by
descriptions of the DFLTSGN, DFLTUID, and EXTRUID parameters. For a
description of the other syntax parameters, see CA-IDMS Security Administration.

Note: The SVCNUM parameter is now required; it used to be optional.

��─── #SECRTT TYPE=INITIAL ───�

 �─┬───────────────────────────────────┬──────────────────────────────────────�

└─ ,ENVNAME= ─┬─ environment-name ─┬┘

└─ NULL ← ───────────┘

 �─┬───────────────────────────────┬──�

└─ ,SGNRETN= ─┬─ time-interval─┬┘

└─ OFF ← ────────┘

 �─┬──�

└─ ,SYSPROF= ─── (──┬─ OFF ──────────┬─┬────────────────┬─) ─────────────�

├─ NULL ─────────┤ └─ , ─┬─ ON ─────┤

├─ USER ─────────┤ └─ OFF ← ──┘

├─ GROUP ────────┤

├─ SYSTEM ───────┤

├─ DEFAULT ← ────┤

└─ profile-name ─┘

 �─┬──�

└─ ,USRPROF= ─── (──┬─ OFF ──────────┬─┬────────────────┬─) ─────────────�

├─ NULL ─────────┤ └─ , ─┬─ ON ─────┤

├─ USER ← ───────┤ └─ OFF ← ──┘

├─ GROUP ────────┤

├─ SYSTEM ───────┤

└─ profile-name ─┘

 �─┬────────────┬────────┬──�

└─ ,DFLTSGN= ├─ YES ──┤

└─ NO ← ─┘

 �─┬──┬─────────────────────────�

└─ ,DFLTUID= ──┬───────── user-identifier ─────┬─┘

│ ┌─────── , ───────┐ │

└─ (─↓─┬─ VTAMNODE ──┬─┴──) ──┘

├─ PTERMID ───┤

└─ LTERMID ───┘

 �─┬──────────────────────────────┬───�

└─ ,EXTRUID= user-identifier ──┘

 �─ ,SVCNUM= svc-number ──��

 Parameters

DFLTUID=
Specifies the default signon CA-IDMS is to use when the DFLTSGN parameter is
enabled, a security check is issued, and the terminal operator has not signed on.
Specify a user-identifier or a list of up to three ID options in parentheses. If
DFLTSGN=YES, and you don't specify DFLTUID parameters, the default is the
same as it was in Release 12.01: (VTAMNODE,PTERMID,LTERMID).

4-18 CA-IDMS Release 14.0 Features Guide

4.6 Security enhancements

user-identifier
Specifies the default signon as an unquoted literal from 1- through 18- characters
in length.

VTAMNODE
Specifies that for VTAM terminals, the VTAM node name is used as the default
signon.

PTERMID
Specifies that the PTERM ID is used as the default signon, if the PTERM is avail-
able and the option has not been satisfied by the VTAMNODE parameter
(non-VTAM terminals, or VTAMNODE not specified for VTAM terminals).

LTERMID
Specifies that the LTERM ID is used as the default signon, if the option has not
been satisfied by the VTAMNODE or PTERMID parameters.

EXTRUID=
Specifies the extract user ID that can be used at sites that do not have an external
security system. User-identifier is an unquoted literal from 1- to 18-characters.
This parameter is not available for BS2000 sites; BS2000 sites can use the
CV-USER BS2KSTAR parameter instead.

Note: This parameter replaces the optional APAR GS48846 that was available
for releases 12.0 and 12.01.

Usage: If you are using optional APAR TE20067, and you want to activate it in
Release 14.0, specify a #SECRTT with DFLTSGN=YES,DFLTUID=user-identifier
parameters. If you are using optional APAR TE20080, and you want to activate it in
Release 14.0, specify a #SECRTT with
DFLTSGN=YES,DFLTUID=(PTERMID,LTERMID) parameters.

4.6.2 DISPLAY/PUNCH ALL syntax for security definitions

In addition to using DISPLAY and PUNCH syntax for specific resource definitions in
a CA-IDMS security database, you can now issue either a DISPLAY ALL or PUNCH
ALL statement for an entity type to display or punch all occurrences defined within
that entity type. For example, you can issue a DISPLAY ALL RESOURCE AREAS
to see the security definitions for all areas secured in a security database. You can
also select occurrences of an entity type to display or punch by specifying:

 ■ Conditional expressions

■ First occurrence of the entity type

■ Last occurrence of the entity type

■ A specific number of occurrences

Choosing which entity occurrences to display: The DISPLAY and PUNCH
ALL syntax supports a variety of selection criteria to select occurrences to DISPLAY
or PUNCH. You can use a conditional expression with boolean criteria to select
occurrences, including a mask comparison. The mask comparison supports the use of

Chapter 4. CA-IDMS/DB and CA-IDMS/DC 4-19

4.6 Security enhancements

different keywords for each entity type. A table of keywords by entity type is pre-
sented under the "Usage" section later in this chapter.

Issue statements from CA-IDMS Command Facility: You can issue
DISPLAY/PUNCH statements from either the Online (OCF) or Batch (BCF)
Command Facility.

4.6.2.1 DISPLAY and PUNCH ALL statement syntax

The complete syntax and parameter descriptions are shown below. For more informa-
tion on defining and using security definitions and on the DISPLAY and PUNCH
statements for entity types, see CA-IDMS Security Administration.

 Syntax

��─┬─ DISplay ─┬─┬── ALL ──────────────────────────┬─ entity-type ────────────�

└─ PUNch ───┘ └─┬─ FIRst ─┬──┬────────────────┬─┘

└─ LASt ──┘ ├─ 1 ← ──────────┤

└─ entity-count ─┘

 �─┬────────────────────────────────┬───�

└─ WHEre conditional-expression ─┘
 �─┬────────────────────────┬───�

└─ VERB ─┬─ DISplay ← ─┬─┘

 ├─ PUNch ────┤

├─ CREate ────┤

 ├─ ALTer ────┤

 └─ DROp ────┘

 �─┬─────────────────────┬──�

└─ AS ─┬─ COMments ─┬─┘

└─ SYNtax ───┘

Expansion of conditional-expression

��─┬─ mask-comparison ────────────────────────┬───────────────────────────────�
├─ value-comparison ───────────────────────┤
└─┬───────┬─ (─┬─ mask-comparison ──┬─) ─┘

└─ NOT ─┘ └─ value-comparison ─┘

 �─┬──┬─────────────��

│ ┌──┐ │

└─↓─┬─ AND ─┬─┬─ mask-comparison ────────────────────────┬─┴─┘
└─ OR ──┘ ├─ value-comparison ───────────────────────┤

└─┬───────┬─ (─┬─ mask-comparison ──┬─) ─┘
└─ NOT ─┘ └─ value-comparison ─┘

Expansion of mask-comparison

��─── entity-option-keyword ──�

 �─┬─ CONTAINs ─┬─ 'mask-value' ──��

└─ MATCHES ──┘

Expansion of value-comparison

4-20 CA-IDMS Release 14.0 Features Guide

4.6 Security enhancements

��─┬─ 'character-string-literal' ─┬───�

├─ numeric-literal ────────────┤

└─ entity-option-keyword ──────┘

 �─┬─ IS ─┬───────┬─────────┬─┬─ 'character-string-literal' ─┬────────────────��

│ └─ NOT ─┘ │ ├─ numeric-literal ────────────┤

├─ NE ───────────────────┤ └─ entity-option-keyword ──────┘

└─┬───────┬─┬─┬─ EQ ─┬─┬─┘

└─ NOT ─┘ │ └─ = ──┘ │

├─┬─ GT ─┬─┤

│ └─ > ──┘ │

├─┬─ LT ─┬─┤

│ └─ < ──┘ │

├─ GE ─────┤

└─ LE ─────┘

 Parameters

entity-type
Identifies the entity type that is the object of the request. Valid values are listed
in the table in the "Usage" section below.

ALL
Lists all occurrences of the requested entity type that the current user is authorized
to display.

Online users: With a large number of entity occurrences, ALL may slow
response time.

FIRst
Lists the first occurrence of the named entity type.

LASt
Lists the last occurrence of the named entity type.

entity-count
Specifies the number of occurrences of the named entity type to list. 1 is the
default.

entity-type
Identifies the entity type that is the object of the DISPLAY/PUNCH ALL request.
Valid values appear in the table under "Usage" below.

VERB DISplay/PUNch/CREate/ALTer/DROp
Specifies the verb that is to accompany DISPLAY/PUNCH output. DISPLAY is
the default.

AS SYNtax
Specifies that the text output by the DISPLAY/PUNCH verb is to appear as
syntax. In an online session, text displayed as syntax can be edited and resub-
mitted to the command facility. If the PUNCH command is issued in batch mode,
the batch command facility directs the output to the SYSPCH file, where it can be
edited and subsequently resubmitted.

AS COMments
Specifies that the text output by the DISPLAY/PUNCH verb be formatted as com-
ments; comments are preceded by *+ and are ignored by the command facility.

Chapter 4. CA-IDMS/DB and CA-IDMS/DC 4-21

4.6 Security enhancements

WHEre conditional-expression
Specifies criteria to be used in selecting occurrences of the requested entity type.

The outcome of a test for the condition determines which occurrences of the
named entity type are displayed.

mask-comparison
Compares an entity type operand with a mask value.

entity-option-keyword
Identifies the left operand as a syntax option associated with the named entity
type. The table under "Usage" below lists valid options for each entity type.

CONTAINs
Searches the left operand for an occurrence of the right operand. The length
of the right operand must be less than or equal to the length of the left
operand. If the right operand is not contained entirely in the left operand, the
outcome of the condition is false.

MATCHES
Compares the left operand with the right operand one character at a time,
beginning with the leftmost character in each operand. When a character in
the left operand does not match a character in the right operand, the outcome
of the condition is false.

'mask-value'
Identifies the right operand as a character string; the specified value must be
enclosed in quotation marks. Mask-value can contain the following special
characters:

value-comparison
Compares values contained in the left and right operands based on the specified
comparison operator.

'character-string-literal'
Identifies a character string enclosed in quotes.

numeric-literal
Identifies a numeric value.

entity-option-keyword
Identifies a syntax option associated with the named entity type; valid options
for each entity type are listed in the table presented under "Usage" below.

IS
Specifies that the left operand must equal the right operand for the condition
to be true.

@ Matches any alphabetic character in entity-option-keyword.

Matches any numeric character in entity-option-keyword.

* Matches any character in entity-option-keyword.

4-22 CA-IDMS Release 14.0 Features Guide

4.6 Security enhancements

NE
Specifies that the left operand must not equal the right operand for the condi-
tion to be true.

EQ/=
Specifies that the left operand must equal the right operand for the condition
to be true.

GT/>
Specifies that the left operand must be greater than the right operand for the
condition to be true.

LT/<
Specifies that the left operand must be less than the right operand for the
condition to be true.

GE
Specifies that the left operand must be greater than or equal to the right
operand for the condition to be true.

LE
Specifies that the left operand must be less than or equal to the right operand
for the condition to be true.

NOT
Specifies that the opposite of the condition fulfills the test requirements. If NOT
is specified, the condition must be enclosed in parentheses.

AND
Indicates the expression is true only if the outcome of both test conditions is true.

OR
Indicates the expression is true if the outcome of either one or both test conditions
is true.

 4.6.3 Usage

Output contains only enough information to display/punch entity: Output
produced by DISPLAY or PUNCH ALL consists only of the information necessary to
execute a DISPLAY/PUNCH request for each entity occurrence. For example,
Resource DMCL occurrences are displayed with their name, and AREA occurrences
with their fully qualified name (i.e., segmentname.areaname). In an online session, the
user can execute the displayed statements by pressing [Enter]. This two-step process
allows the user to scan the names of entity occurrences related to the database in
which the statement is issued.

Valid entity types and option keywords for conditional expressions: The fol-
lowing table lists valid entity types and keywords that you can specify as entity-type
and entity-option-keyword in the DISPLAY ALL and PUNCH ALL syntax.

Chapter 4. CA-IDMS/DB and CA-IDMS/DC 4-23

4.6 Security enhancements

Entity type Entity-option keyword Selects based on

All Security components

NAMe

FULl NAMe

RESource NAMe

CREated by

PREpared by

LASt UPDated by

REVised by

DATe last UPDated

MONth last UPDated

DAY last UPDated

YEAr last UPDated

DATe CREated

MONth CREated

DAY CREated

YEAr CREated

Unqualified Name (1)

Qualified Name (1)

Unqualified Name

 (Resources only) (1)

User who created occurrence

User who created occurrence

User who last updated

 occurrence

User who last udpated

 occurrence

Date (MM/DD/YY) occurrence

 last updated

Month occurrence last updated

Day occurrence last updated

Year occurrence last updated

Date (MM/DD/YY) occurrences

 created

Month occurrence created

Day occurrence created

Year occurrence created

Global Security components

GROups GROup name

STAtus

Name (ID) of Group

Status of GROUP

 (ACTIVE, INACTIVE,

 LOGICALLY DELETED)

USErs USEr name

STAtus

FULl NAMe

PROfile

Name (ID) of User

Status of USER

 (ACTIVE, INACTIVE,

 LOGICALLY DELETED)

Full Name of User

Profile assigned to User

USEr PROfiles
USEr PROfile name

PROfile name Profile Name

Profile Name

Physical Database Security components

RESource AREas resource AREa NAMe

SEGment name

Unqualified AREA name (1)

Areas's segment name

RESource DBs resource DB NAMe Name of Database

RESource

 DBTables

resource DBTable NAMe Name of DBTable

RESource DMCls resource DMCL NAMe Name of DMCL

RESource NONsql

 SCHEmas

resource NONSQL

 SCHEma NAME

Name of NON SQL Schema

SQL Security Components

4-24 CA-IDMS Release 14.0 Features Guide

4.6 Security enhancements

Entity type Entity-option keyword Selects based on

RESource ACCess

 MODules

 or

RESource AMS

resource ACCess

 MODule NAMe

resource AM NAMe

AM NAMe

SCHema name

Unqualified Name of

Access Module (1)

Unqualified Name of

Access Module (1)

Unqualified Name of

Access Module (1)

Schema Name of Access Module

RESource SCHemas resource SCHema NAMe Name of SQL Schema

RESource TABles resource TABle NAMe

SCHema NAMe

Unqualified Name of Table (1)

Schema Name of Table

System Security Components

RESource

 ACTivities

resource ACTivity name

NUMber

Name of Activity

Activity Number

RESource

 CATegories

resource CATegory NAMe

NUMber

Name of Category

Category Number

RESource SYStems resource SYStem NAMe Name of System

SYStem PROfiles system PROfile NAMe Profile Name

The following Resource Category Components can be selected using the specified
entity-option keyword (in addition to those specified in Resource Categories above).

RESource CATegory

 ACCess MODules

 or

RESource CATegory

 AMS

ACCess MODule name

DICTName

DICtionary name

SCHema name

Unqualified Access Module

 Name (1)

Dictionary Name

Dictionary Name

SQL Schema Name

RESource

 category

LOAd MODules

LOAd MODule name

DICTName

DICtionary name

Version

Unqualified Load Module

 Name (1)

Dictionary Name

Dictionary Name

Version Number

 (in Vnnnn format)

RESource

 category

 PROgrams

PROgram name

FILe name

Version

Unqualified Program name

File Name (CDMSLIB)

Version Number

 (in Vnnnn format)

RESource

 category

 QUEues

QUEue name Name of Queue

RESource

 category

 RUNunits

RUNunit name

DATabase NAMe

DBName

SUBschema name

PROgram name

Unqualified Rununit name (1)

Database Name

Database Name

Subschema Name

Program Name

RESource

 category

 TASks

TASk name Name of task

Chapter 4. CA-IDMS/DB and CA-IDMS/DC 4-25

4.6 Security enhancements

Fully qualified names of security components: The fully qualified names of secu-
rity components are listed in the table that follows.

For all other security components, unqualified and qualified names are the same.

Date and Year 2000 support: You can use date selection criteria as well as year
2000 support in DISPLAY/PUNCH ALL statements to display security entities.

You implement date selection criteria in these WHERE clause options:

 ■ DATE CREATED

■ DATE LAST UPDATED

You can specify the date as a value-comparison string in the form 'MM/DD/YY' in the
right-hand side of the conditional expression. CA-IDMS extracts it in CCMMDDYY
form to accurately determine the relationship of dates. For example, this DISPLAY
ALL statement:

DISPLAY ALL USERS WHERE DATE CREATED > '01/01/96';

establishes a search criteria to identify the USERS whose DATE CREATED values are
greater than the specified string. The DISPLAY ALL process determines that the date
'01/01/96' is greater than the date '12/31/95'.

Alternatively, you may specify the value-comparison string on either side of the condi-
tional expression in the form 'CCYYMMDD' to achieve the same results.

Entity type Entity-option keyword Selects based on

(1) Unqualified name selections are based on the primary name of the entity occur-
rence only. To select based on the fully qualified occurrence name, token FULL
NAME must be specified. Security components with qualified names are specified in
the table below.

Resource Fully qualified name

ACCESS MODULE schema-name.access-module-name

AREA segment-name.area-name

TABLE schema-name.table-name

CATEGORY ACCESS MODULE dictname.schema-name. access-module-name

CATEGORY LOAD MODULE dictname.Vnnnn.load-module-name

CATEGORY RUNUNIT dbname.subschema-name.program-name

CATEGORY PROGRAM CDMSLIB.program-name or
Vnnnn.program-name

4-26 CA-IDMS Release 14.0 Features Guide

4.6 Security enhancements

You can also substitute day, month, or year for each of these WHERE clause options.
For example, this DISPLAY ALL statement specifies a search condition that is based
on month and year:

DISPLAY ALL RESOURCE AREAS

WHERE MONTH CREATED = '01'

AND YEAR CREATED > '95';

Default order of precedence applied to logical operators: Conditional expressions
can contain a single condition, or two or more conditions combined with the logical
operators AND or OR. The logical operator NOT specifies the opposite of the condi-
tion. The command facility evaluates operators in a conditional expression one at a
time, from left to right, in order of precedence. The default order of precedence is as
follows:

■ MATCHES or CONTAINS keywords

■ EQ, NE, GT, LT, GE, LE operators

 ■ NOT

 ■ AND

 ■ OR

If parentheses are used to override the default order of precedence, the command
facility evaluates the expression within the innermost parentheses first.

 4.6.4 Example

The following examples show sample DISPLAY statements for security definitions.

DISPLAY ALL GROUPS WHERE STATUS IS 'ACTIVE'

OCF 14.0 ONLINE IDMS NO ERRORS 1/8

DISPLAY ALL GROUPS WHERE STATUS IS 'ACTIVE'

U+ Status = 0 SQLSTATE = 00000

U+ DISPLAY GROUP "TESTGROUP" ;

U+ DISPLAY GROUP "PUBLIC" ;

U+ DISPLAY GROUP "MIS" ;

U+ DISPLAY GROUP "HR" ;

U+ DISPLAY GROUP "ACCOUNTING" ;

U+ I DC601157 NO MORE ENTITY OCCURRENCES FOUND WORD 1

DISPLAY ALL USERS WHERE USER NAME MATCHES 'SP'

OCF 14.0 ONLINE IDMS NO ERRORS 1/4

DISPLAY ALL USERS WHERE USER NAME MATCHES 'SP'

U+ Status = 0 SQLSTATE = 00000

U+ DISPLAY USER "SPILL01" ;

U+ DISPLAY USER "SPANL01" ;

U+ I DC601157 NO MORE ENTITY OCCURRENCES FOUND WORD 1

Chapter 4. CA-IDMS/DB and CA-IDMS/DC 4-27

4.6 Security enhancements

4.6.5 Verifying signons for APPC applications

For applications using the LU6.2/APPC protocol, this release offers the ALREADY
VERIFIED parameter on the system generation PTERM statement. The ALREADY
VERIFIED parameter determines if a user ID has already been verified by the
requesting system.

Syntax: The complete syntax for the TYPE IS system generation statement for
VTAMLU PTERMs is shown below. Only the description of the ALREADY VERI-
FIED parameter is provided. For a description of the complete syntax, see CA-IDMS
System Generation.

��─── TYPe is ─┬─┬─ LU ───┬─┬────────────────────────┬───────────────────────�

│ └─ LU62 ─┘ ├─ ALReady ─┬─ VERified ─┤

│ └─ NOT ← ───┘ │

├─ 3600LU ────────────────────────────┤

├─ 3600PL ────────────────────────────┤

└─ 3614 ──────────────────────────────┘

 �─┬───────────────┬──�

├─ ACQuire ─────┤

 └─ NOAcquire ─┘

 �─┬──────────────────────────────┬───�

└─ CONtention is ─┬─ WINner ─┬─┘

├─ LOSer ──┤

 └─ OFF ──┘

 �─┬────────────┬───�

├─ HOLd ─────┤

 └─ NOHold ─┘

 �─┬───────────────────────┬──�

└─ INFmh is ─┬─ YES ──┬─┘

 └─ NO ─┘

 �─┬──┬─────────────────────────────�

└─ LIMit on input is ─┬─ 0 ──────────────┬─┘

└─ input-limit-size ─┘

 �─┬────────────────────────────────┬───�

├─ MODeent is vtam-modeent-name ─┤

 └─ NOModeent ──────────────────┘

 �─┬────────────────────────────────┬───�

└─ NAMe is vtam-minor-node-name ─┘

 �─┬───────────────────────────────────┬──────────────────────────────────────�

└─ OUTfmh is ─┬─ 'hex-fm-header' ─┬─┘

 └─ NO ────────────┘

 �─┬───────────────┬──�

├─ RELease ─────┤

 └─ NORELease ─┘

 �─┬────────────────────────────────┬───��

└─ SYNclevel is ─┬─ CONfirm ───┬─┘

├─ SYNcpoint ─┤

├─ NONe ──────┤

 └─ OFF ─────┘

4-28 CA-IDMS Release 14.0 Features Guide

4.6 Security enhancements

 Parameters

ALReady VERified/NOT
For VTAMLU types LU and LU62, determines whether the requesting system has
verified the user ID. The default is NOT.

Chapter 4. CA-IDMS/DB and CA-IDMS/DC 4-29

4.7 Using LE/370-compliant language compilers with CA-IDMS/DC

4.7 Using LE/370-compliant language compilers with
CA-IDMS/DC

What is LE/370?: LE/370 is a runtime environment that replaces the language-
specific runtime environments that existed previously. For example, PL/I had it's own
runtime environment; COBOL II had another. CA-IDMS Release 14.0 can execute
programs that use the LE/370 runtime environment. It can also execute programs
compiled with pre-LE/370 programs that use the LE/370 runtime environment.

Note: This section applies only to runtime support in CA-IDMS/DC. It does not
apply to batch or CICS programs that access CA-IDMS.

How can you use LE/370 with CA-IDMS/DC?: To execute programs compiled
by a LE/370-compliant compiler in CA-IDMS, follow these steps to bring up your
CA-IDMS environment:

1. Ensure that the CA-IDMS system has been generated with a 24-bit reentrant pool
(or program pool, if no reentrant pool is generated) that is large enough to contain
the IBM-supplied LE/370 application program interface module CEEPIPI. The
size of this module is approximately 325K.

2. Include the LE/370 runtime load libraries in the CDMSLIB loadlib concatenation
before any other IBM language loadlibs you are using. For example, before
COBOL II or PL/I 2.3.

4.7.1 Considerations about LE/370 runtime

Running pre-LE/370 programs: There are restrictions that apply when you run
pre-LE/370 programs in a LE/370 runtime environment within CA-IDMS/DC.
Pre-LE/370 programs are programs that were compiled with a non-LE/370 compliant
compiler, such as:

■ COBOL II V4.0

 ■ PL/I V2.3

Some of these restrictions are already documented in the CA-IDMS DML language
manuals. Additional restrictions with this release are:

■ Pre-LE/370 programs have to run without storage protection

■ Restrictions mentioned in the IBM documentation (for example, the IBM
COBOL/370 Migration Guide) apply

Note: Running pre-LE/370 programs with LE/370 runtime can degrade performance
in some circumstances. If you notice poor performance, you should consider
recompiling the programs with the newer compiler.

Running LE/370 programs: LE/370 programs are programs that were compiled
with a LE/370-compliant compiler. CA-IDMS/DC supports these LE/370-compliant
compilers:

4-30 CA-IDMS Release 14.0 Features Guide

4.7 Using LE/370-compliant language compilers with CA-IDMS/DC

 ■ COBOL/370 V1R1

■ IBM COBOL for MVS & VM V1R2

■ PL/I for MVS & VM V1R1

Note: We do not support LE/370-compliant assembler or C programs.

4.7.2 Running LE/370-compliant compiler programs under
CA-IDMS/DC

This section describes what you need to do to run a program compiled with a
LE/370-compliant compiler in CA-IDMS/DC.

General preparation: The following steps describes how to prepare
LE/370-compiled programs for use the CA-IDMS/DC:

Note: If you site does not have site-specific modifications to CEEBINT, the high-
level language user exit member, skip steps 1 and 2.

1. If you must make site-specific modifications to CEEBINT, you must replace the
default version of CEEBINT supplied by IBM with the CEEBINT source module
in the CA-IDMS SMP PPOPTION library and use it as the basis for any site-
specific modifications.

2. Link-edit the updated CEEBINT with CA-IDMS modules IDMSBALI and
RHDCLENT. Name the resulting load module RHDCLINT and put it in a load
library accessible to the LE/370-compliant language compiler. You can use a
JCLIN type USERMOD to modify the RHDCLINT module installed into the
CA-IDMS SMP target library.

3. The RHDCLINT load module delivered by CA or the one modified in steps 1 and
2 above, must be included in the link edit of every LE/370-compiled program that
is to run on a CA-IDMS system, including database or table procedures. The
RHDCLINT module is compatible with batch programs, so the same load module
can be used for database procedures in batch or under the central version.

Note: You do not need to link-edit the RHDCLINT module for VS-COBOL,
VS-COBOL II, or PL/I 2.3 programs that run in a LE/370 online run-time
environment.

Application-specific preparation: Include the IDMSCOBI module in the link-
edit for COBOL programs. Include the IDMSPLI module in the link edit the PL/I
programs.

For each application, you may need to adapt and assemble the IBM-supplied
CEEUOPT module. Use this module as the basis for modifying the application-
specific runtime options module. This member assumes that the default has been
accepted for all parameters not specified. Required settings for CA-IDMS/DC are:

TERMTHDACT=(QUIET)

TRAP=(ON)

INTERRUPT=(OFF)

POSIX=(OFF)

Chapter 4. CA-IDMS/DB and CA-IDMS/DC 4-31

4.7 Using LE/370-compliant language compilers with CA-IDMS/DC

We strongly recommend that you use smaller values than the default ones for the
various heap (e.g. ANYHEAP, BELOWHEAP, HEAP) and stack (e.g. LIBSTACK,
STACK) parameters since these are allocated on a task thread basis. Use the output
generated by the RPTSTG option to tune these values. CA-IDMS/DC ignores the
MSGFILE assignment and sends output to the CA-IDMS log. All other CEEUOPT
parameters may be modified as needed. When modifications are complete, consult the
section "Creating an Application-Specific Run-Time Options Module" in IBM's LE/370
Installation and Customization Manual for further details.

4.7.3 Supported LE/370 functions

CA-IDMS/DC supports these LE/370 functions:

 ■ Math services

■ Date and time services

■ National language support services

CA-IDMS/DC also supports storage management services, but for performance
reasons, they are not recommended. The storage management services are:

■ CEECRHP: Create heap segment

■ CEECZST: Re-allocate (change size of) heap storage

■ CEEDSHP: Discard heap segment

■ CEEFRST: Free heap storage

■ CEEGTST: Get heap storage

4.7.4 Unsupported LE/370 functions

CA-IDMS/DC does not support the following LE/370 functions:

■ CEE3PRM: Get exec parms

■ CEETDLI: Call IMS

■ CEETEST: Invoke debugging environment

4.7.5 COBOL 370 support

CA-IDMS/DC supports the COBOL/370 V1R1 and IBM COBOL for MVS and VM
V1R2 compilers. For both compilers, it supports these features:

■ Reentrancy, XA support, static and dynamic calls, optimizer,
STRING/UNSTRING/INSPECT, compiler options, COBPACKs, and COBOL
II-supported features.

■ Execution-time options and space management tuning, as described under LE/370
runtime options above.

4-32 CA-IDMS Release 14.0 Features Guide

4.7 Using LE/370-compliant language compilers with CA-IDMS/DC

CA-IDMS/DC does not support features that were not supported by COBOL II or by
the ENVIRONMENT DIVISION clause WITH DEBUGGING MODE.

Chapter 4. CA-IDMS/DB and CA-IDMS/DC 4-33

4.8 IDMSIOX2 DB Exit

4.8 IDMSIOX2 DB Exit

This release offers a new DB exit that IDMSDBIO can call when it detects an I/O
error, after an I/O has completed, or before issuing certain calls or commands.

 Entry Point:: IDMSIOX2

Link Edit with:: IDMSDBIO

Description:: IDMSDBIO calls this routine when it detects an I/O error, after an
I/O has completed (even when completed from the cache), or prior to issuing:

■ A file open command

■ A file close command

■ An I/O call (Both Read and Write)

■ A #WAIT/CHECK on an I/O call

This exit is NOT called for native VSAM files.

Sample uses:: You can use this exit:

■ In place of or in addition to the exits: IDMSDPLX, IDMSJNL2, and IDMSIOXT.

■ To maintain a duplicate database and/or journal file.

■ To capture I/O statistics.

■ To replace the normal I/O calls that CA-IDMS issues with I/O calls issued by the
exit.

Calling the exit:: This exit uses standard CA-IDMS/DC system mode calling con-
ventions. Use a #CALL statement to call this exit. You must compile the exit with
the #MOPT ENV=SYS macro. The entry point must be defined using a #START
macro and control returned using a #RTN macro.

You should code the #START macro with the MPMODE=CALLER option to reduce
call overhead and to preserve the current MPMODE lock, if any, that may be held by
the current task.

Using the exit with XA systems:: On XA systems, the exit is called in Amode
31. If the exit issues CA-IDMS/DC calls or when the control is returned, the same
Amode must be in effect.

Using the exit in mulitasking systems:: In a multitasking system, it is the exit's
responsibility to establish affinity on the correct TCB before issuing OPEN and
CLOSE macros. You can use the #AFFINTY macro for this.

4-34 CA-IDMS Release 14.0 Features Guide

4.8 IDMSIOX2 DB Exit

The only resources locked for the current task (TCE) are the storage owned by the
current task, and in the case of an open or close call, the FCB/JCB. It is the responsi-
bility of the exit to control concurrent access to other resources.

To avoid putting CA-IDMS/DC into an opsys wait use the #WAIT macro on an ECB
before doing any opsys function that may wait on that ECB.

Shared or dataspace cache:: If a file is defined to be in a shared cache (Parallel
Sysplex environment) or dataspace cache, IDMSDBIO continues to read from and
write to the cache even if the physical I/O is suppressed by the exit. Depending on
how you use the exit, this may or may not be desirable. For instance I/O's written to a
shadow file should not be written to a shared cache because that could corrupt the
primary file through another CV, but writing the same I/O's to a non-shared dataspace
cache may be desirable. It is the responsibility of the exit to disable undesirable
caching at open time. You can do this by setting the correct flags in #IOX2DS param-
eter list.

Pages in cache buffer:: If a page being read is in a cache buffer, the physical I/O
is bypassed. As a result, the calls to the Pre-Read and Pre-Read-Check exits is not
made. However the Post-Read exit is called with a flag set in the parameter list indi-
cating this condition.

Prefetch enabled:: When Prefetch is enabled for a file, multiple reads may be
issued for a file before a CHECK is done. The work storage associated with an I/O
on the Pre-Read exit remains constant for the pre-read and post-read calls for the same
I/O, but other storage could change.

The Pre-Read exit precedes IDMSQSAM processing. If the Read is suppressed, it
bypasses IDMSQSAM processing as well as the normal Read. If IDMSQSAM finds
the record, the Pre-Check exit is still called, but the I/O on the primary file will have
completed. If IDMSQSAM is enabled and the IOX2 exit is waiting on any I/O, it may
negate the benefits of IDMSQSAM.

When I/O to a primary file does not require a check macro to be issued, for example,
VSAM under DOS or QSAM, the Pre-Check exit is called anyway. In this case, a
flag is set in the IOX2 parameter list indicating that the I/O is complete.

User anchor words:: The exit is provided with an address of a work field at the
system level, another at the file level, and a third at the I/O level. The exit should not
rely on any of these work fields residing in a particular control block. The exit should
use the addresses provided in the parameter list.

We recommend that the work fields at the system level and the file level be used with
the following rules:

■ The word is used to anchor storage, not to store data.

■ The storage should contain an 8-byte prefix:

– CL4'xxxx' — An eyecatcher unique to the storage.

Chapter 4. CA-IDMS/DB and CA-IDMS/DC 4-35

4.8 IDMSIOX2 DB Exit

– A(0) — A "next" address for future storage.

– 0X — User fields would follow.

■ The first exit would anchor its storage in the word provided by the exit. If
another exit also needed to anchor storage at the same level, it would follow the
chain of user storage blocks and chain its storage to the last block in the chain.

■ The four-byte eyecatcher should be unique to each block of storage, so an exit can
identify its own storage.

■ Once allocated a storage block should not be deleted, as this could break the
chain.

The I/O level work field remains constant for the life of an I/O, but it is not guaran-
teed to last beyond the Post-I/O exit call. So you should not use this field to chain
storage as you would with the more permanent work fields. The concern is that as
storage comes, goes, and is reused, it is difficult to maintain a reliable chain.

You should not issue #GETSTG statements for each I/O call because this can affect
performance.

Register usage:: Standard IDMS/DC conventions:

■ R15/R14 contain entry point and return addresses. These are automatically
handled by the #START and #RTN macros.

■ R15 — On Exit must contain a return code value.

■ R13 — Current stack pointer.

■ R12 — Base register for exit after #START.

■ R11 — A register automatically saved across DC calls.

■ R10 — CSA - Do not modify.

■ R9 — TCE - Do not modify.

■ R8 — R2 — Available. They were saved prior to calling IDMSIOX2; no guar-
antee as to content.

■ R1 — Parameters - On entry.

■ R0 — No guarantee as to content.

Parameters:: When the IDMSIOX2 exit is called, R1 points to a parameter list
described by the #IOX2DS copy book. The parameter list contains the following
information:

■ A function code defining when the exit was called:

4-36 CA-IDMS Release 14.0 Features Guide

4.8 IDMSIOX2 DB Exit

0 — Pre File Open

1 — Pre File Close

2 — Pre Read

3 — Pre Read Check

4 — Post Read

5 — Read I/O Error

6 — Pre Write

7 — Pre Write Check

8 — Post Write

9 — Write I/O Error.

■ Flags that are used in some situations to coordinate control between IDMSDBIO
and IDMSIOX2.

■ The address of:

– A fullword associated with the system, for exit use.

– A fullword associated with the file, for exit use.

– The current FCB/JCB.

 – The IOP.

– A list of buffer addresses and RBNs to be read/written. The last pair is
marked with the X'80000000' bit in the buffer address.

– A work area reserved for the exit for the life of the I/O from Pre to Post I/O.

Return codes:: On return from the exit, R15 should contain one of the following
values:

■ 0 — No Errors, Proceed with normal processing. Supported on all functions.

■ 4 — No Errors, Suppress next I/O function. Supported on the "Pre" functions; for
example, pre-open, pre-read, pre-check, etc.

■ 8 — I/O Error. Supported on I/O functions only. IDMSDBIO behaves as if an
I/O error had occurred on this file, returning a 30xx code to its caller.

■ 12 — Retry an I/O after an error. Supported on the I/O Error function only.

I/O error function:: The IDMSIOX2 exit is called with the I/O Error function when
an I/O error occurs on the primary file. No information about the error is passed.

This function is provided so the IDMSIOX2 exit can Cleanup or Wait on a pending
I/O. You can also use this function to issue a request to retry the I/O. For example,
suppose this exit were being used for duplexing. When the function requests to try the
I/O in error again, the exit could suppress the I/O to the primary file when it retries
the I/O and satisfy it from the duplex file.

Suppressing I/O:: With the IDMSIOX2 exit, it is possible to suppress the I/O
normally generated by IDMSDBIO. However it is the exit's responsibility to handle
the I/O itself.

Chapter 4. CA-IDMS/DB and CA-IDMS/DC 4-37

4.8 IDMSIOX2 DB Exit

For example the Pre-Read exit is called passing the address of a buffer and the RBN
of the page that needs to be read into that file. The exit could issue the read to a
duplex file and suppress the read to the primary file.

When the Pre-Read-Check exit is called, the exit would #WAIT on the ECB associated
with its read. When complete, it could fill in the DBIO buffer and then suppress the
DBIO CHECK. IDMSDBIO would then behave as if it had read the block itself. The
Post-Read exit would not be needed in this case and could simply return. Or it could
verify that the contents were in sync with its own version of the page.

4-38 CA-IDMS Release 14.0 Features Guide

4.9 Enhancements to CICS-reentrant programs

4.9 Enhancements to CICS-reentrant programs

Before this release, CICS-reentrant programs that were linked to the IDMSCINT or
IDMSCINL modules produced a non-reentrant load module.

With this release, the IDMSCINT and IDMSCINL are fully reentrant. Therefore,
when a CICS-reentrant program is linked with these modules now, the resulting load
module is fully reentrant.

Chapter 4. CA-IDMS/DB and CA-IDMS/DC 4-39

Chapter 5. CA-IDMS SQL Option

5.1 Overview . 5-3
5.2 DISPLAY and PUNCH syntax . 5-4

5.2.1 DISPLAY/PUNCH ALL statement . 5-5
5.2.2 Usage . 5-8
5.2.3 Example . 5-12
5.2.4 DISPLAY/PUNCH ACCESS MODULE 5-12
5.2.5 DISPLAY/PUNCH CALC KEY . 5-14
5.2.6 DISPLAY/PUNCH CONSTRAINT 5-15
5.2.7 DISPLAY/PUNCH INDEX . 5-17
5.2.8 DISPLAY/PUNCH KEY . 5-18
5.2.9 DISPLAY/PUNCH SCHEMA . 5-20
5.2.10 DISPLAY/PUNCH TABLE . 5-22
5.2.11 Usage . 5-24
5.2.12 DISPLAY/PUNCH TABLE PROCEDURE 5-24
5.2.13 DISPLAY/PUNCH VIEW . 5-26
5.2.14 Usage . 5-28

5.3 Dynamic SQL syntax changes . 5-29
5.3.1 Dynamic positioned UPDATE and DELETE 5-29
5.3.2 Dynamically-assigned names . 5-29
5.3.3 Global statements and cursors . 5-30
5.3.4 Dynamic parameters . 5-31
5.3.5 Dynamic SQL statements and expressions 5-35
5.3.6 Expansion of cursor-name . 5-35
5.3.7 Usage . 5-36
5.3.8 Example . 5-37
5.3.9 Expansion of cursor-specification . 5-38
5.3.10 Usage . 5-39
5.3.11 Example . 5-40
5.3.12 Expansion of statement-name . 5-41
5.3.13 Usage . 5-41
5.3.14 Example . 5-42
5.3.15 ALLOCATE CURSOR statement 5-43
5.3.16 Usage . 5-43
5.3.17 Examples . 5-43
5.3.18 CLOSE statement . 5-44
5.3.19 Example . 5-44
5.3.20 DEALLOCATE PREPARE statement 5-44
5.3.21 Usage . 5-45
5.3.22 Examples . 5-45
5.3.23 DELETE statement . 5-45
5.3.24 Usage . 5-46
5.3.25 Examples . 5-47
5.3.26 DESCRIBE statement . 5-47
5.3.27 Usage . 5-48
5.3.28 EXECUTE statement . 5-49
5.3.29 Usage . 5-51
5.3.30 FETCH statement . 5-51

Chapter 5. CA-IDMS SQL Option 5-1

5.3.31 OPEN statement . 5-52
5.3.32 PREPARE statement . 5-53
5.3.33 Usage . 5-54
5.3.34 UPDATE statement . 5-55
5.3.35 Usage . 5-57
5.3.36 Examples . 5-57

5.4 ALTER INDEX support . 5-59
5.4.1 Usage . 5-60
5.4.2 Example . 5-60

5.5 Establishing default transaction options . 5-61
5.6 SQLSTATE field in SQLCA . 5-62

5.6.1 SQLSTATE values . 5-62
5.6.2 SQLSTATE field placement in the SQLCA 5-65

5.7 Optimization enhancements . 5-67
5.8 Migration of SQL syntax by CA-IDMS/Dictionary Migrator 5-68

5-2 CA-IDMS Release 14.0 Features Guide

5.1 Overview

 5.1 Overview

This chapter describes general enhancements to the CA-IDMS SQL Option. The
enhancements are presented as follows:

■ DISPLAY and PUNCH syntax

■ Dynamic cursors and dynamic positioned UPDATEs and DELETEs

■ ALTER INDEX support for an SQL-defined index

■ Default transaction options using SET SESSION statement

■ SQLSTATE field added to SQLCA

 ■ Optimization enhancements

■ Migration of SQL entities by Dictionary Migrator

In addition, Chapter 4, “CA-IDMS/DB and CA-IDMS/DC” on page 4-1 describes
changes to the UPDATE STATISTICS utility statement, which can now collect statis-
tics from nonSQL-defined schemas.

Chapter 5. CA-IDMS SQL Option 5-3

5.2 DISPLAY and PUNCH syntax

5.2 DISPLAY and PUNCH syntax

You can now use DISPLAY and PUNCH statements for these logical SQL entities:

 ■ ACCESS MODULE

 ■ CALC KEY

 ■ CONSTRAINT

 ■ INDEX

 ■ KEY

 ■ SCHEMA

 ■ TABLE

 ■ TABLE PROCEDURE

 ■ VIEW

About DISPLAY and PUNCH operations: DISPLAY and PUNCH operations
produce as output the SQL statements that describe the named entity. DISPLAY and
PUNCH operations do not update the entity description. You can choose to display or
punch all the entity occurrences defined within an entity or only specific entity occur-
rences.

The location of the output depends on which verb is used and whether you are using
the online or batch command facility:

■ DISPLAY displays online output at the terminal and lists batch output in the
command facility's activity listing.

■ PUNCH writes the output to the system punch file. All punched output is also
listed in the command facility's activity listing.

Benefit: With the DISPLAY and PUNCH support for SQL DDL entities, you can
easily display or punch entity definitions and change them, or migrate their definitions
from one environment to another. For example, you can migrate definitions from one
schema to another in the same catalog, and from one catalog to another in the same or
different Central Version.

DISPLAY and PUNCH syntax: DISPLAY/PUNCH ALL syntax for SQL DDL
entities is presented next, followed by DISPLAY/PUNCH statements for each entity
type.

5-4 CA-IDMS Release 14.0 Features Guide

5.2 DISPLAY and PUNCH syntax

5.2.1 DISPLAY/PUNCH ALL statement

The DISPLAY/PUNCH ALL statement displays all occurrences of an entity type. The
basic syntax for each entity type is the same. The entity-option keywords vary by
entity type and are presented in a table in "Usage" later in this section.

 Syntax

��─┬─ DISplay ─┬──┬─ ALL ────────────────────────────┬── entity-type ─────────�

└─ PUNch ───┘ └┬─ FIRST ──┬─┬──────────────────┬─┘

└─ LAST ───┘ ├─ 1 ← ──────────┬─┘

└─ entity-count ─┘

 �─┬──────────────────────────────────┬───────────────────────────────────────�

└─ WHEre conditional-expression ───┘

 �─┬───────────────────────┬──�

└─ AS ─┬─ COMments ← ─┬─┘

└─ SYNtax ─────┘

 �─┬────────────────────────┬──��

└─ VERB ─┬─ DISplay ← ─┬─┘

├─ ALTer ─────┤

├─ CREate ────┤

├─ DROp ──────┤

└─ PUNch ─────┘

Expansion of conditional-expression

��─┬─ mask-comparison ────────────────────────┬───────────────────────────────�
├─ value-comparison ───────────────────────┤
└─┬───────┬─ (─┬─ mask-comparison ──┬─) ─┘

└─ NOT ─┘ └─ value-comparison ─┘

 �─┬──┬─────────────��

│ ┌──┐ │

└─↓─┬─ AND ─┬─┬─ mask-comparison ────────────────────────┬─┴─┘
└─ OR ──┘ ├─ value-comparison ───────────────────────┤

└─┬───────┬─ (─┬─ mask-comparison ──┬─) ─┘
└─ NOT ─┘ └─ value-comparison ─┘

Expansion of mask-comparison

��─── entity-option-keyword ──�

 �─┬─ CONTAINs ─┬─ 'mask-value' ──��

└─ MATCHES ──┘

Expansion of value-comparison

��─┬─ 'character-string-literal' ─┬──�

├─ numeric-literal ────────────┤

└─ entity-option-keyword ──────┘

 �─┬─ IS ─┬───────┬─────────┬─┬─ 'character-string-literal' ─┬────────────────��

│ └─ NOT ─┘ │ ├─ numeric-literal ────────────┤

├─ NE ───────────────────┤ └─ entity-option-keyword ──────┘

└─┬───────┬─┬─┬─ EQ ─┬─┬─┘

└─ NOT ─┘ │ └─ = ──┘ │

├─┬─ GT ─┬─┤

│ └─ > ──┘ │

├─┬─ LT ─┬─┤

│ └─ < ──┘ │

├─ GE ─────┤

└─ LE ─────┘

Chapter 5. CA-IDMS SQL Option 5-5

5.2 DISPLAY and PUNCH syntax

 Parameters

ALL
Lists all occurrences of the requested entity type that the current user is authorized
to display.

Online users: With a large number of entity occurrences, ALL may slow
response time.

FIRst
Lists the first occurrence of the named entity type.

LASt
Lists the last occurrence of the named entity type.

entity-count
Specifies the number of occurrences of the named entity type to list. 1 is the
default.

entity-type
Identifies the entity type that is the object of the DISPLAY/PUNCH ALL request.
Valid values appear in the table under "Usage" below.

WHEre conditional-expression
Specifies criteria to be used in selecting occurrences of the requested entity type.

The outcome of a test for the condition determines which occurrences of the
named entity type are selected for display.

mask-comparison
Compares an entity type operand with a mask value.

entity-option-keyword
Identifies the left operand as a syntax option associated with the named entity
type. The table under "Usage" below lists valid options for each entity type.

CONTAINs
Searches the left operand for an occurrence of the right operand. The length
of the right operand must be less than or equal to the length of the left
operand. If the right operand is not contained entirely in the left operand, the
outcome of the condition is false.

MATCHES
Compares the left operand with the right operand one character at a time,
beginning with the leftmost character in each operand. When a character in
the left operand does not match a character in the right operand, the outcome
of the condition is false.

'mask-value'
Identifies the right operand as a character string; the specified value must be
enclosed in quotation marks. Mask-value can contain the following special
characters:

@ Matches any alphabetic character in entity-option-keyword.

5-6 CA-IDMS Release 14.0 Features Guide

5.2 DISPLAY and PUNCH syntax

value-comparison
Compares values contained in the left and right operands based on the specified
comparison operator.

'character-string-literal'
Identifies a character string enclosed in quotes.

numeric-literal
Identifies a numeric value.

entity-option-keyword
Identifies a syntax option associated with the named entity type; valid options
for each entity type are listed in the table presented under "Usage" below.

IS
Specifies that the left operand must equal the right operand for the condition
to be true.

NE
Specifies that the left operand must not equal the right operand for the condi-
tion to be true.

EQ/=
Specifies that the left operand must equal the right operand for the condition
to be true.

GT/>
Specifies that the left operand must be greater than the right operand for the
condition to be true.

LT/<
Specifies that the left operand must be less than the right operand for the
condition to be true.

GE
Specifies that the left operand must be greater than or equal to the right
operand for the condition to be true.

LE
Specifies that the left operand must be less than or equal to the right operand
for the condition to be true.

NOT
Specifies that the opposite of the condition fulfills the test requirements. If NOT
is specified, the condition must be enclosed in parentheses.

AND
Indicates the expression is true only if the outcome of both test conditions is true.

Matches any numeric character in entity-option-keyword.

* Matches any character in entity-option-keyword.

Chapter 5. CA-IDMS SQL Option 5-7

5.2 DISPLAY and PUNCH syntax

OR
Indicates the expression is true if the outcome of either one or both test conditions
is true.

AS COMments
Outputs access module syntax as comments with the characters *+ preceding the
text of the statement. AS COMMENTS is the default.

AS SYNtax
Outputs access module syntax which can be edited and resubmitted to the
command facility.

VERB DISplay/ALTer/CREate/DROp/PUNch
Specifies the verb with which the entity statement is to be displayed or punched.
For example, if VERB CREATE is specified, the output of the DISPLAY/PUNCH
statement is a CREATE statement; if VERB ALTER is specified, the output is an
ALTER statement; and so on. The default is VERB DISPLAY.

 5.2.2 Usage

Output contains only enough information to display/punch entity: Output
produced by DISPLAY or PUNCH ALL consists only of the information necessary to
execute a DISPLAY/PUNCH request for each entity occurrence.

Valid entity option keywords for conditional expressions: The following table lists
entity type options that you can specify in a conditional expression.

Entity type Entity-option keyword Selects based on

All entity types entity-type NAMe

entity-type

FULl entity-type NAMe

DATe CREated

MONth CREated

DAY CREated

YEAr CREated

DATe last UPDated

MONth last UPDated

DAY last UPDated

YEAr last UPDated

CREated by

PREpared by

REVised by

LASt UPDated by

Unqualified name (1)

Unqualified name (1)

Qualified name (1)

Date (MM/DD/YY) occurrence

 created

Month occurrence created

Day occurrence created

Year occurrence created

Date (MM/DD/YY) occurrence

 last updatedUU

Month occurrence

 last updatedUU

Day occurrence last updatedUU

Year occurrence

 last updatedUU

User who created occurrenceUU

User who created occurrenceUU

User who last updated

 occurrenceUU

User who last updated

 occurrenceUU

5-8 CA-IDMS Release 14.0 Features Guide

5.2 DISPLAY and PUNCH syntax

Entity type Entity-option keyword Selects based on

ACCESS

MODULE

AM name

SCHema name

Version

FULl TABle NAMe

TABle SCHema name

TABle name

DATe COMpiled

COMpiled

MONth COMpiled

DAY COMpiled

YEAr COMpiled

Unqualified access module

 name (1)

Name of access module's

 schema

Version number

Qualified name of a table

 referenced by the access

 module

Schema name of a table

 referenced by the

 access module

Unqualified name of a table

 referenced by the

 access module

Date (MM/DD/YY) access

 module compiled

Date (MM/DD/YY) access

 module compiled

Month access module compiled

Day access module compiled

Year access module compiled

CALC KEY SCHema name

TABle name

Schema name of the table

 containing the CALC key

Unqualified name of table

 containing the CALC key

CONSTRAINT SCHema name

REFERENCEd FULl TABle

 NAMe

REFERENCEd table

 SCHema name

REFERENCEd TABle name

REFERENCIng FULl

 TABle NAMe

REFERENCIng table

 SCHema name

REFERENCIng TABle name

Schema name of the

 constraint

Qualified name of the

 referenced table

Schema name of the

 referenced table

Unqualified name of the

 referenced table

Qualified name of the

 referencing table

Schema name of the

 referencing table

Unqualified name of the

 referencing table

INDEX SCHema name

TABle name

FULl AREa NAMe

SEGment name

AREa name

Schema name of the

 indexed table

Unqualified name of the

 indexed table

Qualified name of the area

 containing the index

Segment name of the area

 containing the index

Unqualified name of the area

 containing the index

Chapter 5. CA-IDMS SQL Option 5-9

5.2 DISPLAY and PUNCH syntax

Fully qualified names of SQL components: The fully qualified names of SQL
components are listed in the table below.

Entity type Entity-option keyword Selects based on

KEY SCHema name

TABle PROcedure name

FULl TABle

 PROCedure NAMe

Schema name of the

 keyed table procedure

Unqualified name of the

 keyed table procedure

Qualified name of the

 keyed table procedure

SCHEMA TYPe

full DICtname

DBName

NODe name

NODename

NONsql SCHema

nonsql schema Version

DEFault FULl AREA NAMe

default SEGment name

default AREa name

Type of Schema

 (NONSQL or SQL)

NonSQL Schema

Dictionary name

NonSQL Schema DBName

NonSQL Schema Node Name

NonSQL Schema Node Name

Name of the NonSQL Schema

Version of the NonSQL Schema

Qualified area name of the

 Schema's default area

Segment name of

 Schema's default area

Unqualified area name of the

 Schema's default area

TABLE SCHema name

FULl AREA NAMe

SEGment name

AREa name

Schema name of the table

Qualified area name

 containing the table

Segment name of the area

 containing the table

Unqualified name of the area

 containing the table

TABLE

PROCEDURE

SCHema name

EXTernal NAMe

Schema name of the

 table procedure

Name of the program

 called to process

 the procedure

VIEW SCHema name

REFerenced FULl

 TABle NAMe

REFerenced table

 SCHema NAMe

REFerenced TABle name

Schema name of the View

Qualified name of a table

 referenced by the View

Schema name of a table(s)

 referenced by the View

Unqualified name of a table

 referenced by the View

 (1)Unqualified name selections are based on the primary name of the entity occur-
rence only. To select based on the fully qualified occurrence name, token FULL
NAME must be specified. SQL components with qualified names are specified in the
table below.

**You can specify this keyword option only when using SCHEMA, TABLE, TABLE
PROCEDURE, and VIEW entities.

5-10 CA-IDMS Release 14.0 Features Guide

5.2 DISPLAY and PUNCH syntax

Date and Year 2000 support in DISPLAY/PUNCH statements: You can use date
selection criteria as well as year 2000 support in DISPLAY ALL statements to display
SQL entities.

You implement date selection criteria in these WHERE clause options:

 ■ DATE CREATED

■ DATE LAST UPDATED

You can specify the date as a value-comparison string in the form 'MM/DD/YY' in the
right-hand side of the conditional expression. CA-IDMS extracts it in CCMMDDYY
form to accurately determine the relationship of dates. For example, this DISPLAY
ALL statement:

DISPLAY ALL SCHEMAS WHERE DATE CREATED > '01/01/96';

establishes a search criteria to identify the schemas whose DATE CREATED values
are greater than the specified string. The DISPLAY ALL process determines that the
date '01/01/96' is greater than the date '12/31/95'.

Alternatively, you may specify the value-comparison string on either side of the condi-
tional expression in the form 'CCYYMMDD' to achieve the same results.

You can also substitute day, month, or year for each of these WHERE clause options.
For example, this DISPLAY ALL statement specifies a search condition that is based
on month and year:

DISPLAY ALL VIEWS

WHERE MONTH CREATED = '01'

AND YEAR CREATED > '95';

Default order of precedence applied to logical operators: Conditional expressions
can contain a single condition, or two or more conditions combined with the logical
operators AND or OR. The logical operator NOT specifies the opposite of the condi-
tion. The command facility evaluates operators in a conditional expression 1 at a time,
from left to right, in order of precedence. The default order of precedence is as
follows:

■ MATCHES or CONTAINS keywords

■ EQ, NE, GT, LT, GE, LE operators

 ■ NOT

Resource Fully qualified name

ACCESS MODULE schema-name.access-module-name

TABLE schema-name.table-name

TABLE PROCEDURE schema-name.procedure-name

VIEW schema-name.view-name

Chapter 5. CA-IDMS SQL Option 5-11

5.2 DISPLAY and PUNCH syntax

 ■ AND

 ■ OR

If parentheses are used to override the default order of precedence, the command
facility evaluates the expression within the innermost parentheses first.

 5.2.3 Example

The following example displays all ACCESS MODULES compiled since June 1,
1995:

DISPLAY ALL ACCESS MODULES

WHERE DATE CREATED GT '06/01/95'

 AS SYNTAX.

5.2.4 DISPLAY/PUNCH ACCESS MODULE

Purpose: Displays or punches an access module.

Authorization: To issue a DISPLAY/PUNCH ACCESS MODULE statement, you
must either hold the DISPLAY privilege on or own the access module named in the
statement.

 Syntax

��─┬─ DISplay ─┬┬─ ACCess MODule is ─┬┬───────────────┬─ access-module-name ──�

└─ PUNch ───┘└─ AM ───────────────┘└─ schema-name.─┘

 �─┬──────────────────────────────────┬───────────────────────────────────────�

└─ Version ──┬─ 1 ← ─────────────┬─┘

├─ version-number ──┤

├─ HIGhest ─────────┤

└─ LOWest ──────────┘

 �─┬───┬────�

└──┬─ WITh ─────────┬──┬─ ALL ───────────────┬─── AS ─┬─COMments ← ─┬─┘

├─ ALSo WITh ────┤ ├─ NONe ──────────────┤ └─ SYNtax ────┘

├─ WITHOut ──────┤ ├─ DETails ───────────┤

└─ ALSo WITHOut ─┘ ├─ HIStory ───────────┤

└─ TABles ────────────┘

 �─┬───────────────────────┬──��

└─ VERb ─┬─ CREate ← ─┬─┘

├─ ALTer ────┤

└─ DROp ─────┘

 Parameters

schema-name.
Specifies the schema for the access module. Schema-name must identify the
schema associated with the version of the access module being modified. If you
do not specify schema-name, the value used by the command facility is the current
schema for your SQL session.

5-12 CA-IDMS Release 14.0 Features Guide

5.2 DISPLAY and PUNCH syntax

access-module-name
Specifies the name of the access module to display or punch. Access-module-
name must identify an access module defined and stored in the dictionary.

Version is version-number
Specifies the version number of the access module. Version-number is a unique
integer in the range 1 through 9999. 1 is the default.

HIGhest
Specifies the highest version number associated with the access module.

LOWest
Specifies the lowest version number associated with the access module.

WITh
Lists the requested information, in addition to the information that is always
included, such as the entity occurrence name.

WITHOut
Does not list the specified options. Other options in effect through the WITH or
ALSO WITH clauses in the current DISPLAY statement are displayed.

ALSo WITh
Lists the requested information, in addition to the information requested in previ-
ously issued DISPLAY WITH and DISPLAY ALSO WITH statements for the
named entity.

ALSo WITHOut
Does not list the specified options.

ALL
Specifies the display of all of the information associated with the requested entity
occurrence.

NONe
Specifies the display of the name of the requested entity occurrence. NONE is
meaningful only when the WITH clause is specified.

DETails
Specifies the display of entity-specific descriptions.

HIStory
Specifies the display of the date the access module was compiled.

TABles
Specifies the display of all tables associated with the requested access module.

AS COMments
Outputs access module syntax as comments with the characters *+ preceding the
text of the statement. AS COMMENTS is the default.

AS SYNtax
Outputs access module syntax which can be edited and resubmitted to the
command facility.

Chapter 5. CA-IDMS SQL Option 5-13

5.2 DISPLAY and PUNCH syntax

VERB CREate/ALTer/DROp
Specifies the verb with which the entity statement is to be displayed or punched.
For example, if VERB CREATE is specified, the output of the DISPLAY/PUNCH
statement is a CREATE statement; if VERB ALTER is specified, the output is an
ALTER statement; and so on. The default is VERB CREATE.

5.2.5 DISPLAY/PUNCH CALC KEY

Purpose: Displays or punches a CALC key definition in the dictionary.

Authorization: To issue a DISPLAY/PUNCH CALC KEY statement, you must
either own or have the ALTER privilege on the table on which the CALC key is
defined.

 Syntax

��─┬─ DISplay ─┬─── CALc key ON ──┬────────────────┬── table-name ────────────�

└─ PUNch ───┘ └─ schema-name. ─┘

 �─┬───┬────�

└──┬─ WITh ─────────┬──┬─ ALL ───────────────┬─── AS ┬─ COMments ← ─┬─┘

├─ WITHOut ──────┤ ├─ NONe ──────────────┤ └─ SYNtax ─────┘

├─ ALSo WITh ────┤ ├─ DETails ───────────┤

└─ ALSo WITHOut ─┘ └─ HIStory ───────────┘

 �─┬───────────────────────┬──��

└─ VERb ─┬─ CREate ← ─┬─┘

├─ DISplay ──┤

├─ DROp ─────┤

└─ PUNch ────┘

 Parameters

schema-name.
Identifies the schema associated with the named table.

If you do not specify schema-name, it defaults to the current schema associated
with your SQL session, if the statement is entered through the command facility or
executed dynamically.

table-name
Specifies the name of the table on which the CALC key is defined. Table-name
must be the name of a table defined in the dictionary.

WITh
Lists the requested information, in addition to the information that is always
included, such as the entity occurrence name.

WITHOut
Does not list the specified options. Other options in effect through the WITH or
ALSO WITH clauses in the current DISPLAY statement are displayed.

ALSo WITh
Lists the requested information, in addition to the information requested in previ-
ously issued DISPLAY WITH and DISPLAY ALSO WITH statements for the
named entity.

5-14 CA-IDMS Release 14.0 Features Guide

5.2 DISPLAY and PUNCH syntax

ALSo WITHOut
Does not list the specified options.

ALL
Specifies the display of all of the information associated with the CALC key.

NONe
Specifies the display of the name of the CALC key. NONE is meaningful only
when the WITH clause is specified.

DETails
Specifies the display of CALC key-specific descriptions.

HIStory
Specifies the display of the date the CALC key was defined.

AS COMments
Outputs CALC key syntax as comments with the characters *+ preceding the text
of the statement. AS COMMENTS is the default.

AS SYNtax
Outputs CALC key syntax which can be edited and resubmitted to the command
facility.

VERB CREate/DISplay/DROp/PUNch
Specifies the verb with which the entity statement is to be displayed or punched.
For example, if VERB CREATE is specified, the output of the DISPLAY/PUNCH
statement is a CREATE statement; if VERB ALTER is specified, the output is an
ALTER statement; and so on. The default is VERB CREATE.

 5.2.6 DISPLAY/PUNCH CONSTRAINT

Purpose: Displays or punches a referential constraint in the dictionary.

Authorization: To issue a DISPLAY/PUNCH CONSTRAINT statement, you must:

■ Either hold the DISPLAY privilege on or own the referencing table in the con-
straint

■ Hold the REFERENCES privilege on the referenced table in the constraint

 Syntax

��─┬─ DISplay ─┬─── CONstraint constraint-name ───────────────────────────────�

└─ PUNch ───┘

 �─┬──┬───�

└──┬─ WITh ─────────┬──┬─ ALL ───────────────┬─── AS ─┬─ COMments ← ─┬─┘

├─ WITHOut ──────┤ ├─ NONe ──────────────┤ └─ SYNtax ─────┘

├─ ALSo WITh ────┤ ├─ DETails ───────────┤

└─ ALSo WITHOut ─┘ └─ HIStory ───────────┘

 �─┬───────────────────────┬──��

└─ VERb ─┬─ CREate ← ─┬─┘

├─ DISplay ──┤

├─ DROp ─────┤

└─ PUNch ────┘

Chapter 5. CA-IDMS SQL Option 5-15

5.2 DISPLAY and PUNCH syntax

 Parameters

constraint-name
Specifies the name of the referential constraint, within the current schema associ-
ated with your SQL session, to display or punch.

WITh
Lists the requested information, in addition to the information that is always
included, such as the entity occurrence name.

WITHOut
Does not list the specified options. Other options in effect through the WITH or
ALSO WITH clauses in the current DISPLAY statement are displayed.

ALSo WITh
Lists the requested information, in addition to the information requested in previ-
ously issued DISPLAY WITH and DISPLAY ALSO WITH statements for the
named entity.

ALSo WITHOut
Does not list the specified options.

ALL
Specifies the display of all of the information associated with the requested entity
occurrence.

NONe
Specifies the display of the name of the requested entity occurrence. NONE is
meaningful only when the WITH clause is specified.

DETails
Specifies the display of constraint-specific descriptions.

HIStory
Specifies the display of the date the constraint was created.

AS COMments
Outputs constraint syntax as comments with the characters *+ preceding the text
of the statement. AS COMMENTS is the default.

AS SYNtax
Outputs constraint syntax which can be edited and resubmitted to the command
facility.

VERB CREate/DISplay/DROp/PUNch
Specifies the verb with which the entity statement is to be displayed or punched.
For example, if VERB CREATE is specified, the output of the DISPLAY/PUNCH
statement is a CREATE statement; if VERB ALTER is specified, the output is an
ALTER statement; and so on. The default is VERB CREATE.

5-16 CA-IDMS Release 14.0 Features Guide

5.2 DISPLAY and PUNCH syntax

 5.2.7 DISPLAY/PUNCH INDEX

Purpose: Displays or punches an index from the dictionary.

Authorization: To issue a DISPLAY/PUNCH INDEX statement, you must either
own or have the DISPLAY privilege on the table on which the index is defined.

 Syntax

��─┬─ DISplay ─┬─── INDex index-name ─── ON ─┬───────────┬─ table-name ───────�

└─ PUNch ───┘ └─ schema. ─┘

 �─┬───┬────�

└──┬─ WITh ─────────┬──┬─ ALL ───────────────┬─── AS ─┬─COMments ← ─┬─┘

├─ ALSo WITh ────┤ ├─ NONe ──────────────┤ └─ SYNtax ────┘

├─ WITHOut ──────┤ ├─ DETails ───────────┤

└─ ALSo WITHOut ─┘ ├─ HIStory ───────────┤

└─ TABles ────────────┘

 �─┬───────────────────────┬──��

└─ VERB ─┬─ CREate ← ─┬─┘

├─ DISplay ──┤

├─ DROp ─────┤

└─ PUNch ────┘

 Parameters

index-name
Specifies the name of an index to display or punch. Index-name must be the name
of an index in the dictionary.

ON table-name
Specifies the table on which the named index is defined.

schema-name.
Identifies the schema associated with the named table.

If you do not specify schema-name, it defaults to the current schema associated
with your SQL session, if the statement is entered through the command facility or
executed dynamically.

WITh
Lists the requested information, in addition to the information that is always
included, such as the entity occurrence name.

WITHOut
Does not list the specified options. Other options in effect through the WITH or
ALSO WITH clauses in the current DISPLAY statement are displayed.

ALSo WITh
Lists the requested information, in addition to the information requested in previ-
ously issued DISPLAY WITH and DISPLAY ALSO WITH statements for the
named entity.

ALSo WITHOut
Does not list the specified options.

Chapter 5. CA-IDMS SQL Option 5-17

5.2 DISPLAY and PUNCH syntax

ALL
Specifies the display of all of the information associated with the requested index.

NONe
Specifies the display of the name of the requested index. NONE is meaningful
only when the WITH clause is specified.

DETails
Specifies the display of index-specific descriptions.

HIStory
Specifies the display of the date the index was created.

AS COMments
Outputs index syntax as comments with the characters *+ preceding the text of the
statement. AS COMMENTS is the default.

AS SYNtax
Outputs index syntax which can be edited and resubmitted to the command
facility.

VERB CREate/DISplay/DROp/PUNch
Specifies the verb with which the entity statement is to be displayed or punched.
For example, if VERB CREATE is specified, the output of the DISPLAY/PUNCH
statement is a CREATE statement; if VERB ALTER is specified, the output is an
ALTER statement; and so on. The default is VERB CREATE.

 5.2.8 DISPLAY/PUNCH KEY

Purpose: Displays a key definition stored in the dictionary.

Authorization: To issue a DISPLAY KEY statement, you must either own or hold
the ALTER privilege on the table procedure on which the key being displayed or
punched is defined.

 Syntax

��─┬─ DISplay ─┬─── KEY key-name ON ──┬────────────────┬── procedure-name ────�

└─ PUNch ───┘ └─ schema-name. ─┘

 �─┬───┬────�

└──┬─ WITh ─────────┬──┬─ ALL ───────────────┬─── AS ─┬─ COMments ← ─┬┘

├─ ALSo WITh ────┤ ├─ NONe ──────────────┤ └─ SYNtax ─────┘

├─ WITHOut ──────┤ ├─ DETails ───────────┤

└─ ALSo WITHOut ─┘ └─ HIStory ───────────┘

 �─┬───────────────────────┬──��

└─ VERb ─┬─ CREate ← ─┬─┘

├─ DISplay ──┤

├─ DROp ─────┤

└─ PUNch ────┘

 Parameters

key-name
Specifies the name of a key on a table procedure.

5-18 CA-IDMS Release 14.0 Features Guide

5.2 DISPLAY and PUNCH syntax

schema-name.
Identifies the schema associated with the table procedure.

If you do not specify a schema-name it defaults to the current schema associated
with your SQL session, if the statement is entered through the Command Facility
or executed dynamically.

procedure-name
Specifies the name of the table procedure on which the key is defined. The
procedure-name must identify a table procedure defined in the dictionary.

WITh
Lists the requested information, in addition to the information that is always
included, such as the entity occurrence name.

WITHOut
Does not list the specified options. Other options in effect through the WITH or
ALSO WITH clauses in the current DISPLAY statement are displayed.

ALSo WITh
Lists the requested information, in addition to the information requested in previ-
ously issued DISPLAY WITH and DISPLAY ALSO WITH statements for the
key.

ALSo WITHOut
Does not list the specified options.

ALL
Specifies the display of all of the information associated with the requested key.

NONe
Specifies the display of the name of the requested key. NONE is meaningful only
when the WITH clause is specified.

DETails
Specifies the display of key-specific descriptions.

HIStory
Specifies the display of the date the key was created.

AS COMments
Outputs key syntax as comments with the characters *+ preceding the text of the
statement. AS COMMENTS is the default.

AS SYNtax
Outputs key syntax which can be edited and resubmitted to the command facility.

VERB CREate/DISplay/DROp/PUNch
Specifies the verb with which the key statement is to be displayed or punched.
For example, if VERB CREATE is specified, the output of the DISPLAY/PUNCH
statement is a CREATE statement; if VERB ALTER is specified, the output is an
ALTER statement; and so on. The default is VERB CREATE.

Chapter 5. CA-IDMS SQL Option 5-19

5.2 DISPLAY and PUNCH syntax

 5.2.9 DISPLAY/PUNCH SCHEMA

Purpose: Displays or punches an SQL schema in the dictionary.

Authorization: To issue a DISPLAY/PUNCH SCHEMA statement, you must have
the DISPLAY privilege on the requested SQL schema.

 Syntax

��─┬─ DISplay ─┬──── SCHema name ──┬────────┬─────────────────────────────────�

└─ PUNch ───┘ ├─ FULl ─┤

└─ ALL ──┘

 �─┬──┬───────�

└──┬─ WITh ─────────┬──┬─ ALL ───────────────┬─┬─ AS COMments ← ─┬─┘

├─ ALSo WITh ────┤ ├─ NONe ──────────────┤ └─ SYNtax ────────┘

├─ WITHOut ──────┤ ├─ DETails ───────────┤

└─ ALSo WITHOut ─┘ ├─ HIStory ───────────┤

├─ CALC keys ─────────┤

├─ CONstraints ───────┤

├─ INDexes ───────────┤

├─ KEYs ──────────────┤

├─ TABles ────────────┤

├─ TABle PROcedures ──┤

└─ VIEws ─────────────┘

 �─┬───────────────────────┬──��

└─ VERb ─┬─ CREate ← ─┬─┘

├─ ALTer ────┤

├─ DISplay ──┤

├─ DROp ─────┤

└─ PUNch ────┘

 Parameters

schema-name.
Specifies the SQL schema to display or punch.

Schema-name must be the name of the an SQL schema in the dictionary.

FULl or ALL
Specifies that you want the SQL schema and all table, view, CALC key, index,
and constraint definitions for the requested SQL schema displayed or punched.
This option is for SQL-defined schemas only.

WITh
Lists the requested information, in addition to the information that is always
included, such as the entity occurrence name.

WITHOut
Does not list the specified options. Other options in effect through the WITH or
ALSO WITH clauses in the current DISPLAY statement are displayed.

ALSo WITh
Lists the requested information, in addition to the information requested in previ-
ously issued DISPLAY WITH and DISPLAY ALSO WITH statements for the
named entity.

5-20 CA-IDMS Release 14.0 Features Guide

5.2 DISPLAY and PUNCH syntax

ALSo WITHOut
Does not list the specified options.

ALL
Specifies the display of all of the information associated with the requested entity
occurrence.

NONe
Specifies the display of the name of the requested entity occurrence. NONE is
meaningful only when the WITH clause is specified.

DETails
Specifies the display of SQL schema-specific descriptions.

HIStory
Specifies the display of the chronological account of an entity's existence,
including PREPARED/REVISED BY specifications, date created, and date last
updated.

CALC keys
Specifies the display of all CALC keys associated with the requested SQL schema.

CONstraints
Specifies the display of all constraints associated with the requested SQL schema.

INDexes
Specifies the display of all indexes associated with the requested SQL schema.

KEYs
Specifies the display of all table procedure keys associated with the requested
SQL schema.

TABles
Specifies the display of all tables associated with the requested SQL schema.

TABle PROcedures
Specifies the display of all table procedures associated with the requested SQL
schema.

VIEws
Specifies the display of all views associated with the requested SQL schema.

AS COMments
Outputs SQL schema syntax as comments with the characters *+ preceding the
text of the statement. AS COMMENTS is the default.

AS SYNtax
Outputs SQL schema syntax which can be edited and resubmitted to the command
facility.

VERB CREate/ALTer/DISplay/DROp/PUNch
Specifies the verb with which the entity statement is to be displayed or punched.
For example, if VERB CREATE is specified, the output of the DISPLAY/PUNCH
statement is a CREATE statement; if VERB ALTER is specified, the output is an
ALTER statement; and so on. The default is VERB CREATE.

Chapter 5. CA-IDMS SQL Option 5-21

5.2 DISPLAY and PUNCH syntax

 5.2.10 DISPLAY/PUNCH TABLE

Purpose: Displays or punches the definition of a base table from the dictionary.

Authorization: To issue a DISPLAY/PUNCH TABLE statement, you must either
own or have the DISPLAY privilege on the named table.

 Syntax

��─┬─ DISplay ─┬──── TABle ─┬────────────────┬─ table-name ──┬────────┬───────�

└─ PUNch ───┘ └─ schema-name. ─┘ └─ FULl ─┘

 �─┬───┬──────────�

└──┬─ WITh ─────────┬──┬─ ALL ──────────┬───┬─ AS COMments ← ─┬─┘

├─ WITHOut ──────┤ ├─ NONe ─────────┤ └─ SYNtax ────────┘

├─ ALSo WITh ────┤ ├─ DETails ──────┤

└─ ALSo WITHOut ─┘ ├─ HIStory ──────┤

├─ CALc keys ────┤

├─ COLumns ──────┤

├─ CONstraints ──┤

├─ INDexes ──────┤

 └─ VIEws ───────┘

 �─┬───────────────────────┬──��

└─ VERb ─┬─ CREate ← ─┬─┘

├─ ALTer ────┤

├─ DISplay ──┤

├─ DROp ─────┤

└─ PUNch ────┘

In IDD record format with COBOL elements

��─┬─ DISplay ─┬──── TABle ─┬────────────────┬─ table-name ───────────────────�

└─ PUNch ───┘ └─ schema-name. ─┘

 �─── LIKe RECord ──�

 �─┬──┬───────�

└──┬─ WITh ─────────┬──┬─ ALL ─────────────┬───┬─ AS COMments ← ─┬─┘

├─ WITHOut ──────┤ ├─ null INDIcators ─┤ └─ SYNtax ────────┘

├─ ALSo WITh ────┤ ├─ record ELEments ─┤

└─ ALSo WITHOut ─┘ └─ record SYNonyms ─┘

 �─┬────────────────────────┬──��

└─ VERb ─┬─ DISplay ← ─┬─┘

├─ ALTer ─────┤

├─ CREate ────┤

├─ DROp ──────┤

└─ PUNch ─────┘

 Parameters

TABle table-name
Specifies the name of the table to display or punch. table-name must be the name
of a table defined in the dictionary.

schema-name.
Identifies the SQL schema associated with the named table.

If you do not specify schema-name, it defaults to the current schema associated

5-22 CA-IDMS Release 14.0 Features Guide

5.2 DISPLAY and PUNCH syntax

with your SQL session, if the statement is entered through the command facility or
executed dynamically.

FULl
Specifies that you want syntax for the table and any CALC key, index, and refer-
encing constraint definitions associated with the named table.

WITh
Lists the requested information, in addition to the information that is always
included, such as the entity occurrence name.

WITHOut
Does not list the specified options. Other options in effect through the WITH or
ALSO WITH clauses in the current DISPLAY statement are displayed.

ALSo WITh
Lists the requested information, in addition to the information requested in previ-
ously issued DISPLAY WITH and DISPLAY ALSO WITH statements for the
named entity.

ALSo WITHOut
Does not list the specified options.

ALL
Specifies the display of all of the information associated with the requested table.

NONe
Specifies the display of the name of the requested table. NONE is meaningful
only when the WITH clause is specified.

DETails
Specifies the display of table-specific descriptions; for example, the length of a
table.

HIStory
Specifies the display of the chronological account of a table's existence, including
PREPARED/REVISED BY specifications, date created, and date last updated.

CALc keys
Specifies the display of a CALC key associated with the requested table occur-
rence.

COLumns
Specifies the display of all columns associated with the requested table occurrence.

CONstraints
Specifies the display of all constraints in which the requested table occurrence has
been named.

INDexes
Specifies the display of all indexes associated with the requested table occurrence.

VIEws
Specifies the display of all views in which the requested table occurrence partic-
ipates.

Chapter 5. CA-IDMS SQL Option 5-23

5.2 DISPLAY and PUNCH syntax

AS COMments
Outputs table syntax as comments with the characters *+ preceding the text of the
statement. AS COMMENTS is the default.

AS SYNtax
Outputs table syntax which can be edited and resubmitted to the command facility.

VERB CREate/ALTer/DISplay/DROp/PUNch
Specifies the verb with which the entity statement is to be displayed or punched.
For example, if VERB CREATE is specified, the output of the DISPLAY/PUNCH
statement is a CREATE statement; if VERB ALTER is specified, the output is an
ALTER statement; and so on. The default is VERB CREATE.

With COBOL elements parameters

LIKe RECord
Specifies that you want IDD RECORD syntax, with its COBOL elements, listed
for the named table. For sample uses, see "Usage" later in this section.

null INDIcators
Specifies the display of COBOL elements defining NULL indicators for nullable
columns.

record ELEments
Specifies the display of elements for the record syntax for the named table.

record SYNonyms
Specifies the display of record synonyms for the record syntax for the named
table.

 5.2.11 Usage

Using the LIKE RECORD parameter: You can use the LIKE RECORD parameter
to produce IDD record syntax for a named table, and then add the record syntax to a
dictionary.

With the IDD record syntax for a table in the dictionary, CA-ADS dialogs can include
a work record definition for the table. This same record definition can be included in
a map definition.

5.2.12 DISPLAY/PUNCH TABLE PROCEDURE

Purpose: Displays or punches a table procedure.

Authorization: To issue a DISPLAY TABLE PROCEDURE statement, you must
have the DISPLAY privilege for the named table procedure.

 Syntax

5-24 CA-IDMS Release 14.0 Features Guide

5.2 DISPLAY and PUNCH syntax

��─┬─ DISplay ─┬── TABle PROcedure ─┬────────────────┬─ procedure-name ───────�

└─ PUNch ───┘ └─ schema-name. ─┘

 �─┬───┬──────────�

└──┬─ WITh ─────────┬──┬─ ALL ──────────┬───┬─ AS COMments ← ─┬─┘

├─ ALSo WITh ────┤ ├─ NONe ─────────┤ └─ SYNtax ────────┘

├─ WITHOut ──────┤ ├─ DETails ──────┤

└─ ALSo WITHOut ─┘ ├─ HIStory ──────┤

└─ KEYs ─────────┘

 �─┬────────────────────────┬──��

└─ VERb ─┬─ CREATE ← ──┬─┘

├─ DISplay ───┤

├─ DROp ──────┤

└─ PUNch ─────┘

 Parameters

schema-name.
Identifies the SQL schema associated with the named table procedure.

If you do not specify schema-name, it defaults to the current schema associated
with your SQL session, if the statement is entered through the command facility or
executed dynamically.

procedure-name
Specifies the name of the table procedure to display or punch. Procedure-name
must be the name of a table procedure defined in the dictionary.

WITh
Lists the requested information, in addition to the information that is always
included, such as the entity occurrence name.

WITHOut
Does not list the specified options. Other options in effect through the WITH or
ALSO WITH clauses in the current DISPLAY statement are displayed.

ALSo WITh
Lists the requested information, in addition to the information requested in previ-
ously issued DISPLAY WITH and DISPLAY ALSO WITH statements for the
named entity.

ALSo WITHOut
Does not list the specified options.

ALL
Specifies the display of all of the information associated with the requested entity
occurrence.

NONe
Specifies the display of the name of the requested entity occurrence. NONE is
meaningful only when the WITH clause is specified.

DETails
Specifies the display of entity-specific descriptions; for example, the length of a
table.

Chapter 5. CA-IDMS SQL Option 5-25

5.2 DISPLAY and PUNCH syntax

HIStory
Specifies the display of the chronological account of an entity's existence,
including PREPARED/REVISED BY specifications, date created, and date last
updated.

KEYs
Specifies the display of all keys associated with the requested table procedure.

AS COMments
Outputs table procedure syntax as comments with the characters *+ preceding the
text of the statement. AS COMMENTS is the default.

AS SYNtax
Outputs table procedure syntax which can be edited and resubmitted to the
command facility.

VERB CREate/DISplay/DROp/PUNch
Specifies the verb with which the entity statement is to be displayed or punched.
For example, if VERB CREATE is specified, the output of the DISPLAY/PUNCH
statement is a CREATE statement; if VERB ALTER is specified, the output is an
ALTER statement; and so on. The default is VERB CREATE.

 5.2.13 DISPLAY/PUNCH VIEW

Purpose: Displays or punches a view.

Authorization: To issue a DISPLAY VIEW statement, you must either own the
SQL schema in which the view is defined or hold the DISPLAY privilege on the
named view.

 Syntax

��─┬─ DISplay ─┬──── VIEW ──┬────────────────┬─ view-name ────────────────────�

└─ PUNch ───┘ └─ schema-name. ─┘

 �─┬───┬──────────�

└──┬─ WITh ─────────┬──┬─ ALL ──────────┬───┬─ AS COMments ← ─┬─┘

├─ WITHOut ──────┤ ├─ NONe ─────────┤ └─ SYNtax ────────┘

├─ ALSo WITh ────┤ ├─ DETails ──────┤

└─ ALSo WITHOut ─┘ └─ HIStory ──────┘

 �─┬───────────────────────┬──��

└─ VERb ─┬─ CREate ← ─┬─┘

├─ DISplay ──┤

├─ DROp ─────┤

└─ PUNch ────┘

In IDD record format with COBOL elements

5-26 CA-IDMS Release 14.0 Features Guide

5.2 DISPLAY and PUNCH syntax

��─┬─ DISplay ─┬──── VIEW ─┬────────────────┬─ view-name ─────────────────────�

└─ PUNch ───┘ └─ schema-name. ─┘

 �─── LIKe RECord ──�

 �─┬──┬───────�

└──┬─ WITh ─────────┬──┬─ ALL ─────────────┬───┬─ AS COMments ← ─┬─┘

├─ WITHOut ──────┤ ├─ null INDIcators ─┤ └─ SYNtax ────────┘

├─ ALSo WITh ────┤ ├─ record ELEments ─┤

└─ ALSo WITHOut ─┘ └─ record SYNonyms ─┘

 �─┬───────────────────────┬───��

└─ VERb ─┬─ CREate ← ─┬─┘

├─ ALTer ────┤

├─ DISplay ──┤

├─ DROp ─────┤

└─ PUNch ────┘

 Parameters

VIEW view-name
Specifies the name of the view to display or punch.

schema-name.
Identifies the SQL schema associated with the named view.

If you do not specify schema-name, it defaults to the current schema associated
with your SQL session, if the statement is entered through the command facility or
executed dynamically.

WITh
Lists the requested information, in addition to the information that is always
included, such as the entity occurrence name.

WITHOut
Does not list the specified options. Other options in effect through the WITH or
ALSO WITH clauses in the current DISPLAY statement are displayed.

ALSo WITh
Lists the requested information, in addition to the information requested in previ-
ously issued DISPLAY WITH and DISPLAY ALSO WITH statements for the
named entity.

ALSo WITHOut
Does not list the specified options.

ALL
Specifies the display of all of the information associated with the requested entity
occurrence.

NONe
Specifies the display of the name of the requested entity occurrence. NONE is
meaningful only when the WITH clause is specified.

DETails
Specifies the display of entity-specific descriptions; for example, the length of a
table.

Chapter 5. CA-IDMS SQL Option 5-27

5.2 DISPLAY and PUNCH syntax

HIStory
Specifies the display of the chronological account of an entity's existence,
including PREPARED/REVISED BY specifications, date created, and date last
updated.

AS COMments
Outputs view syntax as comments with the characters *+ preceding the text of the
statement. AS COMMENTS is the default.

AS SYNtax
Outputs view syntax which can be edited and resubmitted to the command facility.

VERB CREate/DISplay/DROp/PUNch
Specifies the verb with which the entity statement is to be displayed or punched.
For example, if VERB CREATE is specified, the output of the DISPLAY/PUNCH
statement is a CREATE statement; if VERB ALTER is specified, the output is an
ALTER statement; and so on. The default is VERB CREATE.

With COBOL elements parameters

LIKe RECord
Specifies that you want IDD RECORD syntax, with its columns as COBOL ele-
ments, listed for the named view. For sample uses, see "Usage" later in this
section.

null INDIcators
Specifies the display of COBOL elements defining NULL indicators for nullable
columns.

record ELEments
Specifies the display of elements for the record syntax for the named view.

record SYNonyms
Specifies the display of record synonyms for the record syntax for the named
view.

 5.2.14 Usage

Using the LIKE RECORD parameter: The LIKE RECORD parameter produces
IDD record syntax for the named table.

You can use this syntax to define a record definition for a view in the dictionary.
CA-ADS dialogs can then include it as a work record definition for the view. This
same record definition can be included in a map definition.

5-28 CA-IDMS Release 14.0 Features Guide

5.3 Dynamic SQL syntax changes

5.3 Dynamic SQL syntax changes

CA-IDMS Release 14.0 has extended its SQL support to include the following new
features:

■ You can update or delete the current row of a dynamic cursor

■ You can define and manipulate statements and cursors with dynamically-supplied
names

■ You can define and manipulate global statements and cursors

■ You can use dynamic parameters to supply input values for dynamically executed
statements

5.3.1 Dynamic positioned UPDATE and DELETE

Positioned UPDATE and DELETE statements may now reference dynamically-defined
cursors and may themselves be dynamically PREPAREd and EXECUTEd. This pro-
vides the ability to update or delete the current row in a set of rows, the makeup of
which is not known until runtime.

To use this new feature, you do the following:

■ PREPARE a SELECT statement that defines the rows to be updated or deleted.

■ Define a dynamic cursor that references the PREPAREd statement using either a
DECLARE CURSOR statement or the new ALLOCATE CURSOR statement.

■ OPEN the cursor.

■ Position the cursor on the target row using a FETCH statement.

■ EXECUTE the positioned UPDATE or DELETE statement in one of the following
ways:

– As a statement embedded in an application program

– Through the EXECUTE IMMEDIATE statement

– Through the PREPARE and EXECUTE statements

For more information on this feature, see the UPDATE and DELETE statements later
in this chapter.

 5.3.2 Dynamically-assigned names

What are they?: Dynamically-prepared statements and their associated cursors may
now have names assigned at runtime rather than at compile time. This allows a single
set of source statements (OPEN, CLOSE, FETCH, and so on) to reference more than
one concurrently-open cursor and it also allows multiple cursors to be associated with
a single PREPAREd statement. These new capabilities may simplify the coding and
design of certain types of applications.

Chapter 5. CA-IDMS SQL Option 5-29

5.3 Dynamic SQL syntax changes

Using dynamically-assigned names: To use this new feature, you specify a
host-variable in place of the cursor or statement name. For example, to open a cursor
whose name is assigned at runtime, you would code the following:

OPEN :cursor-name

Before executing this statement, you would move the desired name of the cursor to the
:cursor-name host variable.

Cursors with dynamically-assigned names must be defined using the new ALLOCATE
CURSOR statement instead of the DECLARE CURSOR statement. The following
example creates a new cursor whose name is supplied in :curs-name and associates it
with the statement whose name is supplied through the :sel-statemnt host variable:

ALLOCATE :curs-name CURSOR FOR :sel-statemnt

For more information on this feature, refer to the expansions of cursor-name and
statement-name, as well as the new ALLOCATE CURSOR and DEALLOCATE
PREPARE statements later in this chapter. In addition, refer to the modified
description of the following statements to see how these new types of names can be
used:

 ■ CLOSE

 ■ DELETE

 ■ DESCRIBE

 ■ EXECUTE

 ■ FETCH

 ■ OPEN

 ■ PREPARE

 ■ UPDATE

5.3.3 Global statements and cursors

What are they?: Dynamically defined statements and cursors may now be created
as global objects. This allows them to be referenced by any program executing as part
of the transaction in which they were created. This facilitates the use of modular
programming by allowing an entity, such as a statement, to be created in one program
and referenced, perhaps by an EXECUTE statement, in another program.

Defining a global statement or cursor: To define a global statement or cursor,
you specify the keyword GLOBAL as part of the name when the object is created. To
define a global statement, you specify GLOBAL on the PREPARE statement which
defines it:

PREPARE GLOBAL :statement-name FOR :statement-text

Defining a dynamic global cursor: To define a dynamic global cursor, you use
the new ALLOCATE CURSOR statement and not the DECLARE CURSOR statement:

5-30 CA-IDMS Release 14.0 Features Guide

5.3 Dynamic SQL syntax changes

ALLOCATE GLOBAL :cursor-name CURSOR FOR :statement-name

Once defined, global statements and cursors are referenced by specifying the GLOBAL
keyword as part of the name. For example, to open a global cursor, you code:

OPEN GLOBAL :cursor-name

For more information on the feature, see the expansions of cursor-name and statement-
name, as well as the new ALLOCATE CURSOR and DEALLOCATE PREPARE
statements later in this chapter. In addition, see the modified description of the fol-
lowing statements to see how these new types of names can be used:

 ■ CLOSE

 ■ DELETE

 ■ DESCRIBE

 ■ EXECUTE

 ■ FETCH

 ■ OPEN

 ■ PREPARE

 ■ UPDATE

 5.3.4 Dynamic parameters

What are they?: Dynamic parameters allow input values to be supplied during the
execution of a dynamic SQL statement. This allows a statement, such as an UPDATE
or INSERT statement, to be PREPAREd once but EXECUTEd multiple times with
different input values for each execution. It also allows a SELECT statement to be
PREPAREd once but to be used with different selection criteria to retrieve different
rows.

How are they used?: You indicate the presence of a dynamic parameter by speci-
fying a dynamic parameter marker within the text of the SQL statement being pre-
pared. A dynamic parameter marker is the question mark ("?") symbol. It can be
specified anywhere that an input host variable can be specified, except as noted below.

When executing an SQL statement which contains one or more dynamic parameter
markers, you supply values to be substituted in place of the markers through the
USING clause on the EXECUTE statement. If the prepared SQL statement is a
SELECT, the substitution values are supplied through the USING clause on the OPEN
statement.

Parameter datatypes: When a statement containing a dynamic parameter marker is
prepared, CA-IDMS infers the datatype of the substitution value by examining the
context in which the dynamic parameter marker appears. You may use the
DESCRIBE statement (or the DESCRIBE option on the PREPARE statement) to deter-
mine the assumptions that CA-IDMS has made about the datatypes of the dynamic
parameters.

Chapter 5. CA-IDMS SQL Option 5-31

5.3 Dynamic SQL syntax changes

The datatypes of the actual substitution values do not need to be the same as those
assumed by CA-IDMS. However, they must be compatible with respect to the assign-
ment operator. That is, the value passed at the time the statement is executed must be
capable of being assigned to a variable of the datatype assumed by CA-IDMS.

��Refer to Comparison, Assignment, Arithmetic and Concatenation Operations in the
CA-IDMS SQL Reference for more information on the assignment operation.

The following table outlines how CA-IDMS infers the datatype of a dynamic param-
eter from the context in which it is used.

Context Datatype of dynamic parameter

Date-time value expressions

? + date or date + ? Date duration (DECIMAL(8,0))

? + time or time + ? Time duration (DECIMAL(6,0))

? + timestamp or timestamp + ? Time duration (DECIMAL(6,0))

date - ? Date duration (DECIMAL(8,0))

time - ? Time duration (DECIMAL(6,0))

timestamp - ? Time duration (DECIMAL(6,0))

? - date DATE

? - time TIME

? + labelled duration or ? - labelled
duration

DATE if duration is DAY, MONTH,
YEAR; TIME if duration is HOUR,
MINUTE, SECOND

v + ? DAY/MONTH/YEAR/
HOUR/MINUTE/SECOND

DECIMAL(31,6)

Other value expressions

? arithmetic-operator v or v
arithmetic-operator ?

Same as v

? || v or v || ? VARCHAR (256)

Scalar functions

CAST (? AS data-type) data-type

CHAR_LENGTH (?) VARCHAR (256)

CHARACTER_LENGTH (?) VARCHAR (256)

COALESCE (v,...?,...) Same as v (The first entry in the list cannot
be a dynamic parameter)

FLOAT (?) DOUBLE PRECISION

5-32 CA-IDMS Release 14.0 Features Guide

5.3 Dynamic SQL syntax changes

Context Datatype of dynamic parameter

HEX (?) VARCHAR (256)

INTEGER (?) INTEGER

LEFT (?, ?) First is VARCHAR (256); second is
INTEGER

LENGTH (?) VARCHAR (256)

LOCATE (?, ?, ?) First and second are VARCHAR (256); third
is INTEGER

LOWER (?) VARCHAR (256)

LTRIM (?) VARCHAR (256)

POSITION (? IN ?) Both are VARCHAR (256)

PROFILE (?) VARCHAR (256)

RTRIM (?) VARCHAR (256)

SUBSTR (?, ?, ?) or SUBSTRING (?
FROM ? FOR ?)

First is VARCHAR (256); second and third
are INTEGER

TRIM (? FROM ?) Both are VARCHAR (256)

UCASE (?) VARCHAR (256)

UPPER (?) VARCHAR (256)

VALUE (v,...,?,...) Same as v (The first entry in the list cannot
be a dynamic parameter)

VARGRAPHIC (?) VARCHAR (256)

Predicates

? comparison-operator v or v
comparison-operator ?

Same as v

? LIKE ? ESCAPE ? All are VARCHAR (256)

? BETWEEN v1 AND v2 Same as v1

v BETWEEN ? AND ? Both same as v

v1 IN (v2,...,?,...) Same as v1

? IN (v1, v2, ...) Same as v1

? comparison-operator ANY/ALL
(subquery)

Same datatype as result of subquery.

? comparison-operator (subquery) Same datatype as result of subquery.

Update values

UPDATE ... SET column = ? Same as column.

Chapter 5. CA-IDMS SQL Option 5-33

5.3 Dynamic SQL syntax changes

Note: Dynamic parameters are always nullable.

Datatype conversion considerations: CA-IDMS uses the above rules to infer a
datatype for a dynamic parameter. The actual value of the parameter may have a
different datatype provided the two are compatible with regard to the assignment oper-
ator. However, in certain cases, compatibility may not be sufficient. For example, if
you wish to supply a very long character string as an input value and CA-IDMS has
inferred a datatype of VARCHAR(256), the input value may be truncated to a length
of 256. To circumvent this, you may always use the CAST function to override the
default datatype, as in the following example:

UPDATE MY.TEXT

SET STRING =

CHAR(CURRENT TIMESTAMP) || '��' || CAST (? AS VARCHAR(1000))

 WHERE ...

As an operand of a concatenate symbol, CA-IDMS would normally assign VARCHAR
(256) as the datatype for the dynamic parameter. However, by using a CAST func-
tion, the parameter is instead assigned a datatype of VARCHAR (1000).

Restrictions in the use of dynamic parameters: Dynamic parameter markers
may not be used in the following contexts:

■ Following a unary + or - operator

■ By itself as an entry in the select-list of a query expression

■ As both operands of a dyadic operator (except for the concatenation operator)

■ As the first entry in the operand list of the COALESCE and VALUE functions

■ As both the first and second or first and third operands of a BETWEEN predicate

■ As both the first operand and any entry in the second operand of the IN predicate

■ As the operand in the following functions: CHAR, DATE, DAY, DAYS,
DECIMAL, DIGITS, MINUTE, MONTH, MICROSECOND, OCTET_LENGTH,
SECOND, TIME, TIMESTAMP, YEAR

Tip: The CAST function may be used to assign a datatype to a parameter that other-
wise would not be allowed within the desired context. For example, if you
wish to use a dynamic parameter as the first operand in the VALUE function,
you may embed the parameter in a CAST function in order to assign a default
datatype.

New statement options: Refer to new options that make use of dynamic parame-
ters on the following statements:

 ■ DESCRIBE

 ■ EXECUTE

Context Datatype of dynamic parameter

INSERT ... VALUES (...,?,...) Same as target column.

5-34 CA-IDMS Release 14.0 Features Guide

5.3 Dynamic SQL syntax changes

 ■ OPEN

 ■ PREPARE

5.3.5 Dynamic SQL statements and expressions

The rest of this section describes new and modified SQL statements that support
dynamic SQL. These statements are:

 ■ Expansions of:

 – Cursor-name

 – Cursor-specification

 – Query-expression

 – Statement-name

 ■ ALLOCATE CURSOR

 ■ CLOSE

 ■ DEALLOCATE PREPARE

 ■ DELETE

 ■ DESCRIBE

 ■ EXECUTE

 ■ FETCH

 ■ OPEN

 ■ PREPARE

 ■ UPDATE

5.3.6 Expansion of cursor-name

Purpose: Represents a cursor.

 Syntax

��──┬─ static-cursor-name ───┬──��
└─ extended-cursor-name ─┘

Expansion of static-cursor-name

��── cursor-name ──��

Expansion of extended-cursor-name

��──┬────────────┬──┬── 'cursor-name' ───┬───────────────────────────────────��

├── LOCAL ← ─┤ └── :host-variable ──┘

└── GLOBAL ──┘

 Parameters

Chapter 5. CA-IDMS SQL Option 5-35

5.3 Dynamic SQL syntax changes

cursor-name
Specifies the name of the cursor as an identifier.

'cursor-name'
Specifies the name of the cursor as a literal whose value must conform to the
rules for an identifier.

:host-variable
Specifies the name of the cursor as a host-variable whose value must conform to
the rules for an identifier.

LOCAL/GLOBAL
Specifies the scope of the associated cursor name:

■ LOCAL indicates that the cursor can be referenced only from within the
program in which it is defined.

■ GLOBAL indicates that the cursor can be referenced from any program exe-
cuting within the same SQL transaction.

LOCAL is the default.

 5.3.7 Usage

Static versus extended cursor names: A static cursor name is one coded as a
simple identifier. The following DECLARE CURSOR statement assigns the static
name "cursor1" to the cursor being defined:

DECLARE cursor1 CURSOR FOR select1

Cursors defined by a DECLARE CURSOR statement always have static names. Such
cursors may either be dynamic or static, depending on whether the DECLARE
CURSOR statement references a dynamically prepared SQL statement, as in the
example above, or directly includes a cursor-specification.

An extended cursor name is one coded either as a literal or as a host variable. The
following ALLOCATE CURSOR statement assigns the extended name "cursor1" to
the cursor being defined:

MOVE 'cursor1' to cursor-nam

ALLOCATE :cursor-nam CURSOR FOR :statement-nam

Cursors created by an ALLOCATE CURSOR statement always have extended names
and are always dynamic.

If a cursor is defined using a static name, it must be referenced using a static name;
similarly, if it is defined using an extended name, it must be referenced using an
extended name that has the same scope option as specified on the definition.

Note: An exception to this rule occurs when identifying a cursor within a dynam-
ically prepared UPDATE or DELETE statement. For more information, see
the UPDATE and DELETE statements later in this chapter.

5-36 CA-IDMS Release 14.0 Features Guide

5.3 Dynamic SQL syntax changes

Uniqueness of cursor names: Static and extended cursor names do not have to be
unique with respect to each other. If two cursors are assigned the same value for a
name, they are considered two separate cursors provided that either:

■ One of the names is static while the other is extended

■ Both of the names are extended, but they have different scopes, as indicated by
their LOCAL/GLOBAL parameter.

 5.3.8 Example

Example of cursor-name: The following DECLARE CURSOR statement defines a
dynamic cursor using a static cursor name of C1. It is referenced within the subse-
quent OPEN statement:

EXEC SQL

DECLARE C1 CURSOR FOR S1

END-EXEC

EXEC SQL

 OPEN C1

END-EXEC

Example of extended cursor name: The following ALLOCATE CURSOR state-
ment defines a local cursor using an extended cursor name of C1. It is then referenced
in the subsequent OPEN statement:

EXEC SQL

ALLOCATE 'C1' CURSOR FOR 'S1'

END-EXEC

EXEC SQL

 OPEN 'C1'

END-EXEC

Note: Even though C1 is used as the cursor name in both of the above examples, two
separate cursors are created: one with a static name of C1 and one with an
extended name of C1.

Global extended cursor name: The following ALLOCATE CURSOR statement
defines a global cursor using an extended cursor name whose value is not known until
runtime. In this case, the value 'C2' is moved to the host variable before the statement
is executed and will be the name of the cursor created:

move 'C2' to :cname

EXEC SQL

ALLOCATE GLOBAL :CNAME CURSOR FOR :SNAME

END-EXEC

Since this is a global cursor, it can be referenced in a different program than the one
in which the ALLOCATE CURSOR statement appears. For example, the following
OPEN statement might be contained in a different program:

EXEC SQL

OPEN GLOBAL 'C2'

END-EXEC

Note: It does not matter that in one case the name of the cursor is supplied through a
host-variable and in the other it is specified as a literal. They both refer to the
global cursor C2.

Chapter 5. CA-IDMS SQL Option 5-37

5.3 Dynamic SQL syntax changes

5.3.9 Expansion of cursor-specification

Purpose: Represents the body of a cursor-definition.

 Syntax

��── query-expression ──┬────────────────────────────┬───────────────────────�
└── order-by-specification ──┘

 �──────────────────────┬───┬───��

└── FOR ─┬─ READ ONLY ──────────────────────────┤

└─ UPDATE ─┬───────────────────────────┤

│ ┌────── , ───────┐ │

└── OF ─↓── column-name ─┴──┘

Expansion of order-by-specification

┌─────────────────────── , ───────────────────────────┐

��── ORDER BY ─↓─┬─┬───────────────┬─ column-name ─┬───┬──────────┬──┴────────��

│ ├─ table-name. ─┤ │ ├─ ASC <- ─┤

│ └─ alias. ──────┘ │ └─ DESC ───┘

├─ column-number ─────────────────┤

└─ result-name ───────────────────┘

 Parameters

query-expression
Represents a table resulting from the evaluation of a query-expression.

��For expanded syntax, see Expansion of query-expression in the CA-IDMS SQL
Reference

order-by-specification
Specifies a sort order for the rows in the result table defined by query-expression.
Expanded syntax for order-by-specification is shown above, immediately following
the cursor-specification syntax.

ORDER BY
Sorts the rows in the result table defined by query-expression in ascending or
descending order by the values in the specified columns. Rows are ordered first
by the first column specified, then by the second column specified with the
ordering established by the first column, then by the third column specified, and
so on.

column-name
Specifies a sort column by name. Column-name must identify a column in the
result table of the query expression.

table-name
Specifies the table or view that includes the named column. See "Identifying enti-
ties in schemas" in Chapter 2 of the CA-IDMS SQL Reference for expanded table-
name syntax.

5-38 CA-IDMS Release 14.0 Features Guide

5.3 Dynamic SQL syntax changes

alias
Specifies the alias associated with the table or view that includes the named
column. Alias must be defined in the FROM parameter of the query specifi-
cation that makes up the query expression.

column-number
Specifies a sort column by the position of the column in the result table. The first
result column is in position 1.

Column-number must be an integer in the range 1 through the number of columns
in the result table.

result-name
Specifies the sort column by the result name specified in the AS parameter of the
query expression.

ASC
Indicates that the values in the specified column are to be sorted in ascending
order. ASC is the default.

DESC
Indicates that the values in the specified column are to be sorted in descending
order.

FOR READ ONLY
Specifies that the cursor with which this cursor-expression is associated will be
used for retrieval operations only. If specified, it prohibits the execution of both
positioned UPDATEs and DELETEs that reference the cursor.

FOR UPDATE
Specifies that the cursor will be used for positioned UPDATE operations.

OF column-name
Identifies a column that may be updated through positioned UPDATE state-
ments. If no columns are specified, then all columns in the table may be
updated.

 5.3.10 Usage

Updatable cursors: A cursor defined by a cursor specification is updatable if the
cursor specification:

■ Contains an updatable query-expression

■ Does not contain an ORDER BY clause

■ Does not contain a FOR READ ONLY clause

Updatable cursors may be referenced in positioned DELETE statements.

To reference a cursor in a positioned UPDATE statement, it must be updatable and the
FOR UPDATE clause must be specified within the cursor specification.

Chapter 5. CA-IDMS SQL Option 5-39

5.3 Dynamic SQL syntax changes

Tip: To insure optimal performance when processing a cursor that is referenced in a
positioned UPDATE statement, you should explicitly identify the columns to
be updated rather than specifying FOR UPDATE without naming the columns.

Updatable query-expressions: A query expression is updatable if:

■ It consists of a single query specification; that is, the query expression does not
include the UNION operator

■ The FROM parameter in the query specification specifies only one table, view, or
table procedure, and if a view is specified, it is updatable.

■ The query specification does not contain DISTINCT, PRESERVE, GROUP BY,
or HAVING parameters and does not use aggregate functions in the specification
of a result column

 5.3.11 Example

Defining a cursor for retrieval-only: The following DECLARE CURSOR statement
defines a static cursor by including a cursor-specification directly. In this case, the
cursor being defined can only be used to retrieve rows from the database. By coding
the FOR READ ONLY option, you ensure that neither positioned UPDATEs nor
DELETEs will be allowed against the cursor:

EXEC SQL

DECLARE EMP_CURSOR CURSOR FOR

SELECT EMP_ID, DEPT_ID, EMP_LNAME

 FROM EMPLOYEE

FOR READ ONLY

END-EXEC

Defining a dynamic cursor for UPDATE operations: The following set of code
defines a dynamic cursor to be used to update the DEPT_ID column of the
EMPLOYEE table. The cursor-specification containing the FOR UPDATE clause is
first prepared and then an ALLOCATE CURSOR statement is used to create the
cursor:

MOVE 'SELECT U

FROM EMPLOYEE FOR UPDATE OF DEPT_ID'

 TO ST-TEXT.

EXEC SQL

PREPARE 'EMP-STATEMENT' FROM :ST-TEXT

END-EXEC

EXEC SQL

ALLOCATE 'EMP-CURSOR' CURSOR FOR 'EMP-STATEMENT'

END-EXEC

5-40 CA-IDMS Release 14.0 Features Guide

5.3 Dynamic SQL syntax changes

5.3.12 Expansion of statement-name

Purpose: Represents a dynamically-prepared statement.

 Syntax

��──┬── static-statement-name ────┬───��
└── extended-statement-name ──┘

Expansion of static-statement-name

��── statement-name ──��

Expansion of extended-statement-name

��──┬─────────────┬───┬── 'statement-name' ─┬───────────────────────────────��

├── LOCAL ← ─┤ └── :host-variable ───┘

└── GLOBAL ───┘

 Parameters

statement-name
Specifies the name of the statement as an identifier.

'statement-name'
Specifies the name of the statement as a literal whose value must conform to the
rules for an identifier.

:host-variable
Specifies the name of the statement as a host-variable whose value must conform
to the rules for an identifier.

LOCAL/GLOBAL
Specifies the scope of the associated statement name:

■ LOCAL indicates that the statement can be referenced only from within the
program in which it is prepared.

■ GLOBAL indicates that the statement can be referenced from any program
executing within the same SQL transaction.

The default is LOCAL.

 5.3.13 Usage

Static versus extended statement names: A static statement name is one coded as
a simple identifier. The following PREPARE statement assigns the static name
"select1" to the statement being prepared:

PREPARE select1 from :select1-text

An extended statement name is one coded either as a literal or as a host-identifier:

MOVE 'SELECT1' to statement-nam

PREPARE :statement-nam FROM :select1-text

Chapter 5. CA-IDMS SQL Option 5-41

5.3 Dynamic SQL syntax changes

If a statement is prepared using a static name, it must be referenced using a static
name; similarly, if it is prepared using an extended name, it must be referenced using
an extended name that has the same scope option.

Uniqueness of statement names: Static and extended names do not have to be
unique with respect to each other. If two statements are assigned the same value for a
name, they are considered two separate statements provided that either:

■ One of the names is static while the other is extended.

■ Both of the names are extended, but they have different scopes, as indicated by
their LOCAL/GLOBAL parameter.

 5.3.14 Example

Static statement name: The following PREPARE statement creates a statement
using a static statement name of S1. It is referenced within the subsequent
DESCRIBE statement:

EXEC SQL

PREPARE S1 FROM :TEXT

END-EXEC

EXEC SQL

DESCRIBE S1 USING DESCRIPTOR SQLDA

END-EXEC

Extended statement name: The following PREPARE statement creates a local
statement using an extended statement name of S1. It is then referenced in the subse-
quent DESCRIBE statement:

EXEC SQL

PREPARE 'S1' FROM :TEXT

END-EXEC

EXEC SQL

DESCRIBE 'S1' USING DESCRIPTOR SQLDA

END-EXEC

Note: Even though S1 is used as the statement name in both of the above examples,
two separate statements are created: one with a static name of S1 and one
with an extended name of S1.

Global extended statement name: The following PREPARE statement creates a
global statement using an extended statement name whose value is not known until
runtime. In this case, the value 'S2' is moved to the host variable before the statement
is executed and will be the name of the statement created:

MOVE 'S2' TO :SNAME

EXEC SQL

PREPARE GLOBAL :SNAME FROM :TEXT

END-EXEC

Since this is a global statement, it can be referenced in a different program than the
one in which the PREPARE statement appears. For example, the following
DESCRIBE statement might be contained in a different program:

5-42 CA-IDMS Release 14.0 Features Guide

5.3 Dynamic SQL syntax changes

EXEC SQL

DESCRIBE GLOBAL 'S2'

END-EXEC

Note: It does not matter that in one case the name of the statement is supplied
through a host-variable and in the other it is specified as a literal. They both
refer to the global statement S2.

5.3.15 ALLOCATE CURSOR statement

Purpose: Defines a cursor for a dynamically-prepared statement.

 Syntax

��── ALLOCATE extended-cursor-name CURSOR ─────────────────────────────────�
 �── FOR extended-statement-name ──��

 Parameters

extended-cursor-name
Identifies the name of the cursor being defined. The name must conform to the
rules for an identifier and must be unique within the specified scope.

extended-statement-name
Identifies the name of the statement for which the cursor is being defined. A
statement with this name and scope must have been prepared within the same
SQL transaction as that in which the ALLOCATE CURSOR statement is being
executed.

 5.3.16 Usage

Updatable cursors: The PREPAREd statement referenced in the ALLOCATE
CURSOR statement must be a cursor-specification. The cursor created as a result of
the ALLOCATE CURSOR statement, is updatable, if the cursor-specification is
updatable.

 5.3.17 Examples

Creating a local cursor: The following ALLOCATE CURSOR statement creates a
local cursor called C1 and associates it with the local statement whose name is passed
in :sname:

EXEC SQL

ALLOCATE 'C1' CURSOR FOR :SNAME

END-EXEC

Creating a global cursor: The following ALLOCATE CURSOR statement creates a
global cursor whose name is passed in :CNAME and associates it with the global
statement whose name is passed in :SNAME:

EXEC SQL

ALLOCATE GLOBAL :CNAME CURSOR FOR :SNAME

END-EXEC

Chapter 5. CA-IDMS SQL Option 5-43

5.3 Dynamic SQL syntax changes

Sharing a statement definition: The following two ALLOCATE CURSOR state-
ments create two cursors, one of which is local and one of which is global. They are
both associated with the same local statement:

EXEC SQL

ALLOCATE 'C1' CURSOR FOR 'S1'

END-EXEC

EXEC SQL

ALLOCATE GLOBAL CURSOR 'G1' FOR 'S1'

END-EXEC

 5.3.18 CLOSE statement

 Syntax

��─── CLOSE cursor-name ──��

 Parameters

cursor-name
Specifies the cursor to be closed. Cursor-name must identify a cursor previously
defined by a DECLARE CURSOR statement within the application program or by
an ALLOCATE CURSOR statement executed within the same SQL transaction.

 5.3.19 Example

Closing a global dynamic cursor: The following statement closes the global cursor
whose name is passed in :CNAME:

EXEC SQL

CLOSE GLOBAL :CNAME

END-EXEC

5.3.20 DEALLOCATE PREPARE statement

Purpose: Destroys a dynamically-compiled statement and all other dynamically
compiled statements that directly or indirectly reference it.

 Syntax

��── DEALLOCATE PREPARE statement-name ──────────────────────────────────────��

 Parameters

statement-name
Identifies the statement to be destroyed. It must identify a statement previously
created using a PREPARE statement.

5-44 CA-IDMS Release 14.0 Features Guide

5.3 Dynamic SQL syntax changes

 5.3.21 Usage

Effect on dependent statements: Upon successful execution of a DEALLOCATE
PREPARE statement, the following actions have taken place:

■ The target statement is destroyed.

■ If the target statement was a cursor-specification, then all cursors that reference
the target statement are destroyed. If the cursors were open at the time the
DEALLOCATE PREPARE statement was executed, they are first closed.

■ If any dynamically compiled positioned UPDATE or DELETE statements refer-
ence a cursor being destroyed, they too are destroyed.

 5.3.22 Examples

Destroying a prepared statement: The following statement destroys both the local
statement named S1 and any cursors that reference the statement. It also destroys any
statements that reference the cursors.

EXEC SQL

DEALLOCATE PREPARE S1

END-EXEC

 5.3.23 DELETE statement

Syntax: The complete syntax of the DELETE statement is shown below. The
description for only the CURRENT OF parameter is provided. For a description of
the complete syntax, see the CA-IDMS SQL Reference.

��─── DELETE FROM table-name ──┬──────────┬───────────────────────────────────�
└─ alias ──┘

 �─┬───┬────────────────────��

└─ WHERE ─┬─ search-condition ──────────────────────┬─┘
└─ CURRENT OF ─┬─ cursor-name ─────────┬──┘

└─ dynamic-name-clause ─┘

Expansion of dynamic-name-clause

��─┬─────────────┬─ cursor-name ───��

├─ LOCAL ← ─┬─┘

└─ GLOBAL ──┘

 Parameters

CURRENT OF
Specifies that only the row that corresponds to the current row of the named
cursor is to be deleted.

cursor-name
Identifies the cursor whose current row will be deleted. Cursor-name must iden-
tify an open cursor previously defined by a DECLARE CURSOR statement within
the application program or by an ALLOCATE CURSOR statement executed
within the same SQL transaction.

Chapter 5. CA-IDMS SQL Option 5-45

5.3 Dynamic SQL syntax changes

Note: This option may only be used in a DELETE statement embedded in an
application program.

dynamic-name-clause
Identifies the cursor whose current row will be deleted.

Note: This option may only be used in a DELETE statement dynamically com-
piled using a PREPARE or EXECUTE IMMEDIATE statement.

LOCAL
Indicates that the named cursor has a local scope and was defined using either a
DECLARE CURSOR statement or an ALLOCATE CURSOR statement. The
default is LOCAL.

GLOBAL
Indicates that the named cursor was created by an ALLOCATE CURSOR state-
ment and is global in scope.

cursor-name
Specifies the name of the cursor as an identifier. Cursor-name must identify an
open cursor previously defined by a DECLARE CURSOR statement within the
application program or by an ALLOCATE CURSOR statement executed within
the same SQL transaction.

 5.3.24 Usage

Dynamic positioned deletes: A dynamic positioned DELETE statement is one that
references a dynamic cursor. Such a DELETE statement may either be embedded
within an application program or created dynamically using a PREPARE or
EXECUTE IMMEDIATE statement.

A positioned DELETE statement embedded in an application program may reference
either a static cursor or a dynamic cursor. A positioned DELETE statement created
dynamically using a PREPARE or EXECUTE IMMEDIATE statement can only refer-
ence a dynamic cursor.

Ambiguous cursor references: When a dynamic positioned DELETE statement is
being created by a PREPARE or EXECUTE IMMEDIATE statement, it is possible
that CA-IDMS may not be able to determine which cursor is being referenced. This
will occur if the application program contains a DECLARE CURSOR statement that
defines a cursor having the referenced name and the program has also executed an
ALLOCATE cursor statement that creates a cursor with the same name and a local
scope. Under these conditions, CA-IDMS cannot determine which of the two cursors
is being referenced. To avoid such problems, it is advisable to use different names for
cursors that are declared from those that are allocated with a local scope.

5-46 CA-IDMS Release 14.0 Features Guide

5.3 Dynamic SQL syntax changes

 5.3.25 Examples

A positioned DELETE referencing a DECLAREd cursor: The following statement
deletes the current row of the cursor C1. C1 may either be a dynamic or static cursor,
but it must have been defined using a DECLARE CURSOR statement:

EXEC SQL

DELETE FROM EMPLOYEE WHERE CURRENT OF C1

END-EXEC

A positioned DELETE referencing an ALLOCATEd cursor: The following state-
ment deletes the current row of a cursor whose name is specified in the variable
CNAME. The referenced cursor must have been defined using an ALLOCATE
CURSOR statement:

EXEC SQL

DELETE FROM EMPLOYEE WHERE CURRENT OF :CNAME

END-EXEC

A dynamically-compiled positioned DELETE statement: The following statement
deletes the current row of local cursor C1. C1 may have been defined using either a
DECLARE CURSOR statement or an ALLOCATE CURSOR statement. In either
case, the cursor name in the DELETE statement is specified as an identifier rather than
as a literal or host variable:

EXEC SQL

 EXECUTE IMMEDIATE

'DELETE FROM EMPLOYEE WHERE CURRENT OF LOCAL C1'

END-EXEC

Note: The keyword LOCAL is unnecessary since it is the default. Regardless of
whether or not it is specified, if two local cursors named C1 have been
defined, one using a DECLARE CURSOR statement and one using an ALLO-
CATE CURSOR statement, the EXECUTE IMMEDIATE statement will fail
on an ambiguous cursor error.

 5.3.26 DESCRIBE statement

 Syntax

��─ DESCRIBE ─┬─ OUTPUT ← ─┬─ statement-name ────────────────────────────────�
└─ INPUT ────┘

 �─ USING sql DESCRIPTOR descriptor-area-name1 ──────────────────────────────�

 �─┬───┬───────────────��

├─ INPUT ──┬─ USING sql DESCRIPTOR descriptor-area-name2 ─┘

└─ OUTPUT ─┘

Note 1: If DESCRIBE OUTPUT is specified or implied, you may only specify the
INPUT USING parameter; similarly, if DESCRIBE INPUT is specified, you
may only specify the OUTPUT USING parameter.

Note 2: For compatibility with earlier releases, you can specify "INTO sql descriptor"
in place of "USING sql DESCRIPTOR"; however, this is an extension to
ANSI standard SQL.

Chapter 5. CA-IDMS SQL Option 5-47

5.3 Dynamic SQL syntax changes

 Parameters

INPUT/OUTPUT
Specifies the type of information to be returned in the associated descriptor area.
INPUT means that information about dynamic parameters is to be returned in the
SQL descriptor area. OUTPUT means that information about output values is to
be returned.

statement-name
Specifies the name of the statement being described.

��See the expansion of statement-name earlier in this chapter for a detailed
description.

USING SQL DESCRIPTOR
Specifies the SQL descriptor area in which CA-IDMS is to return information
about the named statement.

descriptor-area-name1
Directs CA-IDMS to use the named area as the descriptor area.
Descriptor-area-name1 must identify an SQL descriptor area.

INPUT/OUTPUT USING SQL DESCRIPTOR descriptor-area-name2
Specifies the type of information to be returned in the associated descriptor area.
INPUT means that information about dynamic parameters is to be returned in the
SQL descriptor area. OUTPUT means that information about output values is to
be returned.

Descriptor-area-name2 is the name of the SQL descriptor area.

Note: If DESCRIBE OUTPUT is specified or implied, you may only specify the
INPUT USING parameter; similarly, if DESCRIBE INPUT is specified, you
may only specify the OUTPUT USING parameter.

��See Appendix D, "SQL Descriptor Area," in the CA-IDMS SQL Reference for the
layout of an SQL descriptor area.

 5.3.27 Usage

Describing dynamic parameters: The INPUT option is used to return information
about dynamic parameters that may be embedded in the SQL statement being
described. The SQLD field of the descriptor area indicates the number of dynamic
parameters that appear in the statement. If no dynamic parameters are used, this field
is zero (0).

If dynamic parameters do appear in the statement, CA-IDMS returns descriptions of
the parameters in the descriptor area. The datatype information is derived from the
context in which the dynamic parameter appears.

Describing output values: The OUTPUT option is used to return information about
values output from CA-IDMS:

■ For a SELECT statement, CA-IDMS returns a description of the result table

5-48 CA-IDMS Release 14.0 Features Guide

5.3 Dynamic SQL syntax changes

defined by the statement. The SQLD field of the descriptor area indicates the
number of columns in the result table.

■ For a statement other than SELECT, CA-IDMS returns the value zero (0) in the
SQLD field of the descriptor area.

 5.3.28 EXECUTE statement

 Syntax

��─ EXECUTE statement-name ───�

 �─┬──┬───────────��

│ ┌─────── , ─────────┐ │

└─ USING ─┬─↓─ :host-variable ──┴────────────────────────────┬─┘

├─ :dyn-buff sql DESCRIPTOR descriptor-area-name ──┤

├─ BULK :bulk-buffer bulk-options ─────────────────┤
└─ BULK :dyn-buff dynamic-bulk-specification ──────┘

Expansion of bulk-options

��──┬──────────────────────────────┬──�

└─ START :start-variable-name ─┘

 �──┬─────────────────────────────────┬───────────────────────────────────────��

└─ ROWS :row-count-variable-name ─┘

Expansion of dynamic-bulk-specification

��──┬──────────────────────────────┬──�

└─ START :start-variable-name ─┘

 �── ROWS :row-count-variable-name ───�

 �── USING sql DESCRIPTOR descriptor-area-name ───────────────────────────────��

 Parameters

statement-name
Identifies the statement being executed.

��See the expansion of statement-name earlier in this chapter for detailed informa-
tion.

USING
Supplies values for the dynamic parameters embedded in the text of the statement.

host-variable
Identifies the host variables from which CA-IDMS is to retrieve values for the
dynamic parameters. CA-IDMS assigns the value of the first host variable to
the first dynamic parameter, the second host variable to the second dynamic
parameter, and so on.

Host-variable must be a host variable declared previously in the host-language
application program.

You must specify the same number of host variables in the USING parameter
as the number of dynamic parameter markers in the statement text.

Chapter 5. CA-IDMS SQL Option 5-49

5.3 Dynamic SQL syntax changes

COBOL: Host-variable may be either an elementary item or a non-bulk
structure. If a non-bulk structure is specified, each subelement of the
structure is counted as a host variable.

:dyn-buff
Identifies the host-variable or bulk-buffer from which CA-IDMS is to retrieve
values for the dynamic parameters.

Dyn-buff must identify a host variable previously declared in the host lan-
guage application program.

The size of dyn-buff must be sufficient to hold a complete set of dynamic
parameter values for a single execution of the statement. If specified as part
of the BULK parameter, dyn-buff must be sufficient to hold row-count-
variable sets of dynamic parameters. The format of the data in dyn-buff must
conform to the description in the SQL descriptor area specified by descriptor-
area-name

SQL DESCRIPTOR
Specifies the SQL descriptor area that describes the format of the dynamic
parameter values contained in dyn-buff.

descriptor-area-name
Directs CA-IDMS to use the named area as the descriptor area. Descriptor-
area-name must identify an SQL descriptor area.

BULK
Directs CA-IDMS to execute the statement one or more times and to use a
contiguous storage area to retrieve input values for the dynamic parameters.
The specification of BULK is a CA-IDMS extension of ANSI-standard SQL.

Note: BULK may only be specified if the statement being executed is an
INSERT statement.

:bulk-buffer
Identifies a host variable from which CA-IDMS is to retrieve one or more sets
of input values. Bulk-buffer must identify a host variable previously declared
in the host-language application program.

Bulk-buffer must be defined as a multiple-occurring structure having the same
number of subelements as there are dynamic parameters in the statement.

bulk-options
Optionally specify the location in bulk-buffer for the first row fetched and/or
the number of rows to be fetched from the result table associated with the
cursor. Expanded syntax for bulk-options immediately follows the statement
syntax.

START :start-variable-name
Identifies a host variable containing the relative position within the bulk
buffer from which CA-IDMS is to retrieve values for the first row in the
named table or view. Values in subsequent entries in the bulk buffer are
retrieved sequentially to subsequent new rows in the table or view.

5-50 CA-IDMS Release 14.0 Features Guide

5.3 Dynamic SQL syntax changes

Start-variable-name must be a host variable previously declared in the host-
language application program. The value in the host variable must be an
integer in the natural range of subscripts for arrays in the language in which
the application program is written.

If you do not specify the START parameter, CA-IDMS retrieves the values
from the first entry in the bulk buffer.

ROWS :row-count-variable-name
Identifies a host variable that specifies the number of rows CA-IDMS is to
retrieve from the bulk buffer.

Row-count-variable-name must be a host variable previously declared in the
host-language application program. The value in the host variable must be in
the range 1 through the number of rows that will fit in the bulk buffer.

If you do not specify the ROWS parameter, CA-IDMS retrieves rows from
the array sequentially until reaching the end of the buffer.

dynamic-bulk-specification
Provides specification for inserting one or more rows into a table.

Expanded syntax for dynamic-bulk-specification appears immediately fol-
lowing the expanded syntax for bulk-options. Descriptions of dynamic-bulk-
specification parameters appear above.

��See Appendix D, "SQL Descriptor Area," of the CA-IDMS SQL Reference for the
layout of an SQL descriptor area.

 5.3.29 Usage

Dynamically-compiled cursor-specifications

You cannot use the EXECUTE statement with a dynamically-compiled cursor-
specification. To retrieve data using a dynamically-compiled cursor-specification, you
must define a cursor and use the FETCH statement.

 5.3.30 FETCH statement

Syntax: The complete syntax of the FETCH statement is shown below. The
description for only the cursor-name parameter is provided. For a description of the
complete syntax, see the CA-IDMS SQL Reference.

��─── FETCH cursor-name ──�
┌─────── , ───────┐

 �─┬─ INTO ─┬─↓─ host-variable ─┴──────────────────────────────────────┬──┬───��

│ └─ :dyn-buffer USING sql DESCRIPTOR descriptor-area-name ──┘ │

└─ BULK ─┬─ :bulk-buffer bulk-options ──────────────────┬──────────────┘
└─ :dyn-buffer dynamic-bulk-specification ─────┘

Expansion of bulk-options

Chapter 5. CA-IDMS SQL Option 5-51

5.3 Dynamic SQL syntax changes

��──┬──────────────────────────────┬──�

└─ START :start-variable-name ─┘

 �──┬─────────────────────────────────┬───────────────────────────────────────��

└─ ROWS :row-count-variable-name ─┘

Expansion of dynamic-bulk-specification

��──┬──────────────────────────────┬──�

└─ START :start-variable-name ─┘

 �── ROWS :row-count-variable-name ───�

 �── USING sql DESCRIPTOR descriptor-area-name ───────────────────────────────��

 Parameters

cursor-name
Specifies the cursor to be used for retrieving values. Cursor-name must identify
an open cursor previously defined by a DECLARE CURSOR statement within the
application program or by an ALLOCATE CURSOR statement executed within
the same SQL transaction.

 5.3.31 OPEN statement

 Syntax

��─ OPEN cursor-name ──�
 �──┬───┬────────��

│ ┌──────── , ────────┐ │

└─ USING ──┬─↓── :host-variable ─┴───────────────────────────┬──┘

└─ :dyn-buff sql DESCRIPTOR descriptor-area-name ─┘

 Parameters

cursor-name
Specifies the cursor to be opened. Cursor-name must identify a cursor previously
defined by a DECLARE CURSOR statement within the application program or by
an ALLOCATE CURSOR statement executed within the same SQL transaction.

USING
Supplies values for the dynamic parameters embedded in the text of the dynam-
ically prepared statement with which the cursor is associated.

host-variable
Identifies the host variables from which CA-IDMS is to retrieve values for the
dynamic parameters. CA-IDMS assigns the value of the first host variable to the
first dynamic parameter, the second host variable to the second dynamic param-
eter, and so on.

Host-variable must be a host variable declared previously in the host-language
application program.

You must specify the same number of host variables in the USING parameter as
the number of dynamic parameter markers in the dynamically prepared statement
with which the cursor is associated.

5-52 CA-IDMS Release 14.0 Features Guide

5.3 Dynamic SQL syntax changes

COBOL: Host-variable may be either an elementary item or a non-bulk struc-
ture. If a non-bulk structure is specified, each subelement of the structure
is counted as a host variable.

:dyn-buff
Identifies the host-variable from which CA-IDMS is to retrieve values for the
dynamic parameters.

Dyn-buff must identify a host variable previously declared in the host language
application program.

The size of dyn-buff must be sufficient to hold a complete set of dynamic param-
eter values. The format of the data in dyn-buff must conform to the description in
the SQL descriptor area specified by descriptor-area-name.

SQL DESCRIPTOR
Specifies the SQL descriptor area that describes the format of the dynamic param-
eter values contained in dyn-buff.

descriptor-area-name
Directs CA-IDMS to use the named area as the descriptor area. Descriptor-name
must identify an SQL descriptor area.

��See Appendix D, "SQL Descriptor Area," of the CA-IDMS SQL Reference for the
layout of an SQL descriptor area.

 5.3.32 PREPARE statement

 Syntax

��─ PREPARE statement-name FROM ─┬─ :statement-text ──┬────────────────────�
└─ 'statement-text' ─┘

 �──┬──────────────────────────────┬───────────────────────────────────────��

├─ describe-output-expression ─┤
└─ describe-input-expression ──┘

Expansion of describe-output-expression

��─ DESCRIBE output USING sql DESCRIPTOR descriptor-area-name1 ────────────�

 �─┬──┬──────────────────��

└─ INPUT USING sql DESCRIPTOR descriptor-area-name2 ─┘

Expansion of describe-in-expression

��─ DESCRIBE INPUT USING sql DESCRIPTOR descriptor-area-name2 ─────────────�

 �─┬───┬─────────────────��

└─ OUTPUT USING sql DESCRIPTOR descriptor-area-name1 ─┘

 Parameters

statement-name
Specifies the name to be assigned to the compiled statement. It must be unique
within its associated scope.

Chapter 5. CA-IDMS SQL Option 5-53

5.3 Dynamic SQL syntax changes

��For more information, see Expansion of statement-name earlier in this chapter.

FROM
Identifies the statement to be compiled.

:statement-text
Identifies a host variable containing a preparable SQL statement. :statement-text
must be a host variable previously declared in the application program.

'statement-text'
Specifies a preparable SQL statement enclosed in single quotation marks. Do not
include the SQL prefix or terminator within the statement.

DESCRIBE OUTPUT USING SQL DESCRIPTOR descriptor-area-name1
Specifies the SQL descriptor area in which CA-IDMS is to return information
about the output values to be returned when the dynamically-compiled statement is
executed. Descriptor-area-name1 is the name of the SQL descriptor area.

INPUT USING SQL DESCRIPTOR descriptor-area-name2
Specifies the SQL descriptor area in which CA-IDMS is to return information
about the dynamic parameters used within the statement.

Descriptor-area-name2 is the name of the SQL descriptor area.

DESCRIBE INPUT USING SQL DESCRIPTOR descriptor-area-name2
Specifies the SQL descriptor area in which CA-IDMS is to return information
about the dynamic parameters used within the statement.

Descriptor-area-name2 is the name of the SQL descriptor area.

OUTPUT USING SQL DESCRIPTOR descriptor-area-name1
Specifies the SQL descriptor area in which CA-IDMS is to return information
about the output values to be returned when the dynamically-compiled statement is
executed. Descriptor-area-name1 is the name of the SQL descriptor area.

��For more information about the structure of the SQL descriptor area, see Appendix
D, "SQL Descriptor Area" of the CA-IDMS SQL Reference.

 5.3.33 Usage

Preparable statements: The following SQL statements are preparable:

■ All authorization and logical data description statements

 ■ COMMIT

 ■ cursor-specification

 ■ DELETE

 ■ EXPLAIN

 ■ INSERT

 ■ RELEASE

 ■ ROLLBACK

5-54 CA-IDMS Release 14.0 Features Guide

5.3 Dynamic SQL syntax changes

 ■ SUSPEND SESSION

 ■ UPDATE

Additionally, all CA-IDMS utility and physical data description statements are
preparable.

Specifying dynamic parameters: Dynamic parameters are variables whose values
are supplied when the statement is executed, or in the case of a SELECT statement,
when its associated cursor is opened.

Dynamic parameters are specified as question marks (?) within the text of the SQL
statement. They may appear wherever a host variable is permitted with certain
exceptions.

��For more information on dynamic parameters, see Dynamic parameters earlier in
this chapter.

Describing dynamic parameters: The INPUT option is used to return information
about dynamic parameters that may be embedded in the SQL statement being
described. The SQLD field of the descriptor area indicates the number of dynamic
parameter that appear in the statement. If no dynamic parameters are used, this field is
zero (0).

If dynamic parameters do appear in the statement, CA-IDMS returns descriptions of
the parameters in the descriptor area. The datatype information is derived from the
context in which the dynamic parameter appears.

Describing output values: The OUTPUT option is used to return information about
values output from CA-IDMS:

■ For a SELECT statement, CA-IDMS returns a description of the result table
defined by the statement. The SQLD field of the descriptor area indicates the
number of columns in the result table.

■ For a statement other than SELECT, CA-IDMS returns the value zero (0) in the
SQLD field of the descriptor area.

 5.3.34 UPDATE statement

Syntax: The complete syntax of the UPDATE statement is shown below. The
description for only the CURRENT OF parameter is provided. For a description of
the complete syntax, see the CA-IDMS SQL Reference.

Chapter 5. CA-IDMS SQL Option 5-55

5.3 Dynamic SQL syntax changes

��─── UPDATE table-name ──┬──────────┬──�
└─ alias ──┘

┌─────────────────── , ──────────────────────┐

 �─── SET ─↓── column-name ── = ─┬─ value-expression ─┬─┴─────────────────────�
└─ NULL ─────────────┘

 �─┬───┬────────────────────��

└─ WHERE ─┬─ search-condition ──────────────────────┬─┘
└─ CURRENT OF ─┬─ cursor-name ─────────┬──┘

└─ dynamic-name-clause ─┘

Expansion of dynamic-name-clause

��─┬─────────────┬─ cursor-name ───��

├─ LOCAL ← ─┬─┘

└─ GLOBAL ──┘

 Parameters

CURRENT OF
Specifies that only the row that corresponds to the current row of the named
cursor is to be updated.

cursor-name
Identifies the cursor whose current row will be updated. Cursor-name must iden-
tify an open cursor previously defined by a DECLARE CURSOR statement within
the application program or by an ALLOCATE CURSOR statement executed
within the same SQL transaction.

Note: This option may only be used in an UPDATE statement embedded in an
application program.

dynamic-name-clause
Identifies the cursor whose current row will be updated.

Note: This option may only be used in an UPDATE statement dynamically com-
piled using a PREPARE or EXECUTE IMMEDIATE statement.

LOCAL
Indicates that the named cursor has a local scope and was defined using either a
DECLARE CURSOR statement or an ALLOCATE CURSOR statement. The
default is LOCAL.

GLOBAL
Indicates that the named cursor was created by an ALLOCATE CURSOR state-
ment and is global in scope.

cursor-name
Specifies the name of the cursor as an identifier. Cursor-name must identify an
open cursor previously defined by a DECLARE CURSOR statement within the
application program or by an ALLOCATE CURSOR statement executed within
the same SQL transaction.

5-56 CA-IDMS Release 14.0 Features Guide

5.3 Dynamic SQL syntax changes

 5.3.35 Usage

Dynamic positioned updates: A dynamic positioned UPDATE statement is one that
references a dynamic cursor. Such an UPDATE statement may either be embedded
within an application program or created dynamically using a PREPARE or
EXECUTE IMMEDIATE statement.

A positioned UPDATE statement embedded in an application program may reference
either a static cursor or a dynamic cursor. A positioned UPDATE statement created
dynamically using a PREPARE or EXECUTE IMMEDIATE statement can only refer-
ence a dynamic cursor.

Ambiguous cursor references: When a dynamic positioned UPDATE statement is
being created by a PREPARE or EXECUTE IMMEDIATE statement, it is possible
that CA-IDMS may not be able to determine which cursor is being referenced. This
will occur if the application program contains a DECLARE CURSOR statement that
defines a cursor having the referenced name and the program has also executed an
ALLOCATE cursor statement that creates a cursor with the same name and a local
scope. Under these conditions, CA-IDMS cannot determine which of the two cursors
is being referenced. To avoid such problems, it is advisable to use different names for
cursors that are declared from those that are allocated with a local scope.

 5.3.36 Examples

A positioned UPDATE referencing a DECLAREd cursor: The following statement
updates the current row of the cursor C1. C1 may either be a dynamic or static cursor,
but it must have been defined using a DECLARE CURSOR statement. Furthermore,
the cursor-specification on which C1 is based must contain a FOR UPDATE option
which either directly or implicitly includes the EMP_LNAME column:

EXEC SQL

 UPDATE EMPLOYEE

SET EMP_LNAME = :emp-name

WHERE CURRENT OF C1

END-EXEC

A positioned UPDATE referencing an ALLOCATEd cursor: The following state-
ment updates the current row of a cursor whose name is specified in the variable
CNAME. The referenced cursor must have been defined using an ALLOCATE
CURSOR statement:

EXEC SQL

 UPDATE EMPLOYEE

SET EMP_LNAME = :emp-name

WHERE CURRENT OF GLOBAL :CNAME

END-EXEC

A dynamically-compiled positioned UPDATE statement: The following statement
updates the current row of local cursor C1. C1 may have been defined using either a
DECLARE CURSOR statement or an ALLOCATE CURSOR statement. In either
case, the cursor name in the UPDATE statement is specified as an identifier rather
than as a literal or host variable:

Chapter 5. CA-IDMS SQL Option 5-57

5.3 Dynamic SQL syntax changes

EXEC SQL

 EXECUTE IMMEDIATE

'UPDATE EMPLOYEE SET EMP_STATUS = "T"

WHERE CURRENT OF LOCAL C1'

END-EXEC

Note: The keyword LOCAL is unnecessary since it is the default. Regardless of
whether or not it is specified, if two local cursors named C1 have been
defined, one using a DECLARE CURSOR statement and one using an ALLO-
CATE CURSOR statement, the EXECUTE IMMEDIATE statement will fail
on an ambiguous cursor error.

5-58 CA-IDMS Release 14.0 Features Guide

5.4 ALTER INDEX support

5.4 ALTER INDEX support

Release 14.0 supports a new ALTER INDEX statement. This statement provides the
ability to change the maximum number of index entries contained in an internal index
record (SR8 system record).

Benefit: It is sometimes desirable to change the number of entries in an SR8 system
record after an index has been loaded. Prior to this release, there was no way of doing
this without dropping and recreating the index, a potentially expensive process for
large tables. The new ALTER INDEX statement enables the maximum number of
entries to be changed without affecting the existing index structure.

��For more information on index structure and design considerations, see the
CA-IDMS Database Administration Guide.

 Syntax

��─ ALTER INDEX index-name ON ─┬────────────────┬─ table-identifier ─────────�

└─ schema-name. ─┘

 �─ INDEX BLOCK CONTAINS key-count KEYS ─────────────────────────────────────��

 Parameters

index-name
Specifies the name of the index being modified. Index-name must identify an
index defined in the dictionary.

table-identifier
Identifies the table on which the named index is defined.

schema-name
Identifies the SQL schema associated with the named table.

If you do not specify a schema-name, the default value is:

■ The current schema associated with your SQL session, if the statement is
entered through the Command Facility or executed dynamically.

■ The SQL schema associated with the access module used at runtime, if
the statement is embedded in an application program.

key-count
Establishes the new value for the maximum number of entries in each internal
index record (SR8 system record).

Key-count must be an unsigned integer in the range 3 through 8180.

Chapter 5. CA-IDMS SQL Option 5-59

5.4 ALTER INDEX support

 5.4.1 Usage

System tables: You cannot alter an index defined on a table in the SYSTEM
schema.

 5.4.2 Example

Changing the maximum number of entries in an SR8 record: The following
statement changes the characteristics of the JOB-TITLE-INDEX index by specifying
that the maximum number of entries in an internal index record is to be 500:

ALTER INDEX JOB-TITLE-INDEX ON JOB

INDEX BLOCK CONTAINS 500 KEYS

5-60 CA-IDMS Release 14.0 Features Guide

5.5 Establishing default transaction options

5.5 Establishing default transaction options

You can now establish default transaction options for an SQL session using the SET
SESSION statement. You can establish the default mode in which a database is
accessed (READ ONLY or READ WRITE) and specify an isolation level (CURSOR
STABILITY or TRANSIENT READ).

If you don't specify either of these options, the defaults are READ WRITE and
CURSOR STABILITY, or the settings specified as part of the access module defi-
nition for embedded SQL. The default options may be overridden for an individual
transaction by using the SET TRANSACTION statement.

Syntax: The syntax for only the new transaction options for the SET SESSION
statement is shown below. For a description of the parameters, see the CREATE
ACCESS MODULE statement in the SQL Reference.

��─── SET SESSION ──�

 �─┬────────────────────┬───�

├─ CURSOR STABILITY ─┤

└─ TRANSIENT READ ───┘

 �─┬──────────────┬───��

├─ READ ONLY ──┤

└─ READ WRITE ─┘

Chapter 5. CA-IDMS SQL Option 5-61

5.6 SQLSTATE field in SQLCA

5.6 SQLSTATE field in SQLCA

The SQLCA communications area now contains the SQLSTATE field. SQLSTATE is
a status variable first introduced in the SQL2 standard as the method for returning
errors to applications.

SQLSTATE is a five-character string in which CA-IDMS returns the status of the last
SQL statement executed. It is divided into a two-character class and a three-character
subclass. Standard values are associated with each class and subclass, which mini-
mizes the need for vendors to define their own values and makes applications more
portable from one environment to another.

 5.6.1 SQLSTATE values

The list of SQLSTATE values that CA-IDMS can return appear below. The list is
divided into sections based on the class (the first 2 characters of the SQLSTATE
value). Each subclass (the last 3 characters of the SQLSTATE value) is listed under
its associated class.

ANSI- and ISO-defined values: Class and subclass values beginning with the
characters A-H and 0-4 are established by the ANSI and ISO standards organizations.

CA-IDMS-defined values: Class and subclass values beginning with the characters
I-Z and 5-9 are vendor-defined; in this case, they are specific to CA-IDMS. (Any
subclass value associated with a vendor-defined class is also defined by that vendor.)

 SQLSTATE values

5-62 CA-IDMS Release 14.0 Features Guide

5.6 SQLSTATE field in SQLCA

00 Successful completion

 000 No subclass

 01 Warning

 000 No subclass

004 String data, right truncation

600 Inconsistent or invalid option

602 Entity or association already exists

605 Entity not defined in Catalog

606 Invalid option for physical DDL

607 Invalid option for DMCL

608 Connecting to a dictionary which is missing either or

or both of DDLCAT/DDLDML areas

610 Database is inconsistent with request

638 Warning returned from table procedure

02 No data

 000 No subclass

07 Dynamic SQL error

000 No subclass

001 USING clause does not match dynamic parameter specification

002 USING clause does not match target specification

003 Cursor specification cannot be executed

004 USING clause required for dynamic parameters

08 Connection exception

 000 No subclass

004 SQL-server rejected establishment of SQL-connection

 006 Connection failure

Chapter 5. CA-IDMS SQL Option 5-63

5.6 SQLSTATE field in SQLCA

21 Cardinality violation

 000 No subclass

22 Data Exception

 000 No subclass

001 String data, right truncation

002 Null value, no indicator parameter

003 Numeric value out of range

005 Error in assignment

007 Invalid datetime format

008 Datetime field overflow

 011 Substring error

012 Division by zero

019 Invalid escape character

23 Constraint violation

 000 No subclass

501 Duplicate key violation

24 Invalid cursor state

 000 No subclass

25 Invalid transaction state

 000 No subclass

 006 Read-only SQL-transaction

26 Invalid SQL statement name

 000 No subclass

28 Invalid authorization specification

 000 No subclass

602 Entity or association already defined

605 Entity or association not previously defined

607 Authorization ids not specified

2C Invalid character set name

 000 No subclass

38 External routine exception

 000 No subclass

39 External routine invocation exception

 000 No subclass

5-64 CA-IDMS Release 14.0 Features Guide

5.6 SQLSTATE field in SQLCA

3F Invalid schema name

 000 No subclass

40 Transaction rollback

 000 No subclass

 001 Serialization failure

42 Syntax error or access rule violation

 000 No subclass

500 Table not found

501 Column not found

502 Entity already defined

 503 Authorization failure

504 Cursor not declared or previously declared

505 Entity not found

 506 Invalid identifier

507 Keyword used as identifier

 600 Invalid statement

601 Statement not valid in this context

603 Statement not valid for this schema

604 Invalid data type

606 Invalid statement option

607 Missing statement option

609 Invalid constraint definition

610 Invalid number of columns

50 CA-defined errors

 000 No subclass

 002 Limit exceeded

 003 Space exceeded

 00B Internal error

 00I Schema mismatch

00J Invalid entity definition

 00K Uncategorized error

00L Invalid calling parameters

60 CA-IDMS specific errors

 000 No subclass

001 Problem with load module or synchronization stamps

 002 Database error

 003 Rollback failed

64 CA-IDMS Physical DDL error

 000 No subclass

6U CA-IDMS Utility error

 000 No subclass

5.6.2 SQLSTATE field placement in the SQLCA

The SQLSTATE field appears after the SQLERRM field in the SQLCA. The layout
of the SQLCA is shown below.

Chapter 5. CA-IDMS SQL Option 5-65

5.6 SQLSTATE field in SQLCA

 01 SQLCA.

 02 SQLCAID PIC X(8).

02 SQLCODE PIC S9(8) COMP.

 02 SQLCSID PIC X(8).

 02 SQLCINFO.

03 SQLCERC PIC S9(8) COMP.

03 FILLER PIC S9(8) COMP.

03 SQLCNRP PIC S9(8) COMP.

03 FILLER PIC S9(8) COMP.

03 SQLCSER PIC S9(8) COMP.

03 FILLER PIC S9(8) COMP.

03 SQLCLNO PIC S9(8) COMP.

03 SQLCMCT PIC S9(8) COMP.

03 SQLCARC PIC S9(8) COMP.

03 SQLCFJB PIC S9(8) COMP.

03 FILLER PIC S9(8) COMP.

03 FILLER PIC S9(8) COMP.

02 SQLCINF2 REDEFINES SQLCINFO.

03 SQLERRD PIC S9(8) COMP

 OCCURS 12.

 02 SQLCMSG.

03 SQLCERL PIC S9(8) COMP.

 03 SQLERM PIC X(256).

02 SQLCMSG2 REDEFINES SQLCMSG.

 03 FILLER PIC X(2).

 03 SQLERRM.

04 SQLCERRML PIC S9(4) COMP.

 04 SQLERRMC PIC X(256).

 02 SQLSTATE PIC X(5).

 02 FILLER PIC X(11).

 02 SQLWORK PIC X(16).

02 SQLCWRK2 REDEFINES SQLWORK.

 03 SQLERRP.

 04 SQLCVAL PIC X(5).

 04 FILLER PIC X(3).

 03 SQLWARN.

 04 SQLWARN0 PIC X(1).

 04 SQLWARN1 PIC X(1).

 04 SQLWARN2 PIC X(1).

 04 SQLWARN3 PIC X(1).

 04 SQLWARN4 PIC X(1).

 04 SQLWARN5 PIC X(1).

 04 SQLWARN6 PIC X(1).

 04 SQLWARN7 PIC X(1).

5-66 CA-IDMS Release 14.0 Features Guide

5.7 Optimization enhancements

 5.7 Optimization enhancements

Adjustments were made to the costing algorithm for accessing data through an index
when statistics are not available. These adjustments may result in improved access
strategies under certain conditions. The following effects may be observed:

■ Access through a clustering index will be preferred to an area sweep

■ Access through single-column indexes will be preferred to multiple-column
indexes if WHERE clauses reference only the first columns of the indexes or list
access strategies will tend to be avoided for small tables and used more often for
larger tables, especially when the underlying rows are clustered through an index

Benefit: These changes should result in improved access strategies in cases where
statistics are not available, such as for access to non SQL-defined data or when
UPDATE STATISTICS is not used.

Chapter 5. CA-IDMS SQL Option 5-67

5.8 Migration of SQL syntax by CA-IDMS/Dictionary Migrator

5.8 Migration of SQL syntax by CA-IDMS/Dictionary
Migrator

You can now use the CA-IDMS/Dictionary Migrator product to migrate logical SQL
entities. See Chapter 8, “CA-IDMS Tools” on page 8-1, for more information on
using the CA-IDMS/Dictionary Migrator to migrate SQL statements.

5-68 CA-IDMS Release 14.0 Features Guide

Chapter 6. CA-ADS and the Mapping Facility

6.1 Overview . 6-3
6.2 Concurrent checkout of maps and dialogs 6-4
6.3 Name and disable dialogs abending on program checks 6-5
6.4 Using IDD record syntax for tables and view 6-6

Chapter 6. CA-ADS and the Mapping Facility 6-1

6-2 CA-IDMS Release 14.0 Features Guide

6.1 Overview

 6.1 Overview

This chapter describes general enhancements to CA-ADS and the Mapping Facility.

The following enhancements are new:

■ Concurrent checkout for maps and dialogs in multiple dictionaries

■ Name and disable abending dialog on program checks

■ Using IDD record syntax for table and view definitions

Chapter 6. CA-ADS and the Mapping Facility 6-3

6.2 Concurrent checkout of maps and dialogs

6.2 Concurrent checkout of maps and dialogs

In a multiple dictionary environment, you can now simultaneously check out a map
with the same name or dialog with the same name across multiple dictionaries. Previ-
ously, if the same map or dialog name was in multiple dictionaries, it could be
checked out in only one dictionary at a time.

Benefit: Multiple users can check out a map with the same name or dialog with the
same name at the same time in multiple dictionaries.

6-4 CA-IDMS Release 14.0 Features Guide

6.3 Name and disable dialogs abending on program checks

6.3 Name and disable dialogs abending on program checks

In Release 14.0, when a CA-ADS dialog abends with a program check, the name of
the abending dialog is reported and the program check count for the abending dialog is
incremented. Therefore, only the abending dialog is disabled when its error threshold
is exceeded.

Additionally, the error threshold for ADSOMAIN and ADSORUN1 is always set to
zero at startup. After the system is started, you can use the DCMT VARY
PROGRAM PROGRAM CHECK THRESHOLD command to change the error
threshold for ADSOMAIN and ADSORUN1.

Benefit: This enhancement has these benefits:

■ Programmers can readily determine the name of the abending dialog.

■ Only the dialog that caused a program check is disabled when its error threshold
is exceeded.

■ CA-ADS is not disabled due to a dialog logic error or an internal CA-ADS error.

What to do: You may need to adjust the ERROR THRESHOLD parameter for each
dialog on its corresponding PROGRAM statement. For more information on modi-
fying these system generation parameters, see Chapter 2, “Upgrading to Release 14.0”
on page 2-1.

Chapter 6. CA-ADS and the Mapping Facility 6-5

6.4 Using IDD record syntax for tables and view

6.4 Using IDD record syntax for tables and view

The DISPLAY/PUNCH statement for table and view entities includes the LIKE
RECORD parameter, which displays or punches IDD record syntax for a table or view.

Using this parameter, you can punch IDD record syntax for a table or view and then
use it to define the record or view in a dictionary. Once the record definition is in a
dictionary, it can be used in CA-ADS dialogs as a work record definition. This same
record definition can be included in a map definition. For more information on the
LIKE RECORD parameter, see the DISPLAY/PUNCH TABLE and
DISPLAY/PUNCH VIEW statements in Chapter 5, “CA-IDMS SQL Option” on
page 5-1.

6-6 CA-IDMS Release 14.0 Features Guide

 Chapter 7. CA-OLQ

7.1 Overview . 7-3
7.2 Display report line length . 7-4
7.3 HOME and LEFTMAX scroll commands 7-5
7.4 DISTINCT option in Menu Mode . 7-6
7.5 Specify report column for aggregate columns 7-7
7.6 Override column length on columns with code tables 7-9

Chapter 7. CA-OLQ 7-1

7-2 CA-IDMS Release 14.0 Features Guide

7.1 Overview

 7.1 Overview

Most of the enhancements to CA-OLQ Release 14.0 simplify the process of creating
and displaying reports in Menu Mode. This chapter presents each of these enhance-
ments in a separate section as follows:

■ Display minimum report line width

■ Use HOME and LEFTMAX scroll commands

■ Select DISTINCT option

■ Specify report column for aggregate columns

■ Override column length for columns using code tables

Chapter 7. CA-OLQ 7-3

7.2 Display report line length

7.2 Display report line length

Two new fields appear on the Display Report screen that give you information about
the width of a report:

■ Total displayable cols — The number of columns to be displayed on the report.

■ Formatted line length — The minimum line width required to print the report.
This is the sum of the lengths of the columns.

Benefit: You can choose a more appropriate medium for a wide report, or modify
the report so that all of its data can be printed on the current printer. For example, if
the formatted line length of a report is 100, you can route the report to a 132-byte
width printer.

Sample Display Report screen: The sample Display Report screen below shows
the new fields.

CA-OLQ Release 14.0 UUU Retrieval Completed UUU

 ─�

130000 Select activity and press ENTER key

 Number of whole rows. 57 Total displayable cols . 2+
 Total number of records read. . . . 57 Formatted line length. . 372
 Total number of records selected. . 57

 Number of data errors 0

 Select Command/

 Option ───� Display/Format Activity <--- Screen Name

 X Display report DISplay

 _ Save report SAVe

_ Choose the sort sequence of report SORt

_ Change column headers HEAder

_ Change page header and footer PAGe HEAder

_ Change display format of data ($,commas) PICture

_ Format columns (Alignment, sparse) EDIt

_ Specify summary computations (Totals) GROup BY

_ Send the report to a printer PRInt

1=HELP 3=QUIT 4=MESSAGE 6=MENU

7-4 CA-IDMS Release 14.0 Features Guide

7.3 HOME and LEFTMAX scroll commands

7.3 HOME and LEFTMAX scroll commands

The following new commands are available on the Display Report screen to help you
easily browse a wide report online:

■ HOME — Returns you to the top of the report; page 1 column 1

■ LEFTMAX or LMAX — Returns you to column 1 of the current page of the
report

Previously, if you scrolled right 10 times to view an entire report, you needed to scroll
left 10 times to return to column 1 before you could view the next page.

Chapter 7. CA-OLQ 7-5

7.4 DISTINCT option in Menu Mode

7.4 DISTINCT option in Menu Mode

You can now select an option on the Column Select screen to indicate that you don't
want duplicate rows (detail lines) displayed on the report. The DISTINCT option is
available on the Column Select screen so that you can choose to display only unique
rows in a report. The default is N indicating that duplicate rows are displayed.

Benefit You can display a report in Menu Mode that contains only unique rows;
duplicate rows are not included in the report.

Sample Column Select Screen The DISTINCT option on the Column Select
screen below has been changed to Y to indicate that only unique rows of data are to
be displayed in the report.

CA-OLQ Release 14.0 UUU Column Select UUU

 ─� Page 1 Of 2

124000 Select columns, specify selection criteria and press the ENTER key.

Columns Currently Selected: 20 Selection Criteria Distinct Y Y/N
 _ EMPLOYEE

 X 02 EMP-ID-0415 U

 _ 02 EMP-NAME-0415

 X 03 EMP-FIRST-NAME-0415

 X 03 EMP-LAST-NAME-0415

 _ 02 EMP-ADDRESS-0415

 X 03 EMP-STREET-0415

 X 03 EMP-CITY-0415

 X 03 EMP-STATE-0415

 _ 03 EMP-ZIP-0415

 X 04 EMP-ZIP-FIRST-FIVE-0415

 X 04 EMP-ZIP-LAST-FOUR-0415

 X 02 EMP-PHONE-0415

 X 02 STATUS-0415

 Additional Selection Criteria:

Proceed to Selection Criteria Screen? N Y/N

1=QUIT 3=HELP 4=MESSAGE 6=MENU 8=FWD PA2=REFRESH

7-6 CA-IDMS Release 14.0 Features Guide

7.5 Specify report column for aggregate columns

7.5 Specify report column for aggregate columns

In Menu Mode, you can now specify the column under which you want to display an
aggregate field on a report.

Benefit You can position computed fields in an online report where they are most
meaningful.

Sample Report Format screen: In the sample screen below, four is specified in
the Seq column so that the result of the computed field,
START-YEAR-0415-AVE-ALL, appears after the last line of the fourth column on the
report.

CA-OLQ Release 14.0 UUU Report Format - Group By UUU

 ─� Page 1 OF 1

136000 Specify summary computations and press the ENTER key.

 Group by: Level#

Seq Sum Avg Max Min Count _

 EMPLOYEE

X EMP-ID-0415 1 _ _ _ _

X EMP-FIRST-NAME-0415 2 _ _ _ _

X EMP-LAST-NAME-0415 3 _ _ _ _

X START-YEAR-0415 4 _ _ _ _

X START-MONTH-0415 5 _ _ _ _

X START-DAY-0415 6 _ _ _ _

 COMPUTE FIELDS:

 X START-YEAR-0415-AVE-ALL=AVE(START-YE 4
AR-0415) GROUP BY ALL LEVEL 1

Skip lines after group 1 Separator character -

 Compute:

1=QUIT 3=HELP 4=MESSAGE 6=MENU 10=PICTURE

The screen below shows the value of the computed field displayed after the last line of
the fourth column, START-YEAR-0415.

Chapter 7. CA-OLQ 7-7

7.5 Specify report column for aggregate columns

CA-OLQ Release 14.0 UUU Display Report UUU

 ─� Page 6 Line 56

125004 Press ENTER for DISPLAY/FORMAT ACTIVITY selections.

 EMPLOYEE REPORT

 10/12/95

 FIRST LAST START START START

 ID NAME NAME YEAR MONTH DAY

---- ---------- --------------- ---------------- ----- -----

 0045 GEORGE FONRAD 80 APR 14

 0321 DANIEL MOON 78 JAN 03

AVG FOR ALL: 78

END OF REPORT

- 6 -

1=QUIT 3=HELP 4=MESSAGE 6=MENU 7=BWD 10=LEFT 11=RIGHT

7-8 CA-IDMS Release 14.0 Features Guide

7.6 Override column length on columns with code tables

7.6 Override column length on columns with code tables

A Display length column now appears on the Report Format screen so that you can
override the column length for columns containing a code table. To use this feature in
command mode, use the DISPLAY WIDTH command.

For example, suppose a column on a report has a code table assigned to it and the
external picture is longer than the report requires. You can override the external
picture and assign a shorter, more appropriate length for the report.

Benefit: This allows you to tailor the display width of report columns containing
code tables.

Sample Report Format screen: In the example below, the display length of the
START-MONTH-0415 column is changed to three so that only a three-character
month code is displayed on the report.

CA-OLQ Release 14.0 UUU Report Format - Edit UUU

 ─� Page 1 of 1

135000 Specify edit options and press the ENTER key.

 Disp Code Disp

Seq Sparse Hex Align Table Ver Len

 EMPLOYEE

X EMP-ID-0415 1 _ _ RIGHT

X EMP-FIRST-NAME-0415 2 _ _ LEFT

X EMP-LAST-NAME-0415 3 _ _ LEFT

X START-YEAR-0415 6 _ _ RIGHT

X START-MONTH-0415 4 _ _ RIGHT GWGMONTB 13
X START-DAY-0415 5 _ _ RIGHT

 COMPUTE FIELDS:

 X START-YEAR-0415-AVE-ALL=AVE(START-YE _ RIGHT

AR-0415) GROUP BY ALL LEVEL 1

 Compute:

1=QUIT 3=HELP 4=MESSAGE 6=MENU 10=HEADER 11=PICTURE

The report is displayed showing the three-character month in the START MONTH
column.

Chapter 7. CA-OLQ 7-9

7.6 Override column length on columns with code tables

CA-OLQ Release 14.0 UUU Display Report UUU

 ─� Page 1 Line 1

125000 Press the ENTER key to go to the next page of the report.

 EMPLOYEE REPORT

 10/12/95

FIRST LAST START START START

ID NAME NAME MONTH DAY YEAR

---- ---------------- --------------- ----- ----- -----

0023 KATHERINE O'HEARN MAY 04 78

0472 ROBBY WILDER JUL 16 79

0301 BURT LANCHESTER FEB 03 75

0027 VLADIMIR HEAROWITZ SEP 09 81

0471 THEMIS PAPAZEUS SEP 07 78

0007 MONTE BANK APR 30 78

0334 CAROLYN CROW JUN 17 79

0127 CAROL MCDOUGALL JUN 07 80

0019 JULIE JENSEN SEP 29 82

0366 ALAN DONOVAN OCT 10 81

0476 BETSY ZEDI FEB 23 76

- 1 -

1=QUIT 3=HELP 4=MESSAGE 6=MENU 8=FWD 10=LEFT 11=RIGHT

7-10 CA-IDMS Release 14.0 Features Guide

 Chapter 8. CA-IDMS Tools

8.1 Overview . 8-3
8.2 CA-IDMS/Dictionary Migrator . 8-4

8.2.1 Migrating SQL Entities . 8-4
8.2.1.1 Catalog Navigation Report . 8-5

8.3 CA-IDMS/ADS Alive . 8-6
8.4 CA-IDMS/DB Analyzer, CA-IDMS/DB Audit, CA-IDMS/DB Reorg 8-7

8.4.1 Additional CA-IDMS/DB Reorg features 8-7
8.4.2 Interface to DB/EZReorg . 8-7
8.4.3 Specifying a blocking factor for work files 8-8

8.5 Year 2000 support . 8-9

Chapter 8. CA-IDMS Tools 8-1

8-2 CA-IDMS Release 14.0 Features Guide

8.1 Overview

 8.1 Overview

This chapter describes the new features included in the CA-IDMS tools products that
are available with CA-IDMS Release 14.0.

For specific information on CA-IDMS tools, see the appropriate documentation for
each tool.

The following CA-IDMS tools include new features, which are available with Release
14.0:

 ■ CA-IDMS/Dictionary Migrator

 ■ CA-IDMS/ADS Alive

 ■ CA-IDMS/DB Analyzer

 ■ CA-IDMS/DB Audit

 ■ CA-IDMS/DB Reprg

Additionally, all CA-IDMS tools now have year 2000 support.

Chapter 8. CA-IDMS Tools 8-3

8.2 CA-IDMS/Dictionary Migrator

 8.2 CA-IDMS/Dictionary Migrator

You can use the CA-IDMS/Dictionary Migrator to extract definitions of logical SQL
entities from a source catalog and create a syntax file (BCFUDP) containing these
definitions. You can then load the syntax file to a target catalog using the CA-IDMS
Batch Command Facility.

Entities you can migrate: You can migrate the following SQL entities:

 ■ Schema

 ■ Table

 ■ Table Procedure

 ■ View

MIGRATOR ASSISTANT updated: The MIGRATOR ASSISTANT has also been
updated to generate the parameters to extract logical SQL entities for a batch run.

8.2.1 Migrating SQL Entities

To migrate definitions of logical SQL entities from a source catalog you identify the
entities you want to migrate using the logical SQL entity parameters. You also iden-
tify the name of the source catalog from which the defintions will be extracted. A
new PROCESS statement parameter exists to let you specify that you want to extract
the SQL entities as a stand-alone run. These parameters are described next.

SQL entity parameters: Use the following parameters to specify the logical SQL
entities you want to migrate.

SQLTable = schema-name.sql-table-name
Specifies the name of a base table in the source catalog whose definition you want
to migrate.

Schema-name identifies the name of the schema associated with the table.

SQLView = schema-name.sql-view-name
Specifies the name of a view in the source catalog whose definition you want to
migrate.

Schema-name identifies the name of the schema associated with the view.

SQLSchema = sql-schema-name
Specifies the name of a schema in the source catalog that you want to migrate.

SQLProc = schema-name.table-procedure-name
Specifies the name of a table procedure in the source catalog that you want to
migrate.

Schema-name identifies the name of the schema associated with the table proce-
dure.

8-4 CA-IDMS Release 14.0 Features Guide

8.2 CA-IDMS/Dictionary Migrator

SQLONLY parameter: You can extract SQL entities as a stand-alone run by speci-
fying the SQLONLY parameter on the PROCESS statement or in conjunction with
network extractions. This parameter is only valid for a run type of EXPORT.

When you specify the SQLONLY parameter, only the Parameter Verification report
and the new Catalog Navigation report are generated.

Specify catalog name on DICTIONARY parameter: You specify the name of
the catalog containing the entities you wish to migrate on the DICTIONARY param-
eter. The default is the system catalog.

Example: The following example shows sample input parameters to extract the
DEMO schema from the TEST catalog.

PROCESS,

SQLONLY,

DICTIONARY=TEST,

OBJD=TEST,

LEVEL=DIALOG,

RUN=EXPORT

EXTRACT,SQLSCHEMA=DEMO

8.2.1.1 Catalog Navigation Report

A new report, Catalog Navigation, is generated when you specify the SQLONLY
parameter. It provides information about the entities extracted from the source catalog,
and it also highlights error conditions encountered during the extraction process.

The sample report shown below contains information about the DEMO schema speci-
fied in the sample input parameters in the above example.

CA-TOOLS RELEASE CA-IDMS/DICTIONARY MIGRATOR DATE TIME PAGE

MV9507 R14.0 CATALOG NAVIGATION REPORT 01/31/96 16:03:44 0001

USMS004I EXTRACT SCHEMA - SCHEMA: DEMO

USMS002I EXTRACT TABLE - SCHEMA: DEMO , TABLE: EMPL

USMS010I EXTRACT CONSTRAINT - SCHEMA: DEMO , CONSTRAINT: EMP_POS

USMS002I EXTRACT TABLE - SCHEMA: DEMO , TABLE: POSITION

USMS010I EXTRACT CONSTRAINT - SCHEMA: DEMO , CONSTRAINT: MGR_EMPL

USMS010I EXTRACT CONSTRAINT - SCHEMA: DEMO , CONSTRAINT: EMP_DEPS

USMS002I EXTRACT TABLE - SCHEMA: DEMO , TABLE: DEPENDENTS

USMS010I EXTRACT CONSTRAINT - SCHEMA: DEMO , CONSTRAINT: DEPT_EMPL

USMS002I EXTRACT TABLE - SCHEMA: DEMO , TABLE: DEPT

USMS010I EXTRACT CONSTRAINT - SCHEMA: DEMO , CONSTRAINT: JOB_POS

USMS002I EXTRACT TABLE - SCHEMA: DEMO , TABLE: JOB

USMS010I EXTRACT CONSTRAINT - SCHEMA: DEMO , CONSTRAINT: DEPT_BUDGET

USMS002I EXTRACT TABLE - SCHEMA: DEMO , TABLE: BUDGET

USMS011I EXTRACT TABLE PROCEDURE - SCHEMA: DEMO , PROCEDURE: TESTPROC_1

USMS012I EXTRACT KEY - KEYNAME: PROC1_PRIME_KEY , ON SCHEMA: DEMO , PROCEDURE: TESTPROC_1

USMS012I EXTRACT KEY - KEYNAME: PROC1_UNIQ_KEY , ON SCHEMA: DEMO , PROCEDURE: TESTPROC_1

USMS012I EXTRACT KEY - KEYNAME: PROC1_STD_KEY , ON SCHEMA: DEMO , PROCEDURE: TESTPROC_1

USMS001I CATALOG NAVIGATION COMPLETED

Chapter 8. CA-IDMS Tools 8-5

8.3 CA-IDMS/ADS Alive

 8.3 CA-IDMS/ADS Alive

CA-IDMS/ADS Alive now recognizes tables as records. The RECORD command
now lists SQL tables as well as native DML records.

8-6 CA-IDMS Release 14.0 Features Guide

8.4 CA-IDMS/DB Analyzer, CA-IDMS/DB Audit, CA-IDMS/DB Reorg

8.4 CA-IDMS/DB Analyzer, CA-IDMS/DB Audit, CA-IDMS/DB
Reorg

CA-IDMS/DB Analyzer, CA-IDMS/DB Audit, and CA-IDMS/DB Reorg products now
use the following features of CA-IDMS database I/O:

■ XA database buffers and control blocks

■ ESA dataspace support

■ Dynamic database file allocation

■ Unrestricted SEGMENT name usage as database names

For more information on these CA-IDMS database features, see CA-IDMS Database
Administration and CA-IDMS System Operations.

Additionally, features of the CA-IDMS database engine and the SYSIDMS PRE-
FETCH parameter for read-ahead processing replace the read-ahead processing previ-
ously provided by FASTSCAN and EXCP I/O level processing previously defined by
the GSDTPARM installation defaults.

8.4.1 Additional CA-IDMS/DB Reorg features

CA-IDMS/DB Reorg offers these two new features:

■ An interface to the DB-EZReorg inflight reorganization product to provide a data-
base keys file, which is used to resolve changed database record locations. You
can choose to use either CA-IDMS/DB Reorg or CA-IDMS UNLOAD and
RELOAD utilities with DB-EZReorg.

■ A new BLOCKNUM parameter to specify a blocking factor of up to 32K for most
of the work files it generates. This allows you to select an optimum blocking
factor for the work files. Previously, the default of 6K was the only option.

8.4.2 Interface to DB/EZReorg

CA-IDMS/DB REeorg creates the interface to the DB/EZReorg file when a DBKEYS
dataset is present in the UPDLINK step in the JCL. The dataset is created only when
a DBKEYS file is present in the UPDLINK step.

Include these characteristics in the UPDLINK step:

 ■ RECFM=FB

 ■ LRECL=16

Do not specify a block size since CA-IDMS/DB Reorg uses the block size specified in
the BLOCKNUM parameter used for all work files. See "Specifying blocking factor,"
below for more information on specifying block sizes for work files.

Chapter 8. CA-IDMS Tools 8-7

8.4 CA-IDMS/DB Analyzer, CA-IDMS/DB Audit, CA-IDMS/DB Reorg

Determining space for DBKEYS file: To determine the amount of space to allo-
cate for the DBKEYS file, use the following formula:

(# of records in reorganized areas - index records (SR8s))

x 16 (DBKEYS file LRECL)

Total bytes to allocate for the DBKEYS file

8.4.3 Specifying a blocking factor for work files

You can now specify a blocking factor for most of the CA-IDMS/DB Reorg work
files. You cannot specify a blocking factor for the CNTRL1, CNTRL2, and
PAGUTIL work files.

BLOCKNUM parameter on the PROCESS statement You specify a blocking
factor using the BLOCKNUM parameter on the PROCESS statement. Specify a value
in the range from 1 through 32. For work files that will go on tape, use 32. If using
disk work files, use a number that represents half track blocking.

8-8 CA-IDMS Release 14.0 Features Guide

8.5 Year 2000 support

8.5 Year 2000 support

All CA-IDMS tools now provide support for the year 2000. For example, when
migrating DDLDML entities with a two-digit date for year, the CA-IDMS/Dictionary
Migrator checks if the digits are greater than 69; if they are, it assumes that the
century is 19. If the data digits are less than 69, it assumes the century is 20.

Chapter 8. CA-IDMS Tools 8-9

 Index

Special Characters
#DEFOPTF macro

example 2-15
to apply optional APARs 2-15

#SECRTT macro 2-5
changing security definitions 4-7
specifying default signon options 4-17
syntax 4-18

Numerics
24-hour processing 4-6—4-10

dynamic lines, terminals, printers 4-6—4-7
dynamic resource allocation 4-8—4-10
dynamic security refresh 4-7—4-8

A
ACCESS MODULE, DISPLAY/PUNCH

statement 5-12—5-14
ADSOMAIN program, overriding ERROR THRESHOLD

parameter 6-5
Aggregrate columns, CA-OLQ reports 7-7
ALLOCATE CURSOR statement

examples 5-43
syntax 5-43
updatable cursors 5-43

ALREADY VERIFIED option 4-28
ALTER INDEX statement

example 5-60
overview 5-59
syntax 5-59
usage 5-60

APARs, optional
applying 2-15

APPC applications
verifying signons for 4-28—4-29

B
Backend CVs

joining/leaving groups 3-14
BACKUP utility

segment support 4-11
syntax 4-11

Buffers, using shared cache 3-20

C
CA-ADS

dialog abends on program check 6-5
maps and dialogs, concurrent checkout in

dictionary 6-4
PROGRAM statement ERROR THRESHOLD param-

eter, reviewing 2-12
using IDD record syntax for tables 6-6

CA-IDMS
Release 14.0 features 4-3—4-39
shared cache, defining 3-21

CA-IDMS Performance Monitor
See Performance Monitor

CA-IDMS Security
See Security

CA-IDMS SQL Option
See SQL Option

CA-IDMS/DC
running LE/370-compliant programs 4-31
using LE/370-compliant language

compilers 4-30—4-33
CA-IDMS/Dictionary Migrator, changes for Release

14.0 8-4
CA-OLQ

aggregate columns, specifying placement 7-7
code tables, overriding column length 7-9
DISTINCT option 7-6
HOME scroll command 7-5
LEFTMAX scroll command 7-5
line length, displayed on reports 7-4

CALC key, DISPLAY/PUNCH statement 5-14—5-15
Catalog

See also also Catalog conversion utility
conversion utility 2-9
converting to Release 14.0 2-8

Catalog conversion utility
purpose 2-8
running 2-9

Central versions
See CVs

CICS-reentrant programs
enhancement to 4-39

Cloned CVs
and dynamic database session routing 3-6
backend 3-12
benefits 3-12
overview 3-5

Index X-1

Cloned CVs (continued)
procedure 3-12
startup JCL 3-13
system requirements 3-13
using cloned backend CVs 3-7

CLOSE statement
example 5-44
syntax 5-44

CONSTRAINT, DISPLAY/PUNCH
statement 5-15—5-16

Continuous processing
See 24-hour processing

Coupling Facility
defined 3-4
shared cache 3-5
shared cache, defining 3-20
using for shared cache 3-19

CVs
assigning groups 3-12
dynamic lines, terminals, and printer definitions 4-6
dynamic resource allocation 4-8
dynamic security refresh 4-7

D
Database name table

adding groups 3-11
defining groups 3-8

Database procedures, examining for potential
changes 2-6, 2-7, 4-5

DB exit 4-34
DBGROUP statement

examples 3-9
syntax 3-8

DCMT DISPLAY DBGROUP statement
using 3-16

DCMT DISPLAY SHARED CACHE statement 3-23
DCMT statement, SHARED CACHE option 3-22
DCMT SYSGEN REFRESH LINE statement 4-6
DCMT VARY DBGROUP statement

syntax 3-14
to manage dynamic database session routing 3-14

DEALLOCATE PREPARE statement
examples 5-45
syntax 5-44
usage 5-45

DELETE statement
ambiguous cursor references 5-46
dynamic deletes, using 5-29
dynamic positioned deletes 5-46
examples 5-47

DELETE statement (continued)
syntax 5-45

DESCRIBE statement
describing dynamic parameters 5-48
describing output values 5-48
syntax 5-47

Dialogs
concurrent checkout in dictionary 6-4
disabling abending on program check 6-5

Dictionary record changes 2-14
Disabling a CV from a group 3-14
DISPLAY/PUNCH statements

ACCESS MODULE statement 5-12—5-14
ALL 5-5—5-12
ALL for security entities 4-19—4-27
CALC KEY statement 5-14—5-15
CONSTRAINT statement 5-15—5-16
date and year 2000 support 4-16, 4-26
example of security entities 4-27
for SQL entities 5-4, 5-28
INDEX statement 5-17—5-18
KEY (table procedure) statement 5-18—5-19
list of security entities 4-23
SCHEMA statement 5-20—5-21
security entity syntax
TABLE 5-22—5-24
TABLE PROCEDURE statement 5-24—5-26
using 5-4
VIEW 5-26—5-28

DISTINCT option, CA-OLQ Menu Mode 7-6
DMCL, defining shared cache 3-22
DPE COUNT, reviewing primary allocation 2-13
Dynamic cursor names

examples 5-37
static versus extended 5-36
syntax 5-35
uniqueness 5-37

Dynamic cursor specification
and EXECUTE statement 5-51
examples 5-40
syntax 5-38
updatable 5-39

Dynamic cursors
ambiguous cursor references 5-46, 5-57

Dynamic database session routing
benefits 3-6
defined 3-6
defining groups 3-8, 3-9
enabling and disabling 3-14
implementing 3-7—3-12
managing 3-14—3-15

X-2 CA-IDMS Release 14.0 Features Guide

Dynamic database session routing (continued)
monitoring and tuning 3-15—3-18
overview 3-5
planning 3-7
using 3-6—3-18

Dynamic expressions
cursor name 5-35—5-37
cursor specification 5-38—5-40
described 5-35
statement name 5-41—5-43

Dynamic global cursor
defining 5-30

Dynamic lines, terminals, printers 4-6—4-7
Dynamic parameters

defined 5-31
describing 5-48, 5-55
using 5-31

Dynamic positioned delete, examples 5-47
Dynamic positioned update, examples 5-57
Dynamic resource allocation

reviewing primary allocation in SYSGEN 2-13
using 4-8—4-10

Dynamic security refresh 4-7—4-8
Dynamic SQL statements

described 5-35
Dynamic SQL, overview 5-29
Dynamic statement names

examples 5-42
static versus extended 5-41
syntax 5-41
uniqueness 5-42

Dynamic statements
destroying 5-44
positioned deletes 5-46
positioned updates 5-57

Dynamically-assigned names
defined 5-29
using 5-30

E
ERROR THRESHOLD parameter on PROGRAM state-

ment, reviewing 2-12
EXECUTE statement

dynamically-compiled cursor specifications 5-51
syntax 5-49

F
FETCH statement

syntax 5-51

FORMAT utility
area support for journals 4-12
syntax 4-13

G
Global statements and cursors

defined 5-30
defining 5-30

Groups
adding to resource name table 3-9
DBGROUP statement 3-8
defined 3-8
defining 3-8, 3-9
displaying information about 3-17
enabling and disabling 3-14
identifying with NODE statement 3-9
planning 3-8
sample definitions 3-9, 3-11
varying status of 3-14

H
HOME OLQ command 7-5

I
IDSMIOX2 DB exit 4-34
INDEX statement

ALTER 5-59—5-60
DISPLAY/PUNCH 5-17—5-18

Index, modifying 5-59—5-60

J
JCL

for cloned CVs 3-13
for multitasking 4-4

Joining a CV to a group 3-14

K
KEY (on Table procedures), DISPLAY/PUNCH state-

ment 5-18—5-19

L
LE/370 , defined 4-30
LE/370-compliant language compilers

COBOL 370 compiler considerations 4-32
considerations 4-30
executing programs under CA-IDMS/DC 4-31

Index X-3

LE/370-compliant language compilers (continued)
supported compilers 4-30
supported functions 4-32
unsupported functions 4-32
using 4-30—4-33
using with CA-IDMS/DC 4-30

LEFTMAX (LMAX) command 7-5
LIKE RECORD parameter 5-24, 5-28

M
Mapping Facility, concurrent checkout of maps in dic-

tionary 6-4
Multiple dictionaries, concurrent checkout of maps and

dialogs 6-4
Multitasking 4-4—4-5

and user exits and database procedures 2-6
benefits 4-4
implementing 4-4—4-5
startup JCL 4-4
supporting operating systems 4-4

N
NODE statement

example 3-10
identifying groups 3-9
using to identify groups 3-9

O
OPEN statement 5-52
Optional functionality, applying 2-15

P
Parallel Sysplex

benefits 3-3
CA-IDMS features 3-5
Coupling Facility component 3-4
defined 3-4
exploited in CA-IDMS, overview 1-7

Performance Monitor
DBGROUP detail screen 3-17
record and map changes 2-10
shared cache statistics usage 3-25

Preparable statements 5-54
PREPARE statement 5-53

describing dynamic parameters 5-55
describing input and output values 5-55

PRINT SPACE utility
file support 4-14

PRINT SPACE utility (continued)
syntax 4-14

Program checks, disable dialogs abending on 6-5
PROGRAM statement ERROR THRESHOLD parameter,

reviewing 2-12
PTERM statement

ALREADY VERIFIED option 4-28

Q
Query expression, updatable 5-40

R
RCE COUNT, reviewing primary allocation 2-13
Release 14.0

objectives 1-4—1-8
upgrading to 2-3—2-19

Reports, CA-OLQ
aggregate columns, specifying placement 7-7
code tables, overriding column length 7-9
DISTINCT option 7-6
HOME and LEFTMAX scroll commands 7-5
line length, displayed on reports 7-4

Resource name table, adding groups to 3-9
RESTORE utility

segment support 4-11
syntax 4-11

RHDCOPTF module, re-creating 2-15
RHDCSRTT module, recompiling 2-5
RLE COUNT, reviewing primary allocation 2-13

S
Schema, DISPLAY/PUNCH statement 5-20—5-21
Security

changing security definitions in #SECRTT macro 4-7
DISPLAY/PUNCH ALL statement 4-19—4-27
dynamic refresh 4-7
enhancements 4-17—4-29
specifying default signon options in #SECRTT 4-17

Segments
support in backup, restore, and unlock 4-11

SET SESSION statement, setting default transaction
options 5-61

Shared cache 3-19—3-28
and dynamic database session routing 3-6
and XA storage 3-20
benefits 3-20
defined 3-19
defining in CA-IDMS 3-21
defining in Coupling Facility 3-20

X-4 CA-IDMS Release 14.0 Features Guide

Shared cache (continued)
DMCL definition using File override parameter 3-21
dynamic definition using DCMT command 3-22
how it works 3-19
implementing 3-20
in Coupling Facility 3-5
monitoring 3-23—3-28
tuning 3-28
using 3-23

SHARED CACHE DMCL file override parameter 3-21
SHARED CACHE option, DCMT command 3-22
SQL option

DISPLAY/PUNCH statements 5-5—5-28
enhancement for dynamic SQL 5-29—5-58
enhancements to 5-3
migrating syntax, using Dictionary Migrator 5-68
optimizer enhancements 5-67
SET SESSION statement, setting default transaction

options 5-61
SQLSTATE variable in SQLCA 5-62

SQLCA, SQLSTATE variable 5-62
System generation

defining groups on NODE statement 3-9, 3-11
DPE COUNT, reviewing primary allocation 2-13
dynamic resource allocation 4-8
PROGRAM statement ERROR THRESHOLD param-

eter, reviewing 2-12
RCE COUNT, reviewing primary allocation 2-13
refreshing SYSGEN 4-6
reviewing primary allocation of resource control

blocks 2-13
RLE COUNT, reviewing primary allocation 2-13
verifying signons for 4-28

T
Table procedure, DISPLAY/PUNCH

statement 5-24—5-26
Table, DISPLAY/PUNCH statement 5-22—5-24
Task Control Element (TCE), residing in XA

storage 2-7

U
UNLOCK utility

segment support 4-11
syntax 4-12

Updatable cursors
and ALLOCATE CURSOR statement 5-43
specification 5-39

Updatable query expression 5-40
UPDATE statement

ambiguous cursor references 5-57
dynamic positioned updates 5-57
dynamic updates using 5-29
example using dynamic cursor 5-40
examples 5-57
syntax 5-55

UPDATE STATISTICS utility
nonSQL data support 4-13
syntax 4-13

User exits
accessing TCE stack 2-7
examining for potential changes 2-6, 2-7
running with MPMODE=ANY 2-6

Utility statement enhancements 4-11, 4-15

V
View, DISPLAY/PUNCH statement 5-26—5-28

X
XA storage

and shared cache 3-20
TCE allocated to 2-7

Index X-5

	Bookshelf
	Advantage CA-IDMS 14.0 Features Guide
	Contents
	How to use this manual
	What this document is about
	Who should use this document
	How this document is organized
	Related documentation
	Understanding syntax diagrams
	Sample syntax diagram

	Chapter 1. About CA-IDMS Release 14.0
	1.1 Overview
	1.2 Release 14.0 objectives
	1.3 Enhance performance and productivity
	1.4 Exploit new hardware and software technology
	1.4.1 Extended multitasking support
	1.4.2 IBM Parallel Sysplex

	1.5 Simple upgrade path
	1.6 What's next

	Chapter 2. Upgrading to Release 14.0
	2.1 Overview
	2.2 Installing the SVC under MVS
	2.3 Recompiling the RHDCSRTT module
	2.4 Extended multitasking support
	2.5 TCE stack access
	2.6 Catalog conversion for SQL definitions
	2.6.1 Running the Catalog Conversion Utility

	2.7 Performance Monitor map and record changes
	2.8 Linking COBOL/370 programs
	2.9 Review PROGRAM statement ERROR THRESHOLD parameter
	2.10 Monitoring resource management control blocks
	2.11 Dictionary record changes
	2.12 Applying optional functionality

	Chapter 3. IBM Parallel Sysplex Exploitation
	3.1 Overview
	3.2 About a Parallel Sysplex environment
	3.3 Exploiting Parallel Sysplex functionality
	3.4 Using dynamic database session routing
	3.4.1 Planning to use dynamic database session routing
	3.4.2 Implementing dynamic database session routing
	3.4.2.1 Using groups
	3.4.2.2 Backend CV definitions
	3.4.2.3 Frontend CV definitions
	3.4.2.4 Sample group definitions

	3.4.3 Cloning backend CVs
	3.4.3.1 Cloning CVs

	3.4.4 Managing dynamic database session routing
	3.4.4.1 Using the DCMT VARY DBGROUP command

	3.4.5 Monitoring and tuning dynamic database session routing
	3.4.5.1 Using DCMT DISPLAY DBGROUP
	3.4.5.2 Using the Interval Monitor's DBGROUP Detail screen

	3.5 Using shared cache
	3.5.1 Defining shared cache in the Coupling Facility
	3.5.2 Defining shared cache in CA-IDMS
	3.5.2.1 Assigning files using DMCL file override

	3.5.3 Usage
	3.5.3.1 Assigning files to a shared cache dynamically

	3.5.4 Monitoring shared cache
	3.5.4.1 DCMT DISPLAY commands
	3.5.4.2 CA-IDMS Performance Monitor
	3.5.4.3 CA-IDMS System Statistics Report

	3.5.5 Tuning a shared cache

	Chapter 4. CA-IDMS/DB and CA-IDMS/DC
	4.1 Overview
	4.2 Extended multitasking support
	4.2.1 Implementing multitasking support

	4.3 Extended 24-hour processing support
	4.3.1 Dynamic lines, terminals, and printers
	4.3.2 Dynamic security refresh
	4.3.3 Dynamic resource allocation

	4.4 Utility enhancements
	4.4.1 SEGMENT support in BACKUP, RESTORE, and UNLOCK
	4.4.1.1 BACKUP and RESTORE utility syntax
	4.4.1.2 UNLOCK syntax

	4.4.2 Enhanced area support in FORMAT JOURNAL
	4.4.3 NonSQL data support in UPDATE STATISTICS
	4.4.4 File support in PRINT SPACE

	4.5 Date and Year 2000 support in DISPLAY/PUNCH statements
	4.6 Security enhancements
	4.6.1 Default signon and user ID options in RHDCSRTT
	4.6.2 DISPLAY/PUNCH ALL syntax for security definitions
	4.6.2.1 DISPLAY and PUNCH ALL statement syntax

	4.6.3 Usage
	4.6.4 Example
	4.6.5 Verifying signons for APPC applications

	4.7 Using LE/370-compliant language compilers with CA-IDMS/DC
	4.7.1 Considerations about LE/370 runtime
	4.7.2 Running LE/370-compliant compiler programs under CA-IDMS/DC
	4.7.3 Supported LE/370 functions
	4.7.4 Unsupported LE/370 functions
	4.7.5 COBOL 370 support

	4.8 IDMSIOX2 DB Exit
	4.9 Enhancements to CICS-reentrant programs

	Chapter 5. CA-IDMS SQL Option
	5.1 Overview
	5.2 DISPLAY and PUNCH syntax
	5.2.1 DISPLAY/PUNCH ALL statement
	5.2.2 Usage
	5.2.3 Example
	5.2.4 DISPLAY/PUNCH ACCESS MODULE
	5.2.5 DISPLAY/PUNCH CALC KEY
	5.2.6 DISPLAY/PUNCH CONSTRAINT
	5.2.7 DISPLAY/PUNCH INDEX
	5.2.8 DISPLAY/PUNCH KEY
	5.2.9 DISPLAY/PUNCH SCHEMA
	5.2.10 DISPLAY/PUNCH TABLE
	5.2.11 Usage
	5.2.12 DISPLAY/PUNCH TABLE PROCEDURE
	5.2.13 DISPLAY/PUNCH VIEW
	5.2.14 Usage

	5.3 Dynamic SQL syntax changes
	5.3.1 Dynamic positioned UPDATE and DELETE
	5.3.2 Dynamically-assigned names
	5.3.3 Global statements and cursors
	5.3.4 Dynamic parameters
	5.3.5 Dynamic SQL statements and expressions
	5.3.6 Expansion of cursor-name
	5.3.7 Usage
	5.3.8 Example
	5.3.9 Expansion of cursor-specification
	5.3.10 Usage
	5.3.11 Example
	5.3.12 Expansion of statement-name
	5.3.13 Usage
	5.3.14 Example
	5.3.15 ALLOCATE CURSOR statement
	5.3.16 Usage
	5.3.17 Examples
	5.3.18 CLOSE statement
	5.3.19 Example
	5.3.20 DEALLOCATE PREPARE statement
	5.3.21 Usage
	5.3.22 Examples
	5.3.23 DELETE statement
	5.3.24 Usage
	5.3.25 Examples
	5.3.26 DESCRIBE statement
	5.3.27 Usage
	5.3.28 EXECUTE statement
	5.3.29 Usage
	5.3.30 FETCH statement
	5.3.31 OPEN statement
	5.3.32 PREPARE statement
	5.3.33 Usage
	5.3.34 UPDATE statement
	5.3.35 Usage
	5.3.36 Examples

	5.4 ALTER INDEX support
	5.4.1 Usage
	5.4.2 Example

	5.5 Establishing default transaction options
	5.6 SQLSTATE field in SQLCA
	5.6.1 SQLSTATE values
	5.6.2 SQLSTATE field placement in the SQLCA

	5.7 Optimization enhancements
	5.8 Migration of SQL syntax by CA-IDMS/Dictionary Migrator

	Chapter 6. CA-ADS and the Mapping Facility
	6.1 Overview
	6.2 Concurrent checkout of maps and dialogs
	6.3 Name and disable dialogs abending on program checks
	6.4 Using IDD record syntax for tables and view

	Chapter 7. CA-OLQ
	7.1 Overview
	7.2 Display report line length
	7.3 HOME and LEFTMAX scroll commands
	7.4 DISTINCT option in Menu Mode
	7.5 Specify report column for aggregate columns
	7.6 Override column length on columns with code tables

	Chapter 8. CA-IDMS Tools
	8.1 Overview
	8.2 CA-IDMS/Dictionary Migrator
	8.2.1 Migrating SQL Entities
	8.2.1.1 Catalog Navigation Report

	8.3 CA-IDMS/ADS Alive
	8.4 CA-IDMS/DB Analyzer, CA-IDMS/DB Audit, CA-IDMS/DB Reorg
	8.4.1 Additional CA-IDMS/DB Reorg features
	8.4.2 Interface to DB/EZReorg
	8.4.3 Specifying a blocking factor for work files

	8.5 Year 2000 support

	Index
	Special Characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	X

