

Online Debugger Guide
Release 18.5.00

CA IDMS™ Online

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time. This

Documentation is proprietary information of CA and may not be copied, transferred, reproduced, disclosed, modified or
duplicated, in whole or in part, without the prior wri tten consent of CA.

If you are a licensed user of the software product(s) addressed in the Documentation, you may print or otherwise make
available a reasonable number of copies of the Documentation for internal use by you and your employees in connection with
that software, provided that all CA copyright notices and legends are affixed to each reproduced copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable

l i cense for such software remains in full force and effect. Should the license terminate for any reason, i t is your responsibility to
certi fy in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,

DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such

l icense agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions

set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2013 CA. Al l rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

CA Technologies Product References

This document seeences the following CA product:

■ CA IDMS®/DC Transaction Server Option

■ CA IDMS® Database Universal Communications Facility Option

■ CA ADS® for CA IDMS®

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information that you need for your Home Office, Small Business, and Enterprise CA

Technologies products. At http://ca.com/support, you can access the following
resources:

■ Online and telephone contact information for technical assistance and customer
services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

To provide feedback about CA Technologies product documentation, complete our
short customer survey which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://ca.com/docs
http://ca.com/docs

Contents 5

Contents

Chapter 1: Introduction 9

About the Debugger .. 9

Debugger Features... 10

Debugging Process ... 12

Prompt Mode.. 13

Menu Mode... 14

Setup Phase ... 17

Runtime Phase .. 18

Session Considerations.. 19

Performance Standards .. 19

Valid Breakpoints ... 20

Program Currency .. 20

Chapter 2: Command Considerations 23

About this Chapter ... 23

Expression Components.. 24

Debugger Symbols ... 24

User Symbols... 27

Program Symbols ... 28

Expression Operators .. 30

Length Attributes ... 31

Expressions with Data Characteristics.. 32

Expressions without Data Characteristics.. 33

Parsing Rules ... 35

Command Modification .. 36

Delimiters .. 36

Data Values.. 37

Command Format .. 38

Chapter 3: Debugger Commands 39

Summary of Commands.. 39
AT .. 40

DEBUG .. 44

EXIT ... 46

IOUSER ... 47

LIST.. 47

6 Online Debugger Guide

MENU ... 51

PROMPT ... 52

QUALIFY ... 52

QUIT .. 54

RESUME.. 55

SET... 56

SNAP ... 60

WHERE.. 62

Chapter 4: Debugging in Menu Mode 63

Features of Menu Mode ... 63

Screen Design.. 64
Heading Area... 64

Display Area... 67

Specification Area .. 67

Selection Area ... 68

Accessing Screens... 69

Screen Hierarchy .. 69

Screen Sequence .. 70

Selection Processing .. 71

Command Currency ... 71

Activity Screens... 73

At Screen.. 73

Debug Screen .. 75

List Screen.. 76

Resume Screen ... 77

Set Screen .. 78

Snap Screen ... 80

Global Help Screens ... 81

Usage Screen... 82

Symbols Screen... 83
Keys Screen ... 84

Chapter 5: Aids for Debugging Assembler, COBOL, and PL/I Programs 85

Overview .. 85

Compiler Options ... 85

COBOL Programs .. 86

Preliminary Computations.. 86

Sample COBOL Online Debugger Session .. 92

PL/I Programs.. 95

Preliminary Computations.. 95

Contents 7

Sample PL/I Online Debugger Session.. 99

Index 103

Chapter 1: Introduction 9

Chapter 1: Introduction

This manual provides detailed instructions for users debugging programs that operate in
a CA IDMS /DC Transaction Server or CA IDMS Database Universal Communications
Facil ity (UCF) Option (DC/UCF) environment.

This section contains the following topics:

About the Debugger (see page 9)

Debugger Features (see page 10)
Debugging Process (see page 12)
Session Considerations (see page 19)

About the Debugger

What You Can Debug

The CA IDMS online debugger is an interactive facil ity used to detect, trace, and resolve
programming errors in programs that run under the control of DC/UCF. The debugger
can be used with these load modules:

■ Assembler, COBOL, and PL/I programs

■ CA ADS

■ Subschemas

■ Maps

■ Tables

For more information on using the debugger with Assembler, COBOL, and PL/I
programs, see Aids for Debugging Assembler, COBOL, and PL/I Programs .

How You Use the Debugger

You use the online debugger to:

■ Receive control when an abend occurs

The online debugger receives control when your program abends (for example,
with a data exception). You can then determine the abending instruction and

examine program variable storage to determine the error.

■ Receive control at predetermined breakpoints

To trap logic errors, set breakpoints that halt program execution at a specified line
number. The online debugger receives control when your program reaches that l ine

number, so that you can examine program variable storage.

Debugger Features

10 Online Debugger Guide

Chapter Contents

This introductory chapter discusses:

■ Debugger features

■ Debugging in prompt or menu mode

■ Setup and runtime phases of a debugger session

■ Factors to consider when establishing a debugger session

Debugger Features

High Level of Control

The online debugger allows you to maintain a high level of control over the debugging
process. With the debugger, you can:

■ Set breakpoints

■ Display the contents of registers and storage

■ Modify storage values

■ Snap tasks and storage areas to the log

■ Trap abends in the module being debugged

Each of these functions is discussed below.

Setting Breakpoints

Breakpoints are temporary program interruptions that you can set at any address

within a program or dialog that complies with debugger validation rules, as described in
"Valid Breakpoints" later in this chapter.

At runtime, the debugger takes control at these breakpoints, and program execution is
temporarily suspended. While execution is suspended, you can perform a variety of

activities before returning control to the DC/UCF system or resuming execution of the
program.

Displaying and Modifying Storage Values

You can examine storage values in any area, assuming that you have the security
necessary to access the area. (Traditional error-handling routines and dumps supply

information only after an error occurs or a program finishes executing.)

You can modify storage values and then execute the program to test the modifications.

Debugger Features

Chapter 1: Introduction 11

The ability to examine and modify storage values in any area makes the debugger a very
powerful tool.

Therefore, it's important to use debugger security to control access to storage.

Note: For information on the security methods used by the debugger, see CA IDMS
Security Administration Guide.

Snapping Tasks and Storage Areas

You can create dumps for a task or for a specific area; the dumps are written to the

DC/UCF log. From the log you can make a hard copy of storage contents and then
examine them at your leisure.

Trapping Abends

The debugger automatically takes control when an instruction causes an abend in the
module being debugged, allowing you to examine storage and to take appropriate

action.

Managing Program Execution

The debugger also provides you with a flexible tool for managing an executing program.
Under the control of the debugger during runtime:

■ After a breakpoint, you can:

– Allow the program to resume execution from the current breakpoint address

– Specify resumption at an address before or after the breakpoint

■ After an abend, you can:

– Allow standard abend processing to continue

– Resume program execution at an address before or after the abend

■ In both cases, you can modify previous debugger commands or issue new

commands, for example to:

– Ignore all remaining breakpoints

– Bypass specific breakpoints

– Set additional breakpoints for the duration of a session

Debugging Process

12 Online Debugger Guide

Debugging Process

What to Define

You cannot debug an Assembler, COBOL, or PL/I program until you define it to the
DC/UCF system. For example, you cannot debug a program until it is defined in the
PROGRAM statement at system generation time or defined dynamically with the DCMT

VARY DYNAMIC PROGRAM statement.

Similarly, you must define the program task code either in the TASK statement at system
generation or dynamically with the DCMT VARY DYNAMIC TASK statement.

Important! You don't have to define the task code for the initial stage of the debugging

process, but you must define it before executing the program.

You don't have to define CA ADS dialogs, subschemas, maps, and tables.

Debugger Structure

You can conduct a debugger session in one of two modes or a combination of both:

■ Prompt mode enables you to issue debugger commands line by l ine

■ Menu mode enables you to issue commands from a series of activity and tutorial
screens

Debugging a module takes place in two phases:

■ The setup phase, invoked before a program is executed

■ The runtime phase, occurring during program execution and dependent on actions
taken during setup

DEBUG and QUIT

A debugger session begins when you issue the first DEBUG task code. A session ends
when you either issue the debugger QUIT command or terminate the DC/UCF session by

signing off.

Debugger session modes and phases are discussed in detail below.

Debugging Process

Chapter 1: Introduction 13

Prompt Mode

Line-oriented Method

Prompt mode is the line-oriented method of communicating with the debugger. In
prompt mode you can:

■ Initiate a debugging session

■ Issue a debugger command

■ Return to the DC/UCF system

Initiating a Debugging Session

To initiate a debugging session in prompt mode, enter the DEBUG task code in response

to the Enter Next Task Code prompt:

ENTER NEXT TASK CODE:

debug

The debugger indicates that it is in control by responding with its special prompt:

DEBUG >

Issuing a Debugger Command

You can issue debugger commands whenever the debugger responds with the DEBUG>
prompt. To issue a debugger command at the same time you initiate a debugging

session, enter the task code in conjunction with the DEBUG command that names the
entity to be debugged. In this example, the task code DEBUG is followed by a DEBUG
command that identifies TESTPROG to the debugger:

ENTER NEXT TASK CODE:

debug debug testprog

When you enter the above command, you invoke the debugging facil ity. The command
is echoed, and the debugger responds by validating the command and displaying the

next DEBUG> prompt:

DEBUG TESTPROG

DEBUG > DEBUGGING INITIATED FOR TESTPROG VERSION 1

DEBUG >

Debugging Process

14 Online Debugger Guide

If you try to debug a program which has not been defined to a DC/UCF system, the
debugger issues an error message after echoing the command, then repeats the

command that cannot be completed, and redisplays the DEBUG> prompt, as in this
example:

DEBUG TESTPROG

DC574902 DEBUG > LOAD OF TESTPROG FAILED - NOT FOUND

DEBUG > DEBUG TESTPROG

DEBUG >

Difference between EXIT and QUIT

To return control to the DC/UCF system, issue either the EXIT command or the QUIT
command.

The EXIT command saves the debugger control blocks and allows you to continue the
same debugger session.

The QUIT command clears the control blocks and terminates the debugger session

completely.

How to Check Session Activity

To determine whether a debugger session exists, issue the command DCMT DISPLAY LTE
*. This command lists information about your logical terminal. If you see DEBUG ACT, a
debugger session is active; if you see DEBUG INACT, no debugger session is active.

To inquire for a l ist of modules known to the debugger, use the DEBUG INQUIRE
command (see Debugger Commands).

Valid Commands

In prompt mode, you can use all commands except RESUME, IOUSER, and WHERE
during setup, and all commands except DEBUG during runtime. The PROMPT command

performs no function while you are in prompt mode.

For a detailed discussion of the debugger commands, see Debugger Commands.

Menu Mode

Choosing Activities from Screens

Menu mode is designed to make your options easy to see. You can enter commands or
display information by fi l l ing in the fields on a series of fixed-format screens:

■ Activity screens provide fields for commands that require additional input

■ Individual help screens provide detailed descriptions of each command

Debugging Process

Chapter 1: Introduction 15

■ The Usage global help screen summarizes debugging activities

■ Two other global help screens let you display program and debugger symbols and

program function key (PF-key) assignments

For a complete description of each of the screens, see Debugging in Menu Mode.

Initiating a Debugger Session

To initiate a debugging session in menu mode, issue the DEBUG task code followed by
the MENU command in response to the Enter Next Task Code prompt:

ENTER NEXT TASK CODE:

debug menu

When you enter this command, you see the Usage screen, which is the top-level menu

screen:

 IDMS-DC REL nn.n ONLINE DEBUGGER *** USAGE *** SETUP PAGE 1 OF 4
 PROGRAM: V: CSECT:
 ->
 PROCEDURAL COMMANDS.

 EXIT.....RETURNS CONTROL TO IDMS-DC/UCF WITHOUT TERMINATING THE CURRENT DEBUGG
ER SESSION
 QUIT.....TERMINATES THE DEBUGGER SESSION AND RETURNS CONTROL TO IDMS-DC/UCF.
 PROMPT...INVOKES THE PROMPT MODE OF THE DEBUGGER.

 RETRIEVAL COMMANDS.

 AT.......ESTABLISHES OR MODIFIES BREAKPOINTS WITHIN A USER PROGRAM.
 DEBUG....DESIGNATES, DURING THE SETUP PHASE, THE ENTITY TO BE DEBUGGED OR
 INQUIRES ABOUT ENTITIES KNOWN TO THE DEBUGGER.
 IOUSER...DISPLAYS THE USER SCREEN THAT IS CURRENT WHEN A BREAKPOINT, PROGRAM
 INTERRUPT OR TRAPPED ABEND IS ENCOUNTERED.

 NEXT _ ACTIVITY OR _ HELP:
 _ AT _ LIST _ SET _ SNAP _ RESUME _ DEBUG _ WHERE

 _ EXIT _ PROMPT _ QUIT _ IOUSER
 HELP SCREENS: _ USAGE _ SYMBOLS _ KEYS

Switching Mode

To switch from prompt mode to menu mode, issue the MENU command in response to
the DEBUG> prompt:

DEBUG >

menu

Now you also see the Usage screen.

Debugging Process

16 Online Debugger Guide

Going to a Specific Screen

To go to a specific activity screen or global help screen, issue the MENU command

followed by a valid screen name. This example il lustrates the use of the DEBUG task
code with a MENU command that names the screen to be displayed:

ENTER NEXT TASK CODE:

debug menu at

When you enter the above command, you invoke the debugging facil ity in menu mode
and see the At command activity screen:

 IDMS-DC REL nn.n ONLINE DEBUGGER *** AT *** SETUP PAGE 1 OF 1
 PROGRAM: V: CSECT:
 ->

 ADD BREAKPOINT AT:

 BEFORE: MAX AFTER: 0 EVERY: 1

 OTHER ACTION.......: (I-INQUIRE/D-DELETE/G-IGNORE)
 BREAKPOINT OR <ALL>:

 NEXT _ ACTIVITY OR _ HELP:
 _ AT _ LIST _ SET _ SNAP _ RESUME _ DEBUG _ WHERE

 _ EXIT _ PROMPT _ QUIT _ IOUSER
 HELP SCREENS: _ USAGE _ SYMBOLS _ KEYS

Valid Commands

Menu mode allows the same set of debugger commands as prompt mode, with the

exception that the PROMPT command is allowed and the MENU command is disabled.

Debugging Process

Chapter 1: Introduction 17

Leaving Menu Mode

To leave menu mode you can:

■ Select the PROMPT activity

■ Return to prompt mode with the associated control key

■ Enter the PROMPT command on the menu DEBUG> prompt line

Note: If you leave menu mode with an EXIT command or with the CLEAR control key,
the debugger remains in menu mode. Subsequently, when control returns to the
debugger, the debugger is sti l l in menu mode. The debugger remains in menu mode
until you issue the PROMPT command.

Note: For a more detailed discussion of menu mode, see Debugging in Menu Mode.

Setup Phase

Breakpoints and Abends

The setup phase is the preliminary phase of the debugging process. During this stage,

you can define modules to the debugger for two reasons:

■ To enable the setting of breakpoints

Breakpoints can be established as soon as the DEBUG command is used to defi ne
the load module to the debugger.

■ To gain control under the debugger when a program check or abend occurs

The setting of breakpoints is not mandatory; you can trap possible abends in a
program during runtime and receive control under the debugger if:

– You have defined the program to the debugger (that is, issued a DEBUG

command for the program during the setup phase)

– You have defined the current DC/UCF program to the debugger

The last program to receive control through a #LINK or #XCTL is called the
current DC/UCF program. When a program check occurs in a module unknown
to the debugger, you will gain control under the debugger if the current

DC/UCF program is defined to the debugger.

Note: For a detailed discussion of DC/UCF and debugger methods of assigning currency,
see Program Currency (see page 20).

Debugging Process

18 Online Debugger Guide

Runtime Phase

DEBUG and EXIT Required

The runtime phase of the debugging process takes place dur ing the execution of a
program. Debugging cannot occur during runtime unless:

■ You have used the DEBUG command during the setup phase to define the program
to the debugger

■ You have used the EXIT command, which retains the debugger control blocks, when
leaving the setup phase

What Happens at the Breakpoint

When you have defined a program to the debugger, the program task code invokes both
the runtime phase of the debugger and the execution of the program. At a breakpoint,
the DC/UCF runtime system suspends program execution, and you gain control under
the debugger. A message is displayed that signals the breakpoint interrupt and

describes its location.

Three Breakpoint Display Formats

For example, assume that a program called TESTPROG is defined to the debugger and a
breakpoint is established like this during the setup phase:

DEBUG >

at @00bf080

The debugger verifies the establishment of the breakpoint:

AT @00BF080

AT > @00BF080 ADDED

DEBUG >

When this breakpoint is encountered during runtime, the debugger identifies the

address, the program, and the debug expression that established the breakpoint:

AT OFFSET @80 IN TESTPROG EXPRESSION @00BF080

DEBUG >

In response to the DEBUG> prompt, you can make additional queries or perform other
debugging activities.

Session Considerations

Chapter 1: Introduction 19

Session Considerations

Three Factors

You'll need to consider the following factors when you establish and conduct debugger
sessions:

■ Performance standards

■ Valid breakpoints

■ Program currency

Each of these topics is discussed below.

Performance Standards

All Activities Permissible

During a debugger session, you can perform any activity related to DC/UCF, not just
debugging. For a given session, there are no restrictions on the number or kinds of
entities debugged or on the length of the session.

For example, within a single debugger session, you can successively:

■ Initiate a debugger setup phase

■ Leave the debugger setup phase to conduct an online PLOG session

■ Return to the setup phase to debug another program

■ Leave the debugger setup phase again to conduct an IDD session

■ Execute one of the programs you are debugging

Minimize Unrelated Work

When the DEBUG task code initiates a debugger session, the DC/UCF system saves your

current screen, whether or not the screen is directly related to any modules being
debugged. Consequently, the debugger incurs some processing overhead each time the
current screen changes. For best performance, therefore, keep work unrelated to the
debugging process to a minimum.

Also, although the setup phase is pseudo conversational, the runtime phase is
completely conversational, which ties up system resources. Even database resources are
tied up while the debugger has control.

In order to use resources most efficiently, therefore, always return control to DC/UCF
before you leave your terminal or attend to concerns other than debugging.

Session Considerations

20 Online Debugger Guide

Valid Breakpoints

Verified by Debugger

Program breakpoints, established with the AT command, must be set at addresses that
contain valid instructions or valid command elements (CMEs for CA ADS dialogs). If the

address cannot be validated, the debugger displays a message to indicate that the
breakpoint could not be set. A verifying message is displayed when the address is valid.

Note: The debugger checks for a valid operation code at each breakpoint that is set; you
are responsible for placing the breakpoint at an actual instruction. If a breakpoint

address resolves to an address offset that contains a valid operation code but does not
contain a valid instruction, the program could be altered with unpredictable results.

Program Currency

Determines Abend Trapping

When a task abends or when a program checks occurs, the setting of program currency
determines whether or not the debugger traps the abend and transfers control to you.

DC/UCF and Debugger Currency

The DC/UCF system assigns currency on the basis of the most recent program to have
been given control with #LINK or #XCTL program control services.

The debugger assigns currency according to these rules:

■ If the address of the interrupt is contained in one of the programs defined to the
debugger, this program is assigned debugger currency, and you are given control
under the debugger

■ If the address is not found in a debugged program, the debugger checks the current

DC/UCF program to see whether it has been defined to the debugger:

– If the current DC/UCF program has been defined to the debugger, this program
is assigned debugger currency, and you gain control under the debugger

– If the program has not been defined, no debugger currency is assigned, you do
not gain control under the debugger, and the standard DC/UCF abend
processing takes place

Sample Program Structure

The following examples i l lustrate how program currency can affect whether the DC/UCF

system passes control to the debugger. Each of the examples is based on the sample
program structure:

Session Considerations

Chapter 1: Introduction 21

Sample Program Structure for Examples

Example 1

During the setup phase, you define Programs A, B, and C to the debugger. When the
program is executing, a program check occurs in Program B.

These currencies are now in effect:

■ The current DC/UCF program is Program A, the last program to have been given
control by #LINK or #XCTL

■ Debugger currency is assigned to Program B

You receive control under the debugger because Program B, one of the programs
defined to the debugger, contains the address of the interrupt.

Example 2

During the setup phase, you define Program A to the debugger. When the program is
executing, a program check occurs in Program B.

These currencies are now in effect:

■ The current DC/UCF program is Program A, the last program to have been given
control by #LINK or #XCTL

■ Debugger currency is assigned to Program A

You receive control under the debugger becaus e the current DC/UCF program has also
been defined to the debugger.

Session Considerations

22 Online Debugger Guide

Example 3

During the setup phase, you define Program C to the debugger. When the program is

executing, a program check occurs in Program B.

These currencies are now in effect:

■ The current DC/UCF program is Program A, the last program to have been given

control by #LINK or #XCTL

■ Debugger currency is not assigned, because the debugger cannot find the interrupt
address in a known program and the current DC/UCF program is not defined to the
debugger

You do not receive control under the debugger because no debugger currency can be
set. The program abends without an interruption from the debugger, and the system
issues a standard abend message.

Example 4

During the setup phase, you define Program A to the debugger. During execution,

Program B branches into unknown storage and a program check occurs.

These currencies are now in effect:

■ The current DC/UCF program is Program A, the last program to have been given

control by #LINK or #XCTL

■ Debugger currency is assigned to Program A

You receive control under the debugger because the current DC/UCF program has also
been defined to the debugger.

Chapter 2: Command Considerations 23

Chapter 2: Command Considerations

This section contains the following topics:

About this Chapter (see page 23)
Expression Components (see page 24)
Length Attributes (see page 31)

Parsing Rules (see page 35)
Command Modification (see page 36)
Delimiters (see page 36)

Data Values (see page 37)
Command Format (see page 38)

About this Chapter

When issuing debugger commands, you consider:

Expression components Variables that can be specified in a debug

expression

Length attributes Display lengths for expressions with and
without data characteristics

Parsing rules Debugger rules for processing command input

Command modification Rules for modifying commands

Delimiters Delimiters recognized by the debugger

Data values Numeric and string values recognized by the

debugger

Command format Guidelines used to format a debugger
command

This chapter discusses each of these topics.

Expression Components

24 Online Debugger Guide

Expression Components

Four Basic Components

The basic components of a debug expression are:

■ Debugger symbols

■ User symbols

■ Program symbols

■ Operators

Three Ways to Appear

When a debug expression is used in a command, the expression can appear as:

■ A single debugger symbol, user symbol, program symbol, or integer

■ Multiple debugger symbols, user symbols, program symbols, and integers joined by
operators

■ Multiple expressions joined by operators

Debugger Symbols

Three Categories

Debugger symbols can:

■ Designate general registers

■ Designate certain DC/UCF system entities

■ Point to specific addresses

Address Symbols and Markers

Three special characters can be used in debugger expressions to address particular

locations in a program or dialog:

Symbol Symbol Name Designated Location

@ At sign Absolute address

$ Dollar sign Load address

¢ Cent sign Address of current dialog process

Each type of location is described separately below.

Expression Components

Chapter 2: Command Considerations 25

Absolute Address

The at sign (@) functions as the debugger marker that prefaces an absolute address

notation. An absolute address cannot exceed eight digits.

Syntax for the marker is shown below:

►►─── @ hex-value ──►◄

In a debug expression, @hex-value can be used interchangeably with the address
notation Xhex-value. For example, an absolute address coul d be represented as @2B90
or X'002B90'; an offset value could be represented as +@C0 or +X'C0'.

For more information about the hexadecimal values recognized by the debugger, see

Data Values (see page 37).

Load Address

The dollar sign ($) functions as the debugger label that expresses the load address of
the current program. In a command that uses debug expressions, the dollar sign ($) can
be used by itself or in combination with other expression components.

This example il lustrates the use of the dollar sign ($) in an expression requesting a
display of the current CSECT address:

list $

This example sets a breakpoint at an offset address 16 bytes from the load address:

at $ + @10

Address of Current Dialog Process

The cent sign (¢) functions as the debugger label that expresses the address of the

current dialog process. In a command that uses debug expressions, the cent sign (¢) can
be used by itself or in combination with other expression components.

This example il lustrates the use of the cent sign (¢) to request the load address of the

current dialog process:

list ¢.

Expression Components

26 Online Debugger Guide

General Registers Symbols

General registers include the registers used by the program at the time of execution
and the registers used by the DC/UCF system. The program status word (PSW) and
register definitions are always preceded by a colon (:) and are specified by these

symbols:

■ :PSW for the current program status word

■ :Rn for the user program register at the time of interrupt, where n represents the
number of the register and can have a value of 0 through 15

■ :REGS for all user program registers at the time of interrupt

■ :SRn for a DC/UCF system register at the time of interrupt, where n represents the
number of the register and can have a value of 0 through 15

■ :SREGS for all DC/UCF system registers at the time of interrupt

Important! A single debug expression can reference only one general register.

DC/UCF System Symbols

Certain DC/UCF system symbols also function as debugger entities, and you can refer to

them during a debugging session. A colon (:) must precede each symbol. These are the
valid symbols:

:BAT

Specifies the base address table for session.

:CSA

Specifies the DC/UCF common storage area.

:DLB

Specifies the debug local block, control block required for debugging session.

:LTE

Specifies the current logical terminal element.

:PTE

Specifies the current physical terminal element.

:TCE

Specifies the current task control element.

:VECT

Specifies the vector table for debugger.

Important! A single debug expression can reference only one system entity.

Expression Components

Chapter 2: Command Considerations 27

User Symbols

Additional Work Areas

User symbols identify storage areas set aside by the debugger as additional work areas.
Each user symbol must be prefaced by a colon (:). The user symbols and their meanings

are:

■ :DRn for a debugger general register, where n represents the number of the
register and can have a value of 0 through 15

■ :DREGS for all debugger registers

■ :H1 and :H2 for halfword 1 and halfword 2

■ :F1 and :F2 for fullword 1 and fullword 2

■ :UCHR for a 48-byte character area

You can also refer to specified sections of this area:

– :UC0, the first 16 bytes

– :UC16, the next 16 bytes

– :UC32, the last 16 bytes

Examples

The example below il lustrates one way in which you can use the work areas as a

debugging aid. In this example, when the program being debugged has reached a
breakpoint and the debugger facil ity is in control, you can copy the current values in
program registers to registers in the debugger work area. For instance, to save the

contents of all 16 of the general registers of the program, issue this command:

set :dregs = :regs

To save the contents of a single register, copy the values currently in the user r egister to
a debugger register, with a command in this format:

set :dr1 = :r1

Later in the debugger session, the user register previously saved can be restored with
this command:

set :r1 = :dr1

Contents Remain for Session

You can modify or refer to the values in these registers at any time during a debugger
session; debugger register contents remain only for the duration of the current session.

For more detailed information on the use of the SET command, see Debugger
Commands.

Expression Components

28 Online Debugger Guide

Program Symbols

Data field names and line numbers are two types of program symbols used as
components of debug expressions. Each of these components is discussed separately
below, followed by a discussion of how program symbols can be qualified.

Data Field Names

When debugging a dialog during runtime, you can reference a specific data field.

Syntax

This is a summary of syntax for the use of data field names:

►►──── data-field-name ─┬──────────────────────┬──────────────────────────────►◄
 ├─ IN ─┬─ record-name ─┘
 └─ OF ─┘

Parameters

data-field-name

Specifies the data field to be displayed. The name must be enclosed in quotation

marks if it contains embedded delimiters. The data field name must be qualified if it
is not unique to the process.

IN/OF record-name

Specifies the name of the record associated with the data field being requested.
The record name must be enclosed in quotation marks if it contains embedded
delimiters.

For a complete l ist of the delimiters used in debugger commands, see Delimiters (see
page 36).

You cannot l ist or set data fields during the setup phase of a debugger session. If you try
to, the debugger issues an error message, as in this example:

DEBUG >

list date

DC704900 LIST > DATE CANNOT BE RESOLVED

LIST DATE

DEBUG >

Expression Components

Chapter 2: Command Considerations 29

Line Numbers

When debugging a dialog, you can use symbolic l ine numbers in a debug expression.

Syntax

This is a summary of syntax for the use of l ine numbers:

►►──── # line-number ───►

 ►─┬──┬───►◄
 └─┬─ IN ─┬─┬─ current-process-name ───────────────────────────────────┬┘
 └─ OF ─┘ └─ included-module-name ─┬────────────────────────────────┬┘
 └─ OCCurrence occurrence-number ─┘

Parameters

#line-number

Specifies the process l ine number referenced in the expression. The line number

can stand alone if it is unique to the current process.

current-process-name

Specifies what process currently being debugged contains the line number. The

process name must be enclosed in quotation marks if it contains delimiters. The
current process name is the default value.

included-module-name

Specifies the name of the included module called from the current process
containing the line number. The name of the included module must be enclosed in

quotation marks if it contains delimiters.

OCCurrence occurrence-number

Specifies the occurrence of the included module for modules included more than
once in the process.

Qualifying Program Symbols

You can also use program symbols to refer to a l ine in another process without resetting
the process currency.

Syntax

The syntax for temporary qualification is:

►►─── process-name - . - program-symbol ──────────────────────────────────────►◄

Expression Components

30 Online Debugger Guide

Parameters

process-name

Specifies the current process.

program-symbol

Specifies the program symbol used in this expression. The program symbol is a l ine

number or a data field name. You can further qualify the symbol with the OF
included-module-name-qa clause of a debug expression.

Example 1

Assume that the dialog being debugged has three processes: MIS-MAIN1 (the current
process), MIS-MAIN2, and MIS-MAIN3. To set a breakpoint at l ine 200 in MIS-MAIN2,

you can use the QUALIFY command to reset the currency to MIS-MAIN2 (QUALIFY
PROCESS 'MIS-MAIN2' AT #200). However, to establish a breakpoint at l ine 200 without
resetting currency, you can issue this command:

at 'mis-main2'.#200

Example 2

To set a breakpoint at l ine 150 in MIS-INC3, a module included by MIS-MAIN3, you can

qualify the line number without changing currency from the MIS-MAIN1 process:

at 'mis-main3'.#150 of 'mis-inc3'

Expression Operators

Standard Operators

The standard operators are:

Operator Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

You can use these operators in any command containing a debug expression.

Length Attributes

Chapter 2: Command Considerations 31

Special Operators

The percent sign (%) is a special operator that you can use for indirect addressing. With

indirect addressing, the address in the expression is not the address of the operand
itself, but a pointer to a storage area that contains the address of the operand. When
the percent sign precedes a valid debug expression, the content of the expression is

used as the address of the target value.

Examples

Assume that register 3 contains the value BF040. You ask for display of the contents of
register 3, l ike this:

list :r3

000BF040 *..0. *

In this example, the command points to the contents of register 3 as the target value for
the display:

list %:r3

In response to the command above, the debugger locates the operand address (BF040)
in register 3 and lists the contents stored at BF040:

000BF040 000047F0 C0280000 00000000 00000000 *...0............*

Now you ask for display of the contents found at 10C010, the address supplied in the

debug expression:

list reca +10

0010C010 000BF000 00000000 00000000 00000000 *..0.............*

In the next example, the relative storage location points to the address of the effective

operand. The debugger responds by l isting the contents of BF000, the operand address
found at RECA+10:

list %(reca+10)

000BF000 D1D6C8D5 40E2D4C9 E3C80000 00000000 *JOHN SMITH......*

Length Attributes

The types of components used in an expression can determine the amount of

information displayed or modified by the debugger in response to your request. When
determining the length of a display, the debugger distinguishes between expressions
with and expressions without associated data characteristics.

Length Attributes

32 Online Debugger Guide

Expressions with Data Characteristics

When an expression component has associated data characteristics, the length of the
display depends on:

■ The length attribute of the symbol

■ The length attribute of the end symbol

■ The explicit length

Length Attribute of the Symbol

The length attribute of the symbol is used as the default value.

For example, this command requests the display of register 1:

list :r1

The length attribute of a general register is four bytes. The debugger uses the register
attribute as the default value and issues the following display in response to the above
command:

00000000

Length Attribute of the End Symbol

The length attribute of the end symbol in an expression range delineates the end of the

display. For example, this command requests a display of register 1 through register 3:

list :r1 to :r3

The debugger responds with a display that includes the full four-byte length of register
3:

00000000 00000001 00000002

Length Attributes

Chapter 2: Command Considerations 33

Explicit Length

An explicit length overrides the display length implied by the data characteristics of a

symbol.

This table l ists the length attributes of debugger symbols:

Entity Symbol Length Attribute

Single registers

:Rn

:SRn

:DRn

4 bytes

Register blocks

:REGS

:SREGS

:DREGS

64 bytes

Program status word :PSW 8 bytes

Halfwords

:H1

:H2

2 bytes

Fullwords

:F1

:F2

4 bytes

Line number #Line-n 12 bytes

Control blocks :BAT, :CSA, :DLB, :LTE, :PTE,
:TCE, :VECT

Variable (depending
on length of block)

Expressions without Data Characteristics

As soon as a component appears in an expression with any other component, it no
longer has associated data characteristics. For example: PTE is an expression with an

implicit length attribute equal to the length of the control block, but: PTE +@10 is an
expression without associated data characteristics.

Length Attributes

34 Online Debugger Guide

Ways to Determine Length

When an expression component does not have associated data characteristics, the

length of the display is based on:

■ The default length of the command

■ An explicit length

■ The first byte of the end expression

Default Command Length

Default lengths vary for commands that use length parameters. For example, the default
length is 16 bytes for the LIST command and 256 bytes for the SNAP command.

In this example, the display begins 32 bytes from the start of the current physical

terminal element (PTE) for a length of 16 bytes:

list :pte +@20

Explicit Length

You can supply an explicit length, which overrides the default length of the command.
This example requests a 100-byte display that begins at the load address:

list $ 100

The next example requests that the display begin at an offset address for a length of 20

bytes:

list :pte +@10 len 20

First Byte of the End Expression

The first byte of the end expression in an expression range specifies the end of the
display. For example, the debugger displays 17 bytes of memory in response to this
command:

list @bf000 to @bf010

Parsing Rules

Chapter 2: Command Considerations 35

Parsing Rules

Parameter Order

The parameters of a command must appear in the order specified in the syntax.

In the display below, the first example is incorrect, because the BEFORE parameter
cannot follow the AFTER parameter in an AT command:

at $ +@10 after 2 before 10 on ◄incorrect order

at $ +@10 before 10 after 2 on ◄correct order

Errors that Stop Execution

If one command in a string of debugger commands contains a syntax error, all following
commands are parsed for syntax but not executed.

The command containing the syntax error may be partly executed. In the first example
above, the part of the command preceding the error (at $ +@10 after 2) will be

executed:

DEBUG >

at $ +@10 after 2 before 10 on

AT $ +@10 ADDED

BEFORE 10 IGNORED

$

UNRECOGNIZABLE DEBUG COMMAND

DEBUG > AT $ +@10 AFTER 2 BEFORE 10 ON

DEBUG >

Commands that Stop Execution

If a RESUME, EXIT, IOUSER, MENU, PROMPT, or QUIT command is embedded in a string
of concatenated debugger commands, all successive commands in the string are
ignored.

Command Modification

36 Online Debugger Guide

Command Modification

Rules of Modification

Commands can be modified to specify different options or to turn off options
completely. You can modify commands with expressions corresponding to the original
command.

When you modify a command:

■ A respecified option overrides its counterpart in the previ ous command

■ All options specified in the previous command remain in effect unless overridden

Example

In this example these two commands

at $ + 8 before 10 ignore

at $ + 8 after 2 on

establish the breakpoint parameters specified in this display:

AT $ + 8 BEFORE 10 AFTER 2 ON

Delimiters

Valid Delimiters

Delimiter Meaning

* Asterisk

 Blank

, Comma

= Equal sign

! Exclamation point

- Hyphen

% Percent sign

. Period

+ Plus sign

/ Slash

Data Values

Chapter 2: Command Considerations 37

Data Values

Valid Data Values

The debugger recognizes values supplied by the following types of numbers and strings:

Value Description

Halfword values

Two-byte fixed-point values ranging from +32,767 to
-32,768

Fullword values

Four-byte fixed-point values ranging from

+2,147,483,647 to -2,147,483,648

Hexadecimal numbers

Values of one to eight hexadecimal digits preceded by
an at (@) sign; can include characters A through F and
numerals 0 through 9; when not used in a debug

expression, contents must be paired hexadecimal
digits

Decimal numbers

Values that can include decimal positions

Character strings One- to 16-character alphanumeric values enclosed in
single or double quotation marks and preceded by
letter C (for example, C"F34"); can contain any
printable character or blank

Command Format

38 Online Debugger Guide

Value Description

Hexadecimal strings

Even-numbered strings of up to 16 hexadecimal digits

enclosed in single or double quotation marks and
preceded by letter X (for example, X"C6F4"); paired
characters A through F and paired numerals 0 through

9 for hexadecimal values

Numeric strings

Variable length numeric values enclosed in single or
double quotation marks; preceded by letter H, F, or P
to designate halfword values (H'0'), fullword values

(F'555'), or packed decimal values (P"2315")

Command Format

Rules

■ One or more blanks must precede and follow all keywords

■ Spaces are optional within an expression

An offset value can be expressed with separating blanks or without blanks. For
example, the same command can be accurately formatted in any of these ways:

at @00bf280 + 10

at @00bf280+10

at @00bf280 +10

■ The entire command string must not exceed twice the line length of the terminal

■ Multiple commands can be entered on one prompt line

The commands can be separated with an exclamation point (!) delimiter, but the
delimiter is not required. For example, the same command string can be accurately
formatted in any of these ways:

DEBUG >

at $ + 8 every 5 on!resume

DEBUG >

at $ + 8 every 5 on resume

DEBUG >

at $ + 8 every 5 on

AT > $ + 8 ADDED

DEBUG >

resume

Chapter 3: Debugger Commands 39

Chapter 3: Debugger Commands

This section contains the following topics:

Summary of Commands (see page 39)
AT (see page 40)
DEBUG (see page 44)

EXIT (see page 46)
IOUSER (see page 47)
LIST (see page 47)

MENU (see page 51)
PROMPT (see page 52)
QUALIFY (see page 52)
QUIT (see page 54)

RESUME (see page 55)
SET (see page 56)
SNAP (see page 60)

WHERE (see page 62)

Summary of Commands

This chapter presents a functional description, syntax, syntax rules and examples for
each debugger command you can use during the setup or runtime phases. The
commands are presented in alphabetical order.

This table summarizes the commands and their functions.

Command Description

AT Establishes or modifies breakpoints at specified locations in a user
program

DEBUG Designates an entity to be debugged or inquires about entities
known to the debugger

EXIT Returns control to the DC/UCF system, retaining the debugger
control blocks created in the current session

IOUSER Displays the screen current when a breakpoint, program check, or
trapped abend is encountered

LIST Displays session attributes, debugger variables, and areas of
memory at your terminal

MENU Invokes menu mode for a debugger session

PROMPT Invokes prompt mode for a debugger session

AT

40 Online Debugger Guide

Command Description

QUALIFY Assigns currency to a new process within the current dialog or

inquires about program, dialog and process currencies in effect

QUIT Terminates the debugger session and returns control to the DC/UCF
system, clearing all control blocks created in the current debugger

session

RESUME Continues program or abend execution

SET Allows you to modify storage and debugger session attributes

SNAP Allows you to create and write a dump to the DC/UCF log

WHERE Provides information about the last interrupt encountered in the
entity being debugged

AT

Purpose

Sets, modifies, removes, or reviews breakpoints in a program.

Syntax

ADD Format

►►─── AT debug-expression ──►

 ►─┬───────────────────────────────┬─┬──────────────────────────────┬─────────►
 └─ BEFore ─┬─ MAXimum ◄ ───────┬┘ └─ AFTer ─┬─ 0 ◄ ─────────────┬┘
 └─ execution-count ─┘ └─ execution-count ─┘

 ►─┬──────────────────────────────┬─┬──────────┬──────────────────────────────►◄
 └─ EVEry ─┬─ 1 ◄ ─────────────┬┘ ├─ ON ◄ ───┤
 └─ execution-count ─┘ └─ IGNore ─┘

INQUIRE Format

►►─── AT ─┬─ ALL ──────────────┬─┬─ INQuire ─┬────────────────────────────────►◄
 └─ debug-expression ─┘ ├─ ON ──────┤
 ├─ IGNore ──┤
 └─ OFF ─────┘

AT

Chapter 3: Debugger Commands 41

Parameters

debug-expression

Specifies a breakpoint location in a user program. Debug-expression can include
multiple debug expressions, and it resolves to an address containing a valid
instruction or a valid CME (CA ADS dialogs only). It is not valid to set a breakpoint at

the target of an Assembler execute (EX) instruction.

Note: Debugger will not successfully resume if you set breakpoint at a "BALR RX,0"
type instruction or a "BAL RX,..." instruction later used as a base register. An
alternative is to set breakpoint at next instruction.

Note: For more information on the values used in a debug expression, see
Expression Components (see page 24) in the "Command Considerations" chapter.

ALL

Specifies that the action should apply to all previously established breakpoints. Can
be used only in INQUIRE format.

BEFore MAXimum

Causes the debugger to pause each time the breakpoint instruction is reached.
MAXIMUM is the default.

BEFore execution-count

Specifies an execution pause every time the specified breakpoint instruction is
encountered, up to but not including execution-count.

AFTer 0

Causes the debugger to pause each time the breakpoint instruction is reached. Zero
is the default.

AFTer execution-count

Specifies an execution pause each time the same breakpoint instruction is
encountered beyond execution-count.

EVEry 1

Causes the debugger to pause every time the breakpoint instruction is

encountered. One is the default.

EVEry execution-count

Specifies an execution pause each time the counter for the specified breakpoint
instruction reaches a multiple of execution-count.

ON

Sets a new breakpoint or resets the status of a breakpoint previously ignored. ON is

the default in ADD format.

IGNore

Bypasses the specified breakpoint but increments the breakpoint counter.

AT

42 Online Debugger Guide

OFF

Removes the breakpoint. Can be used only in INQUIRE format.

INQuire

Requests a l isting of the breakpoint locations and characteristics. Can be used only
in INQUIRE format.

Usage

Two formats

The AT command has two formats. The ADD format is used to set and modify

breakpoints; the INQUIRE format is used to review breakpoint locations, if any have
been set, as well as to modify the breakpoints.

Temporary processing halt

A breakpoint temporarily halts processing, allowing you to examine the results of
execution up to the point of interruption. Processing is halted before the instruction at

the breakpoint is executed. You can use the AT command in both the setup and the
runtime phases of a debugger session.

Breakpoint count

In response to the INQUIRE format, the debugger displays all parameters in effect for
the named breakpoints and indicates the breakpoint count. The breakpoint count (BKPT

COUNT) shows how often the breakpoint has been encountered from the time the
program received control via #LINK or #XCTL.

If you issue an AT INQUIRE command is issued during the setup phase, the breakpoint

count documents the count from the most recently executed program. The breakpoint
counter is reset to zero each time a #LINK or #XCTL is processed for the program.

Example 1

This command schedules program breaks on the second through ninth time the
instruction at the address $ + 8 is encountered.

DEBUG >

at $ + 8 before 10 after 1

The debugger verifies the breakpoint with this message:

AT> $ + 8 ADDED

AT

Chapter 3: Debugger Commands 43

Once the breakpoint in the example above has been set, the debugger displays the
following message in response to an AT $ + 8 INQUIRE command:

AT> AT $ + 8 BEFORE 10 AFTER 1 EVERY 1 BKPT COUNT 0 ON

In this example, the default value is indicated for the EVERY parameter. BKPT COUNT 0
indicates that this breakpoint has not yet been encountered in the current execution of
the program.

Example 2

When a breakpoint is reached during the runtime phase, the debugger displays a

message that names the address, identifies the program, and displays the debug
expression that established the breakpoint. For example, the following message would
appear for a breakpoint established with an AT $ + 8 command for program TESTPROG:

AT OFFSET @8 IN TESTPROG EXPRESSION $ + 8

Example 3

In CA ADS dialogs you can set breakpoints by specifying a l ine number:

DEBUG >

at #200

If l ine 200 is a valid address, the debugger responds to the above command as follows:

AT #200

AT> #200 ADDED

Example 4

When debugging a dialog, you can set a breakpoint in a process other than the current
process without changing the currency. In the following example where MIS-MAIN1 is
the current process, a breakpoint is set at l ine 100 in a second process (MIS-MAIN2);

MIS-MAIN1 retains its currency. As usual, the debugger sends a verifying message when
the breakpoint address is valid.

DEBUG >

at 'mis-main2'.#100

AT 'MIS-MAIN2'.#100

AT> 'MIS-MAIN2'.#100 ADDED

DEBUG >

In the above example, the programmer encloses the process name in single quotation

marks (') because the name contains an embedded hyphen (-). Quotation marks are
required for any name that contains embedded delimiters.

DEBUG

44 Online Debugger Guide

DEBUG

Purpose

Specifies the programs to be debugged or inquires about the debugged programs.

Syntax

ADD format

►►─── DEBug ─┬─ PROgram ◄ ──┬─ entity-name ─┬──────────────────────────┬───────►◄
 ├─ DIAlog ─────┤ └─ VERsion version-number ─┘
 ├─ MAP ────────┤
 ├─ SS ─────────┤
 └─ TABle ──────┘

INQUIRE format

►►─── DEBug ─┬─ entity-name ─┬──────────────────────────┬─┬─┬─ INQuire ─┬─────►◄
 │ └─ VERsion version-number ─┘ │ └─ OFF ─────┘
 └─ ALL ──────────────────────────────────────┘

Parameters

PROgram/DIAlog/MAP/SS/TABle

Identifies the type of load module to be debugged. Used only in ADD format.

PROGRAM is the default.

entity-name

Specifies the name of the entity to be used by the debugger as the current load
module. Entity-name contains a maximum of eight characters.

ALL

Specifies all modules defined to the debugger during the current session. Can be

used only in INQUIRE format.

VERSION version-number

Identifies the version of the program being debugged.

If the version is not specified:

■ In ADD format, the debugger uses the version set with DCUF TEST, or version 1

if DCUF TEST hasn't been issued

■ In INQUIRE format, the debugger displays all versions if none is specified

INQuire

Requests a l isting of the modules being debugged in this session.

OFF

Terminates all debugging for the specified programs for the remainder of the

session.

DEBUG

Chapter 3: Debugger Commands 45

Usage

Functions of DEBUG

The word DEBUG has several functions:

■ Task code used to initiate a debugging session

■ Prompt displayed during a debugging session in prompt mode

■ Command used during the setup phase to designate the programs to be debugged
or to inquire about the debugged programs

You can use the DEBUG command only during the setup phase.

Special copy loaded

When you issue the DEBUG command for a module, a special copy i s loaded, so that

setting breakpoints and making data changes will not affect other users.

Two formats

The DEBUG command has two formats. The ADD format initially identifies the entities
to be debugged; the INQUIRE format l ists entities defined to the debugger in a given

session.

Example 1

This example il lustrates the use of the DEBUG task code in conjunction with the DEBUG
command to transfer control from DC/UCF to the debugger and to define a module to
the debugger; the debugger verifies the commands and displays the DEBUG> prompt in

response:

ENTER NEXT TASK CODE:

debug debug testprog

DEBUG TESTPROG

DEBUG > DEBUGGING INITIATED FOR TESTPROG VERSION 1

DEBUG >

Example 2

In this example, the DEBUG command names the load module to be debugged:

DEBUG >

debug dialog msgtext version 3

DEBUG DIALOG MSGTEXT VERSION 3

DEBUG > DEBUGGING INITIATED FOR MSGTEXT VERSION 3

DEBUG >

EXIT

46 Online Debugger Guide

Example 3

This command requests a l ist of all programs defined to the debugger during the current

session:

DEBUG >

debug all inquire

DEBUG ALL INQUIRE

PROGRAM TESTPROG VERSION 1

DIALOG MSGTEXT VERSION 3 PROCESS MSG-MAIN1 CURRENT

DEBUG >

EXIT

Purpose

Returns control to DC/UCF and retains the debugger control blocks.

Syntax

►►─── EXIt ───►◄

Usage

Use EXIT to complete the setup phase and return to DC/UCF.

In a concatenated list of commands, the debugger ignores any command that follows

the EXIT command.

Important! In debugging a dialog, the EXIT command causes rollbacks to be issued for
both the database, if a run unit is open, and the task.

Examples

This example il lustrates the use of the EXIT command and the resulting system

response:

DEBUG >

exit

EXIT

EXIT DEBUGGER

ENTER NEXT TASK CODE:

IOUSER

Chapter 3: Debugger Commands 47

IOUSER

Purpose

Redisplays the screen that appeared at your terminal immediately before the debugger
processed the breakpoint or trapped abend.

Syntax

►►─── IOUser ───►◄

Usage

After the screen is redisplayed, you can return to the menu mode screen or to the
DEBUG> prompt by pressing any control key.

You can issue the IOUSER command only at runtime. In a concatenated list of

commands, the debugger ignores any command that follows the IOUSER command.

LIST

Purpose

Displays selected areas of storage and session attributes at your terminal.

Syntax

MEMORY Format

►►─┬─ List ────┬─┬──────────┬─ begin-debug-expression ────────────────────────►
 └─ Display ─┘ └─ Memory ─┘

 ►─┬──────────────────────────────────┬──┬──────┬─────────────────────────────►◄
 ├─ TO end-debug-expression ────────┤ ├─ C ──┤
 └─┬──────────┬─ byte-count-number ─┘ ├─ X ──┤
 └─ LENgth ─┘ └─ XC ─┘

ATTRIBUTES Format

►►─┬─ List ────┬─ SESsion ATTributes ───►◄
 └─ Display ─┘

LIST

48 Online Debugger Guide

Parameters

begin-debug-expression

Specifies the beginning location of the display. Begin-debug-expression can include
multiple debug expressions and it resolves to an address for which you have
retrieval security.

For information on the security methods used by the debugger, see CA IDMS
Security Administration Guide.

For more information on the values used in a debug expression, see Expression
Components (see page 24) in Chapter 2, "Command Considerations."

end-debug-expression

Specifies the ending location of the display. End-debug-expression can include the
same debugger entities as those specified in begin-debug-expression. The
expression must resolve to a valid address for which you have retrieval security.

byte-count-number

Indicates the number of bytes to be displayed.

Important! If a resource is l isted and the length or ending address exceeds the resource
boundary, the list is truncated at the boundary, and the debugger issues a warning
message.

C

Requests a display in character format.

X

Requests a display in hexadecimal format.

XC

Requests a display in both hexadecimal and character format.

LIST

Chapter 3: Debugger Commands 49

Usage

Two formats

There are two formats for the LIST command. The MEMORY format requests a display
of the contents of memory; the ATTRIBUTES format requests a display of session
attributes.

Rules for default length

When neither end-debug-expression nor byte-count-number is specified, the default
length is based on these rules:

■ If the expression is composed of a single symbol, the data characteristics of the

symbol determine the default length. The number of bytes displayed is equal to the
default length of the symbol.

■ If the expression does not have data characteristics, the default length is 16 bytes.

Format specified for this command

XC/X/C specifies the format for the requested information. This specification can

override the type of display previously established a s a session attribute; the override is
only valid for the duration of this command. See the ATTRIBUTES format of the SET
command to reestablish the session attributes more permanently.

Example 1

This command requests a l ist of the storage contents beginning at @BF002, for a length

of 48 bytes:

list @bf002 48

The debugger responds with a display of the beginning address and the requested
storage contents:

000BF002 47F0 C028.... *...0............*

000BF010 58509002 *................*

000BF020 4780C12A *..A.............*

000BF030 4770 *.. *

The first l ine of the storage display is indented for a space of two bytes, reflecting the
exact beginning address.

LIST

50 Online Debugger Guide

Example 2

This command instructs the debugger to display the physical terminal element (PTE)

control block from the beginning to the end of the entity. The length of the data field is
determined by the data characteristics of the PTE.

list :pte

Example 3

The next command instructs the debugger to display storage contents beginning at
@BF020. Since this expression has no data characteristics, the display defaults to 16

bytes.

list @bf020

Example 4

In debugging CA ADS dialogs you can use a data field name:

list date

The debugger responds by displaying the requested information:

001C2C50 F8F4F0F3 F0F1 *840301 *

Important! You cannot refer to data fields of Assembler, COBOL, or PL/I programs by

name.

Example 5

You can also use a l ine number:

list #100

Example 6

When field names or l ine numbers are not unique, you must qualify them. This example
lists l ine 100 from a process other than the current dialog process:

list 'process-b'.#100

Example 7

This example qualifies a request by specifying the display of a field name USERID-1301
from a record EMPLOYEE-1301:

list 'userid-1301' in 'employee-1301'

MENU

Chapter 3: Debugger Commands 51

Example 8

This is an example of the ATTRIBUTES format:

DEBUG >

list session attributes

LIST SESSION ATTRIBUTES

LIST > SESSION ATTRIBUTES

 LIST: CHAR

 TEST VERSION: 2

DEBUG >

This display indicates that DCUF TEST 2 and SET CHAR were issued.

MENU

Purpose

Switches the debugger session from prompt mode to menu mode.

Syntax

►►─── MENu ─┬───────────────┬───►◄
 └─ screen-name ─┘

Parameter

screen-name

Indicates the name of a global help screen or an activity screen to be displayed. If
screen-name is not specified, the debugger displays the Usage screen, the top-level

global help screen that presents a l ist of debugger commands and functions.

Usage

The MENU command is executed in prompt mode and switches the debugger session
from prompt mode to menu mode. MENU is disabled in menu mode.

In a concatenated list of commands, the debugger ignores any command that follows

the MENU command.

PROMPT

52 Online Debugger Guide

Example

This command instructs the debugger to switch from prompt mode to menu mode with

the display of the activity screen for the LIST command:

DEBUG >

menu list

For a complete discussion of the screens available in menu mode, see Debugging in
Menu Mode.

PROMPT

Purpose

Switches the debugger session from menu mode to prompt mode.

Syntax

►►─── PROmpt ───►◄

Usage

The PROMPT command is executed in menu mode and switches the debugger session
from menu mode to prompt mode. PROMPT is disabled in prompt mode.

In a concatenated list of commands, the debugger ignores any command that follows
the PROMPT command.

QUALIFY

Purpose

Establishes a new current process or inquires about the current program, or dialog and
process.

Syntax

RESET Format

►►─── QUAlify ─┬──────────────────────┬─ PROCess process-name ────────────────►
 └─ DIAlog dialog-name ─┘

 ►─┬──────────────────────────┬───►◄
 └─ VERsion version-number ─┘

INQUIRE Format

►►─── QUAlify INQuire ──►◄

QUALIFY

Chapter 3: Debugger Commands 53

Parameters

DIAlog dialog-name

Specifies the dialog currently defined to the debugger. Only current dialog can be
qualified.

PROCess process-name

Specifies the new dialog process to become current. Enclose the process name in
single quotation marks if the name contains embedded delimiters.

VERsion version-number

Specifies the version number of the current dialog.

Usage

Resetting currency

When a dialog is defined to the debugger, the premap process becomes the current
process by default. You can use the QUALIFY command to assign currency to a different

process within the current dialog.

Two formats

The QUALIFY command has two formats. The RESET format resets currency; the
INQUIRE format requests a display of the current program, or the current dialog and

process.

The QUALIFY command can be used in both the setup and the runtime phases of a
debugger session.

Example 1

You can inquire about the current dialog process:

DEBUG >

qualify inquire

The debugger responds in this format:

QUALIFY INQUIRE

DIALOG MISINDC VERSION 1 PROCESS MIS-MAIN1 CURRENT

DEBUG >

QUIT

54 Online Debugger Guide

Example 2

These commands reassign currency to MIS-MAIN2 and set a breakpoint at l ine 200

within MIS-MAIN2:

qualify proc 'mis-main2' at #200

The debugger responds like this:

QUALIFY PROCESS 'MIS-MAIN2'

QUALIFY > CURRENCY SET

AT #200

AT > #200 ADDED

DEBUG >

QUIT

Purpose

Terminates a debugger session and returns control to DC/UCF, clearing the debugger
control blocks.

Syntax

►►─── QUIt ───►◄

Usage

The QUIT command discontinues debugging and lets you enter a new task code in
response to the Enter Next Task Code prompt.

In a concatenated list of commands, the debugger ignores any commands that follow
the QUIT command.

Important! In debugging a dialog, the QUIT command causes rollbacks to be issued for
both the database, if a run unit is open, and the task.

Example

This is how the system responds to the QUIT command:

DEBUG >

quit

QUIT

QUIT DEBUGGER

ENTER NEXT TASK CODE:

RESUME

Chapter 3: Debugger Commands 55

RESUME

Purpose

Instructs the runtime system to continue program execution at the next instruction or a
specified location or to continue standard processing of an abend.

Syntax

►►─── RESume ─┬───────────────────────────────┬───────────────────────────────►◄
 └┬──────┬─┬─ debug-expression ─┬┘
 └─ AT ─┘ └─ ABEnd ────────────┘

Parameters

debug-expression

Specifies the location at which execution is to continue, if other than the instruction
immediately following the breakpoint. Debug-expression can include multiple
debug expressions, and it resolves to an address containing a valid instruction or a
valid CME (CA ADS dialogs only).

For more information about the values used in a debug expression, see Expression
Components (see page 24) in Chapter 2, "Command Considerations."

ABEnd

Specifies that standard DC/UCF abend processing, including the execution of any
STAE set, should continue.

Usage

You can issue the RESUME command only at runtime.

When program execution resumes at an address other than the address of the
instruction immediately following the breakpoint, you must be sure that the program
environment (for example, the contents of registers and storage) is appropriate for

running the program.

Examples

This command requests that execution of the program resume with the instruction at
the breakpoint:

resume

This command requests that program execution resume at the load address:

resume $

SET

56 Online Debugger Guide

SET

Purpose

Modifies selected areas of storage and debugger symbols.

Syntax

MEMORY Format

►►─┬─ Set ──┬─┬──────────┬─ debug-expression ─┬──────────┬───────────────────►
 └─ Vary ─┘ └─ Memory ─┘ ├─ EQUals ─┤
 └─ = ──────┘

 ►─┬─ data-field-name ────┬─┬──────┬─┬─────────────┬──────────────────────────►◄
 ├─ H halfword ─────────┤ ├─ C ──┤ ├─ RESEt ─────┤
 ├─ F fullword ─────────┤ ├─ X ──┤ └─ NOReset ◄ ─┘
 ├─ X hex-value ────────┤ └─ XC ─┘
 ├─ C character-string ─┤
 └─ P packed-value ─────┘

ATTRIBUTES Format

►►─── Set ─┬─ CHAr ─┬───►◄
 ├─ HEX ──┤
 └─ BOTh ─┘

Parameters

debug-expression

Specifies the beginning location of the entity to be modified. Debug-expression can
include multiple debug expressions, and it resolves to an address for which you

have update security.

For information on the security methods used by the debugger, see CA IDMS
Security Administration Guide.

For more information on the values used in a debug expression, see Expression
Components (see page 24) in Chapter 2, "Command Considerations."

data-field-name

Identifies a specific data field value. Can be used in CA ADS dialogs only.

For a complete discussion of the use of field names, see Program Symbols (see

page 28) in Chapter 2, "Command Considerations."

Hhalfword

Is a halfword number. H specifies the halfword format; halfword represents the
actual data content and must be enclosed in single quotation marks.

Ffullword

Is a fullword number. F specifies the fullword format; fullword represents the actual
data content and must be enclosed in single quotation marks.

SET

Chapter 3: Debugger Commands 57

Xhex-value

Is a hexadecimal string. X specifies the hexadecimal format; hex-value represents

the actual data content and must be enclosed in single quotation marks.

Ccharacter-string

Is a character l iteral used to assign alphanumeric or symbolic character values. C
specifies the character format; character-string represents the actual data content
and must be enclosed in single quotation marks.

Ppacked-value

Is an assigned packed decimal value. P specifies the packed decimal format;
packed-value represents the actual data content and must be enclosed in single
quotation marks.

C

Requests a display in character format.

X

Requests a display in hexadecimal format.

XC

Requests a display in both hexadecimal and character format.

RESEt

Specifies that the named storage be reset to its original value at the end of the
debugging session. This option is not supported for release 10.2 of the debugger.

NOReset

Specifies that the storage is not to be reset to its original value at the end of the

debugging session. This option does not affect storage in the debugged program
itself since a special copy of the program is loaded for the debugging session.
NORESET is the default.

CHAr

Requests a display in character format for ATTRIBUTES format.

HEX

Requests a display in hexadecimal format for ATTRIBUTES format.

BOTh

Requests a display in both hexadecimal and character format for ATTRIBUTES
format.

SET

58 Online Debugger Guide

Usage

Two formats

The SET command has two formats. The MEMORY format specifies the values assigned
to a given debug expression; the ATTRIBUTES format specifies the debugger session
attributes to be established.

When debug expression is a symbol with data characteristics (for example, :REGS), the
length of the symbol is used in the set. When the expression does not have data
characteristics (for example, $ + 10), the data characteristics of the source field are used
in the set.

Important! The debugger does not allow a set across resource boundaries.

Character and hexadecimal format

C/X/XC in the MEMORY format specifies how the information is to be listed. This
specification can override the session attributes previously established for the session;
the override is valid only for the duration of this command. To reestablish the session

attributes more permanently use the ATTRIBUTES format.

Example 1

This command modifies the contents of a program register:

DEBUG >

set :r7 x'00000001' x

The debugger responds to the X parameter with the hexadecimal display of the original
value and the reset value:

SET :R7 X'00000001' X

OLD

00000000

NEW

00000001

DEBUG >

SET

Chapter 3: Debugger Commands 59

Example 2

This command modifies storage at an offset address:

DEBUG >

set $ + 8 = x'58' x

The debugger responds:

SET $ + 8 = X'58' X

OLD

000BF008 41

NEW

000BF008 58

DEBUG >

Example 3

This command modifies storage at the same address with a fullword value:

DEBUG >

set $ + 8 equ f'58' x

The debugger responds:

SET $ + 8 EQU F'58' X

OLD

000BF008 4130C050

NEW

000BF008 0000003A

DEBUG >

Example 4

This is an example of the ATTRIBUTES format:

DEBUG >

set char

SET CHAR

SET ATTRIBUTE CHAR

DEBUG >

SNAP

60 Online Debugger Guide

SNAP

Purpose

Allows you to create a dump and write it to the DC/UCF log.

Syntax

►►─── SNAp ─┬─ TASk ──┬───►
 └─ begin-debug-expression ─┬─────────────────────────────────┬┘
 ├─ TO end-debug-expression ───────┤
 └┬──────────┬─ byte-count-number ─┘
 └─ LENgth ─┘

 ►─┬───────────────┬──►◄
 └─ TITle title ─┘

Parameters

TASk

Requests a dump of all resources associated with the executing task, as well as the
Task Control Element (TCE) and the Dispatch Control Element (DCE).

begin-debug-expression

Specifies the location at which to begin the snap. Begin-debug-expression can
include multiple debug expressions, and it resolves to an address for which you

have retrieval security.

For information on the security methods used by the debugger, see CA IDMS
Security Administration Guide.

For more information on the values used in a debug expression, see Expression

Components (see page 24) in Chapter 2, "Command Considerations."

end-debug-expression

Specifies the ending location of the display. End-debug-expression can include the
same debugger entities as those specified in begin-debug-expression. The
expression must resolve to a valid address for which you have retrieval security.

byte-count-number

Specifies the number of bytes to be displayed.

TITle title

Specifies an optional title for the snap. The title must be enclosed in single
quotation marks ('), may not exceed 32 characters, and must be prefaced by a valid
ASA carriage control character. These are the valid carriage control characters:

 (Space bar) Space one line

0 Space two lines

- Space three lines

SNAP

Chapter 3: Debugger Commands 61

1 Skip to the top of the next page

The length of 32 characters includes the carriage control character. Code

apostrophes in the title as two single quotation marks (''). They are counted as one
character position.

When a title is not specified, a default title is written to the log.

Usage

Types and timing

You can use a SNAP command for a Task snap or a snap of specific area; the command is
valid at any point in a debugger session.

You can examine the Snap dumps online with OLP (OnLine Plog), or make a hard copy by

running the print log functions of the Batch Command Facil ity util ity.

For more information see CA IDMS Utilities Guide.

Default length

When neither end-debug-expression nor byte-count-n is specified, the default length is
based on these rules:

■ If the expression is composed of a single symbol, the data characteristics of the
symbol determine the default length. The number of bytes dumped is equal to the
default length of the symbol.

■ If the expression does not have data characteristics, the default length is 256 bytes.

Example 1

This command causes a snap to begin at the load address and terminate at @000BF050;
the default title is to be used:

DEBUG >

snap $ to @bf050

The default title takes the form:

SNAP command-entered USER user-id

For example, if the user ID is MMC, the default title is:

SNAP $ TO @000BF050 USER MMC

WHERE

62 Online Debugger Guide

Example 2

This command requests a snap starting at the load address for 256 bytes; the default

title is to be used:

DEBUG >

snap $

Example 3

This command requests a task snap; the title IDMSTEST, positioned at the top of a
display page, will be used for the dump:

DEBUG >

snap task title '1idmstest'

WHERE

Purpose

Provides information about the last interrupt of the entity being debugged.

Syntax

►►─── WHEre ──►◄

Usage

You can issue the WHERE command only at runtime.

Example

This is how the debugger responds to the WHERE command:

DEBUG >

where

WHERE > @000BF010 LAST INTERRUPT MESSAGE FOLLOWS

AT OFFSET @10 IN TSTPROG EXPRESSION $ + @10

Chapter 4: Debugging in Menu Mode 63

Chapter 4: Debugging in Menu Mode

This section contains the following topics:

Features of Menu Mode (see page 63)
Screen Design (see page 64)
Accessing Screens (see page 69)

Activity Screens (see page 73)
Global Help Screens (see page 81)

Features of Menu Mode

Menu Mode Facilities

Menu mode provides screens that allow you to choose any of the debugging activities
that can be performed in prompt mode. Fixed-format activity screens are available for
each command to simplify the process of debugging. Menu mode also offers several
help facil ities.

Chapter Contents

This chapter discusses the following features of menu mode:

■ Screen design—Standard format of the activity and help screens

■ Accessing screens—Moving between screens

■ Activity screens—Descriptions of the variable fields on the command-specific
activity screens

■ Global help screens—Descriptions of the global help screens

Screen Design

64 Online Debugger Guide

Screen Design

Screen Areas

The menu mode screens are designed for ease of use. Each screen has a:

■ Heading area

■ Display area

■ Specification area

■ Selection area

This diagram shows the areas of the screen:

┌ IDMS-DC REL nn.n ONLINE DEBUGGER *** LIST *** SETUP PAGE 1 OF 1

│ PROGRAM: V: CSECT:
└ ->
┌
│
│
│
│
│
│
└
┌ LIST: M (M-MEMORY/A-ATTRIBUTES)

│ MEMORY ONLY:
│ BEGIN LIST AT:
│
│ LENGTH.......: - OR - END LIST AT:
│
│ LIST FORMAT..: B (C-CHARACTER/X-HEX/B-BOTH)
└
┌ NEXT _ ACTIVITY OR _ HELP:
│ _ AT _ LIST _ SET _ SNAP _ RESUME _ DEBUG _ WHERE
│

│ _ EXIT _ PROMPT _ QUIT _ IOUSER
└ HELP SCREENS: _ USAGE _ SYMBOLS _ KEYS

Each of the screen areas is described below.

Heading Area

Contents

The heading area includes three l ines:

■ Header l ine

■ Currency line

■ Prompt line

Screen Design

Chapter 4: Debugging in Menu Mode 65

Header Line

The header l ine contains several fields:

■ The PF-key field provides a two-position entry area for simulation of a
program-function key. For example, typing a 5 in this field and pressing [Enter] has
the same effect as pressing [PF5].

The simulated PF-key field is useful when your terminal does not have
program-function keys. You can specify the numerals 1 through 24, as well as EN
for [Enter], CL for [Clear], P1 for [PA1], and P2 for [PA2].

■ Product name and release number fields supply information formatted like this:

IDMS-DC REL n.n ONLINE DEBUGGER

■ The screen label field indicates the name of the current screen. The screen name
changes as you move from one activity or help screen to another in the debugging
process. (The sample screen is the List screen.)

■ The session mode field indicates whether you are in the setup or runtime phase of

the debugging process. (The sample screen indicates a setup phase.)

■ Page notations supply the current page and the total number of pages available for
the given display. The sample screen indicates that you are viewing the fir st page of
a one-page display. Typically the help screens have more than one page. You can
display a different page by:

– Overwriting the current page number on the header l ine and pressing [Enter]

– Using the designated control key to scroll backward or forward.

Default Control Key Assignments This table presents a l ist of the default control key
assignments for the debugger:

Key Action Description Function

[PF1] Usage Displays the Usage screen 2

[PF2] Unassigned 5

[PF3] Activity Displays the activity screen for the
current command

3

[PF4] Help Displays the help screen for the current
command

4

[PF5] Symbols Displays the Symbols screen 9

[PF6] Keys Displays the default control key
assignments

6

[PF7] Scroll up Displays the previous page 7

[PF8] Scroll down Displays the next page 8

Screen Design

66 Online Debugger Guide

Key Action Description Function

[PF9] Prompt Returns the debugger to prompt mode 1

[PF10] Unassigned 15

[PF11] Unassigned 11

[PF12] Reserved 12

[PA1] Refresh Refreshes the current screen 14

[PA2] Exit Exits the debugger 10

[Clear] Return Goes back one level 16

[Enter] Process Processes the current screen 13

The default control key assignments can be changed at DC/UCF system generation time
with the KEYS statement.

For more information on the KEYS statement used in system generation, see CA IDMS
System Generation Guide.

The Keys screen displays the key assignments for your particular installation.

Currency Line

The currency line displays the current values for five variable fields:

■ The entity type indicates whether a program, dialog, map, table or subschema load
module is currently being debugged

■ The entity name field displays the name of the current entity

■ V:version-n displays the version number associated with the current entity

■ The section type field indicates whether a dialog process or a program CSECT is
currently being debugged.

■ The section name field displays the current CSECT or process name

When the current entity is a program, the currency line reads l ike this:

PROGRAM: PROG01 V:3 CSECT:

When the current entity is a dialog, the currency line reads l ike this:

DIALOG: MISINDC V: 1 PROCESS: MIS-MAIN2

The currency line remains constant until there is a change in the entity of the CSECT or
process being debugged. You can change the current CSECT or process by:

Screen Design

Chapter 4: Debugging in Menu Mode 67

■ Overwriting the name on the screen and pressing [Enter] to automatically initiate
the QUALIFY command

■ Issuing the QUALIFY command on the prompt line

Prompt Line

The prompt line is prefaced by an arrow (►) and functions in the same manner as the
DEBUG> prompt in prompt mode. You can use the prompt line on any screen during
menu mode; you can submit a single debugger command or a string of commands at

any time.

For a complete discussion of the debug express ions and commands that you can enter
on the prompt line, see Expression Components (see page 24) in Chapter 2, "Command

Considerations" and Debugger Commands (see page 39).

Display Area

Contents

The display area is reserved to display:

■ The information being presented for each of the help screens

■ Output you have requested from the debugger

■ Informational and error messages supplied by the debugger

Specification Area

Contents

The specification area contains fields in which you can specify the desired options for
the command being used. The contents of the specification area vary from screen to
screen, and not all screens have a specification area.

Screen content in the specification area of the activity screens is saved for as long as the
command is current. This feature allows you to suspend action on a partially fi lled
screen while seeking further information.

For example, you can:

■ Begin to fi l l the activity screen for the List command

■ Switch to the Symbols help screen to review program or debugger symbols

■ Return to the List screen, where all previous input remains intact

For more information about command currency, see 4 (see page 71).

Screen Design

68 Online Debugger Guide

Selection Area

List of Procedures

The selection area presents a l ist of the debugger commands and global help screens
that you can initiate from the screen. You can select the next action by entering any

character other than a blank or an underscore in the response field to the left of an
activity or help function.

Two Sections

You can select actions from one of two sections:

■ Section A displays the choice of command-specific activity and help screens:

NEXT _ ACTIVITY OR _ HELP

 _ AT _LIST _SET _SNAP _RESUME _ DEBUG _WHERE

 _EXIT _PROMPT _QUIT _IOUSER

■ Section B displays the choice of global help screens:

HELP SCREENS: _ USAGE _ SYMBOLS _ KEYS

Command-specific Activities

When choosing from Section A, you first select Activity (the default) or Help and then
choose one of the commands. If you select Activity, the system can:

■ Execute immediately an EXIT, PROMPT, QUIT, or IOUSER command

■ Display the activity screen for an AT, LIST, SET, SNAP, RESUME, or DEBUG command

■ Display the information requested by the WHERE command

Control keys can also be used to request activities.

Selecting Help If you select Help from Section A, the system displays a
command-specific help screen.

If you mark the select byte for Activity or Help but do not choose a specific command,
the system displays the activity or help screen for the current command. The debugger
system displays an error message if there is no current command.

You can choose a global help screen from Section B.

Each of the activity screens and global help screens is described in detail later in this
chapter.

Accessing Screens

Chapter 4: Debugging in Menu Mode 69

Accessing Screens

Considerations

When moving between screens, you need to consider:

■ Screen hierarchy

■ Screen sequence

■ Selection processing

■ Command currency

Screen Hierarchy

Three Screen Levels

The debugger supports three levels of screens:

Screens Level

Usage screen Top

Activity screens Second

Help screens Third

Usage Screen

The Usage screen is an informational global help screen that contains a l ist of the
debugger commands and a brief descripti on of their functions. The Usage screen is the
default screen for the MENU command.

Activity Screens

Activity screens are screens that provide you with an area for specifying command
options. The debugger provides activity screens for the AT, DEBUG, LIST, RESUME, SET,
and SNAP commands. You can initiate these commands from the activity screens once
you've entered the necessary information in the specification area.

Accessing Screens

70 Online Debugger Guide

Help Screens

Help screens provide two types of assistance:

■ Command-specific help screens supply tutorial information on all the debugger
commands. When the command is one that uses an activity screen, the help screen
for that command also describes the field options.

■ Global help screens provide information not associated with a particular command.
For example, the Symbols screen enables you to choose a display of program and
debugger symbols for the current session, and the Keys screen displays site-specific
PF-key assignments.

Screen Sequence

Next Activity or [Clear]

You can change to the next screen by:

■ Explicitly specifying the next activity to be performed

■ Using the [Clear] key (or the key associated with function 16)

Specifying the Next Activity

You can select an activity by:

■ Using the control key associated with the activity to be performed

Default control key assignments are discussed in "Heading area" earlier in this

chapter. The Keys screen displays a l ist of the current function assignments for your
installation.

■ Entering a nonblank character in the response field to the left of the activity to be
performed

You can use any character other than a blank or an underscore. The choice of

actions is l isted in the selection area of each screen. For a description of the
selection area, see Screen Design (see page 64) earlier in this chapter.

Accessing Screens

Chapter 4: Debugging in Menu Mode 71

Using [Clear]

The performance of [Clear] depends on the screen level from which you initiate the

action:

■ From an activity screen, [Clear] displays the Usage screen

■ From the Symbols screen, the Keys screen, or one of the command-specific Help

screens:

– When there is a current command, [Clear] displays the activity screen for the
current command

– When there is no current command, [Clear] displays the Usage screen

■ From the Usage screen, [Clear] returns control to DC/UCF

Selection Processing

Order of Precedence

The debugger determines its next action based on these factors, in order of precedence:

1. Control key used to initiate a particular action

2. Select byte(s) marked in the selection area

3. Page number designated in the heading area

4. Commands initiated from the menu-mode prompt line

5. Commands initiated from the specification area

Once an action is identified for processing, the system ignores all other requested
actions.

Example

For example, if the USAGE screen is your current screen and you choose the AT activity
from the selection area and then press the CLEAR key, the CLEAR key takes precedence
and you are returned to DC/UCF.

Command Currency

Repeating a Command

Command currency is a feature of menu mode that simplifies the debugging process
when you use the same command in successive actions. With command currency, you
select the command the first time only.

Accessing Screens

72 Online Debugger Guide

Defining the Current Command

The current command is defined as the most recent debugger command referenced on

a command-specific help screen or an activity screen. No current command exists until
you take either of two actions:

■ Use the screen-name option with the MENU command to name an activity screen.

For example, the command MENU LIST establishes the LIST command as the
current command.

■ Designate a command from the activity or help selection list at the bottom of any
screen.

The newly-selected command functions as the current command.

The current command is the default command. This means that the debugger system
automatically displays the appropriate screen for the current command.

You can choose Activity or Help in the s election area, or press the control key associated
with either of these actions, without specifying a command. If no current command has

been established when you make any of the above choices, the debugger system
displays an error message.

Changing Command Currency

You can change command currency in the same way you establish it.

For example, if the current command is LIST, mark the select byte for the SET command

and press the control key associated with the current command-specific help screen (for
example, [PF4]). The Help screen for SET appears, because SET is the newly-designated
current command.

Command currency does not change when you:

■ Enter a command on the screen prompt line.

For example, while setting breakpoints with the At screen, you can use the prompt
line to request a memory display with the LIST command. In this case, the AT
command remains as the current command.

■ Select a global help screen, that is, a screen that is not associated with a specific
debugger command.

For example, you can move from the LIST command activity screen to the Usage,
Symbols, or Keys screen without changing command currency.

Activity Screens

Chapter 4: Debugging in Menu Mode 73

Activity Screens

Format

An activity screen is provided for any debugger command that has fields for
user-supplied values. Some fields are required and others have default values or are
optional. The command-specific area of the activity screens is the specification area; all

other areas have the standard format presented in "Screen design" above.

At Screen

Purpose

You can use the At screen to:

■ Add breakpoints

■ Modify breakpoints

■ Delete breakpoints

■ Inquire about the breakpoints that have already been set

As explained in "Debugger features", Chapter 1, breakpoint temporarily halts

processing, allowing you to examine the results of execution up to the point of
interruption.

'Remember': Processing is halted before the instruction at the breakpoint is executed.

The AT command can be used in both the setup and runtime phases of the debugger.

Two Sections

The specification area of the At screen has two separate sections:

■ The first section sets new breakpoints:

ADD BREAKPOINT AT:

BEFORE: MAX AFTER: 0 EVERY: 1

■ The second section inquires about existing breakpoints, or deletes them:

OTHER ACTION.......: (I-INQUIRE/D-DELETE/G-IGNORE)

BREAKPOINT OR <ALL>:

■ Both sections modify breakpoints

You can specify both sections of the screen at the same time.

Activity Screens

74 Online Debugger Guide

Field Options

These are the field options for this area:

ADD BREAKPOINT AT:

Designates the location in your program that will contain a breakpoint. The
specified value can include one or more debug expressions resolving to an address
that contains a valid instruction or, for CA ADS dialogs, a valid CME.

Remember: It is not valid to set a breakpoint at the target of an Assembler execute

(EX) instruction.

BEFORE: MAX

Specifies the execution pause on encountering the instruction up to, but not
including, the specified number of times. The default (MAX) is to pause as many
times as the instruction is encountered.

AFTER: 0

Specifies that the debugger will pause at the breakpoint after the instruction has
been executed the specified number of times. The default (0) is to start pausing
when the instruction is first encountered.

EVERY: 1

Specifies an execution pause every ti me the counter for the breakpoint instruction

reaches a multiple of the value specified. The default (1) is to pause every time the
instruction is encountered.

Tip: If you don't change the defaults, the debugger will pause each time the

breakpoint instruction is encountered.

OTHER ACTION...: (I-INQUIRE/D-DELETE/G-IGNORE)

■ I requests a l isting of the breakpoint location and characteristics

■ D removes the breakpoint

■ G bypasses the breakpoint but increments the breakpoint counter

BREAKPOINT OR <ALL>:

Indicates the breakpoints affected by the Other Action field. You can indicate a

specific breakpoint (that is, a debug-expression), or specify that the action applies to
ALL breakpoints within the current program or dialog.

Activity Screens

Chapter 4: Debugging in Menu Mode 75

Debug Screen

Two Sections

The specification area of the Debug screen also has two sections:

■ The first section designates the load module to be debugged:

DEBUG LOAD MODULE...: TYPE: P (P-PGM/D-DIALOG/M-MAP/T-TABLE/S-SS)

VERSION.............:

■ The second section inquires about certain debugged modules or removes modules
from the debugging process:

OTHER ACTION........: (I-INQUIRE/D-DELETE)

LOAD MODULE OR <ALL>:

VERSION.............:

You can submit both types of requests at the same time.

Field Options

These are the field options for this area:

DEBUG LOAD MODULE...:

Identifies the name of the entity to be debugged. The entity name can be up to
eight characters long.

TYPE: P (P-PGM/D-DIALOG/M-MAP/T-TABLE/S-SS)

Identifies the type of module to be debugged:

■ P (the default) identifies a program

■ D identifies a CA ADS dialog

■ M identifies a map

■ T identifies an edit or code table

■ S identifies a subschema

VERSION......:

Identifies the version of the load module to be debugged. If the version is not

specified, the debugger uses the version you have set with DCUF TEST, or if none,
version 1.

OTHER ACTION....: (I-INQUIRE/D-DELETE)

■ Irequests a display of the load module(s) being debugged in this session

■ D requests that the specified module(s) be removed from the list of load
modules known to the debugger

Activity Screens

76 Online Debugger Guide

LOAD MODULE OR <ALL>:

Indicates the load module(s) affected by the specified Other Action value. An

entity-name identifies the single load module for which I or D is requested. Using
All requests I or D for all load modules being debugged.

VERSION......:

Identifies the version of the load module for which I or D is requested. If no
version is specified and there is more than one version of the load module being

debugged, the debugger displays or deletes all versions. If a version is specified, the
debugger displays or deletes only the specified version.

List Screen

Purpose

You can use the List screen to display storage areas, session attributes, and debugger
symbols at your terminal. The List screen can be used during setup and at runtime.

The specification area of the List screen looks l ike:

 LIST: M (M-MEMORY/A-ATTRIBUTES)

 MEMORY ONLY:

 BEGIN LIST AT:

 LENGTH.......: - OR - END LIST AT:

 LIST FORMAT..: B (C-CHARACTER/X-HEX/B-BOTH)

Field Options

These are the field options for this area:

LIST: M (M-MEMORY/A-ATTRIBUTES)

■ M(the default) requests a l ist of an area of memory specified in the Memory
Only section of the screen

■ A requests a l ist of current session attributes; no other options need to be
specified on the screen in this case

BEGIN LIST AT:

Specifies the beginning location for the display. The beginning location can include
one or more debug expressions resolving to an address for which you have retrieval
security.

For information on the security methods used by the debugger, see CA IDMS
Security Administration Guide. This field is required if a memory display is selected.

Activity Screens

Chapter 4: Debugging in Menu Mode 77

LENGTH........:

Specifies the number of bytes to be displayed.

END LIST AT:

Specifies the ending location for the display. The ending location can include the
same debugger entities as those specified for the beginning location.

Important! If a resource is l isted and the length or ending location exceeds the resource
boundary, the list is truncated at the boundary and the debugger issues a warning

message.

When neither Length nor End List At is specified, the length of the display is based
on two rules:

■ If the debug expression is composed of a single symbol, the data characteristics
of the symbol determine the default length. The number of bytes displayed i s

equal to the length attribute of the symbol.

■ If the expression does not have data characteristics, the default length is 16
bytes.

LIST FORMAT..: B (C-CHARACTER/X-HEX/B-BOTH)

■ C requests a display in character format

■ X requests a display in hexadecimal format

■ B (the default) requests a display in both character and hexadecimal format

Resume Screen

Purpose

You can use the Resume screen to instruct the runtime system to continue program
execution at the next instruction or at another location or to continue standard
processing of an abend.

The specification area of the Resume screen looks l ike:

RESUME: E (E-EXECUTION/A-ABEND)

EXECUTION ONLY:

 LOCATION IF OTHER THAN BREAKPOINT:

Activity Screens

78 Online Debugger Guide

Field Options

These are the field options for this area:

RESUME: E (E-EXECUTION/A-ABEND)

Indicates the next action of the runtime system:

■ E (the default) requests that execution continue at the next instruction or at

another location as indicated by the address specified in the Execution Only
section of the screen

■ A requests that standard DC/UCF abend processing, including the execution of
any STAE exit, should continue

LOCATION IF OTHER THAN BREAKPOINT:

Specifies the location at which execution is to continue. The specified value can be a
debug expression that resolves to an address containing a valid instruction or a
valid CME (CA ADS dialogs only).

Set Screen

Purpose

You can use the Set screen to modify selected areas of storage and session attributes.
The Set screen can be used during setup and at runtime.

The specification area of the Set screen looks l ike:

SET: M (M-MEMORY/C-CHARACTER/X-HEX/B-BOTH)

MEMORY ONLY:

 BEGIN SET MEMORY AT:

 EQUALS......:

 RESET.......: N (Y-YES/N-NO)

Activity Screens

Chapter 4: Debugging in Menu Mode 79

Field Options

These are the field options for this area:

SET: M (M-MEMORY/C-CHARACTER/X-HEX/B-BOTH)

■ M (the default) requests modification of the areaof memory specified in the
Memory Only section of the screen

■ The other three options pertain to the setting of session attributes:

– C requests a display in character format

– X requests a display in hexadecimal format

– B requests a display in both character and hexadecimal format

BEGIN SET MEMORY AT:

Specifies the beginning location of the entity to be modified. The beginning location
can be a debug expression that resolves to an address for which you have update
security. A beginning location value is required when you are updating memory.

If the debug expression is a symbol with data characteristics, the length of the

symbol is used in the set. Otherwise, the data characteristics of the source field are
used in the set.

Remember: The debugger does not allow a set across resource boundaries.

EQUALS......:

Indicates the new value that will be assigned to the entity. You can supply an

explicit value or a data field name, as in these examples:

h'03'

f'9956'

x'f0c4'

c'edit'

p'1234'

'customer-name-0145'

The EQUALS field is required when you are updating memory.

RESET.......: N (Y-YES/N-NO)

Indicates the disposition of the original storage value:

■ Y requests that the named storage be reset to its original value at the end of

the debugging session; this option is not supported for release 10.2 of the
debugger

■ N (the default) requests that the named storage not be reset to its original

value at the end of the debugging session

This option does not affect storage in the debugged program itself since a special
copy of the program is loaded for the debugging session.

Activity Screens

80 Online Debugger Guide

Snap Screen

Purpose

The Snap screen lets you create and write a dump to the DC/UCF log at any point in the
debugging session, in order to make a hard copy of storage contents.

Remember: To obtain a hard copy of the Snap dump, use the Batch Command Facil ity
util ity.

The specification area of the Snap screen looks l ike:

SNAP: (A-AREA/T-TASK) TITLE:

SKIP: (1-ONE LINE/2-TWO LINES/3-THREE LINES/T-TOP OF NEXT PAGE)

AREA ONLY:

 BEGIN SNAP AT:

 LENGTH: -OR- END SNAP AT:

Field Options

These are the field options for this area:

SNAP: (A-AREA/T-TASK)

■ Arequests a dump of the memory area specified in the fields in the Area Only

section of the screen

■ T requests a dump of all resources associated with the executing task

This is a required field on the Snap screen.

TITLE:

Specifies an optional title for the snap. The title can contain up to 42 characters. Do

not enclose the title in quotation marks. An apostrophe in the title must be coded
as two single quotes. When a title is not specified, a default title is written to the
log:

USER user-id

SKIP: (1-ONE LINE/2-TWO LINES/3-THREE LINES/T-TOP OF NEXT PAGE)

Indicates the carriage control that will be used for placement of the title:

■ 1 skips one line

■ 2 skips two lines

■ 3 skips three lines

■ T skips to the top of the next page

If you specify nothing, two lines are skipped.

Global Help Screens

Chapter 4: Debugging in Menu Mode 81

BEGIN SNAP AT:

Specifies the location at which to begin the snap. The beginning location can be a

debug expression that resolves to an address for which you have retrieval security.
This field is required when snapping an area.

LENGTH:

Indicates the number of bytes to be snapped.

END SNAP AT:

Indicates the ending location of the snap. The ending locati on can specify the same

types of debug expressions as those used in the Begin Snap At field.

When you do not specify an ending location or a specific length, the default length
is based on two rules:

■ If the debug expression is composed of a single symbol, the data characteristics
of the symbol determine the default length. The number of bytes dumped is

equal to the default length of the symbol.

■ If the expression does not have data characteristics, the default length is 256
bytes.

Global Help Screens

Three Available

The debugger provides three global help screens, one each of commands, symbols and
control keys.

Global Help Screens

82 Online Debugger Guide

Usage Screen

Top-level Screen

The Usage screen is the top-level screen for menu mode. It presents a l ist of all
debugger commands and summarizes the command functions. The Usage screen looks

l ike this:

 IDMS-DC REL nn.n ONLINE DEBUGGER *** USAGE *** SETUP PAGE 1 OF 4
 PROGRAM: V: CSECT:
 ->
 PROCEDURAL COMMANDS.

 EXIT.....RETURNS CONTROL TO IDMS-DC/UCF WITHOUT TERMINATING THE CURRENT DEBUGG
ER SESSION
 QUIT.....TERMINATES THE DEBUGGER SESSION AND RETURNS CONTROL TO IDMS-DC/UCF.
 PROMPT...INVOKES THE PROMPT MODE OF THE DEBUGGER.

 RETRIEVAL COMMANDS.

 AT.......ESTABLISHES OR MODIFIES BREAKPOINTS WITHIN A USER PROGRAM.
 DEBUG....DESIGNATES, DURING THE SETUP PHASE, THE ENTITY TO BE DEBUGGED OR
 INQUIRES ABOUT ENTITIES KNOWN TO THE DEBUGGER.
 IOUSER...DISPLAYS THE USER SCREEN THAT IS CURRENT WHEN A BREAKPOINT, PROGRAM
 INTERRUPT OR TRAPPED ABEND IS ENCOUNTERED.

 NEXT _ ACTIVITY OR _ HELP:
 _ AT _ LIST _ SET _ SNAP _ RESUME _ DEBUG _ WHERE

 _ EXIT _ PROMPT _ QUIT _ IOUSER
 HELP SCREENS: _ USAGE _ SYMBOLS _ KEYS

Global Help Screens

Chapter 4: Debugging in Menu Mode 83

Symbols Screen

Has a Specification Area

The Symbols screen lets you list program or debugger symbols owned by the entity
being debugged. The Symbols screen is the only global help screen with a specification

area:

 IDMS-DC REL nn.n ONLINE DEBUGGER *** SYMBOLS *** SETUP PAGE 1 OF 1
 PROGRAM: V: CSECT:
 ->

 SYMBOLS TO DISPLAY: P (P-PROGRAM/D-DEBUGGER)
 SYMBOL OR SEARCH STRING:

 NEXT _ ACTIVITY OR _ HELP:
 _ AT _ LIST _ SET _ SNAP _ RESUME _ DEBUG _ WHERE

 _ EXIT _ PROMPT _ QUIT _ IOUSER
 HELP SCREENS: _ USAGE _ SYMBOLS _ KEYS

Field Options

These are the field options for the specification area:

SYMBOLS TO DISPLAY: P (P-PROGRAM/D-DEBUGGER)

Indicates whether program symbols (P) or debugger symbols (D) for the current

entity are to be displayed. The default is P. The symbols are l isted alphabetically.

SYMBOL OR SEARCH STRING:

Identifies a specific symbol or string that begins the display. When this field does
not contain an entry, all specified program or debugger symbols are displayed from
the beginning of the list

Example

For example, to begin the display with program symbols prefaced by MIS, you would

supply this information on the screen:

SYMBOLS TO DISPLAY: p (P-PROGRAM/D-DEBUGGER)

SYMBOL OR SEARCH STRING: mis

Global Help Screens

84 Online Debugger Guide

Keys Screen

Installation-specific

The Keys screen provides a l ist of the current control key assignments for your particular
installation. The information displayed on this screen reflects the installation-specific

key assignments made with the KEYS statement when the system was generated. The
Keys screen contains the most up-to-date information on control key assignments. If an
assignment is modified after the system is generated, the Keys screen is also modified
automatically.

A sample Keys screen is shown below.

 IDMS-DC REL nn.n ONLINE DEBUGGER *** KEYS *** SETUP PAGE 1 OF 1
 PROGRAM: V: CSECT:
 ->
 │ PFKEY ACTIVITY ││ PFKEY ACTIVITY │
 │ ----- -------- ││ ----- -------- │
 │ ENTER PROCESS CURRENT SCREEN ││ PF5 SYMBOLS SCREEN │
 │ CLEAR PREVIOUS LEVEL ││ PF6 PFKEYS SCREEN │

 │ PA1 REFRESH ││ PF7 DISPLAY PREVIOUS PAGE │
 │ PA2 EXIT ││ PF8 DISPLAY NEXT PAGE │
 │ PF1 USAGE SCREEN ││ PF9 CHANGE TO PROMPT MODE │
 │ PF2 UNASSIGNED ││ PF10 UNASSIGNED │
 │ PF3 ACTIVITY SCREEN ││ PF11 UNASSIGNED │
 │ PF4 ACTIVITY HELP SCREEN ││ PF12 RESERVED │

 NEXT _ ACTIVITY OR _ HELP:
 _ AT _ LIST _ SET _ SNAP _ RESUME _ DEBUG _ WHERE

 _ EXIT _ PROMPT _ QUIT _ IOUSER
 HELP SCREENS: _ USAGE _ SYMBOLS _ KEYS

Chapter 5: Aids for Debugging Assembler, COBOL, and PL/I Programs 85

Chapter 5: Aids for Debugging Assembler,
COBOL, and PL/I Programs

This section contains the following topics:

Overview (see page 85)
Compiler Options (see page 85)

COBOL Programs (see page 86)
PL/I Programs (see page 95)

Overview

This chapter discusses online debugger usage with Assembler, COBOL, and PL/I
programs. To effectively use the debugger with these languages, speci fic compiler

options must be util ized to produce listings to obtain required information. The
compiler options for each programming language are shown in the next topic.

To use the debugger with COBOL or PL/I programs, some preliminary computations

must be done to calculate the exact location of variable storage fields or object code to
set breakpoints. This chapter contains a discussion of these calculations and sample
debugger sessions for both languages.

Compiler Options

The following table shows the compiler options which provide the information required

to use the online debugger to analyze your program.

Language Object Code Variable Storage

VS-COBOL PMAP or CLIST DMAP

VS-COBOL II

IBM COBOL*

Enterprise COBOL*

LIST or OFFSET MAP

PL/I LIST, XREF, and OFFSET STORAGE and MAP

Assembler LIST LIST

COBOL Programs

86 Online Debugger Guide

*IBM COBOL includes: COBOL/370, COBOL for VM, COBOL for Z/OS and VM, COBOL for
z/OS.

*Enterprise COBOL includes Enterprise COBOL for z/OS.

COBOL Programs

This section discusses the preparation that is necessary before beginning to debug a
COBOL program and provides a sample COBOL debugging session.

Note: The discussion and sample debugger session that follow are for a progr am
compiled under the VS-COBOL compiler. The basic principals are the same for other
compiler levels. Some specific differences are noted. For more information on register
conventions and program structure, refer to the appropriate IBM documentation.

Preliminary Computations

Before beginning the debugging process, it is recommended that you determine the
breakpoints that you want to set and the storage locations that you want to examine.

The first step is to compile the program with appropriate l isting options. The following

options are recommended:

For VS-COBOL

SOURCE, CLIST or PMAP, DMAP

SOURCE gives a l isting of the program source with compiler-assigned line numbers.

CLIST gives a cross reference of the assembler offset of each COBOL statement within
the program.

PMAP gives a complete l isting of the equivalent assembler code for the entire COBOL
program.

CLIST is sufficient for most debugging sessions, but programmers who are familiar with

assembler may wish to use the PMAP option.

By examining the register usage in the assembler code, it is sometimes possible to
access data fields at a particular breakpoint more efficiently than by using the methods
described below using CLIST and DMAP.

Either CLIST or PMAP will also cause the listing of global tables, particularly the TGT

which is needed to determine the location of data variables.

COBOL Programs

Chapter 5: Aids for Debugging Assembler, COBOL, and PL/I Programs 87

DMAP gives a l isting of the BL or BLL number and displacement for each field in the
WORKING STORAGE and LINKAGE sections.

For COBOL II or LE COBOL

SOURCE, OFFSET or LIST, MAP

SOURCE has the same meaning as for VS-COBOL described above. OFFSET and LIST have
the same meanings as CLIST and PMAP, respectively. MAP has the same meaning as the
VS-COBOL DMAP option.

Breakpoints

To determine the hexadecimal offset of an executable program instruction at which you

want to set a breakpoint, perform the following steps:

1. Examine the COBOL compiler portion of your l isting and record the line number of
the statement at which you want to set the breakpoint:

00787 *

00788 * OBTAIN EMPLOYEE DB-KEY IS EMP-DBKEY

00789 * ON ANY-STATUS
00790 MOVE 0 TO DCNUM1 DCNUM2 DCFLG1 DCFLG2

00791 MOVE 0028 TO DML-SEQUENCE

00792 CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL
00793 IDBMSCOM (06)

00794 SR415

00795 EMP-DBKEY
00796 IDBMSCOM (43)

00797 IF NOT ANY-STATUS PERFORM IDMS-STATUS;

00798 ELSE

00799 NEXT SENTENCE.

00800 IF DB-REC-NOT-FOUND

00801 * MAP OUT USING DCTEST01

00802 * MESSAGE IS EMP-NOT-FOUND-MESS

00803 * TO EMP-NOT-FOUND-MESS-END

00804 * DETAIL CURRENT

1. Examine the condensed listing (CLIST) portion of the COBOL compiler l isting, locate
the previously recorded COBOL line number, and record its corresponding

hexadecimal displacement value:

 CONDENSED LISTING

 . .

 . .

785 MOVE 001CCC 786 GO 001CD0
790 MOVE 001CD6 791 MOVE 001CEE

792 CALL 001CF4 797 IF 001D3E

797 PERFORM 001D4C 800 IF 001D74

805 MOVE 001D80 806 MOVE 001D98

807 MOVE 001D9E 808 MOVE 001DA4

 . .

 . .

COBOL Programs

88 Online Debugger Guide

WORKING-STORAGE SECTION variables

To determine the register assignment and offset of WORKING- STORAGE SECTION

variables, perform the following steps:

1. Locate the register assignment portion of the COBOL compiler l isting and record the
base locator (BL) number that corresponds to each register l isted:

REGISTER ASSIGNMENT

 REG 6 BL =1

Note: For some WORKING-STORAGE or LINKAGE SECTIONfields, there may not be a
fixed register which always points to the base locator for l inkage (BLL) cell.

However, the BL cell is at a given offset from the beginning of the TGT.

For non-LE-compliant compilers, register 13 usually points to the TGT at runtime.
For LE-compliant compilers, register 9 usually points to the TGT at runtime.

A copy of the TGT and WORKING STORAGE is allocated in the CA IDMS storage
pools for each task at runtime. Therefore, you must not use the TGT or WORKING
STORAGE in the program pool.

2. Locate the data map (DMAP) portion of the COBOL compiler l isting and r ecord the
displacement value and register assignment for each variable that you want to

examine during the debugging process:

DNM=1-364 01 LONGTERM-TEST BL=1 038 DNM=1-364 DS

DNM=1-387 01 EMP-DBKEY BL=1 040 DNM=1-387 DS

DNM=1-406 01 FIRST-PAGE-SW BL=1 048 DNM=1-406 DS

DNM=1-432 88 LESS-THAN-A-PAGE DNM=1-432

 .

 .

 .

DNM=4-276 01 SUBSCHEMA-CTRL BL=1 260 DNM=4-276 DS

DNM=4-303 02 PROGRAM-NAME BL=1 260 DNM=4-303 DS

DNM=4-325 02 ERROR-STATUS BL=1 268 DNM=4-325 DS

DNM=4-350 88 DB-STATUS-OK DNM=4-350

DNM=4-376 88 ANY-STATUS DNM=4-376

DNM=4-399 88 ANY-ERROR-STATUS DNM=4-399

DNM=4-425 88 DB-END-OF-SET DNM=4-425
DNM=4-452 88 DB-REC-NOT-FOUND DNM=4-452

DNM=6-028 02 DBKEY BL=1 26C DNM=6-028 DS

DNM=6-043 02 RECORD-NAME BL=1 270 DNM=6-043 DS
 .

 .

 LINKAGE SECTION variables

To determine the location of LINKAGE SECTION variables, perform the following steps:

COBOL Programs

Chapter 5: Aids for Debugging Assembler, COBOL, and PL/I Programs 89

1. Examine the memory map portion of the COBOL compiler l isting and locate the
hexadecimal displacement values for the TGT and for the base locator for l inkage

(BLL) cells:

 MEMORY MAP

 TGT 00868

 SAVE AREA 00868

 SWITCH 008B0

 TALLY 008B4

 SORT SAVE 008B8

 ENTRY-SAVE 008BC

 .

 .

 .
 TEMP STORAGE-3 00A78

 TEMP STORAGE-4 00A78

 BLL CELLS 00A78
 VLC CELLS 00A8C

 .

 .

1. Perform the following calculation to determine the displacement value for the BLL
cells:

BLL CELLS - TGT = displacement for BLL cells within TGT

X'A78' - X'868' = X'208'

Note: This value will be used later in the runtime phase to locate the actual BLL

cells.

2. Locate the BLL number for the desired LINKAGE SECTION variable from the DMAP
portion of the compiler l isting:

DNM=14-361 01 PASS-DEPT-INFO BLL=3 000 DNM=14-361 D

DNM=14-391 02 PASS-DEPT-ID BLL=3 000 DNM=14-391 D

DNM=14-416 02 PASS-DEPT-INFO-END BLL=3 004 DNM=14-416 D

DNM=14-444 01 ERROR-DATA BLL=4 000 DNM=14-444 D

DNM=14-467 02 ERROR-DEPT-ID BLL=4 000 DNM=14-467 D

DNM=15-000 02 ERROR-MESSAGE-CODE BLL=4 004 DNM=15-000 D
DNM=15-031 02 ERROR-DATA-END BLL=4 008 DNM=15-031 D

COBOL Programs

90 Online Debugger Guide

1. Save the displacement values of the BLL cells and the BLL numbers of LINKAGE
SECTION variables for use during the runtime phase to obtain the absolute address

for LINKAGE SECTION values.

You can use the following table to record displacement information before starting a
debugger session.

COBOL Programs

Chapter 5: Aids for Debugging Assembler, COBOL, and PL/I Programs 91

COBOL Programs

92 Online Debugger Guide

Sample COBOL Online Debugger Session

To use the online debugger with a DC/UCF VS-COBOL program, perform the steps
shown below. The steps may vary depending on the release level of the compiler;
however, the basic methodology is the same. The following examples correspond to the

sample listings shown in Preliminary Computations (see page 86).

1. Compile the program with the DMAP and CLIST compiler options before defining it
to the DC/UCF system.

Note: To obtain the complete Assembler source code, substituteCLIST with PMAP

as described in Preliminary Computations (see page 86).

2. Record breakpoint and storage displacements, as explained earlier under COBOL
Programs.

3. Initiate the debugger session by entering the DEBUG task code from the DC/UCF
system. The DEBUG> prompt displays indicating that the debugger is in control:

ENTER NEXT TASK CODE:

debug

DEBUG>

4. Specify the program to be debugged by entering DEBUG followed by the program

name. The debugger verifies the program name:

DEBUG>

debug testprog

DEBUG TESTPROG

DEBUG> DEBUGGING INITIATED FOR TESTPROG VERSION 1

DEBUG>

5. Establish breakpoints by issuing the AT command followed by a dollar sign, which

signifies the address of the beginning of the program; follow the dollar sign with the
command's hexadecimal offset. The debugger verifies the establishment of the
breakpoint. The following example sets a breakpoint at l ine 797 in TESTPROG based

on the SOURCE and CLIST shown in Preliminary Computations (see page 86).

DEBUG>

at $ + @1d4c

AT $ + @1D4C

AT> $ + @1D4C ADDED

DEBUG>

COBOL Programs

Chapter 5: Aids for Debugging Assembler, COBOL, and PL/I Programs 93

After all breakpoints have been set, leave the setup phase of the debugger session
by issuing the EXIT command:

DEBUG>

exit

Note: You will also be able to set new breakpoints whenever you are stopped at a
breakpoint during the runtime phase.

6. Initiate the runtime phase by issuing the task code that invokes the task in which
the program participates:

ENTER NEXT TASK CODE:

deptmod

When a breakpoint is encountered at runtime, the debugger assumes control and

identifies the address, program, and the debugger expression that was used to
establish the breakpoint:

AT OFFSET @1D4C IN TESTPROG EXPRESSION $+@1D4C

DEBUG>

COBOL Programs

94 Online Debugger Guide

7. Examine program variable storage by issuing LIST commands. Use indirect
addressing and the previously noted register and offset. The following example lists

the value of the first 32 bytes of SUBSCHEMA-CTRL. The DMAP listing for
SUBSCHEMA-CTRL shows that it is addressed through BL=1 at offset hexadecimal
260. The REGISTER ASSIGNMENT portion of the listing shows that bas e register 6

contains the value from BL=1.

Note: Registers are sometimes used for multiple purposes within a COBOL
program. When a breakpoint is set using the CLIST value, the equivalent assembler
code to load the BL value into R6 may not have occurred. If you are not certain a

register contains the appropriate value, use the method for l isting LINKAGE
SECTION variables described below. That method is also always valid for WORKING
STORAGE variables.

list %:r6 + @260 32

LIST %:R6 + @260 32

00140270 E3C5E2E3 D7D9D6C7 F0F0F0F0 3D3D4F06 *TESTPROG0000..|.*

00140280 C4C5D7C1 D9E3D4C5 D5E34040 40404040 *DEPARTMENT *

To examine LINKAGE SECTION variables, perform the following steps:

a. Register 13 normally contains the address of the TGT for VS-COBOL programs.
Use register 9 for later COBOL compilers. Use the previously determined offset
to find the desired BLL cell. The offset of the BLL cells for TESTPROG was found

to be X'208', as shown in Preliminary Computations (see page 86). The
following command lists the BLL cells using indirect addressing.

DEBUG>

list %:rR13 + @208

LIST %:R13 + @208

 (BLL1) (BLL2) (BLL3) (BLL4)

001499E0 00000000 00000000 00000000 00149AC8 *...............H*

Each BLL is 4-bytes long. Note the absolute address located in the BLL for the
field that you want to display.

b. Suppose we wish to display the field named ERROR-DATA. The DMAP shows

that its base locator is in BLL=4. List the absolute address to display the first
field.

DEBUG>

LIST @149ac8 9

00149AC8 F1F1F1F1 C4C5D7E3 00 *1111DEPT *

c. Alternatively use an offset from the first field to display another field addressed
through the same BLL. For example, use the following command to display
ERROR-MESSAGE-CODE.

DEBUG>

LIST @149ac8+@4 4

00149AC8 C4C5D7E3 *DEPT *

PL/I Programs

Chapter 5: Aids for Debugging Assembler, COBOL, and PL/I Programs 95

8. Enter the RESUME command from the DEBUG> prompt to continue program
execution:

DEBUG>

resume

9. Enter the QUIT command from the DEBUG> prompt to end a debugger session:

DEBUG>

quit

QUIT

QUIT DEBUGGER

ENTER NEXT TASK CODE:

PL/I Programs

This section discusses the preparation that is necessary before beginning to debug a PL/I
program and provides a sample PL/I debugging session.

Note: The discussion and sample debugger session that follow are for aprogram
compiled under the PL/I Version 2.3 compiler. The basic principals are the same for
other compiler levels. For more information on register conventions and program
structure, refer to the appropriate IBM documentation.

Preliminary Computations

Before beginning the debugging process, it is recommended to determine the
breakpoints that you want to set and the storage locations that you want to examine.

Breakpoints

To determine the hexadecimal offset of an executable program instruction at which you
want to set a breakpoint, perform the following steps:

1. Examine the cross-reference table portion of your l ink-edit l isting for an entry in the

form program-name1. Record the hexadecimal offset l isted under ORIGIN:

 CROSS REFERENCE TABLE

CONTROL SECTION ENTRY

 NAME ORIGIN LENGTH NAME LOCATION

PLISTART OO 50

 PLICALLA 6

PLIMAIN 50 8

*PLIPROG2 58 394

*PLIPROG1 3F0 EB4

 PLI3PROG 3F8

IDMSPLI 12A8 284

PL/I Programs

96 Online Debugger Guide

1. Examine the PL/I compiler portion of your l isting and record the line number of the
statement at which you want to set the breakpoint:

133 WORK_LAST = EMP_LAST_NAME_0415;
134 WORK_FIRST = EMP_FIRST_NAME_0415;

 /*

 MAP OUT (DCTEST01) OUTPUT DATA YES
 MESSAGE (INITIAL_INSTRUCTIONS_MSG_1)

 LENGTH (25)

 DETAIL NEW KEY (DBKEY).

 */

135 /* IDMS PLI/I DML EXPANSION */ DO;

136 DML_SEQUENCE=0013;

137 DCCFLG1=0;

138 DCCFLG1=13;

139 DCCFLG2=16;

140 DCCFLG3=0;

141 DCCFLG4=4;

142 DCCFLG5=72;

143 DCCFLG6=0;

1. Examine the Assembler l isting generated by the LIST option, locate the previously
recorded PL/I l ine number, and record its corresponding hexadecimal displacement
value:

* STATEMENT NUMBER 136

0006AA 41 80 7 21C LA 8,SUBSCHEMA_CTRL.D

 CCALIGN_AREA.FILLE
 R0001

0006AE 58 40 3 124 L 4,292(0,3)

0006B2 50 40 8 008 ST 4,SSC_ERRSAVE_AREA
 .DML_SEQUENCE

1. Add the origin offset and the breakpoint instruction's hexadecimal displacement to
obtain the breakpoint address:

X'3F0' + X'6AA' = X'A9A'

AUTOMATIC Variables

To determine the offset of AUTOMATIC variables, locate the variable storage map and

record the displacement value for each variable that you want to examine during the
debugging process:

MAP_WORK_REC 1 796 31C AUTO

WORK_DEPT_ID 1 796 31C AUTO
WORK_EMP_ID 1 800 320 AUTO

WORK_FIRST 1 804 324 AUTO

WORK_LAST 1 814 32E AUTO
WORK_ADDRESS 1 829 33D AUTO

WORK_STREET 1 829 33D AUTO

WORK_CITY 1 849 351 AUTO
WORK_STATE 1 864 360 AUTO

WORK_ZIP 1 866 362 AUTO

WORK_DEPT_NAME 1 871 367 AUTO

You can locate AUTOMATIC variables at runtime through register 13.

PL/I Programs

Chapter 5: Aids for Debugging Assembler, COBOL, and PL/I Programs 97

STATIC INTERNAL Variables

To determine the location of STATIC INTERNAL variables, examine the static internal

storage map to find the hexadecimal offset for each variable that you want to examine
during the debugging process.

You can locate STATIC INTERNAL variables at runtime through register 3.

You can use the following table to record displacement information before starting a
debugger session.

PL/I Programs

98 Online Debugger Guide

PL/I Programs

Chapter 5: Aids for Debugging Assembler, COBOL, and PL/I Programs 99

Sample PL/I Online Debugger Session

To use the online debugger with a DC/UCF PL/I program, perform the following steps:

1. Compile the program with the LIST, OFFSET, XREF STORAGE, and MAP compiler
options before defining it to the DC/UCF system.

2. Record breakpoint and storage displacements, as explained above.

3. Initiate the debugger session by entering the DEBUG task code from the DC/UCF

system. The DEBUG> prompt displays indicating that the debugger is in control:

ENTER NEXT TASK CODE:

debug

DEBUG>

4. Specify the program to be debugged by entering DEBUG followed by the program
name. The debugger verifies the program name:

DEBUG>

debug pliprog

DEBUG PLIPROG

DEBUG> DEBUGGING INITIATED FOR PLIPROG VERSION 1

DEBUG>

5. Establish breakpoints by issuing the AT command followed by a dollar sign, which
signifies the address of the beginning of the program; follow the dollar sign with the
command's hexadecimal offset. The debugger verifies the establishment of the

breakpoint:

DEBUG>

at $ + @a9a

AT @A9A

AT> @A9A ADDED

DEBUG>

After all breakpoints have been set, leave the setup phase of the debugger session
by issuing the EXIT command:

DEBUG>

exit

PL/I Programs

100 Online Debugger Guide

6. Initiate the runtime phase by issuing the task code that invokes the task in which
the program participates:

ENTER NEXT TASK CODE:

deptmod

When a breakpoint is encountered at runtime, the debugger assumes control and
identifies the address, program, and the debugger expression that was used to
establish the breakpoint:

AT OFFSET @A9A IN PLIPROG EXPRESSION @BDE

DEBUG>

7. Examine program variable storage by issuing LIST commands. Use indirect
addressing and the previously noted register and offset:

list %:r13 + @31c 32

LIST %:R13 + @31C 32

001DB7F4 F3F2F0F0 F0F0F0F4 C8C5D9C2 C5D9E340 *32000004HERBERT*

001DB804 4040C3D9 C1D5C540 40404040 40404040 * CRANE *

If your program contains any nested procedures or begin blocks, you will need to

navigate the chain of dynamic storage areas (DSAs) to obtain the correct
variable-storage base address. To navigate the DSA chain for nested procedures or
begin blocks, l ist the contents of register 13 to determine the DSA for the current
level of nesting:

list %:r13

LIST %:R13

001C7A30 84200000 001C7948 00000000 5E422A20 *D...........

...*

For subsequent levels of nesting, perform the following steps:

a. List the absolute address which is located 4 bytes off of the previously
displayed line:

list @1c7948

LIST @1C7948

001C7948 84200000 001C74D8 00000000 4E4227EC *D......Q....+...*

b. List AUTOMATIC variable-storage values after the final level of nesting has been
reached. Use the absolute address as the base address, which is located 4
bytes off of the display:

DEBUG>

list 1c74d8 + @31c 32

LIST 1C74D8 + @31C 32

001C77F4 F3F2F0F0 F0F0F0F4 C8C5D9C2 C5D9E340 *32000004HERBERT *

001C7804 4040C3D9 C1D5C540 40404040 40404040 * CRANE *

PL/I Programs

Chapter 5: Aids for Debugging Assembler, COBOL, and PL/I Programs 101

To examine variables defined as BASED storage, perform the following steps:

c. List the contents of the associated pointer variable using indirect addressing:

DEBUG>

list %:r13 + @d4

LIST %:R13 + @D4

001499E0 00149AC8 00000000 00000000 00000000 *...H............*

d. List the absolute address to display the BASED variable's values:

DEBUG>

LIST @149ac8 16

00149AC8 F1F1F1F1 C4C5D7E3 00000000 00000000 *1111DEPT........*

8. Enter the RESUME command from the DEBUG> prompt to continue program

execution:

DEBUG>

resume

9. Enter the QUIT command from the DEBUG> prompt to end a debugger session:

DEBUG>

quit

QUIT

QUIT DEBUGGER

ENTER NEXT TASK CODE:

Index 103

Index

A

address symbols • 24
at sign (@) • 24

cent sign (¢.) • 24
dollar sign ($) • 24

Assembler programs • 85, 95

compiler options • 85
debugging aids • 85
LIST option • 95

B

breakpoints • 10, 18, 40, 86, 95
bypassing • 40
encountering • 18, 40

l isting • 40
modifying • 40
removing • 40

setting • 10, 18, 40, 86, 95
status • 40
using • 40

C

COBOL programs • 85, 92
compiler options • 85

debugging aids • 85
sample debugger session • 92

commands • 36, 38, 39, 40, 44, 46, 47, 51, 52, 54, 55,
56, 60, 62, 63, 92, 99

AT • 40, 92, 99
DEBUG • 44, 92, 99
EXIT • 46, 92, 99
formatting • 38

IOUSER • 47
LIST • 47, 92, 99
MENU • 51

modifying • 36
PROMPT • 52
QUALIFY • 52
QUIT • 54, 92, 99

RESUME • 55, 92, 99
SET • 56
SNAP • 60

WHERE • 62
compile options • 86

COBOL II or LE COBOL • 86
LIST • 86
MAP • 86
OFFSET • 86

SOURCE • 86
VS-COBOL • 86

CLIST • 86

DMAP • 86
PMAP • 86
SOURCE • 86

currency • 20, 24, 29, 44, 52

dialog process • 52
inquire about • 52
load module • 44

process • 29
program • 20
reset • 52

D

data characteristics • 32, 33, 35
expressions with • 32
expressions without • 33

data fields • 28
displaying • 28
qualifying • 28

data values • 37
numeric • 37
strings • 37

DEBUG • 13, 14

command • 13
prompt • 13, 14
task code • 13, 14

debug expressions • 31, 47
data characteristics • 47
default length • 31

debug expressions, components of • 24, 27, 28, 30,

31
address symbols • 24
debugger symbols • 24
general registers • 24

program status word (PSW) • 24
program symbols • 28
special operators • 30

standard operators • 30
system symbols • 24

104 Online Debugger Guide

user symbols • 27
debugger commands • 35, 36, 38

formatting • 38
modifying • 36
parsing • 35

debugger labels • 24
cent sign (¢.) • 24
dollar sign ($) • 24

debugger markers • 24

at sign (@) • 24
debugger session • 12, 13, 14, 17, 18, 19, 44, 46, 54,

85, 92, 99
Assembler programs • 85

COBOL program, sample • 92
COBOL programs • 85
compiler options • 85

definition • 12
initiating • 13, 44, 85
leaving • 13, 54
length considerations • 19

menu mode • 14
PL/I program, sample • 99
PL/I programs • 85

prompt mode • 12
runtime phase • 18
setup phase • 17
terminating • 13, 46

debugger variables • 47
displaying • 47

defining entities • 12

to DC/UCF • 12
to the debugger • 12

M

memory • 10
displaying • 10

N

numeric values • 37
decimal • 37
fullword • 37

halfword • 37
hexadecimal • 37

P

PL/I programs • 85, 99
compiler options • 85
debugging aids • 85

sample debugger session • 99
program symbols • 28, 29

data field names • 28
l ine numbers • 29
qualifying • 29

R

resource • 47
boundary • 47

display truncation • 47
runtime phase • 19

commands • 19

S

see=breakpoints valid breakpoints • 20
see=storagevalues memory • 10, 12

modifying • 10
session attributes • 47, 56

displaying • 47, 56
setting • 56

session modes • 13, 14, 51, 52
menu • 14, 51
prompt • 13, 52

special characters • 24, 30
at sign (@) • 24
cent sign (¢.) • 24
dollar sign ($) • 24

percent sign (%) • 30
storage values • 47, 56

displaying • 47
modifying • 56

string values • 37, 38
character • 37
hexadecimal • 37

numeric • 37

	CA IDMS Online Online Debugger Guide
	CA Technologies Product References
	Contact CA Technologies
	Contents
	1: Introduction
	About the Debugger
	Debugger Features
	Debugging Process
	Prompt Mode
	Menu Mode
	Setup Phase
	Runtime Phase

	Session Considerations
	Performance Standards
	Valid Breakpoints
	Program Currency

	2: Command Considerations
	About this Chapter
	Expression Components
	Debugger Symbols
	General Registers Symbols
	DC/UCF System Symbols

	User Symbols
	Program Symbols
	Data Field Names
	Line Numbers
	Qualifying Program Symbols

	Expression Operators

	Length Attributes
	Expressions with Data Characteristics
	Expressions without Data Characteristics

	Parsing Rules
	Command Modification
	Delimiters
	Data Values
	Command Format

	3: Debugger Commands
	Summary of Commands
	AT
	DEBUG
	EXIT
	IOUSER
	LIST
	MENU
	PROMPT
	QUALIFY
	QUIT
	RESUME
	SET
	SNAP
	WHERE

	4: Debugging in Menu Mode
	Features of Menu Mode
	Screen Design
	Heading Area
	Display Area
	Specification Area
	Selection Area

	Accessing Screens
	Screen Hierarchy
	Screen Sequence
	Selection Processing
	Command Currency

	Activity Screens
	At Screen
	Debug Screen
	List Screen
	Resume Screen
	Set Screen
	Snap Screen

	Global Help Screens
	Usage Screen
	Symbols Screen
	Keys Screen

	5: Aids for Debugging Assembler, COBOL, and PL/I Programs
	Overview
	Compiler Options
	COBOL Programs
	Preliminary Computations
	Sample COBOL Online Debugger Session

	PL/I Programs
	Preliminary Computations
	Sample PL/I Online Debugger Session

	Index

