CA IDMS™ Online

Online Debugder Guide
Release 18.5.00

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for yourinformational purposes onlyandis subject to change or withdrawalby CAatanytime. This
Documentationis proprietaryinformation of CAand maynotbe copied, transferred, reproduced, disclosed, modified or
duplicated, inwhole orin part, without the prior written consent of CA.

If you are a licensed user of the software product(s) addressed in the Documentation, you may print or otherwise make
available a reasonable number of copiesof the Documentation forinternal use by you and your employeesin connection with
thatsoftware, provided that all CA copyright notices and legends are affixed to each reproduced copy.

The rightto print or otherwise make available copiesof the Documentation is limited to the period during which the applicable
license for such software remains in fullforce and effect. Should the license terminate forany reason, itis your responsibility to
certifyin writing to CAthatall copies and partial copies of the Documentation have beenreturnedto CA ordestroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CAPROVIDES THISDOCUMENTATION “AS IS” WITHOUTWARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FORA PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILLCABE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THISDOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IFCA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCHLOSS OR DAMAGE.

The use of anysoftware product referencedinthe Documentationis governed bythe applicable license agreement and such
license agreementis not modified inanywaybythe terms ofthis notice.

The manufacturer of this Documentationis CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Governmentis subject to the restrictions
setforth in FARSections 12.212,52.227-14,and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
theirsuccessors.

Copyright © 2013 CA. All rights reserved. All trademarks, trade names, service marks, and|ogos referenced herein belongto
theirrespective companies.

CA Technologies Product References

This document seeences the following CA product:
m CAIDMS®/DC Transaction Server Option
m CA IDMS® DatabaseUniversal Communications Facility Option

m CA ADS® for CA IDMS®

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one sitewhere you canaccess the
information that you need for your Home Office, Small Business,and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

m Onlineandtelephone contactinformation for technical assistanceand customer
services

m [nformationabout user communities and forums
m Product and documentation downloads
m CA Support policies and guidelines

m Other helpful resources appropriate for your product
Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
cansend a message to techpubs@ca.com.

To providefeedback about CA Technologies product documentation, complete our
shortcustomer survey which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://ca.com/docs
http://ca.com/docs

Contents

Chapter 1: Introduction 9
ADOUTL ThE DEDUGEET ..ottt et et e st e e b e e e be st e et e e e be b ese e b et ese et e st ese et ese et estese et enbasesbensebensaseebensesesaensetesans 9
DB UEE O FEATUIES ..ueiieiieiiieeie ettt ettt sttt e st et e st e b et e st e st s e e st sa e s e s e se e st e b e s ese st et esesaentesesenessensesessensenensans 10
DB UGEI NG PrOCESS ...ouicieeeiiieeietete ettt e e et e et e st et e st et e se st e e et et ese et esa e b et enease st eneesestasestansesestaseetentasesbansesensaneesensesessanseseasans 12
Prompt Mode.... ...13
IMIENU IMLOT ...ttt ettt sttt ettt s a et b et b ek e s et s b e b et et e b e s et s b e ne e sbebe et et ebeae e et ebenebesentasne 14
LU PaS @ittt ettt sttt et e b et e se et e st b et eRe e b et eReebeseeRe b eRe b esteReeteneaheebe e et e s ene et enseteeteaeetesaennerenes 17
RUNEI M PRaS @ ittt ettt bbbt b st e b e st s b e b et s e e b et b e be et et ebe et eaebetne

Session Considerations
Performance Standards

Valid BrEaKPOINTS c.ocueiieiciiicecctetes ettt ettt st e st te et e st e se et e e e seebe st ebessene et eseese et ensesessensesessaseesesenessansesesans 20
PrOGIam CUIMTENCY ..ottt ettt ettt st e e s et h e a e e eeae s et s R e e e e s r et e b e sa e s ent e s e e sat s enesaeansnennene 20
Chapter 2: Command Considerations 23
ADOUT ThisS CRAPTEE ...ciiiieiieeecee ettt ettt et e be st e et et e be st e e eba st eseebebessetantese st ensebassesessentesesbansesestansssensesessenseneetans 23

Expression Components

Debugger Symbols

L0 EY T 4] oo 3OO
PrOSram SYMDOLS ..ottt e e s a et e st e et et e s et et eseese e ebe s es s et eneese s se b ere et ensesebenesaenseretans 28
(o T Kol g O o 1= o | o &3O SRS RPN 30
Length Attributes .31
EXPressions With Data CharaCleriStiCS. . uiiiiirieiieeieeiee sttt ettt eete e se st e sesbe s be st esesbesteseebassesesbessssansesesans 32
Expressions Without Data CharaCteriSTCS. . .uiuuiririirieieeeree ettt se e st sae s nennens 33
PATSING RUIES ..ottt ettt e et eebe st e e et e e e se et e e et et ese et e bese et ene et e s ese et eseeb et esseseebassesensesesbansetessanestentaseesesesetans

Command Modification
DEIIMITEIS 1eveitecticteeectect ettt et et e st e st e st eebeeas e b ess e ebeebeebeessessessesbasb e b e b e easessessessesesseebeeseessess et eebeebeeaseasensersenbessesseeasensensensesensenses
(D R eIV Z= | LU =TSR

COMMEANG FOIMAT 1oitiiiiiiiiiteerierieeeeee et estestestesresbesse e e e e e s e ebesbasseessessessessessessesseeseessessassensensensesbessesssensesesseeseeseeseessensensensensessenns

Chapter 3: Debugger Commands 39

Contents 5

Chapter 4: Debudging in Menu Mode 63

FEATUIES Of IMIEBNU IMIOTE ...ttt et b etk stk s ettt ebe et e b e be stk e e saebese st st ebene e st ebenens 63
SCIEEN DS IEN. ittt ettt ettt et e s b e s bt s et et et e b e s b e s b e s b e e b e s he e st e a b e s e e ae e Rt e Rt e s e et e et e s et e be bt ea e e R b et e be b e sbe e Rt e Rt e Rt e Rt et e nbenrenaeeat 64
HEAAINE AN ...cuiiiieiiieieteeeete ettt et e st et s e e e e et e e e s e st e se et et e s e st e s s e s e st ese et e s e eseseesee b e e es e se s eseesensesessaneesenseseseansanensans 64
DISPPIAY ATBA....uieieeieieieteeeee ettt te e te et e et et e st e e s ae e et et ebe et e e e b et eaeebe s eseeba st eb et eReebe s ebe s enaese et enseseteseetenseseteseeteteneetans 67
SPECTTICATION Al A .ttt ettt st e st et e b e e s s et e st s se et e se b e st e s e st esees et e se et e saeneeseneesessenestensenesanes 67
Selection Area ...68
ACCESSING SCIEENS......eteeeitetrtet ettt ettt ettt ettt et e b e e et R et st e et e R et et s h et e Rt s e e e e R e e e Rt e s et e R e s et e st s e e e se e enesae e esesaennentnens 69
Yol =TT oI o T =TT ol 3OO ORI
SCIEEN SEOUEBNCE ...ttt ettt ettt st et sh e sae ettt ste s b e e be e ae s a e et et et e s besbeshe s at et e st e b e seeb e e b e eb e e Rt e st e abesaesaeeatent et et e b abesbens
Selection Processing
COMMANG CUITENCY .veviuietiieieiieietesteeste e e ee e te e s te e e se b esesbasseseetaseeseseseesasaesasessete st ensetassess et ansese st eseetensensebansesestansebesenentanes
ACTIVITY SCIEENS. ..ttt ettt sttt s et e st e st e saesae s st s st et et e s e s b e s b e sae s st e st et e s e b e seesbe s st ens e s e senbanbasbessasatensensensessesneen
F Ao == o TSP PO OT O PURUPOPRPRPOON 73
Debug Screen75
i ST SCIOEN ..ttt ettt h e s b et e e et b et bt et b e e et s e et e Rt s b e R e e b et e Re R e e e b e b e a e e R et e Rt s R et e be et enenb et st eae e eneebent 76
RESUME SCIEEN ...ttt ettt e bt h e s h ettt e b e s b e s b e e bt e ae et e b et e besbesbesae e st eat e be s e eseent e st e st e st et ensentannent 77

Y=L of =TT o ISR

Snap Screen
Global Help Screens

USQEE SCIBEN ..ttt ettt stte st e st st e st e e te e be et e et e e s be e be st e s abesatesasesatesaeeeaeesat e st e s et e be e se et e eabeesbaa st enseeaseesesasasatesanesaseenes 82

SYMBDIOIS SCIEEN ...ttt st et b et et s b et e s e b e st s ae s b e st e Re st ese et eseese et enesb et ene e b et ese st eneebe s enesbeneesensnnes 83

KBY'S SCIEEN ettt sttt ettt s e st e s e st s et et e s b e s b e s b e s b e s be e st e st e st e e e eesae e st e st e st e st es b et et asbesbe s st e sebe s esseeaeeseeseessensansansessenns 84
Chapter 5: Aids for Debudging Assembler, COBOL, and PL/I Programs 85
OVEIVIBW ..ttt ettt ettt sttt s et s et st e e et s e e e e e e R e e e me R e e e st s e ae s e e ee e e R e e e Rt s et R e e eme s ene e s e e e e enenee e ere e eneneenes

Compiler Options
COBOL Programs
Preliminary Computations

Sample COBOL Online Debugger Session
PL/I PrOBramS....cccueueverererererereseseseteese e eassesesesesesenens
Preliminary Computations

6 Online Debugger Guide

SampPle PL/I ONliNg DEDUGEEr SESSION......ccuiuiiieteteietetetite et et ete et et e e te s ete e ssetebesessesesesssebesessasesetensssetessasesesessnsesesannas 99

Index 103

Contents 7

Chapter 1: Introduction

This manual provides detailed instructions for users debugging programs that operatein
a CA IDMS /DC Transaction Server or CA IDMS Database Universal Communications
Facility (UCF) Option (DC/UCF) environment.

This section contains the followingtopics:

About the Debugger (see page9)
Debugger Features (see page 10)
Debugging Process (see page 12)
Session Considerations (seepage 19)

About the Debugger

What You Can Debug

The CA IDMS onlinedebugger is aninteractivefacility used to detect, trace, andresolve
programming errors in programs that run under the control of DC/UCF. The debugger
canbe used with these load modules:

m Assembler, COBOL, and PL/I programs
m CAADS

m Subschemas

m Maps

m Tables

For more information on using the debugger with Assembler, COBOL, and PL/I
programs, see Aids for Debugging Assembler, COBOL, and PL/I Programs.

How You Use the Debugger

You usethe onlinedebugger to:
m Receive control when anabend occurs

The onlinedebugger receives control when your program abends (for example,
with a data exception). You canthen determine the abendinginstructionand
examine program variablestorageto determine the error.

m Receive control at predetermined breakpoints

To traplogicerrors, set breakpoints that haltprogramexecution ata specifiedline
number. The onlinedebugger receives control when your program reaches that line
number, so that you can examine program variablestorage.

Chapter 1: Introduction 9

Debugger Features

Debudder Feat

Chapter Contents

This introductory chapter discusses:

m Debugger features

m Debugging in prompt or menu mode

m Setup and runtime phases of a debugger session

m Factors to consider when establishinga debugger session

ures

High Level of Control

The onlinedebugger allows youto maintain a high level of control over the debugging
process. With the debugger, you can:

m Set breakpoints

m Displaythecontents of registers and storage

m Modify storagevalues

m Snaptasksandstorageareas to the log

m Trap abendsinthe module being debugged

Each of these functions is discussed below.

Setting Breakpoints

Breakpoints aretemporary program interruptions thatyou canset atanyaddress
withina programor dialogthatcomplies with debugger validationrules, as describedin
"Valid Breakpoints" later in this chapter.

At runtime, the debugger takes control atthese breakpoints,and programexecution is
temporarily suspended. While execution is suspended, you can perform a variety of
activities before returning control to the DC/UCF system or resuming execution of the
program.

Displaying and Modifying Storage Values
You canexamine storagevalues inanyarea, assumingthatyou have the security
necessaryto access the area.(Traditional error-handlingroutines and dumps supply

information only after an error occurs or a program finishes executing.)

You can modify storage values and then execute the program to test the modifications.

10 Online Debugger Guide

Debugger Features

The ability to examine and modify storage values in any area makes the debugger a very
powerful tool.

Therefore, it's important to use debugger security to control access to storage.

Note: For information on the security methods used by the debugger, see CA IDMS
Security Administration Guide.

Snapping Tasks and Storage Areas

You can create dumps for a task or for a specific area; the dumps are written to the
DC/UCF log. From the logyou can make a hard copy of storage contents and then
examine them atyour leisure.

Trapping Abends

The debugger automatically takes control when an instruction causesanabendinthe
module being debugged, allowingyouto examine storage and to take appropriate
action.

Managing Program Execution
The debugger also provides you with a flexibletool for managingan executing program.
Under the control of the debugger duringruntime:
m After a breakpoint, you can:
- Allowthe programto resume execution from the current breakpointaddress
— Specify resumptionat an address before or after the breakpoint
m After anabend, you can:
- Allowstandard abend processingto continue
- Resume program execution at an address before or after the abend

® Inboth cases,youcan modify previous debugger commands or issuenew
commands, for example to:

— lIgnoreall remaining breakpoints
— Bypass specific breakpoints

— Set additional breakpoints for the duration of a session

Chapter 1: Introduction 11

Debugging Process

Debudging Process

What to Define

You cannotdebug an Assembler, COBOL, or PL/I program until you define it to the
DC/UCF system. For example, you cannot debug a program until itis defined in the
PROGRAM statement at system generation time or defined dynamically with the DCMT
VARY DYNAMIC PROGRAM statement.

Similarly, you must define the programtask code either inthe TASK statement at system
generation or dynamically with the DCMT VARY DYNAMIC TASK statement.

Important! You don't have to define the task code for the initial stage of the debugging
process, but you must define it before executing the program.

You don't have to define CA ADS dialogs, subschemas, maps,andtables.
Debugger Structure

You can conducta debugger sessioninone of two modes or a combination of both:

® Prompt mode enables you to issuedebugger commands lineby line

m Menu mode enables you to issuecommands from a series of activity and tutorial
screens

Debugging a module takes placeintwo phases:

m The setup phase, invoked before a programis executed

m The runtime phase, occurring during program execution and dependent on actions
taken duringsetup

DEBUG and QUIT

A debugger session begins when you issuethe first DEBUG taskcode. A sessionends
when you either issuethe debugger QUIT command or terminate the DC/UCF session by
signing off.

Debugger session modes and phases arediscussedin detail below.

12 Online Debugger Guide

Debugging Process

Prompt Mode

Line-oriented Method

Prompt mode is the line-oriented method of communicatingwith the debugger. In
prompt mode you can:

m Initiatea debugging session

m Issueadebugger command

m Return to the DC/UCF system
Initiating a Debugging Session

To initiatea debugging sessionin promptmode, enter the DEBUG taskcode inresponse
to the Enter Next Task Code prompt:

ENTER NEXT TASK CODE:
debug

The debugger indicates thatitis in control by responding with its special prompt:

DEBUG >

Issuing a Debugger Command

You canissuedebugger commands whenever the debugger responds with the DEBUG>
prompt. To issue a debugger command at the same time you initiate a debugging
session, enter the task code in conjunction with the DEBUG command that names the
entity to be debugged. In this example, the task code DEBUG is followed by a DEBUG
command that identifies TESTPROG to the debugger:

ENTER NEXT TASK CODE:
debug debug testprog

When you enter the above command, you invoke the debugging facility. The command
is echoed, andthe debugger responds by validatingthecommand anddisplayingthe
next DEBUG> prompt:

DEBUG TESTPROG
DEBUG > DEBUGGING INITIATED FOR TESTPROG VERSION 1
DEBUG >

Chapter 1: Introduction 13

Debugging Process

Menu Mode

Ifyou try to debug a programwhich has not been defined to a DC/UCF system, the
debugger issues anerror messageafter echoing the command, then repeats the
command that cannotbe completed, and redisplaysthe DEBUG> prompt, as inthis
example:

DEBUG TESTPROG

DC574902 DEBUG > LOAD OF TESTPROG FAILED - NOT FOUND
DEBUG > DEBUG TESTPROG

DEBUG >

Difference between EXIT and QUIT

To return control to the DC/UCF system, issueeither the EXIT command or the QUIT
command.

The EXIT command saves the debugger control blocks and allows you to continue the
same debugger session.

The QUIT command clears the control blocks and terminates the debugger session
completely.

How to Check Session Activity
To determine whether a debugger sessionexists,issuethe command DCMT DISPLAY LTE
* This command lists information aboutyour logicalterminal. |f you see DEBUG ACT, a

debugger sessionisactive;ifyousee DEBUG INACT, no debugger sessionis active.

To inquirefor a listof modules known to the debugger, use the DEBUG INQUIRE
command (see Debugger Commands).

Valid Commands
In prompt mode, you canuse all commands except RESUME, I0USER, and WHERE
duringsetup, and all commands except DEBUG duringruntime. The PROMPT command

performs no function while you arein prompt mode.

For a detailed discussion of the debugger commands, see Debugger Commands.

Choosing Activities from Screens

Menu mode is designed to make your options easyto see. You can enter commands or
displayinformation byfillingin thefields on a series of fixed-format screens:

m Activity screens providefields for commands that require additional input

m Individual help screens providedetailed descriptions of each command

14 Online Debugger Guide

Debugging Process

m The Usage global help screen summarizes debugging activities

m Two other global help screens let you display programand debugger symbols and
program function key (PF-key) assignments

For a complete description of each of the screens, see Debugging in Menu Mode.
Initiating a Debugger Session

To initiatea debugging sessionin menu mode, issuethe DEBUG task code followed by
the MENU command inresponseto the Enter Next Task Code prompt:

ENTER NEXT TASK CODE:
debug menu

When you enter this command, you see the Usage screen, whichis the top-level menu
screen:

IDMS-DC REL nn.n ONLINE DEBUGGER *** USAGE *** SETUP PAGE 1 OF 4
PROGRAM: V: CSECT:
->

PROCEDURAL COMMANDS.

EXIT.....RETURNS CONTROL TO IDMS-DC/UCF WITHOUT TERMINATING THE CURRENT DEBUGG
ER SESSION

QUIT.....TERMINATES THE DEBUGGER SESSION AND RETURNS CONTROL TO IDMS-DC/UCF.

PROMPT. ..INVOKES THE PROMPT MODE OF THE DEBUGGER.

RETRIEVAL COMMANDS.

AT.......ESTABLISHES OR MODIFIES BREAKPOINTS WITHIN A USER PROGRAM.

DEBUG. . ..DESIGNATES, DURING THE SETUP PHASE, THE ENTITY TO BE DEBUGGED OR
INQUIRES ABOUT ENTITIES KNOWN TO THE DEBUGGER.

TOUSER. ..DISPLAYS THE USER SCREEN THAT IS CURRENT WHEN A BREAKPOINT, PROGRAM
INTERRUPT OR TRAPPED ABEND IS ENCOUNTERBD.

NEXT _ ACTIVITY OR _ HELP:

T AT _LIsT _SET _SNAP _ RESUME ~_ DEBUG _ WHERE
_BXIT _ PROMPT _ QUIT _ IOUSER
HELP SCREENS: _ USAGE ~ _ SYMBOLS _ KEYS

Switching Mode

To switch from prompt mode to menu mode, issuethe MENU command in responseto
the DEBUG> prompt:

DEBUG >
menu

Now you alsosee the Usage screen.

Chapter 1: Introduction 15

Debugging Process

Going to a Specific Screen

To go to a specific activity screen or global help screen, issuethe MENU command
followed by a valid screen name. This example illustrates the use of the DEBUG task
code with a MENU command that names the screen to be displayed:

ENTER NEXT TASK CODE:
debug menu at

When you enter the above command, you invoke the debugging facility in menu mode
andsee the At command activity screen:

IDMS-DC REL nn.n ONLINE DEBUGGER *** AT ** SETUP PAGE 1 OF 1
PROGRAM: V: CSECT:
->

ADD BREAKPOINT AT:

BEFORE: MAX AFTRR: 0 EVERY: 1
OTHER ACTION.......: (I-INQUIRE/D-DELETE/G-IGNORE)

BREAKPOINT OR <ALL>:

NEXT _ ACTIVITY OR _ HELP:

C AT _LIsT _SET _SNAP _ RESUME ~_ DEBUG _ WHERE
_BXIT PROMPT QUIT _ IOUSER
HELP SCREENS: _ USAGE ~ _ SYMBOLS _ KEYS

Valid Commands

Menu mode allows the same set of debugger commands as prompt mode, with the
exception that the PROMPT command is allowed and the MENU command is disabled.

16 Online Debugger Guide

Debugging Process

Leaving Menu Mode

To leavemenu mode you can:

m Select the PROMPT activity

m Return to prompt mode with the associated control key

m Enter the PROMPT command on the menu DEBUG> prompt line

Note: Ifyou leave menu mode with an EXIT command or with the CLEAR control key,
the debugger remains in menu mode. Subsequently, when control returns to the

debugger, the debugger is stillin menu mode. The debugger remains in menu mode
until you issuethe PROMPT command.

Note: For a more detailed discussion of menu mode, see Debugging in Menu Mode.

Setup Phase
Breakpoints and Abends
The setup phaseis the preliminary phaseof the debugging process. Duringthis stage,
you can define modules to the debugger for two reasons:

m To enable the setting of breakpoints

Breakpoints can be established as soon as the DEBUG command is used to define
the load module to the debugger.

m To gain control under the debugger when a program check or abend occurs

The setting of breakpoints is not mandatory; you cantrap possibleabendsina
program during runtime and receive control under the debugger if:

- You have defined the program to the debugger (thatis,issued a DEBUG
command for the program duringthe setup phase)

- You have defined the current DC/UCF programto the debugger

The lastprogramto receive control through a #LINK or #XCTL is called the
current DC/UCF program. When a program check occurs ina module unknown
to the debugger, you will gain control under the debugger if the current
DC/UCF program is defined to the debugger.

Note: For a detailed discussion of DC/UCF and debugger methods of assigningcurrency,
see Program Currency (see page 20).

Chapter 1: Introduction 17

Debugging Process

Runtime Phase

DEBUG and EXIT Required

The runtime phase of the debugging process takes placeduringthe execution of a
program. Debugging cannotoccur duringruntime unless:

m You have used the DEBUG command duringthe setup phaseto define the program
to the debugger

m You have used the EXIT command, which retains the debugger control blocks, when
leavingthe setup phase

What Happens at the Breakpoint

When you have defined a programto the debugger, the program task code invokes both
the runtime phaseof the debugger andthe execution of the program. At a breakpoint,
the DC/UCF runtime system suspends programexecution, and you gain control under
the debugger. A messageis displayed thatsignalsthebreakpointinterruptand
describes its location.

Three Breakpoint Display Formats

For example, assumethat a program called TESTPROG is defined to the debugger anda
breakpointis established like this duringthe setup phase:

DEBUG >
at @0Obf080

The debugger verifies the establishment of the breakpoint:

AT @OOBFO80
AT > @0OBFO80 ADDED
DEBUG >

When this breakpointis encountered during runtime, the debugger identifies the
address, the program, and the debug expression that established the breakpoint:

AT OFFSET @80 IN TESTPROG EXPRESSION @OOBFO80
DEBUG >

Inresponse to the DEBUG> prompt, you can make additional queries or perform other
debugging activities.

18 Online Debugger Guide

Session Considerations

Session Considerations

Three Factors

You'll need to consider the followingfactors when you establish and conduct debugger
sessions:

m Performance standards

m Valid breakpoints

m Program currency

Each of these topics is discussed below.

Performance Standards
All Activities Permissible

Duringa debugger session, you can perform anyactivity related to DC/UCF, not just
debugging. For a given session, there are no restrictions on the number or kinds of
entities debugged or on the length of the session.

For example, within a single debugger session, you cansuccessively:

m Initiatea debugger setup phase

m Leave the debugger setup phase to conductanonlinePLOG session

m Return to the setup phaseto debug another program

m Leave the debugger setup phase againtoconductanIDD session

m Execute one of the programs you aredebugging
Minimize Unrelated Work

When the DEBUG task code initiates a debugger session, the DC/UCF system saves your
current screen, whether or not the screenis directly related to any modules being
debugged. Consequently, the debugger incurs some processingoverhead each time the
current screen changes. For best performance, therefore, keep work unrelated to the
debugging process to a minimum.

Also, although the setup phaseis pseudo conversational, the runtime phaseis
completely conversational, which ties up system resources. Even databaseresources are
tied up while the debugger has control.

Inorder to use resources most efficiently, therefore, always return control to DC/UCF
before you leave your terminal or attend to concerns other than debugging.

Chapter 1: Introduction 19

Session Considerations

Valid Breakpoints

Program Currency

Verified by Debugger

Program breakpoints, established with the AT command, must be set at addresses that
containvalidinstructions or valid command elements (CMEs for CA ADS dialogs).Ifthe
address cannotbe validated, the debugger displaysa messageto indicatethat the
breakpointcould not be set. A verifying message is displayed when the address is valid.

Note: The debugger checks for a valid operation codeat each breakpointthat is set; you
areresponsiblefor placingthe breakpointatanactual instruction. Ifa breakpoint
address resolves toan address offsetthat contains a valid operation code but does not
containavalidinstruction, the programcould be altered with unpredictableresults.

Determines Abend Trapping

When ataskabends or when a programchecks occurs, the setting of programcurrency
determines whether or not the debugger traps the abend and transfers control to you.

DC/UCF and Debugger Currency

The DC/UCF system assignscurrency on the basis of the most recent program to have
been given control with #LINK or #XCTL program control services.

The debugger assigns currency accordingto these rules:

m Ifthe address ofthe interruptis containedinone of the programs defined to the
debugger, this programis assigned debugger currency, and you are given control
under the debugger

m Ifthe addressis notfound ina debugged program, the debugger checks the current
DC/UCF program to see whether it has been defined to the debugger:

— Ifthe current DC/UCF program has been defined to the debugger, this program
is assigned debugger currency, and you gain control under the debugger

— Ifthe programhas not been defined, no debugger currencyis assigned, youdo
not gain control under the debugger, and the standard DC/UCF abend
processingtakes place

Sample Program Structure

The following examples illustrate how program currency can affect whether the DC/UCF
system passes control to the debugger. Each of the examples is based onthe sample
program structure:

20 Online Debugger Guide

Session Considerations

Sample Program Structure for Examples

#LINK

PROGRAM
A

BALR BALR

PROGRAM PRGGRAM
B C

Example 1

Duringthe setup phase, you define Programs A, B, and C to the debugger. When the
program is executing, a program check occurs in ProgramB.

These currencies arenow in effect:

m The current DC/UCF programis ProgramA, the lastprogramto have been given
control by #LINK or #XCTL

m Debugger currencyis assignedto ProgramB

You receive control under the debugger becauseProgram B, one of the programs
defined to the debugger, contains the address of the interrupt.

Example 2

Duringthe setup phase, you define ProgramA to the debugger. When the programis
executing, a program check occurs in Program B.
These currencies arenow in effect:

m The current DC/UCF programis ProgramaA, the lastprogramto have been given
control by #LINK or #XCTL

m Debugger currencyis assignedto ProgramA

You receive control under the debugger becausethe current DC/UCF program has also
been defined to the debugger.

Chapter 1: Introduction 21

Session Considerations

Example 3

Duringthe setup phase, you define ProgramC to the debugger. When the programis
executing, a program check occurs in ProgramB.
These currencies arenow in effect:

m The current DC/UCF programis ProgramaA, the lastprogramto have been given
control by #LINK or #XCTL

m Debugger currencyis notassigned, becausethe debugger cannot find the interrupt
address inaknown program and the current DC/UCF program is notdefined to the
debugger

You do not receive control under the debugger because no debugger currency can be
set. The program abends without an interruption from the debugger, and the system
issues a standard abend message.

Example 4

Duringthe setup phase,you define ProgramA to the debugger. Duringexecution,
Program B branches into unknown storageand a program check occurs.
These currencies arenow in effect:

m The current DC/UCF programis ProgramA, the lastprogramto have been given
control by #LINK or #XCTL

m Debugger currencyis assignedto ProgramA

You receive control under the debugger becausethe current DC/UCF program has also
been defined to the debugger.

22 Online Debugger Guide

Chapter 2: Command Considerations

This section contains the following topics:

About this Chapter (see page 23)
Expression Components (see page 24)
Length Attributes (see page 31)
ParsingRules (seepage 35)

Command Modification (see page 36)
Delimiters (see page 36)

Data Values (see page 37)

Command Format (see page 38)

About this Chapter

When issuing debugger commands, you consider:

Expression components Variables thatcan be specifiedina debug
expression
Length attributes Display lengths for expressions with and

without data characteristics

Parsingrules Debugger rules for processingcommand input

Command modification Rules for modifyingcommands

Delimiters Delimiters recognized by the debugger

Data values Numeric and stringvalues recognized by the
debugger

Command format Guidelines used to format a debugger
command

This chapter discusses each of these topics.

Chapter 2: Command Considerations 23

Expression Components

Expression Components

Four Basic Components

The basic components of a debug expressionare:
m Debugger symbols

m User symbols

m Programsymbols

m Operators

Three Ways to Appear

When a debug expressionis usedinacommand, the expressioncanappearas:
m Asingledebugger symbol, user symbol, program symbol, or integer

m Multipledebugger symbols, user symbols, program symbols, and integers joined by
operators

m Multipleexpressions joined by operators

Debudgger Symbols

Three Categories

Debugger symbols can:
m Designate general registers
m Designate certain DC/UCF system entities

m Pointto specificaddresses

Address Symbols and Markers

Three special characters can beused in debugger expressions to address particular
locations ina programor dialog:

Symbol Symbol Name Designated Location

@ At sign Absolute address

S Dollarsign Load address

¢ Cent sign Address of current dialogprocess

Each type of locationis described separately below.

24 Online Debugger Guide

Expression Components

Absolute Address

The at sign (@) functions as the debugger marker that prefaces an absoluteaddress
notation. An absoluteaddress cannotexceed eight digits.

Syntax for the marker is shown below:

»»— @ hex-value

M

Ina debug expression, @ hex-value can be used interchangeably with the address
notation Xhex-value. For example, an absoluteaddress could berepresented as @2B90
or X'002B90'; an offset valuecould be represented as +@CO or +X'CQ".

For more information aboutthe hexadecimal values recognized by the debugger, see
Data Values (see page 37).

Load Address

The dollar sign ($) functions as the debugger label that expresses the load address of
the current program. In a command that uses debug expressions, the dollar sign ($) can
be used by itself orin combination with other expression components.

This example illustrates the use of the dollarsign ($)inanexpressionrequesting a
display of the current CSECT address:

list $
This example sets a breakpointat an offset address 16 bytes from the load address:

at $ + @10
Address of Current Dialog Process

The cent sign (¢) functions as the debugger label that expresses the address of the
current dialogprocess.Ina command that uses debug expressions, the cent sign (¢) can
be used by itselforin combination with other expression components.

This example illustrates the use of the centsign (¢) to request the load address of the
current dialogprocess:

list ¢.

Chapter 2: Command Considerations 25

Expression Components

General Registers Symbols

General registersincludethe registers used by the program at the time of execution
andthe registers used by the DC/UCF system. The programstatus word (PSW) and
register definitions arealways preceded by a colon (:) and are specified by these
symbols:

m :PSW for the current program status word

m :Rnfor the user programregister at the time of interrupt, where n represents the
number of the register and can have a value of 0 through 15
m :REGS forall user programregisters at the time of interrupt

m :SRn fora DC/UCF system register at the time of interrupt, where n represents the
number of the register and can have a value of 0 through 15

m :SREGS for all DC/UCF system registers atthe time of interrupt
Important! A singledebug expression canreference only one general register.

DC/UCF System Symbols

Certain DC/UCF system symbols also function as debugger entities, and you can refer to
them duringa debugging session.Acolon (:) must precede each symbol.These are the
valid symbols:

:BAT

Specifies the baseaddress tablefor session.
:CSA

Specifies the DC/UCF common storage area.
:DLB

Specifies the debug local block, control block required for debugging session.
:LTE

Specifies the current logical terminal element.
:PTE

Specifies the current physical terminal element.
:TCE

Specifies the current task control element.
:VECT

Specifies the vector table for debugger.

Important! A singledebug expression canreference only one system entity.

26 Online Debugger Guide

Expression Components

User Symbols

Additional Work Areas

User symbols identify storageareas set aside by the debugger as additional work areas.
Each user symbol must be prefaced by a colon (:). The user symbols and their meanings
are:

m :DRn for a debugger general register, where n represents the number of the
register and can have a valueof 0 through 15

:DREGS for all debugger registers

m :H1and:H2 for halfword 1 and halfword 2

m :F1and:F2 forfullword 1 and fullword 2
m :UCHR for a 48-byte character area
You canalsorefer to specified sections of this area:
- :UCO, the first16 bytes
- :UC16, the next 16 bytes
- :UC32, the last16 bytes
Examples

The example below illustrates oneway in which you can use the work areas as a
debugging aid.In this example, when the program being debugged has reached a
breakpointand the debugger facilityis in control,you can copythe currentvaluesin
program registers to registers inthe debugger work area. For instance, to savethe
contents of all 16 of the general registers of the program, issuethis command:

set :dregs = :regs

To savethe contents of a singleregister, copy the values currentlyinthe user register to
a debugger register, with a command in this format:

set :drl = :rl

Later inthe debugger session,theuser register previously saved can berestored with
this command:

set :rl = :drl
Contents Remain for Session

You can modify or refer to the values inthese registers at any time duringa debugger
session;debugger register contents remain only for the duration of the current session.

For more detailed information on the use of the SET command, see Debugger
Commands.

Chapter 2: Command Considerations 27

Expression Components

Program Symbols

Data Field Names

Data field names and linenumbers aretwo types of program symbols used as
components of debug expressions. Each of these components is discussed separately
below, followed by a discussion of how programsymbols can be qualified.

When debugging a dialogduringruntime, you can reference a specific data field.
Syntax

This is a summary of syntax for the use of data field names:

X

»»—— data-field-name]
IN :|_ record-name
OF

Parameters
data-field-name

Specifies the data field to be displayed. The name must be enclosed in quotation
marks ifit contains embedded delimiters. The data field name must be qualifiedifit
is not unique to the process.

IN/OF record-name

Specifies the name of the record associated with the data field being requested.
The record name must be enclosed in quotation marks if itcontains embedded
delimiters.

For a complete list of the delimiters used in debugger commands, see Delimiters (see
page 36).

You cannotlistor set data fields duringthe setup phaseof a debugger session. Ifyoutry
to, the debugger issues anerror message, as in this example:

DEBUG >
list date

DC704900 LIST > DATE CANNOT BE RESOLVED
LIST DATE
DEBUG >

28 Online Debugger Guide

Expression Components

Line Numbers
When debugging a dialog, youcanuse symboliclinenumbers ina debug expression.
Syntax

This is a summary of syntax for the use of linenumbers:

»»—— # [ine-number >

»

| ;4
IN current-process-name
oF J L [

inc luded-module-name
L OCCurrence occurrence-number 1

Parameters
#line-number

Specifies the process linenumber referenced in the expression.The line number
canstandaloneifitis uniqueto the current process.

current-process-name

Specifies what process currently being debugged contains the linenumber. The
process name must be enclosedin quotation marks ifit contains delimiters. The
current process name is the defaultvalue.

included-module-name

Specifies the name of the included modulecalled from the current process
containingthe linenumber. The name of the included module must be enclosed in
qguotation marks if itcontains delimiters.

OCCurrence occurrence-number

Specifies the occurrence of the included module for modules included more than
onceinthe process.

Qualifying Program Symbols

You canalsouseprogramsymbols to refer to alineinanother process without resetting
the process currency.

Syntax

The syntax for temporary qualificationis:

M

»>—— process-name - . - program-symbol

Chapter 2: Command Considerations 29

Expression Components

Parameters
process-name

Specifies the current process.
program-symbol

Specifies the programsymbol used in this expression. The program symbol is a line
number or a data field name. You can further qualify the symbol with the OF
included-module-name-qa clauseofa debug expression.

Example 1

Assume that the dialogbeing debugged has three processes: MIS-MAIN1 (the current
process), MIS-MAIN2, and MIS-MAIN3. To set a breakpointatline200in MIS-MAIN2,
you canuse the QUALIFY command to reset the currency to MIS-MAIN2 (QUALIFY
PROCESS 'MIS-MAIN2' AT #200). However, to establish a breakpointatline 200 without
resetting currency, you canissuethis command:

at 'mis-main2'.#200
Example 2

To seta breakpointatline150in MIS-INC3, a module included by MIS-MAIN3, you can
qualify the linenumber without changingcurrency from the MIS-MAIN1 process:

at 'mis-main3'.#150 of 'mis-inc3'

Expression Operators

Standard Operators

The standard operators are:

Operator Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

You canusethese operators inanycommand containinga debug expression.

30 Online Debugger Guide

Length Attributes

Special Operators

The percent sign (%) is a special operator thatyou can use for indirect addressing. With
indirectaddressing, the address in the expressionis notthe address of the operand
itself, but a pointer to a storagearea that contains the address of the operand. When
the percent sign precedes a valid debug expression, the content of the expressionis
used as the address of the target value.

Examples

Assume that register 3 contains the value BF040. You askfor display of the contents of
register 3, likethis:

list :r3
00OBFO40 *,.0. *

In this example, the command points to the contents of register 3 as the target value for
the display:

list %:r3

Inresponse to the command above, the debugger locates the operand address (BF040)
inregister 3 and lists thecontents stored atBF040:

000BFO40 000047FO0 CO280000 00000000 OOEOEEOO *...0............ *

Now you askfor display of the contents found at 10C010, the address supplied in the
debug expression:

list reca +10
0010C010 OOGBFOOO OOEOOOEO O0OOEOEOO EOEEEEEO *..0............. *

Inthe next example, the relativestorage location points to the address of the effective
operand. The debugger responds by listingthe contents of BFOOO, the operand address
found at RECA+10:

list %(reca+10)

000BFOOO D1DGC8D5 40E2D4C9 E3C80000 00000000 *JOHN SMITH...... *

Length Attributes

The types of components used inan expression can determine the amount of
information displayed or modified by the debugger inresponseto your request. When
determining the length of a display, the debugger distinguishes between expressions
with and expressions withoutassociated data characteristics.

Chapter 2: Command Considerations 31

Length Attributes

Expressions with Data Characteristics

When anexpression component has associated data characteristics, thelength of the
display depends on:

m The length attribute of the symbol
m The length attribute of the end symbol

m The explicitlength

Length Attribute of the Symbol
The length attribute of the symbol is used as the default value.

For example, this command requests the display of register 1:
list :rl

The length attribute of a general register is four bytes. The debugger uses the register
attribute as the default valueandissues the followingdisplayin responseto the above
command:

00000000

Length Attribute of the End Symbol

The length attribute of the end symbol inan expressionrange delineates the end of the
display. For example, this command requests a display of register 1 through register 3:

list :rl to :r3

The debugger responds with a display thatincludes the full four-byte length of register
3:

00000000 000EOEO1 COOOEOO2

32 Online Debugger Guide

Length Attributes

Explicit Length

An explicitlength overrides the displaylength implied by the data characteristics ofa
symbol.

This tablelists the length attributes of debugger symbols:

Entity Symbol Length Attribute
Singleregisters 4 bytes
‘Rn
:SRn
:DRn
Register blocks 64 bytes
‘REGS
:SREGS
:DREGS
Program status word :PSW 8 bytes
Halfwords 2 bytes
H1
H2
Fullwords 4 bytes
F1
:F2
Line number #Lline-n 12 bytes
Control blocks :BAT, :CSA, :DLB, :LTE, :PTE, Variable(depending
:TCE, :VECT on length of block)

Expressions without Data Characteristics

As soonas a component appears inanexpression with any other component, it no
longer has associated data characteristics. For example: PTE is an expression withan
implicitlength attribute equal to the length of the control block, but: PTE +@10 is an
expression without associated data characteristics.

Chapter 2: Command Considerations 33

Length Attributes

Ways to Determine Length

When anexpression component does not have associated data characteristics, the
length of the displayis basedon:

m The default length of the command
m An explicitlength

m The firstbyte of the end expression
Default Command Length

Default lengths vary for commands that use length parameters. For example, the default
length is 16 bytes for the LIST command and 256 bytes for the SNAP command.

In this example, the display begins 32 bytes from the start of the current physical
terminal element (PTE) for a length of 16 bytes:

list :pte +a20
Explicit Length

You cansupplyan explicitlength, which overrides the default length of the command.
This example requests a 100-byte display thatbegins atthe load address:

list $ 100

The next example requests that the display beginatan offset address for a length of 20
bytes:

list :pte +@10 len 20
First Byte of the End Expression

The first byte of the end expressioninanexpressionrangespecifies theend of the
display. For example, the debugger displays 17 bytes of memory inresponseto this
command:

list @bfO00 to @bf010

34 Online Debugger Guide

Parsing Rules

Parsing Rules

Parameter Order
The parameters of a command must appear in the order specified in the syntax.

Inthe display below, the firstexampleis incorrect, becausethe BEFORE parameter
cannot followthe AFTER parameter inan AT command:

at $ +@10 after 2 before 10 on <«dincorrect order
at $ +21l0 before 10 after 2 on «correct order
Errors that Stop Execution

If one command in a string of debugger commands contains a syntax error, all following
commands areparsed for syntax but not executed.

The command containingthe syntax error may be partly executed. Inthe firstexample
above, the partof the command preceding the error (at S +@10 after 2) will be
executed:

DEBUG >
at $ +al0 after 2 before 10 on

AT $ +Q10 ADDED

BEFORE 10 IGNORED

$

UNRECOGNIZABLE DEBUG COMMAND

DEBUG > AT $ +010 AFTER 2 BEFORE 10 ON
DEBUG >

Commands that Stop Execution

Ifa RESUME, EXIT, IOUSER, MENU, PROMPT, or QUIT command is embedded ina string
of concatenated debugger commands, all successive commands in the string are
ignored.

Chapter 2: Command Considerations 35

Command Modification

Command Modification

Delimiters

Rules of Modification
Commands can be modified to specify different options or to turn off options
completely. You can modify commands with expressions correspondingto the original

command.

When you modify a command:
m Arespecified option overrides its counterpartin the previous command

m All options specifiedin the previous command remain in effect unless overridden

Example

In this example these two commands

at $ + 8 before 10 ignore
at $ + 8 after 2 on

establish the breakpoint parameters specifiedin this display:

AT $ + 8 BEFORE 10 AFTER 2 ON

Valid Delimiters

Delimiter Meaning

* Asterisk
Blank

) Comma

= Equal sign

! Exclamation point

- Hyphen

% Percent sign
Period

+ Plus sign

/ Slash

36 Online Debugger Guide

Data Values

Data Values

Valid Data Values

The debugger recognizes values supplied by the followingtypes of numbers and strings:

Value

Description

Halfword values

Two-byte fixed-point values rangingfrom+32,767 to
-32,768

Fullwordvalues

Four-byte fixed-pointvalues rangingfrom
+2,147,483,647 to -2,147,483,648

Hexadecimal numbers

Values of one to eight hexadecimal digits preceded by
anat (@) sign;can includecharacters Athrough F and
numerals 0 through 9; when not used ina debug
expression, contents must be paired hexadecimal
digits

Decimal numbers

Values that canincludedecimal positions

Character strings

One- to 16-character alphanumeric values enclosedin
singleor double quotation marks and preceded by
letter C (for example, C"F34"); cancontainany
printablecharacter or blank

Chapter 2: Command Considerations 37

Command Format

Value Description

Hexadecimal strings Even-numbered strings of up to 16 hexadecimal digits
enclosedinsingleor double quotation marks and
preceded by letter X (for example, X"C6F4"); paired
characters Athrough F and paired numerals 0 through
9 for hexadecimal values

Numeric strings Variablelength numeric values enclosedinsingleor
double quotation marks; preceded by letter H, F, or P
to designate halfword values (H'0'), fullword values
(F'555"), or packed decimal values (P"2315")

Command Format

Rules
m Oneor more blanks mustprecede and followall keywords
m Spaces are optional withinan expression

An offset valuecan be expressed with separating blanks or withoutblanks. For
example, the same command can be accurately formatted in any of these ways:

at @00bf280 + 10
at @00Obf280+10
at @0Obf280 +10

m The entire command string must not exceed twice the linelength of the terminal
m Multiplecommands can be entered on one prompt line

The commands can be separated with an exclamation point(!) delimiter, but the
delimiteris not required. For example, the same command stringcan be accurately
formatted inany of these ways:

DEBUG >
at $ + 8 every 5 on!resume

DEBUG >
at $ + 8 every 5 on resume

DEBUG >

at $ + 8 every 5 on
AT > $ + 8 ADDED
DEBUG >

resume

38 Online Debugger Guide

Chapter 3: Debugger Commands

This section contains the following topics:

Summary of Commands (see page 39)
AT (see page 40)
DEBUG (see page 44)
EXIT (see page 46)
IOUSER (see page 47)
LIST (see page 47)
MENU (see page 51)
PROMPT (see page 52)
QUALIFY (see page 52)
QUIT (see page 54)
RESUME (see page 55)
SET (see page 56)
SNAP (see page 60)
WHERE (see page 62)

Summary of Commands

This chapter presents a functional description, syntax, syntax rules and examples for
each debugger command you canuse duringthe setup or runtime phases.The
commands arepresented inalphabetical order.

This tablesummarizes the commands and their functions.

Command Description

AT Establishes or modifies breakpoints atspecified locationsina user
program

DEBUG Designates an entity to be debugged or inquires aboutentities

known to the debugger

EXIT Returns control to the DC/UCF system, retainingthe debugger
control blocks created in the current session

IOUSER Displaysthescreen current when a breakpoint, programcheck, or
trapped abend is encountered

LIST Displayssession attributes, debugger variables,and areas of
memory at your terminal

MENU Invokes menu mode for a debugger session

PROMPT Invokes prompt mode for a debugger session

Chapter 3: Debugger Commands 39

AT

AT

Command Description

QUALIFY Assigns currency to a new process within the current dialogor
inquires aboutprogram, dialogand process currenciesin effect

QuUIT Terminates the debugger sessionand returns control to the DC/UCF
system, clearingall control blockscreatedinthe current debugger
session

RESUME Continues programor abend execution

SET Allows you to modify storage and debugger session attributes

SNAP Allows you to create and write a dump to the DC/UCF log

WHERE Provides information aboutthe lastinterruptencountered inthe
entity being debugged

Purpose

Sets, modifies, removes, or reviews breakpoints ina program.

Syntax

ADD Format

»»—— AT debug-expression

v

L BEFore — MAXinum 4—_|—| L AFTer T 0 —_|J
ount execution-count

v

execution-c

|—EVEry—|:1< 0N<—_!
execution-count IGNore

INQUIRE Format

»—AT—E

ALL n INQuire >
debug-expression ON

IGNore —

OFF

40 Online Debugger Guide

AT

Parameters
debug-expression

Specifies a breakpointlocationina user program. Debug-expression caninclude
multipledebug expressions,anditresolves to anaddress containinga valid
instruction or a valid CME (CA ADS dialogs only).Itis notvalidto set a breakpoint at
the target of an Assembler execute (EX) instruction.

Note: Debugger will notsuccessfully resumeifyou set breakpointata "BALR RX,0"
type instruction or a "BAL RX,..." instruction later used as a baseregister. An
alternativeis to set breakpointat next instruction.

Note: For more information on the values used ina debug expression, see
Expression Components (see page 24) inthe "Command Considerations" chapter.

ALL

Specifies that the actionshould applytoall previously established breakpoints.Can
be used onlyin INQUIRE format.

BEFore MAXimum

Causes the debugger to pauseeach time the breakpointinstructionis reached.
MAXIMUM is the default.

BEFore execution-count

Specifies an execution pauseevery time the specified breakpointinstructionis
encountered, up to but not including execution-count.

AFTer 0

Causes the debugger to pauseeach time the breakpointinstructionis reached. Zero
is the default.

AFTer execution-count

Specifies an execution pauseeach time the same breakpointinstructionis
encountered beyond execution-count.

EVEry 1

Causes the debugger to pauseevery time the breakpointinstructionis
encountered. One is the default.

EVEry execution-count

Specifies an execution pauseeach time the counter for the specified breakpoint
instruction reaches a multiple of execution-count.

ON

Sets a new breakpointor resets the status of a breakpoint previouslyignored.ON is
the defaultin ADD format.

IGNore

Bypasses the specified breakpointbut increments the breakpoint counter.

Chapter 3: Debugger Commands 41

AT

OFF

Removes the breakpoint.Can be used only in INQUIRE format.
INQuire

Requests a listing of the breakpoint locations and characteristics. Can be used only
in INQUIRE format.

Usage
Two formats

The AT command has two formats. The ADD formatis usedto set and modify
breakpoints;the INQUIRE formatis usedto review breakpoint locations,if any have
been set, as well as to modify the breakpoints.

Temporary processing halt

A breakpointtemporarily halts processing, allowing you to examine the results of
execution up to the point of interruption. Processingis halted before the instruction at
the breakpointis executed. You canusethe AT command in both the setup and the
runtime phases of a debugger session.

Breakpoint count

Inresponse to the INQUIRE format, the debugger displaysall parameters in effect for
the named breakpoints andindicates the breakpoint count. The breakpoint count (BKPT
COUNT) shows how often the breakpointhas been encountered from the time the
program received control via #LINK or #XCTL.

If you issuean AT INQUIRE command is issued duringthe setup phase, the breakpoint
count documents the count from the most recently executed program. The breakpoint
counter is reset to zero each time a #LINK or #XCTL is processed for the program.

Example 1

This command schedules programbreaks on the second through ninth time the
instruction atthe address $ + 8 is encountered.

DEBUG >
at $ + 8 before 10 after 1

The debugger verifies the breakpoint with this message:

AT> $ + 8 ADDED

42 Online Debugger Guide

AT

Once the breakpoint inthe example above has been set, the debugger displaysthe
following messagein response to an AT S +8 INQUIRE command:

AT> AT $ + 8 BEFORE 10 AFTER 1 EVERY 1 BKPT COUNT O ON

In this example, the defaultvalue is indicated for the EVERY parameter. BKPT COUNT 0
indicates thatthis breakpointhas not yet been encountered inthe current execution of
the program.

Example 2

When a breakpointis reached duringthe runtime phase, the debugger displays a
message that names the address, identifies the program, and displays thedebug
expressionthat established the breakpoint. For example, the following message would
appear for a breakpoint established withan AT S + 8 command for program TESTPROG:

AT OFFSET @8 IN TESTPROG EXPRESSION $ + 8
Example 3

In CA ADS dialogs you can set breakpoints by specifyinga linenumber:

DEBUG >
at #200

Ifline200 is a valid address, the debugger responds to the above command as follows:

AT #200
AT> #200 ADDED

Example 4

When debugging a dialog,youcanseta breakpointina process other than the current
process without changingthe currency. Inthe following example where MIS-MAIN1 is
the current process, a breakpointis setatline100ina second process (MIS-MAIN2);
MIS-MAIN1 retains its currency. As usual, the debugger sends a verifying message when
the breakpointaddress is valid.

DEBUG >
at 'mis-main2'.#100

AT 'MIS-MAIN2'.#100
AT> 'MIS-MAIN2'.#100 ADDED
DEBUG >

Inthe above example, the programmer encloses the process name insinglequotation
marks (') because the name contains an embedded hyphen (-). Quotation marks are
required for any name that contains embedded delimiters.

Chapter 3: Debugger Commands 43

DEBUG

DEBUG

Purpose

Specifies the programs to be debugged orinquires aboutthe debugged programs.

Syntax
ADD format
»—— DEBug PROgram « —— entity-name T] >«
DIAlog VERsion version-number
MAP
SS
TABle

INQUIRE format

»—— DEBug entity-name INQuire
—I: L VERsion version-number -) L OFF 1
ALL

Parameters
PROgram/DIAlog/MAP/SS/TABIle

Identifies the type of load module to be debugged. Used onlyin ADD format.
PROGRAM is the default.

entity-name

Specifies the name of the entity to be used by the debugger as the currentload
module. Entity-name contains a maximum of eight characters.

ALL

Specifies all modules defined to the debugger duringthe current session.Can be
used only in INQUIRE format.

VERSION version-number
Identifies the version of the programbeing debugged.
Ifthe versionis notspecified:

m InADD format, the debugger uses the version set with DCUF TEST, or version 1
if DCUF TEST hasn'tbeen issued

m InINQUIRE format, the debugger displaysallversions if noneis specified
INQuire

Requests a listing of the modules being debugged in this session.
OFF

Terminates all debuggingfor the specified programs for the remainder of the
session.

44 Online Debugger Guide

DEBUG

Usage
Functions of DEBUG

The word DEBUG has several functions:

m Task code usedto initiatea debugging session

® Prompt displayed duringa debugging sessionin prompt mode

m Command used duringthe setup phase to designate the programs to be debugged

or to inquireabout the debugged programs

You canusethe DEBUG command only duringthe setup phase.
Special copy loaded

When you issuethe DEBUG command for a module, a special copyisloaded,sothat
setting breakpoints and making data changes will notaffect other users.

Two formats

The DEBUG command has two formats. The ADD format initially identifies theentities
to be debugged; the INQUIRE format lists entities defined to the debugger ina given
session.

Example 1

This exampleillustrates the use of the DEBUG task code in conjunction with the DEBUG
command to transfer control from DC/UCF to the debugger andto define a module to
the debugger; the debugger verifies the commands and displaysthe DEBUG> prompt in
response:

ENTER NEXT TASK CODE:
debug debug testprog

DEBUG TESTPROG
DEBUG > DEBUGGING INITIATED FOR TESTPROG VERSION 1
DEBUG >

Example 2

In this example, the DEBUG command names the load module to be debugged:

DEBUG >
debug dialog msgtext version 3

DEBUG DIALOG MSGTEXT VERSION 3
DEBUG > DEBUGGING INITIATED FOR MSGTEXT VERSION 3
DEBUG >

Chapter 3: Debugger Commands 45

EXIT

EXIT

Example 3

This command requests a listofall programs defined to the debugger during the current
session:

DEBUG >
debug all ingquire

DEBUG ALL INQUIRE
PROGRAM TESTPROG VERSION 1

DIALOG MSGTEXT VERSION 3 PROCESS MSG-MAIN1 CURRENT
DEBUG >

Purpose
Returns control to DC/UCF and retains the debugger control blocks.

Syntax

»»— EXIt

M

Usage
Use EXIT to complete the setup phaseand return to DC/UCF.

Ina concatenated list of commands, the debugger ignores any command that follows
the EXIT command.

Important! Indebugging a dialog, the EXIT command causes rollbacks to be issued for
both the database,ifa run unitis open, andthe task.

Examples

This exampleillustrates theuse of the EXIT command and the resulting system
response:

DEBUG >
exit

EXIT
EXIT DEBUGGER
ENTER NEXT TASK CODE:

46 Online Debugger Guide

IOUSER

IOUSER

Purpose

Redisplays thescreen that appeared at your terminal immediately before the debugger
processed the breakpoint or trapped abend.

Syntax

M

»»—— I0User
Usage

After the screen is redisplayed, you canreturn to the menu mode screen or to the
DEBUG> prompt by pressingany control key.

You canissuethe IOUSER command onlyat runtime. Ina concatenated listof
commands, the debugger ignores any command that follows the IOUSER command.

LIST

Purpose
Displaysselected areas of storage and session attributes atyour terminal.
Syntax

MEMORY Format

>>—|: List begin-debug-expression
Display J L Memory -

v

g TO end-debug-expression —_-] C o
byte-count-number X
LENgth XC
ATTRIBUTES Format

>>—|: List — T SESsion ATTributes
Display

Chapter 3: Debugger Commands 47

LIST

Parameters
begin-debug-expression

Specifies the beginninglocation of the display. Begin-debug-expression caninclude
multipledebug expressions anditresolves toan address for which you have
retrieval security.

For information on the security methods used by the debugger, see CA IDMS
Security Administration Guide.

For more information on the values used in a debug expression, see Expression
Components (see page 24) in Chapter 2, "Command Considerations."

end-debug-expression

Specifies the ending location of the display. End-debug-expression canincludethe
same debugger entities as those specifiedin begin-debug-expression. The
expression must resolveto a valid address for which you have retrieval security.

byte-count-number
Indicates the number of bytes to be displayed.
Important! Ifa resourceis listed and the length or ending address exceeds the resource

boundary, the listis truncated atthe boundary, and the debugger issues a warning
message.

C

Requests a displayin character format.
X

Requests a displayin hexadecimal format.
Xc

Requests a displayin both hexadecimal and character format.

48 Online Debugger Guide

LIST

Usage
Two formats

There are two formats for the LIST command. The MEMORY format requests a display
of the contents of memory; the ATTRIBUTES format requests a display of session
attributes.

Rules for default length
When neither end-debug-expression nor byte-count-number is specified, the default

length is based on these rules:

m Ifthe expressionis composed ofa singlesymbol, the data characteristics of the
symbol determine the default length. The number of bytes displayedis equal to the
default length of the symbol.

m |fthe expression does not have data characteristics, thedefault length is 16 bytes.

Format specified for this command

XC/X/C specifies the format for the requested information. This specification can
override the type of display previously established as a session attribute; the overrideis
onlyvalid for the duration of this command. See the ATTRIBUTES format of the SET
command to reestablishthesession attributes more permanently.

Example 1

This command requests a listof the storagecontents beginningat @BF002, for a length
of 48 bytes:

list @bf002 48

The debugger responds with a display of the beginningaddress and the requested
storage contents:

000BFO02 47F0 CO028....
000BFO10 58509002
000BFO20 4780CI12A
000BFO30 4770

I
R S

The firstlineof the storagedisplayisindented for a space of two bytes, reflecting the
exact beginning address.

Chapter 3: Debugger Commands 49

LIST

Example 2

This command instructs the debugger to displaythe physical terminal element (PTE)
control block from the beginning to the end of the entity. The length of the data fieldis
determined by the data characteristics of the PTE.

list :pte
Example 3
The next command instructs the debugger to displaystoragecontents beginning at

@BF020. Sincethis expression has nodata characteristics, thedisplay defaults to 16
bytes.

list @bf020
Example 4

In debugging CA ADS dialogs you canusea data field name:

list date

The debugger responds by displaying the requested information:

001C2C50 F8F4FOF3 FOF1 *840301 *

Important! You cannot refer to data fields of Assembler, COBOL, or PL/I programs by
name.

Example 5
You canalsousealinenumber:
list #100
Example 6

When field names or linenumbers are not unique, you must qualify them. This example
lists line 100 from a process other than the current dialog process:

list 'process-b'.#100
Example 7

This example qualifies a requestby specifying the display of a field name USERID-1301
from a record EMPLOYEE-1301:

list 'userid-1301' in 'employee-1301'

50 Online Debugger Guide

MENU

MENU

Example 8

This is an example of the ATTRIBUTES format:

DEBUG >
list session attributes

LIST SESSION ATTRIBUTES
LIST > SESSION ATTRIBUTES
LIST: CHAR
TEST VERSION: 2
DEBUG >

This displayindicates that DCUF TEST 2 and SET CHAR were issued.

Purpose
Switches the debugger session from prompt mode to menu mode.

Syntax

)

»»— MENu
L screen-name -

Parameter
screen-name

Indicates the name of a global help screen oran activity screento be displayed. If
screen-name is notspecified, the debugger displaystheUsage screen, the top-level
global help screen that presents a listof debugger commands and functions.

Usage

The MENU command is executed in prompt mode and switches the debugger session
from prompt mode to menu mode. MENU is disabled in menu mode.

Ina concatenated listof commands, the debugger ignores any command that follows
the MENU command.

Chapter 3: Debugger Commands 51

PROMPT

PROMPT

QUALIFY

Example

This command instructs the debugger to switch from prompt mode to menu mode with
the display of the activity screen for the LIST command:

DEBUG >
menu list

For a complete discussion of the screens availablein menu mode, see Debugging in
Menu Mode.

Purpose
Switches the debugger session frommenu mode to prompt mode.

Syntax

M

»»—— PROmpt
Usage

The PROMPT command is executed in menu mode and switches the debugger session
from menu mode to prompt mode. PROMPT is disabled in prompt mode.

Ina concatenated list of commands, the debugger ignores any command that follows
the PROMPT command.

Purpose

Establishes a new current process or inquires aboutthe current program, or dialogand
process.

Syntax

RESET Format

v

»»—— QUALify T] PROCess process-name
DIAlog dialog-name

)

>
L VERsion version-number |

INQUIRE Format

M

»»— QUALify INQuire

52 Online Debugger Guide

QUALIFY

Parameters
DlAlog dialog-name

Specifies the dialog currently defined to the debugger. Only current dialogcanbe
qualified.

PROCess process-name

Specifies the new dialogprocess to become current. Enclosethe process namein
single quotation marks if the name contains embedded delimiters.

VERsion version-number

Specifies the version number of the current dialog.
Usage
Resetting currency

When adialogis defined to the debugger, the premap process becomes the current
process by default. You can use the QUALIFY command to assign currency to a different
process withinthe current dialog.

Two formats

The QUALIFY command has two formats. The RESET format resets currency; the
INQUIRE format requests a display of the current program, or the current dialogand
process.

The QUALIFY command can be used in both the setup and the runtime phases of a
debugger session.

Example 1

You caninquireaboutthe current dialogprocess:

DEBUG >
qualify inquire

The debugger responds in this format:

QUALIFY INQUIRE
DIALOG MISINDC VERSION 1 PROCESS MIS-MAIN1 CURRENT
DEBUG >

Chapter 3: Debugger Commands 53

QUIT

QuIT

Example 2

These commands reassign currency to MIS-MAIN2 andset a breakpointatline200
within MIS-MAIN2:

qualify proc 'mis-main2' at #200
The debugger responds likethis:

QUALIFY PROCESS 'MIS-MAIN2'
QUALIFY > CURRENCY SET

AT #200

AT > #200 ADDED

DEBUG >

Purpose

Terminates a debugger session and returns control to DC/UCF, clearingthe debugger
control blocks.

Syntax

)

»— QUIt
Usage

The QUIT command discontinues debuggingand lets you enter a new taskcodein
responseto the Enter Next Task Code prompt.

Ina concatenated list of commands, the debugger ignores any commands that follow
the QUIT command.

Important! Indebugging a dialog,the QUIT command causes rollbacks to be issued for
both the database,ifarun unitis open, andthe task.

Example

This is how the system responds to the QUIT command:

DEBUG >

quit

QUIT

QUIT DEBUGGER

ENTER NEXT TASK CODE:

54 Online Debugger Guide

RESUME

RESUME

Purpose

Instructs the runtime system to continue program execution at the next instructionora
specified location or to continue standard processing ofan abend.

Syntax
»»—— RESume >
Ll_—_|—|: debug-expression :’—i
AT ABEnd
Parameters

debug-expression

Specifies the location atwhich execution is to continue, if other than the instruction
immediately followingthe breakpoint. Debug-expression caninclude multiple
debug expressions,anditresolves to anaddress containinga validinstructionora
valid CME (CA ADS dialogs only).

For more information aboutthe values used ina debug expression,see Expression
Components (see page 24) in Chapter 2, "Command Considerations."

ABEnd

Specifies that standard DC/UCF abend processing, including the execution of any
STAE set, should continue.

Usage

You canissuethe RESUME command onlyat runtime.

When program execution resumes atan address other than the address of the
instructionimmediately following the breakpoint, you must be sure that the program
environment (for example, the contents of registers and storage)is appropriatefor
runningthe program.

Examples

This command requests that execution of the program resume with the instruction at
the breakpoint:

resume
This command requests that program execution resume at the load address:

resume $

Chapter 3: Debugger Commands 55

SET

SET

Purpose
Modifies selected areas of storage and debugger symbols.
Syntax

MEMORY Format

»—E Set debug-expression >
Vary L Memory | grexp |: EQUals
data-field-name >«
H halfword ————— E C q ': RESEt
F fullword — X NOReset «
X hex-value XC
C character-string —

P packed-value

ATTRIBUTES Format
»»— Set CHAr
13-=
BOTh

Parameters

)

debug-expression

Specifies the beginninglocation of the entity to be modified. Debug-expression can
includemultipledebug expressions,anditresolves to an address for which you
have update security.

For information on the security methods used by the debugger, see CA IDMS
Security Administration Guide.

For more information on the values used ina debug expression, see Expression
Components (see page 24) in Chapter 2, "Command Considerations."

data-field-name
Identifies a specific data field value. Can be used in CA ADS dialogs only.

For a complete discussion of the use of field names, see Program Symbols (see
page 28) in Chapter 2, "Command Considerations."

Hhalfword

Is a halfword number. H specifies the halfword format; halfword represents the
actual data content and must be enclosed insingle quotation marks.

Ffullword

Is a fullword number. F specifies the fullword format; fullword represents the actual
data content and must be enclosedin single quotation marks.

56 Online Debugger Guide

SET

Xhex-value

Is a hexadecimal string. X specifies the hexadecimal format; hex-value represents
the actual data content and must be enclosed in single quotation marks.

Ccharacter-string

Is a character literal used to assign alphanumeric or symboliccharacter values.C
specifies the character format; character-string represents the actual data content
and must be enclosed insingle quotation marks.

Ppacked-value

Isanassigned packed decimal value. P specifies the packed decimal format;
packed-value represents the actual data content and must be enclosedinsingle
quotation marks.

C
Requests a displayin character format.
X
Requests a displayin hexadecimal format.
XC
Requests a displayin both hexadecimal and character format.
RESEt
Specifies that the named storagebe reset to its original valueatthe end of the
debugging session. This optionis notsupported for release 10.2 of the debugger.
NOReset
Specifies that the storageis notto be reset to its original valueatthe end of the
debugging session. This option does not affect storage inthe debugged program
itselfsincea special copy of the programis loaded for the debugging session.
NORESET is the default.
CHAr
Requests a displayincharacter format for ATTRIBUTES format.
HEX
Requests a displayin hexadecimalformatfor ATTRIBUTES format.
BOTh

Requests a displayinboth hexadecimal and character formatfor ATTRIBUTES
format.

Chapter 3: Debugger Commands 57

SET

Usage
Two formats

The SET command has two formats. The MEMORY format specifies thevalues assigned
to a given debug expression;the ATTRIBUTES format specifies the debugger session
attributes to be established.

When debug expression is a symbol with data characteristics (for example, :REGS), the
length of the symbol is usedinthe set. When the expression does not have data
characteristics (for example, S + 10), the data characteristics of the sourcefield areused
inthe set.

Important! The debugger does not allowa set across resourceboundaries.

Character and hexadecimal format

C/X/XC inthe MEMORY format specifies howthe informationis to be listed. This
specificationcanoverridethe session attributes previously established for the session;
the overrideis valid only for the duration of this command. To reestablishthesession
attributes more permanently use the ATTRIBUTES format.

Example 1

This command modifies the contents of a program register:

DEBUG >
set :r7 x'00000001' x

The debugger responds to the X parameter with the hexadecimal display of the original
valueand the reset value:

SET :R7 X'00000001' X
OLD

00000000

NEW

00000001

DEBUG >

58 Online Debugger Guide

SET

Example 2

This command modifies storage at an offset address:

DEBUG >
set $ + 8 = x'58' x

The debugger responds:

SET $ + 8 = X'58"' X
OLD

000BFOO8 41

NEW

000BFOO8 58

DEBUG >

Example 3

This command modifies storage at the same address with a fullword value:

DEBUG >
set $ + 8 equ f'58' x

The debugger responds:

SET $ + 8 EQU F'58' X
OLD

000BFOG8 4130C050
NEW

0O0GBFOO8 00OOOO3A
DEBUG >

Example 4

This is an example of the ATTRIBUTES format:

DEBUG >
set char

SET CHAR
SET ATTRIBUTE CHAR
DEBUG >

Chapter 3: Debugger Commands 59

SNAP

SNAP

Purpose
Allows you to create a dump and write itto the DC/UCF log.

Syntax

»»—— SNAp T TASk I >

begin-debug-expression
TO end-debug-expression 44'
byte-count-number
LENgth

L TITle title]

X

Parameters
TASk

Requests a dump of all resources associated with the executing task, as well as the
Task Control Element (TCE) and the Dispatch Control Element (DCE).

begin-debug-expression

Specifies the location atwhich to begin the snap. Begin-debug-expression can
includemultipledebug expressions,anditresolves to an address for which you
have retrieval security.

For information on the security methods used by the debugger, see CA IDMS
Security Administration Guide.

For more information on the values used ina debug expression, see Expression
Components (see page 24) in Chapter 2, "Command Considerations."

end-debug-expression

Specifies the ending location of the display. End-debug-expression canincludethe
same debugger entities as those specifiedin begin-debug-expression. The
expression must resolveto a valid address for which you have retrieval security.

byte-count-number
Specifies the number of bytes to be displayed.

TiTle title

Specifies an optional titlefor the snap.The title must be enclosed insingle
guotation marks ('), may not exceed 32 characters,and must be prefaced by a valid
ASA carriage control character. These are the valid carriage control characters:

(Space bar) Space one line

0 Space two lines

- Space three lines

60 Online Debugger Guide

SNAP

1 Skip to the top of the next page

The length of 32 characters includes the carriage control character. Code
apostrophesinthe title as two single quotation marks (*'). They arecounted as one
character position.

When atitleis notspecified, a defaulttitle is written to the log.
Usage

Types and timing

You canusea SNAP command fora Tasksnapora snap of specificarea;the command is
validatany pointin a debugger session.

You can examine the Snap dumps onlinewith OLP (OnLine Plog), or make a hard copy by
runningthe printlog functions of the Batch Command Facility utility.

For more information see CA IDMS Utilities Guide.

Default length

When neither end-debug-expression nor byte-count-n is specified, the default length is
based on these rules:

m [fthe expressionis composed of a singlesymbol, the data characteristics of the
symbol determine the defaultlength. The number of bytes dumped is equal to the
default length of the symbol.

m Ifthe expressiondoes not have data characteristics, thedefault length is 256 bytes.
Example 1

This command causes a snapto begin at the load address and terminate at @000BF050;
the defaulttitleis to be used:

DEBUG >
snap $ to @f050

The default title takes the form:
SNAP command-entered USER user-id
For example, if the user ID is MMC, the default titleis:

SNAP $ TO @OOOBFO50 USER MMC

Chapter 3: Debugger Commands 61

WHERE

WHERE

Example 2

This command requests a snap startingat the load address for 256 bytes; the default
titleis to be used:

DEBUG >
shap $

Example 3

This command requests a task snap;the title IDMSTEST, positioned atthe top of a
display page, will beused for the dump:

DEBUG >
snap task title 'lidmstest’

Purpose
Provides information aboutthe lastinterruptof the entity being debugged.

Syntax

M

»»—— WHEre
Usage

You canissuethe WHERE command onlyat runtime.
Example

This is how the debugger responds to the WHERE command:

DEBUG >
where

WHERE > @000BFO10 LAST INTERRUPT MESSAGE FOLLOWS
AT OFFSET @10 IN TSTPROG EXPRESSION $ + @10

62 Online Debugger Guide

Chapter 4: Debugging in Menu Mode

This section contains the following topics:

Features of Menu Mode (see page 63)
Screen Design (see page 64)
AccessingScreens (see page 69)

Activity Screens (see page 73)
Global Help Screens (see page 81)

Features of Menu Mode

Menu Mode Facilities

Menu mode provides screens that allowyou to choose any of the debugging activities
that canbe performed in prompt mode. Fixed-format activity screens areavailable for
each command to simplify the process of debugging. Menu mode also offers several
help facilities.

Chapter Contents

This chapter discusses the following features of menu mode:
m Screen design—Standard formatof the activityand help screens
m Accessingscreens—Moving between screens

m Activity screens—Descriptions of the variablefields on the command-specific
activity screens

m Global help screens —Descriptions of the global help screens

Chapter 4: Debugging in Menu Mode 63

Screen Design

Screen Design

Screen Areas

The menu mode screens are designed for ease of use. Each screen has a:
m Headingarea

m Displayarea

m Specificationarea

m Selection area

This diagramshows the areas of the screen:

r IDMS-DC REL nn.n ONLINE DEBUGGER *** LIST *** SETUP PAGE 1 0F 1
| PROGRAM: V: CSECT:
L >

r LIST: M (M-MEMORY/A-ATTRIBUTES)

MEMORY ONLY:
BEGIN LIST AT:
LENGTH.......: - OR - END LIST AT:
LIST FORMAT..: B (C-CHARACTER/X-HEX/B-BOTH)

- NEXT _ ACTIVITY OR _ HELP:

_ AT LISt ST _ SNAP _ RESUME _ DEBUG _ WHERE
_EXIT _ PROMPT _ QUIT _ IOUSER
L HELP SGREENS: _ USAGE _ SYMBOLS _ KEYS

Each of the screen areas is described below.

Heading Area

Contents

The heading area includes three lines:
m Header line
m Currency line

m Promptline

64 Online Debugger Guide

Screen Design

Header Line

The header linecontains several fields:

The PF-key field provides a two-position entry area for simulation of a
program-function key. For example, typinga 5 inthis field and pressing [Enter] has
the same effect as pressing [PF5].

The simulated PF-key fieldis useful when your terminal does not have
program-function keys. You canspecify the numerals 1 through 24, as well as EN
for [Enter], CLfor [Clear], P1 for [PA1], and P2 for [PA2].

Product name andrelease number fields supply information formatted like this:

IDMS-DC REL n.n ONLINE DEBUGGER

The screen label field indicates the name of the current screen. The screen name
changes as you move from one activity or help screen to another inthe debugging
process. (The samplescreen is the List screen.)

The session mode field indicates whether you are inthe setup or runtime phase of
the debugging process.(The samplescreen indicates a setup phase.)

Page notations supplythe current page and the total number of pages availablefor
the given display. The samplescreenindicates thatyou are viewing the firstpage of
a one-page display. Typically the help screens have more than one page. You can
display a different page by:

— Overwriting the current page number on the header lineand pressing [Enter]

— Using the designated control key to scroll backward or forward.

Default Control Key Assignments This tablepresents a listof the default control key
assignments for the debugger:

Key Action Description Function

[PF1] Usage Displaysthe Usage screen 2

[PF2] Unassigned 5

[PF3] Activity Displaystheactivity screen for the 3
current command

[PF4] Help Displaysthehelp screen for the current 4
command

[PF5] Symbols DisplaystheSymbols screen 9

[PF6] Keys Displaysthedefault control key 6
assignments

[PF7] Scroll up Displaystheprevious page 7

[PF8] Scroll down Displaysthenext page 8

Chapter 4: Debugging in Menu Mode 65

Screen Design

Key Action Description Function
[PF9] Prompt Returns the debugger to prompt mode 1

[PF10] Unassigned 15
[PF11] Unassigned 11
[PF12] Reserved 12

[PA1] Refresh Refreshes the current screen 14

[PA2] Exit Exits the debugger 10
[Clear] Return Goes backone level 16
[Enter] Process Processes the current screen 13

The default control key assignments can be changed at DC/UCF system generation time
with the KEYS statement.

For more information on the KEYS statement usedinsystem generation, see CA IDMS
System Generation Guide.

The Keys screen displaysthekey assignments for your particularinstallation.
Currency Line

The currencylinedisplaysthe current values for five variable fields:

m The entity type indicates whether a program, dialog, map, table or subschema load
moduleis currently being debugged

m The entity name field displaysthename of the current entity
m V:version-n displays theversion number associated with the current entity

m The section type field indicates whether a dialogprocess or a program CSECT is
currently being debugged.

m The section name field displaysthecurrent CSECT or process name

When the current entity is a program, the currency linereads likethis:

PROGRAM: PROGO1 V:3 CSECT:

When the current entity is a dialog, the currency linereads like this:

DIALOG: MISINDC V: 1 PROCESS: MIS-MAIN2

The currency lineremains constantuntil there is a change inthe entity of the CSECT or
process beingdebugged. You canchange the current CSECT or process by:

66 Online Debugger Guide

Screen Design

m Overwritingthe name on the screen and pressing [Enter] to automatically initiate
the QUALIFY command

m |ssuingthe QUALIFY command on the prompt line
Prompt Line

The prompt lineis prefaced by an arrow () and functions inthe same manner as the
DEBUG> promptin prompt mode. You canuse the prompt lineonany screen during
menu mode; you cansubmit a singledebugger command or a string of commands at
anytime.

For a complete discussion of the debug expressions and commands that you can enter
on the prompt line, see Expression Components (see page 24)in Chapter 2, "Command
Considerations" and Debugger Commands (see page 39).

Display Area
Contents
The displayareaisreservedto display:
m The information being presented for each of the help screens
m Output you have requested from the debugger
m Informational and error messages supplied by the debugger
Specification Area

Contents

The specification area containsfieldsin which you can specify the desired options for
the command being used. The contents of the specification area varyfromscreento
screen, and not all screens havea specification area.

Screen content inthe specification area of the activity screens is saved for as longas the
command is current. This feature allows you to suspend action on a partiallyfilled
screen whileseeking further information.

For example, you can:

m Begin to fill theactivity screen for the Listcommand

m Switch to the Symbols help screen to review program or debugger symbols

m Return to the Listscreen, where all previous inputremainsintact

For more information aboutcommand currency, see 4 (see page 71).

Chapter 4: Debugging in Menu Mode 67

Screen Design

Selection Area

List of Procedures

The selection area presents a list of the debugger commands and global help screens
thatyou caninitiatefrom the screen. You canselect the next action by entering any
character other than a blankor an underscore inthe responsefield to the left of an
activity or help function.

Two Sections

You canselectactions from one of two sections:
m Section A displays the choice of command-specificactivityand help screens:

NEXT _ ACTIVITY OR _ HELP
_ AT LIST _SET SNAP RESUME _ DEBUG _WHERE

CEXIT PROMPT QUIT IOUSER
m Section B displaysthechoiceof global helpscreens:

HELP SCREENS: USAGE _ SYMBOLS _ KEYS
Command-specific Activities

When choosingfromSection A, you firstselect Activity (the default) or Help and then
choose one of the commands. If you select Activity, the system can:

m Execute immediatelyan EXIT, PROMPT, QUIT, or IOUSER command

m Displaytheactivity screen for an AT, LIST, SET, SNAP, RESUME, or DEBUG command

m Displaytheinformationrequested by the WHERE command
Control keys canalsobe used to request activities.

Selecting Help If you select Help from Section A, the system displays a
command-specific help screen.

If you markthe select byte for Activity or Help but do not choose a specific command,
the system displaysthe activity or help screen for the current command. The debugger
system displaysanerror messageif there is nocurrent command.

You canchoosea global help screen from Section B.

Each of the activity screens and global help screens is described in detail later in this
chapter.

68 Online Debugger Guide

Accessing Screens

Accessing Screens

Screen Hierarchy

Considerations

When moving between screens, you need to consider:
m Screen hierarchy

m Screen sequence

m Selection processing

m Command currency

Three Screen Levels

The debugger supports three levels of screens:

Screens Level
Usage screen Top
Activity screens Second
Help screens Third

Usage Screen

The Usage screen is aninformational global help screen thatcontains a listof the
debugger commands and a brief description of their functions. The Usage screen is the
default screen for the MENU command.

Activity Screens

Activity screens arescreens that provideyou with an area for specifyingcommand
options.The debugger provides activity screens for the AT, DEBUG, LIST, RESUME, SET,
and SNAP commands. You caninitiatethese commands from the activity screens once
you've entered the necessaryinformationinthe specificationarea.

Chapter 4: Debugging in Menu Mode 69

Accessing Screens

Screen Sequence

Help Screens

Help screens provide two types of assistance:

Command-specific help screens supply tutorial information on all the debugger
commands. When the command is one that uses an activity screen, the help screen
for that command also describes thefield options.

Global help screens provideinformation not associated with a particular command.
For example, the Symbols screen enables you to choose a display of programand
debugger symbols for the current session, and the Keys screen displays site-specific
PF-key assignments.

Next Activity or [Clear]

You can change to the next screen by:

Explicitly specifying the next activity to be performed

Usingthe [Clear] key (or the key associated with function 16)

Specifying the Next Activity

You canselectan activity by:

Using the control key associated with the activity to be performed

Default control key assignments arediscussedin"Headingarea" earlierinthis
chapter. The Keys screen displaysa listof the current function assignments for your
installation.

Entering a nonblank character in the response field to the left of the activity to be
performed

You canuseany character other than a blankor anunderscore. The choice of
actions is listed in the selection area of each screen. For a description of the
selection area, see Screen Design (see page 64)earlierinthis chapter.

70 Online Debugger Guide

Accessing Screens

Using [Clear]

The performance of [Clear] depends on the screen level from which you initiatethe
action:

m Froman activityscreen, [Clear] displaysthe Usage screen

® Fromthe Symbols screen, the Keys screen, or one of the command-specific Help
screens:

— When there is a current command, [Clear] displaystheactivity screen for the
current command

— When there is no current command, [Clear] displaystheUsage screen

m Fromthe Usage screen, [Clear] returns control to DC/UCF

Selection Processing
Order of Precedence

The debugger determines its next action based on these factors, in order of precedence:
Control key used to initiatea particularaction
Select byte(s) marked inthe selectionarea

Page number designated inthe heading area

A W N

Commands initiated from the menu-mode prompt line

5. Commands initiated from the specification area

Oncean actionis identified for processing, the system ignores all other requested
actions.

Example
For example, if the USAGE screen is your current screen and you choose the AT activity

from the selectionarea andthen press the CLEAR key, the CLEAR key takes precedence
andyou arereturned to DC/UCF.

Command Currency

Repeating a Command

Command currencyis a feature of menu mode that simplifies the debugging process
when you use the same command insuccessiveactions. With command currency, you
select the command the firsttime only.

Chapter 4: Debugging in Menu Mode 71

Accessing Screens

Defining the Current Command

The current command is defined as the most recent debugger command referenced on
a command-specific help screen or an activity screen. No current command exists until
you take either of two actions:

m Usethe screen-name option with the MENU command to name anactivity screen.

For example, the command MENU LIST establishes the LIST command as the
current command.

m Designate a command from the activity or help selection listatthe bottom of any
screen.

The newly-selected command functions as the current command.

The current command is the default command. This means that the debugger system
automatically displays theappropriatescreen for the current command.

You can chooseActivity or Help in the selection area, or press the control key associated
with either of these actions, withoutspecifyinga command. If no current command has
been established when you make any of the above choices, the debugger system
displaysanerror message.

Changing Command Currency
You can change command currencyinthe same way you establishit.

For example, if the current command is LIST, mark the select byte for the SET command
and press the control key associated with the current command-specific help screen (for
example, [PF4]). The Help screen for SET appears, becauseSET is the newly-designated
current command.

Command currency does not change when you:
m Enter a command on the screen prompt line.

For example, while setting breakpoints with the At screen, you can use the prompt
lineto request a memory displaywith the LIST command. In this case, the AT
command remains as the current command.

m Select aglobal helpscreen, thatis,ascreen thatis not associated with a specific
debugger command.

For example, you can move from the LIST command activity screento the Usage,
Symbols, or Keys screen without changingcommand currency.

72 Online Debugger Guide

Activity Screens

Activity Screens

Format

An activity screenis provided for any debugger command that has fields for
user-supplied values.Some fields arerequired and others have defaultvalues or are
optional. The command-specific area of the activity screens is the specification area; all
other areas havethe standard format presented in"Screen design" above.

At Screen
Purpose

You canusethe At screen to:

m Add breakpoints

m Modify breakpoints

m Delete breakpoints

® Inquireabout the breakpoints that have already been set

As explainedin "Debugger features", Chapter 1, breakpointtemporarily halts

processing, allowingyou to examine the results of execution up to the pointof
interruption.

'Remember': Processingis halted before the instruction atthe breakpointis executed.
The AT command can be usedinboth the setup and runtime phases of the debugger.
Two Sections

The specification area of the At screen has two separatesections:
m The firstsection sets new breakpoints:

ADD BREAKPOINT AT:

BEFORE: MAX AFTER: 0 EVERY: 1
m The second sectioninquires about existing breakpoints, or deletes them:

OTHER ACTION.......: (I-INQUIRE/D-DELETE/G-IGNORE)
BREAKPOINT OR <ALL>:

m Both sections modify breakpoints

You canspecify both sections of the screen at the same time.

Chapter 4: Debugging in Menu Mode 73

Activity Screens

Field Options

These are the field options for this area:
ADD BREAKPOINT AT:

Designates the locationinyour program that will contain a breakpoint. The
specified valuecanincludeone or more debug expressions resolvingtoanaddress
that contains a validinstruction or, for CA ADS dialogs, a valid CME.

Remember: Itis notvalidtoset a breakpoint at the target of an Assembler execute
(EX) instruction.

BEFORE: MAX

Specifies the execution pauseon encountering the instruction up to, but not
including, the specified number of times. The default(MAX) is to pause as many
times as the instructionis encountered.

AFTER: 0

Specifies that the debugger will pauseatthe breakpointafter the instruction has
been executed the specified number of times. The default (0) is to startpausing
when the instructionis firstencountered.

EVERY: 1

Specifies an execution pauseevery time the counter for the breakpointinstruction
reaches a multiple of the valuespecified. The default (1) is to pauseevery time the
instructionis encountered.

Tip: Ifyou don't change the defaults, the debugger will pauseeachtime the
breakpointinstructionis encountered.

OTHER ACTION...: (I-INQUIRE/D-DELETE/G-IGNORE)
m Irequests a listing of the breakpointlocationand characteristics
m D removes the breakpoint
m G bypasses the breakpoint butincrements the breakpoint counter
BREAKPOINT OR <ALL>:

Indicates the breakpoints affected by the Other Action field. You canindicatea
specific breakpoint(thatis, a debug-expression), or specify that the actionapplies to
ALL breakpoints within the current program or dialog.

74 Online Debugger Guide

Activity Screens

Debug Screen

Two Sections

The specification area of the Debug screen also has two sections:

m The firstsection designates the load module to be debugged:

DEBUG LOAD MODULE...: TYPE: P (P-PGM/D-DIALOG/M-MAP/T-TABLE/S-SS)
VERSION.............:

m The second sectioninquires about certain debugged modules or removes modules
from the debugging process:

OTHER ACTION........: (I-INQUIRE/D-DELETE)
LOAD MODULE OR <ALL>:
VERSION.............:

You cansubmitboth types of requests at the same time.

Field Options

These are the field options for this area:

DEBUG LOAD MODULE...:

Identifies the name of the entity to be debugged. The entity name can be up to
eight characters long.

TYPE: P (P-PGM/D-DIALOG/M-MAP/T-TABLE/S-SS)

Identifies the type of module to be debugged:

VERSION

P (the default) identifies a program
D identifies a CA ADS dialog

M identifies a map

T identifies aneditor code table

S identifies a subschema

Identifies the version of the load module to be debugged. Ifthe versionis not
specified, the debugger uses the version you have set with DCUF TEST, or if none,
version 1.

OTHER ACTION....: (I-INQUIRE/D-DELETE)

Irequests a display of the load module(s) being debugged in this session

D requests that the specified module(s) be removed from the listofload
modules known to the debugger

Chapter 4: Debugging in Menu Mode 75

Activity Screens

List Screen

LOAD MODULE OR <ALL>:

Indicates the load module(s) affected by the specified Other Action value. An
entity-name identifies the singleload module for which lor D is requested. Using
All requests I or D for all load modules being debugged.

VERSION

Identifies the version of the load module for which lor D is requested. If no
versionis specified and there is more than one version of the load module being

debugged, the debugger displaysor deletes all versions. Ifa versionis specified, the
debugger displays or deletes only the specified version.

Purpose

You canusethe Listscreen to displaystorageareas, session attributes, and debugger
symbols atyour terminal.The List screen can be used duringsetup and at runtime.

The specification area of the Listscreen looks like:

LIST: M (M-MEMORY/A-ATTRIBUTES)
MEMORY ONLY:

BEGIN LIST AT:

LENGTH.: - OR - END LIST AT:

LIST FORMAT..: B (C-CHARACTER/X-HEX/B-BOTH)

Field Options

These are the field options for this area:

LIST: M (M-MEMORY/A-ATTRIBUTES)

m M(the default) requests a listof an area of memory specified in the Memory
Only section of the screen
m Arequests alistofcurrent session attributes; no other options need to be
specified onthe screeninthis case
BEGIN LIST AT:

Specifies the beginninglocation for the display. The beginninglocationcaninclude
one or more debug expressions resolvingtoan address for which you have retrieval
security.

For information on the security methods used by the debugger, see CA IDMS
Security Administration Guide. This fieldis requiredifa memory displayisselected.

76 Online Debugger Guide

Activity Screens

Resume Screen

LENGTH........:
Specifies the number of bytes to be displayed.
END LIST AT:
Specifies the ending location for the display. The ending location canincludethe

same debugger entities as those specified for the beginning location.

Important! Ifa resourceis listed and the length or ending location exceeds the resource
boundary, the listis truncated atthe boundary and the debugger issues a warning
message.

When neither Length nor End List At is specified, the length of the displayis based
on two rules:

m Ifthe debug expressionis composed of a singlesymbol, the data characteristics
of the symbol determine the default length. The number of bytes displayedis
equal to the length attribute of the symbol.

m Ifthe expressiondoes not have data characteristics, thedefault length is 16
bytes.

LIST FORMAT..: B (C-CHARACTER/X-HEX/B-BOTH)
m Crequests adisplayincharacter format
m Xrequests adisplayinhexadecimal format

m B (the default) requests a displayin both character and hexadecimal format

Purpose

You canusethe Resume screen to instructthe runtime system to continue program
execution at the next instruction or atanother location or to continuestandard
processingofanabend.

The specification area of the Resume screen looks like:
RESUME: E (E-EXECUTION/A-ABEND)

EXECUTION ONLY:
LOCATION IF OTHER THAN BREAKPOINT:

Chapter 4: Debugging in Menu Mode 77

Activity Screens

Field Options

These are the field options for this area:
RESUME: E (E-EXECUTION/A-ABEND)
Indicates the next action of the runtime system:

m E (the default) requests that execution continue at the next instruction or at
another location as indicated by the address specified in the Execution Only
section of the screen

m Arequests that standard DC/UCF abend processing, including the execution of
any STAE exit, should continue

LOCATION IF OTHER THAN BREAKPOINT:

Specifies the location atwhich execution is to continue. The specified valuecanbe a
debug expressionthat resolves to anaddress containinga validinstructionora
valid CME (CA ADS dialogs only).

Set Screen

Purpose

You canusethe Set screen to modify selected areas of storage and session attributes.
The Set screen canbe used duringsetup and atruntime.

The specification area of the Set screen looks like:
SET: M (M-MEMORY/C-CHARACTER/X-HEX/B-BOTH)

MEMORY ONLY:
BEGIN SET MEMORY AT:

EQUALS......:

RESET.......: N (Y-YES/N-NO)

78 Online Debugger Guide

Activity Screens

Field Options

These are the field options for this area:
SET: M (M-MEMORY/C-CHARACTER/X-HEX/B-BOTH)

m M (the default) requests modification of the areaof memory specifiedin the
Memory Only section of the screen

m The other three options pertain to the setting of session attributes:
— Crequests adisplayincharacter format
- Xrequests adisplayinhexadecimal format
- Brequests a displayin both character and hexadecimal format
BEGIN SET MEMORY AT:

Specifies the beginninglocation of the entity to be modified. The beginninglocation
canbe a debug expression that resolves to anaddress for which you have update
security. A beginninglocationvalueis required when you are updating memory.

Ifthe debug expressionis a symbol with data characteristics, the length of the
symbol is usedinthe set. Otherwise, the data characteristics of the source field are
used inthe set.

Remember: The debugger does notallowa setacross resourceboundaries.
EQUALS......:

Indicates the new valuethat will beassigned to the entity. You cansupplyan
explicitvalueora data field name, as inthese examples:

h'03"

£'9956'

x'fOc4'

c'edit’

p'1234'

'customer-name-0145'

The EQUALS fieldis required when you are updating memory.
RESET........ N (Y-YES/N-NO)
Indicates the disposition of the original storagevalue:

m Y requests that the named storagebe reset to its originalvalueatthe end of
the debugging session;this optionis notsupported for release 10.2 of the
debugger

m N (the default) requests that the named storagenot be reset to its original
valueat the end of the debugging session

This option does not affect storage inthe debugged programitselfsincea special
copy of the program is loaded for the debugging session.

Chapter 4: Debugging in Menu Mode 79

Activity Screens

Snap Screen

Purpose

The Snap screen lets you create and write a dump to the DC/UCF log at any pointinthe
debugging session, in order to make a hard copy of storage contents.

Remember: To obtaina hard copy of the Snap dump, use the Batch Command Facility
utility.

The specification area of the Snap screen looks like:

SNAP: (A-AREA/T-TASK) TITLE:
SKIP: (1-ONE LINE/2-TWO LINES/3-THREE LINES/T-TOP OF NEXT PAGE)

AREA ONLY':
BEGIN SNAP AT:

LENGTH: -OR- END SNAP AT:

Field Options

These are the field options for this area:
SNAP: (A-AREA/T-TASK)

m Arequests a dump of the memory area specifiedinthe fields inthe Area Only
section of the screen

m Trequests a dump of all resources associated with the executing task
Thisisarequiredfield on the Snap screen.
TITLE:

Specifies an optional titlefor the snap.The titlecan containupto 42 characters. Do
not enclosethe titlein quotation marks. An apostrophein the titlemust be coded
as two singlequotes. When a titleis not specified, a default title is written to the
log:

USER user-id

SKIP: (1-ONE LINE/2-TWO LINES/3-THREE LINES/T-TOP OF NEXT PAGE)
Indicates the carriage control thatwill beused for placement of the title:
m 1skipsoneline
m 2 skipstwolines
m 3 skipsthreelines
m T skipstothe top of the next page

Ifyou specify nothing, two lines areskipped.

80 Online Debugger Guide

GlobalHelp Screens

BEGIN SNAP AT:

Specifies the location atwhich to begin the snap. The beginning locationcanbea
debug expressionthat resolves to an address for which you have retrieval security.
This fieldis required when snappinganarea.

LENGTH:
Indicates the number of bytes to be snapped.
END SNAP AT:

Indicates the ending location of the snap. The ending location can specify the same
types of debug expressions as thoseused inthe Begin Snap At field.

When you do not specify an ending location or a specific length, the default length
is based on two rules:

m Ifthe debug expressionis composed of a singlesymbol, the data characteristics
of the symbol determine the default length. The number of bytes dumped is
equal to the defaultlength of the symbol.

m Ifthe expression does not have data characteristics, the default length is 256
bytes.

Global Help Screens

Three Available

The debugger provides three global help screens, one each of commands, symbols and
control keys.

Chapter 4: Debugging in Menu Mode 81

GlobalHelp Screens

Usage Screen

Top-level Screen

The Usage screen is the top-level screen for menu mode. It presents a listofall
debugger commands and summarizes the command functions. The Usage screen looks
likethis:

IDMS-DC REL nn.n ONLINE DEBUGGER *** USAGE *** SETUP PAGE 1 OF 4
PROGRAM: V: CSECT:

->

PROCEDURAL COMMANDS.

EXIT.....RETURNS CONTROL TO IDMS-DC/UCF WITHOUT TERMINATING THE CURRENT DEBUGG
ER SESSION

QUIT.....TERMINATES THE DEBUGGER SESSION AND RETURNS CONTROL TO IDMS-DC/UCF.
PROMPT. ..INVOKES THE PROMPT MODE OF THE DEBUGGER.

RETRIEVAL COMMANDS.

AT....... ESTABLISHES OR MODIFIES BREAKPOINTS WITHIN A USER PROGRAM.

DEBUG. . ..DESIGNATES, DURING THE SETUP PHASE, THE ENTITY TO BE DEBUGGED OR
INQUIRES ABOUT ENTITIES KNOWN TO THE DEBUGGER.

TOUSER. ..DISPLAYS THE USER SCREEN THAT IS CURRENT WHEN A BREAKPOINT, PROGRAM
INTERRUPT OR TRAPPED ABEND IS ENCOUNTERBD.

NEXT _ ACTIVITY OR _ HELP:

T AT LTST _SET _ SNAP RESUME ~_ DEBUG _ WHERE
_BXIT _ PROMPT _ QUIT _ IOUSER
HELP SCREENS: _ USAGE ~ _ SYMBOLS _ KEYS

82 Online Debugger Guide

GlobalHelp Screens

Symbols Screen

Has a Specification Area

The Symbols screen lets you listprogramor debugger symbols owned by the entity
being debugged. The Symbols screenis the only global help screen with a specification
area:

IDMS-DC REL nn.n ONLINE DEBUGGER *** SYMBOLS *** SETUP PAGE 1 OF 1
PROGRAM: V: CSECT:

->

SYMBOLS TO DISPLAY: P (P-PROGRAM/D-DEBUGGER)
SYMBOL OR SEARCH STRING:

NEXT _ ACTIVITY OR _ HELP:

T AT _LIST _SET _ SNAP _ RESUME _ DEBUG _ WHERE
_ BEXIT _ PROMPT _ QUIT _ TOUSER
HELP SCREENS: USAGE ~ SYMBOLS _ KEYS
Field Options

These are the field options for the specificationarea:
SYMBOLS TO DISPLAY: P (P-PROGRAM/D-DEBUGGER)

Indicates whether programsymbols (P) or debugger symbols (D) for the current
entity areto be displayed. The defaultis P. The symbols arelisted alphabetically.

SYMBOL OR SEARCH STRING:

Identifies a specific symbol or string thatbegins the display. When this field does
not contain anentry, all specified programor debugger symbols aredisplayed from
the beginning of the list

Example

For example, to begin the display with programsymbols prefaced by MIS, you would
supply this information on the screen:

SYMBOLS TO DISPLAY: p (P-PROGRAM/D-DEBUGGER)
SYMBOL OR SEARCH STRING: mis

Chapter 4: Debugging in Menu Mode 83

GlobalHelp Screens

Keys Screen

Installation-specific

The Keys screen provides a listof the current control key assignments for your particular
installation. The information displayed on this screenreflects the installation-specific
key assignments made with the KEYS statement when the system was generated. The
Keys screen contains the most up-to-date information on control key assignments. Ifan
assignmentis modified after the system is generated, the Keys screen is also modified
automatically.

A sampleKeys screenis shown below.

IDMS-DC REL nn.n ONLINE DEBUGGER *** KEYS *k SETUP PAGE 1 OF 1
PROGRAM: V: CSECT:
->
PFKEY ACTIVITY PFKEY ACTIVITY
ENTER PROCESS CQURRENT SCREEN PF5 SYMBOLS SCREEN
CLEAR PREVIOUS LEVEL PF6 PFKEYS SCREEN
PA1 REFRESH PF7 DISPLAY PREVIOUS PAGE
PA2 EXIT PF8 DISPLAY NEXT PAGE
PF1 USAGE SCREEN PF9 CHANGE TO PROMPT MODE
PF2 UNASSIGNED PF10 UNASSIGNED
PF3 ACTIVITY SCREEN PF11 UNASSIGNED
PF4 ACTIVITY HELP SCREEN PF12 RESERVED

NEXT _ ACTIVITY OR _ HELP:

T AT _LIsT _SET _SNAP _ RESUME ~_ DEBUG _ WHERE
_BXIT _ PROMPT _ QUIT _ IOUSER
HELP SCREENS: _ USAGE ~ _ SYMBOLS _ KEYS

84 Online Debugger Guide

Chapter 5: Aids for Debugding Assembler,
COBOL, and PL/I Programs

Overview

This section contains the followingtopics:

Overview (see page 85)
Compiler Options (see page 85)
COBOL Programs (see page 86)
PL/I Programs (see page 95)

This chapter discusses onlinedebugger usage with Assembler, COBOL, and PL/I
programs. To effectively use the debugger with these languages, specific compiler
options must be utilized to produce listings to obtain required information. The
compiler options for each programming languageare showninthe next topic.

To usethe debugger with COBOL or PL/I programs,some preliminary computations
must be done to calculatethe exact location of variablestoragefields or object code to
set breakpoints. This chapter contains a discussion of these calculations and sample
debugger sessionsfor both languages.

Compiler Options

The followingtable shows the compiler options which providethe information required
to usethe onlinedebugger to analyzeyour program.

Language Object Code Variable Storage
VS-COBOL PMAP or CLIST DMAP
LIST or OFFSET MAP
VS-COBOL Il
IBM COBOL*

Enterprise COBOL*

PL/I LIST, XREF, and OFFSET STORAGE and MAP

Assembler LIST LIST

Chapter 5: Aids for Debugging Assembler, COBOL, and PL/I Programs 85

COBOLPrograms

*IBM COBOL includes:COBOL/370, COBOL for VM, COBOL for Z/OS and VM, COBOL for
z/0S.

*Enterprise COBOL includes Enterprise COBOL for z/0S.

COBOL Programs

This section discusses the preparation thatis necessary before beginningto debug a
COBOL programand provides a sample COBOL debugging session.

Note: The discussionand sampledebugger sessionthatfollowarefor a program
compiled under the VS-COBOL compiler. The basic principalsarethe same for other
compiler levels.Some specific differences arenoted. For more information on register
conventions and programstructure, refer to the appropriate|BM documentation.

Preliminary Computations

Before beginning the debugging process,itis recommended that you determine the
breakpoints that you want to set and the storage locationsthatyou want to examine.

The firststep is to compilethe program with appropriatelistingoptions. The following
options are recommended:

For VS-COBOL

SOURCE, CLIST or PMAP, DMAP
SOURCE gives a listing of the program source with compiler-assigned line numbers.

CLIST gives a cross reference of the assembler offset of each COBOL statement within
the program.

PMAP gives a complete listing of the equivalent assembler codefor the entire COBOL
program.

CLIST is sufficient for most debugging sessions, but programmers who are familiar with
assembler may wish to use the PMAP option.

By examiningthe register usage inthe assembler code, itis sometimes possibleto
access data fields ata particular breakpoint more efficiently than by using the methods
described below using CLIST and DMAP.

Either CLIST or PMAP will also causethe listing of global tables, particularly the TGT
whichis needed to determine the location of data variables.

86 Online Debugger Guide

COBOLPrograms

DMAP gives a listing of the BL or BLL number and displacement for each field in the
WORKING STORAGE and LINKAGE sections.

For COBOL Il or LE COBOL
SOURCE, OFFSET or LIST, MAP
SOURCE has the same meaning as for VS-COBOL described above. OFFSET and LIST have

the same meanings as CLIST and PMAP, respectively. MAP has the same meaning as the
VS-COBOL DMAP option.

Breakpoints
To determine the hexadecimal offset of an executable program instruction atwhichyou
want to set a breakpoint, perform the followingsteps:

1. Examinethe COBOL compiler portion of your listingand record the line number of
the statement at which you want to set the breakpoint:

00787
00788 OBTAIN EMPLOYEE DB-KEY IS EMP-DBKEY
00789 ON ANY-STATUS
00790 MOVE © TO DCNUML DCNUM2 DCFLG1 DCFLG2
00791 MOVE 0028 TO DML-SEQUENCE
00792 CALL ‘IDMSCOBI' USING SUBSCHEMA-CTRL
00793 IDBUSCOM (06)
00794 SR415
00795 EMP- DBKEY
00796 IDBUSCOM (43)
00797 IF NOT ANY-STATUS PERFORM IDMS-STATUS;
00798 ELSE
00799 NEXT SENTENCE.
00800 IF DB-REC-NOT-FOUND
00801 * MAP OUT USING DCTESTOL
00802 * MESSAGE IS EMP-NOT-FOUND-MESS
00803 * TO EMP-NOT-FOUND-MESS - END
00804 * DETAIL CURRENT
1. Examinethe condensed listing (CLIST) portion of the COBOL compiler listing, locate
the previously recorded COBOL line number, and record its corresponding
hexadecimal displacementvalue:
CONDENSED LISTING
785 MOVE 091CCC 786 GO 001(D0
790 MOVE 001CD6 791 MOVE 001CEE
792 CALL 001CF4 797 IF 001D3E
797 PERFORM 091D4C 800 IF 001074
805 MOVE 091080 806 MOVE 001098
807 MOVE 001D9E 808 MOVE 001DA4

Chapter 5: Aids for Debugging Assembler, COBOL, and PL/I Programs 87

COBOLPrograms

WORKING-STORAGE SECTION variables

To determine the register assignmentand offset of WORKING- STORAGE SECTION
variables, perform the followingsteps:

1. Locate the register assignment portion of the COBOL compiler listingand record the
baselocator (BL) number that corresponds to each register listed:

REGISTER ASSIGNMENT
REG 6 BL =1

Note: For some WORKING-STORAGE or LINKAGE SECTIONfields, there may not be a
fixed register which always points to the baselocator for linkage (BLL) cell.
However, the BL cell is ata given offset from the beginning of the TGT.

For non-LE-compliantcompilers, register 13 usually points to the TGT at runtime.
For LE-compliantcompilers, register 9 usually points to the TGT at runtime.

A copy of the TGT and WORKING STORAGE is allocatedinthe CA IDMS storage
pools for each taskat runtime. Therefore, you must not use the TGT or WORKING
STORAGE inthe programpool.

2. Locate the data map (DMAP) portion of the COBOL compiler listingand record the
displacement valueand register assignmentfor each variablethatyou want to
examine duringthe debugging process:

DNM=1-364 01 LONGTERM-TEST BL=1 038 DNM=1-364 DS
DNM=1-387 01 EMP-DBKEY BL=1 040 DNM=1-387 DS
DNM=1-406 01 FIRST-PAGE-SW BL=1 048 DNM=1-406 DS
DNM=1-432 88 LESS-THAN-A-PAGE DNM=1-432
DNM=4-276 01 SUBSCHEMA-CTRL BL=1 260 DNM=4-276 DS
DNM=4-303 02 PROGRAM-NAME BL=1 260 DNM=4-303 DS
DNM=4-325 02 ERROR-STATUS BL=1 268 DNM=4-325 DS
DNM=4-350 88 DB-STATUS-0K DNM=4-350
DNM=4-376 88 ANY-STATUS DNM=4-376
DNM=4-399 88 ANY-ERROR-STATUS DNM=4-399
DNM=4-425 88 DB-END-OF-SET DNM=4-425
DNM=4-452 88 DB-REC-NOT-FOUND DNM=4-452
DNM=6-028 02 DBKEY BL=1 26C DNM=6- 028 DS
DS

DNM=6-043 02 RECORD-NAME BL=1 270 DNM=6-043

LINKAGE SECTION variables

To determine the location of LINKAGE SECTION variables, performthe followingsteps:

88 Online Debugger Guide

COBOLPrograms

1. Examine the memory map portion of the COBOL compiler listingand locatethe
hexadecimal displacementvalues for the TGT and for the baselocator for linkage

(BLL) cells:
MEMORY MAP

TeT 00868
SAVE AREA 00868
SWITCH 00880
TALLY 00884
SORT SAVE 00888
ENTRY- SAVE 008BC
TEMP STORAGE-3 00A78
TEMP STORAGE-4 00A78
BLL CELLS 00A78
VLC CELLS 00A8C

1. Perform the followingcalculation to determine the displacementvaluefor the BLL
cells:

BLL CELLS - TGT = displacement for BLL cells within TGT

X'A78' - X'868' = X'208'

Note: This valuewill beused laterin the runtime phaseto locatethe actual BLL
cells.

2. Locate the BLL number for the desired LINKAGE SECTION variablefromthe DMAP
portion of the compiler listing:

DNM=14-361 01 PASS-DEPT- INFO BLL=3 000 DNM=14-361 D
DNM=14-391 02 PASS-DEPT-ID BLL=3 000 DNM=14-391 D
DNM=14-416 02 PASS-DEPT-INFO-END BLL=3 004 DNM=14-416 D
DNM=14-444 01 ERROR-DATA BLL=4 000 DNM=14-444 D
DNM=14-467 02 ERROR-DEPT-ID BLL=4 000 DNM=14-467 D
DNM=15-000 02 ERROR-MESSAGE- CODE BLL=4 004 DNM=15-0060 D
DNM=15-031 02 ERROR-DATA-END BLL=4 008 DNM=15-031 D

Chapter 5: Aids for Debugging Assembler, COBOL, and PL/I Programs 89

COBOLPrograms

1. Savethe displacementvalues of the BLL cells and the BLL numbers of LINKAGE
SECTION variables for useduringthe runtime phaseto obtain the absoluteaddress
for LINKAGE SECTION values.

You canusethe followingtableto record displacementinformation before startinga
debugger session.

90 Online Debugger Guide

COBOLPrograms

Program Name____ Comment _____
Line Number Displacement

Variahle-Storage Field Displacement Base Register
Linkage Section Field BLL Displacement Absolute Address

Chapter 5: Aids for Debugging Assembler, COBOL, and PL/I Programs 91

COBOLPrograms

Sample COBOL Online Debudger Session

To usethe onlinedebugger with a DC/UCF VS-COBOL program, perform the steps
shown below. The steps may vary depending on the release level of the compiler;
however, the basic methodology is the same. The following examples correspond to the
samplelistingsshownin Preliminary Computations (see page 86).

1.

Compile the programwith the DMAP and CLIST compiler options before definingit
to the DC/UCF system.

Note: To obtainthe complete Assembler source code, substituteCLIST with PMAP
as describedin Preliminary Computations (see page 86).

Record breakpoint and storage displacements, as explained earlier under COBOL
Programs.

Initiatethe debugger session by entering the DEBUG task code from the DC/UCF
system. The DEBUG> prompt displaysindicatingthatthe debugger is in control:

ENTER NEXT TASK CODE:
debug

DEBUG>

Specify the programto be debugged by entering DEBUG followed by the program
name. The debugger verifies the program name:

DEBUG>
debug testprog

DEBUG TESTPROG
DEBUG> DEBUGGING INITIATED FOR TESTPROG VERSION 1
DEBUG>

Establish breakpoints by issuing the AT command followed by a dollar sign, which
signifies theaddress of the beginning of the program; follow the dollar sign with the
command's hexadecimal offset. The debugger verifies the establishmentof the
breakpoint. The following examplesets a breakpointatline797 in TESTPROG based
on the SOURCE and CLIST shownin Preliminary Computations (see page 86).

DEBUG>
at $ + @ld4c

AT $ + @1D4C
AT> $ + @1D4C ADDED
DEBUG>

92 Online Debugger Guide

COBOLPrograms

After all breakpoints havebeen set, leave the setup phaseof the debugger session
by issuing the EXIT command:

DEBUG>
exit
Note: You will alsobeableto set new breakpoints whenever you arestopped ata

breakpointduringthe runtime phase.

Initiatethe runtime phaseby issuingthetask code that invokes the taskin which
the program participates:

ENTER NEXT TASK CODE:
deptmod

When a breakpointis encountered at runtime, the debugger assumes control and
identifies the address, program, and the debugger expressionthat was used to
establish the breakpoint:

AT OFFSET @1D4C IN TESTPROG EXPRESSION $+@1D4C
DEBUG>

Chapter 5: Aids for Debugging Assembler, COBOL, and PL/I Programs 93

COBOLPrograms

Examine program variablestorageby issuing LISTcommands. Use indirect
addressingand the previously noted register and offset. The followingexamplelists
the valueof the first32 bytes of SUBSCHEMA-CTRL. The DMAP listing for
SUBSCHEMA-CTRL shows thatitis addressed through BL=1 at offset hexadecimal
260. The REGISTER ASSIGNMENT portion of the listingshows thatbaseregister 6
contains the valuefrom BL=1.

Note: Registers are sometimes used for multiple purposes withina COBOL
program. When a breakpointis set usingthe CLIST value, the equivalentassembler
code to load the BL value into R6 may not have occurred. If you are not certaina
register contains the appropriatevalue, usethe method for listing LINKAGE
SECTION variables described below. That method is also always valid for WORKING
STORAGE variables.

list %:r6 + @60 32

LIST %:R6 + @60 32
00140270 E3CSE2E3 D7D9D6C7 FOFOFOFO 3D3D4FO6 *TESTPROGOOOO.. | .*
00140280 C4(5D7C1 DOE3D4C5 D5E34040 40404040 *DEPARTMENT *

To examine LINKAGE SECTION variables, perform the following steps:

a. Register 13 normallycontains theaddress of the TGT for VS-COBOL programs.
Use register 9 for later COBOL compilers. Usethe previously determined offset
to find the desired BLL cell.The offset of the BLL cells for TESTPROG was found
to be X'208', as shownin Preliminary Computations (see page 86). The
following command lists the BLL cells usingindirectaddressing.

DEBUG>
list %:rR13 + @208

LIST %:R13 + @208
(BLL1) (BLL2) (BLL3) (BLL4)
001499E0 0000000 OOCEOOOO 000000 O0149AC8 *............... H*

Each BLL is 4-bytes long. Note the absoluteaddress located in the BLL for the
field that you want to display.

b. Suppose we wishto displaythe field named ERROR-DATA. The DMAP shows
thatits baselocatorisin BLL=4. List the absoluteaddress to display thefirst
field.

DEBUG>
LIST @149ac8 9
00149AC8 F1F1F1F1 C4CSD7E3 00 *1111DEPT *

c. Alternativelyuse an offset from the firstfield to display another field addressed
through the same BLL. For example, use the followingcommandto display
ERROR-MESSAGE-CODE.

DEBUG>
LIST @149ac8+a4 4
00149AC8 (C4(5D7E3 *DEPT *

94 Online Debugger Guide

PL/T Programs

PL/I Programs

8. Enter the RESUME command from the DEBUG> prompt to continue program
execution:

DEBUG>
resume

9. Enter the QUIT command from the DEBUG> prompt to end a debugger session:

DEBUG>
quit

QUIT
QUIT DEBUGGER
ENTER NEXT TASK CODE:

This section discusses the preparation that is necessary before beginningto debug a PL/I
program and provides a sample PL/I debugging session.

Note: The discussionand sampledebugger sessionthatfollowarefor aprogram
compiled under the PL/I Version 2.3 compiler.The basic principalsarethe same for
other compiler levels. For more information on register conventions and program
structure, refer to the appropriate IBM documentation.

Preliminary Computations

Before beginning the debugging process,itis recommended to determine the
breakpoints that you want to set and the storage locationsthatyou want to examine.

Breakpoints

To determine the hexadecimal offset of an executable program instruction atwhichyou
want to set a breakpoint, perform the followingsteps:

1. Examinethe cross-reference tableportion of your link-editlisting for an entry in the
form program-namel. Record the hexadecimal offset listed under ORIGIN:

CONTROL SECTION
NAME ORIGIN
PLISTART 00

PLIMAIN 50
*PLIPROG2 58
*PLIPROG1 3F0

IDMSPLI 12A8

CROSS REFERENCE TABLE

LENGTH
50

394
EB4

284

ENTRY

NAME LOCATION
PLICALLA 6
PLI3PROG 3F8

Chapter 5: Aids for Debugging Assembler, COBOL, and PL/I Programs 95

PL/I Programs

1. Examinethe PL/I compiler portion of your listingand record the line number of the
statement at which you want to set the breakpoint:

133 WORK_LAST = EMP_LAST NAME 0415;
134 WORK FIRST = EMP_FIRST NAME 0415;
/*
MAP OUT (DCTESTO1) OUTPUT DATA YES
MESSAGE (INITIAL INSTRUCTIONS MSG 1)
LENGTH (25)
DETAIL NEW KEY (DBKEY).
*/
135 /* IDMS PLI/I DML EXPANSION */ DO;
136 DML SEQUENCE=0013;
137 DCCFLG1=0;
138 DCCFLG1=13;
139 DCCFLG2=16;
140 DCCFLG3=0;
141 DCCFLGA=4;
142 DCCFLG5=72;
143 DCCFLG6=0;

1. Examinethe Assembler listing generated by the LIST option, locatethe previously
recorded PL/I linenumber, and recordits corresponding hexadecimal displacement

value:
* STATEMENT NUMBER 136
0006AA 41 80 7 21C LA 8, SUBSCHEMA CTRL.D
CCALIGN AREA.FILLE
RO0O1
00G6AE 58 40 3 124 L 4,292(0,3)
000682 50 40 8 008 ST 4,55C_ERRSAVE AREA

.DML_SEQUENCE

1. Add the origin offset and the breakpointinstruction's hexadecimal displacementto
obtainthe breakpointaddress:

X'3FO' + X'6AA' = X'A9A'
AUTOMATIC Variables
To determine the offset of AUTOMATIC variables, locatethe variablestoragemap and

record the displacement valuefor each variablethatyou want to examine duringthe
debugging process:

MAP_WORK_REC 1 7% 31C AUTO
WORK_DEPT ID 1 7% 31C AUTO
WORK_EMP_1ID 1 800 320 AUTO
WORK_FIRST 1 804 324 AUTO
WORK_LAST 1 814 32E AUTO
WORK_ADDRESS 1 829 33D AUTO
WORK_STREET 1 829 33D AUTO
WORK_CITY 1 849 351 AUTO
WORK_STATE 1 864 360 AUTO
WORK_ZTP 1 866 362 AUTO
WORK_DEPT_NAME 1 871 367 AUTO

You canlocate AUTOMATIC variables atruntimethrough register 13.

96 Online Debugger Guide

PL/I Programs

STATIC INTERNAL Variables

To determine the location of STATIC INTERNAL variables, examinethe staticinternal
storage map to find the hexadecimal offset for each variablethatyou want to examine
duringthe debugging process.

You canlocateSTATIC INTERNAL variables atruntimethrough register 3.

You canusethe followingtableto record displacementinformation before startinga
debugger session.

Chapter 5: Aids for Debugging Assembler, COBOL, and PL/I Programs 97

PL/I Programs

Program Name ___________ ORIGIN __ .
comment____

Line Number Beginning Offset+ ORIGIN = C“At"Value
Variable Name 0 ffset Register DSA Nesting

98 Online Debugger Guide

PL/T Programs

Sample PL/I Online Debudgder Session

To usethe onlinedebugger with a DC/UCF PL/I program, perform the followingsteps:

1.

Compile the programwith the LIST, OFFSET, XREF STORAGE, and MAP compiler
options before definingit to the DC/UCF system.

Record breakpoint and storage displacements, as explained above.

Initiatethe debugger session by entering the DEBUG task code from the DC/UCF
system. The DEBUG> prompt displaysindicatingthatthe debugger isincontrol:

ENTER NEXT TASK CODE:
debug

DEBUG>

Specify the programto be debugged by entering DEBUG followed by the program
name. The debugger verifies the program name:

DEBUG>
debug pliprog

DEBUG PLIPROG
DEBUG> DEBUGGING INITIATED FOR PLIPROG VERSION 1
DEBUG>

Establish breakpoints by issuing the AT command followed by a dollar sign, which
signifies theaddress of the beginning of the program; followthe dollar sign with the
command's hexadecimal offset. The debugger verifies the establishmentof the
breakpoint:

DEBUG>
at $ + @9a

AT @A9A
AT> @A9A ADDED
DEBUG>

After all breakpoints havebeen set, leave the setup phaseof the debugger session
by issuing the EXIT command:

DEBUG>
exit

Chapter 5: Aids for Debugging Assembler, COBOL, and PL/I Programs 99

PL/I Programs

Initiatethe runtime phaseby issuingthetask code that invokes the taskin which
the program participates:

ENTER NEXT TASK CODE:
deptmod

When a breakpointis encountered at runtime, the debugger assumes control and
identifies the address, program, and the debugger expressionthat was used to
establish the breakpoint:

AT OFFSET @A9A IN PLIPROG EXPRESSION @BDE
DEBUG>

Examine program variablestorageby issuing LISTcommands. Use indirect
addressingand the previously noted register and offset:

list %:rl3 + @31c 32

LIST %:R13 + @31C 32
001DB7F4 F3F2FOFO FOFOFOF4 C8C5D9C2 C5DOE340 *32000004HERBERT*
001DB804 4040C3D9 C1D5C540 40404040 40404040 * RANE *

If your program contains any nested procedures or begin blocks, you will need to
navigatethe chain of dynamicstorageareas (DSAs) to obtain the correct
variable-storagebaseaddress. To navigate the DSA chain for nested procedures or
begin blocks, listthe contents of register 13 to determine the DSA for the current
level of nesting:

list %:rl3

LIST %:R13
001C7A30 84200000 001C7948 0000DOOO 5E422A20 *D...........

--*

For subsequent levels of nesting, perform the followingsteps:

a. Listthe absoluteaddress whichis located 4 bytes off of the previously
displayedline:

list @1c7948

LIST @1C7948
001C7948 84200000 001C74D8 00000000 4E4227EC *D...... Q....+...*%

b. ListAUTOMATIC variable-storagevalues after the final level of nesting has been
reached. Use the absoluteaddress as the baseaddress, whichis located 4
bytes off of the display:

DEBUG>
list 1c74d8 + @31c 32

LIST 1C74D8 + @31C 32
001C77F4 F3F2FOFO FOFOFOF4 C8C5D9C2 C5D9E340 *32000004HERBERT *
001C7804 4040C3D9 C1D5C540 40404040 40404040 * (RANE *

100 Online Debugger Guide

PL/T Programs

To examine variables defined as BASED storage, perform the following steps:

C.

Listthe contents of the associated pointer variableusingindirectaddressing:

DEBUG>
list %:rl3 + @d4

LIST %:R13 + @D4

001499E0 00149AC8 00000000 0OOEOEOO OOEEEOEO *...H............ *
d. Listthe absoluteaddress to displaythe BASED variable's values:

DEBUG>

LIST @149ac8 16

00149AC8 FI1F1F1F1 C4CSD7E3 00000000 00000000 *1111DEPT........ *
Enter the RESUME command from the DEBUG> prompt to continue program
execution:
DEBUG>
resume

Enter the QUIT command from the DEBUG> prompt to end a debugger session:

DEBUG>

quit

QUIT
QUIT DEBUGGER
ENTER NEXT TASK CODE:

Chapter 5: Aids for Debugging Assembler, COBOL, and PL/I Programs 101

Index

A

address symbols ¢ 24
atsign (@)« 24
cent sign (¢.) 24
dollarsign (S)*24
Assembler programs ¢ 85,95
compiler options ¢ 85
debugging aids ¢ 85
LIST option e 95

B

breakpoints ¢ 10, 18, 40, 86, 95
bypassing 40
encountering ¢ 18, 40
listing * 40
modifying e 40
removing ¢ 40
setting » 10, 18, 40, 86, 95
status ¢ 40
usinge 40

C

COBOL programs e 85, 92
compiler options ¢ 85
debugging aids * 85

sampledebugger session ¢ 92
commands e 36, 38, 39, 40, 44, 46,47,51,52, 54,55,

56, 60, 62, 63,92,99
AT » 40,92,99
DEBUG ¢ 44,92,99
EXIT » 46,92, 99
formatting ¢ 38
IOUSER 47
LIST ¢ 47,92,99
MENU e 51
modifying e 36
PROMPT e 52
QUALIFY e 52
QUIT ¢ 54,92,99
RESUME e 55, 92,99
SET * 56
SNAP ¢ 60
WHERE ¢ 62

compileoptions ¢ 86

COBOL Il or LE COBOL * 86

LIST « 86

MAP e 86

OFFSET e 86

SOURCE » 86
VS-COBOL » 86

CLIST 86

DMAP « 86

PMAP e 86

SOURCE 86

currency ® 20, 24, 29, 44,52

dialogprocess ¢52
inquireaboute 52
load module » 44
process ¢ 29
program e 20
reset ¢ 52

D

data characteristics®32, 33, 35
expressions with ¢ 32
expressions withoute 33

datafields » 28
displaying 28
qualifying 28

data values ¢ 37
numeric ¢ 37
strings e 37

DEBUG « 13,14
command ¢ 13
prompt ¢ 13,14
taskcode s 13,14

debug expressions 31, 47
data characteristics ¢ 47
default length 31

debug expressions,components of 24,27, 28, 30,

31
address symbols ¢ 24
debugger symbols ¢ 24
general registers ¢ 24

program status word (PSW) ¢ 24

program symbols e 28
special operators ¢ 30
standard operators ¢ 30
system symbols ¢ 24

Index 103

user symbols 27
debugger commands ¢ 35, 36, 38
formatting » 38
modifying e 36
parsing 35
debugger labels 24
cent sign (¢.) » 24
dollarsign (S) 24
debugger markers ¢ 24
atsign (@)« 24
debugger sessione12,13,14,17,18,19, 44, 46, 54,
85,92,99
Assembler programs e 85
COBOL program, samplee 92
COBOL programs ¢ 85
compiler options ¢ 85
definition e 12
initiating* 13,44, 85
leavinge 13,54
length considerations ¢ 19
menu mode ¢ 14
PL/I program, sample e 99
PL/I programs e 85
prompt mode ¢ 12
runtime phasee 18
setup phase 17
terminating ¢ 13, 46
debugger variables #47
displayinge47
definingentities ¢ 12
to DC/UCF » 12
to the debugger » 12

M

memory ¢ 10
displaying 10

N

numeric values ¢ 37
decimal e 37
fullword « 37
halfword 37
hexadecimal e 37

P

PL/I programs e 85,99
compiler options ¢ 85
debugging aids ¢ 85

sampledebugger session 99
program symbols ¢ 28,29
datafieldnames ¢ 28
linenumbers » 29
qualifying 29

R

resource ¢ 47
boundary e 47
displaytruncation ¢47
runtime phasee 19
commands ¢ 19

S

see=breakpoints valid breakpoints ¢ 20
see=storagevalues memory ¢ 10,12
modifyinge 10
session attributes 47, 56
displayinge47, 56
setting ¢ 56
sessionmodes ® 13,14,51,52
menu ¢ 14,51
prompt e 13,52
special characters ¢ 24,30
atsign (@) e 24
cent sign (¢.) ¢ 24
dollarsign ($) 24
percent sign (%) ¢ 30
storage values ¢ 47,56
displayinge47
modifying e 56
stringvalues « 37, 38
character e 37
hexadecimal ¢ 37
numeric ¢ 37

104 Online Debugger Guide

	CA IDMS Online Online Debugger Guide
	CA Technologies Product References
	Contact CA Technologies
	Contents
	1: Introduction
	About the Debugger
	Debugger Features
	Debugging Process
	Prompt Mode
	Menu Mode
	Setup Phase
	Runtime Phase

	Session Considerations
	Performance Standards
	Valid Breakpoints
	Program Currency

	2: Command Considerations
	About this Chapter
	Expression Components
	Debugger Symbols
	General Registers Symbols
	DC/UCF System Symbols

	User Symbols
	Program Symbols
	Data Field Names
	Line Numbers
	Qualifying Program Symbols

	Expression Operators

	Length Attributes
	Expressions with Data Characteristics
	Expressions without Data Characteristics

	Parsing Rules
	Command Modification
	Delimiters
	Data Values
	Command Format

	3: Debugger Commands
	Summary of Commands
	AT
	DEBUG
	EXIT
	IOUSER
	LIST
	MENU
	PROMPT
	QUALIFY
	QUIT
	RESUME
	SET
	SNAP
	WHERE

	4: Debugging in Menu Mode
	Features of Menu Mode
	Screen Design
	Heading Area
	Display Area
	Specification Area
	Selection Area

	Accessing Screens
	Screen Hierarchy
	Screen Sequence
	Selection Processing
	Command Currency

	Activity Screens
	At Screen
	Debug Screen
	List Screen
	Resume Screen
	Set Screen
	Snap Screen

	Global Help Screens
	Usage Screen
	Symbols Screen
	Keys Screen

	5: Aids for Debugging Assembler, COBOL, and PL/I Programs
	Overview
	Compiler Options
	COBOL Programs
	Preliminary Computations
	Sample COBOL Online Debugger Session

	PL/I Programs
	Preliminary Computations
	Sample PL/I Online Debugger Session

	Index

