

Mapping Facility Guide
Version 18.5.00

CA IDMS™

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time. This

Documentation is proprietary information of CA and may not be copied, transferred, reproduced, disclosed, modified or
duplicated, in whole or in part, without the prior wri tten consent of CA.

If you are a licensed user of the software product(s) addressed in the Documentation, you may print or otherwise make
available a reasonable number of copies of the Documentation for internal use by you and your employees in connection with
that software, provided that all CA copyright notices and legends are affixed to each reproduced copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable

l i cense for such software remains in full force and effect. Should the license terminate for any reason, i t is your responsibility to
certi fy in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,

DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such

l icense agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions

set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2013 CA. Al l rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

CA Technologies Product References

This document references the following CA products:

■ CA IDMS™/DB

■ CA ADS™

■ CA IDMS™/DC

■ DC/UCF

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the

information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

■ Online and telephone contact information for technical assistance and customer

services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you

can send a message to techpubs@ca.com.

To provide feedback about CA Technologies product documentation, complete our
short customer survey which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://ca.com/docs
http://ca.com/docs

Contents 5

Contents

Chapter 1: Introduction 13

Syntax Diagram Conventions ... 13

Chapter 2: Introduction to the Mapping Facility 17

Overview .. 18

What is the Mapping Facility?.. 18

Online and Batch Capabilities .. 19

Input/Output Operations.. 19

What's in this Chapter? ... 20

The Online Compiler .. 20

How Does it Work? .. 20

What Functions can it Perform?.. 20

A Sample Session.. 21
The Batch Compiler and Utility .. 30

Automatic Editing and Error Handling.. 31

Alternative Maps .. 33

Terminals Supported by the Mapping Facility .. 35

Chapter 3: Map Design Considerations 37

Overview .. 37

Preliminary Information Gathering... 37

Application-specific Information ... 38

Site-specific Information ... 38

Designing Maps .. 39

General Considerations... 40

Control Key Standards ... 41

Naming Conventions ... 41

Layout and Display Standards .. 43

Pageable Map Considerations ... 44

Designing Map Fields... 46

Types of Fields .. 47
Attributes for Fields ... 48

Chapter 4: Automatic Editing and Error Handling 51

Automatic Editing... 51

6 Mapping Facility Guide

Error Handling... 53

Enabling Automatic Editing and Error Handling ... 53

Overview .. 53

Default Values... 54

Map-level Editing ... 54

Field-level Editing ... 54

Automatic Editing Criteria .. 55

Overview .. 55

Display Characteristics .. 56

Data Conversion ... 57

Input Verification ... 57

Internal Pictures ... 57
External Pictures... 59

Edit and Code Tables ... 69

Enabling tables.. 73

Error-Handling Criteria .. 76

Attributes for Correct and/or Incorrect Input... 77

Error Messages ... 78

Alarm Status on Input Error ... 81

Automatic Editing at Runtime.. 81

Mapin Operations .. 82

Mapout Operations ... 85

Error Handling at Runtime.. 86

Chapter 5: Pageable Maps 91

Overview .. 91

Areas of Pageable Maps.. 92

Map-Paging Sessions ... 94

Sequenc e of Events in a Map-paging Session ... 96

Dialog and Program Operations .. 99

Map-Paging Session Options.. 99
Building and Displaying Fields..105

Retrieving Modified Data..108

Runtime Considerations..109

Creating Pageable Maps ...110

Overview ..110

Using the Online Compiler..111

Using the Batch Compiler ...111

Chapter 6: The Help Facility 113

Overview ..113

Contents 7

Terminology ..113

Creating Map-Level Help ..114

Creating the Text of the Help Message ..114

Associating the Help Text with a Map ..115

Testing the Results ...118

Creating Field-Level Help ..119

Creating the Text of the Help Message ..120

Associating the Help Text with a Field..121

Testing the Results ...124

Using the Help System...125

Overview ..125

Chapter 7: Runtime Considerations 127

Overview ..127

Mapout and Mapin Operations ...128

CA ADS Dialogs..129

Other Languages...129

Map Inquiry and Modification ...130

Statements ..130

Temporary VS Permanent Modifications...131

Write Control Characters (WCC)..131

Message Field Considerations ...132

Attributes...133

Chapter 8: Online Compiler Overview 135

Overview ..135

Accessing the Online Compiler ..136

Using the Online Compiler..136

Overview ..136

What Screens are Used? ...137
Using the Main Menu Screen ...138

Using the Action Bar ..139

Overview of a session ..145

Using the function keys...146

Chapter 9: Online Mapping Compiler Reference 151

Overview ..151

The Main Menu Screen ...152

General Options—Page 1 ...154

General Options—Page 2 ...157

8 Mapping Facility Guide

Map-level Help Text Definition ..159

Associated Records ..160

Layout...162

Field Definition Screens...165

Field Definition ...165

Map Read/write Options ..168

Additional Edit Criteria ..172

Field-level Help Text Definition ...175

Device-dependent Options...176

User-defined Edit Modules...178

Pageable Options ...179

Chapter 10: Batch Compiler and Batch Utility Overview 181

Overview ..181

Compiler and Utility Functions ..181

Panels and Maps ..183

Chapter 11: Batch Compiler Coding Considerations 187

Overview ..187

Compiler Security ...187

Security at the Compiler Level ...188

Security at the Map Level ...189

Compiler Signon ...189

Compiler Directives..191

Compiler Statement Coding Requirements...192

Compiler Statement Sequencing...192

MAP AUTOPANEL and MFLD Statement Sequencing ..193

PANEL, PFLD, MAP, and MFLD Statement Sequencing ...193

Compiler Action Verbs...194

The MODIFY Verb ...196
The DELETE Verb ..197

Chapter 12: Batch Compiler Statements 199

Overview ..199

Attributes List..201

How to use the Attributes List ...201

Statements for Automatic Panel Definition ..206

Overview ..206

MAP AUTOPANEL Statement Syntax ..207

MFLD Statement Syntax..218

Contents 9

Statements for Manual Panel Definition ...236

PANEL Statement Syntax ..236

PFLD Statement Syntax ...239

MAP Statement Syntax ...246

Chapter 13: Batch Compiler Execution and JCL 255

Overview ..255

Special Coding Features of the Batch Compiler..255

Defining Versions of Maps for Different Devices ...256

Positioning Maps on Different Devices ..261

Batch Compiler JCL...263

z/OS JCL ..263
z/VSE JCL ..264

z/VM JCL...266

Compiler Reports and Messages ...267

Diagnostic Messages..267

Error Messages ...268

Chapter 14: Batch Utility Reference 273

Overview ..273

Batch Utility Statements ...274

Batch Utility Statements ...274

PANEL Statement ...279

MAP Statement ..280

Batch Utility JCL ..282

z/OS JCL ..283

z/VSE JCL ..284

z/VM JCL...285

Sample JCL ...286

Appendix A: Integrated Data Dictionary Mapping Entities 289

Overview ..289

Data Dictionary Entities Used by the Mapping Compilers..290

Builder Codes ..291

Element Occurrences ..292

Record Occurrences...294

Panel Occurrences ...296

Map Occurrences ...297

Message Occurrences..298

Table Occurrences..299

10 Mapping Facility Guide

Map and Table Load Module Occurrences ..300

Data Dictionary Entities Updated by Mapping Compilers ..301

Map Compiler Statements..302

Online Mapping Compiler Screens ..302

Critical Changes ..304

Coordinated Use of the Online and Batch Compilers ..306

Appendix B: Using Glass TTY Terminals 309

Overview ..309

TTY Environment ..310

Restrictions..312

Preparing Device Independence Statements ..313
RHDCTTBL JCL and Execution ...321

z/OS JCL ..321

z/VSE JCL ..322

z/VM JCL...322

Appendix C: User-Written Edit Modules 325

Overview ..325

Coding Considerations...326

Registers Immediately Prior to User Edit Module..327

System Macros ...328

System DSECTs..329

Input Modules for Mapin Operations...330

Format of Data..331

Parameters Passed to Input Modules ..332

Macros for Input Modules ..333

Sample Input Module ..333

Output Modules for Mapout Operations ..337

Format of Data..337
Parameters Passed to Output Modules ...338

Macros for Output Modules...338

Sample Output Module...339

Appendix D: Generating Edit and Code Tables 341

How to Define Tables ..341

Stand-Alone Tables ..342

Overview ..342

Examples ..346

Use of the NOT FOUND Condition ..348

Contents 11

Built-In tables ..350

Overview ..350

Examples ..352

Appendix E: Estimating Pageable Map Storage 353

Definition ...353

Calculations Used ...353

Estimating the Amount of Storage per Map Page..354

Amount of Storage per Detail Occurrence ..354

Number of Detail Occurrences per Detail Area ..355

Determining the Number of Pages per Pageable Map..357

Appendix F: Alternative Maps 359

Overview ..359

Generating Alternative Maps...359

Generating and Assigning Alternate Map Tables ...360

Generating Map Tables ...361

Assigning Map Tables to Users ..362

Appendix G: PL/I DML Statements for Pageable Maps 363

Overview ..363

DECLARE MAP ...364

MAP IN ...365

MAP OUT ...367

STARTPAGE..370

ENDPAGE ...371

Index 373

Chapter 1: Introduction 13

Chapter 1: Introduction

This manual describes the capabilities of the CA IDMS Mapping Facil ity and serves as a
reference tool for the CA IDMS applications developer in designing maps.

It also provides an overview of the interactions between the mapping facil ity, the
Integrated Data Dictionary (IDD), user-written programs, and CA ADS for CA IDMS

dialogs. This manual also describes the online and batch methods of map-definition.

Syntax Diagram Conventions

The syntax diagrams presented in this guide use the following notation conventions:

UPPERCASE OR SPECIAL CHARACTERS

Represents a required keyword, partial keyword, character, or symbol that must be
entered completely as shown.

lowercase

Represents an optional keyword or partial keyword that, if used, must be entered
completely as shown.

italicized lowercase

Represents a value that you supply.

lowercase bold

Represents a portion of the syntax shown in greater detail at the end of the syntax

or elsewhere in the document.

◄─

Points to the default in a l ist of choices.

►►────────────────────

Indicates the beginning of a complete piece of syntax.

────────────────────►◄

Indicates the end of a complete piece of syntax.

─────────────────────►

Indicates that the syntax continues on the next l ine.

►─────────────────────

Indicates that the syntax continues on this l ine.

────────────────────►─

Indicates that the parameter continues on the next l ine.

Syntax Diagram Conventions

14 Mapping Facility Guide

─►────────────────────

Indicates that a parameter continues on this l ine.

►── parameter ─────────►

Indicates a required parameter.

►──┬─ parameter ─┬─────►
 └─ parameter ─┘

Indicates a choice of required parameters. You must select one.

►──┬─────────────┬─────►
 └─ parameter ─┘

Indicates an optional parameter.

►──┬─────────────┬─────►
 ├─ parameter ─┤
 └─ parameter ─┘

Indicates a choice of optional parameters. Select one or none.

 ┌─────────────┐
►─▼─ parameter ─┴──────►

Indicates that you can repeat the parameter or specify more than one parameter.

 ┌─── , ─────────┐
►─▼─ parameter ───┴──────►

Indicates that you must enter a comma between repetitions of the parameter.

Syntax Diagram Conventions

Chapter 1: Introduction 15

Sample Syntax Diagram

The following sample explains how the notation conventions are used:

Chapter 2: Introduction to the Mapping Facility 17

Chapter 2: Introduction to the Mapping
Facility

This section contains the following topics:

Overview (see page 18)
The Online Compiler (see page 20)

The Batch Compiler and Util ity (see page 30)
Automatic Editing and Error Handling (see page 31)
Alternative Maps (see page 33)
Terminals Supported by the Mapping Facil ity (see page 35)

Overview

18 Mapping Facility Guide

Overview

What is the Mapping Facility?

A map is a formatted terminal screen used to communicate between an application and
a terminal operator. The CA IDMS mapping facil ity is used to define the layout of maps.

The mapping facil ity simplifies the development, storage, and use of input/output (I/O)
displays and fields.

■ Development—The mapping facil ity enables the map developer to:

– Use commands or screen prompts to simplify the definition of maps

– Take advantage of consistent procedures to establish fields on a map

– Predefine the characteristics of the data transmitted between the I/O device
and program variable storage

– Use the mapping facil ity to specify l inks between a map and records

– Generate an automatic screen layout from a record definition

■ Storage—The mapping facil ity handles the storage and retrieval of map-related
entity occurrences and map load modules

■ Use—The mapping facil ity creates maps that can be integrated easily with dialogs
and programs.

– Dialogs generated by the application development system, CA ADS, use CA

IDMS maps exclusively for screen I/O operations.

– Programs written in COBOL, PL/I, and Assembler can use maps for I/O
transactions when appropriate Data Manipulation Language (DML) statements
are included in the code.

Note: References in this manual to user-written programs apply equally to CA ADS
dialogs and host language programs unless otherwise noted.

Overview

Chapter 2: Introduction to the Mapping Facility 19

Online and Batch Capabilities

The map developer can use the mapping facil ity to create and maintain maps in either
an online or batch environment as described below:

■ The online mapping compiler is a convenient online tool for generating and

maintaining map-related entity occurrences and map load modules. A map
developer using the online compiler does not need to write code or execute JCL
routines. The mapping facil ity is integrated with other CA online systems.

■ The batch compiler and utility are the batch equivalent to the online compiler. The

developer generates and maintains map-related entity occurrences by submitting
statements to the batch compiler. Map load modules are generated and maintained
by statements that are submitted to the batch util ity.

The online compiler can be used to modify most map-related entity occurrences

and load modules created by using the batch compiler and util ity. The batch
compiler and util ity can be used to modify any map entity occurrence or load
module generated by the online compiler.

Input/Output Operations

At runtime, stored records that are associated with the map are bound to areas of
program variable storage that are defined by the CA ADS dialog or application program
that uses the map. Values are transmitted on output and input operations:

■ On output (mapout) operations, values in record elements used by the map can be
transmitted to the map along with any fixed character strings (that is, l iteral fields)
that are defined for the map. The amount of data that is transmitted is determined
by the runtime application and by specifications made for the map during

map-definition time.

■ On input (mapin) operations, values that a user supplies and that the map is
prepared to receive are transmitted to program variable storage.

Note: For more information about CA IDMS I/O modes and for programming
considerations that affect modes of I/O, see the CA IDMS DML Reference Guide for
COBOL, CA IDMS DML Reference Guide for Assembler, or the CA IDMS DML Reference
Guide for PL/I.

The Online Compiler

20 Mapping Facility Guide

What's in this Chapter?

This introductory section briefly discusses the components used to create and maintain
maps:

■ The online compiler

■ The batch compiler and util ity

Additionally, the following runtime features that augment the use of maps at runtime
are discussed:

■ Automatic editing and error-handling

■ Alternative maps

Finally, a discussion of terminals supported by the mapping facil ity completes this
section.

The Online Compiler

How Does it Work?

The online mapping compiler facil itates map creation by supplying a set of screens that
prompt a map developer for map and map field specifications. The developer can paint

the screen automatically using the Autopaint feature or position the fields manually. All
the work is done using a terminal. The developer can modify and redraw the map in one
or more sessions until satisfied with the map.

The online compiler uses specifications made during a session to populate the data

dictionary with all relevant definitions and information. Many record-keeping functions
are performed internally by the online compiler for the map developer.

What Functions can it Perform?

The online compiler can be used to:

■ Create map-related entity occurrences in the data dictionary

■ Modify or delete map-related entity occurrences that were created either by online
or batch mapping

■ Copy a map load module

■ Generate map load modules

■ Delete map load modules and dictionary entity occurrences

■ Associate help text with the map

The Online Compiler

Chapter 2: Introduction to the Mapping Facility 21

A Sample Session

The following figures i l lustrate an abbreviated online mapping compiler session. The
primary screens used during an online session are shown in this sample session. The
names and major functions of each screen are l isted:

■ The Main Menu, which is used to specify basic information about the map, is the
first screen in a session. The developer supplies the name and version number of
the map and the name and node of the dictionary to be used.

From this screen, the developer can:

– Either move to other screens to define more specific information about the
map such as general options, help text, the layout of the map, field
descriptions, or associated records

– Or, select an action to perform on the specified map from the action bar at the

top of the screen

For the purposes of this sample session, we will move through the screens to create
and define a map.

■ The General Options screens are used to define general characteristics of the map
such as its title, the screen size, display and print options, attributes for redisplayed

fields, as well as to indicate whether automatic editing takes place.

■ The Map-Level Help Text Definition screen is used to associate help text with a map.
The help text itself resides in an IDD module.

■ The Associated Records screen is used to specify the records that contain the
elements that will populate the map.

At this point, the developer can choose to create the map automatically using the
Autopaint option or go to the Layout screen.

■ The Layout screen is used to layout the map. If the Autopaint option was chosen,
the screen initially displays the layout created by the automatic map painter.
Otherwise, the developer can begin to layout the map as desired.

■ The Field Definition screens are used to define the specific information about the
field.

The seven screens used to expand on the field definition are:

– Field Definition

– Map Read/Write Options

– Additional Edit Criteria

– Field-Level Help Text definition

– Device-Dependent Options

– User-Defined Edit Modules

– Pageable Options

The Online Compiler

22 Mapping Facility Guide

For the Sample Session

■ Default values for specifications are used in the sample session unless otherwise

indicated. For more information on the screens, see "Online Mapping Compiler
Reference".

■ To move from option to option, <F5> is pushed; to move from screen to screen

within a given option, <F8> is pushed.

Specifying Basic Information

 Add Modify Compile Delete Display Switch
 ___.

 CA IDMS Online Map Compiler

 CA, Inc.

 Map name EYHTST9
 Map version 1
 Dictionary name DOCANWK
 Dictionary node ____

 Screen 1 1. General options
 2. Map-Level help text definition
 3. Associated records
 4. Layout
 5. Field definition

 Copyright (C) 2007 CA, Inc.

 Command ===>
 Enter F1=Help F3=Exit F10=Action

The Online Compiler

Chapter 2: Introduction to the Mapping Facility 23

What is Entered?

The developer enters the name and version number of the map as well as the dictionary

name and node. The developer also enters a 1 to indicate that options are specified.

Specifying General Options

 General Options Page 1 of 2
 Map name: EYHTST9 Version: 1

 Description. . . __

 Type 1 1. Standard 2. Pageable 3. Videotex

 Screen sizes (/) / 24 by 80 / 32 by 80 / 43 by 80 / 27 by 132

 Automatic editing (/) /
 Decimal point is comma (/) . . _
 Message prefix DC

 Display options Unlock keyboard (/). /
 Turn off MDT (/) /
 Alarm options Sound alarm on mapout. _
 Sound alarm on edit error (/) _
 Print options Print screen when displayed (/). . . . _
 (3280-type) Line control 1 1. No formatting 3. 64 chars per line
 2. 40 chars per line 4. 80 chars per line

 F1=Help F3=Exit F4=Prev F5=Next F6=Preview F8=Fwd

The Online Compiler

24 Mapping Facility Guide

What is Entered?

The general options associated with the map are entered using the General Options

screen. The General Options screen has two pages.

The first page is shown previously and the second page is shown. To move between the
two, use <F7> and <F8>.

General Options Screen - Page 2

 General Options Page 2 of 2
 Map name: EYHTST9 Version: 1

 Attributes for redisplayed fields In error Not in error

 Display intensity 1. Normal 2. Bright 3. Hidden 2 _

 Highlighting 1. Blink 3. Underline _ _
 2. Reverse video

 Color 1. White 4. Blue 7. Turquoise . . 2 _
 2. Red 5. Yellow 8. Default
 3. Green 6. Pink

 Entry options 1. Protect 2. Unprotect _ _
 1. Numeric 2. Alphanumeric _ _
 1. Set MDT 2. Reset MDT _ _
 Detect with light pen (/) / _
 Tab key selection (/) _ _

 DC366804 Select map options

 F1=Help F3=Exit F4=Prev F5=Next F6=Preview F7=Bkwd

The Online Compiler

Chapter 2: Introduction to the Mapping Facility 25

Defining Map-level Help

 Map-Level Help Text Definition Page 1 of 1
 Map name: EYHTST9 Version: 1

 Help name: ________ Help key: PF01 Drop Help (/) _

 Window format 1 1. Half 2. Full

 Origin of help text . . 1 1. No text
 2. Module ________________________________
 Version 1

 DC366306 Select help text options

 Enter F1=Help F3=Exit F4=Prev F5=Next F6=Preview

The Online Compiler

26 Mapping Facility Guide

What is Entered?

To associate help with a map, the developer specifies:

■ The name of the load module that contains the help information in the Help name
field

■ The function key that invokes map-level help in the Help key field

■ Whether the help is displayed in a half or full window in the window format field

■ The name of the IDD module that contains the help text for this map in the Origin of
help text field

Specifying the Associated Records

 Associated Records Page 1 of 1
 Map name: EYHTST9 Version: 1

 Record name Version Role name Drop
 (/)
 1 EMPLOYEE 100 ________________________________ _

 2 DEPARTMENT 100 ________________________________ _

 3 ________________________________ ________________________________ _

 4 ________________________________ ________________________________ _

 5 ________________________________ ________________________________ _

 6 ________________________________ ________________________________ _

 7 ________________________________ ________________________________ _

 DC366601 Map options processed successfully

 F1=Help F3=Exit F4=Prev F5=Next F6=Preview F7=Bkwd F8=Fwd F9=Autopaint

The Online Compiler

Chapter 2: Introduction to the Mapping Facility 27

What is Entered?

The developer enters the names and version numbers of the records associated with

the map.

Creating a Map Automatically

 Automatic Screen Painter Page 1 of 3
 Map name: EYHTST9 Version: 1
 Select (/) Element Level and Name Occurs

 01 EMPLOYEE VERSION 0100
 / 02 EMP-ID-0415
 _ 02 EMP-NAME-0415
 / 03 EMP-FIRST-NAME-0415
 / 03 EMP-LAST-NAME-0415
 _ 02 EMP-ADDRESS-0415
 / 03 EMP-STREET-0415
 / 03 EMP-CITY-0415
 / 03 EMP-STATE-0415
 / 03 EMP-ZIP-0415
 _ 04 EMP-ZIP-FIRST-FIVE-0415
 _ 04 EMP-ZIP-LAST-FOUR-0415
 _ 02 EMP-PHONE-0415
 _ 02 STATUS-0415
 / 02 SS-NUMBER-0415

 DC365503 Select the fields that are to appear on the screen

 F1=Help F3=Exit F4=Prev F5=Next F7=Bkwd F8=Fwd

The Online Compiler

28 Mapping Facility Guide

What is Entered?

The developer selects the fields (/) that will be displayed on the map. Often, the list of

elements is displayed on more than one screen as i l lustrated here.

Previewing the Map

 EMP-ID-0415 ____

 EMP-FIRST-NAME-0415 _________________________

 EMP-LAST-NAME-0415 _________________________

 EMP-STREET-0415 ______________________________________

 EMP-CITY-0415 _________________________

 EMP-STATE-0415 __________________________

 EMP-ZIP-0415 _________

 SS-NUMBER-0415 _________

 DEPT-ID-0410 ____

 ...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 Enter F1=Help F2=Select F3=Exit F4=Prev F5=Next F6=Preview F8=Bottom
 F9=SetCursor F10=Deselect F11=AltKeys

The Online Compiler

Chapter 2: Introduction to the Mapping Facility 29

What is Entered?

The online compiler uses the fields the developer selected to create a map which can be

previewed.

Modifying the Map

The developer can then add, modify, or delete the fields as appropriate.

Compiling the Map

 Add Modify Compile Delete Display Switch
 ___.
 | 1 1. Compile |
 | 2. View Messages |line Map Compiler
 |______________________|
 | F3=Exit | CA, Inc.
 |______________________|
 Map name EYHTST9
 Map version 1
 Dictionary name ________
 Dictionary node ________

 Screen _ 1. General options
 2. Map-Level help text definition
 3. Associated records
 4. Layout
 5. Field definition

 Command ===>
 Enter F1=Help F3=Exit F10=Action

What is Entered?

To compile the map, the developer returns to the main menu and selects the Compile
option from the action bar.

The Batch Compiler and Utility

30 Mapping Facility Guide

The Batch Compiler and Utility

The batch compiler and util ity can be used to perform all of the operations that are
available through the online compiler:

Batch Compiler Functions

■ Creates, modifies, or deletes entity occurrences for panels in the data dictionary;

panel occurrences predefine screen layouts for maps

■ Creates, modifies, or deletes entity occurrences for maps in the data dictionary
based on existing panel occurrences and on specifications made by using the CA
IDMS mapping language

Batch Utility Functions

■ Generates or deletes map load modules in the load area of the data dictionary

■ Produces map and panel reports for any map generated either by the mapping

facil ity

■ Produces a facsimile of a map or panel format on hard copy from the map or panel
definition

■ Decompiles maps generated by either the batch or online compiler

Performing Online Compiler Operations

A map developer can use the batch compiler and util i ty to perform all of the operations
available through the online compiler. Map developers often prefer to use the batch
compiler and util ity to perform the following operations:

■ Modify or copy maps—Developers who are more familiar with or prefer syntax can

quickly decompile a map into source, alter that source, and then submit the altered
source for compilation.

■ Create several similar maps in one session—The developer can copy the source for

one map several times, alter the various copies of that source, and then submit all
of the altered map-definitions for compilation in one JCL operation.

Automatic Editing and Error Handling

Chapter 2: Introduction to the Mapping Facility 31

Performing Non-online Compiler Operations

Additionally, the batch compiler and util ity can be used to perform the following

operations that the online compiler does not provide:

■ Migrate a map from one dictionary to another—The developer uses the batch util ity
to decompile a map and then uses the batch compiler to recompile the syntax to

another dictionary.

■ Decompile entity occurrences that store the current map-definition—The developer
uses the batch util ity to produce the source definition for a map from the related
entity occurrences for the map.

■ Produce reports—The developer receives reports on batch compiler and util ity
operations.

■ Create maps with specific support for multiple devices —The developer uses the
FOR device-code-a option of the MAP1 MFLD and PFLD clauses to create the maps.

■ Create maps for devices larger than the one on which a developer is working.

Automatic Editing and Error Handling

Purpose

The CA IDMS mapping facil ity provides automatic editing and error -handling capabilities

for use by CA IDMS maps. Automatic editing and error-handling simplify data validation,
I/O data conversions, and redisplay of input errors when a map is displayed by a dialog
or program.

Automatic editing and error-handling for maps and fields can be enabled using either

the batch or online compiler as described:

■ Automatic editing simplifies data validation and I/O data conversions:

– Data validation is performed on input. For example, automatic editing could be

used to validate that a terminal operator has supplied a valid state name (such
as Alabama) in the STATE field on a map that displays employee address data.

– Data conversions are performed on input and output. For example, automatic
editing could be used to display the value Alabama when 01 is stored for the

STATE field.

■ Error handling simplifies the redisplay of input errors. Error handling, when enabled
for a map, prepares a map to be redisplayed when an input error is detected. Input

errors can be highlighted for the operator's attention, and error messages can be
displayed.

Automatic Editing and Error Handling

32 Mapping Facility Guide

Example

The following figure il lustrates operations performed by automatic editing and

error-handling at map runtime. The following occurs when the operator keys data in
fields on the sample HILT TECHNOLOGIES, INC. screen and presses a control key:

■ Automatic editing evaluates the data supplied by the operator, using automatic

editing criteria specified for each field.

The STATE-E edit table that is defined for the sample STATE field in the following
figure lists valid two-character state abbreviations for the STATE field. The values in
the STATE-E table are used to determine that WU is not a valid value for the STATE

field.

■ The CA ADS dialog or application program redisplays the map using error-handling
attributes. Error handling redisplays the sample map with the following changes:

– The incorrect data in the STATE data field is highlighted in BRIGHT.

– The error message NOT A VALID STATE CODE is displayed in the message field
for the map.

Note: For more information about automatic editing and error-handling, see the

chapter "Automatic Editing and Error Handling".

Alternative Maps

Chapter 2: Introduction to the Mapping Facility 33

Alternative Maps

Purpose

The mapping facil ity allows the use of alternative maps. This feature is useful in any
application in which a dialog or program should show different copies of the same map
to different users. When the alternative map feature is used, each user sees the

appropriate copy of a given map.

Generating Alternative Maps

The developer can use the online mapping facil ity to generate an alternative copy of a
map.

Note: For more information on defining and using alternative maps, see the appendix
"Alternative Maps."

Alternative Maps

34 Mapping Facility Guide

Possible Applications

■ Users who speak different languages can be shown versions of maps in their own

languages.

For example, the following figure shows an English-language map and its
Spanish-language alternative. The name of the English-language map, ENGMAP01,

is changed to SPNMAP01; the title of the map is changed from EMPLOYEE
INFORMATION SCREEN to INFORMACION SOBRE EMPLEADOS.

■ Users with different levels of expertise or authority can be shown versions of maps
that display only the information those users are qualified to view.

For example, users who are not authorized to see salary information would not be
shown the SALARY field on a map; a version that shows the SALARY field would be
displayed to authorized users only.

Terminals Supported by the Mapping Facility

Chapter 2: Introduction to the Mapping Facility 35

Terminals Supported by the Mapping Facility

The following terminals are supported by the CA IDMS mapping facil ity:

Terminal Mapping Consideration

3270-type Runtime mapping uses attribute bytes to establish individual fields

on the screen. Fields are displayed on the screen with the attributes
available on the terminal. Attributes such as color and underscoring
are not available on a 3270-type terminal.

3279-type Runtime mapping uses attribute bytes to establish fields on the

screen. Fields are displayed on the screen with the attributes
available on the terminal. Display attributes such as color and
underscoring are available on 3279-type terminals.

Glass TTY-type The screen is processed as a single wraparound data l ine; however,
runtime mapping displays data so that it appears to the operator
that fields are posted to the map as on 3270-type terminals. Fields
are displayed according to the screen's default display options;

most 3270- and 3279-type display attributes are unavailable.

Note: For more information about attributes and attribute bytes, see "Attributes for
Fields".

Chapter 3: Map Design Considerations 37

Chapter 3: Map Design Considerations

This chapter discusses about the map design considerations.

This section contains the following topics:

Overview (see page 37)
Preliminary Information Gathering (see page 37)
Designing Maps (see page 39)

Designing Map Fields (see page 46)

Overview

Most applications use more than one map to supply information to and request
information from the user. A well-planned application uses maps that make sense to
terminal operators and that take advantage of features provided by the mapping

facil ity.

Map developers should consider the following topics, which are described, when
creating maps:

■ Preliminary information gathering

■ Designing maps

■ Designing map fields

Preliminary Information Gathering

Before beginning work on maps, the map developer should be familiar with the

application for which maps are needed and with the site at which the maps are used.
Examples of application- and site-specific information are presented.

Preliminary Information Gathering

38 Mapping Facility Guide

Application-specific Information

To generate efficient maps, the developer should be aware of the following information
about the application:

■ The amount and type of information the entire application will request through

mapped displays. Applications generally require more than one map to request
and/or present information efficiently.

■ The records needed by each map and any attendant information:

– The name of each record element within the record that the map displays or

updates as data fields.

– The external picture (if any) defined for each record element. The length of a
data field is determined by the external picture of the associated element.

– The name of the edit table (if any) stored in the data dictionary for each record

element and the values/ranges that the table defines as either valid or invalid.

– The name of the code table (if any) stored in the data dictionary for each record
element and the conversions that the table performs.

Note: External pictures, edit tables, and code tables are discussed in "Automatic
Editing and Error Handling".

The developer can determine how many maps need to be designed and can begin to
place fields on each map based on the information summarized previously.

Site-specific Information

The map developer should also be familiar with the resources that are available at the
site.

Existing Site Information

■ Names and version numbers of any existing maps that could be adapted easily for
the application being developed

■ Name of the dictionary used for map storage

■ Name of the dictionary node

Existing Conventions and Standards

Many sites define standards that establish guidelines for map developers. These
standards can address the following topics:

■ Naming conventions for map-related entities, as presented in Naming Conventions
(see page 41)

■ Map layout standards, as discussed in chapter "Designing Map Fields".

Designing Maps

Chapter 3: Map Design Considerations 39

Different Types of Terminals

For sites at which operators use more than one type of terminal, the developer should

be familiar with the types of terminals that are used when the maps are displayed to
operators. The map developer should take into account the following considerations:

■ Terminal display size differs from terminal to terminal; a map designed for display

on more than one type of terminal should be no wider than the width of the
narrowest terminal.

■ Certain attributes available on 3279-type terminals, such as colors and
underscoring, are not available on 3270-type or glass TTY terminals. Certain

3270-type attributes, such as the ability to display in bright mode or to suppress
numeric input, are not available on glass TTY terminals.

■ Names of control keys (for example, PA1 or PF1) can differ from terminal to
terminal. Screens that name control keys should use names that the operator will

encounter on all terminals that can display the map.

Online Compiler Options

Finally, a map developer planning to use the online mapping compiler to generate maps
should contact the DBA for the online mapping compiler sysgen options in effect at the

site.

Note: For more information about available options, see the CA IDMS System
Generation Guide.

Designing Maps

Successful Layouts

The layout of a map should make the map easy to use. A successful map layout exhibits
the following characteristics:

■ Consistency—Entities such as fields, headings, labels, responses, messages, and

control keys should have the same meaning or effect throughout the application.
The meaning or effect need not be identical for every map but should be consistent
within the broader confines of the system.

Message and response fields should appear in the same location on each map in an

application. These fields should remain standard for all applications at a site.

■ Supportiveness—The reactions of the system should make it easy for the operator
to handle normal situations. For example, displayed informational and/or error
messages should be meaningful.

Designing Maps

40 Mapping Facility Guide

What's Included in this Section

These standards, which are discussed separately, can be adapted as necessary to

conform to the needs of a particular site or application:

■ General considerations

■ Control key standards

■ Naming conventions

■ Layout and display standards

■ Pageable map considerations

General Considerations

The following general considerations promote the design of efficient maps.

■ Consistency—Spelling and abbreviation of terms should be consistent.

■ Clarity—Messages and prompts should be clear and understandable to users.

■ Control keys—Terminal operators should be able to initiate processing by providing

the requested data and then pressing a control key.

■ Program logic—Operators should not be required to make decisions that could be
incorporated into program logic.

■ Automatic editing—Features provided through automatic editing and

error-handling should be used whenever possible. Correct and incorrect fields
should be redisplayed consistently. For example, a particular color or display
intensity can be used systematically to draw the operator's attention to fields that

contain input errors.

■ Standards for pageable maps—At sites that use pageable maps, map layout
standards should be developed that apply equally well to pageable and
non-pageable maps.

Note: For more information about pageable maps, see the chapter "Pageable Map
Considerations”.

Designing Maps

Chapter 3: Map Design Considerations 41

Control Key Standards

Identify Control Keys

The CA ADS dialog or application program that uses a map defines control keys for use
with the map. If possible, the control keys available to a map operator should be

documented by literal fields on a map. The operations performed by the control keys
should also be documented for the operator.

When different terminals are available to terminal operators and control key names
differ from keyboard to keyboard, each control key name should be documented so that

operators do not have to memorize l ists of key equivalencies.

Use Control Keys Consistently

Control keys should also be used consistently. For example, the same key should be
used to take the operator to the next map in each application. A sample standard for
control key usage is presented in the following table.

Sample PF Key Standards

PF Key Function

PF1 Help

PF3 Exit

PF7 Display previous page

PF8 Display next page

PF12 Print

Naming Conventions

Why use Conventions?

It is advisable for a site to develop naming conventions for map-related entity
occurrences. While mnemonic names work well at sites that have a few basic
applications, mnemonic names become difficult to use as the number and complexity of

applications increase.

Adhering to naming conventions makes it easier to construct names, easier to
reconstruct names if one is forgotten, and easier for different users to determine the
purpose of a map or map component. Naming conventions facil itate the construction of

alternative map tables when alternative maps are required.

Designing Maps

42 Mapping Facility Guide

Sample Naming Conventions

The following naming conventions i l lustrate a sample system for giving names to

map-related entities. PANEL and TABLE occurrence names can be from 1 through 32
characters in length. Names of MAP occurrences can be from 1 through 8 characters in
length. The sample naming convention specifies 8-character names since it is intended

for MAP occurrences as well as for PANEL and TABLE occurrences.

Notes:

■ For more information on PANEL occurrences, see the chapter "Panels and Maps".

■ For more information on TABLE occurrences, see appendix, “Generating Edit and

Code Tables."

Position Meaning Value Description

1 Source of entity C CA entity

2-3 Application EX

FS

SY

Example application

Financial system application

System application

4 Type of entity L

M

C

E

Panel occurrence

Map occurrence

Table occurrence (code table)

Table occurrence (edit table)

5 Special information E

F

G

S

English-language application

French-language application

German-language application

Spanish-language application

6-8 Identification of
entity

xxx

Sample Names

The following sample names demonstrate the naming conventions described in the
previous table:

■ CEXME104 names a CA map that is used in a sample application. Literals are in

English. The number 104 identifies this map.

■ CEXMG104 names a copy of map CEXME104 that contains German literals. Map
CEXMG104 is an alternative for map CEXME104 and is used instead of CEXME104
when alternative maps are supported at the site and an operator with the GERMAN

user type uses the map.

Designing Maps

Chapter 3: Map Design Considerations 43

■ CEXLE221 names a CA panel that is used in a sample application. Literals are in
English. The number 221 identifies the panel.

■ CEXCFWRB names a CA code table that is used in a sample application. The
decoded values in the code table are in French. The letters WRB identify the code
table.

It is often useful to integrate map-naming conventions for map-related entities with
conventions used for dialogs and programs.

Layout and Display Standards

Layout and display standards promote the creation of consistent maps. The following

considerations should be kept in mind when designing map layout and design standards.

Associate Areas with Particular Uses

Each specific area of a map should be devoted to a particular use. For example, the
top five l ines of the screen could be reserved for product and title information and

the bottom five for map and control key information.

Display like Fields in the Same Location

Similar fields should be displayed in the same location and with consistent display
attributes on all maps. A given site usually uses the same or similar fields on several

maps. For example, message fields and titles are included on most maps, and
should be presented consistently.

Limit the Number of Fields on a Screen

The amount of data transmitted down a l ine is affected by the number of fields on a

map. This can affect l ine contention and should be considered when designing a
map. Do not do borders or one-byte l iteral fields.

Handle Operations and Prompts Consistently

Frequently used operations or prompts should be handled consistently. For
example, yes and no responses should be requested in the same way on every map.

Handle Default Values Consistently

Consistent methods should be developed for indicating default values. For example,
an asterisk (*) or a special display color might be used to identify the default value
for a l ist of options. A default entry for a data field might be specified by a l iteral

field adjacent to the data field.

Designing Maps

44 Mapping Facility Guide

Standardize Map Templates

A standard map template should be used for each type of map. For example, many

applications prompt the operator to select an item from a menu. A template for this
type of screen is different than a template for a screen that requests words and
numbers from a user. The following considerations apply to the design of a

template:

■ A map becomes cluttered when it contains too many map fields

■ Fields are easier to read when double spaced

■ Data fields are more visible when all data fields for the map begin in the same

column

■ Use of bright or attention-drawing fields increases the map's effectiveness

■ The cursor should be in the position most l ikely to be used for data entry when the
map is first displayed at a terminal

■ When using the TAB key to move to the next field, the sequence of fields should
match the most common or logical pattern used for data entry

Pageable Map Considerations

The CA IDMS mapping facil ity provides a format for pageable maps. The format for

pageable maps should be consistent with the formats of other maps designed at a site,
making pageable maps easier for operators to use.

Sample Pageable Map

EMPLOYEE PERSONAL DATA

EMPLOYEE NAME: JANE FERNDALE
EMPLOYEE NUMBER: 0032 SOCIAL SECURITY NUMBER: 034-56-7890
EMPLOYEE NAME: TOM FITZHUGH
EMPLOYEE NUMBER: 0081 SOCIAL SECURITY NUMBER: 112-34-5678
EMPLOYEE NAME: GEORGE FONRAD
EMPLOYEE NUMBER: 0045 SOCIAL SECURITY NUMBER: 092-34-7890
EMPLOYEE NAME: ROBIN GARDNER
EMPLOYEE NUMBER: 0053 SOCIAL SECURITY NUMBER: 022-34-4444
EMPLOYEE NAME: JENNIFER GARFIELD
EMPLOYEE NUMBER: 0003 SOCIAL SECURITY NUMBER: 021-99-4516

PAGE: 0004

Designing Maps

Chapter 3: Map Design Considerations 45

Components of Pageable Maps

■ The header area (optional) is located across the top of the screen.

■ The footer area (optional) is located across the bottom of the screen.

■ The detail area (required) is located across the middle of the screen. The fields that
are defined in the detail area make up the detail occurrence for the map.

The header and footer areas provide a frame for the detail area.

Note: For more information about the areas and detail occurrences for pageable maps,
see Pageable Maps (see page 91).

Considerations

■ The size of header and footer areas for pageable maps should be specified.

■ The header area for a pageable map should contain the same type of information as
header areas for other pageable maps. For example, fields that identify the purpose
of a map (such as the title) are typically placed in the header area of a pageable
map.

■ The footer area for a pageable map should be consistent with footer areas for other
pageable maps. For example, fields that document control keys are often placed in
the footer area.

Note: At runtime, the footer area floats up to just below the detail area. Therefore,
it may not appear in the exact location where it was defined originally.

Designing Map Fields

46 Mapping Facility Guide

■ The layout of fields in each area of a pageable map is affected by the following
considerations:

– A message field should be located as follows:

– In the header or footer area, if the most important messages for the map
are generated by the ADS DISPLAY MESSAGE command and/or by

automatic editing in an error cycle

– In the detail area, if messages are not generated by the ADS DISPLAY
MESSAGE command or by automatic editing in an error cycle

At runtime, the single message field that is defined as part of the detail

occurrence is mapped out once in each occurrence in the detail area.

– A page field can be included in either the header or footer area for a pageable
map.

– Fields in the detail area (that is, the detail occurrence) repeat at runtime as

many times as is necessary to display the data retrieved by the map. A detail
area that takes up five l ines cannot be displayed as many times on the screen
as a detail area that takes up two lines.

Additionally, the amount of storage specified for runtime pageable map
sessions is influenced by the number of l ines specified for the detail occurrence
of a pageable map.

Note: For information about pageable map storage, see Estimating Pageable

Map Storage (see page 353).

Designing Map Fields

What is a Map Field?

A map field is an area on a map that is used to communicate with the terminal operator.

For example, a field might be used to collect information from an operator or to provide
instructions about the map.

Most maps contain several map fields. When designing map fields, the following topics,
which are discussed, should be considered:

■ Types of fields

■ Attributes for fields

Designing Map Fields

Chapter 3: Map Design Considerations 47

Types of Fields

Each map field must be designated as either a l iteral, data, message, page, or response
field. The field designation determines the functions that a field can perform:

Type of Field Function

Literal Displays a predefined literal string that provides a title, prompt,
or other information to the terminal operator

Data field Displays the value (if any) of the record element associated with

the field and optionally allows the operator to input data.

Message field Displays messages generated by an application program or by the
automatic error-handling facility. Error messages and automatic
error-handling are discussed in "Automatic Editing and Error

Handling". A map message field is associated with the system
$MESSAGE field.

Page field Pageable maps only—displays the current page number and

permits the operator to request the next page to be displayed. A
page field on a pageable map is associated with the system
$PAGE field.

Response field CA ADS only—allows the operator to select a CA ADS response

process. A map response field is associated with the system
$RESPONSE field.

Required Fields

When defining a data field, the developer specifies whether the field is a required field.
Operators must supply input in data fields designated as required. Fail ing to enter data
in a required field constitutes an input error.

Designing Map Fields

48 Mapping Facility Guide

Attributes for Fields

What is an Attribute?

An attribute is a characteristic of a map field provided by the terminal. Different
characteristics can be assigned to fields on a map. For example, the BRIGHT attribute is

assigned to fields that should be displayed at an intensity that is brighter than normal.
The BLINK attribute is assigned to fields that should blink at runtime.

When are Attributes Specified?

The General Options screen is used to assign attributes to map fields that are applied

during error cycles in the runtime system.

All other attributes are ass igned to the fields using the field definition screens. If the
developer does not specify attributes for a field, default attributes are used for the field.

The field attributes defined using the online compilers can be overridden by the

program and dialog processes that use the map.

Note: For more information about commands that modify map attributes, see the CA
ADS Reference Guide or the CA IDMS Navigational DML Programming Guide.

When do Attributes take Effect?

The attributes for a field take effect when the field is mapped out to a screen at

runtime. An attribute byte is a single-character, nondisplayable byte positioned at
runtime at the coordinate immediately preceding a map field. Runtime mapping uses
information contained within the attribute byte to determine the appearance and

characteristics of the field.

Attributes on 3270s and 3279s

Attributes provided by 3270- and 3279-type terminals are l isted in the following table:

Attribute Description

ALPHANUMERIC/ NUMERIC ■ An ALPHANUMERIC field can contain any
characters.

■ A NUMERIC field can contain periods and
minus signs, as well asnumbers in the range

0-9.

PROTECTED/ UNPROTECTED ■ A PROTECTED field does not accept data from
a terminaloperator.

■ An UNPROTECTED field accepts data from the
operator.

Designing Map Fields

Chapter 3: Map Design Considerations 49

Attribute Description

SKIP/NOSKIP ■ SKIP specifies that the operator cannot tab to

the givenfield.

■ NOSKIP specifies that the operator can tab to
the start of the field; the field must be

UNPROTECTED.

DETECTABLE/ NONDETECTABLE ■ DETECTABLE specifies that the field is
selector-pen (l ight-pen)detectable.

■ NONDETECTABLE specifies that the field is

not detectable with a selector-pen.

DISPLAY/BRIGHT/ DARK ■ DISPLAY specifies that the contents of a field
appear on the screenat normal intensity.

■ BRIGHT specifies that the contents of a field

appear at high intensity.

■ DARK specifies that the contents of a field are
not visible on the screen at runtime.

MDT/NOMDT ■ MDT specifies that a field is marked as
modified (the modified datatag is set on),
whether or not a terminal operator enters
data in it.

■ NOMDT specifies that a field is marked as
modified only if an operator enters data in it.

On a mapin operation, only those fields with MDT

set on are automatically moved into program
variable storage.

DELIMIT/ NODELIMIT ■ DELIMIT inhibits entry of data that contains
more characters than specified by the

external picture for the field.

■ NODELIMIT does not inhibit entry of excess
characters. The operator can enter

characters in a field up to the space before
the next map field.

SKIP DELIMIT At runtime, when the operator enters data in the
last character position of the field assigned the

SKIP DELIMIT attribute, SKIP DELIMIT causes the
cursor to tab automatically to the next
UNPROTECTED field.

Designing Map Fields

50 Mapping Facility Guide

Attributes on a 3279 ONLY

The following map field attributes are available on 3279-type terminals only.

Note: Three of these attributes, BLINK, REVERSE VIDEO, and UNDERSCORE, are
mutually exclusive. For example, neither REVERSE VIDEO nor UNDERSCORE can be
assigned to a field for which the BLINK attribute is defined.

Attribute Description

BLINK/NOBLINK ■ BLINK specifies that the field blinks.

■ NOBLINK specifies that the field does not blink.

NORMAL VIDEO/
REVERSE VIDEO

■ NORMAL VIDEO specifies that the color of the field and of
thebackground are not reversed.

■ REVERSE VIDEO specifies that the colors are reversed.

UNDERSCORE/

NOUNDERSCORE
■ UNDERSCORE specifies that the field is underscored.

■ NOUNDERSCORE specifies that the field is not
underscored.

BLUE/RED/PINK/

GREEN/TURQUOISE/
YELLOW/WHITE/
NOCOLOR

Any one of these color attributes can be assigned to a field.

NOCOLOR specifies that the default display color for the
terminal is used.

Default Values for Attributes

Literal Fields Variable Fields

ALPHANUMERIC ALPHANUMERIC

PROTECTED UNPROTECTED

SKIP NOSKIP

NONDETECTABLE NONDETECTABLE

DISPLAY DISPLAY

NOMDT NOMDT

NOBLINK NOBLINK

NORMAL VIDEO NORMAL VIDEO

NOUNDERSCORE NOUNDERSCORE

NOCOLOR NOCOLOR

Chapter 4: Automatic Editing and Error Handling 51

Chapter 4: Automatic Editing and Error
Handling

This chapter discusses about automatic editing and handling methods.

This section contains the following topics:

Automatic Editing (see page 51)
Error Handling (see page 53)
Enabling Automatic Editing and Error Handling (see page 53)

Automatic Editing Criteria (see page 55)
Error-Handling Criteria (see page 76)
Automatic Editing at Runtime (see page 81)

Error Handling at Runtime (see page 86)

Automatic Editing

What is Automatic Editing?

The automatic editing capability of the CA IDMS mapping facil ity is used to edit and
validate data entered in map data fields. With automatic editing, a map can tolerate

greater variation in operator input, making it easier for the terminal operator to use.

For example, if month values are stored as 2-digit numbers (01 through 12) but the
terminal operator prefers to see the month values spelled out in words (for example,

January, February), automatic editing is used to translate spelled-out months into their
numeric equivalents. The map developer can thus create a map that requests
spelled-out months but stores their equivalent numeric values.

Automatic Editing

52 Mapping Facility Guide

Editing Input

Automatic editing can perform any of the following operations on input:

■ Verify that the terminal operator has entered data in all fields for which input is
required

■ Validate terminal operator input based on an external picture and a verification

(edit) table

■ Convert input to storage format based on a code table associated with a field

■ Convert input to internal format using both the internal and external picture

■ Validate that an input buffer contains data (content required)

Editing Output

Automatic editing can perform the following optional operations on output:

■ Decode data based on a code table associated with a fiel d

■ Convert data to external format for display based on both the external picture and

internal pictures

■ Validate that a buffer contains valid data and aborts if not

When should Automatic Editing be Enabled?

Automatic editing should be enabled for a field (and the map that contains it) when the

related record element has a usage other than DISPLAY:

■ When zeros are to be displayed when an operator nulls the value in a field by
pressing the ERASE EOF key, as specified by either of the following options:

– The Zero when null option on the Map Read/Write Options screen

– The ZEROED WHEN NULL option of the batch compiler MFLD statement

■ When blanks are to be displayed in the field when the value for a field is zero , as
specified by either of the following options:

– The Blank when zero option on the Map Read/Write Options screen

– The Blank when zero option of the batch compiler MFLD statement

■ When underscores are to be displayed as specified by either of the following
options:

– The Underscore blank fields option on the Map Read/Write Options screen

– The UNDERSCORE IF BLANK option

■ When uppercase translation by field is selected

Error Handling

Chapter 4: Automatic Editing and Error Handling 53

Error Handling

What is Error-handling?

The error-handling capability can be used to define display characteristics in the event
that a map is redisplayed due to input error. Redisplay of a map on input error is
controlled by the CA ADS dialog or application program that uses the map at runtime.

Error Handling Functions

Error handling can perform one or more of the following operations when the map is
redisplayed:

■ Redisplay incorrect input with predefined attributes that attract the operator's

attention

■ Redisplay correct input with predefined attributes

■ Provide messages to the operator

■ Sound an alarm

Before You use Editing and Error-handling

The following steps, which are described, must be performed before automatic editing
and error-handling can be used:

1. Enable automatic editing and error-handling for the map and for each field to be

edited

2. Optionally define error-handling criteria for the map

3. Define editing criteria for each field

Enabling Automatic Editing and Error Handling

Overview

Enabling automatic editing for a map also enables error-handling for that map.
Automatic editing can be enabled for an entire map and also for individual fields.

Enabling Automatic Editing and Error Handling

54 Mapping Facility Guide

Default Values

The mapping facil ity supplies the following default settings for automatic editing:

■ Entire map—Enabled

■ Each field—Disabled, unless any of the following editing criteria is specified

Important: Autopainted fields default to enabled if editing is appropriate.

A map that uses only these default values is not edited at runtime. The map developer
must use the online or batch compiler to enable automatic editing for map fields. If
automatic editing is disabled at the map level, automatic editing is disabled for a ll of

that map's fields.

Map-level Editing

Automatic editing is enabled/disabled for an entire map when:

■ The Automatic editing prompt on the first General Options screen is used to either

enable (/) or disable automatic editing.

■ The EDIT/NOEDIT option of the batch compiler MAP statement is used to enable
(EDIT) or disable (NOEDIT) automatic editing.

Field-level Editing

■ Specifying any of the following on the Field Definition screen enables automatic
editing for a field:

– / for the Automatically edited prompt (Online compiler only)

– An external picture

– An edit table

– A code table

■ Naming a user-written edit module enables or disables automatic editing:

– Editing is enabled if the edit module is to be performed either before or after
automatic editing.

– Editing is disabled if the edit module is to be performed instead of automatic
editing.

Automatic editing is enabled or disabled according to the most recent automatic editing
or user-written error module specification. The General Options, Additional Edit Criteria,
and Map Read/Write Options screens in the online compiler and the MFLD statement of

the batch compiler are used to make these specifications and to enable automatic
editing for a field.

Automatic Editing Criteria

Chapter 4: Automatic Editing and Error Handling 55

Automatic Editing Criteria

Overview

■ An internal picture describes the format in which data for a field is stored in the
user buffer.

■ An external picture describes the format in which data for a field is displayed on the
operator's screen.

■ An edit table optionally defines a set of valid or invalid values or ranges of values for
a field.

■ A code table optionally defines values for encoding and decoding data.

External pictures can be defined by using the online or batch compiler as well as IDD;
internal pictures, edit tables, and code tables are defined externally to the mapping

facil ity.

Types of Editing

The three automatic editing operations depicted in the following il lustration and
discussed on the following pages, can be performed:

■ Display characteristics

■ Data conversion

■ Input verification

Automatic Editing Criteria

56 Mapping Facility Guide

Automatic Editing Operations

The following diagram il lustrates how automatic editing works.

Display Characteristics

Display characteristics are determined by the external picture.

For example, a date field can have an internal picture of 9(6) and an external picture of
99/99/99. If the internal picture for a DATE data field is 9(6) as many as six numeric

digits can be stored for the field. The external picture of 99/99/99 specifies how a stored
value is displayed on the terminal screen. Using this example, a date stored internally
101297 displays externally as 10/12/97.

Automatic Editing Criteria

Chapter 4: Automatic Editing and Error Handling 57

Data Conversion

Data that is entered on a map is converted and validated against a code table. For
example, each value for the STATE data field is stored as a 2-digit value, as specified by
its internal picture 99. A code table then translates each 2-digit value to a complete

state name and vice versa.

For example, the operator views ALABAMA when the stored value is 01. The value 50 is
stored in program variable storage when the operator enters the word WYOMING.

Input Verification

Data entered on a map is compared to values in an edit table. Correct values for the
sample DEPT data field are l isted in an edit table. Operator input is validated against
values in the edit table. (An edit table can contain either correct or incorrect values for
a field.) For example, the term SALES is determined to be incorrect based on the edit

table for the field; the dialog or program redisplays the error and asks the operator to
correct the value.

Internal Pictures

Definition

Internal pictures define the data storage format for elements and the map fields
associated with the elements. Internal pictures cannot be created or altered by the
mapping facil ity.

Specifying Internal Pictures

An internal picture can be specified for a record element when the record element is
defined by using either the IDD Data Dictionary Definition Language (DDDL) or the IDMS
schema compiler. Internal pictures cannot be defined or altered by us ing the online or

batch compiler.

How the Input is Converted

Before edited input is moved into program variable storage, if editing is on it is
converted into its internal format based on the internal picture defined for the record

element associated with the input field. The internal picture for a map field is the
internal picture of the related record element.

Automatic Editing Criteria

58 Mapping Facility Guide

Maximum Length

An internal picture can contain a maximum of 32 characters. The characters used to

construct alphanumeric, alphabetic, and numeric internal pictures are l isted in the
following table:

Data Type Character Description

Alphanumeric X A single alphanumeric character.

 (n) Follows an X to represent n consecutive repetitions of
alphanumeric characters.

N must be an integer in the range 1 through 9999.

Alphabetic A A single alphabetic character (A through Z).

 (n) Follows an A to represent n consecutive repetitions of
alphabetic characters.

N must be an integer in the range 1 through 9999.

Numeric 9 A single numeric character (0 through 9).

 (n) Follows a 9 to represent n consecutive repetitions of

numeric characters.

Preceding an implied decimal point position, n must
be an integer in the range 1 through 9999.

Following an implied decimal point position, n must

be an integer in the range 1 through 255.

 V Represents a decimal point position in fixed decimal
numeric data. An internal picture can contain only

one decimal. If a fixed decimal picture does not
contain a V, the decimal position for the picture is
after the rightmost 9.

 S Indicates that signed data is maintained as either

positive or negative. When used, S must be the first
character in an internal picture.

 . (decimal

point)

Represents the decimal point in floating point data

with DISPLAY usage only. An internal picture can
contain only one decimal point.

 E Indicates the start of the floating point exponent.
When used, an E must be preceded by at least one 9

and followed by at least one 9.

Automatic Editing Criteria

Chapter 4: Automatic Editing and Error Handling 59

How are the Elements Stored at Runtime?

A USAGE clause in the record element definition determines the method of storing

values for an element at runtime. The USAGE clause for an element associated with a
map field can specify one of the following storage methods:

Storage Method Will Store Data This Way

DISPLAY Values are stored one character to a byte according to EBCDIC
conventions. DISPLAY must be specified for alphanumeric and
alphabetic internal pictures. DISPLAY can also be specified for

numeric internal pictures.

COMP Numeric values are stored in binary format.

COMP-1 Numeric values are stored in internal floating point (short
precision) format.

COMP-2 Numeric values are stored in internal floating point (long
precision) format.

COMP-3 Numeric values are stored in packed decimal format.

Note: COMP, COMP-1, -2, and -3 usages apply only to numeric data. Internal pictures
cannot be specified for elements with COMP-1 or COMP-2 usage.

Note: For more information about record element definitions and the USAGE clause,
see the CA IDMS IDD DDDL Reference Guide.

External Pictures

Automatic editing uses the external picture for a field on mapout and mapin as follows:

Mapout

On mapout, the external picture describes how data for the field is displayed on a

terminal screen. The following example il lustrates the interaction of output data and an
external picture:

Program variable
storage value

External Picture Field Display

123456789 #XXX-XX-XXXX #123-45-6789

99365 99/999 99/365

Automatic Editing Criteria

60 Mapping Facility Guide

Mapin

On mapin, automatic editing uses the external picture as follows:

■ The external picture is checked to determine if the characters in the field are valid.
An external picture can be NUMERIC, ALPHABETIC, or ALPHANUMERIC; data in the
field must conform to the external picture specifications to be valid.

■ The external picture is used to eliminate insertion characters from data.

The following example il lustrates the interaction of input data and an external picture:

User Input External Picture Value Stored

#123-45-6789 #XXX-XX-XXXX 123456789

99/365 99/999 99365

The external picture and input data are processed from left to right. If automatic editing
is not enabled for both the map and field, the external picture is not used on mapin.

Implicit External Pictures

What is an Implicit External Picture?

If the developer does not use the online or batch compiler to explicitly specify an

external picture for the field, an implicit external picture is constructed for a field. The
implicit external picture is derived from the internal picture and/or from the usage
mode defined for the related record element.

If Automatic Editing is not Enabled

The status of automatic editing for the fi eld determines the external picture that is
constructed for the field:

If automatic editing is not enabled for the field, the online compiler constructs the

external picture for a field:

■ The data type is alphanumeric

■ The length is determined by the length (in characters/bytes) that is specified by the
internal picture and/or by the usage mode of the associated record element

For example, the following table i l lustrates how an external picture is constructed for a

field for which automatic editing is not enabled:

Internal Picture Usage Mode External Picture

XXX DISPLAY X(3)

Automatic Editing Criteria

Chapter 4: Automatic Editing and Error Handling 61

Internal Picture Usage Mode External Picture

A(8) DISPLAY X(8)

S99V99 DISPLAY X(4)

S9(4) COMP X(2)

 COMP-1 X(4)

 COMP-2 X(8)

9(7)V99 COMP-3 X(5)

Note: Internal pictures cannot be specified for COMP-1 or COMP-2 elements. The

previous external pictures for COMP-1 and COMP-2 elements are the default external
pictures for these elements when automatic editing is disabled for a field. To avoid an
error (such as PROG-470, PROG-402, or PROG-403), automatic editing should be
enabled for all fields with usage other than DISPLAY.

If Automatic Editing is Enabled

If automatic editing is enabled for the field, the online compiler assigns an external
picture to the field:

■ If an external picture is defined for the associated element, that external picture is

assigned to the field

■ If an external picture is not defined for the element, the mapping facil ity constructs
an external picture for the field:

– The data type is the same as the data type of the internal picture, when

applicable. Fields associated with COMP-1 and COMP-2 elements are assigned
predetermined numeric external pictures.

– The length is determined by the length (in characters/bytes) that is specified by
the internal picture, when applicable.

– The composition is derived from the internal picture according to the
translation equivalents l isted in the following table.

The following table i l lustrates how an external picture is constructed for a field when
automatic editing is enabled:

Internal Picture Usage Mode External Picture

XXX DISPLAY X(3)

A(8) DISPLAY A(8)

S99V99 DISPLAY +99.99

Automatic Editing Criteria

62 Mapping Facility Guide

Internal Picture Usage Mode External Picture

S9(4) COMP (Half word) +9(4)

S9(8) COMP (Full word) +9(8)

S9(16) COMP (Double word) +9(4)

 COMP-1 +9.9(7)+99

 COMP-2 +9.9(16)+99

9(7)V99 COMP-3 9(7).99

Note: Internal pictures cannot be specified for COMP-1 or COMP-2 elements. The
previous external pictures for COMP, COMP-1, -2 and -3 elements are the default

external pictures for these elements when automatic editing is enabled for a field.

Internal to External Translation

Internal Picture
Character

External Picture Character

X X

A A

9 9

S S

V . (Decimal point)

E E

. (Decimal point) . (Decimal point)

Automatic Editing Criteria

Chapter 4: Automatic Editing and Error Handling 63

Explicit External Pictures

To explicitly specify an external picture for a field, the developer uses the online or
batch compiler. If an explicit external picture is specified for the field, an implicit
external picture is not built.

When to Specify an External Picture

An external picture can be explicitly specified for a map field either during a
map-definition session or in the IDD record element definition.

During Map Definition

An external picture is explicitly specified at map definition in any of the following:

■ The Edit picture prompt on the Field Definition screen

■ The EXTERNAL PICTURE clause of the batch compiler MFLD statement.

An external picture specification made for a map field overrides any other external
picture specification that has been made for the field.

Using IDD

An external picture can be explicitly defined by using IDD. Specifying INTERNAL for the
map field's external picture causes the online compiler to use the external picture

associated with the record element definition. External pictures for record elements are
defined in the IDD DDDL RECORD ELEMENT or COBOL substatement.

Note: For more information about these substatements, see the CA IDMS IDD DDDL
Reference Guide.

How External Pictures are Constructed

If INTERNAL is specified for the map field's external picture but the record element is
not associated with an external picture, the online compiler will construct an external
picture as described in the following table:

Data Type Character Description

Alphanumeric X A single alphanumeric character.

 B A single blank character; B can appear

anywhere in the picture.

 Other Characters other than A, B, or parentheses
can be used as insertion characters.

Numeric 9 A single numeric character (0 through 9).

Automatic Editing Criteria

64 Mapping Facility Guide

Data Type Character Description

 Z An insertion character when it is preceded by

a 9, a decimal point, or a zero-suppression
character. Otherwise, a Z is a
zero-suppression character.

 $ Multiple dollar signs at the beginning of an
external picture represent a floating dollar
sign. The dollar sign is an insertion character
when preceded by a 9, a decimal point, or a

zero-suppression character.

 * Multiple asterisks at the beginning of an
external picture provide check protection.
The asterisk is an insertion character when

preceded by a 9, a decimal point, or a
zero-suppression character.

 + In the first position of an external picture,

indicates signed data, and appears as either a
minus sign or a plus sign depending on the
sign of the data. Multiple plus signs at the
beginning of an external picture represent a

floating sign. The plus sign is an insertion
character when preceded by a 9, a decimal
point, or a zero-suppression character.

 - (Minus sign) In the first position of an external picture,
indicates signed data. The sign position
appears as a blank if the data is positive and
as a minus sign if the data is negative.

Multiple minus signs at the beginning of an
external picture represent a floating sign.
The minus sign is an insertion character

when it is preceded by a 9, a decimal point,
or a zero-suppression character.

Automatic Editing Criteria

Chapter 4: Automatic Editing and Error Handling 65

Data Type Character Description

 . (Decimal point) Used as a decimal point. Data is aligned with

the decimal point in an external picture and
is truncated or padded when necessary. The
decimal point terminates zero suppression

when zero-suppression characters precede
the decimal point. Zero-suppression
characters become insertion characters if
placed after a decimal point. The first period

in a series of period characters is the decimal
point in a picture. If no decimal point exists
in the data, a decimal point is assumed after
the rightmost numeric character. The comma

(,) is used as a decimal point if DECIMAL
POINT IS COMMA is specified.

 B A single blank character; B can appear

anywhere in the picture.

 (n) Follows a 9, A, Z, $, *, +, -, or B to represent n
consecutive repetitions of the character. N
must be an integer in the range 1 through

9999. When used following an implied
decimal point position, as represented by a
V, n must be in the range 1 through 255.

 V Indicates the decimal point position in fixed
decimal data.

 E+99 Indicates a floating point data field. The
mantissa can be positive or negative. The

exponent must be two numeric digits
preceded by a plus sign. If more than two
digits are entered, the online compiler

truncates the picture; if less than two digits
are entered, the picture is extended. The
online compiler supplies a default external
picture if automatic editing is enabled for the

field. The default external picture for internal
short float type data fields is +9.9(7)E+99.
The default external picture for internal long
float type data fields is +9.9(16)E+99.

 Other Characters other than 9, Z, $, *, +, -, B, V, or
parentheses can be used as insertion
characters.

Automatic Editing Criteria

66 Mapping Facility Guide

Special Considerations

An alphanumeric external picture must be specified for a field associated with a group

element, regardless of the data type of the subordinate elements in the group.

Alphanumeric, alphabetic, and numeric external pictures must begin with specific
characters:

■ Alphanumeric pictures must begin with either X or B

■ Alphabetic pictures must begin with either A or B

■ Numeric pictures must begin with one of the following characters:

– B

– Z

– 9

– $

– *

– +

– -

Allowing Insertion Characters

Including insertion characters in external pictures provides the terminal operator with

flexibil ity in supplying data. The terminal operator need only type necessary data
characters; the operator can include insertion characters in data, but omitting these
characters does not constitute an error.

For example, given a telephone number with an external picture of

XXXBXXX-XXXXB#BXXX, the terminal operator could enter any of the following values:

■ 617 555-1212 # 341

■ 617555-1212#341

■ 6175551212341

■ 6175551212

Automatic Editing Criteria

Chapter 4: Automatic Editing and Error Handling 67

Considerations

The following considerations apply to the use of insertion characters in external

pictures:

■ Insertion characters can be included in external pictures to assist terminal operators
in reading or interpreting output data. Insertion characters do not become part of

the stored data.

■ Insertion characters that are embedded in zero-suppression characters are not
displayed until a significant digit appears in the data.

■ The dollar sign ($) is the only insertion character that can occupy the first position in

an external picture.

The following considerations apply to data supplied in fields with numeric external
pictures:

■ Leading and/or trail ing blanks are automatically deleted from data entered in
numeric fields. Thus, the terminal operator can start entering numeric data in any

field position.

■ A decimal point is assumed to exist after the rightmost digit of a terminal operator's
input if the following conditions are in effect:

– A decimal point is defined in the external picture for the field

– No decimal point is supplied by the operator.

The sample external picture 99.99 affects the display of numeric data in the
examples in the following table:

Value input by operator Value displayed

1 01.00

.1 00.10

10 10.00

Truncation

If data typed by the terminal operator exceeds the length permitted by the external

picture, excess characters are deleted from the data as described in the following table:

Type of Field Truncation Process

Alphanumeric The rightmost characters are deleted from the data.

Automatic Editing Criteria

68 Mapping Facility Guide

Type of Field Truncation Process

Numeric ■ If excess characters are supplied to the right of thedecimal, the

rightmost (low-order) characters are deleted from the data.

■ If excess characters are supplied to the left of the decimal, the
leftmost (high-order) characters are deleted from the data.

Data from which low-order characters are deleted is moved to program variable storage
as usual. Numeric data from which high-order characters are deleted is not moved to
program variable storage; an input error occurs for the field

Sample Truncations

The following sample external pictures demonstrate how excess characters are deleted

from data:

External picture Operator inputs Data stored as

XXX A234 A23

AAA WXYZ WXY

999 1234 no data

99.99 23.4 23.40

99.99 123.4 no data

99.99 23.456 23.45

A CA ADS dialog or application program can determine whether excess data has been
deleted from data in a field by inquiring if the field has been truncated.

Automatic Editing Criteria

Chapter 4: Automatic Editing and Error Handling 69

Edit and Code Tables

Overview

Existing edit and code tables can be optionally associated with map fields. Automatic

editing uses the edit and code tables for a field on mapout and mapin as follows:

■ On mapout, the code table (if any) is used to convert stored data to its decoded
form for display at the terminal.

■ On mapin, the edit and code tables for a field are used as described:

– The edit table (if any) is used to validate operator input. An edit table can
contain either valid or invalid values:

■ If the edit table contains valid values, data input in the map field is valid

only if it is l isted in the table

■ If the edit table contains invalid values, data input in the map field is valid
only if it is not l isted in the table

– The code table (if any) is used to convert data typed in a field to its encoded

form for storage. In this way, the code table also validates data unless NOT
FOUND is used to pass incorrect data through.

A given map field can have a maximum of one edit table and one code table enabled for
it. Edit and code tables cannot be specified for a field that is associated with a group
element unless all its elements are defined with usage DISPLAY.

The arrangement of values in a table, the searching algorithm for a table, and the
relationship between a table and a map load module that uses the table are determined
by the IDD DDDL statement that defines the table.

The definition of tables is discussed in the appendix “Generating Edit and Code Tables".

Values in Edit and Code Tables

Edit and code tables contain the values used by automatic editing. Values in a table can
be either numeric or alphanumeric depending on the data type specified when the table

was created.

Automatic Editing Criteria

70 Mapping Facility Guide

Edit Table Values

Edit table values must be compatible with the data type and length of data to be
evaluated at runtime. The configuration of input data at runtime depends on the
specific automatic editing processes that are performed on the data.

Automatic editing performs the following processes prior to edit table operations:

■ Numeric input data is reversed if REVERSE NUMERIC is enabled for the field.

■ Data is altered according to external picture specifications for example:

– Leading and trail ing blanks are stripped from numeric data

– The decimal point in numeric data is aligned with the decimal point in the
external picture

– Insertion characters are stripped from data

– Characters that exceed the length specified by the external picture are deleted
from the data

Insertion characters are not included in edit table values. For example, the following
sample edit table l ists values for a ROOM NUMBER field with an external picture of
X-X(3) and an internal picture of X(4):

External Picture Edit Table Values

E-101 E101

E-203 E203

G-221 G221

Code Table Values

Code table values specify encoded and decoded values:

■ Encoded values specify data that can be stored in program variable storage. The
data type and length of encoded values must be compatible with the internal
format for the field with which the code table is associated. The internal format for

a field is determined by the internal picture defined for the associated record
element.

For example, the following sample encoded values are valid in terms of their

corresponding internal pictures:

Encoded value External picture Definition

OS XX department value

01 9(2) state value

Automatic Editing Criteria

Chapter 4: Automatic Editing and Error Handling 71

■ Decoded values specify data that can be displayed on a terminal screen. The data
type and length of decoded values must be valid in terms of the external picture for

the field with which the code table is associated. Insertion characters are not
included as decoded values in code tables.

For example, the following sample decoded values are valid in terms of their

corresponding external pictures:

Encoded value Internal picture Definition

OFFICE SERVICES X(20) department value

ALABAMA X(20) state value

On mapin, the edit table (if any) is invoked before the code table (if any) for a field.

DDDL Compiler Options

DDDL compiler conventions apply when specifying values for edit and code tables:

■ Delimit words or clauses by using one of the following delimiter characters:

– Blank

– Comma

– Period

– Semicolon

– Colon

– Apostrophe

– Parenthesis

– Quotation mark

■ Embed one or more delimiter characters by enclosing the value that contains
delimiter characters in a pair of site-standard quote characters. The single quote (')
is the default. For example, the value OFFICE SERVICES in the following sample
code table contains an embedded blank character:

01 SHIPPING
02 PERSONNEL
03 ACCOUNTING
04 MARKETING
05 'OFFICE SERVICES'

Single quotes around the value OFFICE SERVICES indicate that the space character
between the two words in the value is part of the value rather than a delimiter
between two values.

Automatic Editing Criteria

72 Mapping Facility Guide

■ Embed the site-standard quote character in a value by coding the quote character
twice. For example, the value USER'S SITE in the following sample code table

includes the default quote character ('):

50 DENVER
60 'BOSTON RGNL OFFICE'
70 'CHICAGO RGNL OFFICE'
85 'USER''S SITE

Note: For more information about DDDL compiler conventionsand specifying values for
tables, see the CA IDMS IDD DDDL Reference Guide.

Special Values

The following special values can be included in code tables to facil itate use of the tables
at runtime:

■ The NOT FOUND keyword can be included in a code table to define a catchall for a
decoded or encoded value:

– As an encoded value, NOT FOUND ensures that an unanticipated stored value

does not cause an abend on mapout. The decoded value that corresponds to
NOT FOUND is displayed for unanticipated input.

– As a decoded value, NOT FOUND ensures that unanticipated input does not
cause an input error when evaluated by the code table. The encoded value that

corresponds to NOT FOUND is stored for unanticipated data.

NOT FOUND must not be enclosed in quotation marks when used as a keyword. For
example, the following sample code table for a DEPARTMENT field includes NOT
FOUND as an encoded and a decoded value:

01 SHIPPING
02 PERSONNEL
03 ACCOUNTING
04 MARKETING
05 'OFFICE SERVICES'
00 NOT FOUND
NOT FOUND MISSING

The value 00 is stored for the field when an operator supplies a value that is not
included as a decoded value in this sample table. The word MISSING is displayed
when a value other than 01, 02, 03, 04, 05, or 00 is stored for the field.

Note: For more detailed information about the NOT FOUND keyword, see the

appendix “Generating Edit and Code Tables".

Automatic Editing Criteria

Chapter 4: Automatic Editing and Error Handling 73

■ The null value, (''), two consecutive quotation marks, should be included as a
decoded value in a code table in the following cases:

– The numeric data field is to be fi l led with zeros when automatic editing is
enabled and the operator presses the ERASE EOF key, as specified by either of
the following options:

■ The Zero when null option on the Map Read/Write Options screen

■ The ZEROED WHEN NULL option of the batch compiler MFLD statement

– The alphanumeric data field is defined without a pad character.

The following sample code table for a DEPARTMENT field included the null value as

a decoded value:

 00 ''
 01 SHIPPING
 02 PERSONNEL
 03 ACCOUNTING
 04 MARKETING
 05 'OFFICE SERVICES'

The decoded value 00 is stored for this example when the opera tor presses ERASE

EOF at the beginning of the associated alphanumeric map field and submits a null
value for the field.

Enabling tables

Built-in Edit or Code Tables

If a record element includes an edit and/or code table in its definition, the table is
referred to as a built-in edit or code table. The built-in edit or code table is available to
any map data field that uses the record. The built-in table for a field is used for the field

if both of the following conditions are met:

■ Automatic editing is enabled for the field (and map).

■ The map developer does not use the mapping facil ity to specify an edit/code table.

Suppressing Built-in Tables

To suppress use of a built-in table without using another table, the developer must

disable automatic editing for the field.

The map developer overrides the use of a built-in table (if any) by specifying a
stand-alone table for the field. Stand-alone tables are created in the data dictionary by
the DDDL TABLE statement.

Automatic Editing Criteria

74 Mapping Facility Guide

Specifying a Stand-alone Table

The developer uses the online or batch compiler to specify a stand-alone table:

The Edit table name and Code table name prompts on the Additional Edit Criteria screen
can be used to specify the name of a table to be used for the field. For example, the
state1 table is specified as an unlinked edit table of valid values in the following sample

screen.

 Additional Edit Criteria Page 3 of 7
 Map name: EYHTST1 Version: 1

 Element name EMP-STATE-0415 Subscript
 In record EMPLOYEE Version 100

 Edit table name . . . STATE1 Version 1 Link with map (/) _

 Edit type 1 1.Valid values 2.Invalid values

 Code table name . . . ________ Version ____ Link with map (/) _

 Error message (specify ID or text)

 ID. Prefix __ Number ______

 Text. __
 __

 DC365801 Map options processed successfully

 F1=Help F3=Exit F4=Prev F5=Next F6=Preview F7=Bkwd F8=Fwd

Suppressing a Stand-alone Table

To suppress use of a specified stand-alone table without specifying another table, the

map developer can eliminate the name of the table from the Additional Edit Criteria
screen by performing either of the following actions:

■ Pressing the ERASE EOF key to erase the table name

■ Typing blanks over the table name

Automatic Editing Criteria

Chapter 4: Automatic Editing and Error Handling 75

Specifying a Stand-alone Table using the Batch Compiler

The EDIT TABLE and CODE TABLE clauses of the batch compiler MFLD statement can be

used to specify the name of the table to be used for the fiel d. For example, the
DEPTEDIT table is specified as an unlinked edit table of valid values in the following
sample MFLD statement:

ADD MFLD DEPT-ID
 DFLD ID-0410
 EDIT TABLE IS DEPTEDIT
 NOLINK
 USAGE IS VALIDATE.

Alternate Names

Type of table Alternate name Reason

Built-in Tightly coupled Because each table is part of
the element for which it is

defined

Stand-alone Loosely coupled Because they are separate
from the record elements
with which they are

associated

Linked VS. Unlinked

When the map developer specifies a stand-alone table for use during automatic editing,

the table must be designated either l inked or unlinked as described:

If the table is This happens

Linked The table is included in the map load module with which it is

associated.

Unlinked The table is loaded at runtime by the map load module with
which it is associated.

Enabling a table as an unlinked table eliminates the need to regenerate maps that use
the table, should the table definition change. A stand-alone table is specified as l inked
or unlinked on the same screen or in the same batch MFLD statement that names the
table for a field.

Note: For more information about the definition of built-in and stand-alone table, see
the appendix “Generating Edit and Code Tables".

Error-Handling Criteria

76 Mapping Facility Guide

Error-Handling Criteria

What is Error-handling?

Error handling alerts the terminal operator if an input error occur s.

A field is considered to be in error if any of the following conditions exist:

■ The input (or the encoded equivalent) does not conform to the internal picture.

■ The input does not conform to the external picture.

■ Numeric input is truncated on the left (high-order truncation).

■ No input is supplied for a required field.

■ The input is determined to be invalid, based on the edit table used for the field.

■ The input does not match any decoded values in the code table used for the field,
and no catchall value is defined for decoded values.

■ The input is determined to be in error according to criteria defined by a

user-written edit module.

Note: For more information about the use of the automatic editing to establish
correct/incorrect input conditions for error handling, see the chapter "Automatic Editing
Criteria”.

Note: For more information about the definition and use of user-written edit modules,

see the appendix "User-Written Edit Modules".

What Error-handling Criteria can be Defined?

The following table l ists the error-handling criteria that can be defined for each map.
Each criterion is described separately:

Criteria Use

Attributes for correct input Identifies correct input and input that has not been
edited

Attributes for incorrect input Identifies erroneous input

Error message Provides the terminal operator with any messages
associated with the field in error

A terminal alarm Informs the terminal operator that an input error

has occurred

Error-Handling Criteria

Chapter 4: Automatic Editing and Error Handling 77

Attributes for Correct and/or Incorrect Input

Definition

Attributes that are used when the mapped display is initially mapped out are assigned
individually to fields when the fields are defined. Attributes used to draw attention to

correct and/or incorrect data are assigned to an entire map when the map is defined.
These error-handling attributes override the field-level attributes when an edit error is
redisplayed.

How to Define Attributes

Either the online or batch compiler can be used to define attributes for correct and/or
incorrect fields:

■ Page two of the General Options screen can be used to establish attributes for use
by error handling. The developer selects attributes on this screen to establish those

attributes for use with error-handling.

■ The batch compiler MAP statement ON EDIT ERROR clause can be used to establish
attributes for error handling. The following specifications can be made for the ON
EDIT ERROR clause:

– The INCORRECT FIELDS ATTRIBUTES specification names attributes for fields

that contain incorrect input.

– The CORRECT FIELDS ATTRIBUTES specification names attributes for fields that
contain correct input.

The list of available attributes is detailed in "Attributes for Fields".

Attributes that are defined for correct fields are also used to redisplay variable fields for
which editing was not performed.

Error-Handling Criteria

78 Mapping Facility Guide

Error Messages

Default Error Message

Error handling provides a default error message for any field. The message has the
following format:

ERROR AT row, column

How to Override the Default Message

The developer can override the default error message for a field by specifying an error
message for use by error-handling. The online or batch compiler can be used to define

an error message:

■ The Error message prompt on the Additional Edit Criteria screen can be used to
establish an error message for the field being defined. The error message can be

supplied at the time the map field is defined, can be defined in the data dictionary,
or can be the default message.

 Additional Edit Criteria Page 3 of 7
 Map name: EYHTST1 Version: 1

 Element name EMP-STATE-0415 Subscript
 In record EMPLOYEE Version 100

 Edit table name . . . ________ Version ____ Link with map (/) _

 Edit type _ 1.Valid values 2.Invalid values

 Code table name . . . ________ Version ____ Link with map (/) _

 Error message (specify ID or text)

 ID. Prefix __ Number ______

 Text. NOT A VALID STATE CODE
 __

 DC365801 Map options processed successfully

 F1=Help F3=Exit F4=Prev F5=Next F6=Preview F7=Bkwd F8=Fwd

Error-Handling Criteria

Chapter 4: Automatic Editing and Error Handling 79

In the previous screen, the developer specifies a message on the line after the Text
prompt. The message, NOT A VALID STATE CODE, is specified for the data field that

follows STATE in this example.

■ The ERROR MESSAGE clause of the batch compiler MFLD statement can be used to
establish an error message for the field being defined. You can either accept the

default message, or define the error message in the data dictionary.

For example, an error message is defined for the EMP-STATE map field in the
following sample MFLD statement:

ADD MFLD EMP-STATE
 REQUIRED
 EXTERNAL PICTURE IS 'XX'
 ERROR MESSAGE IS
 'NOT A VALID STATE'.

Defining a Message Field for a Map

An error message displays an input error only if a message field is defined for the map.

The developer defines a message field for a map by using the online or batch compiler:

■ The ELEMENT NAME and SUBSCRIPT prompts on the second page of the Field
Definition screen are used as follows:

– ELEMENT NAME—The developer types the keyword $MESSAGE (or $M) to

establish a variable field as a message field.

– SUBSCRIPT—The developer optionally specifies the maximum number of
characters that the message field can contain in the SUB field (default is 80).

Note: When the developer enters either $MESSAGE or $M in the ELEMENT
NAME field and presses <Enter>, the literal, SUBSCRIPT, changes to LENGTH
and irrelevant fields are darkened, as i l lustrated in the following sample screen.

Error-Handling Criteria

80 Mapping Facility Guide

 Field Definition Page 1 of 7
 Map name: EYHTST1 Version: 1
 ...5...10...15...20...25...30...35...40...45...50...55...60...65...70...75...80

_
 ...5...10...15...20...25...30...35...40...45...50...55...60...65...70...75...80
 Field at row 21 column 80 Drop field (/) _

 Element name: $message Subscript 80
 In record Version

 Edit Picture

 Display intensity 1 1. Normal 2. Bright 3. Hidden
 At end of field 3 1. Auto-tab 2. Lock keyboard 3. Take no action

 Unprotected (/) / Required (/). _
 Automatically edited (/) _ Skipped by tab key (/) _

 DC366004 Specify the variable field and any attributes

 F1=Help F3=Exit F4=Prev F5=Next F6=Preview F8=Fwd

 Field Definition Page 1 of 7
 Map name: EYHTST1 Version: 1
 ...5...10...15...20...25...30...35...40...45...50...55...60...65...70...75...80

_

 ...5...10...15...20...25...30...35...40...45...50...55...60...65...70...75...80
 Field at row 21 column 80 Drop field (/) _

 Element name: $MESSAGE Subscript 80

 Display intensity 2 1. Normal 2. Bright 3. Hidden
 At end of field 3 1. Auto-tab 2. Lock keyboard 3. Take no action

 Unprotected (/) Required (/). _
 Automatically edited (/) _ Skipped by tab key (/) _

 DC366004 Specify the variable field and any attributes

 F1=Help F3=Exit F4=Prev F5=Next F6=Preview F8=Fwd

■ The MESSAGE LENGTH clause of the batch compiler MFLD statement is used to

establish a variable panel field as a message field and specify the maximum number
of characters that the message field can contain.

For example, a message field (MESS1) is defined for a map in the following sample

MFLD statement:

Automatic Editing at Runtime

Chapter 4: Automatic Editing and Error Handling 81

ADD MFLD MESS1
 MESSAGE LENGTH 80.

How are Messages Displayed?

The message field for a map displays the error message for a field in error if the dialog
or program that uses the map redisplays the map with error-handling attributes. When
several data fields contain incorrect input, the message field displays as many error

messages as possible, in order of occurrence from top to bottom, right to left, of the
incorrect data fields. A blank is displayed between each error message.

Alarm Status on Input Error

You can enable or disable the error alarm feature using the following:

■ The Sound alarm on error prompt on the General Options screen

■ The ON EDIT ERROR clause of the batch compiler MAP statement

Automatic Editing at Runtime

If automatic editing is not enabled for a field, data in the field is handled as follows:

■ On mapin, data that has been changed (or for which the MDT is set on) is justified,
padded, or zeroed as specified by each map field definition. The data is then moved
to program variable storage if the Transmit data entry field on the Map Read/Write
Options screen is / for input.

■ On mapout, data is moved directly to the output buffer from program variable
storage. The data is then transmitted to the screen if DATA is Y (YES) for output.

Automatic editing is performed on mapin and mapout only if editing is enabled at the

map level and only for fields for which editi ng is specifically enabled.

Note: For more information about enabling automatic editing for a map and its fields,
see Enabling Automatic Editing and Error Handling (see page 53).

When enabled for a map and field, automatic editing validates and edits data supplied

by the operator. Each field is evaluated according to specifications made for the field
when the field was defined. Automatic editing operations that take place during mapin
and mapout operations are presented in this section.

Automatic Editing at Runtime

82 Mapping Facility Guide

Mapin Operations

Automatic editing operates on a single field at a time. Fields for which automatic editing
is enabled are evaluated in order of occurrence on the map. Automatic editing
evaluates and edits each field, as i l lustrated in the following figure.

A given automatic editing operation must be completed without errors before
automatic editing can advance to the next editing operation for that field. Automatic
editing stops editing a field when an input error is detected in the field; the data is not
moved to storage.

Automatic editing completes editing for a field in which no input error is detected by

performing the following steps:

■ The edited data is moved to the CA ADS record buffers or the program variable
storage associated with the map

■ Automatic editing either begins for the next field to be edited or finishes for the

map:

– Automatic editing begins for the next field on the map to be edited until all
designated fields have been evaluated by automatic editing

– Automatic editing is completed for the map if all fields for which automatic

editing is enabled have been edited

■ Automatic editing converts alphabetic characters to upper case if TRANSLATE TO
UPPER CASE was specified for the field

■ Automatic editing removes trail ing underscore characters if UNDERSCORE BLANK
FIELD was specified for the field

Automatic Editing at Runtime

Chapter 4: Automatic Editing and Error Handling 83

Automatic Editing on Mapin for Non-pageable Maps, Headers, and Footers

The following figure il lustrates how automatic editing is handled on mapin operations
for a non-pageable map and the header and footer areas of a pageable map.

Automatic Editing at Runtime

84 Mapping Facility Guide

Automatic Editing on Mapin for Pageable Maps

Automatic editing on mapin occurs as soon as the GET DETAIL statement in the process
code is initiated. The code must check automatic editing for the results. The previous
i l lustrated procedure is implemented however, it takes place after the GET DETAIL

statement is encountered in the process code.

Additionally, automatic editing error messages found on input (mapin - after the GET
DETAIL statement has been issued) are immediately moved into the message buffer
area and cannot be suppressed.

How the Online Compiler Responds to Errors

If input is found to be in error during editing, the online compiler responds as follows:

1. The field is identified as being in error.

2. Automatic editing ends for the field.

3. Automatic editing either continues with the next appropriate field on the map or
relinquishes control to the program that requested the mapin, as described:

■ If there is another data field on the map to be edited, editing begins for that
field.

■ If there are no more fields on the map to be edited, control returns to the CA
ADS dialog or the application program:

– Control returns to the CA ADS dialog that requested the mapin, as
instructed by the EXECUTE ON EDIT ERRORS specification for the dialog.

 If EXECUTE ON EDIT ERRORS is YES, control passes to the appropriate

response process.

 If EXECUTE ON EDIT ERRORS is NO, control does not pass to the response
process until the operator either corrects all input errors detected by

automatic editing or terminates the dialog.

– Control returns to the application program that requested the mapin.

Note: For more information about how dialogs and programs respond to input
errors in maps, see Error Handling at Runtime (see page 86).

Automatic Editing at Runtime

Chapter 4: Automatic Editing and Error Handling 85

Considerations

The following considerations apply to runtime automatic editing:

■ Automatic editing does not evaluate data in a response field

■ Only data fields for which the MDT is set on are transmitted to program variable
storage. The MDT can be set:

– If the operator has entered a value in the field

– If the program has been modified

– If the MDT option was specified for the field at map definition

■ Input must be supplied in a required field; failure to supply input constitutes an

input error

■ Input does not have to be supplied in a field that is not a required field

Determining if a Field is Changed or Erased

Map inquiry statements issued by the CA ADS dialog or application program that uses
the map determine that data is changed or erased when the ERASE EOF key is pressed:

■ A field is identified as changed when ERASE EOF erases the contents of the field in
either of the following cases:

– A pad character is defined for an alphanumeric field

– ZEROED WHEN NULL is specified for a numeric field

■ A field is identified as erased when ERASE EOF is pressed for the field while the
cursor is at the first position of an alphanumeric field for which no pad character is
defined.

Mapout Operations

Automatic editing operates on a single field at a time. Automatic editing processes each
field as i l lustrated in the following figure. A given automatic editing operation must be
completed without errors for a field before automatic editing can advance to the next

editing operation for that field.

A translation character can be defined at system generation to be output when invalid
data is found on mapout. If the translate character is defined as a null or a blank, no
translation is performed. The default translation character values is the at chara cter

(@). Data that contains invalid character values (such as packed data that cannot be
unpacked or bit data) is converted to a single @ character; the @ character is displayed
in the field when the map is displayed.

Error Handling at Runtime

86 Mapping Facility Guide

The code table (if any) for a field is used to convert an encoded stored value to a
decoded display value. The dialog or program that uses the map abends if an

unanticipated stored value is evaluated by a code table that does not include the
keywords NOT FOUND as an encoded value.

Automatic editing places blanks in numeric input if the Blank when zero option is on for

the field and the input contains only zeros.

Automatic editing converts input to external format from internal format by processing
the external picture for the field from right to left. If an error occurs during this phase,
the task requesting the mapout is abended.

Automatic editing places underscores in a blank field if UNDERSCORE BLANK FIELD was
selected for the field.

Edit tables are not used in mapout operations.

Error Handling at Runtime

When is a Field in Error?

A field is identified as being in error when automatic editing detects an error in that field
on mapin. User-written edit modules, CA ADS dialogs, and application programs can
perform their own editing and validation and specify whether a field is in error .

Defining Attributes for Redisplay

The CA ADS dialog or application program that uses a map can redisplay a map that
contains fields in error.

Attributes can be defined for the redisplay of correct and incorrect fields. Such

error-handling attributes can be used to draw the operator's attention to input errors.
Error messages can be specified for fields in error. Additionally, the terminal alarm can
be sounded when a map contains input errors. Specifications for the redisplay of maps

with input errors are made as follows:

■ The mapping facility can be used to make error-handling specifications for a map
when the map is defined

■ The CA ADS dialog or application program that issues the mapout can modify

error-handling specifications for the map

Error Handling at Runtime

Chapter 4: Automatic Editing and Error Handling 87

Error-handling attributes defined by the mapping facil ity are available for use when
automatic editing and error-handling are enabled for the map (regardless of the

individual field settings).

Note: For information about how to enable automatic editing and error-handling for a
map, see Enabling Automatic Editing and Error Handling (see page 53).

The ways in which CA ADS dialogs and application programs redisplay maps are
contrasted in the following figure. Dialogs and programs can be set up to handle input
errors as follows.

■ A CA ADS dialog EXECUTE ON EDIT ERRORS YES/NO specification determines how
the dialog executes if fields are in error:

– YES specifies that control passes to the appropriate response process. The
response process can include statements to determine if errors have been
detected on mapin, to set additional fields in error, and so forth.

A DISPLAY command must be used to redisplay the map for the operator. The

map is redisplayed according to current error-handling specifications.

– NO specifies that control is not passed to the response process. The map is
redisplayed according to current error-handling specifications. The terminal

operator must correct all map fields that are in error before control passes to
the appropriate response process.

Note: For more information about the CA ADS features and syntax, see the CA ADS
Reference Guide.

■ An application program includes Data Manipulation Language (DML) statements to
determine if errors have been detected on mapin, to set additional fields in error,
and so forth. A DML statement can issue a mapout to redisplay the map according
to current error-handling specifications.

Error Handling at Runtime

88 Mapping Facility Guide

Dialogs, Programs, and Input Errors

An application program should not issue mapout requests with the NEWPAGE (ERASE)

specification during error-handling; NEWPAGE (ERASE) maps out all map fields,
including literal fields, and changes MDT settings.

Note: For more information about the development of application programs that

interact with maps, see the appropriate CA IDMS DML Reference Guide.

Steps Performed by Runtime Mapping

When a CA ADS dialog or application program redisplays a map for which automatic
editing and error-handling are enabled, current error-handling attributes are
automatically used for the field.

The list and diagram that follow il lustrate the steps performed by runtime mapping:

■ Modified data tags are set for correct fields.

■ Correct-field attributes (if any) take effect for fields that are not in error or that
were not edited.

■ Incorrect-field attributes (if any) take effect only for fields that are in error.

■ The cursor is displayed at the first map field in error.

Error Handling at Runtime

Chapter 4: Automatic Editing and Error Handling 89

■ Blank required fields or any edited field for which data was not transmitted are
redisplayed with a question mark (?) character.

■ Data that is not in error is moved from the I/O buffer to program variable storage
on a mapin operation if DATA is Y (YES) on mapin for the field.

■ Data that is in error is not moved from the I/O buffer to protected variable storage

on a mapin operation.

■ On an initial display of a map by a CA ADS dialog, all l iterals and data fields are
transmitted even if a field is in error. However, in all other cases, during a mapout
operation, if any field is flagged as being in error, then, for all fields (both correct

and incorrect), only attribute bytes are transmitted back to the screen; no data is
moved from program variable storage to the screen.

Error Handling at Runtime

90 Mapping Facility Guide

Error Handling at Runtime

Chapter 5: Pageable Maps 91

Chapter 5: Pageable Maps

This chapter discusses about pageable maps, map-paging sessions, and dialog and
program operations.

This section contains the following topics:

Overview (see page 91)
Areas of Pageable Maps (see page 92)

Map-Paging Sessions (see page 94)
Dialog and Program Operations (see page 99)
Runtime Considerations (see page 109)
Creating Pageable Maps (see page 110)

Overview

What is a Pageable Map?

A pageable map is a map that can contain unlimited occurrences of a set of map fields.
Each occurrence of the set of fields is called a detail occurrence.

A pageable map can contain more detail occurrences than can fit on the terminal
operator's screen at one time. The runtime system stores detail occurrences
sequentially in the order in which they are created by pageable map commands and
divides them into pages based on the number of occurrences that can fit on the

terminal operator's screen. One page of occurrences can be displayed on the screen at
any one time.

Areas of Pageable Maps

92 Mapping Facility Guide

Example of a Pageable Map

For example, a pageable map might display information about a department and list all

the employees within the department. The set of map fields related to employee
information occurs once for each employee to be listed. These detail occurrences of
employee information are created at runtime by pageable map commands and can be

displayed to the terminal operator one page at a time.

What's in this Section?

This section discusses the use and definition of pageable maps by presenting the
following topics:

■ Areas of pageable maps

■ Map paging sessions

■ Dialog and program operations

■ Runtime considerations

■ Creating pageable maps

Areas of Pageable Maps

A pageable map is divided into three areas, as i l lustrated in the following screen:

EMPLOYEE PERSONAL DATA

EMPLOYEE NAME: JANE FERNDALE
EMPLOYEE NUMBER: 0032 SOCIAL SECURITY NUMBER: 034-56-7890
EMPLOYEE NAME: TOM FITZHUGH
EMPLOYEE NUMBER: 0081 SOCIAL SECURITY NUMBER: 112-34-5678
EMPLOYEE NAME: GEORGE FONRAD
EMPLOYEE NUMBER: 0045 SOCIAL SECURITY NUMBER: 092-34-7890
EMPLOYEE NAME: ROBIN GARDNER
EMPLOYEE NUMBER: 0053 SOCIAL SECURITY NUMBER: 022-34-4444
EMPLOYEE NAME: JENNIFER GARFIELD
EMPLOYEE NUMBER: 0003 SOCIAL SECURITY NUMBER: 021-99-4516

PAGE: 0004

Areas of Pageable Maps

Chapter 5: Pageable Maps 93

Three Areas of a Pageable Map

■ The header area (optional) is a rectangular area located across the top of the

screen that contains one or more rows of map fields associated with header
information. The header area information is displayed whenever the map is
displayed.

■ The footer area (optional) is a rectangular area located across the bottom of the
screen that contains one or more rows of map fields associated with footer
information. The footer information is displayed whenever the map is displayed.

■ The detail area (required) is a rectangular area located across the middle of the

screen that contains the detail occurrence for the map.

The set of fields in the detail occurrence is defined in the detail area only once. At
runtime, the number of detail occurrences that are di splayed in the detail area
depends on the space available on the screen after accounting for the header and

footer information.

Examples of each Area

For example, a pageable map used to display a department record and all associated
employee records might contain the following information:

■ Header area—The title of the map and department information

■ Footer area—A message field, a page field to display the current page number, and
literal fields with information about how to page through the map

■ Detail area—Detail occurrences of employee information

What is a Map Page?

The term map page refers to a runtime display made up of the header and footer map
fields and a page of detail occurrences. The page of occurrences that is displayed at any
given time is determined by the value of the system $PAGE field. For example, if a
department with 25 employees is displayed on a pageable map that can hold a

maximum of 10 employee occurrences, the value in the system $PAGE field determines
the occurrences that are displayed:

■ If $PAGE equals 1, occurrences 1 through 10 are displayed.

■ If $PAGE equals 2, occurrences 11 through 20 are displayed.

■ If $PAGE equals 3, occurrences 21 through 25 are displayed.

The value in the $PAGE field can be specified by the operator or by the dialog or
program. The current value in the system $PAGE field can be displayed on a map by

associating $PAGE with a field on the pageable map that is associated with the system
$PAGE field.

Map-Paging Sessions

94 Mapping Facility Guide

Map-Paging Sessions

What is a Map-paging Session?

When a CA ADS dialog or an application program uses a pageable map at runtime, a
map-paging session takes place. CA ADS dialog or application program commands build
and display detail occurrences for map pages during a map-paging session. The

operator can update information in data fields and can access different map pages by
pressing control keys or specifying page numbers.

The fields in a detail occurrence are defined once when the map is created. At runtime,
these fields are repeated as many times on a page as possible to fi l l the detail area.

Each repetition of the detail occurrence represents a record occurrence.

Map-Paging Sessions

Chapter 5: Pageable Maps 95

For example, the following screens contrast the definition and run time detail
occurrences for a pageable map:

■ At definition time, the fields in the detail area are associated with dictionary
elements or with system-supplied fields.

■ At runtime, commands in the CA ADS dialog premap process or the application

program move stored data to the appropriate work record elements before
displaying the map. When the map is displayed, the variable field associated with
WK-ID-0415 displays the identification number of a different employee in each
detail occurrence. Each detail occurrence displays information about the par ticular

employee identified in the WK-ID-0415 field.

Definition Time

EMPLOYEE PERSONAL DATA

EMPLOYEE NAME: ________________________________1
EMPLOYEE NUMBER: _______2 SOCIAL SECURITY NUMBER: _________3

___4

PAGE: _____5

1. Associated with WK-NAME-0415

2. Associated with WK-ID-0415

3. Associated with WK-SS-NO-0415

4. Associated with system-supplied $Message field

5. Associated with system-supplied $Page field

Map-Paging Sessions

96 Mapping Facility Guide

Runtime

EMPLOYEE PERSONAL DATA

EMPLOYEE NAME: JANE FERNDALE
EMPLOYEE NUMBER: 0032 SOCIAL SECURITY NUMBER: 034-56-7890
EMPLOYEE NAME: TOM FITZHUGH
EMPLOYEE NUMBER: 0081 SOCIAL SECURITY NUMBER: 112-34-5678
EMPLOYEE NAME: GEORGE FONRAD
EMPLOYEE NUMBER: 0045 SOCIAL SECURITY NUMBER: 092-34-7890
EMPLOYEE NAME: ROBIN GARDNER
EMPLOYEE NUMBER: 0053 SOCIAL SECURITY NUMBER: 022-34-4444
EMPLOYEE NAME: JENNIFER GARFIELD
EMPLOYEE NUMBER: 0003 SOCIAL SECURITY NUMBER: 021-99-4516

PAGE: 0004

Sequence of Events in a Map-paging Session

1. The map-paging session is initiated according to specifications or commands in the
CA ADS dialog or application program that uses the pageable map.

More information

■ For more information about CA ADS statements for pageable maps, see the CA
ADS Reference Guide.

■ For more information about PL/I statements for pageable maps, see Appendix

G, “PL/I DML Statements for Pageable Maps”.

■ For more information about Assembler or COBOL statements, see the CA IDMS
DML Reference Guide for Assembler or the CA IDMS DML Reference Guide for
COBOL.

Map-Paging Sessions

Chapter 5: Pageable Maps 97

2. Detail occurrences are created by statements in the dialog or program.
Occurrences are stored sequentially in the order that they are created and are

divided into pages based on the number of detail occurrences that can fit on the
terminal screen at one time. A detail occurrence is displayed on the terminal screen
only when the map page to which the occurrence belongs is displayed.

3. A map page is displayed by the CA ADS runtime system or the DC runtime system
as a result of one of the following:

■ The first detail occurrence on the second page of occurrences is constructed.
The first page of detail occurrences in a map-paging session is automatically

displayed. The CA ADS process or program module that creates detail
occurrences continues to execute and can create additional detail occurrences.

■ A display command is issued by the dialog (except when the command
immediately follows the display of the first page of occurrences, as described

previously).

■ A display is done automatically when the dialog has no premap process

The CA ADS runtime system (which executes CA ADS dialogs) and the DC runtime

system (that executes application programs) are both referenced by the term
program runtime system in the remainder of this section. The term runtime
mapping system refers to a separate part of the runtime system that handles only
mapping functions at runtime.

Note: For more information about display commands for pageable maps, see
Building and Displaying Fields (see page 105).

4. The terminal operator optionally modifies map data fields in the header or footer
areas or in any of the detail occurrences of the current map page. Map-field
modifications are subject to restrictions specified at map-definition or map runtime:

■ At map-definition time, fields can be protected from operator input.

■ At map runtime, modifications can be restricted by specifications made in the
CA ADS dialog or application program:

– The paging mode option (UPDATE/BROWSE) determines whether
modifications can be made to a pageable map.

– Map modification commands determine whether modifications can be
made to individual fields.

Note:

■ For more information about paging mode options, see "Map-Paging Session
Options".

■ For more information about modification commands, see "Map Inquiry and
Modification”.

Map-Paging Sessions

98 Mapping Facility Guide

5. The terminal operator optionally makes a paging request to specify the next map
page to be displayed in either of the following ways:

■ By pressing a control key associated with paging forward or backward one
page:

– <PF8> pages the detail area forward one page.

– <PF7> pages the detail area backward one page.

These control key settings are system generation options.

■ By specifying an integer value in the page field (if any) on the map.

■ By typing first or last over the page field on the map.

– First brings the operator to the first page of detail occurrences.

– Last brings the operator to the last page of detail occurrences.

6. The terminal operator presses a control key, initiating the following:

■ The internal representation of data fields is updated to reflect changes made
by the terminal operator if the operator pressed any key other than <Clear>,

<PA1>, <PA2>, <PA3>.

■ The $PAGE value is updated if a paging request was made in any of the
following ways:

– The operator pressed a key associated with paging forward or backward

– The operator specified a value in the page field (if any) on the map

– The dialog or program set the value of the $PAGE field on the previous
mapin operation

■ The flow of control is determined by the paging-type option specified for the
dialog or program

Note: For more information about paging-type specifications,see Building and
Displaying Fields (see page 105).

7. Modified detail occurrences are retrieved by commands in the dialog or program.
Data is updated to program variable storage according to specifications made for
each field.

Note: For information about retrieval commands for pageable maps, see Retrieving
Modified Data (see page 108).

8. Detail occurrences are modified by either the program runtime system or the
mapping runtime system, as specified by the paging-type for the map-paging

session.

Note: For information about paging-type options, see "Building and Displaying
Fields".

Dialog and Program Operations

Chapter 5: Pageable Maps 99

9. Additional detail occurrences are created at any time by commands in the dialog or
program. New detail occurrences are stored at the end of the set of detail

occurrences in the session scratch record.

Note: For information about commands that create new detail occurrences, see
Building and Displaying Fields (see page 105).

10. A page of the map is displayed by either the program runtime system or the
mapping runtime system, as specified by the paging-type for the map-paging
session.

11. The map-paging session is terminated according to specifications or commands in

the CA ADS dialog or application program that uses the pageable map.

Dialog and Program Operations

Pageable maps are used at runtime by CA ADS dialogs and application programs.
Specifications for a dialog or program determine how a pageable map can be used at

runtime. For example, options specified for a map-paging session determine whether
the operator can page backward or update information on the map.

Specifications and statements in a dialog or program perform the following functions at
runtime. These specifications and statements are discussed separately as follows:

■ Establish map-paging session options

■ Build and display fields

■ Retrieve modified data

Note: The CA ADS runtime system (which executes CA ADS dialogs) and the DC runtime

system (that executes application programs) are both referenced by the term program
runtime system in the remainder of this section. The term runtime mapping system
refers to a separate part of the runtime system that handles only mapping functions at

runtime.

Map-Paging Session Options

Putting Options into Effect

CA ADS

CA ADS issues a #STRTPAG and #ENDPAG request for you under the conditions specified
in the following table:

Options Conditions

Specified When a pageable map is associated with a dialog

Dialog and Program Operations

100 Mapping Facility Guide

Options Conditions

Retained Across dialogs when all of the following conditions are met:

■ The dialog that passes control and the dialog that receives
control are associated with the same pageable map.

■ The dialog that passes control and the dialog that receives

control are defined with the same map-paging session
options.

Control is passed by means of a LINK, INVOKE, or RETURN
command.

Ended When any of the following conditions are met:

■ The application terminates normally

■ The application aborts

■ The application passes control to another dialog under any of

the following conditions:

■ The dialog receiving control is associated with a different
pageable map than the one that initiated the map paging

session

■ The dialog receiving control has different map paging dialog
options than the dialog that initiated the map paging session

■ The dialog that initiated the map paging session issues the

TRANSFER command, either by way of a CA ADS PROCESS
statement or an EXECUTE NEXT function

■ The dialog that initiated the map paging session returns

control to a higher level

■ POP or POPTOP is issued and the menu receiving control is at
a higher level than the dialog that started the paging session

Application Programs

With COBOL, PL/1, and Assembler, the program must explicitly issue the paging
requests.

Options Conditions

Specified In the DML statement that initiates the paging session:

■ By the COBOL or PL/I STARTPAGE statement

■ By the Assembler #STRTPAG macro

Retained Across program branches if no DML command to initiate a new
paging session or terminate the existing session is encountered.

Dialog and Program Operations

Chapter 5: Pageable Maps 101

Options Conditions

Ended By a DML statement that either explicitly terminates the current

paging session or begins a new paging session and implicitly
terminates the current paging session:

■ The COBOL or PL/I ENDPAGE statement explicitly terminates a

map-paging session; the STARTPAGE statement (above)
implicitly terminates the current map-paging session.

■ The Assembler #ENDPAG macro explicitly terminates a
map-paging session; the #STRTPAG macro (above) implicitly

terminates the current map-paging session.

Specifying Paging and Update Requests

Paging-type Specification

The paging-type specification for a dialog or program determines whether the program

or the runtime mapping system handles paging and update requests. Paging and
update requests are made when the operator presses a control key:

■ A paging request to display a different page of the map is made if either of the

following cases applies when the operator presses a control key:

– The control key is associated with paging forward or backward.

– The value in the $PAGE field has been altered by the operator or the
dialog/program that uses the map, and the control key is not <Clear>, <PA1>,

<PA2>, or <PA3> (which do not transmit data).

■ An update request (to update operator modifications to the scratch record for the
paging session) is made when the MDT is set on for fields and the operator presses

a control key other than <Clear>, <PA1>, <PA2>, or <PA3>.

Three Types of Paging

One paging-type option must be specified for a dialog or program that uses a pageable
map. The paging options affect the flow of control when an operator presses a control
key during a paging session as described in the following table:

Option Affect on flow of control

NOWAIT (default) Specifies that the runtime mapping system automatically
handles all paging and update transactions. Control is passed to the

program runtime system only when neither an update nor a paging
request is made when the operator presses a control key.

Dialog and Program Operations

102 Mapping Facility Guide

Option Affect on flow of control

WAIT Specifies that runtime mapping automatically handles paging

transactions that do not cause data to be updated. Control is
passed to the program runtime system when an update or
non-paging request is made.

RETURN Specifies that the mapping runtime system does not handle any
terminal transactions in the paging session. Control is passed to the
program runtime system whenever the operator presses a control
key.

Note: Runtime mapping does not update program variable storage unless a MAP IN
command is issued. In cases where the operator can update data, it is recommended
that WAIT or RETURN be specified for the map-paging session so that data can be
retrieved as it is updated.

CA ADS automatically handles all MAPIN and MAPOUT commands.

Paging

Type

Paging request

Non-paging request

No MDT set Any MDT set ** No MDT set Any MDT set **

NOWAIT Runtime mapping
displays the

requested map page

Runtime
mapping

displays the
requested map
page

Control passes
to the program

runtime system

Runtime
mapping

redisplays the
same map page

WAIT Runtime mapping
displays the
requested map page

Control passes
to the program
runtime system

Control passes
to the program
runtime system

Control passes
to the program
runtime system

RETURN Control passes to

the program
runtime system

Control passes

to the program
runtime system

Control passes

to the program
runtime system

Control passes

to the program
runtime system

* If <Clear>, <PA1>, <PA2>, or <PA3> is pressed, and that key is not associated with

backward or forward paging, refer instead to the Non-paging Request heading.

** If <Clear>, <PA1>, <PA2>, or <PA3> is pressed, refer to the No MDT Set column under
the same heading.

Dialog and Program Operations

Chapter 5: Pageable Maps 103

How to Specify the Paging-type

The paging-type is specified for a CA ADS dialog or application program as follows:

Language Option/Clause

CA ADS ■ NOWAIT/WAIT/RETURN option—Map Specifications screen in

ADSC

■ PAGING TYPE clause

COBOL or PL/I NOWAIT/WAIT/RETURN clause—STARTPAGE statement

Assembler TYPE=NOWAIT/WAIT/RETURN clause—#STRTPAG macro

Note

■ For more information on CA ADS specifications for pageable maps, see the CA ADS
Reference Guide.

■ For more information about PL/I statements for pageable maps, see Appendix G,

“PL/I DML Statements for Pageable Maps”.

■ For more information about COBOL or Assembler pageable map statements, see
the CA IDMS DML Reference Guide for Assembler or the CA IDMS DML Reference

Guide for COBOL.

Backpaging Capability

Definition

The backpaging specification for a dialog or program determines whether the terminal

operator can display a previous map page during a map-paging session. The following
considerations apply to the backpaging option:

■ If backpaging is allowed (default), detail occurrences of previous pages must be

retained during the map-paging session.

■ If backpaging is not allowed, the previous page of detail occurrences is deleted
when a new map page is displayed.

How to Enable Backpaging

Backpaging is enabled/disabled for a CA ADS dialog or application program by one of the

following specifications:

Language Option/Clause

CA ADS BACKPAGE(YES/NO) option—Map Specifications screen in ADSC

COBOL or PL/I BACKPAGE/NOBACKPAGE clause—STARTPAGE statement

Dialog and Program Operations

104 Mapping Facility Guide

Language Option/Clause

Assembler BACKPAG=YES/NO clause—#STRTPAG macro

Note:

■ For information about CA ADS specifications for pageable maps, see the CA ADS
Reference Guide.

■ For information about PL/I statements for pageable maps, see CA IDMS DML
Reference Guide for PL/I.

■ For more information about COBOL or Assembler pageable map statements, see
the CA IDMS DML Reference Guide for Assembler or the CA IDMS DML Reference

Guide for COBOL.

Paging Mode

Definition

The paging mode specification for a dialog or program determines whether the terminal

operator can modify variable map fields:

■ UPDATE specifies that the terminal operator can modify variable map fields, subject
to restrictions specified for the map either at map-definition time or by the dialog

or program that uses the map.

■ BROWSE specifies that the terminal operator can modify only the page and
response fields (if any) of the map. The MDTs for variable fields on a map can be
set only according to specifications made either in the map-definition or by the

dialog or program that uses the map.

Note: UPDATE cannot be specified if backpagi ng is not allowed and NOWAIT is specified
as the paging-type.

How to Specify the Paging Mode

The paging mode is specified for a CA ADS dialog or application program as follows:

Language Option/Clause

CA ADS ■ UPDATE/BROWSE option—Map Specifications screen in

ADSC

■ PAGING MODE clause—BACKPAGE (Yes/No)

COBOL or PL/I UPDATE/BROWSE clause of the STARTPAGE statement

Assembler FLAG=UPDATE/BROWSE clause of the #STRTPAG macro

Dialog and Program Operations

Chapter 5: Pageable Maps 105

Note:

■ For information about CA ADS specifications for pageable maps, see the CA ADS

Reference Guide.

■ For information about PL/I statements for pageable maps, see the appendix "PL/I
DML Statements for Pageable Maps".

■ For more information about COBOL or Assembler pageable map statements, see
either the CA IDMS DML Reference Guide for Assembler or the CA IDMS DML
Reference Guide for COBOL.

Building and Displaying Fields

Statements in CA ADS dialogs and application programs can be used to create and
display header and footer fields during a map-paging session when execution is under
dialog or program control. Execution is under dialog or program control when:

■ The first page of detail occurrences has not been displayed

■ The operator presses a control key that passes control from the mapping runtime
system to the program runtime system, as specified by the paging-type
specification for the session.

Note: For information about the paging-type specification, see Building and

Displaying Fields (see page 105) earlier in this section.

Building Fields

CA ADS and Data Manipulation Language (DML) statements that build individual detail
occurrences from stored values or operator modifications are as follows:

Language Option/Clause

CA ADS PUT DETAIL statement

COBOL or PL/I MAP OUT DETAIL statement

Assembler #MREQ OUT DETAIL=YES statement

How it Works

The header and footer areas of the map are stored in the scratch area and are built
automatically when the first PUT DETAIL command is executed. As a result, any

modifications to the header or footer are ignored after that point.

As the program runtime system builds detail occurrences for a pageable map, it stores
the occurrences sequentially in the order in which they are created.

Dialog and Program Operations

106 Mapping Facility Guide

More information:

■ For information about CA ADS specifications for pageable maps, see the CA ADS

Reference Guide.

■ For information about PL/I statements for pageable maps, see Appendix G, “PL/I
DML Statements for Pageable Maps.”

■ For more information about COBOL or Assembler pageable map statements, see
the CA IDMS DML Reference Guide for Assembler or the CA IDMS DML Reference
Guide for COBOL.

Displaying Fields

If the AUTODISPLAY option is on for the dialog, the program runtime system
automatically displays the first page of a pageable map when the first detail occurrence
of the second page of occurrences is created. The first page of a pageable map consists
of fields in the header and footer areas and the first page of detail occurrences.

The program runtime system continues to build detail occurrences after the first page of
the map is displayed, if necessary. After the first page is displayed, control is passed to
the terminal operator as described as follows:

■ CA ADS—Control is passed to the terminal operator when a DISPLAY command is
issued after the final detail occurrence is built for the map.

■ COBOL, PL/I, and Assembler programs—Control is passed to the terminal operator
immediately after the first page of detail occurrences is displayed. The terminal

operator can page through the map while additional detail occurrences are being
built. A mapin operation can be initiated after all detail occurrences for a pageable
map are built.

Requesting Display of Detail Occurrences

The following table l ists the statements that request display of a page of detail

occurrences and pass control to the terminal operator:

Language Option/Clause

CA ADS DISPLAY statement

COBOL or PL/I MAP OUT RESUME statement

Assembler #MREQ OUT RESUME statement

Dialog and Program Operations

Chapter 5: Pageable Maps 107

How Statements are used

The previous statements are used in the following ways:

■ To initiate a mapout when mapout operations are under the control of the program
runtime system, as determined by the paging-type option for the paging session.

Note: For more information, see Building and Displaying Fields (see page 105).

■ To display the first page of a pageable map (application program only) when fewer
detail occurrences are built than can be displayed on the first page of the map.
COBOL and PL/I programs issue a status code and Assembler programs return a
value when the first page of a pageable map is displayed. If the appropriate status

code or value has not been received when the runtime system finishes building
detail occurrences for the map, a MAP OUT RESUME or #MREQ OUT RESUME
statement must be used to display the first page of the map.

Summary of Commands

Language Create Single
Occurrence

Display Page

CA ADS PUT DETAIL The PUT DETAIL statement that creates the
first detail occurrence of the second page

causes the first page of occurrences to be
displayed.

A DISPLAY statement causes the specified

page of occurrences to be displayed.

COBOL

PL/I

 MAP OUT DETAIL The MAP OUT DETAIL statement that
creates the first occurrence of the second
page causes the first page of occurrences to

be displayed.

A MAP OUT RESUME statement causes the
specified page of occurrences to be

displayed.

Assembler #MREQ OUT DETAIL The #MREQ OUT DETAIL statement that
creates the first occurrence of the second
page causes the first page of occurrences to

be displayed.

A #MREQ OUT RESUME statement causes
the specified page of occurrences to be

displayed.

Dialog and Program Operations

108 Mapping Facility Guide

Note:

■ For information about CA ADS specifications for pageable maps, see the CA ADS

Reference Guide.

■ For information about PL/I statements for pageable maps, see the appendix “PL/I
DML Statements for Pageable Maps”.

■ For more information about COBOL or Assembler pageable map statements, see
either the CA IDMS DML Reference Guide for Assembler or the CA IDMS DML
Reference Guide for COBOL.

Retrieving Modified Data

What is Retrieved?

Modified data in fields in the header and footer area for a pageable map can be
retrieved on mapin:

■ The CA ADS runtime system automatically retrieves modified values from the

header or footer.

■ The COBOL or PL/I MAP IN HEADER statement is used to retrieve a modified value
in either the header or footer area

■ The Assembler #MREQ MAP IN HEADER=YES statement is used to retrieve a

modified value in either the header or footer area

The retrieved value from each modified field (MDT set on) in the header or footer area
is updated to program variable storage if DATA is Y (YES) for the field.

The mapping runtime system updates a scratch record when operator modifications are

made to fields in detail occurrences but does not update program variable storage.
Therefore, CA ADS dialogs and application programs that use pageable maps in the
UPDATE paging mode must include statements that update program variable storage
when necessary.

CA ADS and the DMLs provide statements that retrieve modified detail occurrences;
either all data fields or only those fields in the occurrence for which the MDT is set on
can be retrieved. The retrieved value for each modified field (MDT set on) in the detail
occurrence is moved to program variable storage if DATA is specified as Y (YES) for the

field on mapin.

CA ADS and DML commands that retrieve modified detail occurrences are as follows:

Language Retrieve from Header/Footer

Area

Retrieve from Detail Occurrence

CA ADS Fields automatically retrieved GET DETAIL statement

Runtime Considerations

Chapter 5: Pageable Maps 109

Language Retrieve from Header/Footer
Area

Retrieve from Detail Occurrence

COBOL

PL/I

MAP IN HEADER statement MAP IN DETAIL statement

Assembler #MREQ IN HEADER=YES

statement

#MREQ IN DETAIL=YES statement

Note: The HEADER specification
in each statement retrieves data
from both the header and footer
areas.

Note:

■ For information about CA ADS specifications for pageable maps, see the CA ADS
Reference Guide.

■ For information about PL/I statements for pageable maps, see the appendix “PL/I

DML Statements for Pageable Maps.”

■ For more information about COBOL or Assembler pageable map statements, see
the CA IDMS DML Reference Guide for Assembler or the CA IDMS DML Reference

Guide for COBOL.

Runtime Considerations

The detail occurrence for a pageable map cannot occupy more lines than are available in
the detail area at runtime.

Size Constraints on Maps

A pageable map can be displayed on screens of varying sizes. The following constraints
apply:

■ A map cannot be displayed on a screen that is narrower than the map.

■ A pageable map can only be displayed on a screen if the runtime detail area is large
enough to hold at least one complete detail occurrence.

■ The footer (if available) will adjust to the different devices. For example, if the
footer starts three lines from the bottom of the screen, the footer will start on:

– Line 22 of a 24X80

– Line 30 of a 32X80

– Line 41 of a 43X80

– Line 25 of a 27X132

Creating Pageable Maps

110 Mapping Facility Guide

Constraints on System-supplied Fields

The following considerations apply to system-supplied fields on a pageable map:

■ A maximum of one message field can be defined on a map. If defined, the message
field for a pageable map should be defined as follows:

– In the header or footer area, if the most important messages for the map are

generated by the ADS DISPLAY MESSAGE command.

– In the detail occurrence, if the most important messages for the map are
generated by the ADS PUT DETAIL MESSAGE command. At runtime, the single
message field defined in the detail occurrence is mapped out once in each

occurrence in the detail area.

■ A page field can be defined in the header or footer area of a pageable map. The
page field is associated with the system $PAGE field when the map is defined by
using the mapping facil ity. At runtime, the page field displays the number of the
current map page. If the page field is unprotected, the operator can key a page

number, first, or last in the field to request display of a page.

■ A response field can be defined in the header or footer area of a pageable map. A
response field is meaningful only when the map is used by a CA ADS dialog.

Creating Pageable Maps

Overview

Pageable maps are created by using either the online or batch compiler of the CA IDMS
mapping facil ity. Specifications made during map-definition establish the map as a

pageable map and define the following pageable map features:

■ Header area (optional)

■ Detail area

■ Detail occurrence

■ Footer area (optional)

Note: For more information about the areas and detail occurrence of a pageable map,
see Areas of Pageable Maps (see page 92).

Creating Pageable Maps

Chapter 5: Pageable Maps 111

Using the Online Compiler

Use the online compiler to state the specifications for a pageable map as follows:

■ Select the Pageable option on the first General Options screen

■ Specify the boundaries of the detail area by using the Pageable Options screen in

the Field Definition process as described as follows:

– If the field or l iteral is the only one in the detail area, select Option 1

– If the field is the first of two or more fields in the detail area, select Option 2

– If the field is the last field or l iteral in the detail area, select Option 3. The detail
occurrence will end at the last character position in this field.

– If the field is the first field or l iteral in the footer area, select Option 4. This
defines the end of the detail area and the beginning of the footer.

After the map has been compiled using the Compile action on the Main Menu screen,
you can use it in MAPC.

Note: For more information about using the online mapping compiler screens, see
"Online Mapping Compiler Reference".

Using the Batch Compiler

The map developer makes pageable map specifications for a map by using clauses of

batch compiler statements:

■ PAGEABLE clause of the MAP statement—Designates that the map is a pageable
map

■ DETAIL START clause of the PFLD or MFLD (for MAP AUTOPANEL)

statements—Establishes:

– The end of the header area (if any) on the line immediately above the line that
contains the attribute byte for the field assigned the DETAIL START

specification

– The start of the detail area on the line that contains the attribute byte of the
field being defined

– The first field of the detail occurrence on the line that contains the attribute

byte of the field being defined

Creating Pageable Maps

112 Mapping Facility Guide

The field assigned the DETAIL START specification must begin on a new line (that is,
it cannot begin on a l ine that contains characters for a field in the header area).

■ DETAIL END clause of the PFLD or MFLD (for MAP AUTOPANEL)
statements—Establishes that the detail occurrence for the map is to end at the final
character position of the current field

■ FOOTER START clause of the PFLD or MFLD (for MAP AUTOPANEL) statement—This
clause is optional. If it is used, it establishes:

– The start of the footer area on the line that contains the attribute byte for the
field. The footer area ends at the end of the screen.

– The end of the detail area on the line immediately above the line that contains
the attribute byte of the field assigned the FOOTER START specification.

The field assigned the FOOTER START specification cannot begin on a l ine that
contains characters for a field in the detail occurrence. If assigned, the FOOTER

START specification must be assigned to a following field the field assigned the
DETAIL END specification.

Considerations

DETAIL START, DETAIL END, and FOOTER START can only be assigned to fields after the

owner map has been designated as pageable. Only one pageable map area specification
can be made on any given row of the map. For example, the DETAIL END and FOOTER
START specifications cannot be assigned to different fields on the same row.

A map is not ready for use until the map util ity has been used to generate a map load

module for the completed map-definition.

Note: For more information about using the batch compiler , see "Batch Compiler
Coding Considerations".

Chapter 6: The Help Facility 113

Chapter 6: The Help Facility

This chapter discusses about the Help facil ity.

This section contains the following topics:

Overview (see page 113)
Terminology (see page 113)
Creating Map-Level Help (see page 114)

Creating Field-Level Help (see page 119)
Using the Help System (see page 125)

Overview

The help system in the Mapping facil ity allows you to create help messages for an entire
map or a specific field on a map.

Help created using the help system has the following advantages over user -written help:

■ Processing of the help request is transparent to the dialog or program that uses the
map.

■ During a help session, the help system preserves the map attributes and any data
that has been entered, but not yet stored, until the help session is over. When the
session is over, the system restores that information.

■ Help can be added to an existing system without changing any code and without

having to recompile any dialogs or programs.

This chapter provides step-by-step instructions on how to create the text and associate
it with a map or field as well as a brief overview of how to use the help system.

Note: Physical Terminals (PTERMs) should be defined with the READBUFFER option.
PTERMs defined with NOREADBUFFER may not function properly. For more information

about the READBUFFER PTERM option, see the CA IDMS System Generation Guide.

Terminology

You should be aware of the following definitions before you begin working on the help
system:

Term Definition

Field-level help Help that applies to a specific field on a map.

Creating Map-Level Help

114 Mapping Facility Guide

Term Definition

Map-level help Help that applies to an entire map.

Text module A module in IDD that contains the text of either a map-level
or a field-level help message. Each help message is stored in
a separate text module.

Help load module The load module that contains each map- and field-level help
text module associated with a map. There is only one help
load module per map.

Half-window format Help that displays on the half of the screen that does not

contain the cursor. With field-level help this allows the user
to view simultaneously, the help text and the field in
question.

Full-window format Help that displays across the entire screen.

Creating Map-Level Help

Summary of Steps

To create map-level help, perform the steps l isted as follows. The steps are described in

detail on the following pages:

■ Create and store the text for the message in IDD

■ Associate that text with the map using the mapping compiler

■ Compile the map

■ Optionally, you can test the results using the DC/UCF system task, SHOWMAP.

Creating the Text of the Help Message

Steps

To create and store the help text, perform the following steps:

1. Sign on to IDD

2. Enter the following all at once, as i l lustrated on the following sample screen:

ADD MODULE your-maphelp-text-module LANGUAGE IS HELP MODULE SOURCE FOLLOWS

 The text of your help message

MSEND.

Important: If a l ine of help text exceeds 72 characters, it will be truncated when it is

displayed as help for the map.

3. Save the module

Creating Map-Level Help

Chapter 6: The Help Facility 115

Sample Screen

 IDD 15.0 ONLINE NO ERRORS DICT=SYSDICT 1
 ADD MODULE MAP-HELP-EXAMPLE LANGUAGE IS HELP MODULE SOURCE FOLLOWS

 THIS IS HELP FOR THE ENTIRE MAP.
 MSEND.

Associating the Help Text with a Map

Naming Conventions

When an application is being migrated at the load module l evel, both the map module
and the help module associated with it must be moved. Therefore, it is suggested that
you maintain consistent naming conventions that will make it easy to identify the

connection between a map and its associated help load module. In examples provided,
the fourth character is used to identify whether the entity is a map (M) or a help load
module (H).

Steps

After you create the help text, you must associate it with the appropriate map using
either the online map compiler, MAPC, or the batch compiler, RHDCMAP1. An example
using MAPC follows:

Creating Map-Level Help

116 Mapping Facility Guide

Note: The following steps assume that the map with which you are associating the help
already exists. If not, create the map first following the instructions in "Using the Online

Complier".

1. Access MAPC

2. On the main menu, enter the name of the map with which you want to associate

the help and select the Map-Level help text definition option, as shown:

 Add Modify Compile Delete Display Switch

__

 CA IDMS Online Map Compiler

 CA, Inc.

 Map name CHRMEMP1
 Map version 1
 Dictionary name SYSDICT
 Dictionary node ________

 Screen 2 1. General options
 2. Map-Level help text definition
 3. Associated records
 4. Layout
 5. Field definition

 Command ===>
 Enter F1=Help F3=Exit F10=Action

3. On the following Map-Level Help Text Definition screen:

■ Enter the name of the load module that contains all the help for the map in the
Help Name field.

■ Specify the PF key that will be used to access help for the map.

Important. If a value is not entered in the Help key field, the default is the
SYSGEN OLM statement value, which defaults to <PF1>. The PF key value
assigned for help supersedes that defined for any other purpose. For example,
if <PF1> is defined to a dialog as invoking a response, and <PF1> is also defined

as the help key, the help system will get control.

Creating Map-Level Help

Chapter 6: The Help Facility 117

■ Specify whether the help should be displayed in a full or half window in the
Window format field.

■ In the Origin of help text field, specify option 2 and provide the name of the
IDD module that contains the help text.

■ Press <Enter>.

 Map-Level Help Text Definition Page 1 of 1
 Map name: CHRMEMP1 Version: 1

 Help name: CHRMHLP1 Help key: PF01 Drop Help (/) _

 Window format 1 1. Half 2. Full

 Origin of help text . . 2 1. No text
 2. Module MAP-HELP-EXAMPLE
 Version 1

 DC366303 Help text options processed successfully

 Enter F1=Help F3=Exit F4=Prev F5=Next F6=Preview

4. Compile the map using the Compile option on the main menu:

 Add Modify Compile Delete Display Switch

__
 | 1. Compile |
 | 2. View Messages |line Map Compiler
 |______________________|
 | F3=Exit |es International, Inc.
 |______________________|

 Map name CHRMEMP1
 Map version 1
 Dictionary name SYSDICT
 Dictionary node ________

 Screen 5 1. General options
 2. Map-Level help text definition
 3. Associated records
 4. Layout
 5. Field definition

 Command ===>
 Enter F1=Help F3=Exit F10=Action

Creating Map-Level Help

118 Mapping Facility Guide

Testing the Results

Steps

1. After you compile the map, you can test the results using the DC/UCF system task,
SHOWMAP, as shown:

 V81 ENTER NEXT TASK CODE:
 showmap chrmemp1

2. When the map displays, place the cursor anywhere on the map and press the PF
key defined for help for the map:

 EMP-ID
 # <--{cursor}

 EMP-FIRST-NAME

 EMP-LAST-NAME

 EMP-STREET

 EMP-CITY

 EMP-STATE

 EMP-ZIP-FIRST-FIVE

 EMP-PHONE

 STATUS

 NEXT RESPONSE

Creating Field-Level Help

Chapter 6: The Help Facility 119

3. Help will be displayed as described as follows:

■ If the cursor is on a field for which field-level help has been defined, or is an

occurrence of a field for which field-level help has been defined, field-level help
is displayed

■ For all other fields and other areas of the map, map-level help is displayed

 MAP-EMP-ID

 MAP-EMP-FIRST-NAME

 MAP-EMP-LAST-NAME

 MAP-EMP-STREET

 MAP-EMP-CITY

| |
| |
| |
| |
| |
| THIS IS HELP FOR THE ENTIRE MAP |
| |
| |
| |
| |
| F3=EXIT SCROLL: 010 |
|___|

Creating Field-Level Help

Summary of Steps

To create field-level help, perform the following steps which are described in detail on
the following pages:

■ Create and store the text for the message in IDD

■ Associate that text with the field using either the online map compiler, MAPC, or
the batch compiler, RHDCMAP1. An example using MAPC follows:

– Access the layout screen

– Select the appropriate field

– Use the Field-level Help Text Definition screen to specify the name of the help
load module and text module

■ Compile the map

■ Optionally, you can test the results using the DC/UCF system task, SHOWMAP.

Creating Field-Level Help

120 Mapping Facility Guide

Creating the Text of the Help Message

To create and store the help text, perform the following steps:

Steps

1. Sign on to IDD

2. Enter the following:
ADD MODULE your-fieldhelp-text-module LANGUAGE IS HELP MODULE SOURCE FOLLOWS

The text of your help message

MSEND.

Important: If a l ine of help text exceeds 72 characters, it will be truncated when it is
displayed as help for the map.

3. Save the module

Sample Screen

 IDD 15.0 ONLINE NO ERRORS DICT=SYSDICT 1
 ADD MODULE FIELD-HELP-EXAMPLE LANGUAGE IS HELP MODULE SOURCE FOLLOWS

 THIS IS HELP FOR A SINGLE FIELD
 MSEND.

Creating Field-Level Help

Chapter 6: The Help Facility 121

Associating the Help Text with a Field

Steps

After you create the help text, you must associate it with the appropriate field using
either the online map compiler, MAPC, or the batch compiler, RHDCMAP1. An example

using MAPC follows:

1. Access MAPC

2. On the main menu, enter the name of the map with which you want to associate
the help and select the Layout option.

 Add Modify Compile Delete Display Switch

__

 CA IDMS Online Map Compiler

 CA, Inc.

 Map name CHRMEMP1
 Map version 1
 Dictionary name SYSDICT
 Dictionary node ________

 Screen 4 1. General options
 2. Map-Level help text definition
 3. Associated records
 4. Layout
 5. Field definition

 Command ===>
 Enter F1=Help F3=Exit F10=Action

Creating Field-Level Help

122 Mapping Facility Guide

3. On the Layout screen, identify which field you want to associate the help with by
overtyping the field mark with a selection character, in this case %, as shown, or by

placing the cursor on the selected field and pressing <PF2>:

Note: If the field is an OCCURS field, you need only define help once; that message
will automatically display when the PF key is placed on any occurrence of the field.

 ;MAP-EMP-ID %____*

 ;MAP-EMP-FIRST-NAME ;__________*

 ;MAP-EMP-LAST-NAME ;_______________*

 ;MAP-EMP-STREET ;____________________*

 ;MAP-EMP-CITY ;_______________*

 ;MAP-EMP-STATE ;__*

 ;MAP-EMP-ZIP-FIRST-FIVE ;_____*

 ;MAP-EMP-PHONE ;__________*

 ;MAP-STATUS ;__*

 ...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+.
.

 Enter F1=Help F2=Select F3=Exit F4=Prev F5=Next F6=Preview F8=Bottom
 F9=SetCursor F10=Deselect F11=AltKeys

4. From the layout screen, press <PF5> to move to the Field Definition screen, then
overtype the page number with 4 to move to the Field-Level Help Text Definition
screen.

On the Field-level Help Text Definition screen shown:

■ Enter the name of the load module that contains all the help for the map in the
Help Name field.

Important: Only one help load module exists per map.

■ Specify the PF key that will be used to access help for the map.

Important: If a value is not entered in the Help key field, the default is the
SYSGEN OLM statement value, which defaults to <PF1>. The PF key value
assigned for help supersedes that defined for any other purpose. For example,

if <PF1> is defined to a dialog as invoking a response, and <PF1> is also defined
as the help key, the help system will get control.

Creating Field-Level Help

Chapter 6: The Help Facility 123

■ Specify whether the help should be displayed in a full or half window in the
Window format field.

■ In the Origin of help text field, specify option 2 and provide the name of the
IDD module that contains the help text.

■ Press <Enter>.

 Field-Level Help Text Definition Page 4 of 7
 Map name: CHRMEMP1 Version: 1

 Help name: CHRMHLP1 Help key: PF01 Drop Help (/) _

 Element name MAP-EMP-ID Subscript
 In record MAP-EMPLOYEE Version 1

 Window format 1 1. Half 2. Full

 Origin of help text . . 2 1. No text
 2. Module FIELD-HELP-EXAMPLE
 Version 1

 DC366303 Help text options processed successfully

 Enter F1=Help F3=Exit F4=Prev F5=Next F6=Preview F7=Bkwd F8=Fwd

5. Compile the map using the Compile option on the main menu:

 Add Modify Compile Delete Display Switch

__
 | 1. Compile |
 | 2. View Messages |line Map Compiler
 |______________________|
 | F3=Exit |
 |______________________|

 Map name CHRMEMP1
 Map version 1
 Dictionary name SYSDICT
 Dictionary node ________

 Screen 5 1. General options
 2. Map-Level help text definition
 3. Associated records
 4. Layout
 5. Field definition

 Command ===>
 Enter F1=Help F3=Exit F10=Action

Creating Field-Level Help

124 Mapping Facility Guide

Testing the Results

1. After you compile the map, you can see a prototype of the help text by using the
DC/UCF system task, SHOWMAP.

 V81 ENTER NEXT TASK CODE:
 showmap chrmemp1

2. Place the cursor on the field to display the help text associated with it:

 EMP-ID # <--{cursor}

 EMP-FIRST-NAME

 EMP-LAST-NAME

 EMP-STREET

 EMP-CITY

 EMP-STATE

 EMP-ZIP-FIRST-FIVE

 EMP-PHONE

 STATUS

 NEXT RESPONSE

Using the Help System

Chapter 6: The Help Facility 125

3. When you press the PF key associated with help for the map, the help text is
displayed for the field:

 MAP-EMP-ID

 MAP-EMP-FIRST-NAME

 MAP-EMP-LAST-NAME

 MAP-EMP-STREET

 MAP-EMP-CITY
 __
 | |
 | THIS IS HELP FOR A SINGLE FIELD. |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | F3=EXIT SCROLL: 010 |
 |__|

Using the Help System

Overview

To use the help system the user simply presses the key specified for Help at the bottom
of the screen.

Foreign Language Support

The Help facil ity provides a scrolling feature to use if there is more than one page of
information.

The following table specifies the commands that can be entered for each language:

Language Top First Bottom End Last Next

English TOP

TO

T

FIR

FI

F

BOT

BO

B

END

EN

E

LAS

LA

L

Using the Help System

126 Mapping Facility Guide

Language Top First Bottom End Last Next

German SPI

SP

I

ERS

ER

BOD

BO

B

 LEZ

LE

L

NIE

NI

N

French ANE

AN

A

 ZYX

ZY

Z

Spanish PRI

PR

P

 ULT

UL

U

TER

TE

Chapter 7: Runtime Considerations 127

Chapter 7: Runtime Considerations

This chapter discusses about the runtime considerations.

This section contains the following topics:

Overview (see page 127)
Mapout and Mapin Operations (see page 128)
Map Inquiry and Modification (see page 130)

Message Field Considerations (see page 132)
Attributes (see page 133)

Overview

This section provides an overview of the use of map load modules by application
programs and dialogs. The following topics are presented in this section:

■ Mapout and mapin operations

■ Map inquiry and modification

■ Message field considerations

■ Attributes

Note:

■ Mapping mode data transmission by CA ADS dialogs is presented in the CA ADS
Reference Guide.

■ Mapping mode of data transmission by application programs is presented in the CA

IDMS DML Reference Guide for COBOL, CA IDMS DML Reference Guide for
Assembler, and CA IDMS DML Reference Guide for PL/I.

■ For a l isting of runtime error codes and messages, see the CA IDMS Messages and
Codes Guide.

Mapout and Mapin Operations

128 Mapping Facility Guide

Mapout and Mapin Operations

Overview of Activities

The following activities occur on mapout and mapin:

■ On mapout, data from program storage is transmitted to the terminal if DATA is Y
(YES) for mapout:

– Literal and variable fields are both transmitted:

■ The CA ADS runtime system transmits both literal and variable fields when
NEWPAGE is specified in the ADSO sysgen statement for CA ADS dialogs.

■ An application program transmits both literal and variable fields when

NEWPAGE is specified in the statement that issues the mapout.

– Literal fields only are transmitted by an application program if LITERALS is
specified in the DML statement that issues the mapout.

– Variable fields only are transmitted as follows:

■ The ADS runtime system transmits only variable fields when a dialog's map
is already displayed as the result of a previous mapout.

■ An application program transmits only variable fields if neither NEWPAGE
nor LITERALS is specified in the statement that issues the mapout.

– Neither literals nor variables are transmitted on mapout if there is a field found
to be in error.

■ On mapin, data which has been modified or for which the MDT has been set is
transmitted to program variable storage if DATA is Y (YES) for mapin and the field is

not found to be in error.

Note: For information about mapout and mapin of pageable maps, see the chapter
"Creating Pageable Maps".

Mapout and Mapin Operations

Chapter 7: Runtime Considerations 129

CA ADS Dialogs

CA ADS dialogs request mapout and mapin operations as described in the following
table:

This operation Is performed when

Mapout ■ No premap process is executed at the beginning of adialog
because:

■ There is no premap

■ Or, the ENTRY POINT was set to MAP

A DISPLAY statement is executed in a premap or response process

Mapin The operator presses a control key to initiate an I/O response

process in the CA ADS runtime system

Note: For more information about CA ADS mapout and mapin commands, see the CA
ADS Reference Guide.

Other Languages

IDMS/UCF COBOL, Assembler, and PL/I programs specify mapout and mapin by using CA
IDMS DML statements specific to each language:

COBOL and PL/I

This operation Requests

MAPOUT The transmission of data from application program storage to
the terminal.

MAPIN A transmission of data from the terminal to application program

storage.

MAPOUTIN A mapout operation followed by a mapin operation.

Assembler

This operation Requests

#MREQ OUT A transfer of data from application program storage to the
terminal.

Map Inquiry and Modification

130 Mapping Facility Guide

This operation Requests

#MREQ IN A transfer of data from the terminal to application program

storage.

#MREQ OUTIN A mapout operation followed by a mapin operation.

The MAPOUTIN and #MREQ OUTIN statements are used in conversational (rather than

pseudo-conversational) programs.

Note: For more information about DML mapout and mapin commands, see the
appropriate CA IDMS DML Reference Guide for COBOL, Assembler, or PL/I.

Map Inquiry and Modification

CA ADS and the CA IDMS Data Manipulation Languages (DMLs) provide statements that

allow the application developer to inquire about and modify maps:

Statements

Inquiry Statements

Inquiry statements can be used to examine certain results of a mapin operation, such as

whether any data fields have been changed, truncated, or erased.

Modification Statements

Modification statements can be used to modify options specified during map-definition,

such as display color or intensity, and to modify the result of a previous mapping
operation.

Summary of Statements

The following table l ists the statements used to examine mapin results or to make
temporary or permanent changes to a map:

Language
Statements

Inquiry Statements Modification Statements

CA ADS IF statement in conjunction with

conditional global variables

Attributes MODIFY MAP

COBOL INQUIRE MAP DML MODIFY MAP

PL/I DML INQUIRE MAP DML MODIFY MAP

Map Inquiry and Modification

Chapter 7: Runtime Considerations 131

Language
Statements

Inquiry Statements Modification Statements

Assembler DML #MAPINQ DML #MAPMOD

Temporary VS Permanent Modifications

The difference between temporary and permanent map modifications is:

■ Temporary modifications apply to the next mapout operation only.

■ Permanent modifications remain in effect for all mapout operations for the map
until explicitly revoked by one of the following actions:

– A subsequent, overriding map modification statement is issued for the map at
runtime

– The map control block is reinitialized (as when the map is used by CA ADS
dialog or CA IDMS application program)

– The application program (task) that uses the map terminates

– The dialog that uses the map either terminates or becomes inactive in the
current application thread

Note: If both temporary and permanent modifications are specified, the temporary
changes override the permanent changes for the first mapout operation only.

Write Control Characters (WCC)

If CA ADS or DML map modification statement specifies a write control character (WCC)

for the map, all WCC options that the map defines are overridden; the following
specified default values are used for unspecified WCC options:

Language Default Value For this Option

CA ADS

COBOL

PL/1

NOMDT

NOKBD

NOALARM

NOPRT

RESETMDT/NOMDT

RESETKBD/NOKBD

ALARM/NOALARM

STARTPRT/NOPRT

Assembler RESETMDT

RESETKBD

NOALARM

NOPRT

RESETMDT/NOMDT

RESETKBD/NOKBD

ALARM/NOALARM

STARTPRT/NOPRT

Message Field Considerations

132 Mapping Facility Guide

Message Field Considerations

Displaying Error Messages

A maximum of one message field can be defined on any given map; a message field can
be of any length. When several data fields submit incorrect input, the message field
displays as many error messages as possible, in order of occurrence (from top to bottom

and left to right) of the incorrect data fields.

Messages in the Detail Area

A message field that is defined in the detail area of a pageable map is mapped out once
in each occurrence of the detail occurrence in the detail area. Messages generated by

the CA ADS DISPLAY MESSAGE statement are not displayed if the message field is
defined in the detail occurrence for the map.

Message Sources

A message field displays messages generated from either of the following sources:

■ The error-handling capability of the CA IDMS mapping facil ity

■ The CA ADS dialog or application program that uses the map

If more than one error message is to be displayed in the message field, as many
messages are displayed as will fit in the message field. A space character separates

messages.

Default Error Message

If an error occurs in a field for which no message has been defined, the default error
message is used. The message has the following format:

ERROR AT row,column

If a Message Field is not Defined

When a message is sent to a map for which no message field is defined, dialogs and
application programs react as follows:

■ A CA ADS dialog displays the message on the default CA ADS message screen
(unless the error occurs in a pageable map session, in which case the message is
ignored)

■ A CA IDMS application program ignores the message; processing continues and the

operator does not view the message

Attributes

Chapter 7: Runtime Considerations 133

Attributes

Conflicts

The runtime mapping system does not allow conflicting attributes to be associated with
a single map field. If an attribute specified in a map modification command conflicts
with a previously established attribute, the new attribute overrides the existing

attribute. For example, specification of BRIGHT overrides a previously established DARK
attribute; specification of UNDERSCORE overrides a previous REVERSE-VIDEO
specification.

How Attributes are Determined

The attributes used for fields are determined as follows:

■ Attributes specified for individual fields are used for the particular fields when a
map is mapped out.

■ Attributes specified for error-handling override the attributes specified for data
fields on a map when the map is redisplayed with error-handling attributes:

– Correct field attributes are used for all data fields that contain correct input and
for fields that were not edited on mapin.

– Incorrect field attributes are used for all data fields that contain input errors.

The actual attributes for individual fields and for error-handling are determined at
runtime:

■ Temporary modifications specified for the given field by CA ADS or DML statements
take priority over any contradicting attributes previously specified for the field.

■ Permanent modifications made by CA ADS or DML statements override any
contradicting attributes previously defined for the field.

■ Attributes defined for the field by the online mapping compiler or the batch compiler

are used when neither temporary nor permanent modifications override them.

Neither temporary nor permanent modifications alter the map definition or the map
load module.

Chapter 8: Online Compiler Overview 135

Chapter 8: Online Compiler Overview

This chapter discusses about the online compiler overview.

This section contains the following topics:

Overview (see page 135)
Accessing the Online Compiler (see page 136)
Using the Online Compiler (see page 136)

Overview

Using the online compiler, developers can define, compile, modify, and delete CA IDMS
maps in an online environment. The online compiler performs the following functions:

■ Requests user specifications for defining, copying, modifying, and deleting
map-related entity occurrences through a series of screens

■ Constructs and stores map entity occurrences, based on the map developer
specifications

■ Compiles or deletes map load modules

Although the online compiler performs most operations that are available through the
batch compiler and util ity, there are stil l specific reasons to use the batch compiler and
util ity. For example, a developer would use the batch compiler to generate device
groupings for the map and the batch util ity to decompile a map.

The online compiler can modify maps that were created by either the online compiler or

the batch compiler and batch util ity (unless the map defines device groupings, since
maps for multiple devices cannot be simultaneously represented by the online
compiler).

Note: For more information about the batch compiler and util ity, see the chapter “Batch

Compiler and Batch Util ity Overview".

What's in this Chapter?

This chapter discusses:

■ How to initiate an online compiler session

■ What the screens look like

■ How to use the action bar

■ How to use the function keys

Accessing the Online Compiler

136 Mapping Facility Guide

Accessing the Online Compiler

From CA IDMS

Specify the appropriate CA IDMS task code for your site, for example, MAPC. Task codes
are defined at system generation and can vary from site to site.

Directly from Another Task

If the task is executing under the transfer control facil ity, Specify the appropriate CA
IDMS task code (for example, MAPC) in conjunction with the SWITCH activity

From the SWITCH Pull Down Menu

Specify the task code of the task to which you want to transfer.

The SWITCH facil ity enables the map developer to transfer directly from one CA IDMS

task to another. For example, the developer can transfer between the online compiler,
the CA ADS application generator, the CA ADS dialog generator, and online IDD. When
control is transferred from a task, the current session of that task is s uspended if

necessary. A task can have several suspended sessions.

Information specified for a map is maintained in a queue record during an online
session. When a new session is initiated, as when the online compiler is invoked from
CA IDMS, a new queue record is built. When a suspended session is invoked, the queue

record from the suspended session is used.

Note: For more information about how to use the transfer control facil ity, see the CA
IDMS Common Facilities Guide.

Using the Online Compiler

Overview

Online compiler screens prompt a map developer for information about a map and, in
some cases, are used to specify a course of action during the map definition process.

Using the Online Compiler

Chapter 8: Online Compiler Overview 137

What Screens are Used?

The following six primary screens can be accessed during an online compiler session.
The Main Menu displays automatically when the compiler is invoked, but the other
screens must be invoked either from the Main Menu screen or from each other.

Additionally, some of the screens have more than one page on which you can enter
additional information:

■ The Main Menu screen establishes basic information about the map such as name
and version number.

The Main Menu screen also contains the action bar which can be used instead of
entering a command on the command line. The developer can use the action bar to
initiate an add, copy, modify, display, delete, or compile of a map, or to move to
another task.

■ The General Options screens (two pages) establish the options that apply to the
map such as the type of map, display and print options, and attributes for
re-displayed fields.

■ The Map-level Help Text screen establishes the connection between the map and
the IDD module that contains the help text.

■ The Associated Records screen establishes the records associated with the map.

The Autopaint option is also accessed from this screen.

■ The Layout screen is used to position map fields on the map.

■ The Field Definition screen establishes field-specific options. Information is
collected using seven separate pages as follows:

– Field Definition

– Map Read/Write Options

– Additional Edit Criteria

– Field-level Help

– Device-dependent Options

– User-defined Edit Modules

– Pageable Options

Using the Online Compiler

138 Mapping Facility Guide

Using the Main Menu Screen

When a developer signs on to the online compiler, the first screen displayed is the Main
Menu screen as shown. This screen is used both to provide basic information about and
to initiate action on a map.

 Add Modify Compile Delete Display Switch
 ___.

 CA IDMS Online Map Compiler

 CA, Inc.

 Map name ________
 Map version ____
 Dictionary name ________
 Dictionary node ________

 Screen _ 1. General options
 2. Map-Level help text definition
 3. Associated records
 4. Layout
 5. Field definition

 Copyright (C) 2007 CA, Inc.

 Command ===>
 Enter F1=Help F3=Exit F10=Action

How are the Areas Used?

The three areas of the screen are used as follows:

■ The action bar at the top of the screen can be used as an alternative to entering a

command on the command line. The developer can use the action bar to initiate an
add, modify, display, compile, or delete of a map or to switch to another task.

When a developer selects an action, a pull -down window displays. The window
contains options related to the action.

Note: For more information about the action bar, see "Using the action bar (see
page 139)".

■ The selection area in the middle of the screen prompts the developer to supply
basic information related to the map and to specify which screen should be
displayed next.

■ The command line close to the bottom of the screen can be used instead of the
action bar to perform a particular action. Rather than moving the cursor to the
action bar, the developer can enter a command beside the arrow.

■ The function keys at the bottom of the screen are the keys the developer can use to
move from screen to screen within the compiler as well as to display help and map
images.

Using the Online Compiler

Chapter 8: Online Compiler Overview 139

Using the Action Bar

What's in this Section?

This section explains the actions that can be performed using the action bar at the top
of the Main Menu screen. It presents each pull -down window and describes how to use

it.

Using the Defaults

The first entry on a pull down menu is always the default. To select the default, press
[Enter].

ADD

 Add Modify Compile Delete Display Switch
 .___.
 | Copy from Map |
 | Name ________ | CA IDMS Online Map Compiler
 | Version ____ |
 | 1 1. All | CA, Inc.
 | 2. Format |
 |__________________|
 | F3=Exit |
 |__________________|. . . . EYHTST9
 Map version 1
 Dictionary name ________
 Dictionary node ________

 Screen _ 1. General options
 2. Map-Level help text definition
 3. Associated records
 4. Layout
 5. Field definition

 DC366148 Map EYHTST9 has not been found

 Command ===>
 Enter F1=Help F3=Exit F10=Action

How to use the Window

■ Before accessing the ADD function, you must supply the name of the map you are

creating and optionally the version number. If a version number is not entered, the
dictionary-set default will be displayed.

■ If you want to copy an existing map, enter the name and version of that map.

■ If you are copying a map, indicate if you want to copy the layout and the records
and elements associated with the original map (1) or just the layout (2).

■ To confirm your choice, press [Enter].

Using the Online Compiler

140 Mapping Facility Guide

MODIFY

 Add Modify Compile Delete Display Switch
 .___.
 | 1. Checkout |
 | 2. Release | DC Online Map Compiler
 | 3. List Checkout |
 |________________________|
 | F3=Exit | CA, Inc.
 |________________________|

 Map name EYHTST9
 Map version 1
 Dictionary name ________
 Dictionary node ________

 Screen _ 1. General options
 2. Map-Level help text definition
 3. Associated records
 4. Layout
 5. Field definition

 Command ===>
 Enter F1=Help F3=Exit F10=Action

How to use the Window

The MODIFY action controls the checkin/checkout procedures of the online compiler as
follows:

■ Checkout—Allows the developer working on a map to have sole access to it. The
map is protected from additional updates until it has been checked in.

■ Release—Releases the developer's hold on the map and allows updates by other
developers. If changes have been made since the map was checked out, and the

map has not been re-compiled, a warning message will be displayed stating that the
changes exist in a work fi le.

Using the Online Compiler

Chapter 8: Online Compiler Overview 141

■ List Checkout—Displays a l ist of all maps that are checked out to the user ID that is
signed on. For each map, it identifies the following:

– Map name

– Which version of the map is checked out

– Which dictionary the map belongs to

COMPILE

 Add Modify Compile Delete Display Switch
 .___.
 | 1. Compile |
 | 2. View Messages | Map Compiler
 |______________________|
 | F3=Exit |
 |______________________|

 Map name EYHTST9
 Map version 1
 Dictionary name ________
 Dictionary node ________

 Screen _ 1. General options
 2. Map-Level help text definition
 3. Associated records
 4. Layout
 5. Field definition

 Command ===>
 Enter F1=Help F3=Exit F10=Action

Using the Online Compiler

142 Mapping Facility Guide

How to use the Window

From this window, you can either compile a map or view the messages from a previous

compile.

DELETE

 Add Modify Compile Delete Display Switch
 .___
 | 2 1. Delete changes |
 | 2. Delete map |Compiler
 |_______________________| ________________
 | F3=Exit | | Confirm delete |
 |_______________________| | 1. Reject |
 | 2. Confirm |
 |________________|
 Map name EYHTST9
 Map version 1
 Dictionary name ________
 Dictionary node ________

 Screen _ 1. General options
 2. Map-Level help text definition
 3. Associated records
 4. Layout
 5. Field definition

 Command ===>
 Enter F1=Help F3=Exit F10=Action

Using the Online Compiler

Chapter 8: Online Compiler Overview 143

How to use the Window

You can either delete the map entirely or delete only the changes made since the last

compile. As a safety measure, if you choose to delete the map completely, a second
window will be displayed that prompts you to confirm the delete.

DISPLAY

 Add Modify Compile Delete Display Switch
 .___.
 | 1. Browse |
 CA IDM| 2. Summary |mpiler
 | 3. Image |
 |________________|
 | F3= Exit |
 |________________|

 Map name EYHTST9
 Map version 1
 Dictionary name ________
 Dictionary node ________

 Screen _ 1. General options
 2. Map-Level help text definition
 3. Associated records
 4. Layout
 5. Field definition

 Command ===>
 Enter F1=Help F3=Exit F10=Action

How to use the Window

You can display information about a map in any of three ways:

■ Browse—Displays all the screens associated with a map. The information pertains
to the map as it was last compiled.

■ Summary—Displays a one-page summary report of the map containing vital
statistics on the map such as when it was created, updated, compiled, and who
created and modified it.

■ Image—Displays the map as it would look to an end-user. If the user is currently

modifying the map, IMAGE includes the uncompiled modifications.

Using the Online Compiler

144 Mapping Facility Guide

SWITCH

 Add Modify Compile Delete Display Switch

 | Task ID ________ |
 CA IDMS Onlin|____________________|
 | F3=Exit |
 CA|____________________|

 Map name ________
 Map version _____
 Dictionary name ________
 Dictionary node ________

 Screen _ 1. General options
 2. Map-Level help text definition
 3. Associated records
 4. Layout
 5. Field definition

 Command ===>
 Enter F1=Help F3=Exit F10=Action

How to use the Window

From this window you can leave the online compiler and move to another CA IDMS task
by entering the task code in the Task ID field.

Using the Online Compiler

Chapter 8: Online Compiler Overview 145

Overview of a session

The following figure provides an overview of the online compiler screens and the
relationships among them.

Note: For more information about how to use the function keys, see Using the function

keys.

In the drawing,

■ Opt n refers to the screen options on the Main Menu screen

■ Fn refers to the function key used to move between the screens Online Mapping

Compiler Reference.

Note: For more information about each screen, see Using the function keys.

 ┌─────────┐ ┌──────────┐
 Opt│ General ├───F8──► General │
 ┌───► Options │ │ Options │
 │ 1 │ 1 ◄───F7──┤ 2 │
 │ └──┬───▲──┘ └──────────┘
 │ │ │
 │ F5 │ │ F4
 │ │ │
 │ ┌──▼───┴──┐
 │Opt│ Map │
 ├───► Level │
 │ 2 │ Help │
 │ └──┬───▲──┘
 │ │ │
 │ F5 │ │ F4
 │ │ │
┌────────┐ │ ┌──▼───┴──┐ ┌─────────┐
│Main │ │Opt│ Assoc │ │Autopaint│
│Menu │────┼───► Records ├───────►Selection│
│ │ │ 3 │ │ │Screen │
└────────┘ │ └──┬───▲──┘ └────┬────┘
 │ F5 │ │ │
 │ │ │ F4 │
 │ F9 │ │ │ F5
 │ ┌──▼───┴──┐ │
 │Opt│ │ │
 ├───► Layout ◄────────────┘
 │ 4 │ │
 │ └──┬───▲──┘
 │ F2 │ │
 │ │ │ F4
 │ F5 │ │
 │ ┌──▼───┴──┐ F8 ┌─────────┐ F8 ┌─────────┐ F8 ┌─────────┐
 │Opt│ Field ├─────►Map ├──────►Add ├─────►Field │
 └───► Def │ │ReadWrite│ │Edit │ │Level │
 5 │ ◄─────┤Options ◄──────┤Criteria ◄─────┤Help │
 └────▲────┘ F7 └─────────┘ F7 └─────────┘ F7 └──┬───▲──┘
 │ F8 │ │ F7
 │ │ │
 │ ┌─────────┐ F8 ┌─────────┐ F8 ┌──▼───┴──┐
 │ │Pageable ◄──────┤User ◄─────┤Device │
 └──────────┤Options │ │Edit │ │Dependent│
 F4 │ ├──────►Modules ├─────►Options │
 └─────────┘ F7 └─────────┘ F7 └─────────┘

Using the Online Compiler

146 Mapping Facility Guide

Notes

■ When using the Field Definition screens (Option 5), you can move between pages

by overtyping the page number at the top of the screen.

■ If you are providing information about a l iteral, you can only use the Field Definition
and Pageable Options screens.

Using the function keys

Use

To move from screen to screen or from page to page within a screen, you must use the
function keys. Function keys are displayed at the bottom of each screen and may vary

depending on the screen.

Most keys have the same function through out the MAPC compiler; <F1> is help, <F4>
returns to the previous function screen, etc. Some keys keys have different functions in
the Layout screen. For example, <F10> resets all fields selected for edit. The following is

a l ist of the main keys and their function within the Layout screen. In addition, alternate
keys are used to tailor the layout of the screen and consequently, are displayed only on
the Layout screen. To toggle between the main keys and the alternate keys, press
<PF11> (AltKeys).

Main keys

Key Name(s) Function

F1 Help Displays help information for the function

F2 Select Identifies a field on which further action will be taken

F3 Exit Processes the information and returns to the previous
function

F4 Prev Returns to previous function as l isted on the main menu

screen

F5 Next Moves to next function as l isted on the main menu
screen

F6 Preview Displays the map layout as it would look to the end user

F7 Top Displays the top of the map layout

F8 Bottom Moves to the bottom of the map layout

F9 SetCursor Sets initial cursor position on the map

F10 Deselect Resets all selected fields for edit so they won't be edited

Using the Online Compiler

Chapter 8: Online Compiler Overview 147

Key Name(s) Function

F11 AltKeys Toggles between the Main and the Alternate function

keys which are used on the Layout screen

Alternate Keys

Key Name(s) Function

F1 Help Displays help information for the function

F2 Mark Identifies a field on which further action will be taken

F3 Copy Copies the marked field or block to the location of the

cursor

F4 Move Moves the marked field or block to the location of the
cursor

F5 Delete Deletes the marked field or block

F6 Preview Displays the map layout as it would look to the end
user

F7 Top Displays the top of the map layout

F8 Bottom Moves to the bottom of the map layout

F9 Propagate Copies a field on every l ine to the cursor

F10 ClrMark Erase(s) mark from fields

F11 MainKeys Toggles between the Main and Alternate function

keys

How to Move, Copy, and Delete Text

The following information gives detailed instructions on how to use the Move, Copy,
and Delete alternate function keys on a field, a l ine, and on blocks of l ines.

Move Key (F4)

■ To move a field:

1. Cursor to the field to be moved

2. Press Mark (F2)

3. Cursor to the new position

4. Press Move (F4)

Using the Online Compiler

148 Mapping Facility Guide

■ To move a l ine:

1. Press Mark (F2) twice on the line to be moved

2. Cursor to the new line position

3. Press Move (F4)

■ To move a block of l ines:

1. Press Mark (F2) on the top and bottom lines of the text to be moved

2. Cursor to the top line of the new position

3. Press Move (F4)

Copy Key (F3)

■ To copy a field:

1. Cursor to the field to be copied

2. Press Mark (F2)

3. Cursor to the new position

4. Press Copy (F3)

■ To copy a l ine:

1. Press Mark (F2) twice on the line to be copied

2. Cursor to the new line position

3. Press Copy (F3)

■ To copy a block of l ines:

1. Press Copy (F3) on the top and bottom lines of the text to be copied

2. Cursor to the top line of the new position

3. Press Copy (F3)

Delete Key (F5)

■ To delete a field:

1. Cursor to the field to be deleted

2. Press Mark (F2)

3. Press Delete (F5)

Using the Online Compiler

Chapter 8: Online Compiler Overview 149

■ To delete a l ine:

1. Press Mark (F2) twice on the line to be deleted

2. Press Delete (F5)

■ To delete a block of l ines:

1. Press Mark (F2) on the top and bottom lines of the text to be deleted

2. Press Delete (F5)

Chapter 9: Online Mapping Compiler Reference 151

Chapter 9: Online Mapping Compiler
Reference

This chapter discusses about the online mapping compiler reference.

This section contains the following topics:

Overview (see page 151)
The Main Menu Screen (see page 152)
General Options—Page 1 (see page 154)

General Options—Page 2 (see page 157)
Map-level Help Text Definition (see page 159)
Associated Records (see page 160)

Layout (see page 162)
Field Definition Screens (see page 165)

Overview

This section describes each screen used to create a map. The screens are presented in
the order in which they typically would be used:

■ Main Menu

■ General Options - Two screens

■ Map-Level Help

■ Associated Records

■ Layout

■ Field Definition

– Map Read/Write Options

– Additional Edit Criteria

– Field-Level Help

– Device-Dependent Options

– User-Defined Edit Modules

– Pageable Maps

The Main Menu Screen

152 Mapping Facility Guide

The Main Menu Screen

Description

The Main Menu is the first screen displayed in a session. It is used to provide basic
information about the map such as the name and version number and to initiate the
map definition session.

After a map has been added, it also can be deleted or compiled from this screen.

Sample Screen

 Add Modify Compile Delete Display Switch
 ___.

 CA IDMS Online Map Compiler

 CA, Inc.

 Map name ________
 Map version ____
 Dictionary name ________
 Dictionary node ________

 Screen _ 1. General options
 2. Map-Level help text definition
 3. Associated records
 4. Layout
 5. Field definition

 Copyright (C) 2007 CA, Inc.

 Command ===>
 Enter F1=Help F3=Exit F10=Action

Field Descriptions

Map name 1 - 8 character name of the map being defined, modified, deleted, or
compiled. Map name:

■ Must begin with an alphanumeric or national character such as a
pound sign (#), at sign (@), or dollar sign ($)

■ Cannot contain embedded period or blanks

Map version The version number of the map being defined; must be in the range 1 -

9999. Default is the data dictionary default version number as defined
in the DDDL SET OPTIONS statement.

The Main Menu Screen

Chapter 9: Online Mapping Compiler Reference 153

Dictionary
name

The dictionary used to store and retrieve the map and load modules.
When you sign on, the dictionary is the one specified in your user

profile if there is one. If a dictionary is not specified in your profile, the
primary dictionary for the CA IDMS system or node is the default. In
either case, the dictionary name can be overridden by issuing the

DCUF SET DICTNAME command.

Dictionary
node

The node name of the dictionary in the distributed database system
network. The developer uses the DICTNODE option to specify the
location of the dictionary and the name of the node that controls the

load area where the map load module is stored.

Default is the node specified in the most recently issued DCUF SET
DICTNODE command in the current CA IDMS session. If no DCUF SET
DICTNODE command has been issued, the local node is the default

node.

Changing the dictionary name or node modifies the mode for the
current session.

Screen A list of the screens that can be accessed to enter more information
about the map.

Notes:

■ For more information about the action bar, see "Using the Action Bar".

■ For more information about the function keys, see "Using the Function Keys".

General Options—Page 1

154 Mapping Facility Guide

General Options—Page 1

Description

This screen is the first of two screens used to enter general information about the map.
Information entered here includes the title of the map, device information, display and
print options as well as indicators for automatic editing, decimal point handling, and the

message prefix.

Sample Screen

 General Options Page 1 of 2
 Map name: EYHTST9 Version: 1

 Description. . . __

 Type 1 1. Standard 2. Pageable 3. Videotex

 Screen sizes (/) / 24 by 80 / 32 by 80 / 43 by 80 / 27 by 132

 Automatic editing (/) /
 Decimal point is comma (/) . . _
 Message prefix DC

 Display options Unlock keyboard (/). /
 Turn off MDT (/) /
 Alarm Options Sound alarm on mapout (/). _
 Sound alarm on edit error (/) _
 Print options Print screen when displayed (/). . . . _
 (3280-type) Line control 1 1. No formatting 3. 64 chars per line
 2. 40 chars per line 4. 80 chars per line

 F1=Help F3=Exit F4=Prev F5=Next F6=Preview F8=Fwd

Field Definitions

Description The title of the map. This is for documentation purposes only.

Type The type of map. For example, a standard one-page map, a
pageable map, or a videotex map. Videotex refers to the French
display devices that are connected to the national phone

system.

General Options—Page 1

Chapter 9: Online Mapping Compiler Reference 155

Screen sizes The terminal screen sizes on which the map can be used. At
least one must be selected; a maximum of four can be selected.

The default device specifications are determined by the screen
size of the device on which the map is being defined.

Device specifications must be specified when you create the

map; they cannot be changed online. To change the
specifications, you must use the batch compiler and util ity.

Note: For more information about using the batch compiler,
see Compiler Action Verbs (see page 194).

Automatic editing Indicates whether automatic editing and error-handling are
enabled for the map:

■ / (default)—Globally enables automatic editing and
error-handling for the map.

■ Blank—Globally disables automatic editing and
error-handling for the map; editing and error-handling
criteria (if any) defined for map fields are ignored.

Note: For more information about enabling and disabling
automatic editing, see "Enabling Automatic editing and error
handling."

Decimal point is

comma

Specifies the character to be used as the decimal point for

numeric fields on the map:

■ /—Specifies that the comma (,) character is used as the
decimal point in numeric fields, in accordance with

international format. An external picture for the field also
must comply with international format, with the comma as
the decimal point.

■ Blank—Specifies that the period (.) character is used as the

decimal point in numeric fields.

The default setting for the Decimal point is comma prompt is
determined at system generation.

Message prefix Defines the prefix for messages for the map.

General Options—Page 1

156 Mapping Facility Guide

Display options Unlock keyboard—Specifies whether the keyboard is unlocked
after a mapout operation:

■ / (default)—Specifies that the keyboard is unlocked.

■ Blank—Specifies that the keyboard remains locked until
the operator presses the RESET key.

Turn off MDT—Specifies whether modified data tags (MDTs)
for data fields are reset when the map is mapped out:

■ / (default)—Specifies that all MDTs are reset (turned off)
when the map is mapped out.

■ Blank—Specifies that MDTs are left unchanged when the
map is mapped out.

The Set modified data tag specification for individual fields on
the Map Read/Write Options screen overrides this field.

Alarm options Sound alarm on mapout—Specifies whether the terminal
alarm sounds when the map is mapped out:

■ /—Specifies that the alarm is sounded. This specification is

meaningful only if the terminal is equipped with a
hardware alarm.

■ Blank (default)—Specifies that the alarm is not sounded.

Sound alarm on edit error—Specifies whether the terminal

alarm sounds when the map contains edit errors:

■ /—Specifies that the alarm is sounded. This specification is
meaningful only if the terminal is equipped with a

hardware alarm.

■ Blank (default)—Specifies that the alarm is not sounded.

Print options
(3280-type)

Print screen when displayed—Specifies whether a 3280-type
printer prints the screen on a mapout:

■ /—Specifies that the printer starts printing on mapout.

■ Blank (default)—Specifies that the printer does not print.

Line control—Defines l ine control for 3280-type printers.

■ No formatting—Specifies that new-line characters are used
in the data stream.

■ 40 chars per l ine—Specifies that data is divided into
40-character l ines.

■ 64 chars per l ine—Specifies that data is divided into
64-character l ines.

■ 80 chars per l ine—Specifies that data is divided into
80-character l ines.

General Options—Page 2

Chapter 9: Online Mapping Compiler Reference 157

General Options—Page 2

Description

This screen is the second of two screens used to enter general information for the map.
This screen is used to specify attributes for fields that are redisplayed during an error
cycle.

Sample Screen

 General Options Page 2 of 2
 Map name: EYHTST9 Version: 1

 Attributes for redisplayed fields In error Not in error

 Display intensity 1. Normal 2. Bright 3. Hidden 2 _

 Highlighting 1. Blink 3. Underline _ _
 2. Reverse video

 Color 1. White 4. Blue 7. Turquoise . . 2 _
 2. Red 5. Yellow 8. Default
 3. Green 6. Pink

 Entry options 1. Protect 2. Unprotect _ _
 1. Numeric 2. Alphanumeric _ _
 1. Set MDT 2. Reset MDT _ _
 Detect with light pen (/) / _
 Tab key selection (/) _ _

 DC366804 Select map options

 F1=Help F3=Exit F4=Prev F5=Next F6=Preview F7=Bkwd

Field Definitions

Note: For the following fields, specify the options for fields in error and those not in
error.

Display intensity Specifies whether the field is displayed and whether a
displayed field appears at normal or bright intensity:

Normal—Specifies that the field is displayed at normal

intensity.

Bright—Specifies that the field is displayed at brighter than
normal intensity; the field appears highlighted on the screen.

Hidden—Specifies that the field is not displayed. Data written
to the field from program storage or entered by the operator is
not visible. Password fields are often attributed the Hidden
attribute.

General Options—Page 2

158 Mapping Facility Guide

Highlighting For 3279 machines only: specifies whether the field blinks, is
displayed in reverse video, or is underlined.

Color Specifies the color of the field, or of the background if Reverse
video is specified for the field. The developer can only specify
one display color. Default specifies that the default display

color for the terminal is used. Attributes other than default
take effect only when the map is displayed at a 3279-type
terminal.

Entry options ■ Protect/Unprotect—Identifies whether the fieldis

protected from data entry (1) or open to data entry (2).

■ Numeric/Alphanumeric—Specifies whether the field is
numeric (1) or alphanumeric (2).

■ Set MDT/Reset MDT—Specifies whether the modified data

tag should be set automatically during a mapout operation
or only when the contents of the field are altered by the
terminal operator.

■ Detect with light pen—Specifies whether the field can be
detected with a l ight pen.

■ Tab key selection—Specifies whether the operator can use
&tab. to move the cursor to the field at runtime.

When this option is on, NOSKIP and UNPROTECTED are
specified for a field.

Map-level Help Text Definition

Chapter 9: Online Mapping Compiler Reference 159

Map-level Help Text Definition

Description

This screen is used to associate help text previously defined in IDD with a map. You can
also specify what type of window is used to display help.

Sample Screen

 Map-Level Help Text Definition
 Map name: EYHTST1 Version: 1

 Help name: eyhhtst1___ Help key: PF01_______ Drop Help (/) _

 Window format 1 1. Half 2. Full

 Origin of help text . . 2 1. No text
 2. Module EYHHELP1________________________
 Version 1

 DC366306 Select help text options

 Enter F1=Help F3=Exit F4=Prev F5=Next F6=Preview F7=Bkwd F8=Fwd

Field Definitions

Help name The name of the help load module that holds all the compiled help

text associated with the map. The name must be a unique entity
name.

Drop Help Used to indicate if the help should be disassociated from the map.

Window
format

A code used to indicate if the help text is displayed in a half (1) or full
(2) window.

Origin of help
text

Specify the name of the IDD module that contains the help text for this
map.

Associated Records

160 Mapping Facility Guide

Associated Records

Description

This screen is used to enter the schema or work records to be used by the map, and
optionally specifies role names for records.

Accessing the Autopaint Feature

The autopaint feature which lets you create a map automatically, is also initiated from
this screen.

To use the autopaint feature:

■ Enter the record information and press <F9>.

The autopaint feature displays a screen that l ists each record and its elements.

■ Select the elements you want to be included on the map.

■ To view the newly created screen, use the Layout screen.

Note: For more information about the Autopaint feature, see "A Sample Session”.

Sample Screen

 Associated Records Page 1 of 1
 Map name: EYHTST1 Version: 1

 Record name Version Role name Drop
 (/)
 1 ________________________________ ________________________________ _

 2 ________________________________ ________________________________ _

 3 ________________________________ ________________________________ _

 4 ________________________________ ________________________________ _

 5 ________________________________ ________________________________ _

 6 ________________________________ ________________________________ _

 7 ________________________________ ________________________________ _

 DC366604 Specify the map records

 F1=Help F3=Exit F4=Prev F5=Next F6=Preview F7=Bkwd F8=Fwd F9=Autopaint

Associated Records

Chapter 9: Online Mapping Compiler Reference 161

Field Definitions

Record name Identifies the names of records that contain elements referenced by
the map.

If a logical record is used, the developer names all of the records

containing elements that are part of the logical record and that are
used in the map-definition. The name of the logical record is later
specified in the dialog or program using the map.

Version Identifies the version number of each specified record. If not

specified, the default version is the value in the IDD OPTION FOR
DICTIONARY DEFAULT FOR EXISTING VERSION. If the IDD EXISTING
VERSION option is not set, the default version is 1. The developer
can use the version field to specify a different version of a record

for an existing map.

Overstriking the field with a new version number deletes the old
record version from the map. The new record version is added to

the map.

All map fields associated with elements in the old record are
associated with the corresponding elements in the new record, by
element name. If the new record version omits any elements

associated with the previous record version, the related map fields
are deleted from the map. If an external picture has been explicitly
defined for a map field, changing the record version number does

not change the external picture of the element, even if the internal
picture is different in the new record version.

Role name Specifies a role name that is to be used for the record at runtime.
Role names typically are used when a given record type is to be

used in more than one context. For example, the developer might
specify the EMPLOYEE record layout twice for a map that uses the
EMPLOYEE record for both employee-related and manager-related

fields on a single map:

■ One specification of the EMPLOYEE record would not include a
role name for the record.

■ The second specification of the EMPLOYEE record would

include a valid role name for the record (for example,
MANAGER). The role name must be used in subsequent
references to the record in the map-definition.

A role name can be established in either of the following two ways:

■ It can be previously defined for the record in the subs chema
used by the dialog or program. The online compiler will not
verify the subschema role name; it must be provided by the

user at map-definition.

■ It can be unique to the map, established at map-definition by
specifying it on this screen.

Layout

162 Mapping Facility Guide

Drop Allows the developer to disassociate the the selected record or role
name from the map. To disassociate a record from a map, type a

slash (/) beside the record or role name. All map data fields are
disassociated from the map when it is dropped.

Layout

Description

This screen is used to format the map. If the Autopaint feature has been used, the
layout is automatically displayed. Otherwise, the screen will be blank.

Effects of Screen Size on Map Design

Developing or modifying a map on a device that is larger than the smallest screen size
specified on the first page of the General Options screen, can present certain problems.

If you try to define a field on the Layout screen outside of the boundaries of the smallest

device specifications size, the Mapping facil ity indicates the error by discarding the
misplaced fields and echoing the Layout screen. When the errors are corrected, you can
proceed through the map-definition sequence.

For example, a map that is to be displayed on a 24X80 screen size can be modified on a

32X80 terminal. However, if you try to establish any fields in rows 25 through 32, the
online compiler discards these fields and echo the Layout screen.

Layout

Chapter 9: Online Mapping Compiler Reference 163

How to Change the Map

If you want to rearrange the fields or alter them in any way, press <F11> to display the

alternate keys. The alternate keys are used to maneuver the fields.

Note: For more information about what function each alternate key performs, see
"Using the Function Keys."

Sample Screen

 EMP-ID-0415 ____

 EMP-FIRST-NAME-0415 _________________________

 EMP-LAST-NAME-0415 _________________________

 EMP-STREET-0415 __

 EMP-CITY-0415 _________________________

 EMP-STATE-0415 _________________________

 EMP-ZIP-0415 _________________________

 SS-NUMBER-0415 _________

 DEPT-ID-0410 ____

 ...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 Enter F1=Help F2=Select F3=Exit F4=Prev F5=Next F6=Preview F8=Bottom
 F9=SetCursor F10=Deselect F11=AltKeys Drop all selected fields: _

Layout

164 Mapping Facility Guide

To Delete All Selected Fields

Position the cursor at the beginning of the field to be marked for deletion. Press <PF2>

and move the cursor to the end of the section to be marked. Press <PF2> and all the
fields within the section of the same type as the first selected field, that is, data or
l iteral, are marked. Or you can type the field select character over each attribute byte of

each field to be selected.

Enter any non-blank character into a new field on the last l ine. You are warned that all
selected fields will be deleted unless the drop field is cleared or a key other than
<Enter> is pressed.

If you want to manipulate the fields, press <F11> and the screen is displayed with the
Alternate Function keys, as shown:

 ...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 F1=Help F2=Mark F3=Copy F4=Move F5=Delete F6=Preview F8=Bottom
 F9=Propagate F10=ClrMark F11=MainKeys

Subscript increment: 1

To Propagate a Field

From the Alternate Function keys screen, put the cursor under any data or l iteral field
and press <F9>. The field above the cursor is copied onto each lower l ine until it is
copied to the cursor's l ine, until a field that would overlap a copied field is encountered,
or until the maximum subscript is reached.

If the field to be propagated is an occurring data field and its subscript is to be
incremented by a number other than 1, you must enter the subscript increment into a
new field on the last l ine before pressing <F9>.

Field Definition Screens

Chapter 9: Online Mapping Compiler Reference 165

Field Definition Screens

Field Definition

Description

This is one of seven screens used to specify information about a particular field. This

screen is used to enter a miscellaneous assortment of information about a field.

Sample Screen

 Field Definition Page 1 of 7
 Map name: EYHTST1 Version: 1
 ...5...10...15...20...25...30...35...40...45...50...55...60...65...70...75...80

 EMP-ID-0415 ____

 ...5...10...15...20...25...30...35...40...45...50...55...60...65...70...75...80
 Field at row 7 column 26 Drop field (/) _

 Element name: EMP-ID-0415 Subscript
 In record EMPLOYEE Version 100

 Edit Picture 9(4)

 Display intensity 1 1. Normal 2. Bright 3. Hidden
 At end of field 3 1. Auto-tab 2. Lock keyboard 3. Take no action

 Unprotected (/) / Required (/). _
 Automatically edited (/) / Skipped by tab key (/) _

 DC366004 Specify the variable field and any attributes

 F1=Help F3=Exit F4=Prev F5=Next F6=Preview F8=Fwd

Field Definitions

Field at row/column Specifies the location of the field on the map.

Drop field Specifies whether the field should be deleted.

Element name The name of the record element associated with the field.

In record The name of the record with which the element is
associated. The record must be previously defined for the
map using the Associated Records screen.

Subscript Subscript for field with OCCURS clause.

Version The version number of the record.

Field Definition Screens

166 Mapping Facility Guide

Edit picture Enables automatic editing and establishes an external picture
for the field for use by automatic editing. A developer can

specify one of the following to establish a particular external
picture:

■ An external picture, such as XX/XX/XX or XXX-XX-XXXX

■ The word INTERNAL, which requests that the map use
the external picture associated with the record element
(or the picture constructed for the field)

When automatic editing has been enabled for the field by a

different specification, the external picture associated with
the record element (or the picture constructed for the field)
is displayed for Edit picture.

Note: For more information about external pictures and

automatic editing, see the chapter "Automatic Editing and
Error Handling."

Display intensity Specifies whether the field is displayed and whether a

displayed field appears at normal or bright intensity:

Normal—Specifies that the field is displayed at normal
intensity.

Bright—Specifies that the field is displayed at brighter than

normal intensity; the field appears highlighted on the screen.

Hidden—Specifies that the field is not displayed. Data
written to the field from program storage or entered by the

operator is not visible. Password fields are often attributed
the Hidden attribute.

At end of field ■ Auto-tab

■ Lock keyboard

■ Take no action

Field Definition Screens

Chapter 9: Online Mapping Compiler Reference 167

Unprotected Specifies whether the field accepts operator input:

■ /—Specifies that the field is open to data entry or

modification. Data in an unprotected data field is
transmitted to program variable storage on mapin if all
of the following conditions are true:

■ Modifications have been made to the field (the MDT is
set on).

■ Automatic editing does not detect an input error in the
data.

■ The Transmit data entry option has been chosen on the
Map Read/Write Options screen.

■ Blank—Specifies that the field does not accept user
input. Any attempt to enter, modify, or delete data in

the field is physically restricted by a 3270-type terminal.
If MDT is set programmatically data is read. Data in a
Protected field on some glass TTY terminals can be

overridden by the terminal operator; however, operator
modifications are ignored on mapin.

Required Indicates if data must be entered in the field.

Automatically edited Indicates if automatic editing is enabled.

■ /—Enables automatic editing for the field. Automatic
editing is to be performed for the field if automatic
editing is also enabled for the entire map on the first

Associated Records screen.

■ Blank (default)—Disables automatic editing for the field.

Automatic editing is not performed for the field, even if
automatic editing is enabled for the entire map on the first

General Options screen.

Editing can be enabled for a field by entering a slash (/) in the
Automatically edited field or by supplying an external picture,

edit table name, or code table name on the Additional Edit
Criteria screen. The most recent specification takes
precedence and determines whether automatic editing is
enabled or disabled. For example, if the Automatically edited

field is blank, and the developer later names an edit table for
the field, automatic editing is enabled.

If the format of the record element associated with the data
field is not DISPLAY, editing must be enabled so that

conversion to DISPLAY format is performed.

Field Definition Screens

168 Mapping Facility Guide

Skipped by tab key ■ /—Specifies that the operator cannot use tabto position
the cursor on this field at runtime; the cursor skips over

this field and is positioned on the next unprotected field.
Choosing this option specifies NUMERIC and PROTECTED
for the field.

■ Blank (default for variable fields)—Specifies that the
cursor is positioned at the start of the field when the
operator presses the tab key at runtime. Choosing this
option specifies UNPROTECTED for a field.

Map Read/write Options

Description

This is one of seven screens used to enter information for a specific field. This screen

specifies how fields are handled on the mapin and mapout operations.

Sample Screen

 Map Read/Write Options Page 2 of 7
 Map name: EYHTST1 Version: 1

 Element name EMP-ID-0415 Subscript
 In record EMPLOYEE Version 100

 Map Read Transmit data entry (/) /
 options Zero when null (/). /
 Translate to upper case (/) _
 Justify data. 1 1. Left 2. Right
 Pad character format . Display _
 Hexadecimal . . __

 Map Write Blank when zero (/) _
 options Underscore blank fields (/) _
 Display without trailing blanks _
 Set modified data tag (/) _
 Transmit. 1 1. Data and attribute byte 3. Erase field
 2. Attribute byte only 4. Nothing

 DC366404 Select input/output edit options

 F1=Help F3=Exit F4=Prev F5=Next F6=Preview F7=Bkwd F8=Fwd

Field Definition Screens

Chapter 9: Online Mapping Compiler Reference 169

Field Definitions

Map Read options

Identifies characteristics of the field that pertain to mapin operations.

Transmit data entry

Specifies whether the transmitted contents (if any) of the field are to be moved

automatically into program variable storage on a mapin operation:

/ (default)

Specifies that data is automatically moved into program variable storage if
MDT is set on for the field before a mapin operation.

 Blank

Specifies that the data contained in the field is not moved automatically
into program variable storage, even if the MDT is set on.

Zero when null

Specifies whether the numeric field is to be fi l led with zeros when automatic

editing is enabled for a numeric field and the terminal operator nulls (erases)
the contents of the field, as by pressing the ERASE EOF key. The following
options are available:

/ (default)

Specifies that the field is fi l led with zeros of the appropriate data type
when automatic editing is enabled for a given field and map and the
operator nulls the entire field.

Blank

Specifies that data already contained inthe buffer is retained when the
entire field is fi l led with nulls.

Translate to upper case

Specifies if the field should be translated to upper case upon mapin.

Justify data

Specifies how operator input is to be aligned for transmission to variable
storage:

Left

Specifies that input is left-justified.

Right

Specifies that input is right-justified.

Field Definition Screens

170 Mapping Facility Guide

Pad character format

Specifies a pad character for an alphanumeric field in character or hexadecimal

format.

No pad character is used for a field in either of the following cases:

– The developer does not specify a pad character.

– The developer cancels a pad character for a field by pressing the ERASE
EOF key for the PAD CHAR field in which the pad character was specified,
and does not specify another pad character.

Unwanted data can be stored for a field for which no pad character is defined.

For example, the following values are stored for a field if JOHNSON is mapped
out, the operator presses the ERASE EOF key to erase the field, and the
operator then types SMITH:

– If no pad character is defined for the field, SMITHON is stored for the field.

The operator would have to key blanks over ON to eliminate these
characters from the data.

– If a pad character is defined for the field, SMITH is stored for the field.

Map Write options

Blank when zero

Indicates how a numeric fieldbeing edited is to be mapped out when automatic
editing is enabled for the field and the value for the field is 0:

/

Specifies that blanks are displayed in the field.

Blank (default)

Specifies that zeros are displayed in the field.

Underscore blank fields

Specifies that blank fields on a map are underscored. On mapin, trail ing
underscores are removed.

Field Definition Screens

Chapter 9: Online Mapping Compiler Reference 171

Display without trailing blanks

Specifies whether trail ing blanks are to be eliminated from the field being

edited before it is displayed:

/

Specifies that the contents of the field are displayed without trail ing blanks

(if any). Old data may remain in the field after operator alterations if
NEWPAGE is NO in either the CA ADS sysgen statement or the DML
statement that issues the mapout in an application program.

Blank

Specifies that the contents of the field are displayed with trail ing blanks, if
any.

Set modified data tag

Specifies whether the modified data tag is set automatically during a mapout.

Transmit

Specifies how the contents of the field are to be moved on a mapout.

Data and attribute byte

Specifies that data and the attribute byte is transmitted.

Attribute byte only

Specifies that only the attribute byte for the field is transmitted to the

screen; data in the record buffer is not sent to the terminal.

Erase field

Specifies that data is not transmitted to the screen; the field is initialized to
null or low values, depending on whether the field is numeric or

alphanumeric.

Nothing

Specifies that neither data nor attribute byte is transmitted. Any data

previously in the field continues to display.

Field Definition Screens

172 Mapping Facility Guide

Additional Edit Criteria

Description

This is one of seven screens used to enter information for a specific field. This screen is
used to enter the edit table, code table, and error message information for a field.

Sample Screen

 Additional Edit Criteria Page 3 of 7
 Map name: EYHTST1 Version: 1

 Element name EMP-STATE-0415 Subscript
 In record EMPLOYEE Version 100

 Edit table name . . . STATE1 Version 1 Link with map (/) _

 Edit type 1 1.Valid values 2.Invalid values

 Code table name . . . ________ Version ____ Link with map (/) _

 Error message (specify ID or text)

 ID. Prefix __ Number ______

 Text. NOT A VALID STATE CODE
 __

 DC365801 Map options processed successfully

 F1=Help F3=Exit F4=Prev F5=Next F6=Preview F7=Bkwd F8=Fwd

Field Definition Screens

Chapter 9: Online Mapping Compiler Reference 173

Field Definitions

Edit table name Enables automatic editing and specifies the name of an existing
stand-alone table to be used as the edit table.

If editing is enabled elsewhere for the field and no edit table is

supplied, the default edit table is the built-in table (if any)
defined in the associated record element. If a table name is not
supplied here or in the record element, no edit table is used.

■ Version—Specifies the version of the edit table, default is 1.

■ Link with map—Specifies whether the edit table is l inked as
part of the map load module or is loaded dynamically at
runtime:

■ /—Specifies that the table is l inked to the map load module

that uses it. This is useful for tables that contain items that
cannot be used readily by another record element.

■ Blank (default)—Specifies that the table is loaded

dynamically. This specification is useful when the contents
of a table change frequently.

Note: Edit tables can only be associated with a group element if
the group is made up of DISPLAY elements.

For more information about the use of edit tables, see "Edit and
Code Tables".

Edit type Indicates whether the table is one of valid or invalid tables:

Blank (default)—Specifies the edit type defaults to the TYPE
parameter for the table in the IDD. Tables are defined as valid
or invalid depending on the IDD 'TABLE... TYPE IS EDIT VALID' or
'TABLE... TYPE IS EDIT INVALID'.

■ Valid values—Specifies the table contains valid values for
the field. An error occurs when the operator inputs a value
that is not contained in the table.

■ Invalid values—Specifies the table contains invalid or
incorrect values. An error occurs when the operator inputs a
value that is contained in the table.

Field Definition Screens

174 Mapping Facility Guide

Code table name Enables automatic editing and specifies the name of an existing
stand-alone table to be used as the code table for the field being

edited.

If editing is enabled elsewhere for the field but the a code table
name is not provided, code table is the table (if any) defined in

the record element associated with the field. If a code table
name is not provided and does not exist in the record element,
no code table is used.

Version—Specifies the version of the code table, default is 1.

Link with map—Specifies whether the code table is l inked as
part of the map load module or is loaded dynamically at
runtime:

■ /—Specifies that the table is l inked to the map load module

that uses it. This is useful for tables that contain items that
cannot be used readily by another record element.

■ Blank (default)—Specifies that the table is loaded

dynamically. This specification is useful when the contents
of a table change frequently.

Note: Code tables can only be associated with a group element
if the group is made up of DISPLAY elements.

For more information about the use of code tables, see the
chapter "Edit and Code Tables."

Error message Used to specify the number of an existing message or the

developer-written text of the error message that is displayed for
the field.

The default is the message prefix specified on the General
Options screen. If no prefix is specified, DC is used.

Field Definition Screens

Chapter 9: Online Mapping Compiler Reference 175

Field-level Help Text Definition

Description

This is one of seven screens used to enter information for a specific field. This screen is
used to specify help information for a field.

Sample Screen

 Field-Level Help Text Definition Page 4 of 7
 Map name: EYHTST1 Version: 1

 Help name: EYHHTST1 Help key: PF01 Drop Help (/) _

 Element name EMP-ID-0415 Subscript
 In record EMPLOYEE Version 100

 Window format 1 1. Half 2. Full

 Origin of help text . . 1 1. No text
 2. Module ________________________________
 Version 1

 DC366306 Select help text options

 Enter F1=Help F3=Exit F4=Prev F5=Next F6=Preview F7=Bkwd F8=Fwd

Field Definitions

Help name The name of the load module that contains all the compiled help
information for the map and the associated fields.

Drop Help Used to indicate if the help should be deleted.

Window

format

tfcode used to indicate if the help text is displayed in a half (1) or full

(2) window.

Origin of help
text

Specify the name of the IDD module that contains the help text for this
field.

Field Definition Screens

176 Mapping Facility Guide

Device-dependent Options

Description

This is one of seven screens used to enter information for a specific field.

Sample Screen

 Device-Dependent Options Page 5 of 7
 Map name: EYHTST1 Version: 1

 Element name EMP-ID-0415 Subscript
 In record EMPLOYEE Version 100

 Numeric data only (/) . . . _

 Reverse numeric (/) _

 Detect with light pen (/) /

 Outline options (/) _ Top _ Bottom _ Left _ Right

 Highlighting. _ 1. Blink 2. Reverse video 3. Underline

 Color 8 1. White 3. Green 5. Yellow 7. Turquoise
 2. Red 4. Blue 6. Pink 8. Device default

 DC365704 Select device dependent options

 F1=Help F3=Exit F4=Prev F5=Next F6=Preview F7=Bkwd F8=Fwd

Field Definitions

Numeric data only Specifies whether any character or just numeric characters can
be entered:

■ If the terminal is not equipped with the NUMERIC
hardware feature, the operator can enter any character in

the field. To restrict input to numeric characters in this
case, a numeric external picture must be assigned to the
field and automatic editing must be enabled for the field

and map.

■ If the terminal is equipped with the NUMERIC feature, the
field accepts only numeric input.

Numeric input includes:

■ Numeric digits in the range 0—9

■ The decimal point

■ The minus sign

Field Definition Screens

Chapter 9: Online Mapping Compiler Reference 177

Reverse numeric Specifies whether the contents of a numeric field are reversed
on mapin and again on mapout. This option is used for numeric

fields when hardware modifications cause input to be entered
from right to left.

REVERSE NUMERIC is the default for new fields when NUMERIC

FIELD ORDER IS REVERSED is specified in the OLM statement at
system generation.

A blank in this field indicates that the field is not reversed on
mapin or mapout, which is the default for new fields when

NUMERIC FIELD ORDER IS STANDARD is specified at system
generation.

Detect with l ight pen Specifies whether the field can be detected with a l ight pen.

Outline options Enables one or more of the following outline options if the

terminal supports field outlining:

Top—Draws a l ine above the current field. The line:

■ Starts above the first displayable character position in the

field

■ Ends either at the delimiter of the current field (for
delimited fields) or the start of the next field

Bottom—Draws a l ine following the current field. The line:

■ Starts following the first displayable character position in
the field

■ Ends either at the delimiter of the current field (for

delimited fields) or the start of the next field

Left—Draws a l ine to the left of the field.

Right—Draws a l ine to the right of the field.

Highlighting Specifies whether the field will blink, be displayed in reverse

video, or be underlined.

Color The runtime color of the field, or of the background if Reverse
video is specified. The developer can specify only one display

color. Device default specifies that the default display color for
the terminal is used. Color attributes other than device defa ult
take effect only when the map is displayed at a 3279-type
terminal.

Field Definition Screens

178 Mapping Facility Guide

User-defined Edit Modules

Description

This is one of seven screens used to enter information for a specific field. This screen is
used to specify the name of the input and output edit modules. Additionally, it is used

to indicate when the edit module is invoked.

Sample Screen

 User-Defined Edit Modules Page 6 of 7
 Map name: EYHTST1 Version: 1

 Element name EMP-ID-0415 Subscript
 In record EMPLOYEE Version 100

 Input edit module name: ________

 1. Instead of automatic editing
 Invoke input edit module: _ 2. Before automatic editing
 3. After automatic editing

 Output edit module name: ________

 1. Instead of automatic editing
 Invoke output edit module: _ 2. Before automatic editing
 3. After automatic editing

 DC367004 Specify user defined input and/or output modules

 F1=Help F3=Exit F4=Prev F5=Next F6=Preview F7=Bkwd F8=Fwd

Field Definitions

Input edit module name The name of a user-written edit module to process
input after transmission on a mapin operation.

Note: For more information about the use of

user-written edit modules, see the appendix
"User-Written Edit Modules."

Invoke input edit module Specifies if the edit module should be invoked instead

of, before, or after automatic editing.

Output edit module name The name of a user-written output edit module used
before display on an output operation.

Invoke output edit module Specifies if the edit module should be invoked instead

of, before, or after automatic editing.

Field Definition Screens

Chapter 9: Online Mapping Compiler Reference 179

Pageable Options

Description

This is one of seven screens used to enter information about a specific field. This screen
is used if the field is either:

■ The only field/literal in the detail area

■ The first field/literal in the detail area

■ The last field/literal in the detail occurrence

■ The first field/literal in the footer

Sample Screen

 Pageable Options Page 7 of 7
 Map name: EYHTST1 Version: 1

 Element name EMP-ID-0415 Subscript
 In record EMPLOYEE Version 100

 1. Only field/literal in detail

 2. First field/literal in detail
 Assignment _

 3. Last field/literal in detail

 4. First field/literal in footer

 DC366903 Select field/literal assignment for pageable map

 F1=Help F3=Exit F4=Prev F5=Next F6=Preview F7=Bkwd

Field Definition Screens

180 Mapping Facility Guide

Field Definitions

Assignment

The information entered in these fields defines the specifications for a pageable
map. The information you provide describes the element in the Element name field
at the top of the screen:

– Only field/literal in detail—If the element is the only field or l iteral in the detail
area, enter 1.

– First field/literal in detail—If the element is the first field or l iteral in the detail
area, enter 2.

– Last field/literal in detail—If the element is the last field or literal in the detail
occurrence, enter 3. The detail occurrence ends at the last character position in
the field.

– First field/literal in footer—If the element is the first field or literal in the footer

area, enter 4.

This field defines the beginning of the footer area and the end of the detail area.

Chapter 10: Batch Compiler and Batch Utility Overview 181

Chapter 10: Batch Compiler and Batch
Utility Overview

This chapter discusses about the batch compiler and batch util ity overview.

This section contains the following topics:

Overview (see page 181)
Compiler and Util ity Functions (see page 181)

Overview

The batch compiler and batch util ity allow users to define, generate, modify, and delete
maps in a batch environment. Together, they provide an alternative to the online
mapping compiler described earlier in this manual.

To generate maps using the batch component of the mapping facil ity, it is necessary to

be familiar with the following topics which are discussed separately in this section:

■ Functions performed by the batch compiler and util ity

■ Functions performed by the map and panel entity occurrences

Compiler and Utility Functions

The CA IDMS mapping facil ity compiler and util ity provide the following capabilities:

Component Capability

Batch compiler

(RHDCMAP1)
■ Accepts, validates, and compiles mapping language

statements that are written by a map developer or
generated by the decompile process of the map util ity

■ Populates the data dictionary with entity occurrences that
are generated when input mapping language statements

are compiled

■ Provides input statement listings that present information
and provide error messages (if any) about the compile

operation

Compiler and Utility Functions

182 Mapping Facility Guide

Component Capability

Batch util ity

(RHDCMPUT)

Uses entity occurrences stored in the data dictionary to perform

the following functions:

■ Generate map load modules used by CA ADS dialogs and
programs

■ Produce reports about map-related entity occurrences
created by the online mapping compiler or the batch
compiler

■ Decompile maps into executable mapping language

statements

■ Delete map load modules from the load area

A map load module is the version of the map that can be used by CA ADS dialogs and by
the CA IDMS System Generation Guide programs. Necessary map-related entity

occurrences must exist in the data dictionary before the map util ity can generate a new
or modified map load module.

Batch Compiler and Utility Functions

Functions performed by the batch compiler and util ity are i l lustrated in the following

figure:

Compiler and Utility Functions

Chapter 10: Batch Compiler and Batch Utility Overview 183

Panels and Maps

What is a Map?

From the terminal operator's point of view, a map is a screen display that is used for
input and output operations. From a map developer's point of view, the screen display

viewed by the operator is the product of a map load module that is generated from
entity occurrences in the data dictionary.

What Does the Batch Compiler Do?

The batch compiler is used to establish map-related entity occurrences in the data

dictionary. The following entity occurrences are generated and maintained by the batch
compiler:

Type of Occurrence Specifies Performs these functions

PANEL and related PFLD
(panel field)
occurrences

The screen layout for
a map

The panel typically:

Specifies the device types on which
the screen layout can display and

establishes any special display
conditions necessary for each device
type

Assembles panel field occurrences

that store the following information
for individual fields:

■ Location by row and column

■ Characteristics such as display
intensity or color

■ Values for l iteral fields

Compiler and Utility Functions

184 Mapping Facility Guide

Type of Occurrence Specifies Performs these functions

MAP and related MFLD

(map field) occurrences

Usage information

for a map

The map typically:

Specifies a PANEL occurrence on
which the map occurrence is to be
based

Specifies runtime events that occur
when a map load module generated
from the MAP and PANEL occurrences
is executed, such as whether the

keyboard is locked or unlocked

Specifies whether automatic editing
and error-handling are available at
runtime

Selects PFLD occurrences from the
associated PANEL occurrence and
specifies the following information for

the fields in MFLD (map field)
occurrences:

■ Type of field usage (that is, data,
l iteral, message, page, or

response field)

■ Predefined schema or work
record elements to be linked with

data fields.

■ Automatic editing, input, and
output information for data fields

Compiler and Utility Functions

Chapter 10: Batch Compiler and Batch Utility Overview 185

Mapping Language Statements

Two sets of mapping language statements that can be used to generate PANEL, PFLD,

MAP, and MFLD occurrences are presented in "Batch Compiler Statements".

Panels, Maps, and Record Elements

The following figure il lustrates the relationship between panels, maps, and record

elements.

A panel defines a screen layout and a map associates panel fields with elements in
records.

Chapter 11: Batch Compiler Coding Considerations 187

Chapter 11: Batch Compiler Coding
Considerations

This chapter discusses about the batch compiler coding considerations.

This section contains the following topics:

Overview (see page 187)
Compiler Security (see page 187)
Compiler Signon (see page 189)

Compiler Directives (see page 191)
Compiler Statement Coding Requirements (see page 192)
Compiler Statement Sequencing (see page 192)

Compiler Action Verbs (see page 194)

Overview

The coding considerations that are presented in this section apply when developers use
the batch compiler to generate, modify, or delete map-related entity occurrences in the
data dictionary. The following topics are presented:

■ Compiler security

■ Compiler signon

■ Compiler directives

■ Compiler statement coding requirements

■ Compiler statement sequencing

■ Compiler action verbs

Compiler Security

Batch compiler security prohibits unauthorized map developers from adding, modifying,

and/or deleting map-related entity occurrences. The batch compiler performs a security
check whenever the map developer using the batch compiler specifies the name of a
map to be added, modified, or deleted. If the security check fails, the map developer

cannot perform the specified action.

Security is established by using the IDD Data Dictionary Definition Language (DDDL) and
can be applied at the compiler level and at the map level. The two levels of security are
discussed separately as follows:

Compiler Security

188 Mapping Facility Guide

Security at the Compiler Level

Security at the batch compiler level restricts the actions that a map developer can
specify for any map. Security at the batch compiler level is governed by the following
IDD statements:

■ SET OPTIONS ... SECURITY FOR IDMS DC. IS ON/OFF

Specifies whether security is in effect for CA IDMS entity types accessed by the
compiler. If CA IDMS security is off, the map developer immediately passes the
compiler level security check. If security is on and the map developer has not

used the SIGNON statement (presented later in this section) to provide signon
information, the developer immediately fails the security check. Otherwise, the
map developer passes or fails the security check based on information specified
by the USER statement (see the following descri ption).

■ ADD/MOD USER user-name ... INCLUDE/EXCLUDE DELETE/DISPLAY MAP/PANEL

Specifies the actions that the map developer has the authority to perform. The
map developer passes or fails the security check depending on whether the

developer has authority for the specified action.

Note: For more information about the SET OPTIONS and USER statements, see the CA
IDMS IDD DDDL Reference Guide.

If the map developer fails the compiler-level security check, an error message is

generated. If the developer passes the security check, the batch compiler performs a
security check at the map-specific level.

Compiler Signon

Chapter 11: Batch Compiler Coding Considerations 189

Security at the Map Level

Security at the map level restricts the actions that a map developer can perform for the
named map. If no MAP-098 record exists for the named map (that is, if no MAP
statement has been issued in IDD or at system generation for the named map), the map

developer immediately passes the security check. Otherwise, security is governed by
the following two clauses of the MAP statement in IDD:

■ PUBLIC ACCESS FOR ALL/NONE/UPDATE/MODIFY/REPLACE/DELETE/DIS PLAY

Specifies the actions that any user can specify for the named map. If the

PUBLIC ACCESS clause is not included in the MAP statement or if the action
requested by the map developer is allowed for any user, the developer
immediately passes the security check. Otherwise, the developer passes or fails
the security check based on information specified by the INCLUDE/EXCLUDE

USER clause of the MAP statement (see the following description).

■ INCLUDE/EXCLUDE USER user-name REGISTERED FOR PUBLIC
ACCESS/ALL/UPDATE/MODIFY/REPLACE/DELETE/DISPLAY

Specifies the actions that the map developer has the authority to specify for
the named map. If the developer's user name is not included in the MAP
statement, the developer immediately fails the security check. Otherwise, the
map developer passes or fails the security check depending on whether the

developer has authority for the action specified for the named map.

If the map developer fails the map-level security check, an error message is generated.
If the developer passes the security check, the batch compiler initiates compile

operations for the specified map.

Note: For more information about the MAP statement, see the CA IDMS IDD DDDL
Reference Guide.

Compiler Signon

The batch compiler SIGNON statement can be included in batch source statements to

provide signon information. A maximum of one SIGNON statement can be included for a
given batch compiler job. If included, the SIGNON statement must be positioned in
batch source statements as follows:

■ SIGNON must follow introductory compiler directives (that is, ICTL, OCTL, and ISEQ
directives). Compiler directives are presented later in this section.

■ SIGNON must precede compiler statements (that is PANEL, MAP, MAP AUTOPANEL,
MFLD, and PFLD statements). Compiler statements are presented in the chapter

"Batch Compiler Statements".

Compiler Signon

190 Mapping Facility Guide

The SIGNON statement integrates the batch compiler with IDD security features. If
activated, IDD security is used to protect panel and map data dictionary occurrences

from unauthorized modification and deletion. Security information included in the
signon information determines the authority granted to the developer for data
dictionary access.

Note: For more information about batch compiler security, see Compiler Security (see
page 187).

Syntax

►►──── SIGnon ──►

 ►──┬─ USER ─┬──────┬─ user-name ──┬────────────────────────────────┬──┬─ . ──►◄
 │ ├─ IS ─┤ └─ PASSword ─┬──────┬─ password ─┘ │
 │ └─ = ──┘ ├─ IS ─┤ │
 │ └─ = ──┘ │
 └─ REVerse NUMeric ──┘

USER IS user-name-aq

Specifies the existing 1- through 32-character name of the map developer as
specified by a DDDL USER statement. If the name contains embedded blanks, the

string must be enclosed in quotes.

PASSWORD IS password

Specifies the 1- through 8-character password (if any) of the developer. A password
is defined for a developer in the OCF USER statement that establishes the

corresponding user-name in the SIGNON statement.

REVERSE NUMERIC

Specifies that the reverse-numeric display option is to be given to all numeric map

fields that are generated or modified in the batch run. The REVERSE NUMERIC
clause specified in the SIGNON statement overrides any conflicting MFLD REVERSE
NUMERIC specifications (if any) in the accompanying batch source statements.

Note: A developer who does not supply a user-name and password where applicable

when IDD security is enabled for the batch compiler can access only entities that are
available for public access.

Compiler Directives

Chapter 11: Batch Compiler Coding Considerations 191

Compiler Directives

The compiler directive statements provided by the compiler mapping language are
placed in compiler source statements to specify information for use during compilation
and report generation. Available compiler directive statements are l isted in the
following table:

Statement Function

ICTL=(start-column-n,
end-column-n)

Directs the compiler to scan only the column range
specified for meaningful data. The default

specification is 1-80.

OCTL=(line-count-n) Specifies the number of l ines to appear on each page
of the panel and map reports.

ISEQ=(start-column-n,
end-column-n)

Directs the compiler to perform sequence checking
on source statements fall ing within the specified
column range.

EJECT Directs the compiler to continue the printing of the

output report on a new page.

SPACE space-count-n Directs the compiler to skip from 1 through 9 blank
lines between lines of the output report. Only one

blank is allowed between SPACE and the integer
specified.

comment-text Directs the compiler to interpret characters following
the asterisk as comment text. Comments always start

with an asterisk but can be terminated by another
asterisk or by the end of the card image.

Considerations

Each compiler directive in compiler source statements must occupy a l ine by itself. The
following considerations apply to the use of compiler directives:

■ ICTL, OCTL, and ISEQ statements must precede all statements in mapping language
source statements.

■ EJECT and SPACE statements can be coded anywhere in mapping language source
statements.

Compiler Statement Coding Requirements

192 Mapping Facility Guide

Compiler Statement Coding Requirements

The following general coding requirements apply when using batch compiler source
statements:

■ Statements and keywords can start in any column. The compiler scans the column
range specified in the ICTL compiler directive statement for meaningful data. The

default column range is from 1 through 80.

■ One or more blanks or commas are required between keywords.

■ A statement can be coded on more than one line, but keywords cannot be split
across l ines.

■ A period terminates a statement unless the period is contained in a comment or a

quoted literal string.

■ Any quoted literal can be continued from one line to another. The final character of
the first l ine must be in the end column, as specified in the ICTL compiler directive

statement discussed in the previous table. The first character in the continued
literal must begin in the start column of the next l ine. No continuation character is
required.

Compiler Statement Sequencing

The batch compiler provides two sets of mapping language statements, as described in

"Batch Compiler Statements". Each set of mapping language syntax defines source
statements that create and maintain panel, panel field, map, and map field entity
occurrences in the data dictionary:

■ MAP AUTOPANEL and MFLD statements are used to define map and map field
occurrences explicitly. Panel and panel field occurrences are generated
automatically by the mapping facil ity when MAP AUTOPANEL and associated MFLD
statements generate map and map field occurrences.

■ PANEL, PFLD, MAP, and MFLD statements are used to define panel, panel field,
map, and map field occurrences explicitly.

Sequencing requirements for each set of mapping language syntax are l isted separately
as follows.

Compiler Statement Sequencing

Chapter 11: Batch Compiler Coding Considerations 193

MAP AUTOPANEL and MFLD Statement Sequencing

A MAP AUTOPANEL statement must be followed immediately by the MFLD statements
that define its related fields. The following considerations apply when the developer
prepares source composed of MAP AUTOPANEL and MFLD statements:

■ The map occurrence generated by the most recently executed MAP statement is
established as current for subsequent MFLD statements.

■ Associated panel and panel field occurrences are created when map and map field
entity occurrences are generated by MAP AUTOPANEL and associated MFLD

statements.

Sample Statement

The following abbreviated sample statements i l lustrate MAP AUTOPANEL and MFLD
statement sequencing:

ADD MAP ONEMAP
 AUTOPANEL
 ADD MFLD
 ADD MFLD
 ADD MFLD
 ADD MFLD

In the previous example, entity occurrences for a map named ONEMAP and occurrences
for related map fields are generated. Associated panel and panel field occurrences are
generated by the batch compiler from information specified in the MAP AUTOPANEL

and MFLD statements.

PANEL, PFLD, MAP, and MFLD Statement Sequencing

The following order of specification applies when the developer prepares source
composed of PANEL, PFLD, MAP, and MFLD statements:

■ A PANEL statement must be followed immediately by the PFLD statements that
define its related fields. The panel occurrence generated by the most recently
executed PANEL statement is established as current both for subsequent PFLD

statements and subsequent MAP statements.

■ A MAP statement must be followed immediately by the MFLD statements that
define its related fields. The following considerations apply:

– The panel occurrence named by the MAP statement must exist in the data

dictionary before the MAP statement is compiled.

– The map occurrence generated by the most recently executed MAP statement
is established as current for subsequent MFLD statements.

Compiler Action Verbs

194 Mapping Facility Guide

Sample Statements

The following abbreviated sample statements i l lustrate PANEL, PFLD, MAP, and MFLD

statement sequencing:

ADD PANEL NEWPANEL
 ADD PFLD EMP-ID
 ADD PFLD EMP-FNAME
 ADD PFLD EMP-LNAME
 ADD PFLD DEPT-CODE

ADD MAP NEWMAP
 PANEL IS NEWPANEL
 ADD MFLD EMP-ID
 ADD MFLD EMP-FNAME
 ADD MFLD EMP-LNAME
 ADD MFLD DEPT-CODE

In the previous example, the NEWPANEL panel occurrence is defined before related
panel fields are defined; the NEWPANEL panel occurrence becomes current for the map

occurrence generated by the ADD MAP NEWMAP statement.

It is not necessary to generate panel occurrences in the same compiler run as related
map occurrences.

Compiler Action Verbs

Where can Verbs be Used?

The compiler provides the verbs ADD, MODIFY, and DELETE that specify the action the
map compiler should perform on the accompanying mapping source statements. Each
verb can be specified for any of the following statements in the CA IDMS mapping

language syntax:

This Statement Generates...

MAP AUTOPANEL Map and panel occurrences

MFLD (MAP AUTOPANEL only)

Map field and panel field occurrences

PFLD Panel field occurrences

MAP Map occurrences

MFLD Map field occurrences

Note: For more information about the previous mapping language statements, see
"Batch Compiler Statements".

Compiler Action Verbs

Chapter 11: Batch Compiler Coding Considerations 195

What do the Verbs Do?

The operations performed by the ADD, MODIFY, and DELETE verbs are as follows:

■ ADD establishes a new occurrence in the data dictionary. If the occurrence specified
by an ADD verb already exists in the data dictionary, the statement that contains
the verb is flagged as an error.

■ MODIFY changes an existing occurrence in the data dictionary. The tables on the
following pages summarize considerations that apply when using the MODIFY verb
for automatic and manual panel definition.

■ DELETE removes an existing occurrence from the data dictionary. Deleted

occurrences cannot be reconstructed from map load modules that were generated
from those occurrences. The tables on the following pages summarize
considerations that apply when using the DELETE verb.

Defaults

When a verb is not specified with a CA IDMS mapping statement, the following defaul ts

apply:

■ ADD is the default verb when the occurrence specified by the statement does not
already exist in the data dictionary.

■ MODIFY is the default verb if the occurrence specified by the statement already
exists in the data dictionary.

Important: DELETE must be specified explicitly; it is never the default action.

Modifying a DEVICE Specification

Different versions of the same panel can be established for a variety of screen sizes by

using the DEVICES clause of the MAP AUTOPANEL or the PANEL statement. Since
information specified by the DEVICES clause can affect many other MAP clauses, the
MODIFY verb does not modify the DEVICES clause. To change a DEVICES specification,
the developer should use the following procedure:

1. Decompile the panel and all associated maps by using a map util ity process and
save the resulting output.

2. Delete the maps affected by the change. This action implicitly deletes all map fields

that belong to the deleted maps.

3. Delete the panel occurrence itself. This action implicitly deletes all associated panel
fields.

4. Add the revised panel occurrence with the new DEVICES specification, followed by

the associated panel field, map, and map field occurrences.

Compiler Action Verbs

196 Mapping Facility Guide

The MODIFY Verb

Statements for Automatic Panel Definition

Statement Description

MODIFY MAP

AUTOPANEL

Modifies a map occurrence in the data dictionary
and/or establishes currency for subsequent MFLD
statements. The related panel occurrence is
updated only if the panel occurrence has not been

used to generate additional map occurrences.

The map occurrence must be respecified in its
entirety; no previously defined specifications are
retained since MODIFY MAP AUTOPANEL functions

as implicit DELETE and ADD operations.

MODIFY MFLD Modifies a map field occurrence and its related
panel field occurrence in the data dictionary.

The map field occurrence must be respecified in its
entirety; no previously defined specifications are
retained since MODIFY MFLD (for MAP AUTOPANEL)
functions as implicit DELETE and ADD operations.

Statements for Manual Panel Definition

Statement Description

MODIFY PANEL Modifies a panel occurrence in the data dictionary and/or
establishes panel currency for subsequent PFLD statements.

Any existing specifications, except for a DEVICES specification,
can be modified. Previously omitted specifications can be

added.

MODIFY PFLD Modifies a panel field occurrence in the data dictionary.

Previously omitted specifications can be added; however, a

new FOR specification can be added only if the newly specified
device is already defined in the DEVICES clause in the owner
PANEL statement.

Compiler Action Verbs

Chapter 11: Batch Compiler Coding Considerations 197

Statement Description

MODIFY MAP Modifies a map occurrence in the data dictionary and/or

establishes map currency for subsequent MFLD statements.

Any existing specification can be modified. Previously omitted
specifications can be added; however, a new ORIGIN FOR

specification cannot be added unless the newly specified device
is already defined in the DEVICES clause of the owner panel
statement.

A modified USING RECORDS clause must rename all previously

named records in the order in which they were originally
named, followed by new record specifications.

MODIFY MFLD Modifies a map field occurrence in the data dictionary.

Any existing specification can be modified. Previously omitted

specifications can be added.

The DELETE Verb

Statements for Automatic Panel Definition

Statement Description

DELETE MAP

AUTOPANEL

Deletes a map occurrence and all related map field occurrences

from the data dictionary. The related panel and panel field
occurrences that have been generated from the map are
deleted from the data dictionary.

DELETE MFLD DELETE MFLD is not a legal option within automatic panel
definition syntax. A MODIFY MAP AUTOPANEL statement
followed by MODIFY MFLD statements can be used to respecify
a map and panel; the MFLD statements specify the fields to be

created.

Statements for Manual Panel Definition

Statement Description

DELETE PANEL Deletes a panel occurrence and all related panel field
occurrences from the data dictionary.

All map occurrences derived from the panel occurrence can be

deleted.

DELETE PFLD Deletes a panel field occurrence from the owner panel
occurrence in the data dictionary.

Compiler Action Verbs

198 Mapping Facility Guide

Statement Description

DELETE MAP Deletes a map occurrence and all related map field occurrences

from the data dictionary and dissociates the map from the panel
occurrence. If the panel is not associated with any map
occurrences, the panel and panel field occurrences are also

deleted from the data dictionary.

DELETE MFLD Deletes a map field occurrence from the owner map occurrence
in the data dictionary.

Chapter 12: Batch Compiler Statements 199

Chapter 12: Batch Compiler Statements

This chapter discusses about the batch compiler statements.

This section contains the following topics:

Overview (see page 199)
Attributes List (see page 201)
Statements for Automatic Panel Definition (see page 206)

Statements for Manual Panel Definition (see page 236)

Overview

The batch compiler provides two sets of compiler statements for creating maps and
panels:

■ Statements that automatically define panels —These statements are used to create,

modify, and delete map and map field occurrences in the data dictionary. Panel and
panel field occurrences are created and updated automatically when map and map
field occurrences are created and updated. The following statements are used for

automatic panel definition:

– The MAP AUTOPANEL statement defines panel and map occurrences.

– The MFLD statement for MAP AUTOPANEL defines panel field and map field
occurrences.

■ Statements that manually define panels —These statements are used to create,
modify, and delete map, map field, panel, and panel field occurrences. The
following statements are used for manual panel definition:

– The PANEL statement defines and generates a panel occurrence.

– The PFLD statement defines and generates a panel field occurrence.

– The MAP statement defines and generates a map occurrence.

– The MFLD statement defines and generates a map field occurrence.

Overview

200 Mapping Facility Guide

Automatic panel definition is contrasted with manual panel definition in the following
figures:

What's in this Section?

The statements used to define panels and statements automatically and manually are
presented separately below, following a discussion of the attributes l ist which can be
used when defining a panel either automatically or manually.

Attributes List

Chapter 12: Batch Compiler Statements 201

Attributes List

Attributes that can be assigned to any given field are defined in the attributes-list
parameter. This parameter appears in the following clauses:

■ ON EDIT ERROR INCORRECT FIELDS ATTRIBUTES clause of the MAP statement

■ ON EDIT ERROR CORRECT FIELDS ATTRIBUTES clause of the MAP statement ON EDIT

ERROR specification

■ ATTRIBUTES clause of the PFLD statement

■ ATTRIBUTES clause of the MFLD (for MAP AUTOPANEL) statement

How to use the Attributes List

The same list of attributes is available for use in each mappi ng language clause that
allows a map developer to specify attributes for a field. For clarity and convenience, the
complete syntax for attributes-list is presented only once in this section.

Important: The default values apply only to the ATTRIBUTES clauses of the PFLD

statement and the MFLD (for MAP AUTOPANEL) statement. No default values apply to
the INCORRECT FIELDS ATTRIBUTES and CORRECT FIELDS ATTRIBUTES clauses.

Attributes List

202 Mapping Facility Guide

Syntax

►►─┬─────────────────────┬──►◄
 ├─┬─ ALPHAnumeric ──┬─┤
 │ └─ NUMeric ───────┘ │
 ├─┬─ PROTected ─────┬─┤
 │ └─ UNPROTected ───┘ │
 ├─── SKIP ────────────┤
 ├─┬─ DETECTable ────┬─┤
 │ └─ NONDETECTable ─┘ │
 ├─┬─ DISPlay ───────┬─┤
 │ ├─ DARK ──────────┤ │
 │ └─ BRIGHT ────────┘ │
 ├─┬─ MDT ───────────┬─┤
 │ └─ NOMDT ─────────┘ │
 ├─┬─ BLINK ─────────┬─┤
 │ └─ NOBLINK ───────┘ │
 ├─┬─ REVerse-video ─┬─┤
 │ └─ NORMal-video ──┘ │
 ├─┬─ UNDERscore ────┬─┤
 │ └─ NOUNDERscore ──┘ │
 ├─┬─ ALLLine ───────┬─┤
 │ └─ NOLIne ────────┘ │
 ├─┬─ LEFTLine ──────┬─┤
 │ └─ NOLEFTLine ────┘ │
 ├─┬─ RIGHTLine ─────┬─┤
 │ └─ NORIGHTLine ───┘ │
 ├─┬─ BOTTOMLine ────┬─┤
 │ └─ NOBOTTOMLine ──┘ │
 ├─┬─ TOPLine ───────┬─┤
 │ └─ NOTOPLine ─────┘ │
 └─┬─ BLue ──────────┬─┘
 ├─ RED ───────────┤
 ├─ PINk ──────────┤
 ├─ GREen ─────────┤
 ├─ TURquoise ─────┤
 ├─ YELlow ────────┤
 ├─ WHIte ─────────┤
 └─ NOColor ───────┘

Parameters

ALPHAnumeric/NUMeric

Specifies the characters that can be entered in the field:

■ ALPHANUMERIC (default for variable fields) specifies that the operator can
enter any character.

■ NUMERIC specifies that the operator can enter characters as follows:

– If the terminal is not equipped with the NUMERIC hardware feature, the
operator can enter any character in the field. To restrict input to numeric

characters in this case, a numeric external picture must be assigned to the
field and automatic editing must be enabled for the field and map, as
specified in "Automatic Editing and Error Handling”.

– If the terminal is equipped with the NUMERIC feature, the field accepts

only numeric input.

Numeric input can include the following characters:

– Numeric digits in the range 0 through 9

– The decimal point (.)

– The minus sign (-)

Attributes List

Chapter 12: Batch Compiler Statements 203

PROTected/UNPROTected

Indicates whether the field can accept operator input:

■ PROTECTED (default for l iteral fields) specifies that the field is input protected.
Any attempt to enter, modify, or delete data in the field is physically restricted
by a 3270-type terminal. Data in a PROTECTED field on some glass TTY

terminals can be overwritten by the operator; however, operator modifications
are ignored on mapin. If PROTECTED is specified with either the ADD MFLD (for
MAP AUTOPANEL) or the ADD PFLD statement, the DELIMIT/NODELIMIT clause
of either statement defaults to NODELIMIT.

■ UNPROTECTED (default for variable fields) specifies that the field is open to
data entry or modification. Data in an unprotected data field is transmitted to
program variable storage on mapin if all of the following conditions are true:

– Modifications have been made to the field (the MDT is set on).

– Automatic editing does not detect an input error in the data.

– DATA is set to Y (YES) for input in the MFLD statement for the field.

If UNPROTECTED is specified with an ADD operation, the DELIMIT/NODELIMIT

clause defaults to DELIMIT.

SKIP

Specifies that the operator cannot use the TAB key to position the cursor on the
field; the cursor is advanced to the next UNPROTECTED field. Indicating SKIP for a
field specifies NUMERIC and PROTECTED for the field.

DETECTable/NONDETECTable

Specifies whether the field is detectable by the selector l ight pen:

■ DETECTABLE specifies that the field is detectable by l ight pens.

■ NONDETECTABLE (default) specifies that the field is not detectable by selector

l ight pens. NONDETECTABLE does not apply to the INCORRECT FIELDS
ATTRIBUTES or CORRECT FIELDS ATTRIBUTES clause.

DISPlay/DARK/BRIGHT

Indicates whether the field is displayed and, if displayed, whether it appears at

normal or bright intensity:

■ DISPLAY (default) specifies that the field is displayed at normal intensity.

■ DARK specifies that the field is not displayed. Data written to the field from
program variable storage or entered by the operator is not visible on the

screen.

■ BRIGHT specifies that the field is displayed at high intensity; the field appears
highlighted at runtime.

BRIGHT fields are always DETECTABLE; DARK fields can never be DETECTABLE.

Attributes List

204 Mapping Facility Guide

MDT/NOMDT

Data fields only; indicates whether the modified data tag (MDT) is set on

automatically for the field on a mapout operation:

■ MDT specifies that the modified data tag is set on automatically on mapout.

■ NOMDT (default) specifies that on mapout the MDT is not automatically set on;

the MDT is set on only when the contents of the field are altered by a terminal
operator.

BLINK/NOBLINK

Specifies whether the field is to blink at runtime:

■ BLINK specifies that the field blinks. The BLINK attribute takes effect only when
the map is displayed at a 3279-type terminal.

■ NOBLINK (default) specifies that the field does not blink.

REVerse-video/NORMal-video

Indicates whether the field is displayed in reverse or normal video:

■ REVERSE-VIDEO specifies that the color of the characters in the field and of the
background are reversed. The REVERSE-VIDEO attribute takes effect only when
the map is displayed at a 3279-type terminal.

■ NORMAL-VIDEO (default) specifies that the color of the characters in the field
and of the background are not reversed.

UNDERscore/NOUNDERscore

Indicates whether the field is underscored:

■ UNDERSCORE specifies that the field is underscored. The UNDERSCORE

attribute takes effect only when the map is displayed at a 3279-type terminal.

■ NOUNDERSCORE (default) specifies that the field is not underscored.

ALLLine/NOLIne

Enables or disables field outlining for the entire field.

■ ALLLine draws a l ine on the top, bottom, left, and right of the field.

This is equivalent to selecting all four outline options on the Device-Dependent
Options screen of MAPC Field Definition. No other outline options should be
specified.

■ NOLINE indicates no outlining should occur. This is the default.

No other outline options should be specified.

Attributes List

Chapter 12: Batch Compiler Statements 205

LEFTLine/NOLEFTLine

Enables or disables field outlining to the left of the field.

■ LEFTLINE draws a l ine to the left of the field.

This is equivalent to selecting the Left option on the MAPC Device-Dependent
Options screen of Field Definition.

■ NOLEFTLINE indicates no line should appear to the left of the field.

RIGHTLine/NORIGHTLine

Enables or disables field outlining to the right of the field.

■ RIGHTLINE draws a l ine to the right of the field.

This is equivalent to selecting the Right option on the MAPC Device-Dependent

Options screen of Field Definition.

■ NORIGHTLINE indicates no line should appear to the right of the field.

BOTTOMLine/NOBOTTOMLine

Enables or disables field outlining below the field.

■ BOTTOMLINE draws a l ine below the field.

This is equivalent to selecting the Bottom option on the MAPC
Device-Dependent Options screen of Field Definition.

■ NOBOTTOMLINE indicates no line should appear below the field.

TOPLine/NOTOPLine

Enables or disables field outlining above the field.

■ TOPLINE draws a l ine above the field.

This is equivalent to selecting the Top option on the MAPC Device-Dependent
Options screen of Field Definition.

■ NOTOPLINE indicates no line should appear above the field.

In order for the above field outlining options to draw lines in selected locations around

the field when the MAP is displayed, the terminal or emulator being used must support
field outlining.

More information:

For more information about specifying Outline options with MAPC, see Online Mapping

Compiler Reference: Device-dependent Options.

Statements for Automatic Panel Definition

206 Mapping Facility Guide

BLue/RED/PINk/GREen/TURquoise/YELlow/WHIte/NOColor

Specifies the runtime color of the field, or of the background if REVERSE-VIDEO is

specified for the field. Only one display color can be specified for a given field.
NOCOLOR (default) specifies that the default display color for the terminal is used.
Color attributes other than NOCOLOR take effect only when the map is displayed at

a 3279-type terminal.

Note: BLINK, UNDERSCORE, and REVERSE-VIDEO are mutually exclusive. For example,
neither REVERSE VIDEO nor UNDERSCORE can be assigned to a field for which the BLINK
attribute is defined.

Statements for Automatic Panel Definition

Overview

The developer explicitly defines map and map field occurrences when using statements
that automatically define panels. Related panel and panel field occurrences are

generated and updated automatically. The compiler action verbs ADD, MODIFY, and
DELETE define the overall purpose of the mapping statements.

Note: For more information about the ADD, MODIFY, and DELETE verbs, see Compiler

Action Verbs.

Statements You can use

■ The MAP AUTOPANEL statement defines and generates a map occurrence and
automatically generates a related panel occurrence for the map occurrence. The
AUTOPANEL clause is always included in a MAP statement that automatically

generates a panel occurrence.

■ The MFLD statement defines and generates a map field occurrence and
automatically generates a related panel field occurrence for the map field
occurrence.

A MAP AUTOPANEL statement must be followed immediately by the MFLD statements
that define its related fields. The MAP AUTOPANEL and MFLD statements are presented
separately as follows.

Statements for Automatic Panel Definition

Chapter 12: Batch Compiler Statements 207

MAP AUTOPANEL Statement Syntax

A MAP AUTOPANEL statement typically is used to perform the following functions:

■ Create or maintain a map occurrence and its associated panel occurrence in the
data dictionary

■ Identify the map occurrence with a unique combination of name and version
number

■ Identify the associated panel occurrence with a unique name composed of the
name of the map and the suffix -AUTOPANEL

■ Specify the particular devices suitable for the map at runtime

■ Identify the records and roles referenced by map data fields

■ Enable global automatic editing and error-handling, specifying correct-field and
incorrect-field attributes

■ Specify various terminal hardware control functions (such as alarm or numeric
options) to be invoked during mapout operations

►►──┬──────────┬─ MAP map-name ──┬───────────────────────────────┬────────────►
 ├─ ADD ────┤ └─ VERsion ─┬──────┬─ version ──┘
 ├─ MODIFY ─┤ ├─ IS ─┤
 └─ DELETE ─┘ └─ = ─┘

 ►──┬──┬────────────────────────────────►
 └─ DATETIME ─┬──────┬─ date-time-stamp ──┘
 ├─ IS ─┤
 └─ = ─┘

 ►──┬───┬───────────────────────────►
 └─ MSG PREFIX ─┬──────┬───┬──── DC ◄ ─────────┤
 ├─ IS ─┤ └─ message-prefix ──┘
 └─ = ─┘

 ►── AUTOPANEL DEVices = ─┬─ (device-code) ──────────────────┬────────────────►
 ├─ (24x80, 32x80, 43x80, 27x132) ◄─┤
 └─ ALL ────────────────────────────┘

 ►──┬────────────────────────────────┬─────┬─ RESident ──────┬────────────────►
 └─ SYStem ─┬──────┬─ dc-version ─┘ └─ NONRESident ◄ ─┘
 ├─ IS ─┤
 └─ = ─┘

 ►──┬───►
 └─ USING ─┬──────────────┬──
 └┬─ RECORDS ─┬─┘
 └─ REC ─────┘

 ►───┬──►
 ┌──┐ │
 ────── (─▼─ record-name ─┬───────────┬─┬──────────────────────┬─┴──) ──┘
 └─ version ─┘ └─ ROLEname role-name ─┘

Statements for Automatic Panel Definition

208 Mapping Facility Guide

 ►──┬──EDIT ◄ ─┬──┬──────────────────────────────┬────────────────────────────►
 └─ NOEDIT ─┘ └─ CURSOR at panel-field-name ─┘

 ►──┬─────────────────────────────┬───┬───────────────────────────────┬───────►
 ├─ RESET ◄ ─┬─┬──────────────┬┘ ├─ LOCK ────┬─┬───────────────┬─┘
 └─ NORESET ─┘ └┬─ MODIFIED ─┬┘ └─ UNLOCK ◄─┘ └┬─ KEYBOARD ─┬─┘
 └─ MOD ──────┘ └─ KEY ──────┘

 ►──┬─ ALARM ────┬──┬─ STARTPRT ─┬──┬─ NLCR ◄ ┬──┬─ PAGeable ─────┬───────────►
 └─ NOALARM ◄ ┘ └─ NOPRT ◄ ──┘ ├─ 40CR │ └─ NONPAGeable ◄ ┘
 ├─ 64CR │
 └─ 80CR ──┘

 ►──┬──┬──────────────────────────────►
 └─ DECimal point ─┬──────┬───┬─ Comma ───┬─┘
 ├─ IS ─┤ └─ Period ◄ ┘
 └─ = ─┘

 ►─┬──►
 └─ HELP ─┬─ NO ──
 └─ LOAD MODule ─┬──────┬─ module-name ────────────────────────────
 ├─ IS ─┤
 └─ = ─┘

─►──►─
 .──
 ─┬──
 └─ SOUrce ─┬─ NONE ──
 └─ MODule module-name ─┬───────────────────────────────┬────────
 └─ version ─┬──────┬─ version ─┘
 ├─ IS ─┤
 └─ = ─┘

─►──────────────────────────┬───►
 ────────────────────────┬─┘
 ──────────────────────┬─┘
 ────────────────────┬─┘
 ─┬─ HALF screen ◄ ┬─┘
 └─ FULL screen ──┘

 ►──►─
 ──
 ─┬─────────────────────────────┬──
 └─ HELPKEY ─┬──────┬── PFnn ──┘
 ├─ IS ─┤
 └─ = ─┘

 ►─┬──►
 └─ ON edit ERROR ──┬───┬─
 └─ INCORRECT fields ATTRibutes = (attributes-list) ─┘

 ►──►
 ─┬───┬──────────────────────
 └─ CORRECT fields ATTRibutes = (attributes-list) ─┘

 ►────────────────────────────┬───►
 ─┬────────────────────────┬─┘
 └─ SOUND ─┬─ ALARM ────┬─┘
 └─ NOALARM ◄ ┘

 ►─┬───┬ . ─►◄
 └─ ORIGIN for ─┬─ ALL ─────────────────────┬─┬──────┬─(row column)─┘
 │ ┌───────────────┐ │ ├─ IS ─┤
 └─ (─▼─ device-code ─┴─) ─┘ └─ = ──┘

Statements for Automatic Panel Definition

Chapter 12: Batch Compiler Statements 209

Parameters

ADD/MODIFY/DELETE

Specifies the action taken with regard to the MAP statement. ADD, MODIFY, and
DELETE access for a map is subject to security restrictions specified for the batch

compiler and individual maps, as outlined in "Compiler Security".

MAP map-name

Specifies the unique 1- through 8-character name for the map being defined,
modified, or deleted. The following considerations apply to the composition of
map-name:

■ Map-name can consist of any alphanumeric or special characters.

■ Map-name must begin with an alphanumeric or national character; for
example, pound sign (#), at sign (@), or dollar sign ($).

■ Map-name must not contain embedded period or blank characters.

VERSION IS version-n

Optionally specifies a version number to further identify the map. Version-n must
be in the range 1 through 9999. If omitted, version-n defaults to the data dictionary
version default, as defined by the Data Dictionary Definition Language (DDDL) SET
OPTIONS statement.

DATETIME IS date-time-stamp

The map compiler DATETIME clause is returned in map source statements when
you use the map util ity to decompile a map.

If you use the DATETIME option to decompile a map from one DC system and add it
to another system:

■ Do not change decompiled map source statements. If you change statements,
unpredictable errors will occur at runtime when you access the map.

■ Define identical record element descriptions on each system. You can
accomplish this by using IDD.

MSG PREFIX IS message-prefix

Defines the two-character prefix to be used as the default prefix for any MFLD in
the map that is defined using the ERROR MESSAGE clause.

Statements for Automatic Panel Definition

210 Mapping Facility Guide

AUTOPANEL

Specifies that panel and panel field occurrences are generated automatically when

MAP and associated MFLD statements generate map and map field occurrences.

DEVICES=

(device-code-a) /(24X80,32X80,43X80,27X132)/ALL specifies the devices with

which the map can be used:

■ (Device-code-a) specifies devices (screen size) with which the map can be us ed.
Valid screen sizes are 12X40, 12X80, 24X80, 32X80, 43X80, and 27X132.

Commas must be used to separate device-code-a specifications when more

than one device is chosen. Device specifications in the DEVICES clause must be
enclosed in parentheses; for example, DEVICES=(12X40,24X80,43X80).

■ (24X80,32X80,43X80,27X132) is the default specification given to the map.

■ ALL specifies that the map can be used with all valid screen sizes.

To reserve a map field for use on only a subset of the devices specified in the
DEVICES clause, FOR clauses can be included in an MFLD statement for MAP
AUTOPANEL. FOR clauses can also be used to specify values or attributes for a field

displayed on specific devices.

The MODIFY verb does not update the DEVICES specification.

Note: For more information, see "Compiler Action Verbs".

SYSTEM IS dc-version-n

Specifies the version number of a CA IDMS system with which the map is

associated. Dc-version-n is the 1- through 4-character identifier assigned to the
system at system generation.

RESIDENT/NONRESIDENT

Indicates whether the map load module is resident in storage at system runtime:

■ RESIDENT specifies that the map load module is resident. This is useful for
frequently used maps.

■ NONRESIDENT (default) specifies that the map load module is not resident; the

load module is loaded dynamically when required for a program mapping
request.

Statements for Automatic Panel Definition

Chapter 12: Batch Compiler Statements 211

USING RECORDS

(record-name /(record-name version-n) ROLENAME role-name

Specifies the list of predefined schema and/or work records used by the map and
optionally specifies role names for records:

■ Record-name identifies the name of a record that contains elements

referenced by the map. If record-name is not unique in the data dictionary, the
version number of the necessary schema or work record must be supplied; the
default value for version-n is specified at system generation.

If a logical record is being used, the developer names the records containing

elements that are part of the logical record and that are used in the map
definition. The logical record name is later specified by the dialog or program
using the map.

■ ROLENAME role-name specifies the role name used for the record at runtime.
Role names are needed when a given record type is referenced in more than

one context. For example, the developer might specify the EMPLOYEE record
layout twice for a map that uses the EMPLOYEE record for both
employee-related and manager-related fields on a single map:

– One specification of the EMPLOYEE record would not include a role name
for the record.

– The second specification of the EMPLOYEE record would include a valid
role name for the record (for example, MANAGER). The role name must

be used in subsequent references to the record in the map-definition.

The specified role name can be established in two ways:

– The role name can be previously defined for the record by a logical record
definition in the subschema used by the program or dialog.

– The role name can be unique to the map, defined at map definition time
on the Associated Records screen or via the batch compiler.

EDIT/NOEDIT

Indicates whether automatic editing and error-handling are enabled for the map, as

follows:

■ EDIT (default) globally enables automatic editing and error-handling for the
map.

■ NOEDIT globally disables automatic editing and error-handling for the map;

editing and error-handling criteria (if any) defined for map fields are ignored.

Note: For more information about enabling and disabling automatic editing, see
"Enabling Automatic Editing and Error Handling".

Statements for Automatic Panel Definition

212 Mapping Facility Guide

RESET/NORESET MODIFIED

Indicates whether the modified data tags (MDTs) for data fields are reset

automatically on a mapout operation:

■ RESET (default) specifies that all MDTs are reset (turned off) when the map is
mapped out.

■ NORESET specifies that MDTs are left unchanged when the map is mapped out.

The MDT/NOMDT specification in the MFLD ATTRIBUTES clause for a field overrides
the RESET/NORESET specification for that field if the map-level and field-level
specifications differ. If MDT is chosen for a field, the MDT is set on regardless of the

RESET MDT specification.

Note: For more information about the MDT/NOMDT setting, see "Attributes for
Fields".

LOCK/UNLOCK KEYBOARD

Specifies whether the keyboard unlocks automatically after a mapout operation:

■ LOCK specifies that the keyboard remains locked until the operator presses the
RESET key.

■ UNLOCK (default) specifies that the keyboard is unlocked after a mapout.

ALARM/NOALARM

Indicates whether a terminal alarm sounds automatically on a mapout operation:

■ ALARM specifies that the terminal alarm sounds on a mapout operation. This
specification is meaningful only if the terminal is equipped with a hardware

alarm.

■ NOALARM (default) specifies that the terminal alarm does not sound on
mapout.

Statements for Automatic Panel Definition

Chapter 12: Batch Compiler Statements 213

STARTPRT/NOPRT

Specifies whether the contents of the printer terminal buffer should be printed

automatically upon completion of data transmission on a mapout operation:

■ STARTPRT specifies that the contents of the printer terminal buffer are printed.
This specification is meaningful only for mapping operations associated with

3280-type printers.

■ NOPRT (default) specifies that the contents of the printer terminal buffer are
not printed.

NLCR/40CR/64CR/80CR

Specifies character-per-line formatting for printer output:

■ NLCR (default) specifies that no line formatting is performed on the printed
output. Printing skips to a new line only when new line (NL) and carriage
return (CR) characters are encountered.

■ 40CR specifies that the buffer contents are printed at 40 characters per l ine.

■ 64CR specifies that the buffer contents are printed at 64 characters per l ine.

■ 80CR specifies that the buffer contents are printed at 80 characters per l ine.

These specifications are applicable only if the STARTPRT clause is specified for the
map.

PAGEABLE/NONPAGEABLE

Specifies whether the map is pageable:

■ PAGEABLE specifies that the map is pageable. A pageable map is a map that

can display more than one page of information at runtime.

■ NONPAGEABLE (default) specifies that the map is not a pageable map.

Note: For more information about pageable maps, see "Pageable Maps".

DECIMAL POINT IS COMMA/PERIOD

Specifies the decimal point character for numeric fields on the map:

■ COMMA specifies that the comma (,) is used as the decimal point, in
accordance with international format. An external picture for the field also

must be specified in international format, with the comma as the decimal
point.

■ PERIOD (default) specifies that the period (.) is used as the decimal point.

Statements for Automatic Panel Definition

214 Mapping Facility Guide

HELP

Specifies whether help will be implemented for the map.

NO/LOAD MODule module name

If there is Help for the map, the name of the load module that contains all the help
source for the map.

HELPKEY IS PFnn

The PFKey designated as the Help key for the map.

SOUrce NONE/MODule module-name

The name of the IDD module that contains the help text for the map.

If module name is specified, you can optionally specify:

■ The version number

■ Whether the help is displayed on a full or half screen

ON EDIT ERROR

Defines incorrect-field attributes, correct-field attributes, and alarm status for use
when a dialog or map redisplays a map that contains input errors. The following

clauses assign error-handling criteria:

■ INCORRECT FIELDS ATTRIBUTES=(attributes-list) specifies attributes that are
assigned to incorrect fields when an edit error occurs. Typically, incorrect fields
are given an attribute such as BRIGHT or BLINK to draw the operator's

attention to the erroneous data. No default attributes are defined.

Note: Syntax for the attributes-list is discussed in Attributes List (see
page 201).

■ CORRECT FIELDS ATTRIBUTES=(attributes-list) specifies attributes that are
assigned to correct and unedited fields when an edit error occurs. No default
attributes are defined.

Note: For more information about syntax for the attributes-list, see Attributes

List (see page 201).

Statements for Automatic Panel Definition

Chapter 12: Batch Compiler Statements 215

■ SOUND ALARM/NOALARM specifies whether a terminal alarm sounds on input
error:

– ALARM indicates that the alarm is sounded. This option is meaningful only
when a terminal is equipped with a hardware alarm.

– NOALARM (default) indicates that the alarm is not sounded.

For example, a dialog or program can include code to redisplay a map when an
error is detected in a field on mapin. When the display is mapped back out,
incorrect-field attributes take effect for fields that are in error, and correct-field
attributes take effect for fields that are not in error. The terminal operator can

correct the errors and resubmit the map.

Note:

■ For information about the use of error-handling specifications, see
Error-handling Criteria (see page 76).

■ For information about how dialogs and programs override specifications made
in the ON EDIT ERROR clause, see Map Inquiry and Modification (see page 130).

ORIGIN FOR (device-code)/ALL IS (row column)

Positions the origin of the runtime map at a row/column location on specified

devices:

■ Device-code names one device. Available device-code specifications are 12X40,
12X80, 24X80, 32X80, 43X80, and 27X132. The specified device must be
defined in the DEVICES clause of the MAP statement. More than one ORIGIN

FOR device-code clause can be included in a single MAP statement.

Parentheses are required when a device code(s) is specified.

■ ALL names all devices defined in the DEVICES clause of the MAP statement.

■ Row column specifies the coordinates at which the upper left-hand corner of
the runtime map is plotted for all devices specified in the ORIGIN FOR

specification. Only one row column specification can be made for a given
ORIGIN FOR clause; if specified, it must be enclosed in parentheses. If not
specified, column defaults to 1.

Parentheses are required around the row column coordinates.

Statements for Automatic Panel Definition

216 Mapping Facility Guide

Examples

The following are the examples of the MAP AUTOPANEL statement:

Example 1

Adding a Map Occurrence

The following sample MAP AUTOPANEL statement adds a map occurrence named
MEALS:

 ADD MAP MEALS VERSION IS 2
 AUTOPANEL DEVICES=(24X80)
 USING RECORDS MEALS-REC VERSION 1
 NOEDIT.

The MEALS-REC schema record is used by the sample map occurrence. Automatic
editing is disabled by the NOEDIT specification. A panel occurrence is generated
automatically for the MEALS map occurrence and given the name MEALS-AUTOPANEL.

Example 2

Modifying a Map Occurrence

The following sample MAP AUTOPANEL statement modifies the map occurrence
established in the previous example:

 MOD MAP MEALS VERSION IS 2
 AUTOPANEL DEVICES=(24X80)
 USING RECORDS MEALS-REC VERSION 1
 EDIT
 ON ERROR
 INCORRECT ATTRIBUTES (BRIGHT)
 CORRECT ATTRIBUTES (DISPLAY).

Automatic editing is enabled by the EDIT clause. Attributes for the redisplay of incorrect

and correct fields are added to the map. The related MEALS-AUTOPANEL panel is also
modified by this sample statement unless the panel has been used as the basis for other
map occurrences.

Statements for Automatic Panel Definition

Chapter 12: Batch Compiler Statements 217

Example 3

Positioning a Map on a Device

The following sample MAP AUTOPANEL statement defines a map occurrence that can be
displayed on two different devices at runtime:

 ADD MAP SEATS
 AUTOPANEL DEVICES=(12X40,24X80)
 USING RECORDS PASS-REC VERSION 1
 ORIGIN FOR 12X40 IS 5,5
 ORIGIN FOR 24X80 IS 10,20.

The upper left-hand corner of the runtime SEATS map is positioned at row 5, column 5

on 12X40 devices. The upper left-hand corner of the runtime map is at row 10, column
20 on 24X80 devices. For more information about the placement of maps on different
devices, see "Positioning Maps on Different Devices”.

Example 4

Deleting a Map Occurrence

The following sample MAP AUTOPANEL statement deletes the MEALS map occurrence
version 2 and simultaneously deletes any map field occurrences that belong to the map:

 DEL MAP MEALS VERSION IS 2.

The related MEALS-AUTOPANEL panel occurrence and its panel field occurrences are
deleted from the data dictionary by this sample statement unless the panel has been
used as the basis for other map occurrences.

Statements for Automatic Panel Definition

218 Mapping Facility Guide

MFLD Statement Syntax

Functions Performed

An MFLD statement for MAP AUTOPANEL is used to add a map field to a map by
performing the following functions:

■ Creating and maintaining a single map field occurrence and associated panel field
occurrence for the specified map and panel occurrences in the most recent MAP
AUTOPANEL statement.

■ Identifying the map field occurrence in the data dictionary with a name that is

unique within the owner map occurrence.

■ Identifying the panel field occurrence with a name composed of a 5 -digit identifier
with the prefix AUTOPF. The name AUTOPF00001 is assigned to the first panel field
occurrence generated for the map, AUTOPF00002 is assigned to the second panel

field occurrence generated for the map, and so forth.

■ Specifying characteristics for the field, such as the following:

– Field occurrences for multiply-occurring fields

– Screen locations of the field by row and column

– Physical attributes of the field, such as display color

– Field values for l iteral fields

– Delimit characteristics

Statements for Automatic Panel Definition

Chapter 12: Batch Compiler Statements 219

– Variable field type, as follows:

– The DFLD specification establishes the field as a data field and relates it to

a single existing record element in the data dictionary. Additional
specifications, such as automatic editing criteria, can be made for data
fields.

– The MESSAGE LENGTH specification establishes the field as a message field
and defines the length of the field. establishes the field as a page field and
defines the length of the field.

– The RESPONSE LENGTH specification establishes the field as a response

field and defines the length of the field. A response field is meaningful only
when the map is used by a CA ADS dialog.

►►──┬──────────┬─ MFld ───►
 ├─ ADD ────┤
 └─ MODify ─┘

 ►──┬───────────────────────────────────────┬─────────────────────────────────►
 └─ OCCURS ─┬─ 1 ◄ ────────────────────┬─┘
 └─ occurrence-count times ─┘

 ►──┬───►
 ├─ FOR ALL ◄ ────────────────────┬──
 │ ┌────── , ──────┐ │
 └─ FOR (─▼─ device-code ─┴─) ──┘

 ►──►
 ─┬───────────────────────────────────────┬──────────────────────────────────
 └─ AT ─┬─ ANYwhere ───────────────────┬─┘
 │ ┌──────────────────────────┐ │
 └─▼─ (row ─┬─ 1 ◄ ────┬─) ─┴─┘
 └─ column ─┘

 ►──►
 ─┬──┬───────────────────────────────
 └─ ATTRibutes = ─┬─ NONE ────────────────┬─┘
 └─ (attributes-list) ─┘

 ►──►
 ─┬───────────────────────────────────┬──────────────────────────────────────
 ├─ DELIMit ─┬──────┬──┬─ SKIP ◄ ─┬──┤
 │ ├─ IS ─┤ └─ NOSKIP ─┘ │
 │ └─ = ──┘ │
 └─ NODELIMit ───────────────────────┘

 ►──►
 ─┬───┬──────────────────────────────
 └─ PAGing type ─┬──────┬─┬─ DETail STart ─┬─┘
 ├─ IS ─┤ ├─ DETail ONLY ──┤
 └─ = ──┘ ├─ DETail ENd ───┤
 ├─ FOOTer STart ─┤
 └─ NULl ◄────────┘

Statements for Automatic Panel Definition

220 Mapping Facility Guide

 ►──┬─►
 ─┬──┬─┘
 └─ VALue ─┬────┬─┬─ 'data-value' ────────────────────────────────────┬─┘
 ├ IS ┤ │ ┌───┐ │
 └ = ─┘ └─(─▼─┬──────────────────────┬─ 'data-value' ─┴─)─┘
 └─ (occurrence count) ─┘

 ►─┬─ CURSOR ─────┬───►
 └─ NOCURSOR ◄ ─┘

 ►─┬─ LITeral ◄ ─────────────────────┬──►◄
 ├─ MESSage LENgth ─┬─ length ─┬───┤
 │ └─ 80 ◄ ───┘ │
 ├─ PAGE LENgth 4 ─────────────────┤
 ├─ RESPonse LENgth ─┬─ length ─┬──┤
 │ └─ 80 ◄ ───┘ │
 └─ DFld dfld-specifications ──────┘

Expansion of dfld-specifications

►►─── data-field-name ─┬────────────────────────┬─────────────────────────────►
 └─ (subscript-number) ─┘

 ►─┬──┬───────────────────►
 └─ OF ─┬─ record-name ─┬──────────────────────────┬──┬─┘
 │ └─ VERsion version-number ─┘ │
 └─ role-name ─────────────────────────────────┘

 ►──┬───►
 └─ HELP ──

 ►──►
 ──── SOUrce ─┬─ NONE ───
 └─ MODule module-name ─┬─────────────────────────────────────┬─
 └─ VERsion ─┬──────┬─ version-number ─┘
 ├─ IS ─┤
 └─ = ─┘

 ►──┬─►
 ──┬─────┘
 ──┬────────────────┬──┘
 ├─ HALF screen ◄─┤
 └─ FULL screen ──┘

 ►─┬─ REQuired ───┬───►
 └─ OPTional ◄ ─┘

 ►─┬───────────────────────────────────────┬──────────────────────────────────►
 └─ REVerse NUMeric ─┬──────┬──┬─ Yes ─┬─┘
 ├─ IS ─┤ └─ No ──┘
 └─ = ──┘

 ►─┬──┬───────────────►
 └─ UNDERSCORE when blank ──┬─ No ◄─┬───────────────────────┘
 └─ Yes ─┘

 ►─┬─ NOEDIT ◄ ───►
 └─ EXTernal PICture ─┬───────┬─┬─ 'picture'──┬─────────────────────────────
 ├─ IS ──┤ └─ INTernal ──┘
 └─ = ───┘

Statements for Automatic Panel Definition

Chapter 12: Batch Compiler Statements 221

 ►──┬───────────────►
 ─┬──────────────────────────┬─┬───────────────────────────┬─┘
 ├─ ZEROed ◄ ─┬─ when null ─┘ ├─ DISPlay ◄ ─┬─ when zero ─┘
 └─ RETAINed ─┘ └─ BLANK ─────┘

 ►─── EDIT TABle ─┬──────┬─┬─ NULL ◄ ───►
 ├─ IS ─┤ └─ table-name ─┬──────────────────────────┬────────
 └─ = ──┘ └─ VERsion version-number ─┘

 ►──┬─────────────────────────────►
 ─┬─ LINK ◄ ─┬─┬─────────────────────────────┬─┘
 └─ NOLINK ─┘ └─ USAGE is ─┬─ VALIDate ───┬─┘
 ├─ INVALIDate ─┤
 └─ DEFault ◄ ──┘

 ►─┬──┬─►
 └ CODE TABle ─┬────┬─┬ NULL ◄ ──┬┘
 ├ IS ┤ └ table-name ─┬────────────────────────┬─┬ LINK ◄ ┬┘
 └ = ─┘ └ VERSION version-number ┘ └ NOLINK ┘

 ►─┬───────────────────────────────────┬──────────────────────────────────────►
 └─ ERROR MESSage ──┬─ 'message'───┬─┘
 ├─ message-id ─┤
 └─ NULL ◄ ─────┘

 ►──┬───┬───────────────────────────►
 └─ MSG PREFIX ─┬──────┬───┬──── DC ◄ ─────────┤
 ├─ IS ─┤ └─ message-prefix ──┘
 └─ = ─┘

 ►─┬──►
 └─ FOR INput ─┬───────────────────────┬─┬──────────────────────────┬───────
 └─ JUSTify ─┬─ Left ──┬─┘ └─ PAD ─┬─ No ◄ ─────────┬─┘
 └─ Right ─┘ └─ with literal ─┘

 ►──►
 ─┬────────────────────┬───
 └─ DATA ─┬─ YES ◄ ─┬─┘
 └─ NO ────┘

 ►──►
 ─┬───┬──────────────
 └─ UPPERCASE ──┬─ NO ◄─┬────────────────────────────────────┘
 └─ YES ─┘

 ►──┬───►
 ─┬─────────────────────────────────────┬── WITH AUTOedit ─┬─ NO ◄ ───┬─┘
 └─ EDIT ─┬───────┬─ edit-module-name ─┘ ├─ BEFore ─┤
 ├─ IS ──┤ └─ AFTer ──┘
 └─ = ───┘

 ►─┬──►
 └─ FOR OUTPUT ─┬───────────────────────┬─┬────────────────────────┬────────
 └─ BACKscan ─┬─ YES ──┬─┘ └─ DATA ─┬─ YES ◄ ─────┬─┘
 └─ NO ◄ ─┘ ├─ NO ────────┤
 ├─ ERASE ─────┤
 └─ ATTRibute ─┘

 ►──┬─ . ───►◄
 ─┬──────────────────────────────────┬── WITH AUTOedit ─┬─ NO ◄ ───┬─┘
 └─ EDIT ─┬────┬─ edit-module-name ─┘ ├─ BEFore──┤
 ├ IS ┤ └─ AFTer ──┘
 └ = ─┘

Statements for Automatic Panel Definition

222 Mapping Facility Guide

Parameters

ADD/MODIFY

Specifies the action taken with regard to the MFLD statement. The DELETE verb
cannot be specified for MFLD statements for MAP AUTOPANEL.

Note: For information about how to remove a field occurrencefrom a map
occurrence that was defined by a MAP AUTOPANEL statement, see "Compiler
Action Verbs (see page 194)."

MFLD

Introduces the clauses that define a map field and associated panel field
occurrence.

OCCURS 1/occurrence-count TIMES

Specifies the number of times the field is to appear on the map; the default is 1.

FOR ALL /(device-code-a)

Associates the specified screen sizes with field specifications established by
subsequent AT, ATTRIBUTES, DELIMIT, and VALUE clauses. If the map is used with
more than one screen size, multiple FOR specifications can be included in the MFLD

statement to establish different information for each screen size.

For a more detailed description of this latter use of the FOR specification, see
"Defining Versions of Maps for Different Devices (see page 256)."

A field is associated with specific devices as follows:

ALL

Specifies that subsequent clauses of the MFLD statement apply to all screen
sizes specified in the related DEVICES clause.

(Device-code-a)

Specifies one or more devices. Subsequent clauses of the MFLD statement

apply only to the designated screen sizes. More than one device-code-a
specification can be included in a FOR clause. The number of valid
device-code-a specifications depends on the number of screen types declared

in the related DEVICES specification.

Valid screen sizes are 12X40, 12X80, 24X80, 32X80, 43X80, and 27X132. Device
specifications must be enclosed in parentheses and separated by commas; for
example, FOR (12X40,12X80).

Statements for Automatic Panel Definition

Chapter 12: Batch Compiler Statements 223

AT ANYWHERE/ (row,1/column)

Specifies the screen coordinate of the attribute byte for a field by row and column.

The coordinate establishes the location of a runtime field on a given screen. An
attribute byte is a nondisplayable character that precedes the displayed field and
defines the field's attributes.

The field itself is displayed starting at the coordinate that immediately follows the
nondisplayable attribute byte. For example, a field displays starting in coordinate
(5,11) for an AT (5,10) specifi cation.

The following considerations apply to the placement of attribute bytes and fields:

■ Specifying the coordinates for the final column of a row places the first
displayable character for a field in the first column of the next row.

■ Specifying the coordinates for the final column of the final row on a screen
places the first displayable character for a field in the first column of the first

row (1,1).

■ Specifying coordinates that cause a field to exceed the remaining length on a
given row results in a field that is split at the end of the screen and wrapped

around to either the next row or the top of the screen, depending on the row
in which the coordinates were placed.

Screen coordinates are designated as follows:

ANYWHERE

Specifies that the field can appear anywhere on the screen. ANYWHERE is

meaningful only with mapin operations for which the requesting program reads
extraneous data. Extraneous data is data that is not associated with a field at a
specific row/column location.

(Row-n,column-n)

 Specifies the row and column coordinates for the attribute byte for the field:

– Row-n identifies a horizontal position on the screen.

– Column-n identifies a vertical position on the screen; the default column is

1.

The following considerations apply when positioning multiply-occurring fields:

■ Each occurrence of the field requires its own row-n,column-n specification;
multiple row-n,column-n specifications can be made in one AT clause, if
necessary.

■ If there are more row-n,column-n specifications than multiply-occurring fields
specified in the OCCURS clause, the compiler input statement l isting returns an
error message.

■ AT specifications can occur in any order; they are assigned to corresponding

OCCURS values in order of iteration.

Statements for Automatic Panel Definition

224 Mapping Facility Guide

ATTRIBUTES=NONE/(attributes-list)

Specifies the attributes for the field. Only one ATTRIBUTES clause can occur in a

given MFLD statement. ATTRIBUTES specifications apply to all occurrences of the
field. Valid specifications are as follows:

■ NONE removes all attribute specifications from the map and panel field

occurrences being defined by the MFLD statement. The following runtime
considerations apply when NONE is specified for a field:

– The field is displayed with the attributes defined for the preceding field if
the preceding field is not delimited.

– The field is displayed with the default display attributes provided by the
device if the preceding field is delimited or if there is no preceding field.

– The field is displayed beginning in the column position specified in the AT
clause, since there is no attribute character for the field.

■ (Attributes-list) specifies a l ist of attribute that apply to the field.

Note: For more information about available attributes, see "Attributes List (see
page 201)."

DELIMIT/NODELIMIT

Specifies whether a delimit character is placed after the final position of a data
field:

■ DELIMIT IS SKIP/NOSKIP specifies that an internal delimit character is placed

after the final position of the field, as determined by the external picture of the
associated record element. The action of the cursor when it reaches the delimit
character and the disposition of excess characters are determined by one of

the following specifications:

– SKIP (default) specifies that the cursor is advanced automatically to the
start of the next UNPROTECTED field when operator input reaches the
delimit character. If there are no more UNPROTECTED fields on the map,

the cursor is placed at the start of the current field. Characters typed after
the internal delimit character is reached are placed in the field to which
the cursor advances. SKIP is the default if DELIMIT is specified.

– NOSKIP specifies that the cursor remains at the delimit character when
operator input reaches the end of the field. Subsequently typed input locks
the keyboard until the operator presses the RESET key. The TAB key
advances the cursor to the next UNPROTECTED field.

■ NODELIMIT specifies that no internal delimit character is assigned to the field.

The operator is not informed when input reaches the end of the field, and can
continue typing until the attribute byte of the next field is reached. On mapin,
the external picture of the record element associated with the field determines
the amount of operator input that is stored. Input that exceeds the length of

the external picture is ignored; a CA ADS dialog or application program can
include commands to inquire whether extraneous data has been input for a
NODELIMIT field.

Statements for Automatic Panel Definition

Chapter 12: Batch Compiler Statements 225

PAGING TYPE IS DETAIL ONLY/START/DETAIL END/FOOTER START/NULL

(pageable maps only). Specifies whether the field begins and/or ends the detail

occurrence or an area on the pageable map:

■ DETAIL ONLY performs the following functions:

– Begins the detail area on the line that contains the attribute byte of the

field being defined.

– Begins the detail occurrence on the line that contains the attribute byte of
the field being defined.

– Ends the header area (if any) on the line immediately above the line that

contains the attribute byte for the field assigned the DETAIL ONLY
specification.

– Ends the detail occurrence for the map at the final character of the field
assigned the DETAIL ONLY specification.

The field assigned the DETAIL ONLY specification must begin on a new line (that
is, it cannot begin on a l ine that contains characters for a field in the header
area).

■ DETAIL START performs the following functions:

– Begins the detail area on the line that contains the attribute byte of the
field being defined.

– Begins the detail occurrence on the line that contains the attribute byte of

the field being defined.

– Ends the header area (if any) on the line immediately above the line that
contains the attribute byte for the field assigned the DETAIL START

specification.

The field assigned the DETAIL START specification must begin on a new line

(that is, it cannot begin on a l ine that contains characters for a field in the
header area).

■ DETAIL END specifies that the detail occurrence for the map is to end at the

final character position of the current field. The detail area for the map is not
terminated by DETAIL END; FOOTER START (below) can be used to terminate
the detail area.

■ FOOTER START performs the following functions:

– Begins the footer area on the line that contains the attribute for the field.
The footer area ends at the end of the screen.

– Ends the detail area on the line immediately above the line that contains

the attribute byte of the field assigned the FOOTER START specification.

Statements for Automatic Panel Definition

226 Mapping Facility Guide

The field assigned the FOOTER START specification must begin on a new line
(that is, it cannot begin on a l ine that contains characters for a field in the

DETAIL END field). If assigned, the FOOTER START specification must be made
for a field following the field assigned the DETAIL END specification.

■ NULL (default) specifies that the field does not begin or end a detail or an area

on the map. The NULL setting can be used to override a previous DETAIL START,
DETAIL END, or FOOTER START specification for a field.

Note: For more information about the areas of pageable maps, see "Pageable
Maps (see page 91)."

VALUE IS data-value/((occurrence-count) data-value)

Supplies string values to l iteral fields:

■ Data-value assigns a value to a singly-occurring l iteral field. The specified value
must be enclosed in quotation marks.

■ ((Occurrence-count) data-value) assigns a value to a l iteral field or assigns

discrete values to multiple occurrences of a l iteral field:

– (Occurrence-count) identifies one or more field occurrences by order of
iteration. Values are assigned to the literal fields specified in the AT clause

by order of iteration of the row/column specifications rather than by their
order of display on the mapped screen. For example, with a l iteral field
that occurs four times, the specification VALUE IS ((2) 'ABC' (1) 'DEF' (1)
'GHI') assigns the value ABC to the first and second field occurrences, DEF

to the third field occurrence, and GHI to the fourth field occurrence.

– Data-value specifies the value assigned to each occurrence or group of
l iteral field occurrences. The supplied value must be enclosed in quotation
marks.

A maximum of 256 characters can be specified for a l iteral field in data-value

CURSOR/NOCURSOR

Specifies the mapout location of the cursor at runtime:

■ CURSOR specifies that the cursor is located at the start of the indicated field

when the map is mapped out.

■ NOCURSOR (default) specifies that the cursor is not located at the start of the
indicated field when the map is mapped out.

If CURSOR is specified in more than one MFLD statement for a given map, the

runtime cursor is positioned at the field for which CURSOR was last specified at
compile time. If CURSOR is not specified for any field on the map, the default
runtime cursor location is the first UNPROTECTED field on the screen, or at
coordinate 1,1 if there are no UNPROTECTED fields.

Statements for Automatic Panel Definition

Chapter 12: Batch Compiler Statements 227

LITERAL

Specifies that the field is a l iteral field. A l iteral field is given a string value in the

VALUE IS clause. If LITERAL, MESSAGE LENGTH, PAGE LENGTH, RESPONSE LENGTH,
or DFLD is not specified in the MFLD statement, LITERAL is the default.

MESSAGE LENGTH length

Specifies that the field is a message field. If included, length must be an integer
greater than or equal to 1 and less than or equal to the total number of character
positions on the smallest screen for which the map is intended. The default for
length-n is 80.

PAGE LENGTH 4

Specifies that the field is a page field.

RESPONSE LENGTH length

CA ADS only. Specifies that the field is a response field. If included, length must be
an integer in the range 1 through 32. The default is 8.

DFLD data-field-name (subscript) OF record-name/role-name

Specifies that the field is a data field and associates the field with the record
element named by data-field-name:

■ Data-field-name specifies an element that is already defined to the data
dictionary by means of the CA IDMS/DB schema compiler or the IDD DDDL

compiler.

■ Subscript-n specifies the subscript of the record element if the element is
multiply-occurring.

■ OF record-name/role-name names the record or role to which the associated
element belongs:

– Record-name VERSION version-n specifies the name of a schema or work
record that is already defined in the data dictionary and is specified in the

USING RECORDS clause for the map. A record name for an element must
be specified when the same data-field-name occurs in more than one
record used by the map.

 VERSION version-n must be used to specify the version number of the
record if record-name is not unique in the map.

– Role-name specifies the role name of a record. The role name can be
previously defined for a record in the subschema used in the program or

dialog, or the role name can be a unique name that is established at map
definition in the ROLENAME clause of the MAP statement.

Statements for Automatic Panel Definition

228 Mapping Facility Guide

The length of a data field is not specified in the DFLD clause; the length is
determined in one of the following ways:

■ The EXTERNAL PICTURE clause of the MFLD statement (described as follows)
can determine the length of a data field, as follows:

– If EXTERNAL PICTURE explicitly specifies an external picture for the field,

that external picture determines the length of the field.

– If EXTERNAL PICTURE specifies INTERNAL, an external picture is
constructed from the internal picture specified for the element named by
data-field-name, and that external picture determines the length of the

field.

■ The external picture associated with the record element (if any) determines the
length of the field if the MFLD statement does not specify an external picture.

■ The external picture derived from the internal picture specified for the field (if

automatic editing is enabled for the map and field) determines the length of
the field if the record element definition does not specify an external picture.

A data field can contain as many character positions as are available on the

smallest screen for which the map is intended, minus one character position
for the attribute byte for the field.

Remaining MFLD clauses supply automatic editing and error-handling information
for the field being defined. For more information about the features enabled by the
clauses l isted, see the chapter "Automatic Editing and Error Handling." The

following MFLD clauses apply only when DFLD is specified for the field:

Note: For more information about the features enabled by the clauses l isted, see
the chapter "Automatic Editing and Error Handling."

HELP

Specifies whether help will be implemented for the field.

SOUrce NONE/MODule module-name

The name of the IDD module that contains the help text for the field.

If module name is specified, you can optionally specify:

■ The version number

■ Whether the help is displayed on a full or half screen

REQUIRED/OPTIONAL

Indicates whether operator input is required in the field:

■ REQUIRED specifies that input is required. An input error occurs if the terminal
operator does not enter data for the field.

■ OPTIONAL (default) specifies that input is optional.

Statements for Automatic Panel Definition

Chapter 12: Batch Compiler Statements 229

REVERSE NUMERIC IS YES/NO

Specifies whether the contents of a numeric field are reversed on mapin and again

on mapout:

■ YES specifies that data for the field is reversed on mapin, and again on mapout.
REVERSE NUMERIC is used for numeric fields when hardwa re modifications

cause input to be entered from right to left. YES is the default for new fields
when REVERSE NUMERIC is specified in the SIGNON statement for the batch
run.

■ NO specifies that data for the field is not reversed on mapin or on mapout. The

NO specification is overridden when the developer specifies REVERSE NUMERIC
in the SIGNON statement for the batch run.

UNDERSCORE when blank NO/YES

Indicates if the field should be underscored if it is blank. On mapin, trail ing

underscores are removed.

EXTERNAL PICTURE IS/NOEDIT

Indicates whether the field is processed by automatic editing and error -handling,
and establishes an external picture for use in editing. The following options are

available:

■ NOEDIT (default) disables automatic editing and error-handling for the field.

■ EXTERNAL PICTURE IS enables automatic editing for the field and specifies the
external picture for the field during automatic editing, the action to be taken by

automatic editing should the terminal operator erase the field, and/or the
display format for NUMERIC fields that contain only zeros, as follows:

– Picture/INTERNAL specifies the external picture for the field.

Note: For information about external pictures, see External Pictures.

Statements for Automatic Panel Definition

230 Mapping Facility Guide

 Picture specifies an actual external picture, such as XX/XX/XX or

XXX-XX-XXXX.

– INTERNAL (default) requests that the map use the external picture defined
for the associated record element (or the picture constructed for the field).

– ZEROED/RETAINED WHEN NULL specifies the action taken when

automatic editing is enabled for a numeric field and the terminal operator
erases the contents of the field (for example, by pressing the ERASE EOF
key).

 ZEROED (default) requests the field be fi l led with zeros of the appropriate

data type when automatic editing is enabled for the given map and field
and the operator erases the contents of the field.

 RETAINED indicates that the data contained in the buffer should be

retained when the operator erases the contents of the field.

– DISPLAY/BLANK WHEN ZERO indicates the action taken when automatic
editing is enabled for a numeric field that contains only zeros.

 DISPLAY (default) requests that the zeros be displayed.

 BLANK requests that blanks be displayed instead of zeros.

Note: For a group data field, the only valid external picture is an alphanumeric one.

Note also that edit and code tables are not supported for group data fields.

EDIT TABLE IS table-name/NULL

Specifies the edit table used for the field if automatic editing is enabled for the field
and map:

■ Table-name specifies the name of an existing stand-alone table used as the edit

table for the field.

Note: For more information about the use of edit tables, see "Edit and Code
Tables".

If editing is enabled elsewhere for the field and no edit table is named by using
the EDIT TABLE IS clause, the default edit table is the built-in table (if any)
defined in the associated record element. If no edit table is named by the EDIT
TABLE IS clause or defined in the element definition, no edit table is used. The

following clauses can be included in an EDIT TABLE IS specification when the
edit table is named:

– VERSION version-n specifies the version of the edit table used. The default

is 1.

– LINK/NOLINK specifies whether the edit table is l inked as part of the map
load module or is loaded dynamically at runtime:

 LINK (default) indicates that the named edit table is to be linked as part of

the map load module. The LINK specification is particularly useful for tables
that contain items that cannot be used readily by another record element.

Statements for Automatic Panel Definition

Chapter 12: Batch Compiler Statements 231

 NOLINK indicates that the table is loaded dynamically at runtime. NOLINK

is useful when the contents of a table change frequently.

– USAGE IS VALIDATE/INVALIDATE/
DEFAULT indicates whether the edit table is a table of valid values or
invalid values:

 VALIDATE specifies that the table contains valid values. An error occurs
when the terminal operator enters a value that does not appear in the
table.

 INVALIDATE specifies that the table contains invalid values. An error
occurs when the terminal operator enters a value that appears in the
table.

 DEFAULT (default) specifies that the VALID or INVALID specification given
in the table definition should be used for the table.

■ NULL (default) specifies that no stand-alone edit table is used for the field at
runtime. NULL does not suppress use of the built-in edit table for the field.

CODE TABLE IS table-name/NULL

Specifies the code table used for the field if automatic editing is enabled for the
field and map:

■ Table-name specifies the name of an existing stand-alone code table used for

the field if automatic editing is enabled for the field.

Note: For more information about the use of code tables, see "Edit and Code
Tables".

If editing is enabled elsewhere for the field, and no code table is named by

using the CODE TABLE IS clause, the default code table is the built-in code table
(if any) defined in the associated record element. If no code table is named by
the CODE TABLE IS clause or defined in the element definition, no edit table is
used. The following clauses can be included in a CODE TABLE IS specification

when a code table is named:

– VERSION version-n specifies the version of the code table used. The
default is one.

– LINK/NOLINK specifies whether the code table is l inked as part of the map
load module or is loaded dynamically at run time:

 LINK (default) indicates that the named code table is to be linked as part of

the map load module. LINK is useful for tables that contain items that
cannot be used readily by another record element.

 NOLINK indicates that the table is loaded dynamically at runtime. NOLINK
is useful when the contents of a table change frequently.

■ NULL (default) specifies that no stand-alone code table is used for the field at
runtime. NULL does not suppress use of the built-in code table for the field.

Statements for Automatic Panel Definition

232 Mapping Facility Guide

ERROR MESSAGE message/message-id/NULL

Defines the error message returned on mapout if the field is in error. The message

is displayed in the message field defined for the map. If the map has no message
field, the message is not displayed and processing continues normally (with CA ADS,
the message is displayed on the CA ADS default message screen). The developer can

specify any one of the following options:

■ Message specifies the text of the message displayed if the field is in error.
Message must be enclosed in quotation marks.

■ Message-id specifies the 6-digit message identifier of the data dictionary

message displayed if the field is in error. The map compiler adds the prefix DC
to this 6-digit identifier to construct the actual identifier of the data dictionary
message.

■ NULL (default) specifies that the default error message is used if the field

contains incorrect input. The default message has the following format:

ERROR AT row,column

MSG PREFIX IS message-prefix

Defines the two-character prefix to be used to locate the message in the dictionary
of the message defined in the previous ERROR MESSAGE parameter when the field

is found to be in error at runtime. The value defaults to the value specified in the
MSG PREFIX parameter in the MAP statement.

FOR INPUT

Specifies functions performed for data on a mapin operation:

JUSTIFY LEFT/RIGHT

Specifies how operator input is to be aligned for transmission to program variable
storage:

■ LEFT (default) specifies that input is left-justified.

■ RIGHT specifies that input is right-justified.

PAD NO/WITH literal

Specifies a pad character for an alphanumeric field in character or hexadecimal
format:

■ NO (default) specifies that data is not padded.

■ WITH literal specifies the pad character for a field in character or hexadecimal

format. Character l iterals are specified as C'c', where c denotes a character
l iteral. Pad characters in hexadecimal format are specified as X'nn', where nn
denotes a two-digit hexadecimal value. Hexadecimal format is recommended

when specifying the blank character as the pad character for a field.

Statements for Automatic Panel Definition

Chapter 12: Batch Compiler Statements 233

Pad characters are used to avoid unwanted data being stored for a field on mapin.
For example, a data field containing the name JOHNSON is mapped out. The

operator presses the ERASE EOF key to erase the field, types in SMITH, and presses
Enter. The value mapped to variable storage depends on whether a pad character is
defined for the field:

■ If no pad character is defined for the field, SMITHON is stored for the field. The
operator would have to key blanks over ON to eliminate these characters from
the data.

■ If a blank pad character is defined for the field, SMITH is stored for the field.

DATA YES/NO

Indicates whether the transmitted contents (if any) of the field are to be moved
automatically into program variable storage on a mapin operation:

■ YES (default) specifies that the contents of the field are automatically moved
into program variable storage if transmitted from the terminal. Data is

transmitted from the terminal when the MDT is set on for the field before a
mapin operation.

■ NO specifies that data contained in the field is not moved automatically into

program variable storage, even if the MDT is set on.

UPPERcase YES/NO

Indicates if field should be displayed in uppercase.

EDIT IS edit-module-name WITH AUTOEDIT

Optionally specifies the name of an existing user-written edit module to process

input after transmission on a mapin operation. The relationship between the user
edit module and automatic editing is determined by the WITH AUTOEDIT clause as
follows:

■ NO (default) specifies that automatic editing is not performed for the field; only

the user-written edit module is used.

■ BEFORE specifies that automatic editing is performed immediately before the
user edit module edits the input.

■ AFTER specifies that automatic editing is performed immediately after the user
edit module edits the input.

User edit modules are discussed in "Automatic Editing and Error Handling".

FOR OUTPUT

Specifies functions to be performed for data prior to a mapout operation:

Statements for Automatic Panel Definition

234 Mapping Facility Guide

BACKSCAN YES/NO

Indicates whether trail ing blanks are to be eliminated from the field prior to display:

■ YES specifies that the contents of the field are displayed without trail ing blanks
(if any). Old data may remain in the field after operator alterations if NEWPAGE
is set to NO in either the CA ADS sysgen statement or the DML statement that

issues the mapout.

■ NO (default) specifies that the contents of the field are displayed with trail ing
blanks (if any).

DATA YES/NO/ERASE/ATTRIBUTE

Indicates whether data in program variable storage is to be transmitted to the

screen on a mapout operation:

■ YES (default) specifies that data is transmitted.

■ NO specifies that neither data nor the attribute byte are transmitted. Any data
previously in the field continues to display.

■ ERASE specifies that data is not transmitted; the field on the screen is initialized
to null or low values, depending on whether the field is numeric or
alphanumeric.

■ ATTRIBUTE specifies that only the attribute byte for the field is transmitted;
data in the record buffer is not sent to the terminal.

EDIT IS edit-module-name WITH AUTOEDIT

Optionally specifies the name of an existing user-written edit module to process
data before display on a mapout operation. The relationship between the user edit

module and automatic editing is determined by the WITH AUTOEDIT clause as
described as follows:

■ NO (default) specifies that automatic editing is not performed; only the
user-written edit module is used.

■ BEFORE specifies that automatic editing is performed immediately before the
user edit module edits the field.

■ AFTER specifies that automatic editing is performed immediately after the user

edit module edits the field.

User-written edit modules are discussed in the chapter "Automatic Editing and
Error Handling."

Statements for Automatic Panel Definition

Chapter 12: Batch Compiler Statements 235

Examples

The following examples i l lustrate use of the MFLD statement.

Example 1

Adding a Map Field Occurrence to a Map Occurrence

The sample MAP AUTOPANEL and MFLD statements add two fields to the MEALS map
as shown:

 ADD MAP MEALS VERSION IS 10
 AUTOPANEL DEVICES=(24X80)
 USING RECORDS MEALS-REC VERSION 1
 NOEDIT.

 ADD MFLD
 AT (7,7)
 ATTRIBUTES (PROTECTED BRIGHT)
 VALUE IS 'FIRST CLASS'.

 ADD MFLD
 AT (10,7)
 ATTRIBUTES (PROTECTED BRIGHT)
 VALUE IS 'TOURIST CLASS'.

Example 2

Deleting a Map Field Occurrence from a Map Occurrence

The MAP AUTOPANEL and MFLD statements eliminate the TOURIST CLASS field from the
MEALS map as shown:

 MOD MAP MEALS VERSION IS 10
 AUTOPANEL DEVICES=(24X80)
 USING RECORDS MEALS-REC VERSION 1
 EDIT
 ON ERROR
 INCORRECT ATTRIBUTES (BRIGHT)
 CORRECT ATTRIBUTES (DISPLAY).

 ADD MFLD
 AT (7,7)
 ATTRIBUTES (PROTECTED BRIGHT)
 VALUE IS 'FIRST CLASS'.

The FIRST CLASS map and panel fields are retained for the MEALS map.

Statements for Manual Panel Definition

236 Mapping Facility Guide

Statements for Manual Panel Definition

The developer explicitly defines panel, panel field, map, and map field occur rences
when using compiler statements that manually define panels. The compiler action verbs
ADD, MODIFY, and DELETE define the overall purpose of the mapping statements.

Note: For information about the ADD, MODIFY, and DELETE verbs, see "Compiler

Action Verbs".

Statements You can use

■ The PANEL statement defines and generates a panel occurrence.

■ The PFLD statement defines and generates a panel field occurrence.

■ The MAP statement defines and generates a map occurrence that is associated with

a specific panel occurrence.

■ The MFLD statement defines and generates a map field occurrence. The map field
occurrence is associated with a specific panel field occurrence from the panel

occurrence named by the owner MAP statement.

Conditions

A PANEL statement must be followed immediately by the PFLD statements that define
its related fields. A panel occurrence defined by PANEL and PFLD statements must exist
in the data dictionary before MAP and MFLD statements can be used to genera te a map

occurrence based on the panel record. A MAP statement must be followed immediately
by the MFLD statements that define its related fields.

The PANEL, PFLD, MAP, and MFLD statements and their clauses are presented
separately as follows:

PANEL Statement Syntax

The PANEL statement typically is used to perform the following functions:

■ Create or maintain a panel occurrence in the data dictionary

■ Identify the panel occurrence with a unique combination of name and version

number

■ Specify the particular devices suitable for use with the panel

PFLD statements that immediately follow a PANEL statement establish fields for that

panel; a panel generally has several panel fields.

Statements for Manual Panel Definition

Chapter 12: Batch Compiler Statements 237

►►──┬───────────┬── PANel panel-name ─┬─────────────────────────────────────┬─►
 ├── ADD ────┤ └─ VERsion ─┬──────┬─ version number ─┘
 ├── MODify ─┤ ├─ IS ─┤
 └── DELete ─┘ └─ = ──┘

 ►── DEVices = ─┬─ (device-code) ────────────────┬──────────── . ───────────►◄
 ├─ (24x80, 32x80, 43x80, 27x132) ◄─┤
 └─ ALL ────────────────────────────┘

Parameters

ADD/MODIFY/DELETE

Specifies the action taken with regard to the PANEL specification. For information
about these verbs, see "Compiler Action Verbs." ADD, MODIFY, and DELETE access
for a panel is subject to security restrictions specified for the batch compiler and
individual maps, as outlined in "Compiler Security".

PANEL panel-name

Supplies a 1- through 32-character name for the panel. The following considerations
apply to the composition.

alphanumeric or special characters. character; for example, pound sign (#), at
sign (@), or dollar sign ($). or blank characters.

VERSION IS version

Optionally specifies a version number to further identify the map. Version must be
in the range 1 through 9999. If omitted, version defaults to the data dictionary

default as defined by the Data Dictionary Definition Language (DDDL) SET OPTIONS
statement.

DEVICES=(device-code)/(24X80,32X80,43X80,27X132)/ALL

Specifies the devices with which the map can be used:

■ (Device-code-a) specifies a device (screen size) with which the map can be
used.

Valid screen sizes are 12X40, 12X80, 24X80, 32X80, 43X80, and 27X132.

Commas must be used to separate device-code-a specifications when more
than one device is specified. Device specifications in the DEVICES clause must
be enclosed in parentheses; for example, DEVICES=(12X40,24X80,43X80).

■ (24X80,32X80,43X80,27X132) is the default specification given to the map.

■ ALL specifies that the map can be used with all valid screen sizes.

Statements for Manual Panel Definition

238 Mapping Facility Guide

Using a Field on a Subset of Devices

To reserve a map field for use on only a subset of the devices specified in the DEVICES

clause, FOR clauses can be included in a PFLD statement for the field. FOR clauses are
also used to specify values or attributes to be used when a field is displayed on specific
devices.

Effect of the MODIFY Verb

The MODIFY verb does not update the DEVICES specification.

Note: For more information, see "Compiler Action Verbs".

Examples

The following are the examples of the PANEL statement:

Example 1

Adding a Panel Occurrence

The sample PANEL statement adds the MEALS-PANEL panel occurrence to the data

dictionary as shown:

 ADD PANEL MEALS-PANEL VERSION IS 2
 DEVICES=(24X80).

The sample MEALS-PANEL panel defined by this sample PANEL statement is defined for
24X80 screens.

Example 2

Modifying a Panel Occurrence

The sample PANEL statement modifies the MEALS-PANEL panel in the data dictionary as
shown:

 MOD PANEL MEALS-PANEL VERSION IS 2
 DEVICES=(24X80,43X80).

Existing panel fields (if any) defined for the MEALS-PANEL panel are retained by the
panel.

Statements for Manual Panel Definition

Chapter 12: Batch Compiler Statements 239

Example 3

Deleting a Panel Occurrence

The sample PANEL statement deletes the MEALS-PANEL panel and all associated panel
fields (if any) from the data dictionary as shown:

 DEL PANEL MEALS-PANEL VERSION IS 2.

PFLD Statement Syntax

Functions Performed

A PFLD statement typically is used to perform the following functions:

■ Create and maintain a single panel field occurrence for the panel established in the

most recent PANEL statement.

■ Identify the panel field occurrence in the data dictionary with a name that is unique
within the owner panel occurrence.

■ Specify characteristics for the field, such as the following:

– Field occurrences for multiply-occurring fields

– Screen locations of the panel field by row and column

– Physical attributes of the field, such as display color

– Field values for l iteral fields

– Delimit characteristics

►►──┬──────────┬─ PFld panel-field-name ──────────────────────────────────────►
 ├─ ADD ────┤
 ├─ MODify ─┤
 └─ DELete ─┘

 ►──┬───────────────────────────────────────┬─────────────────────────────────►
 └─ OCCURS ─┬─ 1 ◄ ────────────────────┬─┘
 └─ occurrence-count times ─┘

 ┌────────────────────────────── , ───────────────────────────────────────┐
 ►─▼─┬──┴─►
 ├─ FOR ALL ◄ ───────────────────────┬──────────────────────────────────────
 │ ┌─────── , ────────┐ │
 └─ FOR (─┴─ device-code) ──┴──) ─┘

Statements for Manual Panel Definition

240 Mapping Facility Guide

 ►───┐►◄
 ───┬─┬──┬──────────────┤
 │ └─ AT ─┬─ ANYwhere ──────────────────────────────────┬─┘ │
 │ │ ┌───────────────── , ────────────────────┐ │ │
 │ └─▼─ (row-number ─┬─ 1 ◄────────────┬─) ─┴──┘ │
 │ └─ column-number ─┘ │
 ├─┬──┬──────────────┤
 │ └─ ATTRibutes = ─┬─ NONE ───────────────┬──────────────┘ │
 │ └─ (attributes list) ──┘ │
 ├─┬──┬──────────────┤
 │ ├─ DELIMit ─┬──────┬──┬─ SKIP ◄ ─┬─────────────────────┤ │
 │ │ ├─ IS ─┤ └─ NOSKIP ─┘ │ │
 │ │ └─ = ──┘ │ │
 │ └─ NODELIMit ──┘ │
 ├─┬──┬──────────────┤
 │ └─ PAGing type ─┬──────┬─┬─ DETail ONLY ──┬────────────┘ │
 │ ├─ IS ─┤ ├─ DETail STart ─┤ │
 │ └─ = ──┘ ├─ DETail END ───┤ │
 │ ├─ FOOTer STart ─┤ │
 │ └─ NULL ◄ ───────┘ │
 ├─┬──┬┤
 │ └─ VALue ─┬──────┬┬─ 'data-value'───────────────────────────────────┬┘│
 │ ├─ is ─┤│ ┌──┐│ │
 │ └─ = ──┘└─▼─ (─┬──────────────────────┬─ 'data-value') ─┴┘ │
 │ └─ (occurrence-count) ─┘ │
 └───┘

Parameters

ADD/MODIFY/DELETE

Specifies the action taken with regard to the MFLD statement.

PFLD

Introduces the clauses that define a panel field and associated panel field
occurrence.

OCCURS 1/occurrence-count TIMES

Specifies the number of times the field is to appear on the panel; the default is 1.

FOR ALL /(device-code-a)

Associates the specified screen sizes with field specifications established by

subsequent AT, ATTRIBUTES, DELIMIT, and VALUE clauses. If the panel is used with
more than one screen size, multiple FOR specifications can be included in the PFLD
statement to establish different information for each screen size; for a more
detailed description of this latter use of the FOR specification, see "Defining

Versions of Maps for Different Devices".

Statements for Manual Panel Definition

Chapter 12: Batch Compiler Statements 241

A field is associated with specific devices as follows:

■ ALL specifies that subsequent clauses of the PFLD statement apply to all screen

sizes specified in the related DEVICES clause.

■ (Device-code-a) specifies one or more devices. Subsequent clauses of the PFLD
statement apply only to the designated screen sizes. More than one

device-code-a specification can be included in a FOR clause. The number of
valid device-code-a specifications depends on the number of screen types
declared in the related DEVICES specification.

Valid screen sizes are 12X40, 12X80, 24X80, 32X80, 43X80, and 27X132. Device

specifications must be enclosed in parentheses and separated by commas; for
example, FOR (12X40,12X80).

AT ANYWHERE/ (row,1/column)

Specifies the screen coordinate of the attribute byte for a field by row and column.
The coordinate establishes the location of a runtime field on a given screen. An

attribute byte is a nondisplayable character that precedes the displayed field and
defines the field's attributes.

The field itself is displayed starting at the coordinate that immediately follows the

nondisplayable attribute byte. For example, a field displays starting in coordinate
(5,11) for an AT (5,10) specifi cation.

The following considerations apply to the placement of attribute bytes and fields:

■ Specifying the coordinates for the final column of a row places the first

displayable character for a field in the first column of the next row.

■ Specifying the coordinates for the final column of the final row on a screen
places the first displayable character for a field in the first column of the first
row (1,1).

■ Specifying coordinates that cause a field to exceed the remaining length on a
given row results in a field that is split at the end of the screen and wrapped
around to either the next row or the top of the screen, depending on the row

in which the coordinates were placed.

Screen coordinates are designated as follows:

■ ANYWHERE specifies that the field can appear anywhere on the screen.
ANYWHERE is meaningful only with mapin operations for which the requesting
program reads extraneous data. Extraneous data is data that is not associated

with a field at a specific row/column location.

■ (Row-n,column-n) specifies the row and column coordinates for the attribute
byte for the field:

– Row-n identifies a horizontal position on the screen.

– Column-n identifies a vertical position on the screen; the default column is
1.

Statements for Manual Panel Definition

242 Mapping Facility Guide

The following considerations apply when positioning multiply-occurring fields:

■ Each occurrence of the field requires its own row-n,column-n specification;

multiple row-n,column-n specifications can be made in one AT clause, if
necessary.

■ If there are more row-n,column-n specifications than multiply-occurring fields

specified in the OCCURS clause, the compiler input statement l isting returns an
error message.

■ AT specifications can occur in any order; they are assigned to corresponding
OCCURS values in order of iteration.

ATTRIBUTES=NONE/(attributes-list)

Specifies the attributes for the field. Only one ATTRIBUTES clause can occur in a
given MFLD statement. ATTRIBUTES specifications apply to all occurrences of the
field. Val id specifications are as follows:

■ NONE removes all attribute specifications from the map and panel field

occurrences being defined by the MFLD statement. The following runtime
considerations apply when NONE is specified for a field:

– The field is displayed with the attributes defined for the preceding field if

the preceding field is not delimited.

– The field is displayed with the default display attributes provided by the
device if the preceding field is delimited or if there is no preceding field.

– The field is displayed beginning in the column position specified in the AT

clause, since there is no attribute character for the field.

■ (Attributes-list) specifies a l ist of attributes that apply to the field.

Note: For more information about available attributes, see "Attributes List (see
page 201)".

Statements for Manual Panel Definition

Chapter 12: Batch Compiler Statements 243

DELIMIT/NODELIMIT

Specifies whether a delimit character is placed after the final position of a data

field:

■ DELIMIT IS SKIP/NOSKIP specifies that an internal delimit character is placed
after the final position of the field, as determined by the external picture of the

associated record element. The action of the cursor when it reaches the delimit
character and the disposition of excess characters are determined by one of
the following specifications:

– SKIP (default) specifies that the cursor is advanced automatically to the

start of the next UNPROTECTED field when operator input reaches the
delimit character. If there are no more UNPROTECTED fields on the map,
the cursor is placed at the start of the current field. Characters typed after
the internal delimit character is reached are placed in the field to which

the cursor advances. SKIP is the default if DELIMIT is specified.

– NOSKIP specifies that the cursor remains at the delimit character when
operator input reaches the end of the field. Subsequently typed input locks

the keyboard until the operator presses the RESET key. The TAB key
advances the cursor to the next UNPROTECTED fiel d.

■ NODELIMIT specifies that no internal delimit character is assigned to the field.
The operator is not informed when input reaches the end of the field, and can
continue typing until the attribute byte of the next field is reached. On mapin,

the external picture of the record element associated with the field determines
the amount of operator input that is stored. Input that exceeds the length of
the external picture is ignored; a CA ADS dialog or application program can
include commands to inquire whether extraneous data has been input for a

NODELIMIT field.

PAGING TYPE IS DETAIL ONLY/START/DETAIL END/FOOTER START/NULL

(pageable maps only) Specifies whether the field begins and/or ends the detail
occurrence or an area on the pageable map:

■ DETAIL ONLY performs the following functions:

– Begins the detail area on the line that contains the attribute byte of the
field being defined.

– Begins the detail occurrence on the line that contains the attribute byte of

the field being defined.

– Ends the header area (if any) on the line immediately above the line that
contains the attribute byte for the field assigned the DETAIL ONLY
specification.

– Ends the detail occurrence for the map at the final character of the field
assigned the DETAIL ONLY specification.

The field assigned the DETAIL ONLY specification must begin on a new line (that

is, it cannot begin on a l ine that contains characters for a field in the header
area).

Statements for Manual Panel Definition

244 Mapping Facility Guide

■ DETAIL START performs the following functions:

– Begins the detail area on the line that contains the attribute byte of the

field being defined.

– Begins the detail occurrence on the line that contains the attribute byte of
the field being defined.

– Ends the header area (if any) on the line immediately above the line that
contains the attribute byte for the field assigned the DETAIL START
specification.

The field assigned the DETAIL START specification must begin on a new line

(that is, it cannot begin on a l ine that contains characters for a field in the
header area).

■ DETAIL END specifies that the detail occurrence for the map is to end at the
final character position of the current field. The detail area for the map is not
terminated by DETAIL END; FOOTER START (below) can be used to terminate

the detail area.

■ FOOTER START performs the following functions:

– Begins the footer area on the line that contains the attribute for the field.

The footer area ends at the end of the screen.

– Ends the detail area on the line immediately above the line that contains
the attribute byte of the field assigned the FOOTER START specification.

The field assigned the FOOTER START specification must begin on a new line

(that is, it cannot begin on a l ine that contains characters for a field in the
DETAIL END field). If assigned, the FOOTER START specification must be made
for a field below the field assigned the DETAIL END specification.

■ NULL (default) specifies that the field does not begin or end a detail or an area
on the map. The NULL setting can be used to override a previous DETAIL START,

DETAIL END, or FOOTER START specification for a field.

Note: For more information about the areas of pageable maps, see "Pageable
Maps".

Statements for Manual Panel Definition

Chapter 12: Batch Compiler Statements 245

VALUE IS data-value/((occurrence-count) data-value)

Supplies string values to l iteral fields:

■ Data-value assigns a value to a singly-occurring l iteral field. The specified value
must be enclosed in quotation marks.

■ ((Occurrence-count) data-value) assigns a value to a l iteral field or assigns

discrete values to multiple occurrences of a l iteral field:

– (Occurrence-count) identifies one or more field occurrences by order of
iteration. Values are assigned to the literal fields specified in the AT cla use
by order of iteration of the row/column specifications rather than by their

order of display on the mapped screen. For example, with a l iteral field
that occurs four times, the specification VALUE IS ((2) 'ABC' (1) 'DEF' (1)
'GHI') assigns the value ABC to the first and second field occurrences, DEF
to the third field occurrence, and GHI to the fourth field occurrence.

– Data-value specifies the value assigned to each occurrence or group of
l iteral field occurrences. The supplied value must be enclosed in quotation
marks.

A maximum of 256 characters can be specified for a l iteral field in data-value.

Examples

The following examples i l lustrate use of the PFLD statement.

Example 1

Adding a Panel Field Occurrence to a Panel Occurrence

The sample PANEL and PFLD statements add the literal FIRST-CLASS panel field to the
MEALS-PANEL panel as shown:

 ADD PANEL MEALS-PANEL VERSION IS 2
 DEVICES=(24X80).

 ADD PFLD FIRST-CLASS
 AT (7,7)
 ATTRIBUTES (PROTECTED BRIGHT)
 VALUE IS 'FIRST CLASS'.

Statements for Manual Panel Definition

246 Mapping Facility Guide

Example 2

Modifying a Panel Occurrence

The sample PANEL and PFLD statements add the MEALS-HEAD2 panel field to the
MEALS-PANEL panel as shown:

 MOD PANEL MEALS-PANEL VERSION IS 2.

 ADD PFLD MEALS-HEAD2
 AT (3,25)
 ATTRIBUTES (PROTECTED BRIGHT)
 VALUE IS 'MEALS SELECTION SCREEN'.

Panel fields (if any) that are already defined for MEALS-PANEL are retained by the panel
occurrence.

MAP Statement Syntax

Functions Performed

A MAP statement typically is used to perform the following functions:

■ Create or maintain a map occurrence in the data dictionary

■ Identify the map occurrence with a unique combination of name and version

number

■ Identify the existing panel occurrence on whi ch the map is based

■ Identify the records or roles referenced by map data fields

■ Enable global automatic editing and error-handling, specifying correct-field and

incorrect-field attributes

■ Specify various terminal hardware control functions (such as alarm or numeric
options) to be invoked during mapout operations

The actual map is constructed with MFLD statements, presented later in this section, by
selecting fields from the panel occurrence named in the MAP statement and by
associating the variable panel fi elds with record elements defined in the data dictionary.

Statements for Manual Panel Definition

Chapter 12: Batch Compiler Statements 247

►►──┬──────────┬─ MAP map-name ──┬───────────────────────────────┬────────────►
 ├─ ADD ────┤ └─ VERsion ─┬──────┬─ version ──┘
 ├─ MODIFY ─┤ ├─ IS ─┤
 └─ DELETE ─┘ └─ = ─┘

 ►──┬──┬────────────────────────────────►
 └─ DATETIME ─┬──────┬─ date-time-stamp ──┘
 ├─ IS ─┤
 └─ = ─┘

 ►──┬───┬───────────────────────────►
 └─ MSG PREFIX ─┬──────┬───┬──── DC ◄ ─────────┤
 ├─ IS ─┤ └─ message-prefix ──┘
 └─ = ─┘

 ►──┬───┬───────►
 └─ PANel ─┬──────┬─ panel-name ─┬───────────────────────────────┬─┘
 ├─ IS ─┤ └─ VERsion ─┬──────┬─ version ──┘
 └─ = ─┘ ├─ IS ─┤
 └─ = ─┘

 ►──┬────────────────────────────────┬─────┬─ RESident ──────┬────────────────►
 └─ SYStem ─┬──────┬─ dc-version ─┘ └─ NONRESident ◄ ─┘
 ├─ IS ─┤
 └─ = ─┘

 ►──┬───►
 └─ USING ─┬──────────────┬──
 └┬─ RECORDS ─┬─┘
 └─ REC ─────┘

 ►───┬──►
 ┌──┐ │
 ────── (─▼─ record-name ─┬───────────┬─┬──────────────────────┬─┴──) ──┘
 └─ version ─┘ └─ ROLEname role-name ─┘

 ►──┬── EDIT ◄ ─┬──┬────────────────────────────┬─────────────────────────────►
 └─ NOEDIT ──┘ └─ CURSOR at panel-field-name ─┘

 ►──┬─────────────────────────────┬───┬───────────────────────────────┬───────►
 ├─ RESET ◄ ─┬─┬──────────────┬┘ ├─ LOCK ────┬─┬───────────────┬─┘
 └─ NORESET ─┘ └┬─ MODIFIED ─┬┘ └─ UNLOCK ◄─┘ └┬─ KEYBOARD ─┬─┘
 └─ MOD ──────┘ └─ KEY ──────┘

 ►──┬─ ALARM ────┬──┬─ STARTPRT ─┬──┬─ NLCR ◄ ┬──┬─ PAGeable ─────┬───────────►
 └─ NOALARM ◄ ┘ └─ NOPRT ◄ ──┘ ├─ 40CR │ └─ NONPAGeable ◄ ┘
 ├─ 64CR │
 └─ 80CR ──┘

 ►──┬──┬──────────────────────────────►
 └─ DECimal point ─┬──────┬───┬─ Comma ───┬─┘
 ├─ IS ─┤ └─ Period ◄ ┘
 └─ = ─┘

 ►─┬──►
 └─ HELP ─┬─ NO ──
 └─ LOAD MODule ─┬──────┬─ module-name ────────────────────────────
 ├─ IS ─┤
 └─ = ─┘

─►──►─
 .──
 ─┬──
 └─ SOUrce ─┬─ NONE ──
 └─ MODule module-name ─┬───────────────────────────────┬────────
 └─ version ─┬──────┬─ version ─┘
 ├─ IS ─┤
 └─ = ─┘

Statements for Manual Panel Definition

248 Mapping Facility Guide

─►──────────────────────────┬───►
 ────────────────────────┬─┘
 ──────────────────────┬─┘
 ────────────────────┬─┘
 ─┬─ HALF screen ◄ ┬─┘
 └─ FULL screen ──┘

 ►──►─
 ──
 ─┬─────────────────────────────┬──
 └─ HELPKEY ─┬──────┬── PFnn ──┘
 ├─ IS ─┤
 └─ = ─┘

 ►─┬──►
 └─ ON edit ERROR ──┬───┬─
 └─ INCORRECT fields ATTRibutes = (attributes-list) ─┘

 ►──►
 ─┬───┬──────────────────────
 └─ CORRECT fields ATTRibutes = (attributes-list) ─┘

 ►────────────────────────────┬───►
 ─┬────────────────────────┬─┘
 └─ SOUND ─┬─ ALARM ────┬─┘
 └─ NOALARM ◄ ┘

 ►─┬───┬ . ─►◄
 └─ ORIGIN for ─┬─ ALL ─────────────────────┬─┬──────┬─(row column)─┘
 │ ┌───────────────┐ │ ├─ IS ─┤
 └─ (─▼─ device-code ─┴─) ─┘ └─ = ──┘

Parameters

ADD/MODIFY/DELETE

Specifies the action taken with regard to the MAP statement. ADD, MODIFY, and
DELETE access for a map is subject to security restrictions specified for the batch
compiler and individual maps, as outlined in "Compiler Security".

MAP map-name

Specifies the unique 1- through 8-character name for the map being defined,

modified, or deleted. The following considerations apply to the composition of
map-name:

■ Map-name can consist of any alphanumeric or special characters.

■ Map-name must begin with an alphanumeric or national character; for

example, pound sign (#), at sign (@), or dollar sign ($).

■ Map-name must not contain embedded period or blank characters.

Statements for Manual Panel Definition

Chapter 12: Batch Compiler Statements 249

VERSION IS version-n

Optionally specifies a version number to further identify the map. Version-n must

be in the range 1 through 9999. If omitted, version-n defaults to the data dictionary
version default, as defined by the Data Dictionary Definition Language (DDDL) SET
OPTIONS statement.

DATETIME IS date-time-stamp

The map compiler DATETIME clause is returned in map source statements when
you use the map util ity to decompile a map.

If you use the DATETIME option to decompile a map from one DC system and add it

to another system:

■ Do not change decompiled map source statements. If you change statements,
unpredictable errors will occur at runtime when you access the map.

■ Define identical record element descriptions on each system. You can

accomplish this by using IDD.

MSG PREFIX IS message-prefix

Defines the two-character prefix to be used as the default prefix for any MFLD in
the map that is defined using the ERROR MESSAGE clause.

PANEL panel-name

Specifies the name of the panel with which the map is associated. The panel
occurrence must already be defined in the data dictionary.

VERsion is version

Optionally specifies a version number to further identify the panel occurrence. If
omitted, version defaults to the data dictionary version default as defined by the
Data Dictionary Definition Language (DDDL) SET OPTIONS statement.

SYSTEM IS dc-version-n

Specifies the version number of a CA IDMS system with which the map is

associated. Dc-version-n is the 1- through 4-character identifier assigned to the
system at system generation.

RESIDENT/NONRESIDENT

Indicates whether the map load module is resident in storage at system runtime:

■ RESIDENT specifies that the map load module is resident. This is useful for
frequently used maps.

■ NONRESIDENT (default) specifies that the map load modul e is not resident; the

load module is loaded dynamically when required for a program mapping
request.

Statements for Manual Panel Definition

250 Mapping Facility Guide

USING RECORDS

(record-name/(record-name version-n) ROLENAME role-name)

Specifies the list of predefined schema and/or work records used by the map and
optionally specifies role names for records:

■ Record-name identifies the name of a record that contains elements

referenced by the map. If record-name is not unique in the data dictionary, the
version number of the necessary schema or work record must be supplied; the
default value for version-n is specified at system generation.

If a logical record is being used, the developer names the records containing

elements that are part of the logical record and that are used in the map
definition. The logical record name is later specified by the dialog or program
using the map.

■ ROLENAME role-name specifies the role name used for the record at runtime.
Role names are needed when a given record type is referenced in more than

one context. For example, the developer might specify the EMPLOYEE record
layout twice for a map that uses the EMPLOYEE record for both
employee-related and manager-related fields on a single map:

– One specification of the EMPLOYEE record would not include a role name
for the record.

– The second specification of the EMPLOYEE record would include a valid
role name for the record (for example, MANAGER). The role name must be

used in subsequent references to the record in the map-definition.

The specified role name can be established in two ways:

– The role name can be previously defined for the record by a logical record
definition in the subschema used by the program or dialog.

– The role name can be unique to the map, defined at map definition time
on the Associated Records screen or via the batch compiler.

EDIT/NOEDIT

Indicates whether automatic editing and error-handling are enabled for the map, as

follows:

■ EDIT (default) globally enables automatic editing and error-handling for the
map.

■ NOEDIT globally disables automatic editing and error-handling for the map;

editing and error-handling criteria (if any) defined for map fields are ignored.

Note: For more information about enabling and disabling automatic editing, see
"Enabling Automatic Editing and Error Handling".

Statements for Manual Panel Definition

Chapter 12: Batch Compiler Statements 251

RESET/NORESET MODIFIED

Indicates whether the modified data tags (MDTs) for data fields are reset

automatically on a mapout operation:

■ RESET (default) specifies that all MDTs are reset (turned off) when the map is
mapped out.

■ NORESET specifies that MDTs are left unchanged when the map is mapped out.

The MDT/NOMDT specification in the MFLD ATTRIBUTES clause for a field overrides
the RESET/NORESET specification for that field if the map-level and field-level
specifications differ. If MDT is chosen for a field, the MDT is set on regardless of the

RESET MDT specification.

Note: For more information about the MDT/NOMDT setting, see "Attributes for
Fields".

LOCK/UNLOCK KEYBOARD

Specifies whether the keyboard unlocks automatically after a mapout operation:

■ LOCK specifies that the keyboard remains locked until the operator presses the
RESET key.

■ UNLOCK (default) specifies that the keyboard is unlocked after a mapout.

ALARM/NOALARM

Indicates whether a terminal alarm sounds automatically on a mapout operation:

■ ALARM specifies that the terminal alarm sounds on a mapout operation. This
specification is meaningful only if the terminal is equipped with a hardware

alarm.

■ NOALARM (default) specifies that the terminal alarm does not sound on
mapout.

STARTPRT/NOPRT

Specifies whether the contents of the printer terminal buffer should be printed

automatically upon completion of data transmission on a mapout operation:

■ STARTPRT specifies that the contents of the printer terminal buffer are printed.
This specification is meaningful only for mapping operations associated with

3280-type printers.

■ NOPRT (default) specifies that the contents of the printer terminal buffer are
not printed.

Statements for Manual Panel Definition

252 Mapping Facility Guide

NLCR/40CR/64CR/80CR

Specifies character-per-line formatting for printer output:

■ NLCR (default) specifies that no line formatting is performed on the printed
output. Printing skips to a new line only when new line (NL) and carriage return
(CR) characters are encountered.

■ 40CR specifies that the buffer contents are printed at 40 characters per l ine.

■ 64CR specifies that the buffer contents are printed at 64 characters per l ine.

■ 80CR specifies that the buffer contents are printed at 80 characters per l ine.

These specifications are applicable only if the STARTPRT clause is specified for the

map.

PAGEABLE/NONPAGEABLE

Specifies whether the map is pageable:

■ PAGEABLE specifies that the map is pageable. A pageable map is a map that
can display more than one page of information at runtime.

■ NONPAGEABLE (default) specifies that the map is not a pageable map.

Note: For more information about pageable maps, see "Pageable Maps".

DECIMAL POINT IS COMMA/PERIOD

Specifies the decimal point character for numeric fields on the map:

■ COMMA specifies that the comma (,) is used as the decimal point, in
accordance with international format. An external picture for the field also
must be specified in international format, with the comma as the decimal

point.

■ PERIOD (default) specifies that the period (.) is used as the decimal point.

HELP

Specifies whether help will be implemented for the map.

NO/LOAD MODule module name

If there is Help for the map, the name of the load module that contains all the help
source for the map.

HELPKEY IS PFnn

The PFKey designated as the Help key for the map.

SOUrce NONE/MODule module-name

The name of the IDD module that contains the help text for the map.

If module name is specified, you can optionally specify:

■ The version number

■ Whether the help is displayed on a full or half screen

Statements for Manual Panel Definition

Chapter 12: Batch Compiler Statements 253

ON EDIT ERROR

Defines incorrect-field attributes, correct-field attributes, and alarm status for use

when a dialog or map redisplays a map that contains input errors. The following
clauses assign error-handling criteria:

■ INCORRECT FIELDS ATTRIBUTES=(attributes-list) specifies attributes that are

assigned to incorrect fields when an edit error occurs. Typically, incorrect fields
are given an attribute such as BRIGHT or BLINK to draw the operator's
attention to the erroneous data. No default attributes are defined.

Note: For more information about syntax for the attributes-list, see Attributes

List.

■ CORRECT FIELDS ATTRIBUTES=(attributes-list) specifies attributes that are
assigned to correct and unedited fields when an edit error occurs. No default
attributes are defined.

Syntax for the attributes-list is discussed in Attributes List.

■ SOUND ALARM/NOALARM specifies whether a terminal alarm sounds on input
error:

– ALARM indicates that the alarm is sounded. This option is meaningful only
when a terminal is equipped with a hardware alarm.

– NOALARM (default) indicates that the alarm is not sounded.

For example, a dialog or program can include code to redisplay a map when an
error is detected in a field on mapin. When the display is mapped back out,

incorrect-field attributes take effect for fields that are in error, and correct-field
attributes take effect for fields that are not in error. The terminal operator can
correct the errors and resubmit the map.

Notes:

■ For more information about the use of error-handling specifications, see
"Error-handling Criteria."

■ For more information about how dialogs and programs override specifications

made in the ON EDIT ERROR clause, see "Map Inquiry and Modification."

Statements for Manual Panel Definition

254 Mapping Facility Guide

ORIGIN FOR (device-code)/ALL IS (row column)

Positions the origin of the runtime map at a row/column locati on on specified

devices:

■ Device-code names one device. Available device-code specifications are 12X40,
12X80, 24X80, 32X80, 43X80, and 27X132. The specified device must be

defined in the DEVICES clause of the MAP statement. More than one ORIGIN
FOR device-code clause can be included in a single MAP statement.

Parentheses are required when a device code(s) is specified.

■ ALL names all devices defined in the DEVICES clause of the MAP statement.

■ Row column specifies the coordinates at which the upper l eft-hand corner of
the runtime map is plotted for all devices specified in the ORIGIN FOR
specification. Only one row column specification can be made for a given
ORIGIN FOR clause; if specified, it must be enclosed in parentheses. If not

specified, column defaults to 1.

Parentheses are required around the row column coordinates.

Chapter 13: Batch Compiler Execution and JCL 255

Chapter 13: Batch Compiler Execution and
JCL

This chapter discusses about batch compiler execution and JCL.

This section contains the following topics:

Overview (see page 255)
Special Coding Features of the Batch Compiler (see page 255)
Batch Compiler JCL (see page 263)

Compiler Reports and Messages (see page 267)

Overview

The developer submits batch compiler statements in JCL to create and maintain map
and panel entity occurrences in the data dictionary according to instructions provided

by mapping statements. Reports provided by the batch compiler inform the map
developer of the outcome of the compile, and provide diagnostic and error messages
when necessary.

This section describes special coding features provided by the batch compiler, presents

the JCL required to run the programs that add, modify, or delete a map or panel
occurrence and provides information about compiler reports and messages.

Special Coding Features of the Batch Compiler

Clauses provided by the batch compiler can be used to define special versions of maps

for different devices and to position and center batch-defined maps on different
devices.

Each of these special coding features of the batch compiler is presented as follows.

Special Coding Features of the Batch Compiler

256 Mapping Facility Guide

Defining Versions of Maps for Different Devices

Supported Screen Sizes

The following terminal screen (that is, device) sizes are supported by the batch
compiler:

■ 12X40

■ 12X80

■ 24X80

■ 32X80

■ 43X80

■ 27x132

Defining Device-independent Maps

A map load module that can be used with more than one device type is said to be
device-independent. A map developer uses the batch compil er to define a device

independent map by specifying different screen layouts for each device on which the
map can be displayed. For example, it might be necessary to define shorter l iteral fields
for a 12X40 device than for a 43X80 device.

The DEVICES clause of the MAP AUTOPANEL or PANEL statement is used to specify the

list of devices that is valid for the map being defined. The list of devices can be
subdivided into device groupings; a different screen layout can be specified for each
device grouping.

Special Coding Features of the Batch Compiler

Chapter 13: Batch Compiler Execution and JCL 257

Defining Device Groupings

Device groupings are established at the field level by using MFLD (for MAP AUTOPANEL)

or PFLD statements. Use any of the following techniques to establish device groupings:

■ Include multiple FOR specifications within one MFLD or PFLD statement, as
shown:

ADD PANEL JOB-DATA

 DEVICES=(12X40,24X80,32X80).

 ADD PFLD NUM-POSITIONS.

 ATTRIBUTES=(BRIGHT,BLUE)

 FOR (12X40)

 AT (2,40)

 VALUE IS '# POSITIONS'

 FOR (24X80)

 AT (3,80)

 VALUE IS 'NUMBER OF POSITIONS'

 FOR (32X80)

 AT (3,80)

 VALUE IS 'TOTAL NUMBER OF POSITIONS'.

The FOR clauses in the previous example establish the following device groupings:

– The first FOR clause establishes a device grouping valid for 12X40 devices. At

runtime, the literal field displays as follows:

■ The attribute byte for the field is at coordinate 2,40; the literal begins at
the next coordinate (3,1)

■ The literal is # POSITIONS

– The second FOR clause establishes a device grouping valid for 24X80 devices.
At runtime, the literal field displays as follows:

■ The attribute byte for the field is at coordinate 3,80; the literal begins at

the next coordinate (4,1)

■ The literal is NUMBER OF POSITIONS

– The third FOR clause establishes a device grouping valid for 32X80 devices. At

runtime, the literal field displays as follows:

■ The attribute byte for the field is at coordinate 3,80; the literal begins at
the next coordinate (4,1)

■ The literal is TOTAL NUMBER OF POSITIONS

Special Coding Features of the Batch Compiler

258 Mapping Facility Guide

Clauses before the first FOR clause in an MFLD or PFLD statement apply to each
subsequently established device grouping. In the previous example, the

ATTRIBUTES clause displays each literal field established in the PFLD statement in
bright blue.

■ Specify multiple screen sizes in a single FOR clause of an MFLD or PFLD statement ,

as shown:

ADD MAP EMP-INFO

 AUTOPANEL DEVICES=(24X80,32X80,43X80).

 ADD MFLD

 FOR (24X80,32X80)

 AT (14,15)

 VALUE IS 'DEPT NAME'.

The FOR clause in the previous sample MFLD statement establishes a device
grouping made up of two device types (24X80 and 32X80). A third device grouping
(43X80) is implicitly created; however, no value is assigned to the latter device

grouping by this MFLD statement.

■ Specify different screen sizes in individual MFLD or PFLD statements, as shown:

ADD MAP CEXME413

 AUTOPANEL DEVICES=(24X80,32X80,43X80)

 USING (EMPOSITION 100).

 ADD MFLD

 FOR (24X80)

 AT (14,15)

 DFLD SALARY-AMOUNT-0420.

 ADD MFLD

 FOR (32X80)

 AT (20,15)

 DFLD SALARY-AMOUNT-0420.

Each MFLD (for MAP AUTOPANEL) statement in the previous example associates a
screen field with the SALARY-AMOUNT-0420 record element by establishing a
device grouping:

– The first MFLD statement establishes a device grouping valid for 24X80
devices. At runtime, the attribute byte for the field is at coordinate 14,15; the
value begins at the next coordinate (14,16).

– The second MFLD statement establishes a device grouping valid for 32X80
devices. At runtime, the attribute byte for the field is at coordinate 20,15; the
value begins at the next coordinate (20,16).

A third device grouping (43X80) is implicitly created in the previous example;

however, values for SALARY-AMOUNT-0420 are not displayed on 43X80 devices.

Special Coding Features of the Batch Compiler

Chapter 13: Batch Compiler Execution and JCL 259

■ Specify a combination of the previous options, as shown:

ADD MAP CEXME413 VERSION 2

 AUTOPANEL DEVICES=(24X80,32X80,43X80)

 USING (EMPOSITION 100).

 ADD MFLD

 FOR (24X80,32X80,43X80)

 AT (10,15)

 DFLD SALARY-GRADE-0420.

 ADD MFLD

 FOR (24X80)

 AT (14,15)

 DFLD SALARY-AMOUNT-0420.

 ADD MFLD

 FOR (32X80)

 AT (20,15)

 DFLD SALARY-AMOUNT-0420.

Reconciling Conflicting Specifications

The batch compiler reconciles any conflicting device grouping specifications made by

the map developer so that any given screen size belongs to only one device grouping.
Since 24X80 and 32X80 are each specified in two different device grouping
specifications in the previous sample statements, the batch compiler subdivides the first
device grouping and assigns the specifications made for the grouping to each of the

three device groupings (24X80, 32X80, and 43X80) established by the second and third
MFLD statements.

For example, the following device groupings are established by the previous sample

statements:

■ A device grouping for 24X80 devices displays the following values at runtime:

– SALARY-GRADE-0420 values are displayed at 10,15.

– SALARY-AMOUNT-0420 values are displayed at 14,15.

Special Coding Features of the Batch Compiler

260 Mapping Facility Guide

■ A device grouping for 32X80 devices displays the following values at runtime:

– SALARY-GRADE-0420 values are displayed at 10,15.

– SALARY-AMOUNT-0420 values are displayed at 20,15.

■ A device grouping for 43X80 devices displays runtime values for the
SALARY-GRADE-0420 element at 10,15.

The batch compiler subdivides conflicting device grouping specifications only as much as
necessary to insure that each screen size belongs to a maximum of one device grouping.
For example, two device groupings are established when the following sample
statements are compiled:

ADD MAP CEXMJKD2

 AUTOPANEL DEVICES = (24X80, 32X80, 43X80)

 USING (INSURANCE-PLAN 100).

 ADD MFLD

 FOR (24X80,32X80)

 AT (14,15)

 DFLD COMPANY-NAME-0435.

 ADD MFLD

 FOR (24X80,32X80,43X80)

 AT (15,15)

 DFLD GROUP-NUMBER-0435.

The three screen sizes specified in the DEVICES clause of the previous MAP AUTOPANEL

statement are divided into two device groupings:

■ The device grouping for 24X80 and 32X80 devices displays values for the
COMPANY-NAME-0435 and GROUP-NUMBER-0435 elements.

■ The device grouping for 43X80 devices displays values only for the

GROUP-NUMBER-0435 element.

An AT specification for a device grouping must be valid for the smallest device (screen
size) in the device grouping. For example, AT (16,32) cannot be specified for a device

grouping that contains the 12X40 device type.

The ORIGIN FOR clause also creates device groupings, as explained in Positioning Maps
on Different Devices (see page 261).

Special Coding Features of the Batch Compiler

Chapter 13: Batch Compiler Execution and JCL 261

Effects of Device Groupings

The use of device groupings to achieve device independence can affect batch compiler

performance, batch util ity panel and map reports, and map load module overhead:

■ The batch compiler validates row and column specifications based on the smallest
screen size within each device grouping. A row/column specification of (20,25), for

example, would be acceptable for the (24X80,32X80,43X80) device grouping but
would not be acceptable for the (12X40,24X80,32X80) device grouping since the
specified screen location cannot be accommodated on the 12X40 screen.

■ The batch utility produces panel and map reports that l ist as many screen formats

as there are device groupings associated with the specified panel/map. Each
format i l lustrates only the smallest screen size within a device grouping. For
example, if the device groupings (12X40,43X80), (24X80,32X80), and (12X80) have
been defined for panel/map fields associated with the panel, the map util ity report

displays three screen formats, with screen sizes of 12X40, 24X80, and 12X80.

■ A map load module contains a separate panel occurrence for each device group,
even if there is only one panel field specification that is different.

Maps defined with device groupings cannot be displayed or edited by using the online
mapping compiler since that compiler can only display one screen layout for a given
map-definition.

Positioning Maps on Different Devices

The origin for a map is its upper left-hand coordinate.

The ORIGIN FOR clause of the MAP or MAP AUTOPANEL statement centers or
repositions an entire runtime map on a terminal screen by performing the following
functions:

■ Specifies one or more devices (by screen size) and creates a device grouping

■ Specifies the coordinate at which the origin of the panel/map is placed on the
designated devices at runtime

For example, the origin for the map defined by the following sample MAP statement
would be located at coordinate 10,20 when displayed on 24X80 devices and at

coordinate 30,20 on 43X80 devices at runtime:

ADD MAP EMPDATA

 AUTOPANEL DEVICES=(24X80,43X80)

 ORIGIN FOR (24X80) IS (10,20)

 ORIGIN FOR (43X80) IS (30,20).

Special Coding Features of the Batch Compiler

262 Mapping Facility Guide

Map Positioning for Different-size Devices

The effects of an ORIGIN FOR specification on devices of two different sizes are

i l lustrated in the following figure:

The origin of the panel/map is positioned at row 5, column 5 for the smaller device. The
origin is positioned at row 10, column 20 for the larger device.

Batch Compiler JCL

Chapter 13: Batch Compiler Execution and JCL 263

Batch Compiler JCL

The map compiler accepts compiler statements that were either written by the map
developer or generated by the DECOMPILE or TERSE process of the map util ity. The
resulting entity occurrences are placed in the DDLDML area of the data dictionary and
can be used:

■ By the batch utility, to generate map load modules for application programs

■ By DML processors, to interpret and expand mapping requests coded in CA IDMS
application programs

■ By the CA ADS compiler, to interpret and expand mapping requests in CA ADS

dialogs

The batch compiler executes in update mode. Run the batch compiler through the
central version or as a local CA IDMS/DB program with active journal fi les to protect the

integrity of the data dictionary.

z/OS JCL

//RHDCMAP1 EXEC PGM=RHDCMAP1,REGION=1024K

//STEPLIB DD DSN=idms.dba.loadlib,DISP=SHR

// DD DSN=idms.custom.loadlib,DISP=SHR

// DD DSN=idms.cagjload,DISP=SHR

//sysctl DD DSN=idms.sysctl,DISP=SHR

//dcmsg DD DSN=idms.sysmsg.ddldcmsg,DISP=SHR

//SYSLST DD SYSOUT=A

//SYSPCH DD DUMMY

//SYSIDMS DD *

DMCL=dmcl-name

DICTNAME=appldict

sysidms parameters

//SYSIPT DD *

source statements

idms.dba.loadlib Data set name of CA IDMS load library that contains the

DMCL and database table load modules

idms.custom.loadlib Data set name of the CA IDMS load library containing
customized CA IDMS executable modules

idms.cagjload Data set name of CA IDMS load library that contains the CA

IDMS executable modules that do not require customization

idms.sysctl Data set name of SYSCTL fi le

idms.sysmsg.ddldcmsg Data set name of the system message area

Batch Compiler JCL

264 Mapping Facility Guide

dmcl-name The name of the dictionary the DMLF precompiler should
access

appldict The name of the application dictionary that should be
accessed

sysidms parameters A l ist of SYSIDMS parameters for this job.

Note: For more information about the SYSIDMS parameters, see the CA IDMS Common
Facil ities Guide.

Local Mode

To execute in local mode, perform these steps:

■ Remove the sysctl DD statement.

■ Add the following statements:

//dictdb DD DSN=idms.appldict.ddldml,DISP=SHR

//sysjrnl DD DSN=idms.tapejrnl,DISP=(NEW,CATLG),UNIT=tape

dictdb DDname of application dictionary definition area

idms.appldict.ddldml Data set name of application data dictionary DDLDML area

sysjrnl DDname of first tape journal fi le

idms.tapejrnl Data set name of first tape journal fi le

z/VSE JCL

// UPSI b

// DLBL SYSIDMS,'#SYSIPT'

// EXTENT sys020,nnnnnn,,,ssss,llll

// ASSGN sys020,DISK,VOL=nnnnnn,SHR

// EXEC RHDCMAP1

sysidms parameters

/*

b Appropriate UPSI switch, 1-8 characters, if specified in the

IDMSOPTI module

#SYSIPT If #SYSIPT is used, the individual parameters must be listed in
the SYSIDMS parameters statement.

This can also be defined as a disk dataset, in which case
#SYSIPT is replaced by the name of the fi le containing the
parameters and the parameters are not l isted.

Batch Compiler JCL

Chapter 13: Batch Compiler Execution and JCL 265

sys020 Logical unit assignment of output fi le

nnnnnn Volume serial number of disk storage device

ssss Relative starting track

llll Number of tracks

sysidms parameters A l ist of SYSIDMS parameters for this job.

Note: For more information about the SYSIDMS parameters, see the CA IDMS Common
Facilities Guide.

Local Mode

To execute in local mode, perform these steps:

■ Remove the UPSI specification.

■ Add the following statements:

// DLBL dictdb,'idms.dictdb',,DA

// EXTENT sys005,nnnnnn

// ASSGN sys005,DISK,VOL=nnnnnn,SHR

// TLBL sysjrnl,'idms.tapejrnl',,nnnnnn,,f

// ASSGN sys009,TAPE,VOL=nnnnnn

dictdb Fi lename of application data dictionary

idms.dictdb Fi le-id of application data dictionary

sys005 Logical unit assignment of data dictionary

sysjrnl Fi lename of tape journal fi le

idms.tapejrnl Fi le-id of tape journal fi le

f Fi le number of tape journal fi le

sys009 Logical unit assignment of tape journal fi le

Batch Compiler JCL

266 Mapping Facility Guide

z/VM JCL

FILEDEF SYSPCH DUMMY

FILEDEF SYSLST PRINTER

FILEDEF CDMSLIB DISK IDMSLIB LOADLIB A6

FILEDEF SYSIDMS DISK sysidms input a

FILEDEF SYSIPT DISK comp input a

GLOBAL LOADLIB IDMSLIB

OSRUN RHDCMAP1

sysidms input a Fi lename, fi letype, and fi lemode of the fi le containing the
SYSIDMS input parameters.

comp input a Fi lename, fi letype, and fi lemode of the fi le that contains
batch compiler source statements.

Note: For more information about the SYSIDMS parameters, see the CA IDMS Common
Facilities Guide.

Local Mode

To execute in local mode, perform these steps:

1. Specify that RHDCMAP1 is executing in local mode by performing one of the
following:

■ Link RHDCMAP1 with an IDMSOPTI program that specifies local execution

mode.

■ Modify the OSRUN statement:

OSRUN RHDCMAP1,PARM='*LOCAL*'

Note: This option is valid only if the OSRUN command is issued from a System
Product interpreter or an EXEC2 fi le.

■ Specify *LOCAL* as the first input parameter of the fi le identified by comp
input a.

2. Add the following statements before the OSRUN statement:

FILEDEF dictdb DISK dictdb dictfile d

 (RECFM F LRECL pppp BLKSIZE pppp XTENT nnnn

FILEDEF j1jrnl DISK j1jrnl jrnlfile k

 (RECFM F LRECL pppp BLKSIZE pppp XTENT nnnn

dictdb DDname of the application data dictionary fi le

dictdb dictfile d Fi lename, fi letype, and fi lemode of the application data
dictionary fi le

pppp Page size of the fi le

Compiler Reports and Messages

Chapter 13: Batch Compiler Execution and JCL 267

nnnn Number of pages in the fi le

j1jrnl DDname of the first disk journal fi le

j1jrnl jrnlfile k Fi lename, fi letype, and fi lemode of the first disk journal fi le

Compiler Reports and Messages

Compiler syntax and input validation messages are returned to the user on the compiler

input statement report. Diagnostic and error messages are provided on the input
statement report when source statements input to the map compiler contain errors.
Each type of message is discussed as follows.

Diagnostic Messages

The following diagnostic information is provided on an input statement report when
errors are encountered:

■ The word ERROR or WARNING following the statement number of the erroneous
source line

■ A dollar sign ($), positioned:

– Under the first character of the source line that could not be successfully
processed

– Under the period that terminates a map source statement to indicate that a
logic error has occurred

■ The action taken by the compiler for each mapping language statement, as follows:

– ADDED—The statement is accepted and the definition is added in the data
dictionary.

– MODIFIED—The statement is accepted and the definition is modified in the
data dictionary.

– DELETED—The statement is accepted and the definition is deleted from the
data dictionary.

– NO ACTION—The statement is rejected. The NO ACTION message implies the
following:

– At least one E-level error has been detected.

– No occurrence is added, modified, or deleted in the data dictionary for the
statement.

Compiler Reports and Messages

268 Mapping Facility Guide

Error Messages

Error messages appear on a separate page at the end of the input statement l isting. The
batch compiler l ists error messages in the following format:

STMT SVRTY ERROR FOUND MESSAGE

nnnn severity-level nnnnnn found-text message-text

The error messages provide the following information:

■ STMT (nnnn) identifies the compiler-generated statement number for each line that
contains an error.

■ SVRTY (severity-level) identifies the severity level of the input error. The following
severity levels can be returned:

– W (warning)—Flags potential problems in the source code; the statement
containing the error is processed. W-level messages provide information about
potential problems and do not necessarily indicate errors.

– E (error)—Identifies erroneous input; the statement containing the error has

been rejected. The error must be corrected before the code can be compiled.

– F (fatal)—Identifies errors that affect more than one map source statement.
The error must be corrected before the code can be compiled.

■ ERROR (nnnnnn) provides the 6-digit identifying number for the error message
provided in the MESSAGE column described as follows.

■ FOUND (found-text) identifies the erroneous portion of the given input l ine. Either
of the following items are l isted in this column:

– The first eight characters of the parameter in error

– A period (.) character to indicate that an end-of-statement error has occurred

■ MESSAGE (message-text) specifies the nature of the problem encountered by the
map compiler. For a detailed description of error codes and messages, see the CA
IDMS Messages and Codes Guide.

The error message page of the compiler input-statement l isting also specifies the

number of coding errors encountered. The listed number does not necessarily
represent the actual number of errors in the source code. For example, rejection of a
PANEL, PFLD, MAP, or MFLD statement might cause the map compiler to reject
subsequent correct statements simply because the proper currency has not been

established. The following section was left out because the previous sample compiled
without reports It should be inserted again.

Compiler Reports and Messages

Chapter 13: Batch Compiler Execution and JCL 269

Sample Report

A sample input-statement l isting that contains diagnostic and error messages is

provided in the following figure. The source for this example contains only three actual
errors:

■ The ATTRIBUTES specifications in l ine 10 are not enclosed in parentheses.

■ The VALUE specification in l ine 17 is not enclosed in quotation marks.

■ The MFLD statement in l ine 29 is missing the required AT specification.

The batch compiler returns 16 errors as a result of the actual errors in the sample
compile.

Compiler Reports and Messages

270 Mapping Facility Guide

CAGJF0 CA IDMS/DC MAPPING COMPILER PHASE 1 CA IDMS/DC IS A PROPRIETARY SOFTWARE PRODUCT DATE TIME PAGE

 VERSION nn.n LICENSED FROM CA mm/dd/yy 113808 1
 STMT ITEM NUMBER -- MAPPING INPUT STATEMENT LISTING --

 1 MAP 1 ADD MAP CEXME028

 2 AUTOPANEL

 3 USING ((EMPLOYEE 100))

 4 EDIT

 5 RESET UNLOCK NOALARM NOPRT NLCR. VERSION 1 *** ADDED ***

 6

 7 PFLD 1 ADD MFLD

 8 FOR (24X80, 32X80, 43X80, 27X132)

 9 AT (4,25)

 10 ATTR = BRIGHT PROTECTED

 *** ERROR *** $

 *** ERROR *** $

 *** UNKNOWN KEYWORD *** $

 *** UNKNOWN KEYWORD *** $
 11 VALUE IS 'EMPLOYEE PHONE INFORMATION'

 *** UNKNOWN KEYWORD *** $

 *** UNKNOWN KEYWORD *** $
 *** UNKNOWN KEYWORD *** $

 *** UNKNOWN KEYWORD *** $

 *** UNKNOWN KEYWORD *** $
 *** UNKNOWN KEYWORD *** $

 12 LITERAL. *** NO ACTION ***

 13
 14 PFLD 2 ADD MFLD

 15 FOR (24X80, 32X80, 43X80, 27X132)

 16 AT (8,25)
 17 VALUE IS EMPLOYEE ID

 *** ERROR *** $

 *** ERROR *** $
 *** UNKNOWN KEYWORD *** $

 *** UNKNOWN KEYWORD *** $

 18 LITERAL. *** NO ACTION ***
 19

 20 PFLD 3 ADD MFLD

 21 AT (8,45)
 22 MFLD 3 DFLD EMP-ID-0415

 23 OF EMPLOYEE VER 100

 24 EXT PIC IS INT. *** ADDED ***
 25

 26 PFLD 4 ADD MFLD

 27 VALUE IS 'PHONE NUMBER'
 28 LITERAL.

 *** ERROR *** $

 *** ERROR *** $

 MFLD 4 *** NO ACTION ***

 29

 30 PFLD 5 ADD MFLD

 31 AT (12,45)

 32 MFLD 5 DFLD EMP-PHONE-0415

 33 OF EMPLOYEE VER 100

 34 EXT PIC IS INT. *** ADDED ***

Compiler Reports and Messages

Chapter 13: Batch Compiler Execution and JCL 271

CAGJF0 CA IDMS/DC MAPPING COMPILER PHASE 1 CA IDMS/DC IS A PROPRIETARY SOFTWARE PRODUCT DATE TIME P AGE

 VERSION nn.n LICENSED FROM CA mm/dd/yy 113808 2

STMT SVRTY ERROR FOUND MESSAGE
 10 E 386005 BRIGHT ATTRIBUTE CLAUSE REQUIRES A PARENTHESIZED LIST IN PANEL FIELD STATEMENT

 10 E 388001 BRIGHT INVALID PANEL FIELD NAME SPECIFIED IN MAP FIELD STATEMENT

 10 E 388017 BRIGHT INVALID KEYWORD IN MAP FIELD STATEMENT
 10 E 388017 PROTECTE INVALID KEYWORD IN MAP FIELD STATEMENT

 11 E 388017 VALUE INVALID KEYWORD IN MAP FIELD STATEMENT

 11 E 388017 IS INVALID KEYWORD IN MAP FIELD STATEMENT
 11 E 388017 'EMPLOYE INVALID KEYWORD IN MAP FIELD STATEMENT

 11 E 388017 PHONE INVALID KEYWORD IN MAP FIELD STATEMENT

 11 E 388017 INFORMAT INVALID KEYWORD IN MAP FIELD STATEMENT
 11 E 388017 ' INVALID KEYWORD IN MAP FIELD STATEMENT

 17 E 386008 EMPLOYEE VALUE CLAUSE FOR PANEL FIELD MUST BE FOLLOWED BY A STRING OR PARENTHESIZED LIST

 17 E 388001 EMPLOYEE INVALID PANEL FIELD NAME SPECIFIED IN MAP FIELD STATEMENT

 17 E 388017 EMPLOYEE INVALID KEYWORD IN MAP FIELD STATEMENT

 17 E 388017 ID INVALID KEYWORD IN MAP FIELD STATEMENT

 28 E 386027 LITERAL AT LEAST ONE 'AT' CLAUSE IS REQUIRED FOR ADD OF PANEL FIELD

 28 E 388001 LITERAL INVALID PANEL FIELD NAME SPECIFIED IN MAP FIELD STATEMENT

 16 ERRORS

 PROCESS=LOAD

 MAP=CEXME028,VERSION=00001

Note: CAGJF0 in the upper left-hand corner of the Error Message page is the release
number.

Chapter 14: Batch Utility Reference 273

Chapter 14: Batch Utility Reference

This chapter contains the following topics:

This section contains the following topics:

Overview (see page 273)
Batch Util ity Statements (see page 274)
Batch Util ity JCL (see page 282)

Overview

The batch util ity uses information defined in the data dictionary to perform the
following activities:

■ Generate map load modules

■ Produce map and panel reports

■ Produce a facsimile of a map and panel on a terminal screen

■ Decompile map and panel occurrences generated by either the batch or the online
compiler into map source code that can be used as input to the batch compiler

■ Delete map load modules

The batch util ity also is used to migrate a map from one dictionary to another.
Decompiled batch source code from one dictionary can be compiled on another
dictionary, and a new load module can be generated from the newly compiled map

code.

The statements and JCL necessary to use the batch mapping util ity are presented as
follows.

Batch Utility Statements

274 Mapping Facility Guide

Batch Utility Statements

The following statements control batch util ity operations:

■ The PROCESS statement specifies the operations to be performed.

■ The PANEL statement specifies the panel occurrences to be processed.

■ The MAP statement specifies the map occurrences to be processed.

Syntax for each of these util ity statements is presented, followed by examples of their
use.

Note: No SIGNON to dictionary card is used because no DDLDML area updates are
possible from the batch util ity.

Batch Utility Statements

The PROCESS statement specifies the actions to be taken by the batch util ity. The
following general rules apply when coding PROCESS statements:

■ One or more PROCESS statements must be submitted in each batch util ity run.

■ When multiple PROCESS statements are specified, each successive PROCESS
statement overrides the previous one.

■ A PROCESS statement specifies the action to be taken for the util ity PANEL and MAP

statements that follow it.

 ┌──────── , ───┐
►►──── PROCESS = ───▼──┬─── LOAD ───────────────────────────────────────┬──┴─►◄
 ├─┬─ REPORT ─┬───────────────────────────────────┤
 │ └─ IMAGE ──┘ │
 ├─┬─ DECOMPILE ─┬─┬──────────────────────┬───────┤
 │ └─ TERSE ─────┘ └─ , DATETIME = YES ─┬─┘ │
 │ └─ NO ─┘ │
 ├────── ALL ─────────────────────────────────────┤
 └────── DELETE ──────────────────────────────────┘

Parameters

LOAD

Generates a map load module and stores the module in the DDLDCLOD area of the
data dictionary. LOAD applies only to MAP statements; at least one MAP statement
must follow a PROCESS LOAD statement.

REPORT/IMAGE

Generates a report and/or a copy of the screen format for all specified map and
panel occurrences:

■ REPORT prints a screen image and report for the specified map and panel

occurrences as shown in the following figure.

■ IMAGE prints a screen image for the specified map and panel occurrences.

Batch Utility Statements

Chapter 14: Batch Utility Reference 275

DECOMPILE/TERSE

Produces source code from data dictionary map and panel occurrences:

■ DECOMPILE provides all specifications made for the named map and/or panel
occurrences

■ TERSE provides only non-default specifications for the named map and/or

panel occurrences

Output for either DECOMPILE or TERSE is written to SYSPCH and consists of
executable source code suitable for processing by the map compiler. The decompile
process does not affect the load module.

DATETIME date-time-stamp

DATETIME has the following options:

■ YES—Includes the map's date/time stamp in the decompiled map's source
code. The date/time stamp is returned in the DATETIME clause in the newly

decompiled map source statements.

■ NO (default)—Decompiles the map without retaining the map's date/time
stamp.

Note: DATETIME is only an option for decompile operations (PROCESS=DECOMPILE
or PROCESS=TERSE).

DELETE

Logically deletes map load modules from the DDLDCLOD area. The actual deletion
is performed at CA IDMS startup. DELETE applies only to MAP statements; at least

one MAP statement must follow a PROCESS DELETE statement. The DELETE
operation has no effect on map occurrences in the DDLDML area. The map
compiler must be used to delete map or panel occurrences.

ALL

Requests that LOAD, REPORT, and DECOMPILE be performed. ALL applies only to
MAP statements; at least one MAP statement must follow a PROCESS ALL
statement.

Batch Utility Statements

276 Mapping Facility Guide

Note: When multiple processes are specified, each must be separated by a comma, as
shown:

PROCESS=REPORT,LOAD

If there are spaces between items, this will result in the rest of the line to be ignored.

Sample Report and Code

As a result of specifying DECOMPILE, REPORT, the map util ity produces a report, a

screen image, and mapping language source code as shown on the following pages.

EJECT
MAP CEXME028 VERSION 1

 AUTOPANEL

 DEVICES = (24X80, 32X80, 43X80, 27X132)
 NONRESIDENT

 USING ((EMPLOYEE 100))

 EDIT
 RESET UNLOCK NOALARM NOPRT NLCR

 NONPAGEABLE

 DECIMAL POINT IS PERIOD
 HELP NO

 ON EDIT ERROR

 SOUND NOALARM.

 SPACE 2

MFLD

 FOR (24X80, 32X80, 43X80, 27X132)

 AT (4, 25)

 ATTRIBUTES = (ALPHANUMERIC,PROTECTED,DETECTABLE,BRIGHT,NOMDT,

 NOBLINK,NORMAL-VIDEO,NOUNDERSCORE,

 NOCOLOR)

 NODELIMIT

 VALUE = ((1) 'EMPLOYEE PHONE INFORMATION')

 NOCURSOR

 LITERAL.

 SPACE 2

MFLD

 FOR (24X80, 32X80, 43X80, 27X132)
 AT (8, 25)

 ATTRIBUTES = (NUMERIC,PROTECTED,NONDETECTABLE,DISPLAY,NOMDT,

 NOBLINK,NORMAL-VIDEO,NOUNDERSCORE,
 NOCOLOR)

 NODELIMIT

 VALUE = ((1) 'EMPLOYEE ID')
 NOCURSOR

 LITERAL.

 SPACE 2

Batch Utility Statements

Chapter 14: Batch Utility Reference 277

MFLD

 FOR (24X80, 32X80, 43X80, 27X132)
 AT (8, 45)

 ATTRIBUTES = (ALPHANUMERIC,UNPROTECTED,NONDETECTABLE,DISPLAY,NOMDT,

 NOBLINK,NORMAL-VIDEO,NOUNDERSCORE,

 NOCOLOR)

 DELIMIT = SKIP

 NOCURSOR

 DFLD EMP-ID-0415

 OF EMPLOYEE VER 100

 HELP SOURCE NONE

 OPTIONAL

 REVERSE NUMERIC IS NO

 EXTERNAL PICTURE IS INTERNAL

 ZEROED WHEN NULL

 DISPLAY WHEN ZERO
 FOR INPUT

 JUSTIFY LEFT

 PAD NO
 DATA YES

 UPPER NO

 FOR OUTPUT
 DATA YES

 BACKSCAN NO.

 SPACE 2
MFLD

 FOR (24X80, 32X80, 43X80, 27X132)

 AT (12, 25)
 ATTRIBUTES = (NUMERIC,PROTECTED,NONDETECTABLE,DISPLAY,NOMDT,

 NOBLINK,NORMAL-VIDEO,NOUNDERSCORE,

 NOCOLOR)
 NODELIMIT

 VALUE = ((1) 'PHONE NUMBER')

 NOCURSOR
 LITERAL.

 SPACE 2

MFLD
 FOR (24X80, 32X80, 43X80, 27X132)

 AT (12, 45)

 ATTRIBUTES = (ALPHANUMERIC,UNPROTECTED,NONDETECTABLE,DISPLAY,NOMDT,
 NOBLINK,NORMAL-VIDEO,NOUNDERSCORE,

 NOCOLOR)

 DELIMIT = SKIP
 NOCURSOR

 DFLD EMP-PHONE-0415

 OF EMPLOYEE VER 100

 HELP SOURCE NONE

 OPTIONAL

 REVERSE NUMERIC IS NO

 EXTERNAL PICTURE IS INTERNAL

 ZEROED WHEN NULL

 DISPLAY WHEN ZERO

 FOR INPUT

 JUSTIFY LEFT

 PAD NO

 DATA YES

 UPPER NO
 FOR OUTPUT

 DATA YES

 BACKSCAN NO.
CAGJF0 CA IDMS/DC MAP UTILITY DATE: mm/dd/yy TIME: 171634 PAGE 3

 THE FOLLOWING SYMBOLS REPRESENT ATTRIBUTE CHARACTERS:
 U - UNPROTECTED ALPHANUMERIC FIELD

 P - PROTECTED ALPHANUMERIC FIELD

 N - UNPROTECTED NUMERIC FIELD
 S - AUTOSKIP FIELD (PROTECTED AND NUMERIC)

Batch Utility Statements

278 Mapping Facility Guide

CAGJF0 CA IDMS/DC MAP UTILITY DATE: mm/dd/yy TIME: 171634 PAGE 4
REPORT FOR MAP CEXME028 VERSION 1 COMPILE DATE: mm/dd/yy COMPILE TIME: 171458

DEVICES: 24X80, 32X80, 43X80, 27X132

 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130

*** *****

 PEMPLOYEE PHONE INFORMATION

 SEMPLOYEE ID U....S

 (CURSOR) -

 SPHONE NUMBER U..........S

**

 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130

CAGJF0 CA IDMS/DC MAP UTILITY DATE: mm/dd/yy TIME: 171634 PAGE 5
REPORT FOR MAP CEXME028 VERSION 1 COMPILE DATE: mm/dd/yy COMPILE TIME: 171458

DEVICES: 24X80, 32X80, 43X80, 27X132

USING RECORDS:
 EMPLOYEE VERSION 100

WCC: NOALARM, UNLOCK KEYBOARD, RESET MODIFIED, NOPRT, NLCR

PANEL CEXME028-AUTOPANEL VERSION 1
PFLD: AUTOPF00001 AT (4,25)

 ATTRIBUTES = (ALPHANUMERIC,PROTECTED,DETECTABLE,BRIGHT,NOMDT,

 NOBLINK,NORMAL-VIDEO,NOUNDERSCORE,
 NOCOLOR)

 NODELIMIT

 LITERAL STRING
PFLD: AUTOPF00002 AT (8,25)

 ATTRIBUTES = (NUMERIC,PROTECTED,NONDETECTABLE,DISPLAY,NOMDT,

 NOBLINK,NORMAL-VIDEO,NOUNDERSCORE,

 NOCOLOR)

 NODELIMIT

 LITERAL STRING

PFLD: AUTOPF00003 AT (8,45)

 ATTRIBUTES = (ALPHANUMERIC,UNPROTECTED,NONDETECTABLE,DISPLAY,NOMDT,

 NOBLINK,NORMAL-VIDEO,NOUNDERSCORE,

 NOCOLOR)

 DELIMIT SKIP

DFLD: EMP-ID-0415 OF EMPLOYEE

 HELP SOURCE NONE

 OPTIONAL

 EXTERNAL PICTURE IS INTERNAL
 ZEROED WHEN NULL DISPLAY WHEN ZERO

 INPUT: JUSTIFY LEFT, UPPER NO, DATA YES, PAD NO

 OUTPUT: BACKSCAN NO, DATA YES
PFLD: AUTOPF00004 AT (12,25)

 ATTRIBUTES = (NUMERIC,PROTECTED,NONDETECTABLE,DISPLAY,NOMDT,

 NOBLINK,NORMAL-VIDEO,NOUNDERSCORE,
 NOCOLOR)

 NODELIMIT

 LITERAL STRING

Batch Utility Statements

Chapter 14: Batch Utility Reference 279

PFLD: AUTOPF00005 AT (12,45)

 ATTRIBUTES = (ALPHANUMERIC,UNPROTECTED,NONDETECTABLE,DISPLAY,NOMDT,

 NOBLINK,NORMAL-VIDEO,NOUNDERSCORE,
 NOCOLOR)

 DELIMIT SKIP

DFLD: EMP-PHONE-0415 OF EMPLOYEE
 HELP SOURCE NONE

 OPTIONAL

 EXTERNAL PICTURE IS INTERNAL
 ZEROED WHEN NULL DISPLAY WHEN ZERO

 INPUT: JUSTIFY LEFT, UPPER NO, DATA YES, PAD NO

 OUTPUT: BACKSCAN NO, DATA YES
MAP LOAD MODULE GENERATED IN LOAD AREA FOR CEXME028, SIZE = 424

 END OF CA IDMS/DC MAP UTILITY

PANEL Statement

A PANEL statement designates a panel occurrence to be processed by a PROCESS
statement. The following processes apply to panel occurrences:

■ REPORT prints a screen image and report for specified panel occurrences.

■ IMAGE prints a screen image for specified panel occurrences.

■ DECOMPILE produces the default and non-default compiler source statements for

specified panel occurrences. DECOMPILE also produces its output as card images
with syntax in fixed locations, one statement clause per l ine. Therefore, use it when
the definition may be modified.

■ TERSE produces the non-default compiler source statements for specified panel

occurrences. Because TERSE fi l ls each line, it is not recommended if you want to
edit the output. It should be used when the map is being backed up or migrated.

Syntax

►►──── PANEL = ──┬─ ALL ──┬───────►◄
 └─ panel-name ─┬───────────────────────────────────┬─┘
 └─ ,VERSION = ─┬─ 1 ◄ ────────────┬─┘
 └─ version-number ─┘

Batch Utility Statements

280 Mapping Facility Guide

Parameters

ALL

Specifies that all panel occurrences in the data dictionary are to be processed as
specified in the PROCESS statement that precedes the PANEL statement. For
example, the following sample code prints a screen image for each panel in the data

dictionary:

PROCESS=IMAGE

PANEL=ALL

VERSION=version-n

Specifies a panel occurrence to be processed as indicated in the PROCESS statement
that precedes the PANEL statement. For example, the following sample code

produces a screen image and report for the CEXLEJKD panel:

PROCESS=REPORT

PANEL=CEXLEJKD

VERSION=version-n

Optionally specifies the version number of the panel occurrence. The default is 1.

MAP Statement

A MAP statement is submitted after a PROCESS statement to designate the map
occurrences to be processed.

Syntax MAP Statement

►►──── MAP = ──┬─ ALL ──┬────────────────────────────────┬───────┬────────────►◄
 │ └─ ,SYSTEM = dc-version-number ──┘ │
 ├─ CHANGED ─┬───────────────────────────────┬─────┤
 │ └─ ,SYSTEM = dc-version-number ─┘ │
 └─ map-name ─┬──────────────────────────────────┬─┘
 └─ ,VERSION = ─┬─ 1 ◄ ────────────┬┘
 └─ version-number ─┘

Batch Utility Statements

Chapter 14: Batch Utility Reference 281

Parameters

ALL,SYSTEM=dc-version-n

Specifies that all map occurrences in the data dictionary are to be processed as
specified in the PROCESS statement that precedes the MAP

statement. For example, the sample code shown below loads all maps in the data
dictionary:
PROCESS=LOAD

MAP=ALL

MAP=ALL cannot be specified with PROCESS=DELETE; this restriction prevents the
inadvertent deletion of map load modules.

SYSTEM=dc-version-n optionally specifies that only map occurrences associated
with the specified CA IDMS system are processed. For example, the sample code
shown below loads all maps in system 7:

PROCESS=LOAD

MAP=ALL,SYSTEM=07

CHANGED,SYSTEM=dc-version-n

Specifies that modified map occurrences are to be processed as specified in the
preceding PROCESS statement. All map occurrences in the data dictionary that have
been modified since they were last generated are processed. For example, the

sample code shown below loads all modified and ungenerated maps in the
dictionary, generates a report for each map, and finally decompiles each map:
PROCESS=ALL

MAP=CHANGED

MAP=CHANGED cannot be specified with PROCESS=DELETE; this restriction
prevents the inadvertent deletion of map load modules.

SYSTEM=dc-version-n optionally specifies that only modified map occurrences that
are associated with the specified CA IDMS system are processed.

Map-name,VERSION=version-n

Specifies that the named map occurrence is to be processed as specified in the
PROCESS statement that precedes the MAP statement. For example, the following
sample code decompiles map CEXME104:
PROCESS=DECOMPILE

MAP=CEXME1_4,VERSION=1

VERSION=version-n (default is 1) optionally specifies the version number of the

map occurrence; the default is 1.

Batch Utility JCL

282 Mapping Facility Guide

Considerations

The MAP clause also applies to corresponding panel occurrences when both of the
following conditions apply:

■ The MAP statement names a map occurrence created by batch statements for

automatic panel definition or by the online mapping compiler.

■ The MAP statement modifies a REPORT, IMAGE, DECOMPILE, TERSE, and/or DELETE
operation, as specified in the PROCESS statement that precedes the MAP
statement.

A PANEL statement should not be included when the MAP clause conforms to both of
the conditions l i sted above.

Multiple processes and multiple MAP and PANEL statements can be included in a single

batch util ity run, as shown below:
PROCESS=REPORT,DECOMPILE

MAP=MAINTMAP

MAP=CUSTMAP

MAP=ORDMAP

PROCESS=REPORT

PANEL=MAINTPAN

PANEL=CUSTPAN

PANEL=ORDPAN

PROCESS=DELETE

MAP=METMAP

The sample code shown above requests the following operations:

■ REPORT and DECOMPILE operations for maps MAINTMAP, CUSTMAP, and ORDMAP

■ REPORT operations for maps MAINTPAN, CUSTPAN, and ORDPAN

■ DELETE operation for the METMAP load module

Batch Utility JCL

The batch util ity executes in update mode. Run the batch util ity through the central
version or as a local CA IDMS/DB program with active journal fi les to protect the

integrity of the data dictionary.

Batch Utility JCL

Chapter 14: Batch Utility Reference 283

z/OS JCL

//RHDCMPUT EXEC PGM=RHDCMPUT,REGION=1024K

//STEPLIB DD DSN=idms.dba.loadlib,DISP=SHR

// DD DSN=idms.custom.loadlib,DISP=SHR

// DD DSN=idms.cagjload,DISP=SHR

//sysctl DD DSN=idms.sysctl,DISP=SHR

//dcmsg DD DSN=idms.sysmsg.ddldcmsg,DISP=SHR

//SYSLST DD SYSOUT=A

//SYSPCH DD SYSOUT=A

//SYSIDMS DD *

DMCL=dmcl-name

DICTNAME=appldict

sysidms parameters

//SYSIPT DD *

control statements

idms.dba.loadlib Data set name of load library that contains the DMCL and
database name table load modules

idms.custom.loadlib Data set name of the load library that contains the
customized CA IDMS executable modules

idms.cagjload Data set name of load library that contains the CA IDMS
executable modules that do not require customization

idms.sysctl Data set name of SYSCTL fi le

idms.sysmsg.ddldcmsg Data set name of the system message area

sysidms parameters A l ist of the SYSIDMS parameters that pertain to this job.

dmcl-name The name of the dictionary the DMLF precompiler should
access

appldict The name of the application dictionary that should be
accessed

Note: For more information about the SYSIDMS parameter, see the CA IDMS Common
Facilities Guide.

Local Mode

To execute the batch util ity in local mode:

■ Remove the sysctl DD statement.

■ Add the following statements:

//dictdb DD DSN=idms.appldict.ddldml,DISP=OLD

//dloddb DD DSN=idms.appldict.ddldclod,DISP=OLD

//sysjrnl DD DSN=idms.tapejrnl,DISP=(NEW,CATLG),UNIT=tape

Batch Utility JCL

284 Mapping Facility Guide

dictdb DDname of application dictionary definition area

idms.appldict.ddldml Data set name of application dictionary definition area

dloddb DDname of application dictionary definition load library area

idms.appldict.ddldclod Data set name of application dictionary definition load library

area

sysjrnl DDname of the tape journal fi le

idms.tapejrnl Data set name of the tape journal fi le

z/VSE JCL

// UPSI b

// DLBL SYSIDMS,'#SYSIPT'

// EXTENT sys020,nnnnnn,,,ssss,llll

// ASSGN sys020,DISK,VOL=nnnnnn,SHR

// EXEC RHDCMPUT

SYSIDMS parameters

/*

b Appropriate UPSI switch, 1-8 characters, if specified in the

IDMSOPTI module

#SYSIPT If #SYSIPT is used, the individual parameters must be listed in the
following SYSIDMS parameters statement.

Can also be defined as a disk dataset, where #SYSIPT is replaced
with the name of the fi le containing the SYSIDMS parameters and
the parameters are not l isted separately

user.output File-id of output fi le

sys020 Logical unit assignment of output fi le

nnnnnn Volume serial number of disk storage device

ssss Relative starting track

llll Number of tracks

SYSIDMS
parameters

A l ist of the SYSIDMS parameters that pertain to this job.

Note: For more information about the SYSIDMS parameter, see the CA IDMS Common

Facilities Guide.

Batch Utility JCL

Chapter 14: Batch Utility Reference 285

z/VM JCL

FILEDEF SYSLST PRINTER

FILEDEF SYSPCH DISK syspch output a

FILEDEF SYSIDMS DISK sysidms input a

FILEDEF SYSIPT DISK util input a

GLOBAL LOADLIB IDMSLIB

OSRUN RHDCMPUT

syspch output a Fi lename, fi letype, and fi lemode of the card-image output fi le

sysidms input a Fi lename, fi letype, and fi lemode of the fi le that contains the

SYSIDMS parameters

util input a Fi lename, fi letype, and fi lemode of the fi le containing batch
util ity control statements

Note: For more information about the SYSIDMS parameter, see the CA IDMS Common

Facilities Guide.

Local Mode

To execute the batch util ity in local mode:

1. Specify that RHDCMPUT is executing in local mode by performing one of the
following:

■ Link RHDCMPUT with an IDMSOPTI program that specifies local execution
mode

■ Modify the OSRUN statement:

OSRUN RHDCMPUT PARM='*LOCAL*'

Note: This option is valid only if the OSRUN command is issued from a System

Product interpreter or an EXEC2 fi le.

■ Specify *LOCAL* as the first input parameter of the fi le identified by util input a

2. Add the following statements before the OSRUN statement:

FILEDEF dictdb DISK dictdb dictfile d

 (RECFM F LRECL pppp BLKSIZE pppp XTENT nnnn

FILEDEF j1jrnl DISK j1jrnl jrnlfile k

 (RECFM F LRECL pppp BLKSIZE pppp XTENT nnnn

FILEDEF dloddb DISK dloddb dictfile f

 (RECFM F LRECL pppp BLKSIZE pppp XTENT nnnn

dictdb DDname of the application data dictionary

dictdb dictfile d Fi lename, fi letype, fi lemode of the application data dictionary
fi le

Batch Utility JCL

286 Mapping Facility Guide

pppp Page size of the fi le

nnnn Number of pages in the fi le

j1jrnl DDname of the first disk journal fi le

jljrnl jrnlfile k Fi lename, fi letype, and fi lemode of the first disk journal fi le

dloddb DDname of the data dictionary load area

dloddb dictfile f Fi lename, fi letype, and fi lemode of the data dictionary load
area

Sample JCL

The input job stream for the batch util ity with batch util ity statements and JCL is shown
here. The map, CEXME028, which was defined using the online compiler, is decompiled
by the sample code; the resulting source is sent to a card-image data set; and a report
for the map is produced. Executable code for the map CEXME028 is compiled and

loaded into the DDLDCLOD area of the data dictionary.

//MPUT81 EXEC PGM=RHDCMPUT,REGION=4096K

//STEPLIB DD DSN=DBDC.SYSTEM81.R150.NTWKLOAD,DISP=SHR

// DD DSN=DBDC.SYSTEM81.CUSTOM.LOADLIB,DISP=SHR

// DD DSN=DIST.CAGJF0.CAGJLOAD,DISP=SHR

//SYSCTL DD DSN=DBDC.SYSTEM81.SYSCTL,DISP=SHR

//SYSLST DD SYSOUT=*

//SYSPCH DD SYSOUT=*

//SYSIDMS DD *

 DICTNAME=TSTDICT

//SYSIPT DD *

 PROCESS=ALL

 MAP=CEXME028,VERSION=00001

Batch Utility JCL

Chapter 14: Batch Utility Reference 287

Error Messages

If errors are present in batch util ity source statements, the util ity returns diagnostic

messages in the listing generated with each run. Messages issued by the batch util ity are
displayed in the following format:

nnnnnn severity-level message-text

The following information is represented by the previous format:

■ Nnnnnn represents the 6-digit identifying number for the error message.

■ Severity-level represents the severity associated with the message:

– W (warning) identifies potential problems in the source code. The statement
that contains the potential error is processed and processing continues.

– E (error) identifies erroneous input. The statement that contains the error is
rejected and processing continues. The source code must be corrected before
the code can be successfully compiled.

– F (fatal) identifies errors that affect more than one map source statement.

Processing is terminated and the errors must be corrected before the source
code can be compiled.

■ Message-text represents the error message that applies to the given error.

Appendix A: Integrated Data Dictionary Mapping Entities 289

Appendix A: Integrated Data Dictionary
Mapping Entities

This appendix describes about integrated data dictionary mapping entities.

This section contains the following topics:

Overview (see page 289)
Data Dictionary Entities Used by the Mapping Compilers (see page 290)
Data Dictionary Entities Updated by Mapping Compilers (see page 301)

Critical Changes (see page 304)
Coordinated Use of the Online and Batch Compil ers (see page 306)

Overview

The CA IDMS mapping compilers make extensive use of the data dictionary as a source

of information and as a storage location for map-related entity occurrences and map
load modules. By using this central resource, the mapping compilers share information
with other CA products, thus promoting data integrity and stability.

This appendix focuses on the integration and interaction of the mapping compilers with

other CA data management products. The following topics are presented:

■ Data dictionary entities used by the mapping compilers

■ Data dictionary entities updated by the mapping compilers

■ Critical changes to data dictionary entities and related recompil ation requirements

■ Coordinated use of the batch and online mapping compilers

Data Dictionary Entities Used by the Mapping Compilers

290 Mapping Facility Guide

Data Dictionary Entities Used by the Mapping Compilers

When is the Data Dictionary Used?

The batch and online compilers retrieve information from and update information in the
data dictionary at map compilation and map runtime:

■ At map compilation, the batch and online compilers use map-related and table data

dictionary entities, as follows:

– Both map compilers verify that each specified occurrence is defined in the data
dictionary.

– Both compilers access information from record elements, such as the internal

picture, external picture, or edit table defined for or associated with a map
definition.

■ At program runtime, application programs invoke map load modules as needed. A

map load module can, in turn, invoke stand-alone tables and map help load
modules stored in the load area.

Entities used by Compilers

The following data dictionary entities are used by the mapping compilers:

■ Element occurrences

■ Record occurrences

■ Map occurrences

■ Message occurrences

■ Table occurrences

■ Map and table load modules

■ Help modules

The establishment, use, and/or modification of each of these entity occurrences is
discussed, following a brief discussion of the builder codes used to identify the owner of

many entity occurrences.

Data Dictionary Entities Used by the Mapping Compilers

Appendix A: Integrated Data Dictionary Mapping Entities 291

Builder Codes

What is a Builder Code?

When an entity occurrence is established in the data dictionary, a builder code is
assigned to the occurrence. The builder code designates the component of the CA data

management system that owns the entity and is allowed to make structural
modifications to the entity. If the entity occurrence is subsequently used by a different
product, the builder code may change to reflect the current use of the entity.

Some components, such as CA-IDD, access the builder code when modifications to an

entity occurrence are attempted. Builder codes and their associated components are
shown in the following table:

Builder Code Input Source

C CA IDMS mapping compilers

D DDDL compiler

G CA IDMS-CV/DC sysgen compiler (source records)

R CA IDMS-CV/DC sysgen compiler (object records)

S Schema compiler

V Subschema compiler

M DML processors

A CA ADS dialog generator

P CA ADS application generator

X CA IDMSDIRL util ity

Data Dictionary Entities Used by the Mapping Compilers

292 Mapping Facility Guide

For example, a CA-IDD-built occurrence has a builder code of D, which specifies that IDD
owns the occurrence and that modifications can be made to the occurrence.

Copying a CA-IDD-built Occurrence

Consequences of copying a CA-IDD-built occurrence are described as follows:

■ If the occurrence is copied into a schema, the builder code changes to S. A builder

code of S indicates to the DDDL compiler that only nonstructural modifications,
such as commentary and documentational entries, can be made by the DDDL
compiler.

■ If the occurrence is copied into both a map and a schema , the builder code changes

to S.

■ If the occurrence is copied into a CA IDMS map by the mapping compilers, the
builder code changes to C. A builder code of C indicates to the DDDL compiler that
l imited modifications can be made.

When a schema or a CA IDMS map is deleted, the builder code changes back to D and
modifications can then be made by the DDDL compiler.

Note: For more information about builder codes, see the CA IDMS System Generation

Guide.

Element Occurrences

What is an Element?

A record element is a logical subdivision of a record; an element cannot be addressed

without first addressing the record to which the element belongs.

Element occurrences define group or elementary data items that can be used in
CA-IDD-built records or CA IDMS/DB schema-built records. Elements used by maps must
be defined in the dictionary and must be members of records prior to map compilation.

Data Dictionary Entities Used by the Mapping Compilers

Appendix A: Integrated Data Dictionary Mapping Entities 293

Establishing Element Occurrences

Element occurrences can be established in the data dictionary in one of the following

ways:

■ The ADD ELEMENT statement submitted to the DDDL compiler establishes a
free-standing element that can be included in a CA-IDD-built record or that can be

included automatically in a schema-built record.

■ The RECORD statement submitted to the DDDL compiler, in conjunction with the
RECORD ELEMENT substatement or the COBOL substatement, establishes a
CA-IDD-built record and all elements that participate in that record. If the element

specified in the substatement matches an existing element record, the existing
record is used. Otherwise, a new element occurrence is created.

■ The RECORD DESCRIPTION section of schema DDL submitted to the schema
compiler establishes CA IDMS/DB schema-built records in the data dictionary. All

elements that participate in the schema records are automatically established in
the data dictionary.

Elements are the building blocks that form records. The batch and online compilers use

element occurrences as they appear in records rather than a s free-standing items.

How the Information is Used

Information defined for the record element in the data dictionary is used by either the
batch or online compiler:

■ The internal picture for the element is used to derive characteristics of the element,

such as length or usage.

■ The external picture for the element is used to determine the external
characteristics of a field if both of the following conditions are true:

– The external picture is defined at the element level and not overridden at the

map-field level.

– Automatic editing is enabled for the map field.

■ The edit table is used by automatic editing and error-handling in editing data if both
of the following conditions are true:

– The edit table is defined at the record level and not overridden at the map-field
level.

– Automatic editing is enabled for the map field.

■ The code table is used by automatic editing in encoding and decoding data if both

of the following conditions are true:

– The code table is defined at the record level and not overridden at the
map-field level.

– Automatic editing is enabled for the map field.

Data Dictionary Entities Used by the Mapping Compilers

294 Mapping Facility Guide

Considerations

An element occurrence defined in the data dictionary can be modified or deleted. The

following considerations apply to the deletion of element occurrences:

■ An element that participates in a record cannot be deleted.

■ An element that participates in a group element structure cannot be deleted.

Critical changes to dictionary-defined record elements, such as a change in an element's
picture, necessitate regenerating maps and recompiling programs that use those maps
(For more information, see "Critical Changes (see page 304)".).

Record Occurrences

What is a Record Occurrence?

A record occurrence is the basic addressable unit of data in CA IDMS/DB. A record
consists of a fixed or variable number of characters subdivided into units called
elements. Records that are used by maps must be defined in the dictionary prior to map

compilation.

Establishing a Record Occurrence

Record occurrences can be established in the data dictionary in one of the following
ways:

■ The ADD RECORD statement submitted to the DDDL compiler establishes a record
entity occurrence in the data dictionary.

Note: For more information about the ADD RECORD statement and other DDDL

statements, see the CA IDMS IDD DDDL Reference Guide.

■ The RECORD DESCRIPTION SECTION of the schema DDL submitted to the schema
compiler establishes record entity occurrences in the data dictionary.

Note: For more information about the DDL schema compiler, see the CA IDMS

Utilities Guide.

Considerations

The following considerations apply to the modification or deletion of records:

■ If a record participates in a CA IDMS/DB schema, the record cannot be deleted from
the dictionary. Additionally, no structural modifications can be made to the record;
however, commentary and documentational entries can be added or modified.

■ A record synonym that participates in a CA IDMS/DB schema, subschema, or CA

IDMS map cannot be removed or excluded from the dictionary.

■ A view id (established by a DDDL PROGRAM statement) that is active in a CA
IDMS/DB subschema cannot be removed from the dictionary.

Data Dictionary Entities Used by the Mapping Compilers

Appendix A: Integrated Data Dictionary Mapping Entities 295

■ A record that participates in a map can be modified, with the following exceptions:

– A record element that participates in a map cannot be removed from the

record or replaced. This restriction applies also to group elements that contain
subordinate elements that participate in maps. REPLACE RECORD ELEMENTS
implicitly performs a remove and an insert operation.

Several DDDL commands cause the removal or replacement of record
elements. If the record elements or subordinate elements to be removed or
replaced participate in maps, the operation is not performed. If the record
elements or subordinate elements do not participate in maps, the operation is

performed as usual. The following commands perform a remove operation:

■ REMOVE RECORD ELEMENT

■ REPLACE RECORD ELEMENT

■ REMOVE ALL

■ COBOL substatement

The following commands perform a replace operation:

■ REBUILD RECORD ELEMENTS followed by RECORD ELEMENT

substatements

■ REPLACE RECORD ELEMENT

– The occurrence count of the OCCURS clause cannot be decreased if the
decrease causes a map field to be made obsolete. For example, if the twelfth

occurrence of a record element is used by a map, and an attempt is made to
modify the record and decrease the occurrence count to eleven, an error
occurs and the modification is not performed. This rule applies to group record

elements as well as to elementary record elements.

■ Certain modifications to map-owned occurrences require that the map be
recompiled if the map is to reflect the changes in the occurrence. Other
modifications require that the map, as well as the programs using the map, be

recompiled.

Note: For more information, see Critical Changes.

Data Dictionary Entities Used by the Mapping Compilers

296 Mapping Facility Guide

Panel Occurrences

Panel occurrences stored in the data dictionary define display screens. Panel
occurrences are associated with map occurrences and can be established in the da ta
dictionary in any of the following four ways:

■ The CA IDMS online mapping compiler establishes panel occurrences in the
dictionary when it creates a map. Panels established with this option are identified
by the -OLMPANEL suffix.

■ The ADD PANEL statement submitted to the CA IDMS batch compiler establishes

panel occurrences in the data dictionary.

■ The ADD MFLD statement (for MAP AUTOPANEL) submitted to the CA IDMS batch
compiler establishes panel occurrences in the data dictionary. Panels established
with this option are identified by the -AUTOPANEL suffix.

■ The ADD PANEL statement submitted to the DDDL compiler establishes panel
occurrences in the data dictionary. Such panels are documentational only.

Note: For more information about the DDDL ADD PANEL sta tement, see the CA

IDMS IDD DDDL Reference Guide.

Panel occurrences are stored in the DDLDML area of the data dictionary.

Considerations

The CA IDMS mapping facil ity batch and online compilers can be used to modify or
delete panel occurrences. The following considerations apply to the modification or

deletion of panel occurrences:

■ A panel record created by batch compiler statements for manual panel definition is
not deleted when maps associated with the panel are deleted.

■ A panel occurrence generated either by batch compiler automatic panel definition

or by the online compiler is affected by the deletion of an associated map:

– The panel occurrence is automatically deleted when the panel occurrence has
not been associated with any other map occurrences.

– The panel occurrence is not affected when the panel occurrence has been
associated with other map occurrences.

Important: If a map was originally compiled using the online compiler, and
then decompiled and recompiled in batch, panel occurrences will not be

automatically deleted.

■ A panel occurrence associated with one or more maps cannot be deleted until all
associated maps have been deleted.

■ A panel occurrence established by the CA IDMS mapping compilers cannot be
modified or deleted by the DDDL compiler, except to modify comments.

Data Dictionary Entities Used by the Mapping Compilers

Appendix A: Integrated Data Dictionary Mapping Entities 297

Changing a DEVICE Specification

The DEVICES specification of a panel cannot be modified. To change a DEVICES

specification, the following procedure must be used:

1. Decompile the panel and associated maps, saving the decompiled source for later
use.

2. Delete all maps associated with the panel.

3. Delete the panel occurrence itself.

4. Define a new panel with the updated DEVICES specification by using the
decompiled source.

5. Define the associated maps using the decompiled source.

Map Occurrences

Map occurrences stored in the data dictionary associate record elements with panel
field occurrences for existing panel occurrences.

Establishing Map Occurrences

Map occurrences can be established in the data dictionary in any of the following three
ways:

■ By using the CA IDMS online mapping compiler

■ By using the ADD MAP or ADD MAP AUTOPANEL statements of the CA IDMS batch
compiler

■ By using the ADD MAP statement of the CA-IDD DDDL compiler (such maps are

documentational only);

Note: For more information, see the CA IDMS IDD DDDL Reference Guide.

Map occurrences are stored in the DDLDML area of the data dictionary.

The CA IDMS mapping facil ity online and batch compilers can modify or delete map

occurrences from the data dictionary.

Data Dictionary Entities Used by the Mapping Compilers

298 Mapping Facility Guide

Considerations

The following considerations apply to the modification or deletion of map occurrences:

■ Deleting a map occurrence that was generated by batch compiler statements for
manual panel definition does not affect the associated panel occurrence.

■ Deleting a map occurrence that was generated either by either the online or batch

compiler statements for automatic panel definition affects the associated panel
occurrence:

– The associated panel occurrence is deleted unless the panel has been
associated with additional map occurrences.

– The associated panel occurrence is not affected if the panel has been
associated with additional map occurrences.

■ Map occurrences that are created by the online or batch compilers cannot be
deleted by the DDDL compiler; the DDDL compiler can be used only to modify

comments.

Message Occurrences

Message occurrences stored in the data dictionary define informational messages.
These messages can be established only through the ADD MESSAGE statement

submitted to the DDDL compiler. Such messages can be modified at any time through
the DDDL compiler.

Note: For more information, see the CA IDMS IDD DDDL Reference Guide.

Messages stored in the data dictionary can be associated with maps by the mapping

facil ity batch or online compiler. A CA ADS dialog or application program can include
statements that cause a map to be redisplayed due to input errors. Error messages are
displayed for each field in error in the message field (if any) defined for the map. If a
map has no message field, error messages are not displayed and processing continues

(with CA ADS the message is displayed on the CA ADS default message screen).

A message can be specified in a map field occurrence generated by the CA IDMS
mapping facil ity and thus be included in a map load module. This type of messa ge does
not constitute a message occurrence and can only be modified by using the mapping

facil ity online or batch compilers.

Data Dictionary Entities Used by the Mapping Compilers

Appendix A: Integrated Data Dictionary Mapping Entities 299

Table Occurrences

Table occurrences stored in the data dictionary define edit and code tables that are
used by the automatic editing feature of the CA IDMS mapping facil ity. Edit tables
contain l ists of single values and/or ranges of values against which data field values in a

map are verified. Code tables contain l ists of values according to which data field values
are encoded and record element values are decoded.

Types of Tables

Three types of edit and code tables exist in the data dictionary:

■ A built-in table is created by the EDIT/CODE TABLE clause in either the RECORD
ELEMENT or the COBOL substatement of the DDDL RECORD statement. A built-in
table is associated with an individual record element in the dictionary.

■ A linked stand-alone table is created by the DDDL ADD TABLE statement of CA-IDD.

A stand-alone table is not associated with a particular record element in the
dictionary. The term linked indicates that a copy of such a table is incorporated into
the map load module.

■ An unlinked stand-alone table is created and generated by the DDDL ADD TABLE
statement of CA IDD. A stand-alone table is not associated with a particular record
element in the dictionary. The term unlinked indicates that such a table is
dynamically loaded as a separate l oad module at program runtime.

A built-in table is also called a tightly coupled table since the table is associated with an
individual record element in the dictionary. A stand-alone table is also called a loosely
coupled table since the table is not associated with a particular record element in the

dictionary.

Data Dictionary Entities Used by the Mapping Compilers

300 Mapping Facility Guide

Considerations

A table can be modified or deleted at any time by an authorized user once the table is

established in the data dictionary. The following considerations apply to the
modification or deletion of a table occurrence:

■ When a built-in table is modified, any map load modules that use the record

element in which the table is defined must be recompiled. This step is necessary
because an element and its tables are incorporated into map load modules that
specify the element. It is not necessary to recompile dialogs or programs that use
the recompiled maps.

■ When a linked stand-alone table is modified, any maps that use the table must be
recompiled. This step is necessary because a l inked stand-alone table is
incorporated into map load modules that specify the table. It is not necessary to
recompile dialogs or programs that use the recompiled maps.

■ When an unlinked stand-alone table is modified, it is not necessary to recompile
maps that access the table.

Notes:

■ For more information about edit and code tables, see the appendix "Generating
Edit and Code Tables."

■ For more information about the DDDL RECORD or ADD TABLE statements, see the
CA IDMS IDD DDDL Reference Guide.

Map and Table Load Module Occurrences

Establishing Load Modules

Load module occurrences in the data dictionary define modules that can be used by the
CA IDMS/DB central version, CA IDMS, and CA ADS Load modules are stored in the

DDLDCLOD area of the data dictionary. Map, table, and help load modules are
established in the data dictionary in the following ways:

■ The GENERATE clause of the ADD TABLE statement submitted to the DDDL compiler

establishes a loosely coupled edit or code table as a load module in the data
dictionary.

■ The Compile action on the Main Menu establishes a map as a load module in the
data dictionary.

Note: The help load module is created when its corresponding map is compiled.

■ The PROCESS=LOAD statement submitted to the CA IDMS batch utility establishes a
map as a load module in the data dictionary.

Data Dictionary Entities Updated by Mapping Compilers

Appendix A: Integrated Data Dictionary Mapping Entities 301

Considerations

The following considerations apply to the modification or deletion of a load module:

■ Once a load module has been stored in the data dictionary, only a user with ALL
authority can delete the load module or have it punched to a SYSPCH fi le.

■ When a previously loaded map load module is recompiled, the DCMT VARY

PROGRAM map-name NEW COPY command must be used to ensure that the new
version of the module is loaded in either of the following cases:

– The batch util ity is used to recompile the module.

– MAPC is used to recompile the module and the OLM sysgen option NEW COPY

IS N is defined for the online compiler.

For either of the previously specified cases, if the DCMT VARY PROGRAM command
is not used and the previous version of the map load module has not been deleted
or overlayed, the old version of the map load module is used.

■ When a map is recompiled and the sysgen option is NEW COPY IS N, the load

module should also be varied NEW COPY.

■ When a stand-alone edit or code table description is modified, it must be
recompiled by the GENERATE option of the CA-IDD DDDL TABLE statement if the

table load module is to reflect changes in the table definition.

■ When a stand-alone edit or code table load module is modified, the map load
module that uses that table as a l inked table must be recompiled if it is to reflect
changes in the table.

Data Dictionary Entities Updated by Mapping Compilers

At map generation, the batch and online compilers update the dictionary by adding,
modifying, or deleting map occurrences and load modules and by establishing links
between maps and dictionary entities that the maps access. For example, a record is

updated to reflect the use of that record by the map. While the map occurrence exists
in the dictionary, the record cannot be deleted.

The mapping facil ity batch and online compilers establish and maintain map and panel
occurrences by updating the following data dictionary records:

■ MAP-098 occurrences represent map occurrences.

■ MAPRCD-125 occurrences relate CA IDMS maps to a schema or work record that
the map uses.

■ MAPFLD-124 occurrences represent map field occurrences.

■ PANELFLD-121 occurrences represent panel field occurrences.

Data Dictionary Entities Updated by Mapping Compilers

302 Mapping Facility Guide

■ PFLD-DATA-147 occurrences are logical extensions of PANELFLD-121 occurrences
that contain device-dependence tables for panel fields.

■ PROG-051 occurrences represent maps as programs in the data dictionary; a flag in
the record indicates that the record is a map.

■ MODMAP-195 occurrences relate CA IDMS maps to edit and code tables and to

modules containing help text.

These data dictionary records are shown in the following table along with the CA IDMS
statements and operations that update each record in the data dictionary:

Map Compiler Statements

PANEL PFLD MAP MAP MFLD MFLD

AUTO-PANEL
(AUTO-P
ANEL)

MAP-098 X X

MAPPRCD-12
5

 X X

MAPFLD-124 X X

PANEL-118 X

PANELFLD-12
1

 X X

PFLD-DATA-1

47

 X X

PROG-051

DDLDCLOD
AREA

Map Util ity
Load
statement

 X

Online Mapping Compiler Screens

Initial

Definit

Added

Records

Correct

/Incorrect

Field

Select

Field

Edit

Extend Field

Edit

MAP-098 X X X F

Data Dictionary Entities Updated by Mapping Compilers

Appendix A: Integrated Data Dictionary Mapping Entities 303

Initial
Definit

Added
Records

Correct
/Incorrect

Field
Select

Field
Edit

Extend Field
Edit

MAPRCD-125 X X

MAPFLD-124 F X X

PANEL-118 X

PANELFLD-12

1

 X F X X

PFLDDATA-14
7

 X F X X

PROG-051 G

DDLDCLOD
AREA

 G

Notes:

■ F indicates records updated on FINISH or GENERATE.

■ G indicates records updated on GENERATE only.

Note: For more information about data dictionary records, see the CA IDMS Dictionary

Structure Reference Guide.

Critical Changes

304 Mapping Facility Guide

Critical Changes

A critical change is one that requires entities that use or are used by the changed entity
to be recompiled. The date/time stamps will be in conflict until all necessary entities
are recompiled. If the date/time stamp for a map load module conflicts with the
date/time stamp of a dialog or program that uses the map load module, an error results.

What is a Critical Change?

The following types of changes, which are considered critical, update the date/time
stamps for panel and map occurrences:

■ Adding a variable field to a map/panel

■ Deleting a variable field from a map/panel

■ Changing a pageable map to a nonpageable map, or vice versa

■ Changing the version of a record

To update the date/time stamp for the map load module and incorporate the critical
changes that were made, recompile the map load module.

What to Recompile

The following entities must be recompiled when a map load module is recompiled due
to a critical change:

■ CA ADS dialogs (if any) that use the map

■ Application programs (if any) that use the map

The developer can identify the dialogs and programs that have been compiled against a
map by displaying the map occurrence with CA-IDD.

When a developer copies a map and optionally edits existing field definitions for the
newly copied map, it is not considered a critical change. Therefore, the date/time
stamp is the same for the original and the copied map. Alternative maps must all have

the same date/time stamp.

Important: If a developer copies a map and then moves the fields to different positions,
it is considered a critical change.

Critical Changes

Appendix A: Integrated Data Dictionary Mapping Entities 305

Note: For more information about alternative maps, see "Alternative Maps".

IDD produces a l ist of maps that must be recompiled when CA IDD is used to modify a

record such that map recompilation is necessary. The list of maps is followed by a
message that informs the developer if dialogs and programs that use the map need to
be recompiled when the map is recompiled.

IDD modifications and regeneration/recompilation requirements for maps and
programs are summarized in the following table.

Note: For more information about modification of records and record elements, see the
CA IDMS IDD DDDL Reference Guide.

IDD DDDL Modification Map Regeneration
Required for Maps

Dialog/Program Regeneration
Required for Dialog/Programs

PICTURE X X

USAGE X X

REDEFINES X X

OCCURS count X X

SIGN X X

EDIT TABLE X

CODE TABLE X

EXTERNAL PICTURE X

RECORD ELEMENT
specification

 X X

Coordinated Use of the Online and Batch Compilers

306 Mapping Facility Guide

Coordinated Use of the Online and Batch Compilers

Use of the online mapping compiler, the batch compiler, and the batch util ity can be
coordinated to develop and maintain maps. The relationships among the data
dictionary, batch compiler, batch util ity, and the online compiler are i l lustrated in the
following figure:

Coordinated Use of the Online and Batch Compilers

Appendix A: Integrated Data Dictionary Mapping Entities 307

For example, a map developer might perform the following sequence of actions to
coordinate the use of the online compiler, the batch compiler, and the batch util ity:

1. Develop a new map by using the online compiler

2. Revise the map in response to a major revision of a data dictionary entity by
performing the following actions:

a. Obtain map source statements by using the DECOMPILE or TERSE process of
the batch util ity

b. Delete the occurrences and load module for the map by using the online
compiler

c. Update the decompiled source statements, as necessary

d. Compile the updated source code, redefining the map

e. Generate a load module for the updated map by using the LOAD process of the
batch util ity

The following considerations apply to the coordinated use of the mapping compilers:

■ The online compiler can be used to modify or delete a batch-generated map under
the following conditions:

– The name of the map panel is composed of the map name and the suffix

-OLMPANEL.

– The map does not define device groupings.

– The map does not contain device specifications for devices smaller than 24X80.

■ The batch compiler and utility can be used to decompile, revise, and recompile a

map created by the online compiler. Panels created by the online compiler are
processed automatically by the map util ity REPORT and DECOMPILE processes; the
panel need not be explicitly named.

DECOMPILE or TERSE move the definition of a map from one dic tionary to another.

The map can then be recompiled on the target dictionary. A map load module can
be moved from one load area to another (or to a load library) using the DDDL
PUNCH command, but programs and dialogs cannot be compiled against a map for

which there is no source definition in the DDLDML area of the dictionary.

Appendix B: Using Glass TTY Terminals 309

Appendix B: Using Glass TTY Terminals

This appendix discusses about using glass TTY terminals.

This section contains the following topics:

Overview (see page 309)
TTY Environment (see page 310)
Restrictions (see page 312)

Preparing Device Independence Statements (see page 313)
RHDCTTBL JCL and Execution (see page 321)

Overview

Most maps prepared by using the online or batch compiler and util ity can be displayed
on a visual-display teletypewriter terminal (glass TTY). Before attempting to map to or

from a glass TTY, the user must prepare a device independence table for the given TTY,
as described throughout this appendix.

Note: Key names and control codes discussed in this appendix do not apply to all glass

TTY terminals. Documentation of a given TTY terminal should be consulted to verify the
keys and codes used by that terminal.

Types of Tables

Several different device independence tables can be created at a site, as described as
follows:

■ A unique device independence table may have to be created for each type of glass
TTY terminal available at a site. In other cases, a given device independence table
can be used for a group of terminals.

■ Different device independence tables can be created for the same type of TTY if, for

example, some users need to see different attribute byte symbols on their TTY
screens or are accustomed to associating different functions with particular
function keys.

TTY Environment

310 Mapping Facility Guide

At the beginning of a terminal session, the operator loads a specific device
independence table by using the DCUF SET SCREEN statement. The RHDCTAPR module

uses the specified TTY device independence table during runtime.

Note: For more information about the DCUF SET SCREEN statement, see the CA IDMS
System Generation Guide.

Steps

To create a device independence table, the user must perform the following steps:

1. Prepare statements that establish data conversion information for the given TTY.

2. Assemble and link those statements into an RHDCTTBL module and execute the

module.

These steps are discussed separately, following information about the TTY environment
and the restrictions imposed on mapping by TTY limitations.

Note: Throughout this appendix, both 3270- and 3279-type terminals are referred to as

3270-type terminals.

TTY Environment

Cursor Position

Cursor position on mapout is specified in the map-definition. A mapout operation writes

a map to the TTY and positions the cursor as it would be positioned on a 3270-type
terminal.

Attribute Byte

Each field on mapout is physically preceded by an invisible attribute byte. A display

symbol for the attribute byte can be defined in a device independence table. Attribute
byte symbols can be used to mark the location of the field and to inform the operator
whether the field is unprotected, delimited, blank and protected, or in error. Default

attribute byte symbols are presented in the following table:

Default Symbol Meaning

 + Unprotected fields

 ! Blank, protected field

 * Delimited field

 ? A field in error

TTY Environment

Appendix B: Using Glass TTY Terminals 311

The attribute byte symbols that are defined in a device independence table provide the
terminal operator with information about a given field. The symbols that are presented

in this table can be overridden when a device independence table is generated.

Protected Fields

TTY terminals do not physically protect fields; the operator can key characters into any
location on the map. Data keyed into a field that is defined as an UNPROTECTED field is
transmitted and processed as usual. Data is ignored on mapin if it is typed into a field

that is designated as PROTECTED or into a portion of the map on which no fields are
defined.

Keys

Each terminal defines the keys or key sequences that cause the cursor to be moved on
the screen. Terminal-defined key associations must be repeated in a device
independence table that is generated for a given terminal. The key assignments
presented in the following table are typical for some glass TTY terminals.

Documentation for any given terminal should be consulted for the cursor -movement
key assignments that are valid for that terminal.

Typical Cursor Movement Keys

A device independence table specifies the terminal -defined keys or key sequences that
are used to move the cursor on the screen. The TTY key associations presented in this

table are typical of some glass TTY terminals. Documentation for any given terminal
should be consulted for the cursor-movement key assignments that are valid for that
terminal.

Default TTY key Function

<Ctrl>─H Cursor-left

<Ctrl>─J Cursor-down

<Ctrl>─K Cursor-up

<Ctrl>─L Cursor-right

<Ctrl>─<Home> Home

Restrictions

312 Mapping Facility Guide

TTY control keys can be defined to act l ike 3270-type attention keys. Attention key
assignments that are typical for some glass TTY terminals are l isted in the following

table. Documentation for any given terminal should be consulted for the attention key
assignments that are valid for that terminal.

3270 Key Typical function
of the 3270 key

Default TTY Key Statement = hex-value-a

<Enter> Send data to host Return CENTER=0D

<Clear> Return to higher

level

<Ctrl>─Z CCLEAR=1A

<PF1> Help <Ctrl>─F CPF1=06

<PF2> <Ctrl>─I CPF2=09

<PF3> <Ctrl>─R CPF3=12

<PF4> <Ctrl>─S CPF4=13

<PF5> <Ctrl>─T CPF5=14

<PF6> <Ctrl>─U CPF6=15

<PF7> Display previous
page

<Ctrl>─V CPF7=16

<PF8> Display next page <Ctrl>─W CPF8=17

<PF9> Swap screens <Ctrl>─X CPF9=18

<PA1> Refresh screen <Ctrl>─Y CPA1=19

The operator presses a TTY key or key sequence to invoke the 3270-type function
associated with the key in the device independence table. The right-hand column of this
table presents the RHDCTTBL statements that establish these particular key

relationships.

Restrictions

TTY limitations impose the following restrictions on maps:

■ Maps that contain fields that wrap around from the bottom to the top of the screen
are not supported. A map is not a wraparound map if only the cursor returns to the

upper left from the lower right coordinate at runtime.

■ The last position on the screen is unavailable. For example, data cannot be mapped
to or from the position 24,80 on a 24X80 screen.

■ Maps with overlapping fields are not supported.

Preparing Device Independence Statements

Appendix B: Using Glass TTY Terminals 313

The following restrictions should also be noted:

■ TTY keys that do not put control codes into the data stream (such as SHIFT/CLEAR

and CTRL/Q) should not be used, since RHDCTAPR registers us er activity according
to the control codes it receives.

■ The online mapping compiler can only be run at a 3270-type terminal.

■ A map generated through either batch or the online mapping compiler can be
displayed on TTY and 3270-type terminals under the following conditions:

– A map that is wider than a given screen can not display on that screen.

– A map can only display at a terminal if the screen size for the terminal is

specified in the map-definition. A TTY usually has a size of 24X80.

– A map can only display at a TTY terminal if the existing device independence
table for the TTY terminal is specified at the beginning of the terminal session.

Preparing Device Independence Statements

The #TTYDIT macro is the core of the RHDCTTBL util ity used to create TTY tables.
Through it, the user defines the TTY environment and establishes protocol information.

Protocol coding is accomplished by editing the RHDCTTBL program which contains the
#TTYDIT macro. The RHDCTTBL program is delivered with the tape and is installed in the

source library. Assembling the RHDCTTBL program creates the TTY protocol device
independence table. Executing the RHDCTTBL program adds the device independence
table to the load area.

Sample assembly and execution JCL are provided later in this section. Syntax for #TTYDIT

macro statements is shown:

►►───────── #TTYDIT ACTION = ─┬─ ADD ────┬─ NAME = table-name ────────────────►
 ├─ MODIFY ─┤
 └─ DELETE ─┘

 ►──┬───────────────────────────┬───►
 └─ ROW = ──┬─ row-number ─┬─┘
 └─ 24 ◄ ───────┘

 ►──┬──────────────────────────────┬──►
 └─ COL = ──┬─ column-number ─┬─┘
 └─ 80 ◄ ──────────┘

 ►──┬─────────────────────────────────────┬───────────────────────────────────►
 └─ SSIZE = ──┬─ record-size ─┬────────┘
 └─ 900 ◄ ───────┘

 ►──┬────────────────────────────────────┬────────────────────────────────────►
 └─ BUFL = ──┬─ buffer-size ─┬────────┘
 └─ 500 ◄ ───────┘

 ►──┬─────────────────────────────┬───►
 └─ SUPF = ──┬─ hex-value ─┬───┘
 └─ 4E ◄ ──────┘

 ►──┬─────────────────────────────┬───►
 └─ SPRF = ──┬─ hex-value ─┬───┘
 └─ 5A ◄ ──────┘

Preparing Device Independence Statements

314 Mapping Facility Guide

 ►──┬─────────────────────────────┬───►
 └─ DELM = ──┬─ hex-value ─┬───┘
 └─ 5C ◄ ──────┘

 ►──┬─────────────────────────────┬───►
 └─ FERR = ──┬─ hex-value ─┬───┘
 └─ 6F ◄ ──────┘

 ►──┬─────────────────────────────┬───►
 └─ HMRW = ──┬─ row-number ─┬──┘
 └─ 01 ◄ ───────┘

 ►──┬───────────────────────────────┬───►
 └─ HMCL = ──┬─ column-number ─┬─┘
 └─ 01 ◄ ──────────┘

 ►──┬────────────────────┬──►
 └─ KYBD = ──┬─ N ───┬┘
 └─ Y ◄ ─┘

 ►──┬────────────────────┬──►
 └─ ASKI = ──┬─ N ───┬┘
 └─ Y ◄ ─┘

 ►──┬─────────────────────────────┬───►
 └─ ALRM = ──┬─ hex-value ─┬───┘
 └─ 07 ◄ ──────┘

 ►──┬─────────────────────────────┬───►
 └─ UNLK = ──┬─ hex-value ─┬───┘
 └─ 0E ◄ ──────┘

 ►──┬─────────────────────────────┬───►
 └─ CTHM = ──┬─ hex-value ─┬───┘
 └─ 1E ◄ ──────┘

 ►──┬─────────────────────────────┬───►
 └─ UPLN = ──┬─ hex-value ─┬───┘
 └─ 0B ◄ ──────┘

 ►──┬─────────────────────────────┬───►
 └─ DNLN = ──┬─ hex-value ─┬───┘
 └─ 0A ◄ ──────┘

 ►──┬─────────────────────────────┬───►
 └─ FRSP = ──┬─ hex-value ─┬───┘
 └─ 0C ◄ ──────┘

 ►──┬─────────────────────────────┬───►
 └─ BKSP = ──┬─ hex-value ─┬───┘
 └─ 08 ◄ ──────┘

 ►──┬────────────────────────────┬──►
 └─ ESC = ──┬─ hex-value ─┬───┘
 └─ 1B ◄ ──────┘

 ►──┬───────────────────────────────┬───►
 └─ CCLEAR = ──┬─ hex-value ─┬───┘
 └─ 1A ◄ ──────┘

 ►──┬───────────────────────────────┬───►
 └─ CENTER = ──┬─ hex-value ─┬───┘
 └─ 0D ◄ ──────┘

Preparing Device Independence Statements

Appendix B: Using Glass TTY Terminals 315

 ►──┬──────────────────────┬──►
 └─ CPOSn = hex-value ──┘

 ►──┬─────────────────────┬───►
 └─ CPFn = hex-value ──┘

 ►──┬─────────────────────┬───►
 └─ CPAn = hex-value ──┘

 ►──┬──────────────────────┬──►
 └─ PCURn = hex-value ──┘

 ►──┬─────────────────────────────┬───►
 └─ PCLR = ──┬─ hex-value ─┬───┘
 └─ 1A ◄ ──────┘

 ►──┬──────────────────────┬──►
 └─ PDROW = ──┬─ Y ───┬─┘
 └─ N ◄ ─┘

 ►──┬─────────────────────────────┬───►
 └─ ROWDELM = ──┬─ hex-value ─┬┘
 └─ 00 ◄ ──────┘

 ►──┬──────────────────────┬──►
 └─ PDCOL = ──┬─ Y ───┬─┘
 └─ N ◄ ─┘

 ►──┬──────────────────────────────┬──►
 └─ COLDELM = ──┬─ hex-value ─┬─┘
 └─ 00 ◄ ──────┘

 ►──┬────────────────────────┬──►◄
 └─ DECIMAL = ──┬─ Y ───┬─┘
 └─ N ◄ ─┘

#TTYDIT ACTION=ADD/MODIFY/DELETE

Specifies the action to be taken:

■ ADD specifies that a new device independence table is to be created. ADD is

the default specification if no table with the specified name exists.

■ MODIFY specifies that the named device independence table is to be modified.
MODIFY is the default specification if the named table already exists.

■ DELETE specifies that the named device independence table is to be deleted.

NAME= table-name

Specifies a 3-character name suffix for the table. The table is known to CA IDMS as
$TTY@table-name. The default for table-name is ADM.

ROW=row-n

Specifies the number of screen rows on the given type of glass TTY terminal. The
default for row-n is 24.

Preparing Device Independence Statements

316 Mapping Facility Guide

COL=column-n

Specifies the number of screen columns on the given type of glass TTY terminal.

The default for column-n is 80.

SSIZE=record-size-n

Specifies the size, in bytes, of the area in program variable storage that stores all

data to be transmitted. The default for record-size-n is 900.

BUFL=buffer-size-n

Specifies the size, in bytes, of the TTY inbound buffer. The default for buffer-size-n
is 500.

SUPF=hex-value-a

Specifies the character attribute symbol that marks the start of an unprotected field
on the TTY screen. The value for hex-value-a must be supplied in hexadecimal
format. The default for hex-value-a is the plus sign (+); hex 4E.

SPRF=hex-value-a

Specifies the character attribute symbol that marks the start of a blank protected
field on the TTY screen. The default is 5A.

Note: Any character, including a space character, can be specified for SUPF, SPRF,

DELM, and/or FERR. The same character can be specified for more than one
attribute symbol.

DELM=hex-value-a

Specifies the character attribute symbol that marks the location of the delimit

character on a delimited field. The value for hex-value-a must be supplied in
hexadecimal format. The default for hex-value-a is the asterisk (*); hex 5C.

Preparing Device Independence Statements

Appendix B: Using Glass TTY Terminals 317

FERR=hex-value-a

Specifies the character attribute symbol that marks a data field containing erroneous

input (as determined by automatic editing or by a user edit module). The value for
hex-value-a The default for hex-value-a is the question mark (?); hex 6F.

HMRW=row-number-n

Specifies the 2-digit coordinate for the cursor home row. The default for
row-number-n is 01.

HMCL=column-number-n

Specifies the 2-digit coordinate for the cursor home column. The default for

column-number-n is 01.

KYBD=N/Y

Specifies whether the host should send the control code defined by the UNLK
statement to the terminal to unlock the keyboard. Y (the default) specifies that it is

necessary to send an unlock character to the terminal. Any other response
suppresses the unlock code and should be used when the keyboard does not lock or
when the terminal does not recognize an unlock code.

ASKI=N/Y

Specifies whether control codes in subsequent statements specify ASCII or EBCDIC
codes; it is not permissible to mix ASCII and EBCDIC codes in a given table
specification. Y (the default) indicates that all control codes in the table
specification are in ASCII; any other response indicates that all subsequent control

codes are in EBCDIC.

ALRM=hex-value-a

Specifies the hex control code to ring the terminal alarm. The default for
hex-value-a is 07 (the ASCII mnemonic for this code is BEL).

UNLK=hex-value-a

Specifies the hex control code to unlock the keyboard. The default for hex-value-a
is 0E (the ASCII mnemonic for this code is SO).

CTHM=hex-value-a

Specifies the hex control code that returns the cursor to the home position, as
defined by the HMRW= and HMCL= statements presented previously. The default
for hex-value-a is 1E (the ASCII mnemonic for this code is RS).

UPLN=hex-value-a

Specifies the hex control code for upward cursor movement (cursor up). The
default for hex-value-a is 0B (the ASCII mnemonic for this code is VT).

DNLN=hex-value-a

Specifies the hex control code for downward cursor movement (cursor down). The

default for hex-value-a is 0A (the ASCII mnemonic for this code is LF).

Preparing Device Independence Statements

318 Mapping Facility Guide

FRSP=hex-value-a

Specifies the hex control code for forward cursor movement (cursor right). The

default for hex-value-a is 0C (the ASCII mnemonic for this code is FF).

BKSP=hex-value-a

Specifies the hex control code for backward cursor movement (cursor left). The

default for hex-value-a is 08 (the ASCII mnemonic for this code is BS).

ESC=hex-value-a

Specifies the hex control code for the ESC (ESCAPE) key. The default for hex-value-a
is 1B (the ASCII mnemonic for this code is ESC).

CCLEAR=hex-value-a

Specifies the hex control code that functions as the 3270 clear key aid byte. The
default for hex-value-a is 1A (the ASCII mnemonic for this code is SUB).

CENTER=hex-value-a

Specifies the hex control code for the RETURN (ENTER) key. The default for

hex-value-a is 0D (the ASCII mnemonic for this code is CR).

CPOSn= hex-value-a

Where n is an integer from 1 to 80, specifies the hex control codes for absolute
cursor positions. Each code specifies a unique row/column screen location.

CPFn=hex-value-a

Where n is an integer from 1 to 24, specifies hex control codes for control keys. The
control code specified for CPF1 is translated to respond as though PF1 were pressed
on a 3270-type terminal; the control code for CPF2 functions as PF2; the control

code for CPF3 functions as PF3; and so forth.

Default values for hex-value-a are presented in the table located at the end of this
section. To override either a default or user-specified setting, the user must specify
both a new code and a null value for the given setting.

Preparing Device Independence Statements

Appendix B: Using Glass TTY Terminals 319

CPAn=hex-value-a

Where n is an integer from 1 to 3, specifies hex control codes for control keys that

correspond to the PA keys on 3270-type terminals. The default value for CPA1 is
19, which corresponds to CTRL/Y in ASCII. There are no defaults for CPA2 and CPA3.
To override either a default or user-specified setting, the user must specify both a

new code and a null value for the given setting.

PCURn=hex-value-

Where n is an integer from 1 to 3, specifies the hex control codes for the leading
control bytes in the cursor positioning protocol. The value specified for PCUR1 is

the first byte in the protocol; PCUR2 specifies the second byte; and PCUR3 specifies
the third byte (if any). If all three PCUR statements are assigned values, there will
be three leading control bytes and PCURLEN must be set to 3. The default for
PCUR1 is 1B (ESC in ASCII) and the default for PCUR2 is 3D (= in ASCII). There is no

default for PCUR3. The leading position cursor protocol is combined with the
row/column delimit protocol (if any) to position the cursor during execution of the
application program.

PCLR=hex-value-a

Specifies the hexadecimal control code that clears the screen. This is the protocol
transmitted to the TTY terminal. The default for hex-value-a is 1A; (the ASCII
mnemonic for this code is SUB).

PDROW=Y/N

Specifies whether protocol is needed to delimit the row parameter of the position
cursor protocol. N (the default) indicates that protocol is not required.

ROWDELM=hex-value-a

Specifies the hex control code that is the protocol required to delimit the row
parameter of the position cursor protocol. This value is used only if PDROW is

specified as Y. The default for hex-value-a is 00.

PDCOL=Y/N

Specifies whether protocol is needed to delimit the column parameter of the

position cursor protocol. N (the default) indicates that protocol is not required.

COLDELM=hex-value-a

Specifies the hex control code that is the protocol required to delimit the column
parameter of the position cursor protocol. This value is used only if PDCOL is
specified as Y. The default for hex-value-a is 00.

DECIMAL=Y/N

Specifies whether the protocol to position the cursor requires decimal numbers for
the row/column parameters. N (the default) indicates that row/column is specified
in hexadecimal format and that CPOSn values are to be used. Y indicates that

row/column is specified in decimal format and that specified CPOSn values are not
to be used. If Y is specified, the row/column numbers are converted to decimal
numbers from the 3270 data stream by the glass TTY runtime system.

Preparing Device Independence Statements

320 Mapping Facility Guide

Absolute Cursor Positions

Each default hex-value-a value in the following table specifies a single row/column

screen position for internal use. The ASCII val ues presented in this table are typical
absolute cursor position values. Documentation for any given terminal should be
consulted for the absolute cursor position values that are valid for that terminal.

CPOS= hex -value
-a

CPOS= hex
-value -a

CPOS= hex
-value -a

CPOS= hex
-value -a

1 20 21 34 41 48 61 5C

2 21 22 35 42 49 62 5D

3 22 23 36 43 4A 63 5E

4 23 24 37 44 4B 64 5F

5 24 25 38 45 4C 65 60

6 25 26 39 46 4D 66 61

7 26 27 3A 47 4E 67 62

8 27 28 3B 48 4F 68 63

9 28 29 3C 49 50 69 64

10 29 30 3D 50 51 70 65

11 2A 31 3E 51 52 71 66

12 2B 32 3F 52 53 72 67

13 2C 33 40 53 54 73 68

14 2D 34 41 54 55 74 69

15 2E 35 42 55 56 75 6A

16 2F 36 43 56 57 76 6B

17 30 37 44 57 58 77 6C

18 31 38 45 58 59 78 6E

19 32 39 46 59 5A 79 6E

20 33 40 47 60 5B 80 6F

RHDCTTBL JCL and Execution

Appendix B: Using Glass TTY Terminals 321

RHDCTTBL JCL and Execution

RHDCTTBL must be assembled and linked each time it is executed to create or update a
device independence table. The JCL necessary to assemble, l ink, and execute the
RHDCTTBL module is presented as follows:

Note: This is an SMP module. See the section on system modification in the CA IDMS

installation guide for your operating system.

z/OS JCL

// EXEC ASMFCL

//ASM.SYSLIB DD DSN=yourHLQ.CAGJMAC,DISP=SHR

// DD DSN=sysl.maclib,DISP=SHR

//ASM.SYSIN DD *

 rhdcttbl source statements

//LKED.SYSLMOD DD DSN=idms.loadlib,DISP=SHR

//LKED.SYSIN DD *

 INCLUDE SYSLMOD(RHDCTTBL)

 INCLUDE SYSLMOD(IDMSUTIO)

 INCLUDE SYSLMOD(IDMS)

 INCLUDE SYSLMOD(IDMSDATE)

ENTRY TTBLEP1

NAME RHDCTTBL(R)

// EXEC PGM=RHDCTTBL

//STEPLIB DD DSN=idms.custom.loadlib,DISP=SHR

// DD DSN=idms.cagjload,DISP=SHR

//SYSLST DD SYSOUT=A

//sysctl DD DSN=idms.sysctl,DISP=SHR

yourHLQ.CAGJMAC Data set name of CA IDMS macro library

sysl.maclib Data set name of system macro library

idms.loadlib Data set name of CA IDMS load library

sysctl DDname of the SYSCTL fi le

idms.sysctl Data set name of SYSCTL

RHDCTTBL JCL and Execution

322 Mapping Facility Guide

z/VSE JCL

// OPTION CATAL

 PHASE RHDCTTBL,*

// EXEC ASMA90

 rhdcttbl source statements

/*

 INCLUDE IDMSUTIO

 INCLUDE IDMSDATE

 INCLUDE IDMS

 ENTRY TTBLEP1

// EXEC LNKEDT

/*

// UPSI b

// EXEC RHDCTTBL

b

Appropriate UPSI switch, 1-8 characters, if specified in the IDMSOPTI module

z/VM JCL

GLOBAL MACLIB IDMSLIB CMSLIB OSMACRO

FILEDEF TEXT DISK ttbl TEXT a3

ASSEMBLE usersrc (NODECK OBJECT PRINT NOTERM

TXTLIB DEL utextlib ttbl

TXTLIB ADD utextlib ttbl

FILEDEF SYSLST PRINTER

FILEDEF SYSLMOD DISK uloadlib LOADLIB a6

 (RECFM V LRECL 1024 BLKSIZE 1024

FILEDEF objlib DISK utextlib TXTLIB a

FILEDEF objlib1 DISK IDMSLIB1 TXTLIB A2

GLOBAL LOADLIB uloadlib

LKED linkctl (LET LIST MAP XREF NCAL RENT NOTERM PRINT SIZE 512K 64K

linkage editor control statements (linkctl)

INCLUDE objlib (ttbl)

INCLUDE objlib1 (IDMSUTIO)

INCLUDE objlib1 (IDMS)

INCLUDE objlib1 (IDMSDATE)

ENTRY TTBLEP1

NAME RHDCTTBL(R)

FILEDEF CDMSLIB DISK IDMSLIB LOADLIB A6

GLOBAL LOADLIB IDMSLIB

OSRUN RHDCTTBL

RHDCTTBL JCL and Execution

Appendix B: Using Glass TTY Terminals 323

ttbl TEXT a3 Fi lename, fi letype, and fi lemode of the fi le that contains the

generated assembled text

usersrc Fi lename of the fi le containing user source code

utextlib Fi lename of the user text l ibrary

uloadlib LOADLIB a6 Fi lename, fi letype, and fi lemode of the user load library

objlib DDname of the user object l ibrary

objlib1 DDname of the first CA IDMS/DB object l ibrary

linkctl Fi lename of the fi le that contains the linkage editor control
statements

Appendix C: User-Written Edit Modules 325

Appendix C: User-Written Edit Modules

This appendix discusses about user-written edit modules.

This section contains the following topics:

Overview (see page 325)
Coding Considerations (see page 326)
Input Modules for Mapin Operations (see page 330)

Output Modules for Mapout Operations (see page 337)

Overview

Definition

A user-written edit module is a program module that can be used to supplement or
replace automatic editing and error handling on mapin and/or mapout. A user -written

edit module should be used only when it performs an operation that is not avail able
through the automatic editing and error handling features that the CA IDMS mapping
facil ity provides.

Steps

The following steps are involved in writing and using a user-written edit module:

1. Planning and coding the module

2. Preprocessing, compiling, and link editing the module

3. Specifying the module for use by the CA IDMS mapping facil ity

Coding Considerations

326 Mapping Facility Guide

Specifying an Existing Module

An existing module is specified for use during runtime mapping by using either the

online compiler or the batch compiler of the CA IDMS mapping facil ity:

■ The online mapping compiler User-Defined Edit Module screen can be used to
specify a user-written edit module, as explained in the documentation of that

screen in "Batch Compiler Statements".

■ The batch compiler MFLD (for MAP AUTOPANEL) and MFLD statements can be used
to specify a user-written edit module, as explained in the documentation of either
statement in “Batch Compiler Statements".

User-written edit modules must be written in Assembler. Preprocessing, compiling, and
link editing of Assembler modules is detailed in the CA IDMS DML Reference Guide for
Assembler. Planning and coding considerations that apply to all user -written edit
modules are presented as follows, followed by considerations that apply specifically to

either mapin or mapout operations.

Coding Considerations

User-written edit modules for the CA IDMS mapping facil ity are not CA IDMS/DC. exits;
CA IDMS/DC controls the execution of the user-written edit module.

Since user-written edit modules are considered subroutines by Runtime mapping, they
do not receive storage protection in the same manner as application programs. It is
advisable to conform to the register usage demonstrated in this appendix when coding
and testing user edit modules so that user edit modules do not modify system storage

areas.

The following points, which are discussed separately, should be considered when
planning a user-written edit module for mapin or mapout operations:

■ Registers immediately prior to user edit-module execution

■ System macros that must be included in user edit modules

■ System DSECTS that are used by user edit modules

Coding Considerations

Appendix C: User-Written Edit Modules 327

Registers Immediately Prior to User Edit Module

Registers 2-12

The online compiler saves the contents of registers two through twelve in a save area
prior to call ing a user-written edit module. The save area is configured as shown in the

following table. The register values stored in the save area are passed back to the
appropriate registers after the user-written edit module finishes executing.

Word Contents

1 The return value from the #START macro (discussed later in this section);
register 12 points to this word on entry to the user edit module

2 The value from register 11

3 The value from register 12 (not the register 12 value passed to the user edit

module)

4 The value from register 2

5 The value from register 3

6 The value from register 4

7 The value from register 5

8 The value from register 6

9 The value from register 7

10 The value from register 8

11 The value from register 9

12 The value from register 10

13 The address of word 1 of this save area

14 The start of the 18-word save area for the user edit module; register 13
points to this word on entry to the edit module

Registers 1 and 13-15

Registers 1 and registers 13 through 15 are used for communication:

■ R1 contains the address of the parameter l ist passed by Runtime mapping to the
user-written edit module.

■ R13 contains the address of the 18-word save area reserved for the user-written
edit module to use.

■ R14 contains the address to return at end of processi ng.

■ R15 contains the address of the user-written edit module entry point.

Coding Considerations

328 Mapping Facility Guide

System Macros

User-written edit modules should begin with the #START macro and exit with the #RTN
macro. Modules that do not include these macros must include code that performs the
equivalent functions.

The #START and #RTN macros are presented separately here.

#START Macro

The #START macro indicates the start of a routine. #START sets up addressability for the
issuing program, using register 12 as the base register. #START must be the first

instruction in a user-written edit module that uses CA IDMS calling conventions.

Syntax

►►─── label────────┬──►◄
 └─ INTernal ─┘

Label

Specifies a label for the entry point established by the #START macro. It is

necessary to specify a label in a #START instruction for a user-written edit module.

INTERNAL

Prevents the #START macro from generating an entry point. INTERNAL should not

be specified in a user-written edit module.

Sample Instruction

The following sample instruction establishes an entry point with the name XTEP1:

XTEP1 #START

Note: For more information about the #START macro and the MPMODE parameter,
consult the CA IDMS System Operations Guide.

Coding Considerations

Appendix C: User-Written Edit Modules 329

#RTN Macro

The #RTN macro terminates a routine and returns control to the call ing routine. #RTN
loads the return address from the TCE stack into register 14, adjusts register 13 to point
to the top of the currently available position in the stack, and issues a BR 14 instruction.

A sample of the code generated by #RTN is shown:

SH R13,=H'4'

L R13,0(,R13)

L R14,0(,R13)

BR R14

#RTN must be the last instruction executed in a user-written edit module that uses CA
IDMS calling conventions.

Syntax

►►─── label ───►◄

Specification of a label is optional. The following sample instruction establishes the
label RTRN1 for a #RTN macro:

RTRN1 #RTN

System DSECTs

The following table l ists the system DSECTS used during execution of a user -written edit
module and the copy book names used to name the DSECTS:

DSECT Module Copy book name Purpose

IBH COPY #IBHDS Provides the terminal input buffer
header in the buffer chain

MCE COPY #MCHDS Provides the map control element

for the map

MRB COPY #MRBDS Provides the map request block
and map request element for the

map

PTE COPY #PTEDS, #PTXDS Provides the physical terminal
element

Input Modules for Mapin Operations

330 Mapping Facility Guide

The macro library installed with CA IDMS contains all necessary DSECT definitions.

Note: When running your User-Written Edit Modules in SYSTEM MODE, R9 and R10

must point to the TCE and CSA at the time of any DC request. #CSADS must be copied in
order to util ize it.

Note: For more information on DSECT definitions, see the CA ADS DSECT Reference

Guide.

Input Modules for Mapin Operations

When performed on input, a user-written edit module determines how data is prepared
prior to storage. The module receives data from a map field or from automatic editing.
The following considerations affect the coding of input modules:

■ Format of data received and output by input modules

■ Parameters passed to input modules

■ Macros available for input modules

Each of these topics is discussed separately, followed by an example of a user -written
edit module for mapin operations.

Input Modules for Mapin Operations

Appendix C: User-Written Edit Modules 331

Format of Data

A user-written edit module can be performed before, instead of, or after automatic
editing. The point at which a user-written edit module is performed affects the format
of data that the module receives and outputs.

Input Data

The user-written edit module must be prepared to receive data in the format that is
appropriate to the point at which the module executes:

■ When executed before or instead of automatic editing , a user-written edit module

for mapin operations receives data in external format for the fi eld.

■ When executed after automatic editing, a user-written edit module for mapin
operations receives data in internal format for the field.

Output Data

The user-written edit module must output data in the format that is appropriate to the
point at which the module executes:

■ When executed before automatic editing, a user-written edit module for mapin

operations must output data in external format for the field. Runtime mapping
repoints the address of the map field to the first byte, permitting automatic editing
to edit the map field into internal format.

■ When executed instead of or after automatic editing , a user-written edit module for

mapin operations must output data in internal format for the field.

Input Modules for Mapin Operations

332 Mapping Facility Guide

Parameters Passed to Input Modules

Runtime mapping loads the specified user-written edit module from the CA IDMS/DC.
load library. The address words placed in the parameter l ist summarized in the following
table are referenced from CA IDMS/DC off the address passed in register 1.

Address words 9 and 10 are passed in the parameter l ist for online maps only. They are
not passed for fi le maps.

Address word 9 points to the first byte of input data for the field in the work area. If the
user module is used in conjunction with automatic editing, this is the work area that

must be referenced.

■ If the user edit module is executed before automatic editing and the user edit
module changes the input, modifications should be made to the data to which word
9 points This data will be passed to automatic editing.

■ If the user edit module is executed after automatic editing, word 9 points to the
data that is passed by automatic editing

If automatic editing is not used, the user edit module can access data for the field using

either address word 4, which references the data in the data stream, or address word 9,
which references the data after it is moved to the work area. (IBH DSECT)

Address Word Data Element

1 Data field in target data record (output)

2 Header for the next input buffer in the buffer chain (IBH DSECT)

3 End of current input buffer

4 Start of data for the field in the input buffer (data stream)

5 Map Request Element for the field (MRE DSECT)

6 Map Control Element for the field (MCE DSECT)

7 Physical Terminal Element (PTE DSECT)

8 Map Request Block (MRB DSECT)

9 Start of data in the field, in the work area (start of input)

10 Last byte of data for the field, in the work area (end of input)

Note: Address words 9 and 10 are passed in the parameter l ist of online maps only.

Input data can be placed in a single input buffer or can overflow in a chain of

noncontiguous input buffers . The length, in bytes, of the unedited input data is stored in
the MREINLEN field in the Map Request Element (address word 5). The fourth address
word points to the first byte of the input data in the current input buffer.

Input Modules for Mapin Operations

Appendix C: User-Written Edit Modules 333

Macros for Input Modules

The following system macros are available for use in user-written input modules:

Macro Marks a field ...

#SET MRETERR In error by setting the internal MRETERR flag on for the
field.

#SET MRECHNG As changed by setting the internal MRECHNG flag on for the
field. If automatic editing is not enabled, the MRECHNG flag

will not be set; the user must supply code to set and later
test the flag.

#SET MREERAS As erased by setting the internal MREERAS flag on for the
field.

#SET MRETRUN As truncated by setting the internal MRETRUN flag on for
the field.

#SET MRETDIF As containing data that is different than the data in the

record buffer.

Sample Input Module

What the Sample Input Module does

The following sample edit module verifies dates supplied by the terminal operator and,
if necessary, strips out slashes to make the operator's input conform to mmddyy format.
The sample edit module verifies that the date conforms to the following rules:

■ The date must be numeric.

■ The month must be from 01 to 12.

■ If the month is 04, 06, 09, or 11, the date must not be greater than 30.

■ If the month is 02, one of the following two rules must be true:

– If a leap year, the day must not be greater than 29.

– If not a leap year, the day must not be greater than 28.

■ For all other months, the day must not be greater than 31.

Input Modules for Mapin Operations

334 Mapping Facility Guide

If the Date is in Error

If the sample edit module determines that the date is valid, the date is transposed from

mmddyy to yymmdd format for storage. If the date is in error, an error indicator is sent
to the map. The erroneous date appears on the map as ?00000 if the map is
redisplayed to the user for correction.

The following sample edit module is not reentrant.

The #MOPT macro that is included in this sample module generates register equates for
use in coding the module, sets up a CSECT name for the module, and includes the name
of the macro and its date/time stamp in future listings of the module. Use of the

#MOPT macro is optional.

Edit modules can be either SYSTEM or USER MODE programs; the majority are USER
MODE. To specify a user-written edit module mode, use the #MOPT macro. Set the
ENV parameter to USER for the USER MODE program or to SYS or SYSTEM for SYSTEM
MODE. If you do not set the ENV parameter, the defaults imply that it is set to USER.

If a DC request is issued, USER MODE programs need to be link edited with IDMSBALI or
need to issue a #BALI macro within the user-written edit module. If a DC request is not
issued in the program, there is no need to l ink edit the program with IDMSBALI or to

issue a #BALI macro within the code.

Input Modules for Mapin Operations

Appendix C: User-Written Edit Modules 335

You don't need to l ink edit SYSTEM MODE edit modules with IDMSBALI or have the
program contact the #BALI macro. However, the CSA DSECT must be copied into your

code if you issue any DC request. If you issue a DC request, R9 and R10 must point to
the TCE and CSA at the time of the request.

 COPY #CSADS 00000100

 COPY #MRBDS 00000200

 #MOPT CSECT=CSYPDTE0,ENV=SYS 00000300

DTE0NTRY #START MPMODE=ANY 00000400

** 00000500

* R1 POINTS TO AN TEN WORD PARAMETER LIST FOR MAPIN AS FOLLOWS: * 00000600

* * 00000700

* WORD1 0(R1) ───► ADDRESS OF DATA FIELD IN TARGET DATA RECORD * 00000800

* WORD2 4(R1) ───► ADDRESS OF HEADER FOR NEXT INPUT BUFFER * 00000900

* WORD3 8(R1) ───► ADDRESS OF END OF CURRENT INPUT BUFFER * 00001000

* WORD4 12(R1) ───► ADDRESS OF START OF INPUT DATA FOR FIELD * 00001100

* WORD5 16(R1) ───► ADDRESS OF MRE * 00001200

* WORD6 20(R1) ───► ADDRESS OF MCE * 00001300

* WORD7 24(R1) ───► ADDRESS OF PTE * 00001400

* WORD8 28(R1) ───► ADDRESS OF MRB * 00001500

* WORD9 32(R1) ───► ADDRESS OF START OF DATA IN THE WORK AREA * 00001600

* WORD10 36(R1) ───► ADDRESS OF LAST BYTE OF DATA IN THE WORK AREA * 00001700

** 00001800

 L R2,0(R1) GET ADDRESS OF DATA FIELD 00001900

 L R3,32(R1) GET ADDRESS OF INPUT FIELD 00002000

 L R4,16(R1) GET ADDRESS OF MAP REQUEST ELMT 00002100

 USING CSA,R10 BASES DC CSA STORAGE 00002200

 USING MRE,R4 BASES MAPPING MRE BLOCK 00002300

 LH R6,MREINLEN R6 <- LENGTH OF INPUT FIELD 00002400

CHKLEN8 LA R5,8 R5 <- 8 00002500

 CR R5,R6 LENGTH=8? 00002600

 BNE CHKLEN6 NO, CHECK FOR LENGTH=6 00002700

 CLI 2(R3),C'/' FORMAT OF XX/.....? 00002800

 BNE SETERROR NO, SET INPUT ERROR 00002900

 CLI 5(R3),C'/' FORMAT OF XX/XX/..? 00003000

 BNE SETERROR NO, SET INPUT ERROR 00003100

 MVC 2(2,R3),3(R3) MOVE DAYS OVER 00003200

 MVC 4(2,R3),6(R3) MOVE YEAR OVER 00003300

 B CHKNUMS GO CHECK FOR NUMERIC CHARACTERS 00003400

CHKLEN6 LA R5,6 R5 <- 6 00003500

 CR R5,R6 LENGTH=6? 00003600

 BNE SETERROR NO, SET INPUT ERROR 00003700

CHKNUMS LR R7,R3 R7 ─► FIRST CHARACTER OF DATE 00003800

 LA R8,6(,R7) R8 ─► FIRST CHARACTER PAST DATE 00003900

CHKNLOOP CLI 0(R7),C'0' CHARACTER LOWER THAN 'F0'? 00004000

 BL SETERROR YES, SET INPUT ERROR 00004100

 CLI 0(R7),C'9' CHARACTER HIGHER THAN X'F9'? 00004200

 BH SETERROR YES, SET INPUT ERROR 00004300

 LA R7,1(,R7) INCREMENT CHARACTER POINTER 00004400

 CR R7,R8 END OF DATE? 00004500

Input Modules for Mapin Operations

336 Mapping Facility Guide

 BL CHKNLOOP NO, CHECK NEXT DATE CHARACTER 00004600

 CLC 0(6,R3),=C'000000' IS DATE ZERO? 00004700

 BE FLIPDATE YES, MOVE DATE TO USER RECORD 00004800

 CLC 0(6,R3),=C'999999' IS DATE ALL NINES? 00004900

 BE FLIPDATE YES, MOVE DATE TO USER RECORD 00005000

 CLC 0(2,R3),=C'12' MONTH > 12? 00005100

 BH SETERROR 00005200

 CLC 0(2,R3),=C'00' MONTH = 0? 00005300

 BE SETERROR 00005400

 CLC 2(2,R3),=C'00' DAY = 0? 00005500

 BE SETERROR 00005600

 CLC 4(2,R3),=C'00' YEAR = 0? 00005700

 BE SETERROR 00005800

 CLC 0(2,R3),=C'04' APRIL? 00005900

 BE CHK30DAY 00006000

 CLC 0(2,R3),=C'06' JUNE? 00006100

 BE CHK30DAY 00006200

 CLC 0(2,R3),=C'09' SEPTEMBER? 00006300

 BE CHK30DAY 00006400

 CLC 0(2,R3),=C'11' NOVEMBER? 00006500

 BE CHK30DAY 00006600

 CLC 0(2,R3),=C'02' FEBRUARY? 00006700

 BE CHKLEAP YES, CHECK FOR LEAP YEAR 00006800

 CLC 2(2,R3),=C'31' 31 DAYS OR FEWER FOR OTHER MONTHS 00006900

 BH SETERROR IF BAD, SET INPUT ERROR 00007000

 B FLIPDATE MOVE DATE TO USER RECORD 00007100

CHK30DAY CLC 2(2,R3),=C'30' 30 DAYS OR FEWER FOR SOME MONTHS 00007200

 BH SETERROR IF BAD, SET INPUT ERROR 00007300

 B FLIPDATE MOVE DATE TO USER RECORD 00007400

CHKLEAP #GETSTK =(2) GET 2 WORDS OF STORAGE (R11 BASED) 00007500

 PACK 0(8,R11),4(2,R3) PACK THE YEAR 00007600

 CVB R9,0(,R11) R9 <- CONVERTED BINARY YEAR 00007700

 SR R8,R8 R8 <- ZERO 00007800

 LA R15,4 R15 <- 4 00007900

 DR R8,R15 DIVIDE YEAR BY 4 00008000

 LTR R8,R8 ZERO REMAINDER? 00008100

 BZ CHK29DAY YES, CHECK FOR 29 OR FEWER DAYS 00008200

 CLC 2(2,R3),=C'28' 28 DAYS OR FEWER FOR NON-LEAP YEAR 00008300

 BH SETERROR IF BAD, SET INPUT ERROR 00008400

 B FLIPDATE MOVE DATE TO USER RECORD 00008500

CHK29DAY CLC 2(2,R3),=C'29' 29 DAYS OR FEWER FOR LEAP YEAR 00008600

 BH SETERROR IF BAD, SET INPUT ERROR 00008700

FLIPDATE MVC 0(2,R2),4(R3) MOVE YEAR TO USER RECORD 00008800

 MVC 2(4,R2),0(R3) MOVE MONTH AND DAY TO USER RECORD 00008900

 B RETURN RETURN 00009000

SETERROR #SET MRETERR INDICATE INPUT ERROR TO USER 00009600

RETURN #RTN 00009200

 END DTE0NTRY 00009300

Output Modules for Mapout Operations

Appendix C: User-Written Edit Modules 337

Output Modules for Mapout Operations

When performed on output, a user-written edit module determines how data is
prepared prior to mapout. The module receives data from program variable storage or
from automatic editing. The following considerations affect the coding of output
modules:

■ Format of data received and output by output modules

■ Parameters passed to output modules

■ Macros available for output modules

Each of these topics is discussed separately, followed by an example of a user -written

edit module for mapout operations.

Format of Data

A user-written edit module can be performed before, instead of, or after automatic
editing. The point at which a user-written edit module is performed affects the format

of data that is received by and output from the module.

Input Data

A user-written edit module for mapout operations must be prepared to receive data in

the format that is appropriate to the point at which the module executes:

■ When executed before or instead of automatic editing , a user-written edit module
receives data in internal format for the field.

■ When executed after automatic editing, a user-written edit module receives data in

external format for the field. Data is only passed to the user edit module after the
data has been edited and automatic editing criteria indicate that the data is correct.

Output Data

A user-written edit module for mapout operations must output data in the format that
is appropriate to the point at which the module executes:

■ When executed before automatic editing, a user-written edit module must output
data in internal format for the field. Output data must be returned to program
variable storage from which the data originally came (address word 1).

■ When executed instead of automatic editing, a user-written edit module must
output data in external format for the field. Output data must be placed in the
target field in the output buffer (address word 2).

■ When executed after automatic editing, a user-written edit module must output

data in external format for the field (address word 2).

Output Modules for Mapout Operations

338 Mapping Facility Guide

Parameters Passed to Output Modules

Runtime mapping loads a user-written edit module from the CA IDMS/DC. load library.
The address words that are placed in the parameter l ist summarized in the following
table are referenced from CA IDMS/DC off the address passed in register 1.

Address Word Data Element

1 Data field in the application program data record

2 Target field in the output buffer for edited data

3 Map Request Element for the data field (MRE DSECT)

4 Map Control Element for the data field (MCE DSECT)

5 Physical Terminal Element (PTE DSECT)

6 Map Request Block (MRB DSECT)

The online compiler inserts an attribute byte in the first position of the output screen
buffer.

If the user-written edit module is executed instead of or after automatic editing, register

1 must be set to point past the final character of the edited data.

Control returns to runtime mapping after the user edit module and automatic editing (if
executed) finish editing the data. The value in register 1 is used to scan for and eliminate
trail ing blanks from the edited data if requested by either the BACKSCAN option of the

online compiler Field Edit screen or the BACKSCAN clause of the batch mapping MFLD
statement.

Macros for Output Modules

The system macro #SET MRETERR is available for use in user-written output modules.

#SET MRETERR indicates that a field contains incorrect data by setting the internal
MRETERR flag on for the field.

Output Modules for Mapout Operations

Appendix C: User-Written Edit Modules 339

Sample Output Module

The following sample edit module transposes a 6-digit date from yymmdd to mmddyy
format. The #MOPT macro included in this sample module generates register equates
for use in coding the module, sets up a CSECT name for the module, and includes the

name of the macro and its date/time stamp in future listings of the module. Use of the
#MOPT macro is optional.

Edit modules can be either SYSTEM or USER MODE programs; the majority are USER
MODE. To specify a user-written edit module mode, use the #MOPT macro. Set the

ENV parameter to USER for the USER MODE program or to SYS or SYSTEM for SYSTEM
MODE. If you do not set the ENV parameter, the defaults imply that it is set to USER.

If a DC request is issued, USER MODE programs need to be link edited with IDMSBALI or
need to issue a #BALI macro within the user-written edit module. If a DC request is not
issued in the program, there is no need to l ink edit the program with IDMSBALI or to

issue a #BALI macro within the code.

You don't need to l ink edit SYSTEM MODE edit modules with IDMSBALI or have the
program contact the #BALI macro. However, the CSA DSECT must be copied into your
code if you issue any DC request. If you issue a DC request, R9 and R10 must point to

the TCE and CSA at the time of the request.

Output Modules for Mapout Operations

340 Mapping Facility Guide

Note: It is recommended that this module be performed before automaticediting so
that an external picture can be used to insert slashes (/) into the date to make it

mm/dd/yy.

 COPY #CSADS 00000100

 COPY #MRBDS 00000200

 #MOPT CSECT=CSYPDTE2,ENV=SYS 00000300

DTE2NTRY #START MPMODE=ANY 00000400

** 00000500

* R1 POINTS TO A SIX WORD PARAMETER LIST FOR MAPOUT AS FOLLOWS: * 00000600

* * 00000700

* WORD1 0(R1) ───► ADDRESS OF DATA IN USER'S RECORD BUFFER * 00000800

* WORD2 4(R1) ───► ADDRESS OF NEXT POSITION IN OUTPUT BUFFER * 00000900

* WORD3 8(R1) ───► ADDRESS OF MRE * 00001000

* WORD4 12(R1) ───► ADDRESS OF MCE * 00001100

* WORD5 16(R1) ───► ADDRESS OF PTE * 00001200

* WORD6 20(R1) ───► ADDRESS OF MRB * 00001300

** 00001400

 L R2,0(R1) GET ADDRESS OF DATA FIELD 00001500

 L R3,4(R1) GET ADDRESS OF NEXT OUTBUF POS 00001600

 L R4,8(R1) GET ADDRESS OF MRE 00001700

 USING MRE,R4 00001800

 USING CSA,R10 00001900

 #TEST MRETERR,OFF=FLIPDATE ARE WE IN AN ERROR CYCLE ? 00002000

 MVC 0(6,R3),=C'?00000' MOVE ERROR FIELD TO BUFFER 00002100

 B RETURN 00002200

FLIPDATE MVC 0(2,R3),2(R2) MOVE MONTH 00002300

 MVC 2(2,R3),4(R2) MOVE DAY 00002400

 MVC 4(2,R3),0(R2) MOVE YEAR 00002500

 MVC 0(6,R2),0(R3) MOVE REVERSED FIELD INTO BUFFER 00002600

RETURN LA R1,6(R3) INCREMENT USER BUFFER POINTER 00002700

 #RTN 00002800

 END DTE2NTRY 00002900

Appendix D: Generating Edit and Code Tables 341

Appendix D: Generating Edit and Code
Tables

This appendix describes about generating edit and code tables.

This section contains the following topics:

How to Define Tables (see page 341)
Stand-Alone Tables (see page 342)
Built-In tables (see page 350)

How to Define Tables

Edit and code tables used by automatic editing are defined in the data dictionary
through IDD DDDL statements:

■ Stand-alone edit and code tables are defined by the TABLE statement. Stand-alone

tables can be specified for use with any record element at map-definition time.
Stand-alone tables are also called loosely coupled tables.

■ Built-in edit and code tables are defined by substatements of the RECORD
statement. Built-in tables belong to and can be used only for the record with which

they are defined. Built-in tables are also called tightly coupled tables.

Stand-alone and built-in tables are presented as follows.

Note: Edit and code tables can only be associated with a group element if the group is

made up of DISPLAY elements.

Stand-Alone Tables

342 Mapping Facility Guide

Stand-Alone Tables

Overview

Stand-alone tables can be associated with any record element at map-definition time.
Stand-alone tables are typically used to l ist values when:

■ The values are subject to change

■ The values can be used by several record elements

A stand-alone table is defined and generated by the TABLE statement of DDDL. Clauses
in the TABLE statement determine the search technique, arrangement of values, and

the type of values for a table as follows.

Search Technique

The search technique used for the table is determined by the SEARCH IS LINEAR/BINARY

clause, as follows:

Clause Description

SEARCH IS LINEAR Specifies that a l inear search algorithm is used for the

table. The following considerations apply to l inear
searches:

■ A linear search progresses sequentially through the

table; the first value in the table is examined first, the
second value second, and so forth, until either the
target value is found or the end of the table is
reached.

■ The arrangement of values in the table, as established
by the SORTED/UNSORTED parameter discussed later
in this section, determines the order of values in the

table and, thus, the order of the search.

Stand-Alone Tables

Appendix D: Generating Edit and Code Tables 343

Clause Description

SEARCH IS BINARY Specifies that the table is searched with a binary search

algorithm. The following considerations apply to binary
searches:

■ A binary search compares the target value against the

table's midpoint value and determines which half of
the table contains the target value. The selected
portion then is halved in the same way; this process is
repeated until either the target value is found or the

end of the table is reached.

■ When SEARCH IS BINARY is specified, values in the
table are kept in sorted order, regardless of the
SORTED/UNSORTED specification for the table. The

SORTED/UNSORTED parameter is discussed later in
this section.

■ Binary searching cannot be performed on an edit table

that contains ranges, since binary searching requires
all values in the table are the same length.

■ A binary search in a code table can be specified for
either an encoded value or a decoded value (as

specified in the ON ENCODE/DECODE parameter of
the SEARCH IS BINARY clause), but not for both. If
binary searching is performed for encode values,

decode values are searched linearly; if binary
searching is performed for decode values, encode
values are searched linearly.

Arrangement of Values in the Table

The arrangement of values in the table is determined by the TABLE IS
SORTED/UNSORTED clause, as follows:

Clause Description

TABLE IS SORTED Specifies that values in the table are sorted in ascending
order according to the EBCDIC collating sequence. The
following considerations apply:

■ An edit table of ranges is sorted according to the
lowest value in the range

■ A code table is sorted according to its encoded
values

TABLE IS UNSORTED Specifies that values in the table are not sorted; the table
is stored in the order of its appearance in the defining
TABLE statement.

Stand-Alone Tables

344 Mapping Facility Guide

Type of Values in the Table

The type of values in the table is specified by the TABLE DATA IS

NUMERIC/ALPHANUMERIC clause. This specification affects the results of a table
search. For example, the validity of the value 20b (where the b character denotes the
blank character) depends on the type of values specified for the table:

■ The entry is valid if the edit table is an ALPHANUMERIC table of valid values (20b
falls alphabetically in the range 100 through 200)

■ The entry is invalid if the edit table is a NUMERIC table of valid values (20 falls
numerically outside the range 100 through 200)

Where are Load Modules Stored?

Load modules for stand-alone tables are stored in the DDLDCLOD area of the data
dictionary.

Note: For more information about DDDL syntax and syntax rules, see the CA IDMS IDD

DDDL Reference Guide.

Linked vs Unlinked

The map developer specifies whether a stand-alone table is l inked or unlinked when

enabling the table:

■ A linked table is included in the map load module with which it is associated. Map
load modules that use a l inked table must be regenerated when changes are made
to the table.

■ An unlinked table is loaded at runtime by the map load module with which it is
associated. It is unnecessary to regenerate map load modules that use an unlinked
table when the table is changed.

It is often preferable to enable stand-alone tables as unlinked tables since stand-alone
tables are typically used as general -purpose tables for several record elements.

Compiling, Generating, Loading of maps

Linked Stand-alone Tables

The compilation and runtime loading of a map that uses l inked stand-alone tables are
i l lustrated in the following drawing.

A l inked stand-alone table becomes part of a map load module that uses it; the map

load module must be recompiled if a l inked table i s changed.

Stand-Alone Tables

Appendix D: Generating Edit and Code Tables 345

Stand-Alone Tables

346 Mapping Facility Guide

Unlinked Stand-alone Tables

An unlinked stand-alone table is used by a map, but is not part of the map load module;

changes to an unlinked table do not affect map load modules that use the table.

Examples

The following examples demonstrate the use of DDDL statements to define and
generate stand-alone tables.

Example 1

 The following sample TABLE statement adds a stand-alone edit table of valid values to
the dictionary; the search technique is l inear and the table is unsorted:

ADD TABLE DEPTEDIT

TYPE IS EDIT VALID

SEARCH IS LINEAR

TABLE IS UNSORTED

VALUES ARE (SHIPPING PERSONNEL ACCOUNTING

 MARKETING 'OFFICE SERVICES')

GENERATE

 .

Stand-Alone Tables

Appendix D: Generating Edit and Code Tables 347

Example 2

The following sample TABLE statement adds a stand-alone edit table of valid values to

the dictionary; the search technique is binary:

ADD TABLE NAMEEDIT

TYPE IS EDIT VALID

SEARCH IS BINARY

VALUES ARE

 (ADAMS

 AGASSIZ

 BACH

 .

 .

 .

 XERXES

 YEATS

 ZENO)

GENERATE

 .

Example 3

The following sample TABLE statement adds a stand-alone code table to the dictionary;
the search technique is l inear and the table is unsorted:

ADD TABLE DEPTCODE

TYPE IS CODE

SEARCH IS LINEAR

TABLE IS UNSORTED

VALUES ARE

(01 SHIPPING

 02 PERSONNEL

 03 ACCOUNTING

 04 MARKETING

 05 'OFFICE SERVICES'

 00 NOT FOUND

 NOT FOUND MISSING)

GENERATE

 .

Stand-Alone Tables

348 Mapping Facility Guide

Use of the NOT FOUND Condition

The following examples i l lustrate the use of the NOT FOUND condition in the value l ist
of a code table.

Example 4a

When NOT FOUND (a condition to be acted upon) is used in the encode column of a
code table, the following occurs:

VALUES ARE

(100 MATHEMATICS

 200 ENGLISH

 300 SCIENCE

 NOT FOUND INVALID-DEPT-NO)

■ On mapout, NOT FOUND is used as a catchall. At mapout, any value other than
100, 200, or 300 will match the NOT FOUND condition in the table. The

corresponding value, INVALID-DEPT-NO will be moved to the map field.

■ On mapin, NOT FOUND produces automatic editing errors under the following
conditions:

– If the value entered does not match a decoded value and if there is no catchall

value.

– If the value entered in the map field is INVALID-DEPT-NO the corresponding
value is NOT FOUND instead of real value. As a result, the table is re-searched

but no match is found.

Example 4b

When NOT FOUND is used in the decode column of the Code Table's value list, the
following processing occurs:

VALUES ARE

(100 MATHEMATICS

 200 ENGLISH

 300 SCIENCE

 000 NOT FOUND)

■ NOT FOUND is used as a catchall on map-ins. Any value entered in the map field,

other than Mathematics, English, or Science will match the NOT FOUND condition
and its corresponding value, 000, will be moved to the buffer.

■ On mapout, NOT FOUND causes a program to abort as described:

– If a value in the buffer does not match an encoded value or a catchall, the user

program will abort with the message, MAPPING DATA ERROR

– If 000 is the value in the buffer, its corresponding value is NOT FOUND. The
encode values are then re-searched looking for a NOT FOUND condition. When

there is no match, the application aborts.

Stand-Alone Tables

Appendix D: Generating Edit and Code Tables 349

Example 4c

When NOT FOUND is used in both the encode and decode column of a code table's

value list as shown, the following processing occurs:

VALUES ARE

(100 MATHEMATICS

 200 ENGLISH

 300 SCIENCE

 000 NOT FOUND

 NOT FOUND INVALID-DEPT-NO)

■ On mapout and mapin, the NOT FOUND condition is used as a catchall:

– Any value other than ENGLISH, MATHEMATICS, or SCIENCE, that is entered in

the map field will match the NOT FOUND condition in the decoded column and
its corresponding value, 000, will be moved to the buffer on mapin.

– On mapin, if an invalid department number is entered in the map field, a match
is found in the decode column and its corresponding value, NOT FOUND, is

moved to the buffer. The decode column is then re-searched looking for NOT
FOUND. When it is found, its corresponding value, 000, is moved to the map
field.

– Any value other than 100, 200, 300, or 000 will match the NOT FOUND

condition in the encode column, and its corresponding value,
INVALID-DEPT-NO, is moved to the buffer.

– On mapout, if 000 is in the buffer, there is a match in the encode column and

its corresponding value is NOT FOUND. The encode column is then re-searched
looking for NOT FOUND. A match is found and its corresponding value,
INVALID-DEPT-NO, is moved to the map field.

Built-In tables

350 Mapping Facility Guide

Built-In tables

Overview

A built-in table belongs to the record element with which it is generated and can only be
used by that element. Built-in tables typically are used to l ist values in the following

cases:

■ The values are unlikely to change before the record element needs to be modified

■ Few values are included in the table

■ The values are specific to a particular element; the table is unlikely to be needed for

another element

The RECORD ELEMENT or COBOL substatement of the DDDL RECORD statement is used
to add or replace an element definition in a record. When either substatement is

executed, edit and/or code tables (if any) defined in the substatement are generated as
built-in tables for the added or replaced element. Either of the foll owing clauses in a
RECORD ELEMENT or COBOL substatement establishes a built-in table for an element:

■ EDIT TABLE

■ CODE TABLE

Note: For more information about DDDL syntax and syntax rules, see the CA IDMS IDD
DDDL Reference Guide.

Rules for Built-in Tables

The following rules apply to built-in tables:

■ Built-in tables are always searched in a l inear fashion.

■ The values in the table are maintained in unsorted order.

A built-in table is part of each map load module that is associated with the element that

contains the table. A map load module must be regenerated if it is to reflect changes
made to a constituent built-in table.

Built-In tables

Appendix D: Generating Edit and Code Tables 351

Compiling, Generating, and Loading

Built-in Tables

The compilation, generation, and runtime loading of a ma p that uses built-in tables are
i l lustrated in the following figure.

A built-in table is part of a map load module that uses it; the map load module must be

recompiled if a constituent built-in table is changed.

Built-In tables

352 Mapping Facility Guide

Examples

The following examples demonstrate the use of DDDL statements to define and
generate built-in tables.

Example 1

The following sample RECORD ELEMENT statement adds the DAY-EL element to the
DATE-REC record and defines a built-in edit table of valid values for the element:

ADD RECORD DATE-REC

 .

 RECORD ELEMENT DAY-EL

 EDIT VALID TABLE IS (SUNDAY MONDAY TUESDAY

 WEDNESDAY THURSDAY FRIDAY SATURDAY)

 .

Example 2

The following sample RECORD ELEMENT statement adds MONTH-EL element to the
DATE-REC record and defines a built-in code table for the element:

ADD RECORD DATE-REC

 .

 RECORD ELEMENT MONTH-EL

 CODE TABLE IS

 (01 JANUARY

 02 FEBRUARY

 03 MARCH

 04 APRIL

 05 MAY

 06 JUNE

 07 JULY

 08 AUGUST

 09 SEPTEMBER

 10 OCTOBER

 11 NOVEMBER

 12 DECEMBER)

 .

Appendix E: Estimating Pageable Map Storage 353

Appendix E: Estimating Pageable Map
Storage

This appendix describes about estimating pageable map storage.

This section contains the following topics:

Definition (see page 353)
Calculations Used (see page 353)
Estimating the Amount of Storage per Map Page (see page 354)

Determining the Number of Pages per Pageable Map (see page 357)

Definition

A pageable map can map out an unlimited number of variable fields at runtime. A
runtime pageable map often provides more than one page of information. The terminal

operator can page through the map during a paging session to view information tha t
does not fit on the current map page.

Note: For more information on pageable maps, see the chapter "Pageable Maps”.

The amount of storage available during a runtime paging session is specified at system

generation. Storage is allocated dynamically at runtime, as needed. This appendix
presents a method for determining the amount of storage to specify at system
generation. It is advisable to apply this method to several actual or intended pageable

maps, and to specify the largest amount of storage in the system generation program.

Calculations Used

The amount of storage to reserve for a paging session is determined by multiplying the
following values:

■ The amount of storage per map page

■ The maximum number of pages per pageable map

The methods for determining these values are presented separately.

Note: The value obtained for paging session storage must be rounded to the nearest

integer when specified in the OLM statement at system generation.

Estimating the Amount of Storage per Map Page

354 Mapping Facility Guide

Estimating the Amount of Storage per Map Page

Overview of Calculations

The amount of storage, in bytes, for a runtime map page is calculated by multiplying the
following values:

■ The amount of storage per detail occurrence

■ The number of detail occurrences that can be mapped out in the detail area for the
map at runtime

The methods for determining each of the previous values are presented separately
here.

Amount of Storage per Detail Occurrence

The amount of storage per detail occurrence, in bytes, is calculated by adding the
following values:

■ The length (in bytes) of all variable fields in the detail occurrence

■ The number of variable fields in the detail occurrence multiplied by 40 (40 is the
number of bytes of overhead for each variable field)

■ The number of bytes of overhead for the detail occurrence (this value is always 28)

Example

The fields on the following screen were used as the basis for the calculations.

EMPLOYEE PERSONAL DATA

EMPLOYEE NAME:?___________________________________
EMPLOYEE NUMBER:? _____ SOCIAL SECURITY NUMBER:?_____________

PAGE:?____

Estimating the Amount of Storage per Map Page

Appendix E: Estimating Pageable Map Storage 355

The following calculations were used to estimate the amount of storage required for the
screen:

Length of all variable fields 38

Number of variable fields (x40)..........120

Overhead.............................. .. 28

 Storage per detail occurrence..........186

Number of Detail Occurrences per Detail Area

The number of detail occurrences that can be mapped out in the detail area for the map
at runtime is determined by:

1. Dividing the number of screen lines available for the detail area at runtime by the

number of screen lines in the detail occurrence defined for the detail area.

2. Rounding the resulting value down to the next integer if an integer value is not
obtained in the division operation.

Determining the Number of Lines Available at Runtime

The number of screen lines available for the detail area at runtime depends on the
number of l ines that are available on a given terminal screen. To find the number of
l ines available for the detail area at runtime, perform the following steps:

1. Add the number of l ines reserved for the header area to the number of l ines for the
footer area.

2. Subtract the sum from the number of screen lines on the terminal.

Estimating the Amount of Storage per Map Page

356 Mapping Facility Guide

Example

The fields on the following screen were used as the basis for our calculations.

EMPLOYEE PERSONAL DATA

EMPLOYEE NAME:?___________________________________
EMPLOYEE NUMBER:? _____ SOCIAL SECURITY NUMBER:?_____________

PAGE:?_____

How Many Detail Occurrences in a Detail Area?

The following calculations were used to estimate how many detail occurrences can be
mapped out to the detail area at runtime for the map above:

 runtime screen lines...............10

 Lines in detail occurrence........ 2

 Times detail occurrence mapped out...5

The number of screen lines at runtime and the number of l ines in the detail occurrence

determine the number of detail occurrences per detail area. Multiplying this value with
the integer amount of storage per detail occurrence produces the amount of storage
needed for a map page.

Determining the Number of Pages per Pageable Map

Appendix E: Estimating Pageable Map Storage 357

Determining the Number of Pages per Pageable Map

The maximum number of pages that a pageable map can have in a paging session is
calculated by multiplying the following runtime values:

■ The maximum number of times the detail occurrence can be repeated for the entire
map, as determined by the data the pageable map is to retrieve.

For example, a pageable map is designed to display the names and identification
numbers of all employees that belong to the department selected by the terminal
operator at runtime. The maximum number of times the detail occurrence can be
repeated for the map is determined by the number of employees in the largest

available department.

■ The number of times the detail occurrence can be mapped out in the detail area for
the map, as calculated from the following values:

– The number of screen lines available for the detail area at runtime

– The number of screen lines in the detail occurrence

The method for determining the number of times the detail occurrence can be
mapped out in the detail area is presented in Estimating the Amount of Storage per

Map Page earlier in this section.

Important: It is advisable to plan for a reasonable amount of short-term growth when
estimating the number of pages per pageable map.

Appendix F: Alternative Maps 359

Appendix F: Alternative Maps

This appendix describes about alterative maps.

This section contains the following topics:

Overview (see page 359)
Generating Alternative Maps (see page 359)
Generating and Assigning Alternate Map Tables (see page 360)

Overview

Alternative maps can be used in any application in which a dialog or program shows
different copies of the same map to different users. The use of alternative maps
displays an alternative copy of a map to a user if information in the user's signon record
indicates that an alternative copy of maps should be displayed.

Each of the following methods for preparing alternative maps is discussed as follows:

■ Alternative copies of maps are generated by using the CA IDMS mapping facil ity.

■ Tables of alternative maps are generated and assigned to user signon records at

system generation.

Generating Alternative Maps

When you copy an existing map to make an alternative map, only noncritical changes
can be made.

Important: The following are considered critical changes:

■ Adding a variable field

■ Deleting a variable field

■ Changing a nonpageable map to a pageable map, and vice versa

■ Changing record versions

■ Moving fields around on a map

Generating and Assigning Alternate Map Tables

360 Mapping Facility Guide

Steps

The developer can use the online compiler to generate similar copies of a map by

following these steps:

1. Access the compiler

2. Access the Main Menu screen:

■ Specify the pertinent information about the map being created, such as the
name and version number of the map and dictionary

■ Select the ADD option from the action bar at the top of the screen.

■ Specify the name and version number (if necessary) of the map to be copied

■ Indicate whether all record information should be copied, or just the map
layout

3. On the Layout screen, perform any of the following optional steps:

■ Change literal fields as necessary

■ Use the select-field character (default is the percent sign (%)) to select fields (if

any) to which noncritical specifications are made, such as those listed:

– An attribute specification, such as DARK (for fields that should not be
shown to certain users) or PROTECTED (for fields that should not be

altered)

– The name of an edit or code table (particularly useful in a multil ingual
environment)

4. On the Field Definition screens, make noncritical changes to fields as appropriate

5. Return to the Main Menu screen and select the Compile option from the action bar
at the top of the screen to generate data dictionary occurrences

Important: The version numbers of the original map and the copy must be the same.

Generating and Assigning Alternate Map Tables

Alternative map tables are generated and assigned to particular user signon records at
system generation. Alternative maps are not shown to users unless the necessary
information is defined in the system generation program.

The generation of alternative map tables and the assignment of alternative map tables

to users are presented separately as follows.

Generating and Assigning Alternate Map Tables

Appendix F: Alternative Maps 361

Generating Map Tables

The system generation MAPTYPE statement is used to generate an alternative map
table as described:

■ A unique maptype name is specified in the MAPTYPE statement. The maptype

name identifies an alternative map table. For example, the SPANISH maptype name
could be used to identify a table of Spanish-language alternative maps.

■ A table of corresponding map copies is built for the table by using clauses of the
MAPTYPE statement. Each MAP map-name-1 MAPS TO map-name-2 clause in the

MAPTYPE statement associates an original map with an appropriate copy.

Sample Alternative Map Table

ADD MAPTYPE SPANISH

 MAP ENGMAP01 MAPS TO SPNMAP01

 MAP ENGMAP02 MAPS TO SPNMAP02

 MAP ENGMAP03 MAPS TO SPNMAP03

 MAP ENGMAP04 MAPS TO SPNMAP04.

In the previous example, map SPNMAP01 is available for display to a Spanish-speaking
operator when the operator runs a dialog or program that names the ENGMAP01 map.

The use of Wildcards

A generic case can be established in a MAPTYPE statement when the names of
alternative maps are related in a consistent and predictable manner. A single MAP
map-name-1 MAPS TO map-name-2 clause can be used to construct an alternative map
table when a generic case can be named by the clause. The question mark (?) is used as

a mask character when specifying generic map names in a MAPTYPE statement.

For example, the sample SPANISH alternative map table that is constructed in the
previous example can also be constructed by the following sample statement:

ADD MAPTYPE SPANISH

 MAP ENGMAP?? MAPS TO SPNMAP??.

Generating and Assigning Alternate Map Tables

362 Mapping Facility Guide

The sample SPANISH alternative map table built by the previous statement contains the
names of all maps that meet the following criteria:

■ The name of the original copy begins with the characters ENGMAP.

■ The name of the alternative copy is configured as follows:

– The name begins with the characters SPNMAP.

– The name ends with the same final characters that end the name of the
corresponding original map.

■ The date/time stamp is the same for both copies.

For example, map ENGMAP04 would be added to the SPANISH alternative map table

and associated with map SPNMAP04 by the sample MAPTYPE statement. Either of the
following cases would cause ENGMAP04 and its alternative copy to not be added to the
SPANISH alternative map table:

■ The map named SPNMAP04 has a different date/time stamp than ENGMAP04.

■ The alternative copy has been given a name that does not conform to the generic
case.

Note: For more information about the MAPTYPE statement, see the CA IDMS System

Generation Guide.

Assigning Map Tables to Users

A maptype can be assigned to a user at every signon by adding a MAPTYPE command to
the user profile. For example:

■ In the Sysgen Compiler, enter:

ADD MAPTYPE SPANISH

 MAP ENGMAP?? MAPS TO SPNMAP??.

■ In OCF, enter:

CREATE USER PROFILE LMG01_PROFILE

 ATTRIBUTE

 MAPTYPE = SPANISH;

CREATE USER LMG01

 PROFILE LMG01_PROFILE ... ;

Note: For more information about USER PROFILES, see the CA IDMS Security
Administration Guide.

Appendix G: PL/I DML Statements for Pageable Maps 363

Appendix G: PL/I DML Statements for
Pageable Maps

This appendix discusses about PL/I DML statements for pageable maps.

This section contains the following topics:

Overview (see page 363)
DECLARE MAP (see page 364)
MAP IN (see page 365)

MAP OUT (see page 367)

Overview

Pageable maps are defined by using the CA IDMS UCF mapping facil ity. A CA ADS dialog
or program that uses a pageable map must include statements to handle storage and

display of fields on the pageable map at runtime. This appendix presents the PL/I DML
statements that enable a program to use pageable maps.

Notes:

■ For more information about the definition and use of pageable maps, see the

chapter "Pageable Maps."

■ For more information about CA ADS statements for pageable maps, see the CA ADS
Reference Guide.

■ For more information about COBOL DML statements, see the CA IDMS DML
Reference Guide for COBOL and for Assembler DML statements, see the CA IDMS
DML Reference Guide for Assembler.

PL/I DML Statements

PL/I DML statements used for pageable maps are l isted in the following table and

described separately on the following pages:

Clause Use

DECLARE MAP Specifies that mapping mode terminal I/O is being used

and names the map used in the program.

MAP IN Requests a transfer of modified pageable map data to
program storage by specifying either the DETAIL or

HEADER clause.

DECLARE MAP

364 Mapping Facility Guide

Clause Use

MAP OUT Creates detail occurrences for a pageable map and/or

requests display of map pages when the DETAIL or
RESUME clause is specified.

STARTPAGE SESSION Begins a map-paging session and specifies options for

the session.

ENDPAGE SESSION Terminates a map paging session.

Note: For more information about PL/I, see the CA IDMS DML Reference Guide for PL/I.

More information:

Pageable Maps (see page 91)

DECLARE MAP

A DECLARE MAP statement must be included in a PL/I program to name each map used

by the program.

Syntax

►►─── DECLARE (map-name MAP ─┬──────────────────────────┬─) ─────────────────►
 └─ VERSION version-number ─┘

 ►─┬──┬─ ; ─────────────────────────►◄
 └─ TYPE (─┬─ STANDARD ◄ ─┬─) ─┬──────────┬─┘
 └─ EXTENDED ───┘ └─ PAGING ─┘

Map-name MAP

Specifies the name of a predefined map to be used by the program. Map-name

must be a 1- to 8-character name of an existing map load module.

VERSION 1/version-n

Optionally identifies the version of the named map. Version-n is a numeric constant
of the map version desired. The default is 1.

MAP IN

Appendix G: PL/I DML Statements for Pageable Maps 365

TYPE STANDARD/EXTENDED

Specifies the attributes of the named map:

STANDARD (default)

Indicates that map attributes are those available on standard 3270-type terminals.

EXTENDED

Indicates that map attributes include those available on 3279-type terminals.
Mapping features such as color, blinking fields, and reverse video can be used for
applications running under 3279-type terminals.

PAGING

Specifies that the named map is a pageable map.

MAP IN

The MAP IN statement requests a transfer of data to program storage. After completion
of a MAP IN function, the ERROR-STATUS field of the IDMS-DC communications block

indicates the outcome of a pageable-map operation:

Message Problem

4664 The requested node for a header or detail was either not

present or not updated.

4668 No more modified detail occurrences require mapin.

4672 The scratch record containing the requested detail could
not be accessed (internal error).

Syntax

►►─── MAP IN (map-name) ──►

 ►─┬──►─
 └─┬─ IO ─┬────────────────────────┬──
 │ └─ INPUT DATA ─┬─ YES ─┬─┘
 │ └─ NO ──┘
 └─ NOIO DATASTREAM FROM (mapped-data-location) ──────────────────────────

─►───────────────────────────────────────┬────────────────────────────────────►─
 ─────────────────────────────────────┬─┘
 │
 │
 ─┬─ TO (end-mapped-data-location) ─┬─┘
 └─ MAX LENGTH (data-length) ──────┘

 ►─┬────────────────────────────────────┬─────────────────────────────────────►◄
 ├─ detail-specification ─────────────┤
 └─ HEADER ─┬──────────────────────┬──┘
 ├─ PAGE (page-number) ─┤
 └─ MODIFIED ───────────┘

MAP IN

366 Mapping Facility Guide

►►─┬──
 └─ DETAIL ┬ NEXT ◄ ───┬─
 ├─ FIRST ─┬──────────────────────────┬─────────────────────────┤
 │ └─ RETURNKEY (data-field) ─┘ │
 ├─ KEY (key-name) ───┤
 ├─ SEQUENCE_NUMBER (sequence-field) ─┬────────────────────────┬┤
 │ └ RETURNKEY (data-field)─┘│
 └─ RETURNKEY (data-field) ─────────────────────────────────────┘

─►───┬──────────────────────────────────►◄
 ─┬──────────────────────┬─┬────────────┬─┘
 └─ PAGE (page-number) ─┘ └─ MODIFIED ─┘

DETAIL

Specifies that the MAP IN operation is to retrieve data from a modified detail
occurrence (MDT set on). The contents of all data fields in the detail occurrence are

retrieved unless MODIFIED is specified for the MAP IN DETAIL statement; MODIFIED
retrieves only modified fields.

The retrieved detail occurrence is specified by one of the following clauses:

NEXT (default)

Retrieves the next sequential modified detail occurrence. An end-of-data condition

is returned in either of the following cases:

■ No detail occurrences have been modified

■ All modified detail occurrences have been mapped in already

FIRST RETURNKEY IS data-field-name-v

Retrieves the first available modified detail occurrence.

RETURNKEY IS data-field-name-v optionally specifies the name of a variable field in
which to store the 4-byte key (if any) associated with the retrieved detail
occurrence. If no value is associated with the detail occurrence, data-field-name-v
is set to 0. Data-field-name-v must be a 4-byte value, but does not have to be a

binary fullword.

Note: A value is associated with a detail occurrence by using the KEY IS parameter
in a MAP OUT DETAIL command for that occurrence.

An end-of-data condition results if all modified detail occurrences have been
retrieved already.

KEY IS key-v

Specifies the modified detail occurrence to retrieve based on the value associated

with the detail occurrence. (A value is associated with a detail occurrence by using
the KEY IS parameter in the MAP OUT DETAIL command for that occurrence.) Key-v
is the name of a 4-byte field.

A detail-not-found condition is returned in either of the following cases:

■ The specified occurrence is not a modified detail occurrence

■ No detail occurrence with the specified value is found

MAP OUT

Appendix G: PL/I DML Statements for Pageable Maps 367

SEQUENCE_NUMBER IS data-field-name-v RETURNKEY IS data-field-name

Specifies the sequence number of the retrieved data occurrence. Detail occurrences

are built by the application program, and are stored in the sequence in which they
are created. Data-field-name is a binary fullword.

RETURNKEY IS data-field-name-v optionally specifies the name of a variable field to

store the 4-byte value (if any) associated with the retrieved detail occurrence. If no
value is associated with the detail occurrence, data-field-name-v is set to zero.
Data-field-name-v must be a 4-byte value, but does not have to be a binary
fullword.

A detail-not-found condition is returned in either of the following cases:

■ The specified occurrence is not a modified detail occurrence.

■ No detail occurrence with the specified value is found.

■ RETURNKEY IS data-field-name performs the same operation as the NEXT
clause (described previously) and specifies the name of a variable field to store

the 4-byte value (if any) associated with the retrieved detail occurrence. (A
value is associated with a detail occurrence by using the KEY IS parameter in a
MAP OUT DETAIL command for that occurrence.) If no value is associated with

the detail occurrence, data-field-name-v is set to 0. Data-field-name-v must be
a 4-byte value, but does not have to be a binary fullword.

HEADER

Specifies that the MAP IN operation is to retrieve the contents of data fields in the
header and footer areas. The contents of all data fields in the header and footer

areas are retrieved unless MODIFIED is specified for the MAP IN HEADER statement;
MODIFIED retrieves only modified fields.

MODIFIED

Specifies that only modified fields (MDT set on) are retrieved in the MAP IN

operation.

MAP OUT

The MAP OUT statement is used to create or modify detail occurrences for a pageable
map or to request that a map page be transmitted to the terminal screen. After

completion of a MAP OUT function, the ERROR-STATUS field of the CA IDMS/DC
communications block indicates the outcome of a pageable-map operation using the
following error messages:

Message Description

4664 There is no current detail occurrence to be updated (MAP OUT
DETAIL CURRENT only). No action is taken.

MAP OUT

368 Mapping Facility Guide

Message Description

4668 The amount of storage defined for pageable maps at system

generation is insufficient. No action is taken. This and
subsequent MAP OUT DETAIL commands are ignored.

4672 No detail occurrence, footer, or header fields exist to be mapped

out by a MAPOUT RESUME command.

4676 The first screen page has been transmitted to the terminal.

Syntax

►►─── MAP OUT (map-name) ─┬──────────┬──►
 ├─ WAIT ◄ ─┤
 └─ NOWAIT ─┘

 ►──┬───────────────────────┬───►
 ├─ io-specification ────┤
 └─ no-io-specification ─┘

 ►─┬──┬─ ; ───────────────────────►◄
 └─┬─ DETAIL ──┬───────────┬─┬──────────────┬─┬─┘
 │ ├─ NEW ◄ ───┤ └─ KEY (key) ──┘ │
 │ └─ CURRENT ─┘ │
 └─ RESUME ─┬────────────────────────────┬──┘
 └─ PAGE ─┬─ CURRENT ◄ ─────┬─┘
 ├─ NEXT ──────────┤
 ├─ PRIOR ─────────┤
 ├─ LAST ──────────┤
 ├─ FIRST ─────────┤
 └─ (page-number) ─┘

►►─┬──►─
 └ IO ◄ ─┬──┬─────
 └ OUTPUT ─┬──┬─┘
 └ DATA ─┬─ YES ───────┬─┬─────────┬─┬──────────┬─┘
 ├─ NO ────────┤ └ NEWPAGE ┘ └ LITERALS ┘
 ├─ ERASE ─────┤
 └─ ATTRibute ─┘

─►───┬────────►◄
 ─┬───┬─┘
 └─ MESSAGE (message-text) ─┬─ TO (end-message-data-location) ─┬─┘
 └─ LENGTH (message-data-length) ───┘

►►─┬──►─
 └─ NOIO DATASTREAM INTO (mapped-data-location) ────────────────────────────

─►──►─
 ─┬─ TO (end-mapped-data-location) ─┬──
 └─ MAX LENGTH (max-data-length) ──┘

─►───┬────────────────────────────►◄
 ─┬───┬─┘
 └─ RETURN LENGTH INTO (data-actual-length) ─┘

MAP OUT

Appendix G: PL/I DML Statements for Pageable Maps 369

DETAIL

Specifies that the MAP OUT command is to create or modify a detail occurrence for

a pageable map, and optionally associates a numeric key value with the occurrence:

NEW/CURRENT

Specifies whether the detail is to be created or modified:

■ NEW (default) creates a detail occurrence of a pageable map. Detail
occurrences are displayed in the order in which they are created.

■ CURRENT modifies the detail occurrence that was referenced by the most
recent MAP IN DETAIL or MAP OUT DETAIL statement.

KEY IS key-v (optional)

Specifies a value associated with the created or modified detail occurrence. The
value is not displayed on the terminal screen. Key-v is the name of a variable data
field that contains the key of a database record associated with the detail

occurrence.

The specified value is stored as a 4-byte value. When the KEY IS parameter is used
with a MAP OUT DETAIL CURRENT command, the specified value replaces the value

(if any) previously associated with the detail occurrence.

RESUME PAGE IS

Specifies that a page of detail occurrences is mapped out to the terminal from the
session scratch record. Detail occurrences in the scratch record are divided into

pages at runtime based on the number of detail occurrences that can fit on the
screen at one time.

The page of occurrences displayed is determined by the PAGE IS clause:

■ CURRENT (default) specifies that the current page is redisplayed. If no page
has been displayed, the first page of the pageable map is displayed.

■ NEXT specifies that the page that follows the current page is displayed. If no
page follows the current page, the current page is redisplayed.

■ PRIOR specifies that the page that precedes the current page is displayed. If no
page precedes the current page, the current page is redisplayed.

■ FIRST specifies that the first available page of detail occurrences is displayed.

■ LAST specifies that the page of detail occurrences with the highest available
page number is displayed. field in which is stored the binary fullword number
of the displayed page. A page number is stored in the variable field by a
preceding MAP IN PAGE IS data-field-name-v statement that names the same

numeric variable field.

MAP OUT

370 Mapping Facility Guide

STARTPAGE

A STARTPAGE statement initiates the pagi ng session. It can be followed by any number
of DML commands, including MAP IN and MAP OUT commands. The map-paging session
is terminated by an ENDPAGE command (or by another STARTPAGE command, if one is

encountered before an ENDPAGE command).

After completion of a STARTPAGE function, the ERROR-STATUS field of the IDMS-DC
communications block indicates the outcome of a pageable-map operation:

Message Number Description

4604 A paging session was already in progress when this
STARTPAGE command was received. An implied ENDPAGE was
processed before this STARTPAGE was successfully executed.

Syntax

►►─── STARTPAGE session (map-name) ───►

 ►─┬────────────┬─┬──────────────┬─┬────────────┬─┬─────────────────┬─ ; ─────►◄
 ├─ WAIT ─────┤ ├─ BACKPAGE ◄ ─┤ ├─ UPDATE ◄ ─┤ ├─ AUTODISPLAY ◄ ─┤
 ├─ NOWAIT ◄ ─┤ └─ NOBACKPAGE ─┘ └─ BROWSE ───┘ └─ NOAUTODISPLAY ─┘
 └─ RETURN ───┘

STARTPAGE SESSION map-name

Specifies the beginning of a pageable map session, specifies the name of the
pageable map used for the session, and specifies the map paging options in effect

for the session. The STARTPAGE command must precede any commands (such as
MAP IN) that specify operations performed using the map.

NOWAIT/WAIT/RETURN

Specifies the runtime flow of control when the operator presses a control key:

■ NOWAIT (default) specifies that runtime mapping automatically handles all

paging and update transactions. Control is passed to the program only when
neither an update nor paging request is made when the operator presses a
control key.

■ WAIT specifies that runtime mapping automatically handles paging transactions

that do not update data. Control is passed to the program when the operator
presses a key that requests an update or a nonpaging operation.

■ RETURN specifies that runtime mapping does not handle any terminal

transactions in the paging session. Control is passed to the program when the
operator presses a control key.

Runtime mapping does not update program variable storage unless the application
program issues a MAP IN command. In cases where the operator can update data, it

is recommended that WAIT or RETURN be specified for the paging session so that
data can be retrieved as it is updated.

MAP OUT

Appendix G: PL/I DML Statements for Pageable Maps 371

BACKPAGE/NOBACKPAGE

Specifies whether the terminal operator can display a previous map page:

■ BACKPAGE (default) specifies that the operator can display previous pages of
detail occurrences.

■ NOBACKPAGE specifies that the operator cannot display any page of detail

occurrences with a page number lower than the current page number.
Modifications made on a given page of the map must be retrieved by a MAP IN
statement in the application program prior to a MAP OUT RESUME statement.
The previous page of detail occurrences is deleted from the session scratch

record when a new map page is displayed.

UPDATE/BROWSE

Specifies whether the terminal operator can modify map data fields:

■ UPDATE (default) specifies that the terminal operator can modify variable map
fields, subject to restrictions specified for the map either at map-definition

time or by statements in the program.

■ BROWSE specifies that the terminal operator can modify only the page and
response fields (if any) of the map. The MDTs for variable fields on the map can

be set on only according to specifications made either in the map-definition or
by statements in the program.

NOBACKPAGE cannot be assigned if UPDATE and NOWAIT are specified for the session.

ENDPAGE

The ENDPAGE statement terminates a map-paging session, clears the scratch record for
the session, and clears the map paging options for the completed session. A
STARTPAGE/ENDPAGE pair enclose commands that handle a pageable map at runtime.

Syntax

►►─── ENDPAGE session ; ──►◄

Index 373

Index

#TTYDIT macro • 313

$

$PAGE • 92
detail occurrence • 94

@

@ character • 85

<

<F1> • 146
<F10> • 146
<F11> • 146

<F2> • 146
<F3> • 146
<F4> • 146

<F5> • 146
<F6> • 146
<F7> • 146
<F8> • 146

<F9> • 146

3

3270-type terminals • 35

3279-type terminals • 48
map field attributes on • 48

3280-type printers • 154, 207, 236

automatic panel definition • 207, 236

A

action bar • 137, 138, 139, 145

defined • 137
use of • 138
using • 139, 145

ADD verb • 194
batch compiler • 194

adding a field to a map • 218
automatic panel definition • 218

adding a map load module • 274
batch util ity • 274
modifying a map load module • 274

adding a map occurrence • 194

batch compiler • 194
adding maps • 139
ALARM specification • 154, 207, 246

automatic panel definition • 207, 246

online mapping • 154
ALL specification (batch util ity) • 274
alphabetic data • 55

alphanumeric data • 201
allowing input of (batch compiler) • 201

ALPHANUMERIC specification • 201
batch compiler • 201

alternate keys • 146
alternate map support • 360

alternative maps • 33

alternative maps • 41, 43, 304, 359, 360, 362, 363,
364

assigning to users • 362
date/time stamp for • 304

DML commands for • 363
generating • 359
names for • 41
tables • 360

alternative terminal environments • 309
Assembler DMLs • 363
Assembler program • 129

Associated Record screen • 160
changing record version numbers • 160

associated records • 160
dropping • 160

erasing • 160
role name of • 160

associated records specification • 160

online mapping compiler • 160
AT specification • 218, 239

automatic panel definition • 218, 239
attention keys • 310

attribute byte • 48
attribute byte symbol • 310
attributes • 48, 76, 133, 201, 218, 239

at runtime • 133
batch compiler specification of • 201, 218, 239
defaults for l iteral and variable fields • 48
description of • 48

list of • 48
on error-handling • 76, 133

374 Mapping Facility Guide

overriding • 48
when to specify • 48

ATTRIBUTES specification • 218, 239
automatic panel definition • 218, 239

automatic editing • 53, 55, 57, 59, 69, 83, 84, 85,

154, 341, 342
code table • 69, 341
defining criteria for • 55
edit table • 69, 341

effect of GET DETAIL statement on • 84
enabling for a field • 53
enabling for a map • 53, 154
external picture • 59

internal picture • 57
on mapin for non-pageable maps • 83
on mapin for pageable maps • 84

on mapout • 85
automatic field transmission • 81

MDT • 81
automatic panel definition • 199, 206

autopaint, invoking • 160
AUTOPANEL specification • 206

B

BACKSCAN specification • 218
automatic panel definition • 218

batch compiler • 18, 111, 181, 189, 191, 192, 194,

256, 263, 267, 273
action verbs • 194
automatic panel definition • 194

automatic versus manual definition • 192
coding requirements • 192
defining pageable maps • 111
description • 181

device groupings • 256
diagnostic and error messages • 267
directives • 191
JCL • 263

manual panel definition • 199
security • 189
statement sequencing • 192

batch util ity • 181, 183, 274, 279, 282
date/time stamping a map load module • 274
decompiling a map • 274
deleting a map load module • 274

description • 181
generating reports • 274
generating screen images • 274

JCL • 282
purpose of • 183

specifying map occurrences for • 279
specifying panel occurrences for • 279

binary data • 57

BLANK WHEN ZERO • 51, 218
automatic panel definition • 218
interaction with data • 51

BLINK specification • 176, 201

batch compiler • 201
online mapping compiler • 176

BRIGHT specification • 201
batch compiler • 201

browse • 136
builder codes • 290
built-in table • 73, 350

C

changes, deleting • 136
changing a map • 146

use of alternate keys • 146
check protection • 55
checkin/checkout procedures • 136

checkout • 136
listing checked out maps • 136

COBOL DMLs • 363
code table • 69, 341, 348

definition of • 341
purpose of • 69
use of NOT FOUND • 348

color of redisplayed fields • 157
color options, field • 176
color specification • 176, 201

batch compiler • 201

online mapping compiler • 176
comma as decimal point • 154, 206, 236
command line, Main Menu screen • 138
COMP format • 57

defined for an element • 57
COMP-1 format • 57, 60

default external picture for • 60

defined for an element • 57
COMP-2 format • 57, 60

default external picture for • 60
defined for an element • 57

COMP-3 format • 57
defined for an element • 57

COMPILE • 136

Index 375

compiling help text • 114
compiling maps • 136

conflicting attributes • 133
control keys • 310

defined for glass TTY terminals • 310

standards • 39
conventions for naming entities • 41
copying maps • 139
CORRECT FIELDS ATTRIBUTES specification • 207,

246
automatic panel definition • 207, 246

creating for a map • 114
critical changes • 304

cursor • 86, 201, 218, 239, 310
areas of • 92
control keys for TTY terminals • 310

on mapout • 218
redisplayed by automatic editing • 86
skipping over fields • 201, 218, 239

CURSOR/NOCURSOR specification • 218

automatic panel definition • 218

D

DARK specification • 157, 201
batch compiler • 201
MAPC • 157

data dictionary • 290, 291, 297, 300, 301, 304

entities updated by mapping compilers • 301
entities used by mapping compilers • 290
location for map load modules • 300

location for map occurrences • 297
data entry of redisplayed fields,

protecting/unprotecting • 157
data field • 39, 46

field, data • 39, 46, 47
DATA specification • 218

automatic panel definition • 218
date/time stamp • 304

date/time stamping a map load module • 274, 304
batch util ity • 274

DATETIME specification (batch util ity) • 274

DCUF statement • 309
SET SCREEN specification • 309

DECIMAL POINT IS COMMA/PERIOD • 207, 246
automatic panel definition • 207, 246

decimal points, how to handle • 154
DECLARE MAP command (PL/I) • 364
decoding data • 55

DECOMPILE specification (batch util ity) • 274
decompiling a map • 274

defining fields • 165
defining valid input characters for • 55
defining with the online compiler • 136

DELETE • 136
DELETE verb • 194, 197

automatic panel definition • 194
manual panel definition • 197

deleting • 139
changes • 139
maps • 139

deleting a field from a map batch compiler • 197

deleting a map load module • 274
batch util ity • 274

deleting a map occurrence • 194

batch compiler • 194
deleting a record from a map • 160
deleting help text for field • 175
DELIMIT specification • 218, 239

automatic panel definition • 218, 239
designing maps • 39, 162
detail area • 92

detail occurrence • 92
pageable maps, detail area • 92

DETAIL END specification • 218, 239
automatic panel definition • 218, 239

detail occurrence • 99, 105
pageable maps, detail occurrence • 99, 105

DETAIL START specification • 218, 239

automatic panel definition • 218, 239
DETECTABLE specification • 201

batch compiler • 201
device groupings • 255, 256

device independence • 309
devices defined for a map • 154, 207, 236, 239

automatic panel definition • 207
enabling for a map • 154

manual panel definition • 236
DEVICES specification • 194, 207, 236

automatic panel definition • 207

manual panel definition • 236
modifying • 194

DFLD specification • 218
automatic panel definition • 218

DISPLAY • 136
attributes • 133
display attributes • 136, 206

DISPLAY format • 57

376 Mapping Facility Guide

defined for an element • 57
display intensity specification • 165

MAPC • 165
DISPLAY specification • 157, 201

batch compiler • 201

MAPC • 157
DISPLAY WHEN ZERO specification • 206

automatic panel definition • 206
displaying maps • 136

dissociating a record from a map • 160
dollar amounts • 55
dropping field level help • 175
dropping help information • 159

E

edit criteria for a field • 54, 55, 172

EDIT IS specification • 218, 236
automatic panel definition • 218
name assigned to (manual definition) • 236

edit module • 178

name of • 178
when invoked • 178

edit modules • 178, 325

user-written edit modules • 325
edit picture • 165
EDIT specification • 207, 246

automatic panel definition • 207, 246

edit table • 69, 341
definition of • 341

EDIT TABLE IS specification • 218

automatic panel definition • 218
edit table specification • 172
edit tables associated with a field • 172
EJECT directive • 191

element • 57, 183, 292
record element • 55, 60, 63, 73

encoding data • 69
ENDPAGE command (PL/I) • 99, 371

entity names • 19, 41, 159
conventions for naming entities • 41

ERASE EOF key • 51, 81

ERASE specification • 81
ERASE specification (DML) • 86
erasing data • 81
erasing help • 159

error message associated with a field • 172
ERROR MESSAGE specification • 218

automatic panel definition • 218

error messages • 77
ERROR MSG • 165

error-handling • 53, 76, 78, 81, 133
alarm • 81
attributes • 76, 133

correct/incorrect input • 76
defining criteria for • 76
enabling for a map • 53
error messages • 78

external picture • 60, 63
explicitly specified • 55
implicitly built • 60
purpose • 60

using IDD to define • 63
external picture for • 55, 63
external picture for • 55

EXTERNAL PICTURE specification • 218
automatic panel definition • 218

extraneous data • 206, 236

F

field • 46, 47, 57, 132, 201, 218, 239
data • 47, 218

help • 218
literal • 218, 239
map • 46
message • 47, 132, 218

page • 47
protected • 201
required • 218

response • 47, 218
variable • 47, 218

Field Definition screen • 165
automatic editing criteria defined on • 165

field-level help • 113
Field-Level Help Text Definition screen, using to

define field-level help • 119
fields • 168, 172, 176, 178, 179

color options • 176
edit criteria for • 172
edit module, name of • 178

edit module, when invoked • 178
edit tables associated with • 172
error message associated with • 172
highlighting • 176

light pen, detectable with • 176
location of • 179
mapin/mapout, how to handle • 168

Index 377

online mapping compiler • 168
options, device-dependent • 176

outlining • 176
pageable options • 179
read options • 168

reverse numeric • 176
write options • 168

floating dollar sign • 55
footer area • 81, 92

detail area • 92
pageable maps, footer area • 39

FOOTER START specification • 218, 239
automatic panel definition • 218, 239

FOR INPUT specification • 218
automatic panel definition • 218

FOR OUTPUT specification • 218

automatic panel definition • 218
FOR specification • 218, 239, 256, 261

automatic panel definition • 218, 239
use of • 256

foreign language support • 125
format, maps • 162
full-window format • 113

function keys • 138, 146
alternate keys • 146
control keys • 40, 41, 94
Main Menu screen • 138

overview • 146
with layout screen • 146

G

General Options screens • 136
glass TTY terminals • 35, 201, 310, 312, 313, 321

attention keys • 310

attribute byte symbol • 310
batch compiler and util ity usage • 312
control codes • 312
control keys • 310

cursor control keys • 310
description • 35
device independence table for • 313

protected fields • 201, 310
restrictions • 312

H

half-window format • 113
header area • 92, 206, 236, 355

footer area • 92

pageable maps, header area • 81, 92
help • 113, 114, 115, 118, 119, 121, 125, 127, 128,

207, 218, 246
adding using automatic panel definition • 207,

246

associating with a field • 121
associating with map • 115
compiling, how to • 115
connecting message to map • 115

creating • 125
creating for a field • 119, 125
creating for a map • 114, 119
DFLD specifications • 218

display method • 115
displaying a prototype • 118
Field-Level Help Text Definition screen, accessing

• 121
full-window format • 113
half-window format • 113
Help Name field • 115

how to use • 125
load module • 113
message, entering • 114

naming conventions • 115
overview • 113
PF keys, assigning • 115
scrolling, in foreign languages • 125

SHOWMAP, using to display prototype • 118
specifying the field, field-level help • 121
summary of step, field-level help • 119

summary of steps, map-level help • 114
text module • 113
using IDD to create help text • 114

help load module • 113

help text module • 115
specifying • 115

help, field-level • 175
deleting • 175

dropping • 175
IDD module name • 175
load module, name of • 175

window display • 175
help, map-level • 159

dropping • 159
IDD module associated with • 159

specifying name for • 159
window format • 159

hidden specification • 165

MAPC • 165

378 Mapping Facility Guide

highlighting of redisplayed fields • 157
highlighting, field • 176

high-order truncation • 55

I

ICTL directive • 191
id=viiM.MDT • 154
id=vinq.inquiry of map (runtime) • 130
id=vmo.modification of map (runtime) • 130

IDD • 304
IDD module name, field help • 175
image • 136
IMAGE specification (batch util ity) • 274

INCORRECT FIELDS ATTRIBUTES specification • 207,
246

automatic panel definition • 207, 246

initiating an online compiler session • 136
input characters • 55
input error • 86
inquiry of map (runtime) • 130

intensity of redisplayed fields • 157
internal format • 55, 57
internal picture • 57

INTERNAL specification • 165, 218
automatic panel definition • 218
online mapping compiler • 165

ISEQ directive • 191

J

JCL • 263, 264, 266, 283, 284, 285, 321, 322, 325
batch compiler (CMS) • 266

batch compiler (VSE/ESA) • 264
batch compiler (z/OS) • 263
batch util ity (z/OS) • 283

batch util ity (z/VM) • 285
batch util ity (z/VSE) • 284
device independence tables (z/OS) • 321
device independence tables (z/VM) • 322

device independence tables (z/VSE) • 322
RHDCMAP1 (CMS) • 266
RHDCMAP1 (VSE/ESA) • 264

RHDCMAP1 (z/OS) • 263
RHDCMPUT (z/OS) • 283
RHDCMPUT (z/VM) • 285
RHDCMPUT (z/VSE) • 284

RHDCTTBL (z/OS) • 321
RHDCTTBL (z/VM) • 322
RHDCTTBL (z/VSE) • 322

justify data specification • 168
online mapping compiler • 168

JUSTIFY specification • 218
automatic panel definition • 218

justifying input • 175, 206

L

Layout screen • 146
function keys used with • 146

layout standards • 43
layout, maps • 162
light pen • 157, 176, 201

field detectable with • 176, 201

use with redisplayed fields • 157
listing checked out maps • 136
LITERAL specification • 218

automatic panel definition • 218
load module • 20, 30, 55, 111

map load module • 206
load module, field help • 165

LOCK/UNLOCK KEYBOARD specification • 207, 246
automatic panel definition • 207, 246

logical record • 206

role names for records • 206
loosely coupled table • 290

stand-alone table • 290, 342
low-order truncation • 55

M

Main Menu screen • 111, 137, 138
map • 207, 246

help • 207, 246
map field occurrence • 181, 199

automatic versus manual definition • 199

MAP IN command (PL/I) • 99, 367
map inquiry • 130

inquiry of map (runtime) • 130
map load module • 274, 300, 306, 309

generating (batch util ity) • 274
location in data dictionary • 300
migrating to another dictionary • 306

report for • 274
map modification • 131

modification of map (runtime) • 130
map naming conventions • 39, 41, 115

conventions for naming entities • 39, 41
map occurrence • 183, 192, 207, 246, 297, 309

automatic and manual panel definition • 192

Index 379

automatic versus manual definition • 192
defining (batch compiler) • 246, 273

name assigned to (batch compiler) • 207, 246
overview • 297
purpose of • 183

MAP OUT command (PL/I) • 367
map positioning • 261
map read/write options specification • 168

online mapping compiler • 165

MAP statement (batch compiler) • 207, 246
automatic panel definition • 207
manual panel definition • 246
name assigned to (automatic definition) • 207

MAP statement (batch util ity) • 274, 280
map util ity • 110, 181, 274, 306

batch util ity • 274, 282

mapin operation • 82, 129, 330
Assembler program • 129
automatic editing • 82
COBOL program • 129

PL/I program • 129
user-written edit module • 330

map-level help • 113

Map-level Help Text screen • 136
mapout attributes • 85, 206, 207

attributes • 48, 133
mapout operation • 85, 86, 129, 154, 201, 207, 218,

239, 246, 337
automatic editing • 85
COBOL program • 129

map field characteristics defined for • 218, 239
MDT set • 154
MDT set (batch compiler) • 201, 207, 246
printing screen on • 154

unlocking keyboard on • 207, 246
user-written edit module • 337

maps • 139, 154, 160, 162, 165, 181
adding • 139

automatic editing, specifying • 154
autopaint, invoking • 160
browsing • 139

changes, deleting • 139
checked out, displaying a l ist of • 139
checking out • 139
compile, viewing messages from • 139

compiling • 139
copying • 139
decimal point, how to handle • 154

defining fields • 165, 181

deleting • 139
designing • 162

device information, specifying • 154
display options, specifying • 154
displaying • 139

dropping an associated record • 160
effects of screen size on design • 162
erasing an associated record • 160
format • 162

layout • 162
listing checked out maps • 139
message prefix, specifying • 154
previewing • 139

print options, specifying • 154
record, version number • 160
records associated with • 160

redisplayed fields • 157
releasing • 139
role name of record • 160
schema associated with • 160

statistics, summary of • 139
title, specifying • 154

MDT • 154, 165, 206, 236

MDT specification • 201
batch compiler • 201

MDT, set/reset • 157
message • 139, 154

compile • 139
error messages • 78, 267, 268
occurrences • 298

specifying prefix for • 154
message field • 298

field, message • 39, 132
MESSAGE LENGTH specification • 218

automatic panel definition • 218
MFLD specification • 218

automatic panel definition • 218
MFLD statement • 218

automatic panel definition • 218
migrating a map load module to another dictionary •

306

modification of map (runtime) • 130
modified data tag • 154

MDT • 154, 165, 206, 236
modified data tag, set/reset • 157

MODIFY verb • 194
automatic panel definition • 196
manual panel definition • 236

modifying a DEVICES specification • 194

380 Mapping Facility Guide

modifying a field (batch compiler) • 194, 196
modifying a map occurrence (batch compiler) • 196

N

name • 207, 246

conventions for naming entities • 41, 114
map occurrence • 207, 246

name assigned to (manual definition) • 236
NEWPAGE specification (DML) • 86

NOALARM specification • 207, 246
automatic panel definition • 207, 246

NOBLINK specification • 201
batch compiler • 201

NOCOLOR specification • 201, 206
batch compiler • 201

NODELIMIT specification • 218, 239

automatic panel definition • 218, 239
NOEDIT specification • 207, 218, 246

automatic panel definition • 207, 218, 246
external picture • 218

NOMDT specification • 201
batch compiler • 201

NONDETECTABLE specification • 201

batch compiler • 201
NONPAGEABLE specification • 207, 246

automatic panel definition • 207, 246
NONRESIDENT specification • 207, 246

automatic panel definition • 207, 246
NOPRT specification • 207, 246

automatic panel definition • 207, 246

NORESET MODIFIED specification • 207, 246
automatic panel definition • 207, 246

normal specification • 165
MAPC • 165

NORMAL VIDEO specification • 157, 201
batch compiler • 201
MAPC • 157

NOSKIP specification • 218, 239

automatic panel definition • 218, 239
NOT FOUND • 348, 350

examples of use • 348

NOUNDERSCORE specification • 201
batch compiler • 201

NOWAIT specification (pageable maps) • 101
numeric data • 55, 63, 201

restricting input to (batch compiler) • 201
NUMERIC specification • 201

batch compiler • 201

O

OCCURS specification • 218, 239
automatic panel definition • 218, 239

OCTL directive • 191

ON EDIT ERROR specification • 207, 246
automatic panel definition • 207, 246

online compiler • 136, 137
action bar, defined • 137

initiating an online compiler session • 136
queue record • 136
screens, description of • 137
sequencing through screens • 137

OPTIONAL specification • 218
automatic panel definition • 218

options for field, device-dependent • 176

ORIGIN FOR specification • 207, 246, 261
automatic panel definition • 207, 246
usage • 261

outlining, field • 176

P

PAD CHAR • 165

PAD CHAR (MAPC) • 114, 119
pad character • 73, 165, 206
pad specification • 168

online mapping compiler • 168

pageable maps • 44, 111, 179
defining specifications for • 111
defining with batch compiler • 111
format for • 44

using Pageable Options screen to specify
boundaries • 179

PF keys for help, assigning • 114

PFLD specification • 239
automatic panel definition • 239

PFLD statement (batch compiler) • 239
PL/I DMLs • 363

positioning a map on a screen • 261
prefixes, messages • 154
previewing maps • 136

print options • 154
printing screen on mapout • 154
PROCESS statement (batch util ity) • 274
program runtime system • 94

program variable storage • 82, 168, 218
automatic transmission to • 168
automatic transmission to (batch compiler) • 218

on mapin • 82

Index 381

PROTECTED specification • 201
batch compiler • 201

protecting a field from operator modification • 201
purpose of • 55

Q

queue records used by the online compiler • 136

R

read options for fields • 165
record • 160, 207, 246, 294, 296

changing version numbers • 160
name assigned to (MAPC) • 296

occurrences in data dictionary • 294
overview • 296
role name (batch compiler) • 207, 246

role names • 160
specifying • 160
specifying (batch compiler) • 207, 246

record element • 218, 292

associating with a map field (batch compiler) •
218

occurrence in data dictionary • 292

record element format • 165
RECORD ELEMENT substatement • 63

using to define an external picture • 63
record occurrences • 294

redisplay of map • 85
redisplayed fields • 157

color of • 157
data entry, protecting/unprotecting • 157

detectable with l ight pen • 157
highlighting of • 157
intensity of display • 157

MDT, set/reset • 157
Tab, use with • 157
type, numeric/alphanumeric • 157

releasing a map • 136

REPORT specification (batch util ity) • 274
REQUIRED specification • 218

automatic panel definition • 218

RESET MDT • 154
RESET MODIFIED specification • 207, 246

automatic panel definition • 207, 246
RESIDENT specification • 207, 246

automatic panel definition • 207, 246
RESPONSE LENGTH specification • 218

automatic panel definition • 218

RETAINED WHEN NULL specification • 218
automatic panel definition • 218

RETURN specification (pageable maps) • 99
REVERSE NUMERIC specification • 189, 218

batch compiler • 189, 218

reverse numeric, field • 165, 176
reverse specification • 176

online mapping compiler • 176
REVERSE VIDEO specification • 157, 201

batch compiler • 201
MAPC • 157

RHDCMAP1 • 263
RHDCMPUT • 283

RHDCTTBL module • 321
ROLE NAME • 160
role names for records • 160, 207, 218, 246

automatic panel definition • 207, 218, 246
online mapping compiler • 160

ROLENAME specification • 207, 246
automatic panel definition • 207, 246

runtime considerations • 127

S

schema associated with a map • 160
screen painting, automatic • 160
screen size • 162

effects on design • 162

security • 187, 189
batch compiler • 187, 189
map level • 189

SHOWMAP • 114, 124
signed data • 55
SIGNON statement (batch compiler) • 189
SKIP specification • 201

batch compiler • 201
SOUND ALARM/NOALARM specification • 207, 246

automatic panel definition • 207, 246
SPACE directive • 191

specifying name for map-level help • 159
stand-alone table • 342
STARTPRT specification • 207, 246

automatic panel definition • 207, 246
statement sequencing • 193

automatic panel definition • 193
manual panel defini tion • 193

SWITCH • 136
system generation options • 38
SYSTEM IS specification • 207, 246

382 Mapping Facility Guide

automatic panel definition • 207, 246

T

Tab, use with redisplayed fields • 157
table • 69, 73, 299, 300, 309, 341, 342, 350, 353,

359, 360
alternative map • 360
built-in • 73, 350
calculating storage for • 353

code • 69, 341
device independence • 309
edit • 69, 341
load module • 300

occurrences • 299
stand-alone • 73, 342

task codes, switching between • 136, 145

task id • 145
tasks, transferring • 136
templates for maps • 39, 43
terminal alarm • 76, 81, 154

text • 114
help • 114

trail ing blanks • 165

transfer • 136, 139
from task to task • 139
SWITCH • 136

transfer control facil ity • 136

translation character • 85

U

underline specification • 176

online mapping compiler • 176
UNDERSCORE specification • 201

batch compiler • 201

unlocking the keyboard on mapout • 206, 236
UNPROTECTED specification • 165, 201

batch compiler • 201
online mapping compiler • 165

update request • 101
USAGE clause • 55
USAGE IS specification • 218

automatic panel definition • 218
USER clause (batch compiler) • 189
user-written edit modules • 218, 330, 333, 337, 339

mapin module • 330

mapin operation (batch compiler) • 218
mapout module • 337
mapout operation (batch compiler) • 218

routine to transpose dates • 333, 339
USING RECORDS specification • 207, 246

automatic panel definition • 207, 246

V

VALUE IS specification • 218, 239
automatic panel definition • 218, 239

verbs for batch compiler • 194
version numbers for records • 160

W

WAIT specification (pageable maps) • 99
window display, field help • 175

window format for help • 159
write options for fields • 165

Z

ZERO • 51, 73
interaction with code table • 73
interaction with data • 51

ZERO (MAPC) • 168
prompt • 168

ZEROED WHEN NULL • 51, 73, 85
interaction with code table • 73

interaction with data • 51, 85
specification • 51

ZEROED WHEN NULL specification • 218

automatic panel definition • 218

	CA IDMS Mapping Facility Guide
	CA Technologies Product References
	Contact CA Technologies
	Contents
	1: Introduction
	Syntax Diagram Conventions

	2: Introduction to the Mapping Facility
	Overview
	What is the Mapping Facility?
	Online and Batch Capabilities
	Input/Output Operations
	What's in this Chapter?

	The Online Compiler
	How Does it Work?
	What Functions can it Perform?
	A Sample Session

	The Batch Compiler and Utility
	Automatic Editing and Error Handling
	Alternative Maps
	Terminals Supported by the Mapping Facility

	3: Map Design Considerations
	Overview
	Preliminary Information Gathering
	Application-specific Information
	Site-specific Information

	Designing Maps
	General Considerations
	Control Key Standards
	Naming Conventions
	Layout and Display Standards
	Pageable Map Considerations

	Designing Map Fields
	Types of Fields
	Attributes for Fields

	4: Automatic Editing and Error Handling
	Automatic Editing
	Error Handling
	Enabling Automatic Editing and Error Handling
	Overview
	Default Values
	Map-level Editing
	Field-level Editing

	Automatic Editing Criteria
	Overview
	Display Characteristics
	Data Conversion
	Input Verification
	Internal Pictures
	External Pictures
	Implicit External Pictures
	Explicit External Pictures

	Edit and Code Tables
	Overview
	Values in Edit and Code Tables
	Edit Table Values
	Code Table Values

	Enabling tables

	Error-Handling Criteria
	Attributes for Correct and/or Incorrect Input
	Error Messages
	Alarm Status on Input Error

	Automatic Editing at Runtime
	Mapin Operations
	Automatic Editing on Mapin for Non-pageable Maps, Headers, and Footers
	Automatic Editing on Mapin for Pageable Maps

	Mapout Operations

	Error Handling at Runtime

	5: Pageable Maps
	Overview
	Areas of Pageable Maps
	Map-Paging Sessions
	Sequence of Events in a Map-paging Session

	Dialog and Program Operations
	Map-Paging Session Options
	Putting Options into Effect
	Specifying Paging and Update Requests
	Backpaging Capability
	Paging Mode

	Building and Displaying Fields
	Building Fields
	Displaying Fields
	Summary of Commands

	Retrieving Modified Data

	Runtime Considerations
	Creating Pageable Maps
	Overview
	Using the Online Compiler
	Using the Batch Compiler

	6: The Help Facility
	Overview
	Terminology
	Creating Map-Level Help
	Creating the Text of the Help Message
	Associating the Help Text with a Map
	Testing the Results

	Creating Field-Level Help
	Creating the Text of the Help Message
	Associating the Help Text with a Field
	Testing the Results

	Using the Help System
	Overview

	7: Runtime Considerations
	Overview
	Mapout and Mapin Operations
	CA ADS Dialogs
	Other Languages

	Map Inquiry and Modification
	Statements
	Temporary VS Permanent Modifications
	Write Control Characters (WCC)

	Message Field Considerations
	Attributes

	8: Online Compiler Overview
	Overview
	Accessing the Online Compiler
	Using the Online Compiler
	Overview
	What Screens are Used?
	Using the Main Menu Screen
	Using the Action Bar
	Overview of a session
	Using the function keys
	How to Move, Copy, and Delete Text

	9: Online Mapping Compiler Reference
	Overview
	The Main Menu Screen
	General Options--Page 1
	General Options--Page 2
	Map-level Help Text Definition
	Associated Records
	Layout
	Field Definition Screens
	Field Definition
	Map Read/write Options
	Additional Edit Criteria
	Field-level Help Text Definition
	Device-dependent Options
	User-defined Edit Modules
	Pageable Options

	10: Batch Compiler and Batch Utility Overview
	Overview
	Compiler and Utility Functions
	Panels and Maps

	11: Batch Compiler Coding Considerations
	Overview
	Compiler Security
	Security at the Compiler Level
	Security at the Map Level

	Compiler Signon
	Compiler Directives
	Compiler Statement Coding Requirements
	Compiler Statement Sequencing
	MAP AUTOPANEL and MFLD Statement Sequencing
	PANEL, PFLD, MAP, and MFLD Statement Sequencing

	Compiler Action Verbs
	The MODIFY Verb
	The DELETE Verb

	12: Batch Compiler Statements
	Overview
	What's in this Section?

	Attributes List
	How to use the Attributes List

	Statements for Automatic Panel Definition
	Overview
	MAP AUTOPANEL Statement Syntax
	Parameters
	Examples

	MFLD Statement Syntax
	Parameters
	Examples

	Statements for Manual Panel Definition
	PANEL Statement Syntax
	Examples

	PFLD Statement Syntax
	Examples

	MAP Statement Syntax

	13: Batch Compiler Execution and JCL
	Overview
	Special Coding Features of the Batch Compiler
	Defining Versions of Maps for Different Devices
	Positioning Maps on Different Devices

	Batch Compiler JCL
	z/OS JCL
	z/VSE JCL
	z/VM JCL

	Compiler Reports and Messages
	Diagnostic Messages
	Error Messages

	14: Batch Utility Reference
	Overview
	Batch Utility Statements
	Batch Utility Statements
	PANEL Statement
	MAP Statement
	Syntax MAP Statement
	Parameters
	Considerations

	Batch Utility JCL
	z/OS JCL
	z/VSE JCL
	z/VM JCL
	Sample JCL

	A: Integrated Data Dictionary Mapping Entities
	Overview
	Data Dictionary Entities Used by the Mapping Compilers
	Builder Codes
	Element Occurrences
	Record Occurrences
	Panel Occurrences
	Map Occurrences
	Message Occurrences
	Table Occurrences
	Map and Table Load Module Occurrences

	Data Dictionary Entities Updated by Mapping Compilers
	Map Compiler Statements
	Online Mapping Compiler Screens

	Critical Changes
	Coordinated Use of the Online and Batch Compilers

	B: Using Glass TTY Terminals
	Overview
	TTY Environment
	Restrictions
	Preparing Device Independence Statements
	RHDCTTBL JCL and Execution
	z/OS JCL
	z/VSE JCL
	z/VM JCL

	C: User-Written Edit Modules
	Overview
	Coding Considerations
	Registers Immediately Prior to User Edit Module
	System Macros
	#START Macro
	#RTN Macro

	System DSECTs

	Input Modules for Mapin Operations
	Format of Data
	Parameters Passed to Input Modules
	Macros for Input Modules
	Sample Input Module

	Output Modules for Mapout Operations
	Format of Data
	Parameters Passed to Output Modules
	Macros for Output Modules
	Sample Output Module

	D: Generating Edit and Code Tables
	How to Define Tables
	Stand-Alone Tables
	Overview
	Examples
	Use of the NOT FOUND Condition

	Built-In tables
	Overview
	Examples

	E: Estimating Pageable Map Storage
	Definition
	Calculations Used
	Estimating the Amount of Storage per Map Page
	Amount of Storage per Detail Occurrence
	Number of Detail Occurrences per Detail Area

	Determining the Number of Pages per Pageable Map

	F: Alternative Maps
	Overview
	Generating Alternative Maps
	Generating and Assigning Alternate Map Tables
	Generating Map Tables
	Assigning Map Tables to Users

	G: PL/I DML Statements for Pageable Maps
	Overview
	DECLARE MAP
	MAP IN
	MAP OUT
	STARTPAGE
	ENDPAGE

	Index

