CA IDMS™ Dictionary Loader

Dictionary Loader User Guide
Release 18.5.00

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for yourinformational purposes onlyandis subject to change or withdrawalby CAatanytime. This
Documentationis proprietaryinformation of CAand maynotbe copied, transferred, reproduced, disclosed, modified or
duplicated, inwhole orin part, without the prior written consent of CA.

If you are a licensed user of the software product(s) addressed in the Documentation, you may print or otherwise make
available a reasonable number of copiesof the Documentation forinternal use by you and your employeesin connection with
thatsoftware, provided that all CA copyright notices and legends are affixed to each re produced copy.

The rightto print or otherwise make available copiesof the Documentation is limited to the period during which the applicable
license for such software remains in fullforce and effect. Should the license terminate foranyreason, itis your responsibility to
certifyin writing to CAthatall copies and partial copies of the Documentation have beenreturnedto CA ordestroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CAPROVIDES THISDOCUMENTATION “AS 1S” WITHOUTWARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FORA PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILLCABE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THISDOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IFCA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCHLOSS OR DAMAGE.

The use of anysoftware productreferencedinthe Documentationis governed bythe applicable license agreementandsuch
license agreementis not modified inanywaybythe terms ofthis notice.

The manufacturer of this Documentationis CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions
setforth in FARSections 12.212,52.227-14,and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
theirsuccessors.

Copyright © 2013 CA. All rights reserved. All trademarks, trade names, service marks, andlogos referenced herein belongto
theirrespective companies.

CA Technologies Product References

This document references the following CA Technologies products:

CA IDMS™

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one sitewhere you canaccess the
information that you need for your Home Office, Small Business,and Enterprise CA
Technologies products. At http://ca.com/support, you canaccess the following
resources:

m Onlineandtelephone contactinformation for technical assistanceand customer
services

m Informationabout user communities and forums
m Product and documentation downloads
m CA Support policies and guidelines

m Other helpful resources appropriate for your product
Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
cansend a message to techpubs@ca.com.

To providefeedback about CA Technologies product documentation, complete our
shortcustomer survey which is availableon the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://ca.com/docs
http://ca.com/docs

Contents

Chapter 1: Introduction 7
SYSTEIM DV EIVIEW ...etiiiieeteiteite sttt et e s e st e s e s e st et et e s ae s ae et e se e st et et e s b esbesbesse et e s e e eessesseeseeseeaseasaseeabeessessana et et enbesbessesaeessansensenss 8
CAIDMS Dictionary Loader CapabilitiS......cceireciririririiirinieri ettt ettt ettt s e s sesse e ssesae e ssesaesessenes 11
CA IDMS Dictionary LOQEI REPOITSccveeriicieriiteirieietesesteestesaesessesesseseestesaesestesessassesesteseesessesessessensesessensssensesessensssensansesenes 12

Syntax Diagram Conventions

Chapter 2: Program Processor 17
0] o0 Ll 0=To LU T =] g 1= o T PRSPPI 18
OUTPUL ettt et sttt et s ae et et e e et e s e b et e b e b e e st e st e s s e e e saesseese e s e e st e st e s e s b e s besae e st e st e st e e e b enae s Rt enteat et et et antenreee 20
Management SUMMATY REPOIT ..ottt sttt s et e st e st e sbe e be e beebeesbaa bt ense e seenaesasesatesanesaseenes 20
DIi@BNOSTIC REPOIT ...ttt ettt ettt ettt st sttt et e b e s b e s s e s s e e st et e b et e besbessesae s st e st ente s e eseeste st enseatensansensansenes 21
File and RECOrd LAYOULS REPOIT.....cciciciiieiicteietitee ettt e st et e sttt et e st e et et eseese st eseebensesesteseesensesessansaneasans 25
DATA DIVISION Cross-REfErENCE REPOIT.....cuierieieeririreeeeririeertsieesetseeesesestesssesessesessesssesessssssssssessessssssessssssesesesssesssensees 28
Parameter STATEMENT ... ettt st e et et R e e et s e e e st ee e renent

Executing the Program Processor

Chapter 3: Cross Reference Processor 39
OVEIVIBW ..etiieieriesiesie st st st et e s te st e sbeste st st et et e tese e e st ese et e s e e et e s e benbesse e st es e e eesseaseebeeseeseeasease s b e e beebeeseeseene et e e e eesse e st ensantansantansesseen 40
Developing a File Of CONTrol STAtEMENTScccccveieiirieieecr ettt ettt be s e s e s e s e s e e sastesenessesesesensesanens 43

Filling in Worksheets
Parameter Statement

THH1E STATEIMENT ...ttt ettt b bt a e e b b et s b e b et e b e b e Rt b e Rt b e b e b e et e b e st e st e b ebe st nbenenenne
SEIECTION STATEMENT ...ttt sttt b e etk etk et st b e Rt e e e b et s e e b et e b et etk e s et st et ebe e st ebesentene 54
SAMPIE CONTIOI Fil @ittt st st s et et e b e s ese e b et s se st ene e b e st e st e b e s ese st anessetenesseneesesennes 55
System Data CrosS-REfEreNCE REPOIT. ...ttt ettt a e et e b et e seebe b ene et e e ebestene et eneeseesenes 56
Dictionary of Data Names Report

Executing the Cross Reference Processor

Chapter 4: DDDL Generator 63
OVEIVIBW ..ttt ettt ettt sttt e b et e et e e st s et s st e e s e s e e e e e e R e e et R e e e st seae s e e ea e e R e e e R et et R e e emt s et e s e s e e ene s e et ere e enensenes 64
Developing a File of CONTrol STATEMENTSccciciiiieiieieee ettt ettt e e s ae e st e et esbe b e seebanaebensesesbensesensans 66
ParamMELer STATEMENT ...ttt st ettt et e s be st et et et et et e e b e e besh e e Rt e s b e s R e s Rt e Rt e Rt et et et e bennenes 68
VERSITON STATEMENT ...ttt ettt et b et e s s et e e e e e b eeme e b e e e R e s s et e st sb et sbenae st sae e esensenensesrens 69
GrOUPING STATEMENT ...ttt ettt b e s b e s b e s b e et et e b e b e s b e e besbe s bt e st e at e seeb e eae e Rt en e e nt et et etenbesbent 70
USING the GroUPING STATEMENT ...ccuicieieiie ettt et et e et e b et e e e s e b eseesessesesaanessensasessensasessensesensans 72

Contents 5

Editing Generated DDDL STAtEMENTSccceiiiieieieeieeeete et ete et te e te e e e sbe e e be s besesbe s ebesaeseebasbasesbansesansansesensasessanseseatans 77

EXECULING Th @ DDD L COMPITEF cutiuiiiieiriiieisieee ettt te sttt s ettt et et e e e se st e s e e s e s e e esessesessensesesaansssensesessensesessensesesans 80
Appendix A: Sample COBOL Input and DDDL Output 83
Sample COBOL INPUL aNA DDDL OULPUT ...couieiiirieiriiieerietri sttt ettt st et s et e se s st e e s b et et sbe s esessanaesessenessansenessanes 84
Sample COBOL INPUL aNA DDDL OULPUT c.ccuicieiirieeriiieereesesteteeesteessesse e te e s seseessessesesteseesessesessasssssssessessssessssessensesessesensenes 94
Sample COBOL INPUL aNd DDDL QULPUTL c.coveueiirieeierieieieentrteestseeteests et ee e te e et esesessesssesessssesessssssenessssensssssessassssesensssesesensns 95
Appendix B: Runtime Error Messades 103
OVEIVIBW ..ttt ettt sttt b e s bt et e e et e b e b e b e e b e e b e e R e s ae e b e s b e s be s e e e R e e a e e e e b e b e b e e he e R e e ae e ab et et e b e sbesbesae e besbe b e sbeeresnenas 103
Runtime Messages Issued by the Program PrOCESSONucviiiiriirerieireresertee ettt sse s sse s esae e ssessessesenes 105
Runtime Message Issued by the Cross ReferenCe PrOCESSOr ... iiiieiiierieericesere et sa s e s s 107
Runtime Messages Issued by the DDDL GENEIATONceiecieieieerieeeeeeee ettt ste e et tesbe e be s e sesbe s ebesae e sae e e e esenseneans 110
Index 113

6 Dictionary Loader User Guide

Chapter 1: Introduction

This manual provides the conceptual and operational information necessary to use the
CA IDMS DatabaseDictionary Loader Optionincluding:

m Syntax andjob control language

m Considerations relatingto usingthe CA IDMS Dictionary Loader effectively
CA IDMS Dictionary Loader populates the dictionary

The CA IDMS Dictionary Loader is a syntax converter used in conjunction with the
Integrated Data Dictionary (IDD) to simplify the task of populatingthe dictionary with
information contained in COBOL source programs. The CA IDMS Dictionary Loader
processes a system of programs (thatis, programs that process common files and
records) individually and then collectively. This processingyields a collection of useful
reports and the Data Dictionary Definition Language (DDDL) sourcestatements (that is,
ADD PROGRAM, ADD RECORD, and ADD FILE) needed to populatethe dictionary with
information aboutthe programs.

What follows

To acquaintyou with the CA IDMS Dictionary Loader, this chapter presents a system
overview, alistof system capabilities, and a description of the reports the CA IDMS
Dictionary Loader generates. Sections 2, 3, and 4 discusstheinput, output, and
operation of each of the three CA IDMS Dictionary Loader components separately.

This section contains the followingtopics:

System Overview (see page 8)
CA IDMS Dictionary Loader Capabilities (see page 11)
CA IDMS Dictionary Loader Reports (see page 12)

Syntax Diagram Conventions (see page 13)

Chapter 1: Introduction 7

System Overview

System Overview

CA IDMS Dictionary Loader components
The CA IDMS Dictionary Loader consists of three components:
Program Processor

The Program Processor analyzes a single COBOLprogram and produces an intermediate
file(data usage file) containinginformation aboutdata usage within the program (for
example, an element name andthe source lines thatrefer to the name). A collection of
data usage files (thatis, one filefor each COBOL programina system of programs)is
input to the DDDL Generator and optionallytothe Cross Reference Processor.

Cross Reference Processor

The optional Cross Reference Processor analyzes a collection of data usagefiles and
produces reports that aidin developing the file of control statements for runningthe
DDDL Generator. Generally, the Cross Reference Processor is executed for a system of
programs (for example, several programs that process the same file).

DDDL Generator

The DDDL Generator reads data usage files produced by the Program Processor and
generates the appropriate DDDL sourcestatements for subsequent input to the DDDL
compiler.

8 Dictionary Loader User Guide

System Overview

lllustration of the components

The followingfigureillustrates howthe three CA IDMS Dictionary Loader components

arerelated:

Equation 1: System Overview

Program
Processor

Cross Reference
Pracessor

Function of the Program Processor

DDDL
Generator

The Program Processor (PRANCOB) analyzes a single COBOL program. Output from this
programis aset of reports and a data usagefile. The reports and the filecontain
information aboutthe way that the program uses data.The data usagefileis usedas
input to the Cross Reference Processor andthe DDDL Generator. Note that the Program
Processoris executed separately for each COBOL programin the system of programs to
be processed. The functioning of the Program Processoris illustrated in the following

figure:

COBAQL Source

Program

Program
Processor

Chapter 1: Introduction 9

System Overview

Function of the Cross Reference Processor

The Cross Reference Processor (PRANXREF) analyzes a collection of data usagefiles to
trackall references to data elements throughout a system of programs. Output from
this component are reports that provide extensive cross-referenceinformation (for
example, data items andthe source lines thatrefer to each item) about the system of
programs being analyzed. The reports alsoaidin developingthe control statements for
runningthe DDDL Generator. You can bypass the Cross Reference Processorinyouwant
to. The followingfigureillustrates the functioning of the Cross Reference Processor:

Cross Reference
Processar

Cross Relerence
Reports

Control
Staternents

Function of the DDDL Generator

The DDDL Generator (PRANIDDG) reads a collection of data usage files and generates
the appropriate DDDL sourcestatements for inputto the IDD DDDL compiler. Optional
control statements can be used to specify a VERSION clauseto be added to generated
statements and to identify synonymous and nonunique names (thatis, multiple names
used to refer to the same fileorrecord or singlenames used to refer to two or more
different files or records). This module generates a filecontainingall DDDLADD
PROGRAM, ADD FILE, and ADD RECORD statements associated with the system of
programs processed and produces a listingof a all generated statements. The
functioning of the DDDL Generator is illustratedinthe followingfigure:

DDDL
ADD
statements

DDDL
Generator

Listing of
DDDL ADD

statements

Control
Statements

10 Dictionary Loader User Guide

CA IDMS Dictionary Loader Capabilities

CA IDMS Dictionary Loader Capabilities

The CA IDMS Dictionary Loader has the capabilities described below.
Generates DDDL statements

The CA IDMS Dictionary Loader can process a system of up to 99 COBOL programs to
generate afileof DDDL statements that describethe programs and the files, records,
andelements thatthe programs use. This filecan be submitted to the DDDL compiler to
populate the data dictionary.

Generates VERSION clauses

The CA IDMS Dictionary Loader adds VERSION clauses to all generated statements. If
directed by a control statement, the DDDL Generator includes a user-specified VERSION
clauseineach generated statement; otherwise, the DDDL Generator includes a VERSION
01 clauseineach statement.

Processes synonyms

The CA IDMS Dictionary Loader canidentify synonyms within generated ADD
statements. When a singlefileorrecord is referred to by many different names
throughout the system of programs, the DDDL Generator can be directed to generate a
SYNONYM clausewithin each ADD statement to identify all other names used to refer to
the fileor record.

Processes nonunique names

The CA IDMS Dictionary Loader can differentiate between multipleuses of the same
name. When multiplefiles or records arereferred to by a singlename, the DDDL
Generator can be directed to generate an ADD statement for each unique fileor record,
assigningeach occurrence of the name of a separate version number (NEXT
HIGHEST/NEXT LOWEST) or assigningall occurrences thesame version.

Using NEXT HIGHEST/LOWEST

If NEXT HIGHEST/NEXT LOWEST is usedin generating the DDDL statements with the
DDDL Generator, the DDDL compiler will add all of the entities to the data dictionary,
using the same name and differentiating one from another by the version number.

Chapter 1: Introduction 11

CA IDMS Dictionary Loader Reports

Using explicit version numbers

Ifall entities areassigned an explicitversion number (thatis, the same version number)
during DDDL Generator processing,the DDDL compiler will process thestatements in
one of two ways depending on the setting of the DDDL compil er option DEFAULT IS

ON/OFF:

Setting

Description

DEFAULT IS ON

The DDDL compiler will process thefirst ADD statement
containingthe nonunique entity-occurrence name and change
subsequent ADD statements that use the name to MODIFY
statements.

DEFAULT IS OFF

The DDDL compiler will process only the first ADD statement that
contains the nonunique entity-occurrence name and will flagas
erroneous all subsequent ADD statements that use the name.

Editing the generated statements

You canedit the generated DDDL statements to eliminateunwanted ADDs, to establish
different version numbers, or to merge several ADD statements that describethe same
record or fileinto a single ADD statement.

CA IDMS Dictionary Loader Reports

Program Processor reports

The Program Processor produces four reports that areuseful in analyzingthe program,

as follows:

Report

Description

Management
Summary Report

Lists the number of sourcelines in each division of the
program, the number of diagnostic messages issued,and file
usage information. The report aids in a quick assessment of the
program's complexity, conformanceto standardandfileusage.

Diagnostic Report

Lists all sourceprogramlines found to contain a potential error
condition.The reportaidsinidentifying COBOLsyntaxerrors,
non-conformance to ANS standards,and logical errorsthat
could not be detected by a COBOL compiler.

12 Dictionary Loader User Guide

Syntax Diagram Conventions

Report Description
Fileand Record Lists information aboutthe attributes of each fileand detail
Layouts Report information aboutthe data items within each record. The

report aids infindinginformationaboutfiles and data items
without havingto refer to the sourcelisting.

DATA DIVISION Lists all dataitems usedinthe programand all references to
Cross-Reference the data items made inthe PROCEDURE DIVISION of the
Report program. The report allows comprehensivetracking of the use

of data items within the program.

Cross-Reference Processor reports

The Cross-Reference Processor produces two reports thatare useful inanalyzinga
collection of related programs as follows:

Report Description

System Data Lists data items and references to the items for a system of

Cross-Reference programs.The report allows comprehensivetracking of the use

Report of data items within the entire system of programs.

Dictionary of Data Lists alphabetically, all data element and record names used in

Names a system of programs together with extensive information
about each item listed. This report aids intrackingthe use of
data names.

Syntax Diagram Conventions

The syntax diagrams presented in this guide use the following notation conventions:

UPPERCASE OR SPECIAL CHARACTERS

Represents a required keyword, partial keyword, character, or symbol that must be
entered completely as shown.

lowercase

Represents anoptional keyword or partial keyword that, if used, must be entered
completely as shown.

italicized lowercase

Represents avaluethat you supply.

lowercase bold

Represents a portion of the syntaxshownin greater detail at the end of the syntax
or elsewhere inthe document.

Chapter 1: Introduction 13

Syntax Diagram Conventions

Points to the defaultina listof choices.

Indicates the beginning of a complete piece of syntax.

> g
»<4

Indicates the end of a complete piece of syntax.

Indicates thatthe syntax continues on the next line.

v

Indicates thatthe syntax continues on this line.

»

Indicates thatthe parameter continues on the next line.

Indicates thata parameter continues on this line.
»— parameter ————»
Indicates a required parameter.
»—E parameter :l—>
parameter
Indicates a choiceof required parameters. You must select one.

»
»

v

L parameter -

Indicates an optional parameter.

v

>
I: parameter :I
parameter
Indicates a choice of optional parameters. Sel ect one or none.

»—v- parameter —|——»

Indicates thatyou canrepeat the parameter or specify more than one parameter.

iameter — 1L
»—¥— parameter

Indicates thatyou must enter a comma between repetitions of the parameter.

14 Dictionary Loader User Guide

Syntax Diagram Conventions

Sample Syntax Diagram

The following sample explains howthe notation conventions are used:

Required portion of parameter

Beginning of Required Optional portion of parameter

the syntax parameter Syntax continues

User-supplied value I on the next line
5

Syntax continues on this line Comma required between repetition

Required parameter Repetition allowed
Select one

I .
y— KEWDI\Q\D—{aHaﬂIe

varrable
wariabfle
varrable

Optional keyword
Select one or none
Portion of syntax End of the syntax
Default expanded elsewhere

» \ L]
t KEYWORD variable
KEYWORD

Chapter 1: Introduction 15

Chapter 2: Program Processor

Description

The Program Processor processes a single COBOLsource programand produces a data
usage fileand reports. This component is a full COBOL parser;itincludes functional
phases for reading, scanning, parsing,analyzing, sorting,and reportingon a COBOL
source program. The Program Processor produces the followingreports:

m The Management Summary Report

m The Diagnostic Report

m The Fileand Records Layout Report

m The DATA DIVISION Cross-Reference Report

Data usage file

The data usage file produced is the input required for the Cross Reference Processor
andthe DDDL Generator. The Program Processor mustbe executed once for each
program inthe system of programs being processed.

What follows

This chapter describes the inputrequirements and the reports associated with the
Program Processor and provides instructions for executing this component under z/0S
and z/VSE.

This section contains the followingtopics:

Input Requirements (see page 18)

Output (see page 20)

Parameter Statement (see page 31)

Executing the ProgramProcessor (see page 34)

Chapter 2: Program Processor 17

InputRequirements

Input Requirements

COBOL source program requirements

One execution of the Program Processor requires as inputa single, complete COBOL
source program. The program must meet the followingrequirements:

m The program must be inaform suitablefor COBOL compilation.Programs
containing COBOL COPY statements are expanded automatically.The library
member being copied must containthe 01 level description.

m |fthe programcontains embedded CA IDMS/DB navigational DML commands, it
must be run through the DMLC processor before being inputto the Program
Processor.The DMLC processor changes DML commands to COBOL comments and
generates CALLS, as appropriate, for requesting databaseservices. The file output
from the DMLC processor can be inputto the ProgramProcessor.

m Ifthe programresidesinalibraryincompressed format, itmust be run through the
appropriatelibrarian utility to expand it into standard 80-character formatbefore
being input to the Program Processor. Qutput from the librarian utility can beinput
to the ProgramProcessor.

2/VSE considerations

Note that z/VSE users can copy sourcecode inputto the Program Processor froma
sourcestatement library by usingthe =COPY facility. To usethis facility, specify the
member containingthe source code inthe followingsyntax:

»»— =COPY IDMS member-name
I:;ublibrary-name. :,—l
. <

If member-name is notinthe A. sublibrary, specify thesublibrary (usually C.) name.
Note thatifa privatesourcestatement libraryisused to store member-name, the DLBL
filetype must be specified as DA at run time.

)4

An example of the use of this statement is shown below:

=COPY IDMS C.PRANDEM1
Other input form

The Program Processor accepts one other form of input: the parameter statement. This
statement specifies override processingoptions for executingthe Program Processor.
The followingtableis a summary of the options available with this statement. For syntax
andrules, see the Parameter Statement (see page 31) laterin this chapter.

Note: For z/OS clients, parameters can be specified more conventionallyin the
execution JCL by usingthe PARM clause of the EXEC statement.

18 Dictionary Loader User Guide

InputRequirements

Runtime Options for the Program Processor

The Program Processor operates with the default options listed in effect unl ess override
options are specified.

Parameter Default Option Override Option
SYSREF/NOSYSREF SYSREF—The data usagefileis to NOSYSREF—The data usagefileis not to be
be produced produced
SOURCE/NOSOURCE NOSOURCE—The COBOL source SOURCE—The COBOLsourceprogramis to
program s not to be listed be listed
SUMM/NOSUMM SUMM~—The Management NOSUMM—The Management Summary
Summary Report is to be printed Report is not to be printed
DMAP/NODMAP DMAP—The Fileand Record NODMAP—The Fileand Records Layout
Layouts Report is to be printed Report is not to be printed
DXREF/NODXREF DXREF—The DATA DIVISION NODXREF—The DATA DIVISIONCross-
Cross-Reference Report is to be Reference Report is not to be printed
printed
DIAG/NODIAG DIAG—The Diagnostic Reportisto NODIAG—The Diagnostic Reportis not to be
be printed printed
ANS/ANS68/ NOANS—ANS diagnostics arenot ~ ANS—AII diagnostic messages areto be
ANS74/NOANS to beincludedinthe Diagnostic includedinthe Diagnostic Report
Report ANS68-Only ANS 1968 diagnostic messages
are to be includedin the Diagnostic Report
ANS74-Only ANS 1974 diagnostic messages
areto be includedin the Diagnostic Report
FLO/NOFLO FLO—FLO diagnostic messages are NOFLO—FLO diagnostic messages arenotto
to beincludedinthe Diagnostic be includedinthe Diagnostic Report
Report
NUM/NONUM NUM—The linenumbers present NONUM-Line numbers areto be assigned

inthe sourceprogramare to be
used for referencing

sequentiallytoall lines inthesource
program for referencing

Chapter 2: Program Processor 19

Output

Output

Types of output

The Program Processor automatically produces the following output:
m DataUsage File

® Management Summary Report

m Diagnostic Report

m FileandRecord Layouts Report

m DATA DIVISION Cross-Reference Report

Overrides

Note that override processingoptions areavailableto suppress the output of the data
usage fileand any of the reports, and to request the inclusion of a source program
listing (see Parameter Statement below).

Title page

Output from the Program Processor begins with a title page. The title page identifies the
program and the date of the run, and supplies a table of contents listingall reports
produced for the run. Ifa programlisting has been requested, it appears after the
Management Summary Report. Program Processor reports are discussed separately
below.

Management Summary Report
Source program information
The Management Summary Report provides the followinginformation aboutthe source
program:
m The number of sourcelines ineach division of the program

m The number of diagnostic messages issued for each type of error

m Fileusageinformation for each fileassociated with the program

20 Dictionary Loader User Guide

Output

Sample report

This report aids inanoverall assessment of the source program's complexity,
conformance to standards, and fileusage. A sample Management Summary Report
appears below:

PRANDEM2 ~ MANAGEMENT SUMMARY DICTIONARY LOADER dd mmm yy 1425 PAGE 1

129 TOTAL SOURCE LINES

8 LINES IN IDENTIFICATION DIVISION
6 LINES IN ENVIRONMENT DIVISION
62 LINES IN DATA DIVISION

53 LINES IN PROCEDURE DIVISION

5 (ANS) VIOLATIONS OF BOTH ANS-68 AND ANS-74
0 (A68) VIOLATIONS OF ANS-68 ONLY
2 (A74) VIOLATIONS OF ANS-74 ONLY
0 ($$$) COBOL SOURCE ERRORS
0 (FLO) FLOW ANALYSIS

OPENED FOR: RECORD BLOCK
FILE NAME DEVICE IN OU I0 EX LENGTH SIZE
CUSTOMER- FILE UT-2400-S-CUSTIN X 104 UNBLOCKED
RPTFILE UT-S-SYSLST X 133 UNBLOCKED

Diagnostic Report

Lists incorrect source

The Diagnostic Report lists all source programlines found to contain a potential error
condition.Eachlinelistedis followed by a diagnostic message. The message identifies
the problem portion of the COBOL statement with an asterisk (*), indicates thetype of
condition detected with a keyword indicator,and briefly describes the condition.

Sample report

PRANDEM2 ~ DIAGNOSTIC LISTING DICTIONARY LOADER dd mmm yy 1425 PAGE 2
GEN-LN SOURCE CARD REMARKS
130000 MOVE SPACE TOO DETAIL-REC.
*

($$$) SYNTAX ERROR

Chapter 2: Program Processor 21

Output

Diagnostic Report messages

The Diagnostic Report lists threetypes of diagnostic messages:

Syntax ($55)

One of the followingthree messages appears followingthe S indicator:
1. 'Character-string' NOT ALLOWED

The character stringreported is a valid COBOLkeyword or expression, but it cannot
be used where it appears.

2. PROCEDURE NOT FOUND
The operand of the PERFORM statement is undefined.
3. SYNTAX ERROR

The word or construction does not conform to COBOL syntax rules.
ANS, ANS68, ANS74

The appropriateform of the followingdiagnostic messageappears followingthe ANS,
ANS68, or ANS74 indicators:

ANS/ANS-68/ANS-74 DOES NOT ALLOW 'keyword'

The keyword reported violates ANS 1968 standards for COBOL (ANS-68), 1974 standards
(ANS-74), or both 1968 and 1974 standards (ANS).

22 Dictionary Loader User Guide

Output

Logical flow (FLO)

One of the following messages appears following the FLO indicator:

1.

ALTER TO procedure-name IN PROCEDURE
PERFORM procedure-name-1 THRU procedure-name-n

The ALTER statement causes the altered paragraphto transferinto the THRU range
of a PERFORM procedure that does not contain the altered paragraph.

ALTER TO procedure-name OUT OF PROCEDURE

PERFORM procedure-name-1 THRU procedure-name-n

The ALTER statement sets the altered paragraph so that it will transfer out of
the THRU range of the PERFORM procedure in which the altered paragraph resides.

ALTERED PARAGRAPH NEVER REACHED

This paragraphis never reached when the program is executed. The paragraphis
altered however, by a statement that can be reached.

END OF PROC DIV REACHED

Program flow can fall through the end of the lastparagraph of the PROCEDURE
DIVISION. Program flow, should be ended by a STOP RUN statement.

GO TO procedure-name IN PROCEDURE
PERFORM procedure-name-1 THRU procedure-name-n

The GO TO statement resides outsidethe THRU range of the PERFORM procedure
andtransfers control to a paragraphinsidethe PERFORM procedure.

GO TO procedure-name OUT OF PROCEDURE
PERFORM procedure-name-1 THRU procedure-name-n

The GO TO statement transfers control out of the THRU range of the PERFORM in
which the GO TO resides.

PARAGRAPH NEVER REACHED

Program flow cannot reach this paragraph during execution of the program

Chapter 2: Program Processor 23

Output

10.

11.

12.

13.

PERFORM EXIT BEFORE ENTRY

A statement of the form PERFORM procedure-name-1 THRU procedure-name-n has
been found where the procedure-name-n precedes procedure-name-1 inthe
program.

PERFORM RANGE OVERLAPS
PERFORM procedure-name-1 THRU procedure-name-n

The range of this PERFORM statement overlaps the range of PERFORM
procedure-name-1 THRU procedure-name-n. Either the two names have a common
entry or exit, or one range is not completely nested in the other.

PROCEDURE EXIT NEVER REACHED

The procedure name inthe statement flagged can never be reached at execution
time. The name is referred to, however, by a statement of the form PERFORM
procedure-name-1 THRU procedure-name-n. This messageis alsoissued fora
paragraph referred to by an ALTER statement of the form ALTER procedure-name-1
to procedure-name-2, where either procedure-name-1 or procedure-name-2
cannot be reached.

REACHED FROM LAST PARA/SECT AND
PERFORM procedure name-1 THRU procedure-name-2

Program flow canreach this statement in either of the following ways:

m Fromthe end of the precedingparagraph oras the firstparagraphofa
performed chapter.

m Froma PERFORM statement that refers to this paragraph as theentry point of
the performed procedure.

SENTENCE NEVER REACHED

This sentence will never be reached during program execution.

STATEMENT NEVER REACHED

This statement (withina sentence) will never be reached during program execution.

24 Dictionary Loader User Guide

Output

Types of problems flagged

Note that with the exception of two of the three syntax messages, Diagnostic Report
messages identify problems that normal COBOL compilation mightnot flag. These
problems fall into two categories as follows:

Problem Description

Compatibility ANS messages flagareas of potential compatibility in successfully
compiled programs that might be runthrough another compiler.

Logical flow FLO messages flag potential flaws in logic that could not be
detected by the COBOL compiler. For example, FLO diagnostics can
aidinidentifying statements that can never be reached during
execution.

Syntax errors in compiled programs

Note that messages identifying syntax errors may be issued for programs that have
compiled successfully.Such error messages usually identify minor differences in the
syntax requirements enforced by the user's compiler and the ProgramProcessor. For
example, some compilers do not flag as erroneous COBOL statements that beginin
column 8 instead of 12. The Program Processor flags such statements. If these syntax
errors are not important to the user, they canbeignored.

File and Record Layouts Report

Describe file and record layouts

The Fileand Record Layouts Report is a six partreportthat provides information about
the attributes of each fileand specific details aboutthe data items within each record:

m The firstfive parts of the report describethe five sections contained within the
DATA DIVISION of a COBOL sourceprogram (thatis, the FILE, WORKING-STORAGE,
LINKAGE, COMMUNICATION, and REPORT sections).

m The sixthsection of the report lists source statement references to all ACCEPT,
DISPLAY, STOP, and CALL statements used the PROCEDURE DIVISION of the source
program. This report allows quickaccesstoinformation aboutfiles and data items
without havingto refer to the sourcelisting.

Chapter 2: Program Processor 25

Output

Sample report

The followingfigureshows the firstpage of a sampleFileand Record Layouts Report.

PRANDEM2 FILE AND RECORD LAYOUTS (FILE SECTION) DICTIONARY LOADER dd mmm yy 1425 PAGE 1
FILE NAME: CUSTOMER-FILE
DEVICE NAME: UT-2400-S-CUSTIN
LABEL: OMITTED
BLOCK SIZE: UNBLOCKED
RECORD SIZE: 104 CHARACTERS
RECORD FORMAT : FIXED

079000 OPEN INPUT CUSTOMER-FILE
084000 READ CUSTOMER-FILE RECORD
125000 CLOSE CUSTOMER-FILE

LV-DAT NAME SRC LN POS SIZE USAGE 0CC VALUE
FD CUSTOMER-FILE 037000

01 CUSTOMER 043000 1 (104) GROUP

03 CUST-NUM 044000 1 10 DISP

03 CUST-NAME 045000 11 20 DISP

03 CUST-ADDRESS 046000 31 (40) GROUP

05 CUST-ADDRL 047000 31 20 DISP

05 CUST-ADDR2 048000 51 (20) GROUP

06 CUST-CITY 049000 51 15 DISP

06 CUST-ZIP-CODE 050000 66 5 DISP

03 CUST-CREDIT 051000 71 3 DISP

88 CUST-CREDIT-EXEC 052000 'AAA"
88 CUST-GOOD 053000 ! !
88 CUST-POOR 054000 XXX!
03 FILLER 055000 74 31 DISP

Field descriptions
FILE NAME
The filename.
DEVICE NAME
The device name assigned to the file.
LABEL

Information about LABEL records. The report displays the keywords OMITTED or
STANDARD, orthe name of a user LABEL record.

BLOCK SIZE

The size of the physical block, if blocked.
RECORD SIZE

The size of the file's data records.
RECORD FORMAT

The RECORDING MODE of the record. The report displays FIXED, VARIABLE,
UNDEFINED, or SPANNED.

26 Dictionary Loader User Guide

Output

LV

The level number of the data item. For items for which level number is not
applicable, codes provideinformation aboutthe item:

FD-Filedescription
SD-Sort description
DC-Communication description

RD-Report description

No level number is provided for definitions ofindex names used by the INDEXED BY
clause.

DATA NAME

Name of the data item. DATA NAME can be a filename, record name, or an
element name.

SRC LN

The linenumber of the sourcelinewhere the dataitem is defined.

POS

Starting position associated with the data item.

SIZE

The size of the data item. Parentheses enclosea sizereported for a group item.

USAGE

The form in which the data item is to be stored as the result of the source
program's specifications:

GROUP—The dataitem contains subordinateitems.
DISP—The dataitem is storedin character form.

DISP-NM—The data item is stored one digitper character position. The PIC
containsonlyS,9, and V.

NM-EDIT—The dataitem is a numericitem stored in character format. The PIC
contains someor all of the editing characters +, -, z, $, comma, B, CR, DB, ., or
0.

Chapter 2: Program Processor 27

Output

The following report writing specifications canalso appearinthis column:

occC

RH—Report heading
RF—Report footing
PH—Page heading
PF—Page footing
CH—Control heading
CF—Control footing

DE—Detail

The number of occurrences of the data item if the definition of the item uses an
OCCURS clause.

VALUE

The valueassigned to the data item if the definition of the item uses a VALUE
clause.

DATA DIVISION Cross-Reference Report

Lists all program fields

The DATA DIVISION Cross-Reference Report provides an alphabetic listing of each data
item includedinthe programand all references to the item in the PROCEDURE DIVISION
of the program. The data item name is listed together with its attributes and the
number of each sourcelinethat refers to the data name. This reportallows
comprehensive tracking of the use of data items.

28 Dictionary Loader User Guide

Output

Sample report

PRANDEM2

Lv

03

0

(o]

0

(vl

06

0

w

8

©

8

©

8

©

03

0

w

06

01

FD

01

0

et

0

=

DATA DIVISION CROSS REFERENCE

DATA-NAME

CUST-ADDRESS

CUST-ADDR1

CUST-ADDR2

CUST-CITY

CUST-CREDIT

CUST-CREDIT-EXEC

CUST-CREDIT-GOOD

CUST-CREDIT-POOR

CUST-NAME

CUST-NUM

CUST-ZIP-CODE

CUSTOMER

CUSTOMER- FILE

DETAIL-REC

PAGE- COUNT -WS

PAGE- INCREMENT -WS

DICTIONARY LOADER

SRC-LN SIZE 0OCC QUALIFICATION REF-LN
046000 40 (CUSTOMER -FILE)
CUSTOMER
047000 20 (CUSTOMER -FILE) 092000
CUSTOMER CUST -ADDRESS
048000 20 (CUSTOMER -FILE) 093000
CUSTOMER CUST -ADDRESS
049000 15 (CUSTOMER -FILE)
CUSTOMER CUST -ADDRESS
051000 3 (CUSTOMER-FILE)
CUSTOMER
052000 (CUSTOMER-FILE) 087000
CUSTOMER CUST-CREDIT
053000 (CUSTOMER-FILE)
CUSTOMER CUST-CREDIT
054000 (CUSTOMER-FILE)
CUSTOMER CUST-CREDIT
045000 20 (CUSTOMER -FILE) 091000
CUSTOMER
044000 10 (CUSTOMER -FILE) 090000
CUSTOMER
050000 5 (CUSTOMER -FILE) 094000
CUSTOMER CUST -ADDRESS
CUST -ADDR2
043000 104
037000 079000
084000
125000
024000 133 081000
105000
106000
060000 2 107000
108000
118000
062000 1 104000

107000

dd mmm yy 1425

STATEMENT

MOVE CUST-ADDR1 TO RPT-ADDR1

MOVE CUST-ADDR2 TO RPT-ADDR2

IF NOT CUST-CREDIT-EXEC

MOVE CUST-NAME TO RPT-CUST-NAME

MOVE CUST-NUM TO RPT-CUST-NO

MOVE CUST-ZIP-CODE TO RPT-ZIP

OPEN INPUT CUSTOMER-FILE
READ CUSTOMER-FILE RECORD
CLOSE CUSTOMER-FILE

MOVE SPACES TO DETAIL-REC
WRITE DETAIL-REC AFTER
POSITIONING POSITION-IND-WS
MOVE SPACES TO DETAIL-REC

ADD PAGE-INCREMENT-WS TO

PAGE- COUNT -WS

IF PAGE-COUNT GREATER THAN +58
MOVE +4 TO PAGE-COUNT-WS

MOVE 1 TO PAGE-INCREMENT-WS
ADD PAGE-INCREMENT-WS TO
PAGE- COUNT -WS

PAGE 6

REF -LINE-NBRS

047000 030000

048000 032000

052000

045000 028000

044000 026000

005000 034000

037000
037000
037000

024000
024000 061000

024000

062000 060000

060000
060000

062000
062000 060000

Chapter 2: Program Processor 29

Output

Field descriptions

LV

The level number of the data item. For items for which level number is not
applicable, codes provideinformation aboutthe item:

m FD—Filedescription

m SD—Sort description

m DC—Communication description
m RD—Report description

No level number is provided for definitions ofindex names used by the INDEXED BY
clause.

DATA-NAME

Name of the data item. DATA NAME can be a filename, record name, or an
element name.

SRC-LN
The linenumber of the sourcelinewhere the dataitem is defined.

SIZE

The size of the data item. Parentheses enclosea sizereported for a group item.

ocCcC

The number of occurrences of the data item if the definition of the item uses an
OCCURS clause.

QUALIFICATION

The name(s) of other data item(s) to which the subject data item is subordinate.
The filename is enclosed by parentheses. Highest level qualifiers (for example, files)
are listedfirst, followed by record names. The minimum qualification needed to
make the name uniqueis flagged with an asterisk (*). Ifthere aretwo identical data
names at the same level inthe samestructure, those data names cannot be
uniquelyidentified;a *SS diagnostic will appearinthelisting.

STATEMENT

A listof statement (includingstartingsourceline numbers)that refer to the data
item.

REF-LN-NBRS

The sourcelinenumber where each data item in the REF-LN STATEMENT entry is
defined. REF-LN-NBRS are reported for all data items (includingthesubjectitem) in
order of occurrence in the statement.

30 Dictionary Loader User Guide

Parameter Statement

Parameter Statement

Specifies overrides to Program Processor

The parameter statement specifies override processingoptions for the Program
Processor. Under z/VSE, this statement must be used to specify options; under z/0S,
this statement canbe used but itis usually more convenient to specify options inthe JCL
inthe PARM clause of the EXEC statement.

Coding rules

The followingrules apply to coding parameter statements for the ProgramProcessor:

m Parameter statements, if used, must be included at the beginning of the COBOL
sourceprogram.

m Multiplestatements can be entered.
m Statements canbe coded inpositions 1through 72.

m Options canbe specifiedinanyorder, with one or more options per statement and
atleastone blank or comma between specifications.

Syntax

»»—— PRAN
SYSref :|—|
NOSYsref

g SOUrce « :l_l
NOSOQurce
SUMm «]——J
NOSUmm
DMAp « j—l
NODMap
DXRef < :I—'
NODXref
DIA% < j—l
NODIag

ANS
ANS68
ANS74
NOAns «

"L FLo <:|—|
NOF 1o
NUM<:,—‘
NONum

v

v

v

v

v

v

v

v

M

Chapter 2: Program Processor 31

Parameter Statement

Parameter list
PRAN

Identifies the statement. Note that this keyword must be used to distinguish this
statement from COBOL sourcestatements.

SYSref/NOSYsref
Specifies whether the data usagefileis to be produced as follows:
m SYSREF (default)—The fileis to be produced.
m NOSYSREF—The fileis not to be produced.
SOUrce/NOSOurce

Specifies whether the COBOL sourceprogram is to be listed in the output, as
follows:

m SOURCE—The sourceprogramis to be listed.
m NOSOURCE (default)—The sourceprogram s not to be listed.
SUMm/NOSUmm
Specifies whether the Management Summary Report is to be printed, as follows:
m SUMM (default)—The report is to be printed.
m NOSUMM—The report is notto be printed.
DMAp/NODMap
Specifies whether the Fileand Record Layouts Report is to be printed, as follows:
m DMAP (default)—The report is to be printed.
m NODMAP—The reportis notto be printed.
DXRef/NODXref

Specifies whether the DATA DIVISION Cross-Reference Report is to be printed, as
follows:

m DXREF (default)—The reportis to be printed.
m NODXREF—The reportis not to be printed.
DIAg/NODlag
Specifies whether the Diagnostic Reportis to be printed, as follows:
m DIAG (default)—The reportis to be printed.
m NODIAG—The report is not to be printed.

32 Dictionary Loader User Guide

Parameter Statement

ANS/ANS68/ANS74/NOAnRs
Specifies the type of errors to be reported inthe Diagnostic Report, as follows:
m ANS—Violations of both the 1968 and 1974 ANS standards areto be reported.
m ANS68—Only violations ofthe 1968 ANS standards areto be reported.
m ANS74—Only violationsofthe 1974 ANS standards areto be reported.
m NOANS (default)—No ANS violationsareto be reported.
FLO/NOFlo

Specifies whether FLO diagnosticsareto be reported in the Diagnostic Report, as
follows:

m FLO (default)—FLO diagnosticsareto be reported.
m NOFLO—FLO diagnosticsarenotto be reported.
NUM/NONum

Specifies whether the originallinenumbers present inthe COBOL source program
are to be used inreports to refer to sourcestatements, as follows:

m NUM (default)—The linenumbers already associated with source statements
are to be used inreports to refer to sourcestatements

m NONUM-Line numbers areto be assigned sequentiallytoall sourcestatements,
andthese new linenumbers areto be used inreports to refer to source
statements.

Chapter 2: Program Processor 33

Executing the Program Processor

Executing the Program Processor

JCL for executing the Program Processor under z/OS and z/VSE is shown below. Under
z/VSE, processingoptions mustbe specified with the parameter statement. Under z/0S,
although the parameter statement canbe used, itis usually easier to specify options by
usingthe PARM clauseof the EXEC statement.

z/0S JCL-PRANCOB

//PRANCOB
//STEPLIB
//
//
//PRANLIB
oL

//PRANREF
option

//PRANREF

on

//

//

//

//PRANWRK

//dcmsg

//sysjrnl

//SYSLST

//SYSIDMS

EXEC PGM=PRANCOB,REGION=1024K,PARM="'parameter options'

DD

888

S

DD
DD
DD
DD
DD

dmcl=dmcl-name
Insert other SYSIDMS parameters as appropriate

//SYSIPT

DD

DSN=idms. dba. loadlib,DISP=SHR

DSN=idms. custom. loadlib ,DISP=SHR

DSN=idms. cagjload,DISP=SHR

DSN=user. copylib,DISP=SHR <« Include only if program contains COB

COPY statements
DSN=reflib(member-name) ,DISP=0LD <« Include only if using LIBRARY

DSN=sysref,DISP=((NEW,catlg), <« Include only if using DISK opti

UNIT=disk,VOL=SER=nnnnnn,
SPACE=(trk, (10,10),rlse),
DCB=(RECFM=FB, LRECL=80, BLKSIZE=3120
UNIT=disk,SPACE=(cyl, (5,5))
DSN=idms. sysmsg. ddldcmsg, DISP=SHR

*

SYSOUT=A

*

*

Insert COBOL source statements

DSN

Description

idms.dba.loadlib

Data set name of the load library containing the DMCL
and databasename tableload modules

idms.custom.loadlib Data set name of the load library containing customized

CA IDMS system software modules

idms.cagjload

Data set name of the load library containing CAIDMS
system software modules that do not require
customization

BLKSIZE=3120

Blocksize of data usagefile; must be multiple of 80

catlg

disposition of new file: CATLG, PASS or KEEP

cyl,(5,5)

filespaceallocation of workfile

34 Dictionary Loader User Guide

Executing the Program Processor

DSN Description
disk symbolic device name of diskfile
nnnnnn serial number of disk volume

parameter options

options associated with the Parameter statement for the
Program Processor. Multiple options can bespecified;
keywords must be separated by blanks or commas;the
entire entry must be enclosed insingle quotes. Note that
the keyword PRAN shownin the syntax for the parameter
statement must not be included with options specified
here.

reflib(member-name)

data set name of data usagefile

sysref

data set name of data usagefile

trk,(10,10),rlse

filespaceallocation of data usagefile

user.copylib

data set name of COBOL copy book library

dcmsg

DDname of the system message (DDLDCMSG) area

idms.sysmsg.ddldcmsg

Data set name of system message (DDLDCMSG) area

SYSIDMS

DDname of the CA IDMS parameter filespecifying
runtime directives and operating system-dependent
parameters.

Note: For a description of the SYSIDMS parameter file,
see the CA IDMS Common Facilities Guide.

Note: Note that the larger the valuespecifiedinthe REGION parameter, the more
efficiently the Program Processor willrun.

Note: The DISK option and LIBRARY option are documented in num=3.Cross Reference

Processor.

Chapter 2: Program Processor 35

Executing the Program Processor

z/VSE JCL-JCL PRANCOB
// DLBL SSLn, 'user.srclib'

// EXTENT ,nnnnnn

// LIBDEF SL,SEARCH=SSLn,TEMP

// DLBL PRANREF, 'sysref',2099/365,SD
// EXTENT SYSO10,nnnnnn,1,,ssss,200

// ASSGN SYS010,DISK,VOL=nnnnnn,SHR
// DLBL PRANWRK, 'pranwork',0,SD

// EXTENT SYSO11,nnnnnn,1,ssss,300

// ASSGN SYSQ11,DISK,VOL=nnnnnn,SHR
// EXEC PRANCOB, SIZE=750K

parameter statements(s)

=COPY IDMS member statement or (COBOL source statements

/*

Parameter Description

nnnnnn serial number of disk volume

pranwork file-id for work file

SSSS startingtrack (CKD) or block (FBA) of disk extent

sysref file-id for sequential file containing data usagefile

SYS010 logical unitassignmentfor data usage file (SYS010 required)
SSLn filename of source statement library

SYS011 logical unitassignmentfor work file (SYS011 required)
user.srclib sourcestatement library containingdata usagefiles

Note: The keyword PRAN must appear at the beginning of each parameter statement.
PRAN is only used inthe parameter statement for this component.

Note: The Program Processor mustrun ina partitionthatis atleast750K. The larger the
partition size, the more efficiently the Program Processor will run.

36 Dictionary Loader User Guide

Executing the Program Processor

JCL for z/VSE source statement library

The optional JCL shown below places the data usagefilegenerated by the Program
Processorintoasourcestatement library. Fromthe sourcestatement library, data
usage files can beaccessed by the Cross Reference Processor and the DDDL Generator.

Ifthe sourcestatement libraryoptionis to be used, add this JCL to the JCL for executing
the Program Processor, shown above.

// DLBL IJSYSIN, 'sysref'
// EXTENT SYSIPT,nnnnnn
ASSGN SYSIPT,DISK,VOL=nnnnnn,SHR
// DLBL SSLn, 'user.srclib'
// EXTENT ,nnnnnn
// LIBDEF SL,TO=SSLn,TEMP
// EXEC LIBR
CLOSE SYSIPT,SYSRDR

Note that the output is placedinthe X. sublibrary.

Parameter Description

SSLn filename of sourcestatement library

Chapter 2: Program Processor 37

Chapter 3: Cross Reference Processor

Tracks all references to data items

The Cross Reference Processor analyzes a collection of data usagefiles totrackall
references to data elements throughout a system of COBOL programs. Control
statements assigna descriptivetitleto each subset of records to be reported together
(most commonly a file), specify the 01-level records thatare to be associated with each
title, and specify processing options.

Output

Output form this module are two reports that provide extensive cross-reference
information aboutthe system of programs:the System Data Cross-Reference Report
andthe Dictionary of Data Names Report. These reports aid in developing control
statements for the DDDL Generator.

What follows

This chapter presents an overview of the Cross Reference Processor, describes its
control statements and reports, and provides instructions for executing the Cross
Reference Processor under z/OS and z/VSE.

This section contains the followingtopics:

Overview (see page 40)

Developing a File of Control Statements (see page 43)
Fillingin Worksheets (see page 46)

Parameter Statement (see page 49)

Title Statement (see page 53)

Selection Statement (see page 54)

Sample Control File (see page 55)

System Data Cross-Reference Report (see page 56)
Dictionary of Data Names Report (see page 59)
Executing the Cross Reference Processor (see page 60)

Chapter 3: Cross Reference Processor 39

Overview

Overview

Purpose of the processor

The main purpose of the Cross-Reference Processoris to producethe System Data
Cross-Reference Report. The control statements associated with running this
component allowthe user to specify the organization of the information to be included
inthis report as follows:

m Group information about a file that has many different names.

Information about a filethat has many different names can be grouped under one
descriptivetitle. Asinglefile (for example, a transaction file) may be named
differently (for example, TRANSFILE, TRANS-IN, TRANS-OUT) inthe system of
programs. Control statements can be usedto assigna descriptivename to sucha
fileand to connect the appropriatedescriptions fromspecific programsto that
name.

m Associate record descriptions with a specific file.

Record descriptions can beassociated with a specific file. Within the DATA DIVISION
of each program, any number of record descriptions thatapplytothe samefilecan
exist. Control statements can be used to specify which record descriptions apply to
a specificfile.

m Associate record descriptions with a specific program section.

Record descriptions can beassociated with a specific section of the program.
Record descriptions can be present inthe FILE, WORKING-STORAGE, or LINKAGE
sections of programs. Control statements can be used to designate the appropriate
sectionifnecessary.

40 Dictionary Loader User Guide

Overview

File of control statements

A file of control statements is illustrated in the followingfigure. The parameter
statement specifies processingoptions for the run. The rest of the fileconsists of sets of
control statements (one set for each subsetof records for which cross referencingis
desired). Each set contains a titlestatement and one or more selection statements.
Syntax andrules for control statements arepresented later in this chapter.

SELECTION

statements
TITLE
statement

Set of Control SELECTION
—_— statements
statements
TITLE

statement

SELECTION
statements
TITLE
statement
Parameter
Statemeant(s)

Establishing processing options

The parameter statement establishes processing options for the run. Each set of control
statements identifies a group of records (most commonly a file) for which anindividual
cross-referencereport is to be produced.

Assigning a title to the report

A set of control statements assigns a descriptivetitleto the report on the subsetof
records with the title statement and specifies, with selection statements, the 01-level
records thatare to be included in the report. Typically, many sets of control statements
are specifiedinthe file of control statements.

Chapter 3: Cross Reference Processor 41

Overview

System Data Cross-Reference report

During execution, the Cross Reference Processor cross references data elements
throughout the system of programs, as directed by the control file,and produces a
series of reports (one for each set of control statements). These reports are known
collectively as the System Data Cross-Reference Report. Inthe reports, all PROCEDURE
DIVISION statements usinga specific data element are listed below the element.
Additionally, all data elements are identified by their data names and associated with
their program names and records names. Source line numbers for each data name and
PROCEDURE DIVISION statement arealso supplied.

Sample report

Because the System Data Cross-Reference Report lists data elements in order by starting
columns, synonymous elements aregrouped together and overlappingdata fields are
closeto one another inthe report. Thus, all uses ofany column or range of columnsis
easyto research,as shown below:

SYSTEM DATA CROSS REFERENCE FOR REPORT: CUSTOMER RECORD DICTIONARY LOADER dd mmm yy 1425 PAGE 2
FROM TO LV DATA NAME SRC LN PROG ID REC NAME SIZE USAGE 0CCURS QUALIFIER
REF LN REF STATEMENT
1 10 03 CUST-NUMBER 047000 PRANDEM1 CUSTOMER 10 DISP CUSTOMER- FILE
131000 MOVE SPACES TO CUST-NUMBER
138000 IF ORD-CUST-NUMBER = CUST-NUMBER
144000 MOVE CUST-NUMBER TO RPT-CUST-NO
03 CUST-NWM 044000 PRANDEM2 CUSTOMER 10 DISP CUSTOMER- FILE
190000 MOVE CUST-NUM TO RPT-CUST-NO
11 30 03 CUST-NAME 048000 PRANDEM1 CUSTOMER 20 DISP CUSTOMER- FILE
145000 MOVE CUST-NAME TO RPT-NAME
03 CUST-NAME 045000 PRANDEM2 CUSTOMER 20 DISP CUSTOMER- FILE
091000 MOVE CUST-NAME TO RPT-CUST-NAME
03 CUST-NAME 041000 PRANDEM3 CUST 20 DISP CUSTFILE

064000 MOVE CUST-NAME TO MAIL-LINE-1

Dictionary of Data Names reports

The Dictionary of Data Names Report is an optional reportthat canalso be produced by
a Cross Reference Processor run.This report lists all data elements alphabetically with
additional information that points to the definitions of data items in the sourcecode.
Thus, this report can be used to control changes in programs, files, records, or data
elements.

42 Dictionary Loader User Guide

Developing a File of Control Statements

Developing a File of Control Statements

Control file specifies report organization

To directthe operation of the Cross Reference Processor, a file of control statements
must be developed. The control filespecifies the organization ofinformation to be
reported inthe System Data Cross-Reference Report by identifying groups of records
(most commonly files) for which individual cross-referencereports areneeded. The
control fileuses three types of statements:

m The parameter statement (to specify processingoptions)
m The title statement (to identify a group of records)

m The selection statement (to specify selection criteria for records ina group)
Worksheets

To aidindevelopinga file of control statements, a worksheet is provided. Information
found inthe Fileand Record Layouts Reports and the DATA DIVISION Cross Reference
Reports for the system of programs aids infilling outthe worksheets.

Control file optional, but recommended

Note that the purpose of the control fileis to limitthe amount of information cross
referenced together sothatthe report canbe used to research various descriptions of
the same records easily. The control filecan be omitted, in which caseall records from
all programs and files will bereported together. But the value of the System Data
Cross-Reference Report depends upon its organization. A carefully planned control file
results ina more useful report.

Steps

To develop a file of control statements, followthe four steps outlined below:

Step 1—Specify processing options

Refer to the followingtableand determine whether the default processingoptionsin
effect areacceptable. Select any override processingoptions needed for the run. Specify
the override options with a parameter statement. This statement, if used, must be the

firststatement in the control file. For syntaxandrules, refer to Parameter Statement
(see page 49) later inthis chapter.

Parameter

Default Option Override Option

FILLER/NOFILLER

NOFILLER—Data elements named FILLER FILLER—Data elements named

arenotto beincludedinthe System Data FILLER areto beincludedinthe

Cross-Reference Report. System Data Cross-Reference
Report.

Chapter 3: Cross Reference Processor 43

Developing a File of ControlStatements

Parameter Default Option Override Option
REFONLY/NOREFONLY REFONLY—Only data items referred to by NOREFONLY—AI|l dataitems areto
a PROCEDURE DIVISIONstatement areto be includedinthe System Data
be included inthe System Data Cross-Reference Report.

Cross-Reference Report.

DICTIONARY/ NODICTIONARY NODICTIONARY—The Dictionary of Data DICTIONARY—The Dictionary of Data

Names Report is notto be printed. Names Report is to be printed.
LIBRARY/NOLIBRARY NOLIBRARY—Data usagefiles arenot to LIBRARY—Data usage files areto be
be read from alibrary. The default DISK read from a partitioned data set
(see below) must be taken with (z/0S) or sourcestatement library
NOLIBRARY. (z/VSE).
DISK/NODISK DISK—Data usage files areto be read from NODISK—Data usagefiles arenot to
a sequential data set. be read from a sequential data set.

LIBRARY (see above) must be
specified with NODISK.

MEMBER-NAME-1S-1D/ MEMBER-NAME-IS-ID—AIl of the member NOMEMBER-NAME-IS-ID—The
NOMEMBER-NAME-IS-ID names supplied with the LIBRARY program names inthe source
parameter areto be used as the program programs are to be used as the
IDs on the reports. program IDs on the reports.
PROGRAM-ID - PROGRAM-ID—The sourceprogram

identified by source-program-name
is to be identified on reports by the
new name specified.

LIMIT/NOLIMIT LIMIT—Complete reference statements NOLIMIT—An unlimited number of
for each data item up to the limitspecified complete reference statements are
areto be listed. 10 is the defaultlimit. to be listed for each data item.

Step 2—Identify groups of records

Determine the groups of records for which cross referencingis desiredand assigna
descriptivetitleto each group. Any group of records can be cross referenced, but the
most common group is the file. Therefore, consider firstthe files common to multiple
programs inthe system of programs being processed and give each filea descriptive
title. Then, identify any other group of records for which cross referencing would be
useful. For example, defininga group of records to be all records fromworking storage
from all programs yields a cross-referencereport that allows extensiveanalysis of the
use of work records for the system of programs.

Step 3—Fill in worksheets

Determine whichrecords are to be includedin each group and identify these records by
fillingin worksheets. Completed worksheets will beused to code title and selection
statements. A sampleworksheet is shown below. Instructions for fillingin worksheets
are presented laterinthis session.

44 Dictionary Loader User Guide

Developing a File of ControlStatements

Step 4—Create the control file

When the worksheets are complete, create the control file by generating one statement
for eachlineon each worksheet. Ifused, the parameter statement must be first,
followed by the titlestatement and its selection statements. Continue to code a title
statement andselection statements for all of the remaining worksheets. For syntaxand
rules for codingtitle statements and selection statements, refer to Title Statement and
Selection Statement later in this chapter.

CROSS REFERENCE PROCESSQR
CONTROL FILE
WORKSHEET

FLeRePORT = 2 *** MASTER PROFILE FILE ***

PROGRAM-ID RECORD NAME lohr] QUALIFICATION
oF
TAPE-IN
MPF-REC
MPF-RECORD
WRITREP :| MAST-REC
- |MAST-PROF-REC
MAST-REC IN MASTER-FILE
NEW-PROF-REC

Chapter 3: Cross Reference Processor 45

Filling in Worksheets

Filling in Worksheets

Werite in the title first

Start a worksheet for each group of records, as shown inthe figure above by writing the
descriptivetitle (that is, fileor other group identifier) after the header REPORT=. The
descriptivetitleclearlyidentifies the group of records, most commonly a particular file
that may be known by many different names inthe system of programs. Next, enter
from one to three of the followingvariables, linebyline, on each worksheet:

1. ProgramID
2. Record name

3. Qualification
Each line represents one selection statement

Each lineonthe worksheet represents one selection statement. The variable(s) specified
on each linecauses the Cross Reference Processor to selectthe defined subset of
records. For example, supplyinga programID only specifies thatall records fromthe
named programare to be includedinthe report, supplyinga record name only specifies
that the record associated with that nameis to be included. Often, a singlerecord from
afileis called by many different names ina system of programs. In this case, many
separatenames are needed to specify the selection of all copies of the record. Eachline
contains a different name for the record. Guidelines for specifying various combinations
of the three variables are presented below.

Use Program Processor reports to fill in worksheets

The reports produced by the Program Processor can be helpful infillinginthe
worksheets:

m The Fileand Record Layouts Report canbe used to find filenames and record
names without havingto search through the COBOL sourcecode for all of the
programs. This report canalsobeused to research READ INTO and WRITE FROM
statements to locatethe resultantcopies of records that may residein the
WORKING STORAGE or LINKAGE sections under different names.

m The DATA DIVISION Cross Reference Report can be used to track MOVE statements
that move 01-level records from the FILE section to the WORKING STORAGE section
or the reverse. This trackingaids inlocating copies of records.

46 Dictionary Loader User Guide

Filling in Worksheets

Guidelines for specifying selection variables

The record name is the key variablein specifying selection criteria. Most commonly, the
record name aloneis used to identify a member of the group of records to be reported
on. However, itmay be advantageous to further qualify record name (because, for
example, the nameis not unique) or to request the inclusion of records without regard
to record name (because, for example, the objective of the report is tolook at all
records inthe LINKAGE section of all programs). All possible combinations of program
id, record name, and qualification arevalid. Listed below areguidelines for supplyingthe
programid, the record name, and/or a qualification. Note that the qualification can be
an FD filename or keywords to indicatethe WORKING STORAGE or LINKAGE sections.

Field

Description

Record name only

Ifthe samerecord name is usedin different programs and
always exclusively for the file under consideration, supply only
the record name.

Record name and
FD filename (that
is,qualification)

Ifthe samerecord name is usedina singleprogramfor multiple
files,supply the record name and the FD filename. Program ID
canbe left blankunless the record name is used in other ways in
the system of programs being processed.

Record name and
program ID

Ifthe samerecord name is used for different files in different
programs, supply the record name and program ID for each
record that applies to the fileunder consideration. Qualification
canbe left blankunless the record name is also used for multiple
files inthe program.

FD filename (that
is,qualification)

Ifall record descriptions foran FD are to be included, supply the
FD file name under qualification. If, throughout the system of
programs, the FD filename is used only to refer to the fileto be
cross referenced under the specified title, leave the program ID
andrecord name blank. All record descriptions for the FD file
name from any programin the system will becross referenced
andreported. However, ifthe FD filename is used for different
files in different programs, a linemust be completed for each
program. Each linemust supply the FD file name, under
qualification, as well as the program id. All record descriptions
for the FD filename inthe specified programs will becross
referenced andreported.

WORKING STORAGE
or LINKAGE
(qualification)

Ifall record descriptions fromthe WORKING STORAGE or
LINKAGE sections areto be included, supply the appropriate
keyword under qualification.

None of the three
variables

Ifall records fromall programs areto be cross referenced
together, omit selection statements altogether.

Chapter 3: Cross Reference Processor 47

Filling in Worksheets

Summary table

The followingtablesummarizes the subsets of records selected based on the
combination of variables specified.

Combination of variables

Description

Blank Specified Blank The named record from all programs with no
qualification (thatis,from all FDfiles and from
all sections).

Blank Specified Specified The named record from all programs as
qualified (thatis, from the FD filespecified or
from the workingstorage or linkagesections).

Blank Blank Specified All records from all programs as qualified.

Specified Blank Blank All records from the named program (with no
qualification).

Specified Blank Specified All records from the named program as
specified.

Specified Specified Blank The named record from the named program
(with no qualification)

Specified Specified Specified The named record from the named programas
qualified.

Blank Blank Blank All records from all programs (with no

qualification).

48 Dictionary Loader User Guide

Parameter Statement

Parameter Statement

Specifies overrides

The parameter statement specifies override processingoptions for the Cross-Reference
Processor.

Coding rules

The followingrules apply to coding parameter statements.

m Parameter statements, if used, must be included at the beginning of the file of
control statements.

m Multiplestatements canbe entered.
m Statements canbe coded inpositions 1through 72.

m Options canbe specifiedinanyorder, with one or more options per statement and
atleastone blank or comma between specifications.

m Ifanoptionrequires a listofinformation, the list mustfollow the option keyword
immediately on the same statement. If the listmustbe continued to a new line, the
option keyword must be repeated. For the PROGRAM-ID option,
source-program-name (see syntax below) must also be repeated when alistof new
names is beingcontinued.

Syntax

T F FiLter —“—'
NOFiller «
REfonly « jJ
NORefonly

DICtionary —J—l
NODICtionary «

v

v

v

[
LIBrary —v— member-name

NOLIBrary «
" |- ISk « j—l
NODISk

MEMber-name-is-id « :|—J
NOMember -name-is-id

I o e L
PROgram-id —¥— source-program-name —v— = new-name

L - program-name -]

v

v

v

Chapter 3: Cross Reference Processor 49

Parameter Statement

M

LIMit = 10 « —J—I—J
|: L list-limit
NOLIMit

Parameter list
FiLler/NOFiller

Specifies whether the System Data Cross-Reference Report is to includedata
elements named FILLER, as follows:

m FILLER—Data elements named FILLER areto beincludedinthe Syst em Data
Cross-Reference Report.

m NOFILLER (default)—Data elements named FILLER arenot to be includedinthe
System Data Cross-Reference Report.

REfonly/NORefonly

Specifies whether the System Data Cross-Reference Report is to includeonly the
dataitems referred to by a PROCEDURE DIVISION statement, as follows:

m REFONLY (default)—Onlythose data items referred to be a PROCEDURE
DIVISION statement are to includedinthe System Data Cross-Reference
Report.

m NOREFONLY—AII dataitems areto includedinthe System Data
Cross-Reference Report. Note that this parameter does not affect the inclusion
of data items named FILLER.

DICtionary/NODICtionary
Specifies whether to printthe Dictionary of Data Names Report, as follows:
m DICTIONARY—The Dictionary of Data Names Report is to be printed.

m NODICTIONARY (default)—The Dictionary of Data Names Reports is not to be
printed.

50 Dictionary Loader User Guide

Parameter Statement

LIBrary/NOLIBrary

Specifies information aboutthe data usage files to be input to the DDDL Generator,
as follows:

LIBRARY identifies the data usagefile.Each occurrence of member-name
identifies a data usagefile. All member names specified must be members of
the same partitioned data set (z/OS) or sourcestatement library (z/VSE). The
optional entry, program-name, can be specified for any member name and
overrides the use of the member name as the program ID on the generated
ADD PROGRAM syntax.

LIBRARY must always be specified with NODISK (see below) ifall of the data
usage files arestoredin a partitioned data set (z/OS) or source statement
library (z/VSE). It can be specified with DISK if data usage files areto be read
from both a sequential data set, and partitioned data set (z/OS) or a source
statement library (z/VSE).

m NOLIBRARY (default) specifies thatdata usage files arenot to be read froma
partitioned data set (z/OS) or sourcestatement library (z/VSE). If the default of
NOLIBRARY is taken, then the default of DISK (see below) must also betaken.

DISk/NODISk

DISK/NODISK are options that areused with LIBRARY/NOLIBRARY, as follows:

DISK (default) specifies thatdata usagefiles areto be read from a sequential
data set. DISK mustalways bespecified with NOLIBRARY. DISK can be specified
with LIBRARY ifthe data usagefiles areto be read from both a sequential data
setand a partitioned data set (z/OS) or sourcestatement library (z/VSE).

NODISK specifies thatdata usage files arenot to be read from a sequential data
set. LIBRARY (see above) must be specified with NODISK ifall of the data usage
files arestored in a partitioned data set (z/OS) or sourcestatement library
(z/VSE).

MEMber/NOMember

Specifies the source of the program IDs to be used on reports, as follows:

MEMBER-NAME-IS-ID (default)—All of the member names supplied with the
LIBRARY parameter areto be used as program IDs on the reports. Note that
once member names areassigned as programIDs with this parameter,
member names must alsobeused for programIDs on selection statements.

NOMEMBER-NAME-IS-ID—The programID specifiedinthe PROGRAM-ID
paragraphinthe COBOL sourceprogramis to be used as the programid on the
report.

Note: To guarantee unique identification of all programs whose data usage files are
stored ina partitioned data set or sourcestatement library, operate under the
default MEMBER-NAME-IS-ID and specify the LIBRARY and NODISK parameters. To
guarantee unique identification of all programs whose data usagefiles arestored in
sequential data sets, use the PROGRAM-ID parameter described below, as needed.

Chapter 3: Cross Reference Processor 51

Parameter Statement

PROgram-id

Provides unique program IDs for source programs that have the same name (thatis,
duplicatenames in their internal PROGRAM-ID paragraphs)or changes aninternal
PROGRAM-ID name to another name for printinginthe reports. This parameter is
onlyused with data usage files thatare stored in sequential data sets.

Source-program-name specifies the source PROGRAM-ID name that is to be
changed. Occurrences of new-name specify the names that will be assigned
sequentially whenever the common PROGRAM-ID name (thatis,
source-program-name) appears inthe inputdata usagefiles. Source-program-name
= new-name can be repeated to name other PROGRAM-ID names and their
associated new names.

Note: Whenever internal PROGRAM-ID names are changed in this way, the new
names must be used for specifying program-ID on selection statements.

LIMit/NOLIMit

Establishes the maximum number of reference statements per data item to be
listed completely in the System Data Cross-Reference Report, as follows:

m LIMIT=10 (default)/list-limit—To be listed arecomplete reference statements
includingline number and text for each data item up to the default limittaken
(10) or the limitspecified. When the limitis reached, onlylinenumbers are
listed for the remainingreferences to the dataitem. Limit=0 specifies thatonly
linenumbers are to be listed for all references to the item.

m NOLIMIT—To be listed arethe linenumbers and statements for all references
to all data items.

52 Dictionary Loader User Guide

Title Statement

Title Statement

Purpose

The title statement assignsa descriptivetitleto the report pages related to a specific
group of records (for example, a file) and marks the beginning of a new set of control
statements.

Specify for each set of control statements

A titlepage must be specified for each set of control statements. The titlespecifiedis
printed on the firstline of every page associated with the set of control statements. To
avoid printinga title, the title statement supplied can specify only the keyword identifier
andan equal (=), omitting the descriptive text.

Note: Ifthe titlestatement is omitted, the followingtext will be printed as the title "No
Report Title" The Cross Reference Processor will assumethat all subsequentselection
statements pertainto the same group of records until itfinds another title statement.

The title statement canonly be omitted for the firstset of selection statements.

The title statement can be coded anywhere usingpositions 1 through 72.

Syntax

REPort = report-title
FILe .

X

Parameter list
REPort/FlLe

Identifies the statement as a titlestatement. One of these keywords followed by an
equal sign (=) must be specified. The keyword specified, the equal sign,and
report-title will appear onthe report.

Report-title supplies a descriptivereporttitle. ltmust be a 1- to 30-character
alphanumeric value. Quotes are not required and, if used, become a part of the title
printed on the report.

Example

A sampletitlestatement is shown below:

FILE=1 *** TRAFFIC FILE ***

Chapter 3: Cross Reference Processor 53

Selection Statement

Selection Statement

Purpose

The selection statement specifies criteriafor selecting 01-level records to be includedin
the cross-reference information for the descriptivetitie specified in the titlerecord. This
statement can specify three variables:the program name, the record name, anda
qualification (thatis,and FD filename, WORKING STORAGE, or LINKAGE). The variables
specified restrictrecord selection. One, two, or all three of these variablescan be
specified. Typically, multiple selection statements are specified followingeachtitle
statement.

Coding rules
The selection statement can be coded anywhere using positions 1 through 72.
Syntax

»h

L program-name —J ' l— record-name —‘I

IN FD-file-name
OF - 'WORKING-STORAGE '
' LINKAGE'

Parameter list

v

program-name

Specifies a PROGRAM-ID name. This specificationrestricts record selection to
records inthe named program. Program-name must be the internal programname
unless that name has been changed by the runtime options MEMBER-NAME-IS-ID
and LIBRARY, or by the runtime option PROGRAM-ID. When these options are used
to rename programs (thatis,inthe parameter statement) the new name must be
used when specifying program-name.

The colon(:) is required and must be specified regardless of other entries specified.
record-name

Specifies the name of an 01-level record as itappearsinasourceprogram. This
specification restricts record selection to the named record.

54 Dictionary Loader User Guide

Sample ControlFile

IN/OF

Specifies an FD filename used ina source program or the keywords
'"WORKING-STORAGE' or 'LINKAGE'. This specification restricts record selection to
records associated with the FD name specified or to records located in the
WORKING STORAGE or LINKAGE sections of the programs being processed.
WORKING-STORAGE and LINKAGE must be enclosed insinglequotes. At leastone
spaceis required on either sideof IN or OF.

Example statement

A sampleselection statement is shown below. This statement specifies thatall records
named TRF-IN-REC areto be selected.

:TRF-IN-REC

Sample Control File

A samplecontrol fileis shown below. A parameter statement is shown first, followed by
two sets of control statements pertainingto two files.

DICTIONARY

FILE=1

ESTIMATE

FILE=2

WRITREP

***% TRAFFIC FILE ***
:TRF-IN-REC

: TRF-IN-RECORD
:TRF-OUT-REC

: TRF-OUT-RECORD
:WORK-TRF
:WRK-TRF

*** MASTER PROFILE FILE ***
:TAPE-IN

:MPF-REC

:MPF-RECORD

:MAST -REC

:MAST - PROF -RECORD
:MASTER-PROF -REC
:MAST -REC
:NEW-PROF -REC

IN 'WORKING-STORAGE'

IN MASTER-FILE

Chapter 3: Cross Reference Processor 55

System Data Cross-Reference Report

System Data Cross-Reference Report

Description

The System Data Cross-Reference Report provides extensive information aboutthe use
of data items throughout a system of COBOL programs.The report begins with a header
page that provides a formatted listing of the file of control statements and a count of
records found for each selection statement specified. Each subsequent page identifies
the subset of records being cross referenced (usingthe title form the title statement)
and provides detail information aboutdata elements withinthe records.

Sample report

Inthe report samplebelow, the header page appears first, followed by the firstpagein
the main body of the report.

SYSTEM DATA CROSS REFERENCE ~ *LIST OF REQUESTED RECORDS*

REPORT TITLE

CUSTOMER RECORD

ORDOR RECORD

SYSTEM DATA CROSS REFERENCE FOR REPORT: CUSTOMER RECORD

FROM TO LV
1 10 03
03
11 30 03
03
03

CUST -NUMBER 047000 PRANDEM1 CUSTOMER 10 DISP

DICTIONARY LOADER dd mmm yy 1425 PAGE 1

PROGRAM-ID 01-LEVEL RECORD QUALIFIER COUNT
ANY PROGRAM CUSTOMER 2
ANY PROGRAM CUST 1
ANY PROGRAM ORDOR 1

DICTIONARY LOADER 28 JAN 99 1425 PAGE 2
SRC LN PROG ID REC NAME SIZE USAGE 0CCURS QUALIFIER
REF LN REF STATEMENT

CUSTOMER- FILE
131000 MOVE SPACES TO CUST-NUMBER
138000 IF ORD-CUST-NUMBER = CUST-NUMBER
144000 MOVE CUST-NUMBER TO RPT-CUST-NO

044000 PRANDEM2 CUSTOMER 10 DISP CUSTOMER- FILE
190000 MOVE CUST-NUM TO RPT-CUST-NO
048000 PRANDEM1 CUSTOMER 20 DISP CUSTOMER- FILE
145000 MOVE CUST-NAME TO RPT-NAME
045000 PRANDEM2 CUSTOMER 20 DISP CUSTOMER- FILE
091000 MOVE CUST-NAME TO RPT-CUST-NAME
041000 PRANDEM3 CUST 20 DISP CUSTFILE

064000 MOVE CUST-NAME TO MAIL-LINE-1

Field descriptions
REPORT TITLE

The descriptivetitleused to identify the group of records and taken from the title
statement.

PROGRAM-ID

The PROGRAM-ID from the selection statement or, if PROGRAM-ID was blank, the
entry *ANY PROGRAM*,

56 Dictionary Loader User Guide

System Data Cross-Reference Report

01-LEVEL RECORD

The 01-level record name from the selection statement, or if record name was
blank, the entry *ANY RECORD*.

QUALIFIER

The FD filename, the keywords WORKING STORAGE or LINKAGE, orblankas
specified on the selection statement.

COUNT

A count of the 01-level records selected as a result of the specifications on the
selection statement.

FOR REPORT

The descriptivetitleused to identify the group of records and taken from the title
statement.

FROM

The starting position of the data element.
TO

The ending position of the data element.
LV

The level number from the data item description entry.
DATA NAME

The data name from the data item description entry.
SRC LN

The linenumber of the data item description entry inthe sourceprogram.
PROG ID

The program ID being used to identify the source program. The programID may be
the internal PROGRAM-ID from the COBOL source program or a library member
name, depending on the user-defined options in effect from the run.

REC NAME

The 01-level record name from the record description entry where the data
element was found.

SIZE

The sizeof the data item field.

Chapter 3: Cross Reference Processor 57

System Data Cross-Reference Report

USAGE

The form inwhich the dataitem is to be stored as the result of the source
program's specifications:

m GROUP—The dataitem contains subordinateitems.
m DISP—The dataitem is storedincharacter form.

m DISP-NM—The dataitem is stored one digitper character position.The PIC
containsonlyS,9, and V.

m COMP—The data item is stored as computational (1,2,3, or 4). The PIC entry
containsonlyS,9 and V.

m NM-EDIT—The dataitem is a numericitem stored in character format. The PIC
contains someor all of the editingcharacters +, -, z, $, comma, B, CR, DB, ., or
0.

The following report writing specificationscanalsoappearinthis column:

m RH—Report heading

m RF—Report footing

m PH—Page heading

m PF—Pagefooting

m CH—Control heading

m CF—Control footing

m DE—Detail
OCCURS

The number of times the data item is repeated as the resultof an OCCURS clause.
QUALIFIER

The FD filename or the keywords WORKING STORAGE or LINKAGE to indicate
where the data element was found.

REF LN
The linenumber inthe sourceprogram from the COBOL statement that follows.

REF STATEMENT

A COBOL statement that refers inany way to the data element.

58 Dictionary Loader User Guide

Dictionary of Data Names Report

Dictionary of Data Names Report

Description

The Dictionary of Data Names Report lists all record and element names alphabetically,
together with the followinginformationabouteach item listed:

m |ts positioninthe record

m Size
m Usage
m Level

m Sourcelinenumber
® ProgramID

m Member name

m Internal programID
m Record name

This report aids intrackingthe use of data elements throughout the system of
programs.

Purpose
The purpose of this reportis to aidin controlling change. The information supplied
indicates the exact lineinthe appropriate COBOL source programwhere anydata item

used throughout the system of programs is defined.

Note: This reportis optional andis notproduced automatically. To obtain this report,
specify the option DICTIONARY on a parameter control statement for the run.

Sample report

SYSTEM DATA CROSS REFERENCE *DICTIONARY OF DATA NAMES* DICTIONARY LOADER dd mmm yy 1425 PAGE 1
FROM TO SIZE USAGE LWL DATA NAME SRCLN PROGRAM MEMBER INTERNAL 01-RECORD-NAME
D NAME PROG-ID
1 104 104 GROUP 01 CQusT 039000 PRANDEM3 (DISK) PRANDEM3 CUsT
31 70 40 GROUP 03 CUST-ADDRESS 049000 PRANDEM1 (DISK) PRANDEM1 CUSTOMER
31 70 40 GROUP 03 CUST-ADDRESS 046000 PRANDEM2 (DISK) PRANDEM2 CUSTOMER
31 70 40 GROUP 03 CUST-ADDRESS 042000 PRANDEM3 (DISK) PRANDEM3 CUsT

Chapter 3: Cross Reference Processor 59

Executing the Cross Reference Processor

Executing the Cross Reference Processor

Job Control Language (JCL) for executing the Cross Reference Processor under z/OS and
z/VSE is shown below. Under both z/0OS and z/VSE, processingoptions mustbe specified
with the parameter statement.

Note: (z/OS users only)-The PARM clause of the EXEC statement cannot be used to
specify options when executing this component.

z/0S JCL-PRANXREF

//PRANXREF EXEC PGM=PRANXREF,REGION=1024K
//STEPLIB DD DSN=idms.dba. loadlib,DISP=SHR
// DD DSN=idms.custom. loadlib,DISP=SHR
// DD DSN=idms.cagjload,DISP=SHR
//SYSLST DD SYSOUT=A
//SYSUDUMP DD SYSOUT=A
//SORTMSG DD SYSOUT=A
//SORTLIB DD DSN=SYS1,SORTLIB,DISP=SHR
//SORTWKO1 DD UNIT=disk,SPACE=(cyl, (5,5))
//SORTWKO2 DD UNIT=disk,SPACE=(cyl, (5,5))
//SORTWKO3 DD UNIT=disk,SPACE=(cyl, (5,5)) Include only if using
//PRANLIB DD DSN=reflib,DISP=SHR <« LIBRARY option.
//PRANREF DD DSN=sysrefl,DISP=SHR
// DD DSN=sysref2,DISP=SHR Include only
« if using DISK option

// DD DSN=sysrefn,DISP=SHR

//dcmsg DD DSN=idms.sysmsg.ddldcmsg, DISP=SHR
//sysjrnl DD *

//SYSOUT DD SYSOUT=a

//SYSIDMS DD *

dmcl=dmcl-name

Insert other SYSIDMS parameters as appropriate
//SYSIPT DD *

Insert optional control statements here

DSN Description

idms.dba.loadlib Data set name of the load library containingthe DMCL and
databasename table load modules

idms.custom.loadlib Data set name of the load library containing customized CA
IDMS system software modules

idms.cagjload Data set name of the load library containing CAIDMS system
software modules that do not require customization

60 Dictionary Loader User Guide

Executing the Cross Reference Processor

DSN Description

cyl,(5,5) filespaceallocation of workfile

disk symbolic devicename of diskfile

reflib data set name of partitioned data set containingdata usage
files

sysrefl, sysref2, data set names of sequential data sets containingdata usage

sysrefn files

dcmsg DDname of the system message (DDLDCMSG) area

idms.sysmsg.ddldcms Data set name of the system message (DDLDCMSG) area

8

SYSIDMS

DDname of the CA-IDMS parameter filespecifying runtime
directives and operating system-dependent parameters.

For a complete description of the SYSIDMS parameter file,see
the CA IDMS Common Facilities Guide.

z/VSE JCL-PRANXREF

// DLBL SSln, 'user.srclib’

// EXTENT ,nnnnnn

// LIBDEF SL,T0=SSln,TEMP

// DLBL PRANREF, 'sysref',,SD <« Include only if using DISK option
// EXTENT SYS010, nnnnnn

// ASSGN SYS010,DISK, VOL=nnnnnn, SHR

// DLBL SORTWK1, 'WORK1',0,SD

// EXTENT SYS001,nnnnnn,1,,ssss,200

// ASSGN SYS001,DISK, VOL=nnnnnn,SHR

// EXEC PRANXREF , STZE=128K

optional control statements

/*

DSN Description

nnnnnn serial number of disk volume

SSSS startingtrack (CKD) or block (FBA) of disk extent
sysref file-id for sequential file containing data usagefile
SYS001 logical unitassignmentfor sortwork file

SYS010 logical unitassignmentfor data usage file (SYS010 required)
user.srclib sourcestatement library containingdata usagefiles
SSIin filename of sourcestatement library

Chapter 3: Cross Reference Processor 61

Chapter 4: DDDL Generator

Purpose

The DDDL Generator reads data usage files and generates the appropriate DDDL source
statements for input to the IDD DDDL compiler. Statements generated include ADD,
PROGRAM, ADD RECORD, and ADD FILE. COBOL substatements of the RECORD
statement are generated for defining elements.

DDDL Generator control statements

Control statements canbe used to control the operation of the DDDL Generator:

m Grouping-control statements specify to the DDDL Generator those file(or record)
definitions thatdescribethe same file (or record) but have different names and
those file (or record) definitions thathave the same name but do not define the
same file(or record).

m The VERSION statement specifies a VERSION clause, causingthe DDDL Generator to
includethe specified VERSION clause (instead of the default of VERSION 01) in every
ADD statement generated.

Output

The DDDL Generator produces a listing of statements generated and an output file
containingthe statements. This filecan be input to the DDDL compiler directly or edited
firstand then input to the compiler.The DDDL compiler processes the generated
statements to populatethe data dictionary.

What follows

This chapter presents an overview of the DDDL Generator andinstructions on how to
develop a file of control statements, edit the generated DDDL statements, and execute
the DDDL Generator under z/OS and z/VSE.

This section contains the followingtopics:

Overview (see page 64)

Developing a File of Control Statements (see page 66)
Parameter Statement (see page 68)

VERSION Statement (see page 69)

Grouping Statement (see page 70)

Usingthe Grouping Statement (see page 72)

Editing Generated DDDL Statements (see page 77)
Executing the DDDL Compiler (see page 80)

Chapter 4: DDDL Generator 63

Overview

Overview

Without control statements

When operated without control statements, the DDDL Generator generates DDDL ADD
statements for each unique program, file, and record name inthe system of programs
being processed. An ADD statement is generated for the firstoccurrenceof each
program, file,and record name. Subsequent occurrences are considered to be
duplicates and areignored. The version clause VERSION 01 is generated for each ADD
statement.

With control statements

The DDDL Generator operates as described above unless the user supplies control
statements. These statements alter the operation of the DDDL Generator as follows:

Parameter statement

This statement specifies override processing options such assuppressing a listing of
generated statements.

VERSION statement

This statement specifies an alternative VERSION clause. If this statement is used fora
run, the DDDL Generator adds the VERSION clausespecified (instead of VERSION 01) to
all generated ADD PROGRAM, ADD FILE, and ADD RECORD statements. If
grouping-control statements (described below) specify synonyms, the VERSION clause
specifiedis alsoadded to generated SYNONYM clauses.

Grouping statement

This statement identifies files or records with synonymous or nonunique names.
Synonymous names are different names that refer to definitions of the same fileor
record; a nonuniquename is a singlename that refers to the definitions of different files
or records.

Ifa grouping statement identifying synonymous names for the same fileor record is
used for a run, the DDDL Generator generates an ADD statement for each different
name anda SYNONYM clausewithin each ADD statement. The SYNONYM clause
documents all other synonymous entities for whichan ADD was generated duringthe
run.

64 Dictionary Loader User Guide

Overview

Ifa grouping statement identifyinga nonunique name is used for a run, the DDDL
Generator generates an ADD statement for each unique entity referred to by the name
(instead of justfor the firstoccurrence of the name).

Note thatan ADD statement is always generated for the firstoccurrence of every fileor
record name. Ifthe name appears ina grouping statement for the run, an ADD
statement will begenerated for the firstoccurrence of the name for each group

defined. Additionally,an ADD statement is generated for the firstoccurrence of the
name thatis not described by any of the groupingstatements.

Sample file of control statements

A file of control statements is illustrated below. The parameter statement is firstand
specifies override processing options for the run. Next, the VERSION statement specifies
a VERSION clauseto be added to generated statements.The rest of file consists of
groupingstatements.

GROUPING
statements
VERSION
statement
Parameter
Statement(s)

Output from the DDDL Generator

Output from the DDDL Generator consists of a fileof DDDL statements and a listing of
the generated statements. For a breakdown of the DDDL clauses generated for each
entity type, refer to the followingtable.

Chapter 4: DDDL Generator 65

Developing a File of Control Statements

Use the output file to populate the dictionary

The output filecan be inputto the DDDL compiler to populate the data dictionary.
Before being input to the compiler, this file can be edited. Editing considerationsare
presented later in this section.

DDDL statement DDDL clauses

ADD FILE VERSION LABELS ARE STANDARD/OMITTED RECORD SIZE
RECORDING MODE BLOCK SIZE FILE NAME SYNONYM

ADD RECORD VERSION LANGUAGE WITHIN FILE RECORD NAME SYNONYM

(COBOL level-n element-name REDEFINES OCCURS OCCURS DEPENDING

substatement) ON ASCENDING/DESCENDING KEY INDEXED BY (for one item)

PICTURE VALUE SIGN BLANK WHEN ZERO SYNCHRONIZED
JUSTIFIED RIGHT

ADD PROGRAM VERSION LANGUAGE ESTIMATED LINES PROGRAM CALLED
INPUT/OUTPUT/I-O/EXTEND FILE ENTRY POINT RECORD USED
REFERENCED/ MODIFIED ELEMENT REFERENCED/ MODIFIED

Developing a File of Control Statements

Types of control statements

The DDDL Generator accepts three types of optional control statements:
m The parameter statement

m The VERSION statement

m The grouping statement

One or more parameter statements, a single VERSION statement, and one or more
grouping statements make up the control file.

66 Dictionary Loader User Guide

Developing a File of ControlStatements

Steps to develop a file
To develop a fileof control statements, followthese steps:
Step 1: Specify the processing options

See the followingtableand determine whether the defaultprocessingoptions in effect
are acceptable.Select any override processing options needed for the run. Specify the
override options with a parameter statement. Note that options can be specifiedin z/OS
execution JCL by usingthe PARM clauseof the EXEC statement. For syntaxandrules, see
Parameter Statement later inthis chapter.

Parameter Default option Override option

LIBRARY/ NOLIBRARY NOLIBRARY—Data usagefiles LIBRARY—Data usage files

arenotto beread from a areto be read froma
library. Thedefault DISK (see partitioned data set (z/OS)
below) must be taken with or sourcestatement library
NOLIBRARY. (z/VSE).

DISK/NODISK DISK—Data usage filesareto NODISK—Data usagefiles
be read from a sequential arenotto beread from a
data set. partitioned data set (z/0S)

or source statement
library(z/VSE).

LIST/NOLIST LIST—The file of generated NOLIST—The file of
DDDL statements is to be generated DDDL statements
listed. is not to be listed.

Step 2: Specify a VERSION statement

Determine whether VERSION 01 is the appropriateclauseto be added to generated
DDDL statements. For considerationsrelatingto the use of the VERSION clause, see the
Editing Generated DDDL Statements later in this chapter. Specify a VERSION statement,
ifappropriate. For syntaxandrules, see VERSION Statement later in this chapter.

Step 3: Identify file and record names

Identify nonunique or synonymous fileand record names. Use the System Data Cross
Reference Report and the Dictionary of Data Names Report to research the use of entity
names. Find multiple names for the same fileor record and instances when a single
name is usedto refer to different files or records.

Chapter 4: DDDL Generator 67

Parameter Statement

Step 4: Specify grouping statements

Usingthe information gathered in Step 3, create the grouping statements necessary to
ensure that an ADD statement will begenerated for each uniqueentity and that
SYNONYM clauses will begenerated for ADD statements that describethe samefileor
record using different entity-occurrence names. See GroupingStatement later in this
chapter.

Parameter Statement

Purpose

The parameter statement specifies override processingoptions for the DDDL generator.
Under z/VSE, this statement must be used to specify options;under z/0S, parameters
canbe specifiedinthe execution JCL by usingthe PARM clause of the EXEC statement.

Coding rules

The followingrules apply to codinga parameter statement for the DDDL Generator:

m Parameter statements, if used, must be input firstbefore the data usagefiles.

m Multiple parameter statements can be entered.

m Statements canbe coded inpositions 1 through 72.

m Options can be specifiedinanyorder, with one or more options per statement and

atleastone blank or comma between specifications.

Syntax

7k List « :,—'
NOLTSt

v

[

LIBrary —v— member-name
L - program-name -]
NOLIBrary «

DISk « j—l
NOD1i sk

Parameter list

)4

LISt/NOList
Specifies whether the file of generated DDDL statement is to be listed, as follows:
m LIST (default)—The generated DDDL statements areto be listed.

m NOLIST—The generated DDDL statements are not to be listed.

68 Dictionary Loader User Guide

VERSION Statement

LIBrary/NOLIBrary

Specifies information aboutthe data usage files to be input to the DDDL Generator,
as follows:

m LIBRARY—Identifies the data usage files. Each occurrence of member-name
identifies a data usagefile. All files specifies mustbe members of the same
partitioned data set (z/OS) or sourcestatement library (z/VSE). The optional
entry, program-name, can be specified for any member and overrides the use
of the specified member as the programID on the generated ADD PROGRAM
syntax.

LIBRARY must always be specified with NODISK (see below) and must be
specified with DISK if data usagefiles areto be read from both sequential data
sets and from a partitioned data set (z/OS) or a sourcestatement library
(z/VSE).

m NOLIBRARY—Specifies that data usagefiles arenot to be readfrom a
partitioned data set (z/OS) or sourcestatement library (z/VSE). If the default of
NOLIBRARY is taken, then the default of DISK (see below) must also betaken.

DISk/NODisk
Are options used with LIBRARY/NOLIBRARY, as follows:

m DISK (default)—Specifies thatdata usagefiles areto be read from a sequential
data set. DISK must always be specified with NOLIBRARY. DISK can be specified
with LIBRARY ifthe data usagefiles areto be read from both sequential data
set and from partitioned data set (z/OS) or sourcestatement library (z/VSE).

m NODISK—Specifies that data usage files arenot to be read from a sequential
data set. LIBRARY (see above) must be specified with NODISK ifall of the data
usage files arestoredin a partitioned data set (z/OS) or source statement
library (z/VSE).

VERSION Statement

Purpose
The VERSION statement describes the VERSION clauseto be added to each generated
DDDL statement. This statement is optional;if omitted, the DDDL Generator

automaticallyaddsa VERSION 01 clauseto each generated ADD statement.

Syntax

M

NEXT LOWest
version-number —

»»— VERsion E NEXT HIGhest
01 «

Chapter 4: DDDL Generator 69

Grouping Statement

Parameter list
VERsion

Identifies the statement and specifies thatthe clausedescribedis to be added to all
generated ADD PROGRAM, ADD FILE, and ADD RECORD statements.

NEXT HIGHest/NEXT LOWest

Specifies the version. Version-number, if specified, must be a 1- to 4-digitnumber in
the range 1 through 9999.

Grouping Statement

Purpose

Groupingstatements uniquelyidentify to the DDDL Generator the fileor record
definitions thathave nonunique or synonymous names. Synonymous file (or record)
definitions describethe same file (or record) but are referred to by different names.
Nonunique file (or record) definitions havethe samename but do not define the same
file (or record).

Coding rules

The followingrules apply to codingthe grouping statement:

m The keyword identifier must begin in position 1.

m Continuationlines mustbegin in position 2.

m Groupingstatements canbe coded inpositions 1 or 2 through 72.

m Oneor more spaces must be included between entries in the statement.

m Punctuationis not allowed.

m Clauses canbespecified on the same lineas the keyword identifier or on
subsequent lines.

m Continuation must occur at a natural spacebetween words.

Syntax

| .
FILE-GROUPING —_|—v—|: file-name —_|—v— IN program-name —LI—N
G

RECORD-GROUPIN record-name

70 Dictionary Loader User Guide

Grouping Statement

Parameter list
FILE-GROUPING/RECORD-GROUPING

Identifies the statement as a grouping statement and specifies whether the
statement applies tofiles orrecords.

file-name/record name

Identifies the fileor record to be grouped. The name must be specified exactlyasit
appears inone or more of the programs being processed.

IN program-name

Specifies a program in which file-name or record-name appears. Program-name
must be the internal PROGRAM-ID or, ifthe LIBRARY parameter has been used to
rename the program, the member-name.

The entry IN program-name can be repeated (see note below) to name different
programs in which the specifiedfileor record appears. Multiplespecifications of IN
program-name for a singlefileor record name mean that the fileor record uses the
same name andis identical in each of the programs named.

Additionally, theentire specification of file-name/record-name IN program-name can be
repeated (see note below). Multipleentities of this specificationindicatefileor record
synonyms. For example, the filename INPFILE in the program TRAN and filename INPUT
inprogram T2 both refer to the same file; INPFILE and INPUT are filesynonyms.

Note: Up to a total of five program names can be specifiedina singlegrouping
statement. Each of the program names can be associated with different fileor record
names (thatis, by repeating the entire specification or file-name/record-name N
program-name). Alternatively, multiple program names can be associated with the
same fileorrecord (that is, by creating only the specification of IN program-name for a
singlefileorrecord).

Sample

The samplegrouping statement shown below specifies the maximum allowa ble number
of program names (thatis, 5):

FILE-GROUPING INPFILE IN PROG1 IN PROG2 IN PROG3

INPUT IN PROG4 TRANFILE IN PROGS

The names INPFILE, INPUT, and TRANFILE all refer to the same file, but these names
appearindifferent programs.INPFILE refers to the fileinthe programs PROG1, PROG2,
and PROG3; INPUT refers to the filein PROG4; TRANFILE refers to the filein PROGS5.

Chapter 4: DDDL Generator 71

Using the Grouping Statement

Using the Grouping Statement

Use to identify synonyms and nonunique file or record names

Use the groupingstatement to identify synonymous and nonunique file or record names
to the DDDL Generator:

® Synonym names—Specify the appropriate keyword identifier (FILE-GROUPING or
RECORD-GROUPING). After the keyword identifier,specify a file name (or record
name) andits associated programname(s). Repeat the specification of file name
(record name) and program name(s) until all synonyms have been identified in the
groupingstatement.

The statement shown below illustrates groupingfor two file names that refer to the
same file: FILE-A names the filein PROG-1 and PROG-2, and FILE-B names the filein
PROG-3.

FILE-GROUPING FILE-A IN PROG-1 IN PROG-2 FILE-B IN PROG-3

Assuming the the data usage files are input in the order PROG-1, PROG-2, and PROG-3,
the DDDL Generator generates the following statements:

(Under PR0OG-1) ADD FILE FILE-A

FILE NAME SYNONYM IS FILE-B
(Under PROG-2) (No statements)
(Under PROG-3) ADD FILE FILE-B

FILE NAME SYNONYM IS FILE-A

Because a singlename cannot be both the primary entity-occurrence name anda
synonym, these statements must be edited to designate one name as the primary
name andthe other name for the fileas a synonym For a complete discussion of
synonym usage, see IDD User Guide.

72 Dictionary Loader User Guide

Using the Grouping Statement

Nonunique name—Specify the appropriate keyword identifier (FILE-GROUPING or
RECORD-GROUPING), followed by the nonuniquename and anIN clauseforeach
program in which the name is used to refer to the fileor record being grouped by
that statement. Repeat this process for each different fileor record referred to by
the nonunique name.

The statements shown below illustratefilegroupingfor the name FILE-A, where
FILE-A refers to one filein PROG-1 and PROG-2, and to another filein PROG-3 and
PROG-4:

FILE-GROUPING FILE-A IN PROG-1 IN PROG-2
FILE-GROUPING FILE-A IN PROG-3 IN PROG4

Assumingthat the data usagefiles areinputinthe order PROG-1 though PROG4,
the DDDL Generator generates the statements shown below:

(Under PROG-1) ADD FILE FILE-A
(Under PROG-2) (No statements)
(Under PROG-3) ADD FILE FILE-A
(Under PROG-4) (No statements)

The two generated ADD FILE FILE-A statements canthen be edited to establish
different version numbers or to assign a differentname to one of the files.

Note that multipleIN clauses causethe DDDL Generator to generate an ADD
statement for the firstoccurrence of the entity description for each group. Fora
given name, one use of the name can be processed without grouping statement; to
obtainan ADD statement for each distinctIDD entity description, each additional
use must be defined by a separategrouping statement.

If grouping statements are omitted, an ADD statement is generated for the first
occurrence of a filename or record name. If the filename or record name appears
again, no statement is generated; subsequent occurrences of the name are
considered to be duplicates.

Chapter 4: DDDL Generator 73

Using the Grouping Statement

Example 1

Five programs (PROG-1, PROG-2, PROG-3, PROG-4, PROG-5) are being processed. All five
programs access files named MASTER. The name MASTER refers to one filefor PROG-1
and PROG-2, to a second files for PROG-3 and PROG-4, andto a third filefor PROG-5.
The following grouping statements ensure that ADD statements will begenerated for
each of the three uniquefiles:

FILE-GROUPING MASTER IN PROG-1 IN PROG-2
FILE-GROUPING MASTER IN PROG-3 IN PROG-4

Note that PROG-5 in not mentioned inthese statements; when the DDDL Generator
encounters the filename MASTER in PROG-5, it will treatthe fileas one of the group of
all unqualified (thatis, not explicitly mentioned in a grouping statement) files named
MASTER and automatically generatean ADD statement.

Assumingthat the data usagefiles areinputinthe order PROG-1 through PROG-5, the
DDDL Generator generates the statements shown below. Note that SYNONYM clauses
are not generated because all files have the same name.

(Under PROG-1) ADD FILE MASTER...

(Under PROG-2
(Under PROG-3
(Under PROG-4
(Under PROG-5

) (No statements)

) ADD FILE MASTER..

) (No statements)

) ADD FILE MASTER..

The three ADD statements that use the file name MASTER can be edited to assurethat
the three distinctentities areentered intothe dictionary.The statement can be
distinguished fromone another by using different version numbers or by changingthe
name MASTER for two of the three files.

74 Dictionary Loader User Guide

Using the Grouping Statement

Example 2

The filename SUM-FILE is usedin five programs, PROG-1 through PROG-5. The name
SUM-FILE refers to the samefileinall five programs but the record description for the
fileis differentin PROG-5. The following grouping statement makes the distinction:

FILE-GROUPING SUM-FILE IN PROG-5

Assumingthat the data usagefiles areinputinthe order PROG-1 through PROG-5, the
DDDL Generator generates the statements shown below:

(Under PROG-1) ADD FILE SUM-FILE...
(Under PROG-2) (No statements)
(Under PROG-3) (No statements)
(Under PROG-4) (No statements)
(Under PROG-5) ADD FILE SUM-FILE...

These statements canthen be edited (thatis, versions added or file names changed) to
assurethatboth entities will beadded to the dictionary.

Example 3

The filenames SUM-FILE in PROG-1 and SUMMARY-IN in PROG-2 both refer to the same
file.Each filename has its own record descriptions. The following statement expresses
the proper grouping:

FILE-GROUPING SUM FILE IN PROG-1 SUMMARY-IN IN PROG-2

Assumingthat the data usagefiles areinputinthe order PROG-1, PROG-2, the DDDL
Generator generates the statements shown below:

(Under PROG-1) ADD FILE SUM-FILE...
FILE NAME SYNONYM IS SUMMARY -IN
(Under PROG-2) ADD FILE SUMMARY-IN...

FILE NAME SYNONYM IS SUM-FILE

Because a singlename cannot be both the primary entity-occurrence name anda
synonym, these statements must be edited to designate one name as the primary name
andall other names for the fileas synonyms. For a complete discussion of synonym
usage, see IDD User Guide.

Chapter 4: DDDL Generator 75

Using the Grouping Statement

Example 4

Onefileis named differently in four different programs.The fileis named ABC in
PROG-1, DEF in PROG-2, GHI in PROG-3, and JKL in PROG-4. The followinggrouping
statement describes this situation:

FILE-GROUPING ABC IN PROG-1 DEF IN PROG-2 GHI IN PROG-3 JKL IN PROG-4

Assumingthat the data usagefiles areinputinthe order PROG-1 through PROG-4, the
DDDL Generator generates the followingstatements:

(Under PROG-1) ADD FILE ABC...
FILE NAME SYNONYM IS DEF
FILE NAME SYNONYM IS GHI
FILE NAME SYNONYM IS JKL.
(Under PROG-2) ADD FILE DEF...
FILE NAME SYNONYM IS ABC
FILE NAME SYNONYM IS GHI
FILE NAME SYNONYM IS JKL.
(Under PROG-3) ADD FILE GHI...
FILE NAME SYNONYM IS ABC
FILE NAME SYNONYM IS DEF
FILE NAME SYNONYM IS JKL.
(Under PROG-4) ADD FILE JKL...
FILE NAME SYNONYM IS ABC
FILE NAME SYNONYM IS DEF
FILE NAME SYNONYM IS GHI.

These statements must be edited to establish one primary name for the fileand to
designate all other names for the fileas synonyms.

76 Dictionary Loader User Guide

Editing Generated DDDL Statements

Editing Generated DDDL Statements

Edit before using as input to DDDL compiler

The output file of generated DDDL statements produced by runningthe DDDL Generator
should be edited before being inputto the DDDL compiler.This editing aids in
maintaining control of the information entered into the dictionary.

Sample output
ADD FILE QUSTOMER-FILE VERSION NEXT HIGHEST

LABELS ARE OMITTED
RECORD SIZE IS 104
RECORDING MODE IS F
FILE NAME SYNONYM IS CUSTFILE VERSION NEXT HIGHEST.

ADD RECORD CUSTOMER VERSION NEXT HIGHEST
LANGUAGE IS COBOL
WITHIN FILE CUSTOMER-FILE VERSION HIGHEST
RECORD NAME SYNONYM IS CUST VERSION NEXT HIGHEST.

03 CUST-NUMBER PIC X(10).
03 CUST-NAME PIC X(20).
03 CUST-ADDRESS.
05 CUST-ADDR1 PIC X(20).
05 CUST-ADDR2.
06 CUST-CITY PIC X(15).

06 CUST-ZIP-CODE PIC X(5).
06 CUST-ZIPCODE REDEFINES CUST-ZIP-CODE

PIC 9(5).

03 CUST-CRBEDIT PIC XXX.
88 CUST-CREDIT-EXEC VALUE 'AAA‘.
88 CUST-CREDIT-GOGD VALUE ' .
88 CUST-CREDIT-POOR VALUE 'XXX'.

03 CUST-SALES-INFO.
05 CUST-SALES-QTR OCCURS 4.
06 CUST-NUM-SALES PIC 9(5) COMP-3.
06 CUST-AMT-SALES PIC S9(7) COMP-3.

03 FILLER PIC XXX.

ADD FILE ORDER-FILE VERSION NEXT HIGHEST
LABELS ARE OMITTED
RECORD SIZE IS 50
RECORDING MODE IS F
BLOCK SIZE IS 5000.

Chapter 4: DDDL Generator 77

Editing Generated DDDL Statements

Editing functions
You should perform the following editing functions, as needed:
Add comments

Add comments to the descriptions of programs, files,and records to document the
function and characteristics of each entity. Comments canbe added easilyandinan
organized way at this pointinthe process of populatingthe dictionary.

Eliminate unnecessary entities

Delete the ADD statement for any entity that should not be a part of the dictionary. For
example, report title records and report detail records used within a single program
generally should not be defined in the dictionary. Whileimportantin the context of the
specific programin which they areused, such records do not have global applications
andtend to clutter the dictionary.

Reconcile nonunique names

Ifthe DDDL output contains multiple ADD statements for the same name, editing may
be necessaryto ensure that the desired entities reach the dictionary whenthe ADD
statements are processed by the DDDL compiler. Note the following considerations:

m Ifthe multiple ADD statements are associated with the same explicitversion
number (for example, VERSION 1) and no editingis performed, the DDDL compiler
will process these statements in one of the followingways:

Condition Description

I1f DEFAULT ISON The DDDL compiler will process thefirst ADD statement
encountered for the nonunique name and change subsequent
ADDs to MODIFYs. This means that only the description
associated with the last ADD processed will be present inthe
dictionary.

If DEFAULT ISOFF The DDDL compiler will process only the first ADD statement
that refers to the nonunique name and will flagas erroneous
subsequent ADD statements for that name. This means that only
the description associated with the first ADD statement
processed will be present inthe dictionary.

78 Dictionary Loader User Guide

Editing Generated DDDL Statements

DEFAULT IS ON/OFF can be specified with the SET OPTIONS statement.
Note: For more information aboutthis option, see IDD DDDL Reference Guide.

m |fthe multiple ADD statements are associated with a VERSION NEXT
HIGHEST/LOWEST and no editingis performed, all ADD statements will be
processed successfully; each occurrence of the name will beassociated witha
different version number.

Ineither casedescribed above, the editing needed depends upon the objectives for the
dictionary. Version clauses can bechanged, ADD statements can be deleted or
combined, or entity names can be changed (in the ADD statements andin the programs
that refer to the names).

Note that runningthe DDDL Generator with the version statement VERSION NEXT
HIGHEST and appropriategroupingstatements assures thateach entity occurrencewith
a duplicatename will be added to the dictionary when the generated statements are
run through the DDDL compiler. Each repetition of the name will be associated with a
different version number; the version number uniquelyidentifies the entity occurrence
(for example, CUSTOMER record, version 1; CUSTOMER record, version 2; on soon).
This technique should not be used to avoid the thoughtful evaluation of the generated
statements and the editing necessary to develop a well organized dictionary.

Reconcile synonyms

Ideally, multiple ADD statements for synonymous file or record descriptions should be
merged intoa single ADD statement. Asingledescription ofa fileor record should be
entered inthe dictionary.This means that all descriptions should be examined and
combined. A singlename should be chosen for the entity and associated record and or
element names reconciled (thatis,one name and description for the element customer
name). Subsequently, all programs thatusethe entity must be changed to use the
reconciled entity-occurrence name and to use any other associated reconciled names.

Alternatively, ifrecord and element synonyms are desired, the generated DDDL
statements canbe edited to include ELEMENT NAME SYNONYM FOR RECORD NAME
SYNONYM clauses.

Note: For additional information on element and record synonyms, see the /DD DDDL
Reference Guide.

The reconciliation of synonyms is animportantuser responsibilityin buildingan
effective dictionary. Although the DDDL compiler accepts and processes multiple ADD
statements that essentially definethe same entity under different names, the practice
of populatingthe dictionary with such synonymous entities is generally undesirable.

Chapter 4: DDDL Generator 79

Executing the DDDL Compiler

Executing the DDDL Compiler

JCL for executing the DDDL Generator under z/0S and z/VSE is shown below. Under
z/VSE, processingoptions mustbe specified with the parameter statement. Under z/0S,
options can be specified either with the parameter statement or inthe PARM clause of
the EXEC statement.

z/0S JCL-PRANIDDG

//PRANIDDG EXEC PGM=PRANIDDG,REGION=1024K

//STEPLIB DD DSN=idms.dba. loadlib,DISP=SHR

// DD DSN=idms.custom. loadlib,DISP=SHR

// DD DSN=idms.cagjload,DISP=SHR

//SYSLST DD SYSOUT=A

//SYSUDUMP DD SYSOUT=A

//SORTMSG DD SYSOUT=A

//SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR

//SORTWKO1 DD UNIT=disk,SPACE=(cyl, (5,5))

//SORTWKO2 DD UNIT=disk,SPACE=(cyl, (5,5))

//SORTWKO3 DD UNIT=disk,SPACE=(cyl, (5,5))

//PRANLIB DD DSN=reflib,DISP=SHR <« Include only if using LIBRARY option
//PRANREF DD DSN=sysrefl,DISP=SHR <« Included only if using DISK option

// DD DSN=sysref2,DISP=SHR
// DD DSN=sysrefn,DISP=SHR
//dcmsg DD DSN=idms.sysmsg.ddldcmsg, DISP=SHR

//sysjrnl DD *

//SYSOUT DD SYSOUT=A

//SYSIDMS DD *

dmcl=dmcl-name

Insert additional SYSIDMS parameters as appropriate

//SYSIPT DD *

Insert optional control statements

//SYSPCH DD DSN=dddlstmts,DISP=(NEW,catlg),
SPACE=(trk, (10,10), rlse),UNIT=disk,
VOL=SER=nnnnnn,DCB=BLKSIZE=blksize

DSN Description

idms.dba.loadlib Data set name of the load library containingthe DMCL and
databasename table load modules

idms.custom.loadlib Data set name of the load library containing customized CA
IDMS system software modules

idms.cagjload Data set name of the load library containing CAIDMS system
software modules that do not require customization

80 Dictionary Loader User Guide

Executing the DDDL Compiler

//

//
//
//
//
//
//
//
//
//
//
//
//

DLBL

EXTENT
LIBDEF
DLBL
EXTENT
ASSGN
DLBL
EXTENT
ASSGN
DLBL
EXTENT
ASSGN
EXEC

DSN Description

blksize block size of DDDL statement file (must be a multiple of 80)

catlg disposition of new file: CATLG, PASS, or KEEP

cyl(5,5) filespaceallocation of workfile

dddlstmts dataset name of fileto contain DDDL statements

disk symbolic device name of diskfile

nnnnnn serial number of disk volume

reflib data set name of partitioned data set containingdata usage
files

sysrefl data set names of sequential data sets containingdata usage

files

(trk,(10,10),rIse)

spaceallocation for DDDL statement file

dcmsg

DDname of the system message (DDLDCMSG) area

idms.sysmsg.ddldcms
g

Data set name of the system message (DDLDCMSG) area

SYSIDMS

DDname of the CA-IDMS parameter filespecifying runtime
directives and operating system-dependent parameters.

Note: For a complete description of the SYSIDMS parameter
file, see the CA IDMS Common Facilities Guide.

z/VSE JCL-PRANIDDG
SLLn, 'user.srclib’

,nnnnnn
SL,T0=SSLn, TEMP

PRANREF, ' sysref',,SD <« Include only if using DISK option

SYS010,nnnnnn
SYS010,DISK,VOL=nnnnnn, SHR
SORTWK1, 'WORK1',0,SD
SYS001,nnnnnn,1, ,ssss,200
SYS001,DISK,VOL=nnnnnn, SHR

IDMSPCH, 'dddl statements',99/365,SD

SYS020,nnnnnn,1, ,ssss,300
SYS020,DISK,VOL=nnnnnn, SHR
PRANIDDG, SIZE=200K

optional control statements

/*

DSN

Description

dddl statements

file-id of the fileto contain DDDL statements

Chapter 4: DDDL Generator 81

Executing the DDDL Compiler

DSN

Description

nnnnnn

serial number of disk volume

SSSS

startingtrack (CKD) or block (FBA) of disk extent

sysref

file-id for sequential file containing data usagefile

user.srclib

sourcestatement library containingdata usagefiles

SSIn

filename of sourcestatement library

82 Dictionary Loader User Guide

Appendix A: Sample COBOL Input and DDDL

Output

This appendix shows sampleinputto and output from the CA IDMS Dictionary Loader,
as follows:

® Inputto the Program Processor—Three COBOL source programs

® |nput to the DDDL Generator—The control statements used inrunningthe DDDL
Generator

m Qutput from the DDDL Generator—The DDDL statements generated by processing
the data usage files associated with the three COBOL programs

Note that the other examples (that is, example reports) shown throughout this manual
are all taken from the CA IDMS Dictionary Loader runs made to process the three
programs listed below.

Appendix A: Sample COBOL Inputand DDDL Output 83

Sample COBOL Inputand DDDL Output

Sample COBOL Input and DDDL Output

001000
002000
003000
004000
005000
006000
007000
008000
009000
010000
011000
012000
013000
014000
015000
016000
017000
018000
019000
020000
021000
022000
023000
024000
025000
026000

ID DIVISION.

PROGRAM-ID. PRANDEM1.

AUTHOR. CA, INC.

REMARKS . SAMPLE PROGRAM CONTAINING FILES
CUSTOMER-FILE, ORDER-FILE, AND RPTFILE.
CUSTOMER-FILE AND ORDER-FILE HAVE BEEN
SORTED ON CQUSTOMER NUMBER. THIS
PROGRAM MATCHES ORDERS TO THE CUSTOMER
AND PRODUCES A REPORT OF ALL ORDERS
FOR ALL CUSTOMERS.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.
SELECT CUSTOMER-FILE ASSIGN UT-2400-S-QUSTIN.
SELECT ORDER-FILE ASSIGN UT-2400-S-O0RDERIN.
SELECT RPTFILE ASSIGN UT-S-SYSLST.

DATA DIVISION.
FILE SECTION.
FD RPTFILE
RECORDING MODE F
LABEL RECORDS ARE OMITTED
RECORD CONTAINS 133
DATA RECORDS ARE TITLE-REC DETAIL-REC.

84 Dictionary Loader User Guide

Sample COBOL Inputand DDDL Output

027000 01 TITLE-REC PIC X(133).
028000 01 DETAIL-REC.

029000 05 FILLER PIC X.
030000 05 RPT-CUST-NO PIC X(10).
031000 05 FILLER PIC XXX.
032000 05 RPT-NAME PIC X(20).
033000 05 FILLER PIC X(5).
034000 05 RPT-ORD-IDENT.

035000 10 RPT-ORD PIC X(7).
036000 10 FILLER PIC XXX.
037000 05 RPT-DATE-REQ PIC X(8).
038000 05 FILLER PIC X(76).
039000

040000 FD CUSTOMER-FILE

041000 RECORDING MODE F

042000 LABEL RECORDS ARE OMITTED
043000 RECORD CONTAINS 104 (HARACTERS
044000 DATA RECORD IS CUSTOMER.

045000

046000 01 QUSTOMER.

047000 03 CUST-NUMBER PIC X(10).

048000 03 CUST-NAME PIC X(20).

049000 03 CUST-ADDRESS.

050000 05 CUST-ADDR1 PIC X(20).

051000 05 CUST-ADDR2.

052000 06 CUST-CITY PIC X(15).

053000 06 CUST-ZIP-CODE PIC X(5).

054000 06 CUST-ZIPCODE REDEFINES QUST-ZIP-CODE
055000 PIC 9(5).

056000 03 CUST-QREDIT PIC XXX.

057000 88 CUST-CREDIT-EXEC VALUE IS 'AAA'.

058000 88 CUST-CREDIT-GOOD VALUE IS ' ‘.

059000 88 CUST-CREDIT-POOR VALUE IS 'XXX'.

060000 03 CUST-SALES-INFO.

061000 05 CUST-SALES-QTR OCCURS 4 TIMES.

062000 06 CUST-NUM-SALES PIC 9(5) COMP-3.
063000 06 CUST-AMT-SALES PIC S9(7) COMP-3.
064000 03 FILLER PIC XXX.

065000

066000

067000 FD ORDER-FILE

068000 RECORDING MODE F

069000 LABEL RECORDS ARE OMITTED
070000 RECORD CONTAINS 50 CHARACTERS
071000 BLOCK CONTAINS 100 RECORDS
072000 DATA RECORD IS ORDOR.

073000

Appendix A: Sample COBOL Inputand DDDL Output 85

Sample COBOL Inputand DDDL Output

074000
075000
076000
077000
078000
079000
080000
081000
082000
083000
084000
085000
086000
087000
088000
089000
090000
091000
092000
093000
094000
095000
096000
097000
098000
099000
100000
101000
102000
103000
104000
105000
106000
107000
108000
109000
110000
111000
112000
113000
114000
115000
116000
117000
118000
119000
120000
121000

01 ORDOR.
03 ORD-CUST-NUMBER PIC X(10).
03 ORD-NWMBER PIC X(7).
03 ORD-CUST-PO-NUMB PIC X(10).
03 ORD-DATES.
05 ORD-REQ-DATE PIC X(6).
05 ORD-DATE-REQ REDEFINES ORD-REQ-DATE
PIC 9(6).
05 ORD-PROM-DATE PIC X(6).
05 ORD-DATE-PROM REDEFINES ORD-PROM-DATE
PIC 9(6).
05 ORD-SHIPPED-DATE PIC X(6).
05 ORD-DATE-SHIPPED REDEFINES ORD-SHIPPED-DATE
PIC 9(6).
03 ORD-SHIP-CODE PIC XX.
88 ORD-SHIP-ALL VALUE IS 'AS'.
88 ORD-SHIP-PART VALUE IS 'PS'.
03 FILLER PIC XXX.
WORKING-STORAGE SECTION.
01 PAGE-COUNT-WS PIC S99 VALUE +0.
01 POSITION-IND-WS PIC X.
01 PAGE-INCREMENT-WS PIC 9.
01 DATE-AS-INPUT-WS.
05 INPUT-YY-WS PIC 99.
05 INPUT-MM-WS PIC 99.
05 INPUT-DD-WS PIC 99.
01 DATE-FORMATTED-WS.
05 FORMATTED-MM-WS PIC 99.
05 FILLER PIC X VALUE '/'.
05 FORMATTED-DD-WS PIC 99.
05 FILLER PIC X VALUE '/'.
05 FORMATTED-YY-WS PIC 99.
01 TITLE-1-WS.
05 FILLER PIC X(52) VALUE SPACES.
05 FILLER PIC X(29) VALUE
'ORDER INFORMATION BY CUSTOMER'.
05 FILLER PIC X(52) VALUE SPACES.
01 TITLE-2-WS.
05 FILLER PIC X(18) VALUE ' QUSTOMER NO
05 FILLER PIC X(22) VALUE 'CUSTOMER NAME
05 FILLER PIC X(9) VALUE 'ORDER '
05 FILLER PIC X(12) VALUE 'DATE REQ !
05 FILLER PIC X(72) VALUE SPACES.

86 Dictionary Loader User Guide

Sample COBOL Inputand DDDL Output

122000
123000

Appendix A: Sample COBOL Inputand DDDL Output 87

Sample COBOL Inputand DDDL Output

124000 PROCEDURE DIVISION.

125000

126000 0100-HOUSEKEEPING.

127000
128000
129000
130000
131000
132000
133000
134000
135000
136000
137000
138000
139000
140000
141000
142000
143000
144000
145000
146000
147000
148000
149000
150000
151000
152000
153000
154000
155000
156000
157000
158000*
159000*
160000
161000
162000
163000
164000
165000
166000
167000
168000
169000
170000
171000

0200

0300

0500

9000

OPEN INPUT CUSTOMER-FILE.
OPEN INPUT ORDER-FILE.
OPEN OUTPUT RPTFILE.

MOVE SPACES TO DETAIL-REC.
MOVE SPACES TO CUST-NUMBER.

-GET-ORDER-INFO.
READ ORDER-FILE RECORD
AT END GO TO 9200-E0J.

-GET-CUST-INFO.
IF ORD-CUST-NUMBER = CUST-NUMBER
GO TO 0500-GET-ORDER-INFO.

READ CUSTOMER-FILE RECORD
AT END GO TO 9200-E0J.

MOVE CUST-NUMBER TO RPT-QUST-NO.
MOVE CUST-NAME TO RPT-NAME.

-GET-ORDER-INFO.

MOVE ORD-NUMBER TO RPT-ORD.

MOVE ORD-DATE-REQ TO DATE-AS-INPUT-WS.
MOVE INPUT-YY-WS TO FORMATTED-YY-WS.
MOVE INPUT-MM-WS TO FORMATTED-MM-WS.
MOVE INPUT-DD-WS TO FORMATTED-DD-WS.
MOVE DATE-FORMATTED-WS TO RPT-DATE-REQ.

PERFORM 9000-WRITE THRU 9010-EXIT.
GO TO 0300-GET-CUST-INFO.

THIS PARAGRAPH CAUSES A REPORT FILE RECORD TO BE WRITTEN.
IT CONTROLS SPACING AND PAGING OF THE REPORT.

-WRITE.

MOVE ' ' TO POSITION-IND-WS.

MOVE 1 TO PAGE-INCREMENT-WS.

IF RPT-ORD NOT = SPACES MOVE 'O' TO POSITION-IND-WS
MOVE 2 TO PAGE-INCREMENT-WS.

IF RPT-CUST-NO NOT = SPACES MOVE '-' TO POSITION-IND-WS

MOVE 3 TO PAGE-INCREMENT-WS.
WRITE DETAIL-REC AFTER POSITIONING POSITION-IND-WS.
MOVE SPACES TO DETAIL-REC.
ADD PAGE - INCREMENT-WS TO PAGE-COUNT-WS.
IF PAGE-COUNT-WS GREATER THAN +58

88 Dictionary Loader User Guide

Sample COBOL Inputand DDDL Output

172000
173000
174000
175000
176000
177000
178000
179000
180000
181000
182000
183000
184000

185000*

186000
187000
188000
189000
190000
191000
192000
193000
001000
002000
003000
004000
005000
006000
007000
008000
009000
010000
011000
012000
013000
014000
015000
016000
017000
018000
019000
020000
021000
022000
023000
024000
025000
026000
027000

PERFORM

9010-EXIT.

EXIT.

9100-NEW-PAGE.

WRITE TITLE-REC
MOVE SPACES TO TITL
WRITE TITLE-REC
MOVE SPACES TO TITL
MOVE +4 TO PAGE-

9110-EXIT.

EXIT.

CLOSE THE FILES AND

9200-E0J.

CLOSE CUSTOMER-FILE
CLOSE ORDER-FILE.
CLOSE RPTFILE.

9210-EXIT.

STOP RUN.

ID DIVISION.
PROGRAM-ID.
AUTHOR.
REMARKS .

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT CUSTOMER-FIL
SELECT RPTFILE

DATA DIVISION.
FILE SECTION.

FD

01
01

RPTFILE
RECORDING MODE F

9100-NEW-PAGE THRU 9110-EXIT.

FROM TITLE-1-WS AFTER POSITIONING 0.
E-REC.

FROM TITLE-2-WS AFTER POSITIONING 3.
E-REC.
COUNT-WS.

EXIT FROM THE PROGRAM.

PRANDEMZ .

CA, INC.

SAMPLE PROGRAM CONTAINING FILE
CUSTOMER-FILE. THIS PROGRAM PRODUCES
A REPORT OF ALL CUSTOMERS WITH A
CREDIT RATING OF EXCELLENT.

E ASSIGN UT-2400-S-QUSTIN.
ASSIGN UT-S-SYSLST.

LABEL RECORDS ARE OMITTED

RECORD CONTAINS 133
DATA RECORDS ARE TI

TITLE-REC
DETAIL-REC.

05 FILLER

05 RPT-CUST-NO
05 FILLER

TLE-REC DETAIL-REC.
PIC X(133).
PIC X.

PIC X(10).
PIC XXX.

Appendix A: Sample COBOL Inputand DDDL Output 89

Sample COBOL Inputand DDDL Output

028000
029000
030000
031000
032000
033000
034000
035000
036000
037000
038000
039000
040000
041000
042000
043000
044000
045000
046000
047000
048000
049000
050000
051000
052000
053000
054000
055000
056000
057000

058000 WORKING-STORAGE SECTION.

059000
060000
061000
062000
063000
064000
065000
066000
067000
068000
069000
070000
071000
072000
073000
074000
075000
076000

FD

01
01
01

01

01

05
05
05
05
05
05
05
05

RPT - CUST -NAME
FILLER
RPT-ADDR1
FILLER

RPT -ADDR2
FILLER
RPT-ZIP
FILLER

CUSTOMER-FILE

RECORDING MODE F
LABEL RECORDS ARE OMITTED
RECORD CONTAINS 104 (HARACTERS
DATA RECORD IS CUSTOMER.

01 QUSTOMER.
03 CUST-NUM
03 CUST-NAME

03 CUST-ADDRESS.

05 CUST-ADDR1

05 CUST-ADDR2.

06 CUST-CITY

06 CUST-ZIP-CODE
03 CUST-QREDIT
88 CUST-CREDIT-EXEC
88 CUST-CREDIT-GOOD
88 CUST-CREDIT-POOR
03 FILLER

PAGE - COUNT -WS
POSITION-IND-WS
PAGE - INCREMENT -WS

TITLE-1-WS.

05
05

05

FILLER
FILLER

FILLER

TITLE-2-WS.

05
05
05
05
05

FILLER
FILLER
FILLER
FILLER
FILLER

PIC
PIC

X(10).
X(20).
PIC X(20).
PIC

PIC
PIC

X(15).
X(5).
XXX

VALUE IS 'AAA'.
VALUE IS ' .
VALUE IS 'XXX'.

PIC X(31).

PIC S99
PIC X.
PIC 9.

PIC X(46)

VALUE +0.

VALUE SPACES.

PIC X(41) VALUE
'CUSTOMERS WITH AN EXCELLENT CREDIT RATING'.

PIC X(46)

VALUE SPACES.

PIC X(18) VALUE ' QUSTOMER NO "L
PIC X(22) VALUE 'CUSTOMER NAME

PIC X(5)
PIC X(9)

VALUE SPACES.
'"ADDRESS '.
PIC X(79) VALUE SPACES.

VALUE

90 Dictionary Loader User Guide

Sample COBOL Inputand DDDL Output

077000 PROCEDURE DIVISION.

078000

079000 OPEN INPUT CUSTOMER-FILE.
080000 OPEN OUTPUT RPTFILE.
081000 MOVE SPACES TO DETAIL-REC.
082000

083000 0300-GET-CUST-INFO.

084000 READ CUSTOMER-FILE RECORD

085000 AT END GO TO 9200-E0J.

086000

087000 IF NOT CUST-CREDIT-EXEC GO TO 0300-GET-CUST-INFO.
088000

089000

090000 MOVE CUST-NUM TO RPT-CUST-NO.

091000 MOVE CUST-NAME TO RPT-CUST-NAME.

092000 MOVE CUST-ADDR1 TO RPT-ADDR1.

093000 MOVE CUST-ADDR2 TO RPT-ADDR2.

094000 MOVE CUST-ZIP-CODE TO RPT-ZIP.

095000

096000 PERFORM 9000-WRITE THRU 9010-EXIT.

097000 GO TO 0300-GET-CUST-INFO.

098000

099000* THIS PARAGRAPH CAUSES A REPORT FILE RECORD TO BE WRITTEN.
100000* IT CONTROLS SPACING AND PAGING OF THE REPORT.

101000
102000 9000-WRITE.
103000 MOVE ' ' TO POSITION-IND-WS.

104000 MOVE 1 TO PAGE-INCREMENT-WS.

105000 WRITE DETAIL-REC AFTER POSITIONING POSITION-IND-WS.
106000 MOVE SPACES TO DETAIL-REC.

107000 ADD PAGE-INCREMENT-WS TO PAGE-COUNT-WS.

108000 IF PAGE-COUNT-WS GREATER THAN +58

109000 PERFORM 9100-NEW-PAGE THRU 9110-EXIT.
110000 9010-EXIT.

111000 EXIT.

112000

113000 9100-NEW-PAGE.

114000 WRITE TITLE-REC FROM TITLE-1-WS AFTER POSITIONING O.
115000 MOVE SPACES TO TITLE-REC.

116000 WRITE TITLE-REC FROM TITLE-2-WS AFTER POSITIONING 3.
117000 MOVE SPACES TO TITLE-REC.

118000 MOVE +4 TO PAGE-COUNT-WS.

119000 9110-EXIT.

120000 EXIT.

121000

122000* CLOSE THE FILES AND EXIT FROM THE PROGRAM.

123000

124000 9200-E0J.

125000 CLOSE CUSTOMER-FILE.

Appendix A: Sample COBOL Inputand DDDL Output 91

Sample COBOL Inputand DDDL Output

126000 CLOSE RPTFILE.
127000 9210-EXIT.
128000 STOP RUN.

129000

001000 ID DIVISION.

002000 PROGRAM-ID. PRANDEMZ .

003000 AUTHOR. CA, INC.

004000 REMARKS. SAMPLE PROGRAM CONTAINING FILE
005000 CUSTOMER-FILE. THIS PROGRAM PRODUCES
006000 A REPORT OF ALL CUSTOMERS WITH A
007000 CREDIT RATING OF EXCELLENT.

008000

009000 ENVIRONMENT DIVISION.

010000 INPUT-OUTPUT SECTION.

011000 FILE-CONTROL.

012000 SELECT CUSTOMER-FILE ASSIGN UT-2400-S-QUSTIN.
013000 SELECT RPTFILE ASSIGN UT-S-SYSLST.
014000

015000 DATA DIVISION.

016000 FILE SECTION.

017000 FD RPTFILE

018000 RECORDING MODE F

019000 LABEL RECORDS ARE OMITTED

020000 RECORD CONTAINS 133

021000 DATA RECORDS ARE TITLE-REC DETAIL-REC.

022000

023000 01 TITLE-REC PIC X(133).
024000 01 DETAIL-REC.

025000 05 FILLER PIC X.
026000 05 RPT-CUST-NO PIC X(10).
027000 05 FILLER PIC XXX.
028000 05 RPT-CUST-NAME PIC X(20).
029000 05 FILLER PIC X(10).
030000 05 RPT-ADDR1 PIC X(20).
031000 05 FILLER PIC X(5).
032000 05 RPT-ADDR2 PIC X(20).
033000 05 FILLER PIC X(5).
034000 05 RPT-ZIP PIC X(20).
035000 05 FILLER PIC X(19).
036000

037000 FD CUSTOMER-FILE

038000 RECORDING MODE F

039000 LABEL RECORDS ARE OMITTED

040000 RECORD CONTAINS 104 (HARACTERS

041000 DATA RECORD IS CUSTOMER.

042000

043000 01 QUSTOMER.

044000 03 CUST-NUM PIC X(10).
045000 03 CUST-NAME PIC X(20).

92 Dictionary Loader User Guide

Sample COBOL Inputand DDDL Output

046000 03 CUST-ADDRESS.

047000 05 CUST-ADDR1 PIC X(20).

048000 05 CUST-ADDR2.

049000 06 CUST-CITY PIC X(15).

050000 06 CUST-ZIP-CODE PIC X(5).

051000 03 CUST-QREDIT PIC XXX.

052000 88 CUST-CREDIT-EXEC VALUE IS 'AAA'.

053000 88 CUST-CREDIT-GOOD VALUE IS ' '.

054000 88 CUST-CREDIT-POOR VALUE IS 'XXX'.

055000 03 FILLER PIC X(31).

056000

057000

058000 WORKING-STORAGE SECTION.

059000

060000 01 PAGE-COUNT-WS PIC S99 VALUE +0.
061000 01 POSITION-IND-WS PIC X.

062000 01 PAGE-INCREMENT-WS PIC 9.

063000

064000 01 TITLE-1-WS.

065000 05 FILLER PIC X(46) VALUE SPACES.
066000 05 FILLER PIC X(41) VALUE

067000 "CUSTOMERS WITH AN EXCELLENT CREDIT RATING'.
068000 05 FILLER PIC X(46) VALUE SPACES.
069000 01 TITLE-2-WS.

070000 05 FILLER PIC X(18) VALUE ' QUSTOMER NO "L
071000 05 FILLER PIC X(22) VALUE 'CUSTOMER NAME ",
072000 05 FILLER PIC X(5) VALUE SPACES.

073000 05 FILLER PIC X(9) VALUE 'ADDRESS '.

074000 05 FILLER PIC X(79) VALUE SPACES.

075000

076000

077000 PROCEDURE DIVISION.

078000

079000 OPEN INPUT CUSTOMER-FILE.
080000 OPEN OUTPUT RPTFILE.
081000 MOVE SPACES TO DETAIL-REC.
082000

083000 0300-GET-CUST-INFO.

084000 READ CUSTOMER-FILE RECORD

085000 AT END GO TO 9200-E0J.

086000

087000 IF NOT CUST-CREDIT-EXEC GO TO 0300-GET-CUST-INFO.
088000

089000

090000 MOVE CUST-NUM TO RPT-CUST-NO.

091000 MOVE CUST-NAME TO RPT-CUST-NAME.
092000 MOVE CUST-ADDR1 TO RPT-ADDRIL.
093000 MOVE CUST-ADDR2 TO RPT-ADDR2.
094000 MOVE CUST-ZIP-CODE TO RPT-ZIP.

Appendix A: Sample COBOL Inputand DDDL Output 93

Sample COBOL Inputand DDDL Output

095000

096000 PERFORM 9000-WRITE THRU 9010-EXIT.

097000 GO TO 0300-GET-CUST-INFO.

098000

099000* THIS PARAGRAPH CAUSES A REPORT FILE RECORD TO BE WRITTEN.
100000* IT CONTROLS SPACING AND PAGING OF THE REPORT.

101000

102000 9000-WRITE.

103000 MOVE ' ' TO POSITION-IND-WS.

104000 MOVE 1 TO PAGE-INCREMENT-WS.

105000 WRITE DETAIL-REC AFTER POSITIONING POSITION-IND-WS.
106000 MOVE SPACES TO DETAIL-REC.

107000 ADD PAGE-INCREMENT-WS TO PAGE-COUNT-WS.

108000 IF PAGE-COUNT-WS GREATER THAN +58

109000 PERFORM 9100-NEW-PAGE THRU 9110-EXIT.
110000 9010-EXIT.

111000 EXIT.

112000

113000 9100-NEW-PAGE.

114000 WRITE TITLE-REC FROM TITLE-1-WS AFTER POSITIONING O.
115000 MOVE SPACES TO TITLE-REC.

116000 WRITE TITLE-REC FROM TITLE-2-WS AFTER POSITIONING 3.
117000 MOVE SPACES TO TITLE-REC.

118000 MOVE +4 TO PAGE-COUNT-WS.

119000 9110-EXIT.

120000 EXIT.

121000

122000* CLOSE THE FILES AND EXIT FROM THE PROGRAM.

123000

124000 9200-E0J.

125000 CLOSE CUSTOMER-FILE.

126000 CLOSE RPTFILE.

127000 9210-EXIT.

128000 STOP RUN.

129000

Sample COBOL Input and DDDL Output

VERSION NEXT HIGHEST

FILE-GROUPING CUSTOMER-FILE IN PRANDEM1 IN PRANDEMZ2
CUSTFILE IN PRANDEM3
RECORD-GROUPING CUSTOMER
CusT IN PRANDEM3

IN PRANDEM1 IN PRANDEM2

94 Dictionary Loader User Guide

Sample COBOL Inputand DDDL Output

Sample COBOL Input and DDDL Output

ADD FILE CUSTOMER-FILE VERSION NEXT HIGHEST
LABELS ARE OMITTED
RECORD SIZE IS 104
RECORDING MODE IS F
FILE NAME SYNONYM IS CUSTFILE VERSION NEXT HIGHEST.

ADD RECORD CUSTOMER VERSION NEXT HIGHEST
LANGUAGE IS COBOL
WITHIN FILE CUSTOMER-FILE VERSION HIGHEST
RECORD NAME SYNONYM IS CUST VERSION NEXT HIGHEST.

03
03
03

03

03

03

CUST -NUMBER PIC X(10).
CUST -NAME PIC X(20).
CUST - ADDRESS.

05 CUST-ADDR1 PIC X(20).
05 CUST-ADDR2.
06 CUST-CITY
PIC X(15).
06 CUST-ZIP-CODE
PIC X(5).
06 CUST-ZIPCODE
REDEFINES CUST-ZIP-CODE

PIC 9(5).
CUST-CREDIT PIC XXX.
88 CUST-CREDIT-EXEC

VALUE 'AAA'.
88 CUST-CREDIT-GOOD

VALUE ' "L
88 CUST-CREDIT-POOR

VALUE 'XXX'.

CUST-SALES-INFO.
05 CUST-SALES-QTR
OCCURS 4.
06 CUST-NUM-SALES
PIC 9(5) COMP-3.
06 CUST-AMT-SALES
PIC S9(7) COMP-3.

FILLER PIC XXX.

ADD FILE ORDER-FILE VERSION NEXT HIGHEST
LABELS ARE OMITTED
RECORD SIZE IS 50
RECORDING MODE IS F
BLOCK SIZE IS 5000.

Appendix A: Sample COBOL Inputand DDDL Output 95

Sample COBOL Inputand DDDL Output

ADD RECORD ORDOR VERSION NEXT HIGHEST
LANGUAGE IS COBOL
WITHIN FILE ORDER-FILE VERSION HIGHEST.
03 ORD-CUST-NUMBER
PIC X(10).
03 ORD-NUMBER PIC X(7).
03 ORD-CUST-PO-NUMB

PIC X(10).
03 ORD-DATES.
05 ORD-REQ-DATE
PIC X(6).

05 ORD-DATE-REQ
REDEFINES ORD-REQ-DATE
PIC 9(6).

05 ORD-PROM-DATE
PIC X(6).

05 ORD-DATE-PROM
REDEFINES ORD-PROM-DATE
PIC 9(6).

05 ORD-SHIPPED-DATE
PIC X(6).

05 ORD-DATE-SHIPPED
REDEFINES ORD-SHIPPED-DATE
PIC 9(6).

03 ORD-SHIP-CODE PIC XX.
88 ORD-SHIP-ALL

VALUE 'AS'.
88 ORD-SHIP-PART
VALUE 'PS'.
03 FILLER PIC XXX.

ADD FILE RPTFILE VERSION NEXT HIGHEST
LABELS ARE OMITTED
RECORD SIZE IS 133
RECORDING MODE IS F.

ADD RECORD TITLE-REC VERSION NEXT HIGHEST
LANGUAGE IS COBOL
WITHIN FILE RPTFILE VERSION HIGHEST.
02 TITLE-REC PIC X(133).

ADD RECORD DETAIL-REC VERSION NEXT HIGHEST
LANGUAGE IS COBOL
WITHIN FILE RPTFILE VERSION HIGHEST.

05 FILLER PIC X.

05 RPT-CUST-NO PIC X(10).
05 FILLER PIC XXX.
05 RPT-NAME PIC X(20).
05 FILLER PIC X(5).

96 Dictionary Loader User Guide

Sample COBOL Inputand DDDL Output

05 RPT-ORD-IDENT.
10 RPT-ORD
10 FILLER
RPT -DATE-REQ

FILLER

05
05

ADD
LANGUAGE IS COBOL.
02 PAGE-COUNT-WS

ADD
LANGUAGE IS COBOL.

02 POSITION-IND-WS

ADD
LANGUAGE IS COBOL.

PIC X(7).
PIC XXX.

PIC X(8).
PIC X(76).

RECORD PAGE-COUNT-WS VERSION NEXT HIGHEST

PIC S99
VALUE +0.

RECORD POSITION-IND-WS VERSION NEXT HIGHEST

PIC X.

RECORD PAGE-INCREMENT-WS VERSION NEXT HIGHEST

02 PAGE-INCREMENT-WS

ADD
LANGUAGE IS COBOL.

05 INPUT-YY-WS

05 INPUT-MM-WS

05 INPUT-DD-WS

ADD
LANGUAGE IS COBOL.

05

05 FILLER

05
05 FILLER

05

FORMATTED -MM-WS

FORMATTED-DD-WS

FORMATTED-YY-WS

PIC 9.

RECORD DATE-AS-INPUT-WS VERSION NEXT HIGHEST

PIC 99.
PIC 99.
PIC 99.

RECORD DATE-FORMATTED-WS VERSION NEXT HIGHEST

PIC 99.
PIC X
VALUE '/"'.

PIC 99.
PIC X
VALUE '/"'.

PIC 99.

ADD RECORD TITLE-1-WS VERSION NEXT HIGHEST

LANGUAGE IS COBOL.
05 FILLER

05 FILLER

05 FILLER

PIC X(52)
VALUE SPACES.
PIC X(29)
VALUE
'ORDER INFORMATION BY CUSTOMER'.
PIC X(52)
VALUE SPACES.

Appendix A: Sample COBOL Inputand DDDL Output 97

Sample COBOL Inputand DDDL Output

ADD RECORD TITLE-2-WS VERSION NEXT HIGHEST
LANGUAGE IS COBOL.

05 FILLER PIC X(18)

VALUE ' CUSTOMER NO
05 FILLER PIC X(22)

VALUE 'CUSTOMER NAME
05 FILLER PIC X(9)

VALUE 'ORDER "L
05 FILLER PIC X(12)

VALUE 'DATE REQ "
05 FILLER PIC X(72)

VALUE SPACES.

ADD PROGRAM PRANDEM1 VERSION NEXT HIGHEST
LANGUAGE IS COBOL
ESTIMATED LINES ARE 195
INPUT FILE IS CUSTOMER-FILE VERSION HIGHEST
INPUT FILE IS ORDER-FILE VERSION HIGHEST
OUTPUT FILE IS RPTFILE VERSION HIGHEST
RECORD USED IS CUSTOMER VERSION HIGHEST
ELEMENT IS CUST-NUMBER
REFERENCED 2 TIMES
MODIFIED 1 TIME
ELEMENT IS CUST-NAME
REFERENCED 1 TIME
ELEMENT IS CUST-ADDRESS
ELEMENT IS CUST-ADDR1
ELEMENT IS CUST-ADDR2
ELEMENT IS CUST-CITY
ELEMENT IS CUST-ZIP-CODE
ELEMENT IS CUST-ZIPCODE
ELEMENT IS CUST-CREDIT
ELEMENT IS CUST-SALES-INFO
ELEMENT IS CUST-SALES-QTR
ELEMENT IS CUST-NUM-SALES
ELEMENT IS CUST-AMT-SALES
RECORD USED IS ORDOR VERSION HIGHEST
ELEMENT IS ORD-CUST-NUMBER
REFERENCED 1 TIME
ELEMENT IS ORD-NUMBER
REFERENCED 1 TIME
ELEMENT IS ORD-CUST-PO-NUMB
ELEMENT IS ORD-DATES
ELEMENT IS ORD-REQ-DATE
ELEMENT IS ORD-DATE-REQ
REFERENCED 1 TIME
ELEMENT IS ORD-PROM-DATE
ELEMENT IS ORD-DATE-PROM
ELEMENT IS ORD-SHIPPED-DATE

98 Dictionary Loader User Guide

Sample COBOL Inputand DDDL Output

ELEMENT IS ORD-DATE-SHIPPED

ELEMENT IS ORD-SHIP-CODE

RECORD USED IS TITLE-REC VERSION HIGHEST
MODIFIED 4 TIMES

RECORD USED IS DETAIL-REC VERSION HIGHEST
MODIFIED 3 TIMES

ELEMENT IS RPT-CUST-NO
REFERENCED 1 TIME
MODIFIED 1 TIME

ELEMENT IS RPT-NAME
MODIFIED 1 TIME

ELEMENT IS RPT-ORD-IDENT

ELEMENT IS RPT-ORD
REFERENCED 1 TIME
MODIFIED 1 TIME

ELEMENT IS RPT-DATE-REQ
MODIFIED 1 TIME

RECORD USED IS PAGE-COUNT-WS VERSION HIGHEST
REFERENCED 1 TIME
MODIFIED 2 TIMES

RECORD USED IS POSITION-IND-WS VERSION HIGHEST
REFERENCED 1 TIME
MODIFIED 3 TIMES

RECORD USED IS PAGE-INCREMENT-WS VERSION HIGHEST
REFERENCED 1 TIME
MODIFIED 3 TIMES

RECORD USED IS DATE-AS-INPUT-WS VERSION HIGHEST
MODIFIED 1 TIME

ELEMENT IS INPUT-YY-WS
REFERENCED 1 TIME

ELEMENT IS INPUT-MM-WS
REFERENCED 1 TIME

ELEMENT IS INPUT-DD-WS
REFERENCED 1 TIME

RECORD USED IS DATE-FORMATTED-WS VERSION HIGHEST
REFERENCED 1 TIME

ELEMENT IS FORMATTED-MM-WS
MODIFIED 1 TIME

ELEMENT IS FORMATTED-DD-WS
MODIFIED 1 TIME

ELEMENT IS FORMATTED-YY-WS
MODIFIED 1 TIME

RECORD USED IS TITLE-1-WS VERSION HIGHEST
REFERENCED 1 TIME

RECORD USED IS TITLE-2-WS VERSION HIGHEST
REFERENCED 1 TIME.

ADD PROGRAM PRANDEM2 VERSION NEXT HIGHEST
LANGUAGE IS COBOL

Appendix A: Sample COBOL Inputand DDDL Output 99

Sample COBOL Inputand DDDL Output

ADD

ESTIMATED LINES ARE 131
INPUT FILE IS CUSTOMER-FILE VERSION HIGHEST
OUTPUT FILE IS RPTFILE VERSION HIGHEST
RECORD USED IS CUSTOMER VERSION HIGHEST
ELEMENT IS CUST-NUM
REFERENCED 1 TIME
ELEMENT IS CUST-NAME
REFERENCED 1 TIME
ELEMENT IS CUST-ADDRESS
ELEMENT IS CUST-ADDR1
REFERENCED 1 TIME
ELEMENT IS CUST-ADDR2
REFERENCED 1 TIME
ELEMENT IS CUST-CITY
ELEMENT IS CUST-ZIP-CODE
REFERENCED 1 TIME
ELEMENT IS CUST-CREDIT
RECORD USED IS TITLE-REC VERSION HIGHEST
MODIFIED 4 TIMES
RECORD USED IS DETAIL-REC VERSION HIGHEST
MODIFIED 3 TIMES
ELEMENT IS RPT-CUST-NO
MODIFIED 1 TIME
ELEMENT IS RPT-CUST-NAME
MODIFIED 1 TIME
ELEMENT IS RPT-ADDR1
MODIFIED 1 TIME
ELEMENT IS RPT-ADDR2
MODIFIED 1 TIME
ELEMENT IS RPT-ZIP
MODIFIED 1 TIME
RECORD USED IS PAGE-COUNT-WS VERSION HIGHEST
REFERENCED 1 TIME
MODIFIED 2 TIMES
RECORD USED IS POSITION-IND-WS VERSION HIGHEST
REFERENCED 1 TIME
MODIFIED 1 TIME
RECORD USED IS PAGE-INCREMENT-WS VERSION HIGHEST
REFERENCED 1 TIME
MODIFIED 1 TIME
RECORD USED IS TITLE-1-WS VERSION HIGHEST
REFERENCED 1 TIME
RECORD USED IS TITLE-2-WS VERSION HIGHEST
REFERENCED 1 TIME.

FILE CUSTFILE VERSION NEXT HIGHEST
LABELS ARE OMITTED
RECORD SIZE IS 104
RECORDING MODE IS F

100 Dictionary Loader User Guide

Sample COBOL Inputand DDDL Output

FILE NAME SYNONYM IS CUSTOMER-FILE VERSION NEXT HIGHEST.

ADD RECORD CUST VERSION NEXT HIGHEST
LANGUAGE IS COBOL
WITHIN FILE CUSTFILE VERSION HIGHEST
RECORD NAME SYNONYM IS CUSTOMER VERSION NEXT HIGHEST.
03 FILLER PIC X(10).
03 CUST-NAME PIC X(20).
03 CUST-ADDRESS.
05 CUST-ADDR1 PIC X(20).
05 CUST-ADDR2 PIC X(20).
03 FILLER PIC X(34).

ADD FILE MAILFILE VERSION NEXT HIGHEST
LABELS ARE OMITTED
RECORD SIZE IS 21
RECORDING MODE IS F.

ADD RECORD MAIL-REC-1 VERSION NEXT HIGHEST
LANGUAGE IS COBOL
WITHIN FILE MAILFILE VERSION HIGHEST.
03 FILLER PIC X.
03 MAIL-LINE-1 PIC X(20).

ADD RECORD MAIL-REC-2 VERSION NEXT HIGHEST
LANGUAGE IS COBOL
WITHIN FILE MAILFILE VERSION HIGHEST.
03 FILLER PIC X.
03 MAIL-LINE-2 PIC X(20).

ADD RECORD MAIL-REC-3 VERSION NEXT HIGHEST
LANGUAGE IS COBOL
WITHIN FILE MAILFILE VERSION HIGHEST.
03 FILLER PIC X.
03 MAIL-LINE-3 PIC X(20).

ADD PROGRAM PRANDEM3 VERSION NEXT HIGHEST

LANGUAGE IS COBOL
ESTIMATED LINES ARE 81
INPUT FILE IS CUSTFILE VERSION HIGHEST
OUTPUT FILE IS MAILFILE VERSION HIGHEST
RECORD USED IS CUST VERSION HIGHEST
ELEMENT IS CUST-NAME

REFERENCED 1 TIME
ELEMENT IS CUST-ADDRESS
ELEMENT IS CUST-ADDR1

REFERENCED 1 TIME
ELEMENT IS CUST-ADDR2

REFERENCED 1 TIME

Appendix A: Sample COBOL Inputand DDDL Output 101

Sample COBOL Inputand DDDL Output

RECORD USED IS MAIL-REC-1 VERSION HIGHEST
MODIFIED 2 TIMES

ELEMENT IS MAIL-LINE-1
MODIFIED 1 TIME

RECORD USED IS MAIL-REC-2 VERSION HIGHEST
REFERENCED 1 TIME
MODIFIED 1 TIME

ELEMENT IS MAIL-LINE-2
MODIFIED 1 TIME

RECORD USED IS MAIL-REC-3 VERSION HIGHEST
REFERENCED 1 TIME
MODIFIED 1 TIME

ELEMENT IS MAIL-LINE-3
MODIFIED 1 TIME.

102 Dictionary Loader User Guide

Appendix B: Runtime Error Messagdes

This section contains the following topics:

Overview (see page 103)

Runtime Messages Issued by the Program Processor (see page 105)
Runtime Message Issued by the Cross Reference Processor (see page 107)
Runtime Messages Issued by the DDDL Generator (see page 110)

Overview

Where messages appear

This appendix documents the runtime messages issued by the three CA IDMS Dictionary
Loader components. These runtime messages canindicatefatal or nonfatal conditions
andappear inthe consolelogor the printed output for the run:

Message type Description

Program Processor Messages Both nonfatal and fatal messages appear onthe
consolelog

Cross Reference Processor Nonfatal messages appear at the beginning of the
Message report output for the run; fatal messages appear on the
consolelog

DDDL Generator Messages Nonfatal messages appear at the beginning of the
report output for the run; fatal messages appear on the
consolelog

Appendix B: Runtime Error Messages 103

Overview

Nonfatal messages

The nonfatal messages issued by the CA IDMS Dictionary Loader components mainly
identify errors in the control statement information. When one of the components
detects a nonfatal error condition, the component issues theappropriate message and
continues running.

Fatal messages

The fatal messages issued by the CA IDMS Dictionary Loader components flagtwo types
of error conditions:

m |/Oerrors (most commonly INPUT/OUTPUT FILE WILL NOT OPEN)

m Internal errors from CA IDMS utility programs
Consequence of a fatal error
When one of the CA IDMS Dictionary Loader components detects a fatal condition, the

component issues a write-to-operator message (which appears on the consolelog)and
terminates the run.

104 Dictionary Loader User Guide

Runtime Messages Issuedby the Program Processor

Runtime Messades Issued by the Program Processor

Nonfatal
1.
"keyword' INVALID PARAMETER

The reported keyword is aninvalid specification.

Fatal
1.
BAD IDMSUTIO RETURN CODE - PARMINTF - return-code - CSFCDSPL

IDMSUTIO issued the reported return code; the job ended with a user abend code
of 100. This message reports a system internal error; rerun the job.

FATAL ERROR - BAD IDMSFLIO RETURN CODE - return-code - SSRFIO

IDMSFLIO issued the reported return code; the job ended with a user abend code of
100. This message reports a system internal error; rerun the job.

FATAL ERROR - BAD IDMSUTIO RETURN CODE - return-code - SSRPIO

IDMSUTIO issued the reported return code; the job ended with a user abend code
of 100. This message reports a system internal error; rerun the job.

FATAL ERROR - CBIO - INVALID OPERATION - SSCBIO

The job ended with a user abend code of 100. This message reports a system
internal error; rerun the job.

FATAL ERROR - RPIO - INVALID OPERATION -- SSRPIO

The job ended with a user abend code of 100. This message reports a system
internal error; rerun the job.

INPUT FILE SYSIPT WILL NOT OPEN

The job ended with a user abend code of 2000. Check the JCL to see if SYSIPT is
specified correctly.

MEMBER NOT FOUND IN LIBRARY (z/VSE users only)

Appendix B: Runtime Error Messages 105

Runtime Messages Issuedby the Program Processor

10.

The job ended with a user abend code of 100. This message is issued when the
=COPY IDMS option is being used to read the input program from a libraryinto the
SYSIPT fileand the library member cannot be accessed. Check that the correct
member-name is specified inthe =COPY IDMS statement and that the sublibrary
name is specified if necessary (thedefaultis the A. sublibrary).

OUTPUT FILE PRANREF WILL NOT OPEN

The job ended with a user abend code of 2000. Check the JCL to see if PRANREF is
specified correctly.

OUTPUT FILE SYSLST WILL NOT OPEN

The job ended with a user abend code of 2000. Check the JCL to see if SYSLST is
specified correctly.

OUTPUT FILE SYSPCH WILL NOT OPEN

The job ended with a user abend code of 2000. Check the JCL to see if SYSPCH is
specified correctly.

106 Dictionary Loader User Guide

Runtime Message Issued by the Cross Reference Processor

Runtime Messade Issued by the Cross Reference Processor

Nonfatal

1.

ILLEGAL ALIAS FOR PROG-ID

The name followingthe equal sign (=) inthe LIBRARY optioninthe parameter
statement is missing.

ILLEGAL DELIMITER

Statement keywords are not delimited by the required comma or blank.

ILLEGAL MEMBER NAME

Member name is missingas theoperand of the LIBRARY option inthe parameter
statement.

ILLEGAL PROGRAM-ID 'NBW NAME'

The name followingthe equal sign (=) inthe PROGRAM-ID option in the parameter
statement is missing.

OPTION/SELECT NOT RECOGNIZED

A statement keyword is not valid as expressed.

TOO MANY LIBRARY NAMES

More than 99 library members arespecified.

TOO MANY PROGRAM-IDS

More than 39 sourceprogram names are changed to new names inthe
PROGRAM-ID option.

Appendix B: Runtime Error Messages 107

Runtime Message Issued by the Cross Reference Processor

Fatal

BAD IDMSUTIO RETURN CODE - PARMINTF - return-code - CSFCDSPL

IDMSUTIO issued the reported return code; the job ended with a user abend code
of 100. This message reports a system internal error; rerun the job.

2.
BAD RETURN CODE - module-name - return-code
The error originated in the named module (either IDMSUTIO or IDMSDLIO). The
module issued the listed return code. The jog ended with a user abend code of 100.
This message reports a system internal error; rerun the job.

3.
INPUT FILE PRANREF WILL NOT OPEN
The jobended with a user abend code of 2000. Check the JCL to see if PRANREF is
specified correctly.

4.
INPUT FILE SYSIPT WILL NOT OPEN
The job ended with a user abend code of 2000. Check the JCL to see if SYSIPT is
specified correctly.

5.
MEMBER NOT FOUND IN LIBRARY (z/VSE users only)
The job ended with a user abend code of 100. Check the member name specifiedin
the LIBRARY option.

6.

OUTPUT FILE SYSLST WILL NOT OPEN
The job ended with a user abend code of 2000. Check the JCL to see if SYSLST is
specified correctly.

Other fatal messages

Note that the Cross Reference Processor mayissueanadditionalclass of fatal messages.
These messages are generated by the utility module IDMSSORT and report system
internal errors.

108 Dictionary Loader User Guide

Runtime Message Issued by the Cross Reference Processor

IDMSSORT messages

IDMSSORT error messages arewrite-to-operator messages that are displayed on the
consolelog. When the Cross Reference Processor transmits an IDMSSORT message, the
run abends with a user abend code of 3134 and a two-line message appearsinthe
following format:

+IDMS 999000L IDMSSORT - message-text
+IDMS 208001L 0100

Examples

Four examples of message text that canappearinthis message are shown below:

INVALID KEYWORD PASSED TO IDMSSORT

UNSUPPORTED SORT CONTROL STATEMENT PASSED

NO keyword-type KEYWORD ON SORT record-name STATEMENT
NO keyword-length KEYWORD ON SORT record-name STATEMENT

Although the user cannot take corrective action to resolve IDMSSORT error conditions
(because sucherrors aresystem internal), the user canretry the run. In some cases, the
internal error will disappear.Ifthe error condition persists, consultwith the person
responsiblefor trackingsystemerrors.

Appendix B: Runtime Error Messages 109

Runtime Messages Issued by the DDDL Generator

Runtime Messades Issued by the DDDL Generator

Nonfatal messages

1.
ILLEGAL ALIAS FOR PROG-ID
The name followingthe equal sign (=) in the LIBRARY optioninthe parameter
statement is missing.

2.
TILLEGAL DELIMITER
Statement keywords are not delimited by the required comma or blank.

3.
ILLEGAL MEMBER NAME
The member name is missingas the operand of the LIBRARY option.

4.
LINE EXCEEDS 72 CHARACTERS
The length of a generated DDDL statement exceeds 72 characters. The statement
must be edited by the user before being inputto the DDDL compiler.

5.
MORE THAN 5 PROGRAMS IN GROUPING STATEMENT
A grouping statement specified more than five program names. The DDDL
Generator accepted the firstfive,ignored the additional programnames,and
continued processing.

6.
MORE THAN 100 DIFFERENT PROGRAMS CALLED - TABLE EXCEEDED
A programbeing processed by the DDDL Generator called more than 100 other
different programs.The DDDL Generator generated ADD PROGRAM statements for
the first 100 programs called, ignored additional programcalls,and continued
processing.

7.
OPTION/SELECT NOT RECOGNIZED
A statement keyword is not valid as expressed.

8.

TOO MANY LIBRARY NAMES

More than 99 library members arespecified.

110 Dictionary Loader User Guide

Runtime Messages Issued by the DDDL Generator

Fatal

BAD RETURN CODE - module-name - return-code

The error originated in the named module (either IDMSUTIO or IDMSFLIO). The
module issued the listed return code. The job ended with a user abend code of 100.
This message reports a system internal error; rerun the job.

INPUT FILE PRANREF WILL NOT OPEN

The job ended with a user abend code of 2000. Check the JCL to see if PRANREF is
specified correctly.

INPUT FILE SYSIPT WILL NOT OPEN

The job ended with a user abend code of 2000. Check the JCL to see if SYSIPT is
specified correctly.

MEMBER NOT FOUND IN LIBRARY (z/VSE users only)

The job ended with a user abend code of 100. Check the member name specifiedin
the LIBRARY option.

OUTPUT FILE SYSLST WILL NOT OPEN

The job ended with a user abend code of 2000. Check the JCL to see if SYSLST is
specified correctly.

OUTPUT FILE SYSPCH WILL NOT OPEN

The job ended with a user abend code of 2000. Check the JCL to see if SYSPCH is
specified correctly.

Appendix B: Runtime Error Messages 111

Runtime Messages Issued by the DDDL Generator

Additional fatal messages

Note that the DDDL Generator may issuean additional class of fatal messages. These
messages are generated by the utility module IDMSSORT and report system internal
errors.

IDMSSORT messages

IDMSSORT error messages are write-to-operator messages that are displayed on the
consoleandinthe JES message listing. When the DDDL Generator transmits an
IDMSSORT message, the run abends with a user abend code of 3134 and a two-line
message appears in the following format:

+IDMS 999000LIDMSSORT - message-text
+IDMS 208001L 0100

Four examples of message text that canappearinthe message are:

INVALID KEYWORD PASSED TO IDMSSORT

UNSUPPORTED SORT CONTROL STATEMENT PASSED

NO keyword-type KEYWORD ON SORT record-name STATEMENT
NO keyword-length KEYWORD ON SORT record-name STATEMENT

Although the user cannot take corrective action to resolve IDMSSORT error conditions
(because sucherrors aresystem internal), the user canretry the run. In some cases, the
internal error will disappear.Ifthe error condition persists, consult with the person
responsiblefortracking systemerrors.

112 Dictionary Loader User Guide

Index

$

SSSdiagnostic message e 21

C

COBOL input

samples 83

control file

cross reference processor, creating e 43, 46
cross reference processor,sample 55
DDDL generator, creating ® 66, 68
worksheet, creatinge 43

cross reference processor 107

D

control file parameters, table of ¢ 43
control statement filee 43

default processingoptions, tableofe 43
Dictionary of Data Names report ¢ 40, 59
executing ¢ 60, 63

fatal runtime messages * 107,110
filecontrol statements * 46

general discussion 43

IDMSSORT runtime messages ¢ 107
nonfatal runtime messages 107

output ¢ 40

override processing options, tableof e 43
parameter statement ¢ 49,53

PRANXREF program e 60
selectionstatement ¢ 54

System Data Cross-Reference report ¢ 40, 56
title statement ¢ 53

VSE/ESA JCL * 60

worksheet, fillingin 46, 49

z/OS JCL » 60

DATA DIVISION Cross-Reference report

and cross reference processor ¢ 46
field descriptions 28
samplee 28

DDDL generator » 18, 64,83, 103, 110

clauses,tablee 66

control statement file* 66

editing generated statements ¢ 77, 80
executing the compiler ¢ 80

fatal runtime messages ¢ 110

general discussion ¢ 66
groupingstatement ¢ 70, 77
grouping statement examples ¢ 72,77
identifyingnonunique names ® 72
identifyingsynonyms e 72
IDMSSORT messages ® 110
input » 64
nonfatal runtime messages 110
operating with control statements ¢ 64
operating without control statements ¢ 64
output ¢ 64
parameter statement ¢ 68, 69
PRANIDDG programe 80
samplecontrol statements ¢ 83
samplegenerated DDDL statements ¢ 83
VERSION clause 69
VERSION statement ¢ 69
VERSION statement syntax e 69
z/OS JCL » 80
z/VSE JCL » 80

DDDL output, samples 83

diagnostic messages ¢ 21
$$5e 21
ANS,ANS68,ANS74 21
FLO ¢ 21,25

Diagnostic report
messages ® 21, 25
samplee 21
types of problems flagged « 21

F

Fatal errors,consequences ¢ 103
Fileand Record Layouts report
and cross reference processor ¢ 46
field descriptions ¢ 25,28
samplee 25
FLO diagnostic messagee21

G

groupingstatement
codingrules e 70
examples of usagee 72,77
parameter liste70
samplee 70
syntaxe 70

Index 113

I

IDMSDLIO » 107

IDMSSORT runtime messages ® 107

IDMSUTIO e 105, 107

IDMSUTIO xelDMSFLIO program processor
nonfatal runtime messages ¢ 105

input program, program processor e 18

J

JCL
for z/VSE source statement library e 34
VSE/ESA, cross reference processor ¢ 60
z/0S, cross reference processor ¢ 60
z/0S, DDDL compiler » 80
z/0S, program processor ¢ 34
z/VSE, DDDL compiler ¢ 80
z/VSE, program processor ¢34

M
Management Summary report, samplee 20

P

parameter statement
cross reference processor ¢ 49
DDDL generator ® 68, 69
program processor ¢31, 34
PRANCOB program
for z/OS » 34
for z/VSE 34
PRANIDDG program
for z/OS » 80
for z/VSE « 80
PRANXREF program
for VSE/ESA * 60
for z/OS » 60
PROCEDURE DIVISION, trackinguseof e 28
program processor ¢ 105
DATA DIVISION Cross-Reference report » 28
default runtime options, table of ¢ 20
diagnostic messages ¢ 21, 25
Diagnosticreporte 21
executing ¢ 34, 39
fatal runtime messages ® 105,107
Fileand Record Layouts report ¢ 25, 28
input e 18, 20
Management Summary report ¢ 20
output ¢ 20, 31

override processingoptions ¢ 31
override runtime options, table of * 20
parameter statement e 31, 34
PRANCOB programe 34

z/OS JCL » 34

z/VSE considerations e 18

z/VSE JCL » 34

z/VSE sourcestatement library ¢34

R

reports ¢ 20, 28, 59
DATA DIVISION Cross-Reference report ¢ 28
Diagnosticreporte 21
Dictionary of Data Names report ¢ 40, 59
Management Summary report ¢ 20
System Data Cross-Reference report ¢ 40, 56

S

see=DDDL generator VERSION clause* 69
see=DDDL generator VERSION statement e 69
selection statement
codingrules e 54
parameter liste54
syntaxe 54
SYSIPT « 105, 107
SYSLST « 105,107
SYSPCH e 105
System Data Cross-Reference report
field descriptions ¢56,59
samplee 40,56

T

title statement, cross reference processor
syntaxe 53

vV

VERSION clause® 69
VERSION statement
parameter liste 69
syntax e 69
VSE/ESA
cross reference processor JCL ® 60

W

worksheet
fillingin e 46
worksheet, control file

114 Dictionary Loader User Guide

and usingprogram processor reports ¢ 46
fillingin ¢ 46, 49

linesone 46

samplee 43

specifyingselection criteria® 46
variablesinselection statement, table e 46

Z

z/0S
cross reference processor JCL ® 60
DDDL generator JCL ¢ 80
program processor JCL e 34
program processor overrides ¢ 31
z/VSE
=COPY facility » 18
and program processor e 18
DDDL generator JCL e 80
program processor JCL e 34
program processor overrides #31
sourcestatement libraryJCLe 34

Index 115

	CA IDMS Dictionary Loader Dictionary Loader User Guide
	CA Technologies Product References
	Contact CA Technologies
	Contents
	1: Introduction
	System Overview
	CA IDMS Dictionary Loader Capabilities
	CA IDMS Dictionary Loader Reports
	Syntax Diagram Conventions

	2: Program Processor
	Input Requirements
	Output
	Management Summary Report
	Diagnostic Report
	File and Record Layouts Report
	DATA DIVISION Cross-Reference Report

	Parameter Statement
	Executing the Program Processor

	3: Cross Reference Processor
	Overview
	Developing a File of Control Statements
	Filling in Worksheets
	Parameter Statement
	Title Statement
	Selection Statement
	Sample Control File
	System Data Cross-Reference Report
	Dictionary of Data Names Report
	Executing the Cross Reference Processor

	4: DDDL Generator
	Overview
	Developing a File of Control Statements
	Parameter Statement
	VERSION Statement
	Grouping Statement
	Using the Grouping Statement
	Editing Generated DDDL Statements
	Executing the DDDL Compiler

	A: Sample COBOL Input and DDDL Output
	Sample COBOL Input and DDDL Output
	Sample COBOL Input and DDDL Output
	Sample COBOL Input and DDDL Output

	B: Runtime Error Messages
	Overview
	Runtime Messages Issued by the Program Processor
	Runtime Message Issued by the Cross Reference Processor
	Runtime Messages Issued by the DDDL Generator

	Index

