

Dictionary Loader User Guide
Release 18.5.00

CA IDMS™ Dictionary Loader

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time. This

Documentation is proprietary information of CA and may not be copied, transferred, reproduced, disclosed, modified or
duplicated, in whole or in part, without the prior wri tten consent of CA.

If you are a licensed user of the software product(s) addressed in the Documentation, you may print or otherwise make
available a reasonable number of copies of the Documentation for internal use by you and your employees in connection with
that software, provided that all CA copyright notices and legends are affixed to each reproduced copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable

l i cense for such software remains in full force and effect. Should th e license terminate for any reason, i t is your responsibility to
certi fy in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTAT ION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,

DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such

l icense agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions

set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2013 CA. Al l rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

CA Technologies Product References

This document references the following CA Technologies products:

CA IDMS™

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the

information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

■ Online and telephone contact information for technical assistance and customer
services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you

can send a message to techpubs@ca.com.

To provide feedback about CA Technologies product documentation, complete our
short customer survey which is available on the CA Support website at

http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://ca.com/docs
http://ca.com/docs

Contents 5

Contents

Chapter 1: Introduction 7

System Overview.. 8

CA IDMS Dictionary Loader Capabilities... 11

CA IDMS Dictionary Loader Reports ... 12

Syntax Diagram Conventions ... 13

Chapter 2: Program Processor 17

Input Requirements ... 18

Output .. 20

Management Summary Report ... 20

Diagnostic Report ... 21

File and Record Layouts Report ... 25

DATA DIVISION Cross-Reference Report.. 28
Parameter Statement .. 31

Executing the Program Processor ... 34

Chapter 3: Cross Reference Processor 39

Overview .. 40

Developing a File of Control Statements ... 43

Filling in Worksheets ... 46

Parameter Statement .. 49

Title Statement ... 53

Selection Statement .. 54

Sample Control File .. 55

System Data Cross-Reference Report... 56

Dictionary of Data Names Report ... 59

Executing the Cross Reference Processor.. 60

Chapter 4: DDDL Generator 63

Overview .. 64

Developing a File of Control Statements ... 66
Parameter Statement .. 68

VERSION Statement ... 69

Grouping Statement .. 70

Using the Grouping Statement .. 72

6 Dictionary Loader User Guide

Editing Generated DDDL Statements ... 77

Executing the DDDL Compiler .. 80

Appendix A: Sample COBOL Input and DDDL Output 83

Sample COBOL Input and DDDL Output... 84

Sample COBOL Input and DDDL Output... 94

Sample COBOL Input and DDDL Output... 95

Appendix B: Runtime Error Messages 103

Overview ..103

Runtime Messages Issued by the Program Processor ...105
Runtime Message Issued by the Cross Reference Processor ...107

Runtime Messages Issued by the DDDL Generator ...110

Index 113

Chapter 1: Introduction 7

Chapter 1: Introduction

This manual provides the conceptual and operational information necessary to use the
CA IDMS Database Dictionary Loader Option including:

■ Syntax and job control language

■ Considerations relating to using the CA IDMS Dictionary Loader effectively

CA IDMS Dictionary Loader populates the dictionary

The CA IDMS Dictionary Loader is a syntax converter used in conjunction with the
Integrated Data Dictionary (IDD) to simplify the task of populating the dictionary with

information contained in COBOL source programs. The CA IDMS Dictionary Loader
processes a system of programs (that is, programs that process common fi les and
records) individually and then collectively. This processing yields a collection of useful
reports and the Data Dictionary Definition Language (DDDL) source statements (that is,

ADD PROGRAM, ADD RECORD, and ADD FILE) needed to populate the dictionary with
information about the programs.

What follows

To acquaint you with the CA IDMS Dictionary Loader, this chapter presents a system
overview, a l ist of system capabilities, and a description of the reports the CA IDMS
Dictionary Loader generates. Sections 2, 3, and 4 discuss the input, output, and
operation of each of the three CA IDMS Dictionary Loader components separately.

This section contains the following topics:

System Overview (see page 8)
CA IDMS Dictionary Loader Capabilities (see page 11)
CA IDMS Dictionary Loader Reports (see page 12)

Syntax Diagram Conventions (see page 13)

System Overview

8 Dictionary Loader User Guide

System Overview

CA IDMS Dictionary Loader components

The CA IDMS Dictionary Loader consists of three components:

Program Processor

The Program Processor analyzes a single COBOL program and produces an intermediate

fi le (data usage fi le) containing information about data usage within the program (for
example, an element name and the source lines that refer to the name). A collection of
data usage fi les (that is, one fi le for each COBOL program in a system of programs) is
input to the DDDL Generator and optionally to the Cross Reference Processor.

Cross Reference Processor

The optional Cross Reference Processor analyzes a collection of data usage fi les and
produces reports that aid in developing the fi le of control statements for running the

DDDL Generator. Generally, the Cross Reference Processor is executed for a system of
programs (for example, several programs that process the same fi le).

DDDL Generator

The DDDL Generator reads data usage fi les produced by the Program Processor and

generates the appropriate DDDL source statements for subsequent input to the DDDL
compiler.

System Overview

Chapter 1: Introduction 9

Illustration of the components

The following figure il lustrates how the three CA IDMS Dictionary Loader components

are related:

Equation 1: System Overview

Function of the Program Processor

The Program Processor (PRANCOB) analyzes a single COBOL program. Output from this
program is a set of reports and a data usage fi le. The reports and the fi le contain
information about the way that the program uses data. The data usage fi le is used as
input to the Cross Reference Processor and the DDDL Generator. Note that the Program

Processor is executed separately for each COBOL program in the system of programs to
be processed. The functioning of the Program Processor is i llustrated in the following
figure:

System Overview

10 Dictionary Loader User Guide

Function of the Cross Reference Processor

The Cross Reference Processor (PRANXREF) analyzes a collection of data usage fi les to

track all references to data elements throughout a system of programs. Output from
this component are reports that provide extensive cross -reference information (for
example, data items and the source lines that refer to each item) about the system of

programs being analyzed. The reports also aid in developing the control statements for
running the DDDL Generator. You can bypass the Cross Reference Processor in you want
to. The following figure il lustrates the functioning of the Cross Reference Processor:

Function of the DDDL Generator

The DDDL Generator (PRANIDDG) reads a collection of data usage fi les and generates
the appropriate DDDL source statements for input to the IDD DDDL compiler. Optional
control statements can be used to specify a VERSION clause to be added to generated

statements and to identify synonymous and nonunique names (that is, multiple names
used to refer to the same fi le or record or single names used to refer to two or more
different fi les or records). This module generates a fi le containing all DDDL ADD

PROGRAM, ADD FILE, and ADD RECORD statements associated with the system of
programs processed and produces a l isting of a all generated statements. The
functioning of the DDDL Generator is i l lustrated in the following figure:

CA IDMS Dictionary Loader Capabilities

Chapter 1: Introduction 11

CA IDMS Dictionary Loader Capabilities

The CA IDMS Dictionary Loader has the capabilities described below.

Generates DDDL statements

The CA IDMS Dictionary Loader can process a system of up to 99 COBOL programs to
generate a fi le of DDDL statements that describe the programs and the fi les, records,

and elements that the programs use. This fi le can be submitted to the DDDL compiler to
populate the data dictionary.

Generates VERSION clauses

The CA IDMS Dictionary Loader adds VERSION clauses to all generated statements. If

directed by a control statement, the DDDL Generator includes a user-specified VERSION
clause in each generated statement; otherwise, the DDDL Generator includes a VERSION
01 clause in each statement.

Processes synonyms

The CA IDMS Dictionary Loader can identify synonyms within generated ADD
statements. When a single fi le or record is referred to by many different names
throughout the system of programs, the DDDL Generator can be directed to generate a
SYNONYM clause within each ADD statement to identify all other names used to refer to

the fi le or record.

Processes nonunique names

The CA IDMS Dictionary Loader can differentiate between multiple us es of the same
name. When multiple fi les or records are referred to by a single name, the DDDL
Generator can be directed to generate an ADD statement for each unique fi le or record,

assigning each occurrence of the name of a separate version number (NEXT
HIGHEST/NEXT LOWEST) or assigning all occurrences the same version.

Using NEXT HIGHEST/LOWEST

If NEXT HIGHEST/NEXT LOWEST is used in generating the DDDL statements with the
DDDL Generator, the DDDL compiler will add all of the entities to the data dictionary,
using the same name and differentiating one from another by the version number.

CA IDMS Dictionary Loader Reports

12 Dictionary Loader User Guide

Using explicit version numbers

If all entities are assigned an explicit version number (that is, the same version number)

during DDDL Generator processing, the DDDL compiler will process the statements in
one of two ways depending on the setting of the DDDL compil er option DEFAULT IS
ON/OFF:

Setting Description

DEFAULT IS ON The DDDL compiler will process the first ADD statement
containing the nonunique entity-occurrence name and change

subsequent ADD statements that use the name to MODIFY
statements.

DEFAULT IS OFF The DDDL compiler will process only the first ADD statement that
contains the nonunique entity-occurrence name and will flag as

erroneous all subsequent ADD statements that use the name.

Editing the generated statements

You can edit the generated DDDL statements to eliminate unwanted ADDs, to establish

different version numbers, or to merge several ADD statements that describe the same
record or fi le into a single ADD statement.

CA IDMS Dictionary Loader Reports

Program Processor reports

The Program Processor produces four reports that are useful in analyzing the program,

as follows:

Report Description

Management
Summary Report

Lists the number of source lines in each division of the
program, the number of diagnostic messages issued, and fi le
usage information. The report aids in a quick assessment of the
program's complexity, conformance to standard and fi le usage.

Diagnostic Report Lists all source program lines found to contain a potential error
condition. The report aids in identifying COBOL syntax errors,
non-conformance to ANS standards, and logical errors that

could not be detected by a COBOL compiler.

Syntax Diagram Conventions

Chapter 1: Introduction 13

Report Description

File and Record
Layouts Report

Lists information about the attributes of each fi le and detail

information about the data items within each record. The
report aids in finding information about fi les and data items
without having to refer to the source listing.

DATA DIVISION
Cross-Reference
Report

Lists all data items used in the program and all references to
the data items made in the PROCEDURE DIVISION of the
program. The report allows comprehensive tracking of the use
of data items within the program.

Cross-Reference Processor reports

The Cross-Reference Processor produces two reports that are useful in analyzing a
collection of related programs as follows:

Report Description

System Data
Cross-Reference

Report

Lists data items and references to the items for a system of
programs. The report allows comprehensive tracking of the use

of data items within the entire system of programs.

Dictionary of Data
Names

Lists alphabetically, all data element and record names used in
a system of programs together with extensive information
about each item listed. This report aids in tracking the use of

data names.

Syntax Diagram Conventions

The syntax diagrams presented in this guide use the following notation conventions:

UPPERCASE OR SPECIAL CHARACTERS

Represents a required keyword, partial keyword, character, or symbol that must be
entered completely as shown.

lowercase

Represents an optional keyword or partial keyword that, if used, must be entered
completely as shown.

italicized lowercase

Represents a value that you supply.

lowercase bold

Represents a portion of the syntax shown in greater detail at the end of the syntax

or elsewhere in the document.

◄─

Syntax Diagram Conventions

14 Dictionary Loader User Guide

Points to the default in a l ist of choices.

►►────────────────────

Indicates the beginning of a complete piece of syntax.

────────────────────►◄

Indicates the end of a complete piece of syntax.

─────────────────────►

Indicates that the syntax continues on the next l ine.

►─────────────────────

Indicates that the syntax continues on this l ine.

────────────────────►─

Indicates that the parameter continues on the next l ine.

─►────────────────────

Indicates that a parameter continues on this l ine.

►── parameter ─────────►

Indicates a required parameter.

►──┬─ parameter ─┬─────►
 └─ parameter ─┘

Indicates a choice of required parameters. You must select one.

►──┬─────────────┬─────►
 └─ parameter ─┘

Indicates an optional parameter.

►──┬─────────────┬─────►
 ├─ parameter ─┤
 └─ parameter ─┘

Indicates a choice of optional parameters. Sel ect one or none.

 ┌─────────────┐
►─▼─ parameter ─┴──────►

Indicates that you can repeat the parameter or specify more than one parameter.

 ┌─── , ─────────┐
►─▼─ parameter ───┴──────►

Indicates that you must enter a comma between repetitions of the parameter.

Syntax Diagram Conventions

Chapter 1: Introduction 15

Sample Syntax Diagram

The following sample explains how the notation conventions are used:

Chapter 2: Program Processor 17

Chapter 2: Program Processor

Description

The Program Processor processes a single COBOL source program and produces a data
usage fi le and reports. This component is a full COBOL parser; it includes functional
phases for reading, scanning, parsing, analyzing, sorting, and reporting on a COBOL

source program. The Program Processor produces the following reports:

■ The Management Summary Report

■ The Diagnostic Report

■ The File and Records Layout Report

■ The DATA DIVISION Cross-Reference Report

Data usage file

The data usage fi le produced is the input required for the Cross Reference Processor

and the DDDL Generator. The Program Processor must be executed once for each
program in the system of programs being processed.

What follows

This chapter describes the input requirements and the reports associated with the
Program Processor and provides instructions for executing this component under z/OS
and z/VSE.

This section contains the following topics:

Input Requirements (see page 18)
Output (see page 20)
Parameter Statement (see page 31)
Executing the Program Processor (see page 34)

Input Requirements

18 Dictionary Loader User Guide

Input Requirements

COBOL source program requirements

One execution of the Program Processor requires as input a single, complete COBOL
source program. The program must meet the following requirements:

■ The program must be in a form suitable for COBOL compilation. Programs

containing COBOL COPY statements are expanded automatically. The library
member being copied must contain the 01 level description.

■ If the program contains embedded CA IDMS/DB navigational DML commands, it
must be run through the DMLC processor before being input to the Program

Processor. The DMLC processor changes DML commands to COBOL comments and
generates CALLS, as appropriate, for requesting database services. The fi le output
from the DMLC processor can be input to the Program Processor.

■ If the program resides in a l ibrary in compressed format, it must be run through the
appropriate l ibrarian utility to expand it into standard 80-character format before
being input to the Program Processor. Output from the librarian utility can be input
to the Program Processor.

z/VSE considerations

Note that z/VSE users can copy source code input to the Program Processor from a
source statement l ibrary by using the =COPY facil ity. To use this facil ity, specify the
member containing the source code in the following syntax:

►►── =COPY IDMS ─┬──────────────────────┬─ member-name ───────────────────────►◄
 ├─ sublibrary-name. ─┬─┘
 └─ A. ◄ ─────────────┘

If member-name is not in the A. sublibrary, specify the sublibrary (usually C.) name.
Note that if a private source statement l ibrary is used to store member-name, the DLBL

fi le type must be specified as DA at run time.

An example of the use of this statement is shown below:

=COPY IDMS C.PRANDEM1

Other input form

The Program Processor accepts one other form of input: the parameter statement. This
statement specifies override processing options for executing the Progra m Processor.

The following table is a summary of the options available with this statement. For syntax
and rules, see the Parameter Statement (see page 31) later in this chapter.

Note: For z/OS clients, parameters can be specified more conventionally in the

execution JCL by using the PARM clause of the EXEC statement.

Input Requirements

Chapter 2: Program Processor 19

Runtime Options for the Program Processor

The Program Processor operates with the default options l isted in effect unl ess override

options are specified.

Parameter Default Option Override Option

SYSREF/NOSYSREF SYSREF—The data usage fi le is to
be produced

NOSYSREF—The data usage fi le is not to be
produced

SOURCE/NOSOURCE NOSOURCE—The COBOL source
program is not to be listed

SOURCE—The COBOL source program is to
be listed

SUMM/NOSUMM SUMM—The Management
Summary Report is to be printed

NOSUMM—The Management Summary
Report is not to be printed

DMAP/NODMAP DMAP—The File and Record
Layouts Report is to be printed

NODMAP—The File and Records Layout
Report is not to be printed

DXREF/NODXREF DXREF—The DATA DIVISION
Cross-Reference Report is to be
printed

NODXREF—The DATA DIVISION Cross-
Reference Report is not to be printed

DIAG/NODIAG DIAG—The Diagnostic Report is to
be printed

NODIAG—The Diagnostic Report is not to be
printed

ANS/ANS68/
ANS74/NOANS

NOANS—ANS diagnostics are not
to be included in the Diagnostic

Report

ANS—All diagnostic messages are to be
included in the Diagnostic Report

ANS68-Only ANS 1968 diagnostic messages
are to be included in the Diagnostic Report

ANS74-Only ANS 1974 diagnostic messages

are to be included in the Diagnostic Report

FLO/NOFLO FLO—FLO diagnostic messages are
to be included in the Diagnostic
Report

NOFLO—FLO diagnostic messages are not to
be included in the Diagnostic Report

NUM/NONUM NUM—The line numbers present
in the source program are to be
used for referencing

NONUM-Line numbers are to be assigned
sequentially to all l ines in the source
program for referencing

Output

20 Dictionary Loader User Guide

Output

Types of output

The Program Processor automatically produces the following output:

■ Data Usage File

■ Management Summary Report

■ Diagnostic Report

■ File and Record Layouts Report

■ DATA DIVISION Cross-Reference Report

Overrides

Note that override processing options are available to suppress the output of the data
usage fi le and any of the reports, and to request the inclusion of a source program
listing (see Parameter Statement below).

Title page

Output from the Program Processor begins with a title page. The title page identifies the
program and the date of the run, and supplies a table of contents l isting all reports
produced for the run. If a program listing has been requested, it appears after the
Management Summary Report. Program Processor reports are discussed separately

below.

Management Summary Report

Source program information

The Management Summary Report provides the following information about the source

program:

■ The number of source lines in each division of the program

■ The number of diagnostic messages issued for each type of error

■ File usage information for each fi le associated with the program

Output

Chapter 2: Program Processor 21

Sample report

This report aids in an overall assessment of the source program's complexity,

conformance to standards, and fi le usage. A sample Management Summary Report
appears below:

 PRANDEM2 MANAGEMENT SUMMARY DICTIONARY LOADER dd mmm yy 1425 PAGE 1

 129 TOTAL SOURCE LINES

 8 LINES IN IDENTIFICATION DIVISION

 6 LINES IN ENVIRONMENT DIVISION
 62 LINES IN DATA DIVISION

 53 LINES IN PROCEDURE DIVISION

 5 (ANS) VIOLATIONS OF BOTH ANS-68 AND ANS-74

 0 (A68) VIOLATIONS OF ANS-68 ONLY

 2 (A74) VIOLATIONS OF ANS-74 ONLY

 0 ($$$) COBOL SOURCE ERRORS

 0 (FLO) FLOW ANALYSIS

 OPENED FOR: RECORD BLOCK

 FILE NAME DEVICE IN OU IO EX LENGTH SIZE

 CUSTOMER-FILE UT-2400-S-CUSTIN X 104 UNBLOCKED

 RPTFILE UT-S-SYSLST X 133 UNBLOCKED

Diagnostic Report

Lists incorrect source

The Diagnostic Report l ists all source program lines found to contain a potential error
condition. Each line l isted is followed by a diagnostic message. The message identifies

the problem portion of the COBOL statement with an asterisk (*), indicates the type of
condition detected with a keyword indicator, and briefly describes the condition.

Sample report

 PRANDEM2 DIAGNOSTIC LISTING DICTIONARY LOADER dd mmm yy 1425 PAGE 2

 GEN-LN SOURCE CARD REMARKS

 130000 MOVE SPACE TOO DETAIL-REC.

 * ($$$) SYNTAX ERROR

Output

22 Dictionary Loader User Guide

Diagnostic Report messages

The Diagnostic Report l ists three types of diagnostic messages:

Syntax ($$$)

One of the following three messages appears following the $$$ indicator:

1. 'Character-string' NOT ALLOWED

The character string reported is a valid COBOL keyword or expression, but it cannot
be used where it appears.

2. PROCEDURE NOT FOUND

The operand of the PERFORM statement is undefined.

3. SYNTAX ERROR

The word or construction does not conform to COBOL syntax rules.

ANS, ANS68, ANS74

The appropriate form of the following diagnostic message appears following the ANS,

ANS68, or ANS74 indicators:

ANS/ANS-68/ANS-74 DOES NOT ALLOW 'keyword'

The keyword reported violates ANS 1968 standards for COBOL (ANS-68), 1974 standards
(ANS-74), or both 1968 and 1974 standards (ANS).

Output

Chapter 2: Program Processor 23

Logical flow (FLO)

One of the following messages appears following the FLO indicator:

1.

ALTER TO procedure-name IN PROCEDURE

PERFORM procedure-name-1 THRU procedure-name-n

The ALTER statement causes the altered paragraph to transfer into the THRU range
of a PERFORM procedure that does not contain the altered paragraph.

2.

ALTER TO procedure-name OUT OF PROCEDURE

PERFORM procedure-name-1 THRU procedure-name-n

The ALTER statement sets the altered paragraph so that it will transfer out of

the THRU range of the PERFORM procedure in which the altered paragraph resides.

3.

ALTERED PARAGRAPH NEVER REACHED

This paragraph is never reached when the program is executed. The paragraph is
altered however, by a statement that can be reached.

4.

END OF PROC DIV REACHED

Program flow can fall through the end of the last paragraph of the PROCEDURE
DIVISION. Program flow, should be ended by a STOP RUN statement.

5.

GO TO procedure-name IN PROCEDURE

PERFORM procedure-name-1 THRU procedure-name-n

The GO TO statement resides outside the THRU range of the PERFORM procedure
and transfers control to a paragraph inside the PERFORM procedure.

6.

GO TO procedure-name OUT OF PROCEDURE

PERFORM procedure-name-1 THRU procedure-name-n

The GO TO statement transfers control out of the THRU range of the PERFORM in
which the GO TO resides.

7.

PARAGRAPH NEVER REACHED

Program flow cannot reach this paragraph during execution of the program

Output

24 Dictionary Loader User Guide

8.

PERFORM EXIT BEFORE ENTRY

A statement of the form PERFORM procedure-name-1 THRU procedure-name-n has

been found where the procedure-name-n precedes procedure-name-1 in the
program.

9.

PERFORM RANGE OVERLAPS

PERFORM procedure-name-1 THRU procedure-name-n

The range of this PERFORM statement overlaps the range of PERFORM
procedure-name-1 THRU procedure-name-n. Either the two names have a common
entry or exit, or one range is not completely nested in the other.

10.

PROCEDURE EXIT NEVER REACHED

The procedure name in the statement flagged can never be reached at execution
time. The name is referred to, however, by a statement of the form PERFORM
procedure-name-1 THRU procedure-name-n. This message is also issued for a
paragraph referred to by an ALTER statement of the form ALTER procedure-name-1

to procedure-name-2, where either procedure-name-1 or procedure-name-2
cannot be reached.

11.

REACHED FROM LAST PARA/SECT AND

PERFORM procedure name-1 THRU procedure-name-2

Program flow can reach this statement in either of the following ways:

■ From the end of the preceding paragraph or as the first paragraph of a
performed chapter.

■ From a PERFORM statement that refers to this paragraph as the entry point of

the performed procedure.

12.

SENTENCE NEVER REACHED

This sentence will never be reached during program execution.

13.

STATEMENT NEVER REACHED

This statement (within a sentence) will never be reached during program execution.

Output

Chapter 2: Program Processor 25

Types of problems flagged

Note that with the exception of two of the three syntax messages, Diagnostic Report

messages identify problems that normal COBOL compilation might not flag. These
problems fall into two categories as follows:

Problem Description

Compatibil ity ANS messages flag areas of potential compatibil ity in successfully
compiled programs that might be run through another compiler.

Logical flow FLO messages flag potential flaws in logic that could not be

detected by the COBOL compiler. For example, FLO diagnostics can
aid in identifying statements that can never be reached during
execution.

Syntax errors in compiled programs

Note that messages identifying syntax errors may be issued for programs that have
compiled successfully. Such error messages usually identify minor differences in the
syntax requirements enforced by the user's compiler and the Program Processor. For

example, some compilers do not flag as erroneous COBOL statements that begin in
column 8 instead of 12. The Program Processor flags such statements. If these syntax
errors are not important to the user, they can be ignored.

File and Record Layouts Report

Describe file and record layouts

The File and Record Layouts Report is a six part report that provides information about
the attributes of each fi le and specific details about the data items within each record:

■ The first five parts of the report describe the five sections contained within the

DATA DIVISION of a COBOL source program (that is, the FILE, WORKING-STORAGE,
LINKAGE, COMMUNICATION, and REPORT sections).

■ The sixth section of the report l ists source statement references to all ACCEPT,

DISPLAY, STOP, and CALL statements used the PROCEDURE DIVISION of the source
program. This report allows quick access to information about fi les and data items
without having to refer to the source listing.

Output

26 Dictionary Loader User Guide

Sample report

The following figure shows the first page of a sample File and Record Layouts Report.

 PRANDEM2 FILE AND RECORD LAYOUTS (FILE SECTION) DICTIONARY LOADER dd mmm yy 1425 PAGE 1

 FILE NAME: CUSTOMER-FILE

 DEVICE NAME: UT-2400-S-CUSTIN
 LABEL: OMITTED

 BLOCK SIZE: UNBLOCKED

 RECORD SIZE: 104 CHARACTERS
 RECORD FORMAT: FIXED

 079000 OPEN INPUT CUSTOMER-FILE
 084000 READ CUSTOMER-FILE RECORD

 125000 CLOSE CUSTOMER-FILE

 LV-DAT NAME SRC LN POS SIZE USAGE OCC VALUE

 FD CUSTOMER-FILE 037000

 01 CUSTOMER 043000 1 (104) GROUP

 03 CUST-NUM 044000 1 10 DISP
 03 CUST-NAME 045000 11 20 DISP

 03 CUST-ADDRESS 046000 31 (40) GROUP

 05 CUST-ADDR1 047000 31 20 DISP
 05 CUST-ADDR2 048000 51 (20) GROUP

 06 CUST-CITY 049000 51 15 DISP

 06 CUST-ZIP-CODE 050000 66 5 DISP
 03 CUST-CREDIT 051000 71 3 DISP

 88 CUST-CREDIT-EXEC 052000 'AAA'

 88 CUST-GOOD 053000 ' '

 88 CUST-POOR 054000 'XXX'

 03 FILLER 055000 74 31 DISP

Field descriptions

FILE NAME

The fi le name.

DEVICE NAME

The device name assigned to the fi le.

LABEL

Information about LABEL records. The report displays the keywords OMITTED or
STANDARD, or the name of a user LABEL record.

BLOCK SIZE

The size of the physical block, if blocked.

RECORD SIZE

The size of the fi le's data records.

RECORD FORMAT

The RECORDING MODE of the record. The report displays FIXED, VARIABLE,
UNDEFINED, or SPANNED.

Output

Chapter 2: Program Processor 27

LV

The level number of the data item. For items for which level number is not

applicable, codes provide information about the item:

■ FD-File description

■ SD-Sort description

■ DC-Communication description

■ RD-Report description

No level number is provided for definitions of index names used by the INDEXED BY
clause.

DATA NAME

Name of the data item. DATA NAME can be a fi le name, record name, or an
element name.

SRC LN

The line number of the source line where the data item is defined.

POS

Starting position associated with the data item.

SIZE

The size of the data item. Parentheses enclos e a size reported for a group item.

USAGE

The form in which the data item is to be stored as the result of the source

program's specifications:

■ GROUP—The data item contains subordinate items.

■ DISP—The data item is stored in character form.

■ DISP-NM—The data item is stored one digit per character position. The PIC
contains only S, 9, and V.

■ NM-EDIT—The data item is a numeric item stored in character format. The PIC
contains some or all of the editing characters +, -, z, $, comma, B, CR, DB, ., or

0.

Output

28 Dictionary Loader User Guide

The following report writing specifications can also appear in this column:

■ RH—Report heading

■ RF—Report footing

■ PH—Page heading

■ PF—Page footing

■ CH—Control heading

■ CF—Control footing

■ DE—Detail

OCC

The number of occurrences of the data item if the definition of the item uses an
OCCURS clause.

VALUE

The value assigned to the data item if the definition of the item uses a VALUE

clause.

DATA DIVISION Cross-Reference Report

Lists all program fields

The DATA DIVISION Cross-Reference Report provides an alphabetic l isting of each data

item included in the program and all references to the item in the PROCEDURE DIVISION
of the program. The data item name is l isted together with its attributes and the
number of each source line that refers to the data name. This report allows

comprehensive tracking of the use of data items.

Output

Chapter 2: Program Processor 29

Sample report

 PRANDEM2 DATA DIVISION CROSS REFERENCE DICTIONARY LOADER dd mmm yy 1425 PAGE 6

 LV DATA-NAME SRC-LN SIZE OCC QUALIFICATION REF-LN STATEMENT REF-LINE-NBRS

 03 CUST-ADDRESS 046000 40 (CUSTOMER-FILE)

 CUSTOMER

 05 CUST-ADDR1 047000 20 (CUSTOMER-FILE) 092000 MOVE CUST-ADDR1 TO RPT-ADDR1 047000 030000

 CUSTOMER CUST-ADDRESS

 05 CUST-ADDR2 048000 20 (CUSTOMER-FILE) 093000 MOVE CUST-ADDR2 TO RPT-ADDR2 048000 032000

 CUSTOMER CUST-ADDRESS

 06 CUST-CITY 049000 15 (CUSTOMER-FILE)

 CUSTOMER CUST-ADDRESS

 03 CUST-CREDIT 051000 3 (CUSTOMER-FILE)

 CUSTOMER

 88 CUST-CREDIT-EXEC 052000 (CUSTOMER-FILE) 087000 IF NOT CUST-CREDIT-EXEC 052000

 CUSTOMER CUST-CREDIT

 88 CUST-CREDIT-GOOD 053000 (CUSTOMER-FILE)

 CUSTOMER CUST-CREDIT

 88 CUST-CREDIT-POOR 054000 (CUSTOMER-FILE)

 CUSTOMER CUST-CREDIT

 03 CUST-NAME 045000 20 (CUSTOMER-FILE) 091000 MOVE CUST-NAME TO RPT-CUST-NAME 045000 028000

 CUSTOMER

 03 CUST-NUM 044000 10 (CUSTOMER-FILE) 090000 MOVE CUST-NUM TO RPT-CUST-NO 044000 026000

 CUSTOMER

 06 CUST-ZIP-CODE 050000 5 (CUSTOMER-FILE) 094000 MOVE CUST-ZIP-CODE TO RPT-ZIP 005000 034000

 CUSTOMER CUST-ADDRESS
 CUST-ADDR2

 01 CUSTOMER 043000 104

 FD CUSTOMER-FILE 037000 079000 OPEN INPUT CUSTOMER-FILE 037000

 084000 READ CUSTOMER-FILE RECORD 037000
 125000 CLOSE CUSTOMER-FILE 037000

 01 DETAIL-REC 024000 133 081000 MOVE SPACES TO DETAIL-REC 024000
 105000 WRITE DETAIL-REC AFTER 024000 061000

 POSITIONING POSITION-IND-WS

 106000 MOVE SPACES TO DETAIL-REC 024000

 01 PAGE-COUNT-WS 060000 2 107000 ADD PAGE-INCREMENT-WS TO 062000 060000

 PAGE-COUNT-WS
 108000 IF PAGE-COUNT GREATER THAN +58 060000

 118000 MOVE +4 TO PAGE-COUNT-WS 060000

 01 PAGE-INCREMENT-WS 062000 1 104000 MOVE 1 TO PAGE-INCREMENT-WS 062000

 107000 ADD PAGE-INCREMENT-WS TO 062000 060000

 PAGE-COUNT-WS

Output

30 Dictionary Loader User Guide

Field descriptions

LV

The level number of the data item. For items for which level number is not
applicable, codes provide information about the item:

■ FD—File description

■ SD—Sort description

■ DC—Communication description

■ RD—Report description

No level number is provided for definitions of index names used by the INDEXED BY

clause.

DATA-NAME

Name of the data item. DATA NAME can be a fi le name, record name, or an
element name.

SRC-LN

The line number of the source line where the data item is defined.

SIZE

The size of the data item. Parentheses enclose a size reported for a group item.

OCC

The number of occurrences of the data item if the definition of the item uses an
OCCURS clause.

QUALIFICATION

The name(s) of other data item(s) to which the subject data item is subordinate.
The fi le name is enclosed by parentheses. Highest level qualifiers (for example, fi les)

are l isted first, followed by record names. The minimum qualification needed to
make the name unique is flagged with an asterisk (*). If there are two identical data
names at the same level in the same structure, those data names cannot be
uniquely identified; a *$$$ diagnostic will appear in the listing.

 STATEMENT

A list of statement (including starting source line numbers) that refer to the data
item.

REF-LN-NBRS

The source line number where each data item in the REF-LN STATEMENT entry is
defined. REF-LN-NBRS are reported for all data items (including the subject item) in
order of occurrence in the statement.

Parameter Statement

Chapter 2: Program Processor 31

Parameter Statement

Specifies overrides to Program Processor

The parameter statement specifies overri de processing options for the Program
Processor. Under z/VSE, this statement must be used to specify options; under z/OS,
this statement can be used but it is usually more convenient to specify options in the JCL

in the PARM clause of the EXEC statement.

Coding rules

The following rules apply to coding parameter statements for the Program Processor:

■ Parameter statements, if used, must be included at the beginning of the COBOL

source program.

■ Multiple statements can be entered.

■ Statements can be coded in positions 1 through 72.

■ Options can be specified in any order, with one or more options per statement and
at least one blank or comma between specifications.

Syntax

►►─── PRAN ───►

 ►─┬──────────────┬───►
 ├─ SYSref ◄ ─┬─┘
 └─ NOSYsref ─┘

 ►─┬──────────────┬───►
 ├─ SOUrce ◄ ─┬─┘
 └─ NOSOurce ─┘

 ►─┬────────────┬───►
 ├─ SUMm ◄ ─┬─┘
 └─ NOSUmm ─┘

 ►─┬────────────┬───►
 ├─ DMAp ◄ ─┬─┘
 └─ NODMap ─┘

 ►─┬─────────────┬──►
 ├─ DXRef ◄ ─┬─┘
 └─ NODXref ─┘

 ►─┬────────────┬───►
 ├─ DIAg ◄ ─┬─┘
 └─ NODIag ─┘

 ►─┬─────────────┬──►
 ├─ ANS ─────┬─┘
 ├─ ANS68 ───┤
 ├─ ANS74 ───┤
 └─ NOAns ◄ ─┘

 ►─┬───────────┬──►
 ├─ FLO ◄ ─┬─┘
 └─ NOFlo ─┘

 ►─┬───────────┬──►◄
 ├─ NUM ◄ ─┬─┘
 └─ NONum ─┘

Parameter Statement

32 Dictionary Loader User Guide

Parameter list

PRAN

Identifies the statement. Note that this keyword must be used to distinguish this
statement from COBOL source statements.

SYSref/NOSYsref

Specifies whether the data usage fi le is to be produced as follows:

■ SYSREF (default)—The fi le is to be produced.

■ NOSYSREF—The fi le is not to be produced.

SOUrce/NOSOurce

Specifies whether the COBOL source program is to be listed in the output, as

follows:

■ SOURCE—The source program is to be listed.

■ NOSOURCE (default)—The source program is not to be listed.

SUMm/NOSUmm

Specifies whether the Management Summary Report is to be printed, as follows:

■ SUMM (default)—The report is to be printed.

■ NOSUMM—The report is not to be printed.

DMAp/NODMap

Specifies whether the File and Record Layouts Report is to be printed, as follows:

■ DMAP (default)—The report is to be printed.

■ NODMAP—The report is not to be printed.

DXRef/NODXref

Specifies whether the DATA DIVISION Cross -Reference Report is to be printed, as
follows:

■ DXREF (default)—The report is to be printed.

■ NODXREF—The report is not to be printed.

DIAg/NODIag

Specifies whether the Diagnostic Report is to be printed, as follows:

■ DIAG (default)—The report is to be printed.

■ NODIAG—The report is not to be printed.

Parameter Statement

Chapter 2: Program Processor 33

ANS/ANS68/ANS74/NOAns

Specifies the type of errors to be reported in the Diagnostic Report, as follows:

■ ANS—Violations of both the 1968 and 1974 ANS standards are to be reported.

■ ANS68—Only violations of the 1968 ANS standards are to be reported.

■ ANS74—Only violations of the 1974 ANS standards are to be reported.

■ NOANS (default)—No ANS violations are to be reported.

FLO/NOFlo

Specifies whether FLO diagnostics are to be reported in the Diagnostic Report, as
follows:

■ FLO (default)—FLO diagnostics are to be reported.

■ NOFLO—FLO diagnostics are not to be reported.

NUM/NONum

Specifies whether the original l ine numbers present in the COBOL source program
are to be used in reports to refer to source statements, as follows:

■ NUM (default)—The line numbers already associated with source statements

are to be used in reports to refer to source statements

■ NONUM-Line numbers are to be assigned sequentially to all source statements,
and these new line numbers are to be used in reports to refer to source
statements.

Executing the Program Processor

34 Dictionary Loader User Guide

Executing the Program Processor

JCL for executing the Program Processor under z/OS and z/VSE is shown below. Under
z/VSE, processing options must be specified with the parameter statement. Under z/OS,
although the parameter statement can be used, it is usually easier to specify options by
using the PARM clause of the EXEC statement.

z/OS JCL-PRANCOB

//PRANCOB EXEC PGM=PRANCOB,REGION=1024K,PARM='parameter options'

//STEPLIB DD DSN=idms.dba.loadlib,DISP=SHR

// DD DSN=idms.custom.loadlib,DISP=SHR

// DD DSN=idms.cagjload,DISP=SHR

//PRANLIB DD DSN=user.copylib,DISP=SHR ◄ Include only if program contains COB

OL

 COPY statements

//PRANREF DD DSN=reflib(member-name),DISP=OLD ◄ Include only if using LIBRARY

 option

//PRANREF DD DSN=sysref,DISP=((NEW,catlg), ◄ Include only if using DISK opti

on

// UNIT=disk,VOL=SER=nnnnnn,

// SPACE=(trk,(10,10),rlse),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120

//PRANWRK DD UNIT=disk,SPACE=(cyl,(5,5))

//dcmsg DD DSN=idms.sysmsg.ddldcmsg,DISP=SHR

//sysjrnl DD *

//SYSLST DD SYSOUT=A

//SYSIDMS DD *

dmcl=dmcl-name

Insert other SYSIDMS parameters as appropriate

//SYSIPT DD *

Insert COBOL source statements

DSN Description

idms.dba.loadlib Data set name of the load library containing the DMCL

and database name table load modules

idms.custom.loadlib Data set name of the load library containing customized
CA IDMS system software modules

idms.cagjload Data set name of the load library containing CA IDMS
system software modules that do not require
customization

BLKSIZE=3120 Block size of data usage fi le; must be multiple of 80

catlg disposition of new fi le: CATLG, PASS or KEEP

cyl,(5,5) fi le space allocation of work fi le

Executing the Program Processor

Chapter 2: Program Processor 35

DSN Description

disk symbolic device name of disk fi le

nnnnnn serial number of disk volume

parameter options options associated with the Parameter statement for the
Program Processor. Multiple options can be specified;

keywords must be separated by blanks or commas; the
entire entry must be enclosed in single quotes. Note that
the keyword PRAN shown in the syntax for the parameter
statement must not be included with options specified

here.

refl ib(member-name) data set name of data usage fi le

sysref data set name of data usage fi le

trk,(10,10),rlse fi le space allocation of data usage fi le

user.copylib data set name of COBOL copy book library

dcmsg DDname of the system message (DDLDCMSG) area

idms.sysmsg.ddldcmsg Data set name of system message (DDLDCMSG) area

SYSIDMS DDname of the CA IDMS parameter fi le specifying

runtime directives and operating system-dependent
parameters.

Note: For a description of the SYSIDMS parameter fi le,
see the CA IDMS Common Facilities Guide.

Note: Note that the larger the value specified in the REGION parameter, the more
efficiently the Program Processor will run.

Note: The DISK option and LIBRARY option are documented in num=3.Cross Reference
Processor.

Executing the Program Processor

36 Dictionary Loader User Guide

z/VSE JCL-JCL PRANCOB

// DLBL SSLn,'user.srclib'

// EXTENT ,nnnnnn

// LIBDEF SL,SEARCH=SSLn,TEMP

// DLBL PRANREF,'sysref',2099/365,SD

// EXTENT SYS010,nnnnnn,1,,ssss,200

// ASSGN SYS010,DISK,VOL=nnnnnn,SHR

// DLBL PRANWRK,'pranwork',0,SD

// EXTENT SYS011,nnnnnn,1,ssss,300

// ASSGN SYS011,DISK,VOL=nnnnnn,SHR

// EXEC PRANCOB,SIZE=750K

parameter statements(s)

=COPY IDMS member statement or COBOL source statements

/*

Parameter Description

nnnnnn serial number of disk volume

pranwork fi le-id for work fi le

ssss starting track (CKD) or block (FBA) of disk extent

sysref fi le-id for sequential fi le containing data usage fi le

SYS010 logical unit assignment for data usage fi le (SYS010 required)

SSLn fi lename of source statement l ibrary

SYS011 logical unit assignment for work fi le (SYS011 required)

user.srclib source statement l ibrary containing data usage fi les

Note: The keyword PRAN must appear at the beginning of each parameter statement.
PRAN is only used in the parameter statement for this component.

Note: The Program Processor must run in a partition that is at least 750 K. The larger the
partition size, the more efficiently the Program Processor will run.

Executing the Program Processor

Chapter 2: Program Processor 37

JCL for z/VSE source statement library

The optional JCL shown below places the data usage fi le generated by the Program

Processor into a source statement l ibrary. From the source statement l ibrary, data
usage fi les can be accessed by the Cross Reference Processor and the DDDL Generator.

If the source statement l ibrary option is to be used, add this JCL to the JCL for executing

the Program Processor, shown above.

// DLBL IJSYSIN,'sysref'

// EXTENT SYSIPT,nnnnnn

 ASSGN SYSIPT,DISK,VOL=nnnnnn,SHR

// DLBL SSLn,'user.srclib'

// EXTENT ,nnnnnn

// LIBDEF SL,TO=SSLn,TEMP

// EXEC LIBR

 CLOSE SYSIPT,SYSRDR

Note that the output is placed in the X. sublibrary.

Parameter Description

SSLn fi lename of source statement l ibrary

Chapter 3: Cross Reference Processor 39

Chapter 3: Cross Reference Processor

Tracks all references to data items

The Cross Reference Processor analyzes a collection of data usage fi les to track all
references to data elements throughout a system of COBOL programs. Control
statements assign a descriptive title to each subset of records to be reported together

(most commonly a fi le), specify the 01-level records that are to be associated with each
title, and specify processing options.

Output

Output form this module are two reports that provide extensive cross -reference
information about the system of programs: the System Data Cross-Reference Report
and the Dictionary of Data Names Report. These reports aid in developing control
statements for the DDDL Generator.

What follows

This chapter presents an overview of the Cross Reference Processor, describes its
control statements and reports, and provides instructions for executing the Cross

Reference Processor under z/OS and z/VSE.

This section contains the following topics:

Overview (see page 40)
Developing a File of Control Statements (see page 43)

Fil l ing in Worksheets (see page 46)
Parameter Statement (see page 49)
Title Statement (see page 53)
Selection Statement (see page 54)

Sample Control File (see page 55)
System Data Cross-Reference Report (see page 56)
Dictionary of Data Names Report (see page 59)

Executing the Cross Reference Processor (see page 60)

Overview

40 Dictionary Loader User Guide

Overview

Purpose of the processor

The main purpose of the Cross -Reference Processor is to produce the System Data
Cross-Reference Report. The control statements associated with running this
component allow the user to specify the organization of the information to be included

in this report as follows:

■ Group information about a file that has many different names.

Information about a fi le that has many different names can be grouped under one
descriptive title. A single fi le (for example, a transaction fi le) may be named

differently (for example, TRANSFILE, TRANS-IN, TRANS-OUT) in the system of
programs. Control statements can be used to assign a descriptive name to such a
fi le and to connect the appropriate descriptions from specific programs to that

name.

■ Associate record descriptions with a specific file.

Record descriptions can be associated with a specific fi le. Within the DATA DIVISION
of each program, any number of record descriptions that apply to the same fi le can

exist. Control statements can be used to specify which record descriptions apply to
a specific fi le.

■ Associate record descriptions with a specific program section.

Record descriptions can be associated with a specifi c section of the program.
Record descriptions can be present in the FILE, WORKING-STORAGE, or LINKAGE
sections of programs. Control statements can be used to designate the appropriate
section if necessary.

Overview

Chapter 3: Cross Reference Processor 41

File of control statements

A fi le of control statements is i l lustrated in the following figure. The parameter

statement specifies processing options for the run. The rest of the fi le consists of sets of
control statements (one set for each subset of records for which cross referenci ng is
desired). Each set contains a title statement and one or more selection statements.

Syntax and rules for control statements are presented later in this chapter.

Establishing processing options

The parameter statement establishes processing options for the run. Each set of control
statements identifies a group of records (most commonly a fi le) for which an individual
cross-reference report is to be produced.

Assigning a title to the report

A set of control statements assigns a descriptive title to the report on the subset of
records with the title statement and specifies, with selection statements, the 01-level
records that are to be included in the report. Typically, many sets of control statements
are specified in the fi le of control statements.

Overview

42 Dictionary Loader User Guide

System Data Cross-Reference report

During execution, the Cross Reference Processor cross references data elements

throughout the system of programs, as directed by the control fi le, and produces a
series of reports (one for each set of control statements). These reports are known
collectively as the System Data Cross-Reference Report. In the reports, all PROCEDURE

DIVISION statements using a specific data element are l isted below the element.
Additionally, all data elements are identified by their data names and associated with
their program names and records names. Source line numbers for each data name and
PROCEDURE DIVISION statement are also supplied.

Sample report

Because the System Data Cross-Reference Report l ists data elements in order by starting
columns, synonymous elements are grouped together and overlapping data fields are
close to one another in the report. Thus, all uses of any column or range of columns is
easy to research, as shown below:

 SYSTEM DATA CROSS REFERENCE FOR REPORT: CUSTOMER RECORD DICTIONARY LOADER dd mmm yy 1425 PAGE 2

 FROM TO LV DATA NAME SRC LN PROG ID REC NAME SIZE USAGE OCCURS QUALIFIER

 REF LN REF STATEMENT
 1 10 03 CUST-NUMBER 047000 PRANDEM1 CUSTOMER 10 DISP CUSTOMER-FILE

 131000 MOVE SPACES TO CUST-NUMBER

 138000 IF ORD-CUST-NUMBER = CUST-NUMBER
 144000 MOVE CUST-NUMBER TO RPT-CUST-NO

 03 CUST-NUM 044000 PRANDEM2 CUSTOMER 10 DISP CUSTOMER-FILE
 190000 MOVE CUST-NUM TO RPT-CUST-NO

 11 30 03 CUST-NAME 048000 PRANDEM1 CUSTOMER 20 DISP CUSTOMER-FILE

 145000 MOVE CUST-NAME TO RPT-NAME

 03 CUST-NAME 045000 PRANDEM2 CUSTOMER 20 DISP CUSTOMER-FILE

 091000 MOVE CUST-NAME TO RPT-CUST-NAME

 03 CUST-NAME 041000 PRANDEM3 CUST 20 DISP CUSTFILE

 064000 MOVE CUST-NAME TO MAIL-LINE-1

Dictionary of Data Names reports

The Dictionary of Data Names Report is an optional report that can also be produced by
a Cross Reference Processor run. This report l ists all data elements alphabetically with
additional information that points to the definitions of data items in the source code.

Thus, this report can be used to control changes in programs, fi les, records, or data
elements.

Developing a File of Control Statements

Chapter 3: Cross Reference Processor 43

Developing a File of Control Statements

Control file specifies report organization

To direct the operation of the Cross Reference Processor, a fi le of control statements
must be developed. The control fi le specifies the organization of information to be
reported in the System Data Cross-Reference Report by identifying groups of records

(most commonly fi les) for which individual cross-reference reports are needed. The
control fi le uses three types of statements:

■ The parameter statement (to specify processing options)

■ The title statement (to identify a group of records)

■ The selection statement (to specify selection criteria for records in a group)

Worksheets

To aid in developing a fi le of control statements, a worksheet is provided. Information
found in the File and Record Layouts Reports and the DATA DIVISION Cross Reference

Reports for the system of programs aids in fi lling out the worksheets.

Control file optional, but recommended

Note that the purpose of the control fi le is to l imit the amount of information cross
referenced together so that the report can be used to research various descriptions of
the same records easily. The control fi le can be omitted, in which case all records from

all programs and fi les will be reported together. But the value of the System Data
Cross-Reference Report depends upon its organization. A carefully planned control fi le
results in a more useful report.

Steps

To develop a fi le of control statements, follow the four steps outlined below:

Step 1—Specify processing options

Refer to the following table and determine whether the default processing options in
effect are acceptable. Select any override processing options needed for the run. Specify
the override options with a parameter statement. This statement, if used, must be the

first statement in the control fi le. For syntax and rules, refer to Parameter Statement
(see page 49) later in this chapter.

Parameter Default Option Override Option

FILLER/NOFILLER NOFILLER—Data elements named FILLER
are not to be included in the System Data
Cross-Reference Report.

FILLER—Data elements named
FILLER are to be included in the
System Data Cross-Reference

Report.

Developing a File of Control Statements

44 Dictionary Loader User Guide

Parameter Default Option Override Option

REFONLY/NOREFONLY REFONLY—Only data items referred to by

a PROCEDURE DIVISION statement are to
be included in the System Data
Cross-Reference Report.

NOREFONLY—All data items are to

be included in the System Data
Cross-Reference Report.

DICTIONARY/ NODICTIONARY NODICTIONARY—The Dictionary of Data
Names Report is not to be printed.

DICTIONARY—The Dictionary of Data
Names Report is to be printed.

LIBRARY/NOLIBRARY NOLIBRARY—Data usage fi les are not to
be read from a library. The default DISK

(see below) must be taken with
NOLIBRARY.

LIBRARY—Data usage fi les are to be
read from a partitioned data set

(z/OS) or source statement l ibrary
(z/VSE).

DISK/NODISK DISK—Data usage fi les are to be read from
a sequential data set.

NODISK—Data usage fi les are not to
be read from a sequential data set.

LIBRARY (see above) must be
specified with NODISK.

MEMBER-NAME-IS-ID/

NOMEMBER-NAME-IS-ID

MEMBER-NAME-IS-ID—All of the member

names supplied with the LIBRARY
parameter are to be used as the program
IDs on the reports.

NOMEMBER-NAME-IS-ID—The

program names in the source
programs are to be used as the
program IDs on the reports.

PROGRAM-ID - PROGRAM-ID—The source program

identified by source-program-name
is to be identified on reports by the
new name specified.

LIMIT/NOLIMIT LIMIT—Complete reference statements
for each data item up to the limit specified
are to be listed. 10 is the default l imit.

NOLIMIT—An unlimited number of
complete reference statements are
to be listed for each data item.

Step 2—Identify groups of records

Determine the groups of records for which cross referencing is desired and assign a
descriptive title to each group. Any group of records can be cross referenced, but the
most common group is the fi le. Therefore, consider first the fi les common to multiple

programs in the system of programs being processed and give each fi le a descriptive
title. Then, identify any other group of records for which cross referencing would be
useful. For example, defining a group of records to be all records from working storage
from all programs yields a cross-reference report that allows extensive analysis of the

use of work records for the system of programs.

Step 3—Fill in worksheets

Determine which records are to be included in each group and identify these records by
fi l l ing in worksheets. Completed worksheets will be used to code title and selection

statements. A sample worksheet is shown below. Instructions for fi l l ing in worksheets
are presented later in this session.

Developing a File of Control Statements

Chapter 3: Cross Reference Processor 45

Step 4—Create the control file

When the worksheets are complete, create the control fi le by generating one statement

for each line on each worksheet. If used, the parameter statement must be first,
followed by the title statement and its selection statements. Continue to code a title
statement and selection statements for all of the remaining worksheets. For syntax and

rules for coding title statements and selection statements, refer to Title Statement and
Selection Statement later in this chapter.

Filling in Worksheets

46 Dictionary Loader User Guide

Filling in Worksheets

Write in the title first

Start a worksheet for each group of records, as shown in the figure above by writing the
descriptive title (that is, fi le or other group identifier) after the header REPORT=. The
descriptive title clearly identifies the group of records, most commonly a particular fi le

that may be known by many different names in the system of programs. Next, enter
from one to three of the following variables, l ine by l ine, on each worksheet:

1. Program ID

2. Record name

3. Qualification

Each line represents one selection statement

Each line on the worksheet represents one selection statement. The variable(s) specified
on each line causes the Cross Reference Processor to select the defined subset of

records. For example, supplying a program ID only specifies that all records from the
named program are to be included in the report, supplying a record name only specifies
that the record associated with that name is to be included. Often, a single record from
a fi le is called by many different names in a system of programs. In this case, many

separate names are needed to specify the selection of all copies of the record. Each line
contains a different name for the record. Guidelines for specifying various combinations
of the three variables are presented below.

Use Program Processor reports to fill in worksheets

The reports produced by the Program Processor can be helpful in fi l l ing in the

worksheets:

■ The File and Record Layouts Report can be used to find fi le names and record
names without having to search through the COBOL source code for all of the

programs. This report can also be used to research READ INTO and WRITE FROM
statements to locate the resultant copies of records that may reside in the
WORKING STORAGE or LINKAGE sections under different names.

■ The DATA DIVISION Cross Reference Report can be used to track MOVE statements

that move 01-level records from the FILE section to the WORKING STORAGE section
or the reverse. This tracking aids in locating copies of records.

Filling in Worksheets

Chapter 3: Cross Reference Processor 47

Guidelines for specifying selection variables

The record name is the key variable in specifying selection criteria. Most commonly, the

record name alone is used to identify a member of the group of records to be reported
on. However, it may be advantageous to further qualify record name (because, for
example, the name is not unique) or to request the inclusion of records without regard

to record name (because, for example, the objective of the report is to look at all
records in the LINKAGE section of all programs). All possible combinations of program
id, record name, and qualification are valid. Listed below are guidelines for supplying the
program id, the record name, and/or a qualification. Note that the qualification can be

an FD fi le name or keywords to indicate the WORKING STORAGE or LINKAGE sections.

Field Description

Record name only If the same record name is used in different programs and

always exclusively for the fi le under consideration, supply only
the record name.

Record name and

FD fi le name (that
is, qualification)

If the same record name is used in a single program for multiple

fi les, supply the record name and the FD fi le name. Program ID
can be left blank unless the record name is used in other ways in
the system of programs being processed.

Record name and

program ID

If the same record name is used for different fi les in different

programs, supply the record name and program ID for each
record that applies to the fi le under consideration. Qualification
can be left blank unless the record name is also used for multiple

fi les in the program.

FD fi le name (that

is, qualification)

If all record descriptions for an FD are to be included, supply the
FD fi le name under qualification. If, throughout the system of
programs, the FD fi le name is used only to refer to the fi le to be

cross referenced under the specified title, leave the program ID
and record name blank. All record descriptions for the FD fi le
name from any program in the system will be cross referenced

and reported. However, if the FD fi le name is used for different
fi les in different programs, a l ine must be completed for each
program. Each line must supply the FD fi le name, under
qualification, as well as the program id. All record descriptions

for the FD fi le name in the specified programs will be cross
referenced and reported.

WORKING STORAGE
or LINKAGE

(qualification)

If all record descriptions from the WORKING STORAGE or
LINKAGE sections are to be included, supply the appropriate

keyword under qualification.

None of the three
variables

If all records from all programs are to be cross referenced
together, omit selection statements altogether.

Filling in Worksheets

48 Dictionary Loader User Guide

Summary table

The following table summarizes the subsets of records selected based on the

combination of variables specified.

Combination of variables Description

Blank Specified Blank The named record from all programs with no
qualification (that is, from all FD fi les and from
all sections).

Blank Specified Specified The named record from all programs as

qualified (that is, from the FD fi le specified or
from the working storage or l inkage sections).

Blank Blank Specified All records from all programs as qualified.

Specified Blank Blank All records from the named program (with no

qualification).

Specified Blank Specified All records from the named program as
specified.

Specified Specified Blank The named record from the named program
(with no qualification)

Specified Specified Specified The named record from the named program as
qualified.

Blank Blank Blank All records from all programs (with no
qualification).

Parameter Statement

Chapter 3: Cross Reference Processor 49

Parameter Statement

Specifies overrides

The parameter statement specifies override processing options for the Cross -Reference
Processor.

Coding rules

The following rules apply to coding parameter statements.

■ Parameter statements, if used, must be included at the beginning of the fi le of
control statements.

■ Multiple statements can be entered.

■ Statements can be coded in positions 1 through 72.

■ Options can be specified in any order, with one or more options per statement and
at least one blank or comma between specifications.

■ If an option requires a l ist of information, the list must follow the option keyword
immediately on the same statement. If the list must be continued to a new line, the
option keyword must be repeated. For the PROGRAM-ID option,
source-program-name (see syntax below) must also be repeated when a l ist of new

names is being continued.

Syntax

►►─┬────────────────┬───►
 ├─ FILler ─────┬─┘
 └─ NOFiller ◄ ─┘

 ►─┬───────────────┬──►
 ├─ REfonly ◄ ─┬─┘
 └─ NORefonly ─┘

 ►─┬────────────────────┬───►
 ├─ DICtionary ─────┬─┘
 └─ NODICtionary ◄ ─┘

 ►─┬───┬────────────────────►
 │ ┌─────────────────────────────────────┐ │
 ├─ LIBrary ─▼── member-name ─┬──────────────────┬─┴─┬─┘
 │ └─ = program-name ─┘ │
 └─ NOLIBrary ◄ ─────────────────────────────────────┘

 ►─┬────────────┬───►
 ├─ DISk ◄ ─┬─┘
 └─ NODISk ─┘

 ►─┬─────────────────────────┬──►
 ├─ MEMber-name-is-id ◄ ─┬─┘
 └─ NOMember-name-is-id ─┘

 ►─┬───┬──────────────►
 │ ┌──┐ │
 │ │ ┌───── , ──────┐ │ │
 └─ PROgram-id ─▼── source-program-name ─▼─ = new-name ─┴──┴─┘

Parameter Statement

50 Dictionary Loader User Guide

 ►─┬──────────────────────────────┬───►◄
 ├─ LIMit = ─┬─ 10 ◄ ───────┬─┬─┘
 │ └─ list-limit ─┘ │
 └─ NOLIMit───────────────────┘

Parameter list

FILler/NOFiller

Specifies whether the System Data Cross -Reference Report is to include data
elements named FILLER, as follows:

■ FILLER—Data elements named FILLER are to be included in the Syst em Data
Cross-Reference Report.

■ NOFILLER (default)—Data elements named FILLER are not to be included in the
System Data Cross-Reference Report.

REfonly/NORefonly

Specifies whether the System Data Cross-Reference Report is to include only the
data items referred to by a PROCEDURE DIVISION statement, as follows:

■ REFONLY (default)—Only those data items referred to be a PROCEDURE
DIVISION statement are to included in the System Data Cross -Reference

Report.

■ NOREFONLY—All data items are to included in the System Data
Cross-Reference Report. Note that this parameter does not affect the inclusion

of data items named FILLER.

DICtionary/NODICtionary

Specifies whether to print the Dictionary of Data Names Report, as follows:

■ DICTIONARY—The Dictionary of Data Names Report is to be printed.

■ NODICTIONARY (default)—The Dictionary of Data Names Reports is not to be

printed.

Parameter Statement

Chapter 3: Cross Reference Processor 51

LIBrary/NOLIBrary

Specifies information about the data usage fi les to be input to the DDDL Generator,

as follows:

■ LIBRARY identifies the data usage fi le. Each occurrence of member-name
identifies a data usage fi le. All member names specified must be members of

the same partitioned data set (z/OS) or source statement l ibrary (z/VSE). The
optional entry, program-name, can be specified for any member name and
overrides the use of the member name as the program ID on the generated
ADD PROGRAM syntax.

LIBRARY must always be specified with NODISK (see below) if all of the data
usage fi les are stored in a partitioned data set (z/OS) or source statement
l ibrary (z/VSE). It can be specified with DISK if data usage fi les are to be read
from both a sequential data set, and partitioned data set (z/OS) or a source

statement l ibrary (z/VSE).

■ NOLIBRARY (default) specifies that data usage fi les are not to be read from a
partitioned data set (z/OS) or source statement l ibrary (z/VSE). If the default of

NOLIBRARY is taken, then the default of DISK (see below) must also be taken.

DISk/NODISk

DISK/NODISK are options that are used with LIBRARY/NOLIBRARY, as follows:

■ DISK (default) specifies that data usage fi les are to be read from a sequential
data set. DISK must always be specified with NOLIBRARY. DISK can be specified

with LIBRARY if the data usage fi les are to be read from both a sequential data
set and a partitioned data set (z/OS) or source statement l ibrary (z/VSE).

■ NODISK specifies that data usage fi les are not to be read from a sequential data
set. LIBRARY (see above) must be specified with NODISK if all of the data usage

fi les are stored in a partitioned data set (z/OS) or source statement l ibrary
(z/VSE).

MEMber/NOMember

Specifies the source of the program IDs to be used on reports, as follows:

■ MEMBER-NAME-IS-ID (default)—All of the member names supplied with the
LIBRARY parameter are to be used as program IDs on the reports. Note that
once member names are assigned as program IDs with this parameter,
member names must also be used for program IDs on selection statements.

■ NOMEMBER-NAME-IS-ID—The program ID specified in the PROGRAM-ID
paragraph in the COBOL source program is to be used as the program id on the
report.

Note: To guarantee unique identification of all programs whose data usage fi les are

stored in a partitioned data set or source statement l ibrary, operate under the
default MEMBER-NAME-IS-ID and specify the LIBRARY and NODISK parameters. To
guarantee unique identification of all programs whose data usage fi les are stored in

sequential data sets, use the PROGRAM-ID parameter described below, as needed.

Parameter Statement

52 Dictionary Loader User Guide

PROgram-id

Provides unique program IDs for source programs that have the same name (that is,

duplicate names in their internal PROGRAM-ID paragraphs) or changes an internal
PROGRAM-ID name to another name for printing in the reports. This parameter is
only used with data usage fi les that are stored in sequential data sets.

Source-program-name specifies the source PROGRAM-ID name that is to be
changed. Occurrences of new-name specify the names that will be assigned
sequentially whenever the common PROGRAM-ID name (that is,
source-program-name) appears in the input data usage fi les. Source-program-name

= new-name can be repeated to name other PROGRAM-ID names and their
associated new names.

Note: Whenever internal PROGRAM-ID names are changed in this way, the new
names must be used for specifying program-ID on selection statements.

LIMit/NOLIMit

Establishes the maximum number of reference statements per data item to be
listed completely in the System Data Cross -Reference Report, as follows:

■ LIMIT=10 (default)/list-limit—To be listed are complete reference statements

including line number and text for each data item up to the default l imit taken
(10) or the limit specified. When the limit is reached, only l ine numbers are
l isted for the remaining references to the data item. Limit=O specifies that only
l ine numbers are to be listed for all references to the item.

■ NOLIMIT—To be listed are the line numbers and statements for all references
to all data items.

Title Statement

Chapter 3: Cross Reference Processor 53

Title Statement

Purpose

The title statement assigns a descriptive title to the report pages related to a specific
group of records (for example, a fi le) and marks the beginning of a new set of control
statements.

Specify for each set of control statements

A title page must be specified for each set of control statements. The title specified is
printed on the first l ine of every page associated with the set of control statements. To
avoid printing a title, the title statement supplied can specify only the keyword identifier

and an equal (=), omitting the descriptive text.

Note: If the title statement is omitted, the following text will be printed as the title "No
Report Title" The Cross Reference Processor will assume that all subsequent selection

statements pertain to the same group of records until it finds another title statement.
The title statement can only be omitted for the first set of selection statements.

The title statement can be coded anywhere using positions 1 through 72.

Syntax

►►─┬─ REPort ─┬─ = report-title ──►◄
 └─ FILe ───┘

Parameter list

REPort/FILe

Identifies the statement as a title statement. One of these keywords followed by an
equal sign (=) must be specified. The keyword specified, the equal sign, and
report-title will appear on the report.

Report-title supplies a descriptive report title. It must be a 1- to 30-character

alphanumeric value. Quotes are not required and, if used, become a part of the title
printed on the report.

Example

A sample title statement is shown below:

FILE=1 *** TRAFFIC FILE ***

Selection Statement

54 Dictionary Loader User Guide

Selection Statement

Purpose

The selection statement specifies criteria for selecting 01-level records to be included in
the cross-reference information for the descriptive title specified in the title record. This
statement can specify three variables: the program name, the record name, and a

qualification (that is, and FD fi le name, WORKING STORAGE, or LINKAGE). The variables
specified restrict record selection. One, two, or all three of these variables can be
specified. Typically, multiple selection statements are specified following each title
statement.

Coding rules

The selection statement can be coded anywhere using positions 1 through 72.

Syntax

►►─┬────────────────┬─ : ─┬───────────────┬───────────────────────────────────►
 └─ program-name ─┘ └─ record-name ─┘

 ►─┬────────────────────────────────┬───►◄
 ├─ IN ─┬─┬─ FD-file-name ──────┬─┘
 └─ OF-─┘ ├─ 'WORKING-STORAGE' ─┤
 └─ 'LINKAGE' ─────────┘

Parameter list

program-name

Specifies a PROGRAM-ID name. This specification restricts record selection to
records in the named program. Program-name must be the internal program name

unless that name has been changed by the runtime options MEMBER-NAME-IS-ID
and LIBRARY, or by the runtime option PROGRAM-ID. When these options are used
to rename programs (that is, in the parameter statement) the new name must be

used when specifying program-name.

:

The colon (:) is required and must be specified regardless of other entries specified.

record-name

Specifies the name of an 01-level record as it appears in a source program. This

specification restricts record selection to the named record.

Sample Control File

Chapter 3: Cross Reference Processor 55

IN/OF

Specifies an FD fi le name used in a source program or the keywords

'WORKING-STORAGE' or 'LINKAGE'. This specification restricts record selection to
records associated with the FD name specified or to records located in the
WORKING STORAGE or LINKAGE sections of the programs being processed.

WORKING-STORAGE and LINKAGE must be enclosed in single quotes. At least one
space is required on either side of IN or OF.

Example statement

A sample selection statement is shown below. This statement specifies that all records

named TRF-IN-REC are to be selected.

:TRF-IN-REC

Sample Control File

A sample control fi le is shown below. A parameter statement is shown first, followed by
two sets of control statements pertaining to two fi les.

DICTIONARY

FILE=1 *** TRAFFIC FILE ***

 :TRF-IN-REC

 :TRF-IN-RECORD

 :TRF-OUT-REC

 :TRF-OUT-RECORD

ESTIMATE :WORK-TRF IN 'WORKING-STORAGE'

 :WRK-TRF

FILE=2 *** MASTER PROFILE FILE ***

 :TAPE-IN

 :MPF-REC

 :MPF-RECORD

WRITREP :MAST-REC

 :MAST-PROF-RECORD

 :MASTER-PROF-REC

 :MAST-REC IN MASTER-FILE

 :NEW-PROF-REC

System Data Cross-Reference Report

56 Dictionary Loader User Guide

System Data Cross-Reference Report

Description

The System Data Cross-Reference Report provides extensive information about the use
of data items throughout a system of COBOL programs. The report begins with a header
page that provides a formatted listing of the fi le of control statements and a count of

records found for each selection statement specified. Each subsequent page identifies
the subset of records being cross referenced (using the title form the title statement)
and provides detail information about data elements within the records.

Sample report

In the report sample below, the header page appears first, followed by the first page in

the main body of the report.

 SYSTEM DATA CROSS REFERENCE *LIST OF REQUESTED RECORDS* DICTIONARY LOADER dd mmm yy 1425 PAGE 1

 REPORT TITLE PROGRAM-ID 01-LEVEL RECORD QUALIFIER COUNT

 CUSTOMER RECORD *ANY PROGRAM* CUSTOMER 2

 ANY PROGRAM CUST 1

 ORDOR RECORD *ANY PROGRAM* ORDOR 1

 SYSTEM DATA CROSS REFERENCE FOR REPORT: CUSTOMER RECORD DICTIONARY LOADER 28 JAN 99 1425 PAGE 2

 FROM TO LV DATA NAME SRC LN PROG ID REC NAME SIZE USAGE OCCURS QUALIFIER
 REF LN REF STATEMENT

 1 10 03 CUST-NUMBER 047000 PRANDEM1 CUSTOMER 10 DISP CUSTOMER-FILE

 131000 MOVE SPACES TO CUST-NUMBER
 138000 IF ORD-CUST-NUMBER = CUST-NUMBER

 144000 MOVE CUST-NUMBER TO RPT-CUST-NO

 03 CUST-NUM 044000 PRANDEM2 CUSTOMER 10 DISP CUSTOMER-FILE

 190000 MOVE CUST-NUM TO RPT-CUST-NO

 11 30 03 CUST-NAME 048000 PRANDEM1 CUSTOMER 20 DISP CUSTOMER-FILE

 145000 MOVE CUST-NAME TO RPT-NAME

 03 CUST-NAME 045000 PRANDEM2 CUSTOMER 20 DISP CUSTOMER-FILE
 091000 MOVE CUST-NAME TO RPT-CUST-NAME

 03 CUST-NAME 041000 PRANDEM3 CUST 20 DISP CUSTFILE
 064000 MOVE CUST-NAME TO MAIL-LINE-1

Field descriptions

REPORT TITLE

The descriptive title used to identify the group of records and taken from the title
statement.

PROGRAM-ID

The PROGRAM-ID from the selection statement or, if PROGRAM-ID was blank, the
entry *ANY PROGRAM*.

System Data Cross-Reference Report

Chapter 3: Cross Reference Processor 57

01-LEVEL RECORD

The 01-level record name from the selection statement, or if record name was

blank, the entry *ANY RECORD*.

QUALIFIER

The FD fi le name, the keywords WORKING STORAGE or LINKAGE, or blank as
specified on the selection statement.

COUNT

A count of the 01-level records selected as a result of the specifications on the

selection statement.

FOR REPORT

The descriptive title used to identify the group of records and taken from the title
statement.

FROM

The starting position of the data element.

TO

The ending position of the data element.

LV

The level number from the data item description entry.

DATA NAME

The data name from the data item description entry.

SRC LN

The line number of the data item description entry in the source program.

PROG ID

The program ID being used to identify the source program. The program ID may be

the internal PROGRAM-ID from the COBOL source program or a l ibrary member
name, depending on the user-defined options in effect from the run.

REC NAME

The 01-level record name from the record description entry where the data
element was found.

SIZE

The size of the data item field.

System Data Cross-Reference Report

58 Dictionary Loader User Guide

USAGE

The form in which the data item is to be stored as the result of the source

program's specifications:

■ GROUP—The data item contains subordinate items.

■ DISP—The data item is stored in character form.

■ DISP-NM—The data item is stored one digit per character position. The PIC
contains only S, 9, and V.

■ COMP—The data item is stored as computational (1,2,3, or 4). The PIC entry
contains only S, 9 and V.

■ NM-EDIT—The data item is a numeric item stored in character format. The PIC
contains some or all of the editing characters +, -, z, $, comma, B, CR, DB, ., or
0.

The following report writing specifications can also appear in this column:

■ RH—Report heading

■ RF—Report footing

■ PH—Page heading

■ PF—Page footing

■ CH—Control heading

■ CF—Control footing

■ DE—Detail

OCCURS

The number of times the data item is repeated as the result of an OCCURS clause.

QUALIFIER

The FD fi le name or the keywords WORKING STORAGE or LINKAGE to indicate

where the data element was found.

REF LN

The line number in the source program from the COBOL statement that follows.

REF STATEMENT

A COBOL statement that refers in any way to the data element.

Dictionary of Data Names Report

Chapter 3: Cross Reference Processor 59

Dictionary of Data Names Report

Description

The Dictionary of Data Names Report l ists all record and element names alphabetically ,
together with the following information about each item listed:

■ Its position in the record

■ Size

■ Usage

■ Level

■ Source line number

■ Program ID

■ Member name

■ Internal program ID

■ Record name

This report aids in tracking the use of data elements throughout the system of
programs.

Purpose

The purpose of this report is to aid in controlling change. The information supplied

indicates the exact l ine in the appropriate COBOL source program where any data item
used throughout the system of programs is defined.

Note: This report is optional and is not produced automatically. To obtain this report,
specify the option DICTIONARY on a parameter control statement for the run.

Sample report

 SYSTEM DATA CROSS REFERENCE *DICTIONARY OF DATA NAMES* DICTIONARY LOADER dd mmm yy 1425 PAGE 1

 FROM TO SIZE USAGE LVL D A T A N A M E SRCLN PROGRAM MEMBER INTERNAL 01-RECORD-NAME

 ID NAME PROG-ID

 1 104 104 GROUP 01 CUST 039000 PRANDEM3 (DISK) PRANDEM3 CUST

 31 70 40 GROUP 03 CUST-ADDRESS 049000 PRANDEM1 (DISK) PRANDEM1 CUSTOMER
 31 70 40 GROUP 03 CUST-ADDRESS 046000 PRANDEM2 (DISK) PRANDEM2 CUSTOMER

 31 70 40 GROUP 03 CUST-ADDRESS 042000 PRANDEM3 (DISK) PRANDEM3 CUST

Executing the Cross Reference Processor

60 Dictionary Loader User Guide

Executing the Cross Reference Processor

Job Control Language (JCL) for executing the Cross Reference Processor under z/OS and
z/VSE is shown below. Under both z/OS and z/VSE, processing options must be specified
with the parameter statement.

Note: (z/OS users only)-The PARM clause of the EXEC statement cannot be used to

specify options when executing this component.

z/OS JCL-PRANXREF

//PRANXREF EXEC PGM=PRANXREF,REGION=1024K

//STEPLIB DD DSN=idms.dba.loadlib,DISP=SHR

// DD DSN=idms.custom.loadlib,DISP=SHR

// DD DSN=idms.cagjload,DISP=SHR

//SYSLST DD SYSOUT=A

//SYSUDUMP DD SYSOUT=A

//SORTMSG DD SYSOUT=A

//SORTLIB DD DSN=SYS1,SORTLIB,DISP=SHR

//SORTWK01 DD UNIT=disk,SPACE=(cyl,(5,5))

//SORTWK02 DD UNIT=disk,SPACE=(cyl,(5,5))

//SORTWK03 DD UNIT=disk,SPACE=(cyl,(5,5)) Include only if using

//PRANLIB DD DSN=reflib,DISP=SHR ◄ LIBRARY option.

//PRANREF DD DSN=sysref1,DISP=SHR

// DD DSN=sysref2,DISP=SHR Include only

 . ◄ if using DISK option

 .

 .

// DD DSN=sysrefn,DISP=SHR

//dcmsg DD DSN=idms.sysmsg.ddldcmsg,DISP=SHR

//sysjrnl DD *

//SYSOUT DD SYSOUT=a

//SYSIDMS DD *

dmcl=dmcl-name

Insert other SYSIDMS parameters as appropriate

//SYSIPT DD *

Insert optional control statements here

DSN Description

idms.dba.loadlib Data set name of the load library containing the DMCL and
database name table load modules

idms.custom.loadlib Data set name of the load library containing customized CA

IDMS system software modules

idms.cagjload Data set name of the load library containing CA IDMS system
software modules that do not require customization

Executing the Cross Reference Processor

Chapter 3: Cross Reference Processor 61

DSN Description

cyl,(5,5) fi le space allocation of work fi le

disk symbolic device name of disk fi le

refl ib data set name of partitioned data set containing data usage
fi les

sysref1, sysref2,

sysrefn

data set names of sequential data sets containing data usage
fi les

dcmsg DDname of the system message (DDLDCMSG) area

idms.sysmsg.ddldcms

g

Data set name of the system message (DDLDCMSG) area

SYSIDMS DDname of the CA-IDMS parameter fi le specifying runtime
directives and operating system-dependent parameters.

For a complete description of the SYSIDMS parameter fi le, see

the CA IDMS Common Facilities Guide.

z/VSE JCL-PRANXREF

// DLBL SSln,'user.srclib'

// EXTENT ,nnnnnn

// LIBDEF SL,TO=SSln,TEMP

// DLBL PRANREF,'sysref',,SD ◄ Include only if using DISK option

// EXTENT SYS010,nnnnnn

// ASSGN SYS010,DISK,VOL=nnnnnn,SHR

// DLBL SORTWK1,'WORK1',O,SD

// EXTENT SYS001,nnnnnn,1,,ssss,200

// ASSGN SYS001,DISK,VOL=nnnnnn,SHR

// EXEC PRANXREF,SIZE=128K

optional control statements

/*

DSN Description

nnnnnn serial number of disk volume

ssss starting track (CKD) or block (FBA) of disk extent

sysref fi le-id for sequential fi le containing data usage fi le

SYS001 logical unit assignment for sort work fi le

SYS010 logical unit assignment for data usage fi le (SYS010 required)

user.srclib source statement l ibrary containing data usage fi les

SSln fi lename of source statement l ibrary

Chapter 4: DDDL Generator 63

Chapter 4: DDDL Generator

Purpose

The DDDL Generator reads data usage fi les and generates the appropriate DDDL source
statements for input to the IDD DDDL compiler. Statements generated include ADD,
PROGRAM, ADD RECORD, and ADD FILE. COBOL substatements of the RECORD

statement are generated for defining elements.

DDDL Generator control statements

Control statements can be used to control the operation of the DDDL Generator:

■ Grouping-control statements specify to the DDDL Generator those fi le (or record)
definitions that describe the same file (or record) but have different names and
those fi le (or record) definitions that have the same name but do not define the
same fi le (or record).

■ The VERSION statement specifies a VERSION clause, causing the DDDL Generator to
include the specified VERSION clause (instead of the default of VERSION 01) in every
ADD statement generated.

Output

The DDDL Generator produces a l isting of statements generated and an output fi le
containing the statements. This fi le can be input to the DDDL compiler directly or edited
first and then input to the compiler. The DDDL compiler processes the generated

statements to populate the data dictionary.

What follows

This chapter presents an overview of the DDDL Generator and instructions on how to
develop a fi le of control statements, edit the generated DDDL statements, and execute

the DDDL Generator under z/OS and z/VSE.

This section contains the following topics:

Overview (see page 64)
Developing a File of Control Statements (see page 66)

Parameter Statement (see page 68)
VERSION Statement (see page 69)
Grouping Statement (see page 70)
Using the Grouping Statement (see page 72)

Editing Generated DDDL Statements (see page 77)
Executing the DDDL Compiler (see page 80)

Overview

64 Dictionary Loader User Guide

Overview

Without control statements

When operated without control statements, the DDDL Generator generates DDDL ADD
statements for each unique program, fi le, and record name in the system of programs
being processed. An ADD statement is generated for the first occurrence of each

program, fi le, and record name. Subsequent occurrences are considered to be
duplicates and are ignored. The version clause VERSION 01 is generated for each ADD
statement.

With control statements

The DDDL Generator operates as described above unless the user supplies control

statements. These statements alter the operation of the DDDL Generator as follows:

Parameter statement

This statement specifies override processing options such as suppressing a l isting of

generated statements.

VERSION statement

This statement specifies an alternative VERSION clause. If this statement is used for a
run, the DDDL Generator adds the VERSION clause specified (instead of VERSION 01) to

all generated ADD PROGRAM, ADD FILE, and ADD RECORD statements. If
grouping-control statements (described below) specify synonyms, the VERSION clause
specified is also added to generated SYNONYM clauses.

Grouping statement

This statement identifies fi les or records with synonymous or nonunique names.

Synonymous names are different names that refer to definitions of the same fi le or
record; a nonunique name is a single name that refers to the definitions of different fi les
or records.

If a grouping statement identifying synonymous names for the same fi le or record is
used for a run, the DDDL Generator generates an ADD statement for each different
name and a SYNONYM clause within each ADD statement. The SYNONYM clause
documents all other synonymous entities for which an ADD was generated during the

run.

Overview

Chapter 4: DDDL Generator 65

If a grouping statement identifying a nonunique name is used for a run, the DDDL
Generator generates an ADD statement for each unique entity referred to by the name

(instead of just for the first occurrence of the name).

Note that an ADD statement is always generated for the first occurrence of every fi le or
record name. If the name appears in a grouping statement for the run, an ADD

statement will be generated for the first occurrence of the name for each group
defined. Additionally, an ADD statement is generated for the first occurrence of the
name that is not described by any of the grouping statements.

Sample file of control statements

A fi le of control statements is i l lustrated below. The parameter statement is first and

specifies override processing options for the run. Next, the VERSION statement specifies
a VERSION clause to be added to generated statements.The rest of fi le consists of
grouping statements.

Output from the DDDL Generator

Output from the DDDL Generator consists of a fi le of DDDL statements and a l isting of
the generated statements. For a breakdown of the DDDL clauses generated for each
entity type, refer to the following table.

Developing a File of Control Statements

66 Dictionary Loader User Guide

Use the output file to populate the dictionary

The output fi le can be input to the DDDL compiler to populate the data dictionary.
Before being input to the compiler, this fi le can be edited. Editing considerations are
presented later in this section.

DDDL statement DDDL clauses

ADD FILE VERSION LABELS ARE STANDARD/OMITTED RECORD SIZE
RECORDING MODE BLOCK SIZE FILE NAME SYNONYM

ADD RECORD

(COBOL
substatement)

VERSION LANGUAGE WITHIN FILE RECORD NAME SYNONYM
level-n element-name REDEFINES OCCURS OCCURS DEPENDING
ON ASCENDING/DESCENDING KEY INDEXED BY (for one item)
PICTURE VALUE SIGN BLANK WHEN ZERO SYNCHRONIZED

JUSTIFIED RIGHT

ADD PROGRAM VERSION LANGUAGE ESTIMATED LINES PROGRAM CALLED
INPUT/OUTPUT/I-O/EXTEND FILE ENTRY POINT RECORD USED

REFERENCED/ MODIFIED ELEMENT REFERENCED/ MODIFIED

Developing a File of Control Statements

Types of control statements

The DDDL Generator accepts three types of optional control statements:

■ The parameter statement

■ The VERSION statement

■ The grouping statement

One or more parameter statements, a single VERSION statement, and one or more
grouping statements make up the control fi le.

Developing a File of Control Statements

Chapter 4: DDDL Generator 67

Steps to develop a file

To develop a fi le of control statements, follow these steps:

Step 1: Specify the processing options

See the following table and determine whether the default processing options in effect
are acceptable. Select any override processing options needed for the run. Specify the

override options with a parameter statement. Note that options can be specified in z/OS
execution JCL by using the PARM clause of the EXEC statement. For syntax and rules, see
Parameter Statement later in this chapter.

Parameter Default option Override option

LIBRARY/ NOLIBRARY NOLIBRARY—Data usage fi les
are not to be read from a
library. The default DISK (see

below) must be taken with
NOLIBRARY.

LIBRARY—Data usage fi les
are to be read from a
partitioned data set (z/OS)

or source statement l ibrary
(z/VSE).

DISK/NODISK DISK—Data usage fi les are to

be read from a sequential
data set.

NODISK—Data usage fi les

are not to be read from a
partitioned data set (z/OS)
or source statement
l ibrary(z/VSE).

LIST/NOLIST LIST—The fi le of generated
DDDL statements is to be
listed.

NOLIST—The fi le of
generated DDDL statements
is not to be listed.

Step 2: Specify a VERSION statement

Determine whether VERSION 01 is the appropriate clause to be added to generated
DDDL statements. For considerations relating to the use of the VERSION clause, see the
Editing Generated DDDL Statements later in this chapter. Specify a VERSION statement,

if appropriate. For syntax and rules, see VERSION Statement later in this chapter.

Step 3: Identify file and record names

Identify nonunique or synonymous fi le and record names. Use the System Data Cross

Reference Report and the Dictionary of Data Names Report to research the use of entity
names. Find multiple names for the same fi le or record and instances when a single
name is used to refer to different fi les or records.

Parameter Statement

68 Dictionary Loader User Guide

Step 4: Specify grouping statements

Using the information gathered in Step 3, create the grouping statements necessary to

ensure that an ADD statement will be generated for each unique entity and that
SYNONYM clauses will be generated for ADD statements that describe the same fi le or
record using different entity-occurrence names. See Grouping Statement later in this

chapter.

Parameter Statement

Purpose

The parameter statement specifies override processing options for the DDDL generator.
Under z/VSE, this statement must be used to specify options; under z/OS, parameters

can be specified in the execution JCL by using the PARM clause of the EXEC statement.

Coding rules

The following rules apply to coding a parameter statement for the DDDL Generator:

■ Parameter statements, if used, must be input first before the data usage fi les.

■ Multiple parameter statements can be entered.

■ Statements can be coded in positions 1 through 72.

■ Options can be specified in any order, with one or more options per statement and

at least one blank or comma between specifications.

Syntax

►►─┬────────────┬───►
 ├─ LISt ◄ ─┬─┘
 └─ NOLISt ─┘

 ►─┬───┬────────────────────►
 │ ┌─────────────────────────────────────┐ │
 ├─ LIBrary ─▼─ member-name ──┬──────────────────┬─┴─┬─┘
 │ └─ = program-name ─┘ │
 └─ NOLIBrary ◄ ─────────────────────────────────────┘

 ►─┬────────────┬───►◄
 ├─ DISk ◄ ─┬─┘
 └─ NODisk ─┘

Parameter list

LISt/NOList

Specifies whether the fi le of generated DDDL statement is to be listed, as follows:

■ LIST (default)—The generated DDDL statements are to be listed.

■ NOLIST—The generated DDDL statements are not to be listed.

VERSION Statement

Chapter 4: DDDL Generator 69

LIBrary/NOLIBrary

Specifies information about the data usage fi les to be input to the DDDL Generator,

as follows:

■ LIBRARY—Identifies the data usage fi les. Each occurrence of member-name
identifies a data usage fi le. All fi les specifies must be members of the same

partitioned data set (z/OS) or source statement l ibrary (z/VSE). The optional
entry, program-name, can be specified for any member and overrides the use
of the specified member as the program ID on the generated ADD PROGRAM
syntax.

LIBRARY must always be specified with NODISK (see below) and must be
specified with DISK if data usage fi les are to be read from both sequential data
sets and from a partitioned data set (z/OS) or a source statement l ibrary
(z/VSE).

■ NOLIBRARY—Specifies that data usage fi les are not to be read from a
partitioned data set (z/OS) or source statement l ibrary (z/VSE). If the default of
NOLIBRARY is taken, then the default of DISK (see below) must also be taken.

DISk/NODisk

Are options used with LIBRARY/NOLIBRARY, as follows:

■ DISK (default)—Specifies that data usage fi les are to be read from a sequential
data set. DISK must always be specified with NOLIBRARY. DISK can be specified
with LIBRARY if the data usage fi les are to be read from both sequential data

set and from partitioned data set (z/OS) or source statement l ibrary (z/VSE).

■ NODISK—Specifies that data usage fi les are not to be read from a sequential
data set. LIBRARY (see above) must be specifi ed with NODISK if all of the data
usage fi les are stored in a partitioned data set (z/OS) or source statement

l ibrary (z/VSE).

VERSION Statement

Purpose

The VERSION statement describes the VERSION clause to be added to each generated

DDDL statement. This statement is optional; if omitted, the DDDL Generator
automatically adds a VERSION 01 clause to each generated ADD statement.

Syntax

►►── VERsion ─┬─ NEXT HIGhest ───┬──►◄
 ├─ NEXT LOWest ────┤
 ├─ version-number ─┤
 └─ 01 ◄ ───────────┘

Grouping Statement

70 Dictionary Loader User Guide

Parameter list

VERsion

Identifies the statement and specifies that the clause described is to be added to all
generated ADD PROGRAM, ADD FILE, and ADD RECORD statements.

NEXT HIGHest/NEXT LOWest

Specifies the version. Version-number, if specified, must be a 1- to 4-digit number in
the range 1 through 9999.

Grouping Statement

Purpose

Grouping statements uniquely identify to the DDDL Generator the fi le or record

definitions that have nonunique or synonymous names. Synonymous fi le (or record)
definitions describe the same fi le (or record) but are referred to by different names.
Nonunique fi le (or record) definitions have the same name but do not define the same

fi le (or record).

Coding rules

The following rules apply to coding the grouping statement:

■ The keyword identifier must begin in position 1.

■ Continuation lines must begin in position 2.

■ Grouping statements can be coded in positions 1 or 2 through 72.

■ One or more spaces must be included between entries in the statement.

■ Punctuation is not allowed.

■ Clauses can be specified on the same line as the keyword identifier or on

subsequent l ines.

■ Continuation must occur at a natural space between words.

Syntax

 ┌──┐
 │ ┌───────────────────┐│
►►─┬─ FILE-GROUPING ───┬─▼─┬─ file-name ───┬─▼─ IN program-name ─┴┴───────────►◄
 └─ RECORD-GROUPING ─┘ └─ record-name ─┘

Grouping Statement

Chapter 4: DDDL Generator 71

Parameter list

FILE-GROUPING/RECORD-GROUPING

Identifies the statement as a grouping statement and specifies whether the
statement applies to fi les or records.

file-name/record name

Identifies the fi le or record to be grouped. The name must be specified exactly as it
appears in one or more of the programs being processed.

IN program-name

Specifies a program in which file-name or record-name appears. Program-name
must be the internal PROGRAM-ID or, if the LIBRARY parameter has been used to

rename the program, the member-name.

The entry IN program-name can be repeated (see note below) to name different
programs in which the specified fi le or record appears. Multiple specifications of IN
program-name for a single fi le or record name mean that the fi le or record uses the

same name and is identical in each of the programs named.

Additionally, the entire specification of file-name/record-name IN program-name can be
repeated (see note below). Multiple entities of this specification indicate fi le or record
synonyms. For example, the fi le name INPFILE in the program TRAN and fi le name INPUT
in program T2 both refer to the same fi le; INPFILE and INPUT are fi le synonyms.

Note: Up to a total of five program names can be specified in a single grouping
statement. Each of the program names can be associated with different fi le or record
names (that is, by repeating the entire specification or file-name/record-name IN

program-name). Alternatively, multiple program names can be associated with the
same fi le or record (that is, by creating only the specification of IN program-name for a
single fi le or record).

Sample

The sample grouping statement shown below specifies the maximum allowa ble number

of program names (that is, 5):

FILE-GROUPING INPFILE IN PROG1 IN PROG2 IN PROG3

 INPUT IN PROG4 TRANFILE IN PROG5

The names INPFILE, INPUT, and TRANFILE all refer to the same fi le, but these names
appear in different programs. INPFILE refers to the fi le in the programs PROG1, PROG2,
and PROG3; INPUT refers to the fi le in PROG4; TRANFILE refers to the fi le in PROG5.

Using the Grouping Statement

72 Dictionary Loader User Guide

Using the Grouping Statement

Use to identify synonyms and nonunique file or record names

Use the grouping statement to identify synonymous and nonunique fi le or record names
to the DDDL Generator:

■ Synonym names—Specify the appropriate keyword identifier (FILE-GROUPING or

RECORD-GROUPING). After the keyword identifier, specify a fi le name (or record
name) and its associated program name(s). Repeat the specification of fi le name
(record name) and program name(s) until all synonyms have been identified in the
grouping statement.

The statement shown below il lustrates grouping for two fi le names that refer to the
same fi le: FILE-A names the fi le in PROG-1 and PROG-2, and FILE-B names the fi le in
PROG-3.

FILE-GROUPING FILE-A IN PROG-1 IN PROG-2 FILE-B IN PROG-3

Assuming the the data usage files are input in the order PROG-1, PROG-2, and PROG-3,

the DDDL Generator generates the following statements:

(Under PROG-1) ADD FILE FILE-A

 FILE NAME SYNONYM IS FILE-B

(Under PROG-2) (No statements)

(Under PROG-3) ADD FILE FILE-B

 FILE NAME SYNONYM IS FILE-A

Because a single name cannot be both the primary entity-occurrence name and a
synonym, these statements must be edited to designate one name as the primary
name and the other name for the fi le as a synonym For a complete discussion of
synonym usage, see IDD User Guide.

Using the Grouping Statement

Chapter 4: DDDL Generator 73

■ Nonunique name—Specify the appropriate keyword identifier (FILE-GROUPING or
RECORD-GROUPING), followed by the nonunique name and an IN clause for each

program in which the name is used to refer to the fi le or record being grouped by
that statement. Repeat this process for each different fi le or record referred to by
the nonunique name.

The statements shown below il lustrate fi le grouping for the name FILE-A, where
FILE-A refers to one fi le in PROG-1 and PROG-2, and to another fi le in PROG-3 and
PROG-4:

FILE-GROUPING FILE-A IN PROG-1 IN PROG-2

FILE-GROUPING FILE-A IN PROG-3 IN PROG4

Assuming that the data usage fi les are input in the order PROG-1 though PROG4,

the DDDL Generator generates the statements shown below:

(Under PROG-1) ADD FILE FILE-A

(Under PROG-2) (No statements)

(Under PROG-3) ADD FILE FILE-A

(Under PROG-4) (No statements)

The two generated ADD FILE FILE-A statements can then be edited to establish
different version numbers or to assign a different name to one of the fi les.

Note that multiple IN clauses cause the DDDL Generator to generate an ADD
statement for the first occurrence of the entity description for each group. For a

given name, one use of the name can be processed without grouping statement; to
obtain an ADD statement for each distinct IDD entity description, each additional
use must be defined by a separate grouping statement.

If grouping statements are omitted, an ADD statement is generated for the first
occurrence of a fi le name or record name. If the fi le name or record name appears
again, no statement is generated; subsequent occurrences of the name are
considered to be duplicates.

Using the Grouping Statement

74 Dictionary Loader User Guide

Example 1

Five programs (PROG-1, PROG-2, PROG-3, PROG-4, PROG-5) are being processed. All five

programs access fi les named MASTER. The name MASTER refers to one fi le for PROG-1
and PROG-2, to a second fi les for PROG-3 and PROG-4, and to a third fi le for PROG-5.
The following grouping statements ensure that ADD statements will be generated for

each of the three unique fi les:

FILE-GROUPING MASTER IN PROG-1 IN PROG-2

FILE-GROUPING MASTER IN PROG-3 IN PROG-4

Note that PROG-5 in not mentioned in these statements; when the DDDL Generator
encounters the fi le name MASTER in PROG-5, it will treat the fi le as one of the group of
all unqualified (that is, not explicitly mentioned in a grouping statement) fi les named

MASTER and automatically generate an ADD statement.

Assuming that the data usage fi les are input in the order PROG-1 through PROG-5, the
DDDL Generator generates the statements shown below. Note that SYNONYM clauses
are not generated because all fi les have the same name.

(Under PROG-1) ADD FILE MASTER...

(Under PROG-2) (No statements)

(Under PROG-3) ADD FILE MASTER...

(Under PROG-4) (No statements)

(Under PROG-5) ADD FILE MASTER...

The three ADD statements that use the fi le name MASTER can be edited to assure that
the three distinct entities are entered into the dictionary. The statement can be
distinguished from one another by using different version numbers or by changing the

name MASTER for two of the three fi les.

Using the Grouping Statement

Chapter 4: DDDL Generator 75

Example 2

The fi le name SUM-FILE is used in five programs, PROG-1 through PROG-5. The name

SUM-FILE refers to the same fi le in all five programs but the record description for the
fi le is different in PROG-5. The following grouping statement makes the distinction:

FILE-GROUPING SUM-FILE IN PROG-5

Assuming that the data usage fi les are input in the order PROG-1 through PROG-5, the

DDDL Generator generates the statements shown below:

(Under PROG-1) ADD FILE SUM-FILE...

(Under PROG-2) (No statements)

(Under PROG-3) (No statements)

(Under PROG-4) (No statements)

(Under PROG-5) ADD FILE SUM-FILE...

These statements can then be edited (that is, versions added or fi le names changed) to
assure that both entities will be added to the dictionary.

Example 3

The fi le names SUM-FILE in PROG-1 and SUMMARY-IN in PROG-2 both refer to the same

fi le. Each fi le name has its own record descriptions. The following statement expresses
the proper grouping:

FILE-GROUPING SUM FILE IN PROG-1 SUMMARY-IN IN PROG-2

Assuming that the data usage fi les are input in the order PROG-1, PROG-2, the DDDL
Generator generates the statements shown below:

(Under PROG-1) ADD FILE SUM-FILE...

 FILE NAME SYNONYM IS SUMMARY-IN

(Under PROG-2) ADD FILE SUMMARY-IN...

 FILE NAME SYNONYM IS SUM-FILE

Because a single name cannot be both the primary entity-occurrence name and a
synonym, these statements must be edited to designate one name as the primary name
and all other names for the fi le as synonyms. For a complete discussion of synonym

usage, see IDD User Guide.

Using the Grouping Statement

76 Dictionary Loader User Guide

Example 4

One fi le is named differently in four different programs. The fi le is named ABC in

PROG-1, DEF in PROG-2, GHI in PROG-3, and JKL in PROG-4. The following grouping
statement describes this situation:

FILE-GROUPING ABC IN PROG-1 DEF IN PROG-2 GHI IN PROG-3 JKL IN PROG-4

Assuming that the data usage fi les are input in the order PROG-1 through PROG-4, the

DDDL Generator generates the following statements:

(Under PROG-1) ADD FILE ABC...

 FILE NAME SYNONYM IS DEF

 FILE NAME SYNONYM IS GHI

 FILE NAME SYNONYM IS JKL.

(Under PROG-2) ADD FILE DEF...

 FILE NAME SYNONYM IS ABC

 FILE NAME SYNONYM IS GHI

 FILE NAME SYNONYM IS JKL.

(Under PROG-3) ADD FILE GHI...

 FILE NAME SYNONYM IS ABC

 FILE NAME SYNONYM IS DEF

 FILE NAME SYNONYM IS JKL.

(Under PROG-4) ADD FILE JKL...

 FILE NAME SYNONYM IS ABC

 FILE NAME SYNONYM IS DEF

 FILE NAME SYNONYM IS GHI.

These statements must be edited to establish one primary name for the fi le and to

designate all other names for the fi le as synonyms.

Editing Generated DDDL Statements

Chapter 4: DDDL Generator 77

Editing Generated DDDL Statements

Edit before using as input to DDDL compiler

The output fi le of generated DDDL statements produced by running the DDDL Generator
should be edited before being input to the DDDL compiler. This editing aids in
maintaining control of the information entered into the dictionary.

Sample output

 ADD FILE CUSTOMER-FILE VERSION NEXT HIGHEST

 LABELS ARE OMITTED

 RECORD SIZE IS 104

 RECORDING MODE IS F

 FILE NAME SYNONYM IS CUSTFILE VERSION NEXT HIGHEST.

 ADD RECORD CUSTOMER VERSION NEXT HIGHEST

 LANGUAGE IS COBOL

 WITHIN FILE CUSTOMER-FILE VERSION HIGHEST

 RECORD NAME SYNONYM IS CUST VERSION NEXT HIGHEST.

 03 CUST-NUMBER PIC X(10).

 03 CUST-NAME PIC X(20).

 03 CUST-ADDRESS.

 05 CUST-ADDR1 PIC X(20).

 05 CUST-ADDR2.

 06 CUST-CITY PIC X(15).

 06 CUST-ZIP-CODE PIC X(5).

 06 CUST-ZIPCODE REDEFINES CUST-ZIP-CODE

 PIC 9(5).

 03 CUST-CREDIT PIC XXX.

 88 CUST-CREDIT-EXEC VALUE 'AAA'.

 88 CUST-CREDIT-GOOD VALUE ' '.

 88 CUST-CREDIT-POOR VALUE 'XXX'.

 03 CUST-SALES-INFO.

 05 CUST-SALES-QTR OCCURS 4.

 06 CUST-NUM-SALES PIC 9(5) COMP-3.

 06 CUST-AMT-SALES PIC S9(7) COMP-3.

 03 FILLER PIC XXX.

 ADD FILE ORDER-FILE VERSION NEXT HIGHEST

 LABELS ARE OMITTED

 RECORD SIZE IS 50

 RECORDING MODE IS F

 BLOCK SIZE IS 5000.

Editing Generated DDDL Statements

78 Dictionary Loader User Guide

Editing functions

You should perform the following editing functions, as needed:

Add comments

Add comments to the descriptions of programs, fi les, and records to document the
function and characteristics of each entity. Comments can be added easily and in an

organized way at this point in the process of populating the dictionary.

Eliminate unnecessary entities

Delete the ADD statement for any entity that should not be a part of the dictionary. For
example, report title records and report detail records used within a single program

generally should not be defined in the dictionary. While important in the context of the
specific program in which they are used, such records do not have global applications
and tend to clutter the dictionary.

Reconcile nonunique names

If the DDDL output contains multiple ADD statements for the same name, editing may

be necessary to ensure that the desired entities reach the dictionary when the ADD
statements are processed by the DDDL compiler. Note the following considerations:

■ If the multiple ADD statements are associated with the same explicit version

number (for example, VERSION 1) and no editing is performed, the DDDL compiler
will process these statements in one of the following ways:

Condition Description

If DEFAULT IS ON The DDDL compiler will process the first ADD statement
encountered for the nonunique name and change subsequent
ADDs to MODIFYs. This means that only the description
associated with the last ADD processed will be present in the

dictionary.

If DEFAULT IS OFF The DDDL compiler will process only the first ADD statement
that refers to the nonunique name and will flag as erroneous

subsequent ADD statements for that name. This means that only
the description associated with the first ADD statement
processed will be present in the dictionary.

Editing Generated DDDL Statements

Chapter 4: DDDL Generator 79

DEFAULT IS ON/OFF can be specified with the SET OPTIONS statement.

Note: For more information about this option, see IDD DDDL Reference Guide.

■ If the multiple ADD statements are associated with a VERSION NEXT
HIGHEST/LOWEST and no editing is performed, all ADD statements will be
processed successfully; each occurrence of the name will be associated with a

different version number.

In either case described above, the editing needed depends upon the objectives for the
dictionary. Version clauses can be changed, ADD statements can be deleted or
combined, or entity names can be changed (in the ADD statements and in the programs

that refer to the names).

Note that running the DDDL Generator with the version statement VERSION NEXT
HIGHEST and appropriate grouping statements assures that each entity occurrence with
a duplicate name will be added to the dictionary when the generated statements are
run through the DDDL compiler. Each repetition of the name will be associated with a

different version number; the version number uniquely identifies the entity occurrence
(for example, CUSTOMER record, version 1; CUSTOMER record, version 2; on so on).
This technique should not be used to avoid the thoughtful evaluation of the generated

statements and the editing necessary to develop a well organized dictionar y.

Reconcile synonyms

Ideally, multiple ADD statements for synonymous fi le or record descriptions should be
merged into a single ADD statement. A single description of a fi le or record should be
entered in the dictionary. This means that all descriptions should be examined and

combined. A single name should be chosen for the entity and associated record and or
element names reconciled (that is, one name and description for the element customer
name). Subsequently, all programs that use the entity must be changed to use the
reconciled entity-occurrence name and to use any other associated reconciled names.

Alternatively, if record and element synonyms are desired, the generated DDDL
statements can be edited to include ELEMENT NAME SYNONYM FOR RECORD NAME
SYNONYM clauses.

Note: For additional information on element and record synonyms, see the IDD DDDL
Reference Guide.

The reconciliation of synonyms is an important user responsibility in building an
effective dictionary. Although the DDDL compiler accepts a nd processes multiple ADD
statements that essentially define the same entity under different names, the practice

of populating the dictionary with such synonymous entities is generally undesirable.

Executing the DDDL Compiler

80 Dictionary Loader User Guide

Executing the DDDL Compiler

JCL for executing the DDDL Generator under z/OS and z/VSE is shown below. Under
z/VSE, processing options must be specified with the parameter statement. Under z/OS,
options can be specified either with the parameter statement or in the PARM clause of
the EXEC statement.

z/OS JCL-PRANIDDG

//PRANIDDG EXEC PGM=PRANIDDG,REGION=1024K

//STEPLIB DD DSN=idms.dba.loadlib,DISP=SHR

// DD DSN=idms.custom.loadlib,DISP=SHR

// DD DSN=idms.cagjload,DISP=SHR

//SYSLST DD SYSOUT=A

//SYSUDUMP DD SYSOUT=A

//SORTMSG DD SYSOUT=A

//SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR

//SORTWK01 DD UNIT=disk,SPACE=(cyl,(5,5))

//SORTWK02 DD UNIT=disk,SPACE=(cyl,(5,5))

//SORTWK03 DD UNIT=disk,SPACE=(cyl,(5,5))

//PRANLIB DD DSN=reflib,DISP=SHR ◄ Include only if using LIBRARY option

//PRANREF DD DSN=sysref1,DISP=SHR ◄ Included only if using DISK option

// DD DSN=sysref2,DISP=SHR

 .

 .

 .

// DD DSN=sysrefn,DISP=SHR

//dcmsg DD DSN=idms.sysmsg.ddldcmsg,DISP=SHR

//sysjrnl DD *

//SYSOUT DD SYSOUT=A

//SYSIDMS DD *

dmcl=dmcl-name

Insert additional SYSIDMS parameters as appropriate

//SYSIPT DD *

Insert optional control statements

//SYSPCH DD DSN=dddlstmts,DISP=(NEW,catlg),

 SPACE=(trk,(10,10),rlse),UNIT=disk,

 VOL=SER=nnnnnn,DCB=BLKSIZE=blksize

DSN Description

idms.dba.loadlib Data set name of the load library containing the DMCL and

database name table load modules

idms.custom.loadlib Data set name of the load library containing customized CA
IDMS system software modules

idms.cagjload Data set name of the load library containing CA IDMS system
software modules that do not require customization

Executing the DDDL Compiler

Chapter 4: DDDL Generator 81

DSN Description

blksize block size of DDDL statement fi le (must be a multiple of 80)

catlg disposition of new fi le: CATLG, PASS, or KEEP

cyl(5,5) fi le space allocation of work fi le

dddlstmts dataset name of fi le to contain DDDL statements

disk symbolic device name of disk fi le

nnnnnn serial number of disk volume

reflib data set name of partitioned data set containing data usage
fi les

sysref1 data set names of sequential data sets containing data usage
fi les

(trk,(10,10),rlse) space allocation for DDDL statement fi le

dcmsg DDname of the system message (DDLDCMSG) area

idms.sysmsg.ddldcms
g

Data set name of the system message (DDLDCMSG) area

SYSIDMS DDname of the CA-IDMS parameter fi le specifying runtime

directives and operating system-dependent parameters.

Note: For a complete description of the SYSIDMS parameter
fi le, see the CA IDMS Common Facilities Guide.

 z/VSE JCL-PRANIDDG

// DLBL SLLn,'user.srclib'

// EXTENT ,nnnnnn

// LIBDEF SL,TO=SSLn,TEMP

// DLBL PRANREF,'sysref',,SD ◄ Include only if using DISK option

// EXTENT SYS010,nnnnnn

// ASSGN SYS010,DISK,VOL=nnnnnn,SHR

// DLBL SORTWK1,'WORK1',0,SD

// EXTENT SYS001,nnnnnn,1,,ssss,200

// ASSGN SYS001,DISK,VOL=nnnnnn,SHR

// DLBL IDMSPCH,'dddl statements',99/365,SD

// EXTENT SYS020,nnnnnn,1,,ssss,300

// ASSGN SYS020,DISK,VOL=nnnnnn,SHR

// EXEC PRANIDDG,SIZE=200K

optional control statements

/*

DSN Description

dddl statements fi le-id of the fi le to contain DDDL statements

Executing the DDDL Compiler

82 Dictionary Loader User Guide

DSN Description

nnnnnn serial number of disk volume

ssss starting track (CKD) or block (FBA) of disk extent

sysref fi le-id for sequential fi le containing data usage fi le

user.srclib source statement l ibrary containing data usage fi les

SSln fi lename of source statement l ibrary

Appendix A: Sample COBOL Input and DDDL Output 83

Appendix A: Sample COBOL Input and DDDL
Output

This appendix shows sample input to and output from the CA IDMS Dictionary Loader,
as follows:

■ Input to the Program Processor—Three COBOL source programs

■ Input to the DDDL Generator—The control statements used in running the DDDL
Generator

■ Output from the DDDL Generator—The DDDL statements generated by processing
the data usage fi les associated with the three COBOL programs

Note that the other examples (that is, example reports) shown throughout this manual
are all taken from the CA IDMS Dictionary Loader runs made to process the three
programs listed below.

Sample COBOL Input and DDDL Output

84 Dictionary Loader User Guide

Sample COBOL Input and DDDL Output

001000 ID DIVISION.

002000 PROGRAM-ID. PRANDEM1.

003000 AUTHOR. CA, INC.

004000 REMARKS. SAMPLE PROGRAM CONTAINING FILES

005000 CUSTOMER-FILE, ORDER-FILE, AND RPTFILE.

006000 CUSTOMER-FILE AND ORDER-FILE HAVE BEEN

007000 SORTED ON CUSTOMER NUMBER. THIS

008000 PROGRAM MATCHES ORDERS TO THE CUSTOMER

009000 AND PRODUCES A REPORT OF ALL ORDERS

010000 FOR ALL CUSTOMERS.

011000

012000 ENVIRONMENT DIVISION.

013000 INPUT-OUTPUT SECTION.

014000 FILE-CONTROL.

015000 SELECT CUSTOMER-FILE ASSIGN UT-2400-S-CUSTIN.

016000 SELECT ORDER-FILE ASSIGN UT-2400-S-ORDERIN.

017000 SELECT RPTFILE ASSIGN UT-S-SYSLST.

018000

019000 DATA DIVISION.

020000 FILE SECTION.

021000 FD RPTFILE

022000 RECORDING MODE F

023000 LABEL RECORDS ARE OMITTED

024000 RECORD CONTAINS 133

025000 DATA RECORDS ARE TITLE-REC DETAIL-REC.

026000

Sample COBOL Input and DDDL Output

Appendix A: Sample COBOL Input and DDDL Output 85

027000 01 TITLE-REC PIC X(133).

028000 01 DETAIL-REC.

029000 05 FILLER PIC X.

030000 05 RPT-CUST-NO PIC X(10).

031000 05 FILLER PIC XXX.

032000 05 RPT-NAME PIC X(20).

033000 05 FILLER PIC X(5).

034000 05 RPT-ORD-IDENT.

035000 10 RPT-ORD PIC X(7).

036000 10 FILLER PIC XXX.

037000 05 RPT-DATE-REQ PIC X(8).

038000 05 FILLER PIC X(76).

039000

040000 FD CUSTOMER-FILE

041000 RECORDING MODE F

042000 LABEL RECORDS ARE OMITTED

043000 RECORD CONTAINS 104 CHARACTERS

044000 DATA RECORD IS CUSTOMER.

045000

046000 01 CUSTOMER.

047000 03 CUST-NUMBER PIC X(10).

048000 03 CUST-NAME PIC X(20).

049000 03 CUST-ADDRESS.

050000 05 CUST-ADDR1 PIC X(20).

051000 05 CUST-ADDR2.

052000 06 CUST-CITY PIC X(15).

053000 06 CUST-ZIP-CODE PIC X(5).

054000 06 CUST-ZIPCODE REDEFINES CUST-ZIP-CODE

055000 PIC 9(5).

056000 03 CUST-CREDIT PIC XXX.

057000 88 CUST-CREDIT-EXEC VALUE IS 'AAA'.

058000 88 CUST-CREDIT-GOOD VALUE IS ' '.

059000 88 CUST-CREDIT-POOR VALUE IS 'XXX'.

060000 03 CUST-SALES-INFO.

061000 05 CUST-SALES-QTR OCCURS 4 TIMES.

062000 06 CUST-NUM-SALES PIC 9(5) COMP-3.

063000 06 CUST-AMT-SALES PIC S9(7) COMP-3.

064000 03 FILLER PIC XXX.

065000

066000

067000 FD ORDER-FILE

068000 RECORDING MODE F

069000 LABEL RECORDS ARE OMITTED

070000 RECORD CONTAINS 50 CHARACTERS

071000 BLOCK CONTAINS 100 RECORDS

072000 DATA RECORD IS ORDOR.

073000

Sample COBOL Input and DDDL Output

86 Dictionary Loader User Guide

074000 01 ORDOR.

075000 03 ORD-CUST-NUMBER PIC X(10).

076000 03 ORD-NUMBER PIC X(7).

077000 03 ORD-CUST-PO-NUMB PIC X(10).

078000 03 ORD-DATES.

079000 05 ORD-REQ-DATE PIC X(6).

080000 05 ORD-DATE-REQ REDEFINES ORD-REQ-DATE

081000 PIC 9(6).

082000 05 ORD-PROM-DATE PIC X(6).

083000 05 ORD-DATE-PROM REDEFINES ORD-PROM-DATE

084000 PIC 9(6).

085000 05 ORD-SHIPPED-DATE PIC X(6).

086000 05 ORD-DATE-SHIPPED REDEFINES ORD-SHIPPED-DATE

087000 PIC 9(6).

088000 03 ORD-SHIP-CODE PIC XX.

089000 88 ORD-SHIP-ALL VALUE IS 'AS'.

090000 88 ORD-SHIP-PART VALUE IS 'PS'.

091000 03 FILLER PIC XXX.

092000

093000

094000 WORKING-STORAGE SECTION.

095000

096000 01 PAGE-COUNT-WS PIC S99 VALUE +0.

097000 01 POSITION-IND-WS PIC X.

098000 01 PAGE-INCREMENT-WS PIC 9.

099000

100000 01 DATE-AS-INPUT-WS.

101000 05 INPUT-YY-WS PIC 99.

102000 05 INPUT-MM-WS PIC 99.

103000 05 INPUT-DD-WS PIC 99.

104000 01 DATE-FORMATTED-WS.

105000 05 FORMATTED-MM-WS PIC 99.

106000 05 FILLER PIC X VALUE '/'.

107000 05 FORMATTED-DD-WS PIC 99.

108000 05 FILLER PIC X VALUE '/'.

109000 05 FORMATTED-YY-WS PIC 99.

110000

111000 01 TITLE-1-WS.

112000 05 FILLER PIC X(52) VALUE SPACES.

113000 05 FILLER PIC X(29) VALUE

114000 'ORDER INFORMATION BY CUSTOMER'.

115000 05 FILLER PIC X(52) VALUE SPACES.

116000 01 TITLE-2-WS.

117000 05 FILLER PIC X(18) VALUE ' CUSTOMER NO '.

118000 05 FILLER PIC X(22) VALUE 'CUSTOMER NAME '.

119000 05 FILLER PIC X(9) VALUE 'ORDER '.

120000 05 FILLER PIC X(12) VALUE 'DATE REQ '.

121000 05 FILLER PIC X(72) VALUE SPACES.

Sample COBOL Input and DDDL Output

Appendix A: Sample COBOL Input and DDDL Output 87

122000

123000

Sample COBOL Input and DDDL Output

88 Dictionary Loader User Guide

124000 PROCEDURE DIVISION.

125000

126000 0100-HOUSEKEEPING.

127000 OPEN INPUT CUSTOMER-FILE.

128000 OPEN INPUT ORDER-FILE.

129000 OPEN OUTPUT RPTFILE.

130000 MOVE SPACES TO DETAIL-REC.

131000 MOVE SPACES TO CUST-NUMBER.

132000

133000 0200-GET-ORDER-INFO.

134000 READ ORDER-FILE RECORD

135000 AT END GO TO 9200-EOJ.

136000

137000 0300-GET-CUST-INFO.

138000 IF ORD-CUST-NUMBER = CUST-NUMBER

139000 GO TO 0500-GET-ORDER-INFO.

140000

141000 READ CUSTOMER-FILE RECORD

142000 AT END GO TO 9200-EOJ.

143000

144000 MOVE CUST-NUMBER TO RPT-CUST-NO.

145000 MOVE CUST-NAME TO RPT-NAME.

146000

147000 0500-GET-ORDER-INFO.

148000 MOVE ORD-NUMBER TO RPT-ORD.

149000 MOVE ORD-DATE-REQ TO DATE-AS-INPUT-WS.

150000 MOVE INPUT-YY-WS TO FORMATTED-YY-WS.

151000 MOVE INPUT-MM-WS TO FORMATTED-MM-WS.

152000 MOVE INPUT-DD-WS TO FORMATTED-DD-WS.

153000 MOVE DATE-FORMATTED-WS TO RPT-DATE-REQ.

154000

155000 PERFORM 9000-WRITE THRU 9010-EXIT.

156000 GO TO 0300-GET-CUST-INFO.

157000

158000* THIS PARAGRAPH CAUSES A REPORT FILE RECORD TO BE WRITTEN.

159000* IT CONTROLS SPACING AND PAGING OF THE REPORT.

160000

161000 9000-WRITE.

162000 MOVE ' ' TO POSITION-IND-WS.

163000 MOVE 1 TO PAGE-INCREMENT-WS.

164000 IF RPT-ORD NOT = SPACES MOVE '0' TO POSITION-IND-WS

165000 MOVE 2 TO PAGE-INCREMENT-WS.

166000 IF RPT-CUST-NO NOT = SPACES MOVE '-' TO POSITION-IND-WS

167000 MOVE 3 TO PAGE-INCREMENT-WS.

168000 WRITE DETAIL-REC AFTER POSITIONING POSITION-IND-WS.

169000 MOVE SPACES TO DETAIL-REC.

170000 ADD PAGE-INCREMENT-WS TO PAGE-COUNT-WS.

171000 IF PAGE-COUNT-WS GREATER THAN +58

Sample COBOL Input and DDDL Output

Appendix A: Sample COBOL Input and DDDL Output 89

172000 PERFORM 9100-NEW-PAGE THRU 9110-EXIT.

173000 9010-EXIT.

174000 EXIT.

175000

176000 9100-NEW-PAGE.

177000 WRITE TITLE-REC FROM TITLE-1-WS AFTER POSITIONING 0.

178000 MOVE SPACES TO TITLE-REC.

179000 WRITE TITLE-REC FROM TITLE-2-WS AFTER POSITIONING 3.

180000 MOVE SPACES TO TITLE-REC.

181000 MOVE +4 TO PAGE-COUNT-WS.

182000 9110-EXIT.

183000 EXIT.

184000

185000* CLOSE THE FILES AND EXIT FROM THE PROGRAM.

186000

187000 9200-EOJ.

188000 CLOSE CUSTOMER-FILE.

189000 CLOSE ORDER-FILE.

190000 CLOSE RPTFILE.

191000 9210-EXIT.

192000 STOP RUN.

193000

001000 ID DIVISION.

002000 PROGRAM-ID. PRANDEM2.

003000 AUTHOR. CA, INC.

004000 REMARKS. SAMPLE PROGRAM CONTAINING FILE

005000 CUSTOMER-FILE. THIS PROGRAM PRODUCES

006000 A REPORT OF ALL CUSTOMERS WITH A

007000 CREDIT RATING OF EXCELLENT.

008000

009000 ENVIRONMENT DIVISION.

010000 INPUT-OUTPUT SECTION.

011000 FILE-CONTROL.

012000 SELECT CUSTOMER-FILE ASSIGN UT-2400-S-CUSTIN.

013000 SELECT RPTFILE ASSIGN UT-S-SYSLST.

014000

015000 DATA DIVISION.

016000 FILE SECTION.

017000 FD RPTFILE

018000 RECORDING MODE F

019000 LABEL RECORDS ARE OMITTED

020000 RECORD CONTAINS 133

021000 DATA RECORDS ARE TITLE-REC DETAIL-REC.

022000

023000 01 TITLE-REC PIC X(133).

024000 01 DETAIL-REC.

025000 05 FILLER PIC X.

026000 05 RPT-CUST-NO PIC X(10).

027000 05 FILLER PIC XXX.

Sample COBOL Input and DDDL Output

90 Dictionary Loader User Guide

028000 05 RPT-CUST-NAME PIC X(20).

029000 05 FILLER PIC X(10).

030000 05 RPT-ADDR1 PIC X(20).

031000 05 FILLER PIC X(5).

032000 05 RPT-ADDR2 PIC X(20).

033000 05 FILLER PIC X(5).

034000 05 RPT-ZIP PIC X(20).

035000 05 FILLER PIC X(19).

036000

037000 FD CUSTOMER-FILE

038000 RECORDING MODE F

039000 LABEL RECORDS ARE OMITTED

040000 RECORD CONTAINS 104 CHARACTERS

041000 DATA RECORD IS CUSTOMER.

042000

043000 01 CUSTOMER.

044000 03 CUST-NUM PIC X(10).

045000 03 CUST-NAME PIC X(20).

046000 03 CUST-ADDRESS.

047000 05 CUST-ADDR1 PIC X(20).

048000 05 CUST-ADDR2.

049000 06 CUST-CITY PIC X(15).

050000 06 CUST-ZIP-CODE PIC X(5).

051000 03 CUST-CREDIT PIC XXX.

052000 88 CUST-CREDIT-EXEC VALUE IS 'AAA'.

053000 88 CUST-CREDIT-GOOD VALUE IS ' '.

054000 88 CUST-CREDIT-POOR VALUE IS 'XXX'.

055000 03 FILLER PIC X(31).

056000

057000

058000 WORKING-STORAGE SECTION.

059000

060000 01 PAGE-COUNT-WS PIC S99 VALUE +0.

061000 01 POSITION-IND-WS PIC X.

062000 01 PAGE-INCREMENT-WS PIC 9.

063000

064000 01 TITLE-1-WS.

065000 05 FILLER PIC X(46) VALUE SPACES.

066000 05 FILLER PIC X(41) VALUE

067000 'CUSTOMERS WITH AN EXCELLENT CREDIT RATING'.

068000 05 FILLER PIC X(46) VALUE SPACES.

069000 01 TITLE-2-WS.

070000 05 FILLER PIC X(18) VALUE ' CUSTOMER NO '.

071000 05 FILLER PIC X(22) VALUE 'CUSTOMER NAME '.

072000 05 FILLER PIC X(5) VALUE SPACES.

073000 05 FILLER PIC X(9) VALUE 'ADDRESS '.

074000 05 FILLER PIC X(79) VALUE SPACES.

075000

076000

Sample COBOL Input and DDDL Output

Appendix A: Sample COBOL Input and DDDL Output 91

077000 PROCEDURE DIVISION.

078000

079000 OPEN INPUT CUSTOMER-FILE.

080000 OPEN OUTPUT RPTFILE.

081000 MOVE SPACES TO DETAIL-REC.

082000

083000 0300-GET-CUST-INFO.

084000 READ CUSTOMER-FILE RECORD

085000 AT END GO TO 9200-EOJ.

086000

087000 IF NOT CUST-CREDIT-EXEC GO TO 0300-GET-CUST-INFO.

088000

089000

090000 MOVE CUST-NUM TO RPT-CUST-NO.

091000 MOVE CUST-NAME TO RPT-CUST-NAME.

092000 MOVE CUST-ADDR1 TO RPT-ADDR1.

093000 MOVE CUST-ADDR2 TO RPT-ADDR2.

094000 MOVE CUST-ZIP-CODE TO RPT-ZIP.

095000

096000 PERFORM 9000-WRITE THRU 9010-EXIT.

097000 GO TO 0300-GET-CUST-INFO.

098000

099000* THIS PARAGRAPH CAUSES A REPORT FILE RECORD TO BE WRITTEN.

100000* IT CONTROLS SPACING AND PAGING OF THE REPORT.

101000

102000 9000-WRITE.

103000 MOVE ' ' TO POSITION-IND-WS.

104000 MOVE 1 TO PAGE-INCREMENT-WS.

105000 WRITE DETAIL-REC AFTER POSITIONING POSITION-IND-WS.

106000 MOVE SPACES TO DETAIL-REC.

107000 ADD PAGE-INCREMENT-WS TO PAGE-COUNT-WS.

108000 IF PAGE-COUNT-WS GREATER THAN +58

109000 PERFORM 9100-NEW-PAGE THRU 9110-EXIT.

110000 9010-EXIT.

111000 EXIT.

112000

113000 9100-NEW-PAGE.

114000 WRITE TITLE-REC FROM TITLE-1-WS AFTER POSITIONING 0.

115000 MOVE SPACES TO TITLE-REC.

116000 WRITE TITLE-REC FROM TITLE-2-WS AFTER POSITIONING 3.

117000 MOVE SPACES TO TITLE-REC.

118000 MOVE +4 TO PAGE-COUNT-WS.

119000 9110-EXIT.

120000 EXIT.

121000

122000* CLOSE THE FILES AND EXIT FROM THE PROGRAM.

123000

124000 9200-EOJ.

125000 CLOSE CUSTOMER-FILE.

Sample COBOL Input and DDDL Output

92 Dictionary Loader User Guide

126000 CLOSE RPTFILE.

127000 9210-EXIT.

128000 STOP RUN.

129000

001000 ID DIVISION.

002000 PROGRAM-ID. PRANDEM2.

003000 AUTHOR. CA, INC.

004000 REMARKS. SAMPLE PROGRAM CONTAINING FILE

005000 CUSTOMER-FILE. THIS PROGRAM PRODUCES

006000 A REPORT OF ALL CUSTOMERS WITH A

007000 CREDIT RATING OF EXCELLENT.

008000

009000 ENVIRONMENT DIVISION.

010000 INPUT-OUTPUT SECTION.

011000 FILE-CONTROL.

012000 SELECT CUSTOMER-FILE ASSIGN UT-2400-S-CUSTIN.

013000 SELECT RPTFILE ASSIGN UT-S-SYSLST.

014000

015000 DATA DIVISION.

016000 FILE SECTION.

017000 FD RPTFILE

018000 RECORDING MODE F

019000 LABEL RECORDS ARE OMITTED

020000 RECORD CONTAINS 133

021000 DATA RECORDS ARE TITLE-REC DETAIL-REC.

022000

023000 01 TITLE-REC PIC X(133).

024000 01 DETAIL-REC.

025000 05 FILLER PIC X.

026000 05 RPT-CUST-NO PIC X(10).

027000 05 FILLER PIC XXX.

028000 05 RPT-CUST-NAME PIC X(20).

029000 05 FILLER PIC X(10).

030000 05 RPT-ADDR1 PIC X(20).

031000 05 FILLER PIC X(5).

032000 05 RPT-ADDR2 PIC X(20).

033000 05 FILLER PIC X(5).

034000 05 RPT-ZIP PIC X(20).

035000 05 FILLER PIC X(19).

036000

037000 FD CUSTOMER-FILE

038000 RECORDING MODE F

039000 LABEL RECORDS ARE OMITTED

040000 RECORD CONTAINS 104 CHARACTERS

041000 DATA RECORD IS CUSTOMER.

042000

043000 01 CUSTOMER.

044000 03 CUST-NUM PIC X(10).

045000 03 CUST-NAME PIC X(20).

Sample COBOL Input and DDDL Output

Appendix A: Sample COBOL Input and DDDL Output 93

046000 03 CUST-ADDRESS.

047000 05 CUST-ADDR1 PIC X(20).

048000 05 CUST-ADDR2.

049000 06 CUST-CITY PIC X(15).

050000 06 CUST-ZIP-CODE PIC X(5).

051000 03 CUST-CREDIT PIC XXX.

052000 88 CUST-CREDIT-EXEC VALUE IS 'AAA'.

053000 88 CUST-CREDIT-GOOD VALUE IS ' '.

054000 88 CUST-CREDIT-POOR VALUE IS 'XXX'.

055000 03 FILLER PIC X(31).

056000

057000

058000 WORKING-STORAGE SECTION.

059000

060000 01 PAGE-COUNT-WS PIC S99 VALUE +0.

061000 01 POSITION-IND-WS PIC X.

062000 01 PAGE-INCREMENT-WS PIC 9.

063000

064000 01 TITLE-1-WS.

065000 05 FILLER PIC X(46) VALUE SPACES.

066000 05 FILLER PIC X(41) VALUE

067000 'CUSTOMERS WITH AN EXCELLENT CREDIT RATING'.

068000 05 FILLER PIC X(46) VALUE SPACES.

069000 01 TITLE-2-WS.

070000 05 FILLER PIC X(18) VALUE ' CUSTOMER NO '.

071000 05 FILLER PIC X(22) VALUE 'CUSTOMER NAME '.

072000 05 FILLER PIC X(5) VALUE SPACES.

073000 05 FILLER PIC X(9) VALUE 'ADDRESS '.

074000 05 FILLER PIC X(79) VALUE SPACES.

075000

076000

077000 PROCEDURE DIVISION.

078000

079000 OPEN INPUT CUSTOMER-FILE.

080000 OPEN OUTPUT RPTFILE.

081000 MOVE SPACES TO DETAIL-REC.

082000

083000 0300-GET-CUST-INFO.

084000 READ CUSTOMER-FILE RECORD

085000 AT END GO TO 9200-EOJ.

086000

087000 IF NOT CUST-CREDIT-EXEC GO TO 0300-GET-CUST-INFO.

088000

089000

090000 MOVE CUST-NUM TO RPT-CUST-NO.

091000 MOVE CUST-NAME TO RPT-CUST-NAME.

092000 MOVE CUST-ADDR1 TO RPT-ADDR1.

093000 MOVE CUST-ADDR2 TO RPT-ADDR2.

094000 MOVE CUST-ZIP-CODE TO RPT-ZIP.

Sample COBOL Input and DDDL Output

94 Dictionary Loader User Guide

095000

096000 PERFORM 9000-WRITE THRU 9010-EXIT.

097000 GO TO 0300-GET-CUST-INFO.

098000

099000* THIS PARAGRAPH CAUSES A REPORT FILE RECORD TO BE WRITTEN.

100000* IT CONTROLS SPACING AND PAGING OF THE REPORT.

101000

102000 9000-WRITE.

103000 MOVE ' ' TO POSITION-IND-WS.

104000 MOVE 1 TO PAGE-INCREMENT-WS.

105000 WRITE DETAIL-REC AFTER POSITIONING POSITION-IND-WS.

106000 MOVE SPACES TO DETAIL-REC.

107000 ADD PAGE-INCREMENT-WS TO PAGE-COUNT-WS.

108000 IF PAGE-COUNT-WS GREATER THAN +58

109000 PERFORM 9100-NEW-PAGE THRU 9110-EXIT.

110000 9010-EXIT.

111000 EXIT.

112000

113000 9100-NEW-PAGE.

114000 WRITE TITLE-REC FROM TITLE-1-WS AFTER POSITIONING 0.

115000 MOVE SPACES TO TITLE-REC.

116000 WRITE TITLE-REC FROM TITLE-2-WS AFTER POSITIONING 3.

117000 MOVE SPACES TO TITLE-REC.

118000 MOVE +4 TO PAGE-COUNT-WS.

119000 9110-EXIT.

120000 EXIT.

121000

122000* CLOSE THE FILES AND EXIT FROM THE PROGRAM.

123000

124000 9200-EOJ.

125000 CLOSE CUSTOMER-FILE.

126000 CLOSE RPTFILE.

127000 9210-EXIT.

128000 STOP RUN.

129000

Sample COBOL Input and DDDL Output

VERSION NEXT HIGHEST

FILE-GROUPING CUSTOMER-FILE IN PRANDEM1 IN PRANDEM2

 CUSTFILE IN PRANDEM3

RECORD-GROUPING CUSTOMER IN PRANDEM1 IN PRANDEM2

 CUST IN PRANDEM3

Sample COBOL Input and DDDL Output

Appendix A: Sample COBOL Input and DDDL Output 95

Sample COBOL Input and DDDL Output

 ADD FILE CUSTOMER-FILE VERSION NEXT HIGHEST

 LABELS ARE OMITTED

 RECORD SIZE IS 104

 RECORDING MODE IS F

 FILE NAME SYNONYM IS CUSTFILE VERSION NEXT HIGHEST.

 ADD RECORD CUSTOMER VERSION NEXT HIGHEST

 LANGUAGE IS COBOL

 WITHIN FILE CUSTOMER-FILE VERSION HIGHEST

 RECORD NAME SYNONYM IS CUST VERSION NEXT HIGHEST.

 03 CUST-NUMBER PIC X(10).

 03 CUST-NAME PIC X(20).

 03 CUST-ADDRESS.

 05 CUST-ADDR1 PIC X(20).

 05 CUST-ADDR2.

 06 CUST-CITY

 PIC X(15).

 06 CUST-ZIP-CODE

 PIC X(5).

 06 CUST-ZIPCODE

 REDEFINES CUST-ZIP-CODE

 PIC 9(5).

 03 CUST-CREDIT PIC XXX.

 88 CUST-CREDIT-EXEC

 VALUE 'AAA'.

 88 CUST-CREDIT-GOOD

 VALUE ' '.

 88 CUST-CREDIT-POOR

 VALUE 'XXX'.

 03 CUST-SALES-INFO.

 05 CUST-SALES-QTR

 OCCURS 4.

 06 CUST-NUM-SALES

 PIC 9(5) COMP-3.

 06 CUST-AMT-SALES

 PIC S9(7) COMP-3.

 03 FILLER PIC XXX.

 ADD FILE ORDER-FILE VERSION NEXT HIGHEST

 LABELS ARE OMITTED

 RECORD SIZE IS 50

 RECORDING MODE IS F

 BLOCK SIZE IS 5000.

Sample COBOL Input and DDDL Output

96 Dictionary Loader User Guide

 ADD RECORD ORDOR VERSION NEXT HIGHEST

 LANGUAGE IS COBOL

 WITHIN FILE ORDER-FILE VERSION HIGHEST.

 03 ORD-CUST-NUMBER

 PIC X(10).

 03 ORD-NUMBER PIC X(7).

 03 ORD-CUST-PO-NUMB

 PIC X(10).

 03 ORD-DATES.

 05 ORD-REQ-DATE

 PIC X(6).

 05 ORD-DATE-REQ

 REDEFINES ORD-REQ-DATE

 PIC 9(6).

 05 ORD-PROM-DATE

 PIC X(6).

 05 ORD-DATE-PROM

 REDEFINES ORD-PROM-DATE

 PIC 9(6).

 05 ORD-SHIPPED-DATE

 PIC X(6).

 05 ORD-DATE-SHIPPED

 REDEFINES ORD-SHIPPED-DATE

 PIC 9(6).

 03 ORD-SHIP-CODE PIC XX.

 88 ORD-SHIP-ALL

 VALUE 'AS'.

 88 ORD-SHIP-PART

 VALUE 'PS'.

 03 FILLER PIC XXX.

 ADD FILE RPTFILE VERSION NEXT HIGHEST

 LABELS ARE OMITTED

 RECORD SIZE IS 133

 RECORDING MODE IS F.

 ADD RECORD TITLE-REC VERSION NEXT HIGHEST

 LANGUAGE IS COBOL

 WITHIN FILE RPTFILE VERSION HIGHEST.

 02 TITLE-REC PIC X(133).

 ADD RECORD DETAIL-REC VERSION NEXT HIGHEST

 LANGUAGE IS COBOL

 WITHIN FILE RPTFILE VERSION HIGHEST.

 05 FILLER PIC X.

 05 RPT-CUST-NO PIC X(10).

 05 FILLER PIC XXX.

 05 RPT-NAME PIC X(20).

 05 FILLER PIC X(5).

Sample COBOL Input and DDDL Output

Appendix A: Sample COBOL Input and DDDL Output 97

 05 RPT-ORD-IDENT.

 10 RPT-ORD PIC X(7).

 10 FILLER PIC XXX.

 05 RPT-DATE-REQ PIC X(8).

 05 FILLER PIC X(76).

 ADD RECORD PAGE-COUNT-WS VERSION NEXT HIGHEST

 LANGUAGE IS COBOL.

 02 PAGE-COUNT-WS PIC S99

 VALUE +0.

 ADD RECORD POSITION-IND-WS VERSION NEXT HIGHEST

 LANGUAGE IS COBOL.

 02 POSITION-IND-WS

 PIC X.

 ADD RECORD PAGE-INCREMENT-WS VERSION NEXT HIGHEST

 LANGUAGE IS COBOL.

 02 PAGE-INCREMENT-WS

 PIC 9.

 ADD RECORD DATE-AS-INPUT-WS VERSION NEXT HIGHEST

 LANGUAGE IS COBOL.

 05 INPUT-YY-WS PIC 99.

 05 INPUT-MM-WS PIC 99.

 05 INPUT-DD-WS PIC 99.

 ADD RECORD DATE-FORMATTED-WS VERSION NEXT HIGHEST

 LANGUAGE IS COBOL.

 05 FORMATTED-MM-WS

 PIC 99.

 05 FILLER PIC X

 VALUE '/'.

 05 FORMATTED-DD-WS

 PIC 99.

 05 FILLER PIC X

 VALUE '/'.

 05 FORMATTED-YY-WS

 PIC 99.

 ADD RECORD TITLE-1-WS VERSION NEXT HIGHEST

 LANGUAGE IS COBOL.

 05 FILLER PIC X(52)

 VALUE SPACES.

 05 FILLER PIC X(29)

 VALUE

 'ORDER INFORMATION BY CUSTOMER'.

 05 FILLER PIC X(52)

 VALUE SPACES.

Sample COBOL Input and DDDL Output

98 Dictionary Loader User Guide

 ADD RECORD TITLE-2-WS VERSION NEXT HIGHEST

 LANGUAGE IS COBOL.

 05 FILLER PIC X(18)

 VALUE ' CUSTOMER NO '.

 05 FILLER PIC X(22)

 VALUE 'CUSTOMER NAME '.

 05 FILLER PIC X(9)

 VALUE 'ORDER '.

 05 FILLER PIC X(12)

 VALUE 'DATE REQ '.

 05 FILLER PIC X(72)

 VALUE SPACES.

 ADD PROGRAM PRANDEM1 VERSION NEXT HIGHEST

 LANGUAGE IS COBOL

 ESTIMATED LINES ARE 195

 INPUT FILE IS CUSTOMER-FILE VERSION HIGHEST

 INPUT FILE IS ORDER-FILE VERSION HIGHEST

 OUTPUT FILE IS RPTFILE VERSION HIGHEST

 RECORD USED IS CUSTOMER VERSION HIGHEST

 ELEMENT IS CUST-NUMBER

 REFERENCED 2 TIMES

 MODIFIED 1 TIME

 ELEMENT IS CUST-NAME

 REFERENCED 1 TIME

 ELEMENT IS CUST-ADDRESS

 ELEMENT IS CUST-ADDR1

 ELEMENT IS CUST-ADDR2

 ELEMENT IS CUST-CITY

 ELEMENT IS CUST-ZIP-CODE

 ELEMENT IS CUST-ZIPCODE

 ELEMENT IS CUST-CREDIT

 ELEMENT IS CUST-SALES-INFO

 ELEMENT IS CUST-SALES-QTR

 ELEMENT IS CUST-NUM-SALES

 ELEMENT IS CUST-AMT-SALES

 RECORD USED IS ORDOR VERSION HIGHEST

 ELEMENT IS ORD-CUST-NUMBER

 REFERENCED 1 TIME

 ELEMENT IS ORD-NUMBER

 REFERENCED 1 TIME

 ELEMENT IS ORD-CUST-PO-NUMB

 ELEMENT IS ORD-DATES

 ELEMENT IS ORD-REQ-DATE

 ELEMENT IS ORD-DATE-REQ

 REFERENCED 1 TIME

 ELEMENT IS ORD-PROM-DATE

 ELEMENT IS ORD-DATE-PROM

 ELEMENT IS ORD-SHIPPED-DATE

Sample COBOL Input and DDDL Output

Appendix A: Sample COBOL Input and DDDL Output 99

 ELEMENT IS ORD-DATE-SHIPPED

 ELEMENT IS ORD-SHIP-CODE

 RECORD USED IS TITLE-REC VERSION HIGHEST

 MODIFIED 4 TIMES

 RECORD USED IS DETAIL-REC VERSION HIGHEST

 MODIFIED 3 TIMES

 ELEMENT IS RPT-CUST-NO

 REFERENCED 1 TIME

 MODIFIED 1 TIME

 ELEMENT IS RPT-NAME

 MODIFIED 1 TIME

 ELEMENT IS RPT-ORD-IDENT

 ELEMENT IS RPT-ORD

 REFERENCED 1 TIME

 MODIFIED 1 TIME

 ELEMENT IS RPT-DATE-REQ

 MODIFIED 1 TIME

 RECORD USED IS PAGE-COUNT-WS VERSION HIGHEST

 REFERENCED 1 TIME

 MODIFIED 2 TIMES

 RECORD USED IS POSITION-IND-WS VERSION HIGHEST

 REFERENCED 1 TIME

 MODIFIED 3 TIMES

 RECORD USED IS PAGE-INCREMENT-WS VERSION HIGHEST

 REFERENCED 1 TIME

 MODIFIED 3 TIMES

 RECORD USED IS DATE-AS-INPUT-WS VERSION HIGHEST

 MODIFIED 1 TIME

 ELEMENT IS INPUT-YY-WS

 REFERENCED 1 TIME

 ELEMENT IS INPUT-MM-WS

 REFERENCED 1 TIME

 ELEMENT IS INPUT-DD-WS

 REFERENCED 1 TIME

 RECORD USED IS DATE-FORMATTED-WS VERSION HIGHEST

 REFERENCED 1 TIME

 ELEMENT IS FORMATTED-MM-WS

 MODIFIED 1 TIME

 ELEMENT IS FORMATTED-DD-WS

 MODIFIED 1 TIME

 ELEMENT IS FORMATTED-YY-WS

 MODIFIED 1 TIME

 RECORD USED IS TITLE-1-WS VERSION HIGHEST

 REFERENCED 1 TIME

 RECORD USED IS TITLE-2-WS VERSION HIGHEST

 REFERENCED 1 TIME.

 ADD PROGRAM PRANDEM2 VERSION NEXT HIGHEST

 LANGUAGE IS COBOL

Sample COBOL Input and DDDL Output

100 Dictionary Loader User Guide

 ESTIMATED LINES ARE 131

 INPUT FILE IS CUSTOMER-FILE VERSION HIGHEST

 OUTPUT FILE IS RPTFILE VERSION HIGHEST

 RECORD USED IS CUSTOMER VERSION HIGHEST

 ELEMENT IS CUST-NUM

 REFERENCED 1 TIME

 ELEMENT IS CUST-NAME

 REFERENCED 1 TIME

 ELEMENT IS CUST-ADDRESS

 ELEMENT IS CUST-ADDR1

 REFERENCED 1 TIME

 ELEMENT IS CUST-ADDR2

 REFERENCED 1 TIME

 ELEMENT IS CUST-CITY

 ELEMENT IS CUST-ZIP-CODE

 REFERENCED 1 TIME

 ELEMENT IS CUST-CREDIT

 RECORD USED IS TITLE-REC VERSION HIGHEST

 MODIFIED 4 TIMES

 RECORD USED IS DETAIL-REC VERSION HIGHEST

 MODIFIED 3 TIMES

 ELEMENT IS RPT-CUST-NO

 MODIFIED 1 TIME

 ELEMENT IS RPT-CUST-NAME

 MODIFIED 1 TIME

 ELEMENT IS RPT-ADDR1

 MODIFIED 1 TIME

 ELEMENT IS RPT-ADDR2

 MODIFIED 1 TIME

 ELEMENT IS RPT-ZIP

 MODIFIED 1 TIME

 RECORD USED IS PAGE-COUNT-WS VERSION HIGHEST

 REFERENCED 1 TIME

 MODIFIED 2 TIMES

 RECORD USED IS POSITION-IND-WS VERSION HIGHEST

 REFERENCED 1 TIME

 MODIFIED 1 TIME

 RECORD USED IS PAGE-INCREMENT-WS VERSION HIGHEST

 REFERENCED 1 TIME

 MODIFIED 1 TIME

 RECORD USED IS TITLE-1-WS VERSION HIGHEST

 REFERENCED 1 TIME

 RECORD USED IS TITLE-2-WS VERSION HIGHEST

 REFERENCED 1 TIME.

 ADD FILE CUSTFILE VERSION NEXT HIGHEST

 LABELS ARE OMITTED

 RECORD SIZE IS 104

 RECORDING MODE IS F

Sample COBOL Input and DDDL Output

Appendix A: Sample COBOL Input and DDDL Output 101

 FILE NAME SYNONYM IS CUSTOMER-FILE VERSION NEXT HIGHEST.

 ADD RECORD CUST VERSION NEXT HIGHEST

 LANGUAGE IS COBOL

 WITHIN FILE CUSTFILE VERSION HIGHEST

 RECORD NAME SYNONYM IS CUSTOMER VERSION NEXT HIGHEST.

 03 FILLER PIC X(10).

 03 CUST-NAME PIC X(20).

 03 CUST-ADDRESS.

 05 CUST-ADDR1 PIC X(20).

 05 CUST-ADDR2 PIC X(20).

 03 FILLER PIC X(34).

 ADD FILE MAILFILE VERSION NEXT HIGHEST

 LABELS ARE OMITTED

 RECORD SIZE IS 21

 RECORDING MODE IS F.

 ADD RECORD MAIL-REC-1 VERSION NEXT HIGHEST

 LANGUAGE IS COBOL

 WITHIN FILE MAILFILE VERSION HIGHEST.

 03 FILLER PIC X.

 03 MAIL-LINE-1 PIC X(20).

 ADD RECORD MAIL-REC-2 VERSION NEXT HIGHEST

 LANGUAGE IS COBOL

 WITHIN FILE MAILFILE VERSION HIGHEST.

 03 FILLER PIC X.

 03 MAIL-LINE-2 PIC X(20).

 ADD RECORD MAIL-REC-3 VERSION NEXT HIGHEST

 LANGUAGE IS COBOL

 WITHIN FILE MAILFILE VERSION HIGHEST.

 03 FILLER PIC X.

 03 MAIL-LINE-3 PIC X(20).

 ADD PROGRAM PRANDEM3 VERSION NEXT HIGHEST

 LANGUAGE IS COBOL

 ESTIMATED LINES ARE 81

 INPUT FILE IS CUSTFILE VERSION HIGHEST

 OUTPUT FILE IS MAILFILE VERSION HIGHEST

 RECORD USED IS CUST VERSION HIGHEST

 ELEMENT IS CUST-NAME

 REFERENCED 1 TIME

 ELEMENT IS CUST-ADDRESS

 ELEMENT IS CUST-ADDR1

 REFERENCED 1 TIME

 ELEMENT IS CUST-ADDR2

 REFERENCED 1 TIME

Sample COBOL Input and DDDL Output

102 Dictionary Loader User Guide

 RECORD USED IS MAIL-REC-1 VERSION HIGHEST

 MODIFIED 2 TIMES

 ELEMENT IS MAIL-LINE-1

 MODIFIED 1 TIME

 RECORD USED IS MAIL-REC-2 VERSION HIGHEST

 REFERENCED 1 TIME

 MODIFIED 1 TIME

 ELEMENT IS MAIL-LINE-2

 MODIFIED 1 TIME

 RECORD USED IS MAIL-REC-3 VERSION HIGHEST

 REFERENCED 1 TIME

 MODIFIED 1 TIME

 ELEMENT IS MAIL-LINE-3

 MODIFIED 1 TIME.

Appendix B: Runtime Error Messages 103

Appendix B: Runtime Error Messages

This section contains the following topics:

Overview (see page 103)
Runtime Messages Issued by the Program Processor (see page 105)
Runtime Message Issued by the Cross Reference Processor (see page 107)

Runtime Messages Issued by the DDDL Generator (see page 110)

Overview

Where messages appear

This appendix documents the runtime messages issued by the three CA IDMS Dictionary

Loader components. These runtime messages can indicate fatal or nonfatal conditions
and appear in the console log or the printed output for the run:

Message type Description

Program Processor Messages Both nonfatal and fatal messages appear on the
console log

Cross Reference Processor

Message

Nonfatal messages appear at the beginning of the

report output for the run; fatal messages appear on the
console log

DDDL Generator Messages Nonfatal messages appear at the beginning of the
report output for the run; fatal messages appear on the

console log

Overview

104 Dictionary Loader User Guide

Nonfatal messages

The nonfatal messages issued by the CA IDMS Dictionary Loader components mainly

identify errors in the control statement information. When one of the components
detects a nonfatal error condition, the component issues the appropriate message and
continues running.

Fatal messages

The fatal messages issued by the CA IDMS Dictionary Loader components flag two types
of error conditions:

■ I/O errors (most commonly INPUT/OUTPUT FILE WILL NOT OPEN)

■ Internal errors from CA IDMS util ity programs

Consequence of a fatal error

When one of the CA IDMS Dictionary Loader components detects a fatal condition, the
component issues a write-to-operator message (which appears on the console log) and

terminates the run.

Runtime Messages Issued by the Program Processor

Appendix B: Runtime Error Messages 105

Runtime Messages Issued by the Program Processor

Nonfatal

1.

'keyword' INVALID PARAMETER

The reported keyword is an invalid specification.

Fatal

1.

BAD IDMSUTIO RETURN CODE - PARMINTF - return-code - CSFCDSPL

IDMSUTIO issued the reported return code; the job ended with a user abend code
of 100. This message reports a system internal error; rerun the job.

2.

FATAL ERROR - BAD IDMSFLIO RETURN CODE - return-code - SSRFIO

IDMSFLIO issued the reported return code; the job ended with a user abend code of
100. This message reports a system internal error; rerun the job.

3.

FATAL ERROR - BAD IDMSUTIO RETURN CODE - return-code - SSRPIO

IDMSUTIO issued the reported return code; the job ended with a user abend code
of 100. This message reports a system internal error; rerun the job.

4.

FATAL ERROR - CBIO - INVALID OPERATION - SSCBIO

The job ended with a user abend code of 100. This message reports a system

internal error; rerun the job.

5.

FATAL ERROR - RPIO - INVALID OPERATION -- SSRPIO

The job ended with a user abend code of 100. This message reports a system

internal error; rerun the job.

6.

INPUT FILE SYSIPT WILL NOT OPEN

The job ended with a user abend code of 2000. Check the JCL to see if SYSIPT is
specified correctly.

7.

MEMBER NOT FOUND IN LIBRARY (z/VSE users only)

Runtime Messages Issued by the Program Processor

106 Dictionary Loader User Guide

The job ended with a user abend code of 100. This message is issued when the
=COPY IDMS option is being used to read the input program from a library into the

SYSIPT fi le and the library member cannot be accessed. Check that the correct
member-name is specified in the =COPY IDMS statement and that the sublibrary
name is specified if necessary (the default is the A. sublibrary).

8.

OUTPUT FILE PRANREF WILL NOT OPEN

The job ended with a user abend code of 2000. Check the JCL to see if PRANREF is
specified correctly.

9.

OUTPUT FILE SYSLST WILL NOT OPEN

The job ended with a user abend code of 2000. Check the JCL to see if SYSLST is
specified correctly.

10.

OUTPUT FILE SYSPCH WILL NOT OPEN

The job ended with a user abend code of 2000. Check the JCL to see if SYSPCH is

specified correctly.

Runtime Message Issued by the Cross Reference Processor

Appendix B: Runtime Error Messages 107

Runtime Message Issued by the Cross Reference Processor

Nonfatal

1.

ILLEGAL ALIAS FOR PROG-ID

The name following the equal sign (=) in the LIBRARY option in the parameter
statement is missing.

2.

ILLEGAL DELIMITER

Statement keywords are not delimited by the required comma or blank.

3.

ILLEGAL MEMBER NAME

Member name is missing as the operand of the LIBRARY option in the parameter

statement.

4.

ILLEGAL PROGRAM-ID 'NEW NAME'

The name following the equal sign (=) in the PROGRAM-ID option in the parameter

statement is missing.

5.

OPTION/SELECT NOT RECOGNIZED

A statement keyword is not valid as expressed.

6.

TOO MANY LIBRARY NAMES

More than 99 library members are specified.

7.

TOO MANY PROGRAM-IDS

More than 39 source program names are changed to new names in the

PROGRAM-ID option.

Runtime Message Issued by the Cross Reference Processor

108 Dictionary Loader User Guide

Fatal

1.

BAD IDMSUTIO RETURN CODE - PARMINTF - return-code - CSFCDSPL

IDMSUTIO issued the reported return code; the job ended with a user abend code
of 100. This message reports a system internal error; rerun the job.

2.

BAD RETURN CODE - module-name - return-code

The error originated in the named module (either IDMSUTIO or IDMSDLIO). The
module issued the listed return code. The jog ended with a user abend code of 100.
This message reports a system internal error; rerun the job.

3.

INPUT FILE PRANREF WILL NOT OPEN

The job ended with a user abend code of 2000. Check the JCL to see if PRANREF is
specified correctly.

4.

INPUT FILE SYSIPT WILL NOT OPEN

The job ended with a user abend code of 2000. Check the JCL to see if SYSIPT is

specified correctly.

5.

MEMBER NOT FOUND IN LIBRARY (z/VSE users only)

The job ended with a user abend code of 100. Check the member name specified in

the LIBRARY option.

6.

OUTPUT FILE SYSLST WILL NOT OPEN

The job ended with a user abend code of 2000. Check the JCL to see if SYSLST is
specified correctly.

Other fatal messages

Note that the Cross Reference Processor may issue an additional class of fatal messages.
These messages are generated by the util ity module IDMSSORT and report system

internal errors.

Runtime Message Issued by the Cross Reference Processor

Appendix B: Runtime Error Messages 109

IDMSSORT messages

IDMSSORT error messages are write-to-operator messages that are displayed on the

console log. When the Cross Reference Processor transmits an IDMSSORT message, the
run abends with a user abend code of 3134 and a two-line message appears in the
following format:

+IDMS 999000L IDMSSORT - message-text

+IDMS 208001L 0100

Examples

Four examples of message text that can appear in this message are shown below:

INVALID KEYWORD PASSED TO IDMSSORT

UNSUPPORTED SORT CONTROL STATEMENT PASSED

NO keyword-type KEYWORD ON SORT record-name STATEMENT

NO keyword-length KEYWORD ON SORT record-name STATEMENT

Although the user cannot take corrective action to resolve IDMSSORT error conditions
(because such errors are system internal), the user can retry the run. In some cases, the
internal error will disappear. If the error condition persists, consult with the person

responsible for tracking system errors.

Runtime Messages Issued by the DDDL Generator

110 Dictionary Loader User Guide

Runtime Messages Issued by the DDDL Generator

Nonfatal messages

1.

ILLEGAL ALIAS FOR PROG-ID

The name following the equal sign (=) in the LIBRARY option in the parameter
statement is missing.

2.

ILLEGAL DELIMITER

Statement keywords are not delimited by the required comma or blank.

3.

ILLEGAL MEMBER NAME

The member name is missing as the operand of the LIBRARY option.

4.

LINE EXCEEDS 72 CHARACTERS

The length of a generated DDDL statement exceeds 72 characters. The statement
must be edited by the user before being input to the DDDL compiler.

5.

MORE THAN 5 PROGRAMS IN GROUPING STATEMENT

A grouping statement specified more than five program names. The DDDL
Generator accepted the first five, ignored the additional program names, and
continued processing.

6.

MORE THAN 100 DIFFERENT PROGRAMS CALLED - TABLE EXCEEDED

A program being processed by the DDDL Generator called more than 100 other
different programs. The DDDL Generator generated ADD PROGRAM statements for

the first 100 programs called, ignored additional program calls, and continued
processing.

7.

OPTION/SELECT NOT RECOGNIZED

A statement keyword is not valid as expressed.

8.

TOO MANY LIBRARY NAMES

More than 99 library members are specified.

Runtime Messages Issued by the DDDL Generator

Appendix B: Runtime Error Messages 111

Fatal

1.

BAD RETURN CODE - module-name - return-code

The error originated in the named module (either IDMSUTIO or IDMSFLIO). The
module issued the listed return code. The job ended with a user abend code of 100.
This message reports a system internal error; rerun the job.

2.

INPUT FILE PRANREF WILL NOT OPEN

The job ended with a user abend code of 2000. Check the JCL to see if PRANREF is
specified correctly.

3.

INPUT FILE SYSIPT WILL NOT OPEN

The job ended with a user abend code of 2000. Check the JCL to see if SYSIPT is
specified correctly.

4.

MEMBER NOT FOUND IN LIBRARY (z/VSE users only)

The job ended with a user abend code of 100. Check the member name specified in

the LIBRARY option.

5.

OUTPUT FILE SYSLST WILL NOT OPEN

The job ended with a user abend code of 2000. Check the JCL to see if SYSLST is

specified correctly.

6.

OUTPUT FILE SYSPCH WILL NOT OPEN

The job ended with a user abend code of 2000. Check the JCL to see if SYSPCH is
specified correctly.

Runtime Messages Issued by the DDDL Generator

112 Dictionary Loader User Guide

Additional fatal messages

Note that the DDDL Generator may issue an additional class of fatal messages. These

messages are generated by the util ity module IDMSSORT and report system internal
errors.

IDMSSORT messages

IDMSSORT error messages are write-to-operator messages that are displayed on the
console and in the JES message listing. When the DDDL Generator transmits an
IDMSSORT message, the run abends with a user abend code of 3134 and a two-line
message appears in the following format:

+IDMS 999000L IDMSSORT - message-text
+IDMS 208001L 0100

Four examples of message text that can appear in the message are:

INVALID KEYWORD PASSED TO IDMSSORT

UNSUPPORTED SORT CONTROL STATEMENT PASSED

NO keyword-type KEYWORD ON SORT record-name STATEMENT

NO keyword-length KEYWORD ON SORT record-name STATEMENT

Although the user cannot take corrective action to resolve IDMSSORT error conditions
(because such errors are system internal), the user can retry the run. In some cases, the

internal error will disappear. If the error condition persi sts, consult with the person
responsible for tracking system errors.

Index 113

Index

$

$$$ diagnostic message • 21

C

COBOL input
samples • 83

control fi le
cross reference processor, creating • 43, 46
cross reference processor, sample • 55
DDDL generator, creating • 66, 68

worksheet, creating • 43
cross reference processor • 107

control fi le parameters, table of • 43
control statement fi le • 43

default processing options, table of • 43
Dictionary of Data Names report • 40, 59
executing • 60, 63

fatal runtime messages • 107, 110
fi le control statements • 46
general discussion • 43
IDMSSORT runtime messages • 107

nonfatal runtime messages • 107
output • 40
override processing options, table of • 43

parameter statement • 49, 53
PRANXREF program • 60
selection statement • 54
System Data Cross-Reference report • 40, 56

title statement • 53
VSE/ESA JCL • 60
worksheet, fi l l ing in • 46, 49

z/OS JCL • 60

D

DATA DIVISION Cross-Reference report

and cross reference processor • 46
field descriptions • 28
sample • 28

DDDL generator • 18, 64, 83, 103, 110

clauses, table • 66
control statement fi le • 66
editing generated statements • 77, 80

executing the compiler • 80
fatal runtime messages • 110

general discussion • 66
grouping statement • 70, 77
grouping statement examples • 72, 77
identifying nonunique names • 72

identifying synonyms • 72
IDMSSORT messages • 110
input • 64

nonfatal runtime messages • 110
operating with control statements • 64
operating without control statements • 64
output • 64

parameter statement • 68, 69
PRANIDDG program • 80
sample control statements • 83

sample generated DDDL statements • 83
VERSION clause • 69
VERSION statement • 69
VERSION statement syntax • 69

z/OS JCL • 80
z/VSE JCL • 80

DDDL output, samples • 83
diagnostic messages • 21

$$$ • 21
ANS,ANS68,ANS74 • 21
FLO • 21, 25

Diagnostic report
messages • 21, 25
sample • 21
types of problems flagged • 21

F

Fatal errors, consequences • 103

Fi le and Record Layouts report
and cross reference processor • 46
field descriptions • 25, 28
sample • 25

FLO diagnostic message • 21

G

grouping statement

coding rules • 70
examples of usage • 72, 77
parameter l ist • 70

sample • 70
syntax • 70

114 Dictionary Loader User Guide

I

IDMSDLIO • 107
IDMSSORT runtime messages • 107
IDMSUTIO • 105, 107

IDMSUTIO xeIDMSFLIO program processor
nonfatal runtime messages • 105

input program, program processor • 18

J

JCL
for z/VSE source statement l ibrary • 34
VSE/ESA, cross reference processor • 60

z/OS, cross reference processor • 60
z/OS, DDDL compiler • 80
z/OS, program processor • 34

z/VSE, DDDL compiler • 80
z/VSE, program processor • 34

M

Management Summary report, sample • 20

P

parameter statement

cross reference processor • 49
DDDL generator • 68, 69
program processor • 31, 34

PRANCOB program
for z/OS • 34
for z/VSE • 34

PRANIDDG program

for z/OS • 80
for z/VSE • 80

PRANXREF program

for VSE/ESA • 60
for z/OS • 60

PROCEDURE DIVISION, tracking use of • 28
program processor • 105

DATA DIVISION Cross-Reference report • 28
default runtime options, table of • 20
diagnostic messages • 21, 25

Diagnostic report • 21
executing • 34, 39
fatal runtime messages • 105, 107
File and Record Layouts report • 25, 28

input • 18, 20
Management Summary report • 20
output • 20, 31

override processing options • 31
override runtime options, table of • 20

parameter statement • 31, 34
PRANCOB program • 34
z/OS JCL • 34

z/VSE considerations • 18
z/VSE JCL • 34
z/VSE source statement l ibrary • 34

R

reports • 20, 28, 59
DATA DIVISION Cross-Reference report • 28
Diagnostic report • 21

Dictionary of Data Names report • 40, 59
Management Summary report • 20
System Data Cross-Reference report • 40, 56

S

see=DDDL generator VERSION clause • 69
see=DDDL generator VERSION statement • 69

selection statement
coding rules • 54
parameter l ist • 54

syntax • 54
SYSIPT • 105, 107
SYSLST • 105, 107
SYSPCH • 105

System Data Cross-Reference report
field descriptions • 56, 59
sample • 40, 56

T

title statement, cross reference processor
syntax • 53

V

VERSION clause • 69
VERSION statement

parameter l ist • 69
syntax • 69

VSE/ESA

cross reference processor JCL • 60

W

worksheet

fi l l ing in • 46
worksheet, control fi le

Index 115

and using program processor reports • 46
fi l l ing in • 46, 49

l ines on • 46
sample • 43
specifying selection criteria • 46

variables in selection statement, table • 46

Z

z/OS

cross reference processor JCL • 60
DDDL generator JCL • 80
program processor JCL • 34
program processor overrides • 31

z/VSE
=COPY facil ity • 18
and program processor • 18

DDDL generator JCL • 80
program processor JCL • 34
program processor overrides • 31
source statement l ibrary JCL • 34

	CA IDMS Dictionary Loader Dictionary Loader User Guide
	CA Technologies Product References
	Contact CA Technologies
	Contents
	1: Introduction
	System Overview
	CA IDMS Dictionary Loader Capabilities
	CA IDMS Dictionary Loader Reports
	Syntax Diagram Conventions

	2: Program Processor
	Input Requirements
	Output
	Management Summary Report
	Diagnostic Report
	File and Record Layouts Report
	DATA DIVISION Cross-Reference Report

	Parameter Statement
	Executing the Program Processor

	3: Cross Reference Processor
	Overview
	Developing a File of Control Statements
	Filling in Worksheets
	Parameter Statement
	Title Statement
	Selection Statement
	Sample Control File
	System Data Cross-Reference Report
	Dictionary of Data Names Report
	Executing the Cross Reference Processor

	4: DDDL Generator
	Overview
	Developing a File of Control Statements
	Parameter Statement
	VERSION Statement
	Grouping Statement
	Using the Grouping Statement
	Editing Generated DDDL Statements
	Executing the DDDL Compiler

	A: Sample COBOL Input and DDDL Output
	Sample COBOL Input and DDDL Output
	Sample COBOL Input and DDDL Output
	Sample COBOL Input and DDDL Output

	B: Runtime Error Messages
	Overview
	Runtime Messages Issued by the Program Processor
	Runtime Message Issued by the Cross Reference Processor
	Runtime Messages Issued by the DDDL Generator

	Index

