CA IDMS™

Database Design Guide
Release 18.5.00, 2nd Edition

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for yourinformational purposes onlyandis subject to change or withdrawalby CAata nytime. This
Documentationis proprietaryinformation of CAand maynotbe copied, transferred, reproduced, disclosed, modified or
duplicated, inwhole orin part, without the prior written consent of CA.

If you are a licensed user of the software product(s) addressed in the Documentation, you may print or otherwise make
available a reasonable number of copiesof the Documentation forinternal use by you and your employeesin connection with
thatsoftware, provided that all CA copyright notices and legends are affixed to each reproduced copy.

The rightto print or otherwise make available copiesof the Documentation is limited to the period during which the applicable
license for such software remains in fullforce and effect. Should the license terminate foranyreason, itis your responsibility to
certifyin writing to CAthatall copies and partial copies of the Documentation have beenreturnedto CA ordestroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CAPROVIDES THISDOCUMENTATION “AS IS” WITHOU TWARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FORA PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILLCABE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THISDOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IFCA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCHLOSS OR DAMAGE.

The use of anysoftware product referencedinthe Documentationis governed by the applicable license agreement and such
license agreementis not modified inanywaybythe terms ofthis notice.

The manufacturer of this Documentationis CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Governmentis subject to the restrictions
setforth in FARSections 12.212,52.227-14,and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
theirsuccessors.

Copyright © 2014 CA. All rights reserved. All trademarks, trade names, service marks, and |l ogos referenced herein belongto
theirrespective companies.

CA Technologies Product References

This document references the following CA products:
m CA ADS™

m CAIDMS™/DB

= CAIDMS™ SQL

m CAIDMS™ Presspack

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one sitewhere you canaccess the
information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

m Onlineandtelephone contactinformation for technical assistanceand customer
services

m [nformationabout user communities and forums
m Product and documentation downloads
m CA Support policies and guidelines

m Other helpful resources appropriate for your product
Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
cansend a message to techpubs@ca.com.

To providefeedback about CA Technologies product documentation, complete our
shortcustomer survey which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://ca.com/docs
http://ca.com/docs

Documentation Chandes

The following documentation updates were made for the 18.5.00 release of this
documentation:

m AssigningSegments to Page Groups (see page 254)—Removed indexes from the
MPGI restriction

Contents

Chapter 1: Introduction 11
OV B VI BW ..ttt ettt ettt b et et s b et e b et e e e b et eat s e et eae e s eae e e et ea e s e e e e ae e R e e e ae et eat e e et eat e s e e eae e b et eaeeb et e b et ent et enteaens et ene s b et ebe e enensens 11
DESTEN IMPI EMENTATION ...ttt ettt sttt et e b et e s sae s e s e se e st e be s ese st eneebessensenessansssensesessensssersans 12
SYNtAX DIaGram CONVENTIONS .o.uicuiiiiiiiiiteierese sttt sttt e s e s st e st s s st e st saesbesbe e e e e et e s aaeshesse e st e st et ete s esaesbessesssantantantassansenen 12
Chapter 2: Introduction to Logical Design 15
OVEIVIBW ..ttt ettt sttt st b e et s b et et e e st s e e e et e e st se e e et e R e s e ae R e e e st sea e s e e eee e R e e e st s et e R e e eme s et es e s e e e st s e et nbeneeneneenes 16
Determining the USErs' Data NEEAScccccceiieuieieieeieectesteeete e teste e et teete st e sesae e ebeaese st e s ebesaesessebassssansesassansesensasessansaneasans 17
Determining the Corporation's DAata NEEAScceciveirieririreteerte ettt st sa et sae e sse e e s e saenessessensssensesessnnsesensans 19
Overview Of the LOGICAl DESIZN PrOCESS......cciiiieiriieieeieeeree et te e e et e st e e se s et ete st e e et et ese st eseebassesesbessensesensasestensesessenessanes 20
Chapter 3: Analyzing the Business System 21
OVEIVIBW ..ttt ettt ettt st et s bt b et et s b et et e e st s e e e st e e st s e e e e R e e R e e e ae b e Re e st seae e s e e es e e R e e e Rt s et e b e e eme b ene e st s e e eness et nreneenensenes 22

Step 1: Defining General Business Functions

Step 2: Defining Specific Business Functions

Step 3: LiSting the DAta ElEMENTS....c..ci ettt ettt et et e se et e e e be b e e ebe st eneebe st eaesteneebestenserestannesenes
Step 4: 1dentifying the BUSTNESS RUIES.......cccieirieeeie et te et se sttt e s e s e e s e s e e et esane et esenesesesensnes 32
Step 5: ReVieWing the RESUITS OF ANAlYSIS ..ttt ettt e et aese st e st eneebe s eaesteneebeaenensenes 33
Chapter 4: Identifying Entities and Relationships 35
OVEIVIBW ..ttt ettt ettt sttt s et e b et e st e b et s et s e st s et e e e e e s e s e e e e m e e R e e e aE b e ae e st s e a e b e e ee e e b et e st b e e e b e e emtebenees e s e e eaeseenenbeeeneneenes

Identifying Data Entities
Identifying Relationships Among Entities

Types Of DAata REIQTIONSNIPS ..c.ccueeieieriieieeee et ettt sa e ettt e st e st e e e be st ebesbessebesaesesbensennesesennatans 41

General Guidelines for Identifying RelatioNShiPsccceirieireiiieere ettt s 43
Chapter 5: Identifying Attributes 45
OVBIVIBW ...ttt sttt ettt b st st e et e e et e s b e e st e st et et e b e b e b e s be e b e e h e e b e b e s e saees e e st e st e st e a e et e e b e e heebe e Rt e st e nt et e besess e nteatententantansanseres

Establishing Naming Conventions for the Attributes
Identifying the Attributes Of EACH ENTiTY ..ottt ettt sttt sae b eseebe s esesbesesbennesesans
GroOUPING the ATIITDULES ..ottt st e e e st e e s b e s e e e st e e e se b eneenesaenesbesesessanes

Identifying Unique Keys
Establishing Primary Keys

AN FYING WEAK ENTITIES ..ueveiciiieicieeeeeesterte ettt ettt e et a bt st e s s b e s e s et esesaeneebesaesessessanessensasensans
Identifying the Attributes for Each Relationship TYPE ..ottt ettt sa et st bens 56

Contents 5

[dentifying AttriDUTE CharaCteriSTiCS. .coiiiiieerieieieeeeitee et ete ettt e et e st e e st e e et e aesesbe s e beaeseesesbasesbansesassassesensesessansanensans 58

Chapter 6: Normalizing the Data 59
OVBIVIBW ..ttt ettt ettt st et s b et e b et eae e b et eat e e et e ae s eae e et e e st s e e aeea e e s et e at b eae e s et ea e e s et eae e b e e e aeebene e b et eneebeneehe e et enesb et ebeneenenrenes 59
WY NOFMATIZE DAt P ittt ettt sttt et e et e e st et e b e st en e ek et e se et e st e b et eaeebe s enessanteae st enesbentesessenes 60
NOFMAT FOIMS OF DATA.cucueuiirieieirieieiciririe sttt ettt b et b et b ettt s et s b e be et ebebe e b e b et seebese et ebenenensesenens 61
FITSTINOIMAL FOIM .ttt ettt ettt sttt et et et et et esseb e beneese st esessess et essesessebeseebassesebesessansesesans 62
SECONA NOIMAT FOMM ettt ettt ettt ettt sttt et e b e st e b s et b e b e s et se e b e st senbe st e st esenenessenentas 63
THITA NOTMAT FOMMititiiiitieeeteee ettt e e bttt e e e be st e e et e e ebesbe s abe st ene et e sessesansete s entesasassesensessssensesensans 64
HOW TO NOTM@TTZE DAt ...cuieeeieireeieieirtrieerie ettt ettt ettt et e bt s s e st re b et e b e st e snaenenenneneneas 66
Listing Data in FirSt NOIMAl FOIM ...ttt et te et a et e e s be et e st e s e et et eseebentesesbensesensesessansasastans 67
Listing Data in SECONA NOIMAT FOIM .ucuiiiiieiiirieieeenrie ettt ettt ss st sa st sse s e e et e e e besese s esenesesesaseneses 68
Listing Data in THird NOIMAl FOMM ..ottt te et sae e e st s ae e e be st et e e e e e sasesesbaseesesesessansssansans 70
Normalized Data for the Commonweather CoOrporation ...ttt n b bans 73
Chapter 7: Validating the Logical Design 93
Chapter 8: Introduction to Physical Design 97
OVEIVIEW ..o

Data Structure Diagram
Steps in the Physical Databhase DESIZN PrOCESS........ccuiiiriririeeriieteesie st tesesesteesse st sses e see e ste e s e seesessesessassessssessansesessesessenes 98
Physical Database Structures
SQL and Non-SQL Definitions

Chapter 9: Creating a Preliminary Data Structure Diagram 103
Developing a Data STrUCTUIE DIaBIam.. e cicieeeieieeeeteste et e et e te e e e te e e e s b assesessesessassebassessesansesessansesasensssansesessanserenes

Representing Entities......ccocevvveneninenienienenenenne

Representing Relationships Between Entities

EStimating ENtity LENGTS ..ottt ettt et st e st e se s s et esesaensesenes
Preliminary Data Structure Diagram for Commonweather Corporation......ccccevevereesieneeeeriseesesesese e ssesseenns 111
Chapter 10: Identifying Application Performance Requirements 113
OVEIVIBW ..ttt ettt sttt ettt e e s b et s et e e st s et s e e e e st s e e e e e e R e e e s e R e s e e Rt s e st s eaeee e e b e m e e s e s et s e e em e s et e s et e e ebeneenenreneeneeen 114
Establishing Performance Requirements for TranSaCtioNS........cccccceeieinieiieenieeee ettt et s re s 115
PriOr T ZING TraNSACTiONS......ectieiieiieietertert ettt st s e a et e s b e sa e s s e s st e s e e st et et et e saesaesae e st e b e b e se s essesseentensentansansassassassens 116
Determining How Often Transactions Will Be EXECUTEMccuceiueieieiieiniceeesteestesee ettt re st et besae e ens 117
[deNntifying ACCESS REQUITEIMENTS ...c.ccceieueeiririeieiisieiesesiseesesesessesessseetesesessesestesesasasessesesessssesesesessesssssesssensssesasenssseseseseseseensens 118
Determining the Database Entry Point and Access Key for Each Transactionccoeceeeveveveiciescniseseceseseeeseeeeenns 119
PrOJECTING GrOWEN PAtLEINS ...ouiiieieiecieieteeste ettt ettt st ettt et et e e se s e s ene e et ese et saese et et asensetenenessesenarensens 120

6 Database Design Guide

Determining the Number of Entities in Each RelationNShip.....ccccoucicieieiniceeecre ettt 121

Determining How Often Each Entity Will Be Accessed

Chapter 11: Determining How an Entity Should Be Stored 123
OVBIVIBW ...ttt ettt sttt ettt et e tesbe s bt e st et et e b e s e b e e b e e st e st e Rt e b e s b e sa e s st e at e ateae e e e b e s e eheeRe e Rt e at et e s esbesbesaesatenbesansensessessennes
LOCATION IMIOTES ...cuveveeniieieiiirietetete ettt ettt ettt ettt b e bbb b st b e s e e b e b e st stk e s et e s et e b e st e s b e ke st e st ebene st nbene et ene
(2T 0o [T o T2= £ o o FOU OO OO ST
Clustering.......ccoeeveeee.
Guidelines for Determining How an Entity Should Be Stored
Is This Entity Both @ Parent and @ Child?......c..civeiiiiiinerineneriecrees ettt st ss s nes 128
Is This a Parent Entity but NOT @ Child ENTiTy?....ccciiicieeeeceee ettt sttt st et 129
Is This a Child Entity but NOt @ Parent ENTity ...ttt sss ettt nnnas 130
Is Generic Retrieval Required and Is the Entity Relatively StatiC? ... iienecverreeces s 130
GraPhiC CONVENTIONS ..ocuitiictiieieietee ettt ettt e e st e et e e e be b e se et e s ese b eseesessaseebe st essebaneese b eneebe st eseebesbessesaneebessensetansesensan 130
Conventions for SPeCifying LOCAtioN IMOUE......c.ccviiiireirieesere ettt sttt a e sae e sseneeseseen 131
Conventions fOr REPreSENTING INAEXESc.cccieieiieiirieieeie ettt ettt a s st e e et e s ese et e e eseete e ebesaensetensesenean 132
Location Modes for Entities in the Commonweather Databaseccccccvveerreecescc e 132
Revised Data Structure Diagram for the Commonweather Corporation......cccvevceveceniereenensceseeseseessese s 134
Chapter 12: Refining the Database Design 135

Evaluating the Database Design
REFINEMENT O PTIONS. ..ottt et ettt e st e st e e et et ese et e e ebe s ese et e st ans et esseseebansebe s essebenseseebensesebeseebensesessenserenes

Estimating |/Os for Transactions

Sample Exercise #1: Estimating 1/Os for a Retrieval TransacCtionccocceiereeieeeeenieieeeete e esssesese e nanes 139
Sample Exercise #2: Estimating |/Os for an Update TranSaction.......cccceeeeeerirerireeseneneeeeesereseesesessseseesesesssssessens 141
Eliminating UnNECESSAry ENTITIES ...cccvcivieieeieieeeee ettt ettt ettt e b ese et e st ebe st ensebensesestene et essansesenss 142

Collapsing Relationships

Introducing Redundancy

Eliminating Unnecessary RElatiONSiPS......cciciieieiicieeeeieeteie ettt te sttt e e st saese st e s e e be st eseebe s esesesessansesenes 146
AQUING INUEXES vttt ettt ettt et et e e et et et e e e se st ese e b e e e s e s s e s ese et eseesesseseebessese st eseaseesessesessasessessasesaasessessansesenss 147
Refined Data Structure Diagram for Commonweather Corporation ... s seens 153
Chapter 13: Choosing Physical Tuning Options 157
OVEIVIBW ..ttt ettt sttt ettt e e s b et s et e e st s et s e e e e st s e e e e e e R e e e s e R e s e e Rt s e st s eaeee e e b e m e e s e s et s e e em e s et e s et e e ebeneenenreneeneeen 158
PlacemeENnt OFf ENTITIiE@S 1N ArBES ...ciueuiiririeieieririe ettt sttt ettt sttt ettt e s e et e ae et et ese e et et ene e st b ene st ebeneneses 160

SegMENTAtiON Of DAtANASES ..cvieiriiieirc e ettt ettt e et e e ae e b e e neese s enenaan 161
(D § = I oY g o] o] =5 o o FO O OO OO OO O ORUPPRPPOPRRSRPRRR 165
RelatioNShip TUNTNEG OPtiONS ..ccuiiiiieiretee ettt sttt b e sttt e et s b e b e st s b et ese b e st s b et e st eae b enessentesenes 168

Linked and Unlinked RelatiONSiPSccvuiiceriririeiseieesieteeste ettt ettt a et b s be s esesbessese st esestanaesenns 169

Unlinked Relationship TUNING OPtioNSccveceririeeiririeteesieeesesisessesesessesestsassesesseseseseesssssessssssesssssesesssessnsssssesssessesssen 170

Contents 7

Linked Relationship TUNING OPLiONS ...c.ccuciceeieieeieeiec ettt sttt e sttt e st et st ese s se e ebesbe b eseebensesensesessansesanes 171
Nonsorted Order

Pa¥o Lo LR uRoY o b1 Yo T A0 o] 4 o] o <SR O R STRRRR 179
LMK 1ttt ettt ettt b e Rt Rt A R E AR e R SRR Rt e R e R et e R Rt ne R et ne R R et s enenen 182
Y 1=Y 0 0] o =Ty Yo TN @ o 4o 3OO RRSTRTR 184
REMOVING FOT@IGN KBYS ...ttt ettt b e s b et st etk e b e be s b e sbesateab e be b asbeebesnesnis 187
Index Key Compression
NON-SQL TUNINE O PTiONS e ittt st st srte st e st e st e st e s e s s bt e s e esbeesseesbeese e teesse et e e se e seesseenseestesaeesatesaseensesatesnsesssasaeessnans 188
MUltiMEMD EF REIATTIONS NIPS...ccuiiieiieiriiirerie ettt ettt st ae e s e sae e sbe st esesaeneenessensennass 191
DireCt LOCATION IMOTE ...ttt sttt st s b et s b etk be et st ebe et e b e bt sbeset st et ese et esenan 195
Variabl@-LENGth ENTiTiES ..ccueiiiieie ettt ettt b bt s e et b e s et s b et eseeae st enesseneenenes 197
Database Procedures..........
CALC Duplicates Option
RelatioNship TUNTNE OPtiONS ..cceiiiieieeieere ettt ettt et e et e s e sesse st esesae e ssesesesaeneesensansennnss 200
INAEX TUNTNE OPTIONS....uiiitiieieieietiteee e ste et e et e e e te st e e s te e sesteseebe st ese st assebasaese st esbaseebensesa st ansesensabessanseteebessesentesessansesenes 200
Non-SQL Entity and INAeX PIACEMENT.......ccvmiiiieiceeree ettt et st 203
Physical Tuning Options for Commonweath er COrporationc.ccceceirereeiereeeseneere et ss st sa e s ae e senes 204
Refined Commonweather Corporation Database Design (For SQL Implementation)cccececeeeevveevenereeneniennnes 206
Refined Commonweather Corporation Database Design (For Non-SQL Implementation)......cccccceeveeerenennne. 208
Chapter 14: Minimizing Contention Among Transactions 211
OVEIVIBW ..ttt ettt r et s s et e e s et s e e e et R e e e st s e s e s Rt e e ae s et e st R et e R e e et R et em e s et e s e e e e enenee st nreneeneeen 211
SoUrces Of DAatabhase CONTENTION ..ottt sttt sttt b ettt e et ettt e ke e s e e et ebanan 211
AT CONETENTION ..ttt ettt b e s ae s b e s st s st e b e b et e e b e s be e st sae e st et e b e eae e st e nteneentensansansensanns 212
ENtity OCCUITENCE CONTENTION ..cueuiiiieieieeeteeeee ettt ettt ettt b et h e et b et s e bt e st s e et e b e b enesbe e ebe e e e eneaes 214
MINTMIZING CONTENTION ...ttt ettt e s bt st st ettt e e s b e s b e sbesae e st e st et e b e b e s e s atent et et etesbesbessessennt 215
Minimizing Contention fOr ENtities @Nd Ar@as ...ttt sttt sttt ssenenen 216
Chapter 15: Determining the Size of the Database 219
OVEIVIBW ..ttt ettt ettt e e e s et e et s et e e e et s e e e e e R e e e R e R e s e e Rt s e st R et e et e R e e e R e e et R et en e s et s e s e e enenee st nreeeneeen 219
General Database Sizing CONSIAEIATIONS......c.ccivviiririeirieire et este ettt e et e e e e e st e e e e e be st eseebe e esesbesaesessenaesesseneesaneesesean 220
Sizing Considerations for Compressed and Variable Length ENtities.......cccoveerirveeennieeneneeeeseeeesisseseseseens 221

Space Management

Overflow Conditions
CalcUlating the SizZ@ Of @N AP ...cuieeireeee ettt sttt et s s et e s e s se st e e e b e e ese st ese e b et enesbensanessersaseren
Step 1: Calculating the Size Of EACh CIUSTENc.coiiuiiiieecceeetetees ettt sttt ettt b e sae et e s enenan
Step 2: DetermMiNiNgG the PABE SIZE ..ottt st et ettt e e e s s s b e s enesae st ssessenesseneeserean
Step 3: Calculating the Number of Pages in the Area
AlTOCATING SPACE FOI INUEXES ...ttt a bbb bbb bbb bbb bbb et ettt e e ettt ne s
INAEX SETUCTUIE .ttt ettt st b st b et b st st b e st s e b e st e b e b e s et e b e b et s b e b e st st st ebenee et ebenensssenin

Calculating the Size Of TN @ INAEX ..o.eceeiieeeeee ettt ettt sttt e bbb e b e e et et eneeseseebeseneetensesenan

8 Database Design Guide

PlaCiNG ArEAS 1N FIlES...icuciitiieeieieietceteee ettt ettt ettt e te e et et e e et e e ebe st eseebesbansebessesesbansebe s ess et ensessebenteseebensesensesessansasanes 250

SIZINE A MEEADASE....eiieeieeee ettt ettt et st et e b et e s et e s e s ae b e se e b et e s et e Rt e b e st e Rt seseeneebe e e R et e e e b e s ene et e e enenen 252
Varying the Database K&Y FOIMAt.......ccccciviiieeieiiieiee ettt et e st et e sttt et ae s s be e e se st essebessesestenseseaanensenes 253
ASSIgNING SEEMENTS 10 PAGE GIrOUPS .cuveuiiiieiiteteete ettt ettt et e e 254

Chapter 16: Implementing Your Design 255

OVBIVIBW ...ttt ettt ettt sttt ettt e st e s b e s bt e st et et e b e b e b e e b e e Rt e Rt e a e e b e s b e she s et e At e ateae e e et e sbe e Rt e Rt e Rt e ab et et e sbesbesaeeatebesbenbesbesresnenns 255

REVIEWI NG th @ D BSTIEN ittt ettt ettt e s et e e bt e se et et e st se e st e se s e ese et e s ese st eneebesbensesesasesaessesessensssanes 255
Step 1:Review the Logical Database MOGEI ...ttt ettt et et st et e e senan 256
Step 2: Review the Physical Database IMOE ...ttt sb e a e saes 256

IMPIEMENTING TNE DBSTEN...ciiiiieietiteeeetee ettt ettt e et st e et e e ese st e st esesbensebe st eseebensebesbenseseetensebessesessensesanes 262
Implementing YOUr DESIZN With SQLccccvueeriririeiirieenereeeeresiseeeseseeesesesae e sasse e et sssessssssasessssesessssessnsssssesanesesssen 263
IMPIEMENTATION SEEPS 1ottt sttt e e e e e e st e e e e s be s e s et eseseeseesesaeneebensansesensenessansesanes 264
Implementing Your Design With NON-SQLcccceiirinieieeiecee ettt sttt st et st s et st ssese b eneebe s seaes 269

Implementation Steps

Appendix A: SQL Database Implementation for the Commonweather

Corporation 275
Logical Database Definition Listing for the Commonweather Databaseccccoeveeveieericiccccesee e 276
VIEW D EfINITONS .ttt sttt sttt sttt sttt bbbt b bbb bbbt bbb se bbb b b e s e e s b se e et e e et e e e e e eenenes 286
SUDSCREMA DEfi NIt ON.c..uiiieeee ettt sttt b et b ettt e bt b et st et ene et ebesenens 287

Appendix B: Non-SQL Database Implementation for the Commonweather

Corporation 289
Logical Database Definition Listing for the Commonweather Databasecccveceeeeeereciceeeeeee e 290
Appendix C: Zoned and Packed Decimal Fields as IDMS Keys 301
OVEBIVIBW ..eitiiieeieeieeste st sste st e s et s st e st e st e s te e s e e st e e aeesatesseesaeeabe e se et e eaeeessaesse e se e et e easesaeesaeesaee s s e eneesaeenaeesea e se e se e beensaesbaanseesennseenses

AN LU T ol oo 110 SR

Signed Versus Unsigned Keys
Sorted Chain or Index Sets
CALC RECOIAS ..veveiveiieiueetetestictiete et esetesbestestesseessessessesssebsessessessessessassastastesssessessensenssssassessessessensestessesssessessensensessessesssensan

Index 307

Contents 9

Chapter 1: Introduction

Overview

This section contains the following topics:

Overview (see page 11)
Design Implementation (see page 12)
Syntax Diagram Conventions (see page 12)

A databaseis a computer representation of information that exists in the real world.
Like a painting,a databasetries to imitate reality. Designinga databaseisanartform,
anda successful database bears the mark of a thoughtful, creative designer.

For a given database problem, there may be several solutions. Whilesomedesigns are
clearly better than others, there is noright or wrong design. The structure of your
databasewill therefore be determined not only by the requirements of the business but
alsobyyour individual styleas a designer. As you develop and refine the design for a
database, let your intuition be your guide.

The purpose of creatinga databaseis to satisfy theinformation requirements of
business application programs. Before users can run their application programs, the
databaseadministrator (DBA) must design and implement the corporate database. As
the DBA or databasedesigner,you areresponsiblefor databasedesignand
implementation.

Data models

To design a database, you must develop two different data models:

m The logical model describes all corporateinformation to be maintainedinthe
database. This model represents the way the user perceives the data.

m The physical model describes how the datais stored and accessed by the system.
The physical design for a databasebuilds on the logical model. Duringthe physical
design process, you tailor the logical design to specific application performance
requirements and planthe best use of storage resources.

Iterative process

Creating a design for a databaseis aniterative process. After you have developed the
logical and physical models, you need to review the design process and the available
documentation with users inyour corporation. As users make suggestions for
improvement, you should make appropriate changes to the design. Review the design
repeatedly until itis acceptableto the user community.

Chapter 1: Introduction 11

Design Implementation

Design Implementation

The databasedesignyou create can be implemented usingeither of two
implementation languages provided by CA IDMS/DB:

= SQL DDL
m Non-SQL DDL

Design considerations aredocumented in this manual.

Note: For complete SQL DDL statements, see the CA IDMS SQL Reference Guide. For
complete non-SQL DDL statements, see the CA IDMS Database Administration Guide.

Syntax Diagram Conventions

The syntax diagrams presented in this guide use the following notation conventions:
UPPERCASE OR SPECIAL CHARACTERS

Represents arequired keyword, partial keyword, character, or symbol that must be
entered completely as shown.

lowercase

Represents an optional keyword or partial keyword that, if used, must be entered
completely as shown.

italicized lowercase
Represents avaluethat you supply.
lowercase bold

Represents a portion of the syntaxshownin greater detail atthe end of the syntax
or elsewhere inthe document.

Points to the defaultina listof choices.

Indicates the beginning of a complete piece of syntax.

» g
»<4

Indicates the end of a complete piece of syntax.

L

Indicates thatthe syntax continues on the next line.

v

Indicates thatthe syntax continues on this line.

»

12 Database Design Guide

Syntax Diagram Conventions

Indicates thatthe parameter continues on the next line.

v

Indicates thata parameter continues on this line.
»— parameter ———»
Indicates a required parameter.
»— parameter ——»
parameter
Indicates a choiceof required parameters. You must select one.

»

v

L parameter l

Indicates an optional parameter.

v

parameter :l
parameter

Indicates a choice of optional parameters. Select one or none.

- parameter ——»

Indicates thatyou canrepeat the parameter or specify more than one parameter.

'ameter — L5
»>—¥— parameter

Indicates thatyou must enter a comma between repetitions of the parameter.

Chapter 1: Introduction 13

Syntax Diagram Conventions

Sample Syntax Diagram

The following sample explains howthe notation conventions are used:

Required portion of parameter
Beginning of Required .)
the syntax er Optional portion of parameter
Usersupplied value

Syntax continues
on the next line

Syntax continues on this line Comma required between repetition

Required parameter Repetition allowed
Select one

I .
y— KEWDI\Q\D—{aHaﬂIe

varrable

wariabfle
varrable

Optional keyword

Select one or none

Portion of syntax
Default expanded elsewhere

End of the syntax

t KEYWORD variable
KEYWORD

14 Database Design Guide

Chapter 2: Introduction to Logical Design

This section contains the following topics:

Overview (see page 16)

Determining the Users'Data Needs (see page 17)
Determining the Corporation's Data Needs (see page 19)
Overview of the Logical Design Process (see page 20)

Chapter 2: Introduction to Logical Design 15

Overview

Overview

What is logical database design

Logical databasedesignis theprocess of determining the logical data structures needed
to supportanorganization's information resource. The logical design process helps you
to implement a databasethat satisfies the requirements of your business organization.

Logical designis critical to the implementation of a corporate database. Ifyour logical
designis incomplete or has flaws, making changes to the means of data collection,
storage, and protection can be costly later on. By usinga well-conceived preliminary
design, you can easilyimplementand test a database. A sound logical design therefore
helps to ensure a successful implementation.

A complete andaccuratelogical design for a databasehelps toensure:

m Data independence—The logical design processyieldsa database model thatis
independent of programor physicalstoragerequirements. This model represents
the way data structures appearto users. It does not specify how data structures are
maintainedinor processed by the computer.

m Physical database flexibility—Because the logical designis independent of storage
and performance requirements, itcan be used to implement a database used with
any hardware or software system. During the physical design process, thelogical
design canbe tailored to satisfy theneeds of particularusers ortosuita particular
data processingenvironment.

m Integrity—The logical designidentifies both the data maintainedinyour
corporation andthe rules of the business. These business rules can beused later to
define integrity rules for the physical design.

m User satisfaction—The logical designrepresents data structuresinasimple,
understandableformat. You canshow the designto users at anystage of
development without intimidatingthem. The logical design can beeasily modified
to incorporateusers' suggestions and feedback.

There are many viableapproaches availablefor logical databasedesign.In this manual,
we combine several design techniques, including systems analysis, the
entity-relationship approach,and normalization.

Note: The entity-relationship approach was developed by Peter Chen. For further
information on his approach to databasedesign, see Entity-Relationship Approach to
Information Modeling and Analysis, Peter P. Chen, editor, ER Institute (1981).

By usingthese techniques, you can create alogical model thatconsists of:

m Descriptions of the data required by each user application

m A comprehensive pictureof the corporation's data

16 Database Design Guide

Determining the Users'Data Needs

Determining the Users' Data Needs

Users of application programsrequireaccess toonly selected portions of a database.
Therefore, you need to develop alogical model thatincludes descriptions of the data
required by each program.

Data tables

To the user of an application program,informationina CAIDMS/DB databasewill
appearinthe form of data tables. Data tables consistof columns and rows of related
data. For example, a table might containinformation abouta company's departments,
organized under headings such as DEPT ID, DEPT NAME, and DEPT BUDGET. A
DEPARTMENT table with these categories of informationis illustrated in the following
diagram.

Information for company departments is maintainedinthe Department data table. A
columnrepresents alistofall department IDs. Arow represents a singledepartment.

Department data table

DEPT ID DEPT NAME DEPT BUDGET

124 MARKETING $ 410,000

128 DOCUMENTATION $ 500,500

131 RESEARCH AND DEVELOPMENT $ 890,000

11Q OPERATIONS $ 1,900,000
Views

Users can manipulatecolumns and rows of data by accessingtables directly or by
defining views of the database. Views enable users to select specified rows or columns
or to combine information from two or more tables. For example, a view might use the
relational join operation to combine information from the DEPARTMENT table and the
EMPLOYEE table, as illustrated below.

Relational join operation

To show company employees with their departments, the DEPT/EMPLOYEE view uses
the common DEPT ID columnto jointhe Department and Employee data tables.This
join operationselects all information fromthe tables that pertains to department 110.
Inthe DEPT/EMPLOYEE view, the project operation has been used to includethe DEPT
ID and DEPT NAME columns from the DEPARTMENT tableand the EMP # and LAST
NAME columns from the EMPLOYEE table.

Chapter 2: Introduction to Logical Design 17

Determining the Users' Data Needs

Department Employee
DEPT ID DEPT NAME DEPT BUDGET EMP # LAST NAME MANAGER DEPT ID
124 MARKETING $ 410,000 I 2011 FINE 2013 110
128 DOCUMENTATION $ 500,500 2014 SMITH 2013 131
131 R&D $ 890,000
110 OPERATIONS $ 1,900,000 | | | ig:z S’fn’gsf igl: :;2

Dept/Employee view

DEPT ID DEPT NAME EMP # LAST NAME

110 OPERATIONS 2011 FINE
110 OPERATIONS 2013 GOODE

18 Database Design Guide

Determining the Corporation's Data Needs

Determining the Corporation's Data Needs

As the databasedesigner,you must understand all data usedin your corporation.Once
you have determined the user's information requirements, you need to develop a
comprehensive picture of the corporation's data. Your logical design mustincludea
complete description of this data.

Entity-relationship diagram

To represent the total picture, you can use the entity-relationship approachtological
design. With this approach, you develop an entity-relationship diagram, which serves as
a model of the entire corporateenterprise. This diagramvisually represents all data
relationships thatexistwithin the corporation.

Entities

If data tables allowyouto see the "trees" ina database, the arrangement of entitiesin
anentity-relationship diagramhelps you to represent the "forest." An entity is any
general category of information used for business data processing. For example, the
DEPARTMENT entity might describeinformation about the departments ina
corporation, whilethe EMPLOYEE entity might describe company employees.

Entity-relationship diagramming

When two or more entities ina databasesharea relationship, their relationship can be
graphically depicted on the entity-relationship diagram.

Inthe diagrambelow, the DEPARTMENT and EMPLOYEE data entities are related
through the relationship BELONGS TO.

DEPARTMENT

BELONGS
TO

EMFLOYEE

Chapter 2: Introduction to Logical Design 19

Overview of the Logical Design Process

Overview of the Logical Design Process

Duringthe initial stage of logical design, you identify the business problemthat users
hope to solve by creatinga database. After interviewing several employees, you
perform a thorough analysis of the business system, determining the processing
functions performed by the organization and the flow of data duringtypical executions
of these functions.

An analysis of the system provides documentation of the types of data required by users
to perform their day-to-day business tasks. With this documentation, you can create the
entity-relationship diagram.

Procedure

Logical databasedesigninvolves thefollowing procedures:

m Analyzingthe business system

m |dentifyingthe data entities (or data tables)andtheir relationships

m Identifyingthe data attributes

m Normalizingthe data attributes

m Verifyingthat all business functions aresupported by the logical design

Note: The firstthree procedures listed aboveare often performed concurrently. For
example, inmany instances, you will identify data entities, relationships, and attributes

as you analyzethe business system. By drawinga rough entity-relationship diagram
duringthe systems analysis phase, you can sometimes simplify the design process.

Review the process

After you have performed the procedures listed above, you need to review the process
andthe availabledocumentation with users inyour corporation. As these users make
suggestions forimprovement, make appropriatechanges to the design.

Each of the five major procedures of the logical design process isexplainedindetail in
Chapters 3 through 7.

20 Database Design Guide

Chapter 3: Analyzing the Business System

This section contains the following topics:

Overview (see page 22)

Step 1: Defining General Business Functions (see page 24)
Step 2: Defining Specific Business Functions (see page 25)
Step 3: Listingthe Data Elements (see page 29)

Step 4: Identifying the Business Rules (see page 32)

Step 5: Reviewing the Results of Analysis (seepage 33)

Chapter 3: Analyzing the Business System 21

Overview

Overview

Systems analysisisa necessaryintroduction to databasedesign. Analyzinga corporate
business systemis a serious endeavor, about which many books have been written. Itis
not the purpose of this manual to describethe various methodologies availablefor
performing systems analysis. Sincethis manual deals primarily with databasedesign, it
cannot present anything but an overview of systems analysis.

Analyzingthe business systeminvolves gatheringinformation aboutthe day-to-day
functions of the organization, documenting this information, gathering more
information,and soon, until a clear picturedevelops of the operations of the
organization.To fully analyzethe business system, you need to:

1. Define the general business functions.

2. Break down the general business functions into specificfunctions.

3. Identify the data elements used for functions and categorize them by subject.
4. ldentify the business rules.

5. Review the results of analysis.

You canfollowsteps 1 through 5 below to perform a thorough analysis of your
organization. Before you perform these procedures, you may need to write a

description of the organization. This description will beused as the basis for systems
analysis.

Organization description for the Commonweather Corporation

Below is a samplecompany description for the Commonweather Corporation.

Commonweather Corporation is a leader in the new, rapidly
expanding field of external climate control. Commonweather
has offices in five locations. Since its incorporation,
560 employees have been hired. Most of these employees are
still with the company and have held, on the average, two
different positions.

22 Database Design Guide

Overview

Because Commonweather anticipates rapid growth, it has

created an organizational structure that will be well

suited to a company with many more employees. It has
identified 41 different job titles and has created nine
departments, each with its own department head. Several
employees in each department have been appointed to supervisory
positions and have hiring authority. Employees are, on
occasion, assigned to head or participate in interdepart-
mental projects. In two years, the personnel department
anticipates that there will be eight ongoing projects.

To facilitate the search for new employees, the personnel
department has identified 68 skills that will need to be
represented in the company's future employee base. When
an employee is hired, the employee's level of expertise
for each of these skills is identified.

The personnel department believes that by offering
excellent employee benefits they can meet Commonweather's
personnel needs. Therefore, they offer generous insurance
benefits. Each employee is offered coverage in a life
insurance plan, a dental plan, and a health plan (HMO or
group-health). Employees can have complete family coverage
or dependent coverage only.

A copy of each insurance claim filed by an employee for
dental, hospital, or nonhospital services is sent to the
personnel department. Each dental or nonhospital claim

can be for up to ten dental or physician services. The
personnel department submits all claims to the insurance
companies. The department keeps a copy until the claim

is paid; then the claim is thrown out. An employee cannot
change coverage until all outstanding claims have been paid.

Chapter 3: Analyzing the Business System 23

Step 1: Defining General Business Functions

Step 1: Defining General Business Functions

What is a business function?

A business functionis an activity performed duringthe day-to-day operations of an
organization.The types of functions performed by a company determine the logical
organization of the corporatedatabase.To develop a complete logicaldesign fora
database, you therefore need to listallfunctions performed at your organization.

Often a business function can be broken down into several smaller functions. To avoid
getting lostin the details, you should begin by listingthe most general business
functions.

Deriving the function list

By reviewing the company description, you can derive a listof the most general business
functions.The followinglist of functions might be derived from the company description
for the Commonweather Corporation:

m Hireemployees

m Terminate employees

® Maintain employee information

® Maintain officeand department information

m Maintaininformationaboutsalaries and jobs
® Maintainskills inventory

m Maintain personnel information about projects

® Maintaininformation aboutemployee insurance

24 Database Design Guide

Step 2: Defining Specific Business Functions

Step 2: Defining Specific Business Functions

Smaller units of work

To break down the general business functions into smaller units of work, you need to
think about what activities areinvolved in performinga particular business procedure.

For example, the general function Maintain skills inventory might involvethese
activities:

m Add askill

m Add askill foranemployee

m |dentify skillsfor an employee

m |dentify skilllevel for an employee skill

m |dentify all employees with a particular skill

m Identify all employees with a particular level of a particularskill

m Upgrade anemployee skilllevel
Transactions

After you have broken down each general functioninto its component steps, you should
be ableto identify the mostimportant application transactions of your organization.
Your descriptions of these transactions canthen be used by the MIS staff to develop
application programs.

For further information on application development, see the CA ADS Application Design
Guide.

In many instances, business functions can be broken down into many levels.Therefore,
you may have to perform step 2 repeatedly to identify the most detailed functions of
the business. For example, you might need to break down the function Maintain skills
inventory several times before you canidentify the application transactions.

Specific business functions for Commonweather Corporation

Below is a complete listof detailed business functions for the Commonweather
Corporation.

Chapter 3: Analyzing the Business System 25

Step 2: Defining Specific Business Functions

1. Hire employees:
a) Add an employee
b) Assign an employee's position
c) Assign an employee to an office
d) Assign supervisory authority for an employee
e) Assign supervisor for an employee

f) Assign an employee to a department

2. Terminate employees:
a) Delete an employee
b) Delete an employee's position
c) Remove an employee from an office
d) Remove supervisory authority for an employee

e) Remove an employee from a department

3. Maintain employee information:
a) Assign or change an employee's position
b) Assign an employee to or remove an employee from an office
c) Assign an employee to or remove an employee from a department
d) Assign or remove supervisory authority for an employee
e) Assign or change supervisor for an employee

f) List employees for a department

4. Maintain office and department information:
a) Assign or delete an office
b) Change an office address
c) Add or delete a department

d) Change a department head

26 Database Design Guide

Step 2: Defining Specific Business Functions

Maintain information about salaries and jobs:
a) Create a job

b) Provide a job description

c) Eliminate a job

d) Establish job salaries

e) Change job description or salary

Maintain skills inventory:

a) Add a skill

b) Add a skill for an employee

c) Identify skills for an employee

d) Identify skill level for an employee skill

e) Identify all employees with a particular skill

f) Identify all employees with a particular skill level

g) Upgrade an employee skill level

Maintain personnel information about projects:
a) Add a new project or delete a completed one
b) Assign and remove employees from a project
c) Assign or remove a project leader

d) List names and phone numbers of all workers on a project

Chapter 3: Analyzing the Business System 27

Step 2: Defining Specific Business Functions

Maintain information about employee insurance:

a) Add or remove a health insurance plan for an employee
b) Identify the health insurance coverage for an employee
c) Change coverage for an employee on a plan

d) Add or change plan and coverage for an employee

e) Add or delete a claim

f) Show life and health insurance details for an employee

g) Submit duplicate claim forms for an employee accident

28 Database Design Guide

Step 3: Listing the Data Elements

Step 3: Listing the Data Elements

Identify data each function requires

After you have listed the business functions for your organization, you can begin to
identify the data that each functionrequires.Your listof data elements (data table
columns) will mostlikely expand and change as you gather more information about the
organization. At this stage inthe design process, simplylistthose elements thatare
clearly associated with each business taskand group them accordingto general subject
categories.

Consider usingthe following resources to identify data elements.
Interviews

Throughout the databasedesign process, you conduct interviews with company
personnel. Your meetings should giveyou an idea what data elements are required for
particularbusinessfunctions.

List of business functions

Many data elements can be identified in the list of detailed business functions
(application transactions). Review your listof functions carefully to see if any elements
canbe recognized.

Data flow diagrams

To indicatethe flow of information within the organization, you need to draw data flow
diagrams (DFDs) for each of the general and specific business functions. ADFD should
identify what informationis needed to perform a particular function, where this
information resides (logically, notin storage), and where itis likely to be moved during
the courseof processing. To identify the data flows, perform the following procedures:

1. Askthese questions:
a. Where does the data come from?
b. What happens to itwhen it reaches the system?
c. Where does itgo?
d. Whatdatashouldbe restricted from useraccess?

Note: Once you have identified any restrictions thatapply to the use of the
information, you can begin to consider which security measures should be
implemented for the system.

2. ldentify the sources of information by definingthe data stores:
m People

m Departments

Chapter 3: Analyzing the Business System 29

Step 3: Listing the Data Elements

m Documents

3. Verify the completeness of the information with users.

Data flow diagrams for a sample business function

The following diagramshows data flowdiagrams (DFDs) for a general business function

andits component steps.

Information
displayed
in table format

(

EMPLOYEE
DATA

Emp ID
Emp name

gkilt

IDENTIFY
SKILLS FOR AN
EMPLOYEE

code-

gt d

ID NAME SKILL

SKILL
DATA

cripholl)
es Skill code

Skill name
Skill description

ADD A
SKILL

SKILL
FILE

Hierarchy plus Input-Process-Output diagrams

To indicatethe flow of information within the organization, you may alsowantto draw

Hierarchy plus Input-Process-Output (HIPO) diagrams for each of the business

functions. A HIPO diagramcan help you to identify what informationis needed to
perform a particularfunction. The diagrambelow shows a HIPO diagramfora sample

business function.

30 Database Design Guide

Step 3: Listing the Data Elements

SKILLS
INVENTORY
ADD A ADD SKILL FOR
SKILL AN EMPLOYEE

HIPO overview diagram for "IDENTIFY SKILLS FOR AN EMPLOYEE" module

Input Process Qutput
® RETRIEVE SKILL ® EMP NAME
e EMF ID INFORMATION FOR ® SKILL CODE

THE EMPLOYEE ® SKILL DESCRIPTION

Example

The following data elements might be accessed by the Maintain skills inventory
function:

EMPLOYEE

Employee name
Employee ID

Employee office

The grouping of elements under the categories EMPLOYEE and SKILL may change later

on.

SKILL

Skill code

Skill name

Date acquired
Skill description

Chapter 3: Analyzing the Business System 31

Step 4: Identifying the Business Rules

Step 4: Identifying the Business Rules

The rules of a business govern the execution of business functions againstthe database.
Additionally, they define data integrity concerns that must be addressed duringthe
courseof databasedesign.The business rules for your organization can bederived from
the analysis of the company description, the function lists, the DFDs, and the HIPO
diagrams.Compilea complete listof these rules.

Business rules for the Commonweather Corporation

The followingis a listof business rules for the Commonweather Corporation.

1.

10.

There are currently five offices; expansion plans allow
for a maximum of ten.

Employees can change position, department, or office.
There are 560 employees; allow for a maximum of 1000.

Records are maintained for an employee's previously held
positions.

Each department has one department head and several members
with supervisory positions with hiring authority.

Each office has a maximum of three telephone numbers.

When an employee is hired, his or her level of expertise
in each of several skills is identified.

When an employee is hired, he or she automatically becomes a
member of a particular department, and a particular office,
and reports to a particular supervisor.

Each job description has several salary grades associated
with it.

When hired, an employee is automatically covered by life
insurance.

32 Database Design Guide

Step 5: Reviewing the Results of Analysis

Step 5: Reviewing the Results of Analysis

Once you have performed steps 1 through 4 above, you need to review the materials
you have gathered thus far.You need to askyourselfthis question: Has anything been
overlooked?

Making changes later on inthe design process can sometimes be costly. Therefore, you
should make sure that users have the chanceto offer feedback at this pointin the
design process.

Documentation

By the time you have completed systems analysis, the fol lowing documentation should
be available:

m General andspecific function lists
m Dataflow diagrams orHIPO diagrams for the functions
m Listof data elements

m Listof businessrules
Using the dictionary

You canusethe Integrated Data Dictionary (IDD) to document data elements and
business rules.

Chapter 3: Analyzing the Business System 33

Chapter 4: Identifying Entities and
Relationships

Overview

This section contains the followingtopics:

Overview (see page 35)
Identifying Data Entities (see page 36)
Identifying Relationships Among Entities (see page 40)

By allowingyouto document the total picture of an organization's data, the
entity-relationship method of performing logical design allows you to:

m Use atop-down approach for logical design. To develop anentity-relationship
diagramfor a database, you define the most general categories of information first.
Once you have identified these subject categories, you canthen include more
specificinformationinthedesign.

m Demonstrate the semantic meaning of an organization's information. This
approachallowsyouto create a logical design for a databasebyanalyzing
descriptions of the organization thatare written in everyday English. The
entity-relationship diagram, the end product of logical design, accurately reflects
the language used by employees to describethe organization. Therefore, this
diagramcanbe reviewed and refined easily.

What are entities and relationships?

As you develop an entity-relationship diagramfor a database, you identify each data
entity and relationship used by the organization. An entity is a general category of
business data thatcan be easilyidentified fromthe availabledocumentation. A
relationship defines a logical connection between two associated data entities. For
example, the relationship REPORTS TO might identify a connection between a PERSON
entity anda COMPANY entity.

Earlyinthe logical design process, you need to determine the data entities and
relationships necessary to fulfill the business functions of your organization. This
chapter presents guidelines for identifying data entities and their relationships.

Chapter 4: Identifying Entities and Relationships 35

Identifying Data Entities

Identifying Data Entities

Identifying entities in the list of functions

Each data entity should appear as a nouninthe listof sentences that define business
functions, as illustrated below. Many nouns appearin the sentences thatare not
entities. Only nouns that describe data that is meaningful to the organizationitself
should be identified as entities.

Because each organization has unique data requirements, there is no single correct set
of entities that can be derived from a listof functions. Given the same business
functions, two organizations mightselectdifferent key nouns, thereby creating unique
lists of data entities.

1. Hire employees:

a) Add an
b) Assign
c) Assign
d) Assign
e) Assign

f) Assign

2. Terminate
a) Delete
b) Delete
¢) Remove
d) Remove

e) Remove

employee

an employee's position

an enmployee to an office

supervisory authority for an employee
supervisor for an employee

an employee to a department

employees:

an enployee

an employee's position

an employee from an office
supervisory authority for an employee

an employee from a department

36 Database Design Guide

Identifying Data Entities

Maintain employee information:

a) Assign or change an employee's position

b) Assign an employee to or remove an employee from an office
c) Assign an employee to or remove an employee from a department
d) Assign or remove supervisory authority for an employee

e) Assign or change supervisor for an employee

f) List employees for a department

Maintain office and department information:
a) Assign or delete an office

b) Change an office address

c) Add or delete a department

d) Change a department head

Maintain information about salaries and jobs:
a) Create a job

b) Provide a job description

c) Eliminate a job

d) Establish job salaries.

e) Change job description or salary.

Chapter 4: Identifying Entities and Relationships 37

Identifying Data Entities

6. Maintain skills inventory:
a) Add a skill
b) Add a skill for an employee
c) Identify skills for an employee
d) Identify skill level for an employee skill
e) Identify all employees with a particular skill
f) Identify all employees with a particular skill level

g) Upgrade an employee skill level

7. Maintain personnel information about projects:
a) Add a new project or delete a completed one
b) Assign and remove employees from a project
c) Assign or remove a project leader

d) List names and phone numbers of all workers on a project

8. Maintain information about employee insurance:

a) Add or remove a health insurance plan for an employee
b) Identify the health insurance coverage for an employee
c) Change coverage for an employee on a plan
d) Add or change plan and coverage for an employee
e) Add or delete a claim
f) Show life and health insurance details for an employee
g) Submit duplicate claim forms for an employee accident

Steps to identify entities

To identify the data entities for your organization:
1. Determine whichnouns inthe listof business functions arethekey nouns.
2. Listthese key nouns on a separate piece of paper.

3. Drawarectangularboxaroundeach noun.

38 Database Design Guide

Identifying Data Entities

Data entities for the Commonweather Corporation

Below is a listof data entities that was derived from the listof functions for the
Commonweather Corporation.

OFFICE COVERAGE

LIFE INSURANCE
PLAN

SKILL

HEALTH INSURANCE

DEPARTMENT
PLAN
NON-HOSPITAL
EMPLOYEE
CLAIM
PROJECT HOSPITAL
CLAIM
JOB BENTAL
CLAIM

Chapter 4: Identifying Entities and Relationships 39

Identifying Relationships Among Entities

Identifying Relationships Among Entities

A relationship connects two associated data entities. The relationship between two
entities can often be expressed with a verb. For example, the relationship between the
DEPARTMENT entity and the EMPLOYEE entity might be expressed with the verb phrase
BELONGS TO, sincean employee belongs to a department inanorganization.

Representing the relationship between two entities

The relationship between two entities is shown with a diamond. The name of the
relationshipisspecified insidethediamond.

DEPARTMENT

EMPLGYEE

No hard-and-fastruleexists for determining data relationships for an organization.Data
relationships depend on the requirements of the organization. The concept of marriage,
for example, could be viewed as an entity type or a relationship between two people,
depending on how the data was viewed.

40 Database Design Guide

Identifying Relationships Among Entities

Types of Data Relationships
Data entities ina databasearerelated in one of three ways: one-to-one (1-1),
one-to-many (1-M), and many-to-many (M-M). Each of these types of relationshipsis
explained below.

One-to-one (1-1)

Inthe one-to-one example below, for every EMPLOYEE entity occurrenceinthe
database, there canexist only one corresponding PROJECT entity occurrence.

EMPLOYEE

PROJECT

One-to-many (1-M)

Inthe one-to-many example below, for every DEPARTMENT entity occurrence in the
database, there may exist one or more corresponding EMPLOYEE entity occurrences.

DEPARTMENT

BELONGS
TO

M

EMPLGYEE

Many-to-many (M-M)

Chapter 4: Identifying Entities and Relationships 41

Identifying Relationships Among Entities

Inthe many-to-many example below, for every SKILL entity occurrence inthe database,
there canexist one or more corresponding EMPLOYEE entity occurrences;for every
EMPLOYEE entity occurrencein the database,there canalsoexistoneor more
corresponding SKILL entity occurrences.

EMPLOYEE

SKILL

Other types of data relationships

Inaddition to relationships between two entity types, the followingtypes of data
relationshipsareacceptableinan entity-relationship model:

m Arelationship can be defined for only one entity type. For example, to define a
relationship between different employees inan organization, you might want to
combine different data occurrences from the EMPLOYEE entity. In this case, the
relationshipsamongemployees might be expressed as MANAGES and REPORTS TO,
as shownin the entity-relationship diagram of Commonweather Corporation.

EMPLOYEE

REPORTS
TO

MANAGES

42 Database Design Guide

Identifying Relationships Among Entities

General Guidelines for Identifying Relationships

JOB

PROJECT

To identify the relationships between data entities, perform the followingsteps:

1.

Usingthe listof business functions, identify relationships between entities as verbs.
Inthose instances where no verb adequately expresses the relationship, join the
two entity names to form a name for the relationship. For example, the
DEPARTMENT and EMPLOYEE entities could be connected through the relationship
BELONGS TO or through the relationship DEPT-EMPLOYEE.

Listthese key verbs between the entities they connect and draw a diamond around
each one.

Associateentities with the appropriaterelationships by connectingthem with lines.

Label eachrelationship to showwhether itis 1-1,1-M, or M-M.

Entity-relationship diagram for Commonweather Corporation

The followingdiagramillustrates a simple entity-relationship diagramfor the
Commonweather Corporation.

POSITIONED

DEPARTMENT

OFFICE

1S 15

LOCATED

SKILL

LIFE INSURANGE
PLAN

| HEALTH
INSURANCE PLAN

PAYS PAYS PAYS
FOR PHY. FOR HOSP FCR DENT
M M M
NON-HQSPITAL HOSPITAL DENTAL
CLAIM CLAIM CLAIM

Chapter 4: Identifying Entities and Relationships 43

Chapter 5: Identifying Attributes

Overview

This section contains the following topics:

Overview (see page 45)

Establishing Naming Conventions for the Attributes (see page 46)
Identifying the Attributes of Each Entity (see page 47)
Identifyingthe Attributes for Each Relationship Type (see page 56)
Identifying Attribute Characteristics (seepage 58)

Attributes and values

An attribute is the smallestunitof data that describes anentity or arelationship. A
singleoccurrenceof anattribute is called a value. For example, John Smith might be one
of several values thatexist for the attribute NAME of the entity EMPLOYEE. Several
synonyms are used inthe computer industry to refer to an attribute, including data
item, data element, field,and column.All of these terms have roughly the same
meaning.

Inthis chapter, we will identify the attributes that areassociated with each entity and
data relationship defined so far duringthe logical design process.

Identifying data attributes involves the following procedures:
1. Establishingnamingconventions for the attributes
2. ldentifyingthe attributes of each entity

3. Identifyingthe attributes for each relationship type

Each of these procedures is explained below.

Chapter 5: Identifying Attributes 45

Establishing Naming Conventions for the Attributes

Establishing Naming Conventions for the Attributes

Because the process of identifying attributes yields information from many different
sources, the information can contain considerableredundancy. Users and data
processing professionals havevery different ways of perceivingthe same data. The
same piece of information might be called by several names, making it difficultto see
that these names are synonyms for the sameattribute. Inaddition, two different pieces
of data might sometimes be called by the same name.

As soon as the business meaningof each attribute is clear, you should establish
conventions for namingthe attributes. Adopting a set of standardized naming
conventions appropriate for the organization saves much time and confusion,and helps
to ensure an efficient and effective design.

46 Database Design Guide

Identifying the Attributes of Each Entity

Identifying the Attributes of Each Entity

Each entity ina databaseis described by certain attributes. Attributes are those pieces
of information aboutan entity that are required for processing performed by the
business functions. By carefully examiningthebusiness functions, you can determine
which attributes need to be maintained for each entity inthe database.

Attribute categories

Attributes for a data entity fall into the following categories:

Unique keys—To distinguish data occurrences, you need to identify uniquekeys. A
unique key is an attribute or combination of attributes whose value or values

uniquelyidentify an occurrenceof an entity or relationship. Identification numbers
and codes are typically used as uniquekeys, sincetheir values are rarely modified.

Primary keys—A primarykey is a unique key thatis used to represent anentity ina
database. For example, the attribute EMP ID might be used as the primary key of
the entity EMPLOYEE.

Secondary keys—A secondarykey is anattribute in a data entity thatis used by
certain business functions toaccess occurrences of thatentity. For example, the
EMP NAME attribute might be the secondary key for the entity EMPLOYEE.

Foreign keys—A foreign key is an attribute of an entity or relationship thatis also
used as the primary key of another entity. A foreign key is used to relate two data
entities. For example, to relate the DEPARTMENT and EMPLOYEE entities, you
might define the DEPT ID attribute, which is the primary key of the DEPARTMENT
entity, as the foreign key of the EMPLOYEE entity.

By itself, a foreign key can never be the primary key of the entity inwhich itis
stored. Since the DEPT ID attribute could never uniquelyidentify an occurrence of
the EMPLOYEE entity, it could never be its primary key.

However, a foreign key can be part of the primary key of an entity. Insome
instances, you need to combine a foreign key with another data element inan
entity to create its primary key.

Non-key data—All attributes of an entity that arenot unique keys, primary keys,
secondary keys, or foreign keys are considered non-key attributes. For example, the
EMP ADDRESS attribute is a non-key attribute of the EMPLOYEE entity.

As you identify the attributes of each data entity, you need to determine whether the
attributes are unique keys, primary keys, secondary keys, foreign keys, or non-key
attributes.

Chapter 5: Identifying Attributes 47

Identifying the Attributes of Each Entity

Grouping the Attributes
You canidentify the attributes associated with an entity by examiningthe following
materials:
m Listof business functions
m Llistof businessrules

m Listof data elements that you compiled during systems analysis
Attributesfor entities

As you determine the attributes that areassociated with a particularentity, you should
listthe attributes, as shown below:

48 Database Design Guide

Identifying the Attributes of Each Entity

OFFICE

OFFICE CODE
OFFICE ADDRESS
OFFICE SPEED DIAL
OFFICE AREA CODE
OFFICE PHONE

DEPARTMENT

DEPT ID
DEPT NAME
DEPT HEAD ID

SKILL CODE
SKILL NAME
SKILL DESCRIPTION

EMPLOYEE

EMP ID

EMP NAVE

SS NUMBER

EMP ADDRESS

EMP HOME PHONE
DATE OF BIRTH

DATE OF HIRE

DATE OF TERMINATION
STATUS

COVERAGE

HEALTH PLAN CODE
COVERAGE TYPE
COVERAGE DESCRIPTION
SELECTION DATE
TERMINATION DATE

JoB

JoB ID

JOB TITLE

JOB DESCRIPTION
REQUIREMENTS

MAX SALARY

MIN SALARY

NUMBER OF POSITIONS
NUMBER OPEN

SALARY GRADE

PROJECT

PROJECT CODE
PROJECT LEADER
PROJECT DESQRIPTION
EST START DATE

ACT START DATE

EST END DATE

ACT END DATE

HEALTH INS PLAN

LIFE

HEALTH PLAN CODE
INSCO NAME

INSCO ADDRESS
INSCO PHONE
PLAN DESCRIPTION
GROUP NUMBER

INS PLAN

LIFE PLAN CODE
INSCO NAME

INSCO ADDRESS
INSCO PHONE
PLAN DESCRIPTION

Chapter 5: Identifying Attributes 49

Identifying the Attributes of Each Entity

DENTAL CLAIM

DENTAL CLAIM ID

EMP ID

COVERAGE TYPE

DATE OF CLAIM

PATIENT NAME

RELATION TO EMPLOYEE
PATIENT SEX

PATIENT DATE OF BIRTH
PATIENT ADDRESS
NUMBER OF DENTAL PROCEDURES
TOTAL CHARGES

DENTIST LICENSE NUMBER
DENTIST NAME

DENTIST ADDRESS
PROCEDURE ID

PROCEDURE DESCRIPTION
PROCEDURE FEE

SERVICE DATE

NON-HOSPITAL CLAIM

NON-HOSPITAL CLAIM ID
DATE OF CLAIM

EMP ID

COVERAGE TYPE
PATIENT NAME

RELATION TO EMPLOYEE
PATIENT SEX

PATIENT DATE OF BIRTH
PATIENT ADDRESS
NUMBER OF PROCEDURES
TOTAL CHARGES
DIAGNGSIS

PHYSICIAN ID
PHYSICIAN NAME
PHYSICIAN ADDRESS
PROCEDURE ID
PROCEDURE DESCRIPTION
PROCEDURE FEE
SERVICE DATE

HOSPITAL CLAIM

HOSPITAL CLAIM ID
DATE OF CLAIM

EMP ID

COVERAGE TYPE
PATIENT NAME
RELATION TO EMPLOYEE
PATIENT SEX

PATIENT DATE OF BIRTH
PATIENT ADDRESS
DIAGNOSIS

TOTAL CHARGES
HOSPITAL NAME
HOSPITAL ADDRESS
ADMIT DATE

DISCHARGE DATE

50 Database Design Guide

Identifying the Attributes of Each Entity

Identifying Unique Keys

An entity can have many attributes, but only some attributes uniquely identify
occurrences of that entity. There might be more than one uniquekey inan entity. For
example, the EMPLOYEE entity has two unique keys, EMP IDand EMP SS NUM.

For each entity, choosefrom among its attributes the ones that uniquelyidentify each
occurrence. The attribute that best serves this purpose is a good candidatefor a primary
key. If there is no attribute that uniquelyidentifies an entity, it might be necessary to
combine two or more attributes for a unique key or create an attribute that serves as a
key.

Chapter 5: Identifying Attributes 51

Identifying the Attributes of Each Entity

Establishing Primary Keys
What is a primary key?

The primary key for each entity must be a unique key. From a business standpoint, the
primary key should also bethe most important element(s) inthe entity. The
requirements of your organization will determine which unique key attribute will bethe
primary key.

Suppose that you must select a primary key for the EMPLOYEE entity. Sinceboth the
EMP IDand EMP SS NUM attributes can be used to uniquelyidentify an occurrence of
this entity, you need to selectone of these keys. The EMP ID attribute is probably used
most often for processing;therefore, this element is the best choicefor the primary key.

Entities with primary keys

Once you have determined the primary key for an entity, you should mark this key with
anasterisk (*), as shown below:

OFFICE JOoB
* OFFICE CODE * JOB ID
OFFICE ADDRESS JOB TITLE
OFFICE SPEED DIAL JOB DESCRIPTION
OFFICE AREA CODE REQUIREMENTS
OFFICE PHONE MAX SALARY
MIN SALARY
DEPARTMENT NUMBER OF POSITIONS
NUMBER OPEN
* DEPT ID SALARY GRADE
DEPT NAME
DEPT HEAD ID
SKILL PROJECT
* SKILL CODE * PROJECT CODE
SKILL NAME PROJECT LEADER
SKILL DESCRIPTION PROJECT DESCRIPTION

EST START DATE
ACT START DATE

52 Database Design Guide

Identifying the Attributes of Each Entity

EMPLOYEE

* EMP ID

EMP NAME

SS NUMBER

EMP ADDRESS

EMP HOME PHONE
DATE OF BIRTH

DATE OF HIRE

DATE OF TERMINATION
STATUS

LIFE INS PLAN

* LIFE PLAN CODE

INSCO NAME

INSCO ADDRESS
INSCO PHONE
PLAN DESCRIPTION
GROUP ID

DENTAL CLAIM

* DENTAL CLAIM ID

EMP ID

COVERAGE TYPE

DATE OF CLAIM
PATIENT NAME

RELATION TO EMPLOYEE
PATIENT SEX

PATIENT DATE OF BIRTH
PATIENT ADDRESS

NUMBER OF DENTAL PROCEDURES

TOTAL CHARGES

DENTIST LICENSE NUMBER
DENTIST NAME

DENTIST ADDRESS
PROCEDURE ID

PROCEDURE DESCRIPTION
PROCEDURE FEE

SERVICE DATE

EST END DATE
ACT END DATE

HEALTH INS PLAN

* HEALTH PLAN CODE
INSCO NAME
INSCO ADDRESS
INSCO PHONE
PLAN DESCRIPTION
GROUP ID

COVERAGE

* HEALTH PLAN CODE

* COVERAGE TYPE
COVERAGE DESCRIPTION
SELECTION DATE
TERMINATION DATE

HOSPITAL CLAIM

* HOSPITAL CLAIM ID
EMP ID
COVERAGE TYPE
DATE OF CLAIM
PATIENT NAME
RELATION TO EMPLOYEE
PATIENT SEX
PATIENT DATE OF BIRTH
PATIENT ADDRESS
DIAGNOSIS
TOTAL CHARGES
HOSPITAL NAME
HOSPITAL ADDRESS
ADMIT DATE
DISCHARGE DATE

Chapter 5: Identifying Attributes 53

Identifying the Attributes of Each Entity

NON-HOSPITAL CLAIM

* NON-HOSPITAL CLAIM ID

EMP ID

COVERAGE TYPE

DATE OF CLAIM
PATIENT NAME

RELATION TO EMPLOYEE
PATIENT SEX

PATIENT DATE OF BIRTH
PATIENT ADDRESS
NUMBER OF PROCEDURES
TOTAL CHARGES
DIAGNGSIS

PHYSICIAN ID
PHYSICIAN NAME
PHYSICIAN ADDRESS
PROCEDURE ID
PROCEDURE DESCRIPTION
PROCEDURE FEE
SERVICE DATE

54 Database Design Guide

Identifying the Attributes of Each Entity

Identifying Weak Entities

What is a weak entity?

You may find that some entities in your databaseareidentified only by their relationship
with another entity. Such entities arecalled weak entities. Typically,a weak entity has a
primary key that contains only oneforeign key.

The entity DEPENDENT, for example, is a weak entity because ituses the primary key of
the EMPLOYEE entity as partof its own primary key. Whenever an employee |leaves the
corporation, all information aboutthat employee as well as anyinformation about
dependents must be erased from the database.

The attribute NAME is the only candidatefor a primary key inthe DEPENDENT entity,
but NAME does not uniquelyidentify each occurrence of the DEPENDENT entity.
Therefore, the primary key of the DEPENDENT entity must be a concatenation of the
NAME attribute and the EMP ID attribute of the EMPLOYEE entity. This concatenated
key provides the link between employees and their associated dependents.

Indicating a weak entity

You identify a weak entity on the entity-relationship diagram by drawinga double box
around the entity, as shown inthe diagrambelow.

DEPENDENT is a weak entity becauseit uses the primary key of the EMPLOYEE entity as
part of its own primary key.

EMPLQOYEE

Chapter 5: Identifying Attributes 55

Identifying the Attributes for Each Relationship Type

Identifying the Attributes for Each Relationship Type

Some data relationships haveattributes thatdescribe meaningful non-key information,
others do not, as described below:

A one-to-one relationship sometimes carries non-key data. An example of a
one-to-one relationshipis LEADS, where the business rules statethat each project
has a singleleader,and one employee may be projectleader for only one project.
For this relationship,itmay be important to carry the dates when the projectleader
begins and ends leadership responsibility.

A one-to-many relationship typically does not carry any non-key data. The
relationship LOCATES, for example, simply relates an employee to a particular
office. There is no additionalinformation aboutthatrelationship thatis required by
the business functions.

Many-to-many relationships usually do carry non-key information required by the
business functions. EXPERT IN, for example, carries information abouta particular
employee's level of expertise with a particularskill.

A self-referencing structure is a special kind of many-to-many relationship that
sometimes carries non-key data. For example, inthe Commonweather
Corporation, the relationship between workers and managers is defined as
REPORTS TO andthe relationship between managers and workers is defined as
MANAGES. Non-key data about the REPORTS TO and MANAGES relationships might
be the dates on whicha relationship beganand ended.

List the attributes

As you determine the attributes that areassociated with a particularrelationship, you

shouldlisttheseattributes, as follows:

56 Database Design Guide

Identifying the Attributes for Each Relationship Type

IS LOCATED

* OFFICE CODE
* EMP ID

LEADS

* PROJECT CODE
* WRKR EMP ID

WORKS ON

* PROJECT CODE
* WRKR EMP ID

EXPERT IN
* EMP ID
* SKILL CODE
SKILL LEVEL
DATE ACQUIRED

CHOOSES
* EMP ID
* HEALTH PLAN CODE
* COVERAGE TYPE

INSURED BY

* EMP ID
* LIFE PLAN CODE

PAYS FOR HOSP

* HEALTH PLAN CODE
* COVERAGE TYPE
* HOSPITAL CLAIM ID

PAYS FOR PHY
* HEALTH PLAN CODE

* COVERAGE TYPE
* NON-HOSPITAL CLAIM ID

BELONGS TO

* DEPT ID
* EMP ID

HEADS

* DEPT ID
* HEAD EMP ID

IS POSITIONED

* EMP ID

* JOB ID
SALARY
COMMISSION PERCENT
BONUS PERCENT
OVERTIME RATE
START DATE
END DATE

REPORTS TO

* WRKR EMP ID

* SURR EMP ID
WRKR BEGIN DATE
WRKR END DATE

MANAGES

* SUPR EMP ID

* WRKR EMP ID

SUPR BEGIN DATE

SUPR END DATE

SPECIFIES

* HEALTH PLAN CODE

* COVERAGE TYPE

PAYS FOR DENT

* HEALTH PLAN CODE

* COVERAGE TYPE
* DENTAL CLAIM ID

Chapter 5: Identifying Attributes 57

Identifying Attribute Characteristics

Identifying Attribute Characteristics

Attribute characteristics

At this time, you canidentify characteristics of the attributes you have listed. Attribute
characteristicsinclude:

m Llength

m Type (alphanumeric or numeric)

® Nullability
Null values

Sometimes you do not know the data associated with a particular attribute. The
attribute might not be applicableto a particularentity occurrence, such as the phone
number of an employee with no phone. Or the data simply might not be known yet,
such as the creditrating of a new customer. Such attributes should allow null values. An
attribute that does not allow null values requires that data always be entered.

58 Database Design Guide

Chapter 6: Normalizing the Data

Overview

This section contains the following topics:

Overview (see page 59)

Why Normalize Data? (see page 60)

Normal Forms of Data (see page 61)

How To Normalize Data (see page 66)

Normalized Data for the Commonweather Corporation (see page 73)

Goals of normalization

You canusenormalization techniques to refine the entity-relationship model.Once you
have determined the entities, relationships,and attributes of a database, you can use
normalization procedures to ensure that each entity and relationship is designed in its
simplest form. The goal of normalizationisto develop entities that consistofa primary
key, together with a set of attributes whose values aredetermined solely by the value of
the primary key.

In many instances, you will find thatthe entities you developed earlier arealready
organizedin easy-to-use structures. The entity-relationship approach often breaks
entities down into normalized structures naturally.Inthoseinstances when data entities
andrelationshipsarefully normalized, the normalization process does notresultinany
changes to the design.

Chapter 6: Normalizing the Data 59

Why Normalize Data?

Why Normalize Data?

Update anomalies

Through normalization, you can develop a databasethatis protected against update
anomalies. Update anomalies areabnormal processing conditionsthatresultfrom the
execution of update functions againstthedatabase. Update anomalies sometimes
compromise the integrity of the database;therefore, you need to design data entities
andrelationshipsthat,when implemented as data tables,are fully protected against
suchanomalies.

Types of anomalies

The followingexamples illustrate two types of anomalies:

m Deletion anomaly—Suppose you want to delete some information from the
following data table:

JOB

EMP ID JoB ID SALARY GRADE SALARY

1216 ADM 18 15000
1041 MR 30 30000
1633 INST 23 22000
1063 ADM 18 18000

Inthe JOB table, the SALARY GRADE depends only on the JOB ID. If you delete the
row for employee 1041 inthe JOB table, you therefore losenot only the fact that
employee 1041 is a manager, but also the fact that the SALARY GRADE for a
manager is 30.

m Insertion anomaly—Suppose you want to add some information to the JOB table.
You want to enter the fact that a programmer has a SALARY GRADE of 21. Because
of the structure of the JOB table, you cannotenter this information until someone
actuallyhas ajobas aprogrammer.

Preventing anomalies

To prevent anomalies fromoccurring during deletions andinsertions of rows in the JOB
table, you might create two separatetables:

POSITION JoB
EMP ID JoB ID SALARY JoB ID SALARY GRADE
1216 ADM 15000 ADM 18
1041 MR 30000 MR 30
1633 INST 22000 INST 23
1063 ADM 18000 PG'R 21

60 Database Design Guide

Normal Forms of Data

Now you can delete the row for employee 1041 inthe POSITION tablewithout losing
the fact that the SALARY GRADE for a manager is 30. You canalsospecify thata
programmer has a SALARY GRADE of 21inthe JOB table without firstspecifyinga
programmer's name.

By breaking down data tables into smaller tables, you prevent update anomalies from
occurring.

Normal Forms of Data

All normalized data tables existin one of the following normal forms:
m Firstnormal form
m Second normal form

m Third normal form

A data table that exists ina particularnormal formcomplies with the rules that define
that form. A tablethat exists in second normal form satisfies the criteria for firstnormal
form; inaddition, a tablein third normal form satisfiesthe criteria for both firstand
second normal forms.

Goal of normalization

Sincethe rules of third normal form arethe mostrigorous, they are also the most
desirable. The goal of the normalization process is to create data tables that are
organized in third normal form.

Note: Several databasetheorists havesuggested that tables in third normal form can be
broken down into even simpler structures. For example, some theorists recommend
that tables be organizedin fourth or fifth normal form. However, atthe presenttime, it
seems most practicaltoorganizedata tables inthird normal form.

The first,second, and third normal forms of data organizationarediscussedinthe
followingsections.

Chapter 6: Normalizing the Data 61

Normal Forms of Data

First Normal Form

A datatableisinfirstnormal formifeach of the attributes of a given row contains a
singlevalue. A tableinfirstnormal form has no repeating groups.

Table not in first normal form

Sincethe followingtablecontains a repeating element called BUDGET, itis notinfirst
normal form:

Note: Inthese examples, primary key attributes arehighlighted.

DEPARTMENT
DEPT ID DEPT NAME BUDGET
1000 OPERATIONS 50000
30000
40000
30000

Table in first normal form

The followingtableisinfirstnormal form:

DEPARTMENT

DEPT ID DEPT NAME

1000 OPERATIONS
2046 DEVELOPMENT
3333 DOCUMENTATION
5653 MARKETING

62 Database Design Guide

Normal Forms of Data

Second Normal Form

A datatableisinsecond normal formifitisinfirstnormal formandits entire primary
key determines the values of each of its attributes. When a tableis insecond normal
form, each of the attributes is dependent on the whole key and not any part of the key.

Table in first normal form

The POSITION tableshown below is infirstnormal formbut notinsecond normal form:

POSITION

EMP ID JOB ID EMP NAME SALARY GRADE SALARY

1216 ADM SMITH 18 15000
1041 MGR JONES 30 30000
1633 INST DAVIS 23 22000
1063 ADM EVANS 18 18000

Inthe POSITION table shown above, the primarykey is the concatenation of EMP ID and
JOB ID. This tableis notin second normal form because some of the non-key attributes
are dependent on a part of the primary key. For example, the EMP NAME attribute is
dependent on only EMP ID, while the SALARY GRADE attribute is dependent onlyon JOB
ID.

Table in first and second normal forms

The followingtableis in both firstand second normal forms:

POSITION
EMP ID JOB ID SALARY
1216 ADM 15000
1041 MGR 30000
1633 INST 22000
1063 ADM 18000

Inthe POSITIONtable shown above, the primarykey is the concatenation of EMP ID and
JOB ID. The POSITION tableis infirstnormal formbecauseit contains norepeating
groups. Itisinsecond normal form becausethe non-key attribute SALARY is dependent
on the entire primary key (the concatenation of EMP IDand JOB ID). If a user knows an
EMP IDvalue anda JOB IDvalue, the user can easily find outthe SALARY foran
employee who works ina particular job.

Chapter 6: Normalizing the Data 63

Normal Forms of Data

Third Normal Form

A datatableisinthird normal formifitisinsecond normal form and no non-key
attribute determines the value of another non-key attribute; a tablethat is inthird
normal form contains notransitive dependencies among non-key attributes.

Table not in third normal form

The EMPLOYEE table shown below is notinthird normal form:

EMPLOYEE

EMP ID EMP NAME DEPT ID DEPT NAME

1216 SMITH 1000 OPERATIONS
lo41 JONES 3500 MARKETING
1633 DAVIS 3400 DOCUMENTATION
1063 EVANS 2000 SUPPORT

Let's assumethat EMP ID is the primary key of the EMPLOYEE table shown above. In this
case, the tableis notinthird normal form because a non-key attribute has a transitive
dependency on another non-key attribute. The DEPT NAME attribute is dependent on
the DEPT ID attribute; a DEPT NAME value can be determined by the valueof a
particularDEPTID.

Normalizing the table

To normalizethe EMPLOYEE table shown above, you could break down this table into
two separatetables:

EMPLOYEE DEPARTMENT
EMP ID EMP NAME DEPT ID DEPT NAME
1216 SMITH 1000 OPERATIONS
1041 JONES 3500 MARKETING
1633 DAVIS 3400 DOCUMENTATION
1063 EVANS 2000 SUPPORT

Sincethe EMP NAME attribute is not dependent on any other non-key attribute, the
EMPLOYEE tableshown aboveisinthird normal form. In addition, sincethe DEPT NAME
attribute is not dependent on any other non-key attribute, the DEPARTMENT tableis
alsointhird normal form.

64 Database Design Guide

Normal Forms of Data

Rules of first, second, and third normal forms

The followingtablesummarizes the rules of each normal form of data organization.

Normal Form

Rules

Firstnormal form

A datatableisinfirstnormal formifeach of the
attributes of a given row contains a singlevalue;a
tableinfirstnormal formhas no repeating groups.

Second normal form

A datatableisinsecond normal formifitisinfirst
normal form and its entire primary key determines
the values of each of its attributes. When a tableisin
second normal form, each of the attributes is
dependent on the whole key and not any part of the
key.

Third normal form

A datatableisinthird normal formifitisinsecond
normal form and no non-key attribute determines the
value of another non-key attribute. A tablethatisin
third normal form contains notransitive
dependencies among non-key attributes.

Chapter 6: Normalizing the Data 65

How To Normalize Data

How To Normalize Data

The primary key for a data entity is used to determine whether the attributes for that
entity satisfytherules of second andthird normal form. Sometimes you will need to
organizethe same list of attributes for an entity in different ways, depending on which
attribute(s)is selected as the primary key.

Atomic primary key

The DENTAL CLAIM entity shown below is uniquelyidentified by an atomic primary key.
An atomic primary key is a primary key that consists of a singleattribute. The atomic
primary key for the DENTAL CLAIM entity shown below is DENTAL CLAIM ID.

DENTAL CLAIM

* DENTAL CLAIM ID
EMP ID
COVERAGE TYPE
DATE OF CLAIM
PATIENT NAME
RELATION TO EMPLOYEE
PATIENT SEX
PATIENT DATE OF BIRTH
PATIENT ADDRESS
NUMBER OF DENTAL PROCEDURES
TOTAL CHARGES
DENTIST LICENSE NUMBER
DENTIST NAME
DENTIST ADDRESS
PROCEDWRE ID
PROCEDWRE DESCRIPTION
PROCEDWRE FEE
SERVICE DATE

In all the examples that follow, primary key attributes areindicated with a star (*).

66 Database Design Guide

How To Normalize Data

Listing Data in First Normal Form

After you have listed a particular entityandits attributes, you need to verify that the

entity isinfirstnormal form:

1. Remove repeating groups:
a. For each repeating group identified, create a
b. Listitsattributes.
c. Identify its primary key.
d.
entity ina 1-M manner.
2. Update the E-R diagram to reflect your changes.

Dental claim information in first normal form

new entity.

For each new entity created, create arelationship thatrelates itto the original

The entities that describedental claiminformationarelistedinfirstnormal formin the
table below. The bold entity and relationship were added to organize the informationin

firstnormal form.

Data Entity/

Relationship

Description

DENTAL CLAIM Entity
* DENTAL CLAIM 1D

EMP 1D

COVERAGE TYPE

DATE OF CLAIM

PATIENT NAME

RELATION TO EMPLOYEE
PATIENT SEX

PATIENT DATE OF BIRTH
PATIENT ADDRESS
DENTIST LICENSE NUMBER
DENTIST NAME

DENTIST ADDRESS

Describes a dental claim
for an employee.

LISTS A DP

(dental procedure)

Relationship

* DENTAL CLAIM ID
* PROCEDURE ID

Relates DENTAL CLAIM to
DENTAL PROCEDURE.

Chapter 6: Normalizing the Data 67

How To Normalize Data

Data Entity/ Description
Relationship
DENTAL PROCEDURE Entity Describes the procedures

for a particular dental
claim; this weak entity

* DENTAL CLAIM ID
was derived from the

* PROCEDURE ID DENTAL CLAIM entity
PROCEDURE DESCRIPTION becauseits attributes
PROCEDURE FEE appea red as repeating

elements.

SERVICE DATE

DENTAL
CLAIM

Listing Data in Second Normal Form

To verify that all entities arein second normal form, perform the followingsteps:

1. Identify entities with compound keys. Entities with compound keys aresometimes
infirstnormal form but not in second normal form. Therefore, you need to carefully
examine each entity that has more than one attribute inits primary key. By
definition, entities with atomic keys arein second normal form (that is, if the entity
contains norepeating groups and you selected an appropriateattributeas the
primary key).

2. Remove partially dependent attributes:
a. Locate anyattributes that are dependent on only part of a compound key.

b. Remove these attributes and create a new entity. Create a new relationship to
relate the new entity to the entity from whichit was removed.

3. Update the E-R diagram to reflect these changes.

68 Database Design Guide

How To Normalize Data

Dental claim information in second normal form

The entities and relationshipsthatdescribedental claiminformationarelistedin second
normal form in the followingtable. No changes were made to organize the information

insecond normal form.

Data Entity/

Relationship

Description

DENTAL CLAIM Entity
* DENTAL CLAIM 1D

EMP ID

COVERAGE TYPE

DATE OF CLAIM

PATIENT NAME

RELATION TO EMPLOYEE
PATIENT SEX

PATIENT DATE OF BIRTH
PATIENT ADDRESS
DENTIST LICENSE NUMBER
DENTIST NAME

DENTIST ADDRESS

Describes a dental claim
for an employee.

LISTS ADP

(dental procedure)

Relationship

* DENTAL CLAIM 1D
* PROCEDURE ID

Relates DENTAL CLAIM to
DENTAL PROCEDURE.

DENTAL PROCEDURE Entity
* DENTAL CLAIM 1D

* PROCEDURE ID

PROCEDURE DESCRIPTION

PROCEDURE FEE

SERVICE DATE

Describes the procedures
for a particular dental
claim; this weak entity
was derived from the
DENTAL CLAIM entity
because its attributes
appeared as repeating
elements.

Chapter 6: Normalizing the Data 69

How To Normalize Data

DENTAL
CLAIM

DENTAL
PROCEDURE

Listing Data in Third Normal Form

To organizedata entities in third normal form, perform the following steps:

1. Remove transitively dependent attributes:
a. Locate anynon-key attributes that are facts aboutanother non-key attribute.
b. Remove these attributes and create a new entity.
c. Create anew relationship thatrelates the new entity to the original entity.

2. Update the E-R diagram to reflect your changes.
Dental claim information in third normal form

The entities andrelationshipsthatdescribedental claiminformation arelistedin third
normal form in the followingtable.

The bold entities and relationships were added to organize the informationin third
normal form. Since none of the entities listed contain attributes thatare dependent on
part of the primary key, the information shown inthis tableis alsoinsecond normal

form.
Data Entity/ Description
Relationship
DENTAL CLAIM Entity Describes a dental claim

for an employee.
* DENTAL CLAIM ID

EMP 1D
DATE OF CLAIM

70 Database Design Guide

How To Normalize Data

Data Entity/ Description
Relationship
LISTS ADP Relationship Relates DENTAL CLAIM to
DENTAL PROCEDURE.
* DENTAL CLAIM ID
* DENTAL PROCEDURE ID
DENTAL PROCEDURE Entity Describes the procedures
for a particular dental
* DENTAL CLAIM 1D clalm;thls weak entity
was derived from the
* PROCEDURE 1D DENTAL CLAIM entity
PROCEDURE DESCRIPTION because its attributes
PROCEDURE FEE appea red as repeating
SERVICE DATE elements.
CLAIMS DENT Relationship Relates PATIENT to
DENTAL CLAIM.
*EMP ID
* PATIENT NAME
* DENTAL CLAIM ID
PATIENT Entity Describes a patient who
makes a claim;this entity
" was derived from the
EMP 1D DENTAL CLAIM entity to
* PATIENT NAME avoid transitive
RELATION TO EMPLOYEE dependencies; insecond
PATIENT DATE OF BIRTH normal form, the
attributes RELATION TO
E DDRE
PATIENT ADDRESS EMPLOYEE, PATIENT
DATE OF BIRTH, and
PATIENT ADDRESS were
dependent on the
non-key attributes
PATIENT NAME and EMP
ID of DENTAL CLAIM.
DENT CLAIMED FOR Relationship Relates DENTIST to

* DENTAL CLAIM ID
* DENTIST LICENSE NUMBER

DENTAL CLAIM.

Chapter 6: Normalizing the Data 71

How To Normalize Data

Data Entity/ Description
Relationship
DENTIST Entity Describes the dentist who

performs dental work for
a patient; this entity was
derived from the DENTAL
DENTIST NAME CLAIM entity to avoid
DENTIST ADDRESS transitive dependencies;
insecond normal form,
the attributes DENTIST
NAME and DENTIST
ADDRESS were
transitively dependent on
the non-key attributes
DENTIST NAME and
DENTIST ADDRESS of the
DENTAL CLAIM entity.

* DENTIST LICENSE NUMBER

DENTAL
CLAIM
1
M
LISTS
A DP
M 1 1
DENTAL
PROCEDURE

72 Database Design Guide

Normalized Data for the Commonweather Corporation

Normalized Data for the Commonweather Corporation

The data entities and relationships for the Commonweather Corporationarelistedin
first,second, and third normal forms inthe followingtables.

Data entities for Commonweather in first normal form

The bold entities and relationships were added to organize the informationin first
normal form. Since none of the entities listed contain attributes thatare dependent on
part of the primary key, the information shown inthis tableis alreadyin second normal

form.
Data Entity/ relationship Description
OFFICE Entity Describes offices in which

* OFFICE CODE
OFFICE ADDRESS
OFFICE SPEED DIAL
OFFICE AREA CODE

employees work.

CALLS Relationship

* OFFICE CODE
* OFFICE PHONE

Relates OFFICE and
PHONE.

PHONE Entity

* OFFICE PHONE

Describes office phones;
this entity was derived
from the OFFICE entity
because its attributes
appeared as repeating

elements.

IS LOCATED Relationship Relates EMPLOYEE and
OFFICE.

* OFFICE CODE

* EMP ID

SKILL Entity Describes the skills for
each employee.

* SKILL CODE

SKILL NAME

SKILL DESCRIPTION

Chapter 6: Normalizing the Data 73

Normalized Data for the Commonweather Corporation

Data Entity/ relationship Description
EXPERT IN Relationship Relates SKILL and
EMPLOYEE.
* SKILL CODE
*EMP ID
SKILL LEVEL

DATE ACQUIRED

DEPARTMENT Entity Describes the
departments that
employees belong to.

* DEPT ID
DEPT NAME
BELONGS TO Relationship Relates DEPARTMENT and
EMPLOYEE.
* DEPT ID
* EMP ID
HEADS Relationship Relates DEPARTMENT and
EMPLOYEE.
* DEPT ID
* EMP ID
JOB Entity Describes the jobs
employees perform within
* JOBID the company.
JOB TITLE

JOB DESCRIPTION
REQUIREMENTS

MAX SALARY

MIN SALARY

NUMBER OF POSITIONS

PAYS Relationship Relates JOB and SALARY
GRADE.

*JOB ID
* SALARY GRADE

74 Database Design Guide

Normalized Data for the Commonweather Corporation

Data

Entity/ relationship Description

SALARY GRADE Entity Describes the salary
grades for each job; this
weak entity was derived

*JOB ID

losl from JOB becauseits

*

SALARY GRADE attributes appeared as
GRADE MIN SALARY repeating elements.
GRADE MAX SALARY

ISPOSITIONED Relationship Relates EMPLOYEE and
JOB.

*JOBID

* EMP ID

SALARY

OVERTIME RATE
COMMISSION PERCENT
BONUS PERCENT
START DATE
TERMINATION DATE

PROJECT Entity Describes projects that
employees work on and

* PROJECT CODE lead.

PROJECT DESCRIPTION
EST START DATE

ACT START DATE

EST END DATE

ACT END DATE

WORKS ON Relationship Relates EMPLOYEE and
PROJECT.

* PROJECT CODE

* EMP ID

WO START DATE
WO END DATE
LEADS Relationship Relates EMPLOYEE and

* PROJECT CODE
* EMP ID

PROJECT

Chapter 6: Normalizing the Data 75

Normalized Data for the Commonweather Corporation

Data Entity/ relationship Description
REPORTS TO Relationship Relates those employees
who aresupervisors to
* WRKR EMP 1D other employees who are
workers.
* SUPR EMP ID
WRKR START DATE
WRKR END DATE
MANAGES Relationship Relates those employees
who areworkers to other
% SUPR EMP ID employees who are
supervisors.
* WRKR EMP ID
SUPR START DATE
SUPR END DATE
EMPLOYEE Entity Describes company
employees.
* EMP ID
EMP NAME
SS NUMBER
EMP ADDRESS
EMP HOME PHONE
DATE OF BIRTH
DATE OF HIRE
DATE OF TERMINATION
STATUS
INSURED BY Relationship Relates EMPLOYEE and
LIFE INS PLAN.
* EMP ID
* LIFE PLAN CODE
LIFE INS PLAN Entity Describes a lifeinsurance

* LIFE PLAN CODE
INSCO NAME
INSCO ADDRESS
INSCO PHONE
PLAN DESCRIPTION
GROUP NUMBER

planforeach employee.

76 Database Design Guide

Normalized Data for the Commonweather Corporation

Data Entity/ relationship Description
CHOOSES Relationship Relates EMPLOYEE and
COVERAGE.
* EMP ID
* HEALTH PLAN CODE
* COVERAGE TYPE
COVERAGE Entity Describes health coverage
for each employee.
* HEALTH PLAN CODE
* COVERAGE TYPE
COVERAGE DESCRIPTION
SELECTION DATE
TERMINATION DATE
SPECIFIES Relationship Relates COVERAGE and
HEALTH INS PLAN.
* HEALTH PLAN CODE
* COVERAGE TYPE
HEALTH INS PLAN Entity Describes health
insuranceplansfor
* HEALTH PLAN CODE employees.
GROUP NUMBER
INSCO NAME
INSCO ADDRESS
INSCO PHONE
PLAN DESCRIPTION
PAYS FOR DENT Relationship Relates COVERAGE and

* HEALTH PLAN CODE
* COVERAGE TYPE
* DENTAL CLAIM ID

DENTAL CLAIM.

Chapter 6: Normalizing the Data 77

Normalized Data for the Commonweather Corporation

* HOSPITAL CLAIM ID
* HEALTH PLAN CODE
* COVERAGE TYPE

Data Entity/ relationship Description
DENTAL CLAIM Entity Describes a dental claim
for an employee; in this
example, the DENTAL
* DE L D
NTAL CLAIM | CLAIM entity has an
EMP 1D atomic key, DENTAL
COVERAGE TYPE CLAIM ID.
DATE OF CLAIM
PATIENT NAME
RELATION TO EMPLOYEE
PATIENT SEX
PATIENT DATE OF BIRTH
PATIENT ADDRESS
DENTIST LICENSE NUMBER
DENTIST NAME
DENTIST ADDRESS
LISTS A DP Relationship Relates DENTAL CLAIM
and DENTAL PROCEDURE.
* DENTAL CLAIM ID
* PROCEDURE ID
DENTAL PROCEDURE Entity Describes the procedures
for a particular dental
claim;this entity was
* DE L CL D !
NTAL CLAIM 1 derived from the DENTAL
*
PROCEDURE 1D CLAIM entity becauseits
PROCEDURE DESCRIPTION attributes appeared as
PROCEDURE FEE repeating elements.
SERVICE DATE
PAYS FOR HOSP Relationship Relates COVERAGE and

HOSPITAL CLAIM.

78 Database Design Guide

Normalized Data for the Commonweather Corporation

Data Entity/ relationship Description

HOSPITAL CLAIM Entity Describes a hospital claim
for an employee.

* HOSPITAL CLAIM ID

EMP ID

COVERAGE TYPE

DATE OF CLAIM

PATIENT NAME

RELATION TO EMPLOYEE

PATIENT SEX

PATIENT DATE OF BIRTH

PATIENT ADDRESS

DIAGNOSIS

HOSPITAL NAME

HOSPITAL ADDRESS

HOSPITAL PHONE

HOSPITAL CHARGES

ADMIT DATE

DISCHARGE DATE

PAYS FOR PHY Relationship Relates COVERAGE and
NON-HOSPITAL CLAIM.

* HEALTH PLAN CODE

* COVERAGE TYPE

* NON-HOSPITAL CLAIM ID

Chapter 6: Normalizing the Data 79

Normalized Data for the Commonweather Corporation

Data Entity/ relationship

Description

NON-HOSPITAL CLAIM Entity
* NON-HOSPITAL CLAIM ID
EMP 1D
COVERAGE TYPE
DATE OF CLAIM
PATIENT NAME
RELATION TO EMPLOYEE
PATIENT SEX
PATIENT DATE OF BIRTH
PATIENT ADDRESS
DIAGNOSIS
PHYSICIAN ID
PHYSICIAN NAME
PHYSICIAN ADDRESS
NUMBER OF NON-HOSP
PROCEDURES
PHYSICIAN CHARGES

Describes a non-hospital
claimforanemployee.

LISTS A NHP Relationship

* NON-HOSPITAL CLAIM ID
* NON-HOSPITAL
PROCEDURE ID

Relates NON-HOSPITAL
CLAIM and
NON-HOSPITAL
PROCEDURE.

NON-HOSPITAL PROCEDURE Entity
* NON-HOSPITAL CLAIM ID

* PROCEDURE ID

PROCEDURE DESCRIPTION

PROCEDURE FEE

SERVICE DATE

Describes the procedures
for a particular hospital
claim;this weak entity
was derived from the
NON-HOSPITAL CLAIM
entity becauseits
attributes appeared as
repeating elements.

80 Database Design Guide

Normalized Data for the Commonweather Corporation

Data structure diagram showing Commonweather entitiesin first normal form

M
M
1 1
JOB QFFICE

PROJECT
ILIFE INSURANCE
PLAN

DEPARTMENT

M 1 HEALTH
COVERAGE SPECIFIES INSURANGL PLAN

1

PAYS PAYS PAYS
FOR PHY. FOR HOSP, FOR DENT
M M M
[NON-HOSPITAL HOSPITAL DENTAL
CLAIM CLAIM CLAIM

1 1

i e

Data entities for Commonweather in second normal form

No changes were made to organizethe informationinsecond normal form.

Chapter 6: Normalizing the Data 81

Normalized Data for the Commonweather Corporation

SALARY
GRADE

M

DEPARTMENT

1
JOB

PROJECT

ILIFE INSURANCE
PLAN

HEALTH
INSUHANGL PLAN

DENTAL

HOSPITAL
CLAIM

CLAIM

]
M
NON-HOSP DENTAL
PROCEDURE PROCEDURE

Data entities for Commonweather in third normal form

The bold entities and relationships were added to organize the informationin third
normal form.

Data Entity/ Description
Relationship
OFFICE Entity Describes the offices employees
work in.

* OFFICE CODE
OFFICE ADDRESS
OFFICE SPEED DIAL
OFFICE AREA CODE

82 Database Design Guide

Normalized Data for the Commonweather Corporation

Data Entity/ Description
Relationship

CALLS Relationship Relates OFFICE and PHONE.

* OFFICE CODE

* OFFICE PHONE

PHONE Entity Describes office phones; this
entity was derived from the

E enti .

* OFFICE PHONE OFF.IC entity becauseits .
attributes appeared as repeating
elements.

IS LOCATED Relationship Relates EMPLOYEE and OFFICE.

* OFFICE CODE

* EMP ID

SKILL Entity Describes skills for each employee.

* SKILL CODE

SKILL NAME
SKILL DESCRIPTION

EXPERT IN Relationship Relates SKILLand EMPLOYEE.

* SKILL CODE

* EMP ID

SKILL LEVEL
DATE ACQUIRED

DEPARTMENT Entity Describes departments in which
employees work.

* DEPT ID

DEPT NAME

BELONGS TO Relationship Relates DEPARTMENT and
EMPLOYEE.

* DEPT ID

* EMP ID

HEADS Relationship Relates DEPARTMENT and
EMPLOYEE.

* DEPT ID

* EMP ID

Chapter 6: Normalizing the Data 83

Normalized Data for the Commonweather Corporation

Data Entity/ Description
Relationship
JOB Entity Describes the jobs employees
perform withinthe company.
*JOBID
JOB TITLE

JOB DESCRIPTION
REQUIREMENTS

MAX SALARY

MIN SALARY

NUMBER OF POSITIONS

PAYS Relationship Relates JOB and SALARY GRADE.

*JOBID
* SALARY GRADE

SALARY GRADE Entity Describes salary grades for each
job; this entity was derived from
the JOB entity becauseits
attributes appeared as repeating
elements.

*JOBID

* SALARY GRADE
GRADE MIN SALARY
GRADE MAX SALARY

ISPOSITIONED Relationship Relates JOB and EMPLOYEE.

*JOBID

* EMP ID

SALARY

OVERTIME RATE
COMMISSION PERCENT
BONUS PERCENT
START DATE
TERMINATION DATE

84 Database Design Guide

Normalized Data for the Commonweather Corporation

Data Entity/ Description
Relationship
PROJECT Entity Describes the projects that
employees work on.
* PROJECT CODE
PROJECT DESCRIPTION
EST START DATE
ACT START DATE
EST END DATE
ACT END DATE
WORKS ON Relationship Relates EMPLOYEE and PROJECT.
* PROJECT CODE
* EMP ID
WO START DATE
WO END DATE
LEADS Relationship Relates EMPLOYEE and PROJECT.
* PROJECT CODE
*EMP ID
REPORTS TO Relationship Relates those employees who are
supervisors to other employees
* WRKR EMP 1D who areworkers.
* SUPR EMP ID
WRKR START DATE
WRKR END DATE
MANAGES Relationship Relates those employees who are
workers to other employees who
* SUPR EMP ID are supervisors.

* WRKR EMP ID
SUPR START DATE
SUPR END DATE

Chapter 6: Normalizing the Data 85

Normalized Data for the Commonweather Corporation

Data Entity/ Description
Relationship
EMPLOYEE Entity Describes company employees.
* EMP ID
EMP NAME
SS NUMBER

EMP ADDRESS
EMP HOME PHONE
DATE OF BIRTH

DATE OF HIRE
DATE OF TERMINATION
STATUS
INSURED BY Relationship Relates EMPLOYEE and LIFE INS
PLAN.
*EMP ID

* LIFE PLAN CODE

LIFE INS PLAN Entity

* LIFE PLAN CODE
PLAN DESCRIPTION
GROUP NUMBER

Describes the lifeinsuranceplan
for each employee.

CHOOSES Relationship

* EMP ID
* HEALTH PLAN CODE
* COVERAGE TYPE

Relates EMPLOYEE and
COVERAGE.

COVERAGE Entity

* HEALTH PLAN CODE
* COVERAGE TYPE
COVERAGE DESCRIPTION

Describes the health coverage
chosen by each employee.

SPECIFIES Relationship

* HEALTH PLAN CODE
* COVERAGE TYPE

Relates HEALTH INS PLAN and
COVERAGE.

86 Database Design Guide

Normalized Data for the Commonweather Corporation

Data Entity/ Description
Relationship
HEALTH INS PLAN Entity Describes the health insurancefor

* HEALTH PLAN CODE
GROUP NUMBER
PLAN DESCRIPTION

each employee.

PROVIDES LIP Relationship Relates INS CO and LIFE INS PLAN.
* LIFE PLAN CODE
* INSCO NAME
PROVIDES HIP Relationship Relates INS CO and HEALTH INS
PLAN.
* HEALTH PLAN CODE
* INSCO NAME
INS CO Entity Describes insurance companies;
this entity was derived from the
LIFE INS PLAN and HEALTH INS
*IN NAME
Sco PLAN entities to avoid transitive
INSCO ADDRESS dependencies; in second normal
INSCO PHONE form, the attributes INSCO
ADDRESS and INSCO PHONE were
transitively dependent on the
non-key attribute INSCO NAME.
PAYS FOR DENT Relationship Relates COVERAGE and DENTAL
CLAIM.
* HEALTH PLAN CODE
* COVERAGE TYPE
* DENTAL CLAIM ID
DENTAL CLAIM Entity Describes a dental claimforan
employee; inthis example, the
DENTAL CLAIM entity has an
*
DENTAL CLAIM ID atomic key, DENTAL CLAIM ID.
DATE OF CLAIM
LISTS ADP Relationship Relates DENTAL CLAIM and

* DENTAL CLAIM ID
* PROCEDURE ID

DENTAL PROCEDURE.

Chapter 6: Normalizing the Data 87

Normalized Data for the Commonweather Corporation

Data Entity/ Description
Relationship
DENTAL PROCEDURE Entity Describes the procedures for a
particulardental claim; this entity
i DE L
* DENTAL CLAIM 1D was derlvejd from the . NTA
CLAIM entity becauseits
*
PROCEDURE 1D attributes appeared as repeating
PROCEDURE DESCRIPTION elements.
PROCEDURE FEE
SERVICE DATE
DENT CLAIMED FOR Relationship Relates DENTIST and DENTAL
CLAIM.
* DENTAL CLAIM ID
* DENTIST LICENSE NUMBER
DENTIST Entity Describes the dentist who
performed dental work for a
* DENTIST LICENSE NUMBER patient; this entity was derl\{ed
from the DENTAL CLAIM entity to
DENTIST NAME avoidtransitivedependencies;in
DENTIST ADDRESS second normal form, the
DENTIST PHONE attributes DENTIST NAME and
DENTIST ADDRESS were
transitively dependent on the
non-key attributes DENTIST NAME
and DENTIST ADDRESS of the
DENTAL CLAIM entity.
CLAIMS DENT Relationship Relates PATIENT and DENTAL
CLAIM.
* DENTAL CLAIM ID
* PATIENT NAME
* EMP ID
PAYS FOR HOSP Relationship Relates COVERAGE and HOSPITAL

* HOSPITAL CLAIM ID
* HEALTH PLAN CODE
* COVERAGE TYPE

CLAIM.

88 Database Design Guide

Normalized Data for the Commonweather Corporation

Data Entity/ Description
Relationship
HOSPITAL CLAIM Entity Describes a hospital claimforan

* HOSPITAL CLAIM ID

employee.

EMP ID
COVERAGE TYPE
DATE OF CLAIM
HOSPITAL CHARGES
ADMIT DATE
DISCHARGE DATE
DIAGNOSIS
HOSP CLAIMED FOR Relationship Relates HOSPITAL CLAIM and
HOSPITAL.
* HOSPITAL CLAIM ID
* HOSPITAL NAME
HOSPITAL Entity Describes the hospital inwhicha
patient was treated; this entity
" was derived from the HOSPITAL
HOSPITAL NAME CLAIM entity to avoid transitive
HOSPITAL ADDRESS dependencies; in second normal
HOSPITAL PHONE form, the attributes HOSPITAL
ADDRESS and HOSPITAL PHONE
were transitively dependent on
the non-key attribute HOSPITAL
NAME of the HOSPITAL CLAIM
entity.
CLAIMS HOSP Relationship Relates PATIENT and HOSPITAL
CLAIM.
* HOSPITAL CLAIM ID
* PATIENT NAME
* EMP ID
PAYS FOR PHY Relationship Relates COVERAGE and

* HEALTH PLAN CODE
* COVERAGE TYPE
* NON-HOSPITAL CLAIM ID

NON-HOSPITAL CLAIM.

Chapter 6: Normalizing the Data 89

Normalized Data for the Commonweather Corporation

Data Entity/ Description
Relationship
NON-HOSPITAL CLAIM Entity Describes a non-hospital claimfor
anemployee.
* NON-HOSPITAL CLAIM ID
DATE OF CLAIM
DIAGNOSIS
LISTS A NHP Relationship Relates NON-HOSPITAL CLAIM and
NON-HOSPITAL PROCEDURE.
* NON-HOSPITAL CLAIM ID
* PROCEDURE ID
NON-HOSPITAL PROCEDURE Entity Describes the procedures for a
particularnon-hospital claim;this
* i entity was derived from the
NON-HOSPITAL CLAIM 1D NON-HOSPITAL CLAIM entity
* PROCEDURE 1D because its attributes appeared as
PROCEDURE DESCRIPTION repeating elements.
PROCEDURE FEE
SERVICE DATE
PHYS CLAIMED FOR Relationship Relates NON-HOSPITAL CLAIM and
PHYSICIAN.
* NON-HOSPITAL CLAIM ID
* PHYSICIAN ID
PHYSICIAN Entity Describes a physician who
performed a servicefor a patient;
this entity was derived from the
*
PHYSICIAN ID NON-HOSPITAL CLAIM entity to
PHYSICIAN NAME avoid transitivedependencies;in
PHYSICIAN ADDRESS second normal form, the
PHYSICIAN PHONE attributes PHYSICIAN NAME,
PHYSICIAN ADDRESS, and
PHYSICIAN PHONE were
transitively dependent on the
non-key attribute PHYSICIAN ID of
the NON-HOSPITAL CLAIM entity.
CLAIMS NHOSP Relationship Relates NON-HOSPITAL CLAIM and

* NON-HOSPITAL CLAIM ID
* PATIENT NAME
* EMP ID

PATIENT.

90 Database Design Guide

Normalized Data for the Commonweather Corporation

Data Entity/ Description
Relationship
PATIENT Entity Describes a patient who makes a
claim;this entity was derived from
DE L L
* EMP ID the DENTAL CLAIM, HOSPITA

* PATIENT NAME
RELATION TO EMPLOYEE
PATIENT SEX
PATIENT DATE OF BIRTH
PATIENT ADDRESS

CLAIM, and NON-HOSPITAL CLAIM
entities to avoid transitive
dependencies; in second normal
form, the attributes RELATION TO
EMPLOYEE, PATIENT SEX, PATIENT
DATE OF BIRTH, and PATIENT
ADDRESS were transitively
dependent on the non-key
attributes PATIENT NAME and
EMP 1D of the DENTAL CLAIM
entity; PATIENT is a weak entity
related to EMPLOYEE.

Chapter 6: Normalizing the Data 91

Normalized Data for the Commonweather Corporation

Data structure diagram showing Commonweather entitiesin third normal form

SALARY
GRADE

M

DEPARTMENT

OFFICE

1
JOB

PROJECT

LIFE INSURANCE

DENTAL INSURANCE FLAN

CLAIM CLAIM ‘ 1
M M M M|

M

1
DENTAL
PROCEDURE

NON-HOSP
PROCEDURE

92 Database Design Guide

Chapter 7: Validating the Logical

Design

The final test of a logical designis whether it provides all the
information needed for application processing. To verify that your
logical databasedesignis complete, you therefore need to simulate
the flow of each business processing function through the database.

Tracing the access path

An access path shows the order in which data entities and their
attributes are retrieved inthe courseof application processing. By
tracingthe access path of each general and specific businessfunction,
you can determine whether the databasewill supportthe processing
needs of your organization. For clarity and readability, you need to
draw a separateaccess path diagram for each business function.

Perform the following steps for each function:

1. Identify the entry point for the function. The entry point fora
functionis the firstentity thatitaccesses inthe database. You can
determine the entry pointfor a function by analyzingthe
description of the function. (See Chapter 3, "Analyzingthe
Business System".) From the description of a particular function,
you need to determine the most direct way to carry out the
function.

2. Identify all entities and relationships that must be accessed. First
make a listofall attributes required by the application. Then
identify the entities and relationshipsthatcontainthose
attributes.

Chapter 7: Validating the Logical Design 93

Normalized Data for the Commonweather Corporation

3. Trace the direction of data flow. To distinguish thedirection of
data flow from those lines thatrepresent data relationships, you
need to draw dotted lines to indicatethe flow:

a. Drawadotted linefrom outside the diagramto the
entry-point entity.

b. Draw adotted linethrough all entities and relationshipsthat
must be accessed. Do not be concerned aboutwhat keys
might be necessaryto move from one entity type to another.
Retrieve an entity onlyifithas the attributes that you need to
display or modifyin some way.

c. Indicatethe direction ofdata flowby drawingan arrowat the
end of each dotted line.

4. Determine the type of access. Indicateon the access path
diagramthe type of access for each entity or relationship:

m R— Read
m C— Change
s A— Add

m D— Delete
Sample access path diagram

The followingdiagramillustrates a sampleaccess path diagramfora
general business functionandits specific transactions.

~ R R R
~

~
4 EMPLOYEE - — —

SKILL

As you trace the flow of each function, you may find that a particular
applicationrequires data thatis notdocumented inthe logicaldesign.
Inthe event that this happens, you need to make changes to the
design to includethis data.Once you have determined that the design
contains all necessary data, you are prepared to develop a physical
model for the database.

94 Database Design Guide

Normalized Data for the Commonweather Corporation

Chapter 7: Validating the Logical Design 95

Chapter 8: Introduction to Physical Design

Overview

This section contains the following topics:

Overview (see page 97)

Data Structure Diagram (see page 97)

Steps in the Physical Database Design Process (see page 98)
Physical Database Structures (see page 99)

SQL and Non-SQL Definitions (see page 101)

The databasedesigneris responsiblefor efficient access to the databaseno matter how
that databaseis implemented. This means that a complete logical and physical database
design must take placeprior to implementation.

Inthe firstseven chapters, you worked through the process for creatinga logical
databasedesign based on business functions and rules. You are now ready to make
physical design decisions.

What is physical database design?

Physical databasedesignis the process of tailoring the logical model to specific
application performancerequirements. Duringthis phase of databasedesign, you need
to planthe best use of computer storageresources and provide for the most efficient
data access.

At the conclusion of the logical design process, you should have documentation that
represents the data model required to support the organization's information resource.
As aresultof normalization,youshould also havean organized list of data entities. With
these resources, you are prepared to make intelligent decisions abouthowto optimize
databaseperformance. This is the physical databasedesign process.

Data Structure Diagram

The physical design processinvolves creatinga diagramthatserves as a model of the
physical database. This diagram, known as a data structure diagram, visually represents
the way data entities are related physically justas theentity-relationship diagram
represents the way data entities are related logically. The data structure diagramalso
describes the storage characteristics of the data. Chapters 9 through 13 of this manual
show you how to create a data structure diagram.

Chapter 8: Introduction to Physical Design 97

Steps in the Physical Database Design Process

Steps in the Physical Database Design Process

The physical databasedesign process involves creatinga base physical design followed
by refinements based on the implementation choice.The physical databasedesign
process involves the following steps:

1.

2
3
4.
5
6

Create a preliminary data structurediagrambased on the logical databasedesign.
Identify application performancerequirements.

Assignlocation modes.

Evaluate andrefine the physical databasedesign.

Choose physical tuning options.

Minimize contention among transactions.

98 Database Design Guide

Physical Database Structures

Physical Database Structures

Once you have created your design, you perform the necessary calculationsto
determine the amount of spacerequired by your database, and then implement the
databasedesign using SQL or non-SQL data definition statements.

For further information on sizingthe database, see Chapter 15, "Determining the Size of
the Database". For further information onimplementing the design, see the chapter
Implementing Your Design.

No matter how you chooseto define the database, certain physical databasestructures
are used by CAIDMS/DB to implement your design.

For further information on physical database concepts, see the CA IDMS Concepts and
Facilities Guide and CA IDMS Database Administration Guide.

Areas and pages

CA IDMS/DB subdivides the physical databaseinto separate areas, each consistingofa
set of contiguously numbered pages.

Areas arestored in operating system files, each page correspondingto one or more
directaccess blocks.CA IDMS/DB usuallytransfersanentire page of datainasingle
input/output operation.

Whilesome databasepages are reserved for space management, the majority of pages
are used to hold user data inthe form of entity occurrences. Each entity occurrence
corresponds to a singlerow of an SQL-defined table or aninstanceof a record defined
by a non-SQL schema.

A page can containas many entity occurrences as spaceavailability permits.
Segments

A segment defines the areas andfiles that contain the data inthe database. A segment
represents a physicaldatabaseusually defined by a singleschema. For the databaseto
access the segment at runtime, the segment must be included inthe definition of a
DMCL.

DMCL

A DMCL is a collection of segment definitions thatcan be accessedina singleexecution
of CA IDMS/DB. The DMCL also specifies buffer characteristics, describes the buffer and
files for journaling databaseactivity,andidentifies a databasenametablethat the
databaseuses atruntime to map alogical (or schema) definition of the databaseto
specific segments.

Chapter 8: Introduction to Physical Design 99

Physical Database Structures

A DMCL exists as aload modulein aload (core-image) libraryandis used atruntime to
determine where data required by an applicationis physically stored.

More Information

For more information on segments and the DMCL, see the CA IDMS Database
Administration Guide.

Database keys

CA IDMS/DB assigns a database key (db-key) to each record occurrence when itis
entered into the database.The databasekey is the concatenation of the number of the
page on which arecord occurrenceis stored and a linenumber. Alinenumber is an
index to an eight-byte structure calleda lineindex. The lineindexis usedto locatethe
record occurrencewithinthe page. The databasekey uniquelyidentifies the record with
whichitis associated and never changes as longas the record remains inthe database.

Structure of the physical database

The diagrambelow shows how areas, pages,and entity occurrences appearinthe
database.

The EMPDATA databasearea contains four pages and five entity occurrences. Each of
the entity occurrences is uniquelyidentified by a databasekey. For example, the
databasekey for the Mary Bliss occurrenceis 1001:1.

EMPDATA area

Page 1000 Page 1001 Page 1002 Page 1003

John Smith Mary Bliss John Case
Line 1 Line 1 Line 2

Henry Janes Janet Brown
Line 2 Line 1

100 Database Design Guide

SQLand Non-SQL Definitions

SQL and Non-SQL Definitions

In CA IDMS, you have the choice of implementing your databasedesign with either SQL
or non-SQL definition statements. The choice of which definition languageto useis
based on the specific needs of your application.

Most of the physical design processis thesame, regardless of which languageis chosen.
Inthose few areas of design implementation where the options differ for SQL and

non-SQL, those options areclearly noted in this manual.

Likewise, there aresome variances in theterminology used with each of the
implementation languages. The accompanyingtableoutlines sets of equivalent

terminology.

Table of Terms

Logical/Physical Design
Terminology

SQL Terminology

Non-SQL Terminology

Entity Table Record type
Entity occurrence Row Record occurrence
Data element Column Field/element

CALC location mode

CALC location mode

CALC location mode

Clustered location mode

Clustered location mode

VIA location mode

Parent Referenced table Owner
Child Referencing table Member
Relationship Referential constraint Set
Index Index Index

Chapter 8: Introduction to Physical Design 101

Chapter 9: Creating a Preliminary Data
Structure Diagram

This section contains the followingtopics:

Developing a Data Structure Diagram (see page 103)
Preliminary Data Structure Diagram for Commonweather Corporation (see page 111)

Developing a Data Structure Diagram

To derive a preliminary data structurediagramfroman entity-relationship diagram, you
need to:

1. Represent entities.
2. Represent relationships between entities.

3. Estimate entity length (size of entities).
Followthe steps described below to create a preliminary data structurediagramfor
your database.

Representing Entities

Entities

Each entity inthe logical databasedesignis represented by an entity on the preliminary
data structure diagramas shown below.

OFFICE

Each attribute identified duringthe logical database design process becomes a data
element inthe physical design. Thenames you used inthe logical databasedesignare
alsousedinthe physicaldesign process.

Chapter 9: Creating a Preliminary Data Structure Diagram 103

Developing a Data Structure Diagram

Representing Relationships as Entities

Certainrelationshipsdefined during the logical design process should berepresented as
entities inthe preliminary data structurediagram. These include:

m Relationshipscarrying non-key data
® Many-to-many relationships
Another type of relationship, the self-referencingrelationship,can become a separate

entity inthe preliminary data structurediagramor can carry the key to the relationship
as a foreign key.

Each of these types of relationshipsisdiscussed below.

Relationships carrying non-key data

Whilemost data relationships defined in the logical design contain only foreign keys,
some carry both keys and non-key data. Relationshipsthatcontain non-key data must

be represented as entities as you continue with the physical databasedesign.

For example, because the relationship ISPOSITIONED IN carries both keys and non-key
data, itmust be represented as anentity. Give this new entity anappropriatename.

EMPQOSITION
IS Becomes | | |
POSITIONED > |
IN
Keys Non-key data
JOBID SALARY
EMP ID OVERTIME RATE

COMMISSION PERCENT
BONUS PERCENT
START DATE
TERMINATION DATE

104 Database Design Guide

Developing a Data Structure Diagram

However, the relationship IS LOCATED should notbe represented as anentity because it
contains only key information:

OFFICE CODE (key)
EMP ID (key)

Many-to-many relationships

Ina physical databasedesign, you establish connections between related entities
through one-to-many or one-to-one relationships. Each many-to-many relationship
defined in the logical design mustbe converted to two one-to-many relationships.To
make this change, you need to represent each many-to-many relationshipas anentity,
whether it contains non-key data or not. When you derive an entity from a
many-to-many relationship, you create two one-to-many relationships,as shown below.

Inthe Commonweather Corporation,an employee can possess as manyas fiveskillsand
a specificskillcan beheld by many employees. This situation establishes a
many-to-many relationship between the SKILLand EMPLOYEE entities. Before you
implement such a relationship under CA IDMS/DB, you must firstcreate a new entity.

By replacingthe many-to-many relationship between EMPLOYEE and SKILL with a new
entity, you create two one-to-many relationships:

m A one-to-many relationshipiscreated between EMPLOYEE and the entity
EXPERTISE.

m Another one-to-many relationshipiscreated between SKILL and EXPERTISE.

Name the new entities appropriately.

EMPLOYEE 1 M EXPERTISE M SKI 1

il [1
L

Self-referencing relationships

A self-referencing relationship allows users to combine information from different
occurrences of the same entity. For example, to relate different employees ina
company, an application program might combine data from different occurrences of the
EMPLOYEE entity. A databaseuser canthen show employees and the managers they
report to.

Chapter 9: Creating a Preliminary Data Structure Diagram 105

Developing a Data Structure Diagram

You may find more than one self-referencing relationship on a particularentity. If the
relationships usethe same keys, they are probably mirrorimages of each other. For
example, MANAGES and REPORTS TO are two side of the same coin.Since they both use
the same key and carry the same data, they are really one relationship.

EMPLOYEE EMPLOYEE
1 ! 1 M\
~
M1 g W
g Q
S
L
S 3
REPQRTS =
MANAGES
TO

Replace the self-referencingrelationship with an entity if any of the followingaretrue:

m |fthe self-referencingrelationship carries data (for example, the date that the
employee began to work for this manager)

m |fyou wantto carry historicalinformation (such aswhatmanagers an employee has
had)

m Ifthe self-referencingrelationshipisa many-to-manyrelationship

Replace the self-referencingrelationship with an entity, specifying two relationships
between the original entity and the new entity. These relationshipscanbeone-to-many
or one-to-one, depending on the logic behind them.

The following diagram shows how you might resolvea self-referencingrelationshipinto
anentity havingtwo relationshipswith the primary entity: one one-to-many
relationship and oneone-to-one relationship. The new entity contains further
information aboutthe relationship between manager and employees.

EMPLOYEE

juy

(MANAGES)
(OL slHOd3y)

-

STRUCTURE

106 Database Design Guide

Developing a Data Structure Diagram

If none of the above conditions apply, you canrepresent the relationship simply usinga
foreign key. Inthis case, the key of the manager would be carried as a foreign key in the
EMPLOYEE entity. This approach will require fewer storageresources and therefore is
recommended inthose situations whereitcanbe used.

EMPLOYEE

(MANAGES-REPORTS TO)

Chapter 9: Creating a Preliminary Data Structure Diagram 107

Developing a Data Structure Diagram

Representing Relationships Between Entities

Inthe logical design process, yourepresented relationships between entities with
diamonds and identified the keys associated with the relationship.

Duringthe previous step ("Representing Entities") you changed each many-to-many
relationship to two one-to-many relationships by creatinga new entity. All relationships
between entities should nowfall into only two categories:

m One-to-many relationships

m One-to-one relationships

Representing the relationships

To represent the relationshipsinthe preliminary data structurediagram, perform the
following steps:

1. For each relationship, draw a line between the related entities.

2. For each one-to-many relationship, place an arrow on the line between the
entities to identify the "many" side of the relationship.

3. For each one-to-one relationship, do not draw an arrow on the linebetween the
entities.

4. Name therelationship. Usuallythe name is a concatenation of the two entities it
relates.

For example, the relationship between OFFICE and EMPLOYEE could be called
OFFICE-EMPLOYEE and the relationship between SKILL and EXPERTISE could be
called SKILL-EXPERTISE.

5. Indicate the foreign key.

The foreign key will beshown as part of the definition of the relationship.
Foreign keys in a one-to-many relationship

Ina one-to-many relationship, the key of the one entity is carried as a foreign key in the
many entity.

For example, inthe relationship between the entities OFFICE and EMPLOYEE, the key for
the OFFICE entity (the one entity) is carried as a foreign key in the EMPLOYEE entity (the
many entity).

Add the foreign key to the list of data elements associated with the appropriateentity
andindicateeach foreign key on the data structure diagram, as described below:
1. Under the relationship name, indicatethe foreign key used in the relationship.

For example, specify OFFICE CODE under the OFFICE-EMPLOYEE relationship to
indicatethat the data element OFFICE CODE is a foreign key for that relationship.

108 Database Design Guide

Developing a Data Structure Diagram

2. Rename foreign keys used to establish self-referencing relationships. Like any
other entity that was originally a logical relationship, the entity used to define a
self-referencingrelationship carries as foreign keys the keys from each of the
entities itrelates. However, inthis type of relationship, thetwo foreign keys must
be derived from the same entity, EMPLOYEE.

To avoid having two data elements with the same name (EMP ID) as keys to the
entity, assign unique names to the foreign keys. For example, you might name the
keys MGR ID and EMP IDto distinguish managers fromworkers.

Note: The foreign key ina self-referencing relationship mustbe nullable. Ifitwere not
nullable, the first piece of data stored could not satisfy the referential integrity of the
relationship. For example, the firstemployee stored would carry a manager ID that
would not match an existingemployee ID, as the integrity of the relationship requires. If
the self-referencing relationship carries data, thatdata must also benullable.

Foreign keys in a one-to-one relationship

Ina one-to-one relationship, the foreign key can be placedin either entity participating
inthe relationship. Usually,you can conservespaceby placingthe foreign key inone of
the two entities. For example, ifthere is a relationship between DEPARTMENT and
EMPLOYEE to indicate which employee is head of a department, you canconserve space
by placingthe EMP ID of the head of the department inthe DEPARTMENT entity rather
than the other way around sincethere will typically befar more employees than
departments.

Diagramming relationships between entities

The diagrambelow shows a portion of the data structure diagramfor Commonweather
after your changes have been made.

DEPARTMENT OFFICE
[T 1 [T T
[[
JOB SKILL
[T 1 pepTEMPLovEE | | pEPTHEAD | OFFICE-EMPLOYEE [T T
[FK {DEPT 1D} FK (EMP ID) | FK (OFFIGE CoDE) |
JOB-EMPOSITION SKILL-EXPERTISE
FK {(JOB 1D} FK (SKILL ID)
EMPOSITION EMPLOYEE EXPERTISE
[T T [T T [T T
I EMP-EMPOSITION [EMP-EXPERTISE [
FK (EMP ID) FK (EMP 1D}

Chapter 9: Creating a Preliminary Data Structure Diagram 109

Developing a Data Structure Diagram

Estimating Entity Lengths

Once the entity types have been identified, you should estimate the length of each
entity. To calculateeach entity's length, add up the length of the data elements
containedinthe entity. Don't forget to includeforeign keys residingin thatentity. Ifthe
entity has a variablelength, estimate the maximum possiblelength of the entity.

Although the lengths of entities may change as you refine the physical design,itis useful
to have an estimate of the size of an entity duringthe design process.

Indicating the length
Once you have determined the length of a particular databaseentity, you canindicate

this informationin the data structurediagram. The example below shows the OFFICE
entity with a length of 55.

OFFICE
[[ss |

110 Database Design Guide

Preliminary Data Structure Diagram for Commonweather Corporation

Preliminary Data Structure Diagram for Commonweather

Corporation

SALARY GRADE

Below is the preliminary data structurediagramfor Commonweather Corporation. It
represents entities, relationships, foreign keys, and estimated entity lengths.

PROJECT-WORKER

WORKER
FK {PROJECT CQDE) | | 20 |

PHONE
QOFFICE-PHONE
[[=8] I FK (OFFICE CODE) [o]
P DEPARTMENT OFFICE
FK (JOB ID) [[52] [I[85]
JOB | SKILL
[[283] [[78]
pEPT-EMPLOVEE | | DEPT-HEAD | oFFIGE-EMPLOYVEE
FK (DEPT I3} FK (EMP ID) FK {OFFIGE GODE)
JOB-EMPOSITION SKII' 1 -EXPERTISE
FK {(JOB 1D} FK (SKILL GODE)
EMPQSITION EMP-EMPOSITION [Eyp| ovEE EMP-EXPERTISE [expERTISE
FK (EMP ID) FK {EMP D)
[[39] [[128] [[16]
| EMP-PROJECT
FK (EMP ID)
PROJECT MANAGES REPORTS T | LIFE INS PLAN
[75 | FK (SUPR EMP D) [o0 |
EMP-WORKER
FK {EMP ID} |
LIFE-PLAN
FK {LIFE PLAN CODE) INSCO-LIP

FK (INSCO NAME}

EMP-GOVERAGE INS CO
FK {(EMP D} | | 101 |
COVERAGE HIP-COVERAGE INSCO-HIP
[[s0 | FK (HEALTH FK (INSCO NAME)
COVERAGE-NHC P1 AN CODE)

FK (EMP ID)

HEALTH INS PLAN

COVERAGE-DG

NON-HOSPITAL CLAIM

COVERAGE-HC
FK (EMP ID)

[Joo]

FK (EMP ID)

[The7]

HOSPITAL CLAIM

[T1es]
| DENTAL GLAIM
[[47 1 |
HOSRITAL-HC
NHCLAIM-PROGC FK (HOSPITAL NAME)
FK (NON-HOSPITAL PHYSICIAN-NHC DCLAIM-PROC
CLAIM ID) FK (PHYSICIAN 1D} HOSPITAL FK (DENTAI CI AIM 1D}
7
NON-HOSP PHOCEDURE | | | | DENTAL PROCEDURE
[Jes | PATIENT-NHC RE
[FK (PATIENT NAME) [
PATIENT-HC DENTIST-DC
FK (PATIENT NAME) FK (DENTIST LICENSE
NUMBER)
PHYSICIAN PATIENT DENTIST
[[77] [[sa] [177]

Chapter 9: Creating a Preliminary Data Structure Diagram 111

Chapter 10: Identifying Application
Performance Requirements

This section contains the followingtopics:

Overview (see page 114)

Establishing Performance Requirements for Transactions (see page 115)
Prioritizing Transactions (see page 116)

Determining How Often Transactions Will Be Executed (see page 117)

Identifying Access Requirements (see page 118)

Determining the DatabaseEntry Point and Access Key for Each Transaction (see page
119)

Projecting Growth Patterns (see page 120)

Determining the Number of Entities in Each Relationship (see page 121)

Determining How Often Each Entity Will Be Accessed (see page 122)

Chapter 10: Identifying Application Performance Requirements 113

Overview

Overview

After creatingthe preliminarydata structurediagram, you need to interview company
employees who can help you determine the application requirements for the database
sothat you canrefine that databasestructure.

Performance and storage requirements

As you gather information fromusers, you need to identify both the performance and
storage requirements of the system:

m Establish performancerequirements for transactions.

m Prioritizetransactions.

m Determine how often each transaction will be executed.

m |dentify access requirements for each transaction.

m Determine the databaseentry point and access key for each transaction.

m Project growth patterns.

m Determine the number of entity occurrences in each relationship.

m Determine how often each databaseentity will beaccessed.

The requirements of the system determine how you should design the physical

databasemodel. For example, the requirements of a particularapplication can helpyou
to define the page size for a databasearea.

Making design decisions

You will usethe information that you gather at this stageinthe physicaldesign process
to make several design decisions later on,as shown below.

Information gathered in this chapter Used in...

= Performance requirements for Refiningthe Physical Design (Chapter 12)
transactions

m Transaction priorities
m Access requirements

m Databaseentry points andaccess

keys
m How often each transaction will Minimizing Contention Among Transactions
be executed (Chapter 14)

m How often each entity will be
accessed

114 Database Design Guide

Establishing Performance Requirements for Transactions

Information gathered in this chapter Used in...

Projected growth patterns Determining the Size of the Database
(Chapter 15)

m Number of entity occurrencesin
each relationship

Establishing Performance Requirements for Transactions

Employees depend on fastcomputer turnaround to accomplish their day-to-day work.
To ensure satisfactory turnaround time, you should establish performancerequirements
for the system.

Since company personnel have varyinginformation requirements, you need to define
separate performance requirements for each transaction. Whilesometransactions
perform high-volume, routine processing, such as payroll,inventory, and budgets,
others enable end users to make ad hoc requests for information.

Company personnel measure the efficiency of a transaction by the amount of work it
can perform andthe amount of time itrequires to perform the work. If you help
employees to define realistic expectations of transaction performance, you canset
performance requirements for the system that will beacceptableto the user
community.

Processing modes

For each transaction, selecta mode of computer processingthat meets the needs of
users without degrading system performance. For example, you might decide to execute
a high-volume processingtaskas a batch job, while allowing end users to make ad hoc
requests for data through an onlineapplication.

Once the processing mode has been established, define appropriate performance
requirements for the transaction. Your requirements will vary depending on the mode
of processing:whilea 12-hour turnaround time might be acceptablefor a largebatch
program, a 5-minute response time will be unsatisfactory for an onlineapplication.

Chapter 10: Identifying Application Performance Requirements 115

Prioritizing Transactions

Sample Transactions

The followingtableshows performance requirements for three sampletransactions at
the Commonweather Corporation.

Transaction Processing Mode Time

Add ordelete aclaim Online 3 seconds
Listof employees for an office Batch 15 minutes
Show salarygradeforall jobs Online 6 seconds

Considerations

Your requirements should take into consideration the resources available with the
computer system. Ifthe resources are not adequate to meet the established
performance requirements, you will need to modify the expectations of the user
community oracquireadditionalresources.

Prioritizing Transactions

Every data processing department must prioritize requests for transactions. For
example, when a high-level executive requires access to vital organizationinformation,
the data processing department tries to providethis informationimmediately.

As the DBA, you areresponsiblefor ensuringthat critical transactions executeinan
efficient manner. To optimize performance, you need to scheduledata processingtasks
accordingto specific organization priorities.

Assigning priorities to transactions

The followingtable shows how you might prioritize three typical transactions.
Establish a HIGH priority for transactions thatarevital to the operations of the
organization. For example, you might specify a HIGH priority for a transaction that

services the information needs of upper-level managers in the organization.

Sample Transactions

Transaction Processing Mode Time Priority
Add or delete aclaim Online 3 seconds High
Listof employees for an office Batch 15 minutes Medium
Show salarygradeforall jobs Online 6 seconds Low

116 Database Design Guide

Determining How Often Transactions Will Be Executed

Determining How Often Transactions Will Be Executed

Earlyinthe design process, you need to determine how often each transaction will be

executed. This cangive you an indication of how the transaction mightaffect the overall

performance of the system.

To determine how often particular transactions will be executed:

m Find out the hours when each transaction will berun.

m Create a preliminaryscheduleof batch update and reporting program runs.

m Onceyou have created a scheduleof processingjobs, estimate how often each
transaction will be executed duringthe hours when itis typically run.

Sample transactions

The followingtable shows how often three typical transactions will be executed.

Transaction Processing Mode Time Priority Frequency of
Access

Add ordelete aclaim Online 3 seconds High 100/day

Listof employees for Batch 15 minutes Mediu 5/week

an office m

Show salarygradefor Online 6 seconds Low 5/week

all jobs

Chapter 10: Identifying Application Performance Requirements 117

Identifying Access Requirements

Identifying Access Requirements

You identify access requirements for each transaction by analyzing the business
functions documented duringthe logical design process. Differentbusiness functions
require different access to the database.

Business function

The following business function specifies thatyou need to access the SKILL, EXPERTISE,
and EMPLOYEE entities:

Add a skill for an employee.

Sample transactions

The followingtableshows access requirements for three sampletransactions.

Transaction Processin Time Priority Frequency of Access

g Mode Access Requirements
Add ordelete a Online 3 High 100/day EMPLOYEE
claim seconds CLAIM
Listof Batch 15 Mediu 5/week OFFICE
employees for minutes m EMPLOYEE
an office
Show salary Online 6 Low 5/week JOB SALARY
grade for all seconds GRADE
jobs

118 Database Design Guide

Determining the Database Entry Pointand Access Key for Each Transaction

Determining the Database Entry Point and Access Key for Each

Transaction

You need to determine the firstentity that each transactionaccesses inthedatabase.
Identifying entry points can pointout the need for additional indexes, or, as will beseen
in Determining How an Entity Should Be Stored, the need for an entity to be stored with
a location mode of CALC.

You candetermine the databaseentry pointand the data element used as an access key
for atransaction by reviewing the access path diagramthatyou developed for the
transaction duringthe logical design process. Specify the name of the entity and the
data element used to access the entity.

Sample transactions

The followingtableshows the databaseentry points and access keys for three typical
transactions.

Transacti Processin Time Priorit Frequency Access Entry Point
on g Mode y of Access Requirement
s

Add or Online 3 seconds High 100/day EMPLOYEE EMPLOYEE

delete a CLAIM (EMP D)
claim

List of Batch 15 minutes Mediu 5/week OFFICE OFFICE
employee m EMPLOYEE (OFFICE

s for an CODE)
office

Show Online 6 seconds Low 5/week JOB SALARY JOB (None)
salary GRADE

grade for

all jobs

Chapter 10: Identifying Application Performance Requirements 119

Projecting Growth Patterns

Projecting Growth Patterns

Projecting the minimum, most frequent, and maximum number of entity occurrences
helps you to determine how much spaceis required to supporta database.These
projections should befor a specified period of time.

To structurethe databasecorrectly, you need to make the following projections for
each entity:

® Minimum number of occurrences —ldentifies the starting pointfor the database
and, when compared to the maximum, gives you anidea of the projected growth.

m Most typical number of occurrences —Identifies the number of occurrences seen
most frequently inthe database(the mode). This number is used in determining the
number of entity occurrences ina relationship and during performanceanalysis.

® Maximum number of occurrences —Identifies the largestexpected number of
occurrences of this entity. This figureis used for sizingthe database.
Sample number of entity occurrences

The followingtable shows the projected number of occurrences for each entity inthe
Commonweather Corporationdatabase.

Entity Name Minimum Most Frequent Maximum
DEPARTMENT 9 15 20
EMPLOYEE 560 1000 1500
OFFICE 36 90 150
JOB 41 80 120
SKILL 68 80 120
STRUCTURE 1000 1500 2000
EMPOSITION 2000 2500 3000
EXPERTISE 3000 3500 4000
COVERAGE 1000 4000 6000
LIFE INS PLAN 3 4 5
HEALTH INS PLAN 5 10 10
INS CO 5 10 15
HOSPITAL CLAIM 800 3000 5000
NON-HOSPITAL CLAIM 1000 4000 6000
DENTAL CLAIM 2500 5000 7000
PATIENT 2000 5000 7000

120 Database Design Guide

Determining the Number of Entities in Each Relationship

DENTIST 100 300 1000
PROJECT 350 500 1000
NON-HOSPITAL PROCEDURE 2000 5000 8000
DENTAL PROCEDURE 4500 7000 9000
PHYSICIAN 100 300 1000
HOSPITAL 50 100 300

WORKER 560 3000 5600

Determining the Number of Entities in Each Relationship

To determine the sizingcharacteristics of the database, you will need to know the
number of entities in each data relationship. For example, you will need to know the
number of employees in each department to allowfor effective placement of the
EMPLOYEE and DEPARTMENT databaseentities.

Document both the expected and maximum number of entities in each relationship. If
these numbers cannot be provided, use the statistics on numbers of entity occurrences
gathered earlier to determine the numbers. For example, you can calculatethe
maximum number of employees in each department by dividing the maximum number
of EMPLOYEE entity occurrences by the maximum number of DEPARTMENT entity
occurrences.

Sample numbers of relationship entity occurrences

The followingtableshows the projected number of entity occurrences inthree sample
data relationships.

Relationship Expected Maximum
Employees ineach department 66 75
Employees ineach office 8 20
Positions for each employee 2 5

Chapter 10: Identifying Application Performance Requirements 121

Determining How Often Each Entity Will Be Accessed

Determining How Often Each Entity Will Be Accessed

If you know how often each entity will be accessed, you will beableto predictpotential
bottlenecks in the system. To estimate how frequently each entity will beaccessed:

m Review the databaseaccess path of each transaction thatuses the entity.

m Analyze the frequency with which each transaction will be executed.
Sample entity access rates
The followingtable shows how often three sampledatabaseentities might be added,

deleted, updated, orretrieved inthe course of business at Commonweather
Corporation.

Entity Name Adds Deletes Updates Reads
DEPARTMENT 3/year 3/year 1/week 25/day
EMPLOYEE 4/month 3/month 8/week 100/day
JOB 1/week 1/week 5/week 25/day

122 Database Design Guide

Chapter 11: Determining How an Entity
Should Be Stored

Overview

This section contains the followingtopics:

Overview (see page 123)

Location Modes (see page 123)

Guidelines for Determining How an Entity Should Be Stored (see page 128)
Graphic Conventions (see page 130)

Location Modes for Entities inthe Commonweather Database(see page 132)

You have now created a preliminary data structurediagram (Chapter 9, "Creating a
Preliminary Data Structure Diagram") and have gathered the information necessary to
refine this diagram (Chapter 10, "Identifying Application Performance Requirements").
This chapter discusses thefirststep inthe refinement process:assigninglocation modes
to the entities inthe database.

Location Modes

To guarantee efficient database performance, you need to planthe best use of
computer storage resources and providefor the most efficientdata access. Several
facilities areavailableunder CA IDMS/DB for this purpose. By minimizing the number of
input/output operations performed againstthe database, these facilities ensure optimal
processing performance.

The data location modes in CA IDMS/DB provide you with the following capabilities:
m Randomization

m (Clustering

Chapter 11: Determining How an Entity Should Be Stored 123

Location Modes

Randomization

CALC location mode

CA IDMS/DB allows users todistribute occurrences of a particularentity randomly
across thearea to whichitis assigned. Randomization of entity occurrences is achieved
with the CALC location mode.

When you specify CALC for an entity, the databaseuses a randomizingalgorithmto
calculatea storage page for each occurrence of that entity; the calculationis based on
the value of a symbolic key (called the CALC key).

The diagrambelow shows the use of the CALC location mode to randomize entity
occurrences.

Program

ADD DEPARTMENT 124

Randomizing

algorithm
Page 1000 Page 1001 Page 1002 Page 1003
Department Department
258 156
Department
124
Department
201

CA IDMS/DB stores an occurrence of a CALC entity on or near a calculated storage page.
The entity is placed directly onthe preferred pageifsufficientspaceexists. Otherwise, it
is placed on the next page within the area where sufficientspaceexists.fthe end of the
areaisreachedinthe searchforspace, CA IDMS/DB wraps around to the beginning of
the area.

Purpose of the CALC location mode

The purpose of the CALC location mode is twofold:

124 Database Design Guide

Location Modes

Direct retrieval by symbolic key, enablingretrieval of an entity occurrence with a
singleread operation. Retrieval of an entity located CALC involves knowingonly the
valueof its CALC key; the databaseautomatically converts the CALC key into the
correct page number when the entity is requested. For more information
concerningthe use of numeric fields withina record's CALC key, see Zoned and
Packed Decimal Fields as IDMS Keys.

Random distribution of entity occurrences over all the pages inanarea. This
reduces overflow conditions and leaves spacefor clustered entity occurrences. For
further information on overflow conditions, see "Overflow Conditions"in Chapter
15, "Determining the Size of the Database".

Chapter 11: Determining How an Entity Should Be Stored 125

Location Modes

Clustering

Clusteringenables you to group entity occurrences thatare likely to be accessed
together. When you request clustering, the databasestores each entity occurrenceas
closeas possibleto another occurrence to which itis logically related.

Minimizing read operations

By storingrelated entity occurrences on or near the same page, clustering minimizes the
number of read operations required to access thedatabase. Clustering could, for
example, be used to retrieve a DEPARTMENT entity occurrenceand its related
EMPLOYEE entity occurrences with a singleread operation.

Clusteringenhances processing performanceby grouping entity occurrences that are
likely to be accessed together. For example, clustering could be used to store employees
CRANE, GARDNER, and FONRAD on the same database page as the OPERATIONS
department, the department to which these employees belong. All four entity
occurrences could be retrieved with a singleread operation.

Program

RETRIEVE ALL EMPLOYEES
IN THE OPERATIONS
DEPARTMENT

Page 1000 Page 1001 Page 1002 Page 1003
Operations Personnel Marketing
Crane Accounting
Gardner
Fonrad

Clustering methods

CA IDMS/DB supports the following methods of clustering entity occurrences:

126 Database Design Guide

Location Modes

m Clusteringthrough arelationship allows you to cluster entity occurrences related
through a relationship. This causes an entity (the child) to be stored as closeas
possibleto the entity itreferences (the parent).

Ifassigned to the same area, child occurrences will target to the same page as their
parent.

When assigned to a different area, child occurrences arestored at the same relative
positionintheirarea as the parent occurrenceisinits area.

This is the most efficientmeans of clusteringtwo or more related entities.

To indicateclusteringthrough a relationship, you specify a location mode of
CLUSTERED and the name of the relationship around which this entityis to be
clustered.

For further information on how CA IDMS/DB clusters entity occurrences, see the CA
IDMS Database Administration Guide.

m Clusteringthrough anindex allows you to cluster entity occurrences based on the
value of a symbolickey. If clusteringusinganindex, all occurrences havingthesame
(or similar)index key values aretargeted to the same database page. This has the
effect of maintainingentity occurrences physicallyinsequenceby the value of the
key.

This is the most efficient means of ordering data occurrences if multiple
occurrences areoften retrieved inthe sequence of their key values. However, its
benefit is minimized if frequent additions and deletions causeentity occurrences to
be stored out of sequence due to overflow conditions.

To indicateclusteringthrough anindex, you specify a location mode of CLUSTERED
andthe name of the index around which this entity is to be clustered.

For more information onindexes, see Refiningthe Database Design.

m Clusteringusingthe CALC location mode allows you to cluster entities related
through a shared data element. You assignthe CALC location mode to each entity,
defining corresponding data elements as CALC keys.

When the CALC location mode is specified for two entities, CA IDMS/DB stores all
entity occurrences that have the same CALC key valueon or near the same
databasepage.

This is a means of clusteringentities even if no relationship exists butdoes not work
well for extremely volatileor high-volumeentities. Frequent additions and
deletions of entity occurrences may increasethe likelihood of contention and, if
many occurrences target to the same page, overflow conditions willincreasel/O
rates.

To indicateclustering using the CALC location mode, you specify a location mode of
CALC for each entity, definingidentical data elements as CALC keys.

A discussion of when to choose these methods follows.

Chapter 11: Determining How an Entity Should Be Stored 127

Guidelines for Determining How an Entity Should Be Stored

Guidelines for Determining How an Entity Should Be Stored

Guidelines for assigninglocation modes to entities are shown below. As you determine
how you want to store each entity, indicatethis information onyour data structure

diagram.

Cluster Yes Optimal Yes Both parent
by relationship relationship —-— and child?
clustering?

No
Parent but
CALC not a child?

Child Yes | Cluster by
only and optimal >—"" (a|ationship
clustering?
N Generic
¢ retrieval and Yes Clu.sler
relatively by index
static?

The decision operations inthe chartarediscussed below, followed by a discussion of
how to assign data location modes to entities inthe Commonweather Corporation
database.

Is This Entity Both a Parent and a Child?

Ask this question of every entity identifiedin the logical databasedesign.

Ifthe answer to this questionis Yesfor an entity, the entity is involvedin multiple

relationshipsandyou must decide which, if any, of these relationshipsshould be used
for clustering.

128 Database Design Guide

Guidelines for Determining How an Entity Should Be Stored

Is There Optimal Relationship Clustering for This Entity?

Ifthe entity is involvedin multiplerelationshipsin whichitis both the parentand child,
it may be possibleto cluster this entity around another related entity. Optimal
clustering means that application programs access this entity most often in conjunction
with another entity and clustering can be used effectively.

Clustering through a relationshipis one of the most effective ways of reducing 1/0s
when related entity occurrences areretrieved together. Therefore, ifapplications
accessingthis entity frequently access related entities, you should generally cluster the
child entities through the relationship.

Note: Ifthe sizeof all clustered entity occurrences is too large, the benefit of clustering
might be negated becauseseveral I/Os arerequired to access the entire cluster.

Ifthere is no optimal clustering, the entity should be stored CALC, providing both an
alternate entry pointinto the databaseanda parent around which other entities can be
clustered.

Example

An example of such anentity is the EMPLOYEE entity. This entity is both a parentand a
child buthas no optimal clustering.

The COVERAGE entity, on the other hand, is both a parent and child butcan be clustered
optimally around the EMPLOYEE-COVERAGE relationship sinceaccess is mostoften by
means of the EMPLOYEE entity, and multiple COVERAGE entity occurrences relatingto a
particularemployee are often accessed atthe same time.

Is This a Parent Entity but Not a Child Entity?

Ask this question for each entity that does not existas both a parentand a child.

An entity that exists only as a parent entity is often used as anentry pointinto the
database. For this reason,itis advisableto have a fast access key on the entity.

The CALC location mode generallyis a better choicethan an index key because:
m |trequires fewer |/Os to access anentity using a CALC key.

m The CALC algorithmrandomizes entity occurrences, thus allowingspaceto cluster
related entity occurrences.

Example

An example of a parent entity but not a child entityis the DEPARTMENT entity. This
entity should be stored CALC based on the DEPT ID.

Chapter 11: Determining How an Entity Should Be Stored 129

Graphic Conventions

Is This a Child Entity but Not a Parent Entity?

Ask this question of each entity that exists neither as a parentand child,noras onlya
parent.

An entity that acts as a child butnot a parentis not usuallyusedas an entry pointinto
the database. This entity often can be stored clustered around one of its parent entities.

Clusteringthrough a relationshipis one of the most effective ways of reducing 1/Os
when related entity occurrences areretrieved together. Therefore, ifapplications
accessingthis entity frequently access related entities, you should generally cluster the
child entities through the relationship.

Note: Ifthe sizeof all clustered entity occurrences is large, the benefit of clustering
might be negated becauseitrequires several |/Os to access the entire cluster.

Example

An example of a child entity but not a parent is the EXPERTISE entity. An occurrence of
this entity is most frequently accessed through its associated EMPLOYEE entity
occurrence. Therefore, it can be stored clustered around the EMP-EXPERTISE
relationship.

Is Generic Retrieval Required and Is the Entity Relatively Static?

The only entities left to askthis question of arestandaloneentities and child-only
entities havingno optimal clustering.

You should choose CALC location mode ifapplication programs always retrieve this
entity usingits full key or ifitis relatively dynamic (thatis, many additions, deletions, or
key changes).

Ifan entity is relatively staticand multiple occurrences are often retrieved together, itis
most effective to cluster the entity through an index defined on the most-commonly
used access key.

Ifthe entity is not static, but often participates in multi-occurrenceretrievals, cluster the

entity on anindex defined on its db-key. For more information onindexes, Chapter 12,
"Refining the DatabaseDesign"

Graphic Conventions

There are graphic conventions used to represent both the location mode and indexes.

130 Database Design Guide

Graphic Conventions

Conventions for Specifying Location Mode

To indicateyour location mode decision on the data structure diagram, you need to
name the method (CALC or CLUSTERED). Ifthe entity is to be stored CALC, name the
CALC key. Ifthe entity is to be clustered, name the relationship or theindex itis to be
clustered around.

The diagrambelow shows how your location method decisions areindicated on the
diagram.The EMPLOYEE entity has a location mode of CALC. Its CALC key is the data
element EMP ID and duplicates of this key are not allowed; the key must be unique. The
second exampleis the DENTAL CLAIM entity, which has a location mode of CLUSTERED.
Occurrences of this entity will be clustered around the COVERAGE-CLAIMS relationship.

EMPLOYEE DENTAL CLAIM
entity name entity name
128 CALC 47 CLUSTERED
length |location mode fength |location mode
EMP 1D U COVERAGE-CLAIMS
CALC key dup opt relationship name

The following characteristics of the entities are indicated on the diagram:

Entity name— The name of the entity

Length— The estimated data length (in bytes) for fixed-length entities; the
maximum length for variable-length entities. This informationis usedin database
sizing.

Location mode— How the entity is storedinthe database (CALC or CLUSTERED).

CALC-key, relationship name, or index name—The name of the CALC-key field (CALC
entities) or the name of the relationship around which this entityis to be clustered
(ifthe entity is to be clustered around a relationship), or the name of the index
around which this entity is to be clustered (ifthe entity is to be clustered aroundan
index).

Dup opt (CALC entities only)—The duplicates option: the disposition of entities with
duplicate CALC keys (U for unique or blank for non-unique).

Chapter 11: Determining How an Entity Should Be Stored 131

Location Modes for Entities in the Commonweather Database

Conventions for RepresentingIndexes

To represent an index on the data structure diagram:

m Usea triangleto represent the index.

m Specify a name for the index.

m |dentify the data element name(s) that areto be indexed.

m Specify whether duplicateindexed keys are allowed (blank) or not allowed (U).
Sample index representation

The following diagramshows the standard CA IDMS/DB notation for anindex. The index
allows the DBMS to access all EMPLOYEE entity occurrences inthe databasebased on
the lastname/firstname in ascending order. Duplicatelastname/firstname
combinations areallowed.

EMP-LNAME-NDX
(EMP LAST NAME
EMP FIRST NAME)

EMPLOYEE
| | 128 | CALC
EMP ID U

Location Modes for Entities in the Commonweather Database

By followingthe guidelines presented in this chapter, you canassignappropriate
location modes to the entities inyour database.The table below shows how the
location mode was decided upon for each entity in the Commonweather database.

Is this entity... Both With optimal Parentand Child and not Generic
parent clustering? not child parent retrieval
and (w/optimal and
child? clustering)? relatively

static?

DEPARTMENT N - Y - -

OFFICE N - Y - -

PROJECT Y N - - -

INS CO N - Y - -

LIFE INSPLAN N - N N Y

132 Database Design Guide

Location Modes for Entities in the Commonweather Database

HEALTH INS Y N - - -
PLAN Y N - - -
NON-HOSPITA N - N N -
L

CLAIM Y N - - -
DENTAL N - Y - -
CLAIM

HOSPITAL Y N - - -
PHYSICIAN N - Y - -
DENTIST N - Y - -
EMPLOYEE N - Y - -
JOB

SKILL

PATIENT

Location mode: Store CALC on primary key. For example, store the EMPLOYEE entity
CALC on EMP ID.

Is this entity... Both With optimal Parent and Child and not Generic
parent clustering? not child parent retrieval
and (w/optimal and
child? clustering)? relatively

static?

EMPOSITION N - Y - -

EXPERTISE N - Y - -

STRUCTURE Y N - - -

WORKER N - Y - -

PHONE N - N N Y

SALARY Y N - - -

GRADE Y N - - -

COVERAGE N - N N -

NON-HOSPITA Y N - - -

L

PROCEDURE N - Y - -

DENTAL Y N - - -

PROCEDURE N - Y - -

Chapter 11: Determining How an Entity Should Be Stored 133

Location Modes for Entities in the Commonweather Database

Location mode: Store clustered on the optimal relationship. For example, store the
EXPERTISE entity clustered on the EMP-EXPERTISE relationship

Revised Data Structure Diagram for the Commonweather Corporation

SALARY GRADE

| J28 Jcrusten

ED)

OFFICE-PHONE
FK (OFFICE CODE)

After you have decided how you want to store and access each entity, indicatethis
information on the data structure diagram.Below is the updated data structure diagram
for the Commonweather Corporationdatabase.

PHONE
[T10 Jerusteren

JOB-GRADE | OFFICE PHONE |
JOBSALARY DEPARTMENT OFFICE
FK (OB ID) HEREXE [s5 [cac
DEPT ID | u OFFICE CODE | U
JOB SKILL
[[=283] cac [7 Jeac
JoB 1D [v DEPT-EMPLOYEE DEPT-HEAD | QFFICE-EMPLOYEE SKILL CODE [u
FK (DEPT IG} FK (EMP ID) FK (OFFICE GODE)
JOB-EMPOSITION SKII1 -EXPERTISE
FK (JOB 1D} FK (SKILL CODE)
EMPGSITION EMP-EMPOSITION [F\ip| oYEE EMP-EXPERTISE [£y pERTISE
FK (EMP ID) FK (EMP 1D}
[39 Jorusteren) [T1es] cac [16 Jowusteren
EMP—EMPOSITION' EMP 1D | u EMP-EXPERTISE |
EMP-PROJECT
FK {(EMP 1D)
PROJECT MANAGES-REPQRTS-TG | LIFE INS PLAN
S FK {SUPR EMP ID) [Te0 [cac
EMP-WORKER
PROJECT CODE_|U FK (EMP 1D} LIFE PLAN CODE [U
LIFE-PLAN
FK {LIFE PLAN CODE) INSCO-LIP
PROJECT-WORKER WORKER
FK (PROJECT CODE)

GOVER

FK (EMP D} EMP-COVERAGE |

[T20 Jowusterep

PROJECT-WORKER

I EMP-COVERAGE
FK (EMP ID}

COVERAGE

AGE-NHG

[50 JeLusteren

HIP-COVERAGE
FK (HEALTH
Pl AN CODE)

FK (INSCO NAME]

INS €O
[Tio1]cac
INSCO NAME U

INSCO-HIP
FK (INSCO NAME)

COVERAGE-HC
FK (EMP ID)

COVERAGE-DG
FK (EMP ID)

HEALTH INS PLAN
[Teo Jeac

HEALTH PLAN CD[U

NON-HOSPITAL CLAIM

[Ts7]cac

NON-HOSP CLAM 1D [U

HOSPITAL CLAIM

[T1ss] cac

HOSPITAL CLAIM Iq U

NHCLAIM-PROC
FK (NON-HOSPITAL
CLAIM ID)

NON-HOSP PROCEDURE
[[8s Jousteren
NHGLAIM-PROC |

PHYSICIAN-NHC
FK (FHYSICIAN 1D}

PATIENT-NHC
FK (PATIENT NAME)

HOSPITAL-HC

DENTAL CLAIM
| T47 [cac
DENTAL GLAIM 1D] U

FK (HOSPITAL NAME)

HOSPITAL

[71 Jcac

HOSPITAL NAME [u

PATIENT-HC
FK {PATIENT NAME) FK (DENTIST LICENSE
NUMBER)
PHYSICIAN PATIENT
[77 Jcac HERES
PHYSICAN D [U EMP ID

DENTIST-DG

DCLAIM-PROC
FK (DENTAI CI AIM 10)

DENTAL PROCEDURE
[Tes Jerusteren

DCLAIM-PROC |

DENTIST

[77 Jcac

DENTLIC NUM U

134

Database Design Guide

Chapter 12: Refining the Database Design

This section contains the following topics:

Evaluatingthe Database Design (see page 135)

Refinement Options (see page 136)

Estimating|/Os for Transactions (see page 137)

Eliminating Unnecessary Entities (see page 142)

Eliminating Unnecessary Relationships (see page 146)

Adding Indexes (see page 147)

Refined Data Structure Diagramfor Commonweather Corporation (see page 153)

Evaluating the Database Design

You have created a preliminary model for a physical databaseand haveidentified the
entities inthe database.You have also gathered the information necessary to refine this
diagramand have assigned location modes to the entities. Now you will refinethe
preliminary design to allow for optimal transaction and system performance.

Evaluation considerations

Before you refine the data structure diagram, you need to evaluate the design for
performance. To satisfy performancerequirements for eachindividual business
transaction, you need to consider the followingissues:

m Input/output (I/0) performance—Is the number of 1/O operations performed
againstthe databasesufficiently lowto providesatisfactory transaction
performance?

m CPU time—Does the structure of the physical database optimizethe use of CPU
processing?

m Space management—Do design choices helpto conserve storage resources?

Once you have refined the databaseto satisfy eachindividual transaction, you need to
determine how the system will beaffected by the concurrent execution of several
transactions. To avoid excessive contention for databaseresources, you need to make
appropriate changes to the physical model.

Refining the database design

Like many other databasedesign procedures, refiningthe databasedesignis aniterative
process,as shown below. As you refine the design, you need to evaluatethe design for
performance. When you make changes, you should review the designto ensure thatit
will optimize processingfor all critical transactions and also minimize the likelihood of
contention.

Chapter 12: Refining the Database Design 135

Refinement Options

Refinement Options

CA IDMS/DB provides options for refining the database design to ensure optimal
performanceinindividual transactions. There is no right or wrong method for refining
the physical database model. Your organization's requirements will determine the best
approach for you.

Options

The following databaseoptions can beused to ensure optimal performance inindividual
business transactions:

m Indexes—Chapter 11, "Determining How an Entity Should Be Stored" showed you
how to includeindexes inthe databasedesign to provide data clustering. At this
pointinthe design process, you have the option to includeadditionalindexes to
providegeneric search capabilities as well as alternateaccess keys.

m Collapsing relationships—A one-to-many relationship can beexpressed within a
singleentity by making the many portion of the relationship a repeatingdata
element. A one-to-many relationship expressedin this way can enhance processing
performance by reducing DBMS overhead associated with processing multiple
entity occurrences.

m Introducing redundancy—By maintainingcertain data redundantly,youcan

sometimes enhance processingefficiencyinselected applications.

Each of these options is describedin detail below followinga discussion of how to
estimate I/Os for transactions.

136 Database Design Guide

Estimating I/0s for Transactions

Estimating I/0s for Transactions

After you have assigned data locationand access modes to the entities ina database,
you need to estimate the number of input/output operations that each business
transaction will perform.You estimate the 1/0 count for a transaction by tracing the
flow of processingfromone entity to another inthe database. As you trace the flow of
processing, you determine the number of 1/0Os required to access all necessary entities.

The 1/0 estimate for a business transaction depends on several factors, including:
m The order inwhich entities are accessed
m The location mode of each entity accessed

m The types of indexes (ifany) used to access the data

m How the entities areclustered inthe database
General guidelines

Assumingthat anentire cluster of databaseentities canfit on a singledatabasepage,
you can use the following general guidelines for estimating |/Os:

m Zero I/Os arerequired to access anentity thatis clustered around a previously
accessed entity.

m Onel/Oisrequiredto access anentity stored CALC.

m Three |/Os are required to access an entity through an index.

To calculatethe time required to perform all I/O operations ina particular transaction,
perform the following computations:

m Total number of I/Os for all entity types—Compute the total number of 1/0
operations by adding the number of I/Os required to retrieve and update
occurrences of all entity types.

m 1/0 reserve factor—Multiply the total number of 1/Os by 1.5 to account for possible
overflow conditions and largeindex structures.

® Amount of time to perform I/Os—Multiply the total number of I/Os for all entity
types by the access timefor the device being used. The resultis a rough estimate of
the time required to perform all I/O operations inthe transaction.

Once you have determined how much time will berequired to execute a particular
transaction, you need to compare this time figure with the performance goal you
established earlierinthedesign process. If the required time does not meet your
expectations, you need to modify the physical database model until itdoes. Sometimes
you have to change your expectations.

For further information on establishing performancegoals for business transactions, see
Chapter 10, "Identifying Application Performance Requirements".

Chapter 12: Refining the Database Design 137

Estimating I/0s for Transactions

Two sampleexercises inestimating1/Os arepresented below. Each exerciseuses the
EMPLOYEE, EXPERTISE, and SKILL entities:

SKILL
[Jrs] cac
SKILL 1D [u
SKILL-EXPERTISE
FK (SKILL ID)
EMPLOYEE EMP-EXPERTISE EXPERTISE
[Tz |eac FK (EMP 1D) | | 16 |CLUSTERED
EMP ID [u EMP-EXPERTISE |

138 Database Design Guide

Estimating I/0s for Transactions

Sample Exercise #1: Estimating I/0s for a Retrieval Transaction

Suppose you need to estimate |/Os for the followingtransaction:

Identify skills for an employee.

Inthis transaction, the user specifies an employee ID valueand the system returns the
employee ID, name, skill code, skill level, and skill description for the specified
employee. This transaction uses the EMPLOYEE entity as anentry pointto the database.

I/0 estimates

By analyzingthe access path of the transaction, you can make the following|/O
estimates for each entity accessed:

EMPLOYEE—Because this entity is stored CALC, only one I/O operationis required
to retrieve one EMPLOYEE entity occurrencefrom the database.

EXPERTISE—Each employee canhave as many as five skills. Therefore, the
transaction retrieves five EXPERTISE entity occurrences for each EMPLOYEE entity
occurrence. However, since EXPERTISE entity occurrences are clustered around a
related EMPLOYEE entity occurrence, no 1/Os are necessary to retrieve the
EXPERTISE entity occurrences.

SKILL—For each EXPERTISE entity occurrence retrieved, there is anassociated SKILL
entity occurrenceinthe database. Therefore five SKILL entity occurrences are
retrieved for each employee. Since the SKILL entity is stored CALC, its occurrences
aredistributed randomlyinthe database. To retrieve five SKILL entity occurrences,
the system must perform five 1/Os.

Estimating 1/Os for a sample retrieval transaction

A total of six 1/O operations will be performed by this transaction, as shown below.

Chapter 12: Refining the Database Design 139

Estimating I/0s for Transactions

Record

Record

Record

Record

Record

Record

Record

(I/O0s * .025 sec)

Number of Number cof Total 1/Os for
1/10s to access| occurrences entity type
gne occur- accessed
rence
—Ident.rfy skills Read | Write (Total
for an empioyee
Employee 1 i 1 i
Expertise 0 5 5 0
Skill 1 5 9 3
Total number of 1.Os for the
transaction 6
Total I/Os plus reserve factaor
of 50% 9
Minimum time for the transaction 225

140 Database Design Guide

Estimating I/0s for Transactions

Sample Exercise #2: Estimating I/0s for an Update Transaction

When you estimate 1/Os for a transaction that performs update functions, you need to
consider I/O operations thatmust be executed to ensure databaseintegrity. Inaddition
to the 1/Os required to access desired entities, update transactions mustperform 1/0s to
access related entities. Some types of integrity checking requirethat the system access
other related entities.

Suppose you need to estimate 1/Os for the followingtransaction:
Add a skill foran employee.

To protect the relationship between an EMPLOYEE entity and an associated EXPERTISE
entity, the EMPLOYEE entity must be accessed before storingthe EXPERTISE entity.
Likewise, to protect the relationship between a SKILL entity and anassociated
EXPERTISE entity, the SKILL entity must be accessed before storingthe EXPERTISE entity.

1/0 estimates

Knowing this information, you can make the following1/0 estimates for each entity
accessed:

m EMPLOYEE—Because this entity is stored CALC, only one |/O operationis required
to access one EMPLOYEE entity in the database.

m SKILL—Since the SKILL entity is stored CALC, onlyone |I/Ois required to access a
singleSKILL occurrence inthe database.

m EXPERTISE—EXPERTISE entities are clustered around a related EMPLOYEE entity.
Therefore one 1/Ois necessary to store the EXPERTISE entity.

Estimating 1/Os for a sample update transaction

A total of three I/O operations will be performed by this transaction, as shown below.

Chapter 12: Refining the Database Design 141

Eliminating Unnecessary Entities

Number of Number of Total 1/Qs for
I/Os to access| occurrences entity type
one occur- accessed
rence
Add a skill
Read | write |Total
for an employee
Record Employee 1 1 1 1
Record Skill 1 1 1 1
Record Expertise 0 [¢] 7 7 1
Record
Record
Record
Record

Total number of 1.0s for the

transaction 3
Total I/Os plus reserve factor
of 50% 4.5

Minimum time for the transaction

(1/O0s * .025 sec) 1138

Eliminating Unnecessary Entities

Sometimes entities identified duringthe logical designarenotrequired as separate
entities inthe physicalimplementation. Two ways to eliminatesuch entities are:

m Collapsingrelationships

m Introducingredundancy

142 Database Design Guide

Eliminating Unnecessary Entities

Collapsing Relationships

Duringthe normalization process inlogical databasedesign, you separated
multiply-occurring data into a separateentity type (firstnormal form). It may be more
efficient to move this data back into the original (parent) entity.

Consider this optionifdata occurs a fixed number of times and the data is not related to
another entity. An example of such data is monthly sales totals for the lasttwelve
months collapsedintoasales entity.

Advantages
By maintainingthe dataina singleentity instead of maintaining two separateentity
types, you can:

m Savestorage spacethat might otherwise be used for pointers or foreign-key data.

m Reduce databaseoverhead by eliminatingthe need to retrieve two entities. When
you express a one-to-many relationship within a singleentity, application programs
canaccess alldesired data with a single DBMS access.

Note: Expressinga one-to-many relationship within a singleentity offers little /O
performance advantage over clusteringtwo separateentities.

Comparison of collapsing relationships and maintaining separate entities

The followingtable presents a comparison of collapsingrelationships into a single entity
type and maintaining separateentities.

Efficiency Considerations Potential Impact

1/0 Expressinga one-to-many relationship withina single
entity offers little1/O performance advantage over
clustering two entities.

CPU time By storinga repeating element inanentity, you canreduce
the amount of CPU time required to access the necessary
data.

Space management By storinga repeating element inanentity instead of

maintaining two separate entity types, you cansave
storage spacethat might otherwise be required for
pointers or foreign key data.

Contention No difference

Chapter 12: Refining the Database Design 143

Eliminating Unnecessary En

tities

SQL considerations

Because repeating elements violatefirstnormal form, they are incompatiblewith the
relational model and cannotbe defined in SQL. However, ifthere are a fixed number of
repetitions (such as months in a year), the repeating elements can be separately named
(such as JANUARY, FEBRUARY, andso on). If there is a variable butquite small number
of occurrences (such as phone numbers), a fixed maximum number of elements can be
named (PHONE1, PHONE2, for example), usingthe nullableattributeto allow
identification of occurrences that might not have a value.

144 Database Design Guide

Eliminating Unnecessary Entities

Introducing Redundancy

Although data redundancy should normally beavoided, you can sometimes enhance
processingefficiencyin selected applications by storing redundantinformation. A
certainamount of planned data redundancy can be used to simplify processinglogic.

Insome instances, youcan eliminatean entity type from the databasedesign by
maintaining someredundant information. For example, you might be ableto eliminate
anentity type by maintainingthe information associated with this entity in another
entity type inthe database. When you merge two or more entity types inthis way, you
simplify the physical data structures and reducerelationship overhead.

Considerations

Consider maintainingredundantdata under the following circumstances:

m An entity type is never processed independently of other entity types. Ifan entity
is always processed with one or more additional entity types, you may be ableto
eliminatethe entity and store the information elsewhere inthe database.Since the
information associated with the entity is not meaningful by itself, inconsistent
copies of the data should not present a problem for the business.

® An entity type is not used as an entry point tothe database. Ifapplication
programs do not use a particular entity type as anentry pointto the database, you
may be ableto eliminatethe entity type from the design. However, do not
eliminatethe entity ifitis ajunction entity type ina many-to-many relationship.

m The volume of data to be stored redundantly is minimal. Do not maintainlarge
amounts of data redundantly. A high volume of redundant information will require
excessivestorage space.

Example

The following diagram shows how you might use data redundancy to enhance
processing of dental claiminformation.

By maintainingall DENTIST information with the DENTAL CLAIM entity, you can simplify
the databasedesignandreduce the overhead of maintainingtherelationship.Since
Commonweather users do not process information associated with the DENTIST entity
by itself,inconsistent DENTIST information will not present a problem for the business.

Chapter 12: Refining the Database Design 145

Eliminating Unnecessary Relationships

DENTAL CLAIM

Preliminary [Tar] cmc

design: DENTAL GLAM ID | U
DENTIST-DG

FK (DENTIST LICENSE NUMBER)

DENTIST

| |77' | CALC
DENTAL LICENSE NU|\4 u

DENTAL CLAIM

Refined | | 11'3| CALG
design: DENTAL GLAM D | U

Eliminating Unnecessary Relationships

The purpose of arelationshipistorepresent integrity rules between entities. As such,
they serve a useful purposein modeling your business. However, there is always
overhead associated with a relationship. Sincethe DBMS must ensure the integrity of a
relationship during update operations, they resultinincreased CPU and I/O.They may
alsorequireadditional storagespace.

Whileyou should not sacrifice needed integrity, you should eliminaterelationshipsthat
are notrequired for business reasons. Particularly review the need for:
m One-to-one relationships

For example, the DEPARTMENT-HEAD relationship may not require DBMS
enforcement of integrityand, ifso, should be eliminated as a relationship.

m Relationshipsinwhichthere are onlyafew pre-established parentoccurrences

Examples of this type of relationship would be STATE-OFFICE or SEX-EMPLOYEE.
Ensuringthat each officeisinavalid stateor that each employee is assigned a valid
sex should be done in one of the followingways rather thanas a relationship.

- Byusingamap edit or code table (application enforcement)

— By usingacheck constraint(in SQL-defined databases)

By usingdatabaseprocedures (in non-SQL defined databases)

Through a logicalrecord facility path (in non-SQL defined databases)

Inthe Commonweather database, the relationship between INSCO and HEALTH
INSURANCE PLAN can be removed.

146 Database Design Guide

Adding Indexes

Adding Indexes

In Determining How an Entity Should Be Stored, you included indexes in the physical
databasemodel for entities that will beaccessed through multi-occurrenceretrievals.
These entity occurrences will beclustered around the index. You now have the optionto
define additional indexes for databaseentities to satisfy processing requirements.

Review the function lists and access paths thatyou documented during the logical
design process to ensure that each entry point entity has an efficientaccess for each
applicationsearchkey. If necessary,add additionalindexes as alternateaccess keys to
satisfy application requirements.

For further information on how to determine the databaseentry point for each business
transaction, see Chapter 10, "Identifying Application Performance Requirements".

What is an index?

An indexis a data structure consisting of addresses (db-keys) and values fromone or
more data elements of a given entity. Indexes enhance processing performance by
providingalternateaccess keys to entities.

EMP-LNAME-NDX
DES (EMP LAST NAME
EMP FIRST NAME)

EMPLOYEE
| 128]eac
EMP-ID u

Advantages and disadvantages

Whileindexes minimizethe number of I/Os required to retrieve data from the database,
they require extra storage spaceand add overhead for maintenance. The addition ofan
index actually increases the |/Os and processingtimerequired to add or remove an
entity occurrence. You will need to weigh the options when consideringthe use of
indexes.

Why add additional indexes?

Indexes providea quickand efficient method for performing several types of processing.

m Direct retrieval by key—With anindex, the DBMS canretrieve individual entity
occurrences directly by means of a key. For example, an application programmer
coulduse anindex to quicklyaccess an employee by social security number.

Chapter 12: Refining the Database Design 147

Adding Indexes

Because more than one index can be defined on an entity (each on a different data
element), they canbe used to implement multipleaccess keys to an entity.

Generic access by key—Indexes allowthe DBMS to retrieve a group of entity
occurrences by specifyinga complete or partial (generic) key value. For example, an
index could be used to quickly access all employees whose last names begin with
the letter M. A string of characters, up to the length of the symbolic key, canbe
used as a generic key.

Ordered retrieval of occurrences—The DBMS canuse a sorted index to retrieve
entity occurrences insorted order. In this case, the keys in the indexare
automatically maintained in sorted order; the entity occurrences canthen be
retrieved inascendingor descending sequence by key value. The application
program does not have to sortthe entity occurrences after retrieval. For example,
all employees could be listed by name. Becauseentity occurrences canbe accessed
through more than one index, they can be retrieved in more than one sort
sequence.

Retrieval of a small number of entity occurrences—An index improves retrieval of
all occurrences of a sparsely-populated entity and provides a way of locatingall
occurrences of such entities without readingevery pageinthe area(anarea
sweep). Area sweeps are the most efficient means of retrieving entities with
occurrences on all (oralmostall) pagesinanarea.

Physical sequential processing by key—Entity occurrences can be stored clustered
around an index. With this storage mode, the physical location of the clustered
entity occurrences reflects the ascendingor descending order of their db-keys or
symbolickeys. If occurrences of an entity areto be retrieved insequential order,
storingentity occurrences clustered via the index reduces 1/0. This option is most
effective when used with a stabledatabase.

Enforcement of unique constraints—An index can be used to ensure that entity
occurrences have unique values for data elements; for example, to ensure that
employees are not assigned duplicatesocial security numbers.

Other means of enforcingunique constraints include:
— Usinga unique CALC key

— Usinga sorted relationship

Index keys

The keys associated with an index can be either:

Symbolic keys, in which the key values inthe indexare the same as one or more
data elements inthe indexed entity occurrences

Db-keys, in which the key values inthe index are the db-keys of the indexed entity
occurrences.

Symbolic key indexes areuseful for:

Enforcingunique constraints

148 Database Design Guide

Adding Indexes

m Providingalternateaccess keys (entry points) into the database

m Supporting generic and ordered retrieval of entity occurrences

Db-keys are useful for:

m Retrieving all occurrences of a sparsely-populated entity (an entity with occurrences
on only some of the pages inanarea)

If generic or ordered retrieval is nota consideration when adding new symbolic key
index and the key is made up of more than one data element, choose as the firstdata
element one whichis notalreadyanaccess keyinto the database. For example, ifyou
placeanindex on COVERAGE to ensure that its primarykey is unique, then the index key
will becomposed of: EMP ID, HEALTH PLAN CODE, and COVERAGE TYPE. Since EMP ID
and HEALTH PLAN CODE are already entry points into the COVERAGE entity (because
they are CALC keys of related entities), choose COVERAGE TYPE as the firstdata element
inthe index key.

Index order
The index order is the way in which the entity occurrences will belogically ordered

based on the key or keys you have chosen. Index orders include:

m Ascending—Index entries are ordered sothat an entry with a lower key value
occurs before an entity with a higher key value: A through Z, smallestto largest.

m Descending—Index entries are ordered sothatan entry with a higher key value
occurs before an entity with a lower key value:Z through A, largestto smallest.

m Mixed—You canchooseto have one key of an index ordered inone order and
another key of the same index in a different order.

In general, choose anindex order based on how data is most frequently accessed. For
example, ifemployees are most often retrieved inascendingorder by lastname, then
choose ascendingas the index order.

Db-key indexes

You canchooseto have the index order based on the db-keys of the entity occurrences
being indexed.

Indexes ordered by db-key especiallyimproveretrieval of entities with occurrences on
only some of the pages inanarea, but which are likely to have more than one
occurrence per page, such as entities clustered around a sparsely occurring parent.

Retrieving all occurrences of an entity

The followingtable provides guidelines for choosing a retrieval method (and, thus, a
design) to retrieve all occurrences of an entity.

Chapter 12: Refining the Database Design 149

Adding Indexes

Data in the Database Access Method

Sparsely populated An index based on symbolic key

Every page contains one or more occurrences Usean area sweep
of the entity

Sparsely populated but a page contains An index based on db-key
multipleoccurrences of the entity

150 Database Design Guide

Adding Indexes

SQL considerations

Inthe SQL environment, every entity thatis a parentinarelationship musthavea
unique index or CALC key defined for the referenced (primary) key. Add anyindexes that
are missing.

Every entity defined inan SQL-defined databaseis initially assigned a default index. This
isanindexsorted by db-key sothat all entity occurrences can be accessed with the
minimum number of I/Os.You must decide whether to retain this index or dropit. You
should drop the defaultindex ifany of the followingaretrue:

m The entity is densely populated; every page contains atleastone occurrence of the
entity.

m Entity occurrences areclustered around another index.

m Another indexis defined on the entity, anditis unlikely that more than one entity
occurrence resides on a page.

m Non-keyed queries will be extremely rare.
Representing additional index options
In Determining How an Entity Should Be Stored, you saw how to represent anindex.

To represent additional index options in the data structure diagram:

m Specify the order for each data element used as an index key (ASC - ascending; DES
- descending).

m Ifthe order is by db-key, specify DBKEY.

The following diagram shows the standard CA IDMS/DB notation for anindex. The index
allows the DBMS to access all EMPLOYEE entity occurrences inthe databasebased on
the lastname/firstname in descending order. Duplicatelastname/firstname
combinations areallowed.

EMP-LNAME-NDX
DES (EMP LAST NAME
EMP FIRST NAME)

EMPLOYEE
| [izs]eac
EMP-ID u

Summary of indexes

Indexes should be added, if necessary, when validating transaction performance. Add
additional indexes if theadvantage gained outweighs the cost.

Chapter 12: Refining the Database Design 151

Adding Indexes

The followingtable presents a comparison of the use of indexes and user-written sort
routines.

Efficiency Considerations Potential Impact

1/0 I/O may be reduced for retrieval but increased for update.
CPU time CPU canbe reduced for retrieval but increased for update.
Space Indexes require extra storage spaceinthe database.
Contention The use of an index can sometimes cause contention.

152 Database Design Guide

Refined Data Structure Diagram for Commonweather Corporation

Refined Data Structure Diagram for Commonweat her

Corporation

Collapse relationships

You caneliminateunnecessary entities by embedding their dataina related entity type.
By usinga repeating data element instead of maintainingtwo separate entities, you can
savestorage spaceandalsoreduce CPU needed to access the repeating data as
described below:

m The PHONE and SALARY GRADE records areideal candidates for elimination
because:

— Each entity participates inonlyonerelationship. The PHONE entity is related
onlyto the OFFICE entity; the SALARY GRADE entity is related onlyto the JOB
entity.

- A maximum number of repetitions is predictablefor each entity. A maximum of
three phone numbers exists for each office; a maximum of four salary grades
exists for each job.

Thus we caneliminatethe PHONE entity and placethree PHONE NUMBER data
elements inthe OFFICE entity. We canalso eliminatethe SALARY GRADE entity and
placefour SALARY GRADE data elements inthe JOB entity. If you define this
databaseusing SQL statements, each of the repeating data elements must have a
unique name and, inthe caseof PHONE NUMBER and SALARY GRADE, allow null
values.

Introduce redundancy

The PHYSICIAN, HOSPITAL, PATIENT, DENTIST, and INS CO entities are never processed
independently of other entity types. Therefore, they do not need to be maintained
independently inthe database.Inaddition,informationinthe PROJECT and WORKER
entities is already carried in the STRUCTURE entity. HEALTH INS PLAN and LIFE INS PLAN
containthe same type of informationand can be combined intoa singleentity.
Information maintained inthese entities can therefore be embedded in other related
entities:

m [NSCO informationcanbestored in HEALTH INS PLAN and LIFE INS PLAN.
m PHYSICIAN information can be maintained in NON-HOSPITAL CLAIM.
m HOSPITAL information can be maintained in HOSPITAL CLAIM.

m PATIENT information can be maintained in NON-HOSPITAL CLAIM, HOSPITAL CLAIM,
and DENTAL CLAIM.

m DENTIST informationcanbe maintainedin DENTAL CLAIM.

m HEALTH INS PLAN and LIFE INS PLAN canbe combined into one entity called
INSURANCE PLAN.

Chapter 12: Refining the Database Design 153

Refined Data Structure Diagram for Commonweather Corporation

Update anomalies for these entities will notpresent a problem for the organization. For
example, since Commonweather users do not process DENTIST information by itself,
inconsistentinformationin this entity will notcompromise integrity or complicate
business processing functions.

Eliminate unnecessary relationships

At this point, the health-related entities can be represented as:

LIFE-PLAN
EMPLGYEE
INSURANCE PLAN
COVERAGE
HIP-COVERAGE

The LIFE-PLAN relationship can beeliminated by treating it as another type of coverage
availablethrough aninsuranceplan. Although this change will requirethat an
occurrence of COVERAGE be associated with each EMPLOYEE, it simplifies thedatabase
structure and the application processing.

The HIP-COVERAGE relationship can beeliminated also.Sincethere will never be more
than 15insuranceplansinthedatabase, the validity of an employee's insurance
information (the plan code) can be enforced through other means such as a logical
record facility path oranSQL CHECK constraint.

Also eliminatethe DEPT-HEAD relationship. Integrity enforcement by the DBMS for this
one-to-one relationshipisnotcritical to Commonweather Corporation.

Add indexes

Add the followingindexes to enforce unique constraints:

m Anindexon SKILL based on SKILL NAME

m An index on COVERAGE based on COVERAGE TYPE, PLAN CODE, and EMP ID
m An index on EMPOSITION based on JOB ID and EMP ID

m An index on EXPERTISE based on SKILL CODE and EMP ID

m An indexon NON-HOSP PROCEDURE based on NON-HOSP CLAIM IDand
PROCEDURE NUMBER

154 Database Design Guide

Refined Data Structure Diagram for Commonweather Corporation

An index on DENTAL PROCEDURE based on DENTAL CLAIM ID and PROCEDURE

NUMBER

Note: You will seein the next chapter how some of these indexes can be eliminated.

Add the followingindexes to providegeneric search capability:

An index on JOB based on JOB TITLE

An index on EMPLOYEE based on EMP LAST NAME

Refined data structure diagram

JOB-TITLE-NDX DEPARTMENT GFFICE SKILL-NAME-NDX
ASC (JOB TITLE) U | I8 Jcac | 62 | caLc ASC (SKILL NAME) U
DEPT 1D OFFIGE CODE [
JOB SKILL
| 307] cac | |76]cAc
JOB ID [DEPT-EMPLOYEE OFFICE-EMPLOYEE SKILL CODE [o
FK (DEPT ID) FK (OFFICE CODE) ARG DEMOTEGION
JOB-EMPGSITION SKILL-EXPERTISE
FK (JOB ID} FK (SKILL CODE)
JOB-NDX P-NDX
ASC (JOB ID -
EMP D) U k’gé"é‘EEM":PE‘AST NAME) ASC (SKILL CODE
EMP-EMPOSITION ' EMP FIRST NAME) EMP ID) U
FK (EMP ID)
EMPOSITION EMPLOYEE EXPERTISE
EMP-EXPERTISE
[39 JoLusTERED | |i2s]cac FK (EMP ID) [[1sJcLusTered
EMP-EMPOSITION | EMP ID [U EMP-EXPERTISE | U
EMP-PROJECT
FK (EMP ID)
PROJECT
[T7&[cac EMP-WORKER MANAGES-REPORTS-TO
PROJECT COPE | U FK (EMP ID) FK (SUPR EMP ID)
|
WORKER EIR(A?E(I\:/I(I)?VFDF;AGE INSURANCE PLAN
PROJECT-WORKER
PR PROIECT CODE) | T 2o]cLustereq | J1a6]cac
PROJECT-WORKER | PLAN GODE [v
COV-NDX
ASC (PLAIN CODE GOVERAGE TYPE

EMP ID) U

Chapter 12: Refining the Database Design 155

Refined Data Structure Diagram for Commonweather Corporation

L Y

COVERAGE
| |so]cac
EMP-COVERAGE |

COVERAGE-NHC
FK (PLAN GODE
EMP 1D}

\ i

COVERAGE-dc
FK (PLAN CODE
EMP ID)

COVERAGE-HC
FK (PLAN CODE
EMP ID)

NON-HOSPITAL CLAIM
| [304 |CLUSTERED]

COVERAGE-NHC |

INS-DEMO-REGION

HOSPITAL CLAIM

| |310] cac

DENTAL CLAIM

| 184] CALC

HQSPITAL CLAIM IDI U

DENTALCLAMID | gy

NHCLAIM-PROC
FK (NON-HOSP CLAIM ID)

DCLAIM-PROC
FK {DENTAL CLAIM 1D}

PROC-NDX
ASC (DENTAL CLAIM 1D}
PROCEDURE NUMBER) U

NON-HOSP-NDX

NON-HOSP PROCEDURE

| |85 JcLusTeRED)
NHCLAIM-PROC |

ASC (NON-HQSP CLAIM 1D
PROCEDURE NUMBER) U

DENTAL PRCCEDURE

| Iss JcLusTERED

DCLAIM-PROC |

156 Database Design Guide

Chapter 13: Choosing Physical Tuning
Options

This section contains the followingtopics:

Overview (see page 158)

Placement of Entities in Areas (see page 160)

Data Compression (see page 165)

Relationship Tuning Options (seepage 168)

Index Key Compression (see page 187)

Non-SQL Tuning Options (see page 188)

Physical Tuning Options for Commonweather Corporation (see page 204)

Chapter 13: Choosing Physical Tuning Options 157

Overview

Overview

Physical tuning options

The following databaseoptions can beused to ensure optimal performance inindividual
business transactions:

Placement of entities in areas—To facilitatecertain processing operations, youcan
instruct CAIDMS/DB to dividethe databaseintoseparateareas.Eachareacan
contain one or more entities.

You canalsosometimes simplify application processing, recovery procedures, and
unload/load operations by segmenting the database.

ata compression—To savediskspace,you caninstructthe databaseto compress
data before itis stored and decompress it when itis retrieved.

Relationships and tuning options—When relatingentities, you canestablish linked
or unlinked relationships. Linked relationships can beused to optimize performance
inapplicationsthatprocess related entities.

Index key compression—To save diskspace,youcaninstruct CA IDMS/DB to
compress indexes.

Non-SQL tuning options

- Multimember relationships—A singlerelationshipis maintained for multiple
child entity types.

— Direct location mode—You canassign this location mode to an entity when the
application programmer must be ableto explicitly specify the physical location
of entity occurrences in the database.

— Variable-length entities—You can collapsetwo entities involvedina
one-to-many relationship where the many entity can containavariablenumber
of occurrences.

— Database procedures—You canwrite and compiledatabaseprocedures to be
executed atapplicationruntimewhen a program accesses anarea or entity to
perform predefined programming functions such as data compressionand
decompression.

— CALC duplicates options—You can specify options for nonunique CALC keys
specifying how these nonunique occurrences will be stored inthe database.

— Relationship tuning options—You can specify options as partofthe definition
of a relationship to specify the order of child occurrences, howthe occurrences
will belinked with each other, how new occurrences are introduced into the
relationship,and howexisting occurrences can be modified.

- Index tuning options—You can specify options as partof the definition of an
index to providefor unlinkingthe index and for determining the order in which
entity occurrences will bereferenced inthe index, how new occurrences are
introduced into the index, and how existing occurrences can be modified.

158 Database Design Guide

Overview

Each of these tuning options is described in detail below.

Chapter 13: Choosing Physical Tuning Options 159

Placement of Entities in Areas

Placement of Entities in Areas

Why separate entities?

To facilitatecertain processing operations, you caninstruct CA IDMS/DB to dividethe
databaseintoseparate areas.Each area can contain one or more entities. You place
databaseentities in separate areas to:

Minimize processing interruptions that might be caused by backup and recovery
procedures. CA IDMS/DB provides standard system utility programs thatallow the
system operator to rollforward/rollback or dump/restore only those areasina
databasethat require backup and recovery. Before performing backup and recovery
procedures, the operator typically varies each area or filethatis currently held in
update usage mode to retrieval (or offlinemode). Once an area has been varied to
retrieval or offlinemode, further update processingis notallowed. By assigning
entities to separate areas, you canensure that backup and recovery procedures
impactthe minimal number of applications.

For further information on backup and recovery, see CA IDMS Utilities Guide and CA
IDMS Database Administration Guide.

Reduce time required to perform maintenance activities (suchas unloadand
reload by area). By separatingentities into separateareas, you make the amount of
data processed smaller, which,inturn, reduces the time required for the
processing.

Reduce cluster overflow. The impactof largecluster sizes can be reduced by
separatingone or more entity types intoseparate areas. This is especially effective
if less-frequently accessed entities are separated.

Improve efficiency of serial processing. If anentity (or entities) is to be retrieved
mainly by area sweeps, that entity (or entities) should be assigned to a separate
area.

Guidelines

Consider the following general guidelines for assigning entities to databaseareas:

Whenever possible, placeindexes inseparateareas.|ftwo or more indexes can be
accommodated by the same page size, you can placethe indexes inthe same area.
If usinga non-SQL implementation, consider segregatingeach indexinits own page
rangeifthey areinthe same area or ifthe indexes arerestricted to separate page
ranges.

In general, you should storeonly one type of entity clusterineacharea of a
database.

Nonclustered entities can be placed together ina separatearea or canbe included
inanarea containinga cluster, provided that CALC overflow will not be a problem.

160 Database Design Guide

Placement of Entities in Areas

Sedmentation of Databases

By segmenting the database, you cansimplify application processing, recovery
procedures, and unload/load operations. CAIDMS/DB allows you to create databases
thatare segmented accordingto:

m Groups of entities

m logical keys
Sedgmenting by Groups of Entities

To facilitate processing of the same data by different application programs, youcan
create a databasethatis segmented by groups of entities, as shown below.

To create such a database, you assign entities to separatedatabaseareas anduseonly
unlinked (as opposed to linked) relationships between entities in different areas. See
"Linked and Unlinked Relationships"laterin this chapter for further information on
types of relationships.

Database segmented by groups of entities

Unsegmented database Segmented database
ORDER INVOIGE ORDER | I_ w»| INVOICE
ORDITEM INVITEM ORDITEM I INVITEM
ORDER-AREA ORD-AREA ' INV-AREA
Advantages

A databasesegmented by entity is advantageous becauseit:

m Eliminates the need to perform maintenance for linked relationshipsthatcross
areas and facilitates and shortens unload/reload operations.

m Allows certainapplication programs toremain active while parts of the database
are being recovered or restructured.

Considerations

Although a databasesegmented by entity canfacilitatecertain processingfunctions,it
cansometimes complicate processingof child entities. Ifanapplication requires the
ability to group child entities by parent, the DBMS must use additional systemresources
to access therelated entities that are stored in different areas.

Chapter 13: Choosing Physical Tuning Options 161

Placement of Entities in Areas

Segmenting by Logical Key

Segmenting by logical keyis used to separate a largenon-SQL-defined databaseinto
identical segments based on the value of one or more data elements. For example, you
might separate employee data by company code, each company within
Commonweather Corporation havingits ownsegment of the database.

Note: The key field on which the segmentation is performed may or may not actually
existas a data element insome entity of the database.

Segmenting by key value in a non-SQL implementation

To segment by key valuein a non-SQL implementation:
1. Define asingleschema that describes the database.
2. Define aset of subschemas associated with the schema.

3. Define a segment for each physical implementation of the database. Each segment
must contain the same named set of areas. Use separate page ranges or page
groups to distinguish each segment.

4. Ifnecessary,define a databasename for each segment, includingthecorresponding
segment and additional segments for other data accessed by the application.

5. Providea mechanismto directeach application programto the correct segment by
specifyingthe DBNAME or segment name on its BIND RUNUNIT statement.

162 Database Design Guide

Placement of Entities in Areas

Segmenting by key value in an SQL implementation

To segment by key valuein an SQL implementation:

1. Define asegment for eachlogical division of the database. Each segment must
contain the same named set of areas.

2. Define a schema foreach logical division. Each schema will describetables in one of
the segments.

3. Define the identical setof tables in each schema.
4. For each application, createa set of access modules, one for each schema.

5. Providea mechanismto directprocessingtothe correctaccess moduleat runtime.

Database Implementation by Key Value

PART

INVENTORY-AREA
Segment: PARTS

INVENTRY

*Although the company's Chicago and Los Angeles warehouses maintain
separate inventories, they share a common database due to common

processing.
PART PART
INVENTORY-AREA INVENTORY-AREA
Segment: CHPARTS Segment: LAPARTS
INVENTRY INVENTRY

*The company's Chicago and Los Angeles warehouses
maintain separate databases and use dalabase name tables
to direct the programs to the correct area(s).

Chapter 13: Choosing Physical Tuning Options 163

Placement of Entities in Areas

Advantages

A databaseimplementation by key valueis advantageous becauseit:

m Simplifies recovery operations by permitting certain application programs to remain
activewhile parts of the databasearebeing recovered or updated.

m Facilitates and shortens unload/load operations.

m Allows for distribution ofan organization's processing to multiple machines and
sites.

Considerations

Whilea databasethatis implemented by key valuefacilitates certain processing
functions,itcomplicates simultaneous processing of all segments.

Inan SQL environment, you could create a view of all the tables at once to access all
segments at one time.

Ina non-SQL environment, you would have to bind concurrentrun units to access all
segments at one time. An alternativeis to bind rununits serially.

164 Database Design Guide

Data Compression

Data Compression

Conserving disk space

To conservediskspace,you caninstructthe databaseto compress data before storage
and decompress it after retrieval. There are three ways to compress and decompress
data:

m CAIDMS Presspack
m IDMSCOMP and IDMSDCOM databaseprocedures

m User-written procedure

These procedures areinvoked automatically by the DBMS as data is stored and
retrieved.

Note: Only CA IDMS Presspackis availablefor SQL-defined data.
Advantages and disadvantages of data compression

The followingtablesummarizes the advantages and disadvantages of data compression.

Efficiency Considerations Potential Impact

1/0 By compressingan entity, you conserve storage resources,
allowingthe system to fit more entities on each database
page. Ifyou canfit all entity occurrences associated
through a particularrelationship ona single page, the
system will only perform one /O to access these entities.

CPU time Compressingdata requires some extra CPU time to
perform compression/decompression processing.

Space management Compression can be used to conserve considerable
amounts of storage.

Contention No difference.

Chapter 13: Choosing Physical Tuning Options 165

Data Compression

Considerations for using CA IDMS Presspack

CA IDMS Presspack uses Huffman techniques to compress databaseentities. The
techniques includeassigninguniquebitstring codes of different lengths to single
character and character strings. These codes substitute for the character and character
strings in the entities.

To assignthe codes, CA IDMS Presspack uses character and character-string frequencies
of occurrence. It assigns shorter codes to the most frequently occurring characters and
character strings. Tothose that occur less frequently, CA IDMS Presspackassignslonger
codes.

CA IDMS Presspack compresses both textual and nontextual data.

For further information about CA IDMS Presspack, see CA IDMS Database
Administration Guide and CA IDMS Presspack User Guide.

Considerations for using IDMSCOMP and IDMSDCOM

IDMSCOMP and IDMSDCOM are supplied with CA IDMS/DB. They are placedinthe load
(core-image) library atinstallationtimeand are also provided in sourceform soyou can
modify them if necessary.You canalsowriteyour own databaseprocedureor use other
commercially available compression/decompression procedures.

For further information about database procedures,see CA IDMS Database
Administration Guide.

To compress data, IDMSCOMP performs the following conversion procedures:

m Converts repeating blanks intoa 2-byte code.

m Converts repeating binary zeros into a 2-byte code.

m Converts other repeating characters into a 3-byte code.

m Converts any of a number of commonly used character pairs intoa 1-byte code.
Data that does not fall into any of the above categories remains unchanged. Each group

of unchanged data is prefixed by a 2-byte code. The following diagramshows the
compression of contiguous blanks inan entity.

Decompressed

DATA BLANKS DATA BLANKS DATA

Compressed

DATA DATA DATA

LData prefix T_L[)ata prefix

Code for repeating blanks
ode for repeating blanks

LData prefix

166 Database Design Guide

Data Compression

Considerations for user-written procedures

If writing your own compression procedures, you must follow conventions for writing
databaseprocedures.

For information on databaseprocedures, see CA IDMS Database Administration Guide.
Guidelines for compression

Consider the following guidelines when deciding whether data should be compressed:

m When determining whether or not to compress/decompress an entity, you should
consider whether the diskspacesaved justifies the CPU overhead incurred by the
routines.

m The control portion of an entity is notcompressible.

The control portion of an entity includes all data elements up to the lastkey (CALC,
sort, index). Sincethis portion of an entity is not compressible, itmay mean that not
enough compressibledata exists tojustify compression.

m Usecompression/decompression procedures for entities that arenot updated
often. Whilethe compression procedures saveconsiderablediskspace,ituses
additional CPUtime to perform its processing.

m Do not compress entities that startwith largegroups of repeating characters but
losethem over time.

m IDMSCOMP/IDMSDCOM considerations:

- IDMSCOMP and IDMSDCOM compression procedures operate most efficiently
for entities whose occurrences usually contain sizable portions of blanks or
binary zeros.

- Don't use this compression for entities containing only small scattered groups
of repeating characters.

— Datathatisstoredinpacked decimal formatis not a good candidatefor data
compression.

Storage mode

If you decide to compress datainan entity, you should add a storage mode of C for the
entity on the data structure diagram.

OFFICE
c| |

Chapter 13: Choosing Physical Tuning Options 167

Relationship Tuning Options

Relationship Tuning Options

What is a relationship?

Entity occurrences arerelated to one another if the foreign key ina child occurrencehas
the same valueas the primarykey ina parent occurrence. You identified relationshipsin
the logical databasedesign process.

168 Database Design Guide

Relationship Tuning Options

Linked and Unlinked Relationships

Linked and unlinked

When implementing these relationships, there area number of physicaltuningoptions
from which to choose. You have already decided whether arelationshipisa clustering
relationship or not. You must now decide whether to define the relationship as linked or
unlinked.

A linked relationshipis onein which related entity occurrences are linked to one
another through embedded pointers.

An unlinked relationshipisoneinwhich no embedded pointers are usedto link
related entity occurrences.

Advantages of linked relationships

Linked relationships havethe following advantages:

Sincethere is directlinkage between parent and related child occurrences, linked
relationships provide the most efficient means (in terms of CPU and1/0) of
retrieving related entity occurrences.

Unlinked relationshipsrequirethata CALC key or index be defined on the foreign
key of the child entity.

An index adds both CPU and1/0O to retrieve data and maintainthe index. Italso
requires additional storagespace.

Defininga CALC key on the foreign key is almostas effective as usinga linked
relationship provided thatit does not cause CALC overflow conditions, which
increases I/0,CPU, and contention. However, you can define only one CALC key per
entity, sothat anentity participatingas a childin morethan one relationship must
use indexes for all butone unlinked relationship.

Linked relationships providean ordering option that can reduce the need for
additional indexes to enforce unique constraints and avoid sorting of retrieved
information.

Considerations

Keep the following considerationsin mind when usinglinked and unlinked relationships.

Self-referencing relationships mustalways beunlinked.

Linked relationshipsrequire physical restructuring of entity occurrences to add or
remove relationships.

The time required for and impactof maintenance operations, suchas
unload/reload, can bereduced if relationships between entities in different areas
are unlinked. This is particularlyimportantin designinglarge databases.

Non-SQL considerations

Chapter 13: Choosing Physical Tuning Options 169

Relationship Tuning Options

Ina non-SQL environment:

m There is nointegrity enforcement by the DBMS with an unlinked relationship.
Integrity must be enforced by applicationsorlogical record facility path logic.

m There is no relationship clustering with an unlinked relationship. You must use CALC
clusteringto achieveresults similarto clustering.

Note: If CALC clusteringresultsinlongCALC chains, CPU, |/Os,and contention might all
increase.

You caneliminateforeign keys from child entities if the relationshipislinked. This has
the followingresults:

m Itreduces storagerequirements

m |teliminates the need to update each child occurrenceifthe parent's key is
changed.

For example, if you change the value of DEPT ID in a department, related
employees do not need to be updated.

If you chooseto retainthe embedded foreign keys, you:
m Have full update SQL access to the data

m Will reducethe number of I/Os required to retrieve foreign key values for
nonclustered entities (for example, to retrieve the department ID of an employee)

Unlinked Relationship Tuning Options

Indesigningan unlinked relationship, definethe following:

m Index or calckeyon the foreign key of the relationship
Additional Columnsin the Foreign Key Indexes

Indesigningan unlinked relationship, you must define an index or calc key on the
foreign key of the relationship.Ifyou use an index to enforce the integrity of the
referential constraint, itmust contain the columns that make up the foreign key but can
contain additional columns. Definingadditional columns after the foreign key columns
has the potential for reducingdisk spacerequirements and improving performance.

The ability to extend foreign key indexes with additional columns may enableone index
to be used for multiple purposes. For example, a table’s primary key is often a
concatenation of one of its foreign keys with additional columnsthattogether form a
unique identifier for each row of the table. A singleindex can be used to enforce both
the integrity of the referential constraintand the uniqueness of the primary key. By
eliminatinga secondindex you reduce diskspacerequirements and the overhead
associated with index maintenance.

170 Database Design Guide

Relationship Tuning Options

Including extra columns in a foreign key index may alsoimproveaccess efficiency by
enablingthe useof more index scans to identify rows matchingselectioncriteria.The
use of anindex scan cansignificantly reduce the number of I/Os needed to satisfya

query.
Defining additional columns in the index key

To define additional columns intheindex key, define an index so that the foreign key
columns precede anyadditional columnsinthe index key. The order of the foreign key
columns inthe index key must match the order of the referenced columnsinsome
unique index or CALC key on the referenced table.

Linked Relationship Tuning Options

Indesigninga linked relationship, you specify the following options:
m Type of linkage(chained orindexed)
m Relationship ordering(sorted or unsorted)

m Sortoptions (order and uniqueness)

Chapter 13: Choosing Physical Tuning Options 171

Relationship Tuning Options

Type of Linkage

CA IDMS/DB supports the followingtypes of linked relationships:

m Chained—The DBMS maintains relationships based oninternal information stored
inthe prefix of each entity occurrence. This informationinthe prefix contains the
db-key of the logically nextoccurrenceinthe relationship.

® Indexed—The DBMS maintains relationshipsthrough an index between a parent
andrelated child occurrences. The bottom level of the index contains the db-keys of
the related child occurrences. Each child occurrence contains an index pointer that
points to the bottom level of the index.

-
o
B

Guidelines

As a general rule, use indexed for nonclustered relationshipsand chained for clustered
relationships.

An indexed nonclustered relationship requires fewer 1/Os to add or remove an entity
occurrence thana chained nonclustered relationship. This isbecausethe adjacententity
occurrences arenot updated; only the index structure needs to be updated. In addition,
fewer 1/Os arerequired to retrieve a child occurrenceby key in a nonclustered
relationshipifitis indexed rather than chained.

A chained relationship, onthe other hand, requires less CPU overhead for maintenance
andretrieval than anindexed relationship.Italsorequires lessstoragespacebecause
there is no index structure. For these reasons, itis a better choice than indexed for
clustered relationships becausel/Os arenot generally a concern.

Note: For databases implemented with SQL, all linked clustered relationshipsare
chained andall linked nonclustered relationshipsareindexed.

172 Database Design Guide

Relationship Tuning Options

For further information on the structure of indexed relationships, see Chapter 15,
"Determining the Size of the Database".

For further information on indexed relationships, see CA IDMS Database Administration
Guide.

A comparison of indexed and chained relationships

The followingtable presents a comparison ofindexed relationshipsand chained
relationships.

Efficiency Considerations Potential Impact

1/0 Indexed relationships often require fewer 1/0 operations to
access child entities in nonclustered relationships,
especiallyiftherelationshipissorted.

CPU time Chained relationshipsuseless CPUtime for processing of
child entities thanindexed relationships.

Space management Chainedrelationshipsrequireless storagespacethan
indexed relationships.

Contention No difference.

Chapter 13: Choosing Physical Tuning Options 173

Relationship Tuning Options

Representing an indexed relationship

To represent an indexed relationship:

T

Name the relationship.
Specify whether the order is ASCending or DEScending for each key.
Identify the data element name(s) to be indexed.

Specify whether duplicateindexeditems are allowed (blank) or not allowed (U for
unique).

Specify whether the index key is to be compressed.

he following diagramshows the standard CA IDMS/DB notation for anindexed

relationship.Theindex allows the DBMS to access all EXPERTISE occurrences associated
with a particular skillbased on skill level in descending order.

SKILL
| [re Jeac
SKILL CODE u
SKILL-EXPERTISE
DES (SKILL LEVEL)
EXPERTISE

| 16 Jerusteren

EMP-EXPERTISE

174 Database Design Guide

Relationship Tuning Options

Sorted and Unsorted Relationships

You canspecify the logical order of child occurrences within each linked relationship:

m Sorted— A new entity occurrence is positioned accordingto the value of one or
more of its data elements (called a sortkey) relativeto the values of the same data
elements inother related child occurrences.

m Unsorted— Anew entity occurrenceis positioned accordingto a predefined order
withinthe relationship.

For example, all new entity occurrences might be positioned ahead of all existing
occurrences.

Advantages of a sorted relationship

Through a sorted relationship:
m Aprogramcanretrieve a child occurrencedirectly by key, thus reducing CPU.
m A programcanretrieve child occurrences data in order, thus avoidingsorts.

m Unique constraints can beenforced without the need for additionalindexes.
Considerations for sorted relationships

Maintainingtherelationship's order during update operations requires increased CPU
and a greater number of I/Os thanan unsorted relationship.

Enforcing unique constraints

Sorted relationshipscanbeusedto enforce uniqueconstraints as analternativetoa
CALC key or index. For example, you can eliminatethe EXP-NDX indexinthe
Commonweather Corporation by defining either the SKILL-EXPERTISE or the
EMP-EXPERTISE relationship as a uniquesorted relationship.

EMPLOYEE EXPERTISE
| |122 |GALC | |16 |CLUSTEHED
EMP ID u EMP-EXPERTISE EMP-EXPERTISE
FK (EMP ID)
ASC (SKILL CODE
EMP ID) U

To eliminatethe index, you must either:
m Define SKILL-EXPERTISE as sorted on EMP ID with the unique option.
or

m Define EMP-EXPERTISE as sorted on SKILL CODE with the unique option
Either approach ensures that no employee is assigned duplicateskills.

Sorted order

Chapter 13: Choosing Physical Tuning Options 175

Relationship Tuning Options

You canchooseto sortin ascending, descending, or mixed order.

As a general rule, choosethe sort order to reflect the most commonly desired retrieval
order. However, the sequence chosen for a chained relationship can haveanimpacton
performance in update transactions. This will allow the DBMS to locate the pointof
insertion more quickly.

If new entity occurrences typically havesortkey values greater than existing
occurrences, the relationship should havea descendingsort order. Conversely, if new
occurrences have sortkeys lower than existingoccurrences,ascendingis preferable.

For example, new occurrences of dated entities areusually stored with higher dates
than previously stored occurrences. Ifthis is the case, you should specify descending for
a chainedrelationship sorted by date.

More Information

For more information concerningthe usage of numeric fields as partofa sortkey, see
Zoned and Packed Decimal Fields as IDMS Keys (see page 301).

ASCENDING DESCENDING

176 Database Design Guide

Relationship Tuning Options

Nonsorted Order

Ifthe entity occurrences inthe relationshiparenotto be sorted, you canspecify the
logical order of child entity occurrences within each occurrence of arelationship. You
determine how a new childis placedina relationship by specifying one of the following
orders:

m FIRST creates a LIFO (lastin, firstout) order. The new entity is positioned atthe
beginning of the relationship.

m LAST creates a FIFO (firstin, firstout) order. The new entity is positioned atthe end
of the relationship.

m NEXT creates asimplelist. The new entity is positioned immediately after the
current (most recently accessed) entity. The NEXT order is recommended as a
default.

m PRIOR creates a reverse list. The new entity is positioned immediately before the
current entity.

Flexibility

The NEXT and PRIOR orders provide more flexibility than the FIRST and LAST options;
the programmer can connect an entity anywhere within the relationship by establishing
currency before or after the point of insertion. When the FIRST and LAST options are
assigned, the programmer can be certain of the positioning of new entities, regardless
of set currency.

Note: The PRIOR and LAST options require prior pointers.

For more information on pointers, see "Linkage" later in this chapter.

Next and prior order example

Inthe example below, assumethat a program is positioned on SANDY SHORE before it
stores JUNE MOON inthe database.Ina relationship defined with the NEXT order, JUNE

MOON will bestored after SANDY SHORE. Ina relationship defined with the PRIOR
order, JUNE MOON will bestored before SANDY SHORE.

Chapter 13: Choosing Physical Tuning Options 177

Relationship Tuning Options

ORIGINAL NEXT

PRIOR

First and last order example

Suppose two entities areadded in the following order: PETER PLUM, then SANDY
SHORE. In arelationship defined with the FIRST order, the entity stored most recently
(SANDY SHORE) will be returned first.In a relationship defined with the LAST order, the
entity stored first (PETER PLUM) will be returned first.

Peter Peter
Plum Plum

178 Database Design Guide

Relationship Tuning Options

Additional Sort Options

Standard and natural collating sequence

You canspecify either of two collating sequences for sorted relationships:

m Standard collatingsequencefor sorted relationships orders key fields based on
their EBCDIC collating sequence without regard to data type.

m Natural collatingsequencefor sorted relationships orders key fields based on their
data type. This means that negative numeric values will collatelower than positive
values.

Inthe example below, assumethat the values arepacked or zoned decimal numbers.
They are ordered firstusingthe natural collating sequence and then usingthe standard
collating sequence.

Natural Standard
-4268.50 15.26
-351.78 144.83
-258.00 -258.00
15.26 -351.78
144.83 2594.38
2594.38 -4268.50

Chapter 13: Choosing Physical Tuning Options 179

Relationship Tuning Options

Duplicates options

You canspecify options for relationshipsindicatinghow nonunique occurrences will be
logically placedina sorted relationship. You can specify duplicates first or duplicates
last

m Duplicates first— The duplicateentity occurrencewill be logically placedin the
relationship beforethe entity occurrencealready havingthatsort key.

m Duplicates last— The duplicateentity occurrence will belogically placedinthe
relationship afterthe entity occurrencealready havingthat sortkey.

Duplicates notallowedin the non-SQL definitionis equivalentto unique.

A relationship canbesorted in either ascendingor descendingorder. The duplicates
option for a sorted relationship determines what happens when a user tries to store an
entity with a duplicatesortkey value.

You can order the sorted relationship entity occurrences with duplicate key values as
duplicates first, duplicates last, as discussed above, orinchild db-key sequence. This
option speeds retrieval by reducing /0.

Use sorted relationships to simplify programming

Sorted relationships simplify programming effort by allowing the programmer to specify
a symbolic key valuefor storage, retrieval,and positioning of an entity occurrenceinthe
database. By usingsorted relationships, the programmer need issueonly one DML
statement to locate anentity inthe database.To locate anentity ina FIRST, LAST, NEXT,
or PRIORrelationship, the programmer must walk the relationship by issuingseveral
DML statements.

The diagrambelow shows the use of sorted relationships to simplify programming.

Starting
currency

180 Database Design Guide

Relationship Tuning Options

Unsorted

0200-GETREC.

OBTAIN NEXT B WITHIN A-B.

IF DB-END-OF-SET

THEN GO TO 0900-NOREC.

PERFORM IDMS-STATUS.
IF B-KEY NOT = 'B15'

THEN GO TO 0200-GETREC.

Sorted

0200-GETREC.
MOVE 'B15' TO B-KEY.
OBTAIN B WITHIN A-B USING B-KEY.
IF DB-REC-NOT-FOUND
THEN GO TO 0900 -NOREC.
PERFORM IDMS-STATUS.

Use sorted relationships to enhance online or batch processing

Sincesort routines incur considerable CPU overhead, they arerarelyusedinonline
programs.Sorted relationships aretherefore useful for sequencing data for online
display.Theyare also useful inthe batch environment: a batch program can process
sorted input transactions very efficiently in sorted relationships.

Chapter 13: Choosing Physical Tuning Options 181

Relationship Tuning Options

Linkage

Each entity inthe databasecarries one,two, or three pointers for each chained
relationshipinwhichitparticipates. Youshould usuallyincludeall allowable pointers for
each entity:

m Next pointer—Required for all relationships in which theentity participates as
parent or child;the next pointer is the databasekey of the next entity inthe
relationship.Thelastchild entityina relationship points to the parent.

m Prior pointer—Optional for all relationshipsin which theentity participates as
parent or child; the prior pointer is the databasekey of the prior entity in the
relationship. Thefirstchild entity occurrence ina relationship points to the parent.

m Owner pointer—Optional for all relationships in which theentity participates as a
child;the parent pointer is the databasekey of the parent entity occurrence.

Omitting prior pointers

Prior pointers can be omitted under the following conditions:

m Childentity occurrences inthe relationship willnotbe erased or disconnected
except by walkingthe set.

m Childentity participates as a childin no other relationship.

m Orderis not LAST or PRIOR (see "Nonsorted Order" above).

m The FIND/OBTAIN LAST or FIND/OBTAIN PRIOR DML functions will notbe used for
the relationship.

Omitting owner pointers

Owner pointers (db-keys pointingto the parent) can be omitted under the following

conditions:

m The parent will not be accessed from a child occurrence.

m The FIND/OBTAIN OWNER DML function will notbe used for the relationship.

Note: Be sureto includean OWNER pointer for any entity that participates as a childin

more than one relationship sincethe child entityis probably an entity created to

implement a many-to-many relationship.Inthis case, the system will mostlikely need to
access parententities from the child entities regularly.

Pointers in indexed relationships

The parent of an indexed relationship hasthefollowing mandatory pointers:

m Next pointer— Points to the firstoccurrence of an SR8 entity (aninternal entity
used to hold the index)

m Prior pointer— Points to the lastoccurrence of an SR8 entity

182 Database Design Guide

Relationship Tuning Options

For further information on the structure of anindex, see Chapter 15, "Determining the
Size of the Database".

The child entity occurrence of an indexed relationship hasonemandatory and one
optional pointer:

m Index pointer—This pointeris required;itis used to access the SR8 entity that owns
a particular child entity occurrence.

m Owner pointer—This pointeris optional;itpoints to the parent of the relationship

For further information on the structure of indexed relationships, see Chapter 15,
"Determining the Size of the Database".

For further information on indexed relationships, see CA IDMS Database Administration
Guide.

Representing linkage
Represent relationship linkage on the data structure diagram by identifyingthe pointers

to be used. For example, specifying NPO indicates thatnext, prior,and owner pointers
are to be used.

EMP-EXPERTISE
EMPLOYEE NPO EXPERTISE

| 122 Jemc DES (SKILL CODE) U [s Jowsteren
EMP-ID U EMP-EXPERTISE
EMP-DEMO-REGION EMP-DEMO-REGICN

For anindexed relationship, specify lor 10.

Chapter 13: Choosing Physical Tuning Options 183

Relationship Tuning Options

Membership Options

Membership options determine how anentity is connected to and disconnected from a
relationship. These options affect the use of the DML STORE, CONNECT, DISCONNECT,
and ERASE statements.

You define membership optionsintwo parts.The firstpartindicates themanner
(mandatory or optional) in which the entity is disconnected from a linked relationship.
The second partindicates the manner (automatic or manual) in which the entity is
connected to a linked relationship.

Disconnect options

The disconnectoptions operate as follows:

m Mandatory— A child occurrencecannotbe disconnected from the relationship
without also beingerased from the database (thatis,the DML DISCONNECT verb
cannot be issued againstentities in the relationship).

m Optional— A child occurrencecan be disconnected from a relationship by the
DISCONNECT verb. The entity occurrenceremains inthe databaseandis accessible
inother ways; itcan be connected to another relationship.

The mandatory/optional membership specification affects the outcome of the DML
ERASE statement. If any of the ERASE options (PERMANENT, SELECTIVE, ALL) is specified
when an ERASE statement isissuedagainstan entity,all mandatory entities owned by
that entity are alsoerased. Optional child entity occurrences areleft as is, disconnected,
or erased, depending on the ERASE option specified.

Mandatory disconnect

The disconnect option is usually specified as mandatory. However, do not specify the
mandatory disconnectoption when:

m An applicationrequires theability to dissociatea child entity occurrence from its
parent (usually with the intention of associatingthe child with another parent
occurrence). At Commonweather Corporation,employees sometimes need to be
transferred from one department to another. Therefore, the disconnectoption for
the DEPT-EMPLOYEE relationship mustbe specified as optional

Important! Be careful when usingthe optional disconnectoption for child entities
of a relationship stored clustered around that relationship. Ifthe entity is later
disconnected from its original parentand connected to another, CA IDMS/DB does
not physically relocatethe entity; for all practical purposes, thatentity is nolonger
clustered around its parent.

m An applicationrequires theability to erasea parent entity without erasingthe child
entities (usingthe ERASE PERMANENT and ERASE SELECTIVE functions).Suppose
the Commonweather Corporation decides to closean officeina certain city. In this
case, the office should be erased, but the employees who work inthat officeshould
not be erased.

184 Database Design Guide

Relationship Tuning Options

Connect options

The connect options operate as follows:

m Automatic—The membership of anentity inarelationshipisestablished
automatically by the DBMS whenever a child occurrenceis storedin the database.

® Manual—The membership of an entity in a relationshipisnotestablished when a
child occurrenceis stored. Membership must be established explicitly by using the
DML CONNECT statement.

Disconnectand connect options are combined to form membership options:

m MA— Mandatoryautomatic

® MM— Mandatory manual

m OA— Optional automatic

. OM-— Optional manual
Automatic connect

The connect option is usually specified as automatic. However, do not specify the
automatic connect option when:

m An applicationrequires theability to store a child entity without associatingitwith
any parent. For example, at Commonweather Corporation, anemployee canjoin
the company without firstbeingassigned to a department. Therefore, the manual
option must be specified for the DEPT-EMPLOYEE relationship.

m Iftwo relationshipsexistbetween the same two entities representing a
self-referencingrelationship, only one of the relationships can beautomatic; the
other must be manual.Otherwise, a child would be connected to the same parent
occurrence ineachrelationship,as shown below.

Chapter 13: Choosing Physical Tuning Options 185

Relationship Tuning Options

MANAGES (AUTOMATIC)

EMPLOYEE

REPORTS-TO (MANUAL)

Current of
run unit

@ Set currency at Smith

Current of
, run unit

Store 2/6/91
Current of
/" run unit
///////// Set currency at Jones

Current of

/run unit

Connect 2/6/91 to REPORTS-TQ

If EMPLOYEE were AUTOMATIC for REPORTS-TO
Current of
¥ run unit

Set currency at Smith
Store 2/6/91

Guidelines

The manual connect and optional disconnect options permitgreater flexibility but
require more programming effort. Additionally, they provide less control over data
integrity. You should therefore choosethe mandatory automatic (MA) membership
option, unless there exists a special business requirement for optional disconnect
and/or manual connect functions.

Representing membership options

186 Database Design Guide

Index Key Compression

Represent membership options for a relationship onthe data structure diagram by
specifyingthe membership options to be used: MA, MM, OA, or OM.

EMP-EXPERTISE
EMPLOYEE NPO MA EXPERTISE

I I 122 ICALC DES (SKILL CODE) U I I8 ICLUSTERED
EMP-ID 5] EMP-EXPERTISE
EMP-DEMO-REGION EMP-DEMO-REGIGN

Removing Foreign Keys
Sinceall defined relationshipsina databaseimplemented with non-SQL are linked, you
have the option of removing foreign keys from the child entity. This:
m Reduces storage requirements

m Eliminates the need to update eachchild occurrenceifthe parent's key is changed

If you chooseto retainthe embedded foreign keys, you:
m Have full update SQL access to the data

m Might reduce the number of 1/Os required to retrieve foreign key values for
nonclustered entities (for example, to retrieve the department ID of an employee)

Index Key Compression

To conservediskspace,you caninstructthe databaseto compress anindex key before
storage and decompress itafter retrieval. The index key is compressedinthe same way
that data is compressed. (For more information, see "Data Compression" earlierin this
chapter.)

Chapter 13: Choosing Physical Tuning Options 187

Non-SQL Tuning Options

Non-SQL Tuning Options
Sorted relationship considerations

When you store anentity occurrenceina sorted chained relationship, the DBMS
searches the relationshipinthenext direction, starting with the current entity
occurrence. Ifthe new occurrencecannot be insertedin the next direction, the DBMS
establishes currency on the parent entity occurrence and begins the search from this
occurrence (moving in the next direction). When you store an entity occurrenceina
sorted indexed relationship, the DBMS searches the occurrences starting from the top
of the index structure.

Note: Ifthe DUPLICATES FIRST optionis specified for a sorted relationship and the key
of the current entity of setis equal to the key of the entity to be stored, the DBMS must
begin its search for the insertion pointfrom the owner entity.

Store operations areexecuted most efficiently when the new entity can be inserted
either at the very beginningor the very end of the relationship. If new entities are
consistently storedin ascending order, you should perform one of the following
procedures to ensure that insertions of new entity occurrences into the relationship will
be performed efficiently:

m Assignthe descending sort sequence to the relationship.In this case, the sequence
inwhichentities are sorted inthe relationshipistheoppositeof the sequencein
which new entities are added, as shown below.

1. First load

Add: B17
B15
B13

B11

2. Single occurrence insertion

Add: B19

188 Database Design Guide

Non-SQL Tuning Options

3. Multiple insertions

Add: B21

*Insertion point for next recard

Note: When you write a program to perform the initial load of the database, plan
to sortthe entities inthe same order as the relationship order to optimize
processing efficiency. For example, if dated entities aremaintainedina relationship
thatis sorted in descendingorder, sortthe initialload filein descendingorder
before performing the load.

If you have the optionto sortinput entities before executing the store operation,
you may want to define the sortorder as ascending and allow the programmer to
issue programstatements that optimize efficiency. Inthis case, you should ensure
that the programmer establishes currency atthe end of the relationship before
issuing thestore statement command:

FIND OWNER
FIND LAST IN SET
STORE

Remember that you mustinclude PRIOR pointers if you planto let programmers
issue FIND/OBTAIN LAST statements againsta chained linked relationship. Without
PRIOR pointers,the DBMS must walkthe entire linked relationshipin the next
directionto access the LAST entity.

For more information on pointers, see "Linkage" later in this chapter.

Ifinput entities areconsistently stored in descending order, perform one of the
following procedures:

Assignthe ascendingsequence to the relationship.

Have programmers establish currency atthe beginning of the relationship before
issuingthestore command:

FIND OWNER
STORE

For further information on the DML statements used to access the database,see CA
IDMS DML Reference Guide for COBOL.

Representing a sorted relationship

Chapter 13: Choosing Physical Tuning Options 189

Non-SQL Tuning Options

Represent a sorted relationship on the data structure diagram by specifying ASC or DES
andthe name of the sort key as partof the relationship specification.

EMP-EXPERTISE
EMPLOYEE FK (EMP D) EXPERTISE
| [hzs [cac DES (SKILL CODE) U | [+ [clusteren
EMP 1D Ju EMP-EXPERTISE
EMP-DEMO-REGION EMP-DEMO-REGION

There are additional tuning options availableto non-SQL implementations. These are
describedin this chapter.

190 Database Design Guide

Non-SQL Tuning Options

Multimember Relationships
What is a multimember relationship?

A multimember relationshipisa singlerelationship maintained for more than one child

entity type.
COVERAGE
[[1 |
NON-HOSPITAL CLAIM HOSPITAL CLAIM DENTAL CLAIM
[[[[] [T 1
| [
GOVERAGE
[[] |
NON-HOSPITAL CLAIM HOSPITAL CLAIM DENTAL CLAIM

Multimember relationships eliminate the overhead of carrying pointers (db-keys)in the
parent entity for additional relationships.

However, to retrieve specific entity occurrences in multimember relationships, the
databaseoften must access occurrences of unwanted entity types.

Guidelines

Generally, multimember relationships should beused only when:
m The different child entity types are usually processed together.

For example, sincethe ACCOUNT, INVOICE, and PAYMENT entities areusually

processed together, you might want to create a multimember relationshiptorelate
these entity types, as shown below.

Chapter 13: Choosing Physical Tuning Options 191

Non-SQL Tuning Options

ACCOUNT

e

.

Applications thatusethis accounts receivablestructuregenerate statements that
contain details ofanaccount's invoices and payments sincethe laststatement, in
order by date. Ifthe INVOICE and PAYMENT entities are maintainedin separate
relationships,an application programwill haveto merge them into the proper
sequence. If the entities are maintained in one relationship, they arealreadyin
order.

m The different child entity types are mutually exclusive.

Suppose each employee in a corporationis paid oneither an hourlyor salaried
basis.You may want to create a multimember relationship to relatethe EMPLOYEE,
HOURLY, and SALARIED entities, as shown below.

EMPLOYEE

LSRR
Boso%etetetetoteede:
%&&&&S%%%%%

<

R3LSRLRRHKS
SRR
ol luiclvie’s 3 00 %]
R32505RLILRARHK]
odetel0le%e% %020 000%

R O: 0,04,

192 Database Design Guide

Non-SQL Tuning Options

:{/,/// cB ANTIQUE SPORTS WIRERIMS
.

Child entities are of many types, but each child entity type has only a few
occurrences.

Inan auto insurancedatabase, a policy may have many riders, eachrequiringa
different format. However, most policies haveno more than a few riders attached.
If a relationship were maintained between a policyandeach potential rider, the
policy entity would require at leastfivesets of pointers, most of them unused,
instead of one, as shown below.

POLICY etc.

Inall other cases, you should maintaina separaterelationship for each entity type.

Considerations

A multimember relationship cannotbean indexed relationship.

When accessinga multimember relationship through the logical record facility, only
one of the child entity types canbe accessedineach pass throughthe relationship.
This means that several passes through a relationship mightbe necessaryto access
all child entity types.

For further information on accessinga multimember relationship through logical
records, see the CA IDMS Logical Record Facility Guide.

Multimember relationshipsshould notincludeboth clustered child entity types and
nonclustered child entity types. If both types of entities areincludedina
multimember relationship, /O performancewill be degraded. The system may have
to perform additional I/Osto access the clustered child entity occurrences (because
the nonclustered child occurrences aredistributed throughout the database).

A comparison of multiple relationships and multimember relationships

Chapter 13: Choosing Physical Tuning Options 193

Non-SQL Tuning Options

The followingtable presents a comparison of multiplerelationshipsand multimember

relationships

Efficiency Considerations

Potential Impact

1/0

No difference.

CPU time

Multimember relationships may require more CPU time to
process related entities than multiplerelationships.

Space management

Multimember relationships eliminatethe overhead of
carrying pointers in the parent entity for extra
relationships.

Contention

Insome situations, multimember relationships maycause
more entity contention than multiplerelationships.Ifan
entity that participates ina multimember relationshipis
updated often, locking of a modified occurrence of this
entity by one transaction may prevent other transactions
from accessingoccurrences of other entities inthe
relationship. Therefore you may want to create a separate
relationship for a frequently updated entity.

194 Database Design Guide

Non-SQL Tuning Options

Direct Location Mode

Inrare situations,theapplication programhas to have control over an entity's
placement inthe database.|fthe application programmer must be ableto identify
explicitly thelocation of entity occurrences inthe database,youshouldassignthedirect
location mode to the entity type. This location mode provides programmers with rapid
access to databaseentities and allows them to control the clustering of entities.

Store entities chronologically

Use direct location mode to store entities chronologically. The directlocation mode can
be used to arrangeentity occurrences seriallyina databasearea.The programmer can
arrangeentities serially by instructing CA IDMS/DB to store each entity on the same
page as the preceding entity. CA IDMS/DB either stores the entity on the same page or
on the next page(s), as spaceavailability permits.

Ensure effective clustering

Use the directlocation mode to ensure effective clustering. Ifa child entity has two
different parent entities, you may want to take responsibility for clustering occurrences
of the child entity. Suppose occurrences of entity C are related to an occurrence of
entity Ain someinstances and by an occurrenceof entity B in other instances. You
would need to be ableto cluster each occurrence of C with its appropriate parententity
(anoccurrence of either A or B).

You canachieveeffective clusteringin this situation by assigning the directlocation
mode to entity C and the OM (optional manual) membership option to both
relationships. Whenever a C entity occurrence must be stored inthe database, the
application programmer can then connect the entity to its appropriaterelationship and
cluster the entity with its parent.

For more information on membership options, see "Membership Options"laterin this

chapter.
A B
A-C B-C
oM OM
{optional manual) (optional manual)
C
(stored
DIRECT)

Chapter 13: Choosing Physical Tuning Options 195

Non-SQL Tuning Options

However, you shouldalso plan on writingyour own unload and reload program for the C
entity, sincethe DBMS does not know how to locateC entities.

Considerations

Ifthe directlocation modeis chosen, the entity should either be a childina relationship
or have anindex defined on it. If neither of these is true, the only method to access an
occurrence is through an area sweep. In most cases, clusteringaroundanindexora
relationshipisa better storage strategy.

Representing the direct location mode

Represent the directlocation mode on the data structurediagramby specifying DIRECT
for the location mode. Do not name a CALC key or a relationship.

196 Database Design Guide

Non-SQL Tuning Options

Variable-Length Entities

Use a repeating element ina variable-length entity instead of two separate entity types
when:

The "many" portion of the relationship does not participate in other relationships.
Once you have created arepeating data element, you cannot relate the data in this
element to other entity types.

The number of repetitions is not static. Ingeneral, use a variable-length entity
when the average number of the entity's repeating groups actuallyusedis lessthan
75% of the maximum number of repetitions. Otherwise, use a fixed-length entity to
store the repeating group. (The 75% figure is a general guideline.You should
consider actual disk spacesavings.) See Refiningthe Database Design for
information on fixed-length entities.

Note: Each entity can have only one variably repeating data element.
SQL access to the repeating information is not a requirement.

If you intend to use SQL to retrieve information from the database, you may not
want to create variablerepeating data elements because you will notbe ableto
access the variable portion through SQL.

You mustincludea counter element inthe entity to indicatethe current number of
occurrences of the repeating data element in each entity occurrence.

If you decide to create a repeating data element inavariable-length entity, be sureto
change the length of the entity on the data structure diagram. Additionally,changethe
storage mode of the entity to V (variable).

Chapter 13: Choosing Physical Tuning Options 197

Non-SQL Tuning Options

Preliminary design:

NON-HOSPITAL CLAIM NON-HOSPITAL CLAIM
|] 304] cac
763297 062385 |1234 | ‘
NON-HOSP CLAIM ID_ | U

| | I NON-HOSPITAL PROCEDURE

777200 763297 | ‘

NHCLAIM-PROC | |
FK (NONHOSP CLAIM D)

I NON-HOSPITAL PROCEDURE

| — - | 380020 |763297 | ‘

NON-HOSPITAL PROCEDURE

[[[cac | NON-HOSPITAL PROCEDURE
NONHOSP GLAIM NUM | | 400030 763297 ‘

Foreign key
Refined design:

NON-HOSPITAL CLAIM

7] 1008 cac
NON-HOSP GLAM D | U

763297 062385 1234 777300| ... 390020] ... 400030

Several entities inthe Commonweather databasecanbe converted to repeating
elements invariable-length entities. The NON-HOSPITAL PROCEDURE and DENTAL
PROCEDURE entities should be made repeating elements because they each participate
inonlyone relationship and occur a limited number of times:

m The NON-HOSPITAL PROCEDURE entity can be converted to a repeating element in
the NON-HOSPITAL CLAIM entity.

m The DENTAL PROCEDURE entity can be converted to a repeating element inthe
DENTAL CLAIM entity.

198 Database Design Guide

Non-SQL Tuning Options

Database Procedures

Databaseprocedures are special-purposesubroutines designed to perform predefined
programming functions such as data compression and decompression. You write and
compilethese procedures as subroutines thatare executed at application runtime when
a program accesses anarea or entity. Database procedures have access to the entire
data portion of the entity occurrence.

The time a procedure is to be calledis specified in the schema. At runtime, these
procedures arecalled automatically;thecall is transparentto the application program.

Common uses

Databaseprocedures are typically used to perform the followingfunctions:
m Compressionand decompression

m Datavalidation

m Privacyandsecurity

m Datacollection

m Determination of record length for variable-length native VSAM records

For complete information on coding and using database procedures, see CA IDMS
Database Administration Guide.

Chapter 13: Choosing Physical Tuning Options 199

Non-SQL Tuning Options

CALC Duplicates Option

You canspecify options for nonunique CALC keys indicatinghowthese nonunique
occurrences will bestored inthe database. You can specify duplicates first or duplicates
last .

m Duplicates first— The duplicateentity occurrencewill be logically placedin the
database before the entity occurrence already havingthat CALC key.

m Duplicates last— The duplicateentity occurrence will belogically placedinthe
databaseafter the entity occurrencealready havingthat CALC key.

m Duplicates not allowed— Duplicates not allowed in the non-SQL definitionis
equivalentto unique.

DUPLICATES LAST

UNIQUE
(DUPLICATES NOT ALLOWED)

Bit
Bucket

Relationship Tuning Options

There are additional tuning options availablefor relationshipsin thenon-SQL
environment.

Index Tuning Options

There are several index tuning options availablein the non-SQL environment.

200 Database Design Guide

Non-SQL Tuning Options

Unlinked versus Linked Indexes

An unlinkedindexis anindexinwhich there are no index pointers in the child entities.

Considerations

Unlinked indexes can be added and removed without restructuringthe database,
provided the control length of the entity is not changed.

Buildingorrebuildingan unlinkedindexis faster becausethere are no index
pointers to be maintained.

Additional CPUand I/Os arerequired to locate anindex entry for the current entity
occurrence. For example, changingthe index key value or erasingan entity
occurrence both require the retrieval of the index entry.

This additional overhead occurs because the DBMS must search the index to find
the entry, whereas ina linked relationship thereis a direct pointer to the SR8
occurrence containingthe entry.

Linked indexes requireadditional storagespace.

Additional Sort Options for Indexes

Standard and natural collating sequence

You canspecify either of two collating sequences for indexes:

Standard collating sequencefor indexes orders key fields based on their EBCDIC
collating sequence without regard to data type.

Natural collating sequenceforindexes orders key fields based on their data type.
This means that negative numeric values will collatelower than positivevalues.

Duplicates option

As with sorted relationships, you can order index entries with duplicateindex key values
as duplicates first, duplicates last, or in db-key sequence.

Ifthere are many duplicates and the indexis unlinked, order the duplicates by db-key.
This will reduce CPU inlocatinga specificindex entry.

Representing additional index sort options

Represent additional sortoptions for a relationship on the data structurediagramby
specifying:

NATURAL if the collatingsequence is to be natural. Standardis the default.

DF for duplicates first, DL for duplicates last, or DBKEY for duplicates by db-key.

Chapter 13: Choosing Physical Tuning Options 201

Non-SQL Tuning Options

Nonsorted Indexes

Nonsorted indexes are another way of linkingall occurrences of an entity when the
databaseis sparsely populated with occurrences of that entity. A nonsorted index
requires less CPU and storage than a sorted index. A nonsorted index might, however,
be less effective than anindex sorted by db-key value. If multiple entity occurrences
resideon a page, an index ordered by db-key will reducethe 1/Os necessary to retrieve
all occurrences.

Nonsorted orders
Ifthe entity occurrences inthe index are not to be sorted, you can specify the logical

placement of new index entries by indicating one of the following orders:

m FIRST creates a LIFO (lastin, firstout) order. The new index entry is positioned at
the beginning of the index.

m LAST creates a FIFO (firstin, firstout) order. The new index entry is positioned at
the end of the index.

m NEXT creates asimplelist. The new index entry is positioned immediately after the
entry for the current (most recently accessed) entity occurrence. The NEXT order is
recommended as a default.

m PRIOR creates a reverse list. The new index entry is positioned immediately before
the entry for the current entity occurrence.

Index Membership Options

The same membership options areavailableforindexes as for relationships (see
"Membership Options" earlierin this chapter).

Guidelines
Use the mandatory-automatic (MA) membership option unless youwant only certain

entity occurrences to be indexed; that is, if you want the program to control which
entity occurrences areto be indexed.

202 Database Design Guide

Non-SQL Tuning Options

Non-SQL Entity and Index Placement

To facilitatecertain processing operations, you caninstructthe databaseto store entity
occurrences ina specific portion of anarea (non-SQL defined databases only).

By restricting entity occurrences to a specific setof pages, you can minimize overflow
conditions.

Displace a clustered entity from its owner

You candisplacea clustered entity from its owner. The DISPLACEMENT clause of the
non-SQL schema ADD RECORD statement allows you to store clustered entities away
from their owner entity ina databasearea.By specifying the number of pages to
displacethe clustered entities, you canseparatedifferent entity types withina cluster.

Specify a subarea in which to store an entity

You canspecifya subarea withinanareainwhicha particular entityis to be stored. To
separate CALC entities from other entitiesinan area, CA IDMS/DB allows youto assign
all occurrences of a particularentity type to a range of pages.

For further information, see the WITHIN AREA clauses of the non-SQL schema ADD
RECORD statement in CA IDMS Database Administration Guide.

Specify a subarea in which to store an index

When specifyingindex placement, you can specifya subarea withinanarea in which the
owner of a system-owned indexis to be stored. If you decide to placean indexinan
area with other databaseentities, you might want to assign the owner to a specific
range of pages inthe area.

For further information, see the WITHIN AREA clauses of the non-SQL schema ADD SET
statement in CA IDMS Database Administration Guide.

As you planthe use of storageresources, you need to keep in mind these options for
minimizing overflow conditions in the database.

Chapter 13: Choosing Physical Tuning Options 203

Physical Tuning Options for Commonweather Corporation

Physical Tuning Options for Commonweather Corporation

Assign entitiesto areas

You need to assign entities to databaseareas to providefor efficient application runtime
processing:

m ORG-DEMO-REGION canholdall nonclustered entities. The DEPARTMENT, OFFICE,
JOB, SKILL, and INSURANCE PLAN entities can be stored inthis area of the database.

m EMP-DEMO-REGION holds all entities clustered around the EMPLOYEE entity. The
EMPLOYEE, EMPOSITION, EXPERTISE, and PROJECT entities should be stored
together inthis area.

m INS-DEMO-REGION holds all entities clustered around the COVERAGE entity. The
COVERAGE, NON-HOSPITAL CLAIM, HOSPITAL CLAIM, and DENTAL CLAIM entities
canbe stored inthis area.

By placing Commonweather entities inseparate areas, we enable programs to prepare
onlythe area or areas required for a particular operation rather than the entire
database.Inaddition, we reduce the likelihood of contention for heavily-used entities.
You might want to assignentities and indexes to separateareas.

Compress entities

The JOB and INSURANCE PLAN entities each contain a data element that provides
descriptiveinformation abouta particular entity occurrence (JOB DESCRIPTION and
PLAN DESCRIPTION). As such, these entities aregood candidates for compression.

Relationship options

All relationships arelinked to provide most efficientaccess.Sincethisis notalarge
database,itis not necessaryto eliminaterelationships between areas.

All clustered relationships arechained;all nonclustered relationships areindexed. This
reduces 1/0 when accessingnonclustered relationshipsand reduces CPU when accessing
clustered relationships.

The followingrelationships aresorted with the unique option to eliminateindexes used
only to enforce unique constraints:

New Sorted Relationship Sort Key Index
Eliminated

EMP-EMPOSITION START DATE JOB-NDX

EMP-EXPERTISE SKILL CODE EMP-NDX

204 Database Design Guide

Physical Tuning Options for Commonweather Corporation

New Sorted Relationship Sort Key Index
Eliminated

NHC-PROC PROCEDURE NUMBER NON-HOSP-N
DX

DC-PROC PROCEDURE NUMBER PROC-NDX

The followingrelationshipsaresorted to avoid sortingretrieval occurrences:

Sorted Relationship Sort Key

DEPT-EMPLOYEE EMP LAST NAME EMP FIRST NAME
OFFICE-EMPLOYEE EMP LAST NAME EMP FIRST NAME
SKILL-EXPERTISE SKILL LEVEL

All sorted relationshipsareorder ascending except:

m SKILL-EXPERTISE, sinceusually employees holdinga skill should belisted such that
those with the highestratingappear first

m EMP-EMPOSITION, sinceposition START DATEs are usuallyincreasinginvalue

Chapter 13: Choosing Physical Tuning Options 205

Physical Tuning Options for Commonweather Corporation

Refined Commonweather Corporation Database Design (For SQL
Implementation)

The refined data structurediagramfor Commonweather Corporation (for SQL
implementation) is shown below.

A review of transactions shows thatall insuranceinformation should be clustered
around an employee. This can be accomplished by removing the CALC key from
NON-HOSPITAL CLAIM, HOSPITAL CLAIM, and DENTAL CLAIM entities and replacingeach
with a unique index on NONHOSP CLAIM ID, HOSPITAL CLAIM ID, and DENTAL CLAIM ID
respectively.In addition, the location mode of each of the three entities must be
changed to CLUSTERED through its relationship with COVERAGE.

Due to the volume of data inthe INS DEMO REGION, itis decided that all linked
relationships between this regionand the EMP DEMO REGION be converted to
unlinked. The only relationship affected is EMP-COVERAGE. Inorder to convert it to
unlinked, you must either add anindex or CALC key on EMP ID (the foreign key of the
relationship).

Sinceyou want to cluster coverage entity occurrences by employee anyway, a CALC key
on EMP IDis chosensinceitachieves the same results as clustering through the
EMP-COVERAGE relationship andeliminates theneed for an additionalindex.

JOB-TITLE-NDX DEPARTMENT OFFICE SKILL-NAME-NDX
ASC (JOB TITLE) U | |ss |cac | |s2]cac ASC (SKILL NAME) U
o8 DEPT ID [U OFFICE CODE [U I
[c 57 [caic ORG-DEMO-REGION ORG-DEMQ-REGION [7 [cAic
5B D o OSERMOnL [STcor T
ORG-DEMQO-REGION ASC (EMP LAST NAME A4 A4 ASC (EMP LAST NAME ORG-DEMG-REGION
EMP FIRST NAME EMP FIRST NAME
.'J:%B(:JEOI%PICEJ)?ITION ! SKILL-EXPERTISE
FK (SKILL CODE)
/ DES (SKILL LEVEL)
EMPGSITION EI"(/"?EE,IN;P%?'T'ON L NAME-NDX
|39 JCLUSTERED] DES (START DATE) U \ ’ ASC (EMP LAST NAME)
EMP EMPOSITION | EMP FIRST NAME}
P DEMOREGION EMPLOYEE EXPERTISE
- - [Tres]caic EMP-EXPERTISE [[1sfcrusrered
EMP ID u FK (EMP ID) EMP-EXPERTISE u
PROJECT I DES (SKILL CODE) U I
EMP-DEMO-REGION EMP-DEMO-REGION
| |78]cac EMP-PROJECT
PROJECT CODE | U FK (EMP ID)
EMP-DEMQ-REGION | MANAGES-REPORTS-TO
FK (SUPR EMP 1D}
PROJECT-WORKER EMP-WQRKER |
FK (PROJECT CODE) FK (EMP 1D}
WORKER I EMP-COVERAGE INSURANGCE PLAN

| | 2ofcLusTtEREQ

PROJECT-WORKER I

Y

FK (EMP D)

COV-NDX

-NDY
ASC (PLAIN CODE COVERAGE

EMP 1D) U

[c Jras] cac
PLAN CODE [U

INS-DEMO-REGION
TYPE

206 Database Design Guid

e

Physical Tuning Options for Commonweather Corporation

COVERAGE-NHC

FK (PLAN GODE)
EMP ID)

Y Y

COVERAGE

| Is0]cac

NHC-NDX
’ ASC (NON-HOSP CLAIM ID) U

NON-HOSPITAL CLAIM

| [=04 JCLUSTERED

COVERAGE-NHG |

INS-DEMO-REGION

NHCLAIM-PROC

FK (NON-HOSP CLAIM ID)

ASC (PROCEDURE NUMBER
NON-HOSP CLAIM ID) U

)

NON-HOSP PROCEDURE
| 185 JeLusteren

NHCLAIM-PROC |

INS-DEMO-REGION

EMP-ID |

COVERAGE-DC
FK {PLAN CODE
EMP ID;

INS-DEMO-REGION

EMP ID)

HOSPITAL CLAIM

[I 310 FLusTERED

COVERAGE-HC |

COVERAGE-HC
FK (PLAN CODE

C-NDX

H
ASC (HOSPITAL
CLAIM ID) U

INS-DEMO-REGION

DC-NDX
ASC (DENTAL CLAIM ID) U

DENTAL CLAIM

| | 184 FLUSTEFIED

COVERAGE-DG

INS-DEMO-REGION

J

DCLAIM-PROC

FK (DENTAL CLAIM IDj)

ASG (PROCEDURE NUMBER
DENTAL CLAIM ID) U

DENTAL PROCEDURE

| Tss JcLustered

DCLAIM-PROC

INS-DEMO-REGION

Chapter 13: Choosing Physical Tuning Options 207

Physical Tuning Options for Commonweather Corporation

Refined Commonweather Corporation Database Design (For Non-SQL
Implementation)

Additional non-SQL physical tuning options chosen for the Commonweather
Corporation databasedesign arediscussed below.

Create a multimember relationship

Sincethe COVERAGE, HOSPITAL CLAIM, NON-HOSPITAL CLAIM, and DENTAL CLAIM
entities areusually processed together, we can create a multimember relationship to
relate these entities. Let's call this relationship COVERAGE-CLAIMS.

Variable-length entities

Several entities inthe Commonweather databaseshould be converted to repeating
elements invariable-length entities. The NON-HOSPITAL PROCEDURE and DENTAL
PROCEDURE entities should be made variably-repeating elements becausethey each
participateinonly one relationship.

m The NON-HOSPITAL PROCEDURE entity can be converted to a repeating element in
the NON-HOSPITAL CLAIM entity.

m The DENTAL PROCEDURE entity can be converted to a repeating element inthe
DENTAL CLAIM entity.

Add new entity

Because an employee must be managed by another existing employee, the integrity of
the MANAGES-REPORT TO relationship mustbe ensured. Inorder to accomplish thisina
non-SQL implementation, a new entity (STRUCTURE) and two relationships (REPORT-TO
and MANAGES) must be created. Indicatethe appropriaterelationship options to ensure
that an employee is associated with an existing employee. The MANAGES relationshipis
sorted to enforce unique constraints. (Ifitwere not a sorted relationship,anindex
would have to be created to enforce uniqueness.)

Remove unnecessary keys

Remove foreign keys if SQL access is nota priority. If you chooseto remove unnecessary
keys, adjustthe entity lengths accordingly.

Relationship options

Choose linkage and membership options for linked relationships. Choose ordering
option of each nonsorted relationship.

208 Database Design Guide

Physical Tuning Options for Commonweather Corporation

Duplicates options

Duplicates options for indexes and sorted relationships were chosen based on
application requirements.

The diagrambelow could be used to implement the databaseusinga non-SQL

definition.

The diagramshows:

m A multimember set
m Variable-length entities
m Removal of foreign keys as reflected in new entity lengths
JOB-TITLE-NDX DEPARTMENT QFFICE SKILL-NAME-NDX
ASC (JOB TITLE} U | |ss |cac | Je2]cac ASC (SKILL NAME) U
DEFT ID U OFFICE CODE [O
108 ORG-DEMO-REGION ORG-DEMO-REGION St
[Js07] calc - . - . | 76 Jcac
JOB ID U I%EF&T*EMPLOYEE %F'SEEEMPLOYEE SKILL CODE I ¥]
| A
ORG-DEMO-REGION ASC (EMP LAST NAME A4 ~ ASC (EMP LAST NAME ORG-DEMQ-REGION
EMP FIRST NAME) DL EMP FIRST NAME) DL
JOB-EMPOSITION SKILL-EXPERTISE
NPO OM NEXT 10 MA
/ DES (SKILL LEVEL)
EMP-EMPOSITION
EMPOSITION NI LNAME-NDX
| |31 |CLUSTERED] DES (START DATE) U \ ASC (EMP LAST NAME)
EVP-EMPOSTION | i EMP FIRST NAME)
STV GO EMPLOYEE EXPERTISE
EMP-PROJEGT | [116]cac [T& JctustereD
NPO OA NEXT EMP ID u EMP-EXPERTISE | U
FROJECT EMP-DEMO-REGION EMP-EXPERTISE EMP-DEMO-REGION
[c]8fcac DES (hSAQILL CODE) U
PROJECT CODE REPQRTS TO MANAGES
[v IO OM NPO NEXT
EMP-DEMO-REGION ASC {SUPR ASC (WRKR
PROJECT-WORKER EMP ID) DF. EMP 1D) U
FNPO OM NEXT [0 vooieen
NPO MA FIRST
WORKER STRUCTURE INSURANGE PLAN
| T12 JeLustereq | T8 JeLustereg [C 146 cac
PROJECT WORKER] MANAGES PLAN CODE [U
EMP-DEMQ-REGION EMP-DEMQ-REGION INS-DEMO-REGION
i EMP-COVERAGE
10 MA
COVERAGE ASC (PLAN CODE COVERAGE TYFE) U
| |48 cLusteren
EMP-COVERAGE |
INS-DEMQ-REGION
COVERAGE-CLAIMS
fj\ NP MA LAST
' Y CLUSTERED

NGN-HOSPITAL CLAIM

]v | 1008 JCLUSTERED

COVERAGE-CLAIMS |

INS-DEMQ-REGION

HOSPITAL CLAIM

| v| 292 [CLUSTEREQ
COVERAGE—CLAIMSI
INS-DEMO-REGION

DENTAL CLAIM

| v] 930 |
GOVERAGE-CLAIMS |
INS-DEMO-REGION

Chapter 13: Choosing Physical Tuning Options 209

Physical Tuning Options for Commonweather Corporation

Sincethe design shown above will satisfy the performance requirements of the
Commonweather Corporation,this diagramwill beusedinlater chapters of this manual
as the basis for performingsizing calculationsand a final database design review.

210 Database Design Guide

Chapter 14: Minimizing Contention Among
Transactions

Overview

This section contains the followingtopics:

Overview (see page 211)
Sources of Database Contention (see page 211)
Minimizing Contention (see page 215)

Once you have refined the database model to optimize each individual database
transaction, you should determine how the system will be affected by the concurrent
execution of several transactions. You need to consider making changes to the physical
model to minimizethe likelihood of system bottlenecks.

Bottlenecks areoften caused by excessive contention for databaseresources. For
example, bottlenecks can occur when two or more programs (or terminal operators)
attempt to execute update transactions againstthe sameentity occurrences at the
same time. Since the likelihood of contentionincreases with the number of database
transactions, you need to determine whether the physical database model can
accommodate the number of transactions executed at your corporation.

This chapter explains why database contention occurs and also shows you how to
minimize contention.

Sources of Database Contention

Business transactions must contend for the following databaseresources:
® Areas

m Entities

Chapter 14: Minimizing Contention Among Transactions 211

Sources of Database Contention

Area Contention

Physical area locks

CA IDMS/DB examines and sets physicalarea locks whenever anareais opened inan
update mode. Physical area locks:

m Prevent concurrent updates by multiple IDMS runtime environments (multiplelocal
databasetransactions, multiple central versions, or a combination of both)

m Prevent update access toan area that requires rollback of databasetransactions

Physicallocks arehandled differently depending on the mode of processing:

m Local mode—As each areaisreadiedinanyupdate mode, the lockis checked. If the
lockis set, access tothe areais not allowed. If the lockis notset, the local database
transaction causesthe lockto be set. In the event that the transaction terminates
abnormally (thatis, without issuinga FINISH), the lock remains set. Further update
access or commit processing by subsequent databasetransactionsis prevented
until the areais recovered.

m Central version—At system startup, the central version checks the locks inall areas
availableto the system for update processing.Ifanylockis set, further access to
thatareais disallowed (thatis, the area is varied offlineto the central version).The
central version proceeds without the use of that area.

Ifthe lockis removed after system startup, the operator must vary the area status
from offlineto onlineto make the area availableto the central version.

Logical area locks

Logical area locks are used by central version to control concurrent access to areas by
databasetransactionsrunningunder central version. Logical area locks arederived from
the mode in whichanareais readied. A logical lock on a databasearea sometimes
causes transactions towaitfor databaseresources. When a transaction cannotreadyan
area because of a protected or exclusiverestriction placed onthat area by another
transaction, the second transactionis placed ina waitstate until the firsttransactionis
finished.

Concurrent area access

The following diagramshows the way in which ready modes and ready options restrict
concurrent use of anarea by databasetransactions executingunder one central version.

Transaction Areadies AREAL in protected update mode; transaction Breadies the area
inshared retrieval mode; andtransaction Cattempts to ready the area inexclusive
update mode andis putinto a wait state until both transactions Aand B terminate.
Transactions DandE, attempting to ready the area, must waituntil transaction C
terminates.

212 Database Design Guide

Sources of Database Contention

Time

| Transaction A | |_ Transaction D |

IF{eady area 1, protected updatel Ready area 1, protected update I

| Transaction B | F Transaction E |
R

lHeady area 1, shared relrievalI eady area 1, shared retrievalI

|_ Transaction C |
Ready area 1, exclusive update |

Transaction executing

— — — — Transaction waiting

Chapter 14: Minimizing Contention Among Transactions 213

Sources of Database Contention

Entity Occurrence Contention
Record locks

CA IDMS/DB sets record locks on entity occurrences accessed by transactions operating
under the central version. Record locks arenever maintained for transactions operating
inlocal mode, sinceconcurrentupdate is prevented by physical area locks.

Locks canbe set implicitly by the central version or explicitly by the programmer, as
described below:

m Implicit record locks are maintained automatically by the central version for every
transactionrunningin shared update mode. They are optionally maintainedin
shared retrieval and protected update mode, accordingto your specificationsat
system generation.

m Explicit record locks, set by the programmer usingnavigational DML, areused to
maintain record locks thatwould otherwise be released followinga changein
currency.

They are never maintained for areas whose status is transientretrieval or for
databasetransactionsexecutingwith anisolation level of transientretrieval.

Functions

Record locks perform four functions:

m Protect againstconcurrentupdate of the same entity occurrenceby two or more
transactions

m Protect transactionsfromreading uncommitted updates made by another
transaction

m Protect entity occurrences that arecurrent of one transaction frombeing updated
by another transaction

m Allowone transaction to selectively protect any entity from access or update by
another transaction

Increased contention

Record locks can sometimes increase contention among programs that require access to
databaseresources.Insome instances, conditionsthatresultfrom the use of record
locks caneven causeabnormal termination of transactions executing under the central
version. The following conditions can occur:

m Too many locks. Ifresource limits for locks areestablished and a transaction tries to
generate more locks than the limit, the system might terminate the transaction,
depending on your specifications atsystemgeneration. If resource limits for locks
were not established, the system will continue processing, butprocessing
performance might be degraded.

214 Database Design Guide

Minimizing Contention

m Excessive wait time. If a transaction, whileattempting to set a record lock, is made
to waitfor another transaction to terminate (or to releasea lock on an entity), the
firsttransaction waits only aslongas theinterval specified atsystem generation
before abending. When a transaction exceeds the internal waittime, the system
will terminate the transaction.

m Deadlock situation. Iftwo transactions areina deadlock, one of the transactions is
aborted. A deadlock occurs when two transactions waiton each other for access to
the same resource(s). For example, if both transaction Aand transaction Bread the
same entity occurrence, each acquires a shared record lock on the occurrence. If
transaction Athen tries to update the entity occurrence, it will waituntil
transaction Breleases its lock. Iftransaction Btries to update the occurrence, it will
waiton transaction A. Transactions Aand B areina deadlocksituation.

CA IDMS/DB resolves this potential bottleneck by abortingand rollingback one of
the transactions. By default, the transaction chosenis the most recently begun
transaction with the lowest priority.

Minimizing Contention
Guidelines

You canreduce the likelihood of bottlenecks resulting from area and entity occurrence
contention by making appropriatechanges to the physical database design. To make
intelligentdesign decisions to reduce contention, you must firstidentify potential
bottlenecks.

Chapter 10, "Identifying Application Performance Requirements" showed you how to
determine:

m The priority of each business transaction

m The frequency of execution of each transaction

m The frequency of access of each entity

By examiningthis information closely, you canidentify potential bottlenecks in the
physical database. For example, if you know that two different databaseentities will be
accessed often, you canassign theseentities to different areas to avoid area contention.

Additionally, you can schedulethe execution of high-priority programs toreduce the
likelihood of contention with other programs.

Chapter 14: Minimizing Contention Among Transactions 215

Minimizing Contention

Minimizing Contention for Entities and Areas

Guidelines

Consider the following guidelines for minimizing contention for databaseentities and

areas:

® Minimize the use of one-of-a-kind (OOAK) entities.

To reduce contention for an OOAK entity used for maintaininga control number
(likethe next order number inan order-entry system), you can manufacture the
control number. For example, instead of storingthe number inthe database, you
could determine the number dynamically fromthe date and time at which each
orderis placed.

m Avoid placing heavily-used entitiesin the same area. If several heavily-used
entities areplacedinthe same databasearea, the area may become a sourceof
databasecontention. When heavily-used entities arestored inthe samearea,
programs may have to contend for storage space,and internally-maintained control
structures such as those used for CALC processing.

To minimizearea contention, you canassign each heavily-used entity to a separate
areainthe database, as shown in the followingdiagram.
Program A
EMP-AREA
EMPLOYEE
Program B
NSAREA | | e
INSURANCE Retrieve
PLAN INSURANCE-PLAN

216 Database Design Guide

Minimizing Contention

For further information on assigning entities to databaseareas, see Chapter 15,
"Determining the Size of the Database".

Place large indexes in separate areas. To avoid contention for spaceand because
indexes are typically heavily used, placethem in separateareas.

Avoid long-running update transactions. Application programs thatperform many
updates often set many record locks. To lessen the possibility of abnormal
termination as a result of setting too many locks or being involved in a deadlock,
the programmer can commit databasechanges to releaselocks atintervals
throughout the processing.

This technique should be used with caution, sincethe commit function also causes a
checkpoint to be written to the journal file. Following the unsuccessful execution of
a DML function, a transactionisrolled back only to the pointof the lastcheckpoint.
Thus the existence of a checkpoint resulting from a commit statement would

prohibitthe system from performing a rollback to the beginning of the transaction.

Separate frequently used and updated entities. Ifan entity creates excessive
contention among application programs, you can segment the entity into two or
more entities. For example, ifthe EMPLOYEE entity were a source of contention,
you could break the entity into EMPERS and EMPAY. EMPERS might containall
personal information abouteach employee, while EMPAY could contain
professionalinformation. Thetwo entities could then be assigned to different
databaseareas and usedifferent indexes.

By segmenting employee data, you could eliminate contention between those
programs that access employee personal information and those programs that only
require access to professionalinformation, as shownin the followingdiagram.

Personnel application

EMPERS

(contains

personal
information

Payroll application

EMPAY
(contains
professional
information

Chapter 14: Minimizing Contention Among Transactions 217

Minimizing Contention

Include several levels for each frequently-updated sorted index. Whilesorted
indexes with very few levels can be used to optimize performance inretrieval
applications, they sometimes causecontention between application programs that
perform update functions.

Ifa sorted index will be updated frequently, make sure that the index consistsof at
leastthree levels. For further information onsizinga sorted index, see Chapter 15,
"Determining the Size of the Database".

Schedule the execution of batch update jobs. Insome situations, youshould
consider scheduling programs thatexecute batches of updates to reduce
contention. By executing update programs one at a time, you can ensure that these
programs do not have to contend for the same databaseresources.

Ready areas in shared update mode. If anapplication programreadies anareain
protected or exclusive mode, other programs can be placedina waitstate.
Therefore, whenever possible, programs updatinga limited number of entities
before a commit should ready areas inshared update mode. The shared update
mode allows multipletransactionsunder the same central version to access the
area concurrently, thereby reducingarea lockingand contention.

218 Database Design Guide

Chapter 15: Determining the Size of the
Database

This section contains the followingtopics:

Overview (see page 219)

General DatabaseSizing Considerations (see page 220)
Calculating the Size of an Area (see page 226)
Allocating Spacefor Indexes (see page 234)
PlacingAreas in Files (see page 250)

Sizinga Megabase (see page 252)

Overview

After you have decided how each entity inthe databasewill bestored andaccessed,
you can determine how much storage spaceto reserve for the database.To allow for
the most efficient processing, you need to planthe best use of availablecomputer
storage resources.

As you determine the size of the database, you need to consider several factors,
includingthehardware availableatyour corporation and the type of business
applicationsthatwill beusingthe database.

After presenting a discussion of general databasesizing considerations, this section
shows you how to:

m Calculatethesizeof an area

m Allocatespacefor indexes

m Placeareasinfiles

m Size a megabase

Chapter 15: Determining the Size of the Database 219

General Database Sizing Considerations

General Database Sizing Considerations

Before you determine the size of the database, you need to be familiar with the
followingtopics:

m Sizingconsiderationsfor variable-length entities
m Space management for areas

m Overflow conditions

m Assignment of entities to areas

m Assignment of areas to buffers

220 Database Design Guide

General Database Sizing Considerations

Sizing Considerations for Compressed and Variable Length Entities

Internally, the DBMS treats the followingtypes of entities as variablein length:

m Fixed-length compressed entities—Entities with a fixed length that arecompressed
through a compression routine; although the length of these entities is fixed from
the point of view of user programs, compression makes them internallyvariable.

m Variable-length entities—Compressed or uncompressed entities with a length that
depends on avariably occurringdata element (thatis, entities that containan
OCCURS DEPENDING clause).

Fragmentation

The DBMS fragments a variable-length entity occurrence when itis unableto store the
entire entity on a single page. Fragmentation forces the system to perform two or more
1/Os to retrieve a singlevariable-length entity. Fragmentation should be kept to a
minimum.

Root and fragment size

Ina non-SQL environment, you can specify the followinginformationinthe schema:

® Minimum root— The smallestamount of data to be stored on the entity's home
page (target page)

m Minimum fragment— The smallestamountof data to be stored on anyadditional
page

For SQL compressed entities, the minimum root and fragment are assigned
automatically.

Ifa variable-length root or fragment exceeds 30 percent of the page size,space
management problems canoccur. To ensure efficientspace management, you need to
tailor the size of the minimum root and fragment to the optimal page sizefor the
databasearea.

Page reserve

When a databasearea contains variable-length entities, and a general increasein the
size of the entities is anticipated, you should define a page reserve inthe area
definition. By specifyinga page reserve, you can minimize fragmentation of
variable-length entities.

The page reserve is a specified number of bytes per page that canbe used onlyfor
expansion of variable-length entities or internally-maintained index records. For further
information on internally-maintained index records, see "Allocating Spacefor Indexes"
later inthis chapter. The spacewill not be used for storingnew entity occurrences. In
general, page reserve should always be less than 30 percent of the page size.

Chapter 15: Determining the Size of the Database 221

General Database Sizing Considerations

The pagereserve is specified in the CREATE/ALTER AREA statement of the physical
databasedefinition.

Note: A page reserve does not affect the physical structure of the database. You can,
therefore, vary the page reserve by using different DMCL modules, each with a different
page reserve.

More Information For more information on the physical database definition, seethe CA
IDMS Database Administration Guide.

Space Manadgement

To manage spaceinanarea, the DBMS keeps track of availablespaceoneach page. CA
IDMS/DB reserves selected pages called space management pages (SMPs) for this
purpose.

Space management pages

The firstpageineach areais an SMP; depending on the number and size of pages in the
area, CA IDMS/DB canreserve additional SMPs throughout the area. When you
determine the sizeof an area, you need to take into considerationthe number of SMPs
to be maintainedinthe area.

EMP-DEMO-REGION

!

10001 10002 10003 15001 15002 15003
Space Space

management management

page page

More information For more information on space management, see the CA IDMS
Database Administration Guide.

222 Database Design Guide

General Database Sizing Considerations

Overflow Conditions

Overflow conditions occur when entities must contend for storage spaceinthe
database.lnsome instances, overflow can causeperformance degradation. Therefore,
you need to understand the causes of overflow and know how to minimizeit.

You shouldtryto predictthe effectiveness of segregating entities inthe planningstage
andthen finetune the databaseinatest environment.

Note: You canusethe databaseanalysis utility IDMSDBAN) to determine the total
number of overflows ina database.

Types of overflow

There are two types of overflow:
m CALC overflow

m Cluster overflow

Each of these types of overflow is discussed separately below.

Chapter 15: Determining the Size of the Database 223

General Database Sizing Considerations

CALC Overflow

e [e

If occurrences of several entity types are randomized inone area or ifan insufficient
number of pages exists for the number of occurrences of one CALC entity type, CALC
overflow conditions can occur.

Suppose anarea contains two CALC entity types, A and C, and one clustered entity type,
B, thatis clustered through the A-B relationship.OneA and four B entities fill a page,so
thatinseveral instances there is no room for a C entity randomizingto the same page.
CALC overflow canoccurinthis situation, as shown below.

Inthis instance, A and B entities have filled pages 1003 and 1006, and have caused C2
and C4 to overflow to the next page. Two accesses arerequired to retrieve these
entities.

Overfl

Page 1002

Page 1003 Page 1004 Page 1005 Page 1006 Page 1007

Some overflow should be expected. Be concerned if a high percentage (more than 25%)
of CALC entities overflow.

Reducing overflow

To reduce overflow:
m Ensurenon-staticareas arenomore than 75% full.

m Initiallyload CALC entity occurrences before clustered entity occurrences. (This is
especially effectivein static databases.)

m Separate entities into different areas.

224 Database Design Guide

General Database Sizing Considerations

Cluster Overflow

Ifthe page sizefor a databaseareais notlargeenough to hold an entire cluster of entity
occurrences, cluster overflow conditions may occur. Cluster overflow occurs when the
DBMS cannot fita new entity occurrence on the same page as other entity occurrences
inthe cluster. Cluster overflow forces the DBMS to try to store the entity occurrence on
the next pageinthe area.

Suppose anarea contains oneentity, A, stored CALC, and one entity, B, whichis
clustered through the A-B relationship.OneA and four B occurrences fill a page. Inthe
instanceshowninthe diagram, one of the A-B clusters contains two B occurrences, one
contains four occurrences,and one contains seven occurrences. Since there isn'troom
for the seven occurrences on one page, the extra occurrences have had to overflow to
pages 1004 and 1005. To retrieve all occurrences inthecluster requires three accesses.

A A-B
(CALC)

b2

—_—
Ovelflow

Page 1002

Page 1003 Page 1004 Page 1005 Page 1006 Page 1007

Reducing cluster overflow

You canreduce cluster overflow by:
®m Increasingthepage sizefor the area

m Assigningclustered entities to separate areas from their parent entities

Chapter 15: Determining the Size of the Database 225

Calculating the Size of an Area

Calculating the Size of an Area

To determine the amount of spacenecessaryfora particular databasearea, you need to
perform the following procedures:

1. Calculatethesizeof each cluster.
2. Determine the pagesize.

3. Calculatethe number of pages inthe area.

Followsteps 1 through 3 as described below to determine the size of the areas inyour
database.

226 Database Design Guide

Calculating the Size of an Area

Step 1: Calculating the Size of Each Cluster

Through clustering, users canstore related entities closetogether inthe database.
Clusteringallows a business application to access related entities quickly and efficiently.
To ensure optimal processing, you need to base your databasesizingcalculations on the
sizeof a cluster.

Ifyou don't planthe useof storageresources effectively, the system may be unableto
fitanentire cluster ona single page. Overflow conditions may occur, causing the system
to perform two or more I/Os to access each application cluster. For a detail ed discussion
of overflow conditions, see "Overflow Conditions" earlierinthis section.

Procedure

You canusethe followingprocedures to calculatethe size of a cluster:
1. Identify the entity types inthe cluster.
2. Determine the length (in bytes) of each entity type stored inthe cluster.

3. Ifan entity participates inarelationship,add 4 bytes for each NEXT, PRIOR,
OWNER, or INDEX pointer.

Note: Inan SQL implementation, linked clustered relationshipsalways contain
NEXT, PRIOR, and OWNER pointers. Linked indexed relationshipsalways contain
INDEX and OWNER pointers.

4. Ifanentity inanon-SQL implementation is indexed, add 4 bytes for the INDEX
pointer associated with each linked index.

5. Ifanentity is stored CALC, add 8 bytes to allowfor pointers inthe CALC (SR1) chain.

6. Ifanentity is variablelength or compressed, add 8 bytes to allowfor the
variable-length indicator and fragment pointer.

7. Add 8 bytes for each entity to allow for storage of lineindexes.

8. Sum the numbers calculated above to determine the total number of bytes for a
singleoccurrence of each entity type.

9. Determine the average number of occurrences of each entity type inasingle
cluster.

10. Multiplythe total bytes for each entity by the number of occurrences inthe cluster
to calculatethe amount of spaceneeded for each entity type inthe cluster.

11. Add the above spacecalculationsto determine the total sizefor a singlecluster.

Note: Ifany entity inthe clusteris the parent of an indexed relationship, you need to
allowspacefor storageof the internal index entities.

Sample cluster size calculation

The following diagramshows howthe sizeof a cluster is determined.

Chapter 15: Determining the Size of the Database 227

Calculating the Size of an Area

Inthe EMP-DEMO-REGION area, 508 bytes will berequired to store a complete cluster
of EMPLOYEE, EXPERTISE, EMPOSITION, and STRUCTURE entities.

> <
S /e/&/ & & &

&S /€S @/ Q o) S/

S & & v 3 o &

& /5 s an/Fau/ /)) &

AR ANV

R d t A Q7 o7 O QYo Q) & IS &
eoord ype LAY S e /Sof &) E)&
EMPLOYEE 128 44 8 0 8 188 1 188
EXPERTISE 16| 12| 8| o 8| 44| 3| 132
EMPOSITION 40 12 8 0 8 68 2 136
STRUCTURE 20 24 0 0 8 52 1 52

Record bytes per cluster = 508 bytes

Note: Ifone or more indexes are to be included in the cluster, refer to the index size
calculationslater in this chapter.

The above calculationsarefor a non-SQL implementation. If this is anSQL
implementation, note that the data length andindex pointer options can differ.

Step 2: Determining the Page Size
Page size

Whenever possible,youshouldselecta page sizethat will hold two to three clusters of
data used by an application program. The maximum page sizeis 32764.

The followingconsiderationsapply toselectinga page sizefor a databasearea.
Physical device blocking

A databasepageis a fixed block. As a general rule, you should use pages thatarean
even fraction of the tracksize.

The followingtablelists the optimal page sizes by device type for six IBM diskdrives.
Manufacturers of other brands of directaccess storage devices (DASD) should be able to
providesimilarinformation for their own equipment.

per track 3330 3340 3350 3375 3380 3390
1 13028 8368 19068 32764 32764 32764
2 6444 4100 9440 17600 23476 27996

228 Database Design Guide

Calculating the Size of an Area

3 4252 2676 6232 11616 15476 18452
4 3156 1964 4628 8608 11476 13680
5 2496 1540 3664 6816 9076 10796
6 2056 1252 3020 5600 7476 8904
7 1744 1052 2564 4736 6356 7548
8 1508 896 2220 4096 5492 6516
9 1324 780 1952 3616 4820 5724
10 1180 684 1740 3200 4276 5064
11 1060 608 1564 2880 3860 4564
12 960 544 1416 2592 3476 4136
13 876 488 1296 2368 3188 3768
14 804 440 1180 2176 2932 3440
15 740 400 1096 2016 2676 3172

Chapter 15: Determining the Size of the Database 229

Calculating the Size of an Area

Note: The bytes per page for FBA devices must be a multipleof 512.
Considerations
Entity size

The size of a fixed-length entity or of a variable-length entity's minimum root or
fragment cannot exceed 30 percent of page sizewithout causingadditional overhead
for spacemanagement. Page size should always beatleastthree and one-third times
greater than the largestentity inthe area. A higher ratio (up to ten times greater) is
preferable.

Note: Witha variable-length entity, the length of the root and fragment must conform
to the considerationstated above. The entity itself (root plus all fragments) can be
larger than the page.

Page reserve
When you calculatethe page size, you need to take into consideration theamount of

spacenecessary for the page reserve. A page reserveis used to allowspacefor:

m Future growth—At load time, you may want to reserve spaceinthe databasefor
storage of new data entities or for splitting of SR8 entities inanindex structure. In
either case, you should specify the page reserve when the databaseis firstdefined
andthen remove this page reserve after the databasehas been loaded.

m Expansion of variable-length entities—The page reserve for an area that contains
variable-length entities is specified when the databaseis defined andis never
removed.

Calculating the page reserve

To calculatethe size of a page reserve, perform the following procedures:

1. For eachvariable-length entity inthe area, find the difference in bytes between the
anticipated startingand expanded sizes.

2. Multiplythe difference for each entity type by the anticipated number of
occurrences of the entity.

3. Dividethe total by the number of pagesin the area.

The page reserve should never exceed 30 percent of the pagesize.

Buffer pool size

The size of a buffer pool depends on the amount of concurrent processingto be

performed againstthe database. To avoid excessivedatabasel/O operations, the buffer
pool should be ableto hold at leastfivepages.

230 Database Design Guide

Calculating the Size of an Area

If sufficientmain storage cannotbe allocated for a 5-page (or larger) buffer pool, you

should reduce the page size.

Suppose aninstallation uses type3380 disk devices. In this environment, the main
storage required to create a buffer pool of six buffer pages is:

Page Size

Main Storage Required for Six Buffers

32,764 bytes

196,584 bytes

23,476 bytes

140,856 bytes

15,476 bytes

92,856 bytes

11,476 bytes

68,856 bytes

9,076 bytes

54,456 bytes

7,476 bytes

44,856 bytes

Chapter 15: Determining the Size of the Database 231

Calculating the Size of an Area

Note: There is additional overhead for each page in the buffer pool not included in the
above numbers.

Processing requirements

The number of clusters (or portions of clusters) to be stored on a page should be
determined by application processing requirements:

m For typical random processing where directaccess to datais essential, you should
use small pagesizes (few clusters). Asmall pagerequires less time per access and
permits more concurrentprocessingona channel. However, a small pagealso
reduces the data transfer rate, causes more 1/Os,and uses more disk spacefora
given quantity of data.

m For typical serial processing, large page sizes (several clusters)allowa high data
transfer rate and reduce the number of 1/0s. However, large pages also monopolize
the channel for longer periods of time.

Page header and footer

You need to allow 32 bytes on each page for the header and footer.

Large clusters

Ifthe sizeof a clusteris excessivelylarge(greater than 1/3 to 1/2 of a track), define a
new databasearea and move a portion of the cluster to this area. Move one or more
child entities in the cluster to the new area. You can adjustthe size of this new area to

accommodate a largecluster by increasingthe page size or by adding more pages.

Storing clusters in a separate area

When you store child entities ina clusterina separatearea from their parent entities,
the position of the child entity occurrences is proportionalto the position of the parent
entities intheir area. Therefore the sizingconsiderationsfor both areas should be
similar.

232 Database Design Guide

Calculating the Size of an Area

Step 3: Calculating the Number of Pages in the Area

After you have identified the optimal page sizefor a databasearea, you candetermine
the number of pages that should be allocated to that area. If significantgrowth is
expected early, planfor 50 percent initial capacity and allow for growth up to 70 to 80
percent. As a general rule, you should try to avoid exceeding 70 percent capacity.

Procedure

To calculatethe total number of pages required for a databasearea, perform the
following procedures:

1. Calculatethe number of bytes ineach entity inthe area: multiply the number of
bytes ineach entity by the number of occurrences.Below is a form you canuse to
compute the number of bytes required for each entity type. After you have
determined how much spaceis needed for each entity type, add the bytes for each
entity to determine the total number of bytes for the area.

2. Calculatethe number of base pages by dividingthe total entity bytes by the page
sizeminus 32.

3. Dividethe resultby the desired spaceutilization (70 percent) to get the total
number of base pages. (Static files average 70 percent; dynamic files average 50
percent.) If there are any SR8 entities inthe area, you may want to increasethe
page reserve.

4. Subtract 32 from the page sizeand divideby 2 (bytes per SMP entry). Dividethe
guotient into the number of basepages and round up to the next integer. The
resultis the number of space management pages.

Note: For largedatabases, the CALC algorithmoperates most effectively when the
number of pages inthe areais a prime number.

5. Add the number of basepages and spacemanagement pages to determine the
total number of pagesinthe area.

6. To calculatethe number of tracks needed, dividethe number of pages in the area
by the number of pages per track on the type of diskdevicebeing used.
Sample area size calculation

The following form shows how the number of pagesinan areais determined.

The EMP-DEMO-REGION area needs 508,000 bytes to store all occurrences of the
EMPLOYEE, EXPERTISE, EMPOSITION, and STRUCTURE entities. Calculations determine
that 173 database pages of 4276 bytes need to be allocated to accommodate these
entities.

Chapter 15: Determining the Size ofthe Database 233

Allocating Space for Indexes

& &
~
[
3 /g & &
S Jo/N/E X &
S IE D) & N
3 \(gq) Q = <
ar \QQJ\S Q—}—‘F 7 (S) q;a
5 /8 o F MNP o S AN
o s/n S oo/ EL S)
/s &
&

Record type § %q - (}‘J va/Se %_5
EMPLOYEE 128 | 44 | 8 0 8 |188| 1 | 188
EXPERTISE 16| 12 8 0 8 44| 8 |[132
EMPOSITION 40| 12 | 8 0 8 68| 2 |[136
STRUCTURE 20 24 | 0O 0 8 52| 1 52

1. Entity bytes per area = 508 k bytes.

2. Calculatethe number of base pages by dividing the total bytes by page size minus
32:

4276 - 32 = 4244
508,000 / 4244 = 120 pages (rounded up)

3. Divideby desired spaceutilization (70%): 172 (rounded up).

4. Subtract32from pagesizeand divide by two. Dividethe quotient intothe number
of basepages and round up to the next integer. The resultis the number of space
management pages:

172 / 2122 = .08
When you round up to the next whole page, only one SMP will be needed.

5. Add the number of base pages and spacemanagement pages to determine the
number of pages inthe area: 173

6. Dividethe number of pages inthe area by the number of pages per track on the
type of disk device being used. The resultis the number of tracks needed:

173 / 10 = 17.3 tracks

Allocating Space for Indexes

When a databasearea contains anindex, you must provide spaceinthe area for storage
of the index. To determine the amount of spaceneeded, you perform some simple
calculations. Before you allocate spacefor an index, you need to consider both the
volume of data entities to be indexed and the type of internal structures that CA
IDMS/DB will generate to allowaccess to these entities.

Followinga discussion of the structure of an index, procedures for calculating the size of
anindex are presented below.

234 Database Design Guide

Allocating Space forIndexes

Index Structure

Indexes arebuiltand maintained by the DBMS for:

System indexes—These arestandaloneindexstructures providingalternateaccess
to entity occurrences.They aredefined usingthe OWNER ISSYSTEM clauseofthe
non-SQL ADD SET statement or the CREATE INDEX statement in SQL.

The root (or top entity) of a systemindex is an SR7 entity. Thisis aninternal record
type with a location mode of CALC. For non-SQL-defined indexes, the CALC key is
the name of the index. For SQL-defined indexes, itis aninternally generated name.

Indexed relationships—These areindex structures associated with each occurrence
of a parententity inan indexed relationship and are used to point to the associated
child entity occurrences.

They are defined usingthe MODE IS INDEX clauseofthe non-SQL ADD SET
statement where the setis not defined as SYSTEM-OWNED or the LINKED INDEX
clauseofan SQL CREATE CONSTRAINT statement. The root of an indexed
relationshipisan occurrenceof the parent entity.

Structure of an index

The structure of anindex consists of internally maintained records called SR8s. Each
SR8 is chained (by next, prior,and owner pointers)to the parent entity occurrence (or
SR7 inthe caseof a system index) and to each other. An index is therefore structured as
achainedrelationship between the parent entity (or SR7) and the SR8s.

An SR8 contains from 3 to 8,180 index entries and a cushion (thatis,afieldthatis the
length of the largestpossibleindex entry). The content of anindex entry depends on the
index characteristics:

For sorted indexes, SR8s arearrangedin levels to facilitatesearching. Each index
entry contains the db-key of anindexed entity occurrence or the db-key of another
SR8. Additionally, for indexes sorted on a symbolic key, each index entry also
contains a symbolic key. A symbolickeyis a key constructed of one or more data
elements inthe order specifiedinthe schema (up to 256 bytes inlength).

For unsorted indexes, SR8s are arrangedina singlelevel. Each index entry is the
db-key for anentity occurrence.

Chapter 15: Determining the Size of the Database 235

Allocating Space for Indexes

An unsorted index

The following diagramshows the structure for a simpleunsorted indexed relationship.
Inthis example, there is a single SR8 chained to the indexed set's parent. The SR8
contains three entries. Each entry contains anindex pointer that points to a child entity
occurrence. Each child occurrencecontains anindex pointer that points to that SR8 and
anowner pointer that points backto the set's parent. (The owner pointer is optional.)

Parent

70133:2 |70133:2 .
recard Next Prior Parent recard’s data
(70133:1)
SR8 .

70133:1 [70133:1 |70133:1 i .
(70133:2) Next Prior Owngr | 30000:3 50000:5 |40000:4
Child . .

70133:2 |70133:1 ; d
record A index | Owner Child record’s data
(30000:3)
Child
record B 70133:2 (70133:2 Child record's data

Index | Owner

(50000.5)
Child 70133:2 |70133:2
record C Index | Owner Child record's data
(40000:4)

236 Database Design Guide

Allocating Space forIndexes

B ——
—-

Top level

Intermediate

level

Bottom
level

Structure of a three-level index

The followingdiagramshows the structure for a sorted index arrangedin three levels.In
this example, each SR8 has a maximum of three entries. Each entry consists ofa
symbolic key valueand a db-key. The bold entries showhow the LONG entity is located
duringanindex search.Inthe top andintermediate levels, the db-key ineach entry
points to another SR8. (For simplicity, prior and owner pointers are not included in this
figure.)

Next pointer Paren
or SR
Index pointer (dawn)

™ Index pointer (up}

—_— — — | SisB SRBC

| - |
e ilg

| i E FE |

[|

frl— — — —F — — —n - — 11— - —

| | | | | /

SRBD SRBE SR8F R8sl SR8l

=ls —

Z|Z | @ 2 > @ = 5l

Entries in a 3-level index

The following diagram shows the index pointers and symbolic keys for a three-level
sorted index. Each entry consists ofa symbolic key and a pointer (db-key). The bold
entries show how the LONG entity is locatedin the database.The pointers inthe top
andintermediate levels pointto SR8s at the next lowest level. Only the bottom-level
entry points to the indexed entity. (For simplicity, prior and owner pointers are not
includedinthis figure; in addition, there aretwo pointers for the symbolic key for BENN,
sincethere are two employees with that name.)

Symbolickey Db-key

Top-level SR8s 90002:3 Innis 90004:10
West 90004:57

Chapter 15: Determining the Size of the Database 237

Allocating Space for Indexes

Intermediate- 90004:10 Carr 90015:13
level SR8s Ferro 90016:40
Innis 90030:6
90004:57 Nelson 90021:3
Stuart 90018:53
West 90030:12
Bottom-level SR8s 90015:13 Benn 721009:147 723006:105
Carr 721007:3
90016:40 Davis 720617:201
East 721592:63
Ferro 722310:16
00030:6 Grey 720016:31
Hall 727160:52
Innis 725921:74
90021:3 James 726412:4
Long 724263:12
Nelson 727160:90
90018:53 Stuart 720039:37
Upton 720715:52
90030:12 West 725129:2

238 Database Design Guide

Allocating Space forIndexes

Number of levels in an index

The number of levelsinanindex directly affects database performance. The number of
levels determines:

m The number of I/Os required to access the indexed entities. An index that has few
levels (four or fewer) typicallyincursa minimumnumber of |/Os to access the
indexed entities.

m How much contention will occur for access to the SR8 records. An index that has
several levels typically reduces contention among application programs thatrequire
access to SR8s.

An indexis considered efficientif there is little contention for the SR8s and few 1/Os are
required to access the indexed entities. To develop an efficientindex, you should usually
plananindexthat has three levels of SR8s. An index that has more than eight or ten
levels is likely to degrade processing performance by causingthe system to access many
SR8s when searchingfor a particularindexed entity occurrence. A system index that
consists of fewer thanthree levels may incur contention if frequently updated. Indexed
relationshipsshould usually have fewer than three levels sincecontention is less likely
because there are multipleindex structures (one for each relationship occurrence).

Sincethe structureof anindex depends on several dynamic factors, itis often difficultto
make a precisecalculation of the number of levels that the DBMS will create. CA
IDMS/DB therefore provides schema syntax that can be used to influence the number of
levels that will be generated for a particularindex.

The number of levels generated by CA IDMS/DB for a sorted index depends on the
number of index entries in each SR8. You can specify the maximum number of entries
that canbe containedinan SR8 by usingthe INDEX BLOCK CONTAINS clause of the index
definitioninthe schema.

You canimprove the efficiency of an index by performing one of the following
procedures:

m Decrease the number of levels inthe index by increasingthe number of entries in
each SR8. This action can enhance efficiency by decreasingthe number of SR8s that
the DBMS must access when searchingfor a particular entry.

m Increase the number of levels inthe index by decreasingthe number of entries in
each SR8. This action can enhance efficiency by reducingthe likelihood of
contention for SR8s.

For further information on the structure of anindex, see CA IDMS Database
Administration Guide.

Chapter 15: Determining the Size ofthe Database 239

Allocating Space for Indexes

Calculating the Size of the Index

To accountfor the different types of index structures, you use a different set of
formulas to calculatethe size of each of the followingtypes of indexes:

m Indexes sorted on a symbolic key
m Indexes sorted on the databasekey

m Unsorted indexes
Formulas for calculatingthesize of indexes areoutlined in the followingtables.

For information aboutsizinganindexautomatically, see Area statements in "Physical
DatabaseDDL Statements" of Volume 1 of CA IDMS Database Administration Guide.

Considerations

Before you calculate the size of your indexes, you should be aware of the following
index sizing considerations:

m The method of loading the index determines how the index size should be
calculated. The formulas presented in the tables below should be used only to
calculatespacerequirements for indexes that are loaded in sequential order.

m Index sizing calculations should allow ample space for future growth. You have
several options for reserving spacefor expansion of an index:

— Make a generous estimate of the number of occurrences to be indexed; use
this inflated number as the basis for performing your index sizing calculations.

— Make a generous estimate of the number of pages required for the area in
which the index will bestored; the formulas presented below can be used to
calculatethe minimum number of pages required for anarea in which anindex
will bestored.

— Specify a pagereserve at load time; after the index has been loaded, remove
the page reserve andincreasethe number of entries in each SR8.

- Indicatehow far away from the parent or SR7 the bottom-level SR8s are to be
stored. For an indexed relationship or a system-owned index, you can use the
DISPLACEMENT clauseofthe non-SQL schema ADD SET statement or the SQL
schema CREATE INDEX statement to cluster bottom-level SR8s away from their
parentina databasearea.By specifyingthe number of pages to displacethe
bottom-level SR8s, you canreserve spaceinthe area for storage of
intermediate SR8s.

240 Database Design Guide

Allocating Space forIndexes

Calculating the Size of an Index Sorted on a Symbolic Key

Calculation Formula/Instructions

Number of The requirements of your databasewill determine these values.You may
indexed want to use aninflated number to allowfor future growth.

entity

occurrences

and key

length

Number of Inmost situations,youshould designindexes with three levels. However,

index levels your index may consistoffrom one to four index levels. Indexes with few
entries ora shortkey canbe builtwith only two levels;indexes with
many entries or very long keys might requirefour levels. Indexed
relationships orindexes with extremely few entries might require only
one level.

Number of For ann-level index:

entries per 4spg-entries =

SR8 nth-root-of-#indexed-entity-occurrences
For example, to build a 3-level index:
#SR8-entries =
cube-root-of-#indexed-entity-occurrences

The results of this calculation should berounded up to the next higher
integer.

Size of SR8 Determine SR8 size(includinglineindex space) by usingthe following
entities formula:

SR8-size=
40 + (#SR8-entries + 1) * (key-length + 8)

Key-length equals the sum of the lengths of all data elements in the
index key.

Chapter 15: Determining the Size of the Database 241

Allocating Space for Indexes

Calculation

Formula/Instructions

Number of
SR8s

Determine the number of SR8s required for your index by level:
#Level-0-SR8s =

(#indexed-entity-occurrences + #SR8-entries - 1)

#SR8-entries

#Level-1-SR8s =
(#level-0-SR8s + #SR8-entries - 1)

#SR8-entries

#lLevel-2-SR8s =
(#level-1-SR8s + #SR8-entries - 1)

#SR8-entries

One of the above calculations will berequired for each level inyour
index; note that the quotient should be truncated, not rounded.
Calculatethe number of SR8s at each level until the quotient equals 1.
The total number of SR8s required for your indexis equal to the sum of
all the counts computed above.

Number of
bytes
required

Calculatethe total number of bytes of spaceyou will need to
accommodate the index:

Total-#bytes-required = #SR8s * SR8-size

Note: Level-0 refers to the bottom level of the index structure.

242 Database Design Guide

Allocating Space forIndexes

Calculation

Formula/Instructions

Pagesize
for the
index area

Planto store at leastthree SR8s on a page; use a page reserve of up to
29% of each page. The page reserve factor actuallyincreasesthe size of
your database page sothat additional SR8s can beaccommodated
without generating overflow. Use the following formulas to estimate
pagesize.

Page-size = (#SR8s-per-page) * (SR8-size)

Total-page-size= page-size+ page-reserve
+ page-header-footer-length
The header-footer length is 32 bytes for anarea. Compare the resulting

page size with the tableunder "Step 2: Determining the page size"and
select the next larger page sizethat's compatiblewith your DASD device:

m Ifthe pagesizedetermined inthis way is too large, the number of
index levels will haveto be increased until a satisfactory
compromise between page sizeand number of indexlevelsis
reached.

m Ifthe pagesizedetermined is much smallerthan 4K, use a 4K page
sizeinstead; this allows morethan three SR8s to be stored on each

page.

Number of
SR8
displaceme
nt pages

For improved efficiency, sorted indexes should make use of SR8
displacement pages to displace bottom-level (level-0) SR8s from the
top-level and intermediate-level SR8s.To determine the number of
displacement pages needed, perform these calculations:

#Non-displaced-SR8s = total-#SR8s - #level-0-SR8s

#SR8-displacement-pages =
(#non-displaced-SR8s +#SR8s-per-page - 1)
+1

#SR8s-per-page

Note that the quotient should be truncated, not rounded.

Number of
pages
needed for
the index

After calculatingthe displacement pages, determine the total number of
pages needed for the index:

Total-#Pages-needed = #SR8-displacement-pages +
(#level-0-SR8s + #SR8s-per-page - 1)

#SR8s-per-page
Note that the quotient should be truncated, not rounded.

Chapter 15: Determining the Size of the Database 243

Allocating Space for Indexes

Calculating the Size of an Index Sorted on db-key

Calculation

Formula/Instructions

Number of index entity
occurrences

The requirements of your databasewill determine this value.You may wantto usean
inflated number to allowspacefor future growth.

Number of index levels

In most situations, you should design indexes with three levels. However, your index
could consistof from one to four index levels. Indexes with few entries can be built
with only two levels; indexes with many entries might require four levels. Indexed
relationships or indexes with extremely few entries might require only one level.

Number of entries per
SR8

For an n-level index:
#SR8-entries =
nth-root-of-#indexed-entity-occurrences
For example, to build a 3-level index:
#SR8-entries =
cube-root-of-#indexed-entity-occurrences

The results of this calculation should berounded up to the next higher integer.

Size of SR8s

Determine SR8 size (includinglineindex space) by usingthe followingformulas:
Level-0-SR8-size =
40 + (#SR8-entries +1) * 4

Non-level-0-SR8-size =
40 + (#SR8-entries +1) * 8
Round the value up to the next higher number divisibleby 4. The level-0 SR8 length is

nearly halfthat of the non-level-0 SR8. This means that a page foran indexsorted on
db-key can hold nearly twice as many bottom-level SR8s as higher-level SR8s.

244 Database Design Guide

Allocating Space forIndexes

Calculation Formula/Instructions

Number of SR8s Determine the number of SR8s required for your index by level:
#Level-0-SR8s =

(#indexed-entity-occurrences + #SR8-entries - 1)

#SR8-entries

#lLevel-1-SR8s =
(#level-0-SR8s + #SR8-entries - 1)

#SR8-entries

#Level-2-SR8s =
(#level-1-SR8s + #SR8-entries - 1)

#SR8-entries

The quotient should be truncated, not rounded. Continue calculatingthe number of
SR8s at each level until the quotient equals 1.0One of the above calculations will be
required for each level inyourindex. The total number of SR8s required for your index
is equal to the sum of all counts computed above.

Number of bytes Calculatethe total number of bytes of spaceyou will need to accommodate the index:
required #Bytes-required-for-level-0-SR8s =

#level-0-SR8s * Level-0-SR8-size

#Bytes-required-for-non-level-0-SR8s =

#non-level-0-SR8s * non-level-0-SR8-size

Total-#bytes-required =

level-0-bytes + non-level-0-bytes

Chapter 15: Determining the Size of the Database 245

Allocating Space for Indexes

Calculation

Formula/Instructions

Page sizefor the index
area

Planto store at leastthree SR8s on a page; use a page reserve of up to 29 percent of
the page size. The page reserve factor actuallyincreases thesize of your database page
sothat additional SR8s can beaccommodated without generating overflow. Use the
following formulas to estimate page size:

Pagesize=

(#SR8s-per-page) * (non-level-0-SR8-size)

Total-page-size = page-size+ page-reserve
+ page-header-footer-length
The header-footer length is 32 bytes for a standard area. Compare the resulting page

sizewith the result from the previous tableand selectthe next larger page size that's
compatiblewith your DASD device:

m Ifthe pagesizedetermined inthis way is too large, the number of index levels will
have to be increased until a satisfactory compromise between page sizeand
number of index levelsis reached.

m Ifthe pagesizedetermined is much smallerthan 4K, use a 4K page sizeinstead;
this allows morethan three SR8s to be stored on each page.

Number of SR8
displacement pages
needed

For improved efficiency, sorted indexes should make use of SR8 displacement pages to
displacebottom-level (level-0) SR8s from the top-level andintermediate-level SR8s. To
determine the number of displacement pages needed, perform these calculations:

#Non-displaced-SR8s =
total-#SR8s - #level-0-SR8s

#SR8-displacement-pages =
(#non-displaced-SR8s +#SR8s-per-page - 1)
+1

#SR8s-per-page
Note that the quotient is truncated, not rounded.

Number of pages
needed for the index

After calculatingthe displacement pages, determine the total number of pages needed
for the index:

Total-#Pages-needed =
#SR8-displacement-pages +
(#level-0-SR8s + #level-0-SR8s-per-page - 1)

#level-0-SR8s-per-page
Note that the quotient is truncated, not rounded.

246 Database Design Guide

Allocating Space forIndexes

Calculating the Size of an Unsorted Index

Calculation

Formula/Instructions

Number of
indexed entity
occurrences

The requirements of your databasewill determine this value.You
might want to use an inflated number to allowspacefor future
growth.

Number of index
levels

Unsorted indexes consistofonly one level (level-0).

Number of entries
per SR8

The number of SR8s should be three or more and less thanthe
number of entity occurrences being indexed. Work out the
formulas inthe following steps with a number of your choice; bear
inmind that you need to derive an SR8 thatis less than 30 percent
of the page sizefor the area.Recalculatethe formulas as
necessary until youreach the desired result.

Size of SR8s

Determine SR8 size (includinglineindex space) by usingthe
following formula:

SR8-size= 40 + (#SR8-entries + 1) * 4

Round the value up to the next higher number divisible by 4.

Number of SR8s

Determine the number of SR8s that will berequired for your
index:

Total-#SR8s =

(#indexed-entity-occurrences + #SR8-entries - 1)

#SR8-entries

Note that the quotient is truncated, not rounded.

Number of bytes
required

Calculatethe total number of bytes of spaceyou will need to
accommodate the index:

#Bytes-required-for-SR8s = #SR8s * SR8-size

Chapter 15: Determining the Size of the Database 247

Allocating Space for Indexes

Calculation

Formula/Instructions

Page sizefor the
index area

Planto store at leastthree SR8s on a page; use a page reserve of
up to 29 percent of the page size.The page reserve factor actually
increases the size of your database page sothat additional SR8s
canbe accommodated without generating overflow. Use the
following formulas to estimate page size:

Page-size = (HSR8s-per-page) * (SR8-size)

Total-page-size=
page-size + page-reserve
+ page-header-footer-length

The header-footer length is 32 bytes for anarea. Compare the
resulting page sizewith the resultfrom the firsttableand select
the next larger page sizethat's compatible with your DASD device:

m Ifthe pagesizedetermined inthis way is too large, the
number of index levels will haveto be increased until a
satisfactory compromise between page sizeand number of
index levels is reached.

m |fthe pagesizedetermined is much smaller than 4K, use a 4K
page size instead;this allows morethan three SR8s to be
stored on each page.

Number of pages
needed for the
index

Determine the total number of pages needed for the index:
Total-#pages-needed =
(#SR8s + #SR8s-per-page - 1)

#SR8s-per-page

Note that the quotient should be truncated, not rounded.

248 Database Design Guide

Allocating Space forIndexes

Sample index size calculation
The followingdiagramshows howspaceis allocated for storage of anindex.
The SKILL-NAME index requires 18 database pages.

For a detailed explanation of the formula used to calculate spacerequirements for this
index, see the previous table.

OF SKILL OCCURRENCES 1680
KEY LENGTH 12
OF INDEX LEVELS 3
OF ENTRIES PER SR8 12
SIZE OF SR8 300
OF SR8s 153
OF BYTES REQUIRED FOR INDEX 45900
OF SR8 DISPLACEMENT PAGES 3

TOTAL # OF PAGES IN SKILL-NAME-REGION AREA 18

SR8 ENTRIES = Cube-root-of-#skill-occurrences = 12 (rounded up)

SR8 SIZE = 40 + (13 * 20) = 300 bytes

LVL-0 = (1680 + 11) / 12 = 140 (truncated)
LVL-1 = (140 + 11) / 12 = 12 (truncated)
LVL-2 = (12 + 11) / 12 = 1 (truncated)

(Inthis 3-level index, there are 140 displaced SR8s and 13 non-displaced SR8s; the total
number of SR8s is 153.)

OF BYTES REQUIRED FOR INDEX = 153 * 300 = 45900
SPACE REQUIRED FOR STORING 3 SR8s = 3 * 300
PAGE-SIZE (INCLUDING PAGE RESERVE) = 900/.70 + 32 = 1318

(1318 bytes for page sizeis very small; therefore a 4K page size might be used instead.
Ifa 4K page sizeis selected, the DBMS will be ableto store approximately 10 SR8s on a

page.)

OF SR8 DISPLACEMENT PAGES

(15+10 -1) /10 +1=3

TOTAL # OF PAGES IN AREA

(140 +10 - 1) / 10 + 3 =18

Chapter 15: Determining the Size of the Database 249

Placing Areas in Files

Placing Areas in Files

Guidelines

You canassignallareasinadatabasetoa singlefileor you candistributeareas over
several files. The followingtable provides some guidelines for assigningareas to files.

The relationship between areas andfiles can bedefined as one-to-one, one-to-many,
many-to-one, or many-to-many. Each arrangement has its advantages and
disadvantages.

Relationship Advantages Disadvantages
One area to m Allows ease of m Ifused with VSAM, this arrangement
one file maintenance canrequire excessive VSAM memory

. requirements (GETVIS).

m Facilitates recovery

m Provides maximum
flexibilityin
assigningareasto
buffers

One area to m Minimizes

many files head/channel
contention by
spreadingdataover
multiple packs

m Optimizes
processing of large
and/or highly
activeareas

Manyareasto g Recommended for m Restricts buffer allocations

one file
small,stableareas . .
Complicates DBA maintenance
that are not used
often
Many areas to m Severely restricts buffer allocations
many files

m Complicates DBA maintenance

m Minimizes flexibilityin data set
placement on disk

m Complicates recovery procedures

m Shouldbe avoided

250 Database Design Guide

Placing Areas in Files

Processing considerations

When assigningareastofiles, youshould keep in mind the following processing
considerations.

Input/output seek time

Followthese guidelines for minimizing seek time:

m Ifyou need to keep all (or several)areas online, you canreduce seek time by
mappingeach area into files allocated across all thedisk volumes.

m Placethe most frequently accessed data set (databasefile) near the middle cylinder
on adiskvolume. The access armbegins a seek operation from the position where
it completed the lastoperation;therefore, the distancethe armmust travel will, on
the average, beless to reach a cylinder inthe middle of the disksurface.

m Placethe smallestdata sets that areaccessed equally often near the center of the
disk volume.

m When concurrently active data sets must be accessed by the same access
mechanism, placethem adjacentto one another.

m Ifpossible, placesmall, concurrently active data sets on the same cylinder.

For more specific guidelines, consultyour hardwarevendor publications for the
hardwaredevices used at your installation.

Access-arm contention

To reduce contention for use of the access arm, you can placeconcurrently activedata
sets under different access mechanisms.

Minimizing seek time

If you need to keep all areas online, you canreduce seek time by mappingthe areasinto
files allocated acrossall the disk volumes. For example, you can allocate ninefiles, three
on each volume, and map each area across all three volumes. This reduces the number
of cylinders across which thedisk heads must move to process anyone application, as
shown below.

The diagrambelow shows how entities used for one application can bedistributed over
all volumes to limithead movement.

Chapter 15: Determining the Size of the Database 251

Sizing a Megabase

Sizing considerations

As you assignareas tofiles, you need to keep in mind the followingsizing
considerations:

m For each page, there must be only one correspondingblock of the same size.

m Pagesin onearea must be numbered as one continuous range of integers (you
select the startingnumber); blocks in one file must be numbered as one continuous
range of integers, starting with the number one.

m Pageranges must not overlap.

m Pagesizecanvary fromareato area but not withinanarea; blocksizecanvaryfrom
fileto filebut not within a file. Areas with different page sizes cannotbe mapped
into one file,and one area cannotbe mapped across files with different block sizes.

m Ifanareaissolargethatitrequires more than a singlephysical diskdeviceand the
access method is non-VSAM, the area must be mapped to multiplefiles where the
sizeof each fileis nolarger than the capacity ofa singledevice.

m IfVSAM is being used as the underlyingaccess method for the database, an area of
over 4GB must be mapped to multiple VSAM files.

Sizing a Medabase

To allowfor processing of very large databases, CA IDMS/DB permits you to:
m Vary the format of the databasekey

m Assignsegments to page groups

Each of these sizing options is discussed below.

252 Database Design Guide

Sizing a Megabase

Varying the Database Key Format

A databasekey is the concatenation of an entity's page number andits lineindex, for a
total of four bytes. The format for a databasekey is variable. The page number can
make up 20to 30 bits of the databasekey; the lineindex can make up 2 to 12 bits. You
determine the databasekey format by specifyingthe MAXIMUM RECORDS PER PAGE
clauseofthe CREATE SEGMENT statement.

Sincedatabasekey formatis variable, you canstructure the databaseto allow for either:

m More pages with fewer entities per page —The number of pages inanarea canbe
from 2 to 1,073,741,824.

m More entities per page with fewer pages—Each pageina databasecanhave from
2 to 2,727 entities.

To accommodate a very largedatabase, you need to make sure that the highestpage in
anareacan be expressed inthe databasekey format. You also need to ensure that the
lineindexis large enough to identify the highestentity occurrence on a specific page.

Note: The number specifiedinthe MAXIMUM RECORDS PER PAGE clauseindicates the
maximum number of entity occurrences that the run-time system will placeonasingle
page. The actual number of occurrences on a given page depends on the page sizeand
the sizeof individual entity occurrences placed on the page.

Chapter 15: Determining the Size ofthe Database 253

Sizing a Megabase

Assigning Segments to Page Groups

By assigning segments to page groups, you can maintain,under a singlecentral version,
multipledatabases thattotal more thana billion pages. A page group uniquelyidentifies
a collection of page ranges. You canspecify a numericidentifierinthe range 0 through
32,767 as a page group.

More Information

For more information onvaryingthe db-key and page groups, see the CA IDMS
Database Administration Guide.

Considerations

Although segments can be assigned different page groups and databasekey formats,
the followingrestrictionsapply:

m By default, a singledatabasetransaction canaccess datainonly onepage group for
a non-SQl-defined database. Therefore, data to be accessed together must be
defined within the same page group.

m The singlepage group restriction for a transaction does not apply to SQL-defined
databases or to non-SQL-defined databases accessed through a DBNAME with
Mixed Page Group Binds Allowed. However, all records of a record type to be
accessedinasingletransaction mustresideinthe same segment. Whileyoucan
horizontally segment a database, for example by placing customer informationin
three segments (CUSTEAST, CUSTWEST, CUSTCENT), you canaccess only one of
these segments at a time from withina transaction.

m For non-SQL defined tables, owner and member records fora chainsetmust bein
the same page group and have the same number of records per page.

m For SQL defined tables, referenced and referencing tables for a referential
constraintmustbe inthe same page group and have the same number of records
per page, and a tableand its index area must be inthe same page group and have
the same number of records per page.

m By defaultall segments accessed by a singledatabasetransaction musthavethe
same databasekey format. However, when usinga DBNAME with Mixed Page
Group Binds Allowed, a singletransaction canaccessdata frommultiple page
groups, each havinga different databasekey format.

m All segments of a dictionary mustbe inthe same page group.
More Information

For more information on the use of Mixed Page Group Binds Allowed, see the CA IDMS
Database Administration Guide.

254 Database Design Guide

Chapter 16: Implementing Your Design

Overview

Reviewing the

This section contains the following topics:

Overview (see page 255)
Reviewing the Design (see page 255)
Implementing the Design (see page 262)

Once you have determined the spacerequirements of the database,you are prepared
for a final design review and implementation. You need to review the designto ensure
that the databasewill supportthe business transactions performed by users atyour
corporation.You also need to ensure that applicationsthataccess the databasewill
execute efficiently.

This chapter shows you how to review both the logical and physical models for a
corporate database.

Design

Reviewing the design for a corporate databaseinvolves performingthe following
procedures:

1. Reviewing the logical database model

2. Reviewing the physical database model

Followthe steps below to finalize the design for your corporate database.

Chapter 16: Implementing Your Design 255

Reviewing the Design

Step 1: Review the Logical Database Model

Inthe initial stages of logical design, youidentified the business problemthat users
hoped to solve by creatinga database. After interviewing several company employees,
you performed a thorough analysisof the business system, determining the processing
functions performed by the corporation and the flow of data duringtypical executions
of these functions.

An analysis of the system provided documentation of the types of data required by
corporate users to perform their day-to-day business tasks. With this documentation,
you created the entity-relationship diagram, which serves as a model of the corporate
enterprise.

Duringthe final review of a databasedesign, you should make sure that the physical
design does not compromisethe logical model for the database.

Step 2: Review the Physical Database Model

CalculatingI/0s

Earlierinthe design process, you traced the flow of each business transaction through
the database. By tracingthe flow of transactions, you tried to ensure that the system
would supportall databaseprocessing. Duringthe final review of a databasedesign, you
need to trace the flowof business transactions again.

As you trace the flow of each business transaction, you should calculate the number of
input/output operations that will be performed. The 1/0 calculation for a business
transaction depends on several factors. These factors includethe order in which entities
are accessed, the location mode of each entity accessed, the types of indexes (ifany)
used to access the data, and the way entities are clusteredinthe database.

See Chapter 12, "Refiningthe DatabaseDesign" for instructions on howto estimate the
number of 1/Os for a transaction.

256 Database Design Guide

Reviewing the Design

Potential Design Flaws

As you trace the flow of each transaction, you need to look for potential design flaws.
Here are some things to watch out for.

Nonclustered relationships

Relationships between two entities that are stored with the CALC location mode
sometimes degrade processinginapplicationsthatretrieve all child entity occurrences.
When two CALC entities arerelated, the system must perform several I/O operations to
retrieve the child entity occurrences participatinginthe relationship,as shown below.

CALC-to-CALC relationships areparticularly costly for long chained relationships (those
having many child occurrences). In the following diagram, note the number of pages
accessedinorderto retrieve all employees ina particulardepartment.

DEPARTMENT

| | 56 ‘ CALC

DEPTID |U

ORG-DEMQ-REGION

ASC (EMP-

DEFT-EMP
NPO OA

LOYEE

LAST-NAME EMP-FIRST-NAME) DL

EMPLOYEE

| |116 |CALC

EMP 1D [u

EMP-DEMO-REGION

(o)

5000

EMP
420
N EMP
843
Page 2172 Page 2173 Page 2174 Page 2175 Page 2176

Chapter 16: Implementing Your Design 257

Reviewing the Design

Sorted relationships

Sorted relationships areefficientfor some kinds of processingand not for others. When
you design a relationship, you need to consider whether the sorted order is appropriate
for the type of processingthatwill be performed.

Make surethat:

m Every sorted relationship can bejustified.

m Ifnew key values arehigher than existingvalues, the relationshipisorderedin
descending sequence.

m Ifnew key values arelower than existingvalues, the relationshipis orderedin
ascendingsequence.

m Ifthe relationshipis notclustered,itis indexed rather than chained (non-SQL
implementation).

For further information on sorted relationships, see Refining the Database Design.
Relationships crossing areas

When two entities related through a linked relationship arestoredin different database
areas, certain utilities requirethatyou operate on both areas atthe same time.
Therefore, you might want to consider usingan unlinked relationship rather thana
linked relationship.

Ineffective clustering

Processing performancecan be affected by ineffective clustering. Suppose that an entity
participates as a childin two relationships. To achieve optimal performance, the
relationship through which an entity is most frequently accessed should bechosen as
the clusteringrelationship.

Inthe example below, retrieving all positions for a job will require fewer I/Os than
retrieving all positions for an employee. This should be reviewed to ensure that it
reflects transaction frequencies.

258 Database Design Guide

Reviewing the Design

JOB-PQSITION | EMPOSITION EMP-POS
JOB Clustered via EMPLOYEE
JOB-PCSITION

%@ o

_ -

Large clusters

Large clusters of entity occurrences canalso cause performanceproblems. If the
amount of spacerequired to holdrelated entity occurrences is greater than the page
sizefor a databasearea, CALC or cluster overflow conditions can occur.

Absence of PRIOR pointers in a non-SQL implementation

PRIOR pointers should be excluded from a relationship only when all of the following

conditions aretrue:

m Childentity occurrencesinarelationship arenoterased or disconnected.

m Childentity occurrences inarelationship participatein no other relationship.

m Orderis not LAST or PRIOR.

m The FIND/OBTAIN LAST or FIND/OBTAIN PRIOR functions are not used for the
relationship.

Inall other circumstances, youshouldinclude PRIOR pointers ina relationship.

Absence of OWNER pointers in a non-SQL implementation

OWNER pointers should be excluded from a relationship only when all of the following

conditions aretrue:

m Parententities inarelationshiparenotaccessed from child entities.

m The FIND/OBTAIN OWNER DML function is notused for the relationship.

m Parentandchildentities are normallystored all on one page.

Inall other circumstances, youshouldinclude OWNER pointers ina relationship. Every

relationship musthave NEXT pointers except indexed relationships, which musthave
INDEX pointers.

Chapter 16: Implementing Your Design 259

Reviewing the Design

Questions To Address

Here are some questions that you should address beforeimplementing a database:

Will performance be acceptable for the five toten most important transactions?
From a performance standpoint, the most important transactionsarethose
transactions thatare executed most frequently.

Do any clustered entities require rapid, random retrieval? If so, consider placing
indexes on these entities or, ina non-SQL implementation, addingadditionallinked
relationships, as described below.

Inthe following example, the EMPLOYEE entity is stored clustered via the
DEPT-EMPLOYEE relationship.Anew entity called EMP-NUM is created and linked
to the EMPLOYEE entity ina one-to-one relationship. Using the relationshipand
CALC retrieval on EMP-NUM, anemployee can be retrieved by employee number
usingtwo |/Os, even though itis neither a CALC nor anindex key.

DEPT-EMPLOYEE NUM-EMPLOYEE
DEPT EMPLOYEE EMP NUM

\

-
| — L
\

B
el [L

Page 2172 Page 2930 Page 3111 Page 3240 Page 3951

260 Database Design Guide

Reviewing the Design

m Does any entity that sparsely populates an area require processing of all
occurrences? Ifso, consider buildinganindex for the entity.

m Can extrarelationships be added for more direct access? In some cases, you might
want to includeadditional relationships to enhance processing performance. For
example, you might want to define the DEPT-SKILL relationship toallowretrieval of
information from the DEPARTMENT and SKILL entities without havingto retrieve
employees. The diagrambelow shows this use of an extra relationship.

DEPARTMENT

DEPT-EMPLOYEE

DEPT-SKILL EMPLOYEE

EMP-SKILL

SKILL

Chapter 16: Implementing Your Design 261

Implementing the Design

Implementing the Design

Now that you have a physical databasedesign,itis time to implement that design. CA
IDMS/DB provides two methods for implementation:

m SQL DDL statements — Availableonlyifyoursitehas the SQL Option

m Non-SQL DDL statements

The data structure diagramyou created is used as the basis for your implementation.
The diagramthat follows shows a portion of the data structure, annotated with both the
SQL and non-SQL definition statements that apply to the components illustrated.
Complete SQL and non-SQL implementations of the Commonweather Corporation
databasecan be found in Non-SQL Databaselmplementation for the Commonweather

Corporation.

Non-SQL implementation

ADD RECORD NAME 1S EMPLOYEE
SHARE STRUCTURE OF RECORD

EMPLOYEE
entity name

EMPLOYEE VERSION 1
LOCATION MODE IS CALC

124
length

CALC
focation mode

USING (EMP-ID)
DUPLICATES ARE NOT ALLOWED
WITHIN AREA EMP-DEMO-REGION

EMP ID

u

CALC-key or relationship| dup opf

EMP-DEMO-REGION
area name

ADD SET EMP-EXPERTISE
ORDER IS SORTED
MODE IS CHAIN LINKED TO PRIOR
OWNER IS EMPLOYEE
WITHIN AREA EMP-DEMO-REGION
MEMBER IS EXPERTISE
WITHIN AREA EMP-DEMO-REGION
LINKED TO OWNER
MANDATORY AUTOMATIC
DESCENDING KEY IS (SKILL-CODE)
DUPLICATES NOT ALLOWED

EMP-EXPERTISE
FK (EMP ID)
DES (SKILL GODE) U

ADD RECORD NAME IS EXPERTISE
SHARE STRUCTURE OF RECORD

EXPERTISE
entity name

EXPERTISE VERSION 1
LOCATION MODE IS VIA

8
fength

CLUSTERED
location mode

EMP-EXPERTISE SET
WITHIN AREA EMP-DEMO-REGION.

EMP-EXPERTISE
CALC-key or relationship| dup opf

EMP-DEMO-REGION
area name

SQL implementation

CREATE TABLE EMPLOYEE

IN SQLDEMO.EMP_DEMO_REGION;

CREATE UNIQUE CALC KEY
ON EMPLOYEE (EMP_ID);

CREATE CONSTRAINT
EMP_EXPERTISE
EXPERTISE (EMP_ID)

REFERENCES
EMPLOYEE (EMP_ID)
LINKED CLUSTERED

ORDER BY (SKILL_CODE DESC)
UNIQUE;

CREATE TABLE EXPERTISE

IN SQLDEMOC.EMP_DEMO_REGION;

262 Database Design Guide

Implementing the Design

Implementing Your Design with SQL
You canchooseto implement your design using SQL statements.
SQL terminology

The followingtablerelates the terms used duringthe physical design process with those
used inan SQL implementation.

Logical/Physical Design Term SQL Implementation Term
Entity Table

Entity occurrence Row

Data element Column

CALC location mode CALC

Clustered location mode Clustered constraint
Relationship Constraint

Index Index

Unique Unique

Parent Referenced table
Child Referencing table

Chapter 16: Implementing Your Design 263

Implementing the Design

Implementation Steps

1. Decide on naming conventions for:
m Tables
m Columns
m Constraints
m Indexes
2. Create the database.
3. Create the logical definition of your database using SQL DDL statements.
4. Copy the segment definition from the system dictionaryintothe application
dictionaryinwhich you will defineyour tables.

More Information

For more information on physical definitionand creation, seethe CA IDMS Database
Administration Guide.

Steps 1 through 3 are described in more detail below.
You arenow ready to define the tables and other logical components of your database.
Naming conventions

Databasetables and columns should haveshort, meaningful names. Table names areup
to 18 characters inlength. Columns within tables can have names of up to 32 characters.
Underscores are usually used between tokens withina name (for example,

SKILL_LEVEL). Hyphens should be avoided sincenames containing hyphens must be
enclosedindouble quotes when used inSQL syntax.

Referential constraints aretypically named by concatenatingthe names of the two
related tables. For example, the referential constraintbetween the EMPLOYEE tableand
the DEPARTMENT table becomes DEPT_EMPLOYEE. This convention may need to be
modified, however, sinceconstraintnames can be no more than 18 characters.

Indexes must alsobenamed. Names up to 18 characters are permitted.
Creating the database

A databaseis represented by a segment. To create a database, you:

1. Define the segment inthe system dictionary using CREATE SEGMENT, FILE, and
AREA statements.

2. Includethe segment definitionina DMCL and punch and linkeditit to a load or
coreimage library.

264 Database Design Guide

Implementing the Design

3. Allocatethe operating system files defined in the segment andinitializethem using
the FORMAT utility statement.

Creating the logical database definition

The following examples illustrate howthe logical components of your designare
translated into SQL DDL.

For complete DDL syntax,see CA IDMS SQL Reference Guide.

Chapter 16: Implementing Your Design 265

Implementing the Design

CREATE SCHEMA statement

A schema groups one or more tables together. Typicallyalltables associated with a
singledatabase, or with a specific application within a singledatabase, aredefined
within one schema. The statement below defines the schema, EMPSCHM.

CREATE SCHEMA EMPSCHM; D Names the schema

CREATE TABLE statement

Each entity inyour designis defined as an SQL table. The definition of a tableincludes:
m The name of the table

m Alistofcolumns (data elements), including the data type of each, whether a default
has been designated, and whether or not nulls areallowed

m An optional check constraintthatlimits the data that can be maintainedinthe
databasefora particular column or columns

m The name of the area in which the data for the tableis to be stored

The following statement defines the table, SALARY GRADE.

CREATE TABLE EMPSCHM.SALARY GRADE «--------- Names the table
(SALARY GRADE UNSIGNED NUMERIC(2,0) NOT NULL, 4
JOB ID UNSIGNED NUMERIC(4,0) NOT NULL, | Names the
HOURLY_RATE UNSIGNED DECIMAL(7,2) , | columns and
SALARY_AMOUNT UNSIGNED DECIMAL(10,2) , | assigns column
BONUS_PERCENT UNSIGNED DECIMAL(7,3) , | characteristics
COMM_PERCENT UNSIGNED DECIMAL(7,3) |
OVERTIME RATE UNSIGNED NUMERIC(5,2) 4

CHECK ((HOURLY RATE IS NOT NULL AND SALARY AMOUNT IS NULL)
OR (HOURLY RATE IS NULL AND SALARY AMOWNT IS NOT NULL)))
IN SQLDEMO.EMP_DEMD REGION; «---- Names the area qualified
with a segment name

Null values

SQL allows you to represent the absenceof a columnvalueina particularrow by
assigning NULL to the column. This could happen because the valueis not known yet
(suchas acreditratingwhen a creditcheck has not yet been completed for a new
customer) or because itisn'tapplicable(such as phone number for an employee with no
phone). Null values may receive special treatmentin certain SQL DML statements. For
example, the COUNT aggregate function doesn'tincludenull values ina particular
columnwhen countingthe number of rows based on that column.

CREATE INDEX statement

266 Database Design Guide

Implementing the Design

The definition of anindex includes:

m The name of the index

m The name of the table and columns in the table on whichthe index is placed
m The areainwhich the indexis to be stored

m The UNIQUE and/or clustering specification

m Additional physical tuningoptions

The statement below defines the EMP_NAME_NDX index.

CREATE EMPSCHM.INDEX BYP_NAME NDX <------- Names the index
ON EMPSCHM.EMPLOYEE (EMP_LAST NAME, EMP_FIRST NAME) «-- Names the columns
IN SQLDEMO.INDXAREA; 4--------- Names the area qualified with

segnent name
CREATE CONSTRAINT statement

Inan SQL-defined database, relationships arethe vehiclefor the enforcement of
referential integrity. The system automatically ensures thatthe foreign key columns of
childrows areeither null or match the primary key of an existing parent row.

Linked and unlinked relationships areimplemented as constraints. Thedefinition of a
constraintincludes:

m The name of the constraint

m The names of the two tablesitrelates

m The referenced andreferencing columns

m A specification of whether the constraintis linked or unlinked

m A specification of whether child entity occurrences areto be clustered based on this
relationship

m Additional tuningoptions

The statement below defines the EMP_EXPERTISE constraint.

CREATE CONSTRAINT EMPSCHM.EMP EXPERTISE <«--- Names the referential constraint

EMPSCHM. EXPERTISE (EMP_ID) REFERENCES - Names referenced and referencing
EMPSCHM.EMPLOYEE (EMP_ID) 1 tables and columns

LINKED CLUSTERED; <«----- Specifies type of referential constraint

Chapter 16: Implementing Your Design 267

Implementing the Design

Creating views

SQL-defined views can be used to:

m Implement security becausethey canrestrictaccess toa subsetof the rows and
columns withina table

m Providea shorthand means of referringto complex SELECT statements

Below aresome sampleviews that might be created for the Commonweather database:

CREATE VIBW EMPSCHM.SS FORMAT
(EMP_ID, EMP LAST NAME, EMP FIRST NAME, SS1, SS2, SS3)
AS SELECT EMP_ID, EMP LAST NAME, EMP FIRST NAME,
SUBSTR(SS NUMBER, 1, 3), SUBSTR(SS NUMBER, 4, 2),
SUBSTR(SS NUMBER, 6, 4)
FROM EMPSCHM. EMPLOYEE ;

CREATE VIEW EMPSCHM.EMP HOME INFO
AS SELECT EMP_ID, EMP LAST NAME, EMP FIRST NAME, STREET,
CITY, STATE, ZIP CODE, PHONE
FROM EMPSCHM. EMPLOYEE;

CREATE VIBN EMPSCHM.EMP_WORK INFO
AS SELECT EMP_ID, START DATE, TERMINATION DATE
FROM EMPSCHM. EMPLOYEE;

Table and view security

If CA IDMS/DB internal security is in effect, GRANT statements must be used to allow
others, besides the owner, to access the tables and views withina schema. Every
schema has an owner. The initial owner of a schema is the user who created it.
Ownership canbe transferred to another individual usingthe TRANSFER OWNERSHIP
statement.

For more information on these statements, see CA IDMS SQL Reference Guide.

268 Database Design Guide

Implementing the Design

Implementing Your Design with Non-SQL

You canchooseto implement your design using non-SQL statements.

Non-SQL terminology

The followingtablerelates the terms used duringthe physicaldesign process with those

used ina non-SQL implementation.

Logical/Physical Design Term

Non-SQL Term

Entity

Record type

Entity occurrence

Record occurrence

Data element

Field/element

CALC location mode CALC

Clustered location mode VIA

Relationship Set

Index Set

Unique Duplicates notallowed
Parent Owner

Child Member

Chapter 16: Implementing Your Design 269

Implementing the Design

Implementation Steps

1. Decide on naming conventions for:
m Records
m Elements
m Sets

2. Create the logical definition of your databaseusing non-SQL schema and
subschema statements.

3. Create the database.

Each of these stepsis described below.

Naming conventions

Databaserecords and elements should have short, meaningful names. Record names
are up to 16 characters inlength. Elements within records can have names of up to 32
characters. Hyphens are usually used between tokens withina name (for example,
SKILL-NAME).

Sets are typically named by concatenating the names of the two related records. This
convention may need to be modified, however, sinceset names can be no more than 16
characters. For example, the set between the EMPLOYEE record and the DEPARTMENT
record remains DEPT-EMPLOYEE.

Database definition

The followingexamples illustrate howthe logical components of your design are
translated into non-SQL schema statements. These statements are inputto the schema
compiler.

For complete DDL syntax,see CA IDMS Database Administration Guide.

ADD SCHEMA statement

A schema represents a logical group of records. Typicallyall records associated with a
singledatabasearedefined within one schema.

The statement below defines the EMPSCHM schema.

ADD
SCHEMA NAME IS EMPSCHM VERSION 1 «------------- Names the schema

SCHEMA DESCRIPTION IS 'COMMONWEATHER DATABASE'
ASSIGN RECORD IDS FROM 1001 .

ADD AREA statement

270 Database Design Guide

Implementing the Design

Areas must be explicitly defined using the following statement.

ADD

AREA NAME IS EMP-DEMO-REGION <€-------------- Names the area
SUBAREA CALC-RANGE <-------------- Subarea name

SPACE 50 FROM 1 <-------------- Subarea page range

ADD RECORD statement

The definition of a record includes:
m The name of the record

m The elements included within the record (information copied from or shared with
another record)

m Explicitor automatic specification ofa record ID
Record IDs are internally-used numbers assigned to each record ina schema.
m Location mode specification
m Root andfragment information for variablelength records
m Optionally,databaseprocedures to be called upon certain DML commands
m The name of the area in which this recordis to be stored
The statement below defines the record EMPLOYEE.

ADD
RECORD NAME IS JOB @ -------------mmmmmmmeomm- Names the record

SHARE STRUCTURE OF RECORD JOB VERSION 1 «---- Uses description of record that
has
already been defined through ID

RECORD ID IS AUTO e e Instructs the system to assign
the record id
LOCATION MODE IS CALC USING (JOB-ID)
DUPLICATES ARE NOT ALLOWED

MINIMUM ROOT LENGTH IS 24 CHARACTERS 1 Tells the system how to store
MINIMUM FRAGMENT LENGTH IS 296 CHARACTERS 1 fragments of this variable-lengt

h record

CALL IDMSDCOM BEFORE STORE 7 Tells the system to compress the record

CALL IDMSDCOM BEFORE MODIFY | during updates and decompress it for retriev
al

CALL IDMSDCOM AFTER GET 1 processing

WITHIN AREA ORG-DEMO-REGION «---------------- Specifies the area name

USING CALC-RANGE S LR and subarea

Chapter 16: Implementing Your Design 271

Implementing the Design

ADD SET statement

To implement a linked relationship, you need to define a set. The definition of a set
includes:

m The name of the set

m The names of the owner and member records

m The linkagecharacteristics (index or chain) and pointer options

m Membership rules

The set order

The statement below defines the EMP-COVERAGE set.
ADD
SET NAME IS BEMP-COVERAGE

ORDER IS FIRST <a-------------------- Tells the system to insert each new rec
ord
immediately after the owner record in t
he set
MODE IS (HAIN LINKED TO PRIOR «------ Tells the system that this is a chained
set,
not an indexed set and prior pointers a
re used

OWNER IS EMPLOYEE
NEXT DBKEY POSITION IS AUTO 4 Causes the schema compiler to assign poin
ter
PRIOR DBKEY POSITION IS AUTO / positions in the owner record automatical

ly

MEMBER IS HEALCOV

NEXT DBKEY POSITION IS AUTO 4 Causes the schema compiler to assign

PRIOR DBKEY POSITION IS AUTO | pointer positions in the member recor
d

LINKED TO OWNER | automatically

OWNER DBKEY POSITION IS AUTO -

MANDATORY AUTOMATIC <----------- Tells the system the membership option
for the set

Subschema definition
Each subschema description for a databaseidentifies the schema components thatare
availableto a particularapplication program. Before a program containinglogical record

facility or navigational DMLcan be compiled, you must define at least one subschema.

To define a subschema, you submitthe followingtypes of statements to the subschema
compiler:

272 Database Design Guide

Implementing the Design

SUBSCHEMA statements
AREA statements

RECORD statements

SET statements

LOGICAL RECORD statements

PATH-GROUP statements

A samplesubschema listing for the Commonweather databaseis showninZoned and
Packed Decimal Fields as IDMS Keys (see page 301).

For further information on definingsubschemas, see CA IDMS Database Administration
Guide. For further information on defininga logical record subschema, seethe CA IDMS
Logical Record Facility Guide.

Creating the database

A databaseis represented by a segment. To create a database, you:

1.

Define the segment inthe system dictionary using SEGMENT, FILE, and AREA
statements.

Includethe segment definitionina DMCL and punch and link editthe DMCL to a
load or core image library.

Allocatethe operating system files defined in the segment andinitializethem using
the FORMAT utility statement.

You arenow ready to load data into your database.

Chapter 16: Implementing Your Design 273

Appendix A: SQL Database Implementation
for the Commonweather Corporation

This section contains the followingtopics:

Logical Database Definition Listing for the Commonweather Database (see page 276)

Appendix A: SQL Database Implementation for the Commonweather Corporation 275

Logical Database Definition Listing for the Commonweather Database

Logical Database Definition Listing for the Commonweather
Database

Below is a listing for the SQL definition of the Commonweather Corporationdatabase
for the design shown.

JOB-TITLE-NDX DEPARTMENT OFFICE SKILL-NAME-NDX
ASC (JOB TITLE} U | |ss |cac | Je2]cac ASC (SKILL NAME) U
=5 DEPT ID [T OFFICE CODE [U T
[c 57 [caic ORG-DEMO-REGION ORG-DEMQ-REGION [7 [cAic
o8 o o OrSEEuPOnL [STeooE T
ORG-DEMO-REGION ASC (EMP LAST NAME A4 ~ ASC (EMP LAST NAME ORG-DEMQ-REGION
EMP FIRST NAME EMP FIRST NAME'
.'J:%B(:JEOI%PICEJ)?ITION) SKILL-EXPERTISE
FK (SKILL CODE)
/ DES (SKILL LEVEL)
EMPGSITION E%'&ﬂ‘g’%ﬁ;'T'ON L NAME.NDX
|39 JCLUSTERED] DES (START DATE) U \ ASC (EMP LAST NAME)
EMP EMPOSITION | EMP FIRST NAME)
P DEMOTREGION EMPLOYEE »| EXPERTISE
- = [Tios] CALC EMP-EXPERTISE [T1eJcrustered
EMP ID FK (EMP 1D) EMP-EXPERTISE u
PROJECT DES (SKILL CODE) U I
EMP-DEMO- REGION EMP-DEMO-REGION
| |78]cac EMP-PROJECT
PROJECT CODE | u FK (EMP D)

EMP-DEMG-REGION

MANAGES-REPORTS-TO

FK (SUPR EMP 1D}
PROJECT-WORKER EMP-WORKER I
FK (PROJECT CODE) FK (EMP 1D}
WORKER I EMP-COVERAGE INSURANGCE PLAN
[T 2ofcrustereD FK(EMP 1D) [[6[cac
PROJECT WORKER] I PLAN CODE [T
I OV-N INS-DEMO-REGION
c PLAIN CODE COVERAGE TYPE
, Enip D) U
COVERAGE-NHC ' '
- COVERAGE-DC
FK (PLAN GODE) COVERAGE FK {PLAN CODE
EMP ID) | Is0]cac EMP ID
EMP-ID |
INS-DEMO-REGION
NHC-NDX COVERAGE-HC DG-NDX
’ ASG (NON-HOSP CLAIM ID) U FK (PLAN CODE ASC (DENTAL CLAIM ID) U
EMP ID)
NON-HOSPITAL CLAIM DENTAL CLAIM
|]so4 |cLUSTERED HE-NDX [T84 FLUSTERED
| ASC (HOSPITAL COVERAGE-DC
?I\IOSVIIIEJZII\\/I%ERI\I];(;?ON ! CLAIM ID) U INS-DEMO-REGION !
- - HOSPITAL CLAIM
NHCLAIM-PROC USTERED DCLAIM-PROC
FK (NON-HOSP CLAIM D) [[s10F FK (DENTAL CLAIM D)
ASC (PROCEDURE NUMBER COVERAGE-HC | ASC (PROCEDURE NUMBER
NON-HOSP CLAIM ID) U NS-DEMO-REGION DENTAL CLAIM 1D) U
\ i
NON-HOSP PROCEDURE DENTAL PROCEDURE
| 185 JeLusteren | Tss JcLustered
NHCLAIM-PROC | DGLAIM-PROC |
INS-DEMO-REGION INS-DEMQ-REGION

276 Database Design Guide

Logical Database Definition Listing forthe Commonweather Database

Schema Statement

CREATE SCHEMA EMPSCHM;

SET SESSION CURRENT SCHEMA EMPSCHM;

Table Statements

CREATE TABLE COVERAGE

(PLAN_CODE CHAR(03) NOT NULL,
EMP_ID UNSIGNED NUMERIC(4,0) NOT NULL,
SELECTION DATE DATE NOT NULL WITH DEFAULT,
TERMINATION DATE DATE)
COVERAGE-TYPE CHAR(01) NOT NULL,

IN SQLDEMO.INS DEMO REGION;

CREATE TABLE DENTAL CLAIM

(CLAIM DATE DATE NOT NULL,
PATIENT FIRST NAME CHAR(10))
PATIENT LAST NAME CHAR(15))
PATIENT BIRTH DATE DATE)
PATIENT SEX CHAR(01))
RELATION TO EMPLOYEE CHAR(10))
EMP_ID UNSIGNED NUMERIC(4,0) NOT NULL,
PLAN CODE CHAR(03))
DENTIST FIRST NAME CHAR(10))
DENTIST LAST NAME CHAR(15))
DENTIST STREET CHAR(20))
DENTIST CITY CHAR(15))
DENTIST STATE CHAR(2))

DENTIST ZIP FIRST FIVE CHAR(05) ,

DENTIST ZIP LAST FOUR CHAR(04) ,

DENTIST LICENSE NUMBER UNSIGNED NUMERIC(6,0))
IN SQLDEMO.INS DEMO REGION;

CREATE TABLE DENTAL PROCEDURE

(EMP_ID UNSIGNED NUMERIC(4,0) NOT NULL,
PLAN CODE CHAR(03) NOT NULL,
SERVICE DATE DATE NOT NULL,
TOOTH_NUMBER UNSIGNED NUMERIC(2,0) ,
PROCEDURE_CODE UNSIGNED NUMERIC(4,0) NOT NULL,
FEE DECIMAL(9,2) ,
DESCRIPTION VARCHAR(60))

IN SQLDEMO.INS DEMO REGION;

CREATE TABLE DEPARTMENT

(DEPT_ID UNSIGNED NUMERIC(4,0) NOT NULL,
DEPT_HEAD_ID UNSIGNED NUMERIC(4,0) ,
DEPT_NAME CHAR (40) NOT NULL)

IN SQLDEMO.ORG_DBMO_REGION;

Appendix A: SQL Database Implementation for the Commonweather Corporation 277

Logical Database Definition Listing for the Commonweather Database

CREATE TABLE EMPLOYEE

(EMP_ID UNSIGNED NUMERIC(4,0) NOT NULL,
EMP_FIRST NAME CHAR(20) NOT NULL,
EMP_LAST NAME CHAR(20) NOT NULL,
DEPT ID UNSIGNED NUMERIC(4,0) NOT NULL,
OFFICE_CODE UNSIGNED NUMERIC(4,0) NOT NULL,
STREET CHAR (40) ,
CITY CHAR(20) NOT NULL,
STATE CHAR(02) NOT NULL,
ZIP FIRST_FIVE CHAR (05) NOT NULL,
ZIP LAST FOWR CHAR(04) NOT NULL,
PHONE CHAR(10) ,
STATUS CHAR(01) NOT NULL,
SS_NUMBER UNSIGNED NUMERIC(9,0) NOT NULL,
START_DATE DATE NOT NULL,
TERMINATION DATE DATE)
BIRTH DATE DATE ,

CHECK ((EMP_ID <= 8999) AND (STATUS IN ('O1', '02', '03', '04', '05"))))
IN SQLDEMO.EMP_DBMO REGION;

CREATE TABLE EMPOSITION

(EMP_ID UNSIGNED NUMERIC(4,0) NOT NULL,
JoB ID UNSIGNED NUMERIC(4,0) NOT NULL,
START DATE DATE NOT NULL,
FINISH DATE DATE ,
SALARY GRADE UNSIGNED NUMERIC(2,0))

IN SQLDEMO.EMP DEMO REGION;

CREATE TABLE HOSPITAL CLAIM

(CLAIM DATE DATE NOT NULL,
PATIENT_FIRST NAME CHAR(10) ,
PATIENT_LAST NAME CHAR(15) ,
PATIENT_BIRTH DATE DATE)
PATIENT_SEX CHAR(01))
RELATION TO EMPLOYEE CHAR(10) ,
EMP_ID UNSIGNED NUMERIC(4,0) NOT NULL,
PLAN_CODE CHAR(03))
HOSPITAL NAME CHAR(25) ,
HOSPITAL STREET CHAR(20))
HOSPITAL CITY CHAR(15))
HOSPITAL STATE CHAR(2) ,

HOSPITAL ZIP FIRST FIVE CHAR(05) ,
HOSPITAL ZIP LAST FOUR CHAR(04) ,

ADMIT DATE DATE ,
DISCHARGE DATE DATE ,
DIAGNOSIS CHAR(120) ,
WARD DAYS UNSIGNED NUMERIC(5,0) ,
WARD RATE DECIMAL(9,2))
WARD TOTAL DECIMAL(9,2) ,

278 Database Design Guide

Logical Database Definition Listing for the Commonweather Database

SEML DAYS UNSIGNED NUMERIC(5,0) ,
SEMI_RATE DECIMAL(9,2) ,
SEMI TOTAL DECIMAL(9,2) ,
DELIVERY COST DECIMAL(9,2) ,
ANESTHESIA (COST DECIMAL(9,2) ,
LAB COST DECIMAL(9,2))

IN SQLDEMO.INS DEMO REGION;
CREATE TABLE INSURANCE PLAN

(PLAN CODE CHAR(03) NOT NULL,
COMP_NAME CHAR (40) NOT NULL,
STREET CHAR(20))
cITY CHAR(15) NOT NULL,
STATE CHAR(02) NOT NULL,
ZIP FIRST FIVE CHAR(05))
ZIP LAST FOUR CHAR (04))
PHONE CHAR(10) NOT NULL,
GROUP_NUMBER UNSIGNED NUMERIC(6,0) NOT NULL,
DEDUCT UNSIGNED DECIMAL(9,2))
MAX_LIFE BENEFIT UNSIGNED DECIMAL(9,2))
FAMILY COST UNSIGNED DECIMAL(9,2) ,
DEP_COST UNSIGNED DECIMAL(9,2))

IN SQLDEMD.INS DEMO REGION;
CREATE TABLE JOB

(JOB_ID UNSIGNED NUMERIC(4,0) NOT NULL,
JOB TITLE CHAR (20) NOT NULL,
MIN RATE UNSIGNED DECIMAL(10,2))
MAX RATE UNSIGNED DECIMAL(10,2))
SALARY IND CHAR(01))
NUM OF POSITIONS UNSIGNED DECIMAL(3,0))
NUM OPEN UNSIGNED DECIMAL(3,0))
EFF DATE DATE ,
JOB DESC_LINE 1 VARCHAR(60))
JOB DESC_LINE 2 VARCHAR(60) ,
REQUIREMENTS VARCHAR(120) ,
HOURLY RATE UNSIGNED DECIMAL(7,2) ,
SALARY AMOUNT UNSIGNED DECIMAL(10,2) ,
BONUS_PERCENT UNSIGNED DECIMAL(7,3))
COMM_PERCENT UNSIGNED DECIMAL(7,3))
OVERTIME RATE UNSIGNED DECIMAL(5,2))

IN SQLDEMD.ORG DEMD REGION;

CREATE TABLE EXPERTISE

(EMP_ID UNSIGNED NUMERIC(4,0) NOT NULL,
SKILL CODE UNSIGNED NUMERIC(4,0) NOT NULL,
SKILL LEVEL CHAR(02) ,
EXP DATE DATE ,

CHECK (SKILL LEVEL IN ('01', '02', '03', '04', '05')))
IN PROJSEG.EMP DEMO REGION;

Appendix A: SQL Database Implementation for the Commonweather Corporation 279

Logical Database Definition Listing for the Commonweather Database

CREATE TABLE NON HOSP_CLAIM

(CLAIM DATE
PATIENT FIRST NAME
PATIENT LAST NAME
PATIENT BIRTH DATE
PATIENT SEX
RELATION TO EMPLOYEE
EMP_ID
PLAN CODE
PHYS FIRST NAME
PHYS LAST NAME
PHYS STREET
PHYS CITE
PHYS STATE
PHYS ZIP FIRST FIVE
PHYS_ZIP LAST FOUR
PHYSICIAN ID
DIAGNOSIS

CREATE TABLE NON HOSP_PROCEDURE

(EMP_ID
PLAN_CODE
SERVICE DATE
PROCEDURE_CODE
FEE
DESCRIPTION

CREATE TABLE OFFICE

(OFFICE_CODE
STREET
CITY
STATE
ZIP FIRST FIVE
ZIP LAST FOWR
SPEED DIAL
AREA_CODE
PHONE_1
PHONE_2
PHONE 3

IN SQLDEMO.ORG DEMO REGION;
CREATE TABLE PROJECT

(PROJECT CODE
DESCRIPTION
EST BEGIN DATE
ACT BEGIN DATE

DATE
CHAR(10)
CHAR(15)
DATE
CHAR(01)
CHAR(10)
UNSIGNED NUMERIC(4,0)
CHAR(03)
CHAR(10)
CHAR(15)
CHAR (20)
CHAR(15)
CHAR(2)
CHAR(05)
CHAR(04)
UNSIGNED NUMERIC(6,0)
VARCHAR(120)

IN SQLDEMO.INS DEMO REGION;

UNSIGNED NUMERIC(4,0)
CHAR(03)

DATE

UNSIGNED NUMERIC(4,0)
DECIMAL(9,2)
VARCHAR(60)

IN SQLDEMO.INS DEMO REGION;

UNSIGNED NUMERIC(4,0)
CHAR (20)
CHAR(15)
CHAR(2)
CHAR(05)
CHAR(04)
CHAR(03)
CHAR(03)
UNSIGNED NUMERIC(7,0)
UNSIGNED NUMERIC(7,0)
UNSIGNED NUMERIC(7,0)

UNSIGNED NUMERIC(4,0)
CHAR(40)

DATE

DATE

NOT NULL,

NOT NULL,

NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,

’

)

NOT NULL,

NOT NULL,

280 Database Design Guide

Logical Database Definition Listing forthe Commonweather Database

EST END_DAT
ACT END_DAT
LDR EMP_ID

E
E

DATE ’
DATE ’
UNSIGNED NUMERIC(4,0))

IN SQLDEMO.EMP DBYO REGION;

CREATE TABLE SKILL
(SKILL CODE

SKILL NAME

SKILL DESC

UNSIGNED NUMERIC(4,0) NOT NULL,
CHAR(20) NOT NULL,
VARCHAR(60))

IN PROJSEG.ORG_DEMO_REGION;

CREATE TABLE WORKER
(PROJECT_COD
EMP_ID
BEGIN_DATE
END_DATE

E

UNSIGNED NUMERIC(4,0) NOT NULL,
UNSIGNED NUMERIC(4,0) NOT NULL,
DATE ,
DATE)

IN SQLDEMO.EMP_DBMO REGION;

CALC Key Statements

CREATE UNIQUE CALC

CREATE UNIQUE CALC

CREATE UNIQUE CALC

CREATE UNIQUE CALC

CREATE UNIQUE CALC

CREATE UNIQUE CALC

CREATE UNIQUE CALC

KEY ON

KEY ON

KEY ON

KEY ON

KEY ON

KEY ON

KEY ON

DEPARTMENT (DEPT _ID);
EMPLOYEE (EMP_ID);
INSURANCE PLAN (PLAN CODE);
JOB (JOB_ID);

SKILL (SKILL CODE);
PROJECT (PROJECT CODE);

OFFICE (OFFICE CODE);

Appendix A: SQL Database Implementation for the Commonweather Corporation 281

Logical Database Definition Listing for the Commonweather Database

Index Statements

CREATE UNIQUE INDEX SKILL NAME NDX ON SKILL(SKILL NAME);
CREATE UNIQUE INDEX JOB TITLE NDX ON JOB(JOB TITLE);

CREATE UNIQUE INDEX COV_NDX ON COVERAGE (PLAN CODE, COVERAGE TYPE, EMP ID);

CREATE INDEX LNAME NDX ON EMPLOYEE(EMP LAST NAME, EMP FIRST NAME)
IN SQLDEMO.INDXAREA;

282 Database Design Guide

Logical Database Definition Listing for the Commonweather Database

Constraint Statements

CREATE CONSTRAINT BEMP_COVERAGE
COVERAGE (EMP_ID) REFERENCES
EMPLOYEE (EMP_ID)

UNLINKED CLUSTERBED;

CREATE CONSTRAINT DEPT EMPLOYEE
EMPLOYEE (DEPT ID) REFERENCES
DEPARTMENT (DEPT 1ID)
LINKED INDEX
ORDER BY (EMP_LNAME, EMP_RNAME);

CREATE CONSTRAINT MANAGES REPORTS TO
EMPLOYEE (SUPR EMP ID) REFERENCES
EMPLOYEE (EMP_ID)

LINKED INDEX;

CREATE CONSTRAINT SKILL EXPERTISE
EXPERTISE (SKILL CODE) REFERENCES
SKILL (SKILL_ CODE)
LINKED INDEX
ORDER BY (SKILL LEVEL DESC);

CREATE CONSTRAINT EMP_EMPOSITION
EMPOSITION (EMP_ID) REFERENCES
EMPLOYEE (EMP_ID)
LINKED CLUSTERED
ORDER BY (START DATE DESC) UNIQUE;

CREATE CONSTRAINT JOB EMPOSITION
EMPOSITION (JOB ID) REFERENCES
JoB (JOB_ID)
LINKED INDEX;

CREATE CONSTRAINT OFFICE_EMPLOYEE
EMPLOYEE (OFFICE_CODE) REFERENCES
OFFICE (OFFICE_CODE)
LINKED INDEX
ORDER BY (EMP_LNAME, EMP_FNAME);

CREATE CONSTRAINT EMP_EXPERTISE
EXPERTISE (EMP_ID) REFERENCES
EMPLOYEE (EMP_ID)
LINKED CLUSTERED
ORDER BY (SKILL CODE DESC) UNIQUE;

Appendix A: SQL Database Implementation forthe Commonweather Corporation 283

Logical Database Definition Listing for the Commonweather Database

CREATE

CREATE

CREATE

CREATE

CREATE

CREATE

CREATE

CREATE

CONSTRAINT BMP_PROJECT
EMPLOYEE (LDR EMP_ID)
PROJECT (EMP_ID)

LINKED INDEX;

REFERENCES

CONSTRAINT PROJECT WORKER
WORKER (PROJECT CODE) REFERENCES
PROJECT (PROJECT_CODE)

LINKED CLUSTERED;

CONSTRAINT BMP_WORKER
WORKER ~ (EMP_ID) REFERENCES
EMPLOYEE (BMP_ID)

LINKED INDEX;

CONSTRAINT COVERAGE_NHC

NON_HOSP CLAIM (EMP ID, PLAN CODE) REFERENCES
COVERAGE (EMP_ID, PLAN CODE)
LINKED CLUSTERED;
CONSTRAINT COVERAGE_HC
HOSPITAL CLAIM (EMP ID, PLAN CODE) REFERENCES
COVERAGE (EMP_ID, PLAN CODE)
LINKED CLUSTERED;
CONSTRAINT COVERAGE_DC
DENTAL CLAIM (EMP_ID, PLAN CODE) REFERENCES
COVERAGE (EMP_ID, PLAN CODE)
LINKED CLUSTERED;
CONSTRAINT DCLAIM PROC
DENTAL_PROCEDURE (DENTAL CLAIM ID) REFERENCES

DENTAL_CLAIM (DENTAL_CLAIM ID)
LINKED CLUSTERED;

CONSTRAINT NHCLAIM PROC
NON_HOSP_PROCEDURE ~ (NON_HOSP CLAIM ID)
NON_HOSP_CLAIM (NON_HOSP_CLAIM ID)

LINKED CLUSTERED;

REFERENCES

284 Database Design Guide

Logical Database Definition Listing forthe Commonweather Database

Remove Default Indexes

ALTER TABLE COVERAGE
DROP DEFAULT INDEX;

ALTER TABLE DEPARTMENT
DROP DEFAULT INDEX;

ALTER TABLE EMPLOYEE
DROP DEFAULT INDEX;

ALTER TABLE INSURANCE PLAN
DROP DEFAULT INDEX;

ALTER TABLE EMPOSITION
DROP DEFAULT INDEX;

ALTER TABLE EXPERTISE
DROP DEFAULT INDEX;

ALTER TABLE SALARY_GRADE
DROP DEFAULT INDEX;

ALTER TABLE PROJECT
DROP DEFAULT INDEX;

ALTER TABLE WORKER
DROP DEFAULT INDEX;

ALTER TABLE PHONE
DROP DEFAULT INDEX;

Appendix A: SQL Database Implementation for the Commonweather Corporation 285

Logical Database Definition Listing for the Commonweather Database

ALTER TABLE DENTAL PROCEDURE
DROP DEFAULT INDEX;

ALTER TABLE NON HOSP_PROCEDURE
DROP DEFAULT INDEX;
ALTER TABLE OFFICE
DROP DEFAULT INDEX;

ALTER TABLE SKILL
DROP DEFAULT INDEX;

ALTER TABLE DENTAL_CLAIM
DROP DEFAULT INDEX;

ALTER TABLE HOSPITAL CLAIM
DROP DEFAULT INDEX;

ALTER TABLE NON HOSP_CLAIM
DROP DEFAULT INDEX;

View Definitions

SQL-defined views allowan application programto see justa portion of the database. A
view can be used to introduce security.

Below aresome sampleviews that might be created for the Commonweather database:

CREATE VIEW EMPSCHM.SS_FORMAT

(EMP_ID, EMP LAST NAME, EMP_FIRST NAME, SS1, SS2, SS3)

AS SELECT EMP_ID, EMP LAST NAME, EMP_FIRST NAME,
SUBSTR(SS_NUMBER, 1, 3), SUBSTR(SS NUMBER, 4, 2),
SUBSTR(SS_NUMBER. 6, 4)

FROM EMPSCHM. EMPLOYEE;

CREATE VIBW EMPSCHM.EMP HOME INFO
AS SELECT EMP_ID, EMP LAST NAME, EMP FIRST NAME, STREET,
CITY, STATE, ZIP CODE, PHONE
FROM EMPSCHM.EMPLOYEE;

CREATE VIBW EMPSCHM.EMP WORK INFO
AS SELECT EMP_ID, START DATE, TERMINATION DATE
FROM EMPSCHM. EMPLOYEE;

286 Database Design Guide

Logical Database Definition Listing for the Commonweather Database

Subschema Definition

Sample subschema listing for the Commonweather database
A samplesubschema listing for the Commonweather databaseis shown below.

For further information on definingsubschemas, see CA IDMS Database Administration
Guide.

ADD

SUBSCHEMA NAME IS A200SS03 OF SCHEMA NAME IS EMPSCHM VERSION IS 1
PUBLIC ACCESS IS ALLOWED FOR ALL
USAGE IS MIXED

ADD
AREA NAME IS EMP-DEMO-REGION

ADD

AREA NAME IS ORG-DEMO-REGION
PROTECTED UPDATE IS NOT ALLOWED
EXCLUSIVE UPDATE IS NOT ALLOWED

ADD
RECORD NAME IS DEPARTMENT

ADD
RECORD NAME IS EMPLOYEE

ADD
RECORD NAME IS OFFICE

ADD
SET NAME IS DEPT-EMPLOYEE

ADD
SET NAME IS OFFICE-EMPLOYEE

Appendix A: SQL Database Implementation for the Commonweather Corporation 287

Appendix B: Non-SQL Database
Implementation for the Commonweather
Corporation

This section contains the followingtopics:

Logical Database Definition Listing for the Commonweather Database (see page 290)

Appendix B: Non-SQL Database Implementation for the Commonweather Corporation 289

Logical Database Definition Listing for the Commonweather Database

Logical Database Definition Listing for the Commonweather
Database

Below is the complete non-SQL defined schema listing for the Commonweather
Corporation databasedesign shown.

Note: Once the system has assigned an ID number to each record, you shouldindicate
this number on the data structure diagram.

JOB-TITLE-NDX DEPARTMENT OFricE SKILL-NAME-NDX
ASC (JOB TITLE) U | |ss |cac | |s2]cac ASC (SKILL NAME) U
DEFT ID [T OFFICE CODE | U
108 ORG-DEMO-REGION ORG-DEMO-REGION SKILL
[c Jsor] cac - - - - [76 Jcac
JOB ID U I%EF(’)T-EMPLOYEE IC()]FE)I&)E*EMPLOYEE SKILL GODE I V]
10 OA
ORG-DEMQ-REGION ASC (EMP LAST NAME A4 ~ ASC (EMP LAST NAME ORG-DEMG-REGION
EMP FIRST NAME) DL EMP FIRST NAME) DL
JOB-EMPOSITION SKILL-EXPERTISE
NPO OM NEXT I MA
i EMPEMPOSITION DES (SKILL LEVEL)
EMPOSITION NS LNAME-NDX
| 31 JcLUSTERED DES (START DATE) U ASC (EMP LAST NAME)
EMP-EMPGSITION |) | EMP FIRST NAME)
VP DEVOREGION EMPLOYEE EXPERTISE
EMP-PROJEGT [IneJcac [Ts Jcrusieren
NPQ QA NEXT EMP ID | v EMP-EXPERTISE | U
FROJECT EMP-DEMO-REGION EMP-EXPERTISE EMP-DEMO-REGION
[c | rs [ono DES (hSM}éILL CODE) U
PROJECT CODE REPORTS TO MANAGES
[10 OM NPO NEXT
EMP-DEMO-REGION ASC (SUPR ASC (WRKR
PROJECT-WORKER EMP 1D} DF EMP 1D) U
FNPO OM NEXT Lp 1o eore
NPO MA FIRST

WORKER
| |12 fcLusTeEREQ

STRUCTURE

| |6 |cLustErREd

PROJECT WORKER |
EMP-DEMQO-REGION

INSURANCE PLAN

[c Jras] cac

i

NON-HOSPITAL CLAIM

Iv 100z cLUSTERED

COVERAGE-GLAIMS |

INS-DEMQ-REGION

MANAGES | PLAN CODE [y
EMP-DEMO-REGION INS-DEMQ-REGION
i EMP-COVERAGE
10 MA
COVERAGE ASC (PLAN CODE COVERAGE TYPE) U
| [4sforusrered
EMP-COVERAGE |
INS-DEMO-REGION
COVERAGE-CLAIMS
f]\ NP MA LAST
CLUSTERED

HOSPITAL CLAIM
[v] 292 FLusTERED

COVERAGE CLAIMS|

INS-DEMO-REGION

DENTAL CLAIM

v] 930]

COVERAGE-CLAIMS I

INS-DEMO-REGIGN

290 Database Design Guide

Logical Database Definition Listing forthe Commonweather Database

Schema Statement

ADD

SCHEMA NAME IS EMPSCHM VERSION IS 1
SCHEMA DESCRIPTION IS 'EMPLOYEE DEMO DATABASE'
ASSIGN RECORD IDS FROM 1001
PUBLIC ACCESS IS ALLOWED FOR ALL

Area Statements

ADD
AREA NAME IS EMP-DEMO-REGION

ADD
AREA NAME IS ORG-DEMO-REGION

ADD
AREA NAME IS INS-DEMO-REGION

Appendix B: Non-SQL Database Implementation for the Commonweather Corporation 291

Logical Database Definition Listing for the Commonweather Database

Record Statements

ADD

RECORD NAME IS COVERAGE
SHARE STRUCTWRE OF RECORD COVERAGE VERSION 1
LOCATION MODE IS VIA EMP-COVERAGE SET
WITHIN AREA INS-DEMO-REGION.

ADD

RECORD NAME IS DENTAL-CLAIM
SHARE STRUCTURE OF RECORD DENTAL-CLAIM VERSION 1
LOCATION MODE IS VIA COVERAGE-CLAIMS SET
MINIMUM ROOT LENGTH IS 132 CHARACTERS
MINIMUM FRAGMENT LENGTH IS 930 (HARACTERS
WITHIN AREA INS-DEMO-REGION

ADD
RECORD NAME IS DEPARTMENT
SHARE STRUCTWRE OF RECORD DEPARTMENT VERSION 1
LOCATION MODE IS CALC USING (DEPT-ID) DUPLICATES ARE
NOT ALLOWED
WITHIN AREA ORG-DEMO-REGION

ADD

RECORD NAME IS EMPLOYEE
SHARE STRUCTURE OF RECORD EMPLOYEE VERSION 1
LOCATION MODE IS CALC USING (EMP-ID) DUPLICATES ARE NOT ALLOWED
WITHIN AREA BMP-DEMO-REGION

ADD

RECORD NAME IS EMPOSITION
SHARE STRUCTURE OF RECORD EMPOSITION VERSION 1
LOCATION MODE IS VIA EMP-EMPOSITION SET
WITHIN AREA BMP-DEMO-REGION

ADD

RECORD NAME IS EXPERTISE
SHARE STRUCTURE OF RECORD EXPERTISE VERSION 1
LOCATION MODE IS VIA EMP-EXPERTISE SET
WITHIN AREA BMP-DEMO-REGION

292 Database Design Guide

Logical Database Definition Listing for the Commonweather Database

ADD

RECORD NAME IS HOSPITAL-CLAIM
SHARE STRUCTURE OF RECORD HOSPITAL-CLAIM VERSION 1
LOCATION MODE IS VIA COVERAGE-CLAIMS SET
WITHIN AREA INS-DEMO-REGION

ADD
RECORD NAME IS INSURANCE-PLAN
SHARE STRUCTURE OF RECORD INSURANCE-PLAN VERSION 1
LOCATION MODE IS CALC USING (PLAN-CODE) DUPLICATES ARE
NOT ALLOWED
CALL IDMSCOMP BEFORE STORE
CALL IDMSCOMP BEFORE MODIFY
CALL IDMSDCOM AFTER GET
WITHIN AREA INS-DBVMO-REGION

ADD
RECORD NAME IS JOB
SHARE STRUCTURE OF RECORD JOB VERSION 1
LOCATION MODE IS CALC USING (JOB-ID) DUPLICATES ARE NOT ALLOWED
MINIMUM ROOT LENGTH IS 24 CHARACTERS
MINIMUM FRAGMENT LENGTH IS 296 CHARACTERS
CALL IDMSCOMP BEFORE STORE
CALL IDMSCOMP BEFORE MODIFY
CALL IDMSDCOM AFTER GET
WITHIN AREA ORG-DEMO-REGION

ADD
RECORD NAME IS NON-HOSP-CLAIM
SHARE STRUCTURE OF RECORD NON-HOSP-CLAIM VERSION 1
LOCATION MODE IS VIA COVERAGE-CLAIMS SET
MINIMUM ROOT LENGTH IS 248 (HARACTERS
MINIMUM FRAGMENT LENGTH IS 1008 CHARACTERS
WITHIN AREA INS-DBVMO-REGION

ADD
RECORD NAME IS OFFICE
SHARE STRUCTURE OF RECORD OFFICE VERSION 1
LOCATION MODE IS CALC USING (OFFICE-CODE) DUPLICATES ARE

Appendix B: Non-SQL Database Implementation for the Commonweather Corporation 293

Logical Database Definition Listing forthe Commonweather Database

NOT ALLOWED
WITHIN AREA ORG-DEMO-REGION

ADD
RECORD NAME IS SKILL
SHARE STRUCTURE OF RECORD SKILL VERSION 1
LOCATION MODE IS CALC USING (SKILL-CODE) DUPLICATES ARE
NOT ALLOWED
WITHIN AREA ORG-DBMO-REGION

ADD

RECORD NAME IS STRUCTWRE
SHARE STRUCTURE OF RECORD STRUCTURE VERSION 1
LOCATION MODE IS VIA MANAGES SET
WITHIN AREA EMP-DBVMO-REGION

ADD
RECORD NAME IS PROJECT
SHARE STRUCTURE OF RECORD PROJECT VERSION 1
LOCATION MODE IS CALC USING (PROJECT-CODE) DUPLICATES ARE
NOT ALLOWED
WITHIN AREA EMP-DEMO-REGION

ADD

RECORD NAME IS WORKER
SHARE STRUCTURE OF RECORD WORKER VERSION 1
LOCATION MODE IS VIA PROJECT-WORKER SET
WITHIN AREA EMP-DEMO-REGION

294 Database Design Guide

Logical Database Definition Listing for the Commonweather Database

Set Statements

ADD
SET NAME IS COVERAGE-CLAIMS
ORDER IS LAST
MODE IS (HAIN LINKED TO PRIOR
OWNER IS COVERAGE
MEMBER IS HOSPITAL-CLAIM
MANDATORY AUTOMATIC
MEMBER IS NON-HOSP-CLAIM
PRIOR DBKEY POSITION IS AUTO
MANDATORY AUTOMATIC
MEMBER IS DENTAL-CLAIM
NEXT DBKEY POSITION IS AUTO
PRIOR DBKEY POSITION IS AUTO
MANDATORY AUTOMATIC

ADD
SET NAME IS DEPT-EMPLOYEE
ORDER IS SORTED
MODE IS INDEX BLOGK CONTAINS 30 KEYS
OWNER IS DEPARTMENT
NEXT DBKEY POSITION IS AUTO
PRIOR DBKEY POSITION IS AUTO
MEMBER IS EMPLOYEE
INDEX DBKEY POSITION IS AUTO
PRIOR DBKEY POSITION IS AUTO
LINKED TO OWNER
OWNER DBKEY POSITION IS AUTO
OPTIONAL AUTOMATIC
ASCENDING KEY IS (EMP-LAST-NAME EMP-FIRST-NAME)
COMPRESSED
DUPLICATES ARE LAST

ADD
SET NAME IS BMP-COVERAGE
ORDER IS SORTED
MODE IS INDEX BLOCK CONTAINS 30 KEYS
OWNER IS EMPLOYEE
NEXT DBKEY POSITION IS AUTO
PRIOR DBKEY POSITION IS AUTO
MEMBER IS COVERAGE
INDEX DBKEY POSITION IS AUTO
LINKED TO OWNER
OWNER DBKEY POSITION IS AUTO
MANDATORY AUTOMATIC
ASCENDING KEY IS (PLAN-CODE COVERAGE-TYPE)
DUPLICATES NOT ALLOWED

Appendix B: Non-SQL Database Implementation for the Commonweather Corporation 295

Logical Database Definition Listing for the Commonweather Database

ADD
SET NAME IS BMP-EMPOSITION
ORDER IS SORTED
MODE IS (HAIN LINKED TO PRIOR
OWNER IS EMPLOYEE
NEXT DBKEY POSITION IS AUTO
PRIOR DBKEY POSITION IS AUTO
MEMBER IS EMPOSITION
NEXT DBKEY POSITION IS AUTO
PRIOR DBKEY POSITION IS AUTO
LINKED TO OWNER
OWNER DBKEY POSITION IS AUTO
MANDATORY AUTOMATIC

DESCENDING KEY IS (START-DATE)
DUPLICATES NOT ALLOWED

ADD
SET NAME IS BEMP-EXPERTISE
ORDER IS SORTED
MODE IS (HAIN LINKED TO PRIOR
OWNER IS EMPLOYEE
NEXT DBKEY POSITION IS AUTO
PRIOR DBKEY POSITION IS AUTO
MEMBER IS EXPERTISE
NEXT DBKEY POSITION IS AUTO
PRIOR DBKEY POSITION IS AUTO
LINKED TO OWNER
OWNER DBKEY POSITION IS AUTO
MANDATORY AUTOMATIC
DESCENDING KEY IS (SKILL-CODE)
DUPLICATES ARE NOT ALLOWED

ADD
SET NAME IS LNAME-NDX
ORDER IS SORTED
MODE IS INDEX BLOCK CONTAINS 40 KEYS
OWNER IS SYSTEM
MEMBER IS EMPLOYEE
INDEX DBKEY POSITION IS AUTO
OPTIONAL AUTOMATIC
ASCENDING KEY IS (EMP-LAST-NAME EMP-FIRST-NAME)
COMPRESSED
DUPLICATES ARE LAST

296 Database Design Guide

Logical Database Definition Listing for the Commonweather Database

ADD
SET NAME IS JOB-EMPOSITION
ORDER IS NEXT
MODE IS (HAIN LINKED TO PRIOR
OWNER IS JOB
NEXT DBKEY POSITION IS AUTO
PRIOR DBKEY POSITION IS AUTO
MEMBER IS EMPOSITION
NEXT DBKEY POSITION IS AUTO
PRIOR DBKEY POSITION IS AUTO
LINKED TO OWNER
OWNER DBKEY POSITION IS AUTO
OPTIONAL MANUAL

ADD
SET NAME IS JOB-TITLE-NDX
ORDER IS SORTED
MODE IS INDEX BLOGK CONTAINS 30 KEYS
OWNER IS SYSTEM
MEMBER IS JOB
INDEX DBKEY POSITION IS AUTO
OPTIONAL AUTOMATIC
ASCENDING KEY IS (JOB-TITLE) UNCOMPRESSED
DUPLICATES ARE NOT ALLOWED

ADD
SET NAME IS MANAGES
ORDER IS SORTED
MODE IS (HAIN LINKED TO PRIOR
OWNER IS EMPLOYEE
NEXT DBKEY POSITION IS AUTO
PRIOR DBKEY POSITION IS AUTO
MEMBER IS STRUCTURE
NEXT DBKEY POSITION IS AUTO
PRIOR DBKEY POSITION IS AUTO
LINKED TO OWNER
OWNER DBKEY POSITION IS AUTO
MANDATORY AUTOMATIC
ASCENDING KEY IS (WKRK-EMP-ID) UNCOMPRESSED
DUPLICATES ARE NOT ALLOWED

ADD
SET NAME IS OFFICE-EMPLOYEE
ORDER IS SORTED
MODE IS INDEX BLOCK CONTAINS 30 KEYS
OWNER IS OFFICE
NEXT DBKEY POSITION IS AUTO
PRIOR DBKEY POSITION IS AUTO

Appendix B: Non-SQL Database Implementation for the Commonweather Corporation 297

Logical Database Definition Listing for the Commonweather Database

MEMBER IS EMPLOYEE
INDEX DBKEY POSITION IS AUTO
LINKED TO OWNER
OWNER DBKEY POSITION IS AUTO
OPTIONAL AUTOMATIC
ASCENDING KEY IS (EMP-LAST-NAME EMP-FIRST-NAME)
COMPRESSED
DUPLICATES ARE LAST

ADD
SET NAME IS REPORTS-TO
ORDER IS SORTED
MODE IS INDEX BLOGK CONTAINS 30 KEYS
OWNER IS EMPLOYEE
NEXT DBKEY POSITION IS AUTO
PRIOR DBKEY POSITION IS AUTO
MEMBER IS STRUCTURE
INDEX DBKEY POSITION IS AUTO
PRIOR DBKEY POSITION IS AUTO
LINKED TO OWNER
OWNER DBKEY POSITION IS AUTO
OPTIONAL MANUAL
ASCENDING KEY IS (SUPR-EMP-ID) UNCOMPRESSED
DUPLICATES ARE FIRST

ADD
SET NAME IS BMP-PROJECT
ORDER IS NEXT
MODE IS (HAIN LINKED TO PRIOR
OWNER IS EMPLOYEE
NEXT DBKEY POSITION IS AUTO
PRIOR DBKEY POSITION IS AUTO
MEMBER IS PROJECT
INDEX DBKEY POSITION IS AUTO
LINKED TO OWNER
OWNER DBKEY POSITION IS AUTO
OPTIONAL AUTOMATIC

ADD
SET NAME IS PROJECT-WORKER
ORDER IS NEXT
MODE IS (HAIN LINKED TO PRIOR
OWNER IS PROJECT
NEXT DBKEY POSITION IS AUTO
PRIOR DBKEY POSITION IS AUTO
MEMBER IS WORKER
INDEX DBKEY POSITION IS AUTO
LINKED TO OWNER
OWNER DBKEY POSITION IS AUTO

298 Database Design Guide

Logical Database Definition Listing forthe Commonweather Database

OPTIONAL MANUAL

ADD
SET NAME IS BYP-WORKER
ORDER IS FIRST
MODE IS (HAIN LINKED TO PRIOR
OWNER IS EMPLOYEE
NEXT DBKEY POSITION IS AUTO
PRIOR DBKEY POSITION IS AUTO
MEMBER IS WORKER
INDEX DBKEY POSITION IS AUTO
LINKED TO OWNER
OWNER DBKEY POSITION IS AUTO
MANDATORY AUTOMATIC

ADD
SET NAME IS SKILL-EXPERTISE
ORDER IS SORTED
MODE IS INDEX BLOGK CONTAINS 30 KEYS
OWNER IS SKILL
NEXT DBKEY POSITION IS AUTO
PRIOR DBKEY POSITION IS AUTO
MEMBER IS EXPERTISE
INDEX DBKEY POSITION IS AUTO
LINKED TO OWNER
OWNER DBKEY POSITION IS AUTO
MANDATORY AUTOMATIC
DESCENDING KEY IS (SKILL-LEVEL) UNCOMPRESSED
DUPLICATES ARE FIRST

Appendix B: Non-SQL Database Implementation for the Commonweather Corporation 299

Appendix C: Zoned and Packed Decimal
Fields as IDMS Keys

This section contains the followingtopics:

Overview (see page 301)
Numeric Formats (see page 302)

Overview

Inmany scenarios, itis necessary to construct IDMS keys that contain numeric fields
with a format of zoned or packed decimal.To ensure the proper logical results intended
by the databasedesigner, you should be aware of the manner in which IDMS handles
different variations of these fields and how application coding mayinfluencethe
resulting contents of the database.

Appendix C: Zoned and Packed Decimal Fields as IDMS Keys 301

Numeric Formats

Numeric Formats

To understand the various ramifications of using zoned or packed decimal fields as IDMS
key fields,itis necessaryto have an understanding of the internal structure of the
various formats.

Zoned decimal fields useone byte of storage to represent eachsingledigitwithina
value. The high-order nibble of the lastbyte is used to convey the sign of the number
when the fieldis defined as 'signed'. When a valueis moved intoan unsigned field, the
signnibblealways containsa hexadecimal 'F'.Afield that is signed uses a 'C' for a
positivevalueanda 'D' for a negative number. It should be noted thatasigned field also
interprets an'F' as a positivesignanda 'B' to represent a negative number. The
high-order nibbles of all other bytes will containa hex 'F' and are ignored for
determining the sign of the number. The values of +999 and -999 will have the following
internal structures when zoned decimal formatis used.

Signed: PIC S9(4) +999 = x'FOF9F9C9’
-999 = x'FOF9FOD9'

Unsigned: PIC 9(4) +999 = x'FOF9FI9F9'
-999 = x'FOF9F9F9'

Packed decimal formatuses a singlenibblefor each digitof the number and maintains
the signinthe low-order nibble of the field's last byte. Unsigned fields always usean'F'
for the sign whilesigned fields usea 'C' for positivenumbers and a 'D' for negative
numbers. Signed fields interpretan 'F' as a positivesignanda 'B' as a negative sign.The
followinginternal structures will resultfor values of +999 and -999 when packed
decimal formatis used.

Signed: S9(5) CoMP-3 4999 = x'00999C'

-999 = x'0099D'
Unsigned: 9(5) cavp-3 +999 = x'0Q0O999%F'

-999 = x'0099%9F'

Itis importantto realizethat the various sign nibblevalues areassigned inalanguage
suchas COBOLwhen a valueis moved directlyintoa named field. Fields that are part of
group moves will nothave any conversion performed relativeto the valuein their sign
nibble.

02 GROUP-A.

04 FIELD-A PIC S9(5) COMP-3.
02 GROUP-B.

04 FIELD-B PIC 9(5) COMP-3.

A valueof -999 will be moved into FIELD-A and FIELD-B with the followinginstructions
resultinginthe hex valueto the rightof the instruction.

302 Database Design Guide

Numeric Formats

MOVE -999 TO FIELD-A. FIELD-A = x'00999D'
MOVE -999 TO FIELD-B. FIELD-B = x'00999F'

Although functionally equivalentthe followinginstructions will resultin a different value
to be moved into FIELD-B.

MOVE -999 TO FIELD-A FIELD-A = x'00999D'
MOVE GROUP-A to GROUP-B. FIELD-B = x'00999D'

Although the above example used packed decimal numbers, the same scenariois true
for zone decimal fields. This programming difference may have animpacton your IDMS
databasedepending on the type of key in which a fieldis used and whether afield's
definitionis signed or unsigned.

Signed Versus Unsigned Keys

The most significantdifference when using numeric fields as partofan IDMS key is
whether the field has been defined as signed or unsigned. If a field has been defined as
signed whether zoned or packed, IDMS will honor the format and will perform
comparisons thatwill recognize functionally equivalentvalues as beingequal.

x'00999C' equals x'GO999F'

However unsigned fields aretreated as character values and functionally equivalent
values arenot considered equal unless the sign nibbles arealso equal.

X'00999C' is not equal to x'QB999F'

Appendix C: Zoned and Packed Decimal Fields as IDMS Keys 303

Numeric Formats

Sorted Chain or Index Sets

The format of a field thatis partof a key is significantto IDMS when thatfieldis
specifically named as partof the key. If a numeric fieldis partof a group level element
andthe group nameis specified as the key, IDMS is not aware of the elementary
elements at run time and the entire group is treated as character format. No numeric
format specific comparisons areattempted by IDMS againstelementary elements that
are a part of a group when the group name is specified as the key field.

When signed zoned decimal or signed packed decimal fields areidentified as partof a
set or index key, IDMS honors the format. At run-time the DBMS will normalizethe sign
nibbles sothat comparisons againstfunctionally equivalentvalues returna resultof
equal.This ensures that sorted chain sets and index sets will maintain their sequence
basedon a field's functional value.

Sinceunsigned zone decimal or packed decimal numbers are treated as character data,
functionally equivalentvalues with different sign nibbles return a resultof not equal
during comparison operations. This canresultin a different sequence for a sorted set or
index set depending on the sign characteristicof the numeric field as depicted in the
following example. Eachset is assumed to have anascending order and allows
duplicates.

Signed: Unsigned:

02 FIELD-A PIC S9(5) COMP-3. 02 FIELD-A PIC 9(5) COMP-3.

02 FIELD-B PIC x(4). 02 FIELD-B PIC X(4).
X'00999C', c'AAAA' X'00999C', c'AAAA'
X'00999F', c'AAAA' x'00999C', c'BBBB'
x'00999C', c'BBBB' X'0099F', c'AAAA!

Inthe signed example, x'00999C' and x'00999F' are functionally equal and the relative
position of the firsttwo records is determined by the duplicates option and the
sequence in which the records were added to the set. For the unsigned example the
functional equivalence of the packed fields will notbe recognized and x'00999F'is
considered to be greater than x'00999C'. The duplicates option would not come into
consideration since none of the three keys is considered to be equal.

304 Database Design Guide

Numeric Formats

CALC Records

Inconsistentsign nibbles for zone or packed decimal fields used in a calckey may have
more of an impactthan when those fields areused as keys for a chainsetor index set.
The initial operation applied againsta CALC record runs a hashingalgorithmagainstthe
calckey to identify the page on which IDMS will storethe record occurrence. Prior to
executing the hashingalgorithm, IDMS constructs the calckeyinto a piece of contiguous
storage from the various fields defined as making up the key. The algorithmhas no
knowledge of the individual component fields comprising the calckey or their various
formats. The algorithmsimply performs logical arithmetic calculationsagainstthe
character stringto determine the record's target page.

As aresult, values of x'00999C' and x'00999F' although functionally equivalent, will in all
probability generate different target pages for their CALC records. If a zone or packed
fieldis used as partof a calckeyitis veryimportant that all programs involved wi th the
creation or accessing of these records use a consistentmethod forinitializingthese
numeric fields.

Appendix C: Zoned and Packed Decimal Fields as IDMS Keys 305

Index

A

access requirements e 118,119

allocatingspaceforindexes ¢ 234, 250

anomaly ¢ 60

application performancee 136,227,228

application performancerequirements ¢ 115, 116,
117,118,119, 120,121,122, 123

areae 212

area contention ¢ 216,219

areasizee 226,227,228,233,234

areas ¢ 160, 161,204,212,214,222,223,226, 228,
233,234,250, 252

assigningtoentities ¢ 135

assignmentof entities to 160,161, 204

assignmentof entities to areas ¢ 160, 204

assignmentto areas ¢ 204

atomicprimary e 66

attributes » 46,47,48,51, 52,55, 56, 58,93

B

between user-defined entities 195
business analysis 24,25, 29,32, 33,35
business functions ¢ 29

business rules «32, 33

by logical key » 162, 165

C

CA-IDMS Presspack ® 165

CALC 124,200

CALC overflow ® 224, 225
calculating|/Os 256,257
calculatingthesizeof an index ¢ 240
carryingnon-key data ¢ 104
characteristics ¢58

cluster e 225,226,227,228

cluster overflow ¢ 225, 226
clustersizee 227,228

clustering* 126,128, 195, 197,225, 226
collapsing ® 136, 143, 145
collatingsequencee 179,201
compound ¢ 68

compressione 187,188

connect options ¢ 184
considerations ®220, 221

constraints 147,276

contention » 211,212,214, 215,216,219
counting I/Os * 256,257

creatinga preliminary diagrame 103, 113

D

data compression e 165, 168

data elements ¢ 29

data flow diagrams (DFDs) e 29

dataredundancy ¢ 145

data structure diagrame 103, 104,108, 110, 111,
113,131,132

databasee® 160, 161,162, 165, 204,221, 222,223,
226,227,228, 233,234,240, 250,252, 253, 255,
256, 262,263, 269, 275,276

databasedesigne 12,135, 136, 256,262, 263,269,
275,276,289, 290, 301

databaseimplementation, non-SQL » 287,290, 301

databaseimplementation, SQL * 264, 269, 276, 286,
289

databasekey ¢ 253

databasekey format ¢ 253

databasesegmentation ¢ 161, 162

databasestructures ¢ 99, 101

defining specific business functions ¢ 25, 29

deletion ¢ 60

determining location mode ¢ 128, 130

directe 147

directstorage ¢ 195,197

disconnectoptions » 184

duplicates option® 179,200, 201

duplicates options ¢ 179, 201

E

ensuring optimal performance ¢ 136

entities 40,47,52,55,56,93,110,111, 120,121,
128,130,160, 161, 162,197, 199,200, 203, 204,
211,216,219

entity lengths e 110,111

estimating!/Os ¢ 137,142

estimating1/Os for transactions 137,142

evaluatingthe database model ¢ 135

evaluatingthe physical model » 136

Index 307

F

files » 250,252

firstnormal form ¢ 62,63, 67, 68, 143
for asorted index ¢ 216

for areas 212,214

for entities 214,215

for OOAK entities » 216

foreign » 47,108, 113

foreign keys ¢ 108,113, 187,200
foreign keys, removing ¢ 187, 200
format e 253

G

general business functions 24,25

general guidelines 12

general guidelines foridentifying e 43

general introduction ¢ 20

general introduction to concepts ¢ 103

generic ¢ 147

graphic conventions for representation ¢ 41,43
groupinge 48,51

groups of entities » 161,162

H

hierarchy plus input-process-output (HIPO) e 29
how often each entity will be accessed 122,123
how to normalizedata » 66,73

I

I/Os » 137,139, 142,256, 257

identifying e 104, 108

identifyingattributes for a relationship ¢56,58

identifying attributes of an entity 47, 56

identifyingrelationship entities » 108

identifyinguniquekeys ¢ 51,52

IDMSCOMP e 165

IDMSDCOM e 165

implementation ¢ 262,275

implementing the databasedesign ¢ 263, 264, 269,
270, 275,276, 289, 290,301

index ¢ 182,201,202

index keys e 187

index size® 250

index structuree 235, 240

indexes » 126, 132,147,153, 187,200, 201, 202,
203, 204,234, 235, 240, 250, 276

insertion ¢ 60

interviews e 29

K
keys « 47,52,66, 68,108, 113,124, 147,162,165
L

lengths « 110,111

levels e 235, 240

linkagee 172,175,182, 184

linked » 168,187, 201

listingthedata elements ¢ 29,32

locationmodes » 123,124,126, 128,131, 132, 135,
195, 197,223, 224,225,226

locks 212,214

logical 162,165

logical database definition,non-SQL ¢ 270, 275

logical databasedefinition, SQL * 264, 269

logical design 17, 20,97, 256

M

mandatory automatic membership ¢ 184
mandatory manual membership ¢ 184
many-to-many ¢ 104,108

membership options ¢ 184,187,202
membership options for linked relationships ® 184
minimizing® 216,219

minimizing contention ¢ 219

minimizing contention among transactions 219
minimizing entity contention ¢ 216, 219
minimum fragment ¢ 221

minimum root e 221

multimember ¢ 191, 195

N

namingconventions ¢ 46, 47
naming conventions, non-SQL ¢ 270
namingconventions, SQL ¢ 264
natural « 179

natural collatingsequence e 179
next e 182

next pointer e 182

nonsorted ¢ 202

non-sorted order e 177,179
non-SQL ¢ 269, 275, 290,301
non-SQL considerations ® 169
non-SQL implementation ¢ 269,275, 290, 301
non-SQL terminology ¢ 269

normal forms ¢ 61, 66

308 Database Design Guide

normalization 60, 61, 62,63, 64, 66,67, 68, 70, 73,
93

normalized data for the Commonweather
Corporatione 73,93

null values ¢ 108

number of entity occurrences ¢ 120, 121

numbers ¢ 120,121

0

one-to-one ¢ 108

optimal pagesize 228, 233

optimal sizee 228

optional automatic membership ¢ 184
optional manual membership e 184
order 177,202

ordered ¢ 147

overflow ¢ 225,226

overflow conditions ¢ 223, 224, 225,226
overview of the process ¢ 20

owner ¢ 182

owner pointer ¢ 182

P

page groups ® 255

pagesize ® 228,233

performance ¢ 136

performance requirements ¢ 115,116,117, 118,
119,120,121,122,123

performance requirements for transactions e 115,
116

physicaldesign 97, 98,99, 101, 103,123, 124, 126,
128, 256,257

physicalsequential 147

placement « 203, 204

placement inareas » 160,161

placement, non-SQL 203, 204

placingareasinfiles 250,252

placingentities ® 203,204

placingindexes 203, 204

planned e 145

pointers e 182

primarye 47,52

primary key for anentity ¢ 52, 55

primary keys e 52, 55

prior e 182

prior pointer ¢ 182

prioritizingtransactionse 116, 117

process ® 98, 99

R

randomization e 124,126

record ¢ 214

redundancy e 145

relationship 56

relationshiplinkage e 182

relationships 41,43, 45,58,104, 108,110, 113,
143,145,146, 147,168,169, 172,175,177, 179,
182,184,187,191, 195,200

relationshipsamongentities ¢ 40, 45

removing ¢ 187, 200

repeating elements ¢ 143

representing ¢ 108,110,131, 132

representing as entities ¢ 104, 108

representing entities ¢ 103,108

representing indexes ¢ 132

representing location modes ¢ 131, 132

representing relationships ¢ 108,110

requirements fora physicaldatabasee 115, 116,
117,118,119,120,121,122,123

retrieval 147

review ¢ 256

reviewing the results ¢ 33, 35

root and fragment sizee 221

S

sampleexercises in countinge 139,142

schema ¢ 270, 276, 287,290

second normal form ¢ 63, 64, 68, 70

secondary ¢ 47

see=1/0Os input/output performance ¢ 135

see=locationmodes direct location mode ¢ 195

see=randomization CALC location mode ¢ 124

see=self-referencingrelationships.nested structure ¢
104

see=sizingthedatabasedatabasesize® 160

segmentation ¢ 161,162, 165

segmented by logicalkeye 162,165

selectingoptimal size e 233

self-referencing e 104, 108

self-referencingrelationships ¢ 108

sizee 226,227,228, 233,234,240, 250

sizeof a cluster ® 227, 228

sizing e 255

sizing considerations for compressed and
variable-length entities » 221

sizing considerations for variable-length entities
222

Index 309

sizingthe database® 203, 204, 220,221, 222,223,
226,227,228, 233, 234,235, 240, 250, 252, 253,
255

sortoptions e 201

sorted » 175,187, 235

sorted order ¢ 175,179, 182

sources ¢ 211,215

spacefor indexes ¢ 235,240

spacemanagement page e 222

specifyingforeign keys « 108, 113

SQL « 263, 269, 276,289

SQL considerations e 147

SQL implementation ¢ 263,269, 276,289

SQL terminology * 263

standard e 179

standard collatingsequencee 179

structures of the physical database® 123,126, 128,
223,226

subschema ¢ 270, 275, 287,301

symbolic 124,147

systems analysise® 24,25, 29, 32,33, 35

T

tables » 276

third normal form e 64, 66, 70, 73
transactionentry point e 119, 120
transactionfrequencye 117,118
transactions 136,137, 142,219
tuning options ¢ 195, 200, 203

U

unique ¢ 47,147

unique constraints, enforcing ¢ 175
unlinked » 168,201

unnecessary e 146, 147

unsorted ¢ 147,175, 202, 235
update ¢ 60

user-written procedures ¢ 165

Vv

validating the design e 97
variable-length ¢ 197, 199
views ¢ 264, 269,286, 289

w

weak entities ® 55, 56
why normalizedata * 60, 61

310 Database Design Guide

	CA IDMS Database Design Guide
	CA Technologies Product References
	Contact CA Technologies
	Documentation Changes
	Contents
	1: Introduction
	Overview
	Design Implementation
	Syntax Diagram Conventions

	2: Introduction to Logical Design
	Overview
	Determining the Users' Data Needs
	Determining the Corporation's Data Needs
	Overview of the Logical Design Process

	3: Analyzing the Business System
	Overview
	Step 1: Defining General Business Functions
	Step 2: Defining Specific Business Functions
	Step 3: Listing the Data Elements
	Step 4: Identifying the Business Rules
	Step 5: Reviewing the Results of Analysis

	4: Identifying Entities and Relationships
	Overview
	Identifying Data Entities
	Identifying Relationships Among Entities
	Types of Data Relationships
	General Guidelines for Identifying Relationships

	5: Identifying Attributes
	Overview
	Establishing Naming Conventions for the Attributes
	Identifying the Attributes of Each Entity
	Grouping the Attributes
	Identifying Unique Keys
	Establishing Primary Keys
	Identifying Weak Entities

	Identifying the Attributes for Each Relationship Type
	Identifying Attribute Characteristics

	6: Normalizing the Data
	Overview
	Why Normalize Data?
	Normal Forms of Data
	First Normal Form
	Second Normal Form
	Third Normal Form

	How To Normalize Data
	Listing Data in First Normal Form
	Listing Data in Second Normal Form
	Listing Data in Third Normal Form

	Normalized Data for the Commonweather Corporation

	7: Validating the Logical Design
	8: Introduction to Physical Design
	Overview
	Data Structure Diagram
	Steps in the Physical Database Design Process
	Physical Database Structures
	SQL and Non-SQL Definitions

	9: Creating a Preliminary Data Structure Diagram
	Developing a Data Structure Diagram
	Representing Entities
	Representing Relationships as Entities

	Representing Relationships Between Entities
	Estimating Entity Lengths

	Preliminary Data Structure Diagram for Commonweather Corporation

	10: Identifying Application Performance Requirements
	Overview
	Establishing Performance Requirements for Transactions
	Prioritizing Transactions
	Determining How Often Transactions Will Be Executed
	Identifying Access Requirements
	Determining the Database Entry Point and Access Key for Each Transaction
	Projecting Growth Patterns
	Determining the Number of Entities in Each Relationship
	Determining How Often Each Entity Will Be Accessed

	11: Determining How an Entity Should Be Stored
	Overview
	Location Modes
	Randomization
	Clustering

	Guidelines for Determining How an Entity Should Be Stored
	Is This Entity Both a Parent and a Child?
	Is There Optimal Relationship Clustering for This Entity?

	Is This a Parent Entity but Not a Child Entity?
	Is This a Child Entity but Not a Parent Entity?
	Is Generic Retrieval Required and Is the Entity Relatively Static?

	Graphic Conventions
	Conventions for Specifying Location Mode
	Conventions for Representing Indexes

	Location Modes for Entities in the Commonweather Database
	Revised Data Structure Diagram for the Commonweather Corporation

	12: Refining the Database Design
	Evaluating the Database Design
	Refinement Options
	Estimating I/Os for Transactions
	Sample Exercise #1: Estimating I/Os for a Retrieval Transaction
	Sample Exercise #2: Estimating I/Os for an Update Transaction

	Eliminating Unnecessary Entities
	Collapsing Relationships
	Introducing Redundancy

	Eliminating Unnecessary Relationships
	Adding Indexes
	Refined Data Structure Diagram for Commonweather Corporation

	13: Choosing Physical Tuning Options
	Overview
	Placement of Entities in Areas
	Segmentation of Databases
	Segmenting by Groups of Entities
	Segmenting by Logical Key

	Data Compression
	Relationship Tuning Options
	Linked and Unlinked Relationships
	Unlinked Relationship Tuning Options
	Additional Columns in the Foreign Key Indexes

	Linked Relationship Tuning Options
	Type of Linkage
	Sorted and Unsorted Relationships

	Nonsorted Order
	Additional Sort Options
	Linkage
	Membership Options
	Removing Foreign Keys

	Index Key Compression
	Non-SQL Tuning Options
	Multimember Relationships
	Direct Location Mode
	Variable-Length Entities
	Database Procedures
	CALC Duplicates Option
	Relationship Tuning Options
	Index Tuning Options
	Unlinked versus Linked Indexes
	Additional Sort Options for Indexes
	Nonsorted Indexes
	Index Membership Options

	Non-SQL Entity and Index Placement

	Physical Tuning Options for Commonweather Corporation
	Refined Commonweather Corporation Database Design (For SQL Implementation)
	Refined Commonweather Corporation Database Design (For Non-SQL Implementation)

	14: Minimizing Contention Among Transactions
	Overview
	Sources of Database Contention
	Area Contention
	Entity Occurrence Contention

	Minimizing Contention
	Minimizing Contention for Entities and Areas

	15: Determining the Size of the Database
	Overview
	General Database Sizing Considerations
	Sizing Considerations for Compressed and Variable Length Entities
	Space Management
	Overflow Conditions
	CALC Overflow
	Cluster Overflow

	Calculating the Size of an Area
	Step 1: Calculating the Size of Each Cluster
	Step 2: Determining the Page Size
	Step 3: Calculating the Number of Pages in the Area

	Allocating Space for Indexes
	Index Structure
	Calculating the Size of the Index
	Calculating the Size of an Index Sorted on a Symbolic Key
	Calculating the Size of an Index Sorted on db-key
	Calculating the Size of an Unsorted Index

	Placing Areas in Files
	Sizing a Megabase
	Varying the Database Key Format
	Assigning Segments to Page Groups

	16: Implementing Your Design
	Overview
	Reviewing the Design
	Step 1: Review the Logical Database Model
	Step 2: Review the Physical Database Model
	Calculating I/Os
	Potential Design Flaws
	Questions To Address

	Implementing the Design
	Implementing Your Design with SQL
	Implementation Steps
	Implementing Your Design with Non-SQL
	Implementation Steps

	A: SQL Database Implementation for the Commonweather Corporation
	Logical Database Definition Listing for the Commonweather Database
	View Definitions
	Subschema Definition

	B: Non-SQL Database Implementation for the Commonweather Corporation
	Logical Database Definition Listing for the Commonweather Database

	C: Zoned and Packed Decimal Fields as IDMS Keys
	Overview
	Numeric Formats
	Signed Versus Unsigned Keys
	Sorted Chain or Index Sets
	CALC Records

	Index

