

Database Design Guide
Release 18.5.00, 2nd Edition

CA IDMS™

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at a ny time. This

Documentation is proprietary information of CA and may not be copied, transferred, reproduced, disclosed, modified or
duplicated, in whole or in part, without the prior wri tten consent of CA.

If you are a licensed user of the software product(s) addressed in the Documentation, you may print or otherwise make
available a reasonable number of copies of the Documentation for internal use by you and your employees in connection with
that software, provided that all CA copyright notices and legends are affixed to each reproduced copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable

l i cense for such software remains in full force and effect. Should the license terminate for any reason, i t is your responsibility to
certi fy in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOU T WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,

DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such

l icense agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions

set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2014 CA. Al l rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

CA Technologies Product References

This document references the following CA products:

■ CA ADS™

■ CA IDMS™/DB

■ CA IDMS™ SQL

■ CA IDMS™ Presspack

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the

information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

■ Online and telephone contact information for technical assistance and customer

services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you

can send a message to techpubs@ca.com.

To provide feedback about CA Technologies product documentation, complete our
short customer survey which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://ca.com/docs
http://ca.com/docs

Documentation Changes

The following documentation updates were made for the 18.5.00 release of this
documentation:

■ Assigning Segments to Page Groups (see page 254)—Removed indexes from the
MPGI restriction

Contents 5

Contents

Chapter 1: Introduction 11

Overview .. 11

Design Implementation... 12

Syntax Diagram Conventions ... 12

Chapter 2: Introduction to Logical Design 15

Overview .. 16

Determining the Users' Data Needs ... 17

Determining the Corporation's Data Needs .. 19

Overview of the Logical Design Process... 20

Chapter 3: Analyzing the Business System 21

Overview .. 22

Step 1 : Defining General Business Functions .. 24

Step 2 : Defining Specific Business Functions... 25

Step 3 : Listing the Data Elements.. 29

Step 4 : Identifying the Business Rules.. 32

Step 5 : Reviewing the Results of Analysis.. 33

Chapter 4: Identifying Entities and Relationships 35

Overview .. 35

Identifying Data Entities.. 36

Identifying Relationships Among Entities .. 40

Types of Data Relationships ... 41

General Guidelines for Identifying Relationships ... 43

Chapter 5: Identifying Attributes 45

Overview .. 45

Establishing Naming Conventions for the Attributes .. 46

Identifying the Attributes of Each Entity.. 47
Grouping the Attributes .. 48

Identifying Unique Keys .. 51

Establishing Primary Keys ... 52

Identifying Weak Entities .. 55

Identifying the Attributes for Each Relationship Type .. 56

6 Database Design Guide

Identifying Attribute Characteristics... 58

Chapter 6: Normalizing the Data 59

Overview .. 59

Why Normalize Data?.. 60

Normal Forms of Data ... 61

First Normal Form .. 62

Second Normal Form ... 63

Third Normal Form... 64

How To Normalize Data .. 66

Listing Data in First Normal Form.. 67

Listing Data in Second Normal Form .. 68
Listing Data in Third Normal Form .. 70

Normalized Data for the Commonweather Corporation .. 73

Chapter 7: Validating the Logical Design 93

Chapter 8: Introduction to Physical Design 97

Overview .. 97

Data Structure Diagram .. 97

Steps in the Physical Database Design Process... 98

Physical Database Structures ... 99

SQL and Non-SQL Definitions ...101

Chapter 9: Creating a Preliminary Data Structure Diagram 103

Developing a Data Structure Diagram ..103

Representing Entities...103

Representing Relationships Between Entities ..108

Estimating Entity Lengths ...110

Preliminary Data Structure Diagram for Commonweather Corporation ...111

Chapter 10: Identifying Application Performance Requirements 113

Overview ..114

Establishing Performance Requirements for Transactions...115

Prioritizing Transactions..116

Determining How Often Transactions Will Be Executed ...117

Identifying Access Requirements ..118

Determining the Database Entry Point and Access Key for Each Transaction ..119

Projecting Growth Patterns..120

Contents 7

Determining the Number of Entities in Each Relationship ...121

Determining How Often Each Entity Will Be Accessed ...122

Chapter 11: Determining How an Entity Should Be Stored 123

Overview ..123

Location Modes ..123

Randomization..124

Clustering...126

Guidelines for Determining How an Entity Should Be Stored ..128

Is This Entity Both a Parent and a Child?..128

Is This a Parent Entity but Not a Child Entity?...129

Is This a Child Entity but Not a Parent Entity?...130
Is Generic Retrieval Required and Is the Entity Relatively Static?...130

Graphic Conventions ...130

Conventions for Specifying Location Mode...131

Conventions for Representing Indexes ..132

Location Modes for Entities in the Commonweather Database ...132

Revised Data Structure Diagram for the Commonweather Corporation...134

Chapter 12: Refining the Database Design 135

Evaluating the Database Design ..135

Refinement Options...136

Estimating I/Os for Transactions ...137

Sample Exercise #1: Estimating I/Os for a Retrieval Transaction ..139

Sample Exercise #2: Estimating I/Os for an Update Transaction...141

Eliminating Unnecessary Entities ..142

Collapsing Relationships ...143

Introducing Redundancy...145

Eliminating Unnecessary Relationships..146

Adding Indexes ...147
Refined Data Structure Diagram for Commonweather Corporation..153

Chapter 13: Choosing Physical Tuning Options 157

Overview ..158

Placement of Entities in Areas ...160

Segmentation of Databases ...161

Data Compression ..165

Relationship Tuning Options ..168

Linked and Unlinked Relationships ...169

Unlinked Relationship Tuning Options ...170

8 Database Design Guide

Linked Relationship Tuning Options ...171

Nonsorted Order ..177

Additional Sort Options...179

Linkage ...182

Membership Options...184

Removing Foreign Keys ...187

Index Key Compression ...187

Non-SQL Tuning Options...188

Multimember Relationships...191

Direct Location Mode ..195

Variable-Length Entities ..197

Database Procedures...199
CALC Duplicates Option ..200

Relationship Tuning Options ..200

Index Tuning Options...200

Non-SQL Entity and Index Placement...203

Physical Tuning Options for Commonweather Corporation ..204

Refined Commonweather Corporation Database Design (For SQL Implementation) ...206

Refined Commonweather Corporation Database Design (For Non-SQL Implementation)208

Chapter 14: Minimizing Contention Among Transactions 211

Overview ..211

Sources of Database Contention ...211

Area Contention ...212

Entity Occurrence Contention ...214

Minimizing Contention..215

Minimizing Contention for Entities and Areas ..216

Chapter 15: Determining the Size of the Database 219

Overview ..219
General Database Sizing Considerations..220

Sizing Considerations for Compressed and Variable Length Entities..221

Space Management ...222

Overflow Conditions ..223

Calculating the Size of an Area ..226

Step 1 : Calculating the Size of Each Cluster...227

Step 2 : Determining the Page Size ..228

Step 3 : Calculating the Number of Pages in the Area..233

Allocating Space for Indexes ..234

Index Structure ...235

Calculating the Size of the Index ...240

Contents 9

Placing Areas in Files..250

Sizing a Megabase ..252

Varying the Database Key Format...253

Assigning Segments to Page Groups...254

Chapter 16: Implementing Your Design 255

Overview ..255

Reviewing the Design ..255

Step 1 : Review the Logical Database Model ...256

Step 2 : Review the Physical Database Model ...256

Implementing the Design..262

Implementing Your Design with SQL ..263
Implementation Steps ...264

Implementing Your Design with Non-SQL ...269

Implementation Steps ...270

Appendix A: SQL Database Implementation for the Commonweather
Corporation 275

Logical Database Definition Listing for the Commonweather Database ...276

View Definitions ...286

Subschema Definition..287

Appendix B: Non-SQL Database Implementation for the Commonweather
Corporation 289

Logical Database Definition Listing for the Commonweather Database ...290

Appendix C: Zoned and Packed Decimal Fields as IDMS Keys 301

Overview ..301

Numeric Formats..302

Signed Versus Unsigned Keys...303

Sorted Chain or Index Sets..304

CALC Records ..305

Index 307

Chapter 1: Introduction 11

Chapter 1: Introduction

This section contains the following topics:

Overview (see page 11)
Design Implementation (see page 12)
Syntax Diagram Conventions (see page 12)

Overview

A database is a computer representation of information that exists in the real world.
Like a painting, a database tries to imitate reality. Designing a database is an art form,
and a successful database bears the mark of a thoughtful, creative designer.

For a given database problem, there may be several solutions. While some designs are
clearly better than others, there is no right or wrong design. The structure of your
database will therefore be determined not only by the requirements of the business but
also by your individual style as a designer. As you develop and refine the design for a

database, let your intuition be your guide.

The purpose of creating a database is to satisfy the information requirements of
business application programs. Before users can run their application programs, the

database administrator (DBA) must design and implement the corporate database. As
the DBA or database designer, you are responsible for database design and
implementation.

Data models

To design a database, you must develop two different data models:

■ The logical model describes all corporate information to be maintained in the
database. This model represents the way the user perceives the data.

■ The physical model describes how the data is stored and accessed by the system.
The physical design for a database builds on the logical model. During the physical
design process, you tailor the logical design to specific application performance
requirements and plan the best use of storage resources.

Iterative process

Creating a design for a database is an iterative process. After you have developed the
logical and physical models, you need to review the design process and the available
documentation with users in your corporation. As users make suggestions for

improvement, you should make appropriate changes to the design. Review the design
repeatedly until it is acceptable to the user community.

Design Implementation

12 Database Design Guide

Design Implementation

The database design you create can be implemented using either of two
implementation languages provided by CA IDMS/DB:

■ SQL DDL

■ Non-SQL DDL

Design considerations are documented in this manual.

Note: For complete SQL DDL statements, see the CA IDMS SQL Reference Guide. For
complete non-SQL DDL statements, see the CA IDMS Database Administration Guide.

Syntax Diagram Conventions

The syntax diagrams presented in this guide use the following notation conventions:

UPPERCASE OR SPECIAL CHARACTERS

Represents a required keyword, partial keyword, character, or symbol that must be
entered completely as shown.

lowercase

Represents an optional keyword or partial keyword that, if used, must be entered
completely as shown.

italicized lowercase

Represents a value that you supply.

lowercase bold

Represents a portion of the syntax shown in greater detail at the end of the syntax
or elsewhere in the document.

◄─

Points to the default in a l ist of choices.

►►────────────────────

Indicates the beginning of a complete piece of syntax.

────────────────────►◄

Indicates the end of a complete piece of syntax.

─────────────────────►

Indicates that the syntax continues on the next l ine.

►─────────────────────

Indicates that the syntax continues on this l ine.

────────────────────►─

Syntax Diagram Conventions

Chapter 1: Introduction 13

Indicates that the parameter continues on the next l ine.

─►────────────────────

Indicates that a parameter continues on this l ine.

►── parameter ─────────►

Indicates a required parameter.

►──┬─ parameter ─┬─────►
 └─ parameter ─┘

Indicates a choice of required parameters. You must select one.

►──┬─────────────┬─────►
 └─ parameter ─┘

Indicates an optional parameter.

►──┬─────────────┬─────►
 ├─ parameter ─┤
 └─ parameter ─┘

Indicates a choice of optional parameters. Select one or none.

 ┌─────────────┐
►─▼─ parameter ─┴──────►

Indicates that you can repeat the parameter or specify more than one parameter.

 ┌─── , ─────────┐
►─▼─ parameter ───┴──────►

Indicates that you must enter a comma between repetitions of the parameter.

Syntax Diagram Conventions

14 Database Design Guide

Sample Syntax Diagram

The following sample explains how the notation conventions are used:

Chapter 2: Introduction to Logical Design 15

Chapter 2: Introduction to Logical Design

This section contains the following topics:

Overview (see page 16)
Determining the Users' Data Needs (see page 17)
Determining the Corporation's Data Needs (see page 19)

Overview of the Logical Design Process (see page 20)

Overview

16 Database Design Guide

Overview

What is logical database design

Logical database design is the process of determining the logical data structures needed
to support an organization's information resource. The logical design process helps you
to implement a database that satisfies the requirements of your business organization.

Logical design is critical to the implementation of a corporate database. If your logical
design is incomplete or has flaws, making changes to the means of data collection,
storage, and protection can be costly later on. By using a well -conceived preliminary
design, you can easily implement and test a database. A sound logical design therefore

helps to ensure a successful implementation.

A complete and accurate logical design for a database helps to ensure:

■ Data independence—The logical design process yields a database model that is

independent of program or physical storage requirements. This model represents
the way data structures appear to users. It does not specify how data structures are
maintained in or processed by the computer.

■ Physical database flexibility—Because the logical design is independent of storage

and performance requirements, it can be used to implement a database used with
any hardware or software system. During the physical design process, the logical
design can be tailored to satisfy the needs of particular users or to suit a particular

data processing environment.

■ Integrity—The logical design identifies both the data maintained in your
corporation and the rules of the business. These business rules can be used later to
define integrity rules for the physical design.

■ User satisfaction—The logical design represents data structures in a simple,
understandable format. You can show the design to users at any stage of
development without intimidating them. The logical design can be easily modified

to incorporate users' suggestions and feedback.

There are many viable approaches available for logical database design. In this manual,
we combine several design techniques, including systems analysis, the
entity-relationship approach, and normalization.

Note: The entity-relationship approach was developed by Peter Chen. For further
information on his approach to database design, see Entity-Relationship Approach to
Information Modeling and Analysis, Peter P. Chen, editor, ER Institute (1981).

By using these techniques, you can create a logical model that consists of:

■ Descriptions of the data required by each user application

■ A comprehensive picture of the corporation's data

Determining the Users' Data Needs

Chapter 2: Introduction to Logical Design 17

Determining the Users' Data Needs

Users of application programs require access to only selected portions of a database.
Therefore, you need to develop a logical model that includes descriptions of the data
required by each program.

Data tables

To the user of an application program, information in a CA IDMS/DB database will
appear in the form of data tables. Data tables consist of columns and rows of related
data. For example, a table might contain information about a company's departments,
organized under headings such as DEPT ID, DEPT NAME, and DEPT BUDGET. A

DEPARTMENT table with these categories of information is i l lustrated in the following
diagram.

Information for company departments is maintained in the Department data table. A

column represents a l ist of all department IDs. A row represents a single department.

Views

Users can manipulate columns and rows of data by accessing tables directly or by

defining views of the database. Views enable users to select specified rows or columns
or to combine information from two or more tables. For example, a view might use the
relational join operation to combine information from the DEPARTMENT table and the
EMPLOYEE table, as i l lustrated below.

Relational join operation

To show company employees with their departments, the DEPT/EMPLOYEE view uses
the common DEPT ID column to join the Department and Employee data tables. This

join operation selects all information from the tables that pertains to depar tment 110.
In the DEPT/EMPLOYEE view, the project operation has been used to include the DEPT
ID and DEPT NAME columns from the DEPARTMENT table and the EMP # and LAST
NAME columns from the EMPLOYEE table.

Determining the Users' Data Needs

18 Database Design Guide

Determining the Corporation's Data Needs

Chapter 2: Introduction to Logical Design 19

Determining the Corporation's Data Needs

As the database designer, you must understand all data used in your corporation. Once
you have determined the user's information requirements, you need to develop a
comprehensive picture of the corporation's data. Your logical design must include a
complete description of this data.

Entity-relationship diagram

To represent the total picture, you can use the entity-relationship approach to logical
design. With this approach, you develop an entity-relationship diagram, which serves as
a model of the entire corporate enterprise. This diagram visually represents all data

relationships that exist within the corporation.

Entities

If data tables allow you to see the "trees" in a database, the arrangement of entities in

an entity-relationship diagram helps you to represent the "forest." An entity is any
general category of information used for business data processing. For example, the
DEPARTMENT entity might describe information about the departments in a
corporation, while the EMPLOYEE entity might describe company employees.

Entity-relationship diagramming

When two or more entities in a database share a relationship, their relationship can be
graphically depicted on the entity-relationship diagram.

In the diagram below, the DEPARTMENT and EMPLOYEE data entities are related
through the relationship BELONGS TO.

Overview of the Logical Design Process

20 Database Design Guide

Overview of the Logical Design Process

During the initial stage of logical design, you identify the business problem that users
hope to solve by creating a database. After interviewing several employees, you
perform a thorough analysis of the business system, determining the processing
functions performed by the organization and the flow of data during typical executions

of these functions.

An analysis of the system provides documentation of the types of data required by users
to perform their day-to-day business tasks. With this documentation, you can create the
entity-relationship diagram.

Procedure

Logical database design involves the following procedures:

■ Analyzing the business system

■ Identifying the data entities (or data tables) and their relationships

■ Identifying the data attributes

■ Normalizing the data attributes

■ Verifying that all business functions are supported by the logical design

Note: The first three procedures l isted above are often performed concurrently. For

example, in many instances, you will identify data entities, relationships, and attributes
as you analyze the business system. By drawing a rough entity-relationship diagram
during the systems analysis phase, you can sometimes simplify the design process.

Review the process

After you have performed the procedures l isted above, you need to review the process

and the available documentation with users in your corporation. As these users make
suggestions for improvement, make appropriate changes to the design.

Each of the five major procedures of the logical design process is explained in detail in

Chapters 3 through 7.

Chapter 3: Analyzing the Business System 21

Chapter 3: Analyzing the Business System

This section contains the following topics:

Overview (see page 22)
Step 1: Defining General Business Functions (see page 24)
Step 2: Defining Specific Business Functions (see page 25)

Step 3: Listing the Data Elements (see page 29)
Step 4: Identifying the Business Rules (see page 32)
Step 5: Reviewing the Results of Analysis (see page 33)

Overview

22 Database Design Guide

Overview

Systems analysis is a necessary introduction to database design. Analyzing a corporate
business system is a serious endeavor, about which many books have been written. It is
not the purpose of this manual to describe the various methodologies available for
performing systems analysis. Since this manual deals primarily with database design, it

cannot present anything but an overview of systems analysis.

Analyzing the business system involves gathering information about the day-to-day
functions of the organization, documenting this information, gathering more
information, and so on, until a clear picture develops of the operations of the

organization. To fully analyze the business system, you need to:

1. Define the general business functions.

2. Break down the general business functions into specific functions.

3. Identify the data elements used for functions and categorize them by subject.

4. Identify the business rules.

5. Review the results of analysis.

You can follow steps 1 through 5 below to perform a thorough analysis of your

organization. Before you perform these procedures, you may need to write a
description of the organization. This description will be used as the basis for systems
analysis.

Organization description for the Commonweather Corporation

Below is a sample company description for the Commonweather Corporation.

 Commonweather Corporation is a leader in the new, rapidly

 expanding field of external climate control. Commonweather

 has offices in five locations. Since its incorporation,

 560 employees have been hired. Most of these employees are

 still with the company and have held, on the average, two

 different positions.

Overview

Chapter 3: Analyzing the Business System 23

 Because Commonweather anticipates rapid growth, it has

 created an organizational structure that will be well

 suited to a company with many more employees. It has

 identified 41 different job titles and has created nine

 departments, each with its own department head. Several

 employees in each department have been appointed to supervisory

 positions and have hiring authority. Employees are, on

 occasion, assigned to head or participate in interdepart-

 mental projects. In two years, the personnel department

 anticipates that there will be eight ongoing projects.

 To facilitate the search for new employees, the personnel

 department has identified 68 skills that will need to be

 represented in the company's future employee base. When

 an employee is hired, the employee's level of expertise

 for each of these skills is identified.

 The personnel department believes that by offering

 excellent employee benefits they can meet Commonweather's

 personnel needs. Therefore, they offer generous insurance

 benefits. Each employee is offered coverage in a life

 insurance plan, a dental plan, and a health plan (HMO or

 group-health). Employees can have complete family coverage

 or dependent coverage only.

 A copy of each insurance claim filed by an employee for

 dental, hospital, or nonhospital services is sent to the

 personnel department. Each dental or nonhospital claim

 can be for up to ten dental or physician services. The

 personnel department submits all claims to the insurance

 companies. The department keeps a copy until the claim

 is paid; then the claim is thrown out. An employee cannot

 change coverage until all outstanding claims have been paid.

Step 1: Defining General Business Functions

24 Database Design Guide

Step 1: Defining General Business Functions

What is a business function?

A business function is an activity performed during the day-to-day operations of an
organization. The types of functions performed by a company determine the logical
organization of the corporate database. To develop a complete logical design for a

database, you therefore need to l ist all functions performed at your organization.

Often a business function can be broken down into several smaller functions. To avoid
getting lost in the details, you should begin by l isting the most general business
functions.

Deriving the function list

By reviewing the company description, you can derive a l ist of the most general business
functions. The following list of functions might be derived from the company description

for the Commonweather Corporation:

■ Hire employees

■ Terminate employees

■ Maintain employee information

■ Maintain office and department information

■ Maintain information about salaries and jobs

■ Maintain skills inventory

■ Maintain personnel information about projects

■ Maintain information about employee insurance

Step 2: Defining Specific Business Functions

Chapter 3: Analyzing the Business System 25

Step 2: Defining Specific Business Functions

Smaller units of work

To break down the general business functions into smaller units of work, you need to
think about what activities are involved in performing a particular business procedure.

For example, the general function Maintain skills inventory might involve these

activities:

■ Add a skil l

■ Add a skil l for an employee

■ Identify skil ls for an employee

■ Identify skil l level for an employee skil l

■ Identify all employees with a particular skill

■ Identify all employees with a particular level of a particular skill

■ Upgrade an employee skil l level

Transactions

After you have broken down each general function into its component steps, you should
be able to identify the most important application transactions of your organization.

Your descriptions of these transactions can then be used by the MIS staff to develop
application programs.

For further information on application development, see the CA ADS Application Design

Guide.

In many instances, business functions can be broken down into many levels. Therefore,
you may have to perform step 2 repeatedly to identify the most detailed functions of
the business. For example, you might need to break down the function Maintain skills

inventory several times before you can identify the application transactions.

Specific business functions for Commonweather Corporation

Below is a complete l ist of detailed business functions for the Commonweather

Corporation.

Step 2: Defining Specific Business Functions

26 Database Design Guide

 1. Hire employees:

 a) Add an employee

 b) Assign an employee's position

 c) Assign an employee to an office

 d) Assign supervisory authority for an employee

 e) Assign supervisor for an employee

 f) Assign an employee to a department

 2. Terminate employees:

 a) Delete an employee

 b) Delete an employee's position

 c) Remove an employee from an office

 d) Remove supervisory authority for an employee

 e) Remove an employee from a department

 3. Maintain employee information:

 a) Assign or change an employee's position

 b) Assign an employee to or remove an employee from an office

 c) Assign an employee to or remove an employee from a department

 d) Assign or remove supervisory authority for an employee

 e) Assign or change supervisor for an employee

 f) List employees for a department

 4. Maintain office and department information:

 a) Assign or delete an office

 b) Change an office address

 c) Add or delete a department

 d) Change a department head

Step 2: Defining Specific Business Functions

Chapter 3: Analyzing the Business System 27

 5. Maintain information about salaries and jobs:

 a) Create a job

 b) Provide a job description

 c) Eliminate a job

 d) Establish job salaries

 e) Change job description or salary

 6. Maintain skills inventory:

 a) Add a skill

 b) Add a skill for an employee

 c) Identify skills for an employee

 d) Identify skill level for an employee skill

 e) Identify all employees with a particular skill

 f) Identify all employees with a particular skill level

 g) Upgrade an employee skill level

 7. Maintain personnel information about projects:

 a) Add a new project or delete a completed one

 b) Assign and remove employees from a project

 c) Assign or remove a project leader

 d) List names and phone numbers of all workers on a project

Step 2: Defining Specific Business Functions

28 Database Design Guide

 8. Maintain information about employee insurance:

 a) Add or remove a health insurance plan for an employee

 b) Identify the health insurance coverage for an employee

 c) Change coverage for an employee on a plan

 d) Add or change plan and coverage for an employee

 e) Add or delete a claim

 f) Show life and health insurance details for an employee

 g) Submit duplicate claim forms for an employee accident

Step 3: Listing the Data Elements

Chapter 3: Analyzing the Business System 29

Step 3: Listing the Data Elements

Identify data each function requires

After you have listed the business functions for your organization, you can begin to
identify the data that each function requires. Your l ist of data elements (data table
columns) will most l ikely expand and change as you gather more information about the

organization. At this stage in the design process, simply l ist those elements that are
clearly associated with each business task and group them according to general subject
categories.

Consider using the following resources to identify data elements.

Interviews

Throughout the database design process, you conduct interviews with company
personnel. Your meetings should give you an idea what data elements are required for

particular business functions.

List of business functions

Many data elements can be identified in the list of detailed business functions
(application transactions). Review your l ist of functions carefully to see if any elements

can be recognized.

Data flow diagrams

To indicate the flow of information within the organization, you need to draw data flow

diagrams (DFDs) for each of the general and specific business functions. A DFD should
identify what information is needed to perform a particular function, where this
information resides (logically, not in storage), and where it is l ikely to be moved during
the course of processing. To identify the data flows, perform the following procedures:

1. Ask these questions:

a. Where does the data come from?

b. What happens to it when it reaches the system?

c. Where does it go?

d. What data should be restricted from user access?

Note: Once you have identified any restrictions that apply to the use of the
information, you can begin to consider which security measures should be

implemented for the system.

2. Identify the sources of information by defining the data stores:

■ People

■ Departments

Step 3: Listing the Data Elements

30 Database Design Guide

■ Documents

3. Verify the completeness of the information with users.

Data flow diagrams for a sample business function

The following diagram shows data flow diagrams (DFDs) for a general business function
and its component steps.

Hierarchy plus Input-Process-Output diagrams

To indicate the flow of information within the organization, you may also want to draw
Hierarchy plus Input-Process-Output (HIPO) diagrams for each of the business

functions. A HIPO diagram can help you to identify what information is needed to
perform a particular function. The diagram below shows a HIPO diagram for a sample
business function.

Step 3: Listing the Data Elements

Chapter 3: Analyzing the Business System 31

Example

The following data elements might be accessed by the Maintain skills inventory
function:

 EMPLOYEE SKILL

 Employee name Skill code

 Employee ID Skill name

 Employee office Date acquired

 Skill description

The grouping of elements under the categories EMPLOYEE and SKILL may change later
on.

Step 4: Identifying the Business Rules

32 Database Design Guide

Step 4: Identifying the Business Rules

The rules of a business govern the execution of business functions against the database.
Additionally, they define data integrity concerns that must be addressed during the
course of database design. The business rules for your organization can be derived from
the analysis of the company description, the function lists, the DFDs, and the HIPO

diagrams. Compile a complete l ist of these rules.

Business rules for the Commonweather Corporation

The following is a l ist of business rules for the Commonweather Corporation.

 1. There are currently five offices; expansion plans allow

 for a maximum of ten.

 2. Employees can change position, department, or office.

 3. There are 560 employees; allow for a maximum of 1000.

 4. Records are maintained for an employee's previously held

 positions.

 5. Each department has one department head and several members

 with supervisory positions with hiring authority.

 6. Each office has a maximum of three telephone numbers.

 7. When an employee is hired, his or her level of expertise

 in each of several skills is identified.

 8. When an employee is hired, he or she automatically becomes a

 member of a particular department, and a particular office,

 and reports to a particular supervisor.

 9. Each job description has several salary grades associated

 with it.

 10. When hired, an employee is automatically covered by life

 insurance.

Step 5: Reviewing the Results of Analysis

Chapter 3: Analyzing the Business System 33

Step 5: Reviewing the Results of Analysis

Once you have performed steps 1 through 4 above, you need to review the materials
you have gathered thus far. You need to ask yourself this question: Has anything been
overlooked?

Making changes later on in the design process can sometimes be costly. Therefore, you

should make sure that users have the chance to offer feedback at this point in the
design process.

Documentation

By the time you have completed systems analysis, the fol lowing documentation should
be available:

■ General and specific function lists

■ Data flow diagrams or HIPO diagrams for the functions

■ List of data elements

■ List of business rules

Using the dictionary

You can use the Integrated Data Dictionary (IDD) to document data elements and
business rules.

Chapter 4: Identifying Entities and Relationships 35

Chapter 4: Identifying Entities and
Relationships

This section contains the following topics:

Overview (see page 35)
Identifying Data Entities (see page 36)

Identifying Relationships Among Entities (see page 40)

Overview

By allowing you to document the total picture of an organiza tion's data, the
entity-relationship method of performing logical design allows you to:

■ Use a top-down approach for logical design. To develop an entity-relationship

diagram for a database, you define the most general categories of information first.
Once you have identified these subject categories, you can then include more
specific information in the design.

■ Demonstrate the semantic meaning of an organization's information. This
approach allows you to create a logical design for a database by analyzing
descriptions of the organization that are written in everyday English. The
entity-relationship diagram, the end product of logical design, accurately reflects

the language used by employees to describe the organization. Therefore, this
diagram can be reviewed and refined easily.

What are entities and relationships?

As you develop an entity-relationship diagram for a database, you identify each data
entity and relationship used by the organization. An entity is a general category of
business data that can be easily identified from the available documentation. A
relationship defines a logical connection between two associated data entities. For

example, the relationship REPORTS TO might identify a connection between a PERSON
entity and a COMPANY entity.

Early in the logical design process, you need to determine the data entities and
relationships necessary to fulfi l l the business functions of your organization. This

chapter presents guidelines for identifying data entities and their relationships.

Identifying Data Entities

36 Database Design Guide

Identifying Data Entities

Identifying entities in the list of functions

Each data entity should appear as a noun in the list of sentences that define business
functions, as i l lustrated below. Many nouns appear in the sentences that are not
entities. Only nouns that describe data that is meaningful to the organization itself

should be identified as entities.

Because each organization has unique data requirements, there is no single correct set
of entities that can be derived from a list of functions. Given the same business
functions, two organizations might select different key nouns, thereby creating unique

lists of data entities.

 1. Hire employees:

 a) Add an employee

 b) Assign an employee's position

 c) Assign an employee to an office

 d) Assign supervisory authority for an employee

 e) Assign supervisor for an employee

 f) Assign an employee to a department

 2. Terminate employees:

 a) Delete an employee

 b) Delete an employee's position

 c) Remove an employee from an office

 d) Remove supervisory authority for an employee

 e) Remove an employee from a department

Identifying Data Entities

Chapter 4: Identifying Entities and Relationships 37

 3. Maintain employee information:

 a) Assign or change an employee's position

 b) Assign an employee to or remove an employee from an office

 c) Assign an employee to or remove an employee from a department

 d) Assign or remove supervisory authority for an employee

 e) Assign or change supervisor for an employee

 f) List employees for a department

 4. Maintain office and department information:

 a) Assign or delete an office

 b) Change an office address

 c) Add or delete a department

 d) Change a department head

 5. Maintain information about salaries and jobs:

 a) Create a job

 b) Provide a job description

 c) Eliminate a job

 d) Establish job salaries.

 e) Change job description or salary.

Identifying Data Entities

38 Database Design Guide

 6. Maintain skills inventory:

 a) Add a skill

 b) Add a skill for an employee

 c) Identify skills for an employee

 d) Identify skill level for an employee skill

 e) Identify all employees with a particular skill

 f) Identify all employees with a particular skill level

 g) Upgrade an employee skill level

 7. Maintain personnel information about projects:

 a) Add a new project or delete a completed one

 b) Assign and remove employees from a project

 c) Assign or remove a project leader

 d) List names and phone numbers of all workers on a project

 8. Maintain information about employee insurance:

 a) Add or remove a health insurance plan for an employee

 b) Identify the health insurance coverage for an employee

 c) Change coverage for an employee on a plan

 d) Add or change plan and coverage for an employee

 e) Add or delete a claim

 f) Show life and health insurance details for an employee

 g) Submit duplicate claim forms for an employee accident

Steps to identify entities

To identify the data entities for your organization:

1. Determine which nouns in the list of business functions are the key nouns.

2. List these key nouns on a separate piece of paper.

3. Draw a rectangular box around each noun.

Identifying Data Entities

Chapter 4: Identifying Entities and Relationships 39

Data entities for the Commonweather Corporation

Below is a l ist of data entities that was derived from the list of functions for the

Commonweather Corporation.

Identifying Relationships Among Entities

40 Database Design Guide

Identifying Relationships Among Entities

A relationship connects two associated data entities. The relationship between two
entities can often be expressed with a verb. For example, the relationship between the
DEPARTMENT entity and the EMPLOYEE entity might be expressed with the verb phrase
BELONGS TO, since an employee belongs to a department in an organization.

Representing the relationship between two entities

The relationship between two entities is shown wi th a diamond. The name of the
relationship is specified inside the diamond.

No hard-and-fast rule exists for determining data relationships for an organization. Da ta
relationships depend on the requirements of the organization. The concept of marriage,
for example, could be viewed as an entity type or a relationship between two people,

depending on how the data was viewed.

Identifying Relationships Among Entities

Chapter 4: Identifying Entities and Relationships 41

Types of Data Relationships

Data entities in a database are related in one of three ways: one-to-one (1-1),
one-to-many (1-M), and many-to-many (M-M). Each of these types of relationships is
explained below.

One-to-one (1-1)

In the one-to-one example below, for every EMPLOYEE entity occurrence in the
database, there can exist only one corresponding PROJECT entity occurrence.

One-to-many (1-M)

In the one-to-many example below, for every DEPARTMENT entity occurrence in the
database, there may exist one or more corresponding EMPLOYEE entity occurrences.

Many-to-many (M-M)

Identifying Relationships Among Entities

42 Database Design Guide

In the many-to-many example below, for every SKILL entity occurrence in the database,
there can exist one or more corresponding EMPLOYEE entity occurrences; for every

EMPLOYEE entity occurrence in the database, there can also exist one or more
corresponding SKILL entity occurrences.

Other types of data relationships

In addition to relationships between two entity types, the following types of data
relationships are acceptable in an entity-relationship model:

■ A relationship can be defined for only one entity type . For example, to define a

relationship between different employees in an organization, you might wa nt to
combine different data occurrences from the EMPLOYEE entity. In this case, the
relationships among employees might be expressed as MANAGES and REPORTS TO,

as shown in the entity-relationship diagram of Commonweather Corporation.

Identifying Relationships Among Entities

Chapter 4: Identifying Entities and Relationships 43

General Guidelines for Identifying Relationships

To identify the relationships between data entities, perform the following steps:

1. Using the list of business functions, identify relationships between entities as verbs.
In those instances where no verb adequately expresses the relationship, join the

two entity names to form a name for the relationship. For example, the
DEPARTMENT and EMPLOYEE entities could be connected through the relationship
BELONGS TO or through the relationship DEPT-EMPLOYEE.

2. List these key verbs between the entities they connect and draw a diamond around

each one.

3. Associate entities with the appropriate relationships by connecting them with l ines.

4. Label each relationship to show whether it is 1-1, 1-M, or M-M.

Entity-relationship diagram for Commonweather Corporation

The following diagram il lustrates a simple entity-relationship diagram for the

Commonweather Corporation.

Chapter 5: Identifying Attributes 45

Chapter 5: Identifying Attributes

This section contains the following topics:

Overview (see page 45)
Establishing Naming Conventions for the Attributes (see page 46)
Identifying the Attributes of Each Entity (see page 47)

Identifying the Attributes for Each Relationship Type (see page 56)
Identifying Attribute Characteristics (see page 58)

Overview

Attributes and values

An attribute is the smallest unit of data that describes an entity or a relationship. A
single occurrence of an attribute is called a value. For example, John Smith might be one
of several values that exist for the attribute NAME of the entity EMPLOYEE. Several
synonyms are used in the computer industry to refer to an attribute, including data

item, data element, field, and column. All of these terms have roughly the same
meaning.

In this chapter, we will identify the attributes that are associated with each entity and

data relationship defined so far during the logical design process.

Identifying data attributes involves the following procedures:

1. Establishing naming conventions for the attributes

2. Identifying the attributes of each entity

3. Identifying the attributes for each relationship type

Each of these procedures is explained below.

Establishing Naming Conventions for the Attributes

46 Database Design Guide

Establishing Naming Conventions for the Attributes

Because the process of identifying attributes yields information from many different
sources, the information can contain considerable redundancy. Users and data
processing professionals have very different ways of perceiving the same data. The
same piece of information might be called by several names, making it difficult to see

that these names are synonyms for the same attribute. In addition, two different pieces
of data might sometimes be called by the s ame name.

As soon as the business meaning of each attribute is clear, you should establish
conventions for naming the attributes. Adopting a set of standardized naming

conventions appropriate for the organization saves much time and confusion, and helps
to ensure an efficient and effective design.

Identifying the Attributes of Each Entity

Chapter 5: Identifying Attributes 47

Identifying the Attributes of Each Entity

Each entity in a database is described by certain attributes. Attributes are those pieces
of information about an entity that are required for processing performed by the
business functions. By carefully examining the business functions, you can determine
which attributes need to be maintained for each entity in the database.

Attribute categories

Attributes for a data entity fall into the following categories:

■ Unique keys—To distinguish data occurrences, you need to identify unique keys. A
unique key is an attribute or combination of attributes whose value or values

uniquely identify an occurrence of an entity or relationship. Identification numbers
and codes are typically used as unique keys, since their values are rarely modified.

■ Primary keys—A primary key is a unique key that is used to represent an entity in a

database. For example, the attribute EMP ID might be used as the primary key of
the entity EMPLOYEE.

■ Secondary keys—A secondary key is an attribute in a data entity that is used by
certain business functions to access occurrences of that entity. For example, the

EMP NAME attribute might be the secondary key for the entity EMPLOYEE.

■ Foreign keys—A foreign key is an attribute of an entity or relationship that is also
used as the primary key of another entity. A foreign key is used to relate two data

entities. For example, to relate the DEPARTMENT and EMPLOYEE entities, you
might define the DEPT ID attribute, which is the primary key of the DEPARTMENT
entity, as the foreign key of the EMPLOYEE entity.

By itself, a foreign key can never be the primary key of the entity in which it is

stored. Since the DEPT ID attribute could never uniquely identify an occurrence of
the EMPLOYEE entity, it could never be its primary key.

However, a foreign key can be part of the primary key of an entity. In some

instances, you need to combine a foreign key with another data element in an
entity to create its primary key.

■ Non-key data—All attributes of an entity that are not unique keys, primary keys,
secondary keys, or foreign keys are considered non-key attributes. For example, the

EMP ADDRESS attribute is a non-key attribute of the EMPLOYEE entity.

As you identify the attributes of each data entity, you need to determine whether the
attributes are unique keys, primary keys, secondary keys, foreign keys, or non-key
attributes.

Identifying the Attributes of Each Entity

48 Database Design Guide

Grouping the Attributes

You can identify the attributes associated with an entity by examining the following
materials:

■ List of business functions

■ List of business rules

■ List of data elements that you compiled during systems analysis

Attributes for entities

As you determine the attributes that are associated with a particular entity, you should

l ist the attributes, as shown below:

Identifying the Attributes of Each Entity

Chapter 5: Identifying Attributes 49

 OFFICE JOB

 OFFICE CODE JOB ID

 OFFICE ADDRESS JOB TITLE

 OFFICE SPEED DIAL JOB DESCRIPTION

 OFFICE AREA CODE REQUIREMENTS

 OFFICE PHONE MAX SALARY

 MIN SALARY

 DEPARTMENT NUMBER OF POSITIONS

 NUMBER OPEN

 DEPT ID SALARY GRADE

 DEPT NAME

 DEPT HEAD ID

 SKILL PROJECT

 SKILL CODE PROJECT CODE

 SKILL NAME PROJECT LEADER

 SKILL DESCRIPTION PROJECT DESCRIPTION

 EST START DATE

 ACT START DATE

 EST END DATE

 ACT END DATE

 EMPLOYEE HEALTH INS PLAN

 EMP ID HEALTH PLAN CODE

 EMP NAME INSCO NAME

 SS NUMBER INSCO ADDRESS

 EMP ADDRESS INSCO PHONE

 EMP HOME PHONE PLAN DESCRIPTION

 DATE OF BIRTH GROUP NUMBER

 DATE OF HIRE

 DATE OF TERMINATION

 STATUS

 COVERAGE LIFE INS PLAN

 HEALTH PLAN CODE LIFE PLAN CODE

 COVERAGE TYPE INSCO NAME

 COVERAGE DESCRIPTION INSCO ADDRESS

 SELECTION DATE INSCO PHONE

 TERMINATION DATE PLAN DESCRIPTION

Identifying the Attributes of Each Entity

50 Database Design Guide

 DENTAL CLAIM HOSPITAL CLAIM

 DENTAL CLAIM ID HOSPITAL CLAIM ID

 EMP ID DATE OF CLAIM

 COVERAGE TYPE EMP ID

 DATE OF CLAIM COVERAGE TYPE

 PATIENT NAME PATIENT NAME

 RELATION TO EMPLOYEE RELATION TO EMPLOYEE

 PATIENT SEX PATIENT SEX

 PATIENT DATE OF BIRTH PATIENT DATE OF BIRTH

 PATIENT ADDRESS PATIENT ADDRESS

 NUMBER OF DENTAL PROCEDURES DIAGNOSIS

 TOTAL CHARGES TOTAL CHARGES

 DENTIST LICENSE NUMBER HOSPITAL NAME

 DENTIST NAME HOSPITAL ADDRESS

 DENTIST ADDRESS ADMIT DATE

 PROCEDURE ID DISCHARGE DATE

 PROCEDURE DESCRIPTION

 PROCEDURE FEE

 SERVICE DATE

 NON-HOSPITAL CLAIM

 NON-HOSPITAL CLAIM ID

 DATE OF CLAIM

 EMP ID

 COVERAGE TYPE

 PATIENT NAME

 RELATION TO EMPLOYEE

 PATIENT SEX

 PATIENT DATE OF BIRTH

 PATIENT ADDRESS

 NUMBER OF PROCEDURES

 TOTAL CHARGES

 DIAGNOSIS

 PHYSICIAN ID

 PHYSICIAN NAME

 PHYSICIAN ADDRESS

 PROCEDURE ID

 PROCEDURE DESCRIPTION

 PROCEDURE FEE

 SERVICE DATE

Identifying the Attributes of Each Entity

Chapter 5: Identifying Attributes 51

Identifying Unique Keys

An entity can have many attributes, but only some attributes uniquely identify
occurrences of that entity. There might be more than one unique key in an entity. For
example, the EMPLOYEE entity has two unique keys, EMP ID and EMP SS NUM.

For each entity, choose from among its attributes the ones that uniquely identify each
occurrence. The attribute that best serves this purpose is a good candidate for a primary
key. If there is no attribute that uniquely identifies an entity, it might be necessary to
combine two or more attributes for a unique key or create an attribute that serves as a

key.

Identifying the Attributes of Each Entity

52 Database Design Guide

Establishing Primary Keys

What is a primary key?

The primary key for each entity must be a unique key. From a business standpoint, the
primary key should also be the most important element(s) in the entity. The

requirements of your organization will determine which unique key attribute will be the
primary key.

Suppose that you must select a primary key for the EMPLOYEE entity. Since both the
EMP ID and EMP SS NUM attributes can be used to uniquely identify an occurrence of

this entity, you need to select one of these keys. The EMP ID attribute is probably used
most often for processing; therefore, this element is the best choice for the primary key.

Entities with primary keys

Once you have determined the primary key for an entity, you should mark this key with

an asterisk (*), as shown below:

 OFFICE JOB

 * OFFICE CODE * JOB ID

 OFFICE ADDRESS JOB TITLE

 OFFICE SPEED DIAL JOB DESCRIPTION

 OFFICE AREA CODE REQUIREMENTS

 OFFICE PHONE MAX SALARY

 MIN SALARY

 DEPARTMENT NUMBER OF POSITIONS

 NUMBER OPEN

 * DEPT ID SALARY GRADE

 DEPT NAME

 DEPT HEAD ID

 SKILL PROJECT

 * SKILL CODE * PROJECT CODE

 SKILL NAME PROJECT LEADER

 SKILL DESCRIPTION PROJECT DESCRIPTION

 EST START DATE

 ACT START DATE

Identifying the Attributes of Each Entity

Chapter 5: Identifying Attributes 53

 EMPLOYEE EST END DATE

 ACT END DATE

 * EMP ID

 EMP NAME HEALTH INS PLAN

 SS NUMBER

 EMP ADDRESS * HEALTH PLAN CODE

 EMP HOME PHONE INSCO NAME

 DATE OF BIRTH INSCO ADDRESS

 DATE OF HIRE INSCO PHONE

 DATE OF TERMINATION PLAN DESCRIPTION

 STATUS GROUP ID

 LIFE INS PLAN COVERAGE

 * LIFE PLAN CODE * HEALTH PLAN CODE

 INSCO NAME * COVERAGE TYPE

 INSCO ADDRESS COVERAGE DESCRIPTION

 INSCO PHONE SELECTION DATE

 PLAN DESCRIPTION TERMINATION DATE

 GROUP ID

 DENTAL CLAIM HOSPITAL CLAIM

 * DENTAL CLAIM ID * HOSPITAL CLAIM ID

 EMP ID EMP ID

 COVERAGE TYPE COVERAGE TYPE

 DATE OF CLAIM DATE OF CLAIM

 PATIENT NAME PATIENT NAME

 RELATION TO EMPLOYEE RELATION TO EMPLOYEE

 PATIENT SEX PATIENT SEX

 PATIENT DATE OF BIRTH PATIENT DATE OF BIRTH

 PATIENT ADDRESS PATIENT ADDRESS

 NUMBER OF DENTAL PROCEDURES DIAGNOSIS

 TOTAL CHARGES TOTAL CHARGES

 DENTIST LICENSE NUMBER HOSPITAL NAME

 DENTIST NAME HOSPITAL ADDRESS

 DENTIST ADDRESS ADMIT DATE

 PROCEDURE ID DISCHARGE DATE

 PROCEDURE DESCRIPTION

 PROCEDURE FEE

 SERVICE DATE

Identifying the Attributes of Each Entity

54 Database Design Guide

 NON-HOSPITAL CLAIM

 * NON-HOSPITAL CLAIM ID

 EMP ID

 COVERAGE TYPE

 DATE OF CLAIM

 PATIENT NAME

 RELATION TO EMPLOYEE

 PATIENT SEX

 PATIENT DATE OF BIRTH

 PATIENT ADDRESS

 NUMBER OF PROCEDURES

 TOTAL CHARGES

 DIAGNOSIS

 PHYSICIAN ID

 PHYSICIAN NAME

 PHYSICIAN ADDRESS

 PROCEDURE ID

 PROCEDURE DESCRIPTION

 PROCEDURE FEE

 SERVICE DATE

Identifying the Attributes of Each Entity

Chapter 5: Identifying Attributes 55

Identifying Weak Entities

What is a weak entity?

You may find that some entities in your database are identified only by their relationship
with another entity. Such entities are called weak entities. Typically, a weak entity has a

primary key that contains only one foreign key.

The entity DEPENDENT, for example, is a weak entity because it uses the primary key of
the EMPLOYEE entity as part of its own primary key. Whenever an employee leaves the
corporation, all information about that employee as well as any information about

dependents must be erased from the database.

The attribute NAME is the only candidate for a primary key in the DEPENDENT entity,
but NAME does not uniquely identify each occurrence of the DEPENDENT entity.
Therefore, the primary key of the DEPENDENT entity must be a concatenation of the

NAME attribute and the EMP ID attribute of the EMPLOYEE entity. This concatenated
key provides the link between employees and their associated dependents.

Indicating a weak entity

You identify a weak entity on the entity-relationship diagram by drawing a double box
around the entity, as shown in the diagram below.

DEPENDENT is a weak entity because it uses the primary key of the EMPLOYEE entity as
part of its own primary key.

Identifying the Attributes for Each Relationship Type

56 Database Design Guide

Identifying the Attributes for Each Relationship Type

Some data relationships have attributes that describe meaningful non-key information,
others do not, as described below:

■ A one-to-one relationship sometimes carries non-key data. An example of a
one-to-one relationship is LEADS, where the business rules state that each project

has a single leader, and one employee may be project leader for only one project.
For this relationship, it may be important to carry the dates when the project leader
begins and ends leadership responsibility.

■ A one-to-many relationship typically does not carry any non-key data. The

relationship LOCATES, for example, simply relates an employee to a particular
office. There is no additional information about that relationship that is required by
the business functions.

■ Many-to-many relationships usually do carry non-key information required by the
business functions. EXPERT IN, for example, carries information about a particular
employee's level of expertise with a particular skill.

■ A self-referencing structure is a special kind of many-to-many relationship that

sometimes carries non-key data. For example, in the Commonweather
Corporation, the relationship between workers and managers is defined as
REPORTS TO and the relationship between managers and workers is defined as

MANAGES. Non-key data about the REPORTS TO and MANAGES relationships might
be the dates on which a relationship began and ended.

List the attributes

As you determine the attributes that are associated with a particular relationship, you

should l ist these attributes, as follows:

Identifying the Attributes for Each Relationship Type

Chapter 5: Identifying Attributes 57

 IS LOCATED BELONGS TO

 * OFFICE CODE * DEPT ID

 * EMP ID * EMP ID

 LEADS HEADS

 * PROJECT CODE * DEPT ID

 * WRKR EMP ID * HEAD EMP ID

 WORKS ON IS POSITIONED

 * PROJECT CODE * EMP ID

 * WRKR EMP ID * JOB ID

 SALARY

 COMMISSION PERCENT

EXPERT IN BONUS PERCENT

 * EMP ID OVERTIME RATE

 * SKILL CODE START DATE

 SKILL LEVEL END DATE

 DATE ACQUIRED

CHOOSES REPORTS TO

 * EMP ID * WRKR EMP ID

 * HEALTH PLAN CODE * SUPR EMP ID

 * COVERAGE TYPE WRKR BEGIN DATE

 WRKR END DATE

INSURED BY MANAGES

 * EMP ID * SUPR EMP ID

 * LIFE PLAN CODE * WRKR EMP ID

 SUPR BEGIN DATE

 SUPR END DATE

 PAYS FOR HOSP SPECIFIES

 * HEALTH PLAN CODE * HEALTH PLAN CODE

 * COVERAGE TYPE * COVERAGE TYPE

 * HOSPITAL CLAIM ID

 PAYS FOR PHY PAYS FOR DENT

 * HEALTH PLAN CODE * HEALTH PLAN CODE

 * COVERAGE TYPE * COVERAGE TYPE

 * NON-HOSPITAL CLAIM ID * DENTAL CLAIM ID

Identifying Attribute Characteristics

58 Database Design Guide

Identifying Attribute Characteristics

Attribute characteristics

At this time, you can identify characteristics of the attributes you have listed. Attribute
characteristics include:

■ Length

■ Type (alphanumeric or numeric)

■ Nullability

Null values

Sometimes you do not know the data associated with a particular attribute. The
attribute might not be applicable to a particular entity occurrence, such as the phone

number of an employee with no phone. Or the data simply might not be known yet,
such as the credit rating of a new customer. Such attributes should allow null values. An
attribute that does not allow null values requires that data always be entered.

Chapter 6: Normalizing the Data 59

Chapter 6: Normalizing the Data

This section contains the following topics:

Overview (see page 59)
Why Normalize Data? (see page 60)
Normal Forms of Data (see page 61)

How To Normalize Data (see page 66)
Normalized Data for the Commonweather Corporation (see page 73)

Overview

Goals of normalization

You can use normalization techniques to refine the entity-relationship model. Once you
have determined the entities, relationships, and attributes of a database, you can use
normalization procedures to ensure that each entity and relationship is designed in its
simplest form. The goal of normalization is to develop entities that consist of a primary

key, together with a set of attributes whose values are determined solely by the value of
the primary key.

In many instances, you will find that the entities you developed earlier are already

organized in easy-to-use structures. The entity-relationship approach often breaks
entities down into normalized structures naturally. In those instances when data entities
and relationships are fully normalized, the normalization process does not result in any
changes to the design.

Why Normalize Data?

60 Database Design Guide

Why Normalize Data?

Update anomalies

Through normalization, you can develop a database that is protected against update
anomalies. Update anomalies are abnormal processing conditions that result from the
execution of update functions against the database. Update anomalies sometimes

compromise the integrity of the database; therefore, you need to design data entities
and relationships that, when implemented as data tables, are fully protected against
such anomalies.

Types of anomalies

The following examples i l lustrate two types of anomalies:

■ Deletion anomaly──Suppose you want to delete some information from the
following data table:

 JOB

EMP ID JOB ID SALARY GRADE SALARY

1216 ADM 18 15000

1041 MGR 30 30000

1633 INST 23 22000

1063 ADM 18 18000

In the JOB table, the SALARY GRADE depends only on the JOB ID. If you delete the
row for employee 1041 in the JOB table, you therefore lose not only the fact that
employee 1041 is a manager, but also the fact that the SALARY GRADE for a
manager is 30.

■ Insertion anomaly──Suppose you want to add some information to the JOB table.
You want to enter the fact that a programmer has a SALARY GRADE of 21. Because
of the structure of the JOB table, you cannot enter this information until someone

actually has a job as a programmer.

Preventing anomalies

To prevent anomalies from occurring during deletions and insertions of rows in the JOB
table, you might create two separate tables:

 POSITION JOB

EMP ID JOB ID SALARY JOB ID SALARY GRADE

1216 ADM 15000 ADM 18

1041 MGR 30000 MGR 30

1633 INST 22000 INST 23

1063 ADM 18000 PGMR 21

Normal Forms of Data

Chapter 6: Normalizing the Data 61

Now you can delete the row for empl oyee 1041 in the POSITION table without losing
the fact that the SALARY GRADE for a manager is 30. You can also specify that a

programmer has a SALARY GRADE of 21 in the JOB table without first specifying a
programmer's name.

By breaking down data tables i nto smaller tables, you prevent update anomalies from

occurring.

Normal Forms of Data

All normalized data tables exist in one of the following normal forms:

■ First normal form

■ Second normal form

■ Third normal form

A data table that exists in a particular normal form complies with the rules that define
that form. A table that exists in second normal form satisfies the criteria for first normal

form; in addition, a table in third normal form satisfies the criteria for both first and
second normal forms.

Goal of normalization

Since the rules of third normal form are the most rigorous, they are also the most

desirable. The goal of the normalization process is to create data tables that are
organized in third normal form.

Note: Several database theorists have suggested that tables in third normal form can be
broken down into even simpler structures. For example, some theorists recommend

that tables be organized in fourth or fifth normal form. However, at the present time, it
seems most practical to organize data tables in third normal form.

The first, second, and third normal forms of data organization are discussed in the

following sections.

Normal Forms of Data

62 Database Design Guide

First Normal Form

A data table is in first normal form if each of the attributes of a given row contains a
single value. A table in first normal form has no repeating groups.

Table not in first normal form

Since the following table contains a repeating element called BUDGET, it is not in first
normal form:

Note: In these examples, primary key attributes are highlighted.

 DEPARTMENT

DEPT ID DEPT NAME BUDGET

1000 OPERATIONS 50000

 30000

 40000

 30000

Table in first normal form

The following table is in first normal form:

 DEPARTMENT

DEPT ID DEPT NAME

1000 OPERATIONS

2046 DEVELOPMENT

3333 DOCUMENTATION

5653 MARKETING

Normal Forms of Data

Chapter 6: Normalizing the Data 63

Second Normal Form

A data table is in second normal form if it is in first normal form and its entire primary
key determines the values of each of its attributes. When a table is in second normal
form, each of the attributes is dependent on the whole key and not any part of the key.

Table in first normal form

The POSITION table shown below is in first normal form but not in second normal form:

 POSITION

EMP ID JOB ID EMP NAME SALARY GRADE SALARY

1216 ADM SMITH 18 15000

1041 MGR JONES 30 30000

1633 INST DAVIS 23 22000

1063 ADM EVANS 18 18000

In the POSITION table shown above, the primary key is the concatenation of EMP ID and
JOB ID. This table is not in second normal form because some of the non-key attributes

are dependent on a part of the primary key. For example, the EMP NAME attribute is
dependent on only EMP ID, while the SALARY GRADE attribute is dependent only on JOB
ID.

Table in first and second normal forms

The following table is in both first and second normal forms:

 POSITION

EMP ID JOB ID SALARY

1216 ADM 15000

1041 MGR 30000

1633 INST 22000

1063 ADM 18000

In the POSITION table shown above, the primary key is the concatenation of EMP ID and
JOB ID. The POSITION table is in first normal form becaus e it contains no repeating

groups. It is in second normal form because the non-key attribute SALARY is dependent
on the entire primary key (the concatenation of EMP ID and JOB ID). If a user knows an
EMP ID value and a JOB ID value, the user can easily find out the SALARY for an
employee who works in a particular job.

Normal Forms of Data

64 Database Design Guide

Third Normal Form

A data table is in third normal form if it is in second normal form and no non-key
attribute determines the value of another non-key attribute; a table that is in third
normal form contains no transitive dependencies among non-key attributes.

Table not in third normal form

The EMPLOYEE table shown below is not in third normal form:

 EMPLOYEE

EMP ID EMP NAME DEPT ID DEPT NAME

1216 SMITH 1000 OPERATIONS

1041 JONES 3500 MARKETING

1633 DAVIS 3400 DOCUMENTATION

1063 EVANS 2000 SUPPORT

Let's assume that EMP ID is the primary key of the EMPLOYEE table shown above. In this
case, the table is not in third normal form because a non-key attribute has a transitive

dependency on another non-key attribute. The DEPT NAME attribute is dependent on
the DEPT ID attribute; a DEPT NAME value can be determined by the value of a
particular DEPT ID.

Normalizing the table

To normalize the EMPLOYEE table shown above, you could break down this table into

two separate tables:

 EMPLOYEE DEPARTMENT

EMP ID EMP NAME DEPT ID DEPT NAME

1216 SMITH 1000 OPERATIONS

1041 JONES 3500 MARKETING

1633 DAVIS 3400 DOCUMENTATION

1063 EVANS 2000 SUPPORT

Since the EMP NAME attribute is not dependent on any other non-key attribute, the
EMPLOYEE table shown above is in third normal form. In a ddition, since the DEPT NAME
attribute is not dependent on any other non-key attribute, the DEPARTMENT table is

also in third normal form.

Normal Forms of Data

Chapter 6: Normalizing the Data 65

Rules of first, second, and third normal forms

The following table summarizes the rules of each normal form of data organization.

Normal Form Rules

First normal form A data table is in first normal form if each of the

attributes of a given row contains a single value; a
table in first normal form has no repeating groups.

Second normal form A data table is in second normal form if it is in first
normal form and its entire primary key determines

the values of each of its attributes. When a table is in
second normal form, each of the attributes is
dependent on the whole key and not any part of the
key.

Third normal form A data table is in third normal form if it is in second
normal form and no non-key attribute determines the
value of another non-key attribute. A table that is in

third normal form contains no transitive
dependencies among non-key attributes.

How To Normalize Data

66 Database Design Guide

How To Normalize Data

The primary key for a data entity is used to determine whether the attributes for that
entity satisfy the rules of second and third norma l form. Sometimes you will need to
organize the same list of attributes for an entity in different ways, depending on which
attribute(s) is selected as the primary key.

Atomic primary key

The DENTAL CLAIM entity shown below is uniquely identified by an atomic primary key.
An atomic primary key is a primary key that consists of a single attribute. The atomic
primary key for the DENTAL CLAIM entity shown below is DENTAL CLAIM ID.

 DENTAL CLAIM

 * DENTAL CLAIM ID

 EMP ID

 COVERAGE TYPE

 DATE OF CLAIM

 PATIENT NAME

 RELATION TO EMPLOYEE

 PATIENT SEX

 PATIENT DATE OF BIRTH

 PATIENT ADDRESS

 NUMBER OF DENTAL PROCEDURES

 TOTAL CHARGES

 DENTIST LICENSE NUMBER

 DENTIST NAME

 DENTIST ADDRESS

 PROCEDURE ID

 PROCEDURE DESCRIPTION

 PROCEDURE FEE

 SERVICE DATE

In all the examples that follow, primary key attributes are indicated with a star (*).

How To Normalize Data

Chapter 6: Normalizing the Data 67

Listing Data in First Normal Form

After you have listed a particular entity and its a ttributes, you need to verify that the
entity is in first normal form:

1. Remove repeating groups:

a. For each repeating group identified, create a new entity.

b. List its attributes.

c. Identify its primary key.

d. For each new entity created, create a relationship that relates it to the original

entity in a 1-M manner.

2. Update the E-R diagram to reflect your changes.

Dental claim information in first normal form

The entities that describe dental claim information are l isted in first normal form in the

table below. The bold entity and relationship were added to organize the information in
first normal form.

Data Entity/
Relationship

Description

DENTAL CLAIM

* DENTAL CLAIM ID

 EMP ID

 COVERAGE TYPE

 DATE OF CLAIM

 PATIENT NAME

 RELATION TO EMPLOYEE

 PATIENT SEX

 PATIENT DATE OF BIRTH

 PATIENT ADDRESS

 DENTIST LICENSE NUMBER

 DENTIST NAME

 DENTIST ADDRESS

Entity Describes a dental claim
for an employee.

LISTS A DP

(dental procedure)

* DENTAL CLAIM ID

* PROCEDURE ID

Relationship Relates DENTAL CLAIM to
DENTAL PROCEDURE.

How To Normalize Data

68 Database Design Guide

Data Entity/
Relationship

Description

DENTAL PROCEDURE

* DENTAL CLAIM ID

* PROCEDURE ID

 PROCEDURE DESCRIPTION

 PROCEDURE FEE

 SERVICE DATE

Entity Describes the procedures
for a particular dental
claim; this weak entity

was derived from the
DENTAL CLAIM entity
because its attributes
appeared as repeating

elements.

Listing Data in Second Normal Form

To verify that all entities are in second normal form, perform the following steps:

1. Identify entities with compound keys. Entities with compound keys are sometimes

in first normal form but not in second normal form. Therefore, you need to carefully
examine each entity that has more than one attribute in its primary key. By
definition, entities with atomic keys are in second normal form (that is, if the entity

contains no repeating groups and you selected an appropriate attribute as the
primary key).

2. Remove partially dependent attributes:

a. Locate any attributes that are dependent on only part of a compound key.

b. Remove these attributes and create a new entity. Create a new relationship to

relate the new entity to the entity from which it was removed.

3. Update the E-R diagram to reflect these changes.

How To Normalize Data

Chapter 6: Normalizing the Data 69

Dental claim information in second normal form

The entities and relationships that describe dental claim information are l isted in second

normal form in the following table. No changes were made to organize the information
in second normal form.

Data Entity/
Relationship

Description

DENTAL CLAIM

* DENTAL CLAIM ID

 EMP ID

 COVERAGE TYPE

 DATE OF CLAIM

 PATIENT NAME

 RELATION TO EMPLOYEE

 PATIENT SEX

 PATIENT DATE OF BIRTH

 PATIENT ADDRESS

 DENTIST LICENSE NUMBER

 DENTIST NAME

 DENTIST ADDRESS

Entity Describes a dental claim
for an employee.

LISTS A DP

 (dental procedure)

* DENTAL CLAIM ID

* PROCEDURE ID

Relationship Relates DENTAL CLAIM to
DENTAL PROCEDURE.

DENTAL PROCEDURE

* DENTAL CLAIM ID

* PROCEDURE ID

 PROCEDURE DESCRIPTION

 PROCEDURE FEE

 SERVICE DATE

Entity Describes the procedures
for a particular dental

claim; this weak entity
was derived from the
DENTAL CLAIM entity
because its attributes

appeared as repeating
elements.

How To Normalize Data

70 Database Design Guide

Listing Data in Third Normal Form

To organize data entities in third normal form, perform the following steps:

1. Remove transitively dependent attributes:

a. Locate any non-key attributes that are facts about another non-key attribute.

b. Remove these attributes and create a new entity.

c. Create a new relationship that relates the new entity to the original entity.

2. Update the E-R diagram to reflect your changes.

Dental claim information in third normal form

The entities and relationships that describe dental claim information are l isted in third
normal form in the following table.

The bold entities and relationships were added to organize the information in third
normal form. Since none of the entities l isted contain attributes that are dependent on
part of the primary key, the information shown in this table is also in second normal

form.

Data Entity/
Relationship

Description

DENTAL CLAIM

* DENTAL CLAIM ID

 EMP ID

 DATE OF CLAIM

Entity Describes a dental claim
for an employee.

How To Normalize Data

Chapter 6: Normalizing the Data 71

Data Entity/
Relationship

Description

LISTS A DP

* DENTAL CLAIM ID

* DENTAL PROCEDURE ID

Relationship Relates DENTAL CLAIM to
DENTAL PROCEDURE.

DENTAL PROCEDURE

* DENTAL CLAIM ID

* PROCEDURE ID

 PROCEDURE DESCRIPTION

 PROCEDURE FEE

 SERVICE DATE

Entity Describes the procedures
for a particular dental
claim; this weak entity

was derived from the
DENTAL CLAIM entity
because its attributes
appeared as repeating

elements.

CLAIMS DENT

* EMP ID

* PATIENT NAME

* DENTAL CLAIM ID

Relationship Relates PATIENT to
DENTAL CLAIM.

PATIENT

* EMP ID

* PATIENT NAME

 RELATION TO EMPLOYEE

 PATIENT DATE OF BIRTH

 PATIENT ADDRESS

Entity Describes a patient who
makes a claim; this entity

was derived from the
DENTAL CLAIM entity to
avoid transitive

dependencies; in second
normal form, the
attributes RELATION TO
EMPLOYEE, PATIENT

DATE OF BIRTH, and
PATIENT ADDRESS were
dependent on the

non-key attributes
PATIENT NAME and EMP
ID of DENTAL CLAIM.

DENT CLAIMED FOR

* DENTAL CLAIM ID

* DENTIST LICENSE NUMBER

Relationship Relates DENTIST to

DENTAL CLAIM.

How To Normalize Data

72 Database Design Guide

Data Entity/
Relationship

Description

DENTIST

* DENTIST LICENSE NUMBER

 DENTIST NAME

 DENTIST ADDRESS

Entity Describes the dentist who
performs dental work for
a patient; this entity was

derived from the DENTAL
CLAIM entity to avoid
transitive dependencies;
in second normal form,

the attributes DENTIST
NAME and DENTIST
ADDRESS were
transitively dependent on

the non-key attributes
DENTIST NAME and
DENTIST ADDRESS of the

DENTAL CLAIM entity.

Normalized Data for the Commonweather Corporation

Chapter 6: Normalizing the Data 73

Normalized Data for the Commonweather Corporation

The data entities and relationships for the Commonweather Corporation are l isted in
first, second, and third normal forms in the following tables.

Data entities for Commonweather in first normal form

The bold entities and relationships were added to organize the information in first

normal form. Since none of the entities l isted contain attributes that are dependent on
part of the primary key, the information shown in this table is already in second normal
form.

Data Entity/ relationship Description

OFFICE

* OFFICE CODE

 OFFICE ADDRESS

 OFFICE SPEED DIAL

 OFFICE AREA CODE

Entity Describes offices in which
employees work.

CALLS

* OFFICE CODE

* OFFICE PHONE

Relationship Relates OFFICE and
PHONE.

PHONE

* OFFICE PHONE

Entity Describes office phones;
this entity was derived
from the OFFICE entity

because its attributes
appeared as repeating
elements.

IS LOCATED

* OFFICE CODE

* EMP ID

Relationship Relates EMPLOYEE and
OFFICE.

SKILL

* SKILL CODE

 SKILL NAME

 SKILL DESCRIPTION

Entity Describes the skil ls for
each employee.

Normalized Data for the Commonweather Corporation

74 Database Design Guide

Data Entity/ relationship Description

EXPERT IN

* SKILL CODE

* EMP ID

 SKILL LEVEL

 DATE ACQUIRED

Relationship Relates SKILL and

EMPLOYEE.

DEPARTMENT

* DEPT ID

 DEPT NAME

Entity Describes the
departments that

employees belong to.

BELONGS TO

* DEPT ID

* EMP ID

Relationship Relates DEPARTMENT and
EMPLOYEE.

HEADS

* DEPT ID

* EMP ID

Relationship Relates DEPARTMENT and

EMPLOYEE.

JOB

* JOB ID

 JOB TITLE

 JOB DESCRIPTION

 REQUIREMENTS

 MAX SALARY

 MIN SALARY

 NUMBER OF POSITIONS

Entity Describes the jobs

employees perform within
the company.

PAYS

* JOB ID

* SALARY GRADE

Relationship Relates JOB and SALARY
GRADE.

Normalized Data for the Commonweather Corporation

Chapter 6: Normalizing the Data 75

Data Entity/ relationship Description

SALARY GRADE

* JOB ID

* SALARY GRADE

 GRADE MIN SALARY

 GRADE MAX SALARY

Entity Describes the salary

grades for each job; this
weak entity was derived
from JOB because its

attributes appeared as
repeating elements.

IS POSITIONED

* JOB ID

* EMP ID

 SALARY

 OVERTIME RATE

 COMMISSION PERCENT

 BONUS PERCENT

 START DATE

 TERMINATION DATE

Relationship Relates EMPLOYEE and
JOB.

PROJECT

* PROJECT CODE

 PROJECT DESCRIPTION

 EST START DATE

 ACT START DATE

 EST END DATE

 ACT END DATE

Entity Describes projects that
employees work on and
lead.

WORKS ON

* PROJECT CODE

* EMP ID

 WO START DATE

 WO END DATE

Relationship Relates EMPLOYEE and
PROJECT.

LEADS

* PROJECT CODE

* EMP ID

Relationship Relates EMPLOYEE and
PROJECT

Normalized Data for the Commonweather Corporation

76 Database Design Guide

Data Entity/ relationship Description

REPORTS TO

* WRKR EMP ID

* SUPR EMP ID

 WRKR START DATE

 WRKR END DATE

Relationship Relates those employees

who are supervisors to
other employees who are
workers.

MANAGES

* SUPR EMP ID

* WRKR EMP ID

 SUPR START DATE

 SUPR END DATE

Relationship Relates those employees
who are workers to other

employees who are
supervisors.

EMPLOYEE

* EMP ID

 EMP NAME

 SS NUMBER

 EMP ADDRESS

 EMP HOME PHONE

 DATE OF BIRTH

 DATE OF HIRE

 DATE OF TERMINATION

 STATUS

Entity Describes company
employees.

INSURED BY

* EMP ID

* LIFE PLAN CODE

Relationship Relates EMPLOYEE and
LIFE INS PLAN.

LIFE INS PLAN

* LIFE PLAN CODE

 INSCO NAME

 INSCO ADDRESS

 INSCO PHONE

 PLAN DESCRIPTION

 GROUP NUMBER

Entity Describes a l ife insurance
plan for each employee.

Normalized Data for the Commonweather Corporation

Chapter 6: Normalizing the Data 77

Data Entity/ relationship Description

CHOOSES

* EMP ID

* HEALTH PLAN CODE

* COVERAGE TYPE

Relationship Relates EMPLOYEE and

COVERAGE.

COVERAGE

* HEALTH PLAN CODE

* COVERAGE TYPE

 COVERAGE DESCRIPTION

 SELECTION DATE

 TERMINATION DATE

Entity Describes health coverage
for each employee.

SPECIFIES

* HEALTH PLAN CODE

* COVERAGE TYPE

Relationship Relates COVERAGE and
HEALTH INS PLAN.

HEALTH INS PLAN

* HEALTH PLAN CODE

 GROUP NUMBER

 INSCO NAME

 INSCO ADDRESS

 INSCO PHONE

 PLAN DESCRIPTION

Entity Describes health
insurance plans for
employees.

PAYS FOR DENT

* HEALTH PLAN CODE

* COVERAGE TYPE

* DENTAL CLAIM ID

Relationship Relates COVERAGE and
DENTAL CLAIM.

Normalized Data for the Commonweather Corporation

78 Database Design Guide

Data Entity/ relationship Description

DENTAL CLAIM

* DENTAL CLAIM ID

 EMP ID

 COVERAGE TYPE

 DATE OF CLAIM

 PATIENT NAME

 RELATION TO EMPLOYEE

 PATIENT SEX

 PATIENT DATE OF BIRTH

 PATIENT ADDRESS

 DENTIST LICENSE NUMBER

 DENTIST NAME

 DENTIST ADDRESS

Entity Describes a dental claim

for an employee; in this
example, the DENTAL
CLAIM entity has an

atomic key, DENTAL
CLAIM ID.

LISTS A DP

* DENTAL CLAIM ID

* PROCEDURE ID

Relationship Relates DENTAL CLAIM

and DENTAL PROCEDURE.

DENTAL PROCEDURE

* DENTAL CLAIM ID

* PROCEDURE ID

 PROCEDURE DESCRIPTION

 PROCEDURE FEE

 SERVICE DATE

Entity Describes the procedures

for a particular dental
claim; this entity was
derived from the DENTAL

CLAIM entity because its
attributes appeared as
repeating elements.

PAYS FOR HOSP

* HOSPITAL CLAIM ID

* HEALTH PLAN CODE

* COVERAGE TYPE

Relationship Relates COVERAGE and

HOSPITAL CLAIM.

Normalized Data for the Commonweather Corporation

Chapter 6: Normalizing the Data 79

Data Entity/ relationship Description

HOSPITAL CLAIM

* HOSPITAL CLAIM ID

 EMP ID

 COVERAGE TYPE

 DATE OF CLAIM

 PATIENT NAME

 RELATION TO EMPLOYEE

 PATIENT SEX

 PATIENT DATE OF BIRTH

 PATIENT ADDRESS

 DIAGNOSIS

 HOSPITAL NAME

 HOSPITAL ADDRESS

 HOSPITAL PHONE

 HOSPITAL CHARGES

 ADMIT DATE

 DISCHARGE DATE

Entity Describes a hospital claim

for an employee.

PAYS FOR PHY

* HEALTH PLAN CODE

* COVERAGE TYPE

* NON-HOSPITAL CLAIM ID

Relationship Relates COVERAGE and

NON-HOSPITAL CLAIM.

Normalized Data for the Commonweather Corporation

80 Database Design Guide

Data Entity/ relationship Description

NON-HOSPITAL CLAIM

* NON-HOSPITAL CLAIM ID

 EMP ID

 COVERAGE TYPE

 DATE OF CLAIM

 PATIENT NAME

 RELATION TO EMPLOYEE

 PATIENT SEX

 PATIENT DATE OF BIRTH

 PATIENT ADDRESS

 DIAGNOSIS

 PHYSICIAN ID

 PHYSICIAN NAME

 PHYSICIAN ADDRESS

 NUMBER OF NON-HOSP

 PROCEDURES

 PHYSICIAN CHARGES

Entity Describes a non-hospital

claim for an employee.

LISTS A NHP

* NON-HOSPITAL CLAIM ID

* NON-HOSPITAL

 PROCEDURE ID

Relationship Relates NON-HOSPITAL

CLAIM and
NON-HOSPITAL
PROCEDURE.

NON-HOSPITAL PROCEDURE

* NON-HOSPITAL CLAIM ID

* PROCEDURE ID

 PROCEDURE DESCRIPTION

 PROCEDURE FEE

 SERVICE DATE

Entity Describes the procedures
for a particular hospital
claim; this weak entity

was derived from the
NON-HOSPITAL CLAIM
entity because its

attributes appeared as
repeating elements.

Normalized Data for the Commonweather Corporation

Chapter 6: Normalizing the Data 81

Data structure diagram showing Commonweather entities in first normal form

Data entities for Commonweather in second normal form

No changes were made to organize the information in second normal form.

Normalized Data for the Commonweather Corporation

82 Database Design Guide

Data entities for Commonweather in third normal form

The bold entities and relationships were added to organize the information in third
normal form.

Data Entity/
Relationship

Description

OFFICE

* OFFICE CODE

 OFFICE ADDRESS

 OFFICE SPEED DIAL

 OFFICE AREA CODE

Entity Describes the offices employees
work in.

Normalized Data for the Commonweather Corporation

Chapter 6: Normalizing the Data 83

Data Entity/
Relationship

Description

CALLS

* OFFICE CODE

* OFFICE PHONE

Relationship Relates OFFICE and PHONE.

PHONE

* OFFICE PHONE

Entity Describes office phones; this
entity was derived from the
OFFICE entity because its

attributes appeared as repeating
elements.

IS LOCATED

* OFFICE CODE

* EMP ID

Relationship Relates EMPLOYEE and OFFICE.

SKILL

* SKILL CODE

 SKILL NAME

 SKILL DESCRIPTION

Entity Describes skil ls for each employee.

EXPERT IN

* SKILL CODE

* EMP ID

 SKILL LEVEL

 DATE ACQUIRED

Relationship Relates SKILL and EMPLOYEE.

DEPARTMENT

* DEPT ID

 DEPT NAME

Entity Describes departments in which

employees work.

BELONGS TO

* DEPT ID

* EMP ID

Relationship Relates DEPARTMENT and
EMPLOYEE.

HEADS

* DEPT ID

* EMP ID

Relationship Relates DEPARTMENT and
EMPLOYEE.

Normalized Data for the Commonweather Corporation

84 Database Design Guide

Data Entity/
Relationship

Description

JOB

* JOB ID

 JOB TITLE

 JOB DESCRIPTION

 REQUIREMENTS

 MAX SALARY

 MIN SALARY

 NUMBER OF POSITIONS

Entity Describes the jobs employees
perform within the company.

PAYS

* JOB ID

* SALARY GRADE

Relationship Relates JOB and SALARY GRADE.

SALARY GRADE

* JOB ID

* SALARY GRADE

 GRADE MIN SALARY

 GRADE MAX SALARY

Entity Describes salary grades for each

job; this entity was derived from
the JOB entity because its
attributes appeared as repeating
elements.

IS POSITIONED

* JOB ID

* EMP ID

 SALARY

 OVERTIME RATE

 COMMISSION PERCENT

 BONUS PERCENT

 START DATE

 TERMINATION DATE

Relationship Relates JOB and EMPLOYEE.

Normalized Data for the Commonweather Corporation

Chapter 6: Normalizing the Data 85

Data Entity/
Relationship

Description

PROJECT

* PROJECT CODE

 PROJECT DESCRIPTION

 EST START DATE

 ACT START DATE

 EST END DATE

 ACT END DATE

Entity Describes the projects that
employees work on.

WORKS ON

* PROJECT CODE

* EMP ID

 WO START DATE

 WO END DATE

Relationship Relates EMPLOYEE and PROJECT.

LEADS

* PROJECT CODE

* EMP ID

Relationship Relates EMPLOYEE and PROJECT.

REPORTS TO

* WRKR EMP ID

* SUPR EMP ID

 WRKR START DATE

 WRKR END DATE

Relationship Relates those employees who are
supervisors to other employees
who are workers.

MANAGES

* SUPR EMP ID

* WRKR EMP ID

 SUPR START DATE

 SUPR END DATE

Relationship Relates those employees who are

workers to other employees who
are supervisors.

Normalized Data for the Commonweather Corporation

86 Database Design Guide

Data Entity/
Relationship

Description

EMPLOYEE

* EMP ID

 EMP NAME

 SS NUMBER

 EMP ADDRESS

 EMP HOME PHONE

 DATE OF BIRTH

 DATE OF HIRE

 DATE OF TERMINATION

 STATUS

Entity Describes company employees.

INSURED BY

* EMP ID

* LIFE PLAN CODE

Relationship Relates EMPLOYEE and LIFE INS
PLAN.

LIFE INS PLAN

* LIFE PLAN CODE

 PLAN DESCRIPTION

 GROUP NUMBER

Entity Describes the life insurance plan
for each employee.

CHOOSES

* EMP ID

* HEALTH PLAN CODE

* COVERAGE TYPE

Relationship Relates EMPLOYEE and

COVERAGE.

COVERAGE

* HEALTH PLAN CODE

* COVERAGE TYPE

 COVERAGE DESCRIPTION

Entity Describes the health coverage
chosen by each employee.

SPECIFIES

* HEALTH PLAN CODE

* COVERAGE TYPE

Relationship Relates HEALTH INS PLAN and
COVERAGE.

Normalized Data for the Commonweather Corporation

Chapter 6: Normalizing the Data 87

Data Entity/
Relationship

Description

HEALTH INS PLAN

* HEALTH PLAN CODE

 GROUP NUMBER

 PLAN DESCRIPTION

Entity Describes the health insurance for
each employee.

PROVIDES LIP

* LIFE PLAN CODE

* INSCO NAME

Relationship Relates INS CO and LIFE INS PLAN.

PROVIDES HIP

* HEALTH PLAN CODE

* INSCO NAME

Relationship Relates INS CO and HEALTH INS
PLAN.

INS CO

* INSCO NAME

 INSCO ADDRESS

 INSCO PHONE

Entity Describes insurance companies;

this entity was derived from the
LIFE INS PLAN and HEALTH INS
PLAN entities to avoid transitive
dependencies; in second normal

form, the attributes INSCO
ADDRESS and INSCO PHONE were
transitively dependent on the

non-key attribute INSCO NAME.

PAYS FOR DENT

* HEALTH PLAN CODE

* COVERAGE TYPE

* DENTAL CLAIM ID

Relationship Relates COVERAGE and DENTAL
CLAIM.

DENTAL CLAIM

* DENTAL CLAIM ID

 DATE OF CLAIM

Entity Describes a dental claim for an

employee; in this example, the
DENTAL CLAIM entity has an
atomic key, DENTAL CLAIM ID.

LISTS A DP

* DENTAL CLAIM ID

* PROCEDURE ID

Relationship Relates DENTAL CLAIM and

DENTAL PROCEDURE.

Normalized Data for the Commonweather Corporation

88 Database Design Guide

Data Entity/
Relationship

Description

DENTAL PROCEDURE

* DENTAL CLAIM ID

* PROCEDURE ID

 PROCEDURE DESCRIPTION

 PROCEDURE FEE

 SERVICE DATE

Entity Describes the procedures for a
particular dental claim; this entity
was derived from the DENTAL

CLAIM entity because its
attributes appeared as repeating
elements.

DENT CLAIMED FOR

* DENTAL CLAIM ID

* DENTIST LICENSE NUMBER

Relationship Relates DENTIST and DENTAL
CLAIM.

DENTIST

* DENTIST LICENSE NUMBER

 DENTIST NAME

 DENTIST ADDRESS

 DENTIST PHONE

Entity Describes the dentist who
performed dental work for a
patient; this entity was derived

from the DENTAL CLAIM entity to
avoid transitive dependencies; in
second normal form, the
attributes DENTIST NAME and

DENTIST ADDRESS were
transitively dependent on the
non-key attributes DENTIST NAME

and DENTIST ADDRESS of the
DENTAL CLAIM entity.

CLAIMS DENT

* DENTAL CLAIM ID

* PATIENT NAME

* EMP ID

Relationship Relates PATIENT and DENTAL
CLAIM.

PAYS FOR HOSP

* HOSPITAL CLAIM ID

* HEALTH PLAN CODE

* COVERAGE TYPE

Relationship Relates COVERAGE and HOSPITAL
CLAIM.

Normalized Data for the Commonweather Corporation

Chapter 6: Normalizing the Data 89

Data Entity/
Relationship

Description

HOSPITAL CLAIM

* HOSPITAL CLAIM ID

 EMP ID

 COVERAGE TYPE

 DATE OF CLAIM

 HOSPITAL CHARGES

 ADMIT DATE

 DISCHARGE DATE

 DIAGNOSIS

Entity Describes a hospital claim for an
employee.

HOSP CLAIMED FOR

* HOSPITAL CLAIM ID

* HOSPITAL NAME

Relationship Relates HOSPITAL CLAIM and

HOSPITAL.

HOSPITAL

* HOSPITAL NAME

 HOSPITAL ADDRESS

 HOSPITAL PHONE

Entity Describes the hospital in which a
patient was treated; this entity
was derived from the HOSPITAL
CLAIM entity to avoid transitive

dependencies; in second normal
form, the attributes HOSPITAL
ADDRESS and HOSPITAL PHONE

were transitively dependent on
the non-key attribute HOSPITAL
NAME of the HOSPITAL CLAIM
entity.

CLAIMS HOSP

* HOSPITAL CLAIM ID

* PATIENT NAME

* EMP ID

Relationship Relates PATIENT and HOSPITAL
CLAIM.

PAYS FOR PHY

* HEALTH PLAN CODE

* COVERAGE TYPE

* NON-HOSPITAL CLAIM ID

Relationship Relates COVERAGE and
NON-HOSPITAL CLAIM.

Normalized Data for the Commonweather Corporation

90 Database Design Guide

Data Entity/
Relationship

Description

NON-HOSPITAL CLAIM

* NON-HOSPITAL CLAIM ID

 DATE OF CLAIM

 DIAGNOSIS

Entity Describes a non-hospital claim for
an employee.

LISTS A NHP

* NON-HOSPITAL CLAIM ID

* PROCEDURE ID

Relationship Relates NON-HOSPITAL CLAIM and
NON-HOSPITAL PROCEDURE.

NON-HOSPITAL PROCEDURE

* NON-HOSPITAL CLAIM ID

* PROCEDURE ID

 PROCEDURE DESCRIPTION

 PROCEDURE FEE

 SERVICE DATE

Entity Describes the procedures for a
particular non-hospital claim; this

entity was derived from the
NON-HOSPITAL CLAIM entity
because its attributes appeared as

repeating elements.

PHYS CLAIMED FOR

* NON-HOSPITAL CLAIM ID

* PHYSICIAN ID

Relationship Relates NON-HOSPITAL CLAIM and
PHYSICIAN.

PHYSICIAN

* PHYSICIAN ID

 PHYSICIAN NAME

 PHYSICIAN ADDRESS

 PHYSICIAN PHONE

Entity Describes a physician who

performed a service for a patient;
this entity was derived from the
NON-HOSPITAL CLAIM entity to
avoid transitive dependencies; in

second normal form, the
attributes PHYSICIAN NAME,
PHYSICIAN ADDRESS, and

PHYSICIAN PHONE were
transitively dependent on the
non-key attribute PHYSICIAN ID of
the NON-HOSPITAL CLAIM entity.

CLAIMS NHOSP

* NON-HOSPITAL CLAIM ID

* PATIENT NAME

* EMP ID

Relationship Relates NON-HOSPITAL CLAIM and
PATIENT.

Normalized Data for the Commonweather Corporation

Chapter 6: Normalizing the Data 91

Data Entity/
Relationship

Description

PATIENT

* EMP ID

* PATIENT NAME

 RELATION TO EMPLOYEE

 PATIENT SEX

 PATIENT DATE OF BIRTH

 PATIENT ADDRESS

Entity Describes a patient who makes a
claim; this entity was derived from
the DENTAL CLAIM, HOSPITAL

CLAIM, and NON-HOSPITAL CLAIM
entities to avoid transitive
dependencies; in second normal
form, the attributes RELATION TO

EMPLOYEE, PATIENT SEX, PATIENT
DATE OF BIRTH, and PATIENT
ADDRESS were transitively
dependent on the non-key

attributes PATIENT NAME and
EMP ID of the DENTAL CLAIM
entity; PATIENT is a weak entity

related to EMPLOYEE.

Normalized Data for the Commonweather Corporation

92 Database Design Guide

Data structure diagram showing Commonweather entities in third normal form

Chapter 7: Validating the Logical Design 93

Chapter 7: Validating the Logical
Design

The final test of a logical design is whether it provides all the
information needed for application processing. To verify that your
logical database design is complete, you therefore need to simulate
the flow of each business processing function through the database.

Tracing the access path

An access path shows the order in which data entities and their
attributes are retrieved in the course of application processing. By
tracing the access path of each general and specific business function,
you can determine whether the database will support the processing

needs of your organization. For clarity and readability, you need to
draw a separate access path diagram for each business function.

Perform the following steps for each function:

1. Identify the entry point for the function. The entry point for a
function is the first entity that it accesses in the database. You can

determine the entry point for a function by analyzing the
description of the function. (See Chapter 3, "Analyzing the
Business System".) From the description of a particular function,

you need to determine the most direct way to carry out the
function.

2. Identify all entities and relationships that must be accessed. First
make a l ist of all attributes required by the application. Then

identify the entities and relationships that contain those
attributes.

Normalized Data for the Commonweather Corporation

94 Database Design Guide

3. Trace the direction of data flow. To distinguish the direction of
data flow from those lines that represent data relationships, you

need to draw dotted lines to indicate the flow:

a. Draw a dotted line from outside the diagram to the
entry-point entity.

b. Draw a dotted line through all entities and relationships that

must be accessed. Do not be concerned about what keys
might be necessary to move from one entity type to another.
Retrieve an entity only if it has the attributes that you need to

display or modify in some way.

c. Indicate the direction of data flow by drawing an arrow at the
end of each dotted line.

4. Determine the type of access. Indicate on the access path

diagram the type of access for each entity or relationship:

■ R— Read

■ C— Change

■ A— Add

■ D— Delete

Sample access path diagram

The following diagram il lustrates a sample access path diagram for a
general business function and its specific transactions.

As you trace the flow of each function, you may find that a particular
application requires data that is not documented in the logical design.
In the event that this happens, you need to make changes to the
design to include this data. Once you have determined that the design

contains all necessary data, you are prepared to develop a physical
model for the database.

Normalized Data for the Commonweather Corporation

Chapter 7: Validating the Logical Design 95

Chapter 8: Introduction to Physical Design 97

Chapter 8: Introduction to Physical Design

This section contains the following topics:

Overview (see page 97)
Data Structure Diagram (see page 97)
Steps in the Physical Database Design Process (see page 98)

Physical Database Structures (see page 99)
SQL and Non-SQL Definitions (see page 101)

Overview

The database designer is responsible for efficient access to the database no matter how

that database is implemented. This means that a complete logical and physical database
design must take place prior to implementation.

In the first seven chapters, you worked through the process for creating a logical
database design based on business functions and rules. You are now ready to make

physical design decisions.

What is physical database design?

Physical database design is the process of tailoring the logical model to specific

application performance requirements. During this phase of database design, you need
to plan the best use of computer storage resources and provide for the most efficient
data access.

At the conclusion of the logical design process, you should have documentation that

represents the data model required to support the organization's information resource.
As a result of normalization, you should also have an organized list of da ta entities. With
these resources, you are prepared to make intell igent decisions about how to optimize

database performance. This is the physical database design process.

Data Structure Diagram

The physical design process involves creating a diagram that serves as a model of the
physical database. This diagram, known as a data structure diagram, visually represents
the way data entities are related physically just as the entity-relationship diagram

represents the way data entities are related logically. The data structure diagram also
describes the storage characteristics of the data. Chapters 9 through 13 of this manual
show you how to create a data structure diagram.

Steps in the Physical Database Design Process

98 Database Design Guide

Steps in the Physical Database Design Process

The physical database design process involves creating a base physical design followed
by refinements based on the implementation choice. The physical database design
process involves the following steps:

1. Create a preliminary data structure diagram based on the logical database design.

2. Identify application performance requirements.

3. Assign location modes.

4. Evaluate and refine the physical database design.

5. Choose physical tuning options.

6. Minimize contention among transactions.

Physical Database Structures

Chapter 8: Introduction to Physical Design 99

Physical Database Structures

Once you have created your design, you perform the necessary calculations to
determine the amount of space required by your database, and then implement the
database design using SQL or non-SQL data definition statements.

For further information on sizing the database, see Chapter 15, "Determining the Size of

the Database". For further information on implementing the design, see the chapter
Implementing Your Design.

No matter how you choose to define the database, certain physical database structures
are used by CA IDMS/DB to implement your design.

For further information on physical database concepts, see the CA IDMS Concepts and
Facilities Guide and CA IDMS Database Administration Guide.

Areas and pages

CA IDMS/DB subdivides the physical database into separate areas, each consisting of a
set of contiguously numbered pages.

Areas are stored in operating system fi les, each page corresponding to one or more
direct access blocks. CA IDMS/DB usually transfers an entire page of data in a single

input/output operation.

While some database pages are reserved for space management, the majority of pages
are used to hold user data in the form of entity occurrences. Each entity occurrence

corresponds to a single row of an SQL-defined table or an instance of a record defined
by a non-SQL schema.

A page can contain as many entity occurrences as space availability permits.

Segments

A segment defines the areas and fi les that contain the data in the database. A segment
represents a physical database usually defined by a single schema. For the database to
access the segment at runtime, the segment must be included in the definition of a

DMCL.

DMCL

A DMCL is a collection of segment definitions that can be accessed in a single execution
of CA IDMS/DB. The DMCL also specifies buffer characteristics, describes the buffer and

fi les for journaling database activity, and identifies a database name table that the
database uses at runtime to map a logical (or schema) definition of the database to
specific segments.

Physical Database Structures

100 Database Design Guide

A DMCL exists as a load module in a load (core-image) l ibrary and is used at runtime to
determine where data required by an application is physically stored.

More Information

For more information on segments and the DMCL, see the CA IDMS Database
Administration Guide.

Database keys

CA IDMS/DB assigns a database key (db-key) to each record occurrence when it is
entered into the database. The database key is the concatenation of the number of the
page on which a record occurrence is stored and a l ine number. A l ine number is an

index to an eight-byte structure called a l ine index. The line index is used to locate the
record occurrence within the page. The database key uniquely identifies the record with
which it is associated and never changes as long as the record remains in the database.

Structure of the physical database

The diagram below shows how areas, pages, and entity occurrences appear in the
database.

The EMPDATA database area contains four pages and five entity occurrences. Each of

the entity occurrences is uniquely identified by a database key. For example, the
database key for the Mary Bliss occurrence is 1001:1.

SQL and Non-SQL Definitions

Chapter 8: Introduction to Physical Design 101

SQL and Non-SQL Definitions

In CA IDMS, you have the choice of implementing your database design with either SQL
or non-SQL definition statements. The choice of which definition language to use is
based on the specific needs of your application.

Most of the physical design process is the same, regardless of which language is chosen.

In those few areas of design implementation where the options differ for SQL and
non-SQL, those options are clearly noted in this manual.

Likewise, there are some variances in the terminology used with each of the
implementation languages. The accompanying table outlines sets of equivalent

terminology.

Table of Terms

Logical/Physical Design
Terminology

 SQL Terminology Non-SQL Terminology

Entity Table Record type

Entity occurrence Row Record occurrence

Data element Column Field/element

CALC location mode CALC location mode CALC location mode

Clustered location mode Clustered location mode VIA location mode

Parent Referenced table Owner

Child Referencing table Member

Relationship Referential constraint Set

Index Index Index

Chapter 9: Creating a Preliminary Data Structure Diagram 103

Chapter 9: Creating a Preliminary Data
Structure Diagram

This section contains the following topics:

Developing a Data Structure Diagram (see page 103)
Preliminary Data Structure Diagram for Commonweather Corporation (see page 111)

Developing a Data Structure Diagram

To derive a preliminary data structure diagram from an entity-relationship diagram, you
need to:

1. Represent entities.

2. Represent relationships between entities.

3. Estimate entity length (size of entities).

Follow the steps described below to create a preliminary data structure diagram for
your database.

Representing Entities

Entities

Each entity in the logical database design is represented by an entity on the preliminary
data structure diagram as shown below.

Each attribute identified during the logical database design process becomes a data
element in the physical design. The names you used in the logical database design are

also used in the physical design process.

Developing a Data Structure Diagram

104 Database Design Guide

Representing Relationships as Entities

Certain relationships defined during the logical design process should be represented as
entities in the preliminary data structure diagram. These include:

■ Relationships carrying non-key data

■ Many-to-many relationships

Another type of relationship, the self-referencing relationship, can become a separate
entity in the preliminary data structure diagram or can carry the key to the relationship
as a foreign key.

Each of these types of relationships is discussed below.

Relationships carrying non-key data

While most data relationships defined in the logical design contain only foreign keys,

some carry both keys and non-key data. Relationships that contain non-key data must
be represented as entities as you continue with the physical database design.

For example, because the relationship IS POSITIONED IN carries both keys and non-key
data, it must be represented as an entity. Give this new entity an appropriate name.

Keys Non-key data

JOB ID

EMP ID

SALARY

OVERTIME RATE

COMMISSION PERCENT

BONUS PERCENT

START DATE

TERMINATION DATE

Developing a Data Structure Diagram

Chapter 9: Creating a Preliminary Data Structure Diagram 105

However, the relationship IS LOCATED should not be represented as an entity because it
contains only key information:

 OFFICE CODE (key)

 EMP ID (key)

Many-to-many relationships

In a physical database design, you establish connections between related entities
through one-to-many or one-to-one relationships. Each many-to-many relationship
defined in the logical design must be converted to two one-to-many relationships. To

make this change, you need to represent each many-to-many relationship as an entity,
whether it contains non-key data or not. When you derive an entity from a
many-to-many relationship, you create two one-to-many relationships, as shown below.

In the Commonweather Corporation, an employee can possess as many as five skil ls and

a specific skill can be held by many employees. This situation establishes a
many-to-many relationship between the SKILL and EMPLOYEE entities. Before you
implement such a relationship under CA IDMS/DB, you must first create a new entity.

By replacing the many-to-many relationship between EMPLOYEE and SKILL with a new

entity, you create two one-to-many relationships:

■ A one-to-many relationship is created between EMPLOYEE and the entity
EXPERTISE.

■ Another one-to-many relationship is created between SKILL and EXPERTISE.

Name the new entities appropriately.

Self-referencing relationships

A self-referencing relationship allows users to combine information from different
occurrences of the same entity. For example, to relate different employees in a
company, an application program might combine data from differ ent occurrences of the
EMPLOYEE entity. A database user can then show employees and the managers they

report to.

Developing a Data Structure Diagram

106 Database Design Guide

You may find more than one self-referencing relationship on a particular entity. If the
relationships use the same keys, they are probably mirror images of each other. For

example, MANAGES and REPORTS TO are two side of the same coin. Since they both use
the same key and carry the same data, they are really one relationship.

Replace the self-referencing relationship with an entity if any of the following are true:

■ If the self-referencing relationship carries data (for example, the date that the
employee began to work for this manager)

■ If you want to carry historical information (such as what managers an employee has

had)

■ If the self-referencing relationship is a many-to-many relationship

Replace the self-referencing relationship with an entity, specifying two relationships

between the original entity and the new entity. These relationships can be one-to-many
or one-to-one, depending on the logic behind them.

The following diagram shows how you might resolve a self-referencing relationship into
an entity having two relationships with the primary entity: one one-to-many

relationship and one one-to-one relationship. The new entity contains further
information about the relationship between manager and employees.

Developing a Data Structure Diagram

Chapter 9: Creating a Preliminary Data Structure Diagram 107

If none of the above conditions apply, you can represent the relationship simply using a
foreign key. In this case, the key of the manager woul d be carried as a foreign key in the

EMPLOYEE entity. This approach will require fewer storage resources and therefore is
recommended in those situations where it can be used.

Developing a Data Structure Diagram

108 Database Design Guide

Representing Relationships Between Entities

In the logical design process, you represented relationships between entities with
diamonds and identified the keys associated with the relationship.

During the previous step ("Representing Entities") you changed each many-to-many

relationship to two one-to-many relationships by creating a new entity. All relationships
between entities should now fall into only two categories:

■ One-to-many relationships

■ One-to-one relationships

Representing the relationships

To represent the relationships in the preliminary data structure diagram, perform the
following steps:

1. For each relationship, draw a line between the related entities.

2. For each one-to-many relationship, place an arrow on the line between the
entities to identify the "many" side of the relationship.

3. For each one-to-one relationship, do not draw an arrow on the line between the

entities.

4. Name the relationship. Usually the name is a concatenation of the two entities it
relates.

For example, the relationship between OFFICE and EMPLOYEE could be called

OFFICE-EMPLOYEE and the relationship between SKILL and EXPERTISE could be
called SKILL-EXPERTISE.

5. Indicate the foreign key.

The foreign key will be shown as part of the definition of the relationship.

Foreign keys in a one-to-many relationship

In a one-to-many relationship, the key of the one entity is carried as a foreign key in the
many entity.

For example, in the relationship between the entities OFFICE and EMPLOYEE, the key for
the OFFICE entity (the one entity) is carried as a foreign key in the EMPLOYEE entity (the
many entity).

Add the foreign key to the list of data elements associated with the appropriate entity
and indicate each foreign key on the data structure diagram, as described below:

1. Under the relationship name, indicate the foreign key used in the relationship.

For example, specify OFFICE CODE under the OFFICE-EMPLOYEE relationship to

indicate that the data element OFFICE CODE is a foreign key for that relationship.

Developing a Data Structure Diagram

Chapter 9: Creating a Preliminary Data Structure Diagram 109

2. Rename foreign keys used to establish self-referencing relationships. Like any
other entity that was originally a logical relationship, the entity used to define a

self-referencing relationship carries as foreign keys the keys from each of the
entities it relates. However, in this type of relationship, the two foreign keys must
be derived from the same entity, EMPLOYEE.

To avoid having two data elements with the same name (EMP ID) as keys to the
entity, assign unique names to the foreign keys. For example, you might name the
keys MGR ID and EMP ID to distinguish managers from workers.

Note: The foreign key in a self-referencing relationship must be nullable. If it were not

nullable, the first piece of data stored could not satisfy the referential integrity of the
relationship. For example, the first employee stored would carry a manager ID that
would not match an existing employee ID, as the integrity of the relationship requires. If
the self-referencing relationship carries data, that data must also be nullable.

Foreign keys in a one-to-one relationship

In a one-to-one relationship, the foreign key can be placed in either entity participating
in the relationship. Usually, you can conserve space by placing the foreign key in one of

the two entities. For example, if there is a relationship between DEPARTMENT and
EMPLOYEE to indicate which employee is head of a department, you can conserve space
by placing the EMP ID of the head of the department in the DEPARTMENT entity rather
than the other way around since there will typically be far more employees than

departments.

Diagramming relationships between entities

The diagram below shows a portion of the data structure diagram for Commonweather

after your changes have been made.

Developing a Data Structure Diagram

110 Database Design Guide

Estimating Entity Lengths

Once the entity types have been identified, you should estimate the length of each
entity. To calculate each entity's length, add up the length of the data elements
contained in the entity. Don't forget to include foreign keys residing in that entity. If the

entity has a variable length, estimate the maximum possible length of the entity.

Although the lengths of entities may change as you refine the physical design, it is useful
to have an estimate of the size of an entity during the design process.

Indicating the length

Once you have determined the length of a particular database entity, you can indicate
this information in the data structure diagram. The example below shows the OFFICE
entity with a length of 55.

Preliminary Data Structure Diagram for Commonweather Corporation

Chapter 9: Creating a Preliminary Data Structure Diagram 111

Preliminary Data Structure Diagram for Commonweather
Corporation

Below is the preliminary data structure diagram for Commonweather Corporation. It
represents entities, relationships, foreign keys, and estimated entity lengths.

Chapter 10: Identifying Application Performance Requirements 113

Chapter 10: Identifying Application
Performance Requirements

This section contains the following topics:

Overview (see page 114)
Establishing Performance Requirements for Transactions (see page 115)

Prioritizing Transactions (see page 116)
Determining How Often Transactions Will Be Executed (see page 117)
Identifying Access Requirements (see page 118)
Determining the Database Entry Point and Access Key for Each Transaction (see page

119)
Projecting Growth Patterns (see page 120)
Determining the Number of Entities in Each Relationship (see page 121)

Determining How Often Each Entity Will Be Accessed (see page 122)

Overview

114 Database Design Guide

Overview

After creating the preliminary data structure diagram, you need to interview company
employees who can help you determine the application requirements for the database
so that you can refine that database structure.

Performance and storage requirements

As you gather information from users, you need to identify both the performance and
storage requirements of the system:

■ Establish performance requirements for transactions.

■ Prioritize transactions.

■ Determine how often each transaction will be executed.

■ Identify access requirements for each transaction.

■ Determine the database entry point and access key for each transaction.

■ Project growth patterns.

■ Determine the number of entity occurrences in each relationship.

■ Determine how often each database entity wi ll be accessed.

The requirements of the system determine how you should design the physical

database model. For example, the requirements of a particular application can help you
to define the page size for a database area.

Making design decisions

You will use the information that you gather at this stage in the physical design process
to make several design decisions later on, as shown below.

Information gathered in this chapter Used in...

■ Performance requirements for
transactions

■ Transaction priorities

■ Access requirements

■ Database entry points and access
keys

Refining the Physical Design (Chapter 12)

■ How often each transaction will

be executed

■ How often each entity will be
accessed

Minimizing Contention Among Transactions

(Chapter 14)

Establishing Performance Requirements for Transactions

Chapter 10: Identifying Application Performance Requirements 115

Information gathered in this chapter Used in...

■ Projected growth patterns

■ Number of entity occurrences in
each relationship

Determining the Size of the Database

(Chapter 15)

Establishing Performance Requirements for Transactions

Employees depend on fast computer turnaround to accomplish their day-to-day work.
To ensure satisfactory turnaround time, you should establish performance requirements
for the system.

Since company personnel have varying information requirements, you need to define
separate performance requirements for each transaction. While some transactions
perform high-volume, routine processing, such as payroll, inventory, and budgets ,

others enable end users to make ad hoc requests for information.

Company personnel measure the efficiency of a transaction by the amount of work it
can perform and the amount of time it requires to perform the work. If you help
employees to define realistic expectations of transaction performance, you can set

performance requirements for the system that will be acceptable to the user
community.

Processing modes

For each transaction, select a mode of computer processing that meets the needs of
users without degrading system performance. For example, you might decide to execute

a high-volume processing task as a batch job, while allowing end users to make ad hoc
requests for data through an online application.

Once the processing mode has been established, define appropriate performance

requirements for the transaction. Your requirements will vary depending on the mode
of processing: while a 12-hour turnaround time might be acceptable for a large batch
program, a 5-minute response time will be unsatisfactory for an online application.

Prioritizing Transactions

116 Database Design Guide

Sample Transactions

The following table shows performance requirements for three sample transactions at

the Commonweather Corporation.

Transaction Processing Mode Time

Add or delete a claim Online 3 seconds

List of employees for an office Batch 15 minutes

Show salary grade for all jobs Online 6 seconds

Considerations

Your requirements should take into consideration the resources available with the
computer system. If the resources are not adequate to meet the established
performance requirements, you will need to modify the expectations of the user
community or acquire additional resources.

Prioritizing Transactions

Every data processing department must prioritize requests for transactions. For
example, when a high-level executive requires access to vital organization information,
the data processing department tries to provide this information immediately.

As the DBA, you are responsible for ensuring that critical transactions execute in an
efficient manner. To optimize performance, you need to schedule data processing tasks
according to specific organization priorities.

Assigning priorities to transactions

The following table shows how you might prioritize three typical transactions.

Establish a HIGH priority for transactions that are vital to the operations of the
organization. For example, you might specify a HIGH priority for a transaction that

services the information needs of upper-level managers in the organization.

Sample Transactions

Transaction Processing Mode Time Priority

Add or delete a claim Online 3 seconds High

List of employees for an office Batch 15 minutes Medium

Show salary grade for all jobs Online 6 seconds Low

Determining How Often Transactions Will Be Executed

Chapter 10: Identifying Application Performance Requirements 117

Determining How Often Transactions Will Be Executed

Early in the design process, you need to determine how often each transaction will be
executed. This can give you an indication of how the transaction might affect the overall
performance of the system.

To determine how often particular transactions will be executed:

■ Find out the hours when each transaction will be run.

■ Create a preliminary schedule of batch update and reporting program runs.

■ Once you have created a schedule of processing jobs, estimate how often each
transaction will be executed during the hours when it is typically run.

Sample transactions

The following table shows how often three typical transactions will be executed.

Transaction Processing Mode Time Priority Frequency of
Access

Add or delete a claim Online 3 seconds High 100/day

List of employees for

an office

Batch 15 minutes Mediu

m

5/week

Show salary grade for
all jobs

Online 6 seconds Low 5/week

Identifying Access Requirements

118 Database Design Guide

Identifying Access Requirements

You identify access requirements for each transaction by analyzing the business
functions documented during the logical design process. Different business functions
require different access to the database.

Business function

The following business function specifies that you need to access the SKILL, EXPERTISE,
and EMPLOYEE entities:

Add a skill for an employee.

Sample transactions

The following table shows access requirements for three sample transactions.

Transaction Processin
g Mode

Time Priority Frequency of
Access

Access
Requirements

Add or delete a
claim

Online 3
seconds

High 100/day EMPLOYEE
CLAIM

List of
employees for

an office

Batch 15
minutes

Mediu
m

5/week OFFICE
EMPLOYEE

Show salary
grade for all

jobs

Online 6
seconds

Low 5/week JOB SALARY
GRADE

Determining the Database Entry Point and Access Key for Each Transaction

Chapter 10: Identifying Application Performance Requirements 119

Determining the Database Entry Point and Access Key for Each
Transaction

You need to determine the first entity that each transaction accesses in the database.
Identifying entry points can point out the need for additional indexes, or, as will be seen
in Determining How an Entity Should Be Stored, the need for an entity to be stored with

a location mode of CALC.

You can determine the database entry point and the data element used as an access key
for a transaction by reviewing the access path diagram that you developed for the

transaction during the logical design process. Specify the name of the entity and the
data element used to access the entity.

Sample transactions

The following table shows the database entry points and access keys for three typical

transactions.

Transacti

on

Processin

g Mode

Time Priorit

y

Frequency

of Access

Access

Requirement
s

Entry Point

Add or
delete a

claim

Online 3 seconds High 100/day EMPLOYEE
CLAIM

EMPLOYEE
(EMP ID)

List of
employee

s for an
office

Batch 15 minutes Mediu
m

5/week OFFICE
EMPLOYEE

OFFICE
(OFFICE

CODE)

Show
salary

grade for
all jobs

Online 6 seconds Low 5/week JOB SALARY
GRADE

JOB (None)

Projecting Growth Patterns

120 Database Design Guide

Projecting Growth Patterns

Projecting the minimum, most frequent, and maximum number of entity occurrences
helps you to determine how much space is required to support a database. These
projections should be for a specified period of time.

To structure the database correctly, you need to make the following projections for

each entity:

■ Minimum number of occurrences—Identifies the starting point for the database
and, when compared to the maximum, gives you an idea of the projected growth.

■ Most typical number of occurrences —Identifies the number of occurrences seen

most frequently in the database (the mode). Thi s number is used in determining the
number of entity occurrences in a relationship and during performance analysis.

■ Maximum number of occurrences—Identifies the largest expected number of

occurrences of this entity. This figure is used for sizing the database.

Sample number of entity occurrences

The following table shows the projected number of occurrences for each entity in the
Commonweather Corporation database.

Entity Name Minimum Most Frequent Maximum

DEPARTMENT 9 15 20

EMPLOYEE 560 1000 1500

OFFICE 36 90 150

JOB 41 80 120

SKILL 68 80 120

STRUCTURE 1000 1500 2000

EMPOSITION 2000 2500 3000

EXPERTISE 3000 3500 4000

COVERAGE 1000 4000 6000

LIFE INS PLAN 3 4 5

HEALTH INS PLAN 5 10 10

INS CO 5 10 15

HOSPITAL CLAIM 800 3000 5000

NON-HOSPITAL CLAIM 1000 4000 6000

DENTAL CLAIM 2500 5000 7000

PATIENT 2000 5000 7000

Determining the Number of Entities in Each Relationship

Chapter 10: Identifying Application Performance Requirements 121

DENTIST 100 300 1000

PROJECT 350 500 1000

NON-HOSPITAL PROCEDURE 2000 5000 8000

DENTAL PROCEDURE 4500 7000 9000

PHYSICIAN 100 300 1000

HOSPITAL 50 100 300

WORKER 560 3000 5600

Determining the Number of Entities in Each Relationship

To determine the sizing characteristics of the database, you will need to know the
number of entities in each data relationship. For example, you will need to know the

number of employees in each department to allow for effective placement of the
EMPLOYEE and DEPARTMENT database entities.

Document both the expected and maximum number of entities in each relationship. If

these numbers cannot be provided, use the statistics on numbers of entity occurrences
gathered earlier to determine the numbers . For example, you can calculate the
maximum number of employees in each department by dividing the maximum number
of EMPLOYEE entity occurrences by the maximum number of DEPARTMENT entity

occurrences.

Sample numbers of relationship entity occurrences

The following table shows the projected number of entity occurrences in three sample
data relationships.

Relationship Expected Maximum

Employees in each department 66 75

Employees in each office 8 20

Positions for each employee 2 5

Determining How Often Each Entity Will Be Accessed

122 Database Design Guide

Determining How Often Each Entity Will Be Accessed

If you know how often each entity will be accessed, you will be able to predict potential
bottlenecks in the system. To estimate how frequently each entity will be accessed:

■ Review the database access path of each transaction that uses the entity.

■ Analyze the frequency with which each transaction will be executed.

Sample entity access rates

The following table shows how often three sample database entities might be added,
deleted, updated, or retrieved in the course of business at Commonweather
Corporation.

Entity Name Adds Deletes Updates Reads

DEPARTMENT 3/year 3/year 1/week 25/day

EMPLOYEE 4/month 3/month 8/week 100/day

JOB 1/week 1/week 5/week 25/day

Chapter 11: Determining How an Entity Should Be Stored 123

Chapter 11: Determining How an Entity
Should Be Stored

This section contains the following topics:

Overview (see page 123)
Location Modes (see page 123)

Guidelines for Determining How an Entity Should Be Stored (see page 128)
Graphic Conventions (see page 130)
Location Modes for Entities in the Commonweather Databa se (see page 132)

Overview

You have now created a preliminary data structure diagram (Chapter 9, "Creating a

Preliminary Data Structure Diagram") and have gathered the information necessary to
refine this diagram (Chapter 10, "Identifying Application Performance Requirements").
This chapter discusses the first step in the refinement process: assigning location modes

to the entities in the database.

Location Modes

To guarantee efficient database performance, you need to plan the best use of
computer storage resources and provide for the most efficient data access. Several
facil ities are available under CA IDMS/DB for this purpose. By minimizing the number of

input/output operations performed against the database, these facil ities ensure optimal
processing performance.

The data location modes in CA IDMS/DB provide you with the following capabilities:

■ Randomization

■ Clustering

Location Modes

124 Database Design Guide

Randomization

CALC location mode

CA IDMS/DB allows users to distribute occurrences of a particular entity randomly
across the area to which it is assigned. Randomization of entity occurrences is achieved

with the CALC location mode.

When you specify CALC for an entity, the database uses a randomizing algorithm to
calculate a storage page for each occurrence of that entity; the calculation is based on
the value of a symbolic key (called the CALC key).

The diagram below shows the use of the CALC location mode to randomize entity
occurrences.

CA IDMS/DB stores an occurrence of a CALC entity on or near a calculated storage page.
The entity is placed directly on the preferred page if sufficient space exists. Otherwise, it
is placed on the next page within the area where sufficient space exists. If the end of the

area is reached in the search for space, CA IDMS/DB wraps around to the beginning of
the area.

Purpose of the CALC location mode

The purpose of the CALC location mode is twofold:

Location Modes

Chapter 11: Determining How an Entity Should Be Stored 125

■ Direct retrieval by symbolic key, enabling retrieval of an entity occurrence with a
single read operation. Retrieval of an entity located CALC involves knowing only the

value of its CALC key; the database automatical ly converts the CALC key into the
correct page number when the entity is requested. For more information
concerning the use of numeric fields within a record's CALC key, see Zoned and

Packed Decimal Fields as IDMS Keys.

■ Random distribution of entity occurrences over all the pages in an area. This
reduces overflow conditions and leaves space for clustered entity occurrences. For
further information on overflow conditions, see "Overflow Conditions" in Chapter

15, "Determining the Size of the Database".

Location Modes

126 Database Design Guide

Clustering

Clustering enables you to group entity occurrences that are l ikely to be accessed
together. When you request clustering, the database stores each entity occurrence as
close as possible to another occurrence to which it is logically related.

Minimizing read operations

By storing related entity occurrences on or near the same page, clustering minimizes the
number of read operations required to access the database. Clustering could, for
example, be used to retrieve a DEPARTMENT entity occurrence and its related

EMPLOYEE entity occurrences with a single read operation.

Clustering enhances processing performance by grouping entity occurrences that are
l ikely to be accessed together. For example, clustering could be used to store employees
CRANE, GARDNER, and FONRAD on the same database page as the OPERATIONS

department, the department to which these employees belong. All four entity
occurrences could be retrieved with a single read operation.

Clustering methods

CA IDMS/DB supports the following methods of clustering entity occurrences:

Location Modes

Chapter 11: Determining How an Entity Should Be Stored 127

■ Clustering through a relationship allows you to cluster entity occurrences related
through a relationship. This causes an entity (the child) to be stored as close as

possible to the entity it references (the parent).

If assigned to the same area, child occurrences will target to the same page as their
parent.

When assigned to a different area, child occurrences are stored at the same relative
position in their area as the parent occurrence is in its area.

This is the most efficient means of clustering two or more related entities.

To indicate clustering through a relationship, you specify a location mode of

CLUSTERED and the name of the relationship around which this entity is to be
clustered.

For further information on how CA IDMS/DB clusters entity occurrences, see the CA
IDMS Database Administration Guide.

■ Clustering through an index allows you to cluster entity occurrences based on the
value of a symbolic key. If clustering using an index, all occurrences having the same
(or similar) index key values are targeted to the same database page. This has the

effect of maintaining entity occurrences physically in sequence by the value of the
key.

This is the most efficient means of ordering data occurrences if multiple
occurrences are often retrieved in the sequence of their key values. However, its

benefit is minimized if frequent additions and deletions cause entity occurrences to
be stored out of sequence due to overflow conditions.

To indicate clustering through an index, you specify a location mode of CLUSTERED

and the name of the index around which this entity is to be clustered.

For more information on indexes, see Refining the Database Design.

■ Clustering using the CALC location mode allows you to cluster entities related
through a shared data element. You assign the CALC location mode to each entity,

defining corresponding data elements as CALC keys.

When the CALC location mode is specified for two entities, CA IDMS/DB stores all
entity occurrences that have the same CALC key value on or near the same

database page.

This is a means of clustering entities even if no relationship exists but does not work
well for extremely volatile or high-volume entities. Frequent additions and
deletions of entity occurrences may increase the likelihood of contention and, if

many occurrences target to the same page, overflow conditions will increase I/O
rates.

To indicate clustering using the CALC location mode, you specify a location mode of
CALC for each entity, defining identical data elements as CALC keys.

A discussion of when to choose these methods follows.

Guidelines for Determining How an Entity Should Be Stored

128 Database Design Guide

Guidelines for Determining How an Entity Should Be Stored

Guidelines for assigning location modes to entities are shown below. As you determine
how you want to store each entity, indicate this information on your data structure
diagram.

The decision operations in the chart are discussed below, followed by a discussion of
how to assign data location modes to entities in the Commonweather Corporation

database.

Is This Entity Both a Parent and a Child?

Ask this question of every entity identified in the logical database design.

If the answer to this question is Yes for an entity, the entity is involved in multiple

relationships and you must decide which, if any, of these relationships should be used
for clustering.

Guidelines for Determining How an Entity Should Be Stored

Chapter 11: Determining How an Entity Should Be Stored 129

Is There Optimal Relationship Clustering for This Entity?

If the entity is involved in multiple relationships in which it is both the parent and child,
it may be possible to cluster this entity around another related entity. Optimal
clustering means that application programs access this entity most often in conjunction

with another entity and clustering can be used effectively.

Clustering through a relationship is one of the most effective ways of reducing I/Os
when related entity occurrences are retrieved together. Therefore, if applications
accessing this entity frequently access related entities, you should generally cluster the

child entities through the relationship.

Note: If the size of all clustered entity occurrences is too large, the benefit of clustering
might be negated because several I/Os are required to access the entire cluster.

If there is no optimal clustering, the entity should be s tored CALC, providing both an
alternate entry point into the database and a parent around which other entities can be
clustered.

Example

An example of such an entity is the EMPLOYEE entity. This entity is both a parent and a
child but has no optimal clustering.

The COVERAGE entity, on the other hand, is both a parent and child but can be clustered
optimally around the EMPLOYEE-COVERAGE relationship since access is most often by

means of the EMPLOYEE entity, and multiple COVERAGE entity occurrences relating to a
particular employee are often accessed at the same time.

Is This a Parent Entity but Not a Child Entity?

Ask this question for each entity that does not exist as both a parent and a child.

An entity that exists only as a parent entity is often used as an entry point into the
database. For this reason, it is advisable to have a fast access key on the entity.

The CALC location mode generally is a better choice than an index key because:

■ It requires fewer I/Os to access an entity using a CALC key.

■ The CALC algorithm randomizes entity occurrences, thus allowing space to cluster
related entity occurrences.

Example

An example of a parent entity but not a child entity is the DEPARTMENT entity. This
entity should be stored CALC based on the DEPT ID.

Graphic Conventions

130 Database Design Guide

Is This a Child Entity but Not a Parent Entity?

Ask this question of each entity that exists neither as a parent and child, nor as only a
parent.

An entity that acts as a child but not a parent is not usually used as an entry point into

the database. This entity often can be stored clustered around one of its parent entities.

Clustering through a relationship is one of the most effective ways of reducing I/Os
when related entity occurrences are retrieved together. Therefore, if applications
accessing this entity frequently access related entities, you should generally cluster the

child entities through the relationship.

Note: If the size of all clustered entity occurrences is large, the benefit of clustering
might be negated because it requires several I/Os to access the entire cluster.

Example

An example of a child entity but not a parent is the EXPERTISE entity. An occurrence of
this entity is most frequently accessed through its associated EMPLOYEE entity
occurrence. Therefore, it can be stored clustered around the EMP-EXPERTISE

relationship.

Is Generic Retrieval Required and Is the Entity Relatively Static?

The only entities left to ask this question of are standalone entities and child-only
entities having no optimal clustering.

You should choose CALC location mode if application programs always retrieve this
entity using its full key or if it is relatively dynamic (that is, many additions, deletions, or
key changes).

If an entity is relatively static and multiple occurrences are often retrieved together, it is

most effective to cluster the entity through an index defined on the most-commonly
used access key.

If the entity is not static, but often participates in multi -occurrence retrievals, cluster the

entity on an index defined on its db-key. For more information on indexes, Chapter 12,
"Refining the Database Design"

Graphic Conventions

There are graphic conventions used to represent both the location mode and indexes.

Graphic Conventions

Chapter 11: Determining How an Entity Should Be Stored 131

Conventions for Specifying Location Mode

To indicate your location mode decision on the data structure diagram, you need to
name the method (CALC or CLUSTERED). If the entity is to be stored CALC, name the
CALC key. If the entity is to be clustered, name the relationship or the index it is to be

clustered around.

The diagram below shows how your location method decisions are indicated on the
diagram. The EMPLOYEE entity has a location mode of CALC. Its CALC key is the data
element EMP ID and duplicates of this key are not allowed; the key must be unique. The

second example is the DENTAL CLAIM entity, which has a location mode of CLUSTERED.
Occurrences of this entity will be clustered around the COVERAGE-CLAIMS relationship.

The following characteristics of the entities are indicated on the diagram:

■ Entity name— The name of the entity

■ Length— The estimated data length (in bytes) for fixed-length entities; the

maximum length for variable-length entities. This information is used in database
sizing.

■ Location mode— How the entity is stored in the database (CALC or CLUSTERED).

■ CALC-key, relationship name, or index name—The name of the CALC-key field (CALC

entities) or the name of the relationship around which this entity is to be clustered
(if the entity is to be clustered around a relationship), or the name of the index
around which this entity is to be clustered (if the entity is to be clustered around an
index).

■ Dup opt (CALC entities only)—The duplicates option: the disposition of entities with
duplicate CALC keys (U for unique or blank for non-unique).

Location Modes for Entities in the Commonweather Database

132 Database Design Guide

Conventions for Representing Indexes

To represent an index on the data structure diagram:

■ Use a triangle to represent the index.

■ Specify a name for the index.

■ Identify the data element name(s) that are to be indexed.

■ Specify whether duplicate indexed keys are allowed (blank) or not allowed (U).

Sample index representation

The following diagram shows the standard CA IDMS/DB notation for an index. The index

allows the DBMS to access all EMPLOYEE entity occurrences in the database based on
the last name/first name in ascending order. Duplicate l ast name/first name
combinations are allowed.

Location Modes for Entities in the Commonweather Database

By following the guidelines presented in this chapter, you can assign appropriate
location modes to the entities in your database. The table below shows how the
location mode was decided upon for each entity in the Commonweather database.

Is this entity... Both
parent
and

child?

With optimal
clustering?

Parent and
not child

Child and not
parent
(w/optimal

clustering)?

Generic
retrieval
and

relatively
static?

DEPARTMENT N - Y - -

OFFICE N - Y - -

PROJECT Y N - - -

INS CO N - Y - -

LIFE INS PLAN N - N N Y

Location Modes for Entities in the Commonweather Database

Chapter 11: Determining How an Entity Should Be Stored 133

HEALTH INS Y N - - -

PLAN Y N - - -

NON-HOSPITA
L

N - N N -

CLAIM Y N - - -

DENTAL
CLAIM

N - Y - -

HOSPITAL Y N - - -

PHYSICIAN N - Y - -

DENTIST N - Y - -

EMPLOYEE N - Y - -

JOB

SKILL

PATIENT

Location mode: Store CALC on primary key. For example, store the EMPLOYEE entity
CALC on EMP ID.

Is this entity... Both
parent
and
child?

With optimal
clustering?

Parent and
not child

Child and not
parent
(w/optimal
clustering)?

Generic
retrieval
and
relatively

static?

EMPOSITION N - Y - -

EXPERTISE N - Y - -

STRUCTURE Y N - - -

WORKER N - Y - -

PHONE N - N N Y

SALARY Y N - - -

GRADE Y N - - -

COVERAGE N - N N -

NON-HOSPITA

L

Y N - - -

PROCEDURE N - Y - -

DENTAL Y N - - -

PROCEDURE N - Y - -

Location Modes for Entities in the Commonweather Database

134 Database Design Guide

Location mode: Store clustered on the optimal relationship. For example, store the
EXPERTISE entity clustered on the EMP-EXPERTISE relationship

Revised Data Structure Diagram for the Commonweather Corporation

After you have decided how you want to store and access each entity, indicate this
information on the data structure diagram. Below is the updated data structure diagram
for the Commonweather Corporation database.

Chapter 12: Refining the Database Design 135

Chapter 12: Refining the Database Design

This section contains the following topics:

Evaluating the Database Design (see page 135)
Refinement Options (see page 136)
Estimating I/Os for Transactions (see page 137)

Eliminating Unnecessary Entities (see page 142)
Eliminating Unnecessary Relationships (see page 146)
Adding Indexes (see page 147)

Refined Data Structure Diagram for Commonweather Corporation (see page 153)

Evaluating the Database Design

You have created a preliminary model for a physical database and have identified the
entities in the database. You have also gathered the information necessary to refine this
diagram and have assigned location modes to the entities. Now you will refine the

preliminary design to allow for optimal transaction and system performance.

Evaluation considerations

Before you refine the data structure diagram, you need to evaluate the design for

performance. To satisfy performance requirements for each individual business
transaction, you need to consider the following issues:

■ Input/output (I/O) performance—Is the number of I/O operations performed
against the database sufficiently low to provide satisfactory transaction

performance?

■ CPU time—Does the structure of the physical database optimize the use of CPU
processing?

■ Space management—Do design choices help to conserve storage resources?

Once you have refined the database to satisfy each individual transaction, you need to
determine how the system will be affected by the concurrent execution of several
transactions. To avoid excessive contention for database resources, you need to make

appropriate changes to the physical model.

Refining the database design

Like many other database design procedures, refining the database design is an iterative
process, as shown below. As you refine the design, you need to evaluate the design for

performance. When you make changes, you should review the design to ensure that it
will optimize processing for all critical transactions and also minimize the likelihood of
contention.

Refinement Options

136 Database Design Guide

Refinement Options

CA IDMS/DB provides options for refining the database design to ensure optimal
performance in individual transactions. There is no right or wrong method for refining
the physical database model. Your organization's requirements will determine the best
approach for you.

Options

The following database options can be used to ensure optimal performance in individual
business transactions:

■ Indexes—Chapter 11, "Determining How an Entity Should Be Stored" showed you

how to include indexes in the database design to provide data clustering. At this
point in the design process, you have the option to include additional indexes to
provide generic search capabilities as well as alternate access keys.

■ Collapsing relationships—A one-to-many relationship can be expressed within a
single entity by making the many portion of the relationship a repeating data
element. A one-to-many relationship expressed in this way can enhance processing
performance by reducing DBMS overhead associated with processing multiple

entity occurrences.

■ Introducing redundancy—By maintaining certain data redundantly, you can
sometimes enhance processing efficiency in selected applications.

Each of these options is described in detail below following a discussion of how to
estimate I/Os for transactions.

Estimating I/Os for Transactions

Chapter 12: Refining the Database Design 137

Estimating I/Os for Transactions

After you have assigned data location and access modes to the entities in a database,
you need to estimate the number of input/output operations that each business
transaction will perform. You estimate the I/O count for a transaction by tracing the
flow of processing from one entity to another in the database. As you trace the flow of

processing, you determine the number of I/Os required to access all necessary entities.

The I/O estimate for a business transaction depends on several factors, including:

■ The order in which entities are accessed

■ The location mode of each entity accessed

■ The types of indexes (if any) used to access the data

■ How the entities are clustered in the database

General guidelines

Assuming that an entire cluster of database entities can fit on a single database page,
you can use the following general guidelines for estimating I/Os:

■ Zero I/Os are required to access an entity that is clustered around a previously
accessed entity.

■ One I/O is required to access an entity stored CALC.

■ Three I/Os are required to access an entity through an index.

To calculate the time required to perform all I/O operations in a particular transaction,

perform the following computations:

■ Total number of I/Os for all entity types—Compute the total number of I/O
operations by adding the number of I/Os required to retrieve and update
occurrences of all entity types.

■ I/O reserve factor—Multiply the total number of I/Os by 1.5 to account for possible
overflow conditions and large index structures.

■ Amount of time to perform I/Os—Multiply the total number of I/Os for all entity

types by the access time for the device being used. The result is a rough estimate of
the time required to perform all I/O operations in the transaction.

Once you have determined how much time will be required to execute a particular
transaction, you need to compare this time figure with the performance goal you

established earlier in the design process. If the required time does not meet your
expectations, you need to modify the physical database model until it does. Sometimes
you have to change your expectations.

For further information on establishing performance goals for business transactions, see

Chapter 10, "Identifying Application Performance Requirements".

Estimating I/Os for Transactions

138 Database Design Guide

Two sample exercises in estimating I/Os are presented below. Each exercise uses the
EMPLOYEE, EXPERTISE, and SKILL entities:

Estimating I/Os for Transactions

Chapter 12: Refining the Database Design 139

Sample Exercise #1: Estimating I/Os for a Retrieval Transaction

Suppose you need to estimate I/Os for the following transaction:

Identify skills for an employee.

In this transaction, the user specifies an employee ID value and the system returns the

employee ID, name, skil l code, skil l level, and skil l description for the specified
employee. This transaction uses the EMPLOYEE entity as an entry point to the database.

I/O estimates

By analyzing the access path of the transaction, you can make the following I/O

estimates for each entity accessed:

■ EMPLOYEE—Because this entity is stored CALC, only one I/O operation is required
to retrieve one EMPLOYEE entity occurrence from the database.

■ EXPERTISE—Each employee can have as many as five skil ls. Therefore, the

transaction retrieves five EXPERTISE entity occurrences for each EMPLOYEE entity
occurrence. However, since EXPERTISE entity occurrences are clustered around a
related EMPLOYEE entity occurrence, no I/Os are necessary to retrieve the

EXPERTISE entity occurrences.

■ SKILL—For each EXPERTISE entity occurrence retrieved, there is an associated SKILL
entity occurrence in the database. Therefore five SKILL entity occurrences are
retrieved for each employee. Since the SKILL entity is stored CALC, its occurrences

are distributed randomly in the database. To retrieve five SKILL entity occurrences,
the system must perform five I/Os.

Estimating I/Os for a sample retrieval transaction

A total of six I/O operations will be performed by this transaction, as shown below.

Estimating I/Os for Transactions

140 Database Design Guide

Estimating I/Os for Transactions

Chapter 12: Refining the Database Design 141

Sample Exercise #2: Estimating I/Os for an Update Transaction

When you estimate I/Os for a transaction that performs update functions, you need to
consider I/O operations that must be executed to ensure database integrity. In addition
to the I/Os required to access desired entities, update transactions must perform I/Os to

access related entities. Some types of integrity checking require that the system access
other related entities.

Suppose you need to estimate I/Os for the following transaction:

Add a skill for an employee.

To protect the relationship between an EMPLOYEE entity and an associated EXPERTISE
entity, the EMPLOYEE entity must be accessed before storing the EXPERTISE entity.
Likewise, to protect the relationship between a SKILL entity and an associated
EXPERTISE entity, the SKILL entity must be accessed before storing the EXPERTISE entity.

I/O estimates

Knowing this information, you can make the following I/O estimates for each entity
accessed:

■ EMPLOYEE—Because this entity is stored CALC, only one I/O operation is required
to access one EMPLOYEE entity in the database.

■ SKILL—Since the SKILL entity is stored CALC, only one I/O is required to access a
single SKILL occurrence in the database.

■ EXPERTISE—EXPERTISE entities are clustered around a related EMPLOYEE entity.
Therefore one I/O is necessary to store the EXPERTISE entity.

Estimating I/Os for a sample update transaction

A total of three I/O operations will be performed by this transaction, as shown below.

Eliminating Unnecessary Entities

142 Database Design Guide

Eliminating Unnecessary Entities

Sometimes entities identified during the logical design are not required as separate
entities in the physical implementation. Two ways to eliminate such entities are:

■ Collapsing relationships

■ Introducing redundancy

Eliminating Unnecessary Entities

Chapter 12: Refining the Database Design 143

Collapsing Relationships

During the normalization process in logical database design, you separated
multiply-occurring data into a separate entity type (first normal form). It may be more
efficient to move this data back into the original (parent) entity.

Consider this option if data occurs a fixed number of times and the data is not related to
another entity. An example of such data is monthly sales totals for the last twelve
months collapsed into a sales entity.

Advantages

By maintaining the data in a single entity instead of maintaining two separate entity
types, you can:

■ Save storage space that might otherwise be used for pointers or foreign-key data.

■ Reduce database overhead by eliminating the need to retrieve two entities. When

you express a one-to-many relationship within a single entity, application programs
can access all desired data with a single DBMS access.

Note: Expressing a one-to-many relationship within a single entity offers l ittle I/O

performance advantage over clustering two separate entities.

Comparison of collapsing relationships and maintaining separate entities

The following table presents a comparison of collapsing relationships into a single entity
type and maintaining separate entities.

Efficiency Considerations Potential Impact

I/O Expressing a one-to-many relationship within a single

entity offers l ittle I/O performance advantage over
clustering two entities.

CPU time By storing a repeating element in an entity, you can reduce
the amount of CPU time required to access the necessary

data.

Space management By storing a repeating element in an entity instead of
maintaining two separate entity types, you can save

storage space that might otherwise be required for
pointers or foreign key data.

Contention No difference

Eliminating Unnecessary Entities

144 Database Design Guide

SQL considerations

Because repeating elements violate first normal form, they are incompatible with the

relational model and cannot be defined in SQL. However, if there are a fixed number of
repetitions (such as months in a year), the repeating elements can be separately named
(such as JANUARY, FEBRUARY, and so on). If there is a variable but qui te small number

of occurrences (such as phone numbers), a fixed maximum number of elements can be
named (PHONE1, PHONE2, for example), using the nullable attribute to allow
identification of occurrences that might not have a value.

Eliminating Unnecessary Entities

Chapter 12: Refining the Database Design 145

Introducing Redundancy

Although data redundancy should normally be avoided, you can sometimes enhance
processing efficiency in selected applications by storing redundant information. A
certain amount of planned data redundancy can be used to simplify processing logic.

In some instances, you can eliminate an entity type from the database design by
maintaining some redundant information. For example, you might be able to eliminate
an entity type by maintaining the information associated with this entity in another
entity type in the database. When you merge two or more entity types in this way, you

simplify the physical data structures and reduce relationship overhead.

Considerations

Consider maintaining redundant data under the following circumstances:

■ An entity type is never processed independently of other entity types. If an entity

is always processed with one or more additional entity types, you may be able to
eliminate the entity and store the information elsewhere in the database. Since the
information associated with the entity is not meaningful by itself, inconsistent

copies of the data should not present a problem for the business.

■ An entity type is not used as an entry point to the database . If application
programs do not use a particular entity type as an entry point to the database, you
may be able to eliminate the entity type from the design. However, do not

eliminate the entity if it is a junction entity type in a many-to-many relationship.

■ The volume of data to be stored redundantly is minimal. Do not maintain large
amounts of data redundantly. A high volume of redundant information will require

excessive storage space.

Example

The following diagram shows how you might use data redundancy to enhance
processing of dental claim information.

By maintaining all DENTIST information with the DENTAL CLAIM entity, you can simplify
the database design and reduce the overhead of maintaining the relationship. Since
Commonweather users do not process information associated with the DENTIST entity

by itself, inconsistent DENTIST information will not present a problem for the business.

Eliminating Unnecessary Relationships

146 Database Design Guide

Eliminating Unnecessary Relationships

The purpose of a relationship is to represent integrity rules between entities. As such,
they serve a useful purpose in modeling your business. However, there is always

overhead associated with a relationship. Since the DBMS must ensure the integrity of a
relationship during update operations, they result in increased CPU and I/O. They may
also require additional storage space.

While you should not sacrifice needed integrity, you should eliminate relationships that

are not required for business reasons. Particularly review the need for:

■ One-to-one relationships

For example, the DEPARTMENT-HEAD relationship may not require DBMS

enforcement of integrity and, if so, should be eliminated as a relationship.

■ Relationships in which there are only a few pre-established parent occurrences

Examples of this type of relationship would be STATE-OFFICE or SEX-EMPLOYEE.
Ensuring that each office is in a valid state or that each employee is assigned a valid

sex should be done in one of the following ways rather than as a relationship.

– By using a map edit or code table (application enforcement)

– By using a check constraint (in SQL-defined databases)

– By using database procedures (in non-SQL defined databases)

– Through a logical record facility path (in non-SQL defined databases)

In the Commonweather database, the relationship between INSCO and HEALTH
INSURANCE PLAN can be removed.

Adding Indexes

Chapter 12: Refining the Database Design 147

Adding Indexes

In Determining How an Entity Should Be Stored, you included indexes in the physical
database model for entities that will be accessed through multi -occurrence retrievals.
These entity occurrences will be clustered around the index. You now have the option to
define additional indexes for database entities to satisfy processing requirements.

Review the function lists and access paths that you documented during the logi cal
design process to ensure that each entry point entity has an efficient access for each
application search key. If necessary, add additional indexes as alternate access keys to
satisfy application requirements.

For further information on how to determine the database entry point for each business
transaction, see Chapter 10, "Identifying Application Performance Requirements".

What is an index?

An index is a data structure consisting of addresses (db-keys) and values from one or
more data elements of a given entity. Indexes enhance processing performance by
providing alternate access keys to entities.

Advantages and disadvantages

While indexes minimize the number of I/Os required to retrieve data from the database,

they require extra storage space and add overhead for maintenance. The addition of an
index actually increases the I/Os and processing time required to add or remove an
entity occurrence. You will need to weigh the options when considering the use of
indexes.

Why add additional indexes?

Indexes provide a quick and efficient method for performing several types of processing.

■ Direct retrieval by key—With an index, the DBMS can retrieve individual entity

occurrences directly by means of a key. For example, an application programmer
could use an index to quickly access an employee by social security number.

Adding Indexes

148 Database Design Guide

Because more than one index can be defined on an entity (each on a different data
element), they can be used to implement multiple access keys to an entity.

■ Generic access by key—Indexes allow the DBMS to retrieve a group of entity
occurrences by specifying a complete or partial (generic) key value. For example, an
index could be used to quickly access all employees whose last names begin with

the letter M. A string of characters, up to the length of the symbolic key, can be
used as a generic key.

■ Ordered retrieval of occurrences—The DBMS can use a sorted index to retrieve
entity occurrences in sorted order. In this case, the keys in the index are

automatically maintained in sorted order; the entity occurrences can then be
retrieved in ascending or descending sequence by key value. The application
program does not have to sort the entity occurrences after retrieval. For example,
all employees could be listed by name. Because entity occurrences can be accessed

through more than one index, they can be retrieved in more than one sort
sequence.

■ Retrieval of a small number of entity occurrences—An index improves retrieval of

all occurrences of a sparsely-populated entity and provides a way of locating all
occurrences of such entities without reading every page in the area (an area
sweep). Area sweeps are the most efficient means of retrieving entities with
occurrences on all (or almost all) pages in an area.

■ Physical sequential processing by key—Entity occurrences can be stored clus tered
around an index. With this storage mode, the physical location of the clustered
entity occurrences reflects the ascending or descending order of their db-keys or

symbolic keys. If occurrences of an entity are to be retrieved in sequential order,
storing entity occurrences clustered via the index reduces I/O. This option is most
effective when used with a stable database.

■ Enforcement of unique constraints—An index can be used to ensure that entity

occurrences have unique values for data elements; for example, to ensure that
employees are not assigned duplicate social security numbers.

Other means of enforcing unique constraints include:

– Using a unique CALC key

– Using a sorted relationship

Index keys

The keys associated with an index can be either:

■ Symbolic keys, in which the key values in the index are the same as one or more
data elements in the indexed entity occurrences

■ Db-keys, in which the key values in the index are the db-keys of the indexed entity
occurrences.

Symbolic key indexes are useful for:

■ Enforcing unique constraints

Adding Indexes

Chapter 12: Refining the Database Design 149

■ Providing alternate access keys (entry points) into the database

■ Supporting generic and ordered retrieval of entity occurrences

Db-keys are useful for:

■ Retrieving all occurrences of a sparsely-populated entity (an entity with occurrences
on only some of the pages in an area)

If generic or ordered retrieval is not a consideration when adding new symbolic key
index and the key is made up of more than one data element, choose as the first data
element one which is not already an access key into the database. For example, if you
place an index on COVERAGE to ensure that its primary key is unique, then the index key

will be composed of: EMP ID, HEALTH PLAN CODE, and COVERAGE TYPE. Since EMP ID
and HEALTH PLAN CODE are already entry points into the COVERAGE entity (because
they are CALC keys of related entities), choose COVERAGE TYPE as the first data element
in the index key.

Index order

The index order is the way in which the entity occurrences will be logically ordered
based on the key or keys you have chosen. Index orders include:

■ Ascending—Index entries are ordered so that an entry with a lower key value
occurs before an entity with a higher key value: A through Z, smallest to largest.

■ Descending—Index entries are ordered so that an entry with a higher key value
occurs before an entity with a lower key value: Z through A, largest to smallest.

■ Mixed—You can choose to have one key of an index ordered in one order and
another key of the same index in a different order.

In general, choose an index order based on how data is most frequently accessed. For

example, if employees are most often retrieved in ascending order by last name, then
choose ascending as the index order.

Db-key indexes

You can choose to have the index order based on the db-keys of the entity occurrences

being indexed.

Indexes ordered by db-key especially improve retrieval of entities with occurrences on
only some of the pages in an area, but which are l ikely to have more than one

occurrence per page, such as entities clustered around a sparsely occurring parent.

Retrieving all occurrences of an entity

The following table provides guidelines for choosing a retrieval method (and, thus, a
design) to retrieve all occurrences of an entity.

Adding Indexes

150 Database Design Guide

Data in the Database Access Method

Sparsely populated An index based on symbolic key

Every page contains one or more occurrences
of the entity

Use an area sweep

Sparsely populated but a page contains

multiple occurrences of the entity

An index based on db-key

Adding Indexes

Chapter 12: Refining the Database Design 151

SQL considerations

In the SQL environment, every entity that is a parent in a relationship must have a

unique index or CALC key defined for the referenced (primary) key. Add any indexes that
are missing.

Every entity defined in an SQL-defined database is initially assigned a default index. This

is an index sorted by db-key so that all entity occurrences can be accessed with the
minimum number of I/Os. You must decide whether to retain this index or drop it. You
should drop the default index if any of the following are true:

■ The entity is densely populated; every page contains at least one occurrence of the

entity.

■ Entity occurrences are clustered around another index.

■ Another index is defined on the entity, and it is unlikely that more than one entity
occurrence resides on a page.

■ Non-keyed queries will be extremely rare.

Representing additional index options

In Determining How an Entity Should Be Stored, you saw how to represent an index.

To represent additional index options in the data structure diagram:

■ Specify the order for each data element used as an index key (ASC - ascending; DES
- descending).

■ If the order is by db-key, specify DBKEY.

The following diagram shows the standard CA IDMS/DB notation for an index. The index
allows the DBMS to access all EMPLOYEE entity occurrences in the database based on
the last name/first name in descending order. Duplicate last name/first name

combinations are allowed.

Summary of indexes

Indexes should be added, if necessary, when validating transaction performance. Add
additional indexes if the advantage gained outweighs the cost.

Adding Indexes

152 Database Design Guide

The following table presents a comparison of the use of indexes and user -written sort
routines.

Efficiency Considerations Potential Impact

I/O I/O may be reduced for retrieval but increased for update.

CPU time CPU can be reduced for retrieval but increased for update.

Space Indexes require extra storage space in the database.

Contention The use of an index can sometimes cause contention.

Refined Data Structure Diagram for Commonweather Corporation

Chapter 12: Refining the Database Design 153

Refined Data Structure Diagram for Commonweather
Corporation

Collapse relationships

You can eliminate unnecessary entities by embedding their data in a related entity type.
By using a repeating data element instead of maintaining two separate entities, you can

save storage space and also reduce CPU needed to access the repeating data as
described below:

■ The PHONE and SALARY GRADE records are ideal candidates for elimination

because:

– Each entity participates in only one relationship. The PHONE entity is related
only to the OFFICE entity; the SALARY GRADE entity is related only to the JOB
entity.

– A maximum number of repetitions is predictable for each entity. A maximum of
three phone numbers exists for each office; a maximum of four salary grades
exists for each job.

Thus we can eliminate the PHONE entity and place three PHONE NUMBER data
elements in the OFFICE entity. We can also eliminate the SALARY GRADE entity and
place four SALARY GRADE data elements in the JOB entity. If you define this
database using SQL statements, each of the repeating data elements must have a

unique name and, in the case of PHONE NUMBER and SALARY GRADE, allow null
values.

Introduce redundancy

The PHYSICIAN, HOSPITAL, PATIENT, DENTIST, and INS CO entities are never processed
independently of other entity types. Therefore, they do not need to be maintained
independently in the database. In addition, information in the PROJECT and WORKER
entities is already carried in the STRUCTURE entity. HEALTH INS PLAN and LIFE INS PLAN

contain the same type of information and can be combined into a single entity.
Information maintained in these entities can therefore be embedded in other related
entities:

■ INS CO information can be stored in HEALTH INS PLAN and LIFE INS PLAN.

■ PHYSICIAN information can be maintained in NON-HOSPITAL CLAIM.

■ HOSPITAL information can be maintained in HOSPITAL CLAIM.

■ PATIENT information can be maintained in NON-HOSPITAL CLAIM, HOSPITAL CLAIM,

and DENTAL CLAIM.

■ DENTIST information can be maintained in DENTAL CLAIM.

■ HEALTH INS PLAN and LIFE INS PLAN can be combined into one entity called
INSURANCE PLAN.

Refined Data Structure Diagram for Commonweather Corporation

154 Database Design Guide

Update anomalies for these entities will not present a problem for the organization. For
example, since Commonweather users do not process DENTIST information by itself,

inconsistent information in this entity will not compromise integrity or complicate
business processing functions.

Eliminate unnecessary relationships

At this point, the health-related entities can be represented as:

The LIFE-PLAN relationship can be eliminated by treating it as another type of coverage

available through an insurance plan. Although this change will require that an
occurrence of COVERAGE be associated with each EMPLOYEE, it simplifies the database
structure and the application processing.

The HIP-COVERAGE relationship can be eliminated also. Since there will never be more
than 15 insurance plans in the database, the validity of an employee's insurance
information (the plan code) can be enforced through other means such as a logical
record facil ity path or an SQL CHECK constraint.

Also eliminate the DEPT-HEAD relationship. Integrity enforcement by the DBMS for this
one-to-one relationship is not critical to Commonweather Corporation.

Add indexes

Add the following indexes to enforce unique constraints:

■ An index on SKILL based on SKILL NAME

■ An index on COVERAGE based on COVERAGE TYPE, PLAN CODE, and EMP ID

■ An index on EMPOSITION based on JOB ID and EMP ID

■ An index on EXPERTISE based on SKILL CODE and EMP ID

■ An index on NON-HOSP PROCEDURE based on NON-HOSP CLAIM ID and
PROCEDURE NUMBER

Refined Data Structure Diagram for Commonweather Corporation

Chapter 12: Refining the Database Design 155

■ An index on DENTAL PROCEDURE based on DENTAL CLAIM ID and PROCEDURE
NUMBER

Note: You will see in the next chapter how some of these indexes can be eliminated.

Add the following indexes to provide generic search capability:

■ An index on JOB based on JOB TITLE

■ An index on EMPLOYEE based on EMP LAST NAME

Refined data structure diagram

Refined Data Structure Diagram for Commonweather Corporation

156 Database Design Guide

Chapter 13: Choosing Physical Tuning Options 157

Chapter 13: Choosing Physical Tuning
Options

This section contains the following topics:

Overview (see page 158)
Placement of Entities in Areas (see page 160)

Data Compression (see page 165)
Relationship Tuning Options (see page 168)
Index Key Compression (see page 187)
Non-SQL Tuning Options (see page 188)

Physical Tuning Options for Commonweather Corporation (see page 204)

Overview

158 Database Design Guide

Overview

Physical tuning options

The following database options can be used to ensure optimal performance in individual
business transactions:

■ Placement of entities in areas—To facil itate certain processing operations, you can

instruct CA IDMS/DB to divide the database into separate areas. Each area can
contain one or more entities.

You can also sometimes simplify application processing, recovery procedures, and
unload/load operations by segmenting the database.

■ ata compression—To save disk space, you can instruct the database to compress
data before it is stored and decompress it when it is retrieved.

■ Relationships and tuning options—When relating entities, you can establish l inked

or unlinked relationships. Linked relationships can be used to optimize performance
in applications that process related entities.

■ Index key compression—To save disk space, you can instruct CA IDMS/DB to
compress indexes.

■ Non-SQL tuning options

– Multimember relationships—A single relationship is maintained for multiple
child entity types.

– Direct location mode—You can assign this location mode to an entity when the
application programmer must be able to explicitly specify the physical location
of entity occurrences in the database.

– Variable-length entities—You can collapse two entities involved in a

one-to-many relationship where the many entity can contain a variable number
of occurrences.

– Database procedures—You can write and compile database procedures to be

executed at application runtime when a program accesses an area or entity to
perform predefined programming functions such as data compression and
decompression.

– CALC duplicates options—You can specify options for nonunique CALC keys

specifying how these nonunique occurrences will be stored in the database.

– Relationship tuning options—You can specify options as part of the definition
of a relationship to specify the order of child occurrences, how the occurrences
will be l inked with each other, how new occurrences are introduced into the

relationship, and how existing occurrences can be modified.

– Index tuning options—You can specify options as part of the definition of an
index to provide for unlinking the index and for determining the order in which

entity occurrences will be referenced in the index, how new occurrences are
introduced into the index, and how existing occurrences can be modified.

Overview

Chapter 13: Choosing Physical Tuning Options 159

Each of these tuning options is described in detail below.

Placement of Entities in Areas

160 Database Design Guide

Placement of Entities in Areas

Why separate entities?

To facil itate certain processing operations, you can instruct CA IDMS/DB to divide the
database into separate areas. Each area can contain one or more entities. You place
database entities in separate areas to:

■ Minimize processing interruptions that might be caused by backup and recovery
procedures. CA IDMS/DB provides standard system util ity programs that allow the
system operator to rollforward/rollback or dump/restore only those areas in a
database that require backup and recovery. Before performing backup a nd recovery

procedures, the operator typically varies each area or fi le that is currently held in
update usage mode to retrieval (or offl ine mode). Once an area has been varied to
retrieval or offl ine mode, further update processing is not allowed. By assi gning

entities to separate areas, you can ensure that backup and recovery procedures
impact the minimal number of applications.

For further information on backup and recovery, see CA IDMS Utilities Guide and CA
IDMS Database Administration Guide.

■ Reduce time required to perform maintenance activities (such as unload and
reload by area). By separating entities into separate areas, you make the amount of
data processed smaller, which, in turn, reduces the time required for the

processing.

■ Reduce cluster overflow. The impact of large cluster sizes can be reduced by
separating one or more entity types into separate areas. This is especially effective
if less-frequently accessed entities are separated.

■ Improve efficiency of serial processing. If an entity (or entities) is to be retrieved
mainly by area sweeps, that entity (or entities) should be assigned to a separate
area.

Guidelines

Consider the following general guidelines for assigning entities to database areas:

■ Whenever possible, place indexes in separate areas. If two or more indexes can be
accommodated by the same page size, you can place the indexes in the same area.

If using a non-SQL implementation, consider segregating each index in its own page
range if they are in the same area or if the indexes are restricted to separate page
ranges.

■ In general, you should store only one type of entity cluster in each area of a

database.

■ Nonclustered entities can be placed together in a separate area or can be included
in an area containing a cluster, provided that CALC overflow will not be a problem.

Placement of Entities in Areas

Chapter 13: Choosing Physical Tuning Options 161

Segmentation of Databases

By segmenting the database, you can simplify application processing, recovery
procedures, and unload/load operations. CA IDMS/DB allows you to create databases
that are segmented according to:

■ Groups of entities

■ Logical keys

Segmenting by Groups of Entities

To facil itate processing of the same data by different application programs, you can

create a database that is segmented by groups of entities, as shown below.

To create such a database, you assign entities to separate database areas and use only
unlinked (as opposed to l inked) relationships between entities in different areas. See
"Linked and Unlinked Relationships" later in this chapter for further information on

types of relationships.

Database segmented by groups of entities

Advantages

A database segmented by entity is advantageous because it:

■ Eliminates the need to perform maintenance for l inked relationships that cross
areas and facil itates and shortens unload/reload operations.

■ Allows certain application programs to remain active while parts of the database
are being recovered or restructured.

Considerations

Although a database segmented by entity can facil itate certain processing functions, it
can sometimes complicate processing of child entities. If an application requires the

ability to group child entities by parent, the DBMS must use additional system resources
to access the related entities that are stored in different areas .

Placement of Entities in Areas

162 Database Design Guide

Segmenting by Logical Key

Segmenting by logical key is used to separate a large non-SQL-defined database into
identical segments based on the value of one or more data elements. For example, you
might separate employee data by company code, each company within

Commonweather Corporation having its own segment of the database.

Note: The key field on which the segmentation is performed may or may not actually
exist as a data element in some entity of the database.

Segmenting by key value in a non-SQL implementation

To segment by key value in a non-SQL implementation:

1. Define a single schema that describes the database.

2. Define a set of subschemas associated with the schema.

3. Define a segment for each physical implementation of the database. Each segment
must contain the same named set of areas. Use separate page ranges or page
groups to distinguish each segment.

4. If necessary, define a database name for each segment, including the corresponding

segment and additional segments for other data accessed by the application.

5. Provide a mechanism to direct each application program to the correct segment by
specifying the DBNAME or segment name on its BIND RUNUNIT statement.

Placement of Entities in Areas

Chapter 13: Choosing Physical Tuning Options 163

Segmenting by key value in an SQL implementation

To segment by key value in an SQL implementation:

1. Define a segment for each logical division of the database. Each segment must
contain the same named set of areas.

2. Define a schema for each logical division. Each schema will describe tables in one of

the segments.

3. Define the identical set of tables in each schema.

4. For each application, create a set of access modules, one for each schema.

5. Provide a mechanism to direct processing to the correct access module at runtime.

Database Implementation by Key Value

Placement of Entities in Areas

164 Database Design Guide

Advantages

A database implementation by key value is advantageous because it:

■ Simplifies recovery operations by permitting certain application programs to remain
active while parts of the database are being recovered or updated.

■ Facilitates and shortens unload/load operations.

■ Allows for distribution of an organization's processing to multiple machines and
sites.

Considerations

While a database that is implemented by key value facil itates certain processing

functions, it complicates simultaneous processing of all segments.

In an SQL environment, you could create a view of all the tables at once to access all
segments at one time.

In a non-SQL environment, you would have to bind concurrent run units to access all

segments at one time. An alternative is to bind rununits serially.

Data Compression

Chapter 13: Choosing Physical Tuning Options 165

Data Compression

Conserving disk space

To conserve disk space, you can instruct the database to compress data before storage
and decompress it after retrieval. There are three ways to compress and decompress
data:

■ CA IDMS Presspack

■ IDMSCOMP and IDMSDCOM database procedures

■ User-written procedure

These procedures are invoked automatically by the DBMS as data is stored and

retrieved.

Note: Only CA IDMS Presspack is available for SQL-defined data.

Advantages and disadvantages of data compression

The following table summarizes the advantages and disadvantages of data compression.

Efficiency Considerations Potential Impact

I/O By compressing an entity, you conserve storage resources,

allowing the system to fit more entities on each database
page. If you can fit all entity occurrences associated
through a particular relationship on a single page, the

system will only perform one I/O to access these entities.

CPU time Compressing data requires some extra CPU time to
perform compression/decompression processing.

Space management Compression can be used to conserve considerable

amounts of storage.

Contention No difference.

Data Compression

166 Database Design Guide

Considerations for using CA IDMS Presspack

CA IDMS Presspack uses Huffman techniques to compress database entities. The

techniques include assigning unique bit string codes of different lengths to single
character and character strings. These codes substitute for the character and character
strings in the entities.

To assign the codes, CA IDMS Presspack uses character and character -string frequencies
of occurrence. It assigns shorter codes to the most frequently occurring characters and
character strings. To those that occur less frequently, CA IDMS Presspack assigns longer
codes.

CA IDMS Presspack compresses both textual and nontextual data.

For further information about CA IDMS Presspack, see CA IDMS Database
Administration Guide and CA IDMS Presspack User Guide.

Considerations for using IDMSCOMP and IDMSDCOM

IDMSCOMP and IDMSDCOM are supplied with CA IDMS/DB. They are placed in the load
(core-image) l ibrary at installation time and are also provided in source form so you can
modify them if necessary. You can also write your own database procedure or use other

commercially available compression/decompression procedures.

For further information about database procedures, see CA IDMS Database
Administration Guide.

To compress data, IDMSCOMP performs the following conversion procedures:

■ Converts repeating blanks into a 2-byte code.

■ Converts repeating binary zeros into a 2-byte code.

■ Converts other repeating characters into a 3-byte code.

■ Converts any of a number of commonly used character pairs into a 1 -byte code.

Data that does not fall into any of the above categories remains unchanged. Each group
of unchanged data is prefixed by a 2-byte code. The following diagram shows the
compression of contiguous blanks in an entity.

Data Compression

Chapter 13: Choosing Physical Tuning Options 167

Considerations for user-written procedures

If writing your own compression procedures, you must follow conventions for writing

database procedures.

For information on database procedures, see CA IDMS Database Administration Guide.

Guidelines for compression

Consider the following guidelines when deciding whether data should be compressed:

■ When determining whether or not to compress/decompress an entity, you should
consider whether the disk space saved justifies the CPU overhead incurred by the
routines.

■ The control portion of an entity is not compressible.

The control portion of an entity includes all data elements up to the last key (CALC,
sort, index). Since this portion of an entity is not compressible, it may mean that not
enough compressible data exists to justify compression.

■ Use compression/decompression procedures for entities that are not updated
often. While the compression procedures save considerable disk space, it uses
additional CPU time to perform its processing.

■ Do not compress entities that start with large groups of repeating characters but
lose them over time.

■ IDMSCOMP/IDMSDCOM considerations:

– IDMSCOMP and IDMSDCOM compression procedures operate most efficiently

for entities whose occurrences usually contain sizable portions of blanks or
binary zeros.

– Don't use this compression for entities containing only small scattered groups

of repeating characters.

– Data that is stored in packed decimal format is not a good candidate for data
compression.

Storage mode

If you decide to compress data in an entity, you should add a storage mode of C for the
entity on the data structure diagram.

Relationship Tuning Options

168 Database Design Guide

Relationship Tuning Options

What is a relationship?

Entity occurrences are related to one another if the foreign key in a child occurrence has
the same value as the primary key in a parent occurrence. You identified relationships in
the logical database design process.

Relationship Tuning Options

Chapter 13: Choosing Physical Tuning Options 169

Linked and Unlinked Relationships

Linked and unlinked

When implementing these relationships, there are a number of physical tuning options
from which to choose. You have already decided whether a relationship is a clustering

relationship or not. You must now decide whether to define the relationship as l inked or
unlinked.

■ A linked relationship is one in which related entity occurrences are l inked to one
another through embedded pointers.

■ An unlinked relationship is one in which no embedded pointers are used to l ink
related entity occurrences.

Advantages of linked relationships

Linked relationships have the following advantages:

■ Since there is direct l inkage between parent and related child occurrences, l inked
relationships provide the most efficient means (in terms of CPU and I/O) of
retrieving related entity occurrences.

■ Unlinked relationships require that a CALC key or index be defined on the foreign
key of the child entity.

■ An index adds both CPU and I/O to retrieve data and maintain the index. It also
requires additional storage space.

■ Defining a CALC key on the foreign key is almost as effective as using a l inked
relationship provided that it does not cause CALC overflow conditions, which
increases I/O, CPU, and contenti on. However, you can define only one CALC key per

entity, so that an entity participating as a child in more than one relationship must
use indexes for all but one unlinked relationship.

■ Linked relationships provide an ordering option that can reduce the need for
additional indexes to enforce unique constraints and avoid sorting of retrieved

information.

Considerations

Keep the following considerations in mind when using linked and unlinked relationships.

■ Self-referencing relationships must always be unlinked.

■ Linked relationships require physical restructuring of entity occurrences to add or
remove relationships.

■ The time required for and impact of maintenance operations, such as

unload/reload, can be reduced if relationships between entities in different areas
are unlinked. This is particularly important in designing large databases.

Non-SQL considerations

Relationship Tuning Options

170 Database Design Guide

In a non-SQL environment:

■ There is no integrity enforcement by the DBMS with an unlinked relationship.

Integrity must be enforced by applications or logical record facility path logic.

■ There is no relationship clustering with an unlinked relationship. You must use CALC
clustering to achieve results similar to clustering.

Note: If CALC clustering results in long CALC chains, CPU, I/Os, and contention might all
increase.

You can eliminate foreign keys from child entities if the relationship is l inked. This has
the following results:

■ It reduces storage requirements

■ It eliminates the need to update each child occurrence if the parent's key is
changed.

For example, if you change the value of DEPT ID in a department, related

employees do not need to be updated.

If you choose to retain the embedded foreign keys, you:

■ Have full update SQL access to the data

■ Will reduce the number of I/Os required to retrieve foreign key values for
nonclustered entities (for example, to retrieve the department ID of an employee)

Unlinked Relationship Tuning Options

In designing an unlinked relationship, define the following:

■ Index or calc key on the foreign key of the relationship

Additional Columns in the Foreign Key Indexes

In designing an unlinked relationship, you must define an index or calc key on the
foreign key of the relationship. If you use an index to enforce the integrity of the

referential constraint, it must contain the columns that make up the foreign key but can
contain additional columns. Defining additional columns after the foreign key columns
has the potential for reducing disk space requirements and improving performance.

The ability to extend foreign key indexes with additional columns may enable one index
to be used for multiple purposes. For example, a table’s primary key is often a

concatenation of one of its foreign keys with additional columns that together form a
unique identifier for each row of the table. A single index can be used to enforce both
the integrity of the referential constraint and the uniqueness of the primary key. By

eliminating a second index you reduce disk space requirements and the overhead
associated with index maintenance.

Relationship Tuning Options

Chapter 13: Choosing Physical Tuning Options 171

Including extra columns in a foreign key index may also improve access efficiency by
enabling the use of more index scans to identify rows matching selection criteria. The

use of an index scan can significantly reduce the number of I/Os needed to satisfy a
query.

Defining additional columns in the index key

To define additional columns in the index key, define an index so that the foreign key
columns precede any additional columns in the index key. The order of the foreign key

columns in the index key must match the order of the referenced columns in some
unique index or CALC key on the referenced table.

Linked Relationship Tuning Options

In designing a l inked relationship, you specify the following options:

■ Type of l inkage (chained or indexed)

■ Relationship ordering (sorted or unsorted)

■ Sort options (order and uniqueness)

Relationship Tuning Options

172 Database Design Guide

Type of Linkage

CA IDMS/DB supports the following types of l inked relationships:

■ Chained—The DBMS maintains relationships based on internal information stored
in the prefix of each entity occurrence. This information in the prefix contains the

db-key of the logically next occurrence in the relationship.

■ Indexed—The DBMS maintains relationships through an index between a parent
and related child occurrences. The bottom level of the index contains the db-keys of
the related child occurrences. Each child occurrence contains an index pointer that

points to the bottom level of the index.

Guidelines

As a general rule, use indexed for nonclustered relationships and chained for clustered

relationships.

An indexed nonclustered relationship requires fewer I/Os to add or remove an entity
occurrence than a chained nonclustered relationship. This is because the adjacent entity

occurrences are not updated; only the index structure needs to be updated. In addition,
fewer I/Os are required to retrieve a child occurrence by key in a nonclustered
relationship if it is indexed rather than chained.

A chained relationship, on the other hand, requires less CPU overhead for maintenance

and retrieval than an indexed relationship. It also requires less storage space because
there is no index structure. For these reasons, it is a better choice than indexed for
clustered relationships because I/Os are not generally a concern.

Note: For databases implemented with SQL, all l inked clustered relationships are
chained and all l inked nonclustered relationships are indexed.

Relationship Tuning Options

Chapter 13: Choosing Physical Tuning Options 173

For further information on the structure of indexed relationships, see Chapter 15,
"Determining the Size of the Database".

For further information on indexed relationships, see CA IDMS Database Administration
Guide.

A comparison of indexed and chained relationships

The following table presents a comparison of indexed relationships and chained
relationships.

Efficiency Considerations Potential Impact

I/O Indexed relationships often require fewer I/O operations to
access child entities in nonclustered relationships,
especially if the relationship is sorted.

CPU time Chained relationships use less CPU time for processing of

child entities than indexed relationships.

Space management Chained relationships require less storage space than
indexed relationships.

Contention No difference.

Relationship Tuning Options

174 Database Design Guide

Representing an indexed relationship

To represent an indexed relationship:

■ Name the relationship.

■ Specify whether the order is ASCending or DEScending for each key.

■ Identify the data element name(s) to be indexed.

■ Specify whether duplicate indexed items are allowed (blank) or not allowed (U for
unique).

■ Specify whether the index key is to be compressed.

The following diagram shows the standard CA IDMS/DB notation for an indexed

relationship. The index allows the DBMS to access all EXPERTISE occurrences associated
with a particular skill based on skil l level in descending order.

Relationship Tuning Options

Chapter 13: Choosing Physical Tuning Options 175

Sorted and Unsorted Relationships

You can specify the logical order of child occurrences within each linked relationship:

■ Sorted— A new entity occurrence is positioned according to the value of one or
more of its data elements (called a sort key) relative to the values of the same data

elements in other related child occurrences.

■ Unsorted— A new entity occurrence is positioned according to a predefined order
within the relationship.

For example, all new entity occurrences might be positioned ahead of all existing

occurrences.

Advantages of a sorted relationship

Through a sorted relationship:

■ A program can retrieve a child occurrence directly by key, thus reducing CPU.

■ A program can retrieve child occurrences data in order, thus avoiding sorts.

■ Unique constraints can be enforced without the need for additional indexes.

Considerations for sorted relationships

Maintaining the relationship's order during update operations requires increased CPU
and a greater number of I/Os than an unsorted relationship.

Enforcing unique constraints

Sorted relationships can be used to enforce unique constraints as an alternative to a

CALC key or index. For example, you can eliminate the EXP-NDX index in the
Commonweather Corporation by defining either the SKILL-EXPERTISE or the
EMP-EXPERTISE relationship as a unique sorted relationship.

To eliminate the index, you must either:

■ Define SKILL-EXPERTISE as sorted on EMP ID with the unique option.

or

■ Define EMP-EXPERTISE as sorted on SKILL CODE with the unique option

Either approach ensures that no employee is assigned duplicate skil ls.

Sorted order

Relationship Tuning Options

176 Database Design Guide

You can choose to sort in ascending, descending, or mixed order.

As a general rule, choose the sort order to reflect the most commonly desired retrieval

order. However, the sequence chosen for a chained relationship can have an impact on
performance in update transactions. This will allow the DBMS to locate the point of
insertion more quickly.

If new entity occurrences typically have sort key values greater than existing
occurrences, the relationship should have a descending sort order. Convers ely, if new
occurrences have sort keys lower than existing occurrences, ascending is preferable.

For example, new occurrences of dated entities are usually stored with higher dates

than previously stored occurrences. If this is the case, you should specify descending for
a chained relationship sorted by date.

More Information

For more information concerning the usage of numeric fields as part of a sort key, see

Zoned and Packed Decimal Fields as IDMS Keys (see page 301).

Relationship Tuning Options

Chapter 13: Choosing Physical Tuning Options 177

Nonsorted Order

If the entity occurrences in the relationship are not to be sorted, you can specify the
logical order of child entity occurrences within each occurrence of a relationship. You
determine how a new child is placed in a relationship by specifying one of the following

orders:

■ FIRST creates a LIFO (last in, first out) order. The new entity is positioned at the
beginning of the relationship.

■ LAST creates a FIFO (first in, first out) order. The new entity is positioned at the end

of the relationship.

■ NEXT creates a simple l ist. The new entity is positioned immediately after the
current (most recently accessed) entity. The NEXT order is recommended as a
default.

■ PRIOR creates a reverse list. The new entity is positioned immediately before the
current entity.

Flexibility

The NEXT and PRIOR orders provide more flexibil ity than the FIRST and LAST options;
the programmer can connect an entity anywhere within the relationship by establishing
currency before or after the point of insertion. When the FIRST and LAST options are
assigned, the programmer can be certain of the positioning of new entities, regardless

of set currency.

Note: The PRIOR and LAST options require prior pointers.

For more information on pointers, see "Linkage" later in this chapter.

Next and prior order example

In the example below, assume that a program is positioned on SANDY SHORE before it
stores JUNE MOON in the database. In a relationship defined with the NEXT order, JUNE
MOON will be stored after SANDY SHORE. In a relationship defined with the PRIOR

order, JUNE MOON will be stored before SANDY SHORE.

Relationship Tuning Options

178 Database Design Guide

First and last order example

Suppose two entities are added in the following order: PETER PLUM, then SANDY
SHORE. In a relationship defined with the FIRST order, the entity stored most recently

(SANDY SHORE) will be returned first. In a relationship defined with the LAST order, the
entity stored first (PETER PLUM) will be returned first.

Relationship Tuning Options

Chapter 13: Choosing Physical Tuning Options 179

Additional Sort Options

Standard and natural collating sequence

You can specify either of two collating sequences for sorted relationships:

■ Standard collating sequence for sorted relationships orders key fields based on

their EBCDIC collating sequence without regard to data type.

■ Natural collating sequence for sorted relationships orders key fields based on their
data type. This means that negative numeric values will collate lower than positive
values.

In the example below, assume that the values are packed or zoned decimal numbers.
They are ordered first using the natural collating sequence and then using the standard
collating sequence.

Natural Standard

-4268.50 15.26

-351.78 144.83

-258.00 -258.00

15.26 -351.78

144.83 2594.38

2594.38 -4268.50

Relationship Tuning Options

180 Database Design Guide

Duplicates options

You can specify options for relationships indicating how nonunique occurrences will be

logically placed in a sorted relationship. You can specify duplicates first or duplicates
last

■ Duplicates first— The duplicate entity occurrence will be logically placed in the

relationship before the entity occurrence already having that sort key.

■ Duplicates last— The duplicate entity occurrence will be logically placed in the
relationship after the entity occurrence already having that sort key.

Duplicates not allowed in the non-SQL definition is equivalent to unique.

A relationship can be sorted in either ascendi ng or descending order. The duplicates
option for a sorted relationship determines what happens when a user tries to store an
entity with a duplicate sort key value.

You can order the sorted relationship entity occurrences with duplicate key values as

duplicates first, duplicates last, as discussed above, or in child db-key sequence. This
option speeds retrieval by reducing I/O.

Use sorted relationships to simplify programming

Sorted relationships simplify programming effort by allowing the programmer to specify
a symbolic key value for storage, retrieval, and positioning of an entity occurrence in the
database. By using sorted relationships, the programmer need issue only one DML
statement to locate an entity in the database. To locate an entity in a FIRST, LAST, NEXT,

or PRIOR relationship, the programmer must walk the relationship by issuing several
DML statements.

The diagram below shows the use of sorted relationships to simplify programming.

Relationship Tuning Options

Chapter 13: Choosing Physical Tuning Options 181

Unsorted Sorted

0200-GETREC. 0200-GETREC.

 OBTAIN NEXT B WITHIN A-B. MOVE 'B15' TO B-KEY.

 IF DB-END-OF-SET OBTAIN B WITHIN A-B USING B-KEY.

 THEN GO TO 0900-NOREC. IF DB-REC-NOT-FOUND

 PERFORM IDMS-STATUS. THEN GO TO 0900-NOREC.

 IF B-KEY NOT = 'B15' PERFORM IDMS-STATUS.

 THEN GO TO 0200-GETREC.

Use sorted relationships to enhance online or batch processing

Since sort routines incur considerable CPU overhead, they are rarely used in online

programs. Sorted relationships are therefore useful for sequencing data for online
display. They are also useful in the batch environment: a batch program can process
sorted input transactions very efficiently in sorted relationships.

Relationship Tuning Options

182 Database Design Guide

Linkage

Each entity in the database carries one, two, or three pointers for each chained
relationship in which it participates. You should usually include all allowable pointers for
each entity:

■ Next pointer—Required for all relationships in which the entity participates as
parent or child; the next pointer is the database key of the next entity in the
relationship. The last child entity in a relationship points to the parent.

■ Prior pointer—Optional for all relationships in which the entity participates as

parent or child; the prior pointer is the database key of the prior entity in the
relationship. The first child entity occurrence in a relationship points to the parent.

■ Owner pointer—Optional for all relationships in which the entity participates as a
child; the parent pointer is the database key of the parent entity occurrence.

Omitting prior pointers

Prior pointers can be omitted under the following conditions:

■ Child entity occurrences in the relationship will not be erased or disconnected

except by walking the set.

■ Child entity participates as a child in no other relationship.

■ Order is not LAST or PRIOR (see "Nonsorted Order" above).

■ The FIND/OBTAIN LAST or FIND/OBTAIN PRIOR DML functions will not be used for

the relationship.

Omitting owner pointers

Owner pointers (db-keys pointing to the parent) can be omitted under the following

conditions:

■ The parent will not be accessed from a child occurrence.

■ The FIND/OBTAIN OWNER DML function wil l not be used for the relationship.

Note: Be sure to include an OWNER pointer for any entity that participates as a child in

more than one relationship since the child entity is probably an entity created to
implement a many-to-many relationship. In this case, the system will most l ikely need to
access parent entities from the child entities regularly.

Pointers in indexed relationships

The parent of an indexed relationship has the following mandatory pointers:

■ Next pointer— Points to the first occurrence of an SR8 entity (an internal entity
used to hold the index)

■ Prior pointer— Points to the last occurrence of an SR8 entity

Relationship Tuning Options

Chapter 13: Choosing Physical Tuning Options 183

For further information on the structure of an index, see Chapter 15, "Determining the
Size of the Database".

The child entity occurrence of an indexed relationship has one mandatory and one
optional pointer:

■ Index pointer—This pointer is required; it is used to access the SR8 entity that owns

a particular child entity occurrence.

■ Owner pointer—This pointer is optional; it points to the parent of the relationship

For further information on the structure of indexed relationships, see Chapter 15,
"Determining the Size of the Database".

For further information on indexed relationships, see CA IDMS Database Administration
Guide.

Representing linkage

Represent relationship l inkage on the data structure diagram by identifying the pointers

to be used. For example, specifying NPO indicates that next, prior, and owner pointers
are to be used.

For an indexed relationship, specify I or IO.

Relationship Tuning Options

184 Database Design Guide

Membership Options

Membership options determine how an entity is connected to and disconnected from a
relationship. These options affect the use of the DML STORE, CONNECT, DISCONNECT,
and ERASE statements.

You define membership options in two parts. The first part indicates the manner
(mandatory or optional) in which the entity is disconnected from a linked relationship.
The second part indicates the manner (automatic or manual) in which the entity is
connected to a l inked relationship.

Disconnect options

The disconnect options operate as follows:

■ Mandatory— A child occurrence cannot be disconnected from the relationship
without also being erased from the database (that is, the DML DISCONNECT verb

cannot be issued against entities in the relationship).

■ Optional— A child occurrence can be disconnected from a relationship by the
DISCONNECT verb. The entity occurrence remains in the database and is accessible

in other ways; it can be connected to another relationship.

The mandatory/optional membership specification affects the outcome of the DML
ERASE statement. If any of the ERASE options (PERMANENT, SELECTIVE, ALL) is specified
when an ERASE statement is issued against an entity, all mandatory entities owned by

that entity are also erased. Optional child entity occurrences are left as is, disconnected,
or erased, depending on the ERASE option specified.

Mandatory disconnect

The disconnect option is usually specified as mandatory. However, do not specify the
mandatory disconnect option when:

■ An application requires the ability to dissociate a child entity occurrence from its
parent (usually with the intention of associating the child with another parent

occurrence). At Commonweather Corporation, employees sometimes need to be
transferred from one department to another. Therefore, the disconnect option for
the DEPT-EMPLOYEE relationship must be specified as optional

Important! Be careful when using the optional disconnect option for child entities
of a relationship stored clustered around that relationship. If the entity is later
disconnected from its original parent and connected to another, CA IDMS/DB does
not physically relocate the entity; for all practical purposes, that entity is no longer

clustered around its parent.

■ An application requires the ability to erase a parent entity without erasing the child
entities (using the ERASE PERMANENT and ERASE SELECTIVE functions). Suppose
the Commonweather Corporation decides to close an office in a certain city. In this

case, the office should be erased, but the employees who work in that office should
not be erased.

Relationship Tuning Options

Chapter 13: Choosing Physical Tuning Options 185

Connect options

The connect options operate as follows:

■ Automatic—The membership of an entity in a relationship is established
automatically by the DBMS whenever a child occurrence is stored in the database.

■ Manual—The membership of an entity in a relationship is not established when a

child occurrence is stored. Membership must be established explicitly by using the
DML CONNECT statement.

Disconnect and connect options are combined to form membership options:

■ MA— Mandatory automatic

■ MM— Mandatory manual

■ OA— Optional automatic

■ OM— Optional manual

Automatic connect

The connect option is usually specified as automatic. However, do not specify the
automatic connect option when:

■ An application requires the ability to store a child entity without associating it with

any parent. For example, at Commonweather Corporation, an employee can join
the company without first being assigned to a department. Therefore, the manual
option must be specified for the DEPT-EMPLOYEE relationship.

■ If two relationships exist between the same two entities representing a

self-referencing relationship, only one of the relationships can be automatic; the
other must be manual. Otherwise, a child would be connected to the same parent
occurrence in each relationship, as shown below.

Relationship Tuning Options

186 Database Design Guide

Guidelines

The manual connect and optional disconnect options permit greater flexibil ity but
require more programming effort. Additionall y, they provide less control over data

integrity. You should therefore choose the mandatory automatic (MA) membership
option, unless there exists a special business requirement for optional disconnect
and/or manual connect functions.

Representing membership options

Index Key Compression

Chapter 13: Choosing Physical Tuning Options 187

Represent membership options for a relationship on the data structure diagram by
specifying the membership options to be used: MA, MM, OA, or OM.

Removing Foreign Keys

Since all defined relationships in a database implemented with non-SQL are l inked, you
have the option of removing foreign keys from the child entity. This:

■ Reduces storage requirements

■ Eliminates the need to update each child occurrence if the parent's key is changed

If you choose to retain the embedded foreign keys, you:

■ Have full update SQL access to the data

■ Might reduce the number of I/Os required to retrieve foreign key values for

nonclustered entities (for example, to retrieve the department ID of an employee)

Index Key Compression

To conserve disk space, you can instruct the database to compress an index key before
storage and decompress it after retrieval. The index key is compressed in the same way
that data is compressed. (For more information, see "Data Compression" earlier in this

chapter.)

Non-SQL Tuning Options

188 Database Design Guide

Non-SQL Tuning Options

Sorted relationship considerations

When you store an entity occurrence in a sorted chained relationship, the DBMS
searches the relationship in the next direction, starting with the current entity
occurrence. If the new occurrence cannot be inserted in the next direction, the DBMS

establishes currency on the parent entity occurrence and begins the search from this
occurrence (moving in the next direction). When you store an entity occurrence in a
sorted indexed relationship, the DBMS searches the occurrences starting from the top
of the index structure.

Note: If the DUPLICATES FIRST option is specified for a sorted relationship and the key
of the current entity of set is equal to the key of the entity to be stored, the DBMS must
begin its search for the insertion point from the owner entity.

Store operations are executed most efficiently when the new entity can be inserted
either at the very beginning or the very end of the relationship. If new entities are
consistently stored in ascending order, you should perform one of the following
procedures to ensure that insertions of new entity occurrences into the relationship will

be performed efficiently:

■ Assign the descending sort sequence to the relationship. In this case, the sequence
in which entities are sorted in the relationship is the opposite of the sequenc e in

which new entities are added, as shown below.

Non-SQL Tuning Options

Chapter 13: Choosing Physical Tuning Options 189

Note: When you write a program to perform the initial load of the database, plan
to sort the entities in the same order as the relationship order to optimize
processing efficiency. For example, if dated entities are maintained in a relationship
that is sorted in descending order, sort the initial load fi le in descending order

before performing the load.

■ If you have the option to sort input entities before executing the store operation,
you may want to define the sort order as ascending and allow the programmer to

issue program statements that optimize efficiency. In this case, you should ensure
that the programmer establishes currency at the end of the relationship before
issuing the store statement command:

FIND OWNER

FIND LAST IN SET

STORE

Remember that you must include PRIOR pointers if you plan to let programmers

issue FIND/OBTAIN LAST statements against a chained linked relationship. Without
PRIOR pointers, the DBMS must walk the entire l inked relationship in the next
direction to access the LAST entity.

For more information on pointers, see "Linkage" later in this chapter.

If input entities are consistently stored in descending order, perform one of the
following procedures:

■ Assign the ascending sequence to the relationship.

■ Have programmers establish currency at the beginning of the relationship before
issuing the store command:

FIND OWNER

STORE

For further information on the DML statements used to access the database, see CA
IDMS DML Reference Guide for COBOL.

Representing a sorted relationship

Non-SQL Tuning Options

190 Database Design Guide

Represent a sorted relationship on the data structure diagram by specifying ASC or DES
and the name of the sort key as part of the relationship specification.

There are additional tuning options available to non-SQL implementations. These are
described in this chapter.

Non-SQL Tuning Options

Chapter 13: Choosing Physical Tuning Options 191

Multimember Relationships

What is a multimember relationship?

A multimember relationship is a single relationship maintained for more than one child
entity type.

Multimember relationships eliminate the overhead of carrying pointers (db-keys) in the

parent entity for additional relationships.

However, to retrieve specific entity occurrences in multimember relationships, the
database often must access occurrences of unwanted entity types.

Guidelines

Generally, multimember relationships should be used only when:

■ The different child entity types are usually processed together.

For example, since the ACCOUNT, INVOICE, and PAYMENT entities are usually

processed together, you might want to create a multimember relationship to relate
these entity types, as shown below.

Non-SQL Tuning Options

192 Database Design Guide

Applications that use this accounts receivable structure generate statements that

contain details of an account's invoices and payments since the last statement, in
order by date. If the INVOICE and PAYMENT entities are maintained in separate
relationships, an application program will have to merge them into the proper
sequence. If the entities are maintained in one relationship, they are already in

order.

■ The different child entity types are mutually exclusive.

Suppose each employee in a corporation is paid on either an hourly or salaried

basis. You may want to create a multimember relationship to relate the EMPLOYEE,
HOURLY, and SALARIED entities, as shown below.

Non-SQL Tuning Options

Chapter 13: Choosing Physical Tuning Options 193

■ Child entities are of many types, but each child entity type has only a few
occurrences.

In an auto insurance database, a policy may have many riders, each requiring a
different format. However, most policies have no more than a few riders attached.
If a relationship were maintained between a policy and each potential rider, the

policy entity would require at least five sets of pointers, most of them unused,
instead of one, as shown below.

In all other cases, you should maintain a separate relationship for each entity type.

Considerations

■ A multimember relationship cannot be an indexed relationship.

■ When accessing a multimember relationship through the logical record facility, only
one of the child entity types can be accessed in each pass through the relationship.

This means that several passes through a relationship might be necessary to access
all child entity types.

For further information on accessing a multimember relationship through logical

records, see the CA IDMS Logical Record Facility Guide.

■ Multimember relationships should not include both clustered child entity types and
nonclustered child entity types. If both types of entities are included in a
multimember relationship, I/O performance will be degraded. The system may have

to perform additional I/Os to access the clustered child entity occurrences (because
the nonclustered child occurrences are distributed throughout the database).

A comparison of multiple relationships and multimember relationships

Non-SQL Tuning Options

194 Database Design Guide

The following table presents a comparison of multiple relationships and multimember
relationships

Efficiency Considerations Potential Impact

I/O No difference.

CPU time Multimember relationships may require more CPU time to
process related entities than multiple relationships.

Space management Multimember relationships eliminate the overhead of
carrying pointers in the parent entity for extra

relationships.

Contention In some situations, multimember relationships may cause
more entity contention than multiple relationships. If an
entity that participates in a multimember relationship is

updated often, locking of a modified occurrence of this
entity by one transaction may prevent other transactions
from accessing occurrences of other entities in the

relationship. Therefore you may want to create a separate
relationship for a frequently updated entity.

Non-SQL Tuning Options

Chapter 13: Choosing Physical Tuning Options 195

Direct Location Mode

In rare situations, the application program has to have control over an entity's
placement in the database. If the application programmer must be able to identify
explicitly the location of entity occurrences in the database, you should assign the direct

location mode to the entity type. This location mode provides programmers with rapid
access to database entities and allows them to control the clustering of entities.

Store entities chronologically

Use direct location mode to store entities chronologically. The direct location mode can

be used to arrange entity occurrences serially in a database area. The programmer can
arrange entities serially by instructing CA IDMS/DB to store each entity on the s ame
page as the preceding entity. CA IDMS/DB either stores the entity on the same page or
on the next page(s), as space availability permits.

Ensure effective clustering

Use the direct location mode to ensure effective clustering. If a child entity has two
different parent entities, you may want to take responsibility for clustering occurrences

of the child entity. Suppose occurrences of entity C are related to an occurrence of
entity A in some instances and by an occurrence of entity B in other instances. You
would need to be able to cluster each occurrence of C with its appropriate parent entity
(an occurrence of either A or B).

You can achieve effective clustering in this situation by assigning the direct location
mode to entity C and the OM (optional manual) membership option to both
relationships. Whenever a C entity occurrence must be stored in the database, the

application programmer can then connect the entity to its appropriate relationship and
cluster the entity with its parent.

For more information on membership options, see "Membership Options" later in this
chapter.

Non-SQL Tuning Options

196 Database Design Guide

However, you should also plan on writing your own unload and reload program for the C
entity, since the DBMS does not know how to locate C entities.

Considerations

If the direct location mode is chosen, the entity should either be a child in a relationship
or have an index defined on it. If neither of these is true, the only method to access an

occurrence is through an area sweep. In most cases, clustering around an index or a
relationship is a better storage strategy.

Representing the direct location mode

Represent the direct location mode on the data structure diagram by specifying DIRECT

for the location mode. Do not name a CALC key or a relationship.

Non-SQL Tuning Options

Chapter 13: Choosing Physical Tuning Options 197

Variable-Length Entities

Use a repeating element in a variable-length entity instead of two separate entity types
when:

■ The "many" portion of the relationship does not participate in other relationships.

Once you have created a repeating data element, you cannot relate the data in this
element to other entity types.

■ The number of repetitions is not static. In general, use a variable-length entity
when the average number of the entity's repeating groups actually used is less than

75% of the maximum number of repetitions. Otherwise, use a fixed-length entity to
store the repeating group. (The 75% figure is a general guideline. You should
consider actual disk space savings.) See Refining the Database Design for
information on fixed-length entities.

Note: Each entity can have only one variably repeating data element.

■ SQL access to the repeating information is not a requirement.

If you intend to use SQL to retrieve information from the database, you may not

want to create variable repeating data elements because you will not be able to
access the variable portion through SQL.

You must include a counter element in the entity to indicate the current number of
occurrences of the repeating data element in each entity occurrence.

If you decide to create a repeating data element in a variable-length entity, be sure to
change the length of the entity on the data structure diagram. Additionally, change the
storage mode of the entity to V (variable).

Non-SQL Tuning Options

198 Database Design Guide

Several entities in the Commonweather database can be converted to repeating

elements in variable-length entities. The NON-HOSPITAL PROCEDURE and DENTAL
PROCEDURE entities should be made repeating elements because they each participate
in only one relationship and occur a l imited number of times:

■ The NON-HOSPITAL PROCEDURE entity can be converted to a repeating element in

the NON-HOSPITAL CLAIM entity.

■ The DENTAL PROCEDURE entity can be converted to a repeating element in the
DENTAL CLAIM entity.

Non-SQL Tuning Options

Chapter 13: Choosing Physical Tuning Options 199

Database Procedures

Database procedures are special -purpose subroutines designed to perform predefined
programming functions such as data compression and decompression. You write and
compile these procedures as subroutines that are executed at application runtime when

a program accesses an area or entity. Database procedures have access to the entire
data portion of the entity occurrence.

The time a procedure is to be called is specified in the schema. At runtime, these
procedures are called automatically; the call is transparent to the application program.

Common uses

Database procedures are typically used to perform the following functions:

■ Compression and decompression

■ Data validation

■ Privacy and security

■ Data collection

■ Determination of record length for variable-length native VSAM records

For complete information on coding and using database procedures, see CA IDMS
Database Administration Guide.

Non-SQL Tuning Options

200 Database Design Guide

CALC Duplicates Option

You can specify options for nonunique CALC keys indicating how these nonunique
occurrences will be stored in the database. You can specify duplicates first or duplicates
last .

■ Duplicates first— The duplicate entity occurrence will be logically placed in the
database before the entity occurrence already having that CALC key.

■ Duplicates last— The duplicate entity occurrence will be logically placed in the
database after the entity occurrence already having that CALC key.

■ Duplicates not allowed— Duplicates not allowed in the non-SQL definition is
equivalent to unique.

Relationship Tuning Options

There are additional tuning options available for relationships in the non-SQL
environment.

Index Tuning Options

There are several index tuning options available in the non-SQL environment.

Non-SQL Tuning Options

Chapter 13: Choosing Physical Tuning Options 201

Unlinked versus Linked Indexes

An unlinked index is an index in which there are no index pointers in the child entities.

Considerations

■ Unlinked indexes can be added and removed without restructuring the database,

provided the control length of the entity is not changed.

■ Building or rebuilding an unlinked index is faster because there are no index
pointers to be maintained.

■ Additional CPU and I/Os are required to locate an index entry for the current entity

occurrence. For example, changing the index key value or erasing an entity
occurrence both require the retrieval of the index entry.

This additional overhead occurs because the DBMS must search the index to find

the entry, whereas in a l inked relationship there is a direct pointer to the SR8
occurrence containing the entry.

■ Linked indexes require additional storage space.

Additional Sort Options for Indexes

Standard and natural collating sequence

You can specify either of two collating sequences for indexes:

■ Standard collating sequence for indexes orders key fields based on their EBCDIC
collating sequence without regard to data type.

■ Natural collating sequence for indexes orders key fields based on their data type.
This means that negative numeric values will collate lower than positive values.

Duplicates option

As with sorted relationships, you can order index entries with duplicate index key values
as duplicates first, duplicates last, or in db-key sequence.

If there are many duplicates and the index is unlinked, order the duplicates by db-key.
This will reduce CPU in locating a specific index entry.

Representing additional index sort options

Represent additional sort options for a relationship on the data structure diagram by
specifying:

■ NATURAL if the collating sequence is to be natural. Standard is the default.

■ DF for duplicates first, DL for duplicates last, or DBKEY for duplicates by db-key.

Non-SQL Tuning Options

202 Database Design Guide

Nonsorted Indexes

Nonsorted indexes are another way of l inking all occurrences of an entity when the
database is sparsely populated with occurrences of that entity. A nonsorted index
requires less CPU and storage than a sorted index. A nonsorted index might, however,

be less effective than an index sorted by db-key value. If multiple entity occurrences
reside on a page, an index ordered by db-key will reduce the I/Os necessary to retrieve
all occurrences.

Nonsorted orders

If the entity occurrences in the index are not to be sorted, you ca n specify the logical
placement of new index entries by indicating one of the following orders:

■ FIRST creates a LIFO (last in, first out) order. The new index entry is positioned at

the beginning of the index.

■ LAST creates a FIFO (first in, first out) order. The new index entry is positioned at
the end of the index.

■ NEXT creates a simple l ist. The new index entry is positioned immediately after the

entry for the current (most recently accessed) entity occurrence. The NEXT order is
recommended as a default.

■ PRIOR creates a reverse list. The new index entry is positioned immediately before
the entry for the current entity occurrence.

Index Membership Options

The same membership options are available for indexes as for relationships (see
"Membership Options" earlier in this chapter).

Guidelines

Use the mandatory-automatic (MA) membership option unless you want only certain
entity occurrences to be indexed; that is, if you want the program to control which
entity occurrences are to be indexed.

Non-SQL Tuning Options

Chapter 13: Choosing Physical Tuning Options 203

Non-SQL Entity and Index Placement

To facil itate certain processing operations, you can instruct the database to store entity
occurrences in a specific portion of an area (non-SQL defined databases only).

By restricting entity occurrences to a specific set of pages, you can minimize overflow

conditions.

Displace a clustered entity from its owner

You can displace a clustered entity from its owner. The DISPLACEMENT clause of the
non-SQL schema ADD RECORD statement allows you to store clustered entities away

from their owner entity in a database area. By specifying the number of pages to
displace the clustered entities, you can separate different entity types within a cluster.

Specify a subarea in which to store an entity

You can specify a subarea within an area in which a particular entity is to be stored. To

separate CALC entities from other entities in an area, CA IDMS/DB allows you to assign
all occurrences of a particular entity type to a range of pages.

For further information, see the WITHIN AREA clauses of the non-SQL schema ADD

RECORD statement in CA IDMS Database Administration Guide.

Specify a subarea in which to store an index

When specifying index placement, you can specify a subarea within an area in which the
owner of a system-owned index is to be stored. If you decide to place an index in an

area with other database entities, you might want to assign the owner to a specific
range of pages in the area.

For further information, see the WITHIN AREA clauses of the non-SQL schema ADD SET

statement in CA IDMS Database Administration Guide.

As you plan the use of storage resources, you need to keep in mind these options for
minimizing overflow conditions in the database.

Physical Tuning Options for Commonweather Corporation

204 Database Design Guide

Physical Tuning Options for Commonweather Corporation

Assign entities to areas

You need to assign entities to database areas to provide for efficient application runtime
processing:

■ ORG-DEMO-REGION can hold all nonclustered entities. The DEPARTMENT, OFFICE,

JOB, SKILL, and INSURANCE PLAN entities can be stored in this area of the database.

■ EMP-DEMO-REGION holds all entities clustered around the EMPLOYEE entity. The
EMPLOYEE, EMPOSITION, EXPERTISE, and PROJECT entities should be stored
together in this area.

■ INS-DEMO-REGION holds all entities clustered around the COVERAGE entity. The
COVERAGE, NON-HOSPITAL CLAIM, HOSPITAL CLAIM, and DENTAL CLAIM entities
can be stored in this area.

By placing Commonweather entities in separate areas, we enable programs to prepare
only the area or areas required for a particular operation rather than the entire
database. In addition, we reduce the likelihood of contention for heavily-used entities.

You might want to assign entities and indexes to separate areas.

Compress entities

The JOB and INSURANCE PLAN entities each contain a data element that provides
descriptive information about a particular entity occurrence (JOB DESCRIPTION and

PLAN DESCRIPTION). As such, these entities are good candidates for compression.

Relationship options

All relationships are l inked to provide most efficient access. Since this is not a large
database, it is not necessary to eliminate relationships between areas.

All clustered relationships are chained; all nonclustered relationships are indexed. This
reduces I/O when accessing nonclustered relationships and reduces CPU when accessing
clustered relationships.

The following relationships are sorted with the unique option to eliminate indexes used
only to enforce unique constraints:

New Sorted Relationship Sort Key Index

Eliminated

EMP-EMPOSITION START DATE JOB-NDX

EMP-EXPERTISE SKILL CODE EMP-NDX

Physical Tuning Options for Commonweather Corporation

Chapter 13: Choosing Physical Tuning Options 205

New Sorted Relationship Sort Key Index
Eliminated

NHC-PROC PROCEDURE NUMBER NON-HOSP-N
DX

DC-PROC PROCEDURE NUMBER PROC-NDX

The following relationships are sorted to avoid sorting retrieval occurrences:

Sorted Relationship Sort Key

DEPT-EMPLOYEE EMP LAST NAME EMP FIRST NAME

OFFICE-EMPLOYEE EMP LAST NAME EMP FIRST NAME

SKILL-EXPERTISE SKILL LEVEL

All sorted relationships are order ascending except:

■ SKILL-EXPERTISE, since usually employees holding a skil l should be listed such that

those with the highest rating appear first

■ EMP-EMPOSITION, since position START DATEs are usually increasing in value

Physical Tuning Options for Commonweather Corporation

206 Database Design Guide

Refined Commonweather Corporation Database Design (For SQL
Implementation)

The refined data structure diagram for Commonweather Corporation (for SQL
implementation) is shown below.

A review of transactions shows that all insurance information should be clustered
around an employee. This can be accomplished by removing the CALC key from
NON-HOSPITAL CLAIM, HOSPITAL CLAIM, and DENTAL CLAIM entities and replacing each

with a unique index on NONHOSP CLAIM ID, HOSPITAL CLAIM ID, and DENTAL CLAIM ID
respectively. In addition, the location mode of each of the three entities must be
changed to CLUSTERED through its relationship with COVERAGE.

Due to the volume of data in the INS DEMO REGION, it is decided that all l inked

relationships between this region and the EMP DEMO REGION be converted to
unlinked. The only relationship affected is EMP-COVERAGE. In order to convert it to
unlinked, you must either add an index or CALC key on EMP ID (the foreign key of the

relationship).

Since you want to cluster coverage entity occurrences by employee anyway, a CALC key
on EMP ID is chosen since it achieves the same results as clustering through the
EMP-COVERAGE relationship and eliminates the need for an a dditional index.

Physical Tuning Options for Commonweather Corporation

Chapter 13: Choosing Physical Tuning Options 207

Physical Tuning Options for Commonweather Corporation

208 Database Design Guide

Refined Commonweather Corporation Database Design (For Non-SQL
Implementation)

Additional non-SQL physical tuning options chosen for the Commonweather
Corporation database design are discussed below.

Create a multimember relationship

Since the COVERAGE, HOSPITAL CLAIM, NON-HOSPITAL CLAIM, and DENTAL CLAIM
entities are usually processed together, we can create a multimember relationship to

relate these entities. Let's call this relationship COVERAGE-CLAIMS.

Variable-length entities

Several entities in the Commonweather database should be converted to repeating
elements in variable-length entities. The NON-HOSPITAL PROCEDURE and DENTAL

PROCEDURE entities should be made variably-repeating elements because they each
participate in only one relationship.

■ The NON-HOSPITAL PROCEDURE entity can be converted to a repeating element in

the NON-HOSPITAL CLAIM entity.

■ The DENTAL PROCEDURE entity can be converted to a repeating element in the
DENTAL CLAIM entity.

Add new entity

Because an employee must be managed by another existing employee, the integrity of
the MANAGES-REPORT TO relationship must be ensured. In order to accomplish this in a
non-SQL implementation, a new entity (STRUCTURE) and two relationships (REPORT-TO

and MANAGES) must be created. Indicate the appropriate relationship options to ensure
that an employee is associated with an existing employee. The MANAGES relationship is
sorted to enforce unique constraints. (If it were not a sorted relationship, an index
would have to be created to enforce uniqueness.)

Remove unnecessary keys

Remove foreign keys if SQL access is not a priority. If you choose to remove unnecessary
keys, adjust the entity lengths accordingly.

Relationship options

Choose linkage and membership options for l inked relationships. Choose ordering
option of each nonsorted relationship.

Physical Tuning Options for Commonweather Corporation

Chapter 13: Choosing Physical Tuning Options 209

Duplicates options

Duplicates options for indexes and sorted relationships were chosen based on

application requirements.

The diagram below could be used to implement the database us ing a non-SQL
definition.

The diagram shows:

■ A multimember set

■ Variable-length entities

■ Removal of foreign keys as reflected in new entity lengths

Physical Tuning Options for Commonweather Corporation

210 Database Design Guide

Since the design shown above will satisfy the performance requirements of the
Commonweather Corporation, this diagram will be used in later chapters of this manual

as the basis for performing sizing calculations and a final database design review.

Chapter 14: Minimizing Contention Among Transactions 211

Chapter 14: Minimizing Contention Among
Transactions

This section contains the following topics:

Overview (see page 211)
Sources of Database Contention (see page 211)

Minimizing Contention (see page 215)

Overview

Once you have refined the database model to optimize each individual database
transaction, you should determine how the system will be affected by the concurrent
execution of several transactions. You need to consider making changes to the physic al

model to minimize the likelihood of system bottlenecks.

Bottlenecks are often caused by excessive contention for database resources. For
example, bottlenecks can occur when two or more programs (or terminal operators)

attempt to execute update transactions against the same entity occurrences at the
same time. Since the likelihood of contention increases with the number of database
transactions, you need to determine whether the physical database model can
accommodate the number of transactions executed at your corporation.

This chapter explains why database contention occurs and also shows you how to
minimize contention.

Sources of Database Contention

Business transactions must contend for the following database resources:

■ Areas

■ Entities

Sources of Database Contention

212 Database Design Guide

Area Contention

Physical area locks

CA IDMS/DB examines and sets physical area locks whenever an area is opened in an
update mode. Physical area locks:

■ Prevent concurrent updates by multiple IDMS runtime environments (multiple local
database transactions, multiple central versions, or a combination of both)

■ Prevent update access to an area that requires rollback of database transactions

Physical locks are handled differently depending on the mode of processing:

■ Local mode—As each area is readied in any update mode, the lock is checked. If the
lock is set, access to the area is not allowed. If the lock is not set, the local database
transaction causes the lock to be set. In the event that the transaction terminates
abnormally (that is, without issuing a FINISH), the lock remains set. Further update

access or commit processing by subsequent database transactions is prevented
until the area is recovered.

■ Central version—At system startup, the central version checks the locks in all areas

available to the system for update processing. If any lock is set, further a ccess to
that area is disallowed (that is, the area is varied offline to the central version). The
central version proceeds without the use of that area.

If the lock is removed after system startup, the operator must vary the area status

from offline to online to make the area available to the central version.

Logical area locks

Logical area locks are used by central version to control concurrent access to areas by

database transactions running under central version. Logical area locks are derived from
the mode in which an area is readied. A logical lock on a database area sometimes
causes transactions to wait for database resources. When a transaction cannot ready an
area because of a protected or exclusive restriction placed on that area by another

transaction, the second transaction is placed in a wait state until the first transaction is
finished.

Concurrent area access

The following diagram shows the way in which ready modes and ready options restrict
concurrent use of an area by database transactions executing under one central version.

Transaction A readies AREA1 in protected update mode; transaction B readies the area
in shared retrieval mode; and transaction C attempts to ready the area in exclusive

update mode and is put into a wait state until both transactions A and B terminate.
Transactions D and E, attempting to ready the area, must wait until transaction C
terminates.

Sources of Database Contention

Chapter 14: Minimizing Contention Among Transactions 213

Sources of Database Contention

214 Database Design Guide

Entity Occurrence Contention

Record locks

CA IDMS/DB sets record locks on entity occurrences accessed by transactions operating
under the central version. Record locks are never maintained for transactions operating

in local mode, since concurrent update is prevented by physical area locks.

Locks can be set implicitly by the central version or explicitly by the programmer, as
described below:

■ Implicit record locks are maintained automatically by the central version for every

transaction running in shared update mode. They are optionally maintained in
shared retrieval and protected update mode, according to your specifications at
system generation.

■ Explicit record locks, set by the programmer using navigational DML, are used to

maintain record locks that would otherwise be released following a change in
currency.

They are never maintained for areas whose status is transient retrieval or for

database transactions executing with an isolation level of transient retrieval.

Functions

Record locks perform four functions:

■ Protect against concurrent update of the same entity occurrence by two or more

transactions

■ Protect transactions from reading uncommitted updates made by another
transaction

■ Protect entity occurrences that are current of one transaction from being updated
by another transaction

■ Allow one transaction to selectively protect any entity from access or update by
another transaction

Increased contention

Record locks can sometimes increase contention among programs that require access to
database resources. In some instances, conditions that result from the use of record

locks can even cause abnormal termination of transactions executing under the central
version. The following conditions can occur:

■ Too many locks. If resource limits for locks are established and a transaction tries to
generate more locks than the limit, the system might terminate the transaction,

depending on your specifications at system generation. If resource limits for locks
were not established, the system will continue processing, but processing
performance might be degraded.

Minimizing Contention

Chapter 14: Minimizing Contention Among Transactions 215

■ Excessive wait time. If a transaction, while attempting to set a record lock, is made
to wait for another transaction to terminate (or to release a lock on an entity), the

first transaction waits only as long as the interval specified at system generation
before abending. When a transaction exceeds the internal wait time, the system
will terminate the transaction.

■ Deadlock situation. If two transactions are in a deadlock, one of the transactions is
aborted. A deadlock occurs when two transactions wait on each other for access to
the same resource(s). For example, if both transaction A and transaction B read the
same entity occurrence, each acquires a shared record lock on the occurrence. If

transaction A then tries to update the entity occurrence, it will wait until
transaction B releases its lock. If transaction B tries to update the occurrence, it will
wait on transaction A. Transactions A and B are in a deadlock situation.

CA IDMS/DB resolves this potential bottleneck by aborting and roll ing back one of

the transactions. By default, the transaction chosen is the most recently begun
transaction with the lowest priority.

Minimizing Contention

Guidelines

You can reduce the likelihood of bottlenecks resulting from area and entity occurrence
contention by making appropriate changes to the physical database design. To make
intell igent design decisions to reduce contention, you must first identify potential
bottlenecks.

Chapter 10, "Identifying Application Performance Requirements" showed you how to
determine:

■ The priority of each business transaction

■ The frequency of execution of each transaction

■ The frequency of access of each entity

By examining this information closely, you can identify potential bottlenecks in the
physical database. For example, if you know that two different database entities will be

accessed often, you can assign these entities to different areas to avoid area contention.
Additionally, you can schedule the execution of high-priority programs to reduce the
likelihood of contention with other programs.

Minimizing Contention

216 Database Design Guide

Minimizing Contention for Entities and Areas

Guidelines

Consider the following guidelines for minimizing contention for database entities and
areas:

■ Minimize the use of one-of-a-kind (OOAK) entities.

To reduce contention for an OOAK entity used for maintaining a control number
(l ike the next order number in an order-entry system), you can manufacture the
control number. For example, instead of storing the number in the database, you

could determine the number dynamically from the date and time at which each
order is placed.

■ Avoid placing heavily-used entities in the same area. If several heavily-used
entities are placed in the same database area, the area may become a source of

database contention. When heavily-used entities are stored in the same area,
programs may have to contend for storage space, and internally-maintained control
structures such as those used for CALC processing.

To minimize area contention, you can assign each heavily-used entity to a separate
area in the database, as shown in the following diagram.

Minimizing Contention

Chapter 14: Minimizing Contention Among Transactions 217

For further information on assigning entities to database areas, see Chapter 15,
"Determining the Size of the Database".

■ Place large indexes in separate areas. To avoid contention for space and because
indexes are typically heavily used, place them in separate areas.

■ Avoid long-running update transactions. Application programs that perform many

updates often set many record locks. To lessen the possibility of abnormal
termination as a result of setting too many locks or being involved in a deadlock,
the programmer can commit database changes to release locks at intervals
throughout the processing.

This technique should be used with caution, since the commit function also causes a
checkpoint to be written to the journal fi le. Following the unsuccessful execution of
a DML function, a transaction is rolled back only to the point of the last checkpoint.
Thus the existence of a checkpoint resulting from a commit statement would

prohibit the system from performing a rollback to the beginning of the transaction.

■ Separate frequently used and updated entities. If an entity creates excessive
contention among application programs, you can segment the entity into two or

more entities. For example, if the EMPLOYEE entity were a source of contention,
you could break the entity into EMPERS and EMPAY. EMPERS might contain all
personal information about each employee, while EMPAY could contain
professional information. The two entities could then be assigned to different

database areas and use different indexes.

By segmenting employee data, you could eliminate contention between those
programs that access employee personal information and those programs that only

require access to professional information, as shown in the following diagram.

Minimizing Contention

218 Database Design Guide

■ Include several levels for each frequently-updated sorted index. While sorted
indexes with very few levels can be used to optimize performance in retrieval

applications, they sometimes cause contention between application programs that
perform update functions.

If a sorted index will be updated frequently, make sure that the index consists of at

least three levels. For further information on sizing a sorted index, see Chapter 15,
"Determining the Size of the Database".

■ Schedule the execution of batch update jobs. In some situations, you should
consider scheduling programs that execute batches of updates to reduce

contention. By executing update programs one at a time, you can ensure that these
programs do not have to contend for the same database resources .

■ Ready areas in shared update mode. If an application program readies an area in
protected or exclusive mode, other programs can be placed in a wait state.

Therefore, whenever possible, programs updating a l imited number of entities
before a commit should ready areas in shared update mode. The shared update
mode allows multiple transactions under the same central version to access the

area concurrently, thereby reducing area locking and contention.

Chapter 15: Determining the Size of the Database 219

Chapter 15: Determining the Size of the
Database

This section contains the following topics:

Overview (see page 219)
General Database Sizing Considerations (see page 220)

Calculating the Size of an Area (see page 226)
Allocating Space for Indexes (see page 234)
Placing Areas in Files (see page 250)
Sizing a Megabase (see page 252)

Overview

After you have decided how each entity in the database will be stored and accessed,
you can determine how much storage space to reserve for the database. To allow for
the most efficient processing, you need to plan the best use of available computer

storage resources.

As you determine the size of the database, you need to consider several factors,
including the hardware available at your corporation and the type of business
applications that will be using the database.

After presenting a discussion of general database sizing considerations, this section
shows you how to:

■ Calculate the size of an area

■ Allocate space for indexes

■ Place areas in fi les

■ Size a megabase

General Database Sizing Considerations

220 Database Design Guide

General Database Sizing Considerations

Before you determine the size of the database, you need to be familiar with the
following topics:

■ Sizing considerations for variable-length entities

■ Space management for areas

■ Overflow conditions

■ Assignment of entities to areas

■ Assignment of areas to buffers

General Database Sizing Considerations

Chapter 15: Determining the Size of the Database 221

Sizing Considerations for Compressed and Variable Length Entities

Internally, the DBMS treats the following types of entities as variable in length:

■ Fixed-length compressed entities—Entities with a fixed length that are compressed
through a compression routine; although the length of these entities is fixed from

the point of view of user programs, compression makes them internally variable.

■ Variable-length entities—Compressed or uncompressed entities with a length that
depends on a variably occurring data element (that is, entities that contain an
OCCURS DEPENDING clause).

Fragmentation

The DBMS fragments a variable-length entity occurrence when it is unable to store the
entire entity on a single page. Fragmentation forces the system to perform two or more
I/Os to retrieve a single variable-length entity. Fragmentation should be kept to a

minimum.

Root and fragment size

In a non-SQL environment, you can specify the following information in the schema:

■ Minimum root— The smallest amount of data to be stored on the entity's home
page (target page)

■ Minimum fragment— The smallest amount of data to be stored on any additional
page

For SQL compressed entities, the minimum root and fragment are assigned
automatically.

If a variable-length root or fragment exceeds 30 percent of the page size, space

management problems can occur. To ensure efficient space management, you need to
tailor the size of the minimum root and fragment to the optimal page size for the
database area.

Page reserve

When a database area contains variable-length entities, and a general increase in the
size of the entities is anticipated, you should define a page reserve in the area
definition. By specifying a page reserve, you can minimize fragmentation of

variable-length entities.

The page reserve is a specified number of bytes per page that can be used only for
expansion of variable-length entities or internally-maintained index records. For further
information on internally-maintained index records, see "Allocating Space for Indexes"

later in this chapter. The space will not be used for storing new entity occurrences. In
general, page reserve should always be less than 30 percent of the page size .

General Database Sizing Considerations

222 Database Design Guide

The page reserve is specified in the CREATE/ALTER AREA statement of the physical
database definition.

Note: A page reserve does not affect the physical structure of the database. You can,
therefore, vary the page reserve by using different DMCL modules, each with a different
page reserve.

More Information For more information on the physical database definition, see the CA
IDMS Database Administration Guide.

Space Management

To manage space in an area, the DBMS keeps track of available space on each page. CA

IDMS/DB reserves selected pages called space management pages (SMPs) for this
purpose.

Space management pages

The first page in each area is an SMP; depending on the number and size of pages in the

area, CA IDMS/DB can reserve additional SMPs throughout the area. When you
determine the size of an area, you need to take into considera tion the number of SMPs
to be maintained in the area.

More information For more information on space management, see the CA IDMS
Database Administration Guide.

General Database Sizing Considerations

Chapter 15: Determining the Size of the Database 223

Overflow Conditions

Overflow conditions occur when entities must contend for storage space in the
database. In some instances, overflow can cause performance degradation. Therefore,
you need to understand the causes of overflow and know how to minimize it.

You should try to predict the effectiveness of segregating entities in the planning stage
and then fine tune the database in a test environment.

Note: You can use the database analysis utility (IDMSDBAN) to determine the total
number of overflows in a database.

Types of overflow

There are two types of overflow:

■ CALC overflow

■ Cluster overflow

Each of these types of overflow is discussed separately below.

General Database Sizing Considerations

224 Database Design Guide

CALC Overflow

If occurrences of several entity types are randomized in one area or if an insufficient
number of pages exists for the number of occurrences of one CALC entity type, CALC
overflow conditions can occur.

Suppose an area contains two CALC entity types, A and C, and one clustered entity type,
B, that is clustered through the A-B relationship. One A and four B entities fi l l a page, so
that in several instances there is no room for a C entity randomizing to the same page.
CALC overflow can occur in this situation, as shown below.

In this instance, A and B entities have fi l led pages 1003 and 1006, and have caused C2
and C4 to overflow to the next page. Two accesses are required to retrieve these
entities.

Some overflow should be expected. Be concerned if a high percentage (more than 25%)
of CALC entities overflow.

Reducing overflow

To reduce overflow:

■ Ensure non-static areas are no more than 75% full.

■ Initially load CALC entity occurrences before clustered entity occurrences. (This is
especially effective in static databases.)

■ Separate entities into different areas.

General Database Sizing Considerations

Chapter 15: Determining the Size of the Database 225

Cluster Overflow

If the page size for a database area is not large enough to hold an entire cluster of entity
occurrences, cluster overflow conditions may occur. Cluster overflow occurs when the
DBMS cannot fit a new entity occurrence on the same page as other entity occ urrences

in the cluster. Cluster overflow forces the DBMS to try to store the entity occurrence on
the next page in the area.

Suppose an area contains one entity, A, stored CALC, and one entity, B, which is
clustered through the A-B relationship. One A and four B occurrences fi l l a page. In the

instance shown in the diagram, one of the A-B clusters contains two B occurrences, one
contains four occurrences, and one contains seven occurrences. Since there isn't room
for the seven occurrences on one page, the extra occurrences have had to overflow to

pages 1004 and 1005. To retrieve all occurrences in the cluster requires three accesses.

Reducing cluster overflow

You can reduce cluster overflow by:

■ Increasing the page size for the area

■ Assigning clustered entities to separate areas from their parent entities

Calculating the Size of an Area

226 Database Design Guide

Calculating the Size of an Area

To determine the amount of space necessary for a particular database area, you need to
perform the following procedures:

1. Calculate the size of each cluster.

2. Determine the page size.

3. Calculate the number of pages in the area.

Follow steps 1 through 3 as described below to determine the size of the areas in your
database.

Calculating the Size of an Area

Chapter 15: Determining the Size of the Database 227

Step 1: Calculating the Size of Each Cluster

Through clustering, users can store related entities close together in the database.
Clustering allows a business application to access related entities quickly and efficiently.
To ensure optimal processing, you need to base your database sizing calculations on the

size of a cluster.

If you don't plan the use of storage resources effectively, the system may be unable to
fit an entire cluster on a single page. Overflow conditions may occur, causing the system
to perform two or more I/Os to access each application cluster. For a detail ed discussion

of overflow conditions, see "Overflow Conditions" earlier in this section.

Procedure

You can use the following procedures to calculate the size of a cluster:

1. Identify the entity types in the cluster.

2. Determine the length (in bytes) of each entity type stored in the cluster.

3. If an entity participates in a relationship, add 4 bytes for each NEXT, PRIOR,
OWNER, or INDEX pointer.

Note: In an SQL implementation, l inked clustered relationships always contain
NEXT, PRIOR, and OWNER pointers. Linked indexed relationships always contain
INDEX and OWNER pointers.

4. If an entity in a non-SQL implementation is indexed, add 4 bytes for the INDEX

pointer associated with each linked index.

5. If an entity is stored CALC, add 8 bytes to allow for pointers in the CALC (SR1) chain.

6. If an entity is variable length or compressed, add 8 bytes to allow for the

variable-length indicator and fragment pointer.

7. Add 8 bytes for each entity to allow for storage of l ine indexes.

8. Sum the numbers calculated above to determine the total number of bytes for a
single occurrence of each entity type.

9. Determine the average number of occurrences of each entity type in a single
cluster.

10. Multiply the total bytes for each entity by the number of occurrences in the cluster

to calculate the amount of space needed for each entity type in the cluster.

11. Add the above space calculations to determine the total size for a single cluster.

Note: If any entity in the cluster is the parent of an indexed relationship, you need to
allow space for storage of the internal index entities.

Sample cluster size calculation

The following diagram shows how the size of a cluster is determined.

Calculating the Size of an Area

228 Database Design Guide

In the EMP-DEMO-REGION area, 508 bytes will be required to store a complete cluster
of EMPLOYEE, EXPERTISE, EMPOSITION, and STRUCTURE entities.

Note: If one or more indexes are to be included in the cluster, refer to the index size

calculations later in this chapter.

The above calculations are for a non-SQL implementation. If this is an SQL
implementation, note that the data length and index pointer options can differ.

Step 2: Determining the Page Size

Page size

Whenever possible, you should select a page size that will hold two to three clusters of
data used by an application program. The maximum page size is 32764.

The following considerations apply to selecting a page size for a database area.

Physical device blocking

A database page is a fixed block. As a general rule, you should use pages that are an
even fraction of the track size.

The following table l ists the optimal page sizes by device type for six IBM disk drives.
Manufacturers of other brands of direct access storage devices (DASD) should be able to
provide similar information for their own equipment.

per track 3330 3340 3350 3375 3380 3390

1 13028 8368 19068 32764 32764 32764

2 6444 4100 9440 17600 23476 27996

Calculating the Size of an Area

Chapter 15: Determining the Size of the Database 229

3 4252 2676 6232 11616 15476 18452

4 3156 1964 4628 8608 11476 13680

5 2496 1540 3664 6816 9076 10796

6 2056 1252 3020 5600 7476 8904

7 1744 1052 2564 4736 6356 7548

8 1508 896 2220 4096 5492 6516

9 1324 780 1952 3616 4820 5724

10 1180 684 1740 3200 4276 5064

11 1060 608 1564 2880 3860 4564

12 960 544 1416 2592 3476 4136

13 876 488 1296 2368 3188 3768

14 804 440 1180 2176 2932 3440

15 740 400 1096 2016 2676 3172

Calculating the Size of an Area

230 Database Design Guide

Note: The bytes per page for FBA devices must be a multiple of 512.

Considerations

Entity size

The size of a fixed-length entity or of a variable-length entity's minimum root or
fragment cannot exceed 30 percent of page size without causing additional overhead

for space management. Page size should always be at least three and one-third times
greater than the largest entity in the area. A higher ratio (up to ten times greater) is
preferable.

Note: With a variable-length entity, the length of the root and fragment must conform

to the consideration stated above. The entity itself (root plus all fragments) can be
larger than the page.

Page reserve

When you calculate the page size, you need to take into consideration the amount of

space necessary for the page reserve. A page reserve is used to allow space for:

■ Future growth—At load time, you may want to reserve space in the database for
storage of new data entities or for splitting of SR8 entities in an index structure. In

either case, you should specify the page reserve when the database is first defined
and then remove this page reserve after the database has been loaded.

■ Expansion of variable-length entities—The page reserve for an area that contains
variable-length entities is specified when the database is defined and is never

removed.

Calculating the page reserve

To calculate the size of a page reserve, perform the following procedures:

1. For each variable-length entity in the area, find the difference in bytes between the
anticipated starting and expanded sizes.

2. Multiply the difference for each entity type by the anticipated number of
occurrences of the entity.

3. Divide the total by the number of pages in the area.

The page reserve should never exceed 30 percent of the page size.

Buffer pool size

The size of a buffer pool depends on the amount of concurrent processing to be
performed against the database. To avoid excessive database I/O operations, the buffer
pool should be able to hold at least five pages.

Calculating the Size of an Area

Chapter 15: Determining the Size of the Database 231

If sufficient main storage cannot be allocated for a 5-page (or larger) buffer pool, you
should reduce the page size.

Suppose an installation uses type 3380 disk devices. In this environment, the main
storage required to create a buffer pool of six buffer pages is:

Page Size Main Storage Required for Six Buffers

32,764 bytes 196,584 bytes

23,476 bytes 140,856 bytes

15,476 bytes 92,856 bytes

11,476 bytes 68,856 bytes

9,076 bytes 54,456 bytes

7,476 bytes 44,856 bytes

Calculating the Size of an Area

232 Database Design Guide

Note: There is additional overhead for each page in the buffer pool not included in the
above numbers.

Processing requirements

The number of clusters (or portions of clusters) to be stored on a page should be
determined by application processing requirements:

■ For typical random processing where direct access to data is essential, you should
use small page sizes (few clusters). A small page requires less time per access and
permits more concurrent processing on a channel. However, a small page also
reduces the data transfer rate, causes more I/Os, and uses more disk space for a

given quantity of data.

■ For typical serial processing, large page sizes (several clusters) allow a high data
transfer rate and reduce the number of I/Os. However, large pages also monopolize
the channel for longer periods of time.

Page header and footer

You need to allow 32 bytes on each page for the header and footer.

Large clusters

If the size of a cluster is excessively large (greater than 1/3 to 1/2 of a track), define a
new database area and move a portion of the cluster to this area. Move one or more
child entities in the cluster to the new area. You can adjust the size of this new area to
accommodate a large cluster by increasing the page size or by adding more pages.

Storing clusters in a separate area

When you store child entities in a cluster in a separate area from their parent entities,
the position of the child entity occurrences is proportional to the position of the parent

entities in their area. Therefore the sizing considerations for both areas should be
similar.

Calculating the Size of an Area

Chapter 15: Determining the Size of the Database 233

Step 3: Calculating the Number of Pages in the Area

After you have identified the optimal page size for a database area, you can determine
the number of pages that should be allocated to that area. If significant growth is
expected early, plan for 50 percent initial capacity and allow for growth up to 70 to 80

percent. As a general rule, you should try to avoid exceeding 70 perc ent capacity.

Procedure

To calculate the total number of pages required for a database area, perform the
following procedures:

1. Calculate the number of bytes in each entity in the area: multiply the number of
bytes in each entity by the number of occurrences. Below is a form you can use to
compute the number of bytes required for each entity type. After you have
determined how much space is needed for each entity type, add the bytes for each

entity to determine the total number of bytes for the area.

2. Calculate the number of base pages by dividing the total entity bytes by the page
size minus 32.

3. Divide the result by the desired space util ization (70 percent) to get the total
number of base pages. (Static fi les average 70 percent; dynamic fi les average 50
percent.) If there are any SR8 entities in the area, you may want to increase the
page reserve.

4. Subtract 32 from the page size and divide by 2 (bytes per SMP entry). Divide the
quotient into the number of base pages and round up to the next integer. The
result is the number of space management pages.

Note: For large databases, the CALC algorithm operates most effectively when the
number of pages in the area is a prime number.

5. Add the number of base pages and space management pages to determine the
total number of pages in the area.

6. To calculate the number of tracks needed, divide the number of pages in the area
by the number of pages per track on the type of disk device being used.

Sample area size calculation

The following form shows how the number of pages in an area is determined.

The EMP-DEMO-REGION area needs 508,000 bytes to store all occurrences of the
EMPLOYEE, EXPERTISE, EMPOSITION, and STRUCTURE entities. Calculations determine
that 173 database pages of 4276 bytes need to be allocated to accommodate these

entities.

Allocating Space for Indexes

234 Database Design Guide

1. Entity bytes per area = 508 k bytes.

2. Calculate the number of base pages by dividing the total bytes by page size minus
32:

4276 - 32 = 4244

508,000 / 4244 = 120 pages (rounded up)

3. Divide by desired space util ization (70%): 172 (rounded up).

4. Subtract 32 from page size and divide by two. Divide the quotient into the number
of base pages and round up to the next integer. The result is the number of space
management pages:

172 / 2122 = .08

When you round up to the next whole page, only one SMP will be needed.

5. Add the number of base pages and space management pages to determine the
number of pages in the area: 173

6. Divide the number of pages in the area by the number of pages per track on the
type of disk device being used. The result is the number of tracks needed:

173 / 10 = 17.3 tracks

Allocating Space for Indexes

When a database area contains an index, you must provide space in the area for storage
of the index. To determine the amount of space needed, you perform some simple

calculations. Before you allocate space for an index, you need to consider both the
volume of data entities to be indexed and the type of internal structures that CA
IDMS/DB will generate to allow access to these entities.

Following a discussion of the structure of an index, procedures for calculating the size of
an index are presented below.

Allocating Space for Indexes

Chapter 15: Determining the Size of the Database 235

Index Structure

Indexes are built and maintained by the DBMS for:

■ System indexes—These are standalone index structures providing alternate access
to entity occurrences. They are defined using the OWNER IS SYSTEM clause of the

non-SQL ADD SET statement or the CREATE INDEX statement in SQL.

The root (or top entity) of a system index is an SR7 entity. This is an internal record
type with a location mode of CALC. For non-SQL-defined indexes, the CALC key is
the name of the index. For SQL-defined indexes, it is an internally generated name.

■ Indexed relationships—These are index structures associated with each occurrence
of a parent entity in an indexed relationship and are used to point to the associated
child entity occurrences.

They are defined using the MODE IS INDEX clause of the non-SQL ADD SET

statement where the set is not defined as SYSTEM-OWNED or the LINKED INDEX
clause of an SQL CREATE CONSTRAINT statement. The root of an indexed
relationship is an occurrence of the parent entity.

Structure of an index

The structure of an index consists of internally ma intained records called SR8s. Each
SR8 is chained (by next, prior, and owner pointers) to the parent entity occurrence (or
SR7 in the case of a system index) and to each other. An index is therefore structured as

a chained relationship between the parent entity (or SR7) and the SR8s.

An SR8 contains from 3 to 8,180 index entries and a cushion (that is, a field that is the
length of the largest possible index entry). The content of an index entry depends on the

index characteristics:

■ For sorted indexes, SR8s are arranged in levels to facil itate searching. Each index
entry contains the db-key of an indexed entity occurrence or the db-key of another
SR8. Additionally, for indexes sorted on a symbolic key, each index entry also

contains a symbolic key. A symbolic key is a key constructed of one or more data
elements in the order specified in the schema (up to 256 bytes in length).

■ For unsorted indexes, SR8s are arranged in a single level. Each index entry is the

db-key for an entity occurrence.

Allocating Space for Indexes

236 Database Design Guide

An unsorted index

The following diagram shows the structure for a simple unsorted indexed relationship.

In this example, there is a single SR8 chained to the indexed set's parent. The SR8
contains three entries. Each entry contains an index pointer that points to a child entity
occurrence. Each child occurrence contains an index pointer that points to that SR8 and

an owner pointer that points back to the set's parent. (The owner pointer is optional.)

Allocating Space for Indexes

Chapter 15: Determining the Size of the Database 237

Structure of a three-level index

The following diagram shows the structure for a sorted index arranged in three levels. In

this example, each SR8 has a maximum of three entries. Each entry consists of a
symbolic key value and a db-key. The bold entries show how the LONG entity is located
during an index search. In the top and intermediate levels, the db-key in each entry

points to another SR8. (For simplicity, prior and owner pointers are not included in this
figure.)

Entries in a 3-level index

The following diagram shows the index pointers and symbolic keys for a three-level
sorted index. Each entry consists of a symbolic key and a pointer (db-key). The bold

entries show how the LONG entity is located in the database. The pointers in the top
and intermediate levels point to SR8s at the next lowest level. Only the bottom-level
entry points to the indexed entity. (For simplicity, prior and owner pointers are not

included in this figure; in addition, there are two pointers for the symbolic key for BENN,
since there are two employees with that name.)

Symbolickey Db-key

Top-level SR8s 90002:3 Innis

West

90004:10

90004:57

Allocating Space for Indexes

238 Database Design Guide

Intermediate-

level SR8s

90004:10 Carr

Ferro

Innis

90015:13

90016:40

90030:6

 90004:57 Nelson

Stuart

West

90021:3

90018:53

90030:12

Bottom-level SR8s 90015:13 Benn

Carr

721009:147 723006:105

721007:3

 90016:40 Davis

East

Ferro

720617:201

721592:63

722310:16

 00030:6 Grey

Hall

Innis

720016:31

727160:52

725921:74

 90021:3 James

Long

Nelson

726412:4

724263:12

727160:90

 90018:53 Stuart

Upton

720039:37

720715:52

 90030:12 West 725129:2

Allocating Space for Indexes

Chapter 15: Determining the Size of the Database 239

Number of levels in an index

The number of levels in an index directly affects database performance. The number of

levels determines:

■ The number of I/Os required to access the indexed entities. An index that has few
levels (four or fewer) typically incurs a minimum number of I/Os to access the

indexed entities.

■ How much contention will occur for access to the SR8 records. An index that has
several levels typically reduces contention among application programs that require
access to SR8s.

An index is considered efficient if there is l i ttle contention for the SR8s and few I/Os are
required to access the indexed entities. To develop an efficient index, you should usually
plan an index that has three levels of SR8s. An index that has more than eight or ten
levels is l ikely to degrade processing performance by causing the system to access many

SR8s when searching for a particular indexed entity occurrence. A system index that
consists of fewer than three levels may incur contention if frequently updated. Indexed
relationships should usually have fewer than three levels since contention is less l ikely

because there are multiple index structures (one for each relationship occurrence).

Since the structure of an index depends on several dynamic factors, it is often difficult to
make a precise calculation of the number of levels that the DBMS will create. CA
IDMS/DB therefore provides schema syntax that can be used to influence the number of

levels that will be generated for a particular index.

The number of levels generated by CA IDMS/DB for a sorted index depends on the
number of index entries in each SR8. You can specify the maximum number of entries

that can be contained in an SR8 by using the INDEX BLOCK CONTAINS clause of the index
definition in the schema.

You can improve the efficiency of an index by performing one of the following
procedures:

■ Decrease the number of levels in the index by increasing the number of entries in
each SR8. This action can enhance efficiency by decreasing the number of SR8s that
the DBMS must access when searching for a particular entry.

■ Increase the number of levels in the index by decreasing the number of entries in
each SR8. This action can enhance efficiency by reducing the likelihood of
contention for SR8s.

For further information on the structure of an index, see CA IDMS Database

Administration Guide.

Allocating Space for Indexes

240 Database Design Guide

Calculating the Size of the Index

To account for the different types of index structures, you use a different set of
formulas to calculate the size of each of the following types of indexes:

■ Indexes sorted on a symbolic key

■ Indexes sorted on the database key

■ Unsorted indexes

Formulas for calculating the size of indexes are outlined in the following tables.

For information about sizing an index automatically, see Area statements in "Physical

Database DDL Statements" of Volume 1 of CA IDMS Database Administration Guide.

Considerations

Before you calculate the size of your indexes, you should be aware of the following
index sizing considerations:

■ The method of loading the index determines how the index size should be
calculated. The formulas presented in the tables below should be used only to
calculate space requirements for indexes that are loaded in sequential order.

■ Index sizing calculations should allow ample space for future growth. You have
several options for reserving space for expansion of an index:

– Make a generous estimate of the number of occurrences to be indexed; use
this inflated number as the basis for performing your index sizing calculations.

– Make a generous estimate of the number of pages required for the area in
which the index will be stored; the formulas presented below can be used to
calculate the minimum number of pages required for an area in which an index

will be stored.

– Specify a page reserve at load time; after the index has been loaded, remove
the page reserve and increase the number of entries in each SR8.

– Indicate how far away from the parent or SR7 the bottom-level SR8s are to be

stored. For an indexed relationship or a system-owned index, you can use the
DISPLACEMENT clause of the non-SQL schema ADD SET statement or the SQL
schema CREATE INDEX statement to cluster bottom-level SR8s away from their

parent in a database area. By specifying the number of pages to displace the
bottom-level SR8s, you can reserve space in the area for storage of
intermediate SR8s.

Allocating Space for Indexes

Chapter 15: Determining the Size of the Database 241

Calculating the Size of an Index Sorted on a Symbolic Key

Calculation Formula/Instructions

Number of

indexed
entity
occurrences
and key

length

The requirements of your database will determine these values. You may

want to use an inflated number to allow for future growth.

Number of
index levels

In most situations, you should design indexes with three levels. However,
your index may consist of from one to four index levels. Indexes with few

entries or a short key can be built with only two levels; indexes with
many entries or very long keys might require four levels. Indexed
relationships or indexes with extremely few entries might require only
one level.

Number of
entries per
SR8

For an n-level index:

 #SR8-entries =

 nth-root-of-#indexed-entity-occurrences

For example, to build a 3-level index:

 #SR8-entries =

 cube-root-of-#indexed-entity-occurrences

The results of this calculation should be rounded up to the next higher

integer.

Size of SR8
entities

Determine SR8 size (including line index space) by using the following
formula:

 SR8-size =

 40 + (#SR8-entries + 1) * (key-length + 8)

Key-length equals the sum of the lengths of all data elements in the
index key.

Allocating Space for Indexes

242 Database Design Guide

Calculation Formula/Instructions

Number of

SR8s

Determine the number of SR8s required for your index by level:

 #Level-0-SR8s =

 (#indexed-entity-occurrences + #SR8-entries - 1)

 --

 #SR8-entries

 #Level-1-SR8s =

 (#level-0-SR8s + #SR8-entries - 1)

 #SR8-entries

 #Level-2-SR8s =

 (#level-1-SR8s + #SR8-entries - 1)

 #SR8-entries

One of the above calculations will be required for each level in your
index; note that the quotient should be truncated, not rounded.

Calculate the number of SR8s at each level until the quotient equals 1.
The total number of SR8s required for your index is equal to the sum of
all the counts computed above.

Number of
bytes
required

Calculate the total number of bytes of space you will need to
accommodate the index:

 Total-#bytes-required = #SR8s * SR8-size

Note: Level-0 refers to the bottom level of the index structure.

Allocating Space for Indexes

Chapter 15: Determining the Size of the Database 243

Calculation Formula/Instructions

Page size

for the
index area

Plan to store at least three SR8s on a page; use a page reserve of up to

29% of each page. The page reserve factor actually increases the size of
your database page so that additional SR8s can be accommodated
without generating overflow. Use the following formulas to estimate

page size.

 Page-size = (#SR8s-per-page) * (SR8-size)

 Total-page-size = page-size + page-reserve

 + page-header-footer-length

The header-footer length is 32 bytes for an area. Compare the resulting
page size with the table under "Step 2: Determining the page size" and
select the next larger page size that's compatible with your DASD device:

■ If the page size determined in this way is too large, the number of
index levels will have to be increased until a satisfactory
compromise between page size and number of index levels is

reached.

■ If the page size determined is much smaller than 4K, use a 4K page
size instead; this allows more than three SR8s to be stored on each
page.

Number of
SR8
displaceme

nt pages

For improved efficiency, sorted indexes should make use of SR8
displacement pages to displace bottom-level (level-0) SR8s from the
top-level and intermediate-level SR8s. To determine the number of

displacement pages needed, perform these calculations:

 #Non-displaced-SR8s = total-#SR8s - #level-0-SR8s

 #SR8-displacement-pages =

 (#non-displaced-SR8s + #SR8s-per-page - 1)

 -- + 1

 #SR8s-per-page

Note that the quotient should be truncated, not rounded.

Number of
pages
needed for

the index

After calculating the displacement pages, determine the total number of
pages needed for the index:

 Total-#Pages-needed = #SR8-displacement-pages +

 (#level-0-SR8s + #SR8s-per-page - 1)

 #SR8s-per-page

Note that the quotient should be truncated, not rounded.

Allocating Space for Indexes

244 Database Design Guide

Calculating the Size of an Index Sorted on db-key

 Calculation Formula/Instructions

Number of index entity
occurrences

The requirements of your database will determine this value. You may want to use an
inflated number to allow space for future growth.

Number of index levels In most situations, you should design indexes with three levels. However, your index
could consist of from one to four index levels. Indexes with few entries can be built
with only two levels; indexes with many entries might require four levels. Indexed
relationships or indexes with extremely few entries might require only one level.

Number of entries per
SR8

For an n-level index:

 #SR8-entries =

 nth-root-of-#indexed-entity-occurrences

For example, to build a 3-level index:

 #SR8-entries =

 cube-root-of-#indexed-entity-occurrences

The results of this calculation should be rounded up to the next higher integer.

Size of SR8s Determine SR8 size (including line index space) by using the following formulas:

 Level-0-SR8-size =

 40 + (#SR8-entries + 1) * 4

 Non-level-0-SR8-size =

 40 + (#SR8-entries + 1) * 8

Round the value up to the next higher number divisible by 4. The level-0 SR8 length is

nearly half that of the non-level-0 SR8. This means that a page for an index sorted on
db-key can hold nearly twice as many bottom-level SR8s as higher-level SR8s.

Allocating Space for Indexes

Chapter 15: Determining the Size of the Database 245

 Calculation Formula/Instructions

Number of SR8s Determine the number of SR8s required for your index by level:

 #Level-0-SR8s =

 (#indexed-entity-occurrences + #SR8-entries - 1)

 --

 #SR8-entries

 #Level-1-SR8s =

 (#level-0-SR8s + #SR8-entries - 1)

 #SR8-entries

 #Level-2-SR8s =

 (#level-1-SR8s + #SR8-entries - 1)

 #SR8-entries

The quotient should be truncated, not rounded. Continue calculating the number of
SR8s at each level until the quotient equals 1. One of the above calculations will be

required for each level in your index. The total number of SR8s required for your index
is equal to the sum of all counts computed above.

Number of bytes

required

Calculate the total number of bytes of space you will need to accommodate the index:

 #Bytes-required-for-level-0-SR8s =

 #level-0-SR8s * Level-0-SR8-size

 #Bytes-required-for-non-level-0-SR8s =

 #non-level-0-SR8s * non-level-0-SR8-size

 Total-#bytes-required =

 level-0-bytes + non-level-0-bytes

Allocating Space for Indexes

246 Database Design Guide

 Calculation Formula/Instructions

Page size for the index

area

Plan to store at least three SR8s on a page; use a page reserve of up to 29 percent of

the page size. The page reserve factor actually increases the size of your database page
so that additional SR8s can be accommodated without generating overflow. Use the
following formulas to estimate page size:

 Page size =

 (#SR8s-per-page) * (non-level-0-SR8-size)

 Total-page-size = page-size + page-reserve

 + page-header-footer-length

The header-footer length is 32 bytes for a standard area. Compare the resulting page
size with the result from the previous table and select the next larger page size tha t's
compatible with your DASD device:

■ If the page size determined in this way is too large, the number of index levels will
have to be increased until a satisfactory compromise between page size and
number of index levels is reached.

■ If the page size determined is much smaller than 4K, use a 4K page size instead;
this allows more than three SR8s to be stored on each page.

Number of SR8
displacement pages

needed

For improved efficiency, sorted indexes should make use of SR8 displacement pages to
displace bottom-level (level-0) SR8s from the top-level and intermediate-level SR8s. To

determine the number of displacement pages needed, perform these calculations:

 #Non-displaced-SR8s =

 total-#SR8s - #level-0-SR8s

 #SR8-displacement-pages =

 (#non-displaced-SR8s + #SR8s-per-page - 1)

 -- + 1

 #SR8s-per-page

Note that the quotient is truncated, not rounded.

Number of pages

needed for the index

After calculating the displacement pages, determine the total number of pages needed

for the index:

 Total-#Pages-needed =

 #SR8-displacement-pages +

 (#level-0-SR8s + #level-0-SR8s-per-page - 1)

 --

 #level-0-SR8s-per-page

Note that the quotient is truncated, not rounded.

Allocating Space for Indexes

Chapter 15: Determining the Size of the Database 247

Calculating the Size of an Unsorted Index

Calculation Formula/Instructions

Number of

indexed entity
occurrences

The requirements of your database will determine this value. You

might want to use an inflated number to allow space for future
growth.

Number of index
levels

Unsorted indexes consist of only one level (level -0).

Number of entries
per SR8

The number of SR8s should be three or more and less than the
number of entity occurrences being indexed. Work out the
formulas in the following steps with a number of your choice; bear

in mind that you need to derive an SR8 that is less than 30 percent
of the page size for the area. Recalculate the formulas as
necessary until you reach the desired result.

Size of SR8s Determine SR8 size (including line index space) by using the

following formula:

 SR8-size = 40 + (#SR8-entries + 1) * 4

Round the value up to the next higher number divisible by 4.

Number of SR8s Determine the number of SR8s that will be required for your

index:

 Total-#SR8s =

 (#indexed-entity-occurrences + #SR8-entries - 1)

 #SR8-entries

Note that the quotient is truncated, not rounded.

Number of bytes

required

Calculate the total number of bytes of space you will need to

accommodate the index:

 #Bytes-required-for-SR8s = #SR8s * SR8-size

Allocating Space for Indexes

248 Database Design Guide

Calculation Formula/Instructions

Page size for the

index area

Plan to store at least three SR8s on a page; use a page reserve of

up to 29 percent of the page size. The page reserve factor actually
increases the size of your database page so that additional SR8s
can be accommodated without generating overflow. Use the

following formulas to estimate page size:

 Page-size = (#SR8s-per-page) * (SR8-size)

 Total-page-size =

 page-size + page-reserve

 + page-header-footer-length

The header-footer length is 32 bytes for an area. Compare the

resulting page size with the result from the first table and select
the next larger page size that's compatible with your DASD device:

■ If the page size determined in this way is too large, the

number of index levels will have to be increased until a
satisfactory compromise between page size and number of
index levels is reached.

■ If the page size determined is much smaller than 4K, use a 4K

page size instead; this allows more than three SR8s to be
stored on each page.

Number of pages

needed for the
index

Determine the total number of pages needed for the index:

 Total-#pages-needed =

 (#SR8s + #SR8s-per-page - 1)

 #SR8s-per-page

Note that the quotient should be truncated, not rounded.

Allocating Space for Indexes

Chapter 15: Determining the Size of the Database 249

Sample index size calculation

The following diagram shows how space is allocated for storage of an index.

The SKILL-NAME index requires 18 database pages.

For a detailed explanation of the formula used to calculate space requirements for this
index, see the previous table.

 # OF SKILL OCCURRENCES 1680

 KEY LENGTH 12

 # OF INDEX LEVELS 3

 # OF ENTRIES PER SR8 12

 SIZE OF SR8 300

 # OF SR8s 153

 # OF BYTES REQUIRED FOR INDEX 45900

 # OF SR8 DISPLACEMENT PAGES 3

 TOTAL # OF PAGES IN SKILL-NAME-REGION AREA 18

 # SR8 ENTRIES = Cube-root-of-#skill-occurrences = 12 (rounded up)

 SR8 SIZE = 40 + (13 * 20) = 300 bytes

 LVL-0 = (1680 + 11) / 12 = 140 (truncated)

 LVL-1 = (140 + 11) / 12 = 12 (truncated)

 LVL-2 = (12 + 11) / 12 = 1 (truncated)

(In this 3-level index, there are 140 displaced SR8s and 13 non-displaced SR8s; the total
number of SR8s is 153.)

 # OF BYTES REQUIRED FOR INDEX = 153 * 300 = 45900

 SPACE REQUIRED FOR STORING 3 SR8s = 3 * 300

 PAGE-SIZE (INCLUDING PAGE RESERVE) = 900/.70 + 32 = 1318

(1318 bytes for page size is very small; therefore a 4K page size might be used instead.
If a 4K page size is selected, the DBMS will be able to store approximately 10 SR8s on a

page.)

 # OF SR8 DISPLACEMENT PAGES = (15 + 10 - 1) / 10 + 1 = 3

 TOTAL # OF PAGES IN AREA = (140 + 10 - 1) / 10 + 3 = 18

Placing Areas in Files

250 Database Design Guide

Placing Areas in Files

Guidelines

You can assign all areas in a database to a single fi le or you can distribute areas over
several fi les. The following table provides some guidelines for ass igning areas to fi les.

The relationship between areas and fi les can be defined as one-to-one, one-to-many,

many-to-one, or many-to-many. Each arrangement has its advantages and
disadvantages.

Relationship Advantages Disadvantages

One area to
one fi le

■ Allows ease of
maintenance

■ Facilitates recovery

■ Provides maximum
flexibil ity in
assigning areas to
buffers

■ If used with VSAM, this arrangement
can require excessive VSAM memory
requirements (GETVIS).

One area to
many fi les

■ Minimizes
head/channel
contention by

spreading dataover
multiple packs

■ Optimizes
processing of large

and/or highly
active areas

Many areas to

one fi le
■ Recommended for

small, stable areas
that are not used
often

■ Restricts buffer allocations

■ Complicates DBA maintenance

Many areas to

many fi les

 ■ Severely restricts buffer allocations

■ Complicates DBA maintenance

■ Minimizes flexibility in data set
placement on disk

■ Complicates recovery procedures

■ Should be avoided

Placing Areas in Files

Chapter 15: Determining the Size of the Database 251

Processing considerations

When assigning areas to fi les, you should keep in mind the following processing

considerations.

Input/output seek time

Follow these guidelines for minimizing seek time:

■ If you need to keep all (or several) areas online, you can reduce seek time by
mapping each area into fi les allocated across all the disk volumes.

■ Place the most frequently accessed data set (database fi le) near the middle cylinder
on a disk volume. The access arm begins a seek operation from the position where

it completed the last operation; therefore, the distance the arm must travel will, on
the average, be less to reach a cylinder in the middle of the disk surface.

■ Place the smallest data sets that are accessed equally often near the center of the
disk volume.

■ When concurrently active data sets must be accessed by the same access
mechanism, place them adjacent to one another.

■ If possible, place small, concurrently active data sets on the same cylinder.

For more specific guidelines, consult your hardware vendor publications for the
hardware devices used at your installation.

Access-arm contention

To reduce contention for use of the access arm, you can place concurrently active data

sets under different access mechanisms.

Minimizing seek time

If you need to keep all areas online, you can reduce seek time by mapping the areas into

fi les allocated across all the disk volumes. For example, you can allocate nine fi les, three
on each volume, and map each area across all three volumes. This reduces the number
of cylinders across which the disk heads must move to process any one application, as
shown below.

The diagram below shows how entities used for one application can be distributed over
all volumes to l imit head movement.

Sizing a Megabase

252 Database Design Guide

Sizing considerations

As you assign areas to fi les, you need to keep in mind the following sizing
considerations:

■ For each page, there must be only one corresponding block of the same size.

■ Pages in one area must be numbered as one continuous range of integers (you
select the starting number); blocks in one fi le must be numbered as one continuous

range of integers, starting with the number one.

■ Page ranges must not overlap.

■ Page size can vary from area to area but not within an area; block size can vary from
fi le to fi le but not within a fi le. Areas with different page sizes cannot be mapped

into one fi le, and one area cannot be mapped across fi les with different block sizes.

■ If an area is so large that it requires more than a single physical disk device and the
access method is non-VSAM, the area must be mapped to multiple fi les where the

size of each fi le is no larger than the capacity of a single device.

■ If VSAM is being used as the underlying access method for the database, an area of
over 4GB must be mapped to multiple VSAM files.

Sizing a Megabase

To allow for processing of very large databases, CA IDMS/DB permits you to:

■ Vary the format of the database key

■ Assign segments to page groups

Each of these sizing options is discussed below.

Sizing a Megabase

Chapter 15: Determining the Size of the Database 253

Varying the Database Key Format

A database key is the concatenation of an entity's page number and its l ine index, for a
total of four bytes. The format for a database key is variable. The page number can
make up 20 to 30 bits of the database key; the line index can make up 2 to 12 bits. You

determine the database key format by specifying the MAXIMUM RECORDS PER PAGE
clause of the CREATE SEGMENT statement.

Since database key format is variable, you can structure the database to allow for either:

■ More pages with fewer entities per page—The number of pages in an area can be

from 2 to 1,073,741,824.

■ More entities per page with fewer pages—Each page in a database can have from
2 to 2,727 entities.

To accommodate a very large database, you need to make sure that the highest page in

an area can be expressed in the database key format. You also need to ensure that the
line index is large enough to identify the highest entity occurrence on a specific pa ge.

Note: The number specified in the MAXIMUM RECORDS PER PAGE clause indicates the

maximum number of entity occurrences that the run-time system will place on a single
page. The actual number of occurrences on a given page depends on the page size and
the size of individual entity occurrences placed on the page.

Sizing a Megabase

254 Database Design Guide

Assigning Segments to Page Groups

By assigning segments to page groups, you can maintain, under a single central version,
multiple databases that total more than a bil l ion pages. A page group uniquely identifies
a collection of page ranges. You can specify a numeric identifier in the range 0 through

32,767 as a page group.

More Information

For more information on varying the db-key and page groups, see the CA IDMS
Database Administration Guide.

Considerations

Although segments can be assigned different page groups and database key formats,
the following restrictions apply:

■ By default, a single database transaction can access data in only one page group for

a non-SQL-defined database. Therefore, data to be accessed together must be
defined within the same page group.

■ The single page group restriction for a transaction does not apply to SQL-defined

databases or to non-SQL-defined databases accessed through a DBNAME with
Mixed Page Group Binds Allowed. However, all records of a record type to be
accessed in a single transaction must reside in the same segment. While you can
horizontally segment a database, for example by placing customer information in

three segments (CUSTEAST, CUSTWEST, CUSTCENT), you can access only one of
these segments at a time from within a transaction.

■ For non-SQL defined tables, owner and member records for a chain set must be in

the same page group and have the same number of records per page.

■ For SQL defined tables, referenced and referencing tables for a referential
constraint must be in the same page group and have the same number of records
per page, and a table and its index area must be in the same page group and have

the same number of records per page.

■ By default all segments accessed by a single database transaction must have the
same database key format. However, when using a DBNAME with Mixed Page

Group Binds Allowed, a single transaction can access data from multiple page
groups, each having a different database key format.

■ All segments of a dictionary must be in the same page group.

More Information

For more information on the use of Mixed Page Group Binds Allowed, see the CA IDMS
Database Administration Guide.

Chapter 16: Implementing Your Design 255

Chapter 16: Implementing Your Design

This section contains the following topics:

Overview (see page 255)
Reviewing the Design (see page 255)
Implementing the Design (see page 262)

Overview

Once you have determined the space requirements of the database, you are prepared
for a final design review and implementation. You need to review the design to ensure
that the database will support the business transactions performed by users at your

corporation. You also need to ensure that applications that access the database will
execute efficiently.

This chapter shows you how to review both the logical and physical models for a
corporate database.

Reviewing the Design

Reviewing the design for a corporate database involves performing the following
procedures:

1. Reviewing the logical database model

2. Reviewing the physical database model

Follow the steps below to finalize the design for your corporate database.

Reviewing the Design

256 Database Design Guide

Step 1: Review the Logical Database Model

In the initial stages of logical design, you identified the business problem that users
hoped to solve by creating a database. After interviewing several company employees,
you performed a thorough analysis of the business system, determining the processing

functions performed by the corporation and the flow of data during typical executions
of these functions.

An analysis of the system provided documentation of the types of data required by
corporate users to perform their day-to-day business tasks. With this documentation,

you created the entity-relationship diagram, which serves as a model of the corporate
enterprise.

During the final review of a database design, you should make sure that the physical
design does not compromise the logical model for the database.

Step 2: Review the Physical Database Model

Earlier in the design process, you traced the flow of each business transaction through
the database. By tracing the flow of transactions, you tried to ensure that the system
would support all database processing. During the final review of a database design, you

need to trace the flow of business transactions again.

Calculating I/Os

As you trace the flow of each business transaction, you should calculate the number of

input/output operations that will be performed. The I/O calculation for a business
transaction depends on several factors. These factors include the order in which entities
are accessed, the location mode of each entity accessed, the types of indexes (if any)
used to access the data, and the way entities are clustered in the database.

See Chapter 12, "Refining the Database Design" for instructions on how to estimate the
number of I/Os for a transaction.

Reviewing the Design

Chapter 16: Implementing Your Design 257

Potential Design Flaws

As you trace the flow of each transaction, you need to look for potential design flaws.
Here are some things to watch out for.

Nonclustered relationships

Relationships between two entities that are stored with the CALC location mode
sometimes degrade processing in applications that retrieve all child entity occurrences.
When two CALC entities are related, the system must perform several I/O operations to
retrieve the child entity occurrences participating in the relationship, as shown below.

CALC-to-CALC relationships are particularly costly for long chained relationships (those
having many child occurrences). In the following diagram, note the number of pages
accessed in order to retrieve all employees in a particular department.

Reviewing the Design

258 Database Design Guide

Sorted relationships

Sorted relationships are efficient for some kinds of processing and not for others. When

you design a relationship, you need to consider whether the sorted order is appropriate
for the type of processing that will be performed.

Make sure that:

■ Every sorted relationship can be justified.

■ If new key values are higher than existing values, the relationship is ordered in
descending sequence.

■ If new key values are lower than existing values, the relationship is ordered in

ascending sequence.

■ If the relationship is not clustered, it is indexed rather than chained (non-SQL
implementation).

For further information on sorted relationships, see Refi ning the Database Design.

Relationships crossing areas

When two entities related through a l inked relationship are stored in different database
areas, certain util ities require that you operate on both areas at the same time.

Therefore, you might want to consider using an unlinked relationship rather than a
l inked relationship.

Ineffective clustering

Processing performance can be affected by ineffective clustering. Suppose that an entity

participates as a child in two relationships. To achieve optimal performance, the
relationship through which an entity is most frequently accessed should be chosen as
the clustering relationship.

In the example below, retrieving all positions for a job will require fewer I/Os than
retrieving all positions for an employee. This should be reviewed to ensure that it
reflects transaction frequencies.

Reviewing the Design

Chapter 16: Implementing Your Design 259

Large clusters

Large clusters of entity occurrences can also cause performance problems. If the
amount of space required to hold related entity occurrences is greater than the page
size for a database area, CALC or cluster overflow conditions can occur.

Absence of PRIOR pointers in a non-SQL implementation

PRIOR pointers should be excluded from a relationship only when all of the following
conditions are true:

■ Child entity occurrences in a relationship are not erased or disconnected.

■ Child entity occurrences in a relationship participate in no other relationship.

■ Order is not LAST or PRIOR.

■ The FIND/OBTAIN LAST or FIND/OBTAIN PRIOR functions are not used for the
relationship.

In all other circumstances, you should include PRIOR pointers in a relationship.

Absence of OWNER pointers in a non-SQL implementation

OWNER pointers should be excluded from a relationship only when all of the following

conditions are true:

■ Parent entities in a relationship are not accessed from child entities.

■ The FIND/OBTAIN OWNER DML function is not used for the relationship.

■ Parent and child entities are normally stored all on one page.

In all other circumstances, you should include OWNER pointers in a relationship. Every
relationship must have NEXT pointers except indexed relationships, which must have
INDEX pointers.

Reviewing the Design

260 Database Design Guide

Questions To Address

Here are some questions that you should address before implementing a database:

■ Will performance be acceptable for the five to ten most important transactions?
From a performance standpoint, the most important transactions are those

transactions that are executed most frequently.

■ Do any clustered entities require rapid, random retrieval? If so, consider placing
indexes on these entities or, in a non-SQL implementation, adding additional l inked
relationships, as described below.

In the following example, the EMPLOYEE entity is stored clustered via the
DEPT-EMPLOYEE relationship. A new entity called EMP-NUM is created and linked
to the EMPLOYEE entity in a one-to-one relationship. Using the relationship and

CALC retrieval on EMP-NUM, an employee can be retrieved by employee number
using two I/Os, even though it is neither a CALC nor an index key.

Reviewing the Design

Chapter 16: Implementing Your Design 261

■ Does any entity that sparsely populates an area require processing of all
occurrences? If so, consider building an index for the entity.

■ Can extra relationships be added for more direct access? In some cases, you might
want to include additional relationships to enhance processing performance. For
example, you might want to define the DEPT-SKILL relationship to allow retrieval of

information from the DEPARTMENT and SKILL entities without having to retrieve
employees. The diagram below shows this use of an extra relationship.

Implementing the Design

262 Database Design Guide

Implementing the Design

Now that you have a physical database design, it is time to implement that design. CA
IDMS/DB provides two methods for implementation:

■ SQL DDL statements— Available only if your site has the SQL Option

■ Non-SQL DDL statements

The data structure diagram you created is used as the basis for your implementation.
The diagram that follows shows a portion of the data structure, annotated with both the
SQL and non-SQL definition statements that apply to the components i l lustrated.
Complete SQL and non-SQL implementations of the Commonweather Corporation

database can be found in Non-SQL Database Implementation for the Commonweather
Corporation.

Implementing the Design

Chapter 16: Implementing Your Design 263

Implementing Your Design with SQL

You can choose to implement your design using SQL statements.

SQL terminology

The fol lowing table relates the terms used during the physical design process with those

used in an SQL implementation.

Logical/Physical Design Term SQL Implementation Term

Entity Table

Entity occurrence Row

Data element Column

CALC location mode CALC

Clustered location mode Clustered constraint

Relationship Constraint

Index Index

Unique Unique

Parent Referenced table

Child Referencing table

Implementing the Design

264 Database Design Guide

Implementation Steps

1. Decide on naming conventions for:

■ Tables

■ Columns

■ Constraints

■ Indexes

2. Create the database.

3. Create the logical definition of your database using SQL DDL statements.

4. Copy the segment definition from the system dictionary into the application
dictionary in which you will define your tables.

More Information

For more information on physical definition and creation, see the CA IDMS Database

Administration Guide.

Steps 1 through 3 are described in more detail below.

You are now ready to define the tables and other logical components of your database.

Naming conventions

Database tables and columns should have short, meaningful names. Table names are up
to 18 characters in length. Columns within tables can have names of up to 32 characters.
Underscores are usually used between tokens within a name (for example,

SKILL_LEVEL). Hyphens should be avoided since names containing hyphens must be
enclosed in double quotes when used in SQL syntax.

Referential constraints are typically named by concatenating the names of the two

related tables. For example, the referential constraint between the EMPLOYEE table and
the DEPARTMENT table becomes DEPT_EMPLOYEE. This convention may need to be
modified, however, since constraint names can be no more than 18 characters.

Indexes must also be named. Names up to 18 characters are permitted.

Creating the database

A database is represented by a segment. To create a database, you:

1. Define the segment in the system dictionary using CREATE SEGMENT, FILE, and

AREA statements.

2. Include the segment definition in a DMCL and punch and link edit it to a load or
core image library.

Implementing the Design

Chapter 16: Implementing Your Design 265

3. Allocate the operating system fi les defined in the segment and initialize them using
the FORMAT util ity statement.

Creating the logical database definition

The following examples i l lustrate how the logical components of your design are
translated into SQL DDL.

For complete DDL syntax, see CA IDMS SQL Reference Guide.

Implementing the Design

266 Database Design Guide

CREATE SCHEMA statement

A schema groups one or more tables together. Typically all tables associated with a

single database, or with a specific application within a single database, are defined
within one schema. The statement below defines the schema, EMPSCHM.

 CREATE SCHEMA EMPSCHM; ◄----------- Names the schema

CREATE TABLE statement

Each entity in your design is defined as an SQL table. The definition of a table includes:

■ The name of the table

■ A list of columns (data elements), including the data type of each, whether a default
has been designated, and whether or not nulls are allowed

■ An optional check constraint that l imits the data that can be maintained in the
database for a particular column or columns

■ The name of the area in which the data for the table is to be stored

The following statement defines the table, SALARY GRADE.

 CREATE TABLE EMPSCHM.SALARY_GRADE ◄--------- Names the table

 (SALARY_GRADE UNSIGNED NUMERIC(2,0) NOT NULL, ┐

 JOB_ID UNSIGNED NUMERIC(4,0) NOT NULL, │ Names the

 HOURLY_RATE UNSIGNED DECIMAL(7,2) , │ columns and

 SALARY_AMOUNT UNSIGNED DECIMAL(10,2) , │ assigns column

 BONUS_PERCENT UNSIGNED DECIMAL(7,3) , │ characteristics

 COMM_PERCENT UNSIGNED DECIMAL(7,3) , │

 OVERTIME_RATE UNSIGNED NUMERIC(5,2) ┘

 CHECK ((HOURLY_RATE IS NOT NULL AND SALARY_AMOUNT IS NULL)

 OR (HOURLY_RATE IS NULL AND SALARY_AMOUNT IS NOT NULL)))

 IN SQLDEMO.EMP_DEMO_REGION; ◄---- Names the area qualified

 with a segment name

Null values

SQL allows you to represent the absence of a column value in a particular row by
assigning NULL to the column. This could happen because the value is not known yet

(such as a credit rating when a credit check has not yet been completed for a new
customer) or because it isn't applicable (such as phone number for an employee with no
phone). Null values may receive special treatment in certain SQL DML statements. For
example, the COUNT aggregate function doesn't include null values in a particular

column when counting the number of rows based on that column.

CREATE INDEX statement

Implementing the Design

Chapter 16: Implementing Your Design 267

The definition of an index includes:

■ The name of the index

■ The name of the table and columns in the table on which the index is placed

■ The area in which the index is to be stored

■ The UNIQUE and/or clustering specification

■ Additional physical tuning options

The statement below defines the EMP_NAME_NDX index.

CREATE EMPSCHM.INDEX EMP_NAME_NDX ◄------- Names the index

 ON EMPSCHM.EMPLOYEE(EMP_LAST_NAME, EMP_FIRST_NAME) ◄-- Names the columns

 IN SQLDEMO.INDXAREA; ◄--------- Names the area qualified with

 segment name

CREATE CONSTRAINT statement

In an SQL-defined database, relationships are the vehicle for the enforcement of

referential integrity. The system automatically ensures that the foreign key columns of
child rows are either null or match the primary key of an existing parent row.

Linked and unlinked relationships are implemented as constraints. The definition of a
constraint includes:

■ The name of the constraint

■ The names of the two tables it relates

■ The referenced and referencing columns

■ A specification of whether the constraint is l inked or unlinked

■ A specification of whether child entity occurrences are to be clustered based on this
relationship

■ Additional tuning options

The statement below defines the EMP_EXPERTISE constraint.

 CREATE CONSTRAINT EMPSCHM.EMP_EXPERTISE ◄--- Names the referential constraint

 EMPSCHM.EXPERTISE (EMP_ID) REFERENCES ┐ Names referenced and referencing

 EMPSCHM.EMPLOYEE (EMP_ID) ┘ tables and columns

 LINKED CLUSTERED; ◄----- Specifies type of referential constraint

Implementing the Design

268 Database Design Guide

Creating views

SQL-defined views can be used to:

■ Implement security because they can restrict access to a subset of the rows and
columns within a table

■ Provide a shorthand means of referring to complex SELECT statements

Below are some sample views that might be created for the Commonweather database:

 CREATE VIEW EMPSCHM.SS_FORMAT

 (EMP_ID, EMP_LAST_NAME, EMP_FIRST_NAME, SS1, SS2, SS3)

 AS SELECT EMP_ID, EMP_LAST_NAME, EMP_FIRST_NAME,

 SUBSTR(SS_NUMBER, 1, 3), SUBSTR(SS_NUMBER, 4, 2),

 SUBSTR(SS_NUMBER, 6, 4)

 FROM EMPSCHM.EMPLOYEE;

 CREATE VIEW EMPSCHM.EMP_HOME_INFO

 AS SELECT EMP_ID, EMP_LAST_NAME, EMP_FIRST_NAME, STREET,

 CITY, STATE, ZIP_CODE, PHONE

 FROM EMPSCHM.EMPLOYEE;

 CREATE VIEW EMPSCHM.EMP_WORK_INFO

 AS SELECT EMP_ID, START_DATE, TERMINATION_DATE

 FROM EMPSCHM.EMPLOYEE;

Table and view security

If CA IDMS/DB internal security is in effect, GRANT statements must be used to allow
others, besides the owner, to access the tables and views within a schema. Every

schema has an owner. The initial owner of a schema is the user who created it.
Ownership can be transferred to another individual using the TRANSFER OWNERSHIP
statement.

For more information on these statements, see CA IDMS SQL Reference Guide.

Implementing the Design

Chapter 16: Implementing Your Design 269

Implementing Your Design with Non-SQL

You can choose to implement your design using non-SQL statements.

Non-SQL terminology

The following table relates the terms used during the physical design process with those

used in a non-SQL implementation.

Logical/Physical Design Term Non-SQL Term

Entity Record type

Entity occurrence Record occurrence

Data element Field/element

CALC location mode CALC

Clustered location mode VIA

Relationship Set

Index Set

Unique Duplicates not allowed

Parent Owner

Child Member

Implementing the Design

270 Database Design Guide

Implementation Steps

1. Decide on naming conventions for:

■ Records

■ Elements

■ Sets

2. Create the logical definition of your database using non-SQL schema and
subschema statements.

3. Create the database.

Each of these steps is described below.

Naming conventions

Database records and elements should have short, meaningful names. Record names
are up to 16 characters in length. Elements within records can have names of up to 32

characters. Hyphens are usually used between tokens within a name (for example,
SKILL-NAME).

Sets are typically named by concatenating the names of the two related records. This

convention may need to be modified, however, since set names can be no more than 16
characters. For example, the set between the EMPLOYEE record and the DEPARTMENT
record remains DEPT-EMPLOYEE.

Database definition

The following examples i l lustrate how the logical components of your design are
translated into non-SQL schema statements. These statements are input to the schema
compiler.

For complete DDL syntax, see CA IDMS Database Administration Guide.

ADD SCHEMA statement

A schema represents a logical group of records. Typically all records associated with a
single database are defined within one schema.

The statement below defines the EMPSCHM schema.

ADD

SCHEMA NAME IS EMPSCHM VERSION 1 ◄------------- Names the schema

 SCHEMA DESCRIPTION IS 'COMMONWEATHER DATABASE'

 ASSIGN RECORD IDS FROM 1001 .

ADD AREA statement

Implementing the Design

Chapter 16: Implementing Your Design 271

Areas must be explicitly defined using the following statement.

ADD

AREA NAME IS EMP-DEMO-REGION ◄-------------- Names the area

SUBAREA CALC-RANGE ◄-------------- Subarea name

SPACE 50 FROM 1 ◄-------------- Subarea page range

ADD RECORD statement

The definition of a record includes:

■ The name of the record

■ The elements included within the record (information copied from or shared with

another record)

■ Explicit or automatic specification of a record ID

Record IDs are internally-used numbers assigned to each record in a schema.

■ Location mode specification

■ Root and fragment information for variable length records

■ Optionally, database procedures to be called upon certain DML commands

■ The name of the area in which this record is to be stored

The statement below defines the record EMPLOYEE.

ADD

RECORD NAME IS JOB ◄--------------------------- Names the record

 SHARE STRUCTURE OF RECORD JOB VERSION 1 ◄---- Uses description of record that

 has

 already been defined through ID

D

 RECORD ID IS AUTO ◄---------------------- Instructs the system to assign

 the record id

 LOCATION MODE IS CALC USING (JOB-ID)

 DUPLICATES ARE NOT ALLOWED

 MINIMUM ROOT LENGTH IS 24 CHARACTERS ┐ Tells the system how to store

 MINIMUM FRAGMENT LENGTH IS 296 CHARACTERS ┘ fragments of this variable-lengt

h record

 CALL IDMSDCOM BEFORE STORE ┐ Tells the system to compress the record

 CALL IDMSDCOM BEFORE MODIFY │ during updates and decompress it for retriev

al

 CALL IDMSDCOM AFTER GET ┘ processing

 WITHIN AREA ORG-DEMO-REGION ◄---------------- Specifies the area name

 USING CALC-RANGE ◄---------------- and subarea

Implementing the Design

272 Database Design Guide

ADD SET statement

To implement a l inked relationship, you need to define a set. The definition of a set

includes:

■ The name of the set

■ The names of the owner and member records

■ The linkage characteristics (index or chain) and pointer options

■ Membership rules

■ The set order

The statement below defines the EMP-COVERAGE set.

ADD

SET NAME IS EMP-COVERAGE

 ORDER IS FIRST ◄-------------------- Tells the system to insert each new rec

ord

 immediately after the owner record in t

he set

 MODE IS CHAIN LINKED TO PRIOR ◄------ Tells the system that this is a chained

 set,

 not an indexed set and prior pointers a

re used

 OWNER IS EMPLOYEE

 NEXT DBKEY POSITION IS AUTO ┐ Causes the schema compiler to assign poin

ter

 PRIOR DBKEY POSITION IS AUTO ┘ positions in the owner record automatical

ly

 MEMBER IS HEALCOV

 NEXT DBKEY POSITION IS AUTO ┐ Causes the schema compiler to assign

 PRIOR DBKEY POSITION IS AUTO │ pointer positions in the member recor

d

 LINKED TO OWNER │ automatically

 OWNER DBKEY POSITION IS AUTO ┘

 MANDATORY AUTOMATIC ◄----------- Tells the system the membership option

 for the set

Subschema definition

Each subschema description for a database identifies the schema components that are
available to a particular application program. Before a program containing logical record
facil ity or navigational DML can be compiled, you must define at least one subschema.

To define a subschema, you submit the following types of statements to the subschema
compiler:

Implementing the Design

Chapter 16: Implementing Your Design 273

■ SUBSCHEMA statements

■ AREA statements

■ RECORD statements

■ SET statements

■ LOGICAL RECORD statements

■ PATH-GROUP statements

A sample subschema listing for the Commonweather database is shown in Zoned and
Packed Decimal Fields as IDMS Keys (see page 301).

For further information on defining subschemas, see CA IDMS Database Administration

Guide. For further information on defining a logical record subschema, see the CA IDMS
Logical Record Facility Guide.

Creating the database

A database is represented by a segment. To create a database, you:

1. Define the segment in the system dictionary using SEGMENT, FILE, and AREA
statements.

2. Include the segment definition in a DMCL and punch and link edit the DMCL to a

load or core image library.

3. Allocate the operating system fi les defined in the segment and initialize them using
the FORMAT util ity statement.

You are now ready to load data into your database.

Appendix A: SQL Database Implementation for the Commonweather Corporation 275

Appendix A: SQL Database Implementation
for the Commonweather Corporation

This section contains the following topics:

Logical Database Definition Listing for the Commonweather Database (see page 276)

Logical Database Definition Listing for the Commonweather Database

276 Database Design Guide

Logical Database Definition Listing for the Commonweather
Database

Below is a l isting for the SQL definition of the Commonwea ther Corporation database
for the design shown.

Logical Database Definition Listing for the Commonweather Database

Appendix A: SQL Database Implementation for the Commonweather Corporation 277

Schema Statement

 CREATE SCHEMA EMPSCHM;

 SET SESSION CURRENT SCHEMA EMPSCHM;

Table Statements

 CREATE TABLE COVERAGE

 (PLAN_CODE CHAR(03) NOT NULL,

 EMP_ID UNSIGNED NUMERIC(4,0) NOT NULL,

 SELECTION_DATE DATE NOT NULL WITH DEFAULT,

 TERMINATION_DATE DATE)

 COVERAGE-TYPE CHAR(01) NOT NULL,

 IN SQLDEMO.INS_DEMO_REGION;

 CREATE TABLE DENTAL_CLAIM

 (CLAIM_DATE DATE NOT NULL,

 PATIENT_FIRST_NAME CHAR(10) ,

 PATIENT_LAST_NAME CHAR(15) ,

 PATIENT_BIRTH_DATE DATE ,

 PATIENT_SEX CHAR(01) ,

 RELATION_TO_EMPLOYEE CHAR(10) ,

 EMP_ID UNSIGNED NUMERIC(4,0) NOT NULL,

 PLAN_CODE CHAR(03) ,

 DENTIST_FIRST_NAME CHAR(10) ,

 DENTIST_LAST_NAME CHAR(15) ,

 DENTIST_STREET CHAR(20) ,

 DENTIST_CITY CHAR(15) ,

 DENTIST_STATE CHAR(2) ,

 DENTIST_ZIP_FIRST_FIVE CHAR(05) ,

 DENTIST_ZIP_LAST_FOUR CHAR(04) ,

 DENTIST_LICENSE_NUMBER UNSIGNED NUMERIC(6,0))

 IN SQLDEMO.INS_DEMO_REGION;

 CREATE TABLE DENTAL_PROCEDURE

 (EMP_ID UNSIGNED NUMERIC(4,0) NOT NULL,

 PLAN_CODE CHAR(03) NOT NULL,

 SERVICE_DATE DATE NOT NULL,

 TOOTH_NUMBER UNSIGNED NUMERIC(2,0) ,

 PROCEDURE_CODE UNSIGNED NUMERIC(4,0) NOT NULL,

 FEE DECIMAL(9,2) ,

 DESCRIPTION VARCHAR(60))

 IN SQLDEMO.INS_DEMO_REGION;

 CREATE TABLE DEPARTMENT

 (DEPT_ID UNSIGNED NUMERIC(4,0) NOT NULL,

 DEPT_HEAD_ID UNSIGNED NUMERIC(4,0) ,

 DEPT_NAME CHAR(40) NOT NULL)

 IN SQLDEMO.ORG_DEMO_REGION;

Logical Database Definition Listing for the Commonweather Database

278 Database Design Guide

 CREATE TABLE EMPLOYEE

 (EMP_ID UNSIGNED NUMERIC(4,0) NOT NULL,

 EMP_FIRST_NAME CHAR(20) NOT NULL,

 EMP_LAST_NAME CHAR(20) NOT NULL,

 DEPT_ID UNSIGNED NUMERIC(4,0) NOT NULL,

 OFFICE_CODE UNSIGNED NUMERIC(4,0) NOT NULL,

 STREET CHAR(40) ,

 CITY CHAR(20) NOT NULL,

 STATE CHAR(02) NOT NULL,

 ZIP_FIRST_FIVE CHAR(05) NOT NULL,

 ZIP_LAST_FOUR CHAR(04) NOT NULL,

 PHONE CHAR(10) ,

 STATUS CHAR(01) NOT NULL,

 SS_NUMBER UNSIGNED NUMERIC(9,0) NOT NULL,

 START_DATE DATE NOT NULL,

 TERMINATION_DATE DATE ,

 BIRTH_DATE DATE ,

 CHECK ((EMP_ID <= 8999) AND (STATUS IN ('01', '02', '03', '04', '05'))))

 IN SQLDEMO.EMP_DEMO_REGION;

 CREATE TABLE EMPOSITION

 (EMP_ID UNSIGNED NUMERIC(4,0) NOT NULL,

 JOB_ID UNSIGNED NUMERIC(4,0) NOT NULL,

 START_DATE DATE NOT NULL,

 FINISH_DATE DATE ,

 SALARY_GRADE UNSIGNED NUMERIC(2,0))

 IN SQLDEMO.EMP_DEMO_REGION;

 CREATE TABLE HOSPITAL_CLAIM

 (CLAIM_DATE DATE NOT NULL,

 PATIENT_FIRST_NAME CHAR(10) ,

 PATIENT_LAST_NAME CHAR(15) ,

 PATIENT_BIRTH_DATE DATE ,

 PATIENT_SEX CHAR(01) ,

 RELATION_TO_EMPLOYEE CHAR(10) ,

 EMP_ID UNSIGNED NUMERIC(4,0) NOT NULL,

 PLAN_CODE CHAR(03) ,

 HOSPITAL_NAME CHAR(25) ,

 HOSPITAL_STREET CHAR(20) ,

 HOSPITAL_CITY CHAR(15) ,

 HOSPITAL_STATE CHAR(2) ,

 HOSPITAL_ZIP_FIRST_FIVE CHAR(05) ,

 HOSPITAL_ZIP_LAST_FOUR CHAR(04) ,

 ADMIT_DATE DATE ,

 DISCHARGE_DATE DATE ,

 DIAGNOSIS CHAR(120) ,

 WARD_DAYS UNSIGNED NUMERIC(5,0) ,

 WARD_RATE DECIMAL(9,2) ,

 WARD_TOTAL DECIMAL(9,2) ,

Logical Database Definition Listing for the Commonweather Database

Appendix A: SQL Database Implementation for the Commonweather Corporation 279

 SEMI_DAYS UNSIGNED NUMERIC(5,0) ,

 SEMI_RATE DECIMAL(9,2) ,

 SEMI_TOTAL DECIMAL(9,2) ,

 DELIVERY_COST DECIMAL(9,2) ,

 ANESTHESIA_COST DECIMAL(9,2) ,

 LAB_COST DECIMAL(9,2))

 IN SQLDEMO.INS_DEMO_REGION;

 CREATE TABLE INSURANCE_PLAN

 (PLAN_CODE CHAR(03) NOT NULL,

 COMP_NAME CHAR(40) NOT NULL,

 STREET CHAR(20) ,

 CITY CHAR(15) NOT NULL,

 STATE CHAR(02) NOT NULL,

 ZIP_FIRST_FIVE CHAR(05) ,

 ZIP_LAST_FOUR CHAR(04) ,

 PHONE CHAR(10) NOT NULL,

 GROUP_NUMBER UNSIGNED NUMERIC(6,0) NOT NULL,

 DEDUCT UNSIGNED DECIMAL(9,2) ,

 MAX_LIFE_BENEFIT UNSIGNED DECIMAL(9,2) ,

 FAMILY_COST UNSIGNED DECIMAL(9,2) ,

 DEP_COST UNSIGNED DECIMAL(9,2))

 IN SQLDEMO.INS_DEMO_REGION;

 CREATE TABLE JOB

 (JOB_ID UNSIGNED NUMERIC(4,0) NOT NULL,

 JOB_TITLE CHAR(20) NOT NULL,

 MIN_RATE UNSIGNED DECIMAL(10,2) ,

 MAX_RATE UNSIGNED DECIMAL(10,2) ,

 SALARY_IND CHAR(01) ,

 NUM_OF_POSITIONS UNSIGNED DECIMAL(3,0) ,

 NUM_OPEN UNSIGNED DECIMAL(3,0) ,

 EFF_DATE DATE ,

 JOB_DESC_LINE_1 VARCHAR(60) ,

 JOB_DESC_LINE_2 VARCHAR(60) ,

 REQUIREMENTS VARCHAR(120) ,

 HOURLY_RATE UNSIGNED DECIMAL(7,2) ,

 SALARY_AMOUNT UNSIGNED DECIMAL(10,2) ,

 BONUS_PERCENT UNSIGNED DECIMAL(7,3) ,

 COMM_PERCENT UNSIGNED DECIMAL(7,3) ,

 OVERTIME_RATE UNSIGNED DECIMAL(5,2))

 IN SQLDEMO.ORG_DEMO_REGION;

 CREATE TABLE EXPERTISE

 (EMP_ID UNSIGNED NUMERIC(4,0) NOT NULL,

 SKILL_CODE UNSIGNED NUMERIC(4,0) NOT NULL,

 SKILL_LEVEL CHAR(02) ,

 EXP_DATE DATE ,

 CHECK (SKILL_LEVEL IN ('01', '02', '03', '04', '05')))

 IN PROJSEG.EMP_DEMO_REGION;

Logical Database Definition Listing for the Commonweather Database

280 Database Design Guide

 CREATE TABLE NON_HOSP_CLAIM

 (CLAIM_DATE DATE NOT NULL,

 PATIENT_FIRST_NAME CHAR(10) ,

 PATIENT_LAST_NAME CHAR(15) ,

 PATIENT_BIRTH_DATE DATE ,

 PATIENT_SEX CHAR(01) ,

 RELATION_TO_EMPLOYEE CHAR(10) ,

 EMP_ID UNSIGNED NUMERIC(4,0) NOT NULL,

 PLAN_CODE CHAR(03) ,

 PHYS_FIRST_NAME CHAR(10) ,

 PHYS_LAST_NAME CHAR(15) ,

 PHYS_STREET CHAR(20) ,

 PHYS_CITE CHAR(15) ,

 PHYS_STATE CHAR(2) ,

 PHYS_ZIP_FIRST_FIVE CHAR(05) ,

 PHYS_ZIP_LAST_FOUR CHAR(04) ,

 PHYSICIAN_ID UNSIGNED NUMERIC(6,0) ,

 DIAGNOSIS VARCHAR(120))

 IN SQLDEMO.INS_DEMO_REGION;

 CREATE TABLE NON_HOSP_PROCEDURE

 (EMP_ID UNSIGNED NUMERIC(4,0) NOT NULL,

 PLAN_CODE CHAR(03) NOT NULL,

 SERVICE_DATE DATE NOT NULL,

 PROCEDURE_CODE UNSIGNED NUMERIC(4,0) NOT NULL,

 FEE DECIMAL(9,2) ,

 DESCRIPTION VARCHAR(60))

 IN SQLDEMO.INS_DEMO_REGION;

 CREATE TABLE OFFICE

 (OFFICE_CODE UNSIGNED NUMERIC(4,0) NOT NULL,

 STREET CHAR(20) ,

 CITY CHAR(15) ,

 STATE CHAR(2) ,

 ZIP_FIRST_FIVE CHAR(05) ,

 ZIP_LAST_FOUR CHAR(04) ,

 SPEED_DIAL CHAR(03) ,

 AREA_CODE CHAR(03) ,

 PHONE_1 UNSIGNED NUMERIC(7,0) ,

 PHONE_2 UNSIGNED NUMERIC(7,0) ,

 PHONE_3 UNSIGNED NUMERIC(7,0))

 IN SQLDEMO.ORG_DEMO_REGION;

 CREATE TABLE PROJECT

 (PROJECT_CODE UNSIGNED NUMERIC(4,0) NOT NULL,

 DESCRIPTION CHAR(40) ,

 EST_BEGIN_DATE DATE ,

 ACT_BEGIN_DATE DATE ,

Logical Database Definition Listing for the Commonweather Database

Appendix A: SQL Database Implementation for the Commonweather Corp oration 281

 EST_END_DATE DATE ,

 ACT_END_DATE DATE ,

 LDR_EMP_ID UNSIGNED NUMERIC(4,0))

 IN SQLDEMO.EMP_DEMO_REGION;

 CREATE TABLE SKILL

 (SKILL_CODE UNSIGNED NUMERIC(4,0) NOT NULL,

 SKILL_NAME CHAR(20) NOT NULL,

 SKILL_DESC VARCHAR(60))

 IN PROJSEG.ORG_DEMO_REGION;

 CREATE TABLE WORKER

 (PROJECT_CODE UNSIGNED NUMERIC(4,0) NOT NULL,

 EMP_ID UNSIGNED NUMERIC(4,0) NOT NULL,

 BEGIN_DATE DATE ,

 END_DATE DATE)

 IN SQLDEMO.EMP_DEMO_REGION;

CALC Key Statements

 CREATE UNIQUE CALC KEY ON DEPARTMENT (DEPT_ID);

 CREATE UNIQUE CALC KEY ON EMPLOYEE (EMP_ID);

 CREATE UNIQUE CALC KEY ON INSURANCE_PLAN (PLAN_CODE);

 CREATE UNIQUE CALC KEY ON JOB (JOB_ID);

 CREATE UNIQUE CALC KEY ON SKILL (SKILL_CODE);

 CREATE UNIQUE CALC KEY ON PROJECT (PROJECT_CODE);

 CREATE UNIQUE CALC KEY ON OFFICE (OFFICE_CODE);

Logical Database Definition Listing for the Commonweather Database

282 Database Design Guide

Index Statements

 -- Create unique indexes

 CREATE UNIQUE INDEX SKILL_NAME_NDX ON SKILL(SKILL_NAME);

 CREATE UNIQUE INDEX JOB_TITLE_NDX ON JOB(JOB_TITLE);

 CREATE UNIQUE INDEX COV_NDX ON COVERAGE (PLAN_CODE, COVERAGE_TYPE, EMP_ID);

 -- Create nonunique indexes

 CREATE INDEX LNAME_NDX ON EMPLOYEE(EMP_LAST_NAME, EMP_FIRST_NAME)

 IN SQLDEMO.INDXAREA;

Logical Database Definition Listing for the Commonweather Database

Appendix A: SQL Database Implementation for the Commonweather Corporation 283

Constraint Statements

 --

 -- Create referential constraints

 --

 CREATE CONSTRAINT EMP_COVERAGE

 COVERAGE (EMP_ID) REFERENCES

 EMPLOYEE (EMP_ID)

 UNLINKED CLUSTERED;

 CREATE CONSTRAINT DEPT_EMPLOYEE

 EMPLOYEE (DEPT_ID) REFERENCES

 DEPARTMENT (DEPT_ID)

 LINKED INDEX

 ORDER BY (EMP_LNAME, EMP_FNAME);

 CREATE CONSTRAINT MANAGES_REPORTS_TO

 EMPLOYEE (SUPR_EMP_ID) REFERENCES

 EMPLOYEE (EMP_ID)

 LINKED INDEX;

 CREATE CONSTRAINT SKILL_EXPERTISE

 EXPERTISE (SKILL_CODE) REFERENCES

 SKILL (SKILL_CODE)

 LINKED INDEX

 ORDER BY (SKILL_LEVEL DESC);

 CREATE CONSTRAINT EMP_EMPOSITION

 EMPOSITION (EMP_ID) REFERENCES

 EMPLOYEE (EMP_ID)

 LINKED CLUSTERED

 ORDER BY (START_DATE DESC) UNIQUE;

 CREATE CONSTRAINT JOB_EMPOSITION

 EMPOSITION (JOB_ID) REFERENCES

 JOB (JOB_ID)

 LINKED INDEX;

 CREATE CONSTRAINT OFFICE_EMPLOYEE

 EMPLOYEE (OFFICE_CODE) REFERENCES

 OFFICE (OFFICE_CODE)

 LINKED INDEX

 ORDER BY (EMP_LNAME, EMP_FNAME);

 CREATE CONSTRAINT EMP_EXPERTISE

 EXPERTISE (EMP_ID) REFERENCES

 EMPLOYEE (EMP_ID)

 LINKED CLUSTERED

 ORDER BY (SKILL_CODE DESC) UNIQUE;

Logical Database Definition Listing for the Commonweather Database

284 Database Design Guide

 CREATE CONSTRAINT EMP_PROJECT

 EMPLOYEE (LDR_EMP_ID) REFERENCES

 PROJECT (EMP_ID)

 LINKED INDEX;

 CREATE CONSTRAINT PROJECT_WORKER

 WORKER (PROJECT_CODE) REFERENCES

 PROJECT (PROJECT_CODE)

 LINKED CLUSTERED;

 CREATE CONSTRAINT EMP_WORKER

 WORKER (EMP_ID) REFERENCES

 EMPLOYEE (EMP_ID)

 LINKED INDEX;

 CREATE CONSTRAINT COVERAGE_NHC

 NON_HOSP_CLAIM (EMP_ID, PLAN_CODE) REFERENCES

 COVERAGE (EMP_ID, PLAN_CODE)

 LINKED CLUSTERED;

 CREATE CONSTRAINT COVERAGE_HC

 HOSPITAL_CLAIM (EMP_ID, PLAN_CODE) REFERENCES

 COVERAGE (EMP_ID, PLAN_CODE)

 LINKED CLUSTERED;

 CREATE CONSTRAINT COVERAGE_DC

 DENTAL_CLAIM (EMP_ID, PLAN_CODE) REFERENCES

 COVERAGE (EMP_ID, PLAN_CODE)

 LINKED CLUSTERED;

 CREATE CONSTRAINT DCLAIM_PROC

 DENTAL_PROCEDURE (DENTAL_CLAIM_ID) REFERENCES

 DENTAL_CLAIM (DENTAL_CLAIM_ID)

 LINKED CLUSTERED;

 CREATE CONSTRAINT NHCLAIM_PROC

 NON_HOSP_PROCEDURE (NON_HOSP_CLAIM_ID) REFERENCES

 NON_HOSP_CLAIM (NON_HOSP_CLAIM_ID)

 LINKED CLUSTERED;

Logical Database Definition Listing for the Commonweather Database

Appendix A: SQL Database Implementation for the Commonweather Corporation 285

Remove Default Indexes

 ALTER TABLE COVERAGE

 DROP DEFAULT INDEX;

 ALTER TABLE DEPARTMENT

 DROP DEFAULT INDEX;

 ALTER TABLE EMPLOYEE

 DROP DEFAULT INDEX;

 ALTER TABLE INSURANCE_PLAN

 DROP DEFAULT INDEX;

 ALTER TABLE EMPOSITION

 DROP DEFAULT INDEX;

 ALTER TABLE EXPERTISE

 DROP DEFAULT INDEX;

 ALTER TABLE SALARY_GRADE

 DROP DEFAULT INDEX;

 ALTER TABLE PROJECT

 DROP DEFAULT INDEX;

 ALTER TABLE WORKER

 DROP DEFAULT INDEX;

 ALTER TABLE PHONE

 DROP DEFAULT INDEX;

Logical Database Definition Listing for the Commonweather Database

286 Database Design Guide

 ALTER TABLE DENTAL_PROCEDURE

 DROP DEFAULT INDEX;

 ALTER TABLE NON_HOSP_PROCEDURE

 DROP DEFAULT INDEX;

 ALTER TABLE OFFICE

 DROP DEFAULT INDEX;

 ALTER TABLE SKILL

 DROP DEFAULT INDEX;

 ALTER TABLE DENTAL_CLAIM

 DROP DEFAULT INDEX;

 ALTER TABLE HOSPITAL_CLAIM

 DROP DEFAULT INDEX;

 ALTER TABLE NON_HOSP_CLAIM

 DROP DEFAULT INDEX;

View Definitions

SQL-defined views allow an application program to see just a portion of the database. A

view can be used to introduce security.

Below are some sample views that might be created for the Commonweather database:

 CREATE VIEW EMPSCHM.SS_FORMAT

 (EMP_ID, EMP_LAST_NAME, EMP_FIRST_NAME, SS1, SS2, SS3)

 AS SELECT EMP_ID, EMP_LAST_NAME, EMP_FIRST_NAME,

 SUBSTR(SS_NUMBER, 1, 3), SUBSTR(SS_NUMBER, 4, 2),

 SUBSTR(SS_NUMBER. 6, 4)

 FROM EMPSCHM.EMPLOYEE;

 CREATE VIEW EMPSCHM.EMP_HOME_INFO

 AS SELECT EMP_ID, EMP_LAST_NAME, EMP_FIRST_NAME, STREET,

 CITY, STATE, ZIP_CODE, PHONE

 FROM EMPSCHM.EMPLOYEE;

 CREATE VIEW EMPSCHM.EMP_WORK_INFO

 AS SELECT EMP_ID, START_DATE, TERMINATION_DATE

 FROM EMPSCHM.EMPLOYEE;

Logical Database Definition Listing for the Commonweather Database

Appendix A: SQL Database Implementation for the Commonweather Corporation 287

Subschema Definition

Sample subschema listing for the Commonweather database

A sample subschema listing for the Commonweather database is shown below.

For further information on defining subschemas, see CA IDMS Database Administration

Guide.

ADD

SUBSCHEMA NAME IS A200SS03 OF SCHEMA NAME IS EMPSCHM VERSION IS 1

 PUBLIC ACCESS IS ALLOWED FOR ALL

 USAGE IS MIXED

 .

 ADD

AREA NAME IS EMP-DEMO-REGION

 .

 ADD

AREA NAME IS ORG-DEMO-REGION

 PROTECTED UPDATE IS NOT ALLOWED

 EXCLUSIVE UPDATE IS NOT ALLOWED

 .

 ADD

RECORD NAME IS DEPARTMENT

 .

 ADD

RECORD NAME IS EMPLOYEE

 .

 ADD

RECORD NAME IS OFFICE

 .

 ADD

SET NAME IS DEPT-EMPLOYEE

 .

 ADD

SET NAME IS OFFICE-EMPLOYEE

 .

Appendix B: Non-SQL Database Implementation for the Commonweather Corporation 289

Appendix B: Non-SQL Database
Implementation for the Commonweather
Corporation

This section contains the following topics:

Logical Database Definition Listing for the Commonweather Database (see page 290)

Logical Database Definition Listing for the Commonweather Database

290 Database Design Guide

Logical Database Definition Listing for the Commonweather
Database

Below is the complete non-SQL defined schema listing for the Commonweather
Corporation database design shown.

Note: Once the system has assigned an ID number to each record, you should indicate

this number on the data structure diagram.

Logical Database Definition Listing for the Commonweather Database

Appendix B: Non-SQL Database Implementation for the Commonweather Corporation 291

Schema Statement

ADD

SCHEMA NAME IS EMPSCHM VERSION IS 1

 SCHEMA DESCRIPTION IS 'EMPLOYEE DEMO DATABASE'

 ASSIGN RECORD IDS FROM 1001

 PUBLIC ACCESS IS ALLOWED FOR ALL

.

Area Statements

ADD

AREA NAME IS EMP-DEMO-REGION

.

 ADD

AREA NAME IS ORG-DEMO-REGION

.

 ADD

AREA NAME IS INS-DEMO-REGION

.

Logical Database Definition Listing for the Commonweather Database

292 Database Design Guide

Record Statements

 ADD

 RECORD NAME IS COVERAGE

 SHARE STRUCTURE OF RECORD COVERAGE VERSION 1

 LOCATION MODE IS VIA EMP-COVERAGE SET

 WITHIN AREA INS-DEMO-REGION.

 ADD

 RECORD NAME IS DENTAL-CLAIM

 SHARE STRUCTURE OF RECORD DENTAL-CLAIM VERSION 1

 LOCATION MODE IS VIA COVERAGE-CLAIMS SET

 MINIMUM ROOT LENGTH IS 132 CHARACTERS

 MINIMUM FRAGMENT LENGTH IS 930 CHARACTERS

 WITHIN AREA INS-DEMO-REGION

 .

 ADD

 RECORD NAME IS DEPARTMENT

 SHARE STRUCTURE OF RECORD DEPARTMENT VERSION 1

 LOCATION MODE IS CALC USING (DEPT-ID) DUPLICATES ARE

 NOT ALLOWED

 WITHIN AREA ORG-DEMO-REGION

 .

 ADD

 RECORD NAME IS EMPLOYEE

 SHARE STRUCTURE OF RECORD EMPLOYEE VERSION 1

 LOCATION MODE IS CALC USING (EMP-ID) DUPLICATES ARE NOT ALLOWED

 WITHIN AREA EMP-DEMO-REGION

 .

 ADD

 RECORD NAME IS EMPOSITION

 SHARE STRUCTURE OF RECORD EMPOSITION VERSION 1

 LOCATION MODE IS VIA EMP-EMPOSITION SET

 WITHIN AREA EMP-DEMO-REGION

 .

 ADD

 RECORD NAME IS EXPERTISE

 SHARE STRUCTURE OF RECORD EXPERTISE VERSION 1

 LOCATION MODE IS VIA EMP-EXPERTISE SET

 WITHIN AREA EMP-DEMO-REGION

 .

Logical Database Definition Listing for the Commonweather Database

Appendix B: Non-SQL Database Implementation for the Commonweather Corporation 293

ADD

RECORD NAME IS HOSPITAL-CLAIM

 SHARE STRUCTURE OF RECORD HOSPITAL-CLAIM VERSION 1

 LOCATION MODE IS VIA COVERAGE-CLAIMS SET

 WITHIN AREA INS-DEMO-REGION

 .

 ADD

RECORD NAME IS INSURANCE-PLAN

 SHARE STRUCTURE OF RECORD INSURANCE-PLAN VERSION 1

 LOCATION MODE IS CALC USING (PLAN-CODE) DUPLICATES ARE

 NOT ALLOWED

 CALL IDMSCOMP BEFORE STORE

 CALL IDMSCOMP BEFORE MODIFY

 CALL IDMSDCOM AFTER GET

 WITHIN AREA INS-DEMO-REGION

 .

 ADD

RECORD NAME IS JOB

 SHARE STRUCTURE OF RECORD JOB VERSION 1

 LOCATION MODE IS CALC USING (JOB-ID) DUPLICATES ARE NOT ALLOWED

 MINIMUM ROOT LENGTH IS 24 CHARACTERS

 MINIMUM FRAGMENT LENGTH IS 296 CHARACTERS

 CALL IDMSCOMP BEFORE STORE

 CALL IDMSCOMP BEFORE MODIFY

 CALL IDMSDCOM AFTER GET

 WITHIN AREA ORG-DEMO-REGION

 .

 ADD

RECORD NAME IS NON-HOSP-CLAIM

 SHARE STRUCTURE OF RECORD NON-HOSP-CLAIM VERSION 1

 LOCATION MODE IS VIA COVERAGE-CLAIMS SET

 MINIMUM ROOT LENGTH IS 248 CHARACTERS

 MINIMUM FRAGMENT LENGTH IS 1008 CHARACTERS

 WITHIN AREA INS-DEMO-REGION

 .

 ADD

RECORD NAME IS OFFICE

 SHARE STRUCTURE OF RECORD OFFICE VERSION 1

 LOCATION MODE IS CALC USING (OFFICE-CODE) DUPLICATES ARE

Logical Database Definition Listing for the Commonweather Database

294 Database Design Guide

 NOT ALLOWED

 WITHIN AREA ORG-DEMO-REGION

 .

 ADD

RECORD NAME IS SKILL

 SHARE STRUCTURE OF RECORD SKILL VERSION 1

 LOCATION MODE IS CALC USING (SKILL-CODE) DUPLICATES ARE

 NOT ALLOWED

 WITHIN AREA ORG-DEMO-REGION

 .

 ADD

RECORD NAME IS STRUCTURE

 SHARE STRUCTURE OF RECORD STRUCTURE VERSION 1

 LOCATION MODE IS VIA MANAGES SET

 WITHIN AREA EMP-DEMO-REGION

 .

 ADD

RECORD NAME IS PROJECT

 SHARE STRUCTURE OF RECORD PROJECT VERSION 1

 LOCATION MODE IS CALC USING (PROJECT-CODE) DUPLICATES ARE

 NOT ALLOWED

 WITHIN AREA EMP-DEMO-REGION

 .

 ADD

RECORD NAME IS WORKER

 SHARE STRUCTURE OF RECORD WORKER VERSION 1

 LOCATION MODE IS VIA PROJECT-WORKER SET

 WITHIN AREA EMP-DEMO-REGION

 .

Logical Database Definition Listing for the Commonweather Database

Appendix B: Non-SQL Database Implementation for the Commonweather Corporation 295

Set Statements

ADD

SET NAME IS COVERAGE-CLAIMS

 ORDER IS LAST

 MODE IS CHAIN LINKED TO PRIOR

 OWNER IS COVERAGE

 MEMBER IS HOSPITAL-CLAIM

 MANDATORY AUTOMATIC

 MEMBER IS NON-HOSP-CLAIM

 PRIOR DBKEY POSITION IS AUTO

 MANDATORY AUTOMATIC

 MEMBER IS DENTAL-CLAIM

 NEXT DBKEY POSITION IS AUTO

 PRIOR DBKEY POSITION IS AUTO

 MANDATORY AUTOMATIC

 .

 ADD

SET NAME IS DEPT-EMPLOYEE

 ORDER IS SORTED

 MODE IS INDEX BLOCK CONTAINS 30 KEYS

 OWNER IS DEPARTMENT

 NEXT DBKEY POSITION IS AUTO

 PRIOR DBKEY POSITION IS AUTO

 MEMBER IS EMPLOYEE

 INDEX DBKEY POSITION IS AUTO

 PRIOR DBKEY POSITION IS AUTO

 LINKED TO OWNER

 OWNER DBKEY POSITION IS AUTO

 OPTIONAL AUTOMATIC

 ASCENDING KEY IS (EMP-LAST-NAME EMP-FIRST-NAME)

 COMPRESSED

 DUPLICATES ARE LAST

 .

 ADD

SET NAME IS EMP-COVERAGE

 ORDER IS SORTED

 MODE IS INDEX BLOCK CONTAINS 30 KEYS

 OWNER IS EMPLOYEE

 NEXT DBKEY POSITION IS AUTO

 PRIOR DBKEY POSITION IS AUTO

 MEMBER IS COVERAGE

 INDEX DBKEY POSITION IS AUTO

 LINKED TO OWNER

 OWNER DBKEY POSITION IS AUTO

 MANDATORY AUTOMATIC

 ASCENDING KEY IS (PLAN-CODE COVERAGE-TYPE)

 DUPLICATES NOT ALLOWED

 .

Logical Database Definition Listing for the Commonweather Database

296 Database Design Guide

ADD

SET NAME IS EMP-EMPOSITION

 ORDER IS SORTED

 MODE IS CHAIN LINKED TO PRIOR

 OWNER IS EMPLOYEE

 NEXT DBKEY POSITION IS AUTO

 PRIOR DBKEY POSITION IS AUTO

 MEMBER IS EMPOSITION

 NEXT DBKEY POSITION IS AUTO

 PRIOR DBKEY POSITION IS AUTO

 LINKED TO OWNER

 OWNER DBKEY POSITION IS AUTO

 MANDATORY AUTOMATIC

 DESCENDING KEY IS (START-DATE)

 DUPLICATES NOT ALLOWED

 .

 ADD

SET NAME IS EMP-EXPERTISE

 ORDER IS SORTED

 MODE IS CHAIN LINKED TO PRIOR

 OWNER IS EMPLOYEE

 NEXT DBKEY POSITION IS AUTO

 PRIOR DBKEY POSITION IS AUTO

 MEMBER IS EXPERTISE

 NEXT DBKEY POSITION IS AUTO

 PRIOR DBKEY POSITION IS AUTO

 LINKED TO OWNER

 OWNER DBKEY POSITION IS AUTO

 MANDATORY AUTOMATIC

 DESCENDING KEY IS (SKILL-CODE)

 DUPLICATES ARE NOT ALLOWED

 .

 ADD

SET NAME IS LNAME-NDX

 ORDER IS SORTED

 MODE IS INDEX BLOCK CONTAINS 40 KEYS

 OWNER IS SYSTEM

 MEMBER IS EMPLOYEE

 INDEX DBKEY POSITION IS AUTO

 OPTIONAL AUTOMATIC

 ASCENDING KEY IS (EMP-LAST-NAME EMP-FIRST-NAME)

 COMPRESSED

 DUPLICATES ARE LAST

 .

Logical Database Definition Listing for the Commonweather Database

Appendix B: Non-SQL Database Implementation for the Commonweather Corporation 297

ADD

SET NAME IS JOB-EMPOSITION

 ORDER IS NEXT

 MODE IS CHAIN LINKED TO PRIOR

 OWNER IS JOB

 NEXT DBKEY POSITION IS AUTO

 PRIOR DBKEY POSITION IS AUTO

 MEMBER IS EMPOSITION

 NEXT DBKEY POSITION IS AUTO

 PRIOR DBKEY POSITION IS AUTO

 LINKED TO OWNER

 OWNER DBKEY POSITION IS AUTO

 OPTIONAL MANUAL

 .

 ADD

SET NAME IS JOB-TITLE-NDX

 ORDER IS SORTED

 MODE IS INDEX BLOCK CONTAINS 30 KEYS

 OWNER IS SYSTEM

 MEMBER IS JOB

 INDEX DBKEY POSITION IS AUTO

 OPTIONAL AUTOMATIC

 ASCENDING KEY IS (JOB-TITLE) UNCOMPRESSED

 DUPLICATES ARE NOT ALLOWED

 .

 ADD

SET NAME IS MANAGES

 ORDER IS SORTED

 MODE IS CHAIN LINKED TO PRIOR

 OWNER IS EMPLOYEE

 NEXT DBKEY POSITION IS AUTO

 PRIOR DBKEY POSITION IS AUTO

 MEMBER IS STRUCTURE

 NEXT DBKEY POSITION IS AUTO

 PRIOR DBKEY POSITION IS AUTO

 LINKED TO OWNER

 OWNER DBKEY POSITION IS AUTO

 MANDATORY AUTOMATIC

 ASCENDING KEY IS (WKRK-EMP-ID) UNCOMPRESSED

 DUPLICATES ARE NOT ALLOWED

 .

 ADD

SET NAME IS OFFICE-EMPLOYEE

 ORDER IS SORTED

 MODE IS INDEX BLOCK CONTAINS 30 KEYS

 OWNER IS OFFICE

 NEXT DBKEY POSITION IS AUTO

 PRIOR DBKEY POSITION IS AUTO

Logical Database Definition Listing for the Commonweather Database

298 Database Design Guide

 MEMBER IS EMPLOYEE

 INDEX DBKEY POSITION IS AUTO

 LINKED TO OWNER

 OWNER DBKEY POSITION IS AUTO

 OPTIONAL AUTOMATIC

 ASCENDING KEY IS (EMP-LAST-NAME EMP-FIRST-NAME)

 COMPRESSED

 DUPLICATES ARE LAST

 .

 ADD

SET NAME IS REPORTS-TO

 ORDER IS SORTED

 MODE IS INDEX BLOCK CONTAINS 30 KEYS

 OWNER IS EMPLOYEE

 NEXT DBKEY POSITION IS AUTO

 PRIOR DBKEY POSITION IS AUTO

 MEMBER IS STRUCTURE

 INDEX DBKEY POSITION IS AUTO

 PRIOR DBKEY POSITION IS AUTO

 LINKED TO OWNER

 OWNER DBKEY POSITION IS AUTO

 OPTIONAL MANUAL

 ASCENDING KEY IS (SUPR-EMP-ID) UNCOMPRESSED

 DUPLICATES ARE FIRST

 .

 ADD

SET NAME IS EMP-PROJECT

 ORDER IS NEXT

 MODE IS CHAIN LINKED TO PRIOR

 OWNER IS EMPLOYEE

 NEXT DBKEY POSITION IS AUTO

 PRIOR DBKEY POSITION IS AUTO

 MEMBER IS PROJECT

 INDEX DBKEY POSITION IS AUTO

 LINKED TO OWNER

 OWNER DBKEY POSITION IS AUTO

 OPTIONAL AUTOMATIC

 .

 ADD

SET NAME IS PROJECT-WORKER

 ORDER IS NEXT

 MODE IS CHAIN LINKED TO PRIOR

 OWNER IS PROJECT

 NEXT DBKEY POSITION IS AUTO

 PRIOR DBKEY POSITION IS AUTO

 MEMBER IS WORKER

 INDEX DBKEY POSITION IS AUTO

 LINKED TO OWNER

 OWNER DBKEY POSITION IS AUTO

Logical Database Definition Listing for the Commonweather Database

Appendix B: Non-SQL Database Implementation for the Commonweather Corporation 299

 OPTIONAL MANUAL

 .

ADD

SET NAME IS EMP-WORKER

 ORDER IS FIRST

 MODE IS CHAIN LINKED TO PRIOR

 OWNER IS EMPLOYEE

 NEXT DBKEY POSITION IS AUTO

 PRIOR DBKEY POSITION IS AUTO

 MEMBER IS WORKER

 INDEX DBKEY POSITION IS AUTO

 LINKED TO OWNER

 OWNER DBKEY POSITION IS AUTO

 MANDATORY AUTOMATIC

 .

 ADD

SET NAME IS SKILL-EXPERTISE

 ORDER IS SORTED

 MODE IS INDEX BLOCK CONTAINS 30 KEYS

 OWNER IS SKILL

 NEXT DBKEY POSITION IS AUTO

 PRIOR DBKEY POSITION IS AUTO

 MEMBER IS EXPERTISE

 INDEX DBKEY POSITION IS AUTO

 LINKED TO OWNER

 OWNER DBKEY POSITION IS AUTO

 MANDATORY AUTOMATIC

 DESCENDING KEY IS (SKILL-LEVEL) UNCOMPRESSED

 DUPLICATES ARE FIRST

 .

Appendix C: Zoned and Packed Decimal Fields as IDMS Keys 301

Appendix C: Zoned and Packed Decimal
Fields as IDMS Keys

This section contains the following topics:

Overview (see page 301)
Numeric Formats (see page 302)

Overview

In many scenarios, it is necessary to construct IDMS keys that contain numeric fields
with a format of zoned or packed decimal. To ensure the proper logical results intended
by the database designer, you should be aware of the manner in which IDMS handles
different variations of these fields and how application coding may influence the

resulting contents of the database.

Numeric Formats

302 Database Design Guide

Numeric Formats

To understand the various ramifications of using zoned or packed decimal fields as IDMS
key fields, it is necessary to have an understanding of the internal structure of the
various formats.

Zoned decimal fields use one byte of storage to represent each si ngle digit within a

value. The high-order nibble of the last byte is used to convey the sign of the number
when the field is defined as 'signed'. When a value is moved into an unsigned field, the
sign nibble always contains a hexadecimal 'F'. A field that is signed uses a 'C' for a
positive value and a 'D' for a negative number. It should be noted that a signed field also

interprets an 'F' as a positive sign and a 'B' to represent a negative number. The
high-order nibbles of all other bytes will contain a hex 'F' and are ignored for
determining the sign of the number. The values of +999 and -999 will have the following

internal structures when zoned decimal format is used.

Signed: PIC S9(4) +999 = x'F0F9F9C9'

 -999 = x'F0F9F9D9'

Unsigned: PIC 9(4) +999 = x'F0F9F9F9'

 -999 = x'F0F9F9F9'

Packed decimal format uses a single nibble for each digit of the number and maintains
the sign in the low-order nibble of the field's last byte. Unsigned fields always use an 'F'
for the sign while signed fields use a 'C' for positive numbers and a 'D' for negative

numbers. Signed fields interpret an 'F' as a positive sign and a 'B' as a negative sign. The
following internal structures will result for values of +999 and -999 when packed
decimal format is used.

Signed: S9(5) COMP-3 +999 = x'00999C'

 -999 = x'00999D'

Unsigned: 9(5) COMP-3 +999 = x'00999F'

 -999 = x'00999F'

It is important to realize that the various sign nibble values are assigned in a language
such as COBOL when a value is moved directly into a named field. Fields that are part of
group moves will not have any conversion performed relative to the value in their sign
nibble.

02 GROUP-A.

 04 FIELD-A PIC S9(5) COMP-3.

02 GROUP-B.

 04 FIELD-B PIC 9(5) COMP-3.

A value of -999 will be moved into FIELD-A and FIELD-B with the following instructions
resulting in the hex value to the right of the instruction.

Numeric Formats

Appendix C: Zoned and Packed Decimal Fields as IDMS Keys 303

 MOVE -999 TO FIELD-A. FIELD-A = x'00999D'

 MOVE -999 TO FIELD-B. FIELD-B = x'00999F'

Although functionally equivalent the following instructions will result in a different value
to be moved into FIELD-B.

 MOVE -999 TO FIELD-A FIELD-A = x'00999D'

 MOVE GROUP-A to GROUP-B. FIELD-B = x'00999D'

Although the above example used packed decimal numbers, the same scenario is true
for zone decimal fields. This programming difference may have an impact on your IDMS
database depending on the type of key in which a field is used and whether a field's

definition is signed or unsigned.

Signed Versus Unsigned Keys

The most significant difference when using numeric fields as part of an IDMS key is
whether the field has been defined as signed or unsigned. If a field has been defined as

signed whether zoned or packed, IDMS will honor the format and will perform
comparisons that will recognize functionally equivalent values as being equal.

x'00999C' equals x'00999F'

However unsigned fields are treated as character values and functionally equivalent
values are not considered equal unless the sign nibbles are also equal .

X'00999C' is not equal to x'00999F'

Numeric Formats

304 Database Design Guide

Sorted Chain or Index Sets

The format of a field that is part of a key is significant to IDMS when that field is
specifically named as part of the key. If a numeric field is part of a group level element
and the group name is specified as the key, IDMS is not aware of the elementary

elements at run time and the entire group is treated as character format. No numeric
format specific comparisons are attempted by IDMS against elementary elements that
are a part of a group when the group name is specified as the key field.

When signed zoned decimal or signed packed decimal fields are identified as part of a

set or index key, IDMS honors the format. At run-time the DBMS will normalize the sign
nibbles so that comparisons against functionally equivalent values return a result of
equal. This ensures that sorted chain sets and index sets will maintain their sequence
based on a field's functional value.

Since unsigned zone decimal or packed decimal numbers are treated as character data,
functionally equivalent values with different sign nibbles return a result of not equal
during comparison operations. This can result in a different sequence for a sorted set or

index set depending on the sign characteristic of the numeric field as depicted in the
following example. Each set is assumed to have an ascending order and allows
duplicates.

Signed: Unsigned:

 02 FIELD-A PIC S9(5) COMP-3. 02 FIELD-A PIC 9(5) COMP-3.

 02 FIELD-B PIC x(4). 02 FIELD-B PIC X(4).

 x'00999C', c'AAAA' x'00999C', c'AAAA'

 x'00999F', c'AAAA' x'00999C', c'BBBB'

 x'00999C', c'BBBB' x'00999F', c'AAAA'

In the signed example, x'00999C' and x'00999F' are functionally equal and the relative

position of the first two records is determined by the duplicates option and the
sequence in which the records were added to the set. For the unsigned example the
functional equivalence of the packed fields will not be recognized and x'00999F' is

considered to be greater than x'00999C'. The duplicates option would not come into
consideration since none of the three keys is considered to be equal.

Numeric Formats

Appendix C: Zoned and Packed Decimal Fields as IDMS Keys 305

CALC Records

Inconsistent sign nibbles for zone or packed decimal fields used in a calckey may have
more of an impact than when those fields are used as keys for a chain set or index set.
The initial operation applied against a CALC record runs a hashing a lgorithm against the

calckey to identify the page on which IDMS will store the record occurrence. Prior to
executing the hashing algorithm, IDMS constructs the calckey into a piece of contiguous
storage from the various fields defined as making up the key. The algorithm has no
knowledge of the individual component fields comprising the calckey or their various

formats. The algorithm simply performs logical arithmetic calculations against the
character string to determine the record's target page.

As a result, values of x'00999C' and x'00999F' although functionally equivalent, will in all
probability generate different target pages for their CALC records. If a zone or packed

field is used as part of a calckey it is very important that all programs involved wi th the
creation or accessing of these records use a consistent method for initializing these
numeric fields.

Index 307

Index

A

access requirements • 118, 119
allocating space for indexes • 234, 250

anomaly • 60
application performance • 136, 227, 228
application performance requirements • 115, 116,

117, 118, 119, 120, 121, 122, 123
area • 212
area contention • 216, 219
area size • 226, 227, 228, 233, 234

areas • 160, 161, 204, 212, 214, 222, 223, 226, 228,
233, 234, 250, 252

assigning to entities • 135
assignment of entities to • 160, 161, 204

assignment of entities to areas • 160, 204
assignment to areas • 204
atomic primary • 66

attributes • 46, 47, 48, 51, 52, 55, 56, 58, 93

B

between user-defined entities • 195

business analysis • 24, 25, 29, 32, 33, 35
business functions • 29
business rules • 32, 33

by logical key • 162, 165

C

CA-IDMS Presspack • 165

CALC • 124, 200
CALC overflow • 224, 225
calculating I/Os • 256, 257
calculating the size of an index • 240

carrying non-key data • 104
characteristics • 58
cluster • 225, 226, 227, 228

cluster overflow • 225, 226
cluster size • 227, 228
clustering • 126, 128, 195, 197, 225, 226
collapsing • 136, 143, 145

collating sequence • 179, 201
compound • 68
compression • 187, 188

connect options • 184
considerations • 220, 221

constraints • 147, 276
contention • 211, 212, 214, 215, 216, 219
counting I/Os • 256, 257
creating a preliminary diagram • 103, 113

D

data compression • 165, 168

data elements • 29
data flow diagrams (DFDs) • 29
data redundancy • 145
data structure diagram • 103, 104, 108, 110, 111,

113, 131, 132
database • 160, 161, 162, 165, 204, 221, 222, 223,

226, 227, 228, 233, 234, 240, 250, 252, 253, 255,
256, 262, 263, 269, 275, 276

database design • 12, 135, 136, 256, 262, 263, 269,
275, 276, 289, 290, 301

database implementation, non-SQL • 287, 290, 301

database implementation, SQL • 264, 269, 276, 286,
289

database key • 253
database key format • 253

database segmentation • 161, 162
database structures • 99, 101
defining specific business functions • 25, 29

deletion • 60
determining location mode • 128, 130
direct • 147
direct storage • 195, 197

disconnect options • 184
duplicates option • 179, 200, 201
duplicates options • 179, 201

E

ensuring optimal performance • 136
entities • 40, 47, 52, 55, 56, 93, 110, 111, 120, 121,

128, 130, 160, 161, 162, 197, 199, 200, 203, 204,
211, 216, 219

entity lengths • 110, 111
estimating I/Os • 137, 142

estimating I/Os for transactions • 137, 142
evaluating the database model • 135
evaluating the physical model • 136

308 Database Design Guide

F

fi les • 250, 252
first normal form • 62, 63, 67, 68, 143
for a sorted index • 216

for areas • 212, 214
for entities • 214, 215
for OOAK entities • 216
foreign • 47, 108, 113

foreign keys • 108, 113, 187, 200
foreign keys, removing • 187, 200
format • 253

G

general business functions • 24, 25
general guidelines • 12

general guidelines for identifying • 43
general introduction • 20
general introduction to concepts • 103
generic • 147

graphic conventions for representation • 41, 43
grouping • 48, 51
groups of entities • 161, 162

H

hierarchy plus input-process-output (HIPO) • 29
how often each entity will be accessed • 122, 123

how to normalize data • 66, 73

I

I/Os • 137, 139, 142, 256, 257

identifying • 104, 108
identifying attributes for a relationship • 56, 58
identifying attributes of an entity • 47, 56

identifying relationship entities • 108
identifying unique keys • 51, 52
IDMSCOMP • 165
IDMSDCOM • 165

implementation • 262, 275
implementing the database design • 263, 264, 269,

270, 275, 276, 289, 290, 301

index • 182, 201, 202
index keys • 187
index size • 250
index structure • 235, 240

indexes • 126, 132, 147, 153, 187, 200, 201, 202,
203, 204, 234, 235, 240, 250, 276

insertion • 60

interviews • 29

K

keys • 47, 52, 66, 68, 108, 113, 124, 147, 162, 165

L

lengths • 110, 111
levels • 235, 240
l inkage • 172, 175, 182, 184

l inked • 168, 187, 201
l isting the data elements • 29, 32
location modes • 123, 124, 126, 128, 131, 132, 135,

195, 197, 223, 224, 225, 226

locks • 212, 214
logical • 162, 165
logical database definition, non-SQL • 270, 275

logical database definition, SQL • 264, 269
logical design • 17, 20, 97, 256

M

mandatory automatic membership • 184
mandatory manual membership • 184
many-to-many • 104, 108
membership options • 184, 187, 202

membership options for l inked relationships • 184
minimizing • 216, 219
minimizing contention • 219

minimizing contention among transactions • 219
minimizing entity contention • 216, 219
minimum fragment • 221
minimum root • 221

multimember • 191, 195

N

naming conventions • 46, 47
naming conventions, non-SQL • 270
naming conventions, SQL • 264
natural • 179

natural collating sequence • 179
next • 182
next pointer • 182

nonsorted • 202
non-sorted order • 177, 179
non-SQL • 269, 275, 290, 301
non-SQL considerations • 169

non-SQL implementation • 269, 275, 290, 301
non-SQL terminology • 269
normal forms • 61, 66

Index 309

normalization • 60, 61, 62, 63, 64, 66, 67, 68, 70, 73,
93

normalized data for the Commonweather
Corporation • 73, 93

null values • 108

number of entity occurrences • 120, 121
numbers • 120, 121

O

one-to-one • 108
optimal page size • 228, 233
optimal size • 228
optiona l automatic membership • 184

optional manual membership • 184
order • 177, 202
ordered • 147

overflow • 225, 226
overflow conditions • 223, 224, 225, 226
overview of the process • 20
owner • 182

owner pointer • 182

P

page groups • 255
page size • 228, 233
performance • 136
performance requirements • 115, 116, 117, 118,

119, 120, 121, 122, 123
performance requirements for transactions • 115,

116
physical design • 97, 98, 99, 101, 103, 123, 124, 126,

128, 256, 257
physical sequential • 147
placement • 203, 204

placement in areas • 160, 161
placement, non-SQL • 203, 204
placing areas in fi les • 250, 252
placing entities • 203, 204

placing indexes • 203, 204
planned • 145
pointers • 182

primary • 47, 52
primary key for an entity • 52, 55
primary keys • 52, 55
prior • 182

prior pointer • 182
prioritizing transactions • 116, 117
process • 98, 99

R

randomization • 124, 126
record • 214
redundancy • 145

relationship • 56
relationship l inkage • 182
relationships • 41, 43, 45, 58, 104, 108, 110, 113,

143, 145, 146, 147, 168, 169, 172, 175, 177, 179,

182, 184, 187, 191, 195, 200
relationships among entities • 40, 45
removing • 187, 200
repeating elements • 143

representing • 108, 110, 131, 132
representing as entities • 104, 108
representing entities • 103, 108

representing indexes • 132
representing location modes • 131, 132
representing relationships • 108, 110
requirements for a physical database • 115, 116,

117, 118, 119, 120, 121, 122, 123
retrieval • 147
review • 256

reviewing the results • 33, 35
root and fragment size • 221

S

sample exercises in counting • 139, 142
schema • 270, 276, 287, 290
second normal form • 63, 64, 68, 70
secondary • 47

see=I/Os input/output performance • 135
see=locationmodes direct location mode • 195
see=randomization CALC location mode • 124

see=self-referencingrelationships.nested structure •
104

see=sizingthedatabase database size • 160
segmentation • 161, 162, 165

segmented by logical key • 162, 165
selecting optimal size • 233
self-referencing • 104, 108

self-referencing relationships • 108
size • 226, 227, 228, 233, 234, 240, 250
size of a cluster • 227, 228
sizing • 255

sizing considerations for compressed and
variable-length entities • 221

sizing considerations for variable-length entities •

222

310 Database Design Guide

sizing the database • 203, 204, 220, 221, 222, 223,
226, 227, 228, 233, 234, 235, 240, 250, 252, 253,

255
sort options • 201
sorted • 175, 187, 235

sorted order • 175, 179, 182
sources • 211, 215
space for indexes • 235, 240
space management page • 222

specifying foreign keys • 108, 113
SQL • 263, 269, 276, 289
SQL considerations • 147
SQL implementation • 263, 269, 276, 289

SQL terminology • 263
standard • 179
standard collating sequence • 179

structures of the physical database • 123, 126, 128,
223, 226

subschema • 270, 275, 287, 301
symbolic • 124, 147

systems analysis • 24, 25, 29, 32, 33, 35

T

tables • 276
third normal form • 64, 66, 70, 73
transaction entry point • 119, 120
transaction frequency • 117, 118

transactions • 136, 137, 142, 219
tuning options • 195, 200, 203

U

unique • 47, 147
unique constraints, enforcing • 175
unlinked • 168, 201

unnecessary • 146, 147
unsorted • 147, 175, 202, 235
update • 60
user-written procedures • 165

V

validating the design • 97

variable-length • 197, 199
views • 264, 269, 286, 289

W

weak entities • 55, 56
why normalize data • 60, 61

	CA IDMS Database Design Guide
	CA Technologies Product References
	Contact CA Technologies
	Documentation Changes
	Contents
	1: Introduction
	Overview
	Design Implementation
	Syntax Diagram Conventions

	2: Introduction to Logical Design
	Overview
	Determining the Users' Data Needs
	Determining the Corporation's Data Needs
	Overview of the Logical Design Process

	3: Analyzing the Business System
	Overview
	Step 1: Defining General Business Functions
	Step 2: Defining Specific Business Functions
	Step 3: Listing the Data Elements
	Step 4: Identifying the Business Rules
	Step 5: Reviewing the Results of Analysis

	4: Identifying Entities and Relationships
	Overview
	Identifying Data Entities
	Identifying Relationships Among Entities
	Types of Data Relationships
	General Guidelines for Identifying Relationships

	5: Identifying Attributes
	Overview
	Establishing Naming Conventions for the Attributes
	Identifying the Attributes of Each Entity
	Grouping the Attributes
	Identifying Unique Keys
	Establishing Primary Keys
	Identifying Weak Entities

	Identifying the Attributes for Each Relationship Type
	Identifying Attribute Characteristics

	6: Normalizing the Data
	Overview
	Why Normalize Data?
	Normal Forms of Data
	First Normal Form
	Second Normal Form
	Third Normal Form

	How To Normalize Data
	Listing Data in First Normal Form
	Listing Data in Second Normal Form
	Listing Data in Third Normal Form

	Normalized Data for the Commonweather Corporation

	7: Validating the Logical Design
	8: Introduction to Physical Design
	Overview
	Data Structure Diagram
	Steps in the Physical Database Design Process
	Physical Database Structures
	SQL and Non-SQL Definitions

	9: Creating a Preliminary Data Structure Diagram
	Developing a Data Structure Diagram
	Representing Entities
	Representing Relationships as Entities

	Representing Relationships Between Entities
	Estimating Entity Lengths

	Preliminary Data Structure Diagram for Commonweather Corporation

	10: Identifying Application Performance Requirements
	Overview
	Establishing Performance Requirements for Transactions
	Prioritizing Transactions
	Determining How Often Transactions Will Be Executed
	Identifying Access Requirements
	Determining the Database Entry Point and Access Key for Each Transaction
	Projecting Growth Patterns
	Determining the Number of Entities in Each Relationship
	Determining How Often Each Entity Will Be Accessed

	11: Determining How an Entity Should Be Stored
	Overview
	Location Modes
	Randomization
	Clustering

	Guidelines for Determining How an Entity Should Be Stored
	Is This Entity Both a Parent and a Child?
	Is There Optimal Relationship Clustering for This Entity?

	Is This a Parent Entity but Not a Child Entity?
	Is This a Child Entity but Not a Parent Entity?
	Is Generic Retrieval Required and Is the Entity Relatively Static?

	Graphic Conventions
	Conventions for Specifying Location Mode
	Conventions for Representing Indexes

	Location Modes for Entities in the Commonweather Database
	Revised Data Structure Diagram for the Commonweather Corporation

	12: Refining the Database Design
	Evaluating the Database Design
	Refinement Options
	Estimating I/Os for Transactions
	Sample Exercise #1: Estimating I/Os for a Retrieval Transaction
	Sample Exercise #2: Estimating I/Os for an Update Transaction

	Eliminating Unnecessary Entities
	Collapsing Relationships
	Introducing Redundancy

	Eliminating Unnecessary Relationships
	Adding Indexes
	Refined Data Structure Diagram for Commonweather Corporation

	13: Choosing Physical Tuning Options
	Overview
	Placement of Entities in Areas
	Segmentation of Databases
	Segmenting by Groups of Entities
	Segmenting by Logical Key

	Data Compression
	Relationship Tuning Options
	Linked and Unlinked Relationships
	Unlinked Relationship Tuning Options
	Additional Columns in the Foreign Key Indexes

	Linked Relationship Tuning Options
	Type of Linkage
	Sorted and Unsorted Relationships

	Nonsorted Order
	Additional Sort Options
	Linkage
	Membership Options
	Removing Foreign Keys

	Index Key Compression
	Non-SQL Tuning Options
	Multimember Relationships
	Direct Location Mode
	Variable-Length Entities
	Database Procedures
	CALC Duplicates Option
	Relationship Tuning Options
	Index Tuning Options
	Unlinked versus Linked Indexes
	Additional Sort Options for Indexes
	Nonsorted Indexes
	Index Membership Options

	Non-SQL Entity and Index Placement

	Physical Tuning Options for Commonweather Corporation
	Refined Commonweather Corporation Database Design (For SQL Implementation)
	Refined Commonweather Corporation Database Design (For Non-SQL Implementation)

	14: Minimizing Contention Among Transactions
	Overview
	Sources of Database Contention
	Area Contention
	Entity Occurrence Contention

	Minimizing Contention
	Minimizing Contention for Entities and Areas

	15: Determining the Size of the Database
	Overview
	General Database Sizing Considerations
	Sizing Considerations for Compressed and Variable Length Entities
	Space Management
	Overflow Conditions
	CALC Overflow
	Cluster Overflow

	Calculating the Size of an Area
	Step 1: Calculating the Size of Each Cluster
	Step 2: Determining the Page Size
	Step 3: Calculating the Number of Pages in the Area

	Allocating Space for Indexes
	Index Structure
	Calculating the Size of the Index
	Calculating the Size of an Index Sorted on a Symbolic Key
	Calculating the Size of an Index Sorted on db-key
	Calculating the Size of an Unsorted Index

	Placing Areas in Files
	Sizing a Megabase
	Varying the Database Key Format
	Assigning Segments to Page Groups

	16: Implementing Your Design
	Overview
	Reviewing the Design
	Step 1: Review the Logical Database Model
	Step 2: Review the Physical Database Model
	Calculating I/Os
	Potential Design Flaws
	Questions To Address

	Implementing the Design
	Implementing Your Design with SQL
	Implementation Steps
	Implementing Your Design with Non-SQL
	Implementation Steps

	A: SQL Database Implementation for the Commonweather Corporation
	Logical Database Definition Listing for the Commonweather Database
	View Definitions
	Subschema Definition

	B: Non-SQL Database Implementation for the Commonweather Corporation
	Logical Database Definition Listing for the Commonweather Database

	C: Zoned and Packed Decimal Fields as IDMS Keys
	Overview
	Numeric Formats
	Signed Versus Unsigned Keys
	Sorted Chain or Index Sets
	CALC Records

	Index

