

Database Administration Guide
Release 18.5.00, 2nd Edition

CA IDMS™

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time. This

Documentation is proprietary information of CA and may not be copied, transferred, reproduced, disclosed, modified or
duplicated, in whole or in part, without the prior wri tten consent of CA.

If you are a licensed user of the software product(s) addressed in the Documentation, you may print or otherwise make
available a reasonable number of copies of the Documentation for internal use by you and your employees in connection with
that software, provided that all CA copyright notices and legends are affixed to each reproduced copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable

l i cense for such software remains in full force and effect. Should the license terminate for any reason, i t is your responsibility to
certi fy in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITH OUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,

DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such

l icense agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions

set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2014 CA. Al l rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

CA Technologies Product References

This document references the following CA products:

■ CA ACF2™ for z/OS

■ CA ADS™

■ CA Culprit™

■ CA Endevor/DB™ for CA IDMS™ (CA Endevor/DB)

■ CA IDMS™

■ CA IDMS™/DC (DC)

■ CA IDMS™/DC or CA IDMS™ UCF (DC/UCF)

■ CA IDMS™ Performance Monitor

■ CA IDMS™ Presspack

■ CA IDMS™ UCF (UCF)

■ CA OLQ™ Online Query for CA IDMS™ (CA OLQ)

■ CA Top Secret® for z/OS

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following

resources:

■ Online and telephone contact information for technical assistance and customer
services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

To provide feedback about CA Technologies product documentation, complete our

short customer survey which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://ca.com/docs
http://ca.com/docs

Documentation Changes

The following documentation updates were made for the 18.5.00, 2nd Edition release of
this documentation:

■ RESTRUCTURE Util ity Statement (see page 833)—Renamed from RESTRUCTURE
SEGMENT Util ity Statement.

■ Page Groups (see page 56)—Descriptions modified to l ift restrictions on index sets
spanning page group boundaries.

■ DBNAME Statement (see page 165)—VERIFY ON/OFF parameter description notes
describing the run time check changed to support Mixed Page Group Indexes.

■ AREA Statement (see page 463)—The description of the FORCE option for the
default usage mode was added.

■ Default Ready Mode Using Navigational DML (see page 934)—The description of

the FORCE option was added.

■ Usage (see page 466)—Considerations for using the FORCE Option with ADS Dialogs
were added.

■ Quick Reference Information (see page 1023)—This new appendix contains

reference information that was previously available in the DB Admin Quick
Reference Guide.

■ DISPLAY/PUNCH ALL Statement (see page 116)—The RECursive parameter that

appends “AS SYNTAX.” or “AS COMMENT.” to each generated line of output was
added.

Contents 7

Contents

Chapter 1: Introduction 27

Who Should Use This Guide ... 27

Using This Guide ... 27

Syntax Diagram Conventions ... 29

Chapter 2: CA IDMS Environment 33

Overview .. 33

Multiuser Environment ... 34

Single-user Environment... 35

Data Sharing Environment.. 36

CA IDMS/DC and CA IDMS UCF.. 37

CA IDMS/DB Components .. 37

Database Management System... 37
Dictionaries.. 38

Physical Database Definition.. 39

Logical Database Definition .. 39

Security .. 39

Getting Started ... 40

Towards a Production Environment ... 41

Tools for Database Definition and Maintenance.. 44

Chapter 3: Defining Physical Databases 45

Overview .. 45

Segments ... 47

DMCLs .. 48

Database Name Tables.. 49

Separating Logical and Physical Database Definitions... 49

Before You Begin .. 50

Chapter 4: Defining Segments, Files, and Areas 51

Segments, Files, and Areas ... 51
Segments ... 51

Files ... 52

Areas... 52

Planning ... 54

8 Database Administration Guide

Segment Boundaries.. 54

Mapping Areas to Files .. 55

Page Ranges .. 55

Page Groups .. 56

Records Per Page.. 57

Page Reserve ... 58

Resolving Symbolic Parameters ... 59

Synchronization Stamps.. 60

Specifying Data Set Name Information .. 61

Procedure for Defining Segments ... 62

More Information... 65

Chapter 5: Defining, Generating, and Punching a DMCL 67

DMCLs .. 67

Data Sharing Attributes... 71

Database Buffers .. 73

Journal Buffers and Journal Files ... 74

Sizing Journal Buffers... 77

Sizing Journal Files.. 78

Adding Segments to the DMCL .. 80

Required Segments .. 80

File Limitations.. 82

Area Status .. 82

Sharing Update Access to Data.. 84

Area Overrides .. 85

File Overrides .. 86

Procedure for Defining a DMCL ... 87

Making the DMCL Accessible to the Runtime Environment ... 89

More Information... 90

Chapter 6: Defining a Database Name Table 91

Overview .. 91

Planning ... 94

SQL Considerations .. 94

Non-SQL Considerations ... 95

Restricting Subschema Names... 99

Application Dictionaries .. 99

Defining the Default Dictionary ...100

Conflicting Names ..101

Mixed Page Groups and Maximum Records Per Page ..101

Sharing Database Name Tables ...103

Contents 9

Defining and Generating the Database Name Table ...104

More Information...105

Chapter 7: Physical Database DDL Statements 107

Statement Summary ..107

Components of a Physical DDL Statement ..110

Naming Conventions ...111

Using Lowercase Letters in Identifiers ...112

Keywords as Identifiers ...112

Entity Currency ...113

Generic DISPLAY/PUNCH Statement ..114

DISPLAY/PUNCH ALL Statement ..116
ARCHIVE JOURNAL Statements ...131

AREA Statements..135

BUFFER Statements ...156

DBGROUP Statements ...163

DBNAME Statements...165

DBTABLE Statements ...171

DISK JOURNAL Statements ...177

DMCL Statements...183

FILE Statements ..200

JOURNAL BUFFER Statements ...208

SEGMENT Statements ...211

TAPE JOURNAL Statements ..217

Summary of Physical Database Limits ..220

Chapter 8: Defining a Database Using SQL 223

Overview ..224

Executing SQL Data Description Statements ...225

Creating a Schema..226
Creating a Table..228

Defining a CALC Key ...230

Defining an Index ...231

Defining a Referential Constraint ..232

Dropping a Default Index ..233

Creating a View...235

Chapter 9: Defining a Database Using Non-SQL 237

Overview ..237

Schemas and Subschemas ..238

10 Database Administration Guide

Schema and Subschema Compilers ..240

Defining a Schema..241

SCHEMA Statement ...241

AREA Statements..243

RECORD Statements ..244

SET Statements ...252

VALIDATE ...253

Defining a Subschema ...255

Subschema Statement ..255

AREA Statements..256

RECORD Statements ..257

SET Statements ...258
LOGICAL RECORD Statements ..260

PATH-GROUP Statements ...261

Subschema Validation and Generation ..261

Security Checking ...263

Checking Compiler Security..264

Checking Registration Override Security ...265

Checking Verb Security..266

Checking Component Security ...267

Establishing Schema and Subschema Currency..269

Reporting on Schema and Subschema Definitions ..270

More Information...270

Chapter 10: Using the Schema and Subschema Compilers 271

Overview ..271

More Information...271

Online Compiling ..272

Batch Compiling..273

Coding DDL Schema and Subschema Statements ..274

Statement Components ..274
Delimiting Statements ...275

Compiler Comments ..276

Input Format ...277

Error Handling...278

More Information about Messages ..279

Coding Keywords, Variables, and Comment Text ..280

Coding Keywords..280

Coding Entity-Occurrence Names ...280

Coding User-Supplied Values ...281

Coding Comment Text ...283

Contents 11

Compiler-Directive Statements ...285

Output From the Compilers ...285

Source Code and Load Modules ..285

Schema and Subschema Listings ...287

Chapter 11: Compiler-Directive Statements 289

Overview ..289

DISPLAY/PUNCH ALL Statement ..290

Syntax ...290

Parameters ..291

Usage ..294

Example..298
DISPLAY/PUNCH IDD Statement..298

Syntax ...298

Parameters ..299

Example..299

INCLUDE Statement ...299

Syntax ...300

Parameters ..300

Usage ..300

Example..301

SET OPTIONS Statement ...301

Syntax ...302

Parameters ..305

Usage ..315

Examples ..319

More Information...319

SIGNOFF Statement ...319

Syntax ...319

Usage ..320

SIGNON Statement ..320
Syntax ...321

Parameters ..321

Usage ..323

More Information...324

Chapter 12: Operations on Entities 325

ADD Operations ..325

MODIFY Operations ...326

DELETE Operations...327

VALIDATE Operations ..327

12 Database Administration Guide

DISPLAY/PUNCH Operations ..328

Syntax ...329

Parameters ..329

Usage ..331

Examples ..332

More Information...332

Chapter 13: Parameter Expansions 333

Overview ..333

Expansion of boolean-expression ...333

Syntax ...333

Parameters ..334
Usage ..337

Expansion of db-record-field..337

Syntax ...337

Parameters ..338

Usage ..338

Expansion of lr-field ...338

Syntax ...339

Parameters ..339

Usage ..339

Expansion of module-specification ...340

Syntax ...340

Parameters ..340

Usage ..341

More Information...341

Expansion of user-specification ...341

Syntax ...341

Parameters ..342

Usage ..342

Expansion of user-options-specification ..342
Syntax ...343

Parameters ..343

Expansion of version-specification..344

Syntax ...344

Parameters ..344

Examples ..345

Chapter 14: Schema Statements 347

Overview ..347

SCHEMA Statement ...347

Contents 13

Syntax ...348

Parameters ..350

Usage ..355

Examples ..357

AREA Statement ...357

Syntax ...357

Parameters ..359

Usage ..363

Examples ..364

RECORD Statement ..365

Syntax ...365

Parameters ..368
Usage ..383

Examples ..390

More Information...393

Element Substatement..393

Syntax ...393

Parameters ..396

Usage ..405

Examples ..415

More Information...420

COPY ELEMENTS Substatement...420

Syntax ...421

Parameters ..421

Usage ..422

Examples ..422

SET Statement...423

Syntax ...424

Parameters ..426

Usage ..438

Examples ..441
VALIDATE Statement ...446

Syntax ...446

Usage ..446

REGENERATE Statement ...447

Syntax ...447

Parameters ..447

Usage ..448

Chapter 15: Subschema Statements 449

Overview ..449

14 Database Administration Guide

Syntax Order ...449

SUBSCHEMA Statement ..450

Syntax ...450

Parameters ..452

Usage ..458

Examples ..462

AREA Statement ...463

Syntax ...464

Parameters ..465

Usage ..466

Example..469

RECORD Statement ..469
Syntax ...470

Parameters ..471

Usage ..474

Example..477

SET Statement...477

Syntax ...477

Parameters ..478

Usage ..479

Example..480

LOGICAL RECORD Statement ...481

Syntax ...481

Parameters ..482

Usage ..485

Examples ..485

PATH-GROUP Statement...486

Syntax ...487

Parameters ..491

Usage ..510

Example..513
VALIDATE Statement ...513

Syntax ...513

Usage ..513

GENERATE Statement..514

Syntax ...514

Parameters ..515

LOAD MODULE Statement..515

Syntax ...515

Parameters ..516

Usage ..518

Examples ..519

Contents 15

DISPLAY/PUNCH SCHEMA Statement...519

Syntax ...519

Parameters ..520

Example..521

Chapter 16: Writing Database Procedures 523

Database Procedures...523

Specifying a Procedure..523

Common Uses of Database Procedures ...524

Coding Database Procedures ...527

Area Procedures ...529

Record Procedures...529
Database Procedure Blocks ..529

Establishing Communication Between Programs and Procedures ...536

Specifying When to Call Database Procedures ...537

Link Editing Database Procedures ...537

Executing Database Procedures ..538

Resetting the Error-Status Indicator ...538

Methods for Invoking Procedures...540

DBSTUB1 Invocation Method...541

DBSTUB2 Invocation Method...542

Considerations for Non-Reentrant or Non-LE-Compliant Database Procedures ...544

Database Procedure Example ..545

Chapter 17: Allocating and Formatting Files 549

Making Files Accessible to CA IDMS/DB...549

Types of Files...549

File Access Methods ..551

Creating Disk Files ..552

File Characteristics ...554
More Information...555

Formatting Files ..556

Considerations for Native VSAM Files ..557

More Information...558

Chapter 18: Buffer Management 559

Planning Database Buffers..559

How Many Buffers Do You Need?...560

How Many Pages Should a Buffer Contain? ..561

How Large Should a Buffer Page Be? ..563

16 Database Administration Guide

Choosing a Method for Storage Acquisition..564

Managing Buffers Dynamically ..565

Tuning Buffers for Performance ..566

Using Chained Reads ...567

Using Read and Write Drivers ..570

More Information...570

Chapter 19: Journaling Procedures 571

Journaling Overview ..571

Journaling Under the Central Version ..572

Journaling in Local Mode ..572

Journal Files...573
Journal Record Entries...573

Checkpoints ...574

Avoiding Duplicate LID Values ...576

Two-Phase Commit Journaling ..577

I/O Error or Corruption of a Journal File ..579

Formatting Journal Files..580

Offloading Disk Journal Files ..580

When CA IDMS/DB Switches Journal Files...581

How to Offload the Disk Journal..582

Handling Full Journal Files ..583

After System Shutdown ..584

User Exits and Reports for Journal Management...585

Influencing Journaling Performance ...586

Reducing Journal File I/O ..586

Improving Warmstart Performance..588

Reducing Recovery Time...589

More Information...590

Chapter 20: Two-Phase Commit Processing 591

Two-Phase Commit Overview..591

Terminology ..592

Typical Commit Flows..593

Prepare and Commit Outcomes ..594

Recovery From Failure...595

Two-Phase Commit within CA IDMS ...595

Use of Two-Phase Commit ...596

External Coordinators and Participants ...597

Resource Managers, Interfaces and Exits ..598

Interests and Roles...600

Contents 17

Commit Optimizations ..600

Transaction Identifiers ..601

Transaction States..604

Transaction Outcomes ..606

Chapter 21: Backup and Recovery 607

Database Backup and Recovery Overview ..607

Backup Procedures ..608

Back Up After a Normal System Shutdown ...609

Backup While the DC/UCF System is Active ..609

Back Up Before and After Local Mode Jobs ..614

Automating the Backup Process..616
Automatic Recovery...618

Warmstart ...619

Automatic Rollback ..623

Resynchronization..626

Distributed Transaction Recovery Considerations ...629

Completing Distributed Transactions Using DCMT ..632

Incomplete Transactions and Manual Recovery ..633

Deleting Resource Managers ...636

Manual Recovery..637

Recovery From a Quiesced Backup ...638

Recovery From a Hot Backup ...641

Reducing Recovery Time...648

Recovering a Large Number of Files ...650

Recovery Procedures After a Warmstart Failure..651

Recovery Procedures from Database File I/O Errors ...653

Recovery Procedures from Journal File I/O Errors ...657

Recovery Procedures for Local Mode Operations..662

No Journaling ..662

Journaling to a Tape Device..662
Journaling to a Disk Device ...662

Using an Incomplete Journal File...663

Recovery Procedures for Mixed-Mode Operations ...664

Data Sharing Recovery Considerations ..666

Considerations for Recovery of Native VSAM Files..670

Chapter 22: Loading a Non-SQL Defined Database 673

Database Loading ...673

Loading Database Records Using FASTLOAD ..674

General Considerations...675

18 Database Administration Guide

FASTLOAD Procedure ..677

Loading Database Records Using a User-Written Program ..677

Organizing Input Data for a User-Written Program ...678

Loading the Database ..681

More Information...682

Chapter 23: Loading an SQL-Defined Database 683

Database Loading ...683

Loading Considerations ...686

Contents of the Input File ...690

Loading Procedures ...691

Steps That Apply to All Load Procedures ...692
Full Load Procedure ...692

Phased Load Procedure...694

Segmented Load Procedure ...695

Stepped Load Procedure...697

More Information...700

Chapter 24: Monitoring and Tuning Database Performance 701

Monitoring Guidelines...701

Monitoring Facilities ..702

Database Statistics ...703

Items to Monitor and Tune ..706

Journal Use ..706

Buffer Utilization ..707

Space Management and Database Design ..707

Indexing Efficiency ...709

Tuning an Index ..710

Database Locks ...711

Longterm Locks...716
SQL Processing ..716

Reducing I/O..717

By Caching Files in Memory..718

Through Database Reorganization..719

Through Application Design ...720

Through Database Design...720

By Using UPDATE STATISTICS (SQL-Accessed Databases)...721

Chapter 25: Dictionaries and Runtime Environments 723

Dictionaries..723

Contents 19

Physical Components of a Dictionary ...724

Logical Components of a Dictionary ...725

Assigning Dictionary Areas to Segments ..726

Sharing Dictionary Areas...727

CA-supplied Dictionary Definitions ...728

Logical Database Definitions ..730

Protocols, Nondatabase Structures, and Modules ..733

Defining New Dictionaries ..734

Defining New Catalog Components ..734

Defining New Application Dictionaries...735

Defining New System Dictionaries ..738

Establishing a Default Dictionary...740
Runtime Environments..741

SYSIDMS Parameter File..743

Establishing Session Options ..744

More Information...745

Chapter 26: Migrating from Test to Production 747

Migration ...747

Establishing Migration Procedures ...748

Implementing Migration Procedures ...749

Step 1 : Determine the Types of Components to Migrate..750

Step 2 : Determine the Sequence of Migration ..755

Step 3 : Identify the Individual Components ...756

Step 4 : Migrate the Components ...756

Identification Aids ..757

Migration Tools...760

General Methods ...761

Using the DISPLAY statement ..762

Using the PUNCH Statement..764

Using the Mapping Compiler and Mapping Util ity...769
For SQL-Defined Entities ...770

Additional Considerations ..772

Additional Tasks..773

Chapter 27: Modifying Physical Database Definitions 775

Modifications You Can Make ...775

Making the Changes Available Under the Central Version...781

Dynamic DMCL Management ..783

Changing the Access Method of a File..785

Step 1 : Expand the Page Size ...785

20 Database Administration Guide

Step 5 : Copy the Data to the New File ...786

Increasing the Size of an Area ..786

Increasing the Page Size of an Area ..788

Extending the Page Range of an Area ..788

Adding or Dropping Files Associated With an Area ...789

Changing the Page Size of a Disk Journal ...790

Changing the Access Method of a Disk Journal ..791

More Information...791

Chapter 28: Modifying Database Name Tables 793

Changes You Can Make ...793

Procedure for Modifying Database Name Tables ..793
More Information...794

Chapter 29: Modifying SQL-Defined Databases 795

What You Can Modify..795

Maintaining Identically-Defined Entities..795

Methods for Modifying ...798

Chapter 30: Modifying Schema, View, Table, and Routine Definitions 801

Overview ..801

Maintaining Schemas ..801

Dropping an Existing Schema...802

Modifying a Schema ..802

Maintaining Views..803

Dropping a View ...803

Modifying a View..804

Maintaining Tables...805

Creating a Table..805

Dropping a Table ..806
Adding a Column to a Table ...807

Adding or Removing Data Compression ..810

Adding a New Check Constraint ..811

Dropping a Check Constraint ...811

Modifying a Check Constraint ..812

Revising the Estimated Row Count for a Table ...813

Changing the Area of a Table ...813

Dropping the Default Index Associated with a Table ..814

Dropping and Recreating a Table ..814

Method 1—Using DDL and DML Statements ..815

Contents 21

Method 2—Using DDL and Utility Statements ...817

Maintaining Routines and Their Keys ...818

Dropping a Routine ..818

Modifying a Routine ..819

Chapter 31: Modifying Indexes, CALC Keys, and Referential Constraints 821

Overview ..821

Maintaining Indexes ..821

Creating an Index ...822

Dropping an Index ..822

Changing Index Characteristics/Moving an Index ..823

Maintaining CALC Keys ..823
Creating a CALC Key ...823

Dropping a CALC Key ...824

Maintaining Referential Constraints...824

Creating a Referential Constraint ..825

Dropping a Referential Constraint ..826

Modifying Referential Constraint Tuning Characteristics ...826

Chapter 32: Modifying Non-SQL Defined Databases 829

Types of Modifications ..829

Changes to Schemas and Subschemas ...829

Methods for Modifying ...830

Procedure for Modifying the Non-SQL Definitions ..831

RESTRUCTURE Utility Statement ...833

REORG and UNLOAD/RELOAD Utility Statements..834

MAINTAIN INDEX Utility Statement..835

Chapter 33: Modifying Schema Entities 837

Overview ..837
Modifications to an Unloaded Database ...837

Schema Modifications ...838

Deleting a Schema..838

Changing Schema Characteristics..839

Area Modifications...839

Adding or Deleting an Area ..839

Changing Area Characteristics ...840

Record Modifications ..841

Adding Schema Records..841

Deleting Schema Records ...842

22 Database Administration Guide

Changing a Record's CALC Key ...843

Changing the DUPLICATES Option on a CALC or SORT Key ...845

Changing the Location Mode of a Record..846

Changing a Record's Area ...848

Modifying Record Elements ...849

Changing Other Record Characteristics ...850

Adding and Dropping Database Procedures ...851

Set Modifications ...852

Adding or Deleting a Set ...852

Changing Set Mode ..854

Adding and Dropping Set Pointers ..856

Changing Set Order ..857
Changing Set Membership Options ..858

Index Modifications ...859

Adding or Deleting System-Owned Indexes ..859

Changing the Location of an Index..861

Changing Index Characteristics..862

Adding or Deleting Index Pointers ..863

Chapter 34: Modifying Subschema Entities 865

Overview ..865

Modifying or Deleting a Subschema ...866

Modifying a Subschema ..866

Deleting a Subschema ...867

Adding, Modifying, or Deleting a Record ...867

Adding, Modifying, or Deleting a Set ..868

Adding, Modifying, or Deleting an Area...868

Adding, Modifying, or Deleting a Logical Record or Path Group ...869

Chapter 35: Space Management 871

Space Management ...871

Database Pages...871

Database Keys...874

Area Space Management..878

SR1 Records...879

Space Management Pages..880

Chapter 36: Record Storage and Deletion 885

Record Storage ...885

Storing CALC Records ..887

Contents 23

Clustering Records ...890

Storing Variable-Length Records ...894

Relocated Records ...897

Record Deletion ..898

Physical Deletion ..899

Logical Deletion ..901

Chapter 37: Chained Set Management 903

Overview ..903

Chained Sets..903

Connecting Records to Chained Sets ..905

Disconnecting Records ..906
Retrieving Records ...908

Chapter 38: Index Management 909

Indexed Sets ..909

Structure of Indexes...912

Connecting Records to Indexed Sets ..919

Connecting Members to Unsorted Indexed Sets ...920

Connecting Members to Sorted Indexed Sets ..923

Disconnecting Records from Indexed Sets ..924

Retrieving Indexed Records..925

Chapter 39: Lock Management 929

Controlling Access to CA IDMS Databases ...929

Readying Areas ...930

Area Ready Modes ...930

Central Version Area Status ...932

Default Ready Mode Using Navigational DML ..934

Ready Modes and SQL Access..934
Physical Area Locks ..937

Controlling Update Access..938

Locking Within Central Version ...939

Logical Locks..939

Types of Locks ...940

Logical Area Locks ..942

Area Locking for SQL Transactions ..943

Record Locks ...944

System Generation Options Affecting Record Locking..946

Locking Within a Data Sharing Group...947

24 Database Administration Guide

Inter-CV-Interest...948

Global Transaction Locks ..948

Proxy Locks ..949

Page Locks ...950

Controlling Access to Native VSAM Files ...950

Deadlocks...951

How the System Detects a Deadlock ..951

Global Deadlock Detection ...953

Appendix A: Sample SQL Database Definition 955

Appendix B: Sample Non-SQL Database Definition 965

Appendix C: Native VSAM Considerations 975

Overview ..975

Native VSAM Data Set Structures ...975

CA IDMS/DB Native VSAM Definitions ...976
Schema Definition ..976

DMCL Definition ...978

DML Functions with Native VSAM ..978

Appendix D: Batch Compiler Execution JCL 981

Overview ..981

Batch Compilation..981

z/OS JCL ..984

Schema Compiler ...984

Subschema Compiler ...986

z/VSE JCL ..988

=COPY Facility ...988

Syntax ...988

Parameters ..989

Schema Compiler ...989

Subschema Compiler ...991

IDMSLBLS Procedure ...994

CMS Commands .. 1001
Schema Compiler .. 1002

Subschema Compiler .. 1004

Contents 25

Appendix E: System Record Types 1007

Appendix F: User-Exit Program for Schema and Subschema Compiler 1009

Overview ... 1009

When a User Exit is Called ... 1009

Rules for Writing the User-Exit Program... 1010

Control Blocks and Sample User-Exit Programs .. 1013

User-Exit Control Block... 1013

SIGNON Element Block... 1013

SIGNON Block... 1014

Entity Control Block .. 1014

Card-image Control Block .. 1015

Sample User-Exit Program for Schema and/or Subschema Compilers ... 1015

Appendix G: Quick Reference Information 1023

Editing Commands .. 1023
Record-Set Representation ... 1025

Lock Management... 1026

Ready Mode Compatibility .. 1026

Lock Resource ID Format ... 1026

Runtime Error-Status Codes .. 1027

Major DB Status Codes... 1027

Minor DB Status Codes... 1027

Major DC Status Codes... 1032

Minor DC Status Codes... 1033

ERROR-STATUS Condition Names .. 1037

Index 1039

Chapter 1: Introduction 27

Chapter 1: Introduction

This section contains the following topics:

Who Should Use This Guide (see page 27)
Using This Guide (see page 27)
Syntax Diagram Conventions (see page 29)

Who Should Use This Guide

This guide is intended for anyone who is responsible for administering one or more CA
IDMS databases and for those whose responsibility l ies in administering a portion of the
database, such as database definition.

Using This Guide

This guide contains all information necessary to define, load, and administer a CA IDMS
database:

■ Chapter 1—Describes who uses this guide and provides an overview of how the
syntax is used.

■ Chapter 2—Describes the CA IDMS environment.

■ Chapter 3—Describes defining physical databases.

■ Chapter 4—Describes defining segments, fi les, and areas.

■ Chapter 5—Describes defining, generating, and punching a DMCL.

■ Chapter 6—Discusses defining a database name table.

■ Chapter 7—Discusses physical database DDL statements.

■ Chapter 8—Describes defining a database using SQL.

■ Chapter 9—Describes defining a database using non-SQL.

■ Chapter 10—Describes using the schema and subschema compilers.

■ Chapter 11—Discusses compiler-directive statements.

■ Chapter 12—Discusses operations on entities.

■ Chapter 13—Discusses parameter expansions.

Using This Guide

28 Database Administration Guide

■ Chapter 14—Discusses schema statements.

■ Chapter 15—Discusses subschema statements.

■ Chapter 16—Discusses writing database procedures.

■ Chapter 17—Discusses allocating and formatting fi les.

■ Chapter 18—Discusses buffer management.

■ Chapter 19—Discusses journaling procedures.

■ Chapter 20—Discusses two-phase commit processing.

■ Chapter 21—Discusses backup and recovery.

■ Chapter 22—Describes loading a non-SQL defined database.

■ Chapter 23—Describes loading an SQL-defined database.

■ Chapter 24—Discusses monitoring and tuning database performance.

■ Chapter 25—Describes dictionaries and runtime environments.

■ Chapter 26—Discusses migrating from test to production.

■ Chapter 27—Discusses modifying physical database definitions.

■ Chapter 28—Discusses modifying database name tables.

■ Chapter 29—Discusses modifying SQL-defined databases.

■ Chapter 30—Describes modifying schema, view, and table definitions.

■ Chapter 31—Discusses modifying indexes, CALC keys, and referential constraints.

■ Chapter 32—Discusses modifying non-SQL defined databases.

■ Chapter 33—Describes modifying schema entities.

■ Chapter 34—Describes modifying subschema entities.

■ Chapter 35—Describes space management.

■ Chapter 36—Describes record storage and deletion.

■ Chapter 37—Discusses chained set management.

■ Chapter 38—Discusses index management.

■ Chapter 39—Describes lock management.

■ Appendix A—presents a sample physical database definition.

■ Appendix B—presents a sample SQL database definition.

Syntax Diagram Conventions

Chapter 1: Introduction 29

■ Appendix C—presents a sample non-SQL database definition.

■ Appendix D—Discusses native VSAM considerations.

■ Appendix E—Discusses batch compiler execution JCL.

■ Appendix F—Discusses system record types.

■ Appendix G—Discusses procedures for coding a user-exit program.

Syntax Diagram Conventions

The syntax diagrams presented in this guide use the following notation conventions:

UPPERCASE OR SPECIAL CHARACTERS

Represents a required keyword, partial keyword, character, or symbol that must be
entered completely as shown.

lowercase

Represents an optional keyword or partial keyword that, if used, must be entered
completely as shown.

italicized lowercase

Represents a value that you supply.

lowercase bold

Represents a portion of the syntax shown in greater detail at the end of the syntax
or elsewhere in the document.

◄─

Points to the default in a l ist of choices.

►►────────────────────

Indicates the beginning of a complete piece of syntax.

────────────────────►◄

Indicates the end of a complete piece of syntax.

─────────────────────►

Indicates that the syntax continues on the next l ine.

►─────────────────────

Indicates that the syntax continues on this l ine.

────────────────────►─

Indicates that the parameter continues on the next l ine.

─►────────────────────

Indicates that a parameter continues on this l ine.

►── parameter ─────────►

Syntax Diagram Conventions

30 Database Administration Guide

Indicates a required parameter.

►──┬─ parameter ─┬─────►
 └─ parameter ─┘

Indicates a choice of required parameters. You must select one.

►──┬─────────────┬─────►
 └─ parameter ─┘

Indicates an optional parameter.

►──┬─────────────┬─────►
 ├─ parameter ─┤
 └─ parameter ─┘

Indicates a choice of optional parameters. Select one or none.

 ┌─────────────┐
►─▼─ parameter ─┴──────►

Indicates that you can repeat the parameter or specify more than one parameter.

 ┌─── , ─────────┐
►─▼─ parameter ───┴──────►

Indicates that you must enter a comma between repetitions of the parameter.

Syntax Diagram Conventions

Chapter 1: Introduction 31

Sample Syntax Diagram

The following sample explains how the notation conventions are used:

Chapter 2: CA IDMS Environment 33

Chapter 2: CA IDMS Environment

This section contains the following topics:

Overview (see page 33)
CA IDMS/DC and CA IDMS UCF (see page 37)
CA IDMS/DB Components (see page 37)

Security (see page 39)
Getting Started (see page 40)
Tools for Database Definition and Maintenance (see page 44)

Overview

CA IDMS provides both database and data communications services for the
development and execution of applications in multi - and single-user environments.
Development, production, and end-user systems coexist in the CA IDMS environment.

Components

CA IDMS components include the following:

■ Database management system

■ CA IDMS/DC or CA IDMS UCF (DC/UCF)

■ Dictionaries

■ Physical database definition

■ Logical database definition

Types of Operation

The CA IDMS environment supports three types of operation:

■ Multiuser—Implemented through CA IDMS/DC or CA IDMS UCF central version

■ Single-user—Implemented through local mode

■ Data Sharing—Implemented as two or more CA IDMS/DC or CA IDMS UCF central
versions operating cooperatively through coupling facility services

Online programs always access the database using central version services. Batch
programs can access the database either under central version or in local mode. Batch

or online TP-monitor programs other than CA IDMS/DC running in another address
space communicate with central version through facil ities provided by CA IDMS.

Overview

34 Database Administration Guide

Multiuser Environment

Central Version

In a multiuser environment, you use the services of the CA IDMS/DC or CA IDMS UCF
central version to access the database. When two or more users attempt to access or

update the database simultaneously, the DBMS, which is part of the DC/UCF system,
controls and coordinates access to the database.

Central version operations provide greater concurrency and recovery services than local
mode operations.

Under central version:

■ The DBMS ensures the integrity of the database by controlling concurrent access
through locks placed on areas and table rows or record occurrences.

■ The DBMS performs automatic recovery operations for programs that end

abnormally

Requesting Central Version Services

Application programs executing within the following environments can make database

requests of the central version:

■ Batch address spaces

■ CA IDMS/DC and CA IDMS UCF (DC/UCF) systems

■ Other teleprocessing monitors

An application program executing within the DC/UCF environment can take advantage
of the single region architecture of CA IDMS. Because the database and data
communications services operate within a single address space, database requests do

not need to be transferred across address spaces.

Overview

Chapter 2: CA IDMS Environment 35

Single-user Environment

Local Mode

In local mode, the DBMS, which is loaded at program execution time, handles requests
for database services, but does not support requests from multiple users.

A batch program that runs in local mode executes entirely in its own address space.

Local mode:

■ Reduces system overhead for long-running batch jobs that tend to monopolize a
database area

■ Controls access from concurrently executing local mode applications and central

version applications through physical locks on the area. Only one address space can
update an area at one time.

Recovery in the event of abnormal termination is accomplished through manual

recovery operations.

Overview

36 Database Administration Guide

Data Sharing Environment

A data sharing environment is one in which multiple central versions operate
cooperatively through the coupling facil ity services of IBM's parallel sysplex
architecture. Each CA IDMS/DC or CA IDMS UCF system that is to participate in a data

sharing environment must be a member of a data sharing group. There can be any
number of data sharing groups within a sysplex, but a central version can belong to only
one group at a time.

The primary advantage of data sharing is that more than one central version can update

a database concurrently. In fact, every member of a data sharing group can
simultaneously update one or more databases. This enables more than one central
version to service a given type of transaction, thereby providing both increased
transaction throughput and fault tolerance in the event of failure.

The following diagram il lustrates a data sharing group. It consists of four members
(CUST01, CUST02, CUST03, and CUST04), each of which share update access to the same
set of databases (Inventory, Customer, and Financial).

Note: For more information about data sharing, see the CA IDMS System Operations
Guide.

CA IDMS/DC and CA IDMS UCF

Chapter 2: CA IDMS Environment 37

CA IDMS/DC and CA IDMS UCF

The CA IDMS/DC system is central to the CA IDMS multiuser operating environment. CA
IDMS/DC (or CA IDMS UCF) controls:

■ Task management

■ Terminal communications

■ Scratch and queue management

■ Storage and program management

Defining the System

You define the CA IDMS/DC or CA IDMS UCF system in the system dictionary through a

process called system generation using the system generation compiler. The system
definition includes:

■ Definitions for system resources, programs, tasks, logs, and statistical reporting.

■ Teleprocessing component definitions

Note: For more information about CA IDMS/DC and CA IDMS UCF, see the CA IDMS
System Generation Guide.

CA IDMS/DB Components

CA IDMS/DB components include the following:

■ Database management system

■ Dictionaries

■ Physical database definition

■ Logical database definition

Database Management System

The database management system makes it possible to access the data in your
database. It ensures that the data is consistent and coordinates access to data through

the use of locks. The DBMS provides data integrity through automatic recovery services
and has a number of tuning options such as clustering, l inked lists, and data
compression.

CA IDMS/DB Components

38 Database Administration Guide

Dictionaries

What is a Dictionary

To support the runtime environment, certain information is needed to define and
control that environment. This information is stored in dictionaries.

A dictionary is a special CA IDMS defined database used to hold definitions of:

■ Other databases

■ CA IDMS/DC or CA IDMS UCF systems

■ User-written applications

There are two kinds of dictionaries used in the CA IDMS environment: system
dictionaries and application dictionaries.

System Dictionary

The system dictionary contains DC/UCF system definitions and physical database

definitions.

There can be only one system dictionary in a runtime environment.

Application Dictionary

An application dictionary contains application definitions and logical database
definitions. This includes records, relationships, areas, schemas, subschemas, maps, and
dialogs.

There can be zero, one, or more application dictionaries in a runtime environment.

Note: For more information about defining and maintaining dictionaries, see Chapter
25, "Dictionaries and Runtime Environments".

Security

Chapter 2: CA IDMS Environment 39

Physical Database Definition

In addition to defining the logical components of the database, you define the physical
characteristics of the data and the environment in which it will be accessed. This is
called the physical database definition.

The physical database definition includes the following:

■ Segments, areas, and fi les that will hold the data

■ Buffers used in retrieving and storing data

■ Journal fi les used for recovery

The physical database definition is stored in the system dictionary, since it represents all
data accessible through the runtime environment.

Logical Database Definition

The logical database definition identifies the user's view of the data.

The logical database definition includes the following:

■ Definition of records, tables, and views

■ Definitions of relationships between these entities

■ Specification of integrity rules

■ Specification of indexes and other access keys

Logical database definitions reside in the application dictionary.

Security

Access to CA IDMS databases and the DC/UCF runtime environment is controlled

through a common security facil ity. This security facility allows access to be controlled
using CA IDMS internal security services or external security packages, such as CA ACF2,
CA Top Secret, or RACF.

Note: For more information, see the CA IDMS Security Administration Guide.

Getting Started

40 Database Administration Guide

Getting Started

Installation

Before you can define, load, and access a database, you must have an operational CA
IDMS environment.

To create an operational CA IDMS environment, you install CA IDMS from an integrated

installation media supplied by CA. The media contains the programs and fi les required
to install all purchased CA IDMS system software products under each supported
operating system.

Note: For information about installation procedures, see the CA IDMS Installation Guide

for your operating system.

Runtime Components

The CA IDMS runtime environment you install includes the following:

■ Program libraries containing the CA IDMS/DB and CA IDMS/DC or CA IDMS UCF

products

■ System dictionary

■ Application dictionary

■ Sample database

■ CA IDMS/DC or CA IDMS UCF system. This system is a starter system which you can
modify to meet the needs of your environment.

Getting Started

Chapter 2: CA IDMS Environment 41

Towards a Production Environment

Once you have a DC/UCF system, you are ready to define your database. The process is
as follows:

1. Design the database

2. Define the database

3. Load the database

4. Develop and test applications

5. Establish the production environment

At each step you will need to:

■ Establish and enforce naming conventions for entities such as schemas, database
areas, records or tables, and application modules.

A set of standardized naming conventions that suit your corporate needs will save

much time and confusion and will help ensure an efficient and effective CA IDMS
environment.

■ Implement security measures to protect entities such as the database, data

dictionary, and DC/UCF system from unauthorized access.

Designing the Database

Designing a database involves two activities:

1. Develop a design for the database

2. Decide on an implementation for that logical design

Database design is the process of determining the fundamental data entities needed to
support the corporation's business.

During the initial design stage, you gather information about the business functi ons
performed at your corporation. Through analysis of these functions, you identify the

types of data manipulated by the functions and determine the relationships among the
data types. Using data modeling techniques, you then create a diagram that serves as a
logical model of the corporate data resource.

Once the initial design is complete, you enhance that design to meet specific application
performance and processing requirements.

During this stage, you determine indexes and other access keys used to meet required
performance goals and design structures to optimize storage resources.

Note: See the CA IDMS Database Design Guide for complete database design steps.

Getting Started

42 Database Administration Guide

Defining the Database

At this point, you must decide on the logical definition language and translate the design

into CA IDMS structures appropriate to that implementation. If you choose SQL, you
must:

1. Define the physical database

2. Format the operating system fi les

3. Define the logical database

If you do not choose SQL, you can define the logical database either before or after
defining the physical database and formatting the operating system fi les.

Define the Physical Database

To put the database design into effect, you set up the physical data base environment.
This involves identifying and sizing:

■ Buffers

■ Areas

■ Database fi les

■ Journal fi les

There is a common language used for these definitions regardless of the logical
definition language chosen.

Getting Started

Chapter 2: CA IDMS Environment 43

More Information

■ For general information about defining the physical database, see Chapter 3,

“Defining Physical Databases".

■ For more information about defining the physical database, see Chapter 4,
“Defining Segments, Files, and Areas” and Chapter 5, “Defining, Generating, and

Punching a DMCL”.

■ For more information about sizing the database, see the CA IDMS Database Design
Guide.

■ For more information about formatting operating system fi les, see Chapter 17,

"Allocating and Formatting Files".

Define the Logical Database

Defining the logical database involves defining the data structures, such as tables and
indexes, identified during the database design process. To produce this definition, you

use either SQL or non-SQL statements.

More Information

■ For more information about defining a l ogical database using SQL, see Chapter 8,

“Defining a Database Using SQL".

■ For more information about defining a logical database using Non-SQL, see Chapter
9, “Defining a Database Using Non-SQL".

Loading the Database

After the physical and logical database definition is complete, you load data into the

database. This data may come from another database or from sequential fi les.

More Information

■ For more information about loading the database for non-SQL defined databases,
see Chapter 22, “Loading a Non-SQL Defined Database".

■ For more information about loading the database for SQL defined databases, see

Chapter 23, “Loading an SQL-Defined Database".

Developing and Testing Applications

After you have loaded the data into the database, you can continue to develop and test
applications.

Establishing the Production Environment

When you have completed development and testing of your applications, you need to
establish the production environment.

Tools for Database Definition and Maintenance

44 Database Administration Guide

Creating Test and Production Configurations

You can set up separate configurations for test and production applications by creating:

■ Two systems, two dictionaries, two databases

■ One system, two dictionaries, two databases

The first approach is generally recommended in order to isolate the production

environment from the impact of the test environment.

Tools for Database Definition and Maintenance

You define and maintain your database using a number of facil ities.

Command Facility

The command facil ity is a tool used to enter:

■ Physical database definition and maintenance statements

■ SQL logical database definition and maintenance statements

■ Utility statements

It can be run in either online or batch mode.

Note: For more information about the command facil ity, see the CA IDMS Common
Facilities Guide.

Schema, Subschema, and DDDL Compilers

The batch and online schema, subschema, and data dictionary definition language
(DDDL) compilers are used to define and maintain the logical definition of non-SQL
databases:

■ Schema compiler—Used to create a complete logical non-SQL database definition

■ Subschema compiler—Used to create a subset view of the logical database
definition for use with application programs.

■ DDDL compiler—Used to create record and element definitions in the dictionary.

Utilities

You use util ities to perform maintenance operations on the database. Most util ities are
executed as statements through the command facil ity; however, some are standalone

programs.

Note: For more information about util ities, see the CA IDMS Utilities Guide.

Chapter 3: Defining Physical Databases 45

Chapter 3: Defining Physical Databases

This section contains the following topics:

Overview (see page 45)
Separating Logical and Physical Database Definitions (see page 49)
Before You Begin (see page 50)

Overview

A physical database is a collection of data that resides in operating system fi les. CA
IDMS/DB uses information provided at runtime to determine how to map the logical
representation of the database to one of perhaps many physical implementations of the

database.

Physical Database Represented as Segments

The definition of a physical database is represented as a segment. A segment defines
the areas (that is, logical fi les) and physical fi les that contain the data in the database.
For CA IDMS/DB to access the segment at runtime, the segment must be added to the

definition of a DMCL.

Overview

46 Database Administration Guide

What is a DMCL?

A DMCL is a collection of segment definitions that can be accessed in a single execution

of CA IDMS/DB. A DMCL exists as a load module in a load library and is used at runtime
to determine where data required by an application is physically stored.

A DMCL also performs the following tasks:

■ Assigns buffer space needed for processing the data

■ Describes a buffer and fi les for journaling database activity

■ Identifies a database name table, which CA IDMS/DB uses at runtime to map a
logical database definition to a physical database definition

■ Specifies data sharing-related attributes

■ Identifies the areas of the database to be shared across members of a data sharing
group

In most cases, you will need only one DMCL per configuration. For example, if you
maintain separate test and production configurations, each would have its own DMCL.

All applications that run under the central version use a single DMCL as specified in the
system startup parameters. Applications that run in local mode can also use this DMCL.

Under local mode, you may want to use a DMCL tailored for particular applications, such

as loading a database. You can specify the name of the DMCL for use in local mode in
the SYSIDMS parameter fi le. If you do not specify a DMCL explicitly, CA IDMS/DB
assumes the DMCL is named IDMSDMCL.

Overview

Chapter 3: Defining Physical Databases 47

Segments

Represent a Physical Database

A segment represents a physical database usually defined by a single schema. It
describes the collection of areas and fi les containing the data of the database. One

logical definition (schema) can be associated with one or more physical definitions
(segments). Each of these segments contains areas and fi les.

Areas Define Range of Database Pages

An area is a logical fi le divided into database pages. A database page represents a logical
fi le block.

Database Pages Physically Stored in Files

You assign an area's pages to one or more physical disk fi les that exist on direct access
volumes. At runtime, CA IDMS/DB maps a page in an area to one or more blocks in a

fi le; the way CA IDMS/DB maps a database page to a physical fi le depends on the fi le's
access method.

Overview

48 Database Administration Guide

DMCLs

DMCL Contains Segments

A DMCL contains one or more segments. These may include:

■ Segments that define the system dictionary

■ Segments that define one or more application dictionaries

■ Segments that define one or more user databases

DMCL Used at Runtime

A DMCL is the structure used by CA IDMS/DB at runtime to access physical database

definitions. It must exist as a load module in a load library.

Buffers Reserve Space in Memory

A DMCL also defines two types of buffers:

■ Database buffers, which hold database pages in use by CA IDMS/DB

■ A journal buffer which holds journal blocks used to log database activity prior to

being written to the journal fi le

Journal Files

Depending on your runtime environment, your DMCL will contain one of the following
designations for journaling:

Environment Journaling entities

Central version

Local mode (without journaling)
■ 2 or more disk journals

■ 1 archive journal

Local mode (with journaling) 1 tape journal

Data Sharing Attributes

A DMCL used by a central version that is a member of a data sharing group also specifies
attributes that are related to data sharing. These attributes include such things as the

maximum number of members that can belong to the group and the action that should
be taken if the coupling facility fails. These attributes are ignored by central versions
that are not members of a data sharing group and by CA IDMS running in a local mode
environment.

Separating Logical and Physical Database Definitions

Chapter 3: Defining Physical Databases 49

Database Name Tables

Maps Logical Definition to Physical

A database name table is an entity associated with a DMCL that is used to map the
logical database definition to one or more segments in the DMCL.

Contents of a Database Name Table

The definition of a database name table includes one or more database names. Each
database name identifies the segments to be accessed as part of the logical database. A
database name table may also include one or more database group declarations.

Group Names for Dynamic Routing

In a parallel sysplex environment, a database name table may also define database
groups (DBGROUPs) which represent coll ections of central versions to which requests
can be dynamically routed. A database request can be serviced on any central version
whose database name table includes the database group to which the request is

directed.

Database Name Table Used at Runtime

A database name table is used by CA IDMS/DB at runtime to access physical database
definitions. It must exist as a load module in a load library.

Separating Logical and Physical Database Definitions

Under CA IDMS/DB, you create a logical database definition (a schema) that contains no
reference to how the data is physically stored and accessed at runtime. The physical
database definition contains that information.

Advantages

The advantages of separating the logical database definition from its physical

implementation are the following:

■ You do not have to modify your schemas because of changes made to the physical
description of a database.

■ One logical database definition can have multiple physical implementations.

Before You Begin

50 Database Administration Guide

Before You Begin

Design the Logical and Physical Databases

Design the logical and physical database using information provided in the CA IDMS
Database Design Guide.

Size the Physical Database

Size the database; for example, determine how large each area should be, how large the

database buffers should be, and so on. You can find sizing information in the CA IDMS
Database Design Guide.

Chapter 4: Defining Segments, Files, and Areas 51

Chapter 4: Defining Segments, Files, and
Areas

This section contains the following topics:

Segments, Files, and Areas (see page 51)
Planning (see page 54)

Procedure for Defining Segments (see page 62)

Segments, Files, and Areas

A segment represents a physical database. It describes the physical implementation of a
database whose logical contents are usually represented by a single schema. Ass ociated
with a segment are the areas and fi les that contain the data in the database.

Segments

The definition of a segment includes these attributes:

■ What type of segment it is; that is, whether the segment definition describes the
physical implementation of a non-SQL defined database or an SQL defined database

■ Page groups and the maximum number of records or rows that can be stored on a
database page; these two parameters determine how many pages the database can
contain and the db-key format that describes the location of records or rows in the

database

■ For SQL-defined databases:

– Optionally, the name of the schema for which this segment is reserved

– Optionally, the synchronization stamp level

Example

create segment prodseg

 for sql

 for schema prodschm

 stamp by area;

Note: Segment must be added to DMCL Definition.

Before CA IDMS/DB can use a segment at runtime, you must add the segment to a
DMCL, which in turn must exist as a load module in a load library.

Segments, Files, and Areas

52 Database Administration Guide

Files

Database Files Contain Data

A CA IDMS database is stored on one or more disk fi les on direct access volumes.

Database fi les contain data CA IDMS/DB accesses on behalf of applications.

What a File Defines

The definition of a fi le includes:

■ The name of the fi le being defined. Within a DMCL, the name of the fi le must be a

unique combination of the segment with which the fi le is associated and the fi le
identifier.

■ The type of fi le (that is, database or native VSAM) and the access method CA
IDMS/DB is to use.

■ Optionally, the data set name (or other operating system specific information) that

CA IDMS/DB can use to locate the fi le rather than using information specified in a
JCL statement.

■ The external name or label in z/VSE to be used to identify the fi le. CA IDMS/DB
searches the execution JCL for an external fi le name that matches the specified

name and, if found, uses the JCL information to locate the dataset. If you do not
specify information about the dataset in the FILE statement, you must include an
external fi le name.

Example

create file emp_demo1

 assign to empfile;

Note: For more information about fi le access methods and creating fi les, see Chapter
17, “Allocating and Formatting Files”.

Areas

The following section Discusses related areas of database segment.

Range of Database Pages

An area is a contiguous range of database pages. Each page maps to one or more blocks

in a fi le associated with the area.

Segments, Files, and Areas

Chapter 4: Defining Segments, Files, and Areas 53

Related Areas Generally Share Same Segment

Areas that contain related information are usually defined within the same segment. For
example, the Commonweather database has three areas within one segment: one for
employee information (EMP-DEMO-REGION), one for organizational information

(ORG-DEMO-REGION), and one for benefits information (INS-DEMO-REGION).

An Area Maps to Files

Each area can map to one or more physical fi les. In turn, one fi le can contain the pages

of one or more areas.

What an Area Defines

When you define an area, you assign the following attributes:

■ The area's initial page range and pages reserved for future expansion

■ The size of each page in the area and, optionally, a cushion reserved for expansion
of variable-length records, internal index records, and compressed records and
rows

■ Optionally, for SQL-defined databases, whether to maintain a synchronization
stamp for each table in the area or a single stamp for the entire area

■ Optionally, for non-SQL defined databases, symbolic parameter values

■ The fi le or fi les that contain the area's pages

Note: For more information about sizing areas and planning their use, see the CA IDMS
Database Design Guide.

Planning

54 Database Administration Guide

Planning

Segment Boundaries

Note the following section about segment boundaries.

One Schema One Segment

Typically one segment contains the data described by one schema. However, other
factors need to be considered when deciding how data should be separated into

segments.

Non-SQL Defined Data

Place all areas defined by a single schema in one segment unless:

■ One or more areas are shared across multiple physical implementations. For
example, if employee information is segmented by region but insurance
information is corporate-wide, area(s) containing the insurance information must

be placed in their own segment even though they are described in the same
schema as the employee information.

■ Areas defined by the schema are managed as separate units. For example, the
insurance area(s) might have a different backup cycle than the employee area(s)

and separating them into different segments allows operations to be performed by
segment.

If areas described by a single schema are separated into different segments, it is
strongly recommended that no set crosses the segment boundary (no set should have
an owner in one segment and a member in another). This is advisable because it will

allow you to perform maintenance operations (such as reorganization) on a segment
independently of other segments. If a set crosses a segment boundary, you may need to
define a new segment that includes all impacted areas or create a database name that
includes all impacted segments and whose name is the same as the segment on which

the operation is being performed.

Planning

Chapter 4: Defining Segments, Files, and Areas 55

SQL Defined Data

Each table is associated directly with an area in which its data rows are stored.
Restrictions about where the rows of a given table can be stored are imposed by
security and the DBA when defining a segment.

A segment can be reserved for tables from a specific schema by specifying the FOR
SCHEMA clause on the segment definition within the application dictionary in which the
tables will be defined. By specifying the FOR SCHEMA clause, the DBA ensures that only
tables associated with the named schema will be stored in the segment. This can be

useful in ensuring that only related production data is stored in a given segment.

In an information center or development environment in which schemas are owned by
individuals, it is l ikely that tables from multiple schemas will reside in a single segment.

Segmentation might be related more to group affi l iation than to schema association.

Mapping Areas to Files

One area can be stored in multiple fi les and a single fi le can contain many areas.
Typically, there is a one-to-one correspondence between an area and a fi le unless:

■ The resulting fi le would be larger than a single disk device, in which case multiple
fi les are used to contain the area

■ VSAM is being used as the underlying access method and the area is larger than
4Gb, in which case the area must be mapped to multiple fi les

■ There are a number of small, non-volatile areas, in which case multiple areas may
be contained in a single fi le

Note: For more information about mapping areas to fi les, see the CA IDMS Database
Design Guide.

Page Ranges

Areas are made up of contiguously numbered pages. The low and high page numbers
assigned to an area define its page range. The page range of an area:

■ Must not overlap that of any other area in the same segment

■ Must not overlap that of any other area in a segment included in the same DMCL if
the two segments have the same page group

When an area is defined, pages can be reserved for future expansion by using the

MAXIMUM SPACE clause. If specified, CA IDMS ensures that no other area included in
the same DMCL has a page range that overlaps both the currently allocated and the
reserved space. By reserving additional pages, you are assured of being able to extend
the area's page range without unloading and reloading the data.

Planning

56 Database Administration Guide

Page Groups

Definition

A page group is an attribute of a segment. It uniquely identifies a collection of page

ranges. For example, page 30,002 of page group 0 is different than page 30,002 of page
group 1. The following diagram shows how page groups allow areas to be defined with
the same or overlapping page ranges:

 PAGE GROUP 0 PAGE GROUP 1
┌───────────────────────┐ ┌───────────────────────┐
│ AREA EMP-AREA │ │ AREA ORDER-AREA │
│ PAGES 30000 to 30500│ │ PAGES 30000 to 30500│
└───────────┬───────────┘ └───────────┬───────────┘
 │ │
 │ │
 ▼ ▼
 PAGE 30,002 of PAGE 30,002 of
 PAGE GROUP 0 PAGE GROUP 1

When to Use Page Groups

The default page group, 0, allows you to use up to 16,777,214 database pages
containing up to 255 records/rows per page. Typically, you use page groups if your

database environment requires more than 16,777,214 database pages; for example, if
you access multiple, large databases within a single DMCL. By using page groups, you
can include areas with the same page range in a single DMCL.

Mixed Page Groups

You may define a database with a mix of page groups; however, you may not define a
database in which a chain set crosses a page group boundary. For SQL-defined
databases, neither indexes nor referential constraints may cross a page group boundary.

Planning

Chapter 4: Defining Segments, Files, and Areas 57

Page Groups and Run Units

By default, a run unit can access data from only one page group at a time. This
restriction can be overcome by specifying the MIXED PAGE GROUP option on the
DBNAME statement that defines the database, but using this option has implications for

programs accessing the database.

SQL sessions can access data in mixed page groups without any restrictions or special
considerations.

Note: For more information about using mixed page groups, see the Chapter “Defining a

Database Name Table”.

Page Groups and Dictionaries

There are special rules about mixed page groups and dictionaries.

Note: For more information, see the Chapters “Defining a Database Name Table” and
“Dictionaries and Runtime Environments”.

Records Per Page

Maximum Records Per Page Affect Database Page Count

When defining a segment, you can specify the maximum number of record occurrences
or rows that can be stored on a database page. The value you assign determines the

db-key format, which in turn, affects the highest allowable page number that can be
assigned to areas associated with the segment.

What Value Should You Use?

In most cases, use the default number of records per page, 255. This value
accommodates a database with page numbers up to 16,777,214. Otherwise, choose:

■ A larger value if your database contains very small records and your page size is

large.

■ A smaller value if your database contains very large records or you need more than
16,777,214 pages in a single database

Maximum Records Per Page Restrictions

You may define a database that has different maximum records per page for its
component segments; however, you may not define a database in which components of

a set, index, or referential constraint reside in areas with different maximums.

Planning

58 Database Administration Guide

Maximum Records Per Page and Transactions

The same considerations that apply to page groups also apply to maximum records per
page:

■ All data accessed in a run unit must have the same maximum number of records

per page, unless the MIXED PAGE GROUP BINDS option is specified on the DBNAME
statement that defines the database being accessed.

■ SQL transactions have no limitations in this regard.

Note: For more information about mixing maximum records per page, see Chapter 6,

“Defining a Database Name Table".

Maximum Records Per Page and Dictionaries

There are special rules regarding dictionaries and maximum number of records per
page.

Note: For more information, see Chapter 6, “Defining a Database Name Table” and
Chapter 25, “Dictionaries and Runtime Environments”.

Page Reserve

Page reserve is the amount of space on a page that is used only for the expansion of

existing records or rows. It is never used for storing new occurrences.

Specifying a page reserve as part of an area definition is useful if the area contains:

■ Indexes

■ Variable length records

■ Compressed records or rows

The page reserve for an area can also be specified as an area override within a DMCL
definition. Specifying it at the DMCL level allows tailoring the page reserve for particular

types of processing, such as database loading or index building. By specifying a page
reserve during these types of operations and then reducing or removing it altogether,
you ensure that each page will contain free space for both new record occurrences or

rows and the expansion of variable length objects.

Planning

Chapter 4: Defining Segments, Files, and Areas 59

Resolving Symbolic Parameters

Areas Resolve Schema-defined Symbols

If you defined a non-SQL schema using symbolic names for subareas, VIA-record

displacement, or index attributes, you must assign values to the symbolic parameters in
the physical definition of the areas.

An Example of Symbolics

The following schema definition of EMPSCHM illustrates the use of a subarea symbolic.

The EMPLOYEE record is stored in the EMP-SUBAREA portion of the EMP-DEMO-REGION
area.

add schema empschm. ─┐
 add area emp-demo-region. │
 add record employee │ Logical
 location mode is calc using id-0415 │ definition
 within area emp-demo-region │
 subarea emp-subarea. ─┘

Subarea EMP-SUBAREA can be assigned different page ranges in different physical
databases. For example, in segment TEST1, EMP-SUBAREA maps to pages 2002 through
2051; in segment TEST2, EMP-SUBAREA maps to pages 5002 through 7000:

create area test1.emp-demo-region ─┐
 primary space 100 │
 from page 2001 │
 subarea emp-subarea offset 1 for 50 percent ◄───────┐ │
 . │ │ Physical
 . │ │ definition
create area test2.emp-demo-region │ │
 primary space 2000 │ │
 from page 5001 │ │
 subarea emp-subarea offset 1 for 100 percent ◄──────┘ ─┘
 .
 .

Planning

60 Database Administration Guide

Percent Specification and Area Expansion

To allow subarea page ranges to expand in proportion to increases in the area's page

range, use an OFFSET specification with a percentage value in the FOR parameter. For
example, the default of OFFSET 0 FOR 100 PERCENT indicates that the subarea is the
entire area regardless of future expansion.

Synchronization Stamps

Table and Area Level Stamps

For SQL segments, you can specify whether synchronization stamps are to be

maintained at the table or area level.

The synchronization stamp is used to make sure that the logical database definition in
the access module corresponds to the current logical database definition in the
dictionary.

Note: The synchronization stamp specification in the area definition included in the

DMCL must be the same as that in the application dictionary in which the tables are
defined.

At runtime, if the runtime system finds that the stamps in the access module and the
database are not in sync, the access module is automatically recreated (if that option

has been selected) or an error message is issued.

If you specify that the stamp is to be maintained at the table level, the stamp will be
updated for an individual table when the definition of the table or any associated CALC,

index, or constraint definition is modified.

If you specify that the stamp is to be maintained at the area level, the stamp will be
updated when the definition of any table (or any associated CALC, index, or constraint
definition) in the area is modified.

Which Type of Synchronization Stamp to Use

If changes to the logical structure of your database are rare (generally the case for
databases in production), use area level synchronization stamps because they incur less
overhead at runtime to validate. If your logical database definition changes frequently,

as in a test or information center environment, choose table level synchronization
stamps because a change in the definition of one table has no impact on the stamp
value of other tables.

Planning

Chapter 4: Defining Segments, Files, and Areas 61

Specifying Data Set Name Information

Specifying a Data Set Name

When you access a fi le, you must provide information to the operating system to locate

the fi le on disk storage. You can specify this information in one of two ways:

■ In the JCL used to execute your local mode or central version system

■ For z/OS and z/VM operating systems and for z/VSE with DYNAM/D, by supplying
dataset information in the FILE statement

Reasons to Specify Dataset Information on the FILE Statement

The advantages of specifying the data set name or other operating system information
on the FILE statement are:

■ You can specify fewer statements in the system execution JCL.

■ If you change the location of a fi le, only its definition needs changing and not every
set of execution JCL.

■ By not supplying an external fi le name (a ddname), you can ensure that only the

correct fi le is accessed, since the dataset name cannot be overridden in the
execution JCL.

■ In a z/OS operating system, you can access more fi les if dynamic allocation is used
to reference them.

Controlling the Use of Dynamic Allocation in Local Mode

By default, data set information included on the FILE statement will be used in both
central version and local mode environments to dynamically allocate a data set unless
the identifying information is overridden through a JCL statement.

A site may control whether dynamic allocation is used by default for local mode
operations and the default behavior can be overridden for an individual job step. Both
of these actions are effected through the use of the LOCAL_DYNAMIC_ALLOCATION

SYSIDMS parameter. The defaul t behavior can be established by compiling a SYSIDMS
options module and it can be overridden by specifying a LOCAL_DYNAMIC_ALLOCATION
parameter in the SYSIDMS fi le associated with the job step.

Note: For more information about the SYSIDMS parameter fi le, see the CA IDMS
Common Facilities Guide.

Procedure for Defining Segments

62 Database Administration Guide

Procedure for Defining Segments

Steps

Action Statement

Define a segment CREATE SEGMENT

Define one or more fi les to be associated with
the segment

CREATE FILE

Define one or more areas to be associated
with the segment

CREATE AREA

If the segment is an SQL segment, add its
definition and minimally the definition of its

associated areas to the application dictionary
that will contain the definitions of the
SQL-defined database

CREATE SEGMENT, CREATE AREA

Add the segment to an existing DMCL

definition

ALTER DMCL with the ADD SEGMENT

clause

Make the DMCL available to your runtime
environment

See Chapter 5, “Defining, Generating,
and Punching a DMCL"

Note: When copying an SQL segment definition to the application dictionary, you do
not need to define the fi les.

Example of a Non-SQL Segment Definition

The following example creates a segment for a non-SQL defined database. The

statements in the example define the segment and its associated fi les and areas. The
characteristics of the segment are:

■ Segment EMPSEG—By default, CA IDMS/DB assigns these values :

– Page group: 0

– Maximum records per page: 255

■ File EMPDEMO1—EMPDEMO1 is a non-VSAM file with a dataset name of
CORP.SYSPUB.EMPFILE1. It will be accessed using a ddname of EMPFILE1 unless

overridden by a DMCL parameter

Procedure for Defining Segments

Chapter 4: Defining Segments, Files, and Areas 63

■ Area EMPAREA—Area EMPAREA has the following attributes:

– 2000 pages, starting on page 990001 and ending on page 992000. These pages

will be used to store record occurrences assigned to the area. The definition
does not provide for future expansion of the area because i t does not specify a
MAXIMUM SPACE clause.

– Pages size of 6000 bytes.

– A symbolic subarea, CALC-RANGE, which starts at page 990002 and extends for
the remainder of the area.

– A symbolic index, EMP-LNAME-NDX, which is a sorted index based on an index

key of 10 characters and estimated entry count of 10,000

– An association with fi le EMPDEMO1 that, by default, contains the entire area,
beginning on block 1 of the fi le.

create segment empseg;

create file empseg.empdemo1

 assign to empfile1

 dsname 'corp.syspub.empfile1'

 disp shr;

add area empseg.emparea

 primary space 2000 pages

 from page 990001

 page size 6000 characters

 subarea calc-range offset 1 for 100 percent

 symbolic index emp-lname-ndx

 based on sorted key length 10 for 10000 records

 within file empdemo1;

Example of an SQL Segment Definition

The following example defines a segment and its associated areas and fi les for an
SQL-defined database. The characteristics of the segment are:

■ Segment PRODSEG—This segment has the following characteristics:

– Is associated with SQL-schema PRODSCHM; that i s, the areas in segment
PRODSEG are reserved for tables in schema PRODSCHM

– Maintains synchronization stamps at the area level (rather than the table level)

– By default, belongs to page group 0 and contains up to a maximum of 255 rows

per database page

Procedure for Defining Segments

64 Database Administration Guide

You must define the segment in both the application dictionary that will contain the
schema and table definitions and in the system dictionary.

■ Files EMP_DEMO1 and PROJ_DEMO1—Both fi les are VSAM database fi les. At
runtime, CA IDMS/DB looks in the JCL for a fi le specification with a matching
ddname.

■ Areas EMP_AREA and PROJ_AREA—The definitions of both areas allow for future
expansion by using the MAXIMUM SPACE clause.

For example, area EMP_AREA contains 1500 pages beginning on page 80001 and
ending on page 81500. The first 1000 pages are the initial allocation. The remaining

500 pages are reserved for future expansion of the area. Additionally, the
synchronization stamp for area EMP_AREA is by table, overriding the specification
made at the segment level.

create segment prodseg

 for sql

 for schema prodschm

 stamp by area;

create file emp_demo1

 assign to empfile

 vsam;

create file proj_demo1

 assign to projfile

 vsam;

create area emp_area

 primary space 1000 pages

 from page 80001

 maximum space 1500 pages

 page size 6000 characters

 stamp by table

 within file emp_demo1;

create area proj_area

 primary space 1000 pages

 from page 82001

 maximum space 1500 pages

 page size 6000 characters

 within file proj_demo1;

Procedure for Defining Segments

Chapter 4: Defining Segments, Files, and Areas 65

More Information

■ For more information about the syntax and syntax rules for the AREA, FILE, and
SEGMENT statements, see Chapter 7, “Physical Database DDL Statements”.

■ For more information about modifying segment definitions, see Chapter 27,

“Modifying Physical Database Definitions”.

■ For more information about the contents of a database page and db-keys, see
Chapter 35, “Space Management".

■ For more information about and a l ist of page number l imits associated with the

maximum number of records/rows per page, see 7.16, “SEGMENT Statements” in
Chapter 7, “Physical Database DDL Statements”.

■ For more information about sizing database areas and planning for their use, see
the CA IDMS Database Design Guide.

■ For more information about creating and formatting fi les, see Chapter 17,
"Allocating and Formatting Files".

■ For more information about loading fi les, see Chapter 22, “Loading a Non -SQL

Defined Database” and Chapter 23, “Loading an SQL-Defined Database”.

Chapter 5: Defining, Generating, and Punching a DMCL 67

Chapter 5: Defining, Generating, and
Punching a DMCL

This section contains the following topics:

DMCLs (see page 67)
Data Sharing Attributes (see page 71)

Database Buffers (see page 73)
Journal Buffers and Journal Files (see page 74)
Adding Segments to the DMCL (see page 80)
Procedure for Defining a DMCL (see page 87)

Making the DMCL Accessible to the Runtime Environment (see page 89)

DMCLs

The DMCL is the runtime component that describes one or more physical databases.
The DMCL:

■ Designates which physical databases are accessible at runtime

■ Describes the fi les used to journal database activities

■ Specifies buffers for database and journal fi les

■ Designates which areas are to be shared across members of a data sharing group

■ Specifies attributes that affect data sharing operations

What a DMCL Contains

A DMCL contains the following component definitions:

Component Function

Database buffers Hold database pages in memory while CA IDMS/DB accesses
information on the pages.

Journal buffer Maintains information to be written to journal fi les, which

are used for recovery operations. One and only one journal
buffer must be defined for a DMCL.

Journal fi les Log database activity. You can define either disk and archive
journal fi les or a tape journal fi le.

Segments Contain the areas of the database and the fi les to which
those areas map.

DMCLs

68 Database Administration Guide

DMCL Area/File Overrides

A DMCL definition can also override area and fi le definitions in the segments added to
the DMCL.

Designating Areas as Shared

The DMCL indicates which areas are eligible to be shared for update across members of
a data sharing group. Sharability can be specified for an entire segment or for an
individual area through an area override.

DMCL Identifies Database Name Table

A DMCL also identifies the database name table to be used at runtime. The database

name table provides logical names for one or more segments associated with the DMCL.

Order of Component Definition

To define a DMCL and its components, issue the following statements in the listed
order:

1. CREATE DMCL

2. CREATE BUFFER

3. CREATE JOURNAL BUFFER

4. Either:

■ CREATE DISK JOURNAL

■ CREATE ARCHIVE JOURNAL

 Or

■ CREATE TAPE JOURNAL

5. ALTER DMCL, adding segments and optionally, any area and fi le overrides

DMCL Used Under the Central Version

All applications that execute under the central version use a single DMCL.

DMCLs

Chapter 5: Defining, Generating, and Punching a DMCL 69

DCMLs Used in Local Mode

An application that uses local mode database services may use the same DMCL used
under the central version or a DMCL tailored for local mode operations. You can define
as many local DMCLs as you wish. However, generally a local mode DMCL should be

created only for the following reasons:

■ To execute a local mode update application with journaling activated

■ To reduce core requirements in your local mode address space by reducing the
number of segments in the DMCL

■ To use a different page reserve or buffer size for special processing such as load
operations

Differences Between Central Version and Local Mode DMCLs

The table below highlights the main differences between a DMCL used under the central

version and a DMCL used only in local mode:

Component DMCL used under CV and in local mode Local mode-only DMCL

Buffer size Typically large for central version
operations to accommodate concurrent
processing and small for local mode
operations to accommodate 1 application

Typically small, to
accommodate 1
application

Journal fi les 2 or more disk journal fi les and 1 or more
archive fi les

1 tape journal fi le

DMCLs Used for Data Sharing

In a data sharing environment, more than one central version may share the same
DMCL. If all members of a data sharing group are identical with respect to the data that
they access, then they should share the same DMCL. This type of group is referred to as

a homogeneous group.

If members of a group share access to only a subset of data, they may use different
DMCLs. This type of group is referred to as a heterogeneous group.

The choice of whether members of a data sharing group use the same DMCL is a matter
of convenience and does not affect the operation of the group. However, if different
DMCLs are used, they should all specify the same data sharing attributes.

DMCLs

70 Database Administration Guide

Stored as a Load Module

Because the DMCL is a runtime component, its definition must be generated and stored
as a load module, and then punched and link-edited to a load library.

Identifying the DMCL to the Runtime System

You must identify the DMCL to be used in the runtime system:

■ Under the central version, specify the name of the DMCL to be used as a startup
parameter for the DC/UCF system. See the CA IDMS System Operations Guide for

information about startup parameters.

■ In local mode, if the name of the DMCL is not IDMSDMCL, specify the name in the
SYSIDMS parameter fi le.

Data Sharing Attributes

Chapter 5: Defining, Generating, and Punching a DMCL 71

Data Sharing Attributes

What Attributes Can Be Specified?

The following data sharing-related attributes can be specified in a DMCL:

■ The maximum number of members that can belong to the data sharing group

■ The number of entries in the group's lock structure

■ The default shared cache structure for the member using this DMCL

■ The action that should be taken in response to a coupling facility failure

Group Membership

A DC/UCF system is specified to be a member of a data sharing group through
parameters in the SYSIDMS fi le in the system's startup JCL. The system belongs to the

specified group from the time it begins execution until it is shutdown. If the system
abends, it remains a group member until it is restarted and terminated normally.

Specifying the Maximum Number of Members

The DMCL of each group member specifies the maximum number of members that can
belong to the group at one time. The maximum number of members should be large
enough to accommodate all anticipated systems, but since the value affects the size of

the lock structure, it should not be larger than necessary.

What is a Lock Structure?

A lock structure is an object that resides in a coupling facil ity. It contains global locks
that are used to control inter-member access to shared resources such as database
areas and record occurrences.

Part of a lock structure is a table whose entries represent hash values. You specify the

number of entries in this table as one of the data sharing attributes in the DMCL. The
more entries in this table, the less l ikelihood there is that multiple resources will hash to
the same table entry, a situation that increases locking overhead. However, the more

entries in this table, the larger the lock structure needed to contain it.

Data Sharing Attributes

72 Database Administration Guide

Specifying the Number of Lock Table Entries

The value that you specify for the number of lock table entries should be at least as
large as the highest SYSLOCKs value specified in the system definition of any member in
the group. Performance may be improved by specifying an even larger value.

Note: For more information about sizing a lock structure, see the CA IDMS System
Operations Guide.

Conflicting Group Attributes

Since the DMCL used by each member of a data sharing group specifies the maximum
number of group members and the number of lock table entri es, it is possible that the
values specified by different members conflict. The first member to start determines the

effective values and those values remain unchanged until all members of the group
terminate normally. You can determine which values are in effect by issuing a DCMT
DISPLAY DATA SHARING command.

What Is a Shared Cache?

A shared cache is a structure that resides in a coupling facility. It is used to contain
database pages and acts as a global buffer pool shared across central versions. The use

of a shared cache reduces the number of I/Os to the database.

In order to share update access to data, all fi les associated with a shared area must be
assigned to a cache structure. One means of doing this is to specify a default shared
cache for the DMCL and override the default as necessary for individual segments and

fi les.

Note: For more information about the use of shared cache, see the CA IDMS System
Operations Guide.

Coupling Facility Failures

In order to share update access to data, the coupling facil ity must be available to control
access to shared resources. You may specify what action a member is to take in the
event that a coupling facility structure becomes unavailable while a DC/UCF system is

executing. You may direct the system to:

■ Abend as soon as it detects a failure in a critical coupling facility structure

■ Remain active but abend tasks that request access to shared resources

By directing the system to remain active, it can service transactions that do not access

shared data. However, you will not be able to shut down the system normally since it
will be unable to successfully disconnect from one or more coupling facil ity struc tures.

Note: For more information about dealing with coupling facility failures, see the CA

IDMS System Operations Guide.

Database Buffers

Chapter 5: Defining, Generating, and Punching a DMCL 73

Database Buffers

What Is a Database Buffer?

A database buffer is space allocated in memory to hold database pages while CA
IDMS/DB accesses information on those pages. A buffer is divided into pages. If

information on the page is updated, CA IDMS/DB writes the altered page back to the
database when that buffer page is needed or when the transaction ends.

CA IDMS/DB Acquires Space When It Opens Associated File

CA IDMS/DB acquires a buffer when it first opens a fi le associated with the buffer. If,
during execution of the runtime system, CA IDMS/DB opens no fi les associated with the
buffer, CA IDMS/DB does not acquire space for that buffer.

CA IDMS/DB Searches Buffers Before Files

To satisfy a program's request for data, CA IDMS/DB first searches the buffers to see if

the requested page already resides in main memory. If the page is there, CA IDMS/DB
uses the in-core copy and avoids an I/O. I f it isn't, CA IDMS/DB searches the database
fi les for the requested page.

Every File Must Be Associated with a Buffer

A database buffer must be defined to a DMCL before you can add segments to the
DMCL definition. Each fi le contained in the segments added to the DMCL must be

associated with a buffer. You can associate a fi le with a buffer in one of three ways:

■ By naming the buffer in a fi le override added to the DMCL definition

■ By naming the buffer when adding a segment to the DMCL definition

■ By using the default buffer defined to the DMCL

The page size of the buffer must be greater than or equal to the block size or (in the
case of VSAM) control interval of all fi les associated with the buffer.

What a Database Buffer Defines

The definition of a database buffer includes these attributes:

■ The buffer's page size

■ The number of pages in the buffer

■ How CA IDMS/DB acquires storage for the buffer

■ Attributes for native VSAM files

Journal Buffers and Journal Files

74 Database Administration Guide

When to Define a Database Buffer

You define a database buffer when:

■ You are defining a DMCL for the first time. The DMCL must have at least one
database buffer.

■ You have modified the database by adding another fi le and the anticipated use of
this fi le indicates that another buffer will minimize contention among transactions.

■ Monitoring and tuning operations indicate the need for another buffer.

Journal Buffers and Journal Files

Logs Database Activity

Journaling logs database activity on journal fi les. The following table describes the type
of information CA IDMS/DB writes to a journal:

Type of information Description

Database images Contain before and after images of modified records and
rows

Checkpoints Describe a transaction event such as a COMMIT or ROLLBACK

Journal Buffers and Journal Files

Chapter 5: Defining, Generating, and Punching a DMCL 75

Note: For more information about the journal records, see Chapter 19, "Journaling
Procedures".

How Do You Use Journal Files?

You use the journal fi les to recover the database followi ng a system or transaction

failure. Typically, journaling occurs for applications that execute under the central
version because CA IDMS/DB uses the journals for automatic rollback and warmstart.
Journaling is less common for applications that execute in l ocal mode, but may be used
for applications that update a large database.

Note: For more information about journaling procedures under the central version and
in local mode, see Chapter 19, "Journaling Procedures". Backup and recovery are
discussed fully in 21.2, "Backup Procedures".

Journaling Entities

To log information about database activity, CA IDMS/DB requires the following journal
entities in a DMCL:

■ A journal buffer, which allocates space in memory to hold j ournal pages containing
information about database activity. Each DMCL contains only one journal buffer.

■ Journal files, to which CA IDMS/DB writes the journal pages.

When CA IDMS/DB Writes a Journal Page

CA IDMS/DB writes a journal page to the active journal fi le when one of the following
conditions exist:

■ The page in the journal buffer is full

■ An update transaction terminates. A transaction terminates when the application
program issues a COMMIT, COMMIT WORK, ROLLBACK, ROLLBACK WORK or FINISH

statement or similar task-level statement, or when the application program aborts.

■ The journal page contains before images for records or rows on a database page
which must be written to the database.

Types of Journal Files

CA IDMS/DB supports the following types of journal fi les:

Type Medium

Disk journal fi le Disk

Archive journal fi le Sequential tape or disk fi le (1)

Tape journal fi le Sequential tape or disk fi le (1)

Journal Buffers and Journal Files

76 Database Administration Guide

Note: (1) To be used for manual recovery, journal fi les on disk must be copied to tape.

Files You Choose Depend on the Runtime Environment

The type of journal fi les you define to a DMCL depends on whether the DMCL will be
used under the central version or to journal updates made by a local mode application.
A typical journaling configuration appears below:

Type of configuration Description

Under the central version Define:

■ 2 or more disk journals

■ 1 or more archive journals

In local mode Define 1 tape journal

A DMCL defined with disk and archive journals can be used in local mode provided
journaling is not necessary. Only a DMCL defined with a tape journal fi le can be used to

journal in local mode.

Multiple Archive Files

You can define more than one archive journal. When CA IDMS/DB offloads a disk
journal, it writes journal images to each archive fi le, thereby reducing the risk of
unreadable archive journal fi les.

Journal Buffers and Journal Files

Chapter 5: Defining, Generating, and Punching a DMCL 77

Sizing Journal Buffers

What the Journal Buffer Defines

The definition of a journal buffer defines how many pages it contains and how large the

pages should be.

Buffer Page Size

The journal buffer page size determines the block size for the disk or tape journal fi les

specified for the DMCL. Use the following criteria to choose a size for the journal buffer
pages:

■ If possible, the page size should be at leas t twice the size of the longest database

record occurrence

■ For VSAM disk journals, the buffer page size must be 8 bytes larger than the size of
the control interval

■ The page size should approximate an opti mal page size for the device type in which

non-VSAM disk journal fi les reside

■ For tape journal fi les, the buffer page size should be as large as possible

Note: For more information about valid ranges for each operating system, see the

JOURNAL BUFFER statement in Chapter 7, “Physical Database DDL Statements”.

Number of Buffer Pages

The higher the number of buffer pages, the more likely that a journal block will be found
in memory eliminating the need for a disk access. Since a central version reads journa l

blocks primarily during rollback operations, increasing the number of journal buffer
pages reduces the number of I/Os and the amount of time needed to roll out database
changes.

You should minimally allocate five journal buffer pages. If you have the storage, increase

this number significantly in a volatile system in which rollbacks occur frequently.

Journal Buffers and Journal Files

78 Database Administration Guide

Sizing Journal Files

Disk Journal Attributes

When you define disk journal fi les consider the following topics:

■ How many disk journal fi les to define

■ The number of blocks in each disk journal

Number of Disk Journals

For optimal journal processing, you shoul d define at least three disk journal fi les. When
one fi le is full, CA IDMS/DB can immediately write to another fi le. While CA IDMS/DB
writes to the alternate fi le, you can offload the full disk journal fi le to an archive fi le

using the ARCHIVE JOURNAL util ity statement. If CA IDMS/DB fi l ls the second fi le, it can
swap to a third fi le even if the ARCHIVE JOURNAL util ity is sti l l offloading the first fi le.

Batch Update Jobs May Require Added Files

You may need to increase the number of disk journal fi les when you run a batch
program that updates a large volume of data. An added disk journal can prevent a
situation in which the offload util ity fails to complete its task before the remaining disk

journal fi les fi l l.

Place Files to Avoid Offload Contention

To reduce contention during offload operations, you should:

■ Place the disk journals on disk packs that do not contain database or dictionary fi les

■ Assign each disk journal to a different volume and channel

Journal Buffers and Journal Files

Chapter 5: Defining, Generating, and Punching a DMCL 79

Disk Journal File Size

The size of a disk journal fi le affects:

■ How often the disk journal gets offloaded to the archive journal and the amount of
time required to accomplish the offload. A small disk journal size means a greater

number of archive tapes to keep track of since the last database backup. A large
disk journal size means CA IDMS/DB will need more time to offload the disk journal
to an archive fi le.

■ The risk of losing data due to an I/O error on a journal fi le. A smaller fi le reduces the

potential data loss while a larger one increases it.

■ The amount of time required to perform a warmstart following a system failure. If
the disk journal fi les are large, it may take longer for CA IDMS/DB to read through

the journal in use at the time of the system failure.

Note: You can enhance warmstart performance by using the FRAGMENT INTERVAL
options of the SYSTEM system generation statement or of the DCMT VARY
JOURNAL command.

Adding Segments to the DMCL

80 Database Administration Guide

Adding Segments to the DMCL

Required Segments

Segments Required for Central Version

The DMCL used under the central version must contain physical descriptions of all
segments to be accessed under the central version. The segments include those
defining:

■ The system dictionary

■ The user catalog

■ Additional system areas required for central version operations:

– DDLDCLOG

– DDLDCRUN

– DDLDCSCR

– SYSMSG.DDLDCMSG

■ One or more application dictionaries

■ One or more user databases

The user catalog may not be required depending on your security implementation.

Note: For more information, see the CA IDMS Security Administration Guide.

Each central version must have its own DDLDCLOG system area and if used, its own
DDLDCSCR area. In a non-data sharing environment, each central version must also have
its own DDLDCRUN system area. In a non data-sharing environment, only one central
version can update an area at a time. In a data-sharing environment, all areas except

DDLDCLOG and DDLDCSCR can be shared and updated simultaneously by multiple
central versions.

Adding Segments to the DMCL

Chapter 5: Defining, Generating, and Punching a DMCL 81

Segments Required for Local Mode

The DMCL used in local mode contains all segments to be accessed by the application.
Generally these segments include:

■ The system dictionary

■ The user catalog

■ The message area, SYSMSG.DDLDCMSG

■ All user databases to be accessed by the application

■ For applications using SQL:

– A local mode scratch area, DDLOCSCR, or a system scratch area, DDLDCSCR,
unless scratch in memory is in effect

– The application dictionary containing the table definitions

■ For applications using non-SQL DML:

– The application dictionary containing the subschema load module

The system dictionary and user catalog may not be required, depending on how security
is implemented in your environment.

Note: For more information, see the CA IDMS Security Administration Guide.

Subschema load modules can be loaded from a load library instead of a dictionary. A
warning message may be written to the job log if the segment containing the load area
(DDLDCLOD) for the default dictionary is not included in the DMCL.

Adding Segments to the DMCL

82 Database Administration Guide

File Limitations

Although any number of segments can be added to a DMCL, z/OS places a l imit on the
number of fi les that can be accessed within a single job step. This is a runtime
restriction, since the DMCL can contain the definition of any number of fi l es; however

the number that can be accessed concurrently is l imited.

Normally a z/OS job step can access up to 3,273 fi les. CA IDMS has extended this l imit
for a CV, to allow up to 10,000 fi les to be accessed using dynamic allocation and 3,273
fi les to be accessed using DD statements.

Note: Since the maximum number of DD statements that can be associated with a job
step is 3273, if the number of database fi les in a DMCL is close to or exceeds this l imit,
dynamic allocation should be used for all database fi les so that the limit will not prevent
the use of DD statements to override dynamically allocated fi les when necessary.

Increasing the number of fi les beyond the 3273 limit has implications for manual
recovery, since the increased limit is supported only for CVs and not local mode batch
jobs such as util ity executions. To perform manual recovery, it may be necessary to

execute the ROLLBACK or ROLLFORWARD util ity statement multiple times, recovering a
subset of the areas or segments in each execution.

Note: For more information about the impact on recovery, see 21.2, “Backup
Procedures".

Area Status

Type of Access

When a DC/UCF system first accesses an area, the type of access is determined by the

area status specifications within the DMCL. The choices for area status are:

■ Update—indicating that database transactions executing under the central version
can retrieve and update data within the area; local mode transactions and other

central versions can retrieve from but not update the area .

■ Retrieval—indicating that database transactions executing under the central
version can retrieve but not update data in the area; a local mode transaction or
another central version can update the area.

■ Transient retrieval—similar to retrieval except that record (row) locks are not
maintained for transactions executing within the central version.

■ Offline—indicating that database transactions executing under the central version

can neither retrieve nor update data in the area .

The status of an area can be changed dynamically using DCMT VARY AREA and VARY
SEGMENT commands.

Adding Segments to the DMCL

Chapter 5: Defining, Generating, and Punching a DMCL 83

Retrieval Versus Transient Retrieval

Because locks are not maintained for records or rows in areas whose status is transient
retrieval, less CPU (and potentially less storage) may be consumed by a transaction than
if the area status were retrieval. (SQL transactions using an isolation level of transient

retrieval and non-SQL transactions in a system with a sysgen specification of no retrieval
locking are the exceptions.) However, an area whose status is transient retrieval must
be varied offline before it can be varied to another status such as update.

To vary an area offline, all concurrently executing transactions must be terminated and

all notify locks released. During the time it takes to achieve this quiesce point, new
transactions will not be allowed to access the area. If this causes unacceptable
processing delays the use of transient retrieval should be avoided.

Permanent Area Status

The status of an area can be changed at run time using a DCMT VARY AREA or VARY
SEGMENT command. In addition to establishing a new area status, that status can also

be declared as "permanent." A permanent area status remains in effect until changed by
a subsequent DCMT command or until the DC/UCF system's SYSTRK or journal fi les are
initialized. A permanent area status survives system shutdowns and abnormal

terminations.

Status After System Termination

Unless a permanent area status has been established through a DCMT command, the

ON STARTUP and ON WARMSTART parameters determine the status of an area when a
DC/UCF system starts up. The first time a DC/UCF system is started or whenever it is
restarted after a normal shutdown, the status of an area is established from the ON

STARTUP specification. If the system is restarted following an abnormal termination,
the status of an area is established from the ON WARMSTART specification. If the
warmstart option is MAINTAIN CURRENT STATUS, the area status is set to what it was at
the time of the abnormal termination.

Adding Segments to the DMCL

84 Database Administration Guide

Sharing Update Access to Data

What Is a Shared Area?

A shared area is an area that has been designated as shared. The sharability s tate of an

area has meaning only for a central version that is a member of a data sharing group. An
area that has been designated as shared can be updated concurrently by any member of
the data sharing group that has access to the area in update. Only one group can have
update access to an area at a time.

Designating an Area as Shared

You designate an area as shared by specifying the DATA SHARING YES clause when

adding the segment to the DMCL or on a subsequent area override. The sharability state
of an area can be changed at runtime by issuing a DCMT VARY SEGMENT or VARY AREA
command, provided that the area's status is offl ine.

Shared Area Requirements

To share update access to an area, the following criteria must be met:

■ All of the area's fi les must have an associated shared cache

■ The area's characteristics must be identical in all members of the data sharing
group that are to share access. These characteristics include:

– Page range, page group, and number of records per page

– Segment and area names

– Page size

– File mappings

– IDMS fi le names

– DSNAME and VOLSER of the associated disk fi les

■ Within a data sharing group, no two shared areas can have overlapping page ranges

within a page group

■ Within a data sharing group, the combination of DSNAME and VOLSER must be
unique for all IDMS fi les associated with shared areas

■ A shared area cannot be native VSAM

■ A shared area cannot be part of a dictionary controlled by CA Endevor/DB

If these conditions are not satisfied, you must alter your DMCL and segment definitions
before declaring the area to be shared. Failure to do so will mean that one or more

members of the group will be unable to access the area.

These conditions are waived on any CA IDMS system that is accessing the area in a
transient retrieval mode regardless of whether the area has been designated as shared.

Adding Segments to the DMCL

Chapter 5: Defining, Generating, and Punching a DMCL 85

Area Overrides

The following information can be specified or overridden at the area level:

■ Page reserve

■ Central version area status

■ Sharability state of an area

Overriding Page Reserve

Page reserve is space allocated on a database page for the expansion of variable-length
records, bottom-level (SR8) index records, and compressed record occurrences or rows.

Certain types of processing may benefit from tailored page reserves. For example, you
may want to increase page reserve during an index load, after which, you reduce the
page reserve.

To change the page reserve assigned to an area for a particular DMCL, override the
area's definition:

create segment prodemp;

create area emp-area

 primary space 50 pages

 page size 1000 characters

 page reserve 0 characters

 .

 .

 .

alter dmcl idmsdmcl

 add segment prodemp

 add area prodemp.emp-area

 page reserve 250 characters;

After loading the index, drop the area's page reserve by dropping the area override from
the DMCL definition:

alter dmcl idmsdmcl

 drop area prodemp.emp-area;

Adding Segments to the DMCL

86 Database Administration Guide

File Overrides

The following information can be specified or overridden at the fi le level:

■ External fi le name (DDNAME)

■ Dataset disposition for dynamic allocation

■ Dataspace usage

■ Buffer association

■ Shared cache association

Overriding the External File Name

If your DMCL contains fi les defined with duplicate external fi le names, use the fi le
override clause to resolve the conflict.

Dataspace Usage

Use fi le overrides to indicate that a fi le is to reside in a dataspace. If a dataspace is
used, whenever a page is read from disk it will be cached in the dataspace. All future
reads will receive a copy of the page in the dataspace, thus reducing I/O requests. The

page will remain in the dataspace until the fi le is closed.

The DCMT VARY FILE command allows the dataspace specification to be changed
dynamically while the system is running.

Shared Cache Association

You can associate a shared cache with a fi l e either through a fi le override or by
specifying a default shared cache for the fi le's segment. The latter is then used for all

fi les within the segment, unless a fi le override specifies a different shared cache.

A default shared cache can also be specifi ed for the DMCL. This is used only in a data
sharing environment for fi le's whose associated area is designated as shared and for
which no cache has otherwise been assigned.

Note: For more information about using shared cache, see the CA IDMS System
Operations Guide.

Procedure for Defining a DMCL

Chapter 5: Defining, Generating, and Punching a DMCL 87

Procedure for Defining a DMCL

Steps for Defining the Central Version DMCL

To create a DMCL for use under the central version, follow these steps:

Action Statement

Create the DMCL CREATE DMCL

Create one or more database buffers CREATE BUFFER

Create 1 journal buffer CREATE JOURNAL BUFFER

Create 2 or more disk journal fi les CREATE DISK JOURNAL

Create 1 or more archive journal fi les CREATE ARCHIVE JOURNAL

Add all segments to be used under the

central version or in local mode

ALTER DMCL with the ADD SEGMENT

clause

Optionally, override fi le or area definitions
contained in segments associated with the
DMCL

ALTER DMCL with the ADD FILE or ADD
AREA clauses

Associate a database name table with the
DMCL

ALTER DMCL with the DBTABLE clause

Procedure for Defining a DMCL

88 Database Administration Guide

Example

The following example creates a DMCL to be used under the central version and in local
mode. The DMCL defines one large buffer. For applications run locally, the buffer
contains 100 4096-byte pages. Under the central version, the buffer initially contains

500 pages; you can increase the number of pages to 1500 dynamically by issuing a
DCMT VARY BUFFER command.

create dmcl proddmcl dbtable proddbs;

create buffer big_buffer

 page size 4096

 local mode buffer pages 100

 opsys storage

 central version mode buffer

 initial pages 500

 maximum pages 1500

 opsys storage;

create journal buffer jrnlbuff

 page size 4096

 buffer pages 3;

create disk journal diskjnl1

 file size 1000

 assign to sysjnl1;

create disk journal diskjnl2

 file size 1000

 assign to sysjnl2;

create disk journal diskjnl3

 file size 1000

 assign to sysjnl3;

create archive journal archjrnl

 block size 16000

 assign to sysajnl1;

alter dmcl proddmcl

 default buffer big_buffer

 add segment system

 add segment defdict

 add segment empdict

 ...

 add segment empseg;

Making the DMCL Accessible to the Runtime Environment

Chapter 5: Defining, Generating, and Punching a DMCL 89

Steps for Defining a Local Mode DMCL

To create a DMCL for local mode only, follow the same steps as in defining a DMCL for
central version use, except define a tape journal fi le instead of disk and archive journal
fi les.

create dmcl idmsdmcl dbtable proddbs;

create buffer locl_buffer

 page size 16000

 local mode buffer pages 100

 opsys storage;

create journal buffer jrnlbuff

 page size 4096

 buffer pages 3;

create tape journal tapejnl1

 assign to tapejrnl;

alter dmcl idmsdmcl

 default buffer locl_buffer

 add segment defdict

 add segment catdict

 add segment empdict

 ...

 add segment empseg;

Making the DMCL Accessible to the Runtime Environment

Generate the DMCL Load Module

Generate the DMCL load module by issuing a GENERATE statement. Optionally, identify
the operating system under which the DMCL will be used. For example, you can define a

DMCL on a z/OS operating system that will be used under z/VM:

generate dmcl idmsdmcl for vm;

Punch the DMCL

Punch the DMCL load module using the PUNCH DMCL LOAD MODULE util ity statement:

punch dmcl load module idmsdmcl;

Making the DMCL Accessible to the Runtime Environment

90 Database Administration Guide

Link-edit the DMCL

Link-edit the resulting object module to a load library using the linkage-editor for your
operating system. The name under which you link the DMCL is the name by which the
DMCL is known at runtime. Therefore, you can define different DMCLs and link them all

with the same name provided they reside in different load libraries. This can be an
advantage for local mode operations since the default DMCL used at runtime is
IDMSDMCL, unless a SYSIDMS parameter is used to override the default.

Identify the DMCL to the Runtime System

Identify the DMCL to the runtime system:

■ Under the central version, specify the DMCL name in the startup parameters for the

DC/UCF system

■ If the name of the DMCL to be used in local mode is not IDMSDMCL, identify the
local mode DMCL in the SYSIDMS parameter fi le

More Information

■ For more information about modifying DMCL definitions, see Chapter 27,
"Modifying Physical Database Definitions".

■ For more information about the DC/UCF system startup parameters, see the CA
IDMS System Operations Guide.

■ For more information about the SYSIDMS parameter fi le, see the CA IDMS Common
Facilities Guide.

■ For more information about the PUNCH util ity statement, see the CA IDMS Utilities

Guide.

■ For more information about journaling procedures and offloading, see Chapter 19,
“Journaling Procedures".

■ For more information about buffer management and planning, see Chapter 18,

“Buffer Management".

■ For more information about creating disk journal fi les, see Chapter 17, "Allocating
and Formatting Files".

■ For more information about data sharing, see the CA IDMS System Operations

Guide.

■ For more information about using shared cache, see the CA IDMS System
Operations Guide.

Chapter 6: Defining a Database Name Table 91

Chapter 6: Defining a Database Name Table

This section contains the following topics:

Overview (see page 91)
Planning (see page 94)
Defining and Generating the Database Name Table (see page 104)

Overview

A database name table is used to:

■ Group multiple segments under one name for processing as a single database or
dictionary

■ Group multiple segments under one name for maintenance operations

■ Define a default dictionary for both online and local mode processing

■ Identify the database to be accessed by a rununit when no database name is
provided by the application or its runtime environment

■ Identify the database groups to which database requests can be dynamically routed
in a parallel sysplex environment

Overview

92 Database Administration Guide

Contents of a Database Name Table

A database name table contains the definition of one or more database names defined
with a CREATE DBNAME statement. Database names group segments together for
processing as a single database or dictionary. Each database name definition consists of

its name and the identification of one or more segments containing data required by
applications accessing the named database. Additional options associated with a
database name influence the processing of non-SQL applications. These options permit:

■ Translating subschema names at runtime

■ Restricting access to specified subschemas

■ Binding a run unit to areas with a mixture of page groups and maximum records per
page values

A database name table also includes a set of DBTABLE mapping rules used to identify
the database or dictionary to be accessed if none is specified at runtime. These rules
identify the database name to be accessed when a rununit binds to a given subschema.
Every database name table must include at least one DBTABLE mapping rule to identify

the default dictionary.

In a parallel sysplex environment, a database name table may also define one or more
database groups defined with a CREATE DBGROUP statement. A database group
represents a named collection of central versions that can service a given s et of

database requests. Any central version whose database name table includes the
database group to which a request is directed is a member of that group and is eligible
to service that request. The request will be dynamically routed to one of the CVs in the

database group based on CPU availability.

Note: For more information about DBGROUPs and dynamic routing, see the CA IDMS
System Operations Guide.

Overview

Chapter 6: Defining a Database Name Table 93

Grouping Segments Together

The purpose of a database name is to group multiple segments together for use as a
single database. Segment grouping is primarily used for defining dictionaries and
non-SQL defined databases. The following example il lustrates how database names can

be used for defining test and production employee databases.

Each database name consists of two segments, one containing employee data and one
containing project data. The production database EMPDB, contains segments EMPSEG
and PROJSEG; the test database TESTDB, contains segments TEMPSEG and TPROSEG.

 Database name table ALLDBS

 ┌───┐
 │ ┌──────────────────────────────────┐ │
 │ │Database name EMPDB │ │
 │ │ │ │
 │ │ Segment EMPSEG │ │
 │ │ Segment PROJSEG │ │
 │ │ │ │
 │ └──────────────────────────────────┘ │
 │ │
 │ ┌──────────────────────────────────┐ │
 │ │Database name TESTDB │ │
 │ │ │ │
 │ │ Segment TEMPSEG │ │
 │ │ Segment TPROSEG │ │
 │ │ │ │
 │ └──────────────────────────────────┘ │
 └───┘

Utility Use Only Database Names

Database names can also be created simply as a means of referring to a group of
segments even though no application will ever access the segments together. Creating
such database names can simplify administration since certain commands, such as

DCMT QUIESCE, can operate by DBNAME. In order to avoid warning messages caused by
such arbitrary groups of segments, you can specify FOR UTILITY USE ONLY when defining
the DBNAME.

Note: For more information about the types of warnings that may be reported, see
6.2.6, “Conflicting Names” and 6.2.7, “Mixed Page Groups and Maximum Records Per
Page”.

Planning

94 Database Administration Guide

Planning

SQL Considerations

Connecting an SQL Session

Most SQL applications will connect to the dictionary containing the definitions of the

tables to be accessed. If the dictionary is composed of a single segment, no database
name is required. If the dictionary is composed of multiple segments, then a database
name must be created to identify all segments that make up the dictionary.

The following example shows a dictionary definition composed of three segments: a

DDLDML component (testdict), a catalog component (testcat), and a message
component (sysmsg):

 .

 .

 .

create dbname testdict

 add segment testdict

 add segment testcat

 add segment sysmsg;

Note: For more information about defining dictionaries, see Chapter 25, "Dictionaries

and Runtime Environments".

Accessing Data through a Referencing Schema

If the SQL application accesses data through a referencing schema, the database name
to which the SQL session connects may also need to include the segments containing
the data to be accessed. Referencing schemas are used to provide SQL access to

non-SQL defined databases and to enable different instances of an SQL-defined
database to be accessed using the same table names.

When a referencing schema is defined, you can associate it with a specific database. If
the referencing schema is not associated with a specific database (because its DBNAME

is null), then you must include the segments containing the data to be accessed in the
database name to which the SQL session connects.

In the following example, the SQL schema definition representing a non-SQL defined

database does not include a DBNAME specification:

create schema empsql

 for nonsql schema empschm;

Planning

Chapter 6: Defining a Database Name Table 95

For CA IDMS to know where the non-SQL defined data is located, you must define a
database name that includes both the dictionary segments and the non-SQL segments

containing the data. The segment TESTCAT is the segment in which the EMPSQL schema
resides. The segment TESTDICT contains the non-SQL schema EMPSCHM. The segment
EMPSEG is the non-SQL segment containing the data described by schema EMPSCHM.

 .

 .

 .

create dbname abc

 add segment testdict

 add segment testcat

 add segment sysmsg

 add segment empseg

Non-SQL Considerations

Identifying Segments

When binding a rununit, the runtime system must determine which segment (or

segments) contain the data to be accessed. Although the subschema identifies the
areas, there may be several areas with the same name in the DMCL. To determine
which area to access, the runtime system must qualify the area name with the name of
a segment.

To determine the segments to be accessed, the name of a segment or database must be
provided at runtime. This name can be specified in any of the following ways:

■ By the application, using the DBNAME parameter on the BIND RUNUNIT statement

■ From the DBNAME session attribute. Session attributes are established through
user or system profiles, DCUF SET commands in DC/UCF or SYSIDMS parameters in
batch

■ From the DBNAME value in a SYSCTL fi le or an IDMSOPTI module l inked with the

application

■ From the database name table through the use of DBTABLE mapping rules

Accessing a Single Segment

If all areas to be accessed are within one segment, the name of the segment can be

specified at runtime using one of the above techniques. For example, the EMPLOAD
program executed during CA IDMS installation only requires access to areas in the
EMPDEMO segment. The SYSIDMS parameter fi le in the execution job stream specifies

DBNAME=EMPDEMO, identifying the segment to be accessed. No special DBNAME
entry is required.

Planning

96 Database Administration Guide

Accessing Multiple Segments

If the application needs access to areas within multiple segments, those segments must
be grouped together as a single database whose name is provided at runtime. When
the bind takes place, CA IDMS locates the definiti on of the database in the database

name table. It then searches the segments associated with that database name for a
match on each area named in the subschema.

The installation process again provides an example of using a DBNAME to group
segments together as one database. The system dictionary is the dictionary used to
contain both physical database definitions (DMCLs, SEGMENTs, and so on) and the

DC/UCF system definition. The logical name of this dictionary must be SYSTEM, since
components of the runtime system access it under this name. However, it is composed
of multiple segments:

■ The CATSYS segment containing the DDLCAT, DDLCATX and DDLCATLOD areas

■ The SYSTEM segment containing the DDLDML, DDLDCLOD and other system
runtime areas

■ The SYSMSG segment containing the messages issued by the runtime system

To treat all of these segments as a single database for processing by tools such as IDD
and the command facil ity, the database name table contains a database name called
SYSTEM which includes all three segments.

Using DBTABLE Mappings

When binding a rununit, if no segment or database name is explicitly established, CA
IDMS searches the list of DBTABLE mapping rules in the database name table looking for
one in which the "from-subschema" matches the name of the subschema specified on
the bind. If a match is found, the database to be accessed is determined from the

DBNAME specified in the DBTABLE mapping rule. I f no match is found (and therefore no
segment names can be established), the bind will fail with an error status of 1491.

Planning

Chapter 6: Defining a Database Name Table 97

To ensure that rununits will bind successfully, you must specify DBTABLE mappings for
all rununits that bind without establishing a DBNAME. For example, if all rununits

binding to a subschema whose name begins with INS are to access the insurance
database INSDB then specify the following DBTABLE mapping:

alter dbtable alldbs

 subschema ins????? maps to ins????? dbname insdb;

Using Subschema Mappings

When defining a database name, you can specify subschema mapping rules that change
the name of the subschema specified by the application at the time a rununit is bound.
This feature allows an application program to be compiled against one subschema but

execute using a different subschema. This can be useful when:

■ The two subschemas are derived from different schemas (for example, test and
production schemas)

■ The two subschemas are derived from different versions of the same schema (a
change was made to the schema and new subschemas created)

For example, two schemas, EMPSCHM and TEMPSCHM define the production and test
versions of the same database. Separate schemas are maintained so that changes can
be made to the test version without impacting production. Each schema has a set of

subschemas: EMPPxxxx are production subschemas and EMPTxxxx are test subschemas.
Programs are compiled against the test subschemas and copied into the production
libraries when ready. The following subschema mapping rule ensures that rununits use
production subschemas when binding to the production (EMPDB) database:

 create dbname alldbs.empdb

 subschema empt???? maps to empp????

.

.

.

Planning

98 Database Administration Guide

Additional Segments

In your database name definition, you must identify the segments containing the data to
be accessed by applications binding to that database. If all applications specify a
DBNAME on the BIND RUNUNIT statement, then only segments accessed by those

rununits need to be included in the database name. If, on the other hand, the database
name is specified externally (for example by using a DCUF command), then you may
need to include additional segments within your database name definition or use
subschema mapping rules to ensure that rununits bind successfully.

To il lustrate this, assume that an application requires access to both employee and
project data in segments EMPSEG and PROJSEG respectively. To satisfy this application,
a database name of EMPDB is created:

create dbname alldbs.empdb

 include segment empseg

 include segment projseg;

Instead of specifying EMPDB within the application, the user issues a DCUF SET DBNAME
command to establish EMPDB as the DBNAME session attribute. Because this session

attribute applies to all rununits initiated on behalf of the user, to satisfy another rununit
accessing insurance information, either:

■ Include the insurance segment in the EMPDB database name

or

■ Use subschema mapping rules on the DBNAME statement for EMPDB to redirect
the insurance rununit to a different database name:

alter dbname alldbs.empdb

 subschema empt???? maps to empp????

 subschema ???????? uses dbtable mapping;

In addition to changing the name of employee subschemas, these parameters have the

effect of treating rununits binding to other subschemas, as if no DBNAME were
specified; instead, the database name is selected using the DBTABLE mapping rules.

Planning

Chapter 6: Defining a Database Name Table 99

Restricting Subschema Names

Determines Valid Subschemas

You can request that the subschema name bound by an application be present in the
database name table in order for the application to execute using the subschema. You

can use this feature to prevent access to the database from an unauthorized
subschema.

To request this feature, specify MATCH ON SUBSCHEMA REQUIRED on the DBNAME
statement.

Note: You can also achieve the same or better protection using rununit security
documented in CA IDMS Security Administration Guide.

Application Dictionaries

Database Name Required

In most cases, each application dictionary will require a separate database name
definition. The only time a database name definition is not required for a dictionary is if

all areas other than the system message area are in one segment.

Note: For more information about defining dictionaries, see Chapter 25, “Dictionaries
and Runtime Environments".

Sharing Areas

If areas are shared between dictionaries, place those areas in separate segments and
include the segment in all appropriate database names. For example, if two or more
dictionaries share the same DDLDCLOD area, then place the load area in its own
segment and define a database name for each dictionary including in each the segment

that contains the shared load area.

Mixed Page Groups

If your dictionaries have different page groups (or maximum records per page), they
cannot share areas. This also applies to the system message area, which can be
included only in dictionaries with the same page group.

Note: All of the AREAS in a dictionary subschema (for example, IDMSNWKA,

IDMSNWKG, and so on) must be in the same PAGE GROUP. A BIND for such a
subschema containing AREAS that map to different PAGE GROUPS is not supported and
will result in the task being abended with error messages DB347030 and DC208001 and

abend code 5007.

Planning

100 Database Administration Guide

Defining the Default Dictionary

What Is a Default Dictionary?

The default dictionary is the dictionary accessed by SQL applications, CA IDMS tools and

other runtime components when none is specified through other means. For example,
if the DDDL compiler is executed in batch and a dictionary is neither specified on a
SIGNON statement nor a SYSIDMS parameter, the default dictionary is accessed.

Defining a Default Dictionary

The default dictionary is defined using a DBNAME statement and is identified as the
default by a DBTABLE mapping rule.

By convention, the default dictionary is identified (using DBTABLE mapping rules) as the
database name to which the IDMSNWKL subschema maps. Since all subschemas whose
names begin with "IDMSNWK" are typically mapped in the same way, the DBTABLE
mapping rule defining the default dictionary usually specifies IDMSNWK? as a

subschema name.

The following statements define TESTDICT, which is comprised of segments TESTDICT
and SYSMSG, as the default dictionary for the ALLDBS database name table:

 create dbtable alldbs

 subschema idmsnwk? maps to idmsnwk? dbname testdict

.

.

.

 create dbname alldbs.testdict

 segment testdict

 segment sysmsg;

Every database name table must have a default dictionary specification.

Planning

Chapter 6: Defining a Database Name Table 101

Conflicting Names

Area Names

If you have database areas with conflicting names, you must define separate database

names for each set of conflicting areas. This means that if two segments have an
identically named area, they cannot be included within the same database name. Areas
that must be shared across databases (for example, areas containing corporate-wide
insurance information) should be placed in their own segment so that they can be

included in multiple database names without causing conflicts.

Segment and Database Names

If a DMCL includes a segment with the same name as a database in the associated
database name table, then that database name must include the segment of the same
name. For example, if a DMCL contains a segment named EMPDB and its associated
database name table contains a database name called EMPDB, then the segment

EMPDB must be included in the database named EMPDB. This ensures that applications
accessing EMPDB will always access the same data.

Checking for Conflicts

Both of the above conditions are checked by the runtime system. If a name conflict is

detected, the database name is flagged in error and no application will be able to access
it. To detect conflicts before placing a new DMCL or da tabase name table into
production, use the DMCL option of the IDMSLOOK util ity.

To eliminate warning messages for database names created only for administrative
convenience, you can designate them for util ity use only.

Mixed Page Groups and Maximum Records Per Page

What Is Allowed?

SQL access to data in mixed page groups and with different maximum records per page
is always allowed. However, by default, CA IDMS does not support the ability to access
data in areas with different page groups or maximum records per page from a run unit.

Therefore, if you need to access a database which exceeds the size l imits of a single
page group or which uses different record maximums from a single run unit, you must
indicate this by specifying the MIXED PAGE GROUP BINDS ALLOWED option on the

DBNAME statement that defines the database.

Planning

102 Database Administration Guide

What Happens When Binding a Run Unit?

If an application program binds a run unit to a database that includes segments with a
mix of page groups or maximum records per page, the bind may or may not succeed
depending on the MIXED PAGE GROUP option specified on the database's DBNAME

statement:

■ MIXED PAGE GROUP BINDS ALLOWED—The bind will succeed regardless of what
areas are included in the subschema.

■ MIXED PAGE GROUP BINDS NOT ALLOWED—The bind will succeed only if all areas

in the subschema are in the same page group and have the same maximum records
per page.

Detecting Potential Problems

You can detect potential problems ahead of time by using the IDMSLOOK util ity (or the
LOOK system task). The DMCL option will warn you if you have mixed page groups or
maximum records per page within any of your database names. The BIND option will

indicate whether a bind run unit will succeed for a specified subschema and database.

To eliminate warning messages for database names created only for administrative
convenience, you can designate them for util ity use only.

Application Program Considerations

Special care must be taken in navigational-DML application programs that access data
with a mix of page groups or maximum records per page. If the application program
retrieves a record by dbkey then it must do one of the following:

■ Specify on the DML command the name of the record that it is trying to retrieve

■ Specify on the DML command the page group and maximum records per page of
the record that it is trying to retrieve

■ Ensure that the current page group and maximum records per page are correct for

the record that it is trying to retrieve. The current page group and record maximum
are those associated with the dbkey that is current of run unit.

Failure to take one of these actions may lead to the inability to retrieve any record or

the retrieval of unintended records.

Identifying Potential Problem Programs

Numbered exit, Exit 34, is provided for use with the MIXED PAGE GROUP BINDS

ALLOWED option. You can use this exit to help identify applications that may require
modification to function correctly when mixed page group support is enabled.

Note: For more information about Exit 34, see the CA IDMS System Operations Guide.

Planning

Chapter 6: Defining a Database Name Table 103

Dictionary Considerations

MIXED PAGE GROUP BINDS ALLOWED cannot be specified for dictionaries. When
defining a dictionary with a mixture of page groups or maximum records per page, the
following rules must be observed:

■ The DDLDML and DDLDCLOD areas must be in the same page group and have the
same maximum records per page. The DDLDCMSG area (if included in the DBNAME)
must also have the same page group and record maximum.

■ The DDLCAT, DDLCATX, and DDLCATLOD areas must be in the same page group and

have the same maximum records per page.

■ These two area sets may be in different page groups.

■ Dictionaries that share load areas must be in the same page group.

If you define a dictionary with a mixture of page groups or maximum records per page,
certain util ity functions such as UNLOAD can only be performed by segment or
individual area, rather than for the dictionary as a whole.

Sharing Database Name Tables

One Database Name Table Per Environment

In most cases only one database name table is needed for each of your runtime
environments. This means that all DMCLs defined in a system dictionary normally

specify the same database name table in their DBTABLE clause. The database name
table used at runtime is the one identified in the DMCL being used.

Missing Segments

Since multiple DMCLs are associated with the same database name table, it is possible
(in fact l ikely) that a segment included in a database name is not included in the DMCL
being used. This is a normal condition and will result in an error only if an application

attempts to access data from the missing segment.

Defining and Generating the Database Name Table

104 Database Administration Guide

Defining and Generating the Database Name Table

Steps to Follow

Define and generate the database name table using the steps l isted as follows.

The database name table must exist as a module in a load library in order to be usable

by the runtime system. The name of the load module assigned in the link-edit must
match the name specified in the DMCL.

Action Statement

Create the database name table, adding
DBTABLE mappings to define a default
dictionary and for non-SQL applications

binding without a DBNAME

CREATE DBTABLE

Create the database names, adding the
segments and subschema mappings
required by your applications

CREATE DBNAME

Generate the database name table GENERATE DBTABLE

Associate the database name table with a
DMCL

ALTER DMCL

Punch the database name table load
module and link-edit it to a load library

PUNCH DBTABLE LOAD MODULE

Example

The example below defines a basic database name table that is suitable if all
non-dictionary segments in your runtime environment are in the same page group and
have unique area names.

It has the following characteristics:

■ A database name for each of the following dictionaries: an application dictionary
called DEFDICT, the system dictionary called SYSTEM and the SYSDIRL dictionary
containing report definitions and dictionary schemas.

■ A DBTABLE mapping rule identifying DEFDICT as the default dictionary

■ A database name called DEFDB that includes all non-SQL defined segments (other
than those related to a dictionary)

■ A DBTABLE mapping rule identifying DEFDB as the database to be accessed by all
non-SQL applications that do not specify a DBNAME

Defining and Generating the Database Name Table

Chapter 6: Defining a Database Name Table 105

 create dbtable alldbs

 subschema idmsnwk? maps to idmsnwk? dbname defdict

 subschema ???????? maps to ???????? dbname defdb;

 create dbname system

 segment catsys

 segment system

 segment sysmsg;

 create dbname defdict

 segment defdict

 segment defcat ◄-- for SQL users

 segment sysmsg;

 create dbname defdb

 segment user-segment1

 segment user-segment2

 .

 .

 .

 generate dbtable alldbs;

More Information

■ For more information about modifying the database name table, see Chapter 28,

“Modifying Database Name Tables".

■ For more information about establishing the runtime environment and defining
dictionaries, see Chapter 25, "Dictionaries and Runtime Environments".

■ For more information about system generation, see the CA IDMS System

Generation Guide.

■ For more information about DCMT commands, see the CA IDMS System Tasks and
Operator Commands Guide.

■ For more information about DBGROUPs and dynamic routing, see the CA IDMS
System Operations Guide.

Chapter 7: Physical Database DDL Statements 107

Chapter 7: Physical Database DDL
Statements

This section contains the following topics:

Statement Summary (see page 107)
Components of a Physical DDL Statement (see page 110)

Naming Conventions (see page 111)
Generic DISPLAY/PUNCH Statement (see page 114)
DISPLAY/PUNCH ALL Statement (see page 116)
ARCHIVE JOURNAL Statements (see page 131)

AREA Statements (see page 135)
BUFFER Statements (see page 156)
DBGROUP Statements (see page 163)

DBNAME Statements (see page 165)
DBTABLE Statements (see page 171)
DISK JOURNAL Statements (see page 177)
DMCL Statements (see page 183)

FILE Statements (see page 200)
JOURNAL BUFFER Statements (see page 208)
SEGMENT Statements (see page 211)
TAPE JOURNAL Statements (see page 217)

Summary of Physical Database Limits (see page 220)

Statement Summary

Physical Database Description Statements

The following table summarizes the statements described in this chapter in order by

verb. The statement descriptions are arranged in alphabetic order by noun.

Statement Purpose

ALTER ARCHIVE JOURNAL Modifies the definition of an archive journal fi le

ALTER AREA Modifies the definition of an area

ALTER BUFFER Modifies the definition of a database buffer

ALTER DBGROUP Modifies a database group within a database name

table

ALTER DBNAME Modifies an entry in the database name table

ALTER DBTABLE Modifies a database name table definition

Statement Summary

108 Database Administration Guide

Statement Purpose

ALTER DISK JOURNAL Modifies the definition of a disk journal fi le

ALTER DMCL Modifies a DMCL definition

ALTER FILE Modifies the definition of a database fi le

ALTER JOURNAL BUFFER Modifies the definition of a journal buffer

ALTER SEGMENT Modifies the definition of a segment

ALTER TAPE JOURNAL Modifies the definition of a tape journal fi le

CREATE ARCHIVE JOURNAL Defines an archive journal fi le

CREATE AREA Defines an area

CREATE BUFFER Defines a database buffer

CREATE DBGROUP Adds a database group to a database name table

CREATE DBNAME Adds an entry to the database name table

CREATE DBTABLE Creates a database name table

CREATE DISK JOURNAL Defines a disk journal fi le

CREATE DMCL Defines a DMCL

CREATE FILE Defines a database fi le

CREATE JOURNAL BUFFER Defines a journal buffer

CREATE SEGMENT Defines a segment

CREATE TAPE JOURNAL Defines a tape journal fi le

DISPLAY ARCHIVE JOURNAL Displays the definition of an archive journal fi le

DISPLAY AREA Displays the definition of an area

DISPLAY BUFFER Displays the definition of a database buffer

DISPLAY DISK JOURNAL Displays the definition of a disk journal fi le

DISPLAY DMCL Displays a DMCL definition

DISPLAY FILE Displays the definition of a database fi le

DISPLAY JOURNAL BUFFER Displays the definition of a journal buffer

DISPLAY SEGMENT Displays the definition of a segment

DISPLAY TAPE JOURNAL Displays the definition of a tape journal fi le

DROP ARCHIVE JOURNAL Deletes the definition of an archive journal fi le

DROP AREA Deletes the definition of an area

DROP BUFFER Deletes the definition of a database buffer

Statement Summary

Chapter 7: Physical Database DDL Statements 109

Statement Purpose

DROP DBGROUP Deletes a database group from the database name

table

DROP DBNAME Deletes an entry from the database name table

DROP DBTABLE Deletes the definition of a database name table

DROP DISK JOURNAL Deletes the definition of a disk journal fi le

DROP DMCL Deletes a DMCL definition

DROP FILE Deletes the definition of a database fi le

DROP JOURNAL BUFFER Deletes the definition of a journal buffer

DROP SEGMENT Deletes the definition of a segment

DROP TAPE JOURNAL Deletes the definition of a tape journal fi le

GENERATE DBTABLE Generates a database name table load module

GENERATE DMCL Generates a DMCL load module

PUNCH ARCHIVE JOURNAL Punches the definition of an archive journal fi le

PUNCH AREA Punches the definition of an area

PUNCH BUFFER Punches the definition of a database buffer

PUNCH DISK JOURNAL Punches the definition of a disk journal fi le

PUNCH DMCL Punches a DMCL definition

PUNCH FILE Punches the definition of a database fi le

PUNCH JOURNAL BUFFER Punches the definition of a journal buffer

PUNCH SEGMENT Punches the definition of a segment

PUNCH TAPE JOURNAL Punches the definition of a tape journal fi le

Components of a Physical DDL Statement

110 Database Administration Guide

Components of a Physical DDL Statement

Keywords, Values, and Separators

Physical DDL statements consist of:

■ Keywords

■ User-supplied values that:

– Identify specific occurrences of entities (for example, the EMP_BUFF database
buffer)

– Specify data values (for example, 983 or 'Boston')

■ Separators that separate keywords and user-supplied values from one another. A
separator can be a space, a comment, or a new-line character (for example,
[Enter]).

Where Separators Are Not Required

Separators are not required before or after a character string l iteral or any of the
following symbols:

Symbols Description

: Colon

, Comma

. Period

; Semicolon

Clauses in Syntax Statements Are Not Positional

The clauses in the syntax statements that appear in this chapter are not positional. That
is, you can code the clauses in any order.

Verb Synonyms

The following table summarizes synonyms for the verbs CREATE, ALTER, DROP, and
ADD:

Verb Synonym

CREATE ADD

ALTER MODIFY, MOD

Naming Conventions

Chapter 7: Physical Database DDL Statements 111

Verb Synonym

DROP DELETE, DEL when part of the main syntax

statement EXCLUDE, EXC when part of a
clause

ADD INCLUDE, INC

Naming Conventions

Valid Characters

A physical DDL entity name consists of a combination of:

■ Upper case letters (A through Z)

■ Digits (0 through 9)

■ At sign (@)

■ Dollar sign ($)

■ Pound sign (#)

■ Hyphen (-) or underscore (_), but not both; do not use a hyphen or underscore
when naming the following entities:

– DBNAME

– DBTABLE

– DMCL

– SEGMENT

The first character of an identifier must be a letter, @, $, or #. If you like, you can
enclose the identifier in double quotes (").

Qualifying Entity Names

Names for some entities can be qualified by names of other entities. For example, a
database buffer can be qualified by the name of the DMCL with which it is associated.

To qualify an entity, specify the qualifier first, followed by a period (.), followed by the
name of the entity you are qualifying. For example, the following qualified identifier
identifies the EMP_BUFF database buffer associated with DMCL IDMSDMCL:

idmsdmcl.emp_buff

Naming Conventions

112 Database Administration Guide

Number of Characters

The following table summarizes how long each entity name can be:

Maximum Length Physical Database Entity

18 ARCHIVE JOURNAL

AREA

BUFFER

DISK JOURNAL

FILE

JOURNAL BUFFER

TAPE JOURNAL

8 DBNAME

DBTABLE

DMCL

SEGMENT

Using Lowercase Letters in Identifiers

Some physical DDL statements contain references to SQL entities. For example, you can
specify the name of an SQL schema on a SEGMENT statement. If the schema name is
case sensitive, enclose it in double quotes:

for sql schema "Devschm"

If you code other physical DDL entities in lower case letters, CA IDMS/DB automatically
converts them to upper case.

Keywords as Identifiers

Why Avoid Keywords as Identifiers

The use of keywords as identifiers can cause ambiguity in some circumstances. You
should therefore avoid using keywords as identifiers.

If you must use a keyword as an identifier, enclose the identifier in double quotation
marks to prevent possible ambigui ty.

Note: For information about submitting physical DDL statements to the command
facil ity, see the CA IDMS Common Facilities Guide.

Naming Conventions

Chapter 7: Physical Database DDL Statements 113

Entity Currency

Entities That Establish Currency

The DMCL, SEGMENT, and DBTABLE entities establish currency for associated entities, as

shown in the following table:

Current Entity Associated Entities

DMCL ARCHIVE JOURNAL

BUFFER

DISK JOURNAL

JOURNAL BUFFER

TAPE JOURNAL

SEGMENT AREA

FILE

DBTABLE DBNAME

How Is Currency Established?

Currency is established when you:

■ Perform a CREATE or ALTER operation on a DMCL, SEGMENT, or DBTABLE entity
occurrence

■ Fully qualify the name of an entity associated with a DMCL, segment, or database
name table on a CREATE, ALTER, or DROP statement

Subsequent operations on associated entities are applied to that particular DMCL,
segment, or database name table. The followi ng example establishes IDMSDMCL as the
current DMCL occurrence. The database buffer statement that follows implicitly
associates the named buffer with IDMSDMCL:

alter dmcl idmsdmcl;

create buffer index_buffer

 page size 1076

 local mode buffer pages 10

 central version buffer

 initial pages 100

 maximum pages 500;

Generic DISPLAY/PUNCH Statement

114 Database Administration Guide

Use Fully-qualified Names if Currency Not Established

If you don't establish currency on a DMCL, segment, or database name table before
operating on an associated entity, you must qualify the name of the associated entity
with the name of the DMCL, segment, or database name table. In the following

example, the BUFFER statement must qualify the named buffer with the name of the
DMCL because DMCL currency was not first established:

create buffer idmsdmcl.index_buffer

 page size 1076

 local mode buffer pages 10

 .

 .

 .

Once this statement is executed, IDMSDMCL is established as the current DMCL.

Generic DISPLAY/PUNCH Statement

The DISPLAY and PUNCH operations produce as output the DDL statements that

describe the named entity. DISPLAY and PUNCH operations do not update the entity
description.

The location of the output depends on which verb is used and whether you are using

the online or the batch command facil ity:

■ DISPLAY displays online output at the terminal and lists batch output in the
command facil ity's activity l isting.

■ PUNCH writes the output to the system punch fi le. All punched output is also l isted

in the command facil ity's activity l isting.

Generic DISPLAY/PUNCH Statement

Chapter 7: Physical Database DDL Statements 115

Syntax

Display and punch statements share common clauses. Syntax descriptions for these
common clauses appear below. Deviations from these descriptions for particular
entities appear in the syntax description for that entity.

►►─┬─ DISplay ─┬─ entity-type-name entity-occurrence-name ────────────────────►
 └─ PUNch ───┘

 ┌───┐
 ►─▼─┬───┬─┴────────────────────────►
 │ ┌───────────────────────────┐ │
 ├─ WITh ──────┬─▼─── entity-option-keyword ─┴─┘
 └─ WITHOut ───┘

 ►─┬────────────────────────┬───►
 └─ VERb ─┬─ DISplay ───┬─┘
 ├─ PUNch ─────┤
 ├─ CREate ────┤
 ├─ ALTer ─────┤
 └─ DROp ──────┘

 ►─┬───────────────────────┬──►◄
 └─ AS ─┬─ COMments ◄──┬─┘
 └─ SYNtax ─────┘

Parameters

entity-type-name

Identifies the type of entity to display or punch.

entity-occurrence-name

Specifies the name of the entity occurrence to display or punch. If there is no
current associated entity, entity-occurrence-name must be the fully qualified name

of an existing occurrence of the specified entity type. For example, to display an
area, you must either qualify the area with the name of its associated segment or
obtain currency on that segment before issuing the DISPLAY AREA statements.

WITh

Displays or punches only the parts of the entity description specified by
entity-option-keyword in addition to parts that are always included, such as the
entity occurrence name.

DISPLAY/PUNCH ALL Statement

116 Database Administration Guide

WITHOut

Does not display or punch the specified options. Other options in effect through the

WITH clause in the current DISPLAY statement are displayed.

entity-option-keyword

Specifies options to display or punch. Entity-option-keyword differs for each entity.

See the description of a particular entity for more information.

VERB

Specifies the verb with which the entity statement is to be displayed or punched.
For example, if VERB CREATE is specified, the output of the DISPLAY/PUNCH

statement is a CREATE statement. If VERB DROP is specified, the output is a DROP
statement, and so on. If this clause is not coded, the verb used is the one shown as
the default in the syntax diagram for the specific entity being displayed.

AS COMments

Outputs physical database syntax as comments with the characters *+ preceding

the text of the statement. AS COMMENTS is the default.

AS SYNtax

Outputs physical database syntax which can be edited and resubmitted to the

command facil ity.

Usage

Code Only One WITH Clause

Only one WITH clause is permitted per DISPLAY/PUNCH operation; if more than one

WITH clause is specified, the compiler applies only the options specified in the last
one.

Examples

Including All Display Options Except One

This example produces a display of all options, except the journal buffer's history:

display journal buffer idmsdmcl.jrnl_buffer

 with all

 without history;

DISPLAY/PUNCH ALL Statement

The DISPLAY/PUNCH ALL statement displays all occurrences of a physical database

entity.

DISPLAY/PUNCH ALL Statement

Chapter 7: Physical Database DDL Statements 117

Syntax

►►─┬─ DISplay ─┬─┬── ALL ──────────────────────────┬─ entity-type ────────────►
 └─ PUNch ───┘ └─┬─ FIRst ─┬──┬────────────────┬─┘
 └─ LASt ──┘ ├─ 1 ◄───────────┤
 └─ entity-count ─┘

 ►─┬────────────────────────────────┬───►
 └─ WHEre conditional-expression ─┘

 ►─┬────────────────────────┬───►
 └─ VERB ─┬─ DISplay ◄──┬─┘
 ├─ PUNch ────┤
 ├─ CREate ────┤
 ├─ ALter ────┤
 └─ DROp ────┘

 ►─┬──────────────────────────────────────┬───────────────────────────────────►◄
 └─ AS ─┬─ COMments ─┬──┬─────────────┬─┘
 └─ SYNtax ───┘ └─ RECursive ─┘

Expansion of conditional-expression

►►─┬─ mask-comparison ────────────────────────┬───────────────────────────────►
 ├─ value-comparison ───────────────────────┤
 └─┬───────┬─ (─┬─ mask-comparison ──┬─) ─┘
 └─ NOT ─┘ └─ value-comparison ─┘

 ►─┬──┬─────────────►◄
 │ ┌──┐ │
 └─▼─┬─ AND ─┬─┬─ mask-comparison ────────────────────────┬─┴─┘
 └─ OR ──┘ ├─ value-comparison ───────────────────────┤
 └─┬───────┬─ (─┬─ mask-comparison ──┬─) ─┘
 └─ NOT ─┘ └─ value-comparison ─┘

Expansion of mask-comparison

►►─── entity-option-keyword ──►

 ►─┬─ CONTAINs ─┬─ 'mask-value' ──►◄
 └─ MATCHES ──┘

Expansion of value-comparison

►►─┬─ 'character-string-literal' ─┬───►
 ├─ numeric-literal ────────────┤
 └─ entity-option-keyword ──────┘

 ►─┬─ IS ─┬───────┬─────────┬─┬─ 'character-string-literal' ─┬────────────────►◄
 │ └─ NOT ─┘ │ ├─ numeric-literal ────────────┤
 ├─ NE ───────────────────┤ └─ entity-option-keyword ──────┘
 └─┬───────┬─┬─┬─ EQ ─┬─┬─┘
 └─ NOT ─┘ │ └─ = ──┘ │
 ├─┬─ GT ─┬─┤
 │ └─ > ──┘ │
 ├─┬─ LT ─┬─┤
 │ └─ < ──┘ │
 ├─ GE ─────┤
 └─ LE ─────┘

DISPLAY/PUNCH ALL Statement

118 Database Administration Guide

Parameters

ALL

Lists all occurrences of the requested entity type that the current user is authorized
to display.

Online users: With a large number of entity occurrences, ALL may slow response
time.

FIRst

Lists the first occurrence of the named entity type.

LASt

Lists the last occurrence of the named entity type.

entity-count

Specifies the number of occurrences of the named entity type to l ist. 1 is the
default.

entity-type

Identifies the entity type that is the object of the DISPLAY/PUNCH ALL request.

Valid physical database entity-type values appear in the table under "Us age" below.

WHEre conditional-expression

Specifies criteria to be used by the compiler in selecting occurrences of the
requested entity type.

The outcome of a test for the condition determines which occurrences of the

named entity type the schema or subschema compiler selects for display.

mask-comparison

Compares an entity type operand with a mask value.

entity-option-keyword

Identifies the left operand as a syntax option associated with the named entity
type. The table located in the "Usage" section lists valid options for each entity
type.

CONTAINs

Searches the left operand for an occurrence of the right operand. The length of the
right operand must be less than or equal to the length of the left operand. If the
right operand is not contained entirely in the left operand, the outcome of the
condition is false.

MATCHES

Compares the left operand with the right operand one character at a ti me,
beginning with the leftmost character in each operand. When a character in the left

operand does not match a character in the right operand, the outcome of the
condition is false.

DISPLAY/PUNCH ALL Statement

Chapter 7: Physical Database DDL Statements 119

'mask-value'

Identifies the right operand as a character string; the specified value must be

enclosed in quotation marks. Mask-value can contain the following special
characters:

Special Character Description

@ Matches any alphabetic character in
entity-option-keyword.

Matches any numeric character in

entity-option-keyword.

* Matches any character in
entity-option-keyword.

value-comparison

Compares values contained in the left and right operands based on the specified
comparison operator.

'character-string-literal'

Identifies a character string enclosed in quotes.

numeric-literal

Identifies a numeric value.

entity-option-keyword

Identifies a syntax option associated with the named entity type; valid options for
each entity type are l isted in the table presented under "Usage" below.

DISPLAY/PUNCH ALL Statement

120 Database Administration Guide

IS

Specifies that the left operand must equal the right operand for the condition to be

true.

NE

Specifies that the left operand must not equal the right operand for the condition to

be true.

EQ/=

Specifies that the left operand must equal the right operand for the condition to be
true.

GT/>

Specifies that the left operand must be greater than the right operand for the
condition to be true.

LT/<

Specifies that the left operand must be less than the right operand for the condition
to be true.

GE

Specifies that the left operand must be greater than or equal to the right operand
for the condition to be true.

LE

Specifies that the left operand must be less than or equal to the right operand for
the condition to be true.

NOT

Specifies that the opposite of the condition fulfi lls the test requirements. If NOT is
specified, the condition must be enclosed in parenthes es.

AND

Indicates the expression is true only if the outcome of both test conditions is true.

OR

Indicates the expression is true if the outcome of either one or both test conditions

is true.

RECursive

Appends “AS SYNTAX.” or “AS COMMENT.” to each generated line of output.

Note: For descriptions of the remaining DISPLAY parameters, see Generic

DISPLAY/PUNCH Statement (see page 114).

DISPLAY/PUNCH ALL Statement

Chapter 7: Physical Database DDL Statements 121

Usage

Output Contains Only Enough Information to Display/Punch Entity

Output produced by DISPLAY or PUNCH ALL consists only of the information necessary

to execute a DISPLAY/PUNCH request for each entity occurrence. For example, DMCL
occurrences are displayed with their name, and AREA occurrences with their fully
qualified name (that is, segmentname.areaname). In an online session, the user can
execute the displayed statements by pressing Enter. This two-step process allows the

user to scan the names of entity occurrences before submitting the generated
statements for execution.

DISPLAY/PUNCH ALL Statement

122 Database Administration Guide

Valid Entity Option Keywords for Conditional Expressions

The following table l ists entity type options that you can specify in a conditional

expression.

Entity Type Option

ARCHIVE

JOURNALS

DISK JOURNALS

TAPE JOURNALS

FULl <entity-type> NAMe

<entity-type> JOUrnal name

NAMe

DMCl name

DDName

ACCess method

DATASPACE

PREpared by

CREated by

REVised by

LAST UPDated by

DATE LASt CRItical CHAnge

MONth LASt CRItical CHAnge

DAY LASt CRItical CHAnge

YEAr LASt CRItical CHAnge

DATE last UPDated

MONth last UPDated

DAY last UPDated

YEAr last UPDated

DATE CREated

MONth CREated

DAY CREated

YEAr CREated

DISPLAY/PUNCH ALL Statement

Chapter 7: Physical Database DDL Statements 123

Entity Type Option

JOURNAL

BUFFERS

BUFFERS

FULl <entity-type> NAMe

journal BUFfer name

NAMe

PREpared by

CREated by

REVised by

LAST UPDated by

DATE LASt CRItical CHAnge

MONth LASt CRItical CHAnge

DAY LASt CRItical CHAnge

YEAr LASt CRItical CHAnge

DATE last UPDated

MONth last UPDated

DAY last UPDated

YEAr last UPDated

DATE CREated

MONth CREated

DAY CREated

YEAr CREated

DISPLAY/PUNCH ALL Statement

124 Database Administration Guide

Entity Type Option

DBNAMES

DBGROUPS

FULl <entity-type> NAMe

DBName <entity-type>

NAMe

DBTable name

PREpared by

CREated by

REVised by

LAST UPDated by

DATE LASt CRItical CHAnge

MONth LASt CRItical CHAnge

DAY LASt CRItical CHAnge

YEAr LASt CRItical CHAnge

DATE last UPDated

MONth last UPDated

DAY last UPDated

YEAr last UPDated

DATE CREated

MONth CREated

DAY CREated

YEAr CREated

DISPLAY/PUNCH ALL Statement

Chapter 7: Physical Database DDL Statements 125

Entity Type Option

DBTABLES DBTable name

NAMe

CV system

SYStem

PREpared by

CREated by

REVised by

LAST UPDated by

DATE LASt CRItical CHAnge

MONth LASt CRItical CHAnge

DAY LASt CRItical CHAnge

YEAr LASt CRItical CHAnge

DATE last UPDated

MONth last UPDated

DAY last UPDated

YEAr last UPDated

DATE CREated

MONth CREated

DAY CREated

YEAr CREated

DISPLAY/PUNCH ALL Statement

126 Database Administration Guide

Entity Type Option

DMCLs DMCl name

NAMe

DBTable name

PREpared by

CREated by

REVised by

LAST UPDated by

DATE LASt CRItical CHAnge

MONth LASt CRItical CHAnge

DAY LASt CRItical CHAnge

YEAr LASt CRItical CHAnge

DATE last UPDated

MONth last UPDated

DAY last UPDated

YEAr last UPDated

DATE CREated

MONth CREated

DAY CREated

YEAr CREated

DISPLAY/PUNCH ALL Statement

Chapter 7: Physical Database DDL Statements 127

Entity Type Option

FILES FULl fi le NAMe

FILe name

fi le NAMe

SEGment name

DDName

DSName

ACCess method

z/VM USEr id

z/VM virtual ADDress

SET name

PREpared by

CREated by

REVised by

LAST UPDated by

DATE LASt CRItical CHAnge

MONth LASt CRItical CHAnge

DAY LASt CRItical CHAnge

YEAr LASt CRItical CHAnge

DATE last UPDated

MONth last UPDated

DAY last UPDated

YEAr last UPDated

DATE CREated

MONth CREated

DAY CREated

YEAr CREated

DISPLAY/PUNCH ALL Statement

128 Database Administration Guide

Entity Type Option

PHYSICAL

AREAS

FULl physical area NAMe

physical AREa name

NAMe

SEGment name

PAGe GROup

area TYPe

PREpared by

CREated by

REVised by

LAST UPDated by

DATE LASt CRItical CHAnge

MONth LASt CRItical CHAnge

DAY LASt CRItical CHAnge

YEAr LASt CRItical CHAnge

DATE last UPDated

MONth last UPDated

DAY last UPDated

YEAr last UPDated

DATE CREated

MONth CREated

DAY CREated

YEAr CREated

DISPLAY/PUNCH ALL Statement

Chapter 7: Physical Database DDL Statements 129

Entity Type Option

SEGMENTS SEGment name

NAMe

PAGe GROup

segment TYPe

PREpared by

CREated by

REVised by

LAST UPDated by

DATE LASt CRItical CHAnge

MONth LASt CRItical CHAnge

DAY LASt CRItical CHAnge

YEAr LASt CRItical CHAnge

DATE last UPDated

MONth last UPDated

DAY last UPDated

YEAr last UPDated

DATE CREated

MONth CREated

DAY CREated

YEAr CREated

Default Order of Precedence Applied to Logical Operators

Conditional expressions can contain a single condition, or two or more conditions
combined with the logical operators AND or OR. The logical operator NOT specifies the
opposite of the condition. The compiler evaluates operators in a conditional expression
1 at a time, from left to right, in order of precedence. The default order of precedence is

as follows:

■ MATCHES or CONTAINS keywords

■ EQ, NE, GT, LT, GE, LE operators

■ NOT

■ AND

■ OR

If parentheses are used to override the default order of precedence, the compiler

evaluates the expression within the innermost parentheses first.

DISPLAY/PUNCH ALL Statement

130 Database Administration Guide

Date Selection Criteria

Date selection in these WHERE clause options:

■ DATE CREATED

■ DATE LAST UPDATED

■ DATE LAST CRITICAL CHANGE

may be specified as a value-comparison string in the form 'MM/DD/YY' or
'CCYY-MM-DD' in the right-hand side of the conditional expression and will be
interpreted by the extraction in CCMMDDYY form to accurately determine the

relationship of dates. For example, these DISPLAY ALL statements:

DISPLAY ALL SEGMENTS

 WHERE DATE CREATED > '01/01/96';

DISPLAY ALL DMCLS

 WHERE DATE LAST CRITICAL CHANGE < '1996-07-14';

establishes a search criteria to identify the occurrences whose date values (which are
also evaluated in CCYYMMDD form) meet the requirements of the specified string. The

DISPLAY ALL process determines that the date '01/01/96' is greater than the date
'12/31/95'.

Alternately, you may specify the value-comparison string on either side of the
conditional expression in the form 'CCYYMMDD' to achieve the same results.

You can substitute day, month, or year for each of these WHERE clause options. For

example, this DISPLAY ALL statement specifies a search condition which is based on
month and year.

DISPLAY ALL AREAS WHERE MONTH CREATED = '01'

 AND YEAR CREATED > '95';

Example

The following example displays all AREAS created since June 1, 1986:

display all AREAS where date created > '1986-06-01'

 as syntax;

ARCHIVE JOURNAL Statements

Chapter 7: Physical Database DDL Statements 131

ARCHIVE JOURNAL Statements

The ARCHIVE JOURNAL statements create, alter, drop, display, or punch the definition of
an archive journal fi le in the dictionary.

Authorization

■ To create, alter, or drop an archive journal, you must have the following privileges:

– DBADMIN on the dictionary in which the archive journal definition resides

– ALTER on the DMCL with which the archive journal is associated

■ To display or punch the archive journal, you must have the DISPLAY privilege on the
DMCL with which the archive journal is associated or DBADMIN on the dictionary in

which the archive journal definition resides.

Syntax

CREATE/ALTER ARCHIVE JOURNAL

►►─┬─ CREATE ─┬─ ARCHIVE JOURNAL ─┬──────────────┬─ journal-file-name ────────►
 └─ ALTER ──┘ └─ dmcl-name. ─┘

 ►─┬───┬────────────────────────────────►
 └─ BLOCK SIZE character-count characters ─┘

 ►─┬─────────────────────────────┬──►◄
 └─ ASSIGN TO ─┬─ ddname ────┬─┘
 └─ filename ──┘

DROP ARCHIVE JOURNAL

►►── DROP ARCHIVE JOURNAL ─┬──────────────┬─ journal-file-name ───────────────►◄
 └─ dmcl-name. ─┘

DISPLAY/PUNCH ARCHIVE JOURNAL

►►─┬─ DISplay ─┬─ ARCHIVE JOURNAL ─┬──────────────┬─ journal-file-name ───────►
 └─ PUNch ───┘ └─ dmcl-name. ─┘

 ┌───────────────────────────────────────┐
 ►─▼─┬───────────────────────────────────┬─┴──────────────────────────────────►
 │ ┌────────────────┐ │
 ├─ WITh ──────┬─▼─┬─ DETails ──┬─┴──┘
 └─ WITHOut ───┘ ├─ HIStory ──┤
 ├─ ALL ◄─────┤
 └─ NONe ─────┘

 ►─┬────────────────────────┬───►
 └─ VERb ─┬─ DISplay ───┬─┘
 ├─ PUNch ─────┤
 ├─ CREate ◄───┤
 ├─ ALTer ─────┤
 └─ DROp ──────┘

 ►─┬───────────────────────┬──►◄
 └─ AS ─┬─ COMments ◄──┬─┘
 └─ SYNtax ─────┘

ARCHIVE JOURNAL Statements

132 Database Administration Guide

Parameters

dmcl-name

Identifies the DMCL with which the archive journal fi le is associated. Dmcl-name
must name an existing DMCL defined to the dictionary. If you don't specify a DMCL

name, you must first establish a current DMCL as described in Entity 7.3.3, “Entity
Currency" earlier in this chapter.

journal-file-name

Specifies the name of the archive fi le. Journal-file-name must be a 1- through

18-character name that follows the conventions described in 7.3, "Naming
Conventions".

Journal-file-name must be unique within the DMCL.

BLOCK SIZE character-count

Specifies the number of characters in each block of the archive journal fi le. This
clause is required on a CREATE statement.

The value of character-count depends on the operating system:

Operating System Block Size Range
(in bytes)

Comments

z/OS 512 - 327641 Must be greater than or equal to the

journal buffer page size and should be
sized for efficient tape fi le storage and
access.

z/VSE 512 - 32764 Same as for z/OS.

z/VM 4096

Note: Maximum for an IBM 3380 device is 32760.

ASSIGN TO

Associates the archive journal fi le with an external fi le name. This clause is required

on a CREATE statement. The external fi le name must be unique within the DMCL.

ddname

Specifies the external name for the fi le under z/OS or z/VM. ddname must be a 1-
through 8-character value that follows operating system conventions for ddnames.

filename

Specifies the external name for the fi le under z/VSE. Filename must be a 1- through
7-character value that follows operating system conventions for fi lenames.

ARCHIVE JOURNAL Statements

Chapter 7: Physical Database DDL Statements 133

DETails

Displays or punches details about the archive journal.

HIStory

Displays or punches:

■ The user who defined the archive journal

■ The user who last updated the archive journal

■ The date the archive journal was created

■ The date the archive journal was last updated

ALL

Displays or punches all information about the archive journal. ALL is the default
action for a DISPLAY or PUNCH verb.

NONe

Displays or punches the name of the archive journal.

Usage

Archive Journal File Requirement

You must define an archive journal if you are journaling to disk fi les. When a disk journal
fi le is full, you offload the disk journal to the archive journal. While the offload occurs,
CA IDMS/DB journals to another disk journal.

Using Multiple Archive Journals as Backup

You can define multiple archive journals associated with one DMCL. When you invoke
the ARCHIVE JOURNAL util ity statement to offload a disk journal fi le, CA IDMS/DB writes

the contents of the disk journal to each archive fi le associated with the DMCL.
Therefore, if during the course of manual recovery, an archive fi le is unreadable, you
can attempt recovery using an alternate archive journal fi le.

Incompatibility of Tape and Archive Journal Files

You cannot include the definition of a tape journal fi le in the DMCL if you include the
definition of disk and archive journal fi les.

Archive Journal Block Size

When a DMCL is generated, the block size associated with an archive journal is checked
to ensure it is not less than the block size of the disk journals. Since the block size of the
disk journals is derived from the page size of the journal buffer, if the archive journal's

block size is less than the page size of the journal buffer, the page size of the journal
buffer is used and a warning message issued.

ARCHIVE JOURNAL Statements

134 Database Administration Guide

Examples

Defining an Archive Journal File

The following CREATE ARCHIVE JOURNAL statement defines the archive journal fi le

SYSJRNL:

create archive journal idmsdmcl.sysjrnl

 block size 19068 characters

 assign to sysjrnl;

Changing the Block Size

The following ALTER ARCHIVE JOURNAL statement changes the block size of the archive
journal fi le SYSJRNL to 32,670 characters:

alter archive journal idmsdmcl.sysjrnl

 block size 32670 characters;

Dropping an Archive Journal File

The following DROP ARCHIVE JOURNAL statement deletes the definition of the archive

journal fi le SYSJRNL from the dictionary:

drop archive journal idmsdmcl.sysjrnl;

More Information

■ For more information about the procedure for defining disk and archive journals,
see the chapter “Defining, Generating, and Punching a DMCL”.

■ For more information about journaling procedures, such as offloading, see the
chapter “Journaling Procedures".

■ For more information about defining disk journal fi les, see the section “DISK
JOURNAL Statements”.

AREA Statements

Chapter 7: Physical Database DDL Statements 135

AREA Statements

The AREA statements create, alter, delete, display, or punch the definition of an area in
the dictionary.

Authorization

■ To create, alter, or drop an area, you must have the following privileges:

– DBADMIN on the dictionary in which the area definition resides

– ALTER on the segment with which the area is associated

■ To display or punch an area, you must have DISPLAY privilege on the segment with
which the area is associated or DBADMIN on the dictionary in which the area

definition resides

Syntax

CREATE/ALTER AREA

►►─┬─ CREATE ─┬─ physical AREA ─┬─────────────────┬─ area-name ───────────────►
 └─ ALTER ──┘ └─ segment-name. ─┘

 ►─┬──┬───────────────────────────────►
 ├─ initial-page-range-specification ───────┤
 └─ EXTEND SPACE extend-page-count pages ───┘

 ►─┬───┬────────────────────────────────►
 └─ PAGE SIZE character-count characters ──┘

 ►─┬──┬─────────►
 └─ PAGE RESERVE size ─┬─ 0 ◄──────────────────────┬─ characters ─┘
 └─ reserve-character-count ─┘

 ►─┬──┬───────────────►
 └─ ORIGINAL PAGE SIZE original-character-count characters ─┘

 ►─┬────────────────────────┬───►
 └─ STAMP BY ─┬─ TABLE ─┬─┘
 └─ AREA ──┘

 ►─┬──────────────────────────────────┬───────────────────────────────────────►
 └──── TIMESTAMP timestamp-value ───┘

 ►─┬────────────────────────────────┬───►
 │ ┌────────────────────────────┐ │
 └─▼── symbol-specification ────┴─┘

 ►─┬─────────────────────────────────┬──►◄
 │ ┌─────────────────────────────┐ │
 └─▼────file-specification ─────┴─┘

DROP AREA

►►── DROP physical AREA ─┬─────────────────┬─ area-name ──────────────────────►◄
 └─ segment-name. ─┘

Expansion of initial-page-range-specification

►►─── PRIMARY SPACE primary-page-count pages FROM page start-page ────────────►

 ►─┬──────────────────────────────────────┬───────────────────────────────────►◄
 └─ MAXIMUM SPACE max-page-count pages ─┘

AREA Statements

136 Database Administration Guide

Expansion of symbol-specification

►►─┬───────────────┬──►
 ├─┬─ ADD ◄────┬─┤
 │ └─ INClude ─┘ │
 └─┬─ DROP ────┬─┘
 └─ EXClude ─┘

 ►─┬─ SUBAREA symbolic-subarea-name ─┬─────────────────────────┬────────────┬─►◄
 │ └─ subarea-specification ─┘ │
 ├─ SYMBOLIC DISPLACEMENT symbolic-displacement-name ─┬──────────────────┬┤
 │ └─ page-cnt pages ─┘│
 └─ SYMBOLIC INDEX symbolic-index-name ─┬───────────────────────┬─────────┘
 └─ index-specification ─┘

Expansion of subarea-specification

►►─┬─ FROM page start-page THRU page end-page ───────────────────────────┬────►◄
 ├─ SPACE subarea-page-count pages FROM page subarea-start-page ───────┤
 └─ OFFSET ─┬─ 0 ◄──────────────────────┬─ FOR ─┬─ 100 PERCENT ◄─────┬─┘
 ├─ offset-page-count PAGEs ─┤ ├─ percent PERCENT ──┤
 └─ offset-percent PERCENT ──┘ └─ page-count PAGEs ─┘

Expansion of index-specification

►►─┬ BLOCK CONTAINS key-count keys ─┬───────────────────────────────┬───────┬─►◄
 │ └ DISPLACEMENT page-count pages ┘ │
 └ BASED ON ─┬──────────┬─ KEY LENGTH key-length ┌───────────────────────┬┘
 ├ SORTED ◄─┤ └ FOR index-cnt RECORDS─┘
 └ UNSORTED ┘

Expansion of file-specification

►►─┬───────────────┬─┬─ FILE file-name ──────────────────┬────────────────────►
 ├─┬─ ADD ◄────┬─┤ └─ PATH FILE native-vsam-file-name ─┘
 │ ├─ WITHIN ──┤ │
 │ └─ INClude ─┘ │
 └─┬─ REMOVE ──┬─┘
 ├─ DROP ────┤
 └─ EXClude ─┘

 ►─┬───┬──────────────────►◄
 └─ FROM start-block ─┬─ THRU end-block ───────────────┬─┘
 └─ FOR ─┬─ ALL blocks ─────────┬─┘
 └─ block-count blocks ─┘

AREA Statements

Chapter 7: Physical Database DDL Statements 137

DISPLAY/PUNCH AREA

►►─┬─ DISplay ─┬─ AREA ─┬─────────────────┬─ area-name ───────────────────────►
 └─ PUNch ───┘ └─ segment-name. ─┘

 ┌───────────────────────────────────────┐
 ►─▼─┬───────────────────────────────────┬─┴──────────────────────────────────►
 │ ┌────────────────┐ │
 ├─ WITh ──────┬─▼─┬─ FILes ────┬─┴──┘
 └─ WITHOut ───┘ ├─ SYMbols ──┤
 ├─ DETails ──┤
 ├─ HIStory ──┤
 ├─ ALL ◄─────┤
 └─ NONe ─────┘

 ►─┬────────────────────────┬───►
 └─ VERb ─┬─ DISplay ───┬─┘
 ├─ PUNch ─────┤
 ├─ CREate ◄───┤
 ├─ ALTer ─────┤
 └─ DROp ──────┘

 ►─┬───────────────────────┬──►◄
 └─ AS ─┬─ COMments ◄──┬─┘
 └─ SYNtax ─────┘

Parameters

segment-name

Specifies the segment associated with the area. Segment-name must identify a
segment defined in the dictionary.

If you do not specify a segment name when you issue an AREA statement, you must

first establish a current segment as described in 7.3.3, “Entity Currency" earlier in
this chapter.

area-name

Specifies the name of the area. Area-name must be a 1- through 18-character name
that follows the conventions described in 7.3, "Naming Conventions".

Area-name must be unique within the segment associated with the area.

Important! If the area is associated with an SQL segment in an application

dictionary, you must drop any tables or indexes associated with the area before you
attempt to delete the area by issuing a DROP AREA statement.

Important! If the area is associated with a non-SQL segment, the name of the area

must be the same as the area defined in the non-SQL schema.

AREA Statements

138 Database Administration Guide

initial-page-range-specification

Specifies the initial page range assigned to the area. This clause is required on a

CREATE statement.

Native VSAM: For special considerations that apply to the page ranges of native
VSAM data sets, see the "Usage" topic in this section.

PRIMARY SPACE primary-page-count

Specifies the initial number of pages to be included in the area. Primary-page-count
must be an integer in the range 2 through the maximum number of pages
determined by the MAXIMUM RECORDS clause of the SEGMENT statement. The

upper l imit is 1,073,741,821.

Important! This parameter establishes the default CALC page range of the area and
should not be specified with new values on an ALTER AREA request unless the area
is empty or is to be reloaded using the RELOAD or REORG util ities.

FROM page start-page

Specifies the page number of the first page in the area. Start-page must be an
integer in the range 1 through the maximum number of pages determined by the

MAXIMUM RECORDS clause of the SEGMENT statement. The upper l imit is
1,073,741,821.

MAXIMUM SPACE max-page-count pages

Specifies the largest number of pages that can be included in the area.
Max-page-count must be:

■ An integer in the range 2 through the maximum number of pages determined
by the MAXIMUM RECORDS clause of the SEGMENT statement; the upper l imit
is 1,073,741,821.

■ Greater than or equal to the primary page count for the area

The default maximum number of pages is the area's primary page count.

Native VSAM: If specified, MAXIMUM SPACE must equal the primary page count.

EXTEND SPACE extend-page-count

On an ALTER AREA statement, specifies a number of pages to be added to the area.

The new pages are numbered starting after the last page currently in the area.

Extend-page-count must be an integer in the range 1 through the maximum
number of pages determined by the MAXIMUM RECORDS clause of the SEGMENT
statement. The upper l imit is 1,073,741,818. The number of new pages plus the

number of existing pages cannot exceed the maximum number of pages allowed for
the area.

When you add pages to an area, you must also associate the added pages with
either:

■ One or more additional fi les

■ File blocks beginning at the end of the last fi le with which the area is associated

AREA Statements

Chapter 7: Physical Database DDL Statements 139

Added pages are automatically associated with fi le blocks, by specifying the
'WITHIN FILE'-clause without the 'FROM'-clause for the <fi le-name> (if only 1 fi le is

associated with the area) or for the last <fi le-name> (if more than 1 fi le is
associated with the area). All other changes in the assignment of fi le blocks require
first an EXCLUDE of the <fi le-name(s)>, followed by a new 'WITHIN FILE <fi le-name>

FROM'-clause.

Important! When specifying an EXTEND SPACE parameter, do not specify a
PRIMARY SPACE parameter which alters the original page range of the area.

Native VSAM: Do not specify the EXTEND SPACE clause.

Note: See the Usage section for guidelines about using this parameter.

Note: This parameter is not valid on the CREATE AREA statement.

PAGE SIZE character-count

Specifies the number of characters in each page of the area. This clause is required
on a CREATE statement. Character-count must be a multiple of 4 in the range 48

through 32,764 and must be at least 40 bytes larger than the largest fixed-length
record or uncompressed row in the area. Some operating systems may not support
a page size of 32764 characters. Check your operating system limitations.

Native VSAM: Do not specify the PAGE SIZE clause.

PAGE RESERVE SIZE reserve-character-count

Specifies the number of characters to be reserved on each page to accommodate
increases in the length of records or rows stored on the page. Reserved space will
be used for:

■ SR8 index records, which vary in length at the bottom level of the index. The
length of a bottom-level SR8 record can change due to any operation that
updates an indexed record. Reserved space is not available for new SR8
records.

■ Variable-length records that expand during DML MODIFY operations.

■ Compressed rows or records whose physical length increases due to a change
in the data values.

Reserve-character-count must be either 0 or:

■ A multiple of 4 in the range 48 through 32,716

■ Less than or equal to the size of a page in the area minus 48

The default is 0.

Native VSAM: Do not specify this clause.

AREA Statements

140 Database Administration Guide

ORIGINAL PAGE SIZE original-character-count

Specifies the page size of the area when it was last formatted. This clause must be

specified the first time the page size of an area is increased using the EXPAND PAGE
util ity statement, and should not be specified again unless you reformat the area
using the new specification.

Original-character-count must be a multiple of 4 in the range 48 through 32764 and
cannot be greater than the value specified for the PAGE SIZE clause. The default on
a CREATE AREA statement is the value specified for the PAGE SIZE clause.

Native VSAM: Do not specify this clause.

STAMP BY TABLE

On a CREATE AREA statement, directs CA IDMS/DB to update the synchronization
stamp for an individual table in the area when the definition of the table or any
associated CALC key, index, or referential constraint is modified. This clause is valid
only for areas that are associated with an SQL segment.

STAMP BY TABLE overrides the synchronizati on stamp specification defined for the
segment with which the area is associated.

Note: This parameter is not valid on the ALTER AREA statement.

STAMP BY AREA

On a CREATE AREA statement, directs CA IDMS/DB to maintain a synchronization

stamp for the area as a whole in addition to the synchronization stamps for
individual tables. CA IDMS/DB updates the stamps for both the individual table and
the whole area when the definition of any table in the area or any associated CALC

key, index, or referential constraint is modified.

This clause is valid only for areas that are associated with an SQL segment.

STAMP BY AREA overrides the synchronization stamp specification defined for the
segment with which the area is associated.

Note: This parameter is not valid on the ALTER AREA statement.

TIMESTAMP timestamp-value

Specifies the value of the synchronization stamp to be assigned to the area.

Timestamp-value must be a valid external representation of a timestamp. This
clause is valid only for areas associated with an SQL segment and for which
area-level stamping is in effect.

AREA Statements

Chapter 7: Physical Database DDL Statements 141

symbol-specification :pd

ADD

For areas associated with non-SQL segments, specifies a value for a symbolic
parameter defined in a non-SQL schema definition. ADD is the default.

Note: If the symbolic parameter is already defined to the area, CA IDMS/DB

updates its value.

DROP

For areas associated with non-SQL segments, removes the symbolic parameter.

To drop a symbolic parameter, specify only the name of the symbol to be dropped.

Optional clauses, such as subarea-specification, are not allowed.

SUBAREA symbolic-subarea-name

Names a symbolic parameter that represents a subdivision of the area's page range.
Symbolic-subarea-name is a 1- to 18-character name that follows the conventions
described in 7.3, "Naming Conventions". Symbolic-subarea-name must be unique

within the subareas defined for the area.

subarea-specification

Specifies an actual page range for the subarea or a relative page range for the

subarea based upon the total number of pages defined for the area. If you do not
specify an actual or relative page range for the subarea, the default is the page
range of the area expressed as this offset specification:

offset 0 pages for 100 percent

FROM page start-page

Specifies the starting page for the subarea. Start-page must be an integer in the
range 1 through the high page number of the area.

THRU page end-page

Specifies the last page for the subarea. End-page must be an integer:

■ Within the page range defined for the area

■ Greater than the value specified for start-page

SPACE subarea-page-count pages

Specifies the number of pages to be included in the subarea. Subarea-page-count is

an integer in the range 1 through the number of pa ges in the area.

AREA Statements

142 Database Administration Guide

FROM page subarea-start-page

Specifies the first page of the subarea. Subarea-start-page must be an integer in the

range 1 through the high page number of the area.

OFFSET

Specifies a relative page range for the subarea, in terms of either a percentage of

the area or a displacement relative to the first page of the area. The assigned
relative page range must fall within the page range for the area.

offset-page-count PAGEs

Determines the first page of the subarea within the area. CA IDMS/DB uses the
calculation below to determine the relative page number:

first subarea page = (LPN + offset-page-count)

 where LPN = the lowest page number in the area

Offset-page-count must be an integer in the range 0 through the number of pages
in the area minus 1.

offset-percent PERcent

Determines the first page of the subarea within the area based on the lowest page
number of the area and the total number of pages in the area:

first subarea page = (LPN + (PPC * offset-percent * .01))

 where LPN = the lowest page number in the area

 and PPC = the primary page count

Offset-percent must be an integer in the range 0 through 100.

FOR page-count PAGEs

Determines the last page of the subarea within the area based on the first page of
the subarea:

last subarea page = (FSP + page-count - 1)

 where FSP = the first subarea page

 (determined by calculations above)

The calculated page must not exceed the highest page number in the area.

AREA Statements

Chapter 7: Physical Database DDL Statements 143

FOR percent PERcent

Determines the last page of the subarea within the area based on the first page of

the subarea and the total number of pages in the area:

last subarea page = (FSP + (TNP * percent * .01) - 1)

 where FSP = the first page in the subarea

 (determined by calculations above)

 and TNP = the total number of pages in the area

Percent must be an integer in the range 1 through 100. The default is 100. If percent
causes the calculated last page of the subarea to be greater than the highest page

number in the area, the compiler ignores the excessive page numbers, and CA
IDMS/DB will store the record occurrences up to and including the last page in the
area.

SYMBOLIC DISPLACEMENT symbolic-displacement-name

Names a symbolic parameter that represents the displacement of member records
that participate in a VIA set from the owner record of the set.
Symbolic-displacement-name is a 1- to 18-character name that follows the
conventions described in 7.3, "Naming Conventions". Symbolic-displacement-name

must be unique within the symbolic displacement names defined to the area.

page-cnt-pages

Specifies how many pages separate the member record of a VIA set from the owner
record. Page-cnt-pages is an integer in the range 0- through 32767.

SYMBOLIC INDEX symbolic-index-name

Names a symbolic parameter that represents index characteristics.
Symbolic-index-name is a 1- to 18-character name that follows the conventions
described in 7.3, "Naming Conventions". Symbolic-index-name must be unique

within the symbolic index names defined to the area.

index-specification

Specifies either:

■ The values that represent the number of entries in an SR8 record and the

displacement of bottom-level SR8 records from the remainder of the index.

■ The values that are used to calculate the number of SR8 entries and the
displacement.

BLOCK CONTAINS key-count keys

Specifies the maximum number of entries in each internal index record (SR8 system
record). Key-count must be an integer in the range 3 through 8180.

DISPLACEMENT page-count pages

Indicates the number of pages bottom-level SR8 records are displaced from the top

of the index. Page-count must be either 0 or an integer in the range 3 through
32,767. The default is 0, which means bottom-level index records are not displaced.

AREA Statements

144 Database Administration Guide

BASED ON KEY LENGTH key-length

Calculates the size of the index block and displacement based upon the length of

the key fields and the number of entries in the index. Specify key-length as:

■ 0, for unsorted indexes

■ 0, for indexes sorted by db-key

■ An integer in the range 1 through 256 for other indexes

SORTED

Indicates that the index keys are sorted.

UNSORTED

Indicates that the index keys are not sorted.

FOR index-cnt RECORDS

Specifies an estimated number of record occurrences to be indexed. Index-cnt is an
integer in the range 0 through 2,147,483,647. The default is 1000. See "Usage" for
further information.

file-specification

Specifies the fi le(s) to which pages in the area map. An area can map to one or
more fi les.

ADD FILE file-name

Associates the area with the named database fi le or native VSAM file that has an
access method of KSDS, ESDS or RRDS. File-name must identify a fi le that:

■ Is associated with the same segment as the area

■ Is not defined with PATH as an access method

You can associate an area with 1 through 32,767 fi les. Pages in the area are mapped
consecutively to blocks in the first fi le named, then to blocks in the second fi le
named, and so on. If any fi les are associated with the area, you must identify

enough fi le blocks to accommodate all the pages in the area. Native VSAM: Native
VSAM files with access method KSDS, ESDS, or RRDS must map to one and only one
area. Likewise, the area must map to one and only one native VSAM file and PATH

fi le.

AREA Statements

Chapter 7: Physical Database DDL Statements 145

DROP FILE file-name

Dissociates the area from the named fi le. File-name must identify a database fi le

previously associated with the area.

If you dissociate a fi le from an area, you must identify enough additional fi le blocks
in the same ALTER AREA statement to accommodate the pages that no longer map

to the fi le, unless all fi les are dissociated from the area.

PATH FILE native-vsam-file-name

Identifies a native-VSAM PATH fi le for the area. Native-vsam-file-name is a 1- to
18-character name of a PATH fi le defined to the segment. The following restrictions

apply:

■ The access method defined for native-vsam-file-name on a CREATE/ALTER FILE
statement must be PATH.

■ The fi le cannot map to any other areas

■ The area must map to a fi le whose access method is KSDS or ESDS

FROM start-block

Specifies the number of the first block in the named fi le to be associated with the
area. Start-block must be an integer in the range 1 through 2,147,483,646. The

default depends on the verb:

■ For CREATE AREA, the default is 1

■ For ALTER AREA without the EXTEND SPACE clause, the default is 1

■ For ALTER AREA with the EXTEND SPACE clause, the default is the current high

block number of the fi le plus 1

THRU end-block

Specifies the number of the last block in the named fi le to be associated with the
area. End-block must be an integer in the range 2 through 2,147,483,647.

FOR ALL

Specifies that blocks in the named fi le are to be associated with the area for the
entire page range of the area, or, if specified for an ALTER AREA with an EXTEND
SPACE clause, for the number of pages in the extended space.

FOR block-count blocks

Specifies the number of blocks in the named fi le to be associated with the area.
Block-count must be an integer in the range 2 through 2,147,483,647.

FILes

Displays or punches information about all fi les to which the area is mapped.

SYMbols

Displays or punches information about all symbols defined to the area.

AREA Statements

146 Database Administration Guide

DETails

Displays or punches details about the area.

HIStory

Displays or punches:

■ The user who defined the area

■ The user who last updated the area

■ The date the area was created

■ The date the area was last updated

ALL

Displays or punches all information about the area. ALL is the default action for a

DISPLAY or PUNCH verb.

NONe

Displays or punches the name of the area.

Usage

Unique Page Range

The range of pages reserved for an area is defined by the FROM PAGE parameter in

conjunction with the MAXIMUM SPACE parameter (or the PRIMARY SPACE parameter if
you do not specify MAXIMUM SPACE). This page range must not overlap the page range
for:

■ Any other area contained in the segment

■ Any other area in a DMCL in which the area's segment is included if the page groups
are the same

Contiguity of Page Ranges

Page ranges within a segment can be, but do not have to be, contiguous with one

another.

Page Range Limits Depend on Maximum Number of Records Per Page

The highest page number for an area depends on the maximum number of records or
rows that can fit on a single page. Use the table provided under "Usage" in 7.16,
“SEGMENT Statements” to determine the highest page number.

AREA Statements

Chapter 7: Physical Database DDL Statements 147

Page Ranges for CALC Records

The last page of a subarea that can be used to store CALC record occurrences depends
on the type of offset specification:

■ For page offsets, the last page of the CALC range is the last page of the subarea.

■ For percentage offsets, this calculation is used to determine the last page of the
CALC range:

calc-lastpage-of-subarea =

 firstpage-of-subarea + percent * primary-page-count * .01

What Happens to Offsets When You Expand an Area

When you expand an area by using the EXTEND SPACE clause on the ALTER AREA

command, the following occurs to the first page, last page, and CALC last page of a
subarea:

■ The first page does not change

■ The last page changes if you specified a percentage offset; CA IDMS/DB allows CALC

overflow records and records with other location modes to be stored in the
expanded space

■ The last page of the CALC range does not change; that is, CALC records continue to

target to the original page range assigned to the subarea

Note: You must exercise care when expanding an area containing subarea definitions
that use offset percentages because subareas can overlap after the EXTEND SPACE is
performed. For example:

Given the following subarea allocations for an area containg 1000 pages, the page

ranges are as follows:

 Definition LoPage HiPage

SUB1 OFFSET 0% FOR 25% 1 250

SUB2 OFFSET 25% FOR 25% 251 500

SUB3 OFFSET 50% FOR 25% 501 750

SUB4 OFFSET 75% FOR 25% 751 1000

AREA Statements

148 Database Administration Guide

If an EXTEND SPACE is executed, and 1000 more pages are added to the area, the
allocations are as follows:

Sub Area LoPage HiPage

 SUB1 1 500

 SUB2 251 750

 SUB3 501 1000

 SUB4 751 1250

You can see that adding 1000 pages to the area did not significantly increase the space
available in which to store records, nor did the additional space get used by any areas
mapped to defined subarea definitions —only SUB4 benefits by the additional pages.

Percentage Offsets Most Flexible

Percentage offset specifications are the most flexible in terms of database maintenance.
As the database grows and must eventually be expanded, the areas of the database

must also be expanded. If you use percentage offsets, CA IDMS/DB automatically assigns
record occurrences to the appropriate percentage of the new area.

Page Range for RRDS Native VSAM Areas

CA IDMS/DB constructs the db-key for a record in an RRDS native VSAM area in the

following manner:

dbkey = low-dbkey-of-area + relative-record-number

Therefore, for an RRDS fi le, the number of pages specified by the page range must be
calculated as follows (rounded up to the next integer):

number-of-pages =

 (number-of-vsam-records-in-file + 1) / (maximum-records-per-page + 1)

Note: Maximum-records-per-page is specified on the CREATE SEGMENT statement and
determines the format of the database keys for records in areas that are contained in
the segment.

AREA Statements

Chapter 7: Physical Database DDL Statements 149

Page Range for RRDS Native VSAM Areas

CA IDMS/DB constructs the db-key for a record in a KSDS native VSAM area by
randomizing the record's prime key to a database key in the database key range for the
area. Therefore, for a KSDS fi le, a rule-of-thumb for calculating the page range is as

follows (rounded up to the next integer):

number-of-pages = number-of-vsam-records-in-file / x

where x = 10 if number-of-vsam-records-in-file < 100,000

 100 if number-of-vsam-records-in-file > 100,000

The idea is to specify a page range that minimizes the probability of constructing
duplicate keys without specifying an excessive number of pages for the area.

Page Range for ESDS Native VSAM Areas

CA IDMS/DB constructs the db-key for a record in an ESDS native VSAM area in the
following manner:

dbkey = low-dbkey-of-area + relative-byte-address

Therefore, for an ESDS fi le, the number of pages specified by the page range must be
calculated as follows (rounded up to the next integer):

number-of-pages = total-bytes-in-file / (maximum-records-per-page + 1)

Note: Maximum-records-per-page is specified on the CREATE SEGMENT statement and
determines the format of the database keys for records in areas that are contained in
the segment.

Physical Device Blocking

A database page is a fixed block. As a general rule, you should use pages that are an
even fraction of the track size.

The following table l ists the optimal page sizes by device type for five IBM disk drives.

Manufacturers of other brands of direct access storage devices (DASD) should be able to
provide similar information for their own equipment.

Per track 3330 3340 3350 3375 3380 3390

1 13028 8368 19068 32764 32764 32764

2 6444 4100 9440 17600 23476 27996

3 4252 2676 6232 11616 15476 18452

4 3156 1964 4628 8608 11476 13680

AREA Statements

150 Database Administration Guide

Per track 3330 3340 3350 3375 3380 3390

5 2496 1540 3664 6816 9076 10796

6 2056 1252 3020 5600 7476 8904

7 1744 1052 2564 4736 6356 7548

8 1508 896 2220 4096 5492 6516

9 1324 780 1952 3616 4820 5724

10 1180 684 1740 3200 4276 5064

11 1060 608 1564 2880 3860 4564

12 960 544 1416 2592 3476 4136

13 876 488 1296 2368 3188 3768

14 804 440 1180 2176 2932 3440

15 740 400 1096 2016 2676 3172

Note: The bytes per page for FBA devices must be a multiple of 512.

Note: On z/VM, the size of a database page must be less than or equal to 4096 bytes.

Note: For VSAM database fi les the character-count must be at least 8 bytes larger than

the page size.

Synchronization Stamps

If you expect frequent changes to the definitions of SQL tables, you should maintain
synchronization stamps at the table level. If you do not expect frequent changes, you

should maintain stamps at the area level.

AREA Statements

Chapter 7: Physical Database DDL Statements 151

Specifying a Synchronization Stamp Value

When defining or altering an area for which area -level stamping is in effect, you can
specify an explicit value for its synchronization stamp. This allows you to create
databases that have identical physical attributes and can therefore be accessed through

a single schema definition.

Since an area's synchronization stamp is updated each time any DDL statement affecting
the area is issued, the synchronization stamp must be set after issuing the SQL DDL
statements that define the database.

Care should be exercised when specifying a specific timestamp, since its purpose is to
enable the detection of discrepancies between an entity and its definition. If explicitly
specified, the timestamp should always be set to a new value following a defini tional

change so that the change is detectable to the run time system.

Contiguity of File Blocks

Block ranges within a fi le associated with more than one area must be contiguous.

To specify that all pages of the area map to all pages of the fi le, specify:

...from 1 for all

on the fi le specification.

If the fi le has multiple areas associated with it, the block range will overlap if both of the
areas map to the fi le having this specification. You can map the first area using "FROM 1
FOR ALL", but you must map the second area "FROM last-block-of-the-file+1 FOR ALL".

AREA Statements

152 Database Administration Guide

Device Types or Access Methods May Limit the Number of File Blocks

Device types or access methods may further restrict the number of blocks allowed in a

fi le. For example, a maximum of 65,535 tracks can be addressed in BDAM files.

Note: For more information about device types and access methods, see Allocating and
Formatting Files.

Native VSAM File Restrictions

An area that maps to native VSAM files has the following restrictions:

■ A native VSAM file defined with an access method RRDS, KSDS, or ESDS can map to

one and only one area

■ An area that maps to a native VSAM file must map to one and only one fi le

■ If an area is associated with one or more fi les defined with PATH as an access

method, then:

– The area must map to either an ESDS or KSDS fi le

– The PATH fi le must not be associated with any other area

Index Calculations

The following algorithms are used to calculate BLOCK CONTAINS key-count and the
DISPLACEMENT page-count values for symbolic index parameters when the BASED ON
clause is specified.

Index block:

Step 1: Assuming 3 SR8's per page, compute the following:

 The maximum size of the variable portion of an SR8:

 ((Page size - Page reserve - 32) / 3) - 40 = SR8-vsize

 The maximum number of entries in an SR8:

 Sorted index: (SR8-vsize / (8 + Keylen)) - 2

 Unsorted index: (SR8-vsize / 4) - 1

 If the number of SR8 entries is less than 3, set it to 3; if

 greater than 8180, set it to 8180.

Step 2: Establish the number of index entries: Use the FOR index-cnt

 value, if specified, or 1000.

AREA Statements

Chapter 7: Physical Database DDL Statements 153

Step 3: Estimate the number of entries per SR8 for a 3-level index:

 Find the first entry in the following table whose Number of

 Entries column is greater than or equal to the value established

 in Step 2.

 Number of Number of

 entries SR8 entries

 1,000 10

 15,625 25

 125,000 50

 512,000 80

 1,000,000 100

 2,000,376 126

 3,375,000 150

 5,359,375 175

 8,000,000 200

 15,625,000 250

 -1 8180

Step 4: Determine the INDEX BLOCK value: Use the lesser of the Number

 of SR8 entries from the table and the value from Step 1 as the

 INDEX BLOCK (IBC) value in the remaining calculations.

Displacement:

For unsorted indexes, the displacement is set to 0; for sorted indexes, it is calculated as
follows:

Step 1: Calculate the number of bottom level and higher level SR8s:

 Set N = #-of-entries

 High-level-SR8s = 0

 Bottom-level-SR8s = 1

 Repeat

 N = (N + IBC - 1) / IBC (truncate)

 If N = 1, exit

 If High-level-SR8s = 0,

 High-level-SR8s = 1

 Bottom-level-SR8s = N

 Else High-level-SR8s = High-level-SR8s + N

 Set Total-SR8s = High-level-SR8s + Bottom-level-SR8s

AREA Statements

154 Database Administration Guide

Step 2: Determine the number of SR8s per page:

 Calculate size of an SR8:

 SR8-size = 32 + (IBC + 1) * (keylen + 8)

 Calculate number of SR8s per page:

 (Page-size - Page-reserve - 32) / (SR8-size + 8)

Step 3: Establish the INDEX DISPLACEMENT:

 If Number of Higher Level SR8s is less than 2, set

 the DISPLACEMENT = High-level-SR8s. (For a one or

 two-level index, displacement will be 0 or 1

 respectively.)

 If Number of Higher Level SR8s is greater than 1,

 compute the displacement:

 (High-level-SR8s + SR8s-per-page - 1)

 ------------------------------------- + 1 (truncate)

 SR8s-per-page

 If the calculate displacement is greater than the number

 of pages in the area containing the index, then:

 Displacement = Number of pages in area / 2

Examples

Mapping to a Single File

The CREATE AREA statement below defines an area that has only one associated fi le. All
100 pages in the area will map to the first available 100 blocks in the fi le.

create area demoseg.emp_space

 primary space 100 pages

 page size 4276

 within file demoseg.emp_file;

AREA Statements

Chapter 7: Physical Database DDL Statements 155

Mapping to Two Files

The CREATE AREA statement below defines an area that maps to two fi les. The first 500
pages in the area map to the first 500 blocks in the PUB_FILE_1 fi le. The second 500
pages in the area map to 500 blocks of the PUB_FILE_2 fi le, starting at block number

1001.

create area salesseg.sales_space

 primary space 1000 pages

 from page 85001

 maximum space 1500 pages

 page size 3820 characters

 page reserve size 800 characters

 within file pub_file_1

 from 1 for 500

 within file pub_file_2

 from 1 for 500;

Adding Pages to an Area

The ALTER AREA statement below adds 200 pages to the SALES_SPACE area. The new
pages are mapped to the PUB_FILE_3 fi le.

alter area salesseg.sales_space

 extend space 200 pages

 within file pub_file_3

 from 1 thru 200;

Dropping an Area

The following DROP AREA statement deletes the definition of the SALES_SPACE area

from the dictionary. If SALESSEG is defined as an SQL segment, then you must first drop
all tables and indexes associated with the area:

drop area salesseg.sales_space;

More Information

■ For more information about defining segments, areas, and fi les, see Chapter 4,

“Defining Segments, Files, and Areas".

■ For more information about modifying segments, areas, and fi les, see Chapter 27,
“Modifying Physical Database Definitions".

BUFFER Statements

156 Database Administration Guide

BUFFER Statements

The BUFFER statements create, alter, drop, display, or punch the definition of a
database buffer in the dictionary. You must define at least one database buffer for a
DMCL.

Authorization

■ To create, alter, or drop a database buffer, you must have the following privileges:

– DBADMIN on the dictionary in which the database buffer definition resides

– ALTER on the DMCL with which the database buffer is associated

■ To display or punch the database buffer, you must have DISPLAY privilege on the

DMCL with which the database buffer is associated or DBADMIN on the dictionary
in which the buffer definition resides

Syntax

CREATE/ALTER BUFFER

►►─┬── CREATE ─┬─ BUFFER ─┬──────────────┬─ database-buffer-name ─────────────►
 └── ALTER ──┘ └─ dmcl-name. ─┘

 ►─┬──┬─────────────────────────────────►
 └─ PAGE SIZE character-count characters ─┘

 ►─┬──┬───►
 └─ NATIVE VSAM ─┬─ LSR KEYLEN lsr-key-length ──┬─ STRNO string-number ─┘
 └─ NSR BUFNI nsr-buffer-count ─┘

 ►─┬───┬──►
 └─ LOCAL MODE BUFFER PAGES local-mode-page-count ─┬───────────────────┬─┘
 ├─ OPSYS storage ◄──┤
 └─ IDMS storage ────┘

 ►──┬──┬────────────►◄
 └┬─ CENTRAL VERSION ─┬─ MODE BUFFER ─┬─────────────────────┬─┘
 └─ CV ──────────────┘ └─ cv-buffer-options ─┘

DROP BUFFER

►►─── DROP BUFFER ─┬──────────────┬─ database-buffer-name ────────────────────►◄
 └─ dmcl-name. ─┘

BUFFER Statements

Chapter 7: Physical Database DDL Statements 157

DISPLAY/PUNCH BUFFER

►►─┬─ DISplay ─┬─ BUFFER ─┬──────────────┬─ database-buffer-name ─────────────►
 └─ PUNch ───┘ └─ dmcl-name. ─┘

 ┌───────────────────────────────────────┐
 ►─▼─┬───────────────────────────────────┬─┴──────────────────────────────────►
 │ ┌────────────────┐ │
 ├─ WITh ──────┬─▼─┬─ DETails ──┬─┴──┘
 └─ WITHOut ───┘ ├─ HIStory ──┤
 ├─ ALL ◄─────┤
 └─ NONe ─────┘

 ►─┬──────────────────────────┬───►
 └─ VERb ─┬─ DISplay ───┬───┘
 ├─ PUNch ─────┤
 ├─ CREate ◄───┤
 ├─ ALTer ─────┤
 └─ DROp ──────┘

 ►─┬───────────────────────┬──►◄
 └─ AS ─┬─ COMments ◄──┬─┘
 └─ SYNtax ─────┘

Expansion of cv-buffer-options

►►─┬────────────────────────────────────┬─────────────────────────────────────►
 └─ INITIAL PAGES initial-page-count ─┘

 ►─┬────────────────────────────────────┬─────────────────────────────────────►
 └─ MAXIMUM PAGES maximum-page-count ─┘

 ►─┬──────────────────────┬───►◄
 └┬─ OPSYS storage ◄──┬─┘
 └─ IDMS storage ────┘

Parameters

dmcl-name

Identifies the DMCL with which the database buffer is associated. Dmcl-name must
name an existing DMCL defined to the dictionary. If you don't specify a DMCL name,

you must establish a current DMCL as described in 7.3.3, “Entity Currency".

database-buffer-name

Specifies the name of the buffer being created. Database-buffer-name must be a 1-

through 18-character name that follows the conventions described in 7.3, “Naming
Conventions".

Database-buffer-name must be unique among the database and journal buffer
names within the DMCL. From 1 to 32,767 database buffers can be defined to a

single DMCL.

BUFFER Statements

158 Database Administration Guide

PAGE SIZE character-count

Specifies the number of characters in each page of the buffer. This clause is

required on a CREATE statement. The buffer page size determines the size of the
largest database page or VSAM control interval that can be written to the buffer.

The value of character-count depends on the type of buffer being defined:

File Buffer Type Valid Page Sizes (in bytes)

VSAM database fi le 48 - 32764; multiple of 4 1 2

Native VSAM file3 LSR 512, 1024, 2048, or multiple of 4096 up

to 28672

 NSR 512 - 8192; multiple of 512

8193 - 30720; multiple of 2048

Note: For VSAM database fi les, character-count must be at least 8 bytes larger than the

size of the database page.

Note: For native VSAM files, the PAGE SIZE clause must be greater than or equal to the
largest control interval of a fi le that maps to the buffer.

NATIVE VSAM

Specifies a buffer for use with native VSAM data sets.

LSR KEYLEN lsr-key-length

Specifies an LSR (local shared resource) buffer. Only one is allowed per DMCL.

Lsr-key-length specifies the maximum key length for all native VSAM files using the

buffer, where lsr-key-length-n is an integer in the range 1 through 255.

NSR BUFNI index-buffer-count

Specifies an NSR (nonshared resource) buffer. Any number of these are allowed.

Index-buffer-count specifies the number of index buffers VSAM uses to transfer the
contents of index entries between main memory and auxiliary storage. It is an

integer in the range string-number through 32767.

STRNO string-number

Specifies the maximum number of concurrent requests permitted against all areas

associated with fi les that are assigned to the buffer, where string-number is an
integer in the range 1 through 255.

BUFFER Statements

Chapter 7: Physical Database DDL Statements 159

LOCAL MODE BUFFER PAGES local-mode-page-count

Specifies the number of pages to be included in the buffer when the database is

used in local mode. Valid values for local-mode-page-count appear as follows:

Buffer Type Valid Values

Non-native VSAM buffers 3 to 16,777,2141; default 3

Native VSAM buffers 2 to 256; must be greater than the value
assigned to STRNO in the NATIVE VSAM
clause above

Note: The practical upper l imit depends on the amount of available storage.

Native VSAM: For native VSAM data sets, the buffer page count speci fies the number of
pages in the buffer used to transfer data between memory and auxiliary storage. For
LSR buffers, the page count specifies the number of pages used to transfer both data

and index entries.

OPSYS storage

Places the buffer in a contiguous block of storage acquired from the operating
system. The storage is acquired above the 16-megabyte line in operating systems

that support extended addressing. If sufficient storage is not available, storage is
acquired as IDMS storage. OPSYS STORAGE is the default.

IDMS storage

Acquires a discrete piece of storage for each buffer page. If the operating system
supports extended addressing, the storage will be acquired above the 16-megabyte

line.

Native VSAM: Do not specify this clause.

CENTRAL VERSION MODE BUFFER

Specifies page counts for the buffer when the database is used under the central

version.

cv-buffer-options

Specifies options for the buffer used under the central version.

INITIAL PAGES initial-page-count

Specifies the initial number of pages to be allocated for the buffer.

Initial-page-count is an integer. Valid values appear as follows:

Buffer Type Valid Values

Non-native VSAM buffers 3 to 16,777,2141; default 3

BUFFER Statements

160 Database Administration Guide

Buffer Type Valid Values

Native VSAM buffers 2 to 256; must be greater than the value assigned to

STRNO in the NATIVE VSAM clause above

Note: The practical upper l imit depends on the amount of available storage.

Native VSAM: For native VSAM data sets, the buffer page count specifies the number of

pages in the buffer used to transfer data between memory and auxiliary storage. For
LSR buffers, the page count specifies the number of pages used to transfer both data
and index entries.

MAXIMUM PAGES maximum-page-count

Specifies the largest number of pages that can be allocated for the buffer.
Maximum-page-count is an integer in the range 3 to 16,777,214. It must be greater
than or equal to the number specified in the INITIAL PAGES parameter. The default
is the initial number of pages included in the buffer.

Native VSAM: Do not specify this clause.

OPSYS storage

Places the buffer in contiguous storage acquired from the operating system. OPSYS
STORAGE is the default.

The storage is acquired above the 16-megabyte line in operating systems which
support extended addressing. If sufficient storage is not available, storage is
acquired as IDMS storage.

IDMS storage

Requests a discrete piece of storage for each buffer page from the DC/UCF storage

pool. If the DC/UCF system contains a storage pool above the 16-megabyte line,
then storage for the buffer is acquired above the 16-megabyte line.

Native VSAM: Do not specify this clause.

DETails

Displays or punches details about the database buffer.

HIStory

Displays or punches:

■ The user who defined the database buffer

■ The user who last updated the database buffer

■ The date the database buffer was created

■ The date the database buffer was last updated

BUFFER Statements

Chapter 7: Physical Database DDL Statements 161

ALL

Displays or punches all information about the database buffer. ALL is the default

action for a DISPLAY or PUNCH verb.

NONe

Displays or punches the name of the database buffer.

Usage

Buffer Storage Not Acquired Until Needed

CA IDMS/DB does not acquire storage for a buffer until it opens a fi le associated with

the buffer.

Buffer Page Count Under the Central Version

When you start up a DC/UCF system, the number of pages in a given buffer is the
number specified in the INITIAL PAGES parameter in the buffer definition. If the initial
number of pages is lower than the number specified in the MAXIMUM PAGES
parameter, you can use the DCMT VARY BUFFER command to increase the number of

pages in the buffer up to the specified maximum.

How CA IDMS/DB Acquires Storage for a Buffer

The OPSYS and IDMS parameters tell CA IDMS/DB how to acquire storage for the buffer.
In response to the OPSYS parameter, CA IDMS/DB issues a request to the operating

system for a contiguous block of storage for the buffer pages. In response to the IDMS
parameter, CA IDMS/DB issues requests to the DC/UCF system for storage equal to the
size of a buffer page until all the required pages are acquired. For both OPSYS and IDMS,

CA IDMS/DB acquires the storage above the 16-megabyte line, if possible.

Dropping a Buffer with Associated Files

Before you delete the definition of a buffer, use the ALTER DMCL statement to change

the buffer specification for fi les associated with the buffer.

BUFFER Statements

162 Database Administration Guide

Examples

Defining the Default Buffer

The CREATE BUFFER statement below defines a buffer for DMCL IDMSDMCL. The buffer

can be used in both local mode and under the central version.

create buffer idmsdmcl.index_buffer

 page size 4276

 local mode buffer pages 15

 central version mode buffer

 initial pages 100

 maximum pages 500;

Modifying the Page Count for Use Under the Central Version

The following ALTER BUFFER statement modifies both the initial page count and the

maximum page count of the INDEX_BUFFER buffer:

alter buffer idmsdmcl.index_buffer

 central version mode buffer

 initial pages 150

 maximum pages 300;

Dropping a Database Buffer

The following DROP BUFFER statement deletes the definition of the INDEX_BUFFER
buffer from the dictionary:

drop buffer idmsdmcl.index_buffer;

More Information

■ For more information about defining database buffers, see Chapter 5, "Defining,

Generating, and Punching a DMCL".

■ For more information about modifying database buffers, see Chapter 27,
“Modifying Physical Database Definitions”.

■ For more information about tuning buffers, see Chapter 24, “Monitoring and Tuning
Database Performance”.

■ For more information about the DCMT VARY BUFFER command, see the CA IDMS
System Tasks and Operator Commands Guide.

DBGROUP Statements

Chapter 7: Physical Database DDL Statements 163

DBGROUP Statements

The DBGROUP statements create, alter, drop, display, or punch a database group
definition.

Authorization

To create, alter, or drop a database group, you must have the following privileges:

■ DBADMIN on the dictionary in which the database group definition resides

■ ALTER on the database name table in which the database group resides

■ CREATE, ALTER, or DROP, respectively, on the database group specified on the
DBGROUP statement

To display or punch a database group, you must hold DISPLAY on the DBGROUP
specified in the DBGROUP statement or DBADMIN on the dictionary in which the

database name table resides.

Syntax

CREATE/ALTER DBGROUP

►►─┬─ CREATE ─┬─ DBGROUP ─┬─────────────────┬─ dbgroup-name ──────────────────►
 └─ ALTER ──┘ └─ dbtable-name. ─┘

 ►─┬─────────────┬──►◄
 ├─ ENABLED ◄──┤
 └─ DISABLED ──┘

DROP DBGROUP

►►─── DROP DBGROUP ─┬─────────────────┬─ dbgroup-name ────────────────────────►◄
 └─ dbtable-name. ─┘

DISPLAY/PUNCH DBGROUP

►►─┬─ DISplay ─┬─ DBGROUP ─┬─────────────────┬─ dbgroup-name ─────────────────►
 └─ PUNch ───┘ └─ dbtable-name. ─┘

 ┌────────────────────────────────────┐
 ►─▼─┬────────────────────────────────┬─┴─────────────────────────────────────►
 │ ┌───────────────┐ │
 ├─ WITh ─────┬─▼─┬─ ALL ◄────┬─┴─┘
 └─ WITHOut ──┘ ├─ NONe ────┤
 ├─ DETails ─┤
 └─ HIStory ─┘

 ►─┬───────────────────────┬──►
 └─ VERb ─┬─ DISplay ──┬─┘
 ├─ PUNch ────┤
 ├─ CREate ◄──┤
 ├─ ALTer ────┤
 └─ DROp ─────┘

 ►─┬───────────────────────┬──►◄
 └─ AS ─┬─ COMments ◄──┬─┘
 └─ SYNtax ─────┘

DBGROUP Statements

164 Database Administration Guide

Parameters

dbtable-name

Identifies a database name table defined to the dictionary. You must specify the
database name table if you have not established a current database name table as

described in 7.3.3, “Entity Currency" earlier in this chapter.

dbgroup-name

Specifies a unique database group in the database name table. Dbgroup-name is a
1-8-character value that follows the conventions described in 7.3, “Naming

Conventions" earlier in this chapter.

ENABLED/NOT ENABLED

Specifies whether or not an IDMS system using this database name table will
become a member of the database group when the system is started. If the system
is not a member of the group, it cannot service database requests directed to the

specified group.

Once the system is active, group membership status can be changed by issuing a
DCMT VARY DBGROUP statement.

DETails

Displays or punches details about the database group.

HIStory

Displays or punches:

■ The user who defined the database group

■ The user who last updated the database group

■ The date the database group was created

■ The date the database group was last updated

ALL

Displays or punches all information about the database group. ALL is the default
action for a DISPLAY or PUNCH verb.

NONe

Displays or punches the name of the database group.

Usage

What the DBGROUP Statement Does

Each DBGROUP statement defines a database group entry in the database name table.

Each DBGROUP statement defines a database group that may be specified in place of a
nodename for dynamic routing purposes.

DBNAME Statements

Chapter 7: Physical Database DDL Statements 165

Examples

Defining a Database Group

This example defines two database groups, one representing all CVs that can service

customer-related transactions (CUSTGRP) and another that can service finance-related
transactions (FINGRP). Both groups have been included in the database name table
called CUSTDBT, while only FINGRP has been included in the database name table called
CORPDBT.

create dbgroup custdbt.custgrp;

create dbgroup custdbt.fingrp;

create dbgroup corpdbt.fingrp;

More Information

■ For more information about using database name tables when defining a physical
database, see Chapter 6, “Defining a Database Name Table”.

■ For more information about modifying database name tables, see Chapter 28,
“Modifying Database Name Tables".

■ For more information about DBGROUPs and dynamic routing, see the CA IDMS
System Operations Guide.

DBNAME Statements

The DBNAME statements create, alter, drop, display, or punch a database name
definition.

Authorization

To create, alter, or drop a database name, you must have the following privileges:

■ DBADMIN on the dictionary in which the database name definition resides

■ ALTER on the database name table in which the database name resides

■ CREATE, ALTER, or DROP, respectively, on the database name specified on the
DBNAME statement

To display or punch a database name, you must hold DISPLAY on the DBNAME specified

in the DBNAME statement or DBADMIN on the dictionary in which the database name
table resides.

DBNAME Statements

166 Database Administration Guide

Syntax

CREATE/ALTER DBNAME

►►─┬─ CREATE ─┬─ DBNAME ─┬─────────────────┬─ db-name ────────────────────────►
 └─ ALTER ──┘ └─ dbtable-name. ─┘

 ►──┬────────────────────────┬──►
 ├─ FOR GENERAL USE ◄─────┤
 └─ FOR UTILITY USE ONLY ─┘

 ►─┬───┬──────►
 └─ MIXED PAGE GROUP BINDS ─┬─ NOT ALLOWED ◄──────────────────────┬──┘
 └─ ALLOWED ─┬───────────────────────┬─┘
 └─ VERIFY ─┬─ ON ─────┬─┘
 └─ OFF ◄───┘

 ►─┬───────────────────────────────────────┬──────────────────────────────────►
 └─ MATCH ON SUBSCHEMA ─┬─ OPTIONAL ◄──┬─┘
 └─ REQUIRED ───┘

 ►─┬───┬──────────────────────────►
 │ ┌──┐ │
 └─▼─┬───────────────┬─ SEGMENT segment-name ─┴──┘
 ├─┬─ ADD ◄────┬─┤
 │ └─ INClude ─┘ │
 └─┬─ DROP ────┬─┘
 └─ EXClude ─┘

 ►─┬───┬──────►
 │ ┌───┐ │
 └─▼─┬─────────┬─ SUBSCHEMA ssc-name-1 ─┬─ MAPS TO ssc-name-2 ───┬─┴─┘
 ├ ADD ◄───┤ └─ USES DBTABLE MAPPING ─┘
 └ INClude ┘

 ►─┬──┬───────────────────────────►◄
 │ ┌──┐ │
 └─▼─┬ DROP ───┬─ SUBSCHEMA ─┬─ ssc-name-1 ─┬─┴─┘
 └ EXClude ┘ └─ ALL ────────┘

DROP DBNAME

►►── DROP DBNAME ─┬─────────────────┬─ db-name ───────────────────────────────►◄
 └─ dbtable-name. ─┘

DISPLAY/PUNCH DBNAME

►►─┬─ DISplay ─┬─ DBNAME ─┬─────────────────┬─ db-name ───────────────────────►
 └─ PUNch ───┘ └─ dbtable-name. ─┘

 ┌───────────────────────────────────────┐
 ►─▼─┬───────────────────────────────────┬─┴──────────────────────────────────►
 │ ┌────────────────┐ │
 ├─ WITh ──────┬─▼─┬─ ALL ◄─────┬─┴──┘
 └─ WITHOut ───┘ ├─ NONe ─────┤
 ├─ DETails ──┤
 └─ HIStory ──┘

 ►─┬────────────────────────┬───►
 └─ VERb ─┬─ DISplay ───┬─┘
 ├─ PUNch ─────┤
 ├─ CREate ◄───┤
 ├─ ALTer ─────┤
 └─ DROp ──────┘

 ►─┬───────────────────────┬──►◄
 └─ AS ─┬─ COMments ◄──┬─┘
 └─ SYNtax ─────┘

DBNAME Statements

Chapter 7: Physical Database DDL Statements 167

Parameters

dbtable-name

Identifies a database name table defined to the dictionary. You must specify the
database name table if you have not established a current database name table as

described in 7.3.3, "Entity Currency" earlier in this chapter.

db-name

Specifies a unique database name in the database name table. Db-name is a 1- to
8-character value that follows the conventions described in 7.3, "Naming
Conventions". It cannot be the reserved keyword '*DEFAULT'.

FOR GENERAL USE

Specifies that the database name is intended for use by application programs.

FOR UTILITY USE ONLY

Specifies that the database name is intended for administrative purposes only.

MIXED PAGE GROUP BINDS ALLOWED|NOT ALLOWED

Specifying MIXED PAGE GROUP BINDS ALLOWED on a DBNAME statement allows a
rununit accessing the DBNAME to bind to areas with a mixture of page group and
radix values. If not explicitly specified, a rununit binding to a DBNAME whose
segments have different page groups will fail if the subschema being used includes

areas with different page groups. The default is NOT ALLOWED.

Note: This option applies only to non-SQL-defined databases. Mixedpage group
access is always ALLOWED for SQL-defined databases.

VERIFY ON|OFF

Specifies whether or not a check will be made at bind rununit time to ensure that

no chain sets included in the subschema cross page group boundaries. If VERIFY
OFF is specified, it is your responsibility to ensure that this condition is met. The
default for VERIFY is OFF.

Notes:

■ This option applies only to non-SQL-defined databases. The VERIFY option is
always off for SQL-defined databases.

■ A runtime check is always performed for update operations to SQL-defined

databases to ensure that the referenced and referencing tables are in the same
page group and have the same number of records per page. The VERIFY option
setting does not control this runtime check.

MATCH ON SUBSCHEMA OPTIONAL

Specifies that the subschema name passed with the BIND RUN-UNIT statement
does not have to be present in the database name definition. OPTIONAL is the
default.

DBNAME Statements

168 Database Administration Guide

MATCH ON SUBSCHEMA REQUIRED

Specifies that the subschema name passed with the BIND RUN-UNIT statement

must be present in the database name definition. If the subschema name is not
present, the bind is rejected.

ADD SEGMENT

Associates a segment with the database name. ADD is the default. You have to add
at least one segment to a database name definition.

DROP SEGMENT

Disassociates a segment from the database name.

segment-name

Identifies a segment to be added to or dropped from the database name definition.

ADD SUBSCHEMA

Adds or updates a subschema mapping associated with the database name. This
clause either maps the subschema name passed in a BIND RUN-UNIT statement to

the name of a corresponding subschema that CA IDMS/DB will use to access the
database or it specifies that the subschema mappings associated with the DBTABLE
statement are to be used in determining the database name to be accessed.

Note: New subschema mappings are added at the end of all existing mappings
associated with the database name.

\

ssc-name-1

Specifies the name of a subschema passed in a BIND RUN-UNIT statement. You can
use wildcards to specify the subschema name as described below under "Usage".

ssc-name-2

Specifies the name of a subschema to which CA IDMS/DB maps the subschema
named in the BIND RUN-UNIT statement. You can use wildcards to specify the
subschema name as described below under "Usage".

USES DBTABLE MAPPING

Selects an alternate database name using the subschema name passed on the BIND
RUN-UNIT statement and the subschema mapping rules associated with the
DBTABLE statement.

DROP SUBSCHEMA

Remove a subschema mapping from the database name definition. Ssc-name-1
must be the same as that specified in a subschema mapping associated with the
database name.

ALL

Removes all subschema mappings from the database name definition. This can be
useful when the subschema mappings must be reordered. You can drop all
mappings and then re-add them in a different order.

DBNAME Statements

Chapter 7: Physical Database DDL Statements 169

DETails

Displays or punches details about the database name.

HIStory

Displays or punches:

■ The user who defined the database name

■ The user who last updated the database name

■ The date the database name was created

■ The date the database name was last updated

ALL

Displays or punches all information about the database name. ALL is the default

action for a DISPLAY or PUNCH verb.

NONe

Displays or punches the name of the database name.

Usage

What the DBNAME Statement Does

Each DBNAME statement defines an entry in the database name table. Each DBNAME
statement defines a database name that may be specified in a BIND RUN-UNIT or SQL
CONNECT statement unless FOR FOR UTILITY USE ONLY is specified. If UTILITY USE ONLY

is specified, the database name can only be used for administrative purposes.

Restrictions on Names

The following restrictions apply to database name definitions:

■ The database name must be different from any segment included in a DMCL
associated with the database name table unless the segment is included in the

database name definition.

■ The names of all areas associated with segments added to the database name
definition must be unique unless FOR UTILITY USE ONLY is specified. For example,

you cannot have an area named EMP_AREA in segments EMPSEG and PROJSEG if
both segments are included in a database name definition.

These restrictions are checked at runtime. If violated, the database name is marked in
error and no transaction will be allowed to access it.

DBNAME Statements

170 Database Administration Guide

Using Wildcards for Mapping Subschemas

When you specify a subschema name, you can use a question mark (?) to indicate any

character. Each question mark in ssc-name-1 will match any character in the
corresponding position of a subschema name passed on the BIND RUN-UNIT statement.
For example, an ssc-name-1 of EMP??T? will match all 7-character subschema names

beginning with EMP and having a "T" as the sixth character.

Each question mark in ssc-name-2 will preserve the character in the corresponding
position of the subschema name passed on the BIND. For example, an ssc-name-2 of
EMP??P? will replace the first three characters and the sixth character of the subschema

name passed on the bind statement with "EMP" and "P" respectively. The remaining
characters of the subschema name remain unchanged. If ssc-name-2 is ????????, the
subschema name passed on the bind statement remains unchanged.

Mapping Sequence Is Important if Using Wildcards

Subschema mappings are searched from top to bottom until a match is found on

ssc-name-1. Therefore, you should l ist the most specific subschema mapping first and
the least specific last. For example:

add subschema emp???? maps to emp????

 .

 .

 .

add subschema ???????? maps uses dbtable mapping

Examples

Defining a Database Name

This example defines a production database (EMPDB) and a test database (TESTDB) as
entries in database name table ALLDBS. EMPDB contains two segments: EMPSEG
containing employee information and PROJSEG containing project information.

Similarly, TESTDB contains two segments, TEMPSEG and TPROJSEG containing test
employee and project data.

create dbname alldbs.empdb

 add segment empseg

 add segment projseg;

create dbname alldbs.testdb

 add segment tempseg

 add segment tprojseg;

DBTABLE Statements

Chapter 7: Physical Database DDL Statements 171

Using Wildcards to Map Subschemas

In this example, the database name TESTDB is changed to map any subschema name

beginning with PROD to a subschema name beginning with TEST. The last 4 characters
of the subschema name remain unchanged.

alter dbname alldbs.testdb

 add subschema prod???? maps to test????;

More Information

■ For more information about using database name tables and database names when

defining a physical database, see Chapter 6, “Defining a Database Name Table".

■ For more information about modifying database name tables, see Chapter 28,
“Modifying Database Name Tables".

DBTABLE Statements

The DBTABLE statements perform the following tasks:

■ Creates, alters, drops, displays, or punches a database name table definition in the
dictionary

■ Generates or deletes a database name table load module in the DDLCATLOD area of

the dictionary

Authorization

■ To create, alter, drop, or generate a database name table, you must have the

following privileges:

– DBADMIN on the dictionary in which the database name definition resides

– CREATE (for creating), ALTER (for altering or generating), or DROP (for
dropping) on the database name table

■ To delete the database name table load module, you must have USE authority on
the named load module.

■ To display or punch the database name table, you must hold DISPLAY privilege on

the database name table, or DBADMIN on the dictionary in which the database
name table definition resides.

DBTABLE Statements

172 Database Administration Guide

Syntax

CREATE/ALTER DBTABLE

►►─┬─ CREATE ─┬─ DBTABLE dbtable-name ──►
 └─ ALTER ──┘

 ►─┬──┬─►
 │ ┌───┐│
 └─▼─┬─────────┬─ SUBSCHEMA ssc-name-1 MAPS TO ssc-name-2 DBNAME db-name ┴┘
 ├ ADD ◄───┤
 └ INClude ┘

 ►─┬──┬─────────────────────────►◄
 │ ┌───┐ │
 └─▼─┬─ DROP ───┬─ SUBSCHEMA ─┬─ ssc-name-1 ─┬─┴──┘
 └─ EXClude ┘ └─ ALL ────────┘

DROP DBTABLE

►►── DROP DBTABLE dbtable-name ───►◄

GENERATE DBTABLE

►►─── GENerate DBTABLE dbtable-name ──►◄

DELETE DBTABLE LOAD MODULE

►►─┬─ DELete ─┬─ DBTABLE LOAD MODULE dbtable-load-module-name ────────────────►
 └─ DROP ───┘

 ►─┬─────────────┬──►◄
 └─ PERMANENT ─┘

DISPLAY/PUNCH DBTABLE

►►─┬─ DISplay ─┬─ DBTABLE dbtable-name ───────────────────────────────────────►
 └─ PUNch ───┘

 ┌───────────────────────────────────────┐
 ►─▼─┬───────────────────────────────────┬─┴──────────────────────────────────►
 │ ┌────────────────┐ │
 ├─ WITh ──────┬─▼─┬─ ALL ◄─────┬─┴──┘
 └─ WITHOut ───┘ ├─ NONe ─────┤
 ├─ DETails ──┤
 └─ HIStory ──┘

 ►─┬────────────────────────┬───►
 └─ VERb ─┬─ DISplay ───┬─┘
 ├─ PUNch ─────┤
 ├─ CREate ◄───┤
 ├─ ALTer ─────┤
 └─ DROp ──────┘

 ►─┬───────────────────────┬──►◄
 └─ AS ─┬─ COMments ◄──┬─┘
 └─ SYNtax ─────┘

DBTABLE Statements

Chapter 7: Physical Database DDL Statements 173

Parameters

dbtable-name

Specifies the name of a database name table. Database-name-table is a 1- to
8-character value that assigns a unique name to the database name table within the

dictionary.

ADD SUBSCHEMA

Identifies the database to be accessed by adding or updating a DBTABLE mapping
that maps the name of the subschema specified in a BIND RUN-UNIT statement to a

corresponding subschema and its associated database name definition. ADD is the
default.

New DBTABLE mappings are added at the end of all existing mappings associated

with the database name table.

See "Usage" below for information on using this clause.

ssc-name-1

Specifies a 1- to 8-character name of a subschema passed on a BIND RUN-UNIT

statement. You can use wildcards to specify the subschema name as described
below under "Usage".

ssc-name-2

Specifies a 1- to 8-character name of a subschema to which CA IDMS/DB maps the
subschema named on a BIND RUN-UNIT statement. You can use wildcards to

specify the subschema name as described in the "Usage" topic in this section.

db-name

Identifies the database to be accessed. Db-name is a 1- to 8-character value that

identifies a database name definition in the database name table. See the "Usage"
topic in this section for information on how CA IDMS/DB uses this database name at
runtime.

DROP SUBSCHEMA

Drops a DBTABLE mapping from the database name table. The name specified in
ssc-name-1 must be the same as that in a subschema mapping associated with the
database name table.

DBTABLE Statements

174 Database Administration Guide

ALL

Removes all DBTABLE mappings from the database name table. This can be useful

when the mappings must be reordered. You can drop all mappings and then re-add
them in a different sequence.

dbtable-load-module-name

Specifies the name of the database name table load module to delete from the
DDLCATLOD area.

PERMANENT

Physically erases the database name table load module. By default, IDMS/DB

logically erases the database name table load module and physically erases it upon
system startup.

DETails

Displays or punches details about the database name table.

HIStory

Displays or punches:

■ The user who defined the database name table

■ The user who last updated the database name table

■ The date the database name table was created

■ The date the database name table was last updated

ALL

Displays or punches all information about the database name table. ALL is the

default action for a DISPLAY or PUNCH verb.

NONe

Displays or punches the name of the database name table.

Usage

Identify Database Name Table in DMCL

To use the database name table at runtime, you must associate the database name
table with the DMCL used at run time.

DBTABLE Statements

Chapter 7: Physical Database DDL Statements 175

DBTABLE Mappings Identify Database Names

The primary function of the DBTABLE mappings specified on the DBTABLE statement is

to identify the database name to access when none is provided on a BIND RUN-UNIT
statement. The subschema mappings are searched for a match on the subschema name
passed on the bind. The first subschema mapping with a matching ssc-name-1

determines the database name to be accessed.

The DBTABLE mappings can also be used if the definition of the database name provided
on the bind contains a subschema mapping with the USES DBTABLE MAPPING clause.
This clause directs CA IDMS/DB to ignore the database name provided on the bind and

to select another database name by using the DBTABLE mappings.

Using Wildcards for Mapping Subschemas

When you specify a subschema name, you can use a question mark (?) to indicate any
character. Each question mark in ssc-name-1 will match any character in the
corresponding position of a subschema name passed on the BIND RUN-UNIT statement.

For example, an ssc-name-1 of EMP??T? will match all 7-character subschema names
beginning with EMP and having a "T" as the sixth character.

Each question mark in ssc-name-2 will preserve the character in the corresponding
position of the subschema name passed on the BIND. For example, an ssc-name-2 of
EMP??P? will replace the first three characters and the sixth character of the subschema

name passed on the bind statement with "EMP" and "P" respectively. The remaining
characters of the subschema name remain unchanged. If ssc-name-2 is ????????, the
subschema name passed on the bind statement remains unchanged.

Mapping Sequence Is Important if Using Wildcards

DBTABLE mappings are searched from top to bottom until a match is found on
ssc-name-1. Therefore, you should l ist the most specific mapping first and the least
specific mapping last. For example:

add subschema emp????? maps to emp????? dbname empdb

 .

 .

 .

add subschema ???????? maps to ???????? dbname defdb

DBTABLE Statements

176 Database Administration Guide

Generate Creates a Database Name Table Load Module

The GENERATE DBTABLE statement creates and stores a database name table load

module. To make a database name table available to CA IDMS/DB you must punch the
load module as an object deck and link edit it into the appropriate load library.

To punch a database name table load module as an object deck, use the PUNCH

DBTABLE LOAD MODULE util ity statement.

Regenerate the Database Name Table Following Changes

You must regenerate the database name table following any additions, changes, or
deletions by issuing a GENERATE DBTABLE statement.

Defining the Default Dictionary

One of the primary functions of a database name table is to identify the default
dictionary. A default dictionary is the dictionary accessed when you don't specify a
dictionary explicitly. It is defined as the database name to which the IDMSNWKL
subschema maps. Typically, it is specified using a subschema mapping statement such

as:

subschema idmsnwk? maps to idmsnwk? dbname defdict

You must define a default dictionary in every database name table you create.

Examples

Defining a Database Name Table

The following statement creates the ALLDBS database name table. It i l lustrates the use
of DBTABLE mappings to select a database name for processing. All run units binding
with a subschema name beginning with CUST will access CUSTDB; those with names

beginning with EMP will access the EMPDB; all others will access DEFDB.

create dbtable alldbs

 subschema emp????? maps to emp????? dbname empdb

 subschema cust???? maps to cust???? dbname custdb

 subschema ???????? maps to ???????? dbname defdb;

Generating a Database Name Table

The following example generates a load module for database name table ALLDBS:

generate dbtable alldbs;

DISK JOURNAL Statements

Chapter 7: Physical Database DDL Statements 177

Identifying the Default Dictionary

This example identifies TESTDICT as the default dictionary. The DBTABLE mapping maps

all IDMSNTWK subschemas to dictionary TESTDICT. The dictionary contains segments for
the base definition areas, catalog areas and the system message area:

create dbtable alldbs

 add subschema idmsnwk? maps to idmsnwk? dbname testdict;

 .

 .

 .

create dbname alldbs.testdict

 add segment testdict

 add segment catseg

 add segment sysmsg;

More Information

■ For more information about using database name tables, see Chapter 6, “Defining a

Database Name Table".

■ For more information about modifying database name tables, see Chapter 28,
“Modifying Database Name Tables”.

■ For more information about establishing a default dictionary, see Chapter 25,
“Dictionaries and Runtime Environments".

DISK JOURNAL Statements

The DISK JOURNAL statements create, alter, drop, display, or punch the definition of a
disk journal fi le from the dictionary.

Authorization

■ To create, alter, or drop a disk journal fi le, you must have the following privileges:

– DBADMIN on the dictionary in which the disk journal fi le definition resides

– ALTER on the DMCL with which the disk journal fi le is associated

■ To display or punch a disk journal fi le, you must have DISPLAY privilege on the
DMCL with which the disk journal fi le is associated or DBADMIN on the dictionary in
which the disk journal fi le definition resides.

DISK JOURNAL Statements

178 Database Administration Guide

Syntax

CREATE/ALTER DISK JOURNAL

►►─┬─ CREATE ─┬─ DISK JOURNAL ─┬──────────────┬─ journal-file-name ───────────►
 └─ ALTER ──┘ └─ dmcl-name. ─┘

 ►─┬────────────────────────────────┬───►
 └─ FILE SIZE block-count blocks ─┘

 ►─┬───────────────────────────────┬──►
 └ ASSIGN TO ─┬─ ddname ─────────┤
 ├─ filename ───────┤
 └─ NULL ───────────┘

 ►─┬────────────────────┬───►
 └┬─┬─ NONVSAM ◄──┬─┬─┘
 │ └─ BDAM ──────┘ │
 └─ VSAM ──────────┘

 ►─┬─────────────────────────────┬──►
 └─ DSNAME ─┬ 'data-set-name' ─┤
 └─ NULL ◄──────────┘

 ►─┬─────────────────┬──►
 └─ DISP ─ SHR ◄───┘

 ►─┬──┬───────────────────────────────►
 └─ VM VIRTUAL ADDRESS ─┬─ virtual-address ─┤
 └─ NULL ◄──────────┘

 ►─┬───────────────────────────┬──►◄
 └─ VM USERID ─┬ vm-user-id ─┤
 └─ NULL ◄─────┘

DROP DISK JOURNAL

►►── DROP DISK JOURNAL ─┬──────────────┬─ journal-file-name ──────────────────►◄
 └─ dmcl-name. ─┘

DISPLAY/PUNCH DISK JOURNAL

►►─┬─ DISplay ─┬─ DISK JOURNAL ─┬──────────────┬─ journal-file-name ──────────►
 └─ PUNch ───┘ └─ dmcl-name. ─┘

 ┌───────────────────────────────────────┐
 ►─▼─┬───────────────────────────────────┬─┴──────────────────────────────────►
 │ ┌────────────────┐ │
 ├─ WITh ──────┬─▼─┬─ DETails ──┬─┴──┘
 └─ WITHOut ───┘ ├─ HIStory ──┤
 ├─ ALL ◄─────┤
 └─ NONe ─────┘

 ►─┬────────────────────────┬───►
 └─ VERb ─┬─ DISplay ───┬─┘
 ├─ PUNch ─────┤
 ├─ CREate ◄───┤
 ├─ ALTer ─────┤
 └─ DROp ──────┘

 ►─┬───────────────────────┬──►◄
 └─ AS ─┬─ COMments ◄──┬─┘
 └─ SYNtax ─────┘

DISK JOURNAL Statements

Chapter 7: Physical Database DDL Statements 179

Parameters

dmcl-name

Identifies the DMCL with which the disk journal fi le is associated. Dmcl-name must
name an existing DMCL defined to the dictionary. If you don't specify a DMCL name,

you must establish a current DMCL as described in 7.3.3, "Entity Currency" earlier in
this chapter.

journal-file-name

Specifies the name of the journal fi le. Journal-file-name must be a 1- through

18-character name that follows the conventions described in 7.3, "Naming
Conventions".

Journal-file-name must be unique among the disk and archive journal fi le names

within the DMCL definition.

FILE SIZE block-count

Specifies the number of blocks in the journal fi le. This clause is required on a
CREATE statement. Block-count is an integer in the range 9 through 2,147,483,647.

ASSIGN TO

Specifies an external fi le name. Every external fi le name in a DMCL definition must
be unique. In z/VSE without DYNAM/D, an external fi le name must be specified. In
other environments, if the external fi le name is not specified, a data set name or
VM virtual address must be specified.

ddname

(z/OS and z/VM systems only) Specifies the external name for the fi le. ddname must
be a 1- through 8-character value that follows operating system conventions for

ddnames.

filename

(z/VSE systems only) Specifies the external name for the fi le. filename must be a 1-
through 7-character value that follows operating system conventi ons for fi le names.

NULL

Sets the external fi le name to blanks. It is equivalent to not specifying an external
fi le name for a fi le. This option is not valid under z/VSE unless DYNAM/D is being
used.

DISK JOURNAL Statements

180 Database Administration Guide

NONVSAM

Identifies the access method for the journal fi le as BDAM, or DAM. BDAM is a

synonym for NONVSAM. NONVSAM is the default.

The access method you specify must be the same for all disk journal fi les associated
with the DMCL.

VSAM

Identifies the access method for the journal fi le as VSAM. The access method you
specify must be the same for all disk journal fi les associated with the DMCL.

DSNAME data-set-name

Specifies the name of the data set to be used when dynamically allocating the
journal fi le for z/OS, z/VSE, and OS-format data sets under z/VM.

data-set-name must conform to host operating system rules for forming data set
names.

A data-set-name that includes embedded periods must be enclosed in single or
double quotation marks.

Under z/VM, the DSNAME parameter or VM VIRTUAL ADDRESS and USERID

parameters, or both can be specified.

NULL

Sets the data set name to blanks. This is equivalent to not specifying a data set
name for a fi le.

DISP

(z/OS and z/VM systems only) Specifies the disposition to be assigned when the fi le
is dynamically allocated.

SHR

Indicates that the data set used for the fi le is available to a DC/UCF system and

multiple local mode applications at a time.

Under z/VM, DISP SHR causes a l ink with an access mode of multiple read (MR).

SHR is the default when you do not include the DISP parameter in a CREATE

JOURNAL FILE statement.

VM VIRTUAL ADDRESS 'virtual-address'

(z/VM systems only) Specifies the virtual address of the minidisk used for the
journal fi le. virtual-address is a hexadecimal value in the range X'01' to X'FFFF'.

NULL

Sets the virtual address to blanks. On CREATE statements, this is equivalent to not
specifying a virtual address for a fi le. On ALTER statements, it removes any previous
virtual address specification for the fi le.

DISK JOURNAL Statements

Chapter 7: Physical Database DDL Statements 181

VM USERID vm-user-id

(z/VM systems only) Identifies the owner of the minidisk used for the journal fi le.

vm-user-id is a 1- to 8-character value.

A user ID for an OS-format data set must be specified. The user ID is optional for
CMS-format fi les.

If a user ID is not specified for a CMS-format fi le, CA IDMS assumes that the owner
of the minidisk is the user ID of the virtual machine in which it is running.

NULL

On CREATE statements, this is equivalent to not specifying a minidisk owner for a

fi le. On ALTER statements, removes any previous minidisk owner specification for
the fi le.

DETails

Displays or punches details about the disk journal.

HIStory

Displays or punches:

■ The user who defined the disk journal

■ The user who last updated the disk journal

■ The date the disk journal was created

■ The date the disk journal was last updated

ALL

Displays or punches all information about the disk journal. ALL is the default action

for a DISPLAY or PUNCH verb.

NONe

Displays or punches the name of the disk journal.

Usage

Define Two or More Disk Journal Files

You must define at least two disk journal fi les when you journal to disk. When one
journal fi le is full, CA IDMS/DB switches to another one. You must use an ARCHIVE

JOURNAL util ity statement to offload the full journal fi le.

Dynamic Allocation of Journal Files

Dynamic allocation of fi les is operating system and fi le-type dependent. For more
information about dynamic fi le allocation in various operating systems, see 7.14.3,

“Usage".

DISK JOURNAL Statements

182 Database Administration Guide

Archive Journal File Requirement

When you journal to disk journal fi les, you must also define at lea st one archive journal

fi le to which CA IDMS/DB offloads the contents of a disk journal when it is full.

Incompatibility of Tape and Disk Journal Files

You cannot include the definition of a tape journal fi le in the DMCL if you include the

definitions of disk and archive journal fi les.

Disk Journaling Used Under the Central Version

To take advantage of the automatic recovery and warmstart capabilities offered under
the central version, you must journal to disk.

Disk Journals in Local Mode

A DMCL containing disk journals can be used in local mode but no journaling of database
activity is performed. To journal in local mode, use a DMCL that defines a tape journal
fi le instead.

Block size of Disk Journal File

The block size of a disk journal fi le is determi ned by the page size of the journal buffer.

For VSAM disk journals, the page size of the journal buffer must be the control interval
size of the disk journal.

The block size or control interval of the disk journal fi le must not be larger than the
block size of the archive journal fi le.

Dataspaces Not Supported

The use of dataspaces for journal fi les is not supported.

DMCL Statements

Chapter 7: Physical Database DDL Statements 183

Examples

Defining a Disk Journal File

The following CREATE DISK JOURNAL statement defines the disk journal fi le SYSJRNL1:

create disk journal idmsdmcl.sysjrnl1

 file size 1000 blocks

 assign to sysjrnl1;

Dropping a Disk Journal File

The following DROP DISK JOURNAL statement deletes the definition of the disk journal
fi le TMPJRNL1 from the dictionary:

drop disk journal idmsdmcl.tmpjrnl1;

More Information

■ On the procedure for defining disk journals, see Chapter 5, "Defining, Generating,

and Punching a DMCL".

■ On journaling procedures, such as offloading, see Chapter 19, “Journaling
Procedures".

■ On defining archive journal fi les, see 7.6, "ARCHIVE JOURNAL Statements".

DMCL Statements

The DMCL statements perform the following tasks:

■ Creates, alters, or deletes the definition of a DMCL in the dictionary

■ Generates a DMCL load module and stores it in the DDLCATLOD area of the

dictionary

■ Deletes a DMCL load module from the DDLCATLOD area of the dictionary

■ Displays or punches the definition of a DMCL in the dictionary

DMCL Statements

184 Database Administration Guide

Authorization

■ To create, alter, drop or generate a DMCL, you must have the following privileges:

– DBADMIN on the dictionary in which the DMCL definition resides

– CREATE (for creating), ALTER (for altering and generating), or DROP (for
dropping) privilege on the named DMCL

– To alter a DMCL you must have USE authorization on any dbtable including the
DMCL

■ To delete the DMCL load module, you must have USE authority on the DMCL load
module

■ To display or punch a DMCL definition, you must have DISPLAY privilege on the
named DMCL or DBADMIN authority on the dictionary in which the DMCL definition
resides

■ To associate a database name table with a DMCL, you must have USE pri vilege for

the named database name table

Syntax

CREATE/DROP DMCL

►►──┬─ CREATE ─┬─ DMCL dmcl-name ───►◄
 └─ DROP ───┘

ALTER DMCL

►►── ALTER DMCL dmcl-name ──►

 ►──┬──┬────────────────────────────►
 └─ DEFAULT BUFFER ─┬─ default-buffer-name ─┬─┘
 └─ NULL ◄───────────────┘

 ►──┬──────────────────────────────┬──►
 └─ DBTABLE ─┬─ dbtable-name ─┬─┘
 └─ NULL ◄────────┘

 ►──┬──┬────────────────────────────────►
 │ ┌────────────────────────────────────┐ │
 └─▼-─┬─ segment-specification ───────┬─┴─┘
 ├─ file-override-specification ─┤
 └─ area-override-specification ─┘

 ►──┬──┬────────────────────────►
 └─ DATA SHARING ─┬─ NO ──────────────────────────┤
 │ ┌───────────────────────────┐ │
 └─▼─ data-sharing-attributes ─┴─┘

 ►───┬──►
 └─ MEMORY CACHE ─┬──────────────────────────────┬────────────────────────►
 └─ LOCATION ─┬─ ANYWHERE ◄───┬─┘
 └─ 64 BIT ONLY ─┘

 ►──┬───────────────────►◄
 ►────────────────────┬──────────────────────────────────┬┘
 └─ STORAGE LIMIT ─┬─ OPSYS ◄──────┬┘
 └─ nnn ─┬─ MB ─┬┘
 ├─ GB ─┤
 ├─ TB ─┤
 ├─ PB ─┤
 └─ EB ─┘

DMCL Statements

Chapter 7: Physical Database DDL Statements 185

GENERATE DMCL

►►── GENERATE DMCL dmcl-name ───►

 ►─┬────────────────────┬───►◄
 └─ FOR ─┬─ MVS ◄───┬─┘
 ├─ VSE ────┤
 └─ VM ─────┘

DELETE DMCL LOAD MODULE

►►─┬─ DELete ─┬─ DMCL LOAD MODULE dmcl-load-module-name ─────────────────────►
 └─ DROP ───┘

 ►─┬─────────────┬───►◄
 └─ PERMANENT ─┘

DISPLAY/PUNCH DMCL

►►─┬─ DISplay ─┬─ DMCL dmcl-name ───►
 └─ PUNch ───┘

 ┌───────────────────────────────────────┐
 ►─▼─┬───────────────────────────────────┬─┴──────────────────────────────────►
 │ ┌────────────────┐ │
 ├─ WITh ──────┬─▼─┬─ AREas ────┬─┴──┘
 └─ WITHOut ───┘ ├─ BUFfers ──┤
 ├─ FILes ────┤
 ├─ JOUrnals ─┤
 ├─ SEGments ─┤
 ├─ DETails ──┤
 ├─ HIStory ──┤
 ├─ ALL ◄─────┤
 └─ NONe ─────┘

 ►─┬──────────────────────────┬───►
 └─ VERb ─┬─ DISplay ───┬───┘
 ├─ PUNch ─────┤
 ├─ CREate ◄───┤
 ├─ ALTer ─────┤
 └─ DROp ──────┘

 ►─┬───────────────────────┬──►◄
 └─ AS ─┬─ COMments ◄──┬─┘
 └─ SYNtax ─────┘

Expansion of data-sharing-attributes

►►─┬─ LOCK ENTRIES lock-entry-count ───────────┬──────────────────────────────►◄
 ├─ MEMBERS member-count ────────────────────┤
 ├─ DEFAULT SHARED CACHE default-cache-name ─┤
 └─ CONNECTIVITY LOSS ─┬─ ABEND ─────┬───────┘
 └─ NOABEND ◄──┘

DMCL Statements

186 Database Administration Guide

Expansion of segment-specification

►►─┬───────────────┬─ SEGMENT segment-name ───────────────────────────────────►
 ├─┬─ ADD ◄────┬─┤
 │ └─ INClude ─┘ │
 └─┬─ DROP ────┬─┘
 └─ EXClude ─┘

 ►─┬───┬────────────────────────────►
 └─ DEFAULT BUFFER ─┬─ database-buffer-name ─┬─┘
 └─ NULL ─────────────────┘

 ►─┬──┬───────────────────►
 └─ ON STARTUP SET STATUS TO ─┬─ UPDATE ◄─────────────┬─┘
 ├─ RETRIEVAL ───────────┤
 ├─ TRANSIENT RETRIEVAL ─┤
 └─ OFFLINE ─────────────┘

 ►─┬──┬───────────►
 └─ ON WARMSTART ─┬─ MAINTAIN CURRENT STATUS ◄────────────────┬─┘
 └─ SET STATUS TO ─┬─ UPDATE ──────────────┬─┘
 ├─ RETRIEVAL ───────────┤
 ├─ TRANSIENT RETRIEVAL ─┤
 └─ OFFLINE ─────────────┘

 ►─┬───┬────────────────────────►
 └─ DEFAULT SHARED CACHE ─┬─ default-cache-name ─┬─┘
 └─ NULL ◄──────────────┘

 ►─┬───────────────────────────┬──►◄
 └─ DATA SHARING ─┬─ NO ◄──┬─┘
 └─ YES ──┘

Expansion of file-override-specification

►►─┬───────────────┬─ FILE segment-name.file-name ────────────────────────────►
 ├─┬─ ADD ◄────┬─┤
 │ └─ INClude ─┘ │
 └─┬─ DROP ────┬─┘
 └─ EXClude ─┘

 ►─┬─────────────────────────────────────┬────────────────────────────────────►
 └─ BUFFER ─┬─ database-buffer-name ─┬─┘
 └─ DEFAULT ◄─────────────┘

 ►─┬─────────────────────────────┬──►
 └─ ASSIGN TO ─┬─ ddname ────┬─┘
 ├─ filename ──┤
 ├─ DEFAULT ◄──┤
 └─ NULL ──────┘

 ►─┬───────────────────────────────┬──►
 └─── DISP ─┬─ SHR ───────┬──────┘
 ├─ OLD ───────┤
 └─ DEFAULT ◄──┘

 ►─┬───────────────────────────┬──►
 └─ MEMORY CACHE ─┬─ NO ◄──┬─┘
 └─ YES ──┘

 ►─┬────────────────────────┬───►
 └─ DATASPACE ─┬─ NO ◄──┬─┘
 └─ YES ──┘

 ►─┬──────────────────────────────────┬───────────────────────────────────────►◄
 └─ SHARED CACHE ─┬─ cache-name ──┬─┘
 ├─ NULL ────────┤
 └─ DEFAULT ◄────┘

DMCL Statements

Chapter 7: Physical Database DDL Statements 187

Expansion of area-override-specification

►►─┬───────────────┬─ physical AREA segment-name.area-name ──────────────────►
 ├─┬─ ADD ◄────┬─┤
 │ └─ INClude ─┘ │
 └─┬─ DROP ────┬─┘
 └─ EXClude ─┘

 ►─┬──┬────────────────►
 └─ PAGE RESERVE size reserve-character-count characters ─┘

 ►─┬──┬──────────────────►
 └─ ON STARTUP SET STATUS TO ─┬─ UPDATE ◄─────────────┬─┘
 ├─ RETRIEVAL ───────────┤
 ├─ TRANSIENT RETRIEVAL ─┤
 └─ OFFLINE ─────────────┘

 ►─┬──┬──────────►
 └─ ON WARMSTART ─┬─ MAINTAIN CURRENT STATUS ◄────────────────┬─┘
 └─ SET STATUS TO ─┬─ UPDATE ──────────────┬─┘
 ├─ RETRIEVAL ───────────┤
 ├─ TRANSIENT RETRIEVAL ─┤
 └─ OFFLINE ─────────────┘

 ►─┬─────────────────────────────────┬───────────────────────────────────────►◄
 └─ DATA SHARING ─┬─ NO ────────┬──┘
 ├─ YES ───────┤
 └─ DEFAULT ◄──┘

Parameters

dmcl-name

Names the DMCL. Dmcl-name is a 1- to 8-character name assigned according to
naming conventions described in 7.3, "Naming Conventions".

DEFAULT BUFFER buffer-name

Specifies the default buffer for the DMCL. Buffer-name must identify a database

buffer defined in the dictionary and associated with the DMCL.

The default buffer is used for all fi les, unless overridden at the segment or fi le level.

Native VSAM: For more information about assigning buffers for native VSAM files,

see the "Usage" topic in this section.

NULL

On an ALTER DMCL statement, removes the named buffer as the default buffer for
the DMCL.

DBTABLE dbtable-name

Specifies the name of the database name table to be used with the DMCL at
runtime.

NULL

Disassociates the database name table from the DMCL.

DMCL Statements

188 Database Administration Guide

DATA SHARING

Specifies or removes attributes associated with data sharing operations.

■ NO—Removes data sharing-related information from the DMCL

■ data-sharing-attribute—Adds or changes the specified data sharing attribute

Data sharing attributes apply to any DC/UCF system that uses this DMCL and is a

member of a data sharing group. If data sharing attributes are not included in the
DMCL of a CA IDMS system that becomes a member of a data sharing group, the
following defaults will be used:

■ lock-entry-count: 4096

■ member-count: 7

■ default-cache-name: null

■ connectivity loss: NOABEND

data-sharing-attribute

LOCK ENTRIES lock-entry-count

Specifies the number of lock table entries that will be allocated within the coupling
facil ity lock structure. The value specified must be in the range 4096 through

1,073,741,824. The number of lock entries will be rounded up to a power of 2.

MEMBERS member-count

Specifies the maximum number of CA IDMS systems that can be members of the
system's data sharing group. The value specified must be in the range 7 through

247.

DEFAULT SHARED CACHE default-cache-name

Specifies the default shared cache for any system using this DMCL.
Default-cache-name must identify an XES cache structure defined to a coupling
facil ity accessible to the CA IDMS system.

The default shared cache for a system is used at runtime for any fi le whose area is
designated as shared, if the fi le does not have an assigned cache. This value has no
affect on fi les that are not associated with a shared area.

ON CONNECTIVITY LOSS

Specifies what action the CA IDMS system is to take when either a loss in
connectivity to or a failure of a critical coupling facil ity structure associated with a
data sharing group is detected.

■ ABEND—Specifies that the CA IDMS system is to abnormally terminate
immediately.

■ NOABEND—Specifies that the CA IDMS is to remain active in order to service
non-data sharing-related requests.

NOABEND is the default if ON CONNECTIVITY LOSS is not specified.

DMCL Statements

Chapter 7: Physical Database DDL Statements 189

MEMORY CACHE

Indicates global options for caching fi les in memory.

Note: For more information about operating-specific considerations in using
memory cache and 64-bit storage, see the CA IDMS System Operations Guide.

LOCATION

Indicates where to allocate the storage for memory cache:

ANYWHERE

Memory cache storage is allocated from 64-bit storage; if no or not enough 64-bit
storage is available, dataspace storage is acquired.

64 BIT ONLY

Memory cache storage is allocated from 64-bit storage; if no or not enough 64-bit
storage is available, memory caching fails.

STORAGE LIMIT

Controls the amount of storage used for memory caching:

OPSYS

Memory cache storage can be acquired until the operating system limit is reached.
For 64-bit storage, the operating system limit is set through the MEMLIMIT

parameter; for dataspace storage, the limit is optionally imposed by an operating
system exit.

nnn MB, GB, TB, PB, EB

CA IDMS controls the amount of memory cache storage if the value specified is

smaller than the operating system limit. nnn must be a positive value between 1
and 32767. MB, GB, TB, PB, EB indicate the unit in which nnn is expressed. The
abbreviations stand for Mega Byte (2**20), Giga Byte (2**30), Tera Byte (2**40),
Peta Byte (2**50), and Exa Byte (2**60).

segment-specification

On an ALTER DMCL statement, specifies the name of a segment to be added to the
DMCL, or identifies a segment in the DMCL to be altered or removed.

DMCL Statements

190 Database Administration Guide

ADD

Adds the named segment to the DMCL definition or alters its attributes.

DROP

Drops the named segment from the DMCL definition.

SEGMENT segment-name

Identifies the segment. Segment-name is a 1- to 8-character value that identifies a
segment defined to the dictionary.

DEFAULT BUFFER buffer-name

Specifies the buffer to be used by fi les associated with the segment. Buffer-name

must identify a buffer associated with the DMCL. Unless overridden by a fi le
override clause, all fi les associated with the segment will use the named buffer.

Native VSAM: For information about assigning buffers for native VSAM files, see
the "Usage" topic in this section.

NULL

Removes the default buffer associated with the segment.

ON STARTUP SET STATUS TO

Specifies the default startup status for areas associated with the segment. The

startup status determines how CA IDMS/DB accesses an area when the DC/UCF
system is started after an orderly shutdown.

The status of an area determines the ready modes in which programs executing
under the central version can obtain access to the area.

UPDATE

Sets the status of the area to update and places an external lock on the area.

When the status of an area is update, transactions executing under the central
version can obtain access to the area in any ready mode.

ON STARTUP SET STATUS TO UPDATE is the default when you do not include the ON
STARTUP parameter in a CREATE SEGMENT statement.

RETRIEVAL

Sets the status of the area to retrieval.

When the status of an area is retrieval, transactions executing under the central
version can obtain access to the area in retrieval modes only (that is, transient
retrieval, shared retrieval, protected retrieval, and exclusive retrieval).

DMCL Statements

Chapter 7: Physical Database DDL Statements 191

TRANSIENT RETRIEVAL

Sets the status of the area to transient retrieval.

When the status of an area is transient retrieval, transactions executing under the
central version can obtain access to the area only in retrieval ready modes, and
regardless of the ready mode, no record or row locks will be acquired.

OFFLINE

Places the area offline.

When the status of an area is offl ine, transactions executing under the central
version cannot obtain access to the area in any ready mode.

ON WARMSTART

Specifies the default warmstart status for areas associated with the segment. The
warmstart status determines how CA IDMS/DB accesses an area when the DC/UCF
system is started up after an abnormal termination.

MAINTAIN CURRENT STATUS

Sets the area status to that in effect at the time the DC/UCF system was abnormally
terminated.

ON WARMSTART MAINTAIN CURRENT STATUS is the default when you do not

include the ON WARMSTART parameter in a CREATE SEGMENT statement.

DEFAULT SHARED CACHE

Specifies or removes the default shared cache for a segment.

■ default-cache-name—Specifies the name of the shared cache to be used for

fi les associated with the segment. Default-cache-name must identify an XES
cache structure defined to a coupling facil ity accessible to the CA IDMS system.

■ NULL—Removes the default shared cache from the segment.

NULL is the default if DEFAULT SHARED CACHE is not specified.

The value established at the segment level may be overridden at the fi le level.

DATA SHARING

Specifies whether or not areas associated with the segment are eligible to be
concurrently updated by CA IDMS systems that are members of a data sharing

group.

■ YES—Specifies that concurrent update is allowed.

■ NO—Specifies that concurrent update is not allowed.

NO is the default if DATA SHARING is not specified.

The value established at the segment level may be overridden for individual areas
within the segment.

DMCL Statements

192 Database Administration Guide

file-override-specification

On an ALTER DMCL statement, specifies override attributes for a fi le in a segment

that has been added to the DMCL.

ADD

Adds or modifies fi le override information in the DMCL. ADD is the default.

DROP

Drops fi le override information from the DMCL.

Note: This parameter does not drop fi le definitions from the DMCL.

segment-name.file-name

Identifies the fi le whose attributes are being overridden. Segment-name must

identify a segment included in the DMCL. File-name must identify a fi le in the
named segment.

BUFFER buffer-name

Specifies the buffer for the fi le. Buffer-name must identify a buffer associated with

the DMCL.

If no buffer is specified on a fi le override, the default buffer for the segment is used.

Native VSAM: For information about assigning buffers for native VSAM files, see

the "Usage" topic in this section.

DEFAULT

Specifies that the fi le is to use the segment's default buffer. If the segment lacks a
default buffer assignment, the default buffer is the default buffer assigned to the
DMCL. DEFAULT is the default.

ASSIGN TO

Associates the database fi le with an external fi le name that overrides the external

fi le name assigned on a CREATE or ALTER FILE statement. All external fi le names in a
DMCL definition must be unique.

ddname

Specifies the external name for the fi le under z/OS or z/VM. Ddname must be a 1-
through 8-character value that follows operating system conventions for ddnames.

filename

Specifies the external name for the fi le under z/VSE. Filename must be a 1- through

7-character value that follows operating system conventions for fi lenames.

DMCL Statements

Chapter 7: Physical Database DDL Statements 193

DEFAULT

Removes the external fi le name override assigned to the fi le and re-assigns the

external fi le name specified on a CREATE or ALTER FILE statement.

NULL

Removes any external fi le name for the fi le. If you specify NULL, you must specify

the data set name on the DSNAME clause and/or z/VM VIRTUAL ADDRESS clause of
the FILE statement. This option is not valid under z/VSE unless DYNAM/D is being
used.

DISP

For z/OS and z/VM systems, specifies the disposition to be assigned when the fi le is
dynamically allocated.

SHR

Indicates that the data set specified on the DSNAME parameter will be available to
multiple DC/UCF systems and local mode transactions at a time.

Under z/VM, DISP SHR causes a l ink with an access mode of multiple read (MR).

OLD

Indicates that the data set specified on the DSNAME parameter will be available to

only one DC/UCF system or local mode transaction at a time.

Under z/VM, DISP OLD causes a l ink with an access mode of multiple write (MW).

MEMORY CACHE NO

Specifies that a fi le is not to be cached in memory.

MEMORY CACHE YES

Specifies that a fi le is to be cached in memory.

Note: For more information about operating-system specific considerations in
using memory cache and 64-bit storage, see the CA IDMS System Operations Guide.

DATASPACE NO

Same as MEMORY CACHE NO. This syntax is provided for upward compatibil ity only.

DMCL Statements

194 Database Administration Guide

DATASPACE YES

Same as MEMORY CACHE YES. This syntax is provided for upward compatibil ity

only.

SHARED CACHE

Specifies or removes the shared cache for a fi le.

■ cache-name—Specifies the name of the shared cache to be used for the fi le.
Cache-name must identify an XES cache structure defined to a coupling facility
accessible to the CA IDMS system.

■ NULL—Removes the shared cache assigned to the fi le.

■ DEFAULT—Specifies that the default cache specified for the segment will be
used for the fi le.

DEFAULT is the default if SHARED CACHE is not specified.

area-override-specification

On an ALTER DMCL statement, specifies override attributes for an area in a segment

that has been added to the DMCL.

ADD

Adds or modifies area override information in the DMCL. ADD is the default.

DROP

Drops area override information from the DMCL.

Note: This parameter does not drop area definitions from the DMCL.

segment-name.area-name

Identifies the area whose attributes are being overridden. Segment-name must

identify a segment included in the DMCL. Area-name must identify an area in the
named segment.

PAGE RESERVE SIZE reserve-character-count

Specifies the number of bytes to be reserved on each page to accommodate

increases in the length of record occurrences or rows stored on the page. This
clause overrides the value specified in the PAGE RESERVE SIZE clause of a CREATE or
ALTER AREA statement.

Reserve-character-count must be either 0 or a multiple of 4 in the range 48 through
32,716 and must be less than or equal to the area's page size. The default is 0.

Native VSAM: For areas defined for native VSAM files, reserve-character-count
must be 0.

DMCL Statements

Chapter 7: Physical Database DDL Statements 195

ON STARTUP SET STATUS TO

Specifies a startup status for the area that overrides the startup status specified for

the segment with which the area is associated. See above for a description of this
clause and its options.

ON WARMSTART

Specifies a warmstart status for the area that overrides the warmstart status
specified for the segment with which the area is associated. See above for a
description of this clause and its options.

DATA SHARING

Specifies whether or not the area is eligible to be concurrently updated by CA IDMS
systems that are members of a data sharing group.

■ YES—Specifies that concurrent update is allowed.

■ NO—Specifies that concurrent update is not allowed.

■ DEFAULT—Specifies that the data sharing attribute of the segment will apply to
the area.

DEFAULT is the default if DATA SHARING is not specified.

FOR

Specifies the operating system for which the DMCL is being generated. If not
specified, the default is the operating system in which the GENERATE statement is
executed.

MVS

Generates a DMCL load module for the z/OS operating system.

VSE

Generates a DMCL load module for the z/VSE operating system.

VM

Generates a DMCL load module for the z/VM operating system.

DMCL Statements

196 Database Administration Guide

dmcl-load-module-name

Specifies the name of the DMCL load module to delete from the DDLCATLOD area.

PERMANENT

Physically erases the DMCL load module. By default, CA IDMS/DB logically erases
the DMCL load module and physically erases it upon system startup.

AREas

On DISPLAY/PUNCH requests, identifies all database areas defined to the DMCL
which have override specifications.

BUFfers

On DISPLAY/PUNCH requests, identifies all database buffers and journal buffers
associated with the DMCL.

FILes

On DISPLAY/PUNCH requests, identifies all fi les defined to the DMCL which have
override specifications.

JOUrnals

On DISPLAY/PUNCH requests, identifies all disk, tape, and archive journal fi les
associated with the DMCL.

SEGments

On DISPLAY/PUNCH requests, identifies all segments contained in the DMCL.

DETails

Displays or punches details about the DMCL.

HIStory

Displays or punches:

■ The user who defined the DMCL

■ The user who last updated the DMCL

■ The date the DMCL was created

■ The date the DMCL was last updated

ALL

Displays or punches all information about the DMCL. ALL is the default action for a

DISPLAY or PUNCH verb.

NONe

Displays or punches the name of the DMCL.

DMCL Statements

Chapter 7: Physical Database DDL Statements 197

Usage

Ordering Definitions

You must define one or more database buffers for the DMCL before you add segments.

Assigning Buffers for Native VSAM Files

The following restrictions apply to buffers assigned to native VSAM files:

■ If the buffer is defined as NSR, all fi les using it mus t be associated with a single area.

■ If the fi le access method is KSDS, ESDS, PATH, or RRDS, then the associated buffer
must be defined as NSR or LSR. Likewise, if the buffer is defined as NSR or LSR, only
KSDS, ESDS, PATH, and RRDS fi les can use it

■ All PATH fi les associated with an area mapped to a KSDS or ESDS fi le must use the
same buffer as the KSDS or ESDS fi le.

Assigning Buffers for Other Files

The page size of the buffer must be greater than or equal to the page size of all areas

whose fi les are assigned to the buffer. If the fi le's access method is VSAM, the page size
of the buffer must be greater than or equal to the fi le's control interval size.

External File Name

All non-blank external fi le names, including those for both database and journal fi les,
must be unique within a DMCL. If necessary, use fi le overrides to assign unique names.

An external fi le name must be specified unless dynamic allocation will be used to access
the fi le.

Note: For more information about dynamic fi le allocation in various operating systems,

see 7.14.3, “Usage".

DMCL Statements

198 Database Administration Guide

Archive Journal Block Size

Upon generation, the block size associated with an archive journal is checked to ensure

it is not less than the block size of the disk journals. Since the block size of the disk
journals is derived from the page size of the journal buffer, if the archive journal's block
size is less than the page size of the journal buffer, the page size of the journal buffer is

used and a warning message issued.

Caching Files in Memory

You can reduce retrieval I/O operations by caching a fi le in memory using the MEMORY
CACHE clause of the fi le override specification. File caching is not supported for native

VSAM files.

Note: For more information about using memory caching, see Reducing I/O.

Dataspace Versus Memory Cache

The MEMORY CACHE clause replaces the use of the DATASPACE clause. The latter is sti l l

accepted for upward compatibil ity, but is no longer generated on di splays.

Controlling Memory Cache

Use the DMCL-wide MEMORY CACHE options to control where and how much memory
cache storage can be allocated.

Insufficient Storage for Memory Cache

If MEMORY CACHE YES is specified for a fi le, and not enough storage is avai lable to
cache the fi le in memory, processing continues as if MEMORY CACHE NO was specified.

Dynamically Changing Memory Cache Specification

The MEMORY CACHE specification can be changed dynamically:

■ Use DCMT VARY DMCL to change DMCL-wide MEMORY CACHE options

■ Use DCMT VARY FILE to change the MEMORY CACHE specification for a fi le.

Note: For more information about DCMT VARY DMCL and DCMT VARY FILE, see the CA
IDMS System Tasks and Operator Commands Guide.

DMCL Statements

Chapter 7: Physical Database DDL Statements 199

Specifying Data Sharing Attributes

Each data sharing group has an associated coupling facility lock structure. The first CA

IDMS system to become a member of the group, establishes the attributes of the lock
structure. These attributes remain in effect until all members of the group have
terminated normally. As long as any CA IDMS system is either active or has failed and

not yet been restarted, the existing lock structure attributes remain in effect. Lock
structure attributes include the number of lock entries and the maximum number of
members. Both of these attributes affect the size requirements for the lock structure
and should be chosen carefully.

Note: For more information about specifying data sharing attributes, see 24.4,
“Reducing I/O”. Also see the CA IDMS System Operations Guide.

Examples

Creating a DMCL

The following statement creates DMCL IDMSDMCL:

create dmcl idmsdmcl;

Assigning Buffers

The following statement assigns buffers to fi les associated with the DMCL:

■ File INDX_FILE in segment EMPSEG uses INDX_BUFF as its buffer

■ All other fi les in segment EMPSEG use EMP_BUFF as their buffer

■ All fi les in other segments in the DMCL use the default buffer

alter dmcl idmsdmcl

 default buffer def_buff

 add segment projseg

 add segment empseg

 default buffer emp_buff

 file empseg.indx_file

 buffer indx_buff

 add segment payseg;

FILE Statements

200 Database Administration Guide

More Information

■ For more information about the procedure for defining a DMCL, see Chapter 5,
“Defining, Generating, and Punching a DMCL”.

■ For more information about maintaining a DMCL, see Chapter 27, “Modifying

Physical Database Definitions”.

■ For more information about specifying data sharing attributes, see Chapter 5,
“Defining, Generating, and Punching a DMCL”.

■ For more information about memory cache, see 24.4, “Reducing I/O”.

■ For more information about data sharing, see the CA IDMS System Operations
Guide.

FILE Statements

The FILE statements create, alter, drop, display, or punch the definition of a database

fi le in the dictionary.

Authorization

■ To create, alter, or drop a database fi le, you must have the following privileges:

– DBADMIN on the dictionary in which the fi le definition resides

– ALTER privilege on the segment with which the fi le is associated

■ To display or punch a fi le definition, you must have DISPLAY privilege on the
segment with which the fi le is associated or DBADMIN on the dictionary in which

the fi le definition resides

Syntax

CREATE/ALTER FILE

►►─┬─ CREATE ─┬─ FILE ─┬─────────────────┬─ file-name ────────────────────────►
 └─ ALTER ──┘ └─ segment-name. ─┘

 ►─┬─────────────────────────────┬──►
 └─ ASSIGN TO ─┬─ ddname ────┬─┘
 ├─ filename ──┤
 └─ NULL ──────┘

 ►─┬────────────────────────────────┬───►
 └─ DSNAME ─┬─ 'data-set-name' ─┬─┘
 └─ NULL ◄───────────┘

FILE Statements

Chapter 7: Physical Database DDL Statements 201

 ►─┬─────────────────────────┬──►
 └── DISP ─┬─ SHR ◄──┬─────┘
 └─ OLD ───┘

 ►─┬───┬──────────────────────────►
 └─ VM VIRTUAL ADDRESS ─┬─ 'virtual-address' ─┬──┘
 └─ NULL ──────────────┘

 ►─┬──────────────────────────────┬───►
 └─ VM USERID ─┬─ vm-user-id ─┬─┘
 └─ NULL ───────┘

 ►─┬──┬───────────────────────►◄
 ├─┬─ NONVSAM ◄──┬──────────────────────────────────┤
 │ └─ BDAM ──────┘ │
 ├─ VSAM ───┤
 ├─ ESDS ───┤
 ├─ RRDS ───┤
 └─┬─ KSDS ─┬─┬────────────┬─┬────────────────────┬─┘
 └─ PATH ─┘ └─ FOR CALC ─┘ └─ FOR SET set-name ─┘

DROP FILE

►►── DROP FILE ─┬─────────────────┬─ file-name ───────────────────────────────►◄
 └─ segment-name. ─┘

DISPLAY/PUNCH FILE

►►─┬─ DISplay ─┬─ FILE ─┬─────────────────┬─ file-name ───────────────────────►
 └─ PUNch ───┘ └─ segment-name. ─┘

 ┌───────────────────────────────────────┐
 ►─▼─┬───────────────────────────────────┬─┴──────────────────────────────────►
 │ ┌────────────────┐ │
 ├─ WITh ──────┬─▼─┬─ AREas ────┬─┴──┘
 └─ WITHOut ───┘ ├─ DETails ──┤
 ├─ HIStory ──┤
 ├─ ALL ◄─────┤
 └─ NONe ─────┘

 ►─┬────────────────────────┬───►
 └─ VERb ─┬─ DISplay ───┬─┘
 ├─ PUNch ─────┤
 ├─ CREate ◄───┤
 ├─ ALTer ─────┤
 └─ DROp ──────┘

 ►─┬───────────────────────┬──►◄
 └─ AS ─┬─ COMments ◄──┬─┘
 └─ SYNtax ─────┘

FILE Statements

202 Database Administration Guide

Parameters

segment-name

Specifies the segment associated with the fi le. Segment-name must identify an
existing segment defined to the dictionary.

If you do not specify the segment name, you must establish a current segment as
described in 7.3.3, "Entity Currency".

file-name

Specifies the name of the fi le. File-name must be a 1- through 18-character name

that follows the conventions described in 7.3, "Naming Conventions".

File-name must be unique within the segment associated with the fi le.

ASSIGN TO

Specifies an external fi le name. Every external fi le name in a DMCL definition must
be unique. If you do not specify an ASSIGN TO clause, you must do one of two
things:

■ Specify the external fi le name in a fi le override clause in every DMCL in which

the segment is included

■ Specify DSNAME or VM VIRTUAL ADDRESS parameter

In z/VSE without DYNAM/D, every fi le must have an external fi le name. In other
environments, if the external fi le name is not specified, a data set name or VM

virtual address must be specified.

ddname

Specifies the external name for the fi le under z/OS or z/VM. Ddname must be a 1-

through 8-character value that follows operating system conventions for ddnames.

filename

Specifies the external name for the fi le under z/VSE. Filename must be a 1- through
7-character value that follows operating system conventions for fi lenames.

NULL

Sets the external fi le name to blanks. This is equivalent to not specifying an external
fi le name for a fi le. This option is not valid under z/VSE unless DYNAM/D is being

used.

FILE Statements

Chapter 7: Physical Database DDL Statements 203

DSNAME data-set-name

For z/OS and z/VSE and OS-format data sets under z/VM, specifies the name of the

data set to be used when dynamically allocating the fi le. You must include this
parameter if the fi le has no external fi le name assigned.

Data-set-name must conform to host operating system rules for forming data set

names.

A data set name that includes embedded periods must be enclosed in single or
double quotation marks.

Under z/VM, you can specify the DSNAME parameter or VM VIRTUAL ADDRESS and

USERID parameters, or both.

Note: For more information about allocating fi les dynamically under z/VSE and
z/VM, see the "Usage" topic in this section.

NULL

In ALTER statements, removes any previous data-set name specification for the fi le.

DISP

For z/OS and z/VM systems, specifies the disposition to be assigned when the fi le is
dynamically allocated.

OLD

Indicates that the data set used for the fi le will be available to only one DC/UCF
system or local mode application at a time.

Under z/VM, DISP OLD causes a l ink with an access mode of multiple write (MW).

SHR

Indicates that the data set used for the fi le will be available to multiple DC/UCF
systems and local mode applications at the same time.

Under z/VM, DISP SHR causes a l ink with an access mode of multiple read (MR).

SHR is the default when you do not include the DISP parameter in a CREATE FILE
statement.

FILE Statements

204 Database Administration Guide

VM VIRTUAL ADDRESS 'virtual-address'

For z/VM systems, specifies the virtual address of the minidisk to be used for the

fi le. Virtual-address is a hexadecimal value in the range X'0001' to X'FFFF' with all
four digits specified.

VM VIRTUAL ADDRESS NULL

On ALTER statements, removes any previous virtual address specification for the
fi le.

VM USERID vm-user-id

For z/VM systems only, identifies the owner of the minidisk to be used for the fi le.

Vm-user-id is a 1- to 8-character value.

You must specify a user ID for an OS-format data set. The user ID is optional for
CMS-format fi les.

If you do not specify a user ID for a CMS-format fi le, CA IDMS/DB assumes that the

owner of the minidisk is the user ID of the virtual machine in which CA IDMS/DB is
running.

NULL

Removes any previous minidisk owner specification for the fi le.

NONVSAM

Identifies the access method for the fi le as BDAM, or DAM. BDAM is a synonym for
NONVSAM. NONVSAM is the default fi le access method.

VSAM

Identifies the access method for the fi le as VSAM.

Specify VSAM for VSAM database fi les.

ESDS

Identifies the structure of a native VSAM file to be accessed by CA IDMS/DB as ESDS

(entry-sequenced data set).

FILE Statements

Chapter 7: Physical Database DDL Statements 205

RRDS

Identifies the structure of a native VSAM file to be accessed by CA IDMS/DB as RRDS

(relative-record data set).

KSDS

Identifies the structure of a native VSAM file to be accessed by CA IDMS/DB as KSDS

(key-sequenced data set).

PATH

Identifies a native VSAM path (alternate index) on ESDS or KSDS native VSAM files.

FOR CALC

Specifies that CALC access to records in the area associated with the fi le is to be
translated into either primary key access (for a KSDS fi le) or alternate index access
(for a PATH fi le). Only 1 fi le (KSDS or PATH) associated with an area may contain the
FOR CALC clause.

FOR SET set-name

Indicates that set access for the named set is to be translated into either primary
key access (for KSDS fi le) or alternate index access (for a path fi le). Set-name is the
name of a set defined by a schema SET statement with the VSAM INDEX clause. A

given set-name can be specified in only one FOR SET clause for fi les within a
segment.

AREas

Displays or punches all areas with which the fi le is associated.

DETails

Displays or punches details about the fi le.

HIStory

Displays or punches:

■ The user who defined the fi le

■ The user who last updated the fi le

■ The date the fi le was created

■ The date the fi le was last updated

ALL

Displays or punches all information about the fi le. ALL is the default action for a
DISPLAY or PUNCH verb.

NONe

Displays or punches the name of the fi le.

FILE Statements

206 Database Administration Guide

Usage

Dynamic File Allocation Under z/VSE without DYNAM/D

Under z/VSE without DYNAM/D, dynamic fi le allocation is used only when moving a fi le
to another location while CV remains active. It is not used when a fi le is initially opened.

To open fi les, CA IDMS/DB requires the external fi lename, DLBL, and EXTENT for every
fi le defined in the DMCL. Specifying a DSNAME as part of the fi le's definition is optional
and does not affect how a fi le is opened.

To move a fi le to a new location while CV remains active, follow this procedure:

1. Deallocate the fi le using the DCMT VARY FILE command DEALLOCATE option

2. Add or replace the DLBL and EXTENT information in the SYSTEM standard label
group using z/VSE batch facil ities

3. Re-allocate the fi le using the DCMT VARY FILE command ALLOCATE option

4. Open the fi le using the DCMT VARY FILE command OPEN option

Important! Be careful when you replace the DLBL and EXTENT information in the
SYSTEM standard label group. The DLBL and EXTENT information affects all other jobs in

the z/VSE system that try to open or close database fi les with the same fi lename.

Dynamic File Allocation under z/VSE with DYNAM/D

If using DYNAM/D in z/VSE, the functionality related to dynamic fi le allocation is similar
to that provided in z/OS. If a DSNAME is specified as part of the fi le's definition and no
matching external fi le name is defined in a label group, CA IDMS/DB (in conjunction with

DYNAM/D) dynamically allocates the fi le by creating label and extent information during
the open process.

Dynamic File Allocation Under z/VM

If a dynamically allocated fi le under z/VM is:

■ An OS-format data set, the CREATE FILE statement must include the DSNAME,
VIRTUAL ADDRESS, and USERID parameters

■ A CMS-format file:

– The fi le must be a reserved fi le

– The CREATE FILE statement must include the VIRTUAL ADDRESS parameter

Dropping a File with Associated Areas

Before you delete the definition of a fi le, use the ALTER AREA statement to:

■ Dissociate the fi le from any areas with pages that map to the fi le

■ Map the dissociated area pages to one or more other fi les

FILE Statements

Chapter 7: Physical Database DDL Statements 207

Examples

Defining a Preallocated File

The CREATE FILE statement below defines the database fi le INS_FILE. The fi le must be
defined in the JCL used to execute CA IDMS/DB because no dynamic allocation

information was provided.

create file demoseg.ins_file

 assign to insfile;

Defining File to Be Dynamically Allocated

The CREATE FILE statement below defines a database fi le to be allocated dynamically
under z/OS. Since a ddname was specified, execution JCL can be used to override the

dataset name at runtime.

create file syspub.public4

 assign to syspub04

 dsname 'corp.syspub.public4';

Dropping a Database File

The following DROP FILE statement deletes the definition of the INS_FILE fi le from the

dictionary and from all DMCLs with which it is associated:

drop file demoseg.ins_file;

More Information

■ For more information about the procedure for defining fi les, see Chapter 5,
“Defining, Generating, and Punching a DMCL”.

■ For more information about modifying fi les, see Chapter 27, “Modifying Physical
Database Definitions”.

■ For more information about fi le management, such as DASD allocation and
formatting, see Chapter 17, “Allocating and Formatting Files”.

JOURNAL BUFFER Statements

208 Database Administration Guide

JOURNAL BUFFER Statements

The JOURNAL BUFFER statements create, alter, drop, display, or punch the definition of
a journal buffer in the dictionary. For each DMCL, you must define one and only one
journal buffer.

Authorization

■ To create, alter, or drop a journal buffer, you must have the following privileges:

– DBADMIN on the dictionary in which the journal buffer definition resides

– ALTER privilege on the DMCL with which the journal buffer is associated

■ To display or punch a journal buffer, you must have DISPLAY privilege on the DMCL

with which the journal buffer is associated or DBADMIN on the dictionary in which
the journal buffer definition resides

Syntax

CREATE/ALTER JOURNAL BUFFER

►►─┬─ CREATE ─┬─ JOURNAL BUFFER ─┬──────────────┬─ journal-buffer-name ───────►
 └─ ALTER ──┘ └─ dmcl-name. ─┘

 ►─┬──┬─────────────────────────────────►
 └─ PAGE SIZE character-count characters ─┘

 ►─┬───────────────────────────┬──►◄
 └─ BUFFER PAGES page-count ─┘

DROP JOURNAL BUFFER

►►── DROP JOURNAL BUFFER ─┬──────────────┬─ journal-buffer-name ──────────────►◄
 └─ dmcl-name. ─┘

DISPLAY/PUNCH JOURNAL BUFFER

►►─┬─ DISplay ─┬─ JOURNAL BUFFER ─┬──────────────┬─ journal-buffer-name ──────►
 └─ PUNch ───┘ └─ dmcl-name. ─┘

 ┌───────────────────────────────────────┐
 ►─▼─┬───────────────────────────────────┬─┴──────────────────────────────────►
 │ ┌────────────────┐ │
 ├─ WITh ──────┬─▼─┬─ DETails ──┬─┴──┘
 └─ WITHOut ───┘ ├─ HIStory ──┤
 ├─ ALL ◄─────┤
 └─ NONe ─────┘

 ►─┬────────────────────────┬───►
 └─ VERb ─┬─ DISplay ───┬─┘
 ├─ PUNch ─────┤
 ├─ CREate ◄───┤
 ├─ ALTer ─────┤
 └─ DROp ──────┘

 ►─┬───────────────────────┬──►◄
 └─ AS ─┬─ COMments ◄──┬─┘
 └─ SYNtax ─────┘

JOURNAL BUFFER Statements

Chapter 7: Physical Database DDL Statements 209

Parameters

dmcl-name

Identifies the DMCL with which the journal buffer is associated. Dmcl-name must
name an existing DMCL defined to the dictionary. If you don't specify a DMCL name,

you must establish a current DMCL as described in 7.3.3, "Entity Currency" earlier in
this chapter.

journal-buffer-name

Specifies the name of the journal buffer. Journal-buffer-name must be a 1- through

18-character name that follows the conventions described in 7.3, "Naming
Conventions".

PAGE SIZE character-count

Specifies the number of bytes in each page of the buffer. This clause is required on
a CREATE statement. The buffer page size determines the block size for all disk or
tape journal fi les defined in the DMCL. If VSAM disk journals are used, the page size
must be 8 bytes less than the fi le's control interval.

If a page is smaller than 256 bytes, then no data storage is possible. We recommend
that a minimum page size of 512 bytes or larger be used.

The value of character-count depends upon the operating system:

System Valid page sizes (in bytes)

z/OS and z/VSE 208 - 32764; multiple of 4. Page size cannot be greater than the
maximum block size for the disk device.

z/VM 4096

BUFFER PAGES page-count

Specifies the number of pages to be included in the buffer. This clause is required
on a CREATE statement. Page-count must be an integer in the range 1 through

32,767.

DETails

Displays or punches details about the journal buffer.

JOURNAL BUFFER Statements

210 Database Administration Guide

HIStory

Displays or punches:

■ The user who defined the journal buffer

■ The user who last updated the journal buffer

■ The date the journal buffer was created

■ The date the journal buffer was last updated

ALL

Displays or punches all information about the journal buffer. ALL is the default
action for a DISPLAY or PUNCH verb.

NONe

Displays or punches the name of the journal buffer.

Usage

Dropping the Journal Buffer

If you drop the journal buffer associated with a DMCL, be sure to define a new journal
buffer before you regenerate the DMCL load module.

Examples

Defining a Journal Buffer

The following CREATE JOURNAL BUFFER statement defines the journal buffer
JRNL_BUFF with 3 pages:

create journal buffer idmsdmcl.jrnl_buff

 page size 2932 characters

 buffer pages 3;

Modifying the Page Size of a Journal Buffer

The following ALTER BUFFER statement changes the page size of journal buffer
JRNL_BUFF to 4,352 characters:

alter journal buffer idmsdmcl.jrnl_buff

 page size 4352 characters;

Dropping a Journal Buffer

The following DROP JOURNAL BUFFER statement deletes the definition of journal buffer

JRNL_BUFF from the dictionary:

drop journal buffer idmsdmcl.jrnl_buff;

SEGMENT Statements

Chapter 7: Physical Database DDL Statements 211

More Information

■ For more information about the procedure for defining a journal buffer, see
Chapter 5, “Defining, Generating, and Punching a DMCL”.

■ For more information and considerations about sizing journal buffers, see 5.4.1,

“Sizing Journal Buffers”.

■ For more information about tuning journal buffer size, see the discussion on Journal
use in Chapter 24, “Monitoring and Tuning Database Performance”.

■ For more information about journaling procedures, such as offloading, see Chapter

19, “Journaling Procedures”.

SEGMENT Statements

The SEGMENT statements create, alter, drop, display, or punch the definition of a
segment in the dictionary.

Authorization

■ To create, alter, or drop a segment, you must have the following privileges:

– DBADMIN on the dictionary in which the segment definition resides

– CREATE (for creating), ALTER (for altering), or DROP (for dropping) on the

named segment

■ To display or punch a segment, you must have DISPLAY privilege on the named
segment or DBADMIN on the dictionary in which the segment definition resides

Syntax

CREATE/ALTER SEGMENT

►►─┬─ CREATE ─┬─ SEGMENT segment-name ──►
 └─ ALTER ──┘

 ►──┬──────────────────────┬──►
 └─ FOR ─┬─ NONSQL ◄──┬─┘
 └─ SQL ──────┘

 ►──┬──────────────────────────────────────┬──────────────────────────────────►
 └─ PAGE GROUP ─┬─ page-group-number ─┬─┘
 └─ 0 ◄────────────────┘

 ►──┬───┬─────────────────►
 └─ MAXIMUM RECORDS PER PAGE ─┬─ maximum-record-count ─┬─┘
 └─ 255 ◄─────────────────┘

 ►──┬────────────────────────────────────┬────────────────────────────────────►
 └─ FOR SCHEMA ─┬─ sql-schema-name ─┬─┘
 └─ NULL ────────────┘

 ►──┬──────────────────────────┬──►◄
 └─ STAMP BY ─┬─ TABLE ◄──┬─┘
 └─ AREA ────┘

SEGMENT Statements

212 Database Administration Guide

DROP SEGMENT

►►── DROP SEGMENT segment-name ───►◄

DISPLAY/PUNCH SEGMENT

►►─┬─ DISplay ─┬─ SEGMENT segment-name ───────────────────────────────────────►
 └─ PUNch ───┘

 ┌───────────────────────────────────────┐
 ►─▼─┬───────────────────────────────────┬─┴──────────────────────────────────►
 │ ┌────────────────┐ │
 ├─ WITh ──────┬─▼─┬─ AREas ────┬─┴──┘
 └─ WITHOut ───┘ ├─ DMCls ────┤
 ├─ FILes ────┤
 ├─ SYMbols ──┤
 ├─ DETails ──┤
 ├─ HIStory ──┤
 ├─ ALL ◄─────┤
 └─ NONe ─────┘

 ►─┬────────────────────────┬───►
 └─ VERb ─┬─ DISplay ───┬─┘
 ├─ PUNch ─────┤
 ├─ CREate ◄───┤
 ├─ ALTer ─────┤
 └─ DROp ──────┘

 ►─┬───────────────────────┬──►◄
 └─ AS ─┬─ COMments ◄──┬─┘
 └─ SYNtax ─────┘

Parameters

segment-name

Specifies the name of the segment. Segment-name must be a 1- through
8-character name that follows the conventions described in 7.3, "Naming

Conventions".

Segment-name must be unique within the dictionary.

Important! If the segment is an SQL segment in an application dictionary, you must

dissociate any tables, indexes, and referential constraints associated with the
segment's areas before you attempt to delete the segment by issuing a DROP
SEGMENT statement.

FOR NONSQL

Indicates that the segment contains data defined by a non-SQL schema. FOR
NONSQL is the default. Valid on CREATE operation only.

SEGMENT Statements

Chapter 7: Physical Database DDL Statements 213

FOR SQL

Indicates that the segment contains data defined by an SQL schema. Valid on

CREATE operation only.

PAGE GROUP page-group-number

Specifies the page group of the segment's areas. Page-group-number is an integer

in the range 0 through 32767. The default is 0.

MAXIMUM RECORDS PER PAGE maximum-record-count

On a CREATE statement, specifies the maximum number of record occurrences that
can be stored on a single page of the segment's areas. Maximum-record-count is an

integer in the range 3 through 2727. The default is 255.

FOR SCHEMA sql-schema-name

Reserves areas associated with the segment for tables and indexes in the named
SQL schema. Sql-schema-name must identify an SQL schema defined in the
dictionary or a warning will be issued.

If the segment already contains tables and indexes from other SQL schemas, CA
IDMS/DB does not prevent access to them, however, no new ones can be defined.

FOR SCHEMA NULL

On an ALTER statement, removes any previous SQL schema restriction for the
segment.

STAMP BY TABLE

For SQL segments only, maintains synchronization stamps at the table level. BY

TABLE is the default.

When maintaining stamps at the table level, CA IDMS/DB updates the stamp for an
individual table when the definition of the table or any associated calc, index, or
constraint is modified.

This clause is ignored for segments defined as non-SQL.

SEGMENT Statements

214 Database Administration Guide

STAMP BY AREA

For SQL segments only, maintains a synchronization stamp at the area level in

addition to the stamps maintained for individual tables. When maintaining stamps
at the area level, CA IDMS/DB updates the stamps for both the individual table and
its area when the definition of any table in the area (or any associated calc, index,

or constraint) is modified.

Maintaining stamps at the area level allows validation of access modules by area
rather than by individual table.

This clause is ignored for segments defined as non-SQL.

AREas

Displays or punches information about all areas contained in the segment.

DMCLS

Displays or punches information about all DMCLS in which the segment is included.

FILes

Displays or punches information about all fi les contained in the segment.

SYMbols

Displays or punches information about all symbols defined to areas contained in the

segment.

DETails

Displays or punches details about the segment.

HIStory

Displays or punches:

■ The user who defined the segment

■ The user who last updated the segment

■ The date the segment was created

■ The date the segment was last updated

ALL

Displays or punches all information about the segment. ALL is the default action for
a DISPLAY or PUNCH verb.

NONe

Displays or punches the name of the segment.

SEGMENT Statements

Chapter 7: Physical Database DDL Statements 215

Usage

Assigning Page Groups

When you assign a segment to a page group, keep these restrictions in mind:

■ For non-SQL defined databases, all data accessed within a run unit must be in the

same page group and have the same maximum number of records per page unless
you specify the MIXED PAGE GROUP BINDS ALLOWED option

■ When adding segments to a DMCL, areas within a page group must have unique,
non-overlapping page ranges

CA IDMS/DB Rounds Up the Maximum Record Count

CA IDMS/DB may change the maximum number of records or rows that can be s tored
on a single page. CA IDMS/DB rounds the value to the next higher power of 2 less 1 to

arrive at the actual number of records per page. (This is the largest number that can be
represented in the same number of bits.) The following table shows the actual
maximum records per page resulting from values specified for maximum-record-count.

Value specified in
MAXIMUM RECORDS clause

Actual maximum records
per page

High allowable page
number

 3 3 1,073,741,822

 4 - 7 7 536,870,910

 8 - 15 15 268,435,454

 16 - 31 31 134,217,726

 32 - 63 63 67,108,862

 64 - 127 127 33,554,430

 128 - 255 255 16,777,214

 256 - 511 511 8,388,606

 512 - 1,023 1,023 4,194,302

 1,024 - 2,047 2,047 2,097,150

 2,048 - 2,727 2,7271 1,048,574

Note: Although a 12-bit l ine number would theoretically accommodate 4,095 records

per page, only 2,727 4-byte record occurrences can actually be stored on the largest
possible page.

SEGMENT Statements

216 Database Administration Guide

MAXIMUM RECORDS Clause Determines the Db-Key Format

Because the MAXIMUM RECORDS PER PAGE clause determines the number of bits

required for a l ine number, it also determines the format of database keys for the
segment. A database key is a 32-bit field, made up of 2 values:

■ The number of the page on which a record occurrence or row resides

■ The record's or row's l ine number within that page

Maximum-record-count determines the number of bits required to store a l ine number
(minimum 2 bits; maximum 12); the remaining bits become the page-number portion of
the database key. Consequently, maximum-record-count and the page numbers

assigned to schema areas are dependent upon one another, as is shown in the table
above.

In most cases, maximum-record-count can be left to default to 255; this accommodates
a database with page numbers up to 16,777,214.

Note: The number specified in the MAXIMUM RECORDS clause indicates the maximum
number of records that the run-time system will place on a single page. The actual
number of records on a given page depends on the page size s pecified on the AREA

statement and the sizes of individual records or rows placed on the page.

Note: For information about how the MAXIMUM RECORDS clause and the area's page
size affect the number of records or rows on a page, see the presentation of spac e
management in Space Management.

Examples

Defining a Segment

The following CREATE SEGMENT statement defines the SALESSEG segment:

create segment salesseg

 for sql

 for schema saleschm

 stamp by area;

Dropping a Segment

The following DROP SEGMENT statement deletes the definition of the segment
SALESSEG from the dictionary:

drop segment salesseg;

TAPE JOURNAL Statements

Chapter 7: Physical Database DDL Statements 217

More Information

■ For more information about defining segments, see Chapter 4, “Defining Segments,
Files, and Areas”.

■ For more information about modifying segments, see Chapter 27, “Modifying

Physical Database Definitions”.

■ For more information about defining SQL schemas, s ee Chapter 8, “Defining a
Database Using SQL”.

TAPE JOURNAL Statements

The TAPE JOURNAL statements create, alter, drop, display, or punch the definition of a

tape journal fi le in the dictionary. You can define only one tape journal fi le for any given
DMCL.

Authorization

■ To create, alter, or drop a tape journal fi le, you must have the following privileges:

– DBADMIN on the dictionary in which the tape journal definition resides

– ALTER privilege on the DMCL with which the tape journal fi le is associated

■ To display or punch a tape journal fi le definition, you must have DISPLAY privilege

on the DMCL with which the tape journal fi le is associated or DBADMIN on the
dictionary in which the tape journal definition resides

Syntax

CREATE/ALTER TAPE JOURNAL

►►─┬─ CREATE ─┬─ TAPE JOURNAL ─┬──────────────┬─ journal-file-name ───────────►
 └─ ALTER ──┘ └─ dmcl-name. ─┘

 ►─┬─────────────────────────────┬──►◄
 └─ ASSIGN TO ─┬─ ddname ────┬─┘
 └─ filename ──┘

DROP TAPE JOURNAL

►►── DROP TAPE JOURNAL ─┬──────────────┬─ journal-file-name ──────────────────►◄
 └─ dmcl-name. ─┘

DISPLAY/PUNCH TAPE JOURNAL

►►─┬─ DISplay ─┬─ TAPE JOURNAL ─┬──────────────┬─ journal-file-name ──────────►
 └─ PUNch ───┘ └─ dmcl-name. ─┘

 ┌───────────────────────────────────────┐
 ►─▼─┬───────────────────────────────────┬─┴──────────────────────────────────►
 │ ┌────────────────┐ │
 ├─ WITh ──────┬─▼─┬─ DETails ──┬─┴──┘
 └─ WITHOut ───┘ ├─ HIStory ──┤
 ├─ ALL ◄─────┤
 └─ NONe ─────┘

TAPE JOURNAL Statements

218 Database Administration Guide

 ►─┬────────────────────────┬───►
 └─ VERb ─┬─ DISplay ───┬─┘
 ├─ PUNch ─────┤
 ├─ CREate ◄───┤
 ├─ ALTer ─────┤
 └─ DROp ──────┘

 ►─┬───────────────────────┬──►◄
 └─ AS ─┬─ COMments ◄──┬─┘
 └─ SYNtax ─────┘

Parameters

dmcl-name

Identifies the DMCL with which the tape journal fi le is associated. Dmcl-name must

name an existing DMCL defined to the dictionary. If you don't specify a DMCL name,
you must establish a current DMCL as described in 7.3.3, "Entity Currency".

journal-file-name

Specifies the name of the tape journal fi le. Journal-file-name must be a 1- through

18-character name that follows the conventions described in 7.3, "Naming
Conventions".

ASSIGN TO

Associates the tape journal fi le with an external fi le name. This clause is required on
a CREATE statement. Each external fi le name defined to a DMCL must be unique.

ddname

Specifies the external name for the fi le under z/OS or z/VM. Ddname must be a 1-

through 8-character value that follows operating system conventions for ddnames.

filename

Specifies the external name for the fi le under z/VSE. Filename must have the

following format: SYSnnn where nnn is a 3-digit number.

TAPE JOURNAL Statements

Chapter 7: Physical Database DDL Statements 219

DETails

Displays or punches details about the tape journal.

HIStory

Displays or punches:

■ The user who defined the tape journal

■ The user who last updated the tape journal

■ The date the tape journal was created

■ The date the tape journal was last updated

ALL

Displays or punches all information about the tape journal. ALL is the default action
for a DISPLAY or PUNCH verb.

NONe

Displays or punches the name of the tape journal.

Usage

Mutually Exclusive Journal Definitions

A DMCL must contain the definitions of either disk and archive journal fi les or a tape

journal fi le. You cannot include the definition of disk and archive journal fi les in the
DMCL if you include the definition of a tape journal fi le.

Journal File Block Size

The block size of a tape journal fi le is determined by the page size of the journal buffer

associated with the DMCL.

Journaling in Local Mode

If you want to use journaling facilities for a local mode application, the application must

use a DMCL in which a tape journal is defined.

Summary of Physical Database Limits

220 Database Administration Guide

Examples

Defining a Tape Journal File

The following CREATE TAPE JOURNAL statement defines the tape journal fi le TAPEJRNL:

create tape journal locdmcl.tapejrnl

 assign to sysjrnl;

Changing the External File Name

The following ALTER TAPE JOURNAL statement changes the external fi le name assigned
to tape journal fi le, TAPEJRNL:

alter tape journal locdmcl.tapejrnl

 assign to sysjrnl1;

Dropping a Tape Journal File

The following DROP TAPE JOURNAL statement deletes the definition of the tape journal

fi le TAPEJRNL from the dictionary:

drop tape journal locdmcl.tapejrnl;

More Information

■ For more information about defining tape journals, see Chapter 5, “Defining,
Generating, and Punching a DMCL”.

■ For more information about journaling procedures, see Chapter 19, “Journaling
Procedures”.

■ For more information about using tape journals for recovery, see 21.2, “Backup

Procedures”.

Summary of Physical Database Limits

Data Limits

The following table summarizes the maximum values allowed for physical database
definitions:

Item Maximum allowed

Pages in a data buffer 16,777,214

Bytes in a database buffer page 32,764; multiple of 4

Summary of Physical Database Limits

Chapter 7: Physical Database DDL Statements 221

Item Maximum allowed

Journal buffer pages associated with a

database

32,767

Bytes in a journal buffer page 32,768; multiple of 4

Files in a database 32,767

Files associated with an area 32,767

Areas associated with a fi le 32,767

Pages associated with an area 1,073,741,822

Bytes in a database page 32,764; multiple of 4

Blocks in a disk journal fi le 999,999

Bytes in an archive journal block 32,768

Chapter 8: Defining a Database Using SQL 223

Chapter 8: Defining a Database Using SQL

This section contains the following topics:

Overview (see page 224)
Executing SQL Data Description Statements (see page 225)
Creating a Schema (see page 226)

Creating a Table (see page 228)
Defining a CALC Key (see page 230)
Defining an Index (see page 231)

Defining a Referential Constraint (see page 232)
Dropping a Default Index (see page 233)
Creating a View (see page 235)

Overview

224 Database Administration Guide

Overview

This chapter contains procedures for defining the logical components of an SQL-defined
database (the last step in the list).

Steps to Define a Database

To use SQL to define your database, follow these steps:

1. Design and size the database using information provided in the CA IDMS Database
Design Guide document.

2. Define in the system dictionary the segments that represent the physical database.
Include the segments in your DMCL, and generate, punch, and link edit the DMCL.

Note: For more information about the physical database, see Chapter 4, “Defining
Segments, Files, and Areas".

3. Create and format the operating system fi les that will contain the table's rows.

These fi les must be accessible to the runtime environment before you define your
tables.

4. Copy the segment definition from the system dictionary into the application
dictionary in which you wish to define your tables.

The segment and area names you use in the logical definition must match those
defined in the physical definition in the system dictionary. The stamp level, which
tells CA IDMS/DB to check the date and time of definition at either the area level or

table level, must also match in both definitions. It is recommended that the page
range and page size of areas match in both definitions since this information is used
for optimization and index sizing. It is not necessary to define the fi les in the
application dictionary.

5. Enter SQL data description (DDL) statements to do the following, in this order:

■ Create the schema

■ Create tables

■ Create CALC keys

■ Create indexes

■ Create referential constraints

■ Drop unneeded default indexes

■ Create views

Note: For complete SQL DDL syntax, see the CA IDMS SQL Reference Guide. For design
decisions, see the CA IDMS Database Design Guide document.

Executing SQL Data Description Statements

Chapter 8: Defining a Database Using SQL 225

Executing SQL Data Description Statements

Tool for Entering SQL DDL Statements

You enter SQL data description language statements using the online or batch command
facil ity. The command facil ity performs the following functions:

■ Accepts as input SQL data description language (DDL) statements

■ Updates the application dictionary with definitions

■ Updates the database to reflect the definitions

Note: See the CA IDMS SQL Programming Guide for syntax. See the CA IDMS Common
Facilities Guide document for information about submitting SQL statements us ing the

command facil ity.

Identifying the Dictionary

When you use the command facil ity, you must identify the application dictionary to be

updated by either:

■ Explicitly connecting to a dictionary

■ Establishing a default dictionary

Executing DDL Statements Programmatically

You can embed SQL DDL statements in an application program. No cursors can be open

when you execute embedded DDL statements.

Note: See the CA IDMS SQL Programming Guide document for information about
embedding SQL statements in an application program.

Local Mode

It is recommended that SQL statements not be executed in local mode. If a local mode
error is encountered in the execution of a DDL statement, the dictionary is left in an
unpredictable state and must be manually recovered. To avoid this, execute SQL DDL

statements only under the central version.

Creating a Schema

226 Database Administration Guide

Creating a Schema

You create a schema by issuing a CREATE SCHEMA statement.

Things You Can Specify

1. Schema name

2. Optionally a default area

3. Optionally a reference to another schema, either an SQL or non-SQL schema

Considerations

■ The default area specified in the CREATE SCHEMA statement must be defined to the
application dictionary in which the schema is being defined. The default area is

used to contain table rows if no area is specified as part of the table definition.

■ If reference is made to another schema, the schema containing the reference is
called a referencing schema and the schema that it refers to is a referenced

schema. A referencing schema cannot contain table or view definitions.

– You can reference a non-SQL schema to enable SQL access to a non-SQL
defined database.

– You can reference an SQL schema to allow identical SQL defined databases to

be accessed through a single schema definition. The referenced schema must
not be itself a referencing schema nor contain tables that reference or are
referenced by tables in other schemas. For other considerations associated

with referencing SQL schemas, see the CA IDMS SQL Reference Guide.

■ A referencing schema can be bound to a specific database instance or unbound by
not specifying a DBNAME as part of the referencing schema definition. Accessing
tables through an unbound referencing schema allows runtime determination of

the database instance to be accessed based on the database to which an SQL
session connects. Therefore, the same table name (and access modules) can be
used to access different database instances by connecting to different database

names. Each database name definition must include the appropriate database
segments to be accessed.

■ The owner of the schema being created (and, therefore, all tables and views within
the schema) is the user issuing the CREATE SCHEMA statement. To reassign

ownership to another authorization ID, use the TRANSFER OWNERSHIP statement,
as described in the CA IDMS SQL Reference Guide.

Creating a Schema

Chapter 8: Defining a Database Using SQL 227

Examples

In the following example, the schema PROD is defined. The default area for the schema

is PROD_AREA. Rows in tables associated with this schema will be stored in PROD_AREA
unless an area name is explicitly coded in the CREATE TABLE statement.

create schema prod

 default area prod_area;

In the following example, the schema WINDOW is defined and associated with the

non-SQL defined schema SCHED. Programs using SQL data manipulation language
statements can access data in the non-SQL database by using the schema WINDOW.

create schema window

 for nonsql schema sched;

In the following example, the schemas HRTEST1 and HRTEST2 are defined as referencing
schemas for SQL schema HRTEST0. References to tables in HRTEST1 will access data in

the HRTEST1 database while those in HRTEST2 will access data in the HRTEST2 database.
These databases contain identically-defined base tables as described by the HRTEST0
schema.

create schema hrtest1

 for sql schema hrtest0 dbname hrtest1;

create schema hrtest2

 for sql schema hrtest0 dbname hrtest2;

In the following example, the schema HRTEST is also defined as a referencing schema
for SQL schema HRTEST0; however, HRTEST is not associated with any specific database

instance. Consequently, the data that is accessed through references to HRTEST tables
will be determined at runtime by the database to which the SQL session connects.

create schema hrtest

 for sql schema hrtest0;

Creating a Table

228 Database Administration Guide

Creating a Table

You create a table by issuing the CREATE TABLE statement and adding appropriate
clauses to describe each column associated with the table.

Things You Can Specify

1. Table name, using a schema qualifier unless you have specified a default schema

name in the SET SESSION statement

Note: For more information about session management statements, see the CA
IDMS SQL Reference Guide.

2. Column names

3. Data type for each column

4. Optionally a default value and a null specification for each column

5. Optionally a check constraint to l imit the values allowed in a column or columns

6. An area in which the table's rows will be stored (unless you want them stored in the
default area for the schema)

7. Data compression

8. An estimate of the number of rows for the table

9. Physical attributes, including a table ID number and a synchronization timestamp.

Specifying Physical Attributes

When defining or altering a table, you can specify physical attributes that are normally

generated automatically. Specifying explicit values for this information, allows you to
create tables that have identical physical attributes and can therefore be accessed
through a single schema definition.

Since a table's synchronization stamp is updated each time an associated index, calc key

or referential constraint is added or removed, the synchronization stamp must be set
after adding or removing these associated entities.

Care should be exercised when specifying a specific timestamp, since its purpose is to

enable the detection of discrepancies between a table and its definition. If explicitly
specified, the timestamp should always be set to a new value following a definiti onal
change so that the change is detectable to the run time system.

Creating a Table

Chapter 8: Defining a Database Using SQL 229

Compressing

The COMPRESS option in the table definition statement specifies that data be

compressed when it is stored in the database and decompressed when it is retrieved
from the database.

To use the COMPRESS option, you must have CA IDMS Presspack installed at your site.

Note: See the CA IDMS Presspack User Guide for information about CA IDMS Presspack.

Estimated rows

When you create a new table, it is useful to specify the number of rows you expect to be
stored in the table. CA IDMS/DB uses this information to:

■ Optimize host language statements that reference the table and are compiled
before the table is loaded and the UPDATE STATISTICS statement has been
executed for it

■ Calculate index characteristics

Example

In the following example, the EMPLOYEE table is defined and associated with the PROD
schema. The table includes 15 columns. The check parameter restricts the values that
can be inserted in the EMP_ID and STATUS columns. The data in this table will be stored

in the EMP.EMPREG area and the expected number of rows for the table is 500.

create table prod.employee

 (emp_id unsigned numeric not null,

 manager_id unsigned numeric ,

 emp_fname char(20) not null,

 emp_lname char(20) not null,

 dept_id unsigned numeric not null,

 street char(40) ,

 city char(20) not null,

 state char(02) not null,

 zip_code char(09) not null,

 phone char(10) ,

 status char not null,

 ss_number unsigned decimal(9,0) not null,

 start_date date not null,

 termination_date date ,

 birth_date date ,

 check ((emp_id between 0 and 8999) and

 (status in ('A', 'S', 'L', 'T')))

 in emp.empreg

 estimated rows 500;

Defining a CALC Key

230 Database Administration Guide

Defining a CALC Key

You create a CALC key by issuing the CREATE CALC statement and specifying a CALC key
column.

Things You Can Specify

1. Whether the CALC key is unique

2. Name of the table associated with this CALC key

3. Name of the column or columns that make up the CALC key

Considerations

■ You can define only one CALC key for a table.

■ The table must be empty when you define a CALC key for it.

■ You must specify NOT NULL for the column(s) on which the CALC key is placed if you
use the UNIQUE option.

■ The table cannot be the referencing table in a clustered referential constraint.

■ The table cannot have a clustered index defined on it.

Examples

In the following example, a unique CALC key is defined on the EMPLOYEE table. The
CALC key consists of one column, EMP_ID.

create unique calc key on prod.employee(emp_id);

In the following example, a unique multi -column CALC key is defined on the BENEFITS
table. The CALC key consists of two columns, EMP_ID and FISCAL_YEAR.

create unique calc key on test.benefits(emp_id, fiscal_year);

Defining an Index

Chapter 8: Defining a Database Using SQL 231

Defining an Index

You define an index by issuing the CREATE INDEX statement.

Things You Can Specify

1. Whether the index is unique

2. Name of the index

3. Name of the table on which the index is defined

4. Name of the column or columns that make up the index key

5. The sequencing options for the index

6. Optionally, the area in which the index will be stored

7. Optionally, physical characteristics of the index

8. Optionally, physical attributes, including an index ID

Considerations

■ CA IDMS/DB will automatically determine the physical characteristics of the index

based on the estimated (or actual) number of rows in the table. However, you may
choose to supply this informati on yourself.

■ Index names must be unique for all indexes defined on a table

■ An index must be in the same page group as the table on which it is defined.

Specifying Physical Attributes

When creating an index, you can specify physical attributes that are normally generated

automatically. Specifying explicit values for this information allows you to create and
maintain tables that have identical physical attributes and can therefore be accessed
through a single schema definition.

Example

In this example, an index has been created on the employee table. The keys in the index
are LAST_NAME, FIRST_NAME. The index does not require that the last name/first name
combination be unique. The index will be located physically in a separate area from the
data in the table.

create index em_name_ndx on prod.employee (last_name, first_name)

 in emp.empreg1;

Defining a Referential Constraint

232 Database Administration Guide

Defining a Referential Constraint

You create a referential constraint by issuing the CREATE CONSTRAINT statement and
specifying the referenced and referencing tables and columns.

Things You Can Specify

1. Name of the constraint

2. The referencing table and column(s)

3. The referenced table and column(s)

4. Whether the referential constraint is linked or unlinked (the default)

5. Options such as clustered (ORDER BY) or indexed (INDEX)

Considerations

■ The referenced column values of each row in the referenced table must be unique
in the database. Therefore, ensure that either a unique CALC key or a unique index
key is defined on the referenced columns.

■ The datatype of a referencing column must be the sa me as its referenced column.

■ If you specify an unlinked referential constraint:

– The referencing table must have a CALC key or index defined on the
referencing columns.

– The order of the columns must be the same as the unique CALC key or index on
the referenced columns.

– If using an index on the referencing columns, the index can contain columns in
addition to the referencing columns. The referencing columns must precede

any additional columns in the index key.

■ If you are defining a self-referencing constraint, it must be unlinked.

■ Referential constraints (l inked and unlinked) may not cross page group boundaries,

meaning that the areas in which the referenced and referencing tables reside must
have the same page group.

Dropping a Default Index

Chapter 8: Defining a Database Using SQL 233

Example - Linked Referential Constraint

In this example, a l inked referential constraint has been created to ensure that the
employee ID in the benefits table is a valid ID by checking it against the employee IDs in
the employee table. The referential constraint is indexed and ordered by the fiscal year.

create constraint emp_benefits

 benefits (emp_id)

 references employee (emp_id)

 linked index

 order by (fiscal_year desc);

Example - Unlinked Referential Constraint

In this example, an unlinked referential constraint has been created to ensure that an
employee's manager is a valid employee. Since this is a self-referencing constraint (both

columns being in the same table), it must be unlinked. UNLINKED is the default.

create constraint manager_emp

 employee (manager_id)

 references employee(emp_id);

Dropping a Default Index

You add or drop a default index by issuing an ALTER TABLE statement on the table
whose default index you want to drop.

Things You Can Specify

■ Use the ADD DEFAULT INDEX parameter to create a default index for the named
table.

Note: The table must not already have a default index associated with it.

■ Use the CASCADE parameter to drop all indexes in which the named column is an
indexed column following entities.

Note: If CASCADE is not specified, the column must not participate in a referential
constraint or index, or be named in a view.

Considerations

It may not always be appropriate to drop a default index.

Note: See the Database Design Guide document for complete information about
retaining or dropping default indexes, and see the SQL Reference Guide for complete

information on ALTER TABLE.

Dropping a Default Index

234 Database Administration Guide

Example

In the following example, the default index is dropped from the EMPLOYEE table .

alter table prod.employee

 drop default index;

Creating a View

Chapter 8: Defining a Database Using SQL 235

Creating a View

You create a view by issuing the CREATE VIEW statement and specifying the view
column names, the table(s) and column(s) from which the view is derived, and data
restrictions, if any.

Things You Can Specify

1. Name of a view, using a schema qualifier unless you have specified a default
schema name in the SET SESSION statement

Note: For more information about session management statements, see the CA
IDMS SQL Reference Guide.

2. A column list if there are computations or duplicate column names in the result
table of the view definition

3. An appropriate SQL select statement

Note: For a complete discussion of SQL select statements, see the CA IDMS SQL
Reference Guide.

4. A check option to ensure that only data values that satisfy the SELECT statement

are inserted or updated through the view.

5. Physical attributes, including a synchronization stamp.

Specifying Physical Attributes

When creating a view, you can specify physical attributes that are normally generated
automatically. Specifying explicit values for this information allows you to create and
maintain views that have identical attributes and can therefore be accessed through a

single schema definition.

Care should be exercised when specifying a specific timestamp, since its purpose is to
enable the detection of discrepancies between a view and its definition. If explicitly

specified, the timestamp should always be set to a new value following a definitional
change so that the change is detectable to the run time system.

Considerations

■ You cannot define an index on a view

■ Updatable views are syntactically valid anywhere in SQL DML statements that
tables are; a view is updatable when the SELECT statement references only one

table and when the view projects no computed values

■ If the WHERE clause of the SELECT statement contai ns a subquery, you cannot use
the check option

■ Avoid using an asterisk (*) in the SELECT statement of your view. If a column is

added to the underlying table, the view becomes invalid and must be dropped and
recreated.

Creating a View

236 Database Administration Guide

Example - Single Table View

In the following example, a simple view is defined on the EMPLOYEE table.

create view prod.emp_home_phone

 as select emp_id, emp_lname, emp_fname, phone

 from prod.employee;

Example - Updatable View

In the following example, a view is defined with the check option to restrict rows that
can be updated and inserted. Using the view, the value of DEPT_ID cannot be changed
to something other than 'SALES', and new rows must have a DEPT_ID of 'SALES'.

create view hr.sales_employee

 as select emp_id, emp_lname, emp_fname, dept_id, emp_ssno

 from prod.employee

 where dept_id = 'SALES'

 with check option;

Example - Nonupdatable View

In the following example, a view is defined with three columns derived from two tables.
Since the third column includes both aggregate functions and an arithmetic operation,

the CREATE VIEW statement must specify names for the columns in the view.

This view is nonupdatable because the SELECT references more than one table and
because the view projects computed values.

create view prod.emp_vacation

 (emp_id, dept_id, vac_time)

 as select e.emp_id, dept_id, sum(vac_accrued) - sum(vac_taken)

 from prod.employee e, prod.benefits b

 where e.emp_id = b.emp_id

 group by dept_id, e.emp_id;

Note: For more information about SQL syntax, see the CA IDMS SQL Reference Guide.

Chapter 9: Defining a Database Using Non-SQL 237

Chapter 9: Defining a Database Using
Non-SQL

This section contains the following topics:

Overview (see page 237)
Schemas and Subschemas (see page 238)

Schema and Subschema Compilers (see page 240)
Defining a Schema (see page 241)
Defining a Subschema (see page 255)
Security Checking (see page 263)

Establishing Schema and Subschema Currency (see page 269)
Reporting on Schema and Subschema Definitions (see page 270)

Overview

This chapter provides information about Step 4, defining the logical components

(schema, subschema) of the database.

Steps to Define a Database

To use non-SQL methods to define your database, follow these steps:

1. Design and size the database using information provided in the CA IDMS Database
Design Guide document.

2. Define in the system dictionary the segments that represent the physical database.

Include the segments in your DMCL, and generate, punch, and link edit the DMCL.
For more information on the physical database, see Chapter 4, “Defining Segments,
Files, and Areas".

Note: You can defer this step until after you define the schema and subschema.

3. Allocate and format the operating system fi les as described in Chapter 17,
"Allocating and Formatting Files”.

Note: You can defer this step until after you define the schema and subschema.

4. Define a schema and one or more subschemas.

Schemas and Subschemas

238 Database Administration Guide

Schemas and Subschemas

CA IDMS/DB needs descriptions of databases to manage those databases. To satisfy this
requirement, the database administrator defines two logical components of the
non-SQL database:

Schema

The schema is a complete description of a database, including the names and
descriptions of all areas, records, elements, and sets. The major purpose of the
schema is to provide definitions from which to generate subschemas.

Subschema

A subschema provides a view of the database as seen by an application program.

This view is often a subset of the complete schema definition. A subschema is used
at runtime to provide the DBMS with a description of those portions of the
database that are accessible to the application program.

The subschema can restrict access to the database in the following ways:

■ The subschema identifies the areas, records, elements, and sets which are
accessible.

■ The subschema identifies the Data Manipulation Language (DML) functions

which can be performed.

Subschemas also allow you to define logical records. Logical records are a view of one
or more base records and a set of operations performed on those records.

Other entities defined within the process of schema and subschema definition are

records, sets, areas, indexes, and CALC keys.

Note: For a complete discussion of non-SQL database components and how to decide
which components and options you will use in your database, see the CA IDMS

Database Design Guide.

Schemas and Subschemas

Chapter 9: Defining a Database Using Non-SQL 239

Storing Schema and Subschema Source

Source descriptions for schemas and subschemas are kept in the DDLDML area of the

dictionary.

Many software components need database descriptions that are not in object form. For
example, DML compilers need a source from which they can generate record

descriptions within user-written programs; the IDMSRPTS util ity needs a source from
which it can produce database reports, and so on. Source descriptions provide a form
that is readable by the software when performing these non-DBMS functions.

Load Modules are Maintained for Subschemas

Load modules are maintained for subschemas. Subschema load modules are kept in the
DDLDCLOD area of the dictionary and, optionally, in a load library.

Load modules consist of machine-readable code that CA IDMS/DB uses at runtime to
transfer data between the program and the database.

Schema and Subschema Compilers

240 Database Administration Guide

Schema and Subschema Compilers

Schema Compiler

The schema compiler, IDMSCHEM, performs the following functions:

■ Accepts as input DDL statements that describe the areas, records, elements, and

sets of the database

■ Evaluates the syntax and logic of the input

■ Places source descriptions of the schema and its components into the dictionary

■ Produces a l ist of the compiler's activities

Subschema Compiler

The subschema compiler, IDMSUBSC, performs the following functions:

■ Accepts as input DDL statements that describe the subschema as follows:

– Identifies selected areas, records, elements, and sets of the database

– Defines logical records

– Places restrictions on allowable DML verbs

■ Validates the syntax and logic of the input

■ Places a source description of the subschema into the dictionary

■ Generates a subschema load module and places it into the dictionary

■ Produces a l ist of the compiler's activities

You can define any number of subschemas for each schema. One subschema might
include all areas, records, and sets in the schema while another might contain only
those areas, records, and sets needed for a program accessing the database. Usually you

define one subschema for each group of similar applications that access the database.

Additional Functions of the Compilers

In addition to the functions stated above, SCHEMA and SUBSCHEMA statements can:

■ Add, modify, delete, display, or punch a schema or subschema description

■ Secure the schema or subschema definition

■ Authorize users to issue specific verbs against the schema or subschema definition

Note: For more information about using the schema and subschema compilers, see

Chapter 10, “Using the Schema and Subschema Compilers”.

Defining a Schema

Chapter 9: Defining a Database Using Non-SQL 241

Defining a Schema

Order of Schema Component Definition

When you add a new schema to the dictionary, you must submit the ADD SCHEMA
statement first. Although you can add most statements in any order, cross references

to nonexistent components generate error messages. To avoid error messages, submit
statements in this order:

1. SCHEMA statement

2. AREA statements

3. RECORD statements (and associated ELEMENT substatements)

4. SET statements

5. VALIDATE statement

Note: If VALIDATE is not executed successfully, the schema cannot be used by other
software components. (Subschemas cannot be defined and util ities that require the
schema name as input cannot be executed.)

SCHEMA Statement

The SCHEMA statement performs the following:

■ Identifies the schema

■ Secures the schema definition

■ Establishes schema currency

When you issue an ADD SCHEMA statement, a new schema description is created in the
dictionary. Default values established through the SET OPTIONS statement (see 11.5,
“SET OPTIONS Statement”) can be used to supplement the user-supplied description.

ADD also sets the schema's status to IN ERROR. A VALIDATE statement must set the
status to VALID before a subschema or CA IDMS/DB util ity can reference the schema.

Procedure

1. Name the schema

2. Optionally add descriptive information

3. Optionally specify automatic record ID assignment

4. Optionally identify the schema that this schema is derived from

5. Optionally provide security information

6. Optionally provide comments and user-defined attributes

Defining a Schema

242 Database Administration Guide

Examples

The following example shows the minimum SCHEMA statement required to establish a
database.

add schema name is sampschm.

The following example shows a complete SCHEMA statement.

add schema name is empschm version is 1

 assign record ids from 3000

 derived from schema oldschm version is 1

 include user is kla registered for all

 public access is allowed for display

 include status is production

 comments 'this schema is based on a former employee schema'

 -'used before the addition of the new divisions'.

Defining a Schema

Chapter 9: Defining a Database Using Non-SQL 243

AREA Statements

AREA statements identify an area of the database. Depending on the verb and options
coded, the AREA statement can also:

■ Add, modify, delete, display, or punch the area description

■ Determine which (if any) database procedures will be executed when the area is
accessed at runtime

The schema compiler applies AREA statements to the current schema. See 9.7,
“Establishing Schema and Subschema Currency”.

The ADD AREA statement causes CA IDMS/DB to create a new area description in the
dictionary and associates it with the current schema.

Procedure

1. Name the area

2. Optionally specify database procedures to be called

Note: You can copy an area description from another schema

Example

The following example shows an AREA statement including calls to database

procedures:

add area name is org-demo-region

 call secdbproc before ready for exclusive update

 call chkdbproc before rollback.

SAME AS

SAME AS copies an entire area description including database procedure
information from an area in another schema into the current schema. The SAME AS

clause must precede all other optional clauses.

Defining a Schema

244 Database Administration Guide

RECORD Statements

RECORD statements identify a non-SQL database record type. Depending on the verb,
options, and substatements coded, the RECORD statements can also:

■ Add, modify, delete, display, or punch the record description

■ Assign the record type to an area

■ Determine which (if any) database procedures will be executed when occurrences
of the record type are accessed at runtime

■ Create a dictionary description of the record, including its synonyms, elements, and

element synonyms or associate the record with an existing structure

The schema compiler applies RECORD statements to the current schema.

The ADD RECORD statement creates a new schema record description in the dictionary
and associates it with the current schema.

Unless the SHARE clause is used, ADD RECORD creates a record structure for the schema
record. The record structure's name is the same as that of the schema record. The
structure is automatically assigned a version number, which distinguishes the record

from others that have the same name in the dictionary. The schema compiler uses NEXT
HIGHEST when assigning record version numbers.

Note: It is better to use the SHARE clause rather than define the record structure in the
schema. The SHARE clause allows you to maintain control of the record versions stored

in the dictionary.

Defining a Schema

Chapter 9: Defining a Database Using Non-SQL 245

SHARE

The SHARE STRUCTURE and SHARE DESCRIPTION clauses allow the schema to share the
structure of either a dictionary record (IDD record) or a record that belongs to another
schema.

The SHARE clause connects an existing record structure to the schema record. The
schema record shares the dictionary description of an existing record, including its
synonyms, elements, and element synonyms. The SHARE clause does not create a new
record structure.

Note the following considerations about using SHARE:

■ All schema records that share a single structure must have the same name

■ Any number of schema records can share a single structure

■ The structure is shared equally among the records; no single s chema owns the
structure

■ The SHARE clause must precede any RECORD SYNONYM clauses. Synonyms are
assigned to the structure and are therefore available to all schema records that

share the structure.

■ The schema compiler does not allow modification of a shared structure except to
include record synonyms. Nonstructural information (record ID, location mode, and
so on) is maintained separately for each schema record and can be modified.

■ The SHARE clause and ELEMENT substatements (14.5, “Element Substatement”) are
mutually exclusive. Use SHARE to connect the record to an existing structure; use
ELEMENT substatements to create a new structure for the schema record.

Do not use ELEMENT substatements for any schema record that shares a structure.
Once SHAREd, a schema record should always be maintained through SHARE
clauses.

Both SHARE STRUCTURE and SHARE DESCRIPTION cause the schema record to share the

structure of an existing record.

Defining a Schema

246 Database Administration Guide

Two Schemas Sharing One Record Structure

The following diagram shows two schemas sharing the structure of the EMPLOYEE
record.

SHARE STRUCTURE

When using SHARE STRUCTURE, you must supply the appropriate:

■ Record ID

■ Location mode

■ VSAM type

■ Area association

■ Minimum root

■ Minimum fragment

■ CALL clauses

Defining a Schema

Chapter 9: Defining a Database Using Non-SQL 247

Example

The following example shows a RECORD statement for SKILL which shares the structure
of the SKILL record in the schema OTHRSCHM.

add record name is skill

 share structure of record skill

 of schema othrschm

 location mode is calc using skill-code

 duplicates are not allowed

 within area org-demo-region

 minimum root length is control length

 minimum fragment length is record length

 call idmscomp before store

 call idmscomp before modify

 call idmsdcom after get.

SHARE DESCRIPTION

SHARE DESCRIPTION allows the schema record to share the structure of a record that
belongs to another schema. Unlike SHARE STRUCTURE, SHARE DESCRIPTION copies the
entire record description (record ID, location mode, etc.) from the owning schema to the
schema record named as the object of the ADD statement. You do not have to add

anything.

Example

In the following example, the SKILL record in the current schema shares the structure of
the SKILL record in EMPSCHM (version 1). Each record has its own copy of nonstructural
information.

add record name is skill

 share description of record skill

 of schema empschm version 1.

Defining a Schema

248 Database Administration Guide

COPY ELEMENTS

The COPY ELEMENTS substatement uses the structure of an existing record type to
generate new element descriptions for the record type. (The SHARE clause of the
RECORD statement does not generate new element descriptions; it uses existing ones.)

Separate Record Structures with Identical Elements

The COPY ELEMENTS substatement requests that all elements from a record description
already stored in the dictionary be included in the new record structure. The record
description may have been stored through another schema or through the IDD DDDL

compiler. COPY ELEMENTS can be used in place of ELEMENT substatements (see below)
to define all of the record's elements or only some of them. When COPY ELEMENTS
supplies some of the record's elements, use ELEMENT substatements to supply the rest.

SHARE and COPY ELEMENTS

The differences between SHARE STRUCTURE, SHARE DESCRIPTION, and COPY ELEMENTS
are as follows:

SHARE DESCRIPTION SHARE STRUCTURE COPY ELEMENTS

Shares the structure of
another schema record

Shares the structure of either
a dictionary record (IDD
record) or another schema

record

Creates new element
descriptions based on
existing record

structures

Uses existing element
descriptions

Uses existing element
descriptions

Creates new element
descriptions

Defining a Schema

Chapter 9: Defining a Database Using Non-SQL 249

SHARE DESCRIPTION SHARE STRUCTURE COPY ELEMENTS

Copies the nonstructural part

of the existing schema record:

■ Record ID

■ Location mode

■ VSAM type

■ Area

■ Minimum root length

■ Minimum fragment

length

■ Database procedures

Does not copy nonstructural

information

Does not copy any

record information

ELEMENT Substatements

The ELEMENT substatements identify the element of a schema record. Because
elements cannot exist in a database except as components of a record, schema
elements are considered subordinate to schema records. Consequently, all ELEMENT

substatements for a single record must immediately follow the RECORD statement in a
single execution of the schema compiler.

The ELEMENT substatement uses COBOL-like syntax to describe elements. Additional
clauses provide CA IDMS/DB-specific information and documentational entries.

The ELEMENT substatement associates an element with the record and, if the element
does not already exist, adds the element description to the dictionary. The element
descriptions cannot be modified individually or deleted using these substatements. To

change element descriptions, modify the record description and respecify all of the
record's elements.

The minimum ELEMENT substatement required for the element to be a valid schema
component depends on whether the element is a group or elementary item:

Item Required

Group item ■ Level

■ Name

Elementary item ■ Level number

■ Name

■ Picture (or usage)

Defining a Schema

250 Database Administration Guide

Example

Minimal ELEMENT substatements are shown below:

02 claim-date.

 03 claim-year pic 99.

 03 claim-month pic 99.

 03 claim-day pic 99.

Mixing ELEMENT and COPY ELEMENTS Substatements

You can mix ELEMENT and COPY ELEMENTS substatements in any sequence necessary

to describe the structure of the record. However, because the level number of copied
elements are the same as those in the base record, you should take care in mixing
elements of different levels. To mix ELEMENT and COPY ELEMENTS substatements and
to change the level numbers within the record, follow these steps:

1. Code ELEMENT and COPY ELEMENTS substatements to put the elements into their
appropriate positions in the record structure

2. Online, issue a DISPLAY RECORD with AS SYNTAX and VERB MODIFY for the record;
in batch mode, code PUNCH instead of DISPLAY.

3. Change the affected level numbers only. Do not erase unaffected elements; all
elements for a single record must always be presented together.

4. Submit the new statement to the compiler

Example

In the following example, the structure of NEW-COVERAGE is generated by copying
elements from the COVERAGE record and the IDD-built CARRIER-DETAIL record, and by
coding new element descriptions in l ine:

add record name is new-coverage

 location mode is via emp-coverage set

 within emp-demo-region area

 copy elements from record coverage

 of schema empschm version 1.

 02 cov-carried-id pic 99.

 02 cov-carrier-name pic x(20).

 copy elements from record carrier-detail.

Defining a Schema

Chapter 9: Defining a Database Using Non-SQL 251

The result of the above activity is as follows:

01 new-coverage

 02 cov-select-date.

 03 cov-select-year pic 99

 03 cov-select-month pic 99

 03 cov-select-day pic 99

 02 cov-termin-date.

 03 cov-termin-year pic 99

 03 cov-termin-month pic 99

 03 cov-termin-day pic 99

 02 cov-type pic x.

 02 cov-insplan-code pic xxx.

 02 cov-carrier-id pic 99.

 02 cov-carrier-name pic x(20).

 02 cov-carr-no-of-claims pic 99 comp.

 02 cov-carr-claims-processed

 occurs 0 to 100

 depending on

 cov-carr-no-of-claims

 03 cov-carr-payment pic x.

 88 prompt value '9'.

 88 over-30-days value '4'.

 88 over-60-days value '1'.

 03 cov-carr-courtesy pic x.

 03 cov-carr-check pic x.

 88 cleared value 'C'.

 88 bounced value 'B'.

Procedure

1. Name the record

2. Identify where the structure of the record is to come from:

■ Structure shared with an existing record structure

■ Structure defined in this schema

3. Optionally specify the record ID

4. Specify the location mode for the record

5. Specify the area where record occurrences will be stored; optionally specify a

subarea

6. Optionally specify minimum root and fragment information for variable length
records

7. Optionally specify database procedures to be called

Note: If you specified in the SCHEMA statement that record IDs were to be set up
automatically, you can stil l override the ID in the RECORD statement.

Defining a Schema

252 Database Administration Guide

Example

The following example defines a schema record which has the same description as
another record in schema DEMOSCHM. The employee record will be stored CALC based
on the EMP-ID element with a portion of the EMP-DEMO-REGION area. The portion of

the area is defined with the SUBAREA clause. The subarea name is actually defined in
the DMCL and resolved at runtime.

add record name is employee

 share structure of record emp version is 10 of schema demoschm

 location mode is calc using (emp-id) duplicates are not allowed

 within area emp-demo-region

 subarea low-pages

 call idmscomp before store

 call idmscomp before modify

 call idmsdcom after get.

SET Statements

The SET statements identify and describe a set. Depending on the verb, the SET

statements can add, modify, delete, display, or punch the set description (see 14.7, “SET
Statement").

Note that if a set's owner record is deleted, the set is automatically deleted.
Additionally, the deleted record and set are deleted from all subschema descriptions

associated with the current schema. However, if the member record is deleted, the set
remains. To delete the set (if it has no other member records), use the DELETE SET
statement.

The schema compiler applies SET statements to the current schema.

The ADD SET statement creates a new set description in the dictionary and associates it
with the current schema.

Defining a Schema

Chapter 9: Defining a Database Using Non-SQL 253

Procedure

1. Name the set

2. Specify order

3. Specify the mode

4. Specify owner and members

5. Specify set options

Note:

■ If you intend to have prior pointers, do not forget to specify MODE IS CHAIN LINKED

TO PRIOR.

■ If you are creating a system-owned index, the owner is SYSTEM.

Example

The following example shows a SET statement.

add set name is insplan-rider

 order is last

 mode is chain

 owner is insplan

 member is rider

 mandatory automatic.

SAME AS

The SAME AS clause copies an entire set description including order, mode, owner,
and members from a set in another schema into the current schema. SAME AS must

precede all other optional clauses.

VALIDATE

Schema Status

CA IDMS/DB requires that a valid schema reside in the dictionary before any other
activity involving the database can begin. Each schema in the dictionary carries a status
of either IN ERROR or VALID as follows:

Status Indicates... Status set by...

IN ERROR The schema was not processed by an
error-free VALIDATE statement and

prevents other CA IDMS/DB software
(subschema compiler and util ities)
from using the schema

After the execution of an ADD
SCHEMA or MODIFY SCHEMA

statement

Defining a Schema

254 Database Administration Guide

Status Indicates... Status set by...

VALID The schema is usable by other CA

IDMS/DB software

After error-free execution of the

VALIDATE statement

Only the schema compiler updates the status.

Verification

VALIDATE causes the schema compiler to verify the relationships among all components

of the schema that is current for update. Based on this verification, the schema compiler
takes one of the following actions:

Result Compiler action

No errors found Compiler sets schema status to VALID

Errors found Compiler issues messages indicating the exact nature of each
error

Other Results of VALIDATE

In addition to the verification, VALIDATE causes the schema compiler to resolve pointer

positions for which AUTO was specified in set description statements.

The VALIDATE statement can be used at any time to verify the relationships of schema
components. For example, if you have not yet defined sets, but want to verify the
schema's record structures, you can use VALIDATE. In this case, however, you should

anticipate a warning for those records whose location mode is VIA an undefined set.

Procedure

Issue the VALIDATE statement:

validate.

Defining a Subschema

Chapter 9: Defining a Database Using Non-SQL 255

Defining a Subschema

The subschema copies its logical database definitions from the schema. You must
define a valid schema and store it in the dictionary before you can create a subschema.

Order of Subschema Component Definition

When you add a new subschema to the dictionary, you must submit the ADD
SUBSCHEMA statement first. Although you can add most statements in any order, cross
references to nonexistent components generate error messages. To avoid error

messages, submit statements in this order:

■ SUBSCHEMA statement

■ AREA statements

■ RECORD statements

■ SET statements

■ LOGICAL RECORD statements

■ PATH-GROUP statements

■ VALIDATE statement

■ GENERATE statement

Subschema Statement

What It Does

The SUBSCHEMA statement:

■ Identifies the subschema

■ Associates it with a schema

■ Secures the subschema definition

■ Establishes subschema currency

Once a specific subschema becomes current, the subschema compiler applies
subsequent statements to that subschema.

Defining a Subschema

256 Database Administration Guide

Procedure

1. Name the subschema

2. Name the schema from which this subschema is derived

3. Optionally provide a description

4. Specify the usage

5. Optionally include security information

6. Optionally include comments

Note: Be explicit about the usage mode for your subschema. Specify either LR or DML;
only in cases where both LRF and DML are used should you specify MIXED (for more

information, see the CA IDMS Logical Record Facility Guide document).

Example

The following example shows the definition of the subschema EMPSS01.

add subschema name is empss01

 of schema name is empschm version is 1

 description is 'subschema for adding/modifying employees'

 public access is allowed for all

 usage is lr.

AREA Statements

AREA statements identify areas to be included in this subschema. The area descriptions
are copied from the schema area descriptions. Depending on the verb and options
coded, the AREA statements can also:

■ Determine the usage modes in which programs using the subschema can ready the
area

■ Determine the default usage mode for programs that do not issue READY

statements

■ Modify, delete, display, or punch a subschema area

The subschema compiler applies AREA statements to the current subschema.

Defining a Subschema

Chapter 9: Defining a Database Using Non-SQL 257

Procedure

1. Name the area

2. Optionally specify usage modes that are not allowed

3. Optionally specify default usage mode for the area

Note: The default for usage modes is that the mode is allowed. Specify those usage
modes you do not want allowed.

Example

The following example shows the definition of the area ORG-DEMO-REGION being
copied into the current subschema.

add area org-demo-region

 exclusive update is not allowed

 default usage is shared update.

RECORD Statements

RECORD statements identify records to be included in this subschema. The record

descriptions are copies from the schema descri ptions. Depending on the verb and
options coded, the RECORD statements can also:

■ Specify which record elements can be accessed through the subschema

■ Specify which DML verbs can be issued against the record

■ Specify the order in which record descriptions occur within the subschema

■ Modify, delete, display, or punch a subschema record description

The subschema compiler applies RECORD statements to the current subschema.

Procedure

1. Name the record

2. Optionally identify the elements that can be accessed through the subschema

3. Specify which DML verbs will not be allowed

Note:

■ A simple ADD RECORD statement copies a record in its entirety includingall its
elements from the schema description into the subschema definition.

■ You can change the order of the elements from that specified in the schema.

■ You can add additional security and control by restricting the DML commands that
programs using this subschema can issue against each record.

Defining a Subschema

258 Database Administration Guide

Example

The following example shows the definition of the record SKILL being copied into the
current subschema.

add record skill

 store is not allowed

 erase is not allowed.

SET Statements

SET statements identify sets to be included in this subschema. The set description is

copied from the schema description. Depending on the verb, the SET statements can
also:

■ Determine which DML verbs can be issued against the set

■ Modify, delete, display, or punch a subschema set description

The subschema compiler applies SET statements to the current subschema.

Defining a Subschema

Chapter 9: Defining a Database Using Non-SQL 259

Procedure

1. Name the set

2. Optionally specify which DML verbs will not be allowed

Note:

■ If the set's owner record is deleted, either from theschema or from the subschema,
the set is automatically deleted from the subschema.

■ If the set's member record is deleted, either from the schema or from the
subschema, the set remains in the subschema.

■ If a set is added to the subschema, the owner of the set must also be added to the
subschema

■ If one or more sets associated with a record is not included in the subschema,

certain update operations on the record are prohibited, as follows:

– If a set in which the record is an owner is missing, the record cannot be erased

– If a set in which the record is a member is missing, the record cannot be erased
and:

– If the set has a membership of AUTOMATIC, the record cannot be stored

– If the set is sorted, the record cannot be modified

Example

The following example shows the definition of the set SKILL-EXPERTISE being copied into
the current subschema.

add set name is skill-expertise.

Defining a Subschema

260 Database Administration Guide

LOGICAL RECORD Statements

LOGICAL RECORD statements define a logical record that programs using the subschema
can access.

A logical record is defined by naming the logical record and all the subschema records

that participate in it; these subschema records are known as logical-record elements.
The records must participate in the subschema (through ADD RECORD statements)
before they can be named as logical record elements in the LOGICAL RECORD
statement.

When a DML processor copies a logical-record description into a program, each
logical-record element is subordinate to the logical record itself. The sequence of
logical-record elements in the copied description is the same as that in DDL LOGICAL
RECORD statement. If a subschema record occurs more than once in a single logical

record, the additional occurrences must be assigned unique identifiers called roles.

The subschema compiler applies LOGICAL RECORD statements to the current
subschema.

Note: For more information about creating logical records, refer to the CA IDMS Logical
Record Facility Guide document.

Procedure

1. Name the logical record

2. Name the records that are components of this logical record

3. Optionally specify error information

4. Optionally include comments

Example

The following example shows the definition of the logical records MANAGER-STAFF and
DEPT-ROSTER.

add lr name is manager-staff

 elements are employee

 structure

 employee role name is staff.

add lr name is dept-roster

 elements are department

 employee role name is staff.

Defining a Subschema

Chapter 9: Defining a Database Using Non-SQL 261

PATH-GROUP Statements

PATH-GROUP statements define paths for a specific logical record. At runtime, LRF
services program requests by following one of the paths to access the logical record.

For each logical record, at least one path group, and at most four (one for each DML

verb that can be used to access the logical record), must be defined. A path group can
contain any number of paths. Which path LRF uses at runtime is determined by
selection criteria, both in the path group and in the program requesting LRF services.

Note: For more information about logical records and path groups, see the CA IDMS

Logical Record Facility Guide document.

The subschema compiler applies PATH-GROUP statements to the current subschema.

Procedure

1. Name the type of path group

2. Add appropriate DML statements

Example

add path-group name is store emp-pers-data

 select

 find first department

 where calckey eq dept-id-0410 of lr

 on 0326 return no-dept

 on 0000 next

 find first office

 where calckey eq office-code-0450 of lr

 on 0326 return no-office

 on 0000 next

 find first employee

 where calckey eq emp-id-0415 of lr

 on 0000 return emp-exists

 on 0326 next

 store employee

 on 0000 next

Subschema Validation and Generation

After you describe the subschema, the dictionary contains the subschema description,
but no subschema load module yet exists in the load area of the dictionary. A load
module can be generated only from a valid subschema description.

Defining a Subschema

262 Database Administration Guide

Subschema Status

Each subschema description in the dictionary carries a status of either IN ERROR or

VALID as follows:

Status Indicates... Status set by...

IN ERROR The subschema has been added or
modified but has not been validated.
This status prevents the generation of
a load module for the subschema.

■ An ADD SUBSCHEMA or
MODIFY SUBSCHEMA
statement

■ Any schema modification

that affects the subschema
(for example, deletion of a
set)

VALID The subschema has been validated

and load modules can be generated
■ The error-free execution of a

VALIDATE or
GENERATEstatement

■ The error-free execution of a

schema compiler
REGENERATE statement.

You can validate the subschema and generate the load module in a single step (using
the GENERATE statement) or you can validate the subschema at any time without

generating a load module (using the VALIDATE statement).

VALIDATE

The VALIDATE statement instructs the subschema compiler to verify the relationships
among all components of the subschema. Based on this verification, the compiler takes
one of the following actions:

Result Compiler action

No errors found Compiler sets subschema status to VALID

Errors found Compiler issues messages indicating the exact nature of
each error

You usually use VALIDATE for dry runs of the subschema compiler since it causes the
compiler to check the components but not to crea te subschema load modules.

Security Checking

Chapter 9: Defining a Database Using Non-SQL 263

Procedure

Issue the VALIDATE statement:

validate.

GENERATE

The GENERATE statement instructs the compiler to create subschema tables for the
subschema that is current and to store them as a load module in the dictionary load

area. For GENERATE to produce the new subschema load module, the current
subschema must be valid. So, if a VALIDATE statement has not been specified for the
subschema, the GENERATE statement causes the compiler to perform validation before
creating the subschema tables.

Procedure

1. Issue the GENERATE statement, as follows:

generate.

Security Checking

The schema and subschema compilers maintain security to ensure that no unauthorized

person uses the compilers to perform secured operations. The compilers perform
security checking operations when:

■ The verb is SIGNON, VALIDATE, or GENERATE

■ The SET OPTIONS statement contains REGISTRATION OVERRIDE

■ The component type is SCHEMA

■ The component type is SUBSCHEMA

■ The statement is the first statement of the session

In any of the above cases, the compiler determines whether the requested operation is

secured. If the operation is not secured, the compiler bypasses the security check and
begins processing the statement. If the operation is secured, the compiler checks the
user's description in the dictionary to determine whether the user is authorized to

perform an operation. If the user is authorized, the compiler processes the input
statement; if not, the compiler issues an error message.

Security Checking

264 Database Administration Guide

Types of Security Checked

The compilers check four kinds of security:

■ Compiler security

■ Registration override security

■ Verb security

■ Component security

Each kind of security is presented separately below; each topic includes the following
kinds of information:

■ When security is checked

■ How security is turned on or off

■ How the compiler determines who the issuing user is

■ What constitutes an authorized user

Checking Compiler Security

The schema and subschema compilers check compiler security:

■ When SIGNON is issued

■ When the first statement of the session is issued (implicit SIGNON)

Compiler security is turned on or off through the IDD DDDL statement, SET OPTIONS
FOR DICTIONARY SECURITY FOR IDMS IS ON/OFF.

Note: This IDD DDDL statement also turns verb security on or off; compiler and verb

security cannot be set independently.

Determining Who is Issuing the Statement

To determine who is issuing the statement, the compiler looks at the user name
specified in the SIGNON statement. If the SIGNON statement is not issued or does not

include the USER clause, the user name defaults as described in the SET OPTIONS
presentation under Chapter 10, “Using the Schema and Subschema Compilers”.

Security Checking

Chapter 9: Defining a Database Using Non-SQL 265

An authorized user, for this function, is one whose description in the dictionary includes
authority to use the compiler. Compiler authority is assigned through one of the

following IDD DDDL USER statements (use MODIFY for existing user descriptions):

Statement Action

ADD USER NAME IS user-name

 AUTHORITY FOR any verb

 IS ALL.

Assigns authority to use both compilers

ADD USER NAME IS user-name

 AUTHORITY FOR any verb

 IS IDMS.

Assigns authority to use both compilers

ADD USER NAME IS user-name

 AUTHORITY FOR any verb

 IS SCHEMA.

Assigns authority to use the schema
compiler only

ADD USER NAME IS user-name

 AUTHORITY FOR any verb

 IS SUBSCHEMA.

Assigns authority to use the subschema
compiler only

Checking Registration Override Security

The schema and subschema compilers check registration override security when they

encounter a SET OPTIONS statement containing a REGISTRATION OVERRIDE clause.

Unlike the other kinds of security, this one cannot be turned on or off; that is, the
compiler always checks for an authorized user when it encounters a REGISTRATION

OVERRIDE clause.

Determining Who is Issuing the Statement

To determine who is issuing the REGISTRATION OVERRIDE clause, the compiler looks at
the PREPARED BY and REVISED BY user names in the SET OPTIONS statement. If the SET
OPTIONS statement does not include either clause, or if user signon override is not

allowed, the user name defaults as described in the SET OPTIONS presentation under
Chapter 10, “Using the Schema and Subschema Compilers”.

An authorized user for the REGISTRATION OVERRIDE clause is one whose description in
the dictionary includes all authorities. Al l authorities are assigned through the following

IDD DDDL USER statement (use MODIFY for existing user descriptions):

ADD USER NAME IS user-name

 AUTHORITY IS ALL.

Security Checking

266 Database Administration Guide

Checking Verb Security

The schema and subschema compilers check verb security whenever a SCHEMA
statement (schema compiler only) or SUBSCHEMA statement (subschema compiler
only) is issued. Note that verb security is not checked for each component of a schema

or subschema. Once a user passes security for a schema or a subschema, all of its
components are available to the user.

Turning Verb Security On or Off

Verb security is turned on or off through the IDD DDDL statement, SET OPTIONS FOR

DICTIONARY SECURITY FOR IDMS IS ON/OFF.

Note: This IDD DDDL statement also turns compiler security on or off; verb security and
compiler security cannot be set independently.

Determining Who is Issuing the Statement

To determine who is issuing the SCHEMA or SUBSCHEMA statement, the compiler looks

at four areas; if any area contains the name of an authorized user, security is satisfied
and the compiler processes the request:

■ The SCHEMA or SUBSCHEMA statement PREPARED BY clause

■ The SCHEMA or SUBSCHEMA statement REVISED BY clause

■ The current session option for PREPARED BY

■ The current session option for REVISED BY

Note: If user signon override is not allowed, the user issuing the statement is always

assumed to be the user known to the execution environment. PREPARED BY and
REVISED BY user specifications are ignored.

Security Checking

Chapter 9: Defining a Database Using Non-SQL 267

An authorized user, for this function, is one whose description in the dictionary includes
authority to issue the verb specified in the SCHEMA or SUBSCHEMA statement, in

conjunction with the authority to use the compiler. Verb authority is assigned through
IDD DDDL USER statements, such as those in the following examples:

ADD USER NAME IS KCO assigns authority to use all

 AUTHORITY FOR UPDATE verbs in each DDL compiler

 IS IDMS.

ADD USER NAME IS BAC assigns authority to use MODIFY,

 AUTHORITY FOR MODIFY DISPLAY, and PUNCH in each DDL

 IS IDMS. compiler

ADD USER NAME IS TWG assigns authority to use DELETE,

 AUTHORITY FOR DELETE DISPLAY, and PUNCH in the schema

 IS SCHEMA. compiler only

ADD USER NAME IS JFD assigns authority to use DISPLAY

 AUTHORITY FOR DISPLAY and PUNCH in the schema compiler

 IS SCHEMA. only

While schema authority only allows the user to access the schema compiler, any

subschema updates resulting from authorized schema updates are allowed (for
example, deleting a set from the schema causes the set to be deleted from the
subschemas associated with that schema).

Note: For more information about assigning verb authority, see the CA IDMS IDD DDDL

Reference Guide.

Checking Component Security

The schema compiler checks the security of a specific schema whenever a SCHEMA
statement (other than ADD SCHEMA) is issued for that schema; the subschema compiler

checks security of a specific subschema whenever a SUBSCHEMA statement (other than
ADD SUBSCHEMA) is issued for that subschema. Note that this security is not checked
for each component of a schema or subschema. Once a user passes security for a
schema or a subschema, all of its components are available to the user. Component

security applies to every existing schema and subschema, regardless of whether
compiler security is on.

PUBLIC ACCESS Clause

Security for a specific schema or subschema is set through the PUBLIC ACCESS clause of
the SCHEMA or SUBSCHEMA statement. A schema or subschema is said to be unsecured
if PUBLIC ACCESS IS ALLOWED FOR ALL is in effect; any other public access specification

places some level of security on the schema or subschema.

Security Checking

268 Database Administration Guide

Examples

The following examples show how component security is set:

MOD SCHEMA EMPSCHM turns off security for EMPSCHM

 PUBLIC ACCESS IS ALLOWED

 FOR ALL.

MOD SUBSCHEMA EMPSS01 turns on security for all verbs

 OF SCHEMA EMPSCHM issued against EMPSS01

 USER IS JFD

 REGISTERED FOR ALL

 PUBLIC ACCESS IS ALLOWED

 FOR NONE.

MOD SUBSCHEMA EMPSS02 turns off security for DISPLAY

 OF SCHEMA EMPSCHM EMPSS02 and PUNCH EMPSS02;

 USER IS LSB turns on security for all other

 REGISTERED FOR ALL verbs issued against EMPSS02

 PUBLIC ACCESS IS ALLOWED

 FOR DISPLAY.

Authorized Users

An authorized user for a specific schema or subs chema is one whose association with
the schema or subschema includes the verb used in the SCHEMA or SUBSCHEMA
statement being processed. This authority is assigned through the REGISTERED FOR

subclause of the USER clause in a previously-issued SCHEMA or SUBSCHEMA statement,
as shown in the following examples:

ADD SUBSCHEMA NAME IS EMPSS01 assigns authority to KCO to

 USER NAME IS KCO use all verbs against EMPSS01

 REGISTERED FOR ALL.

ADD SUBSCHEMA NAME IS EMPSS02 assigns authority to WXE to

 USER NAME IS WXE access EMPSS02 with only those

 REGISTERED FOR PUBLIC ACCESS. verbs specified in EMPSS02's

 PUBLIC ACCESS clause

ADD SCHEMA NAME IS EMPSCHM assigns authority to ILI to

 USER NAME IS ILI DISPLAY and PUNCH EMPSCHM

 REGISTERED FOR DISPLAY.

Note: For more information about PUBLIC ACCESS and USER clauses, see "SCHEMA

statement" in "SCHEMA statement" in Chapter 14, “Schema Statements".

Establishing Schema and Subschema Currency

Chapter 9: Defining a Database Using Non-SQL 269

Establishing Schema and Subschema Currency

You establish schema or subschema currency when you enter a SCHEMA or
SUBSCHEMA statement. Once a specific schema or subschema becomes current,
subsequent statements are applied to that schema or subschema .

There are two types of currency: update and display.

Type of Currency Set by... Allows...

Update ADD SCHEMA/SUBSCHEMA

or

MODIFY
SCHEMA/SUBSCHEMA

All operations against

components

Display Any schema or subschema

statement (except DELETE)

Schema or subschema

components to be displayed and
punched

Example of Changes in Currency

The following example shows schema currency changes. Note that DISPLAY does not
cancel update currency when the displayed schema was previously current for update.

EMPSCHM is current for display only; schema components cannot be modified.

dis schema empschm.

 dis area emp-demo-region.

 dis rec employee.

EMPSCHM is current for update and display; schema components can be added,
modified, deleted, displayed, and punched.

mod schema empschm.

 del set ooak-skill.

 del set ooak-job.

 dis record job.

Reporting on Schema and Subschema Definitions

270 Database Administration Guide

DEMOSCHM is current for both update and display; EMPSCHM has lost all currency.

mod schema demoschm.

 del set order-oremark.

 dis rec oremark.

DEMOSCHM remains current for both update and display; DISPLAY does not cancel

update currency (for the same schema).

dis schema demoschm.

 del set product-item.

 del rec product.

 dis rec item.

EMPSCHM is current for display only; DEMOSCHM loses all currency; no schema is
current for update.

dis schema empschm.

 dis area org-demo-region.

 dis set dept-employee.

 dis rec dept.

Reporting on Schema and Subschema Definitions

There are two methods of obtaining a report on a schema or subschema:

■ Running the IDMSRPTS util ity program

■ Running the schema or subschema compiler in batch mode to produce an activity
l isting

More Information

■ For more information about IDMSRPTS, see the CA IDMS Utilities Guide.

■ For more information about schema and subschema compiler ac tivity l istings, see
10.7.2, “Schema and Subschema Listings".

■ For more information about batch compiling, see Appendix E, “Batch Compiler
Execution JCL".

Chapter 10: Using the Schema and Subschema Compilers 271

Chapter 10: Using the Schema and
Subschema Compilers

This section contains the following topics:

Overview (see page 271)
Online Compiling (see page 272)

Batch Compiling (see page 273)
Coding DDL Schema and Subschema Statements (see page 274)
Coding Keywords, Variables, and Comment Text (see page 280)
Compiler-Directive Statements (see page 285)

Output From the Compilers (see page 285)

Overview

This chapter describes how to use the schema and subschema compilers, specifically,
how to:

■ Submit statements to the schema and subschema compilers

■ Compile in batch and online environments

■ Store a subschema load module

■ Get a l isting of a schema or subschema definition

Other information about the compiling environment is provided where appropriate.

More Information

■ For descriptions of what the schema and subschema compilers do, see Chapter 10,
“Using the Schema and Subschema Compilers".

■ For the rules concerning the writing of user exits for the schema and subschema
compiler, see Appendix G, "User-Exit Program for Schema and Subschema
Compiler".

Online Compiling

272 Database Administration Guide

Online Compiling

You can use an online session to input source DDL statements that create, modify,
delete, or display schema and subschema definitions.

Note: For more information about the batch alternative, see 10.3, "Batch Compiling".

An online session begins when the user signs on to the compiler, continues through any

number of DDL operations, and ends when the user signs off from or otherwise
terminates the compiler.

Starting a Session

To start an online session, do the following:

1. Sign on to the host TP monitor according to site-standard conventions.

2. Enter the task code for the compiler according to site-standard conventions. Task
codes are SCHEMA for the schema compiler, SSC for the subschema compiler. A

l ine identifying the compiler appears at the top of the screen.

3. Optionally, enter the SIGNON statement in the input/output area of the screen.

4. Optionally, enter the SET OPTIONS statement after the SIGNON statement to
establish processing options for this session.

Note: For more information about SIGNON, SET OPTIONS, and other compiler -directive
statements, see Chapter 11, “Compiler-Directive Statements”.

Submitting Statements

After you are signed on, you can enter ADD, MODIFY, DELETE, DISPLAY, and PUNCH
statements (see Chapter 12, “Operations on Entities”).

Note: For more information about schema statements, see Chapter 14, “Schema

Statements”. For more information about subschema statements, see Chapter 15,
“Subschema Statements”.

Batch Compiling

Chapter 10: Using the Schema and Subschema Compilers 273

Ending a Session

To end an online session, do the following:

1. Enter SIGNOFF in the input/output area, then press [Enter]. This erases the work
fi le, terminates the full -screen editor, erases the session options, and displays a

transaction summary.

2. Press [Clear]. This returns control to the system.

Note: To end a session and return control to the system without receiving a transaction
summary, enter the END command on the top line of the screen instead of using

SIGNOFF.

Recovering a Session

If the Compiler Abends

If the schema or subschema compiler terminates abnormally and you want to resume at
the point before which you entered the last statement, enter the compiler's task code.

All updates made to the dictionary remain intact. Text changes made to the last screen

are applied to your work fi le.

If the DC/UCF System Abends

If your system terminates abnormally, the work fi le and all session options are lost.

Enter the compiler's task code to begin a new session.

Batch Compiling

You can use a batch stream to input source DDL statements that create, modify, delete,
or display schema and subschema definitions.

Note: For more information about the online alternative, see 10.2, “Online Compiling”.

The following are the batch programs you use to compile source DDL statements for
non-SQL databases:

■ IDMSCHEM (batch program for schema compiling)

■ IDMSUBSC (batch program for subschema compiling)

Running either of these programs in batch mode produces an activity l isting (see 10.7.2,
“Schema and Subschema Listings").

Note: For the JCL you need to run these compile programs under the central version or

in local mode, see Batch Compiler Execution JCL.

Coding DDL Schema and Subschema Statements

274 Database Administration Guide

Coding DDL Schema and Subschema Statements

This section describes how to submit logical DDL statements to the schema and
subschema compilers. It describes common components of the DDL syntax, statement
delimiters, symbols recognized as comments by the compilers, and input format.

Statement Components

Five Components

Most DDL statements consist of five components, in the following order (exceptions are
presented later):

1. Verb (required) designates the specific operation to be performed by the
statement: ADD, MODIFY, REPLACE, DELETE, DISPLAY, or PUNCH. Acceptable verb
synonyms are shown in the following table.

Verb Synonym

ADD CREATE

MODIFY ALTER

DELETE DROP

2. Entity type (required) identifies the type of data in the dictionary that the selected
operation will affect: SCHEMA, AREA, RECORD, SET, SUBSCHEMA, LOGICAL RECORD,
or PATH-GROUP.

3. Entity occurrence name (required) identifies a specific instance of the named entity
type.

4. Optional clauses provide qualifying data for each component occurrence. Optional

clauses can be specified in any order, unless individual clause explanations state
otherwise.

5. Period (required) signifies the end of the statement. The period can immediately
follow the last word in the statement, can be separated from the last word by

blanks, or can appear on a separate l ine.

If you specify the SEMICOLON ALTERNATE clause of the SET OPTIONS
compiler-directive statement, both the period (.) and the semicolon (;) will be

recognized as statement terminators.

Coding DDL Schema and Subschema Statements

Chapter 10: Using the Schema and Subschema Compilers 275

Example Statement

The following example il lustrates the parts of the typical DDL statement:

ADD SCHEMA EMPSCHM MEMO DATE IS 04/30/92 .
 ▲ ▲ ▲ ▲ ▲ ▲
 │ │ │ └───────────────────┘ │
verb entity entity optional clause terminating
 type occurrence period
 name

Statement Exceptions

Exceptions to the syntax format rule stated above are clearly indicated in both the
syntax layouts and the syntax explanations of the individual statements. Exceptions
include the following:

■ DELETE operations, which must not contain optional clauses (other than those
needed to uniquely qualify the entity, such as VERSION, or satisfy security
requirements, that is, PREPARED BY)

■ VALIDATE, GENERATE, and REGENERATE, which do not name entities

■ Carriage control statements (for compiler l istings)

■ Compiler-directive statements

Delimiting Statements

Required Delimiters

One or more blanks must be used as delimiters between words and clauses.

Optional Delimiters

Commas (,) and colons (:), are treated as blanks by the compilers and can be used as

delimiters between words and clauses to enhance readability. You can also use a
semicolon (;) as a delimiter if the SET OPTIONS statement does not set the SEMICOLON
ALTERNATE END OF SENTENCE to ON.

End of Statement Delimiter

A period (.) signifies the end of the statement. You can also designate a semicolon (;) as
an alternative statement terminator by specifying ON in the SEMICOLON ALTERNATE
clause of the SET OPTIONS statement.

Coding DDL Schema and Subschema Statements

276 Database Administration Guide

Compiler Comments

You can use the following symbols to begin a comment:

Symbol Column

*+ (asterisk, plus) Any

-- (hyphen, hyphen) Any

* (asterisk) 1

CA IDMS/DB treats all remaining text on the input l ine as a comment.

Significance of *

An asterisk as the first nonblank character of the input line identifies the line as a
compiler comment: l ines beginning with an asterisk are ignored by the compiler.

Significance of *+

The combination of the asterisk and the plus sign in columns one and two of an input

line identifies the line both as a comment line (because of the asterisk) and as a l ine not
to be redisplayed.

Note: For more information about the compiler's ability to redisplay input, see the
ECHO and LIST options in 11.5, “SET OPTIONS Statement".

Comment Lines in Messages and DISPLAY Output

The DDL compilers generate l ines beginning with the *+ combination, as follows:

■ Messages—All informational, warning, and error messages displayed by the
compilers are preceded by *+.

■ DISPLAY output—All output l ines generated by a DISPLAY AS COMMENTS
statement are preceded by *+. For DISPLAY AS SYNTAX, l ines which contain
information not directly associated with syntax statements are preceded by *+.

Example

In this example, the schema compiler ignores the WITHIN AREA clause when it
processes the ADD RECORD statement:

ADD RECORD NAME IS EMPLOYEE

 LOCATION MODE IS CALC

 USING (ID-0415)

 DUPLICATES ARE NOT ALLOWED

 *+ WITHIN AREA EMP-DEMO-REGION .

Coding DDL Schema and Subschema Statements

Chapter 10: Using the Schema and Subschema Compilers 277

Input Format

80-character Input

You can code statements in columns 1 through 80, or you can limit the input range using
the INPUT COLUMNS clause of the SET OPTIONS statement. The maximum range is 1

through 80. The minimum number allowed between low and high columns is 10. The
default depends on the mode in which the compiler is used:

■ Online default—1 through 79 in 3270 full -screen mode; 1 through 80 for l ine
devices

■ Batch default—1 through 72

Multiline Input

DDL statements can be coded as multiple-line input. The four required statement
components (verb, entity type, entity occurrence, and period) and most optional clauses

can be continued from one line to the next, as long as words are not split (including
user-supplied names in quotes). No continuation character is required.

Three examples of acceptable subschema DDL input are shown as follows:

■ Single line input:

add subschema name is empss01 schema is empschm.

■ Multiline input:

add subschema name is empss01

 schema is empschm.

■ Multiple statements per line:

signon user is msk. dis schema demoschm with none.

dis area demoxarea. dis rec employee. dis set dept-employee.

Coding DDL Schema and Subschema Statements

278 Database Administration Guide

Error Handling

An error is any condition that prevents the compiler from performing the requested
operation. The user errors detected by the schema and subschema compilers fa ll into
two major categories:

■ Syntax errors

■ Logic errors

The compilers check for both kinds of errors at the same time.

Syntax Errors

Syntax errors are those caused when you violate a clause's format rules (such as a
misspelled keyword).

When you submit a statement as input, the compiler examines the statement, word by
word, expecting specific combinations of keywords and expressions. This process is
known as parsing the syntax.

The compiler expects a sentence to begin with a verb and end with a period. Words that

can follow the verb vary, depending on the verb; words that can follow a component
name vary, depending on the component type; and so on. If the compiler parses a
clause or subclause successfully (that is, if keywords and expressions fall in the expected
order), the compiler attempts to apply that clause. If not, the compiler processes the

error.

Logic Errors

Logic errors are those caused when a syntactically correct clause requests an operation

that is not practicable (such as a request to modify a nonexistent component).

When the DDL compiler attempts to satisfy a specific request, it may find that the
request is not logical. When trying to determine the cause of a logic error, you should
consider the following possibilities:

■ Sentence—Logical errors can be caused by il logic of the sentence itself (for
example, an attempt to modify a nonexistent component)

■ Clause—Because the compiler examines each clause individually, logic errors can
occur in individual clauses.

■ Combination of sentence and clause—Logic errors can be caused by an il logical
combination of otherwise correct clauses or statements, such as a SUBSCHEMA
statement whose usage is DML followed by a LOGICAL RECORD statement.

Some logic errors are not detected when the statement is processed. Check for
interdependence of components occurs when the VALIDATE statement is executed.

Coding DDL Schema and Subschema Statements

Chapter 10: Using the Schema and Subschema Compilers 279

Example of a Logic Error

The following example shows a logic error. The first statement contains no errors; the
second statement attempts to assign a record ID already assigned to a record. The
compiler actions caused by the partially correct statement are shown at right.

add record department
 record id is 410
 location mode is calc using dept-id
 duplicates not allowed
 02 dept-id pic x(4).
add record employee ◄──────────────────── Puts record in dictionary
 record id is 410 ◄──────────────────── Produces error messages
 location mode is calc using emp-id ◄──── Assigns location mode and
 duplicates not allowed duplicates option to record
 02 emp-id pic 9(4). ◄──────────────── Associates elements with
 the record

After the processing is complete, the dictionary contains a partial description of the
EMPLOYEE record. To complete the description, you should issue the following
statement:

modify record employee record id is 411.

You can specify any record ID other than 410. Because the location mode and elements

already are part of the record description in the dictionary, you would not need to
recode them.

FORWARD SPACING Message

The message FORWARD SPACING TO NEXT PERIOD indicates that the compiler cannot

continue processing the statement. For example, if the compiler detects an invalid
password, the compiler must reject all clauses in the statement. To resume processing,
the compiler searches for the end of the statement (the period) and begins with the

next keyword. This message is issued when the compiler is checking either identification
or security at the beginning of the statement. Consequently, no partial updates occur
when this message is issued.

More Information about Messages

For detailed information about error/status messages, see the CA IDMS Messages and
Codes Guide document.

Coding Keywords, Variables, and Comment Text

280 Database Administration Guide

Coding Keywords, Variables, and Comment Text

A DDL input statement contains keywords and varia bles. This section provides rules for:

■ Coding keywords

■ Forming entity-occurrence names

■ Using quotes in user-supplied names

■ Coding comments in schema and subschema descriptions

Coding Keywords

Keywords are predefined names or special characters that appear in syntax diagrams.
Required letters appear in uppercase. Optional letters are in lowercase.

Abbreviations

Keywords can be spelled in full, or they can be abbreviated to a minimum of three
characters if no other word in the same syntactical position can be abbreviated
identically. The keywords ELEMENT and VERSION are exceptions to the three-character

minimum requirement and can be abbreviated to EL and V, respectively.

Coding Entity-Occurrence Names

An entity-occurrence name is the name you provide to a schema or subschema entity,
such as the schema itself, a schema area, and a schema record.

Valid Characters

The following are valid characters to include in entity-occurrence names:

■ Letters (A through Z)

Lowercase letters in entity names are translated to uppercase.

■ Digits (0 through 9)

■ At sign (@)

■ Dollar sign ($)

■ Pound sign (#)

■ Hyphen (-)

The first character of an identifier must be a letter, @, $, or #. A hyphen cannot be the
last character and cannot follow another hyphen.

Note: Element name can also begin with a digit (0 through 9).

Coding Keywords, Variables, and Comment Text

Chapter 10: Using the Schema and Subschema Compilers 281

Program Language Restrictions

Because the DDL compilers cannot anticipate which programming languages will use
which records and elements, the user is responsible for ensuring that record and
element names follow the character set and word length rules and do not duplicate any

of the reserved words of the specific compiler or assembler.

Maximum Length

The maximum length of an entity-occurrence name depends on the entity. Syntax rules
for each entity indicate length restrictions.

Avoid Using Keywords

Keywords recognized by a DML processor may inhibit the processor's operation when
used as entity-occurrence names. Keywords will pass successfully through the processor

under some conditions, but not under others. Consequently, avoid using keywords as
entity-occurrence names.

Coding User-Supplied Values

A user-supplied value is any text value, except an entity-occurrence name, that you

supply in a DDL statement. For example, your us er ID and password are user-supplied
values. So are character-string l iterals used in Boolean expressions and descriptive text
for schema and subschema entities.

Lowercase letters are retained in user-supplied values which are enclosed in quotes

(such as comments). In values not enclosed in quotes, lowercase letters are translated
to uppercase.

Using Quotes for Special Characters

The coding rules l isted for entity-occurrence names apply to user-supplied values. In

addition, you can use quotation marks in order to use special characters. The DDL
compilers treat these characters as special characters :

■ Comma (,)

■ Period (.)

■ Semicolon (;)

■ Apostrophe (')

■ Parenthesis ((and))

■ Colon (:)

■ The quote character (' or ")

Coding Keywords, Variables, and Comment Text

282 Database Administration Guide

Default Quotation Mark

The single quotation mark (') is the default quote character established during
installation. You can specify the double quotation mark (") as the quote character by
means of the SET OPTIONS statement.

Embedding the Quote Character

When the quote character is to be embedded in a user-supplied name, it must appear
twice for each occurrence in the origi nal name. For example, the name MARY'S
PROGRAM should be input as 'MARY''S PROGRAM' if the single quotation mark (') has

been designated as the quote character, and as "MARY'S PROGRAM" if the double
quotation mark (") has been designated as the quote chara cter.

Code the Closing Quote

If the closing quote is omitted from a quoted literal, the literal is interpreted as including
everything to the end of the input column range.

Nullifying Existing Values

Two quote characters with no space between them is a null string. Null strings can be
used for nulling out existing values. Note that the null string does not null l ines of

comment text in COMMENTS clauses; it creates one blank line.

Coding Keywords, Variables, and Comment Text

Chapter 10: Using the Schema and Subschema Compilers 283

Coding Comment Text

You can add comments to SCHEMA, SUBSCHEMA, RECORD element substatement, and
LOGICAL record definitions in the COMMENTS clause. Rules for coding comment-text
appear next.

Text Can Be Any Length

Text can extend to any length. Code as many lines as are necessary to document the
entity.

Use Quotes on Each Line

A quote must precede the text of each line; ending quotes on each line are optional.
When COMMENTS is the last clause in the statement and the terminating quote (at the
end of the last line) is omitted, code the period on a separate l ine; otherwise, the
compiler treats the period as part of the comment.

Multiline Input

When text extends beyond the first l ine of input, each subsequent l ine must begin with
a character indicating either continuation or concatenation, as follows:

Line type Symbol Meaning

Continuation Hyphen (-) Compilers treat the new line as a continuation of
comment text

Concatenation Plus (+) Compilers append the new line to the preceding line
of comment text; any number of text l ines can be
concatenated, provided that their combined length

does not exceed 80 bytes

Coding Keywords, Variables, and Comment Text

284 Database Administration Guide

Examples

The following example of the SUBSCHEMA statement compares valid omissions of a

terminating quote with an invalid omission. In the third statement, the subschema
compiler assumes that the period is part of the comment and that ADD RECORD was
meant to be a clause of the SUBSCHEMA statement; because this is not valid syntax, the

compiler flags ADD RECORD as an error.

■ Valid:

 modify subschema name is empss01

 usage is dml

 comments 'This subschema is used only in emergencies

 .

 modify subschema name is empss02

 comments 'This subschema will be obsolete by August.

 usage is dml.

■ Invalid:

 modify subschema name is empss03

 comments 'This subschema will be obsolete by August.

 add record name is employee.

The following example il lustrates continuation and concatenation:

■ As input:

 add subschema name is empss01

 comments 'Includes the entire '

 + 'employee '

 + 'database.'

 - 'Ron and Jan '

 + 'are responsible for this subschema.'.

■ As output of DISPLAY or PUNCH:

 ADD SUBSCHEMA NAME IS EMPSS01

 COMMENTS 'INCLUDES THE ENTIRE EMPLOYEE DATABASE.'

 - 'RON AND JAN ARE RESPONSIBLE FOR THIS SUBSCHEMA.'.

Compiler-Directive Statements

Chapter 10: Using the Schema and Subschema Compilers 285

Compiler-Directive Statements

Using DDL compiler-directive statements, you can sign on to and sign off the compiler
and set and view compiler defaults.

■ SIGNON identifies the environment in which the compiler is to execute

■ SIGNOFF terminates the compiler

■ SET OPTIONS establishes defaults for execution of the compiler

■ DISPLAY/PUNCH OPTIONS informs you of the defaults currently in effect

■ INCLUDE instructs the compiler to use as input the code found in a dictionary
source module

You can issue these statements, including SIGNON and SIGNOFF, either online or in
batch mode.

Note: For more information about and syntax for compiler directives, see Chapter 11,

“Compi ler-Directive Statements".

Output From the Compilers

This section describes the source code, load modules, and hardcopy listings created by
the schema and subschema compilers.

Source Code and Load Modules

Schema Definition

The schema compiler creates and maintains schemas in the DDLDML area of the

dictionary in source form only; no schema load module ever exists. The schema is not
used at runtime.

The dictionary can contain any number of schemas to define different versions of one
database or to define several independent databases.

A schema is identified by a name and version number, the combination of which must
be unique.

Subschema Definition

The subschema compiler creates subschemas in source and load module forms in the
dictionary. Source is stored in the DDLDML area. Load modules are stored in the
DDLDCLOD area.

Output From the Compilers

286 Database Administration Guide

Storing a Subschema Load Module in a Load Library

Optionally, you can store a subschema load module in a load library. To do this, perform
the following steps:

1. Punch the load module using the subschema or DDDL compiler—Submit the PUNCH

LOAD MODULE statement to obtain an object deck of the subschema.

2. Link edit the object deck into the load library—Execute the operating system's
l inkage editor, using as input the object deck produced by the PUNCH LOAD
MODULE statement.

Load Modules at Runtime

At runtime, the subschema load module can reside in either the dictionary load area or

a load library. If it resides in both places, CA IDMS/DB uses the first one it finds based on
the loadlist and dictionary established for your session.

If you are using CA OLQ, you must keep the subschemas being accessed by CA OLQ in
the dictionary load area.

Note: For more information about loading, see the CA IDMS System Generation Guide
document.

Output From the Compilers

Chapter 10: Using the Schema and Subschema Compilers 287

Schema and Subschema Listings

Running the schema and subschema batch compile programs produces hardcopy
listings, as follows:

■ IDMSCHEM produces the Schema Compiler Activity List

■ IDMSUBSC produces the Subschema Compiler Activity List

Contents of a Listing

The Schema Compiler Activity List and the Subschema Compiler Activity List each

contain the following information:

■ Heading—The top of each page of the listing contains the name of the software
component (IDMSCHEM or IDMSUBSC), release number, name of the listing, date,

time, and page number.

■ Input l isting—The body of the printout contains a l ine for each line of source code
you entered. Column 1 shows the compiler-assigned line number. Column 10
shows the text of schema source code.

■ Warning and error messages—These messages are interspersed in the body of the
report, as needed. See the CA IDMS Messages and Codes Guide for descriptions of
the compiler messages.

■ Transaction summary—The transaction summary indicates the number of

schemas/subschemas compiled and the number of error and warning messages
issued

Format-Control Statements for Listings

You can use the SKIP and EJECT statements to format the schema and subschema
listings.

SKIP

Use the SKIP1/2/3 statement to insert 1, 2, or 3 blank lines after the line on which you

entered the statement.

Do not use a terminating period with SKIP and leave no space between SKIP and the
number you specify. For example, code SKIP2, not SKIP 2.

EJECT

Use the EJECT statement to force a new page. Printing on the new page begins with the
statement following the EJECT statement.

Do not use a terminating period with EJECT.

Chapter 11: Compiler-Directive Statements 289

Chapter 11: Compiler-Directive Statements

This section contains the following topics:

Overview (see page 289)
DISPLAY/PUNCH ALL Statement (see page 290)
DISPLAY/PUNCH IDD Statement (see page 298)

INCLUDE Statement (see page 299)
SET OPTIONS Statement (see page 301)
SIGNOFF Statement (see page 319)

SIGNON Statement (see page 320)

Overview

Compiler-directive statements are any statements you issue to the schema or
subschema compiler that do not produce schema or subschema definitions. The
following table describes the compiler-directive statements presented in this chapter:

Purpose Statement Description

Signon SIGNON Identifies the user and the

environment in which the compiler
is to execute.

Signoff SIGNOFF Terminates the compiler.

Set compiler default

values

SET OPTIONS Establishes defaults for execution

of the compiler.

Include module source INCLUDE Instructs the compiler to use as
input the code found in a

dictionary source module.

Display all entity
occurrences

DISPLAY/PUNCH ALL Displays or punches all
occurrences of a schema or
subschema entity.

Display IDD definitions DISPLAY/PUNCH IDD Displays or punches the definition
of an entity occurrence.

The DBA can issue these statements, including SIGNON and SIGNOFF, either online or in
batch mode. Compiler-directive statements are described in alphabetical order.

DISPLAY/PUNCH ALL Statement

290 Database Administration Guide

DISPLAY/PUNCH ALL Statement

The DISPLAY/PUNCH ALL statement displays all occurrences of an entity related to the
schema or subschema compiler from which the statement is issued.

Syntax
►►─┬─ DISplay ─┬─┬── ALL ──────────────────────────┬─ entity-type ────────────►
 └─ PUNch ───┘ └─┬─ FIRst ─┬──┬────────────────┬─┘
 ├─ LASt ──┤ ├─ 1 ◄───────────┤
 ├─ NEXt ──┤ └─ entity-count ─┘
 └─ PRIor ─┘

 ►─┬──┬───────────────────────►
 └─ PREpared by user-id ─┬────────────────────────┬─┘
 └─ PASsword is password ─┘

 ►─┬────────────────────────────────┬───►
 └─ WHEre conditional-expression ─┘

 ►─┬──────────────────────┬───►
 └─ VERB ─┬─ ADD ─┬─┘
 ├─ MODify ──┤
 ├─ REPlace ─┤
 ├─ DELete ──┤
 ├─ DISplay ─┤
 └─ PUNch ───┘

 ►─┬─────────────────────┬──►
 └─ AS ─┬─ COMments ─┬─┘
 └─ SYNtax ───┘

 ►─┬─────────────────────────────────┬──►◄
 └─ TO ─┬─ module-specification ─┬─┘
 └─ SYSpch ───────────────┘

Expansion of conditional-expression

►►─┬─ mask-comparison ────────────────────────┬───────────────────────────────►
 ├─ value-comparison ───────────────────────┤
 └─┬───────┬─ (─┬─ mask-comparison ──┬─) ─┘
 └─ NOT ─┘ └─ value-comparison ─┘

 ►─┬──┬─────────────►◄
 │ ┌──┐ │
 └─▼─┬─ AND ─┬─┬─ mask-comparison ────────────────────────┬─┴─┘
 └─ OR ──┘ ├─ value-comparison ───────────────────────┤
 └─┬───────┬─ (─┬─ mask-comparison ──┬─) ─┘
 └─ NOT ─┘ └─ value-comparison ─┘

Expansion of mask-comparison

►►─── entity-option-keyword ──►

 ►─┬─ CONTAINs ─┬─ 'mask-value' ──►◄
 └─ MATCHES ──┘

DISPLAY/PUNCH ALL Statement

Chapter 11: Compiler-Directive Statements 291

Expansion of value-comparison

►►─┬─ 'character-string-literal' ─┬───►
 ├─ numeric-literal ────────────┤
 └─ entity-option-keyword ──────┘

 ►─┬─ IS ─┬───────┬─────────┬─┬─ 'character-string-literal' ─┬────────────────►◄
 │ └─ NOT ─┘ │ ├─ numeric-literal ────────────┤
 ├─ NE ───────────────────┤ └─ entity-option-keyword ──────┘
 └─┬───────┬─┬─┬─ EQ ─┬─┬─┘
 └─ NOT ─┘ │ └─ = ──┘ │
 ├─┬─ GT ─┬─┤
 │ └─ > ──┘ │
 ├─┬─ LT ─┬─┤
 │ └─ < ──┘ │
 ├─ GE ─────┤
 └─ LE ─────┘

Parameters

ALL

Lists all occurrences of the requested entity type that the current user is authorized
to display.

Online users: With a large number of entity occurrences, ALL may slow response
time.

FIRst

Lists the first occurrence of the named entity type.

LASt

Lists the last occurrence of the named entity type.

NEXt

Lists the next occurrence of the named entity type.

PRIor

Lists the prior occurrence of the named entity type.

entity-count

Specifies the number of occurrences of the named entity type to l ist. 1 is the
default.

entity-type

Identifies the entity type or entity synonym that is the object of the
DISPLAY/PUNCH ALL request. Valid values for each compiler appear in the table
under "Usage" in this section.

DISPLAY/PUNCH ALL Statement

292 Database Administration Guide

WHEre conditional-expression

Specifies criteria to be used by the compiler in selecting occurrences of the

requested entity type.

The outcome of a test for the condition determines which occurrences of the
named entity type the schema or subschema compiler selects for display.

mask-comparison

Compares an entity type operand with a mask value.

entity-option-keyword

Identifies the left operand as a syntax option associated with the named entity

type. The table in the "Usage" section lists valid options for each entity type.

CONTAINs

Searches the left operand for an occurrence of the right operand. The length of the
right operand must be less than or equal to the length of the left operand. If the
right operand is not contained entirely in the left operand, the outcome of the

condition is false.

MATCHES

Compares the left operand with the right operand one character at a ti me,

beginning with the leftmost character in each operand. When a character in the left
operand does not match a character in the right operand, the outcome of the
condition is false.

'mask-value'

Identifies the right operand as a character string; the specified value must be
enclosed in quotation marks. Mask-value can contain the following special
characters:

Special Characters Description

@ Matches any alphabetic character in entity-option-keyword.

Matches any numeric character in entity-option-keyword.

* Matches any character in entity-option-keyword.

DISPLAY/PUNCH ALL Statement

Chapter 11: Compiler-Directive Statements 293

value-comparison

Compares values contained in the left and right operands based on the specified

comparison operator.

'character-string-literal'

Identifies a character string enclosed in quotes.

numeric-literal

Identifies a numeric value.

entity-option-keyword

Identifies a syntax option associated with the named entity type; valid options for

each entity type are l isted in the table presented in the "Usage" section.

IS

Specifies that the left operand must equal the right operand for the condition to be
true.

NE

Specifies that the left operand must not equal the right operand for the condition to
be true.

EQ/=

Specifies that the left operand must equal the right operand for the condition to be
true.

GT/>

Specifies that the left operand must be greater than the right operand for the
condition to be true.

LT/<

Specifies that the left operand must be less than the right operand for the condition
to be true.

GE

Specifies that the left operand must be greater than or equal to the right operand
for the condition to be true.

LE

Specifies that the left operand must be less than or equal to the right operand for
the condition to be true.

DISPLAY/PUNCH ALL Statement

294 Database Administration Guide

NOT

Specifies that the opposite of the condition fulfi lls the test requirements. If NOT is

specified, the condition must be enclosed in parentheses.

AND

Indicates the expression is true only if the outcome of both test conditions is true.

OR

Indicates the expression is true if the outcome of either one or both test conditions
is true.

Note: For descriptions of the remaining DISPLAY parameters, see 12.5,

“DISPLAY/PUNCH Operations".

Usage

Limiting the Number of Records Read

You can limit the number of entity occurrences CA IDMS/DB reads for a DISPLAY ALL

request by setting two options in the SET OPTIONS statement:

■ DISPLAY ALL LIMIT IS ON activates interrupt processing.

■ INTERRUPT COUNT IS interrupt-count terminates the DISPLAY ALL request when the
number of occurrences read exceeds the interrupt l imit, whether or not the

occurrences meet the criteria of an associated WHERE clause. If you set the
interrupt count to NULL, CA IDMS/DB will reject DISPLAY ALL requests.

Type of Display Depends on Compiler and Entity

The compilers display the entity occurrences as syntax or as comments depending on

the entity type requested and the compiler in which the DISPLAY/PUNCH ALL statement
is issued, as shown in the following table

Note: C means display as comments; S means display as syntax, if requested.

Entity type Compiler Schema Compiler Subschema

ATTRIBUTES C C

CLASSES C C

ELEMENTS C

ELEMENT SYNONYMS C

LOAD MODULES S

RECORDS C

DISPLAY/PUNCH ALL Statement

Chapter 11: Compiler-Directive Statements 295

Entity type Compiler Schema Compiler Subschema

RECORD SYNONYMS C

SCHEMAS S C

SUBSCHEMAS C S

USERS C C

Output Contains Only Enough Information to Display/Punch Entity

Output produced by DISPLAY or PUNCH ALL consists only of the information necessary
to execute a DISPLAY/PUNCH request for each entity occurrence. For example, RECORD
occurrences are displayed with their name and version, and ATTRIBUTE occurrences

with their name and class. In an online session, the user can execute the displayed
statements by pressing [Enter]. This two-step process allows the user to scan the names
of entity occurrences related to the compiler in which the statement is issued.

Valid Entity Option Keywords for Conditional Expressions

The following table l ists entity type options that you can specify in a conditional

expression.

Entity type Option Entity type Option

ATTribute

User-defined

 entity

Entity-type name

PREpared by

REVised by

DATe last UPDated

MONth last UPDated

DAY last UPDated

YEAr last UPDated

DATe CREated

MONth CREated

DAY CREated

YEAr CREated

CLAss name

CLAss Entity-type name

PREpared by

REVised by

DATe last UPDated

MONth last UPDated

DAY last UPDated

YEAr last UPDated

DATe CREated

MONth CREated

DAY CREated

YEAr CREated

DISPLAY/PUNCH ALL Statement

296 Database Administration Guide

Entity type Option Entity type Option

ELement

RECord

USEr

Entity-type name

Version

PREpared by

REVised by

DATe last UPDated

DATe CREated

DEScription

FULl name

 (users only)

ELement

SYNonym

ELement SYNonyn

name

ELement NAMe

Version

PREpared by

REVised by

DATe last UPDated

MONth last UPDated

DAY last UPDated

YEAr last UPDated

DATe CREated

MONth CREated

DAY CREated

YEAr CREated

DEScription

RECord
SYNonym

SYNonym NAMe

RECord NAMe

Version

PREfix

SUFfix

VIEw id

PREpared by

REVised by

DATe last UPDated

MONth last UPDated

DAY last UPDated

YEAr last UPDated

DATe CREated

MONth CREated

DAY CREated

YEAr CREated

DEScription

SUBschema Entity-type name

PREpared by

REVised by

DATe last UPDated

MONth last UPDated

DAY last UPDated

YEAr last UPDated

DATe CREated

MONth CREated

DAY CREated

YEAr CREated

DEScription

SCHema NAMe

SCHema Version

DISPLAY/PUNCH ALL Statement

Chapter 11: Compiler-Directive Statements 297

Entity type Option Entity type Option

SCHema Entity-type name

PREpared by

REVised by

DATe last UPDated

MONth last UPDated

DAY last UPDated

YEAr last UPDated

DATe CREated

MONth CREated

DAY CREated

YEAr CREated

DATe COMpiled

MONth COMpiled

DAY COMpiled

YEAr COMpiled

DEScription

LOAd module Entity-type name

Version

DATe COMpiled

MONth COMpiled

DAY COMpiled

YEAr COMpiled

Default Order of Precedence Applied to Logical Operators

Conditional expressions can contain a single condition, or two or more conditions
combined with the logical operators AND or OR. The logical operator NOT specifies the

opposite of the condition. The compiler evaluates operators in a conditional expression
1 at a time, from left to right, in order of precedence. The default order of precedence is
as follows:

■ MATCHES or CONTAINS keywords

■ EQ, NE, GT, LT, GE, LE operators

■ NOT

■ AND

■ OR

If parentheses are used to override the default order of precedence, the compiler
evaluates the expression within the innermost parentheses first.

DISPLAY/PUNCH IDD Statement

298 Database Administration Guide

Example

The following example displays all records prepared by user JKD since June 1, 1986:

display all records

 where prepared by eq 'jkd' and

 year created ge '86' and

 month created ge '06' as syntax.

DISPLAY/PUNCH IDD Statement

The DISPLAY/PUNCH IDD statement displays the dictionary definition of an entity
occurrence related to the schema or subschema compiler. The output is displayed as

comments.

The following table l ists the entity definitions that the schema and subschema compilers
display:

Entity Type Schema Compiler Subschema Compiler

ATTRIBUTE X X

CLASS X X

ELEMENT X

ELEMENT SYNONYM X

RECORD X

RECORD SYNONYM X

USER X X

LOAD MODULE X

Syntax

►►─┬─ DISplay ─┬─ IDD entity-type name is entity-occurrence-name ─────────────►
 └─ PUNch ───┘

 ►─┬─────────────────────────┬──►
 └─ version-specification ─┘

 ►─┬──┬───────────────────────►
 └─ PREpared by user-id ─┬────────────────────────┬─┘
 └─ PASsword is password ─┘

INCLUDE Statement

Chapter 11: Compiler-Directive Statements 299

 ►─┬───┬────────────────────────────►
 │ ┌─────────────────────────┐ │
 └─┬─ WITh ──────┬─▼- entity-option-keyword ─┴─┘
 ├─ ALSo WITh ─┤
 └─ WITHOut ───┘

 ►─┬──────────────────────┬───►
 └─ VERB ─┬─ ADD ─────┬─┘
 ├─ MODify ──┤
 ├─ REPlace ─┤
 ├─ DELete ──┤
 ├─ DISplay ─┤
 └─ PUNch ───┘

 ►─┬─────────────────────────────────┬──►◄
 └─ TO ─┬─ module-specification ─┬─┘
 └─ SYSpch ───────────────┘

Parameters

DISPLAY/PUNCH IDD

Lists or punches an IDD definition as comments.

entity-type

Specifies one of the entity types l isted in the previous table.

entity-occurrence-name

Names an existing occurrence of the specified entity type.

Note: For descriptions of the remaining parameters, see 12.5, “DISPLAY/PUNCH
Operations”.

Example

In the following example, the dictionary definition of version 100 of the DEPARTMENT

record is requested from the schema compiler.

display idd record department version 100.

Note: For more information about DISPLAY/PUNCH syntax options, see Chapter 12,
“Operations on Entities".

INCLUDE Statement

The INCLUDE statement temporarily suspends input to the schema or subschema

compiler and retrieves, as input to the compiler, source statements from an existing
source module in the dictionary.

INCLUDE Statement

300 Database Administration Guide

Syntax

►►─── INCLUDe module-specification ───►◄

Parameters

INCLUDE module-specification

Includes in the current input fi le the source statements associated with the named

module.

Note: Expanded syntax for module-specification is presented in Chapter 13,
“Parameter Expansions".

Usage

Restrictions on Source Module Statements

The source module can contain any number of DDL statements; the following
restrictions apply:

■ INCLUDE statements cannot appear within the source module; that is, INCLUDE
statements cannot be nested.

■ The included module cannot update its own source. This restriction applies to the
PUNCH statements of the DDL compilers, since they are capable of upda ting the

module source.

For example, the statement INCLUDE MODULE RECSRC. is unacceptable if the
module RECSRC contains the source statement PUNCH RECORD EMPLOYEE TO

MODULE RECSRC..

Compiler Continues Processing Statements Following INCLUDE

When all the module source has been processed, the compiler continues processing
with the source statement immediately following the INCLUDE statement.

If the Source Module Contains a SIGNON Statement

If the module source being included contains a SIGNON s tatement to another
dictionary, the DDL compiler terminates the INCLUDE operation, processes the SIGNON
statement, and continues processing with the DDL statement immediately following the
INCLUDE.

SET OPTIONS Statement

Chapter 11: Compiler-Directive Statements 301

Example

Sample Session

The following example il lustrates a schema compiler session in which the user requests
the compiler to include source statements from the module EMPREC-SRC version 1:

■ IDD DDDL definition of module EMPREC-SRC:

signon dict=empdict.

add module emprec-src version 1

 module source follows

 add record name is employee

 share structure of record employee

 of schema srcschm version 10.

 .

 .

 .

 msend.

■ Schema compiler DDL source:

signon dict=empdict.

modify schema empschm version 7.

include module emprec-src version 1.

display record employee.

.

.

.

signoff.

Note: For more information about defining modules, see the CA IDMS IDD DDDL
Reference Guide.

SET OPTIONS Statement

The SET OPTIONS statement allows a user to establish the following processing options

for an individual session:

■ Identification of the user who is adding, modifying, deleting, punching, or displaying
component descriptions

■ Quote character

■ Decimal point character

■ Characters for delimiting an input fi le

■ Disposition of ADD statements issued for existing components

SET OPTIONS Statement

302 Database Administration Guide

■ Starting and incremental l ine numbers for record elements and for l ines of
comment text

■ Compiler output format

■ Conventions for specifying version numbers for schemas, records, and programs
named in DDL statements

■ Destination of punched descriptions

■ Format of displayed or punched descriptions (syntax or comments)

■ Information to be included in displayed or punched descriptions

■ Automatic subschema load module deletion

Syntax

SET OPTIONS Statement

►►─── SET OPTions for session ──►

 ►─┬─────────────────────────────────┬──►
 └─ DECimal-point is ─┬─ COMma ──┬─┘
 └─ PERiod ─┘

 ►─┬────────────────────────┬───►
 └─ DEFault is ─┬─ ON ──┬─┘
 └─ OFF ─┘

 ►─┬──┬─────────────────►
 └─ DEFault for EXIsting Version is ─┬─ version-number ─┬─┘
 ├─ HIGhest ────────┤
 └─ LOWest ─────────┘

 ►─┬───┬──────────────────►
 └─ DEFault for NEW Version is ─┬─ version-number ─────┬─┘
 └─ NEXt ─┬─ HIGhest ◄──┤
 └─ LOWest ────┘

 ►─┬─────────────────────────┬──►
 └─ DELete is ─┬─ ON ────┬─┘
 └─ OFF ◄──┘

 ►─┬────────────────────────────────────┬─────────────────────────────────────►
 └─ DISplay ALL LIMit is ─┬─ ON ────┬─┘
 └─ OFF ◄──┘

 ►─┬───────────┬──►
 ├─ ECHo ────┤
 └─ NO ECHo ─┘

 ►─┬────────────────────────────────┬───►
 └─ EOF is ─┬─ /* ◄─────────────┬─┘
 ├─ 'eof-indicator' ─┤
 └─ OFF ─────────────┘

SET OPTIONS Statement

Chapter 11: Compiler-Directive Statements 303

 ►─┬─────────────┬──►
 ├─ HEAder ────┤
 └─ NO HEAder ─┘

 ►─┬──┬─────────►
 └─ INPut columns are start-column-number THRu end-column-number ─┘

 ►─┬──┬─────────────────────────────►
 └─ INTerrupt COUnt is ─┬─ interrupt-count ─┬─┘
 └─ NULl ◄───────────┘

 ►─┬────────────────────────────────┬───►
 └─ LINes per page is line-count ─┘

 ►─┬───────────┬──►
 ├─ LISt ────┤
 └─ NO LISt ─┘

 ►─┬─────────────────────────────────┬──►
 └─ OUTput line size is ─┬─ 80 ──┬─┘
 └─ 132 ─┘

 ►─┬──────────────────────┬───►
 └─ user-specification ─┘

 ►─┬─────────────┬──►
 ├─ PROmpt ────┤
 └─ NO PROmpt ─┘

 ►─┬───────────────────────────────────────┬──────────────────────────────────►
 └─ PUNch TO ─┬─ module-specification ─┬─┘
 └─ SYSpch ───────────────┘

 ►─┬────────────────────┬───►
 └─ QUOte is ─┬─ ' ─┬─┘
 └─ " ─┘

 ►─┬─────────────────────────┬──►
 └─ REGistration OVErride ─┘

 ►─┬──┬───────────────────►
 └─ SEMicolon alternate end of sentence is ─┬─ ON ────┬─┘
 └─ OFF ◄──┘

 ►─┬───────────────────────────────┬──►
 └─ SEQuence is sequence-number ─┘

 ►─┬───┬────────────────────────►
 └─ USEr signon OVErride is ─┬─┬─ ALLowed ◄──┬───┬─┘
 │ └─ ON ────────┘ │
 └─┬─ NOT ALLowed ─┬─┘
 └─ OFF ─────────┘

 ►─┬───────────────────────────────┬──►◄
 │ ┌───────────────────────────┐ │
 └─▼- DISplay display-options ─┴─┘

SET OPTIONS Statement

304 Database Administration Guide

DISPLAY/PUNCH OPTIONS Statement

►►─┬─ DISplay ─┬─ OPTions ─┬────────────────────────┬─────────────────────────►
 └─ PUNch ───┘ └─ for ─┬─ SESsion ◄───┬─┘
 └─ DICtionary ─┘

 ►─┬─────────────────────────┬──►
 └─┬─ WITh ────┬─ DETails ─┘
 └─ WITHOut ─┘

 ►─┬─────────────────────┬──►
 └─ AS ─┬─ COMments ─┬─┘
 └─ SYNtax ───┘

 ►─┬─────────────────────────────────┬──►◄
 └─ TO ─┬─ module-specification ─┬─┘
 └─ SYSpch ───────────────┘

Expansion for display-options

►►─┬───┬────────────────────►
 │ ┌─────────────────────────────────┐ │
 └─┬─ WITh ◄─────┬─▼─┬─ ALL COMment TYPes ─────────┬─┴─┘
 ├─ ALSo WITh ─┤ ├─ AREas ─────────────────────┤
 └─ WITHOut ───┘ ├─ ATTributes ────────────────┤
 ├─ COMments ──────────────────┤
 ├─ CULprit headers ───────────┤
 ├─ DEFinitions ───────────────┤
 ├─ DETails ───────────────────┤
 ├─ ELements ──────────────────┤
 ├─ HIStory ───────────────────┤
 ├─ LRS ───────────────────────┤
 ├─ OLQ headers ───────────────┤
 ├─ PATh-groups ───────────────┤
 ├─ PROgrams ──────────────────┤
 ├─ RECords ───────────────────┤
 ├─ SCHemas ───────────────────┤
 ├─ SETs ──────────────────────┤
 ├─ SHAred structures ─────────┤
 ├─ SUBschemas ────────────────┤
 ├─ SYMbols ───────────────────┤
 ├─ SYNonyms ──────────────────┤
 ├─┬─ USEr DEFINED COMments ─┬─┤
 │ └─ UDCS ──────────────────┘ │
 ├─ USErs ─────────────────────┤
 ├─ ALL ◄──────────────────────┤
 └─ NONE ──────────────────────┘

 ►─┬──────────────────────┬───►
 └─ VERB ─┬─ ADD ─────┬─┘
 ├─ MODify ──┤
 ├─ DELete ──┤
 ├─ DISplay ─┤
 └─ PUNch ───┘

 ►─┬─────────────────────┬──►◄
 └─ AS ─┬─ COMments ─┬─┘
 └─ SYNtax ───┘

SET OPTIONS Statement

Chapter 11: Compiler-Directive Statements 305

Parameters

SET OPTions for session

Establishes the defaults that govern a single session. All other executions of the
compiler are unaffected by the options specified in this statement.

DECimal-point is COMma

Designates a comma as the character that represents a decimal point in DDL source
statements.

When DECIMAL-POINT IS COMMA is in effect, a comma (,) is interpreted as a

decimal point, and a period (.) is interpreted as an insertion character.

DECimal-point is PERiod

Designates a period as the character that represents a decimal point in DDL source
statements.

When DECIMAL-POINT IS PERIOD is in effect, a period is interpreted as a decimal

point, and a comma is interpreted as an insertion chara cter.

DEFault is ON

Specifies that the compiler will accept ADD statements that identify established
components and will interpret them as MODIFY statements. A warning message is

issued when this occurs.

DEFault is OFF

Specifies that the compiler will not accept ADD statements that identify established

components. The compiler issues an error message and terminates processing of
the statement in error.

DEFault for EXIsting Version is

Establishes a default version number for existing schemas, records, programs, and

source modules named in DDL statements. If a statement identifies an existing
schema, record, or program without a version number, the compiler treats the
statement as though it were coded with a VERSION clause in the format specified in

the DEFAULT FOR EXISTING VERSION option. Version numbers must fall within the
range 1 through 9999, whether specified explicitly or in relation to existing versions.

SET OPTIONS Statement

306 Database Administration Guide

version-number

Specifies an explicit version number and must be an unsigned integer in the range 1

through 9999. If a subsequent DDL statement references an existing schema,
record, or program without including a version number, the compiler selects the
version number specified by version-number.

HIGhest

Specifies the highest existing version number for the named schema, record, or
program. If a subsequent DDL statement references an existing schema, record, or
program without including a version number, the compiler selects the highest

existing version number for that schema, record, or program.

LOWest

Specifies the lowest existing version number for the named schema, record, or
program. If a subsequent DDL statement references an existing schema, record, or

program without including a version number, the compiler selects the lowest
existing version number for that schema, record, or program.

DEFault for NEW Version is

Establishes a default version number for schemas being added to the dictionary. If
an ADD SCHEMA statement names a schema without a version number, the
compiler treats the statement as though it were coded with a VERSION clause in the
format specified in the DEFAULT FOR NEW VERSION option. Version numbers must

fall within the range 1 through 9999, whether specified explicitly or in relation to
existing versions.

version-number

Specifies an explicit version number and must be an unsigned integer in the range 1
through 9999. If a subsequent ADD SCHEMA statement names a schema without

including a version number, the compiler assigns the version number specified by
version-number.

next HIGhest

Specifies the highest version number assigned to schema-name plus one. If a
subsequent ADD SCHEMA statement names a schema without including a version
number, the compiler assigns the highest existing version number for that schema
name plus one.

next LOWest

Specifies the lowest version number assigned to schema-name minus one. If a
subsequent ADD SCHEMA statement names a schema without including a version

number, the compiler assigns the lowest existing version number for that schema
name minus one.

SET OPTIONS Statement

Chapter 11: Compiler-Directive Statements 307

DELete is ON

Turns on an option to automatically delete version 1 of a subschema load module

when the subschema is deleted.

DELete is OFF

Turns off an option to automatically delete version 1 of a subschema load module

when the subschema is deleted. OFF is the default.

DISplay ALL LIMit is ON

Limits the number of entity occurrences read for a DISPLAY ALL request by the value
specified in the INTERRUPT COUNT clause.

DISPLAY ALL LIMit is OFF

Does not l imit the number of entity occurrences read for a DISPLAY ALL request.
OFF is the default.

ECHo

Specifies that the compiler l ists every l ine it reads (note that l ines beginning with *+

are not echoed). Online, input is redisplayed; in batch mode, input appears in the
compiler's activity l isting.

NO ECHo

Specifies the compiler does not l ist input l ines, whether or not a l ine contains an
error. This option is intended for commands that are submitted 1 l ine at a time (for
example, under TSO local, z/VM local, or from a hard-copy terminal).

EOF is

Designates the 2-character logical end-of-fi le indicator to be honored by the
compiler. When the compiler encounters the indicator coded in the first 2 columns
of the input range, it recognizes only the DDL statements that precede the indicator
and does not process DDL statements that follow it.

/*

Is the default end-of-fi le indicator.

'eof-indicator'

Is a 2-character value enclosed in quotes.

OFF

Specifies that there is no active end-of-fi le indicator.

HEAder

 (Batch only) Specifies that a heading line identifying the compiler is to appear on
the compiler activity l isting.

SET OPTIONS Statement

308 Database Administration Guide

NO HEAder

(Batch only) Specifies that no heading line identifying the compiler is to appear on

the compiler activity l isting.

INPut columns are

Specifies the input range. The compiler reads, in subsequent input l ines, only those

columns that fall between start-column-number and end-column-number, inclusive;
all other columns are ignored. Start-column-number and end-column-number must
be at least 10 columns apart. The default and maximum ranges depend on the
mode in which the compiler is used:

■ Online:

– Full-screen mode (default and maximum) -- 1 through 79

– Line device (default and maximum) -- 1 through 80

■ Batch:

– Default -- 1 through 72

– Maximum -- 1 through 80

INTerrupt COUnt is interrupt-count

Specifies the number of entity occurrences CA IDMS/DB will read for a DISPLAY ALL

request when you specify DISPLAY ALL LIMIT IS ON. Interrupt-count is an integer in
the range 0 through 32768.

INTerrupt COUnt is NULL

Sets to 0 (zero) the number of entity occurrences CA IDMS/DB will read for a

DISPLAY ALL request when you specify DISPLAY ALL LIMIT IS ON. If you attempt to
issue a DISPLAY ALL statement when the interrupt count is null (0), CA IDMS/DB will
reject the command. NULL is the default.

LISt

Specifies that the compiler l ists every l ine it reads. LIST performs the same function

as ECHO.

NO LISt

Specifies that the compiler l ists only l ines containing errors.

LINes per page is line-count

Establishes the number of l ines per page for a terminal display or batch activity
l isting. Line-count is an integer in the range 10 through 60. The default is 60.

SET OPTIONS Statement

Chapter 11: Compiler-Directive Statements 309

OUTput line size is

Specifies the width of the terminal display or batch activity l isting. The online

default is 80; the batch default is 132. Note that with an output l ine size of 80, error
messages do not provide the line numbers of l ines in error; the error message,
however, will immediately follow the line in error.

user-specification

Establishes the default user for the user-specification clause in the SCHEMA and
SUBSCHEMA statements and can be overridden in those statements.

Note: Expanded syntax for user-specification is presented in Chapter 13,

“Parameter Expansions”.

If this clause is not used, user-id defaults to the user ID known to the DC/UCF
system (online compiler) or the user ID known to the batch environment (batch
compiler).

PROmpt

Indicates that the compiler will prompt the user for each new line of input when
entering DDL source statements l ine by l ine (rather than in full -screen mode), as
shown in the following example:

ENTER

Note that this option is operational in batch execution, where PROMPT causes the
prompt to precede each statement in the compiler's activity l isting.

NO PROmpt

Indicates that the compiler will not prompt the user for each new line of input when

entering DDL source statements l ine by l ine (rather than in full -screen mode).

PUNch TO module-specification

Specifies that punched output will be directed to the named module in the
dictionary. The user can override this default in individual PUNCH statements.

Note: Expanded syntax for module-specification is presented in Chapter 13,
“Parameter Expansions”.

PUNCH to SYSpch

Specifies that punched output will be directed to the system punch fi le. SYSPCH is
the default destination established during installation. The user can override this
default in individual PUNCH statements.

QUOte is '/"

Designates a single (') or double (") quote as the quote character in effect for the
session. Once set, the selected character must be used in DDL source statements
wherever a quotation mark is required.

SET OPTIONS Statement

310 Database Administration Guide

REGistration OVErride

Turns off schema or subschema security for the session. The user who specifies

REGISTRATION OVERRIDE can modify, delete, display, and punch all schemas and
subschemas, even those whose accessibility otherwise is l imited by a PUBLIC
ACCESS clause.

SEMicolon alternate end of sentence is ON/OFF

Designates that the schema and subschema compilers will (ON) or will not (OFF)
recognize both a semicolon and period as an end of statement terminator. OFF, the
default, indicates that the compilers will treat a semicolon as a blank character.

SEQuence is sequence-number

Specifies the starting and incremental value for the line numbers to be assigned to
record elements and to l ines of comment text. Sequence-number must be a 1- to
5-digit unsigned integer.

Sequence numbers assigned to record elements are insignificant within the schema

compiler itself; however, you can refer to an element by its sequence number when
using IDD to modify a record description.

USEr signon OVErride is

Indicates whether CA IDMS/DB will allow users to specify a different user ID in a
SIGNON statement from the one known to the environment in which the compiler
is executing (the DC/UCF system for online, the batch environment for batch).

ALLowed

Users may sign on to the compiler with a different user ID from the ID known to the
execution environment and user-specification clauses may be used to override the
default user ID. ALLOWED is the default. ON is a synonym for ALLOWED.

NOT ALLowed

CA IDMS/DB will not allow the user ID to be changed. Users who are already known

to the environment cannot specify a different user ID in the SIGNON statement.
Additionally, user-specification clauses cannot be used to change the default user
ID. OFF is a synonym for NOT ALLOWED.

DISplay display-options

Sets the defaults that govern the output produced by subsequent DISPLAY or
PUNCH statements. The defaults established with this clause can be overridden in
individual DISPLAY and PUNCH statements.

WITh

Instructs the compiler to include the specified types of information in output
produced by DISPLAY/PUNCH statements.

SET OPTIONS Statement

Chapter 11: Compiler-Directive Statements 311

ALSo WITH

Instructs the compiler to include the specified types of information in output

produced by DISPLAY/PUNCH statements in addition to those currently in effect
(either through the SET OPTIONS statement or as set in the individual DISPLAY or
PUNCH statement).

WITHOut

Instructs the compiler to exclude the specified types of information in output
produced by DISPLAY/PUNCH statements.

ALL COMment TYPes

Displays or punches all comment entries (COMMENT, CULPRIT HEADERS, OLQ
HEADERS, DEFINITIONS) associated with the schema or subschema.

AREas

Displays or punches all areas in the schema or subschema.

ATTributes

Displays or punches all attributes, and their respective classes, associated with the
schema or the subschema.

COMments

Displays or punches comments associated with the schema, schema record,
subschema, or logical record.

CULprit headers

Displays or punches all CA Culprit headers for schema elements, when schema

record elements are displayed.

DEFinitions

Displays or punches all definitions associated with the subschema.

DETails

Displays or punches details of the component. The details vary depending on the
component; they are presented with the syntax for each schema and subschema
statement.

SET OPTIONS Statement

312 Database Administration Guide

ELements

When records for the schema are displayed, displays or punches all elements i n

COBOL format; when records in the subschema are displayed, all elements included
in the subschema definition of the record.

HIStory

Displays or punches the date and time that the schema or subschema was created
and/or last modified and the name of the user who created or last modified the
schema or subschema.

LRS

Displays or punches all logical records in the subschema.

OLQ headers

Displays or punches all CA OLQ headers for schema elements, when schema record
elements are displayed.

PATh-groups

Displays or punches all logical -record path groups in the subschema.

PROgrams

Displays or punches all programs associated with the subschema.

RECords

Displays or punches all database records and elements in the schema or
subschema.

SCHemas

Displays or punches the schema related to the displayed or punched schema
through the DERIVED FROM option of the SCHEMA statement.

SETs

Displays or punches all sets in the schema or subschema.

SET OPTIONS Statement

Chapter 11: Compiler-Directive Statements 313

SHAred structures

Displays or punches the SHARE STRUCTURE clause of a schema record as syntax and

the record's elements as comments.

SUBschemas

Displays or punches all subschemas related to the displayed or punched schema.

SYMbols

Displays or punches all symbols associated with the schema.

SYNonyms

When records for the schema are displayed, displays or punches all record

synonyms associated with the schema; when record elements also are displayed,
the record and element synonyms associated with the schema.

USEr DEFINED COMments/(UDCS)

Displays or punches all user-defined comment keys associated with the schema and

subschema.

USErs

Displays or punches all users associated with the schema or subschema.

ALL

Displays or punches all the information associated with the displayed component.
WITH ALL is the default for the DISPLAY clause of the SET OPTIONS statement.

NONE

Displays or punches only the information that uniquely identifies the component:

component name; component version, if any; and, for subschemas only, the name
and version of the associated schema. Note that NONE is meaningful only when
WITH is specified.

VERB

Sets the default for the verb with which the statements are to be produced as the
output of DISPLAY and PUNCH statements. For example, if VERB ADD is specified,
the output of a later DISPLAY RECORD statement is an ADD RECORD statement; if

VERB DELETE is specified, the output of a later DISPLAY RECORD statement is a
DELETE RECORD statement; and so on.

The user can override this default in individual DISPLAY and PUNCH statements.

AS COMments

Instructs the compiler to l ist output produced by a DISPLAY or PUNCH statement in
comment format (each line begins with the characters *+). These comment
characters specify that the line is not to be redisplayed as a function of the ECHO or

LIST options.

SET OPTIONS Statement

314 Database Administration Guide

AS SYNtax

Instructs the compiler to l ist output produced by a DISPLAY or PUNCH statement in

syntax format. Display output AS SYNTAX when you plan to resubmit some or all of
the displayed statements to the compiler (for example, when using an existing
component description as a template for a new component).

for SESsion

Displays or punches the current options in effect for the session, whether defaulted
from installation, set in the dictionary by IDD, or set for the session with the DDL
compiler SET OPTIONS statement. FOR SESSION is the default.

for DICtionary

Displays or punches the current options for the dictionary. These options default
across sessions. The display does not l ist options that are only in effect for the
session. Dictionary options are set with SET OPTIONS FOR DICTIONARY in the IDD
DDDL compiler.

WITh DETails

Specifies that the session or dictionary options are displayed. WITH must be
specified to display the options if SET OPTIONS FOR SESSION DISPLAY WITHOUT

DETAILS was specified.

WITHOut DETails

Specifies that the session or dictionary options are not displayed.

SET OPTIONS Statement

Chapter 11: Compiler-Directive Statements 315

Usage

Schema and Subschema Tasks Performed by DELETE IS ON

In the subschema compiler, DELETE IS ON performs the following tasks:

■ Deletes version 1 of the subschema load module from the load area of the

dictionary when you issue a DELETE SUBSCHEMA command.

Note: If the subschema load module has a version number other than 1, the load
module must be explicitly deleted using the DELETE LOAD MODULE command. For
more information about this command, see Chapter 15, “Subschema Statements".

■ Erases the PROG-051 dictionary record occurrence associated with the subschema
load module, provided the program was built by the subschema compiler and does
not participate in any other entity relationships.

In the schema compiler, DELETE IS ON performs the same tasks described above for

each subschema associated with the schema named in the DELETE SCHEMA command.

Order of Precedence Applied to the LIST and ECHO Options

The LIST and ECHO options have similar functions; the compiler uses the following order

of precedence in determining which options will take effect:

1. NO ECHO

2. NO LIST

3. ECHO

4. LIST

This precedence is interpreted as follows: If NO ECHO is set, the setting of LIST or NO
LIST is immaterial; if ECHO and NO LIST both are set, NO LIST takes precedence; and so
on.

AUTHORITY FOR ALL Required

Only users whose dictionary description specifies AUTHORITY FOR ALL can specify
REGISTRATION OVERRIDE or change the following SET OPTIONS settings:

■ SIGNON OVERRIDE

■ DISPLAY ALL LIMIT

■ INTERRUPT COUNT

Other options can be changed by any user holding the necessary authority to use the
compiler.

SET OPTIONS Statement

316 Database Administration Guide

Overriding SET OPTIONS Defaults on Individual Statements

The SET OPTIONS defaults established for user identification, the destination and forma t

of displayed and punched text, and version assignment can be overridden in individual
component statements. Other compiler processing options cannot be so overridden and
remain in effect until they are reset, either explicitly (by a subsequent SET OPTIONS

statement) or automatically.

Options Reset at the Start of Each Session

All options are reset at the beginning of each session:

■ In batch mode, each time the compiler is executed.

■ Online, with the first DDL statement issued upon returning to the compiler after
either a normal session termination (SIGNOFF) or an abnormal termination of the
DC/UCF system. A SIGNON statement that follows session initiation and precedes a
SIGNOFF statement (or, in batch mode, the end of the input fi le) does not begin a

new session and, therefore, does not reset all options.

Some Options Reset by the SIGNON Statement

The compiler automatically resets some options to their defaults each time a SIGNON
statement is issued. The following table shows which options are reset by the SIGNON

statement, which can be changed by the IDD DDDL SET OPTIONS FOR DICTIONARY
statement, and the defaults established at installation:

SET OPTIONS

option

Installation default Option

Changed by
IDD

Option

reset by
SIGNON

DECIMAL POINT PERIOD X X

DEFAULT OFF X X

DEFAULT FOR EXISTING
VERSION

1 X X

DEFAULT FOR NEW VERSION 1 X X

DELETE IS ON/OFF OFF X

DISPLAY AS COMMENTS

DISPLAY ALL LIMIT IS ON/OFF OFF X X

DISPLAY VERB ADD X

DISPLAY WITH ALL

ECHO/ NO ECHO ECHO

EOF /* X X

SET OPTIONS Statement

Chapter 11: Compiler-Directive Statements 317

SET OPTIONS
option

Installation default Option
Changed by

IDD

Option
reset by

SIGNON

HEADER/ NO HEADER HEADER (batch)
NO HEADER (online)

INPUT COLUMNS 1 THRU 72 (batch)
327 : 1 THRU 79
Line device: 1 THRU 8

INTERRUPT COUNT IS NULL X X

LINES PER PAGE 60 X

LIST/ NO LIST LIST

OUTPUT LINE SIZE 132 (batch)
80 (online)

PREPARED BY no default X

PROMPT/ NO PROMPT NO PROMPT (batch)
327: NO PROMPT

Line device: PROMPT

PUNCH TO SYSPCH

QUOTE ' (single quote) X X

REGISTRATION OVERRIDE OFF X

REVISED BY no default X

SEMICOLON ALTERNATE OFF X X

SEQUENCE 100 X X

USER SIGNON OVERRIDE ALLOWED X X

DISPLAY/PUNCH Options Valid for Each Compiler

Not all options available for the DISPLAY WITH/ALSO WITH/WITHOUT clause affect all
DISPLAY or PUNCH statements. The options that can be specified in this clause apply to

DISPLAY or PUNCH statements for specific components, as shown in the following table:

DISPLAY option Compiler Schema Compiler Subschema

ALL X X

ALL COMMENT TYPES X X

AREAS X X

ATTRIBUTES X X

SET OPTIONS Statement

318 Database Administration Guide

DISPLAY option Compiler Schema Compiler Subschema

COMMENTS X X

CULPRIT™ HEADERS X

DETAILS X X

DEFINITIONS X

ELEMENTS X X

HISTORY X X

LRS X

NONE X X

OLQ HEADERS X

PATH-GROUPS X

PROGRAMS X

RECORDS X X

SCHEMAS X

SETS X X

SHARED STRUCTURES X

SUBSCHEMAS X

SYNONYMS X

USERS X X

USER DEFINED COMMENTS X

Default DISPLAY/PUNCH WITH/WITHOUT DETAILS

The default for WITH/WITHOUT DETAILS on the DISPLAY/PUNCH OPTIONS statement is
specified at the session level in the SET OPTIONS statement.

SIGNOFF Statement

Chapter 11: Compiler-Directive Statements 319

Examples

Sample SET OPTIONS Statement

In this example, the compiler has been instructed to l ist DISPLAY/PUNCH output in
syntax format; each line of input is to be listed; and subsequent input must be specified

in the range of columns 2 through 65.

set options for session

 display as syntax

 list

 input columns are 2 thru 65.

Setting the End-Of-File Indicator

The following example establishes // as the end-of-fi le indicator for the current compiler
session:

set options for session

 eof is '//'.

More Information

■ For more information about modules, see the CA IDMS IDD DDDL Reference Guide.

■ For more information about assigning authority to users, see the CA IDMS IDD DDDL
Reference Guide.

■ For more information about DISPLAY/PUNCH statement options, see 12.5,
“DISPLAY/PUNCH Operations”.

SIGNOFF Statement

The SIGNOFF statement signals the end of an online session or batch execution of the
schema or subschema compiler, causing the compiler to take the following actions:

■ Display a transaction summary

■ Free all resources held by the compiler

■ Remove the session from the transfer control facil ity's l ist of active sessions (if

executing under TCF)

Syntax
►►─┬─ SIGNOFF ─┬──►◄
 ├─ BYE ─────┤
 └─ LOGOFF ──┘

SIGNON Statement

320 Database Administration Guide

Usage

Online Use of SIGNOFF

Online, SIGNOFF does not transfer control to CA IDMS/DC, DC/UCF, or the transfer
control facil ity; the [Clear] key or the top-line command, [Clear], must follow SIGNOFF in

order for the compiler to relinquish control.

When SIGNOFF is Not Required

SIGNOFF is recommended as the best way to terminate a compiler session. However,
SIGNOFF is not always required, as described next:

■ Online, SIGNOFF is required unless the full -screen editor command END is entered.
For more information about the END command, see the CA IDMS Common Facilities
Guide.

■ In batch mode, SIGNOFF is assumed if the compiler encounters the end of the input

fi le without encountering a SIGNOFF statement.

DDL Compilers Ignore Statements Following SIGNOFF

Any statements following the SIGNOFF command are ignored by the DDL compilers. In
the following example, SIGNON and ADD SCHEMA are ignored. To end this session and
begin another, eliminating the SIGNOFF statement would produce the desired results.

signoff.

signon dictionary=otherdd.

add schema name is othrschm.

SIGNON Statement

The SIGNON statement permits users to identify themselves to the compiler and to
describe the environment in which the compiler is to execute.

Authorization

If IDMS SECURITY is ON in the dictionary, you must already be assigned the appropriate
authority (IDMS, SCHEMA, or SUBSCHEMA) through the AUTHORITY clause of the IDD
DDDL USER statement.

Note: For more information about the DDDL USER statement, see the CA IDMS IDD

DDDL Reference Guide.

SIGNON Statement

Chapter 11: Compiler-Directive Statements 321

Syntax

►►─── SIGnon ───►

 ►─┬───┬──────►
 └─ USEr name ─┬─ is ─┬─ user-id ─┬────────────────────────────────┬─┘
 └─ = ──┘ └─ PASsword ─┬─ is ─┬─ password ─┘
 └─ = ──┘

 ►─┬──┬───────────────────►
 └─┬─ DICtionary name ─┬─┬─ is ─┬─┬─ dictionary-name ─┬─┘
 ├─ DICTName ────────┤ └─ = ──┘ └─ ' ' ─────────────┘
 └─ DBName ──────────┘

 ►─┬──┬───────────────────────────────►
 └─┬─ NODe name ─┬─┬─ is ─┬─┬─ nodename ─┬──┘
 └─ NODEName ──┘ └─ = ──┘ └─ ' ' ──────┘

 ►─┬───┬──────►◄
 └─ USAge mode ─┬─ is ─┬─┬─ UPDate ◄──────────┬─ for ─┬─ ALL ◄─────┬─┘
 └─ = ──┘ ├─ PROtected UPDate ─┤ ├─ DDLDML ───┤
 └─ RETrieval ────────┘ ├─ DDLDCLOD ─┤
 └─ DDLDCMSG ─┘

Parameters

USEr name is user-id

Specifies the ID of the user signing on to the compiler. If the SECURITY clause of the

dictionary (DDDL) SET OPTIONS statement specifies that security for IDMS is on,
user-id must be the ID of a user authorized (in the DDDL USER clause) for schema or
subschema compiler access. User-id must be a 1- to 32-character value and must be

enclosed in quotation marks if it contains embedded blanks or delimiters.

PASsword is password

Specifies the password of the user signing on to the compiler.

DICtionary name is dictionary-name

Specifies the dictionary to be accessed by the compiler. If dictionary-name is blanks
enclosed by quotes, it indicates the default dictionary for the local mode runtime
environment or the target node if running under the central version.

SIGNON Statement

322 Database Administration Guide

NODe name is nodename

Specifies the name of the node that controls the dictionary to be accessed.

Nodename identifies a node in the network. If nodename is blanks enclosed in
quotes, it indicates the local node (the node at which the online compiler is
executing or the DC/UCF system accessed by the batch compiler running under the

central version).

USAge mode is

Specifies the manner in which the compiler can access dictionary areas. This clause
overrides the usage mode defined during system generation by means of the IDD

statement (see the CA IDMS System Generation Guide).

UPDate

Specifies that the current user and all other users can update the dictionary
concurrently. The compiler automatically prevents deadlock conditions or

situations in which users must wait for commands issued by other users to be
processed. This is the default, unless overridden during system generation.

PROtected UPDate

Specifies that only the current user can update the dictionary. Other users are

restricted to performing retrieval operations. During an online session, the current
user has exclusive control for update only if the DDDL compiler has been invoked.
Between terminal interactions, the areas can be updated by other users.

RETrieval

Specifies that the current user can only perform retrieval operations against the
dictionary. This usage mode does not restrict other users from accessing the
dictionary in update or protected update mode.

for ALL

Indicates that the usage mode applies to all areas. ALL is the default.

for DDLDML

Indicates that the usage mode applies only to the DDLDML area.

for DDLDCLOD

Indicates that the usage mode applies only to the DDLDCLOD area.

for DDLDCMSG

Indicates that the usage mode applies only to the DDLDCMSG area.

SIGNON Statement

Chapter 11: Compiler-Directive Statements 323

Usage

When to Specify USER and PASSWORD in SIGNON

If you are identified to the environment in which the compiler is executing and you do
not hold the necessary authorities to perform the intended actions, you must use the

USER clause of SIGNON. In this case, you would specify the ID of a user who holds the
necessary authorities (providing USER SIGNON OVERRIDE IS ALLOWED is specified in the
SET OPTIONS statement). If the user ID you specify has been assigned a password in the
dictionary being accessed, you must also supply that password in the SIGNON

statement.

If you are not identified to the execution environment and IDMS SECURITY is ON, you
must use the USER parameter of SIGNON. In this case, the user ID and password you
specify are verified by the central security facil ity. If verified, you will be known to both

the execution environment and the compiler. The user ID must hold the appropriate
SCHEMA or SUBSCHEMA authority in the dictionary you are accessing as well as the
authority to sign on to the DC/UCF system (if you are executing online). If the user ID

you specify has been assigned a password in the central security facil ity, that password
must be specified in the SIGNON statement.

In all other cases, the USER parameter i s not required and should not be specified.

Note: For more information about the central security facil ity, see the CA IDMS Security

Administration Guide.

Identifying the Dictionary to be Accessed

The DICTIONARY and NODENAME clauses together identify the dictionary to be
accessed by the compiler. If only one is specified, the other is derived.

Dictionary-name, if specified, must identify a DBNAME or segment accessible at the

target node or local mode runtime environment. If dictionary-name is not specified, but
nodename is specified, then the dictionary is the default dictionary at the specified
node.

In local mode, nodename has no meaning and is ignored. When running under the
central version, nodename, if specified, identifies the node at which the target
dictionary resides. If not specified, the location of the dictionary is determined from the
resource table associated with the local DC/UCF system.

SIGNON Statement

324 Database Administration Guide

If neither dictionary name nor nodename is specified, they will be established from:

■ The TCF specification, if running under TCF

■ Session attributes as established by DCUF, SYSIDMS, system or user profiles

■ The default dictionary associated with the local runtime environment.

User ID Used in Subsequent DDL Statements

User-id becomes the value assigned in the PREPARED BY and REVISED BY clauses
(user-specification clause) in subsequent DDL statements, replacing any user named
during system signon; this value can be overridden with the SET OPTIONS statement,
described in this chapter.

More Information

■ For more information about the transfer control facil ity (TCF), see the CA IDMS
Common Facilities Guide.

■ For more information about DCUF statements, see the CA IDMS System Tasks and

Operator Commands Guide.

■ For more information about dictionary security, see the CA IDMS IDD DDDL
Reference Guide.

■ For more information about central security, see the CA IDMS Security

Administration Guide.

Chapter 12: Operations on Entities 325

Chapter 12: Operations on Entities

This section contains the following topics:

ADD Operations (see page 325)
MODIFY Operations (see page 326)
DELETE Operations (see page 327)

VALIDATE Operations (see page 327)
DISPLAY/PUNCH Operations (see page 328)

ADD Operations

ADD (or the synonym CREATE) does the following:

■ Adds schema and subschema entity definitions to the dictionary

■ Associates entities with the current schema or subschema

If the Entity Already Exists

If the entity already exists in the dictionary, the response of the compiler depends on

the value associated with the DEFAULT clause of the SET OPTIONS statement:

■ If DEFAULT IS ON is specified, the compiler interprets the ADD as a MODIFY

■ If DEFAULT IS OFF is specified, the compiler issues an error message and terminates

processing of the statement.

Defaults

You can explicitly code all characteristics of the added entity or accept one or more
default characteristics. Default characteristics are established:

■ As dictionary options (using the SET OPTIONS statement)

■ As session options (using the SET OPTIONS statement)

The syntax statements identify all default values.

MODIFY Operations

326 Database Administration Guide

Establishes Update Currency

ADD SCHEMA and ADD SUBSCHEMA statements establish update currency for the

specified schema or subschema. Schema or subschema entities can be updated once
update currency is established.

Note: For a discussion of currency, see 9.7, “Establishing Schema and Subschema

Currency”.

Use VALIDATE After ADD

ADD also sets the schema's or subschema's status to IN ERROR. A VALIDATE statement
must set the status to VALID before the schema or subschema becomes a usable

component.

MODIFY Operations

MODIFY (or the synonym ALTER) does the following:

■ Changes schema and subschema component entity definitions in the dictionary

■ Associates component entities with the current schema or subschema

All clauses valid for ADD operations are also valid for MODIFY operations.

Explicitly Code All Changes

All changes to the existing definition must be explicitly coded. Default values apply to

ADD operations only.

Establishes Update Currency

MODIFY SCHEMA and MODIFY SUBSCHEMA statements establish update currency for
the specified schema or subschema. Schema or subschema component entities can be
updated once update currency is established.

Note: For a discussion of currency, see 9.7, “Establishing Schema and Subschema
Currency”.

Use VALIDATE After MODIFY

MODIFY also sets the schema's or subschema's status to IN ERROR. A VALIDATE
statement must set the status to VALID before the schema or subschema becomes a
usable component.

DELETE Operations

Chapter 12: Operations on Entities 327

DELETE Operations

DELETE (or the synonym DROP) functions differently for schema and subschema
entities. For example, specifying DELETE for a schema area deletes the named area
from the dictionary. Specifying DELETE for a subschema area disassociates the named
area from the subschema description.

Syntax Presentations Describe Actions

You can find a description of DELETE actions in the detailed syntax descriptions provi ded
for each schema and subschema entity.

VALIDATE Operations

VALIDATE operations cause the schema or subschema compiler to verify the
relationships among all components of the schema or subschema that is current for
update. Based on this verification, the compiler sets the status to:

■ IN ERROR, if it detects errors

or

■ VALID, if it detects no errors

If an error is detected, messages indicate the nature of the error.

DISPLAY/PUNCH Operations

328 Database Administration Guide

Schema and Subschema Status Conditions

The schema or subschema definition in the dictionary carries a status of either IN ERROR

or VALID:

■ A status of IN ERROR indicates that the definition was not processed by an
error-free VALIDATE statement. IN ERROR prevents other CA IDMS/DB software

components (for example, a language precompiler) from using the schema or
subschema. The schema compiler sets the status to IN ERROR following a successful
execution of an ADD or MODIFY SCHEMA statement. Likewise, the subschema
compiler does so following ADD or MODIFY SUBSCHEMA.

■ A status of VALID indicates that the schema or subschema is usable by other CA
IDMS/DB software components. The schema compiler sets the schema's status to
VALID after the error-free execution of the VALIDATE statement. Likewise, the
subschema compiler does so following the VALIDATE statement or the GENERATE

statement.

Use VALIDATE at Any Time During Definition

You can use VALIDATE at any time to verify the relationships of schema or subschema

components. For example, you can use VALIDATE when you have not yet defined
schema sets, but want to verify the schema's record structures. However, expect a
warning for any records whose location mode is VIA an undefined set.

DISPLAY/PUNCH Operations

DISPLAY and PUNCH produce as output the DDL statements that describe the named

entity. DISPLAY and PUNCH do not update the entity description.

The location of the output depends on which verb is used and whether the compiler is
operating in a batch or online mode:

■ DISPLAY displays online output at the terminal and lists batch output in the
compiler's activity l isting.

■ PUNCH writes the output to the system punch fi le or to a module in the dictionary.
All punched output is also l isted in the compiler's activity l isting.

DISPLAY/PUNCH Operations

Chapter 12: Operations on Entities 329

Syntax

The following syntax diagram shows the DISPLAY/PUNCH clauses that are common to all
DDL entities. Any exceptions are noted in the syntax description for each entity.

Note: For DISPLAY ALL syntax, see Chapter 11, “Compiler-Directive Statements”.

►►─┬─ DISplay ─┬─ entity-type-name entity-occurrence-name ────────────────────►
 └─ PUNch ───┘

 ►─┬─────────────────────────┬──►
 └─ version-specification ─┘

 ►─┬──┬───────────────────────►
 └─ PREpared by user-id ─┬────────────────────────┬─┘
 └─ PASsword is password ─┘

 ►─┬───┬──────────────────────►
 │ ┌───┐ │
 │ │ ┌───────────────────────────┐ │ │
 └─▼─┬─ WITh ──────┬─▼ ── entity-option-keyword ─┴─┴─┘
 ├─ ALSo WITh ─┤
 └─ WITHOut ───┘

 ►─┬─────────────────────────────────┬──►
 └─ TO ─┬─ module-specification ─┬─┘
 └─ SYSpch ───────────────┘

 ►─┬──────────────────────┬───►
 └─ VERB ─┬─ ADD ─────┬─┘
 ├─ MODify ──┤
 ├─ DELete ──┤
 ├─ DISplay ─┤
 └─ PUNch ───┘

 ►─┬─────────────────────┬──►◄
 └─ AS ─┬─ COMments ─┬─┘
 └─ SYNtax ───┘

Parameters

entity-type-name

Identifies the type of entity to display or punch.

DISPLAY/PUNCH Operations

330 Database Administration Guide

entity-occurrence-name

Specifies the name of the entity occurrence to display or punch.

Entity-occurrence-name must be the name of an existing occurrence of the
specified entity type.

version-specification

Optionally, qualifies the named entity occurrence with a version number. The
default is the current session option.

Note: Expanded syntax for version-specification is presented in Chapter 13,
“Parameter Expansions".

PREpared by user-id

Identifies the user who is punching or displaying the entity description. User-id can
be any 1- to 32-character value; if the value includes spaces or delimiters, it must be
enclosed in quotes. The default is the current session option.

If SIGNON OVERRIDE is not allowed, the PREPARED BY clause is ignored and the
user is identified as the user known to the runtime.

PASsword is password

Supplies the user's password. If user-id is assigned a password in the dictionary

(through the IDD DDDL compiler), password must be that password; if not, the
PASSWORD clause is invalid. The default password is the current session option.

WITh

Displays or punches only the parts of the entity description specified by

entity-option-keyword in addition to parts that always are included such as the
entity occurrence name and version. WITH overrides the session defaults specified
on the SET OPTIONS statement.

ALSo WITh

Displays or punches the parts of the entity description specified by
entity-option-keyword in addition to those already in effect (through the SET
OPTIONS statement or through the WITH clause in the current DISPLAY statement).

WITHOut

Does not display or punch the specified options. Other options in effect (through
the SET OPTIONS statement or through WITH or ALSO WITH in the current DISPLAY
statement) are displayed.

DISPLAY/PUNCH Operations

Chapter 12: Operations on Entities 331

entity-option-keyword

Specifies options to display or punch. Entity-option-keyword differs for each entity.

See the description of a particular entity for more information.

TO

For PUNCH operations only, specifies the destination of punched output. The

default is the current session option.

module-specification

For PUNCH operations only, directs output to the named module in the dictionary.

Note: Expanded syntax for module-specification is presented in Chapter 13,

“Parameter Expansions".

SYSpch

For PUNCH operations only, directs output to the SYSPCH system punch fi le

VERB

Specifies the verb with which the entity statement is to be displayed or punched.

For example, if VERB ADD is specified, the output of the DISPLAY/PUNCH statement
is an ADD statement; if VERB DELETE is specified, the output is a DELETE statement;
and so on. If this clause is not coded, the compiler uses the current session option.

AS COMments

Outputs DDL syntax as compiler comments, with *+ preceding the text of the

statement. The default is the current session option.

AS SYNtax

Outputs DDL syntax which can be edited and resubmitted to the schema or

subschema compiler. The default is the current session option.

Usage

Defaults Determined by SET OPTIONS

DISPLAY and PUNCH default options are determined by the SET OPTIONS statement.

DISPLAY/PUNCH Operations

332 Database Administration Guide

Security Enforcement

If either the compiler or the entity being displayed or punched is secured, the compiler

rejects the operation unless the user issuing the statement holds the necessary
authority. The user issuing the statement is established by:

■ The PREPARED BY clause of the DISPLAY/PUNCH statement

■ The user-specification in the SET OPTIONS statement

■ The user identified in a compiler SIGNON statement

■ The user known to the runtime environment in which the compiler is executing

One WITH Clause Per DISPLAY/PUNCH

Only one WITH clause is permitted per DISPLAY/PUNCH operation; if you specify more
than one, the compiler applies only the options specified in the last one. To add
additional options, use the ALSO WITH option.

Examples

In the following example, the DISPLAY statement includes all current defaults except the
schema history.

display schema name is empschm

 without history.

In the following example, the DISPLAY statement specifies all options (except schema
history), whether or not they are included in the current defaults.

display schema name is empschm

 with all

 without history.

More Information

■ For more information about statement syntax, see Chapter 14, “Schema
Statements” and Chapter 15, “Subschema Statements”.

■ For more information about compiler comments, see Chapter 10, “Using the

Schema and Subschema Compilers”.

■ For more information about the SET OPTIONS statement and SET OPTIONS session
value for user-specification, see Chapter 11, “Compiler-Directive Statements”.

Chapter 13: Parameter Expansions 333

Chapter 13: Parameter Expansions

This section contains the fol lowing topics:

Overview (see page 333)
Expansion of boolean-expression (see page 333)
Expansion of db-record-field (see page 337)

Expansion of lr-field (see page 338)
Expansion of module-specification (see page 340)
Expansion of user-specification (see page 341)

Expansion of user-options-specification (see page 342)
Expansion of version-specification (see page 344)

Overview

This chapter provides expansions for syntax parameters in other chapters. In a syntax
diagram, an expansion is indicated by an underlined and italicized variable. A reference

is made from the parameter description to this chapter.

Expansions are shown in alphabetical order, beginning on the next page.

Expansion of boolean-expression

Each FIND/OBTAIN command in a PATH-GROUP statement can include a WHERE clause

that specifies boolean selection criteria to be applied to database record occurrences.

The boolean expression can specify as many comparisons as are required to specify the
criteria to be applied to the database record. Individual comparisons must be connected
by the boolean operators AND, OR, and NOT.

Syntax

Expansion of boolean-expression

►►─┬───────┬─ comparison ───►
 └─ NOT ─┘

 ►─┬───────────────────────────────────────┬───────────────────────────────────►◄
 │ ┌───────────────────────────────────┐ │
 └─▼─┬─ AND ─┬─┬───────┬─ comparison ──┴─┘
 └─ OR ──┘ └─ NOT ─┘

Expansion of boolean-expression

334 Database Administration Guide

Expansion of comparison

►►─┬─ 'character-string-literal' ──────┬──────────────────────────────────────►
 ├─ numeric-literal ─────────────────┤
 ├─ arithmetic-expression ───────────┤
 ├─ db-record-field ────────────────┤
 └─ lr-field OF LR ─────────────────┘

 ►─┬─┬─ EQ ─┬───┬─┬─ 'character-string-literal' ──────┬───────────────────────►◄
 │ ├─ IS ─┤ │ ├─ numeric-literal ─────────────────┤
 │ └─ = ──┘ │ ├─ arithmetic-expression ───────────┤
 ├─ NE ───────┤ ├─ db-record-field ─────────────────┤
 ├─┬─ GT ─┬───┤ └─ lr-field OF LR ──────────────────┘
 │ └─ > ──┘ │
 ├─┬─ LT ─┬───┤
 │ └─ < ──┘ │
 ├─ GE ───────┤
 ├─ LE ───────┤
 ├─ CONTAINS ─┤
 └─ MATCHES ──┘

Parameters

NOT

Specifies that the opposite of the condition fulfi lls the test requirements.

comparison

'character-string-literal'

Specifies an alphanumeric l iteral enclosed in single quotes.

numeric-literal

Specifies a numeric l iteral which can be preceded by a minus sign. In numeric
l iterals, if the current decimal point default is a comma, a period (.) is interpreted as

an insertion character, and a comma (,) is interpreted as a decimal point.

Expansion of boolean-expression

Chapter 13: Parameter Expansions 335

arithmetic-expression

Specifies an arithmetic expression specified as a minus sign (-), as a simple

arithmetic operation, or as a compound arithmetic operation. Arithmetic operators
permitted in an arithmetic expression are +, -, *, and /. Operands can be a numeric
l iteral, logical-record field, or database field.

db-record-field

Specifies a data field that participates in the database record named in the path
DML command. The field can occur in a record that is accessed but that does not
participate in a logical record.

Note: Expanded syntax for db-record-field is presented in this chapter.

lr-field of LR

Specifies a data field that participates in the logical record. The OF LR entry is
required; it indicates that the value of the named field has been placed in the

logical record's variable-storage location by a previous path DML command.

Note: Expanded syntax for lr-field is presented in this chapter.

EQ/IS/=

Indicates that the value of the left operand must equal the value of the right

operand for the boolean expression to be true. EQ, IS, and = are synonymous.

NE

Indicates that the value of the left operand must not equal the value of the right
operand for the boolean expression to be true.

GT/>

Indicates that the value of the left operand must be greater than the value of the
right operand for the boolean express ion to be true. GT and > are synonymous.

LT/<

Indicates that the value of the left operand must be less than the value of the right

operand for the boolean expression to be true. LT and < are synonymous.

GE

Indicates that the value of the left operand must be greater than or equal to the

value of the right operand for the boolean expression to be true.

Expansion of boolean-expression

336 Database Administration Guide

LE

Indicates that the value of the left operand must be less than or equal to the value

of the right operand for the boolean expression to be true.

CONTAINS

Indicates that the value of the right operand is contained in the value of the left

operand. The value of the right operand must not be longer than the value of the
left operand. Note that each operand included with the CONTAINS operator can be
a logical-record field name, database record field name, or alphanumeric l iteral. The
fields must be defined as alphanumeric or unsigned zoned decimal values and must

be an elementary item.

MATCHES

Indicates that each character in the left operand matches a corresponding character
in the right operand (the mask). When MATCHES is specified, CA IDMS/DB
compares the left operand with the mask, one character at a time, moving from left

to right. The result of the match is either true or false: the result is false if CA
IDMS/DB encounters a character in the left operand that does not match the
corresponding character in the mask; the result is true if CA IDMS/DB reaches the

end of the mask before encountering a character in the left operand that does not
match a mask character. Three special characters can be used in the mask to
perform pattern matching, as follows:

Special Characters Description

@ Matches any alphabetic character

Matches any numeric character

* Matches any alphabetic or numeric

character

Note that each operand included with the MATCHES operator can be a
logical-record field name, database record field name, or alphanumeric l iteral. The

fields must be defined as alphanumeric or unsigned zoned decimal values and must
be elementary items.

AND

Indicates the expression is true only if the outcome of both test conditions is true.

OR

Indicates the expression is true if the outcome of either one or both test conditions
is true.

Expansion of db-record-field

Chapter 13: Parameter Expansions 337

Usage

Order of Evaluation

When CA IDMS/DB encounters a boolean expression, it evaluates all operators in the
entire boolean expression. Operators are evaluated one at a time, beginning with the

operator of the highest precedence. Operators in arithmetic expressions are assigned
the highest precedence, followed by comparison operators and boolean operators,
respectively. The default order of precedence is shown following:

1. Unary minus in an arithmetic expression (highest precedence)

2. Multiplication and division in an arithmetic expression

3. Addition and subtraction in an arithmetic expression

4. MATCHES and CONTAINS comparison operators

5. EQ, NE, GT, LT, GE, LE comparison operators

6. NOT boolean operator

7. AND boolean operator

8. OR boolean operator (lowest precedence)

Operations of equal precedence are evaluated left to right.

Use Parentheses to Override Default Precedence of Operators

You can use parentheses to override the default precedence of operators and to clarify
multiple-comparison boolean expressions. The expression in the innermost parentheses
is evaluated first. The keyword NOT can precede a parenthetical expression to negate

the result.

Expansion of db-record-field

Db-record-field specifies a data field that participates in the database record named in a
PATH GROUP statement.

Syntax

Expansion of db-record-field

►►─── database-record-field-name ───►

 ►─┬─────────────────────────────┬──►
 │ ┌─────────────────────────┐ │
 └─▼─ OF group-element-name ─┴─┘

 ►─┬───────────────────────────┬──►◄
 └─ OF database-record-name ─┘

Expansion of lr-field

338 Database Administration Guide

Parameters

database-record-field-name

Specifies a data field that participates in the database record named in the path
command. If data-record-field-name is not unique within the database record

named in the path command, at least one of the optional clauses is required.

OF group-element-name

Uniquely identifies the named database field. Group-element-name names the
group element that contains the field. A maximum of 15 different OF

group-element-name qualifiers can be specified to identify a maximum of 15 levels
of group elements.

OF database-record-name

Names the database record that contains the field.

Usage

Qualify IDD-Created Synonyms

Note that, although the schema compiler does not allow duplicate elements within a
single database record, record synonyms created with IDD can contain such duplicates.

Thus, inclusion of such IDD-created synonyms in the subschema can necessitate
qualification by group element.

Duplicate Element Names in Records Not Recommended

Using duplicate element names in records is not generally recommended because
qualification by group element is not supported by CA OLQ, CA Culprit, or navigational
DML statements.

Expansion of lr-field

Lr-field specifies a data field that participates in the logical record named in a PATH

GROUP statement.

Expansion of lr-field

Chapter 13: Parameter Expansions 339

Syntax

Expansion of lr-field

►►─── logical-record-field-name ──►

 ►─┬─────────────────────────────┬──►
 │ ┌─────────────────────────┐ │
 └─▼─ OF group-element-name ─┴─┘

 ►─┬──────────────────────┬───►◄
 └─ OF lr-element-name ─┘

Parameters

logical-record-field-name

Specifies a data field that participates in the logical record. If

logical-record-field-name is not unique within the logical record, code at least one
of the optional clauses.

OF group-element-name

Uniquely identifies the named database field. Group-element-name names the
group element that contains the field. A maximum of 15 different OF

group-element-name qualifiers can be specified to identify up to 15 levels of group
elements.

OF lr-element-name

Names the logical-record element (database or IDD record) that contains the
logical-record field. Lr-element-name can be a database record name, an IDD record
name, or a role name. If the logical record element containing the logical r ecord
field is a record to which a role name has been assigned, lr-element-name must be

the role name.

Usage

Coding Subscripts for Multiply-Occurring Fields

Code subscripts for multiply-occurring fields after all other qualifiers, including the OF LR

and OF REQUEST clauses. For example, to refer to the second occurrence of
logical-record-field-name, which is defined as occurring three times and which contains
a db-key, code the WHERE clause of find-obtain-dbkey-clause as follows:

WHERE DBKEY = logical-record-field-name OF LR (2)

Expansion of module-specification

340 Database Administration Guide

Expansion of module-specification

Module-specification specifies that punched output will be directed to the named
module in the dictionary. The named module must exist in the dictionary; the PUNCH
function will not create a new module.

Syntax

Expansion of module-specification

►►─── MODule module-name ───►

 ►─┬─────────────────────────┬──►
 └─ version-specification ─┘

 ►─┬────────────────────────┬───►
 └─ LANguage is language ─┘

 ►─┬──┬───────────────────────►◄
 └─ PREpared by user-id ─┬────────────────────────┬─┘
 └─ PASsword is password ─┘

Parameters

MODule module-name

Specifies the name of an existing module in the dictionary.

version-specification

Qualifies the named module with a version number. The version number defaults to
the current session option for existing versions.

Note: Expanded syntax for version-specification is presented in this chapter.

LANguage is language

Identifies the language with which the module is associated in the dictionary. If
multiple modules with the same name and version number exist in the dictionary,
the LANGUAGE clause is required; if the module is not associated with any
language, this clause is invalid.

PREpared by user-id

Identifies the user who is updating the module. User-id can be any 1- to
32-character value; if the value includes spaces or delimiters, it must be enclosed in
quotes. The default is the current session option.

PASsword is password

Supplies the user's password. If user-id is assigned a password in the dictionary
(through the IDD DDDL compiler), password must be that password; if not, the
PASSWORD clause is invalid. The default is the current session option.

Expansion of user-specification

Chapter 13: Parameter Expansions 341

Usage

Source Statements Appended to End of Module Source

If the module already contains source statements, the compiler places the punched
output at the end of the existing module source; if module source does not exist, the

compiler automatically generates a header, which is followed by the punched output.
The header contains the date and time that the initial module source was created.

Use PREPARED BY When Compiler Checks Security

PREPARED BY is used when the compiler checks security. If the module is secured, the
compiler rejects the operation unless it finds the name and password of an authorized

user in one of the following places:

■ The PREPARED BY clause of the module specification

■ The PREPARED BY clause of the PUNCH statement

■ The user identified in the SET options user-specification

■ The user identified in the signon statement

■ The user known to the runtime environment in which the compiler is executing

More Information

■ For more information about defining modules, see the CA IDMS IDD DDDL

Reference Guide.

■ For more information about security, see the CA IDMS IDD DDDL Reference Guide.

Expansion of user-specification

User-specification identifies the user creating or using the schema entity, subschema

entity, or SET OPTIONS statement. This is the user that must hold the authority to
perform the operation.

Syntax

Expansion of user-specification

►►─┬ PREpared ─┬─ by user-id ─┬───────────────────────┬───────────────────────►◄
 └ REVised ──┘ └ PASsword is password ─┘

Expansion of user-options-specification

342 Database Administration Guide

Parameters

PREpared/REVised by user-id

Identifies the user. User-id can be any 1- to 32-character value; if the value includes
spaces or delimiters, it must be enclosed in site-standard quotes.

PASsword is password

Supplies the user's password. If user-id is assigned a password in the dictionary
(through the IDD DDDL compiler), password must be that password; if not, the
PASSWORD clause is invalid.

Usage

Default User-ID

If user-specification is omitted from a DDL statement, the user issuing the statement is
identified as:

■ The user specified in the SET OPTIONS statement

■ The user specified in the SIGNON statement

■ The user known to the DC/UCF system executing the online compiler or the user
known to the batch environment, if executing the batch compiler.

Ignored if SIGNON OVERRIDE NOT ALLOWED

If SIGNON OVERRIDE is not allowed, user-specification is ignored and authorization
checking is done using the user-id known to the runtime environment.

Expansion of user-options-specification

User-options-specification associates a user with a schema or subschema for security or

documentation purposes.

Expansion of user-options-specification

Chapter 13: Parameter Expansions 343

Syntax

Expansion of user-options-specification

►►─┬──┬─────────────────────────────────►
 └─ REGistered for ─┬─ DELete ──────────┬─┘
 ├─ DISplay ─────────┤
 ├─ MODify ──────────┤
 ├─ UPDate ──────────┤
 ├─ PUBlic ACCess ◄──┤
 └─ ALL ─────────────┘

 ►─┬───┬──────────►
 └─ RESponsible for ─┬─ CREation ─┬─┬──────────────────────────┬─┘
 ├─ UPDate ───┤ │ ┌──────────────────────┐ │
 ├─ DELetion ─┤ └─▼─ AND ─┬─ CREation ─┬─┴─┘
 └─ NONe ◄────┘ ├─ UPDate ───┤
 └─ DELetion ─┘

 ►─┬─────────────────────┬──►◄
 └─ TEXt is user-text ─┘

Parameters

REGistered for

Authorizes the user to perform the specified types of operations on the schema.

DELete

Allows the user to perform DELETE, DISPLAY, and PUNCH operations only.

DISplay

Allows the user to perform DISPLAY and PUNCH operations only.

MODify

Allows the user to perform MODIFY, DISPLAY, and PUNCH operations only.

UPDate

Allows the user to perform all basic operations: MODIFY, DELETE, DISPLAY, and

PUNCH. Unlike ALL, UPDATE neither changes public access nor allows the
associated user to change public access.

PUBlic ACCess

Allows the user to perform only those operations, on the schema or subschema,
that are available to all users who can sign on to the schema or subschema

compiler. PUBLIC ACCESS is the default.

ALL

Allows the user to perform all basic operations: MODIFY, DELETE, DISPLAY, and
PUNCH. Additionally, ALL allows the user to issue the PUBLIC ACCESS clause

(described in the SCHEMA or SUBSCHEMA statement), thus enabling the user to
change security for the schema. If user-id is the first user to have this capability, ALL
changes public access to NONE.

Expansion of version-specification

344 Database Administration Guide

RESponsible for

Documents a user's responsibility for the schema. It has no effect on the user's

authority to access the schema or subschema. Specify any or all of the following
options:

■ CREATION

■ UPDATE

■ DELETION

■ NONE (default)

TEXt is user-text

Allows further documentation of the user's association with the schema or
subschema. User-text is 1 through 40 characters of text; if it contains spaces or
delimiters, it must be enclosed in site-standard quotes.

Note: For more information about the PUBLIC ACCESS authority, see the SCHEMA and

SUBSCHEMA statements.

Expansion of version-specification

Version-specification explicitly qualifies an entity with a version number. If you don't
specify a version, the default is the current session option for existing versions.

Syntax

Expansion of version-specification

►►─── Version is ─┬─ version-number ─┬──►◄
 ├─ HIGhest ────────┤
 └─ LOWest ─────────┘

Note: NEXT HIGHEST and NEXT LOWEST are options in the VERSION clause of ADD
SCHEMA.

Parameters

version-number

Specifies an explicit version number and must be an unsigned integer in the range 1
through 9999.

HIGhest

Specifies the highest version number assigned to the named entity.

Expansion of version-specification

Chapter 13: Parameter Expansions 345

LOWest

Specifies the lowest version number assigned to the named entity.

NEXt HIGhest/NEXt LOWest

Establishes the version number of a new schema as the next higher or next lower
version with respect to existing schemas with the same name.

Examples

The following ADD SCHEMA statement would assign version 6 to the new schema
EMPSCHEM, if version 5 of EMPSCHEM already exists.

add schema empschem version next highest.

The following is an example of modifying the lowest version. If versions 2, 7, and 11 of

schema SOFSCHEM exist in the dictionary, the following statement would cause version
2 of SOFSCHEM to be modified:

modify schema sofschem version is lowest.

Chapter 14: Schema Statements 347

Chapter 14: Schema Statements

This section contains the following topics:

Overview (see page 347)
SCHEMA Statement (see page 347)
AREA Statement (see page 357)

RECORD Statement (see page 365)
Element Substatement (see page 393)
COPY ELEMENTS Substatement (see page 420)

SET Statement (see page 423)
VALIDATE Statement (see page 446)
REGENERATE Statement (see page 447)

Overview

This chapter describes SCHEMA statements. Syntax, parameter descriptions, usage

information, and examples are presented for each statement. Statements are presented
in the order in which you use them when you are defining a schema.

Syntax order

ADD/MODIFY syntax is presented first, followed by DELETE syntax. DISPLAY/PUNCH
syntax is presented last.

Expansion variables

Diagrams for expansion variables (indicated by underscore and italics) are shown at the
end of the current syntax diagram. Expansions for common clauses are handled in a

separate chapter, and those expansions are referenced in the parameter description.

Note: For DISPLAY ALL syntax, see Chapter 11, “Compiler-Directive Statements”.

SCHEMA Statement

The SCHEMA statements identify the schema as a whole, and establish schema currency
as described in .

In addition, SCHEMA statements can:

■ Add, modify, delete, display, or punch a schema description

■ Establish security for the schema

■ Authorize users to issue specific verbs against the schema

SCHEMA Statement

348 Database Administration Guide

Syntax

Syntax: ADD/MODIFY SCHEMA statement

►►─┬─ ADD ────┬─ SCHema name is schema-name ──────────────────────────────────►
 └─ MODify ─┘

 ►─┬───┬────────────────────────────────►
 └─ Version is ─┬─ version-number ───────┬─┘
 ├─ NEXt ─┬─ HIGhest ◄──┬─┤
 │ └─ LOWest ────┘ │
 ├─ HIGhest ──────────────┤
 └─ LOWest ───────────────┘

 ►─┬─────────────────────────┬──►
 └─ user-specification ────┘

 ►─┬──┬───────────────────────────────►
 └─ schema DEScription is description-text ─┘

 ►─┬─────────────────────────┬──►
 └─ MEMo DATe is mm/dd/yy ─┘

 ►─┬───┬────────────────────────►
 └─ ASSign RECord IDS from ─┬─ 1001 ◄────────────┬─┘
 └─ record-id-number ─┘

 ►─┬──┬─►
 └─ DERived from SCHema is ─┬─ old-schema-name ┬───────────────────────┬─┬┘
 │ └ version-specification ┘ │
 └─ NULl ◄────────────────────────────────────┘

 ►─┬───┬──►
 │ ┌───┐ │
 └─▼─┬─ INClude ◄──┬─ USEr is user-id ─┬──────────────────────────────┬┴─┘
 └─ EXClude ───┘ └─ user-options-specification ─┘

 ►─┬──┬───────────────────────────►
 └─ PUBlic ACCess is allowed for ─┬─ DELete ──┬─┘
 ├─ DISplay ─┤
 ├─ MODify ──┤
 ├─ UPDate ──┤
 ├─ ALL ◄────┤
 └─ NONe ────┘

 ►─┬──┬─►
 │ ┌──┐ │
 └─▼─┬─────────────┬─ class-name is attribute-name ┬───────────────────┬┴─┘
 ├─ INClude ◄──┤ └ TEXT is user-text ┘
 └─ EXClude ───┘

 ►─┬──►
 │ ┌───
 └──▼─┬─────────────┬─ USER DEFINED COMMENT is comment-key ─────────────────
 ├─ INClude ◄──┤
 └─ EXClude ───┘

─►────────────────────────────┬───►
 ──────────────────────────┐ │
 ──┬─────────────────────┬─┴─┘
 └─ TEXt is user-text ─┘

 ►─┬───────────────────────────────────────┬──────────────────────────────────►◄
 └─┬─ COMments ────┬──┬─ comment-text ─┬─┘
 └─ comment-key ─┘ └─ NULl ─────────┘

SCHEMA Statement

Chapter 14: Schema Statements 349

Syntax: DELETE SCHEMA

►►─── DELete SCHema name is schema-name ─┬─────────────────────────┬──────────►
 └─ version-specification ─┘

 ►─┬──────────────────────┬───►◄
 └─ user-specification ─┘

Syntax: DISPLAY/PUNCH SCHEMA

►►─┬─ DISplay ─┬─ SCHema name is schema-name ─────────────────────────────────►
 └─ PUNch ───┘

 ►─┬─────────────────────────┬──►
 └─ version-specification ─┘

 ►─┬──┬───────────────────────►
 └─ PREpared by user-id ─┬────────────────────────┬─┘
 └─ PASsword is password ─┘

 ►─┬───┬────────────────────────►
 │ ┌───┐ │
 │ │ ┌─────────────────────────┐ │ │
 └─▼─┬─ WITh ──────┬─▼─┬─ ALL COMment TYPes ─┬─┴─┴─┘
 ├─ ALSo WITh ─┤ ├─ AREas ─────────────┤
 └─ WITHOut ───┘ ├─ ATTributes ────────┤
 ├─ COMments ──────────┤
 ├─ CULprit headers ───┤
 ├─ DETails ───────────┤
 ├─ ELements ──────────┤
 ├─ HIStory ───────────┤
 ├─ OLQ headers ───────┤
 ├─ RECords ───────────┤
 ├─ SCHemas ───────────┤
 ├─ SETs ──────────────┤
 ├─ SHAred structures ─┤
 ├─ SUBSChemas ────────┤
 ├─ SYNonyms ──────────┤
 ├─ USErs ─────────────┤
 ├─ ALL ───────────────┤
 └─ NONe ──────────────┘

 ►─┬──────────────────────┬───►
 └─ VERB ─┬─ ADD ─────┬─┘
 ├─ MODify ──┤
 ├─ DELete ──┤
 ├─ DISplay ─┤
 └─ PUNch ───┘

 ►─┬─────────────────────┬──►
 └─ AS ─┬─ COMments ─┬─┘
 └─ SYNtax ───┘

 ►─┬─────────────────────────────────────┬────────────────────────────────────►◄
 └─ TO ─┬─ module-specification ────┬──┘
 └─ SYSpch ──────────────────┘

SCHEMA Statement

350 Database Administration Guide

Parameters

SCHema name is schema-name

Identifies the schema. Schema-name must be a 1- to 8-character value.
Schema-name must not be the same as any components or synonyms within the

schema.

Version is

Qualifies the schema with a version number, which distinguishes this schema from
others that have the same name. Version-number specifies an explicit version

number and must be an unsigned integer in the range 1 through 9999. On an ADD
operation, the default is the session default for new versions; on other operations,
the default is the session default for existing versions.

NEXt HIGhest

On an ADD operation, specifies the highes t version number assigned to
schema-name plus 1. For example, if versions 3, 5, and 8 of schema CULSCHEM exist
in the dictionary, NEXT HIGHEST would define in version 9 of CULSCHEM.

NEXt LOWest

On an ADD operation, specifies the lowest version number assigned to
schema-name minus 1. For example, if versions 3, 5, and 8 of schema CULSCHEM
exist in the dictionary, NEXT LOWEST would define version 2 of CULSCHEM.

HIGhest

On MODIFY and DELETE operations, specifies the highest version number assigned
to schema-name. For example, if versions 2, 7, and 11 of schema SOFSCHEM exist in
the dictionary, HIGHEST would indicate version 11 of SOFSCHM.

LOWest

On MODIFY and DELETE operations, specifies the lowest version number assigned
to schema-name. For example, if versions 2, 7, and 11 of schema SOFSCHEM exist in
the dictionary, LOWEST would indicate version 2 of SOFSCHM.

user-specification

Identifies the user accessing the schema description. If SIGNON OVERRIDE is not
allowed, user-specification is ignored and the user id identified as the user known to
the runtime environment.

Note: Expanded syntax for user-specification is presented in Chapter 13,
"Parameter Expansions”.

SCHEMA Statement

Chapter 14: Schema Statements 351

schema DEScription is description-text

Optionally specifies a name that is more descriptive than the 8-character schema

name required by CA IDMS/DB, but can be used to store any type of information.
This clause is purely documentational. Description-text is a 1- to 40-character
alphanumeric field; if it contains spaces or delimiters, it must be enclosed in

site-standard quotes.

MEMo DATe is mm/dd/yy

Specifies any date the user wishes to supply; it is purely documentational. Note that
the time and date of schema creation and last revision are maintained

automatically, apart from MEMO DATE, by the schema compiler.

ASSign RECord IDS from record-id-number

Specifies the number that the schema compiler will use as a base for numbering
schema records. Record-id-number must be an unsigned integer in the range 10
through 9999; it defaults to 1001. Record-id-number is assigned to the first record in

the schema that specifies RECORD ID IS AUTO. the compiler assigns
record-id-number to that record.

Note: For more information about assigning IDs for subsequent records, see the

description of RECORD ID IS AUTO under 14.4, “RECORD Statement”.

DERived from SCHema is old-schema-name

Associates the current schema with another schema (old-schema-name). This
clause is purely informational.

DERived from SCHema is NULl

Dissolves such an association between the current schema and another. It is purely
documentational.

INClude USEr is user-id

Associates a user with the schema description. User-id must be the name of a user

as defined in the dictionary.

user-options-specification

Specifies options available to a user associated with the schema.

Note: Expanded syntax for user-options-specification is presented in Chapter 13,
"Parameter Expansions”.

EXClude USEr is user-id

Disassociates a user from the current schema. User-id must be the ID of a user as
defined in the dictionary.

PUBlic ACCess is allowed for

For the current schema and its components, specifies which operations are
available for public access (that is, to all users who can sign on to the schema
compiler). When coded, the keyword ALLOWED can be abbreviated to no fewer

than 4 characters (ALLO).

SCHEMA Statement

352 Database Administration Guide

DELete

Allows all users to DELETE, DISPLAY, and PUNCH the schema and its components.

DISplay

Allows all users to DISPLAY and PUNCH the schema and its components.

MODify

Allows all users to MODIFY, DISPLAY, and PUNCH the schema and its components.

UPDate

Allows all users to ADD, MODIFY, DELETE, DISPLAY, and PUNCH the schema and its
components. Unlike ALL, UPDATE does not allow users to change the schema's

PUBLIC ACCESS specification.

ALL

Allows all users to ADD, MODIFY, DELETE, DISPLAY, and PUNCH the schema and its
components. Additionally, ALL allows users to change the schema's PUBLIC ACCESS
specification, thus enabling them to change security for the schema. ALL is the

default.

NONe

Prohibits all users, except those explicitly associated with the schema, from

accessing it in any way.

INClude class-name is attribute-name

Classifies the schema for documentational purposes by associating an attribute with
the schema. INCLUDE is the default.

Class-name must be the name of a class as defined in the dictionary through the
IDD DDDL compiler. If the dictionary entry for the class specifies that attributes
must be added manually, attribute-name must be the name of an attribute already
associated with class-name; if not, attribute-name can be any 1- to 40-character

value, enclosed in site-standard quotes if it contains spaces or delimiters.

Note: See the CA IDMS IDD DDDL Reference Guide for instruction in defining classes
and attributes.

TEXT is user-text

Supplies additional documentation of the assignment of a specific attribute to the
schema. User-text is 1 to 40 characters of text; if it contains spaces or delimiters, it
must be enclosed in site-standard quotes.

EXClude class-name is attribute-name

Disassociates an attribute from the schema. Class-name must be the name of a
class for which an attribute is already associated with the schema; attribute-name
names the attribute to be disassociated from the schema.

SCHEMA Statement

Chapter 14: Schema Statements 353

INClude/EXClude USER DEFINED COMMENT is comment-key

Identifies a type of comment to be associated with (INCLUDE) or disassociated from

(EXCLUDE) the schema. INCLUDE is the default. Comment-key must identify an
existing user-defined comment type. Values that contain embedded blanks or
special characters or that duplicate a keyword from the DDL syntax must be

enclosed in site-standard quote characters. Comment text is assigned to the
comment-key using the COMMENTS clause.

COMments/comment-key is comment-text/NULl

Updates or removes schema comments. Comment-key is the value assigned in the

USER DEFINED COMMENTS clause of the IDD DDDL MODIFY ENTITY statement.
NULl removes comment text from the current schema.

Note: Coding rules for comment-text are presented in 10.5.4, “Coding Comment
Text”.

ALL COMment TYPes

Displays and punches all information from the categories COMMENTS, CULPRIT
HEADERS, and OLQ HEADERS.

AREas

Displays and punches all areas in the schema.

ATTributes

Displays and punches all attributes, and their respective classes, associated with the
schema.

COMments

Displays and punches all comments associated with the schema through the
COMMENTS clause of the ADD or MODIFY SCHEMA statement; when RECORDS and
ELEMENTS are also specified, all COMMENTS associated with the record elements.

CULprit headers

When RECORDS and ELEMENTS are also specified, displays and punches all CULPRIT
HEADERS specified for the record elements.

DETails

Displays and punches information specified previously in the following clauses:

■ SCHEMA DESCRIPTION

■ MEMO DATE

■ ASSIGN RECORD IDS FROM

■ PUBLIC ACCESS

SCHEMA Statement

354 Database Administration Guide

ELements

When RECORDS is also specified, displays and punches all elements contained

within the records.

HIStory

Displays and punches creation and revision information:

■ Creation—The date and time the schema was added to the dictionary and the
user who added it (also known as the prepared-by user)

■ Revision—The date and time the schema was last modified and the user who
modified it (also known as the revised-by user)

OLQ headers

When RECORDS and ELEMENTS are also specified, displays and punches all OLQ
HEADERS specified for the record elements.

RECords

Displays and punches all records in the schema, without their associated elements.

SCHemas

Displays and punches the schema associated with the current schema through the
DERIVED FROM SCHEMA clause.

SETs

Displays and punches all sets in the schema.

SHAred structures

When RECORDS and DETAILS are also specified, WITH SHARED STRUCTURES
displays the SHARE STRUCTURE clause of the record definition as syntax, and the

record's elements as comments. WITHOUT SHARED STRUCTURES displays a clause,
USES STRUCTURE OF RECORD, as comments, and the record's elements as syntax.

SUBSChemas

Displays and punches all subschemas associated with the schema.

SYNonyms

When RECORDS is also specified, displays and punches the record synonyms
associated with the schema; when RECORDS and ELEMENTS are also specified,

displays and punches the record and element synonyms associated with the
schema.

SCHEMA Statement

Chapter 14: Schema Statements 355

USErs

Displays and punches all users associated with the schema.

ALL

Displays and punches the entire schema description.

NONe

Displays and punches only the schema name and version number.

Usage

Effect of ADD on Schema

ADD creates a new schema description in the dictionary. Default values established

through the SET OPTIONS statement can be used to supplement the user -supplied
description.

ADD also sets the schema's status to IN ERROR. A VALIDATE statement must set the
status to VALID before a subschema or CA IDMS/DB util ity can reference the schema.

Effect of MODIFY on Schema

MODIFY modifies an existing schema description in the data dictionary. This verb also
sets the schema's status to IN ERROR. A VALIDATE statement must set the status to
VALID before a subschema or CA IDMS/DB util ity can reference the schema.

Effect of DELETE on Schema

DELETE deletes an existing schema description and its associated subschema
descriptions from the dictionary.

If the SET OPTIONS statement specifies DELETE IS ON, the schema compiler also:

■ Logically deletes version 1 of all subschema load modules associated with the
schema from the load area of the dictionary (load modules qualified by another
version number must be explicitly deleted).

■ Automatically erases version 1 of any PROG-051 dictionary record occurrence

associated with the subschema load module, provided the record was built by the
subschema compiler and is not related to any other entity type in the dictionary.

SCHEMA statement defaults

The schema compiler defaults to supply this information about the schema:

■ Version-number defaults to the current session option for new versions.

■ The record ID assignment begins with 1001.

SCHEMA Statement

356 Database Administration Guide

ADD interpreted as MODIFY

If, on an ADD operation, a schema of the same name and version already exists in the

dictionary, the action taken by the schema compiler varies depending on the session
option for DEFAULT:

■ If DEFAULT IS ON was specified, the schema compiler interprets the ADD as a

MODIFY for the named schema.

■ If DEFAULT IS OFF was specified, the schema compiler issues an error message and
terminates processing of the ADD SCHEMA statement. Note that, in this case,
schema currency will be null for subsequent statements.

Security enforcement

If either authority for SCHEMA is on or the schema being operated on is secured in the
dictionary, the user issuing the schema statement must hold the necessary authority to
perform the operation. The user issuing the statement is establ ished by:

■ user-specification in the SCHEMA statement

■ user-specification in the SET OPTIONS statement

■ The user identified in a compiler SIGNON statement

■ The user known to the runtime environment in which the compiler is executing

If SIGNON OVERRIDE is not allowed, the user is always the one known to the runtime
environment.

USER DEFINED COMMENTS clause

To associate a user-defined comment with a schema:

1. Specify a comment-key in the USER DEFINED COMMENTS clause

2. Associate comment-text with the key in the COMMENTS clause

If a COMMENTS clause appears in a MODIFY statement, the compiler edits or removes
existing comment text.

To remove user-defined comments:

1. Specify NULL in a COMMENTS clause

2. Specify EXCLUDE in a USER DEFINED COMMENTS clause

Use DISPLAY ALL to list all schema names

To l ist the names of all schemas, issue a DISPLAY ALL statement.

AREA Statement

Chapter 14: Schema Statements 357

Examples

Minimum SCHEMA statement

The following example supplies the minimum SCHEMA statement required for the
purpose of later establishing a functional database:

add schema name is sampschm.

Using the TEXT clause to document schema revisions

In the following example, the DBA documents schema revisions and the purposes for

those revisions; note that the DBA first defined REVISION NUMBER as a class in the
dictionary with auto attributes.

modify schema name is culschem version 6

 revision number is '6.5'

 text is 'accommodate new billing procedures'.

Note: For more information about the DISPLAY ALL statement, see Chapter 11,

“Compiler-Directive Statements".

AREA Statement

The AREA statements identify a logical area of the database. Depending on the verb and
options coded, the AREA statements can also:

■ Add, modify, delete, display, or punch the area description

■ Determine which (if any) database procedures will be executed when the area is
accessed at runtime

The schema compiler applies AREA statements to the current schema.

Note: For an explanation of schema currency, see 9.7, “Establishing Schema and
Subschema Currency”.

Syntax

Syntax: ADD/MODIFY AREA

►►─┬─ ADD ────┬─ AREa name is area-name ──────────────────────────────────────►
 └─ MODify ─┘

 ►─┬──►─
 └─ SAMe AS area base-area-name ──

─►──┬───────────────►
 ─── of SCHema base-schema-name ─┬─────────────────────────┬─┘
 └─ version-specification ─┘

AREA Statement

358 Database Administration Guide

 ►─┬───┬──►
 │ ┌───┐ │
 └─▼─ CALl procedure-name ─┬─ BEFore ──────────┬─┬───────────────────┬─┴─┘
 ├─ AFTer ───────────┤ └─ function-option ─┘
 └─ on ERRor during ─┘

 ►─┬─────────────────────┬──►
 └─ EXClude ALL CALls ─┘

 ►─┬──┬───────────────────────────────►◄
 └─ ESTimated PAGes ─┬─ are ─┬─ page-count ─┘
 └─ is ──┘

Expansion of function-option

►►─┬─ REAdy ─┬───────────────────────────────────────┬─┬──────────────────────►◄
 │ └─ for ─┬─ EXCLUSive ─┬─ UPDate ────┬─┬─┘ │
 │ │ └─ RETrieval ─┘ │ │
 │ ├─ PROtected ─┬─ UPDate ────┬─┤ │
 │ │ └─ RETrieval ─┘ │ │
 │ ├─ SHAred ─┬─ UPDate ────┬────┤ │
 │ │ └─ RETrieval ─┘ │ │
 │ ├─ UPDate ────────────────────┤ │
 │ └─ RETrieval ─────────────────┘ │
 ├─ FINish ──┤
 ├─ COMmit ──┤
 └─ ROLlback ──┘

Syntax: DELETE AREA

►►─── DELete AREa name is area-name ──►◄

Syntax: DISPLAY/PUNCH AREA

►►─┬─ DISplay ─┬─ AREa name is area-name ─────────────────────────────────────►
 └─ PUNch ───┘

 ►─┬───────────────────────────────────────┬──────────────────────────────────►
 │ ┌───────────────────────────────────┐ │
 │ │ ┌───────────────┐ │ │
 └─▼─┬─ WITh ──────┬─▼─┬─ DETails ─┬─┴─┴─┘
 ├─ ALSo WITh ─┤ ├─ ALL ─────┤
 └─ WITHOut ───┘ └─ NONE ────┘

 ►─┬──────────────────────┬───►
 └─ VERB ─┬─ ADD ─────┬─┘
 ├─ MODify ──┤
 ├─ DELete ──┤
 ├─ DISplay ─┤
 └─ PUNch ───┘

 ►─┬─────────────────────┬──►
 └─ AS ─┬─ COMments ─┬─┘
 └─ SYNtax ───┘

 ►─┬─────────────────────────────────┬──►◄
 └─ TO ─┬─ module-specification ─┬─┘
 └─ SYSpch ───────────────┘

AREA Statement

Chapter 14: Schema Statements 359

Parameters

AREa name is area-name

Identifies the area description. Area-name is a 1- to 16-character name that is the
same as a physical area name. Apply the following considerations when selecting

area names:

■ Area-name must not be the same as the schema name or the name of any
other component (including synonyms) within the schema.

■ Because area-name will be copied into DML programs, it must not be the name

of a keyword known to either the DML precompiler or the host programming
language.

SAMe AS area base-area-name

Copies the entire area description from an area in another schema into the current

schema. Base-area-name must identify an existing area.

of base-schema-name

Identifies the schema that contains base-area-name. The base schema must have a
status of VALID (see the VALIDATE statement in this chapter).

version-specification

Qualifies the schema that contains base-area-name with a version number. The
default version for existing schemas is the current session option.

Note: Expanded syntax for version-specification is presented in Chapter 13,

“Parameter Expansions".

If the highest version of base-schema-name does not contain base-area-name, the
schema compiler issues an error message; the compiler does not search for the
highest schema version that contains base-area-name. Likewise, if the lowest

version number assigned to base-schema-name does not contain base-area-name,
the schema compiler issues an error message; the compiler does not search for the
lowest schema version that contains base-area-name.

AREA Statement

360 Database Administration Guide

SAME AS AREA must not be specified for an area to which database procedures
already are assigned. Consequently, placement of the SAME AS AREA clause is

restricted as follows:

■ ADD operation—When used in an ADD operation, SAME AS AREA must precede
all other optional clauses.

■ MODIFY operation—SAME AS AREA cannot be used in a MODIFY operation
unless the area was added with no optional clauses.

As stated earlier, SAME AS AREA copies all information from the copied area to the
new area description; the schema compiler treats all subsequent clauses as MODIFY

operations.

CALl procedure-name

Requests that a system-provided or user-defined database procedure be called at
specified times during runtime processing.

Procedure-name is the CSECT name or entry point of an existing procedure. If, at
runtime, the procedure is l ink edited alone for dynamic loading, procedure-name
must also be the load library member name.

BEFore

Calls a database procedure before a runtime READY, FINISH, COMMIT, or ROLLBACK
function is performed against the area.

AFTer

Calls a database procedure after a runtime READY, FINISH, COMMIT, or ROLLBACK

function is performed against the area.

on ERRor during

Calls a database procedure when an error occurs during a runtime READY, FINISH,
COMMIT, or ROLLBACK function performed against the area. The DBMS detects an

error when the error status is not 0000.

function-option

Specifies the database function that invokes the database procedure. If no function

is specified, the procedure is called for every DML function performed against the
area.

AREA Statement

Chapter 14: Schema Statements 361

REAdy

Invokes the database procedure when the runtime system encounters a READY

statement.

EXCLUSive

Invokes the database procedure for those runtime READY statements that include

either the EXCLUSIVE UPDATE or EXCLUSIVE RETRIEVAL usage mode.

EXCLUSive UPDate

Invokes the database procedure for those runtime READY statements that include
the EXCLUSIVE UPDATE usage mode.

EXCLUSive RETrieval

Invokes the database procedure for those runtime READY statements that include
the EXCLUSIVE RETRIEVAL usage mode.

PROtected

Invokes the database procedure for those runtime READY statements that include

either the PROTECTED UPDATE or PROTECTED RETRIEVAL usage mode.

PROtected UPDate

Invokes the database procedure for those runtime READY statements that include

the PROTECTED UPDATE usage mode.

PROTected RETrieval

Invokes the database procedure for those runtime READY statements that include
the PROTECTED RETRIEVAL usage mode.

SHAred

Invokes the database procedure for those runtime READY statements that include
either the SHARED UPDATE or SHARED RETRIEVAL usage mode.

SHAred UPDate

Invokes the database procedure for those runtime READY statements that include
the SHARED RETRIEVAL usage mode.

SHAred RETrieval

Invokes the database procedure for those runtime READY statements that include
the SHARED RETRIEVAL usage mode.

UPDate

Invokes the database procedure for those runtime READY statements that include
any UPDATE usage mode.

AREA Statement

362 Database Administration Guide

RETrieval

Invokes the database procedure for those runtime READY statements that include

any RETRIEVAL usage mode.

FINish

Invokes the database procedure when the runtime system encounters a FINISH

statement.

COMmit

Invokes the database procedure when the runtime system encounters a COMMIT
statement.

ROLlback

Invokes the database procedure when the runtime system encounters a ROLLBACK
statement.

EXClude ALL CALls

Negates any previously assigned CALL clauses for the area.

ESTimated pages is page-count

Specifies an estimated page count for the area. Page-number is an integer in the
range 0 through 1073741822. The default is 0.

Code this option if your transaction performs SQL against a non-SQL database. The
value you enter helps the SQL optimizer determine the best way to retrieve
records; for example, using an area sweep, an index, and so on.

DETails

Displays or punches with the following information about the area:

■ All database procedures assigned to the area

■ The type and name of each symbol associated with the area

ALL

Displays or punches the entire area description.

NONe

Displays or punches only the area name.

AREA Statement

Chapter 14: Schema Statements 363

Usage

DELETE Deletes Area From Subschemas Associated With Schema

DELETE AREA deletes the named area description from the data dictionary.
Consequently, the area is removed not only from the current schema, but also from the

descriptions of all subschemas associated with the current schema.

SAME AS AREA clause saves coding time

Because SAME AS AREA copies an existing description, it can relieve the DBA of a
considerable amount of coding, particularly when many database procedure calls are

common across schemas. For an example of assigning database procedures to areas,
see the CALL clause, later in this discussion.

You can code multiple CALL statements

Any number of CALL statements for as many DML functions as desired can be specified
for an area, as shown in the following example:

add area name is ins-prod-region

 same as area ins-demo-region of schema empschm version 1

 call excrash before ready for exclusive

 call securchk before ready for protected update

 call updimsg on error during ready for update

 call countall after finish

 call securlog after ready for update.

If more than one BEFORE, AFTER, or ON ERROR procedure is specified for the same
function, the procedures are executed in the order specified.

Must respecify all calls to change one call

To change database procedures for an area, all calls must be respecified. For example, to
remove CALL SECURLOG from the above specification, code the following:

mod area name is ins-prod-region

 call countall after finish

 call securchk before ready for update.

 call updimsg on error during ready for update

 call excrash before ready for exclusive.

AREA Statement

364 Database Administration Guide

Calls needed for IDMSCOMP compression

If any record in the area uses IDMSCOMP and IDMSDCOM for compression and

decompression, the area should have the following database procedure specifications:

call idmscomp before finish

call idmsdcom before finish

This ensures that the work areas used by the compression and decompression routines
are freed when a rununit terminates.

Examples

Sample Minimum AREA Statement

The following example supplies the minimum AREA statement required for the area to
be a valid schema component:

add area name is emp-demo-region.

Copying an area from another schema

In the following example, the statement creates the EMP-PROD-REGION area, which is

identical to EMP-DEMO-REGION and associates the new area with the current schema:

add area name is emp-prod-region

 same as area emp-demo-region

 of schema empschm version is 1.

Note: For more information about database procedures, see Chapter 16, “Writing
Database Procedures”.

RECORD Statement

Chapter 14: Schema Statements 365

RECORD Statement

The RECORD statements identify a database record type. Depending on the verb,
options, and substatements coded, the RECORD statements can also:

■ Add, modify, delete, display, or punch the record description

■ Assign the record to a database area

■ Determine which (if any) database procedures will be executed when occurrences
of the record are accessed at runtime

■ Create a record structure, that is, a dictionary description of the record, including its
synonyms, elements, and element synonyms; associa te the record with an existing

structure

The schema compiler applies RECORD statements to the current schema.

Note: For an explanation of schema currency, see 9.7, "Establishing Schema and

Subschema Currency".

Syntax

Syntax ADD/MODIFY RECORD

►►─┬─ ADD ────┬─ RECord name is record-name ──────────────────────────────────►
 └─ MODify ─┘

 ►─┬───┬────────────────────────────────►
 └─ SHAre ─┬─ record-structure-option ───┬─┘
 └─ record-description-option ─┘

 ►─┬───────────────────────────────────────┬──────────────────────────────────►
 └─ RECord ID is ─┬─ record-id-number ─┬─┘
 └─ AUTo ─────────────┘

 ►─┬──┬─────────────────────►
 │ ┌──┐ │
 └─▼─┬─────────────┬─ record-synonym-specification ─┴─┘
 ├─ INClude ◄──┤
 └─ EXClude ───┘

 ►─┬───┬──►
 └─ LOCation MODe is ┬ calc-location-mode-specification ────────────────┬┘
 ├ DIRect ──┤
 ├ VIA set-name set ┬─────────────────────────────┬─┤
 │ └ displacement-specification ─┘ │
 ├ VSAm ──┤
 └ vsam-calc-location-mode-specification ───────────┘

RECORD Statement

366 Database Administration Guide

 ►─┬───┬────────────►
 └─ WIThin AREa area-name ─┬─────────────────────────────────┬─┘
 ├─ SUBarea symbolic-subarea-name ─┤
 └─ offset-expression ─────────────┘

 ►─┬───┬────────────►
 └─ VSAm TYPe is ─┬─┬─ FIXed ────┬─ LENgth ─┬─ SPAnned ────┬─┬─┘
 │ └─ VARiable ─┘ └─ NONSPAnned ─┘ │
 └─ NULl ───────────────────────────────────┘

 ►─┬───┬──────────────────►
 └─ MINimum ROOT length is ─┬─ root-length characters ─┬─┘
 ├─ CONtrol length ─────────┤
 ├─ RECord length ──────────┤
 └─ NULl ───────────────────┘

 ►─┬───┬──────────►
 └─ MINimum FRAgment length is ─┬─ fragment-length characters ─┬─┘
 ├─ RECord length ──────────────┤
 └─ NULl ───────────────────────┘

 ┌───┐
 ►──▼─┬───┬─┴─►
 └─ DCTable name ─┬ BUILTIN ─────┬─┬────────────────────────────────┬┘
 └ dctable-name ┘ └ is used FOR ─┬─ COMpression ───┤
 ├─ DECOMpression ─┤
 └─ BOTh ◄─────────┘

 ►─┬───┬────────►
 └─ PROcedure name procedure-name is used FOR ─┬─ COMpression ───┬─┘
 └─ DECOMpression ─┘

 ►─┬──┬───────►
 │ ┌──┐ │
 └─▼─ CALl procedure-name ─┬─ BEFore ──────────┬─┬──────────────┬─┴─┘
 ├─ AFTer ───────────┤ ├─ CONnect ────┤
 └─ on ERRor during ─┘ ├─ DISCONnect ─┤
 ├─ ERAse ──────┤
 ├─ FINd ───────┤
 ├─ GET ────────┤
 ├─ MODify ─────┤
 └─ STOre ──────┘

 ►─┬──┬───────────────────────────────►
 └─ estimated OCCurrences are record-count ─┘

 ►─┬─────────────────────┬──►◄
 └─ EXClude ALL CALls ─┘

Expansion of record-structure-option

►►─── STRucture of record shared-record-name ─────────────────────────────────►

 ►─┬──┬─────────────►◄
 ├─ version-specification ────────────────────────────────────┤
 └─ of SCHema shared-schema-name ─┬─────────────────────────┬─┘
 └─ version-specification ─┘

Expansion of record-description-option

►►─── DEScription of record shared-record-name ───────────────────────────────►

 ►─── of SCHema shared-schema-name ───►

 ►─┬─────────────────────────┬──►◄
 └─ version-specification ─┘

RECORD Statement

Chapter 14: Schema Statements 367

Expansion of record-synonym-specification

►►─── RECord ─┬─ SYNonym name ─┬──►
 └─ name SYNonym ─┘

 ►─┬─ IS record-synonym-name FOR language language ─┬─────────────────────────►◄
 └─ FOR language language IS record-synonym-name ─┘

Expansion of calc-location-mode-specification

►►─── CALc USIng ─┬─ calc-element-name ─────────────┬─────────────────────────►
 │ ┌─────────────────────┐ │
 └─ (─▼─ calc-element-name ─┴─) ─┘

 ►─── DUPlicates are ─┬─ FIRst ───────┬───────────────────────────────────────►◄
 ├─ LASt ────────┤
 ├─ by DBKey ────┤
 └─ NOT allowed ─┘

Expansion of displacement-specification

►►── DISplacement ─┬──USIng symbolic-displacement-name ─┬─────────────────────►◄
 └─ page-count pages ─────────────────┘

Expansion of vsam-calc-location-mode-specification

►►─── VSAm CALc USIng calc-element-name ──────────────────────────────────────►

 ►─── DUPlicates are ─┬─ UNORDered ───┬───────────────────────────────────────►◄
 └─ NOT allowed ─┘

Expansion of offset-expression

►►── OFFset ─┬─ 0 ◄──────────────────────┬── for ─┬─ 100 PERcent ◄─────┬──────►◄
 ├─ offset-page-count PAGes ─┤ ├─ percent PERcent ──┤
 └─ offset-percent PERcent ──┘ └─ page-count PAGes ─┘

Syntax: DELETE RECORD

►►─── DELete RECord name is record-name ──────────────────────────────────────►◄

Syntax: DISPLAY/PUNCH RECORD

►►─┬─ DISplay ─┬─ RECord name is record-name ─────────────────────────────────►
 └─ PUNch ───┘

 ►─┬───┬────────────────────────►
 │ ┌───┐ │
 │ │ ┌─────────────────────────┐ │ │
 └─▼─┬─ WITh ──────┬─▼─┬─ ALL COMment TYPes ─┬─┴─┴─┘
 ├─ ALSo WITh ─┤ ├─ AREas ─────────────┤
 └─ WITHOut ───┘ ├─ COMments ──────────┤
 ├─ CULprit headers ───┤
 ├─ DETails ───────────┤
 ├─ ELements ──────────┤
 ├─ OLQ headers ───────┤
 ├─ SHAred structures ─┤
 ├─ SYNonyms ──────────┤
 ├─ ALL ───────────────┤
 └─ NONe ──────────────┘

RECORD Statement

368 Database Administration Guide

 ►─┬──────────────────────┬───►
 └─ VERB ─┬─ ADD ─────┬─┘
 ├─ MODify ──┤
 ├─ DELete ──┤
 ├─ DISplay ─┤
 └─ PUNch ───┘

 ►─┬─────────────────────┬──►
 └─ AS ─┬─ COMments ─┬─┘
 └─ SYNtax ───┘

 ►─┬────────────────────────────────────┬─────────────────────────────────────►◄
 └─ TO ─┬─ module-specification ────┬─┘
 └─ SYSpch ──────────────────┘

Parameters

RECord name is record-name

Identifies the database record description to be added, modified, or deleted.
Record-name must be a 1- to 16-character name. The first character must be A
through Z (alphabetic), #, $, or @ (international symbols). The remaining characters

can be alphabetic or international symbols, 0 through 9, or the hyphen (except as
the last character or following another hyphen). Record-name must not be the
same as the schema name or the name of any other component (including

synonyms) within the schema.

SHAre

Connects an existing record structure to the schema record. That is, the schema
record shares the dictionary description of an existing record, including its

synonyms, elements, and element synonyms. Note that, unlike the COPY
ELEMENTS substatement the SHARE clause does not create a new record structure.

Note: For more information about contrasting SHARE and COPY ELEMENTS, see

"Usage" in this section.

RECORD Statement

Chapter 14: Schema Statements 369

The following considerations apply to the sharing of record structures:

■ All schema records that share a single structure must have the same name.

■ Any number of identically named records can share a single structure.

■ The structure is shared equally among the records; that is, no single record
owns the structure.

■ When coded, the SHARE clause must precede any RECORD SYNONYM clauses.
Synonyms are assigned to the structure and are therefore available to all
schema records that share the structure.

■ The schema compiler does not allow modification of a shared structure, except

to include record synonyms. Nonstructural information (record ID, location
mode, and so on) is maintained separately for each schema record and can be
modified.

■ The SHARE clause and ELEMENT substatements are mutually exclusive. Use

SHARE to connect the record to an existing structure; use ELEMENT
substatements to create a new structure for the schema record.

■ Do not use ELEMENT substatements for any schema record that shares a

structure. Once SHAREd, a schema record should always be maintained
through SHARE clauses.

record-structure-option

Allows the schema record to share the structure of either a dictionary record (IDD
record) or a record that belongs to another schema. The DBA must supply the

appropriate RECORD ID, LOCATION MODE, VSAM TYPE, WITHIN AREA, MINIMUM
ROOT, MINIMUM FRAGMENT, and CALL clauses, as shown in the following
example:

add record name is skill

 share structure of record skill

 of schema othrschm

 location mode is calc using skill-code

 duplicates are not allowed

 within area org-demo-region

 minimum root length is control length

 minimum fragment length is record length

 call idmscomp before store

 call idmscomp before modify

 call idmsdcom after get.

RECORD Statement

370 Database Administration Guide

shared-record-name

Identifies an existing record. While it can be either a primary name or a synonym,

shared-record-name must be the same as record-name (the object of the ADD or
MODIFY).

of SCHema shared-schema-name

Names the schema associated with shared-record-name. Shared-schema-name
must be the name of a schema, already defined in the dictionary, in which
shared-record-name participates. The schema must have a status of VALID (see the
VALIDATE statement in this chapter).

version-specification

Uniquely qualifies shared-schema-name with a version number. The default for
existing versions is the current session option.

Note: Expanded syntax for version-specification is presented in Chapter 13,

“Parameter Expansions”.

record-description-option

Allows the schema record to share the structure of a record that belongs to another
schema. Unlike SHARE STRUCTURE, SHARE DESCRIPTION copies the remainder of

shared-record-name's description (record ID, location mode, and so forth) to the
schema record named as the object of the ADD or MODIFY (record-name). In the
following example, the SKILL record in the current schema shares the structure of
the SKILL record in EMPSCHM (versi on 1); each record has its own copy of

nonstructural information:

add record name is skill

 share description of record skill

 of schema empschm version 1.

SHARE DESCRIPTION is not valid if record-name already has nonstructural
specifications.

shared-record-name

Identifies an existing record. While it can be either a primary name or a synonym,
shared-record-name must be the same as record-name (named as the object of the
ADD or MODIFY). Shared-record-name must be qualified with the name of the

schema to which it belongs.

RECORD Statement

Chapter 14: Schema Statements 371

version-specification

Uniquely qualifies dictionary records specified for shared-record-name. The default

is the session option.

Note: Expanded syntax for version-specification is presented in Chapter 13,
“Parameter Expansions”.

of SCHema shared-schema-name

Names the schema associated with shared-record-name. This clause is required.

Shared-schema-name must be the name of a schema, already defined in the
dictionary, in which shared-record-name participates. The schema must have a

status of VALID (see 14.8, “VALIDATE Statement”)

version-specification

Uniquely qualifies shared-schema-name with a version number. The default for
existing versions is the current session option.

Note: Expanded syntax for version-specification is presented in Chapter 13,

“Parameter Expansions”.

RECord ID is

Assigns a number that uniquely identifies each schema record type. Record IDs are

used internally only by CA IDMS/DB software: user-written code never refers to
record IDs.

Important! Do not change record IDs for existing databases. Use the RECORD ID
clause only when adding new records or when changing records in a schema for

which a database is not yet defined.

record-id-number

Specifies an absolute record ID; it must be an unsigned integer in the range 10
through 9999. Record IDs can be duplicated across areas in the schema, however,
record IDs must be unique for all records within one area

AUTo

For ADD operations only, indicates that the compiler automatically assigns the
record ID. If the record is the first in the schema to be assigned a record ID, AUTO

assigns the value specified in the ASSIGN RECORD IDS clause in the SCHEMA
statement; otherwise, AUTO assigns a value 1 greater than the highest record ID in
the schema, until 9999 is reached. When 9999 is reached, the AUTO attribute
assigns the highest unused record ID.

The compiler assigns the ID when the ADD RECORD statement is processed;
subsequent displays of the record show the actual ID, rather than the word AUTO.

RECORD Statement

372 Database Administration Guide

INClude record-synonym-specification

Identifies a record synonym to be associated with the primary record name. A

synonym is an alternate name for a record. You can associate more than one record
synonym with a record.

record-synonym-name

Names the record synonym. Record-synonym-name must follow the rules for the
host language with which the synonym is being used and must follow the rules
specified above for record names. Record synonyms that will be copied into a
subschema or used with OLQ must not exceed 16 characters.

language

Specifies the host language with which the record synonym will be used. Valid
values are any of the languages defined in the dictionary, including those defined
when CA IDMS/DB is installed: COBOL, PL/I, ASSEMBLER, OLQ, SQL, and CULPRIT. A

single synonym may be associated with any number of languages. A record may
have only one record synonym associated with language SQL.

You can specify the language variable before or after the record-synonym-name

variable.

EXClude record-synonym-specification

Disassociates the named record synonym from the record, provided it is not
associated with any other schemas, subschemas, maps, or logical records. If you
specify the optional FOR LANGUAGE clause, CA IDMS/DB disassociates the record

synonym from the named language.

LOCation MODe is

Defines the technique that CA IDMS/DB will use to physically store occurrences of
the record type. Each record type must be assigned only one location mode. Note,

however, that a record type's location mode does not restrict retrieval of record
occurrences to a single technique.

calc-location-mode-specification

Specifies that occurrences of the record are to be stored on or near a page that CA
IDMS/DB calculates from values in the record element(s) defined by
calc-elecalc-element-name (the record's CALC key).

RECORD Statement

Chapter 14: Schema Statements 373

calc-element-name

Names any elementary or group data element defined as a record element (see

14.5, “Element Substatement"), with the following restrictions:

■ No element named FILLER can be used in the CALC key.

■ No repeating element (that is, one defined with an OCCURS clause) and no

element subordinate to a repeating element can be used in the CALC key.

Multiple calc-element-name values can be coded, forming a compound CALC
control element and thereby allowing record placement to be keyed on more than
one element within the record. The element names that form the CALC control

element need not be contiguous within the member record. The combined lengths
of the elements (as defined in the PICTURE and USAGE clauses of the ELEMENT
substatement) must not exceed 256 bytes.

If the calc key is to be referenced as a primary key in a set definition,

calc-element-name must not identify a group element.

DUPlicates are

Specifies whether occurrences of a record type with duplicate CALC key values are
allowed and, if allowed, how they are logically positioned relative to the duplicate

record already stored.

FIRst

Logically positions record occurrences with a duplicate CALC key before the
duplicate record already stored.

LASt

Logically positions record occurrences with a duplicate CALC key after the duplicate
record already stored.

by DBKey

Logically positions record(s) occurrences with a duplicate CALC key according to the

db-key.

NOT allowed

Indicates that record occurrences with duplicate CALC keys are not allowed.

DIRect

Specifies that occurrences of the record are to be stored on or near a page specified
at runtime by the user program.

RECORD Statement

374 Database Administration Guide

VIA set-name set

Specifies that occurrences of the record are to be stored relative to their owner in a

specific set:

■ If the member and owner records are assigned to the same page range, the
member record occurrences are clustered as close as possible to the owner

record.

■ If the member and owner records are assigned to different page ranges, the
member record occurrences are clustered at locations, within their page range,
proportional to the location of the owner within its page range.

■ If set-name is a system-owned indexed set, CA IDMS/DB will attempt to store
the member record in physical sequential order.

Set-name specifies the name of a set in which the record type participates as a
member. In most cases, records are defined before sets, so set-name need not

identify an existing set. However, until the set is defined, the VALIDATE statement
will detect errors in the schema.

displacement-specification

Specifies how far away member records are stored from the owner record.

DISplacement USIng symbolic-displacement-name

Names a symbol used to represent the displacement. The symbol is assigned a
value in a corresponding physical area definition.

DISplacement page-count pages

Specifies how far away member records cluster from the owner record when the
member and owner record occurrences are assigned to the same page range. The
member records cluster starting at the page on which the owner record resides plus
page-count pages (wrapping around to the beginning of the page range if

necessary).

Page-count must be an unsigned integer in the range 0 through 32,767. If
page-count exceeds the number of pages in the record page range, the

displacement wraps around to the beginning of the page range.

VSAm

Specifies that the record is a native VSAM record for which CALC access is required.

RECORD Statement

Chapter 14: Schema Statements 375

vsam-calc-location-mode-specification

Specifies the CALC key used to access occurrences of the record type from a native

VSAM file.

USIng calc-element-name

Names the element representing the key of a native VSAM file. For KSDS fi les,

calc-element-name identifies the primary key; for PATH fi les, it identifies an
alternate index on a KSDS or ESDS fi le. It also must be defined through an ELEMENT
substatement, with the same restrictions as those for the CALC element in the CALC
USING clause above.

DUPlicates are

Specifies whether native VSAM record occurrences are allowed to have duplicate
CALC keys and if allowed. The DUPLICATES option must correspond to the
duplicates option specified when the fi le was defined to VSAM.

UNORDered

Indicates that CA IDMS/DB stores record occurrences with duplicate CALC keys and
always retrieves the duplicate record occurrences in the order in which they were
stored (whether retrieving forward or backward through the area).

NOT allowed

Indicates that CA IDMS/DB does not store record occurrences with duplicate CALC

keys.

WIThin AREa area-name

Identifies the area in which occurrences of the record type will be located.

Area-name must name an area associated with the current schema.

SUBAREA symbolic-subarea-name

Names a symbol used to represent a page range (a subarea). Within the physical
area definition, the symbolic subarea is assigned the actual range of pages. in which

CA IDMS/DB will store occurrences of the record type.

RECORD Statement

376 Database Administration Guide

offset-expression

Specifies a relative range of pages, in terms of either a percentage of the physical

area or a number of pages in which CA IDMS/DB will store occurrences of the
record type. By default, CA IDMS/DB uses the entire physical area.

offset-page-count PAGES

Determines the lowest page that CA IDMS/DB should use as the first page to store
occurrences of the record type. CA IDMS/DB calculates the actual page, using the
formula shown next, when you generate the DMCL that contains the physical area:

record's lopage = (LPN + offset-page-count)

 where LPN = the lowest page number in the physical area

Offset-page-count must be an integer in the range 0 through the number of pages

in physical-area-name minus 1.

offset-percent PERcent

Determines the first page in which CA IDMS/DB will store occurrences of the record
type based on the initial page range of the physical area:

record's lopage = (LPN + (INP * offset-percent * .01))

 where LPN = the lowest page number in the physical area

 and INP = the initial number of pages in the physical area

Offset-percent must be an integer in the range 0 through 100.

FOR page-count PAGes

Determines the last page in which CA IDMS/DB will store occurrences of the record
type based on record's low page.

record's hipage = (RLP + page-count - 1)

 where RLP = the first page in which occurrences of the

 record will be stored

The calculated page must not exceed the highest page number in the physical area.

RECORD Statement

Chapter 14: Schema Statements 377

FOR percent PERcent

Determines the last page in which CA IDMS/DB will store occurrences of the record

type based on the record's low page and the total number of pages in the physical
area:

record's hipage = (RLP + (TNP * percent * .01) - 1)

 where RLP = the first page in which occurrences of the record

 will be stored

 and TNP = the total number of pages in the physical area

Percent must be an integer in the range 1 through 100. The default is 100. If percent

causes the calculated high page to be greater than the highest page number in the
physical area, CA IDMS/DB will ignore the excessive page numbers and will store
the record occurrences up to and including the last page in the physical area. The
following example is valid and causes EMPLOYEE records to be stored over the last

3/4ths of the area:

add record name is employee

 within area emp-demo-region

 offset 25 percent for 100 percent.

VSAm TYPe is

Identifies the record as a native VSAM data record and removes or supplies
information about how the fi le containing the record was defined to VSAM. Unless
NULL is specified, the options must match those of the VSAM file being described.

For a schema definition to be valid, VSAM TYPE must be supplied for all native
VSAM records; this clause is valid only for those records.

FIXed LENgth

Specifies a fixed length record.

VARiable LENgth

Specifies a variable length record.

SPAnned

Specifies that occurrences of the record can span VSAM control intervals.

NONSPAnned

Specifies that occurrences of the record cannot span VSAM control intervals.

NULl

Removes information previously specified in a VSAM TYPE clause.

RECORD Statement

378 Database Administration Guide

MINimum ROOT length is

Specifies (or removes the specification for) the minimum portion of a

variable-length record that can be stored on a database page. During DML STORE
operations, if CA IDMS/DB cannot find a page with enough space to accommodate
the minimum root, it will not store the record.

root-length characters

Specifies that the initial portion of the record must be the specified number of
bytes (characters). Root-length must include all CALC, index, and sort control
elements. It must be an unsigned integer; if it is not a multiple of 4, the compiler

will make it so by rounding up.

CONtrol length

Specifies that the initial portion of the record must include all bytes up to and
including the last CALC, index, or sort control element. If the record contains an

element defined with an OCCURS DEPENDING ON clause, or if a PROCEDURE NAME
or DCTABLE clause is used to indicate compression, CONTROL LENGTH is the
default.

RECord length

Specifies that the initial portion of the record must be the entire record (that is, the
record is not to be fragmented).

NULl

Removes information previously specified in a MINIMUM ROOT LENGTH clause.

MINimum FRAgment length is

Either specifies the minimum length of subsequent segments (fragments) of a
variable-length record or removes such specification (NULL). During DML STORE
and MODIFY operations, if CA IDMS/DB cannot find a page with enough space to

accommodate the specified portion of the record, it will not store or modify the
record.

RECORD Statement

Chapter 14: Schema Statements 379

fragment-length characters

Specifies that subsequent portions of the record must include at least

fragment-length bytes (an exception is the last fragment, which can be smaller).
Fragment-length must be an unsigned integer; if it is not a multiple of 4, the
compiler will make it so by rounding up. If the record contains an element defined

with an OCCURS DEPENDING ON clause, the default is 4.

If the record does not contain an OCCURS DEPENDING ON clause but does contain
either a PROCEDURE NAME or a DCTABLE clause (indicating that it is compressed),
the default is 40, or (record-length - control-length), whichever is smaller.

RECord length

Specifies that subsequent portions of the record must include the remainder of the
record. No more than one fragment will ever be created.

NULl

Removes information previously specified in a MINIMUM FRAGMENT LENGTH
clause.

DCTable name

For sites that have installed CA IDMS Presspack, specifies the name of a Data

Characteristic Table (DCT). A DCT establishes the best way to compress or
decompress records, based upon statistics created by the IDMSPASS util ity. This
parameter is repeatable so you can specify one DCT for compression and another
for decompression.

BUILTIN

Specifies the name of a DCT supplied with CA IDMS Presspack that contains generic
information that can be used to compress or decompress any record or set of
records.

dctable-name

Specifies the name of a customized DCT. Dctable-name is a 1- to 8-character name
of a customized DCT created by IDMSPASS.

RECORD Statement

380 Database Administration Guide

is used FOR COMPression

Specifies that the named DCT is used to compress records.

is used FOR DECOMpression

Specifies that the named DCT is used to decompress records.

is used FOR BOTh

Specifies that the named DCT is used to compress and decompress records. BOTH is
the default.

PROcedure name procedure-name

Specifies the name of a standard compression or decompression procedure.

Procedure-name is the name of a system-provided or user-defined database record
compression or decompression procedure. It must be the CSECT name or entry
point of an existing procedure. If, at runtime, the procedure is l ink edited alone for
dynamic loading, procedure-name must also be the load library member name.

is used FOR COMpression

Specifies that the procedure compresses the record.

is used FOR DECOMpression

Specifies that the procedure decompresses the record.

CALl procedure-name

Specifies the name of a system-provided or user-defined database procedure to be
called when the runtime system performs the specified DML function against the
record. If no function is specified, the procedure is called for every DML function

performed against the record.

Procedure-name is the CSECT name or entry point of an existing procedure. If, at
runtime, the procedure is l ink edited alone for dynamic loading, procedure-name
must also be the load library member name.

If multiple procedures are called for the same function, the procedures are invoked
in the order specified.

BEFore

Calls the procedure before the DML function is performed against the record.

AFTer

Calls the procedure after the DML function is performed against the record.

RECORD Statement

Chapter 14: Schema Statements 381

on ERRor during

Calls the procedure when a runtime error occurs during the processing of a DML

function against the record. A runtime error exists when the error status is not
equal to 0000.

CONnect

Calls the database procedure in response to a CONNECT function.

DISCONnect

Calls the database procedure in response to a DISCONNECT function.

ERAse

Calls the database procedure in response to an ERASE function.

FINd

Calls the database procedure in response to a FIND function. To call a database
procedure in response to OBTAIN, code this option and the GET option.

GET

Calls the database procedure in response to a GET function. To call a database
procedure in response to OBTAIN, code this option and the FIND option.

MODify

Calls the database procedure in response to a MODIFY function.

STOre

Calls the database procedure in response to a STORE function.

estimated OCCurrences are record-count

Specifies an estimated number of record occurrences. CA IDMS/DB uses this value

to optimize SQL access to the record. Record-count is an integer in the range 0 to
2,147,483,647. The default is 0.

EXClude ALL CALls

Negates any previously assigned CALL clauses for the record.

ALL COMment TYPes

Displays and punches all information from the categories COMMENTS, CULPRIT
HEADERS, and OLQ HEADERS.

RECORD Statement

382 Database Administration Guide

AREas

Displays and punches the WITHIN AREA clause of the RECORD statement.

COMments

When ELEMENTS is also specified, displays and punches all comments associated
with the record elements through the COMMENTS clause of the ELEMENT

substatement.

CULprit headers

When ELEMENTS is also specified, displays and punches all CULPRIT HEADERS
specified for the record elements.

DETails

Displays and punches the following information about the record:

■ The record ID

■ The name and version number of the record whose structure was used to
create the schema record

■ The record's location mode

■ The record's VSAM TYPE specification, if any

■ The record's MINIMUM ROOT specification

■ The record's MINIMUM FRAGMENT specification

■ All database procedures assigned to the record

ELements

Displays and punches all elements associated with the record.

OLQ headers

When ELEMENTS is also specified, displays and punches all OLQ HEADERS specified
for the record elements.

SHAred structures

When DETAILS is also specified, displays and punches the SHARE STRUCTURE clause

of the RECORD statement as syntax and the record's elements as comments;
WITHOUT SHARED STRUCTURES displays the USES STRUCTURE clause as comments
and the record's elements as syntax.

SYNonyms

Displays and punches the record's synonyms; when ELEMENTS is also specified, the
record and element synonyms.

ALL

Displays and punches the entire record description

NONe

Displays and punches only the record name

RECORD Statement

Chapter 14: Schema Statements 383

Usage

Effect of ADD On Records

ADD creates a new schema record description in the data dictionary and associates it
with the current schema. The record is known as a schema record.

Unless the SHARE clause is used, ADD also creates a record structure for the schema
record. The record structure's name is the same as that of the schema record. The
structure is automatically assigned a version number, which distinguishes the record
from others that have the same name in the dictionary. The schema compiler uses NEXT

HIGHEST when assigning record version numbers.

Effect of MODIFY on records

MODIFY modifies an existing schema record in the dictionary. All clauses associated with
an ADD operation can be specified for MODIFY operations.

Note: The CA IDMS IDD DDDL Reference Guide provides instruction for replacing record
elements in schema-owned records under the RECORD entity type discussion. IDD can
be used to include documentary information about the record or to modify record

elements.

RECORD Statement

384 Database Administration Guide

MODIFY operations that affect the record structure

MODIFY operations that use the SHARE clause or ELEMENT substatements affect the

record structure. The following considerations apply to such MODIFY operations:

■ The SHARE clause and the ELEMENT substatements disassociate the schema record
from its existing structure, then associate the record with the specified structure. A

schema record's structure is never modified.

If the disassociated structure becomes unused as a result of the MODIFY operation,
the schema compiler deletes the structure from the dictionary unless it is used in
any of the following ways:

– Participates in a map

– Participates in another schema

– Participates in a subschema logical record

– Is owned by IDD

The schema compiler assigns the version number of the unused record to the
rebuilt record.

■ The schema compiler associates the new record structure with the source of all

subschemas that use the record. Subschema load modules, however, must be
updated explicitly with a schema REGENERATE or subschema GENERATE statement.

Note: When a MODIFY operation affects the structure of an existing record, the
schema compiler attempts to recreate all partial views of the record, in addition to

full views. Subschema views are recreated without view IDs. When a MODIFY
operation affects a record used as a logical record element, the logical record must
be modified (through the subschema compiler) before the subschema load module

can be generated.

Effect of DELETE on records

DELETE operations cause the schema compiler to:

■ Remove the named record from both the current schema and the schema's
associated subschema descriptions.

■ If the DELETE operation causes the record structure to become unused (as
described above), delete that structure from the dictionary.

■ Delete all sets that the record owns, thus removing such sets from both the current
schema and the schema's associated subschema descriptions.

■ Remove set membership specifications for all sets in which the record is a member.
To delete such a set (if it has no other member records), use the DELETE SET
statement.

RECORD Statement

Chapter 14: Schema Statements 385

Defaults supplied on an ADD RECORD statement

The schema compiler defaults supply the following information:

■ Record ID is automatically assigned by the compiler

■ Record fragmentation (variable-length records only) defaults to a minimum root
length of CONTROL LENGTH and to a minimum fragment length of four bytes

Schema record must have at least one element

Every valid schema record must have at least one el ement (defined in an element

substatement) associated with it.

Name records with conventions of programming language in mind

When naming schema records, be sure that the selected names conflict neither with the

naming conventions of the programming language(s) that will be used with the CA IDMS
Data Manipulation Language (DML) nor with the DML precompilers themselves. As a
rule, schema records should bear names that coincide with the language used most
often; define record synonyms to accommodate other languages. In addition to the

record naming rules stated above, consider the following points when selecting names
(or synonyms) for schema records:

■ Assembler names should not exceed eight bytes in length and should not contain

hyphens. When the Assembler DML precompiler (IDMSDMLA) generates a DC or
DSECT from a schema record description, it uses the record name as the DC or
DSECT name. If the record name exceeds eight bytes in length, IDMSDMLA
truncates it, possibly causing duplicate names to appear in the program.

■ COBOL names must not contain the characters #, $, or @.

■ PL/I naming conventions coincide with valid CA IDMS/DB schema record names.
When the PL/I DML precompiler (IDMSDMLP) generates data field declarations
from schema record descriptions, it automatically changes hyphens in the record

names to underscores.

Record name for SQL access

If using SQL to access a non-SQL defined database, each record in the non-SQL schema is
accessed as a table. The name of the table is always the schema record name (i.e., the

object of an ADD RECORD statement). A record synonym for language SQL, if defined, is
not used as the SQL table name although element synonyms for language SQL are used
as column names.

Only one record synonym for language SQL may be defined for a record.

Note: For more information, see the CA IDMS SQL Reference Guide.

RECORD Statement

386 Database Administration Guide

Considerations for using record synonyms

Record synonyms are language-dependent: each DML precompiler automatically

includes the synonym, if any, associated with the compiler-specific programming
language (unless instructed otherwise, through a manual COPY or INCLUDE statement).

The following considerations apply when using record synonyms:

■ Internally, the schema compiler uniquely identifies record synonyms by assigning
version numbers to them.

■ The subschema compiler can use any record synonym assigned to a schema record
type.

■ Record names and synonyms must be unique within a schema. If different schema
records have identical synonyms (with different version numbers) in the dictionary,
only one such record synonym can be copied into a given schema. Subschemas are
independent of this restriction.

■ Only one record synonym with a language of SQL may exist for a record. This
synonym is used when you use SQL to access a non-SQL defined database.

■ If a synonym of a schema record is associated with the language of a program being
precompiled, the precompiler copies that synonym instead of the schema's primary

record (unless instructed otherwise, through a manual COPY or INCLUDE
statement).

■ If the record copied into a program by a DML precompiler is a synonym of a schema
record, the DML precompiler treats the synonym as if it were the schema record

(for example, in the BIND statement).

When to use area page counts

Use area page counts (for example, the OFFSET page-count clause) under these
conditions:

■ For records accessed by an area sweep (for example, DIRECT records)

■ To exclude an area's SMP page (if the area has only 1), from the CALC algorithm

Differences between SHARE STRUCTURE/DESCRIPTION clauses

Both SHARE STRUCTURE and SHARE DESCRIPTION cause the schema record to share

the structure of an existing record. The differences between the two are:

■ SHARE DESCRIPTION shares the structure of another schema record; SHARE
STRUCTURE shares the structure of either a dictionary record (IDD record) or
another schema record.

■ SHARE DESCRIPTION additionally copies the nonstructural part of the existing
schema record; SHARE STRUCTURE does not. The nonstructural part is the record
ID, location mode, VSAM type, area, minimum root length, minimum fragment
length, and database procedures associated with the schema record.

RECORD Statement

Chapter 14: Schema Statements 387

SHARE DESCRIPTION must appear first

SHARE DESCRIPTION must be the first clause in the ADD or MODIFY RECORD statement.

Any clauses that follow SHARE DESCRIPTION are applied to the record description as
modifications. Thus, the DBA can share the description of a record that is similar to the
one needed, and code only those clauses that represent differences between the two

records. For this usage, select as shared-record-name a record whose structure is
identical to that needed: while the descriptive part of the record can be changed
directly, the structural part cannot.

Percentage offsets provide most flexibility

Of the page limiting options, OFFSET with percentage specifications is the most flexible.

As a database grows and must eventually be expanded, the physical areas of the
database must also be expanded. If the DBA originally expresses a record type's page
range as a percentage of a physical area, the schema compiler "remembers" the
percentage. Consequently, when the physical area is later expanded, the DBA need not

respecify the record's page range; the schema compiler will automatically assign the
record type to the appropriate percentage of the new physical area.

MINIMUM ROOT/FRAGMENT clauses can apply to fixed-length records

The MINIMUM ROOT LENGTH and MINIMUM FRAGMENT LENGTH clauses also apply to
fixed-length records if those records are being processed by the compression

(IDMSCOMP) and decompression (IDMSDCOM) procedures or IDMS/Presspack. The
schema compiler automatically generates these clauses in response to a PROCEDURE
NAME or DCTABLE NAME clause.

The MINIMUM ROOT LENGTH and MINIMUM FRAGMENT LENGTH clauses are
allowable, but not functional, for native VSAM records.

Storing variable-length records

CA IDMS/DB never stores a variable-length record on a page unless sufficient space

exists for the minimum root, and it never stores fragments smaller than the specified
minimum, except for the last fragment. If MINIMUM ROOT LENGTH IS RECORD LENGTH
is specified and a record occurrence is larger than page size minus 40, CA IDMS/DB

returns an error-status code of 1211 (on a STORE) or 0811 (on a MODIFY). The same is
true if MINIMUM FRAGMENT LENGTH IS RECORD LENGTH is specified and a record
fragment is larger than page size minus 40.

RECORD Statement

388 Database Administration Guide

Modifying the record size can cause fragmentation

Increasing the size of the record occurrence with a runtime MODIFY operation can

necessitate fragmentation even though fragmentation was not specified in the schema.
For example, if MINIMUM ROOT LENGTH IS RECORD LENGTH, CA IDMS/DB stores the
current length of the record without fragmentation. However, if a record occurrence is

later modified to a length that exceeds available page space, it may be fragmented at
that time. Similarly, if MINIMUM FRAGMENT LENGTH IS RECORD LENGTH is specified,
no occurrence of the record is fragmented more than once (root plus 1 fragment) upon
storage, but an occurrence can be further fragmented if its length is increased as a

result of modification.

Considerations for variable-length/-compressed records

For variable and variable-compressed record types, both the MINIMUM ROOT LENGTH
and MINIMUM FRAGMENT LENGTH clauses can be omitted and the defaults taken; CA
IDMS/DB recognizes the record as variable from the OCCURS DEPENDING ON clause in a

record element description (see 14.5, “Element Substatement”).

Note: For documentation purposes, the best practice is to always include both the
MINIMUM ROOT LENGTH and MINIMUM FRAGMENT LENGTH clauses in the description

of all variable-length records if you specify CALL statements for record compression and
decompression.

Considerations for fixed-compressed record types

For fixed-compressed record types, MINIMUM ROOT LENGTH IS CONTROL LENGTH must

be specified explicitly if you use CALL statements to specify IDMSCOMP and IDMSDCOM
for compression and decompression. This will ensure the proper result from the
IDMSCOMP and IDMSDCOM procedures. If neither of the two clauses is specified, the
compression procedures will compress data; however, the record will consume its full,

fixed length in storage.

MINIMUM ROOT and MINIMUM FRAGMENT examples

EXAMPLE 1: CALC and sort control items
 │ │
 ▼ ▼
ADD RECORD NAME IS SKILL ┌─┬────┬────────────────────────────┐
 LOCATION MODE IS CALC └─┴────┴────────────────────────────┘ Total record
 USING SKILL-CODE ┌─┐ ┌─────────────┐ length:
 DUPLICATES NOT ALLOWED └─┘ └─────────────┘ 76 bytes
 WITHIN ORG-DEMO-REGION AREA ▲ ▲
 MINIMUM ROOT LENGTH IS CONTROL LENGTH │ │
 MINIMUM FRAGMENT LENGTH IS RECORD LENGTH. │ │
 ┌─────┘ │
 │ │
 Minimum root Minimum fragment

RECORD Statement

Chapter 14: Schema Statements 389

 Total record length: 900 bytes
 EXAMPLE 2: ┌───┐
 └───┘
 ┌──────────────┐ ┌─────────────┐ ┌──────────┐
 ADD RECORD NAME IS DENTAL-CLAIM └──────────────┘ └─────────────┘ └──────────┘
 LOCATION MODE IS VIA ┌──────────────┐ ┌─────────────┐ ┌──────────┐
 COVERAGE-CLAIMS SET └──────────────┘ └─────────────┘ └──────────┘
 WITHIN INS-DEMO-REGION AREA ┌──────────────┐ ┌─────────────┐ ┌──────────┐
 MINIMUM ROOT LENGTH IS 0 └──────────────┘ └─────────────┘ └──────────┘
 MINIMUM FRAGMENT LENGTH IS 80. ┌──────────────┐ ┌─────────────┐ ┌───┐
 └──────────────┘ └─────────────┘ └───┘
 Minimum fragments

Minimum root and fragment lengths assigned to compressed records

The schema compiler assigns the followi ng minimum root and fragment lengths to the
record definition when it processes a DCTABLE clause or a PROCEDURE NAME clause:

■ MINIMUM ROOT LENGTH IS CONTROL LENGTH

■ MINIMUM FRAGMENT LENGTH IS 4 for variable compressed records

■ MINIMUM FRAGMENT LENGTH IS the lesser of 40 and (record-length -
control-length) for fixed compressed records

You can override the defaults by explicitly coding the MINIMUM ROOT and MINIMUM
FRAGMENT clauses.

Respecify procedure statements if procedure is updated/deleted

If you want to add, modify, or delete a DCT, a standard compression or decompression
procedure or other CALL procedures for a record, all DCTABLE, PROCEDURE, and CALL

clauses must be respecified when you modify the record.

Area procedures needed for IDMSCOMP compression

If any record in the area uses IDMSCOMP and IDMSDCOM for compression and

decompression, the area should have the following database procedure specifications:

CALL IDMSCOMP BEFORE FINISH.

CALL IDMSCOMP BEFORE ROLLBACK.

CALL IDMSDCOM BEFORE FINISH.

CALL IDMSDCOM BEFORE ROLLBACK.

This ensures that the work areas used by the compression and decompression routines
are freed when a rununit terminates.

RECORD Statement

390 Database Administration Guide

Implied CALL statements generated by PROCEDURE NAME

The PROCEDURE NAME clause generates the equivalent of the following CALL

statements, depending on whether the clause specifies COMPRESSION or
DECOMPRESSION:

Procedure CALL statements

COMPRESSION CALL procedure-name BEFORE MODIFY

CALL procedure-name BEFORE STORE

DECOMPRESSION CALL procedure-name AFTER GET

Code as many CALL clauses as necessary

Any number of CALL clauses for as many DML functions as necessary can be specified
for a record, as shown in the following example. If more than one BEFORE, AFTER, or
ERROR procedure is specified for the same function, the procedures are executed in the

order specified.

add record name is insurance-plan

 location mode is calc using code

 duplicates are not allowed

 within area ins-demo-region

 call inrecs after get

 call error-check after get.

Examples

Minimum RECORD statement for an uncompressed record

The following example supplies the minimum RECORD statement required for an

uncompressed record to be a valid schema component:

add record name is employee

 location mode is calc using emp-id

 duplicates are not allowed

 within area emp-demo-region.

 02 emp-id pic xxxx.

RECORD Statement

Chapter 14: Schema Statements 391

Minimum RECORD statement for a fixed-length compressed record

The following example supplies the minimum RECORD statement required for a

fixed-length, compressed record to be a valid schema component:

add record name is job

 location mode is calc using job-id

 duplicates are not allowed

 within area org-demo-region

 procedure name idmscomp is used for compression

 procedure name idmsdcom is used for decompression

 02 job-id pic xxxx.

The above example specifies procedures to call to compress and decompress the JOB
record. By default, the schema compiler supplies a minimum root length and fragment

length for the record. Note that you can also compress and decompress a record by
using CA IDMS Presspack.

Specifying a record synonym

The following example specifies a synonym for a record named DENTAL-CLAIM to be
used by an Assembler program (for which record names must not be longer than eight

characters):

add record name is dental-claim

 location mode is via coverage-claims set

 within ins-demo-region area

 record synonym name for assembler is dntlclm.

Specifying an area percentage offset

Logical area, EMP-DEMO-REGION, has been defined to physical areas within the PROD
and TEST segments. PROD.EMP-DEMO-REGION contains 1000 pages, numbered 1
through 1000, with an additional 500 pages (1001 through 1500) reserved for extending

the physical area. TEST.EMP-DEMO-REGION contains 100 pages, numbered 1501
through 1600.

Record EMPLOYEE is defined to EMP-DEMO-REGION as follows:

add record name is employee

 within area emp-demo-region

 offset 25 percent for 75 percent.

RECORD Statement

392 Database Administration Guide

Using the percentage offset specified for the EMPLOYEE record, the runtime system
calculates the low and high pages for the record in the initial page range of

PROD.EMP-DEMO-REGION:

■ Low page is 251 (1 + (1000 * 25 * .01))

■ High page is 1000 (251 + (1000 * 75 * .01) -1).

For TEST.EMP-DEMO-REGION, the first and last usable page is:

■ Low page is 1526 (1501 + (100 * 25 * .01)

■ High page is 1600 (1526 + (100 * 75 * .01) -1).

When you extend PROD.EMP-DEMO-REGION by 500 pages (page 1 through 1500) using

the percentage offsets specified for the EMPLOYEE record, the runtime system
calculates the record's low and high pages in the extended page range:

■ Low page is 251 (1 + (1000 * 25 * .01)).

■ High page is 1375 (251 + (1500 * 75 * .01) - 1).

CA IDMS/DB will store occurrences of the EMPLOYEE record on pages numbered 251
through 1375 in the PROD.EMP-DEMO-REGION area. If the record's location mode is
CALC, the record will continue to target to its initial page range of 251 through 1000 and

overflow, if necessary, into the extended pages 1001 through 1375.

Specifying a relative page offset for an area

In the following example, physical area ORG-DEMO-REGION in segment PROD contains
240 pages, numbered from 2001 through 2240. The schema des cription of the
DEPARTMENT record is:

add record name is department

 within area org-demo-region

 offset 2 pages for 238 pages.

Using the offset specified for the DEPARTMENT record, the runtime system calculates
the low and high pages for the record as:

■ The low page is 2003 (2001 + 2).

■ The high page is 2240 (2003 + 238 - 1).

Element Substatement

Chapter 14: Schema Statements 393

CA IDMS/DB will store occurrences of the DEPARTMENT record on pages numbered
2003 through 2240 in the PROD.ORG-DEMO-REGION area.

Modifying a record by adding new routines

In the next example, schema record EMPREC is modified by adding two routines to
handle errors that occur when a record is obtained or stored. The code must respecify

the PROCEDURE name clauses for the standard compression and decompression
routines because of the new CALL clauses.

modify record name is emprec

 procedure name is idmscomp is used for compression

 procedure name is idmsdcom is used for decompression

 call errrtn on error during store

 call errget on error during get.

More Information

■ For more information about database procedures, see Chapter 16, “Writing

Database Procedures”.

■ For more information about variable-length records and how they are stored, see
Chapter 36, "Record Storage and Deletion".

■ For more information about CA IDMS Presspack, see the CA IDMS Presspack User

Guide.

Element Substatement

The element substatement associates an element with the record and, if the element
does not already exist, adds the element description to the dictionary. Schema element

descriptions cannot be modified or deleted. To change element descriptions, modify the
record description and respecify all of the record's elements.

Syntax

Element substatement

►►─── level-number element-name ───►

 ►─┬───────────────────────────────┬──►
 └─ REDefines base-element-name ─┘

 ►─┬──────────────────────┬───►
 └─ PICture is picture ─┘

 ►─┬──►
 │┌───┐
 └▼─┬─ VALue is ───┬─┬─ .───┬─ initial-value ──┴───────────────────────────►
 └─ VALues are ─┘ └─ ALL ─┘

Element Substatement

394 Database Administration Guide

 ►─┬──►
 │┌──
 └▼─┬─ VALue is ───┬───── .──
 └─ VALues are ─┘

─►──┬─►
 ───┐ │
 ──┬─┬────────┬─ condition-value ─────────────────────────────────────┬─┴─┘
 │ └─ ALL ──┘ │
 │ ┌──┐ │
 └ (▼ ┬─────┬ condition-value ┬───────────────────────────────┬┴) ─┘
 └ ALL ┘ └ THRu ─┬─────┬ condition-value ┘
 └ ALL ┘

 ►─┬──────────────────────────────────────┬───────────────────────────────────►
 └─ USAge is ─┬─ BIT ─────────────────┬─┘
 ├─┬─ COMPUTATIONAL ─┬───┤
 │ ├─ COMp ──────────┤ │
 │ └─ BINary ────────┘ │
 ├─┬─ COMPUTATIONAL-1 ─┬─┤
 │ ├─ COMP-1 ──────────┤ │
 │ └─ SHOrt-point ─────┘ │
 ├─┬─ COMPUTATIONAL-2 ─┬─┤
 │ ├─ COMP-2 ──────────┤ │
 │ └─ LONg-point ──────┘ │
 ├─┬─ COMPUTATIONAL-3 ─┬─┤
 │ ├─ COMP-3 ──────────┤ │
 │ └─ PACked ──────────┘ │
 ├─┬─ COMPUTATIONAL-4 ─┬─┤
 │ └─ COMP-4 ──────────┘ │
 ├─ CONdition-name ──────┤
 ├─ DISplay ─────────────┤
 ├─ DISplay-1 ───────────┤
 └─ POInter ─────────────┘

 ►─┬────────────────────────────┬───►
 └─ SYNChronized ─┬─────────┬─┘
 ├─ LEFt ──┤
 └─ RIGht ─┘

 ►─┬──►─
 └─ OCCurs ───

─►──┬─►
 ─┬─ occurrence-count times ──┬┘
 └─┬─ occurrence-count ──────┬─ times DEPending on control-element-name ─┘
 └─ 0 TO occurrence-count ─┘

 ►─┬─────────────────┬──►
 └─ JUStify RIGht ─┘

 ►─┬───────────────────┬──►
 └─ BLAnk when ZERo ─┘

 ►─┬───┬──────────────────────►
 └─ SIGn is ─┬─ LEAding ──┬─┬──────────────────────┬─┘
 └─ TRAiling ─┘ └─ SEParate character ─┘

 ►─┬─────────────────────────────────────┬────────────────────────────────────►
 │ ┌─────────────────────────────────┐ │
 └─▼─ element-synonym-specification ─┴─┘

 ►─┬───┬────────────────────────────────►
 └─ INDexed BY ─┬─ index-name ─────────────┤
 │ ┌──────────────┐ │
 └─ (─▼─ index-name ─┴─) ─┘

Element Substatement

Chapter 14: Schema Statements 395

 ►─┬───┬────────────►
 ├─ INDex KEY is ─┬─ index-name ─┬─ ASCending ──┬────────────┬─┤
 │ │ └─ DEScending ─┘ │ │
 │ │ ┌───────────────────────────────┐ │ │
 │ └─ (─▼─ index-name ─┬─ ASCending ──┬─┴─) ─┘ │
 │ └─ DEScending ─┘ │
 └─┬─ ASCending ──┬─ key is ─┬─ index-name ───────────┬────────┘
 └─ DEScending ─┘ │ ┌──────────────┐ │
 └─(─▼─ index-name ─┴) ─┘

 ►─┬──┬─►
 │ ┌──┐ │
 │ │ ┌──────────────────────────┐ │ │
 └─▼─ EDIt ─┬───────────┬─ TABle is (─▼─ 'value'─┬───────────────┴┬) ─┴─┘
 ├─ VALid ◄──┤ └─ THRu 'value' ─┘
 └─ INValid ─┘

 ►─┬──┬─────────►
 │ ┌──┐ │
 │ │ ┌─────────────────────────────────┐ │ │
 └─▼─ CODe TABle is (─▼─ 'encode-value' 'decode-value' ─┴─) ─┴─┘

 ►─┬───────────────────────────────┬──►
 └─ EXTernal PICture is picture ─┘

 ►─┬──┬───────────────────────►◄
 │┌───┐ │
 └▼─┬─ OLQ header ─────┬─ is ─┬─ 'comment-text'─┬─┴─┘
 ├─ CULprit header ─┤ └─ NULl ──────────┘
 ├─ COMments ───────┤
 ├─ DEFinitions ────┤
 └─ comment-key ────┘

Expansion of element-synonym-specification

►►─── element ─┬─ SYNonym name ─┬───►
 └─ name SYNonym ─┘

 ►─── FOR language language is synonym-name ──────────────────────────────────►◄

Element Substatement

396 Database Administration Guide

Parameters

level-number

Indicates the level within the record to be occupied by the element. The level
number must be an unsigned integer in the range 02 through 49, or 88. Level 88

applies to records used with CA ADS or COBOL only. Note that the highest level (01)
in any record description is assigned by CA IDMS/DB to the record itself. The COBOL
and PL/I DML precompi lers can be directed to change the level numbers when the
record is copied into a program (see the language-specific CA IDMS DML reference).

element-name

Identifies the element to be added to the record description. Element-name must
be a 1- to 32-character name. The first character must be A through Z (alphabetic),
digit (0 through 9), #, $, or @ (international symbols). The hyphen can also be used

except as the first or last character, or following another hyphen. Element-name
must not be the same as the schema name or the name of any other component
(including synonyms) within the schema, with the following exceptions:

■ An element name or synonym can be duplicated within a schema, but must be
unique within the record.

■ The special element name FILLER, which can be used on as many levels and as
many times as appropriate, describes an element without naming it. A FILLER

element must not be the object of a REDEFINES clause (a FILLER element can,
however, redefine another element).

REDefines base-element-name

Specifies an alternative description for a previously defined place within the record
structure. At runtime, when a program's storage is allocated, the redefining

element description will not be allocated new storage space but will, instead, be
assigned the same storage as base-element-name. Base-element-name must be the
name of a preceding element of the same level within the record structure. When

used, the REDEFINES clause must adhere to the following rules:

■ The element containing the REDEFINES clause must not be longer than the
base element. Subordinate elements can vary in size, as necessary, within the
redefining element or the base element.

■ The redefining element cannot be a CALC, sort control, or foreign key element;
the base element can be.

Element Substatement

Chapter 14: Schema Statements 397

■ Neither the redefining element nor the base element can be a level -88
description.

■ No intervening element (of the same or lower level number) that assigns space
can exist between the base element and the redefining element. Other
redefining elements, however, are allowed. When an element is redefined

more than once, the redefining elements must refer to the name of the base
element.

■ Neither the redefining element nor its subordinate elements can contain a
VALUE clause, except subordinate level -88 elements.

■ Elements subordinate to the redefining element can contain REDEFINES
clauses.

■ Neither the base or redefining element nor their subordinate elements can
contain OCCURS DEPENDING ON clauses.

■ Elements to which the base and redefining elements are subordinate can
contain OCCURS clauses (without DEPENDING ON). The base element cannot
contain an OCCURS clause, but its subordinate elements can. The redefining

element and its subordinate elements can contain OCCURS clauses.

PICture is picture

Describes an element by depicting the element's length and data type. PICTURE is
not valid for level -88 elements or for elements whose usage is COMPUTATIONAL-1,
COMPUTATIONAL-2, or POINTER; For other types of elements, specify picture as a

1- to 30-character value that includes only those characters specific to the
element's data type. The schema compiler's PICTURE specifications are similar to
those for COBOL. See the "Usage" topic for a description of PICTURE specifications
for valid data types.

VALue is/VALues are

Assigns an initial value or a l ist of values to an element description in the application
program's main storage at program runtime, or it assigns a conditional value or a
l ist of conditional values to a COBOL condition name (level -88 element). All level-88

element descriptions must include the VALUE clause. Enclose listed values in
parentheses.

The VALUE clause has no effect on the database directly; the DBA is encouraged not
to include initial-value in the data descriptions except as background or null values

for use in main storage.

The VALUE clause is prohibited for the following:

■ COMP-1, COMP-2, and BIT element descriptions

■ An element description containing a REDEFINES clause or an element

description subordinate to one containing a REDEFINES clause

■ An element description containing an OCCURS clause or an element description
subordinate to one containing an OCCURS clause

■ An element description of an external floating point number

Element Substatement

398 Database Administration Guide

ALL

Instructs CA IDMS/DB to fi l l the element description with repetitions of initial-value.

For example, PIC X(5) VALUE ALL '*' is the same as PIC X(5) VALUE '*****'.

initial-value

Specifies the initial value assigned to the element at runtime as follows:

■ Character string literal—For alphanumeric elements only: a string of characters
enclosed in site-standard quote characters. The character string (including
quotes) must not exceed the size of the element as defined in the PICTURE
clause or 34 bytes, whichever is shorter.

■ Numeric literal—For numeric elements only: a string of 1 to 18 numeric
characters, optionally preceded by a plus sign (default) or minus sign and
optionally containing a decimal point (use the appropriate decimal point
character as required by the session option for DECIMAL-POINT).

■ Figurative constant—For alphanumeric and numeric elements: ZERO, ZEROS,
and ZEROES. For alphanumeric elements only: SPACE, SPACES, HIGH-VALUE,
HIGH-VALUES, LOW-VALUE, LOW-VALUES, and ALL. ALL is used in conjunction

with and indicates repeated occurrences of a nonnumeric l iteral.

condition-value

Assigns a conditional value to a COBOL condition name (level -88 element). Coding
rules specified for initial-value above also apply to condition-value. Condition-value

must conform to the picture for the element that occupies storage.

THRu condition-value

Specifies a range of valid condition values for COBOL condition names (level 88).
When THRU is used, the first condition-value assigns the first of a range of values
that the condition name will represent at runtime; the second condition-value

assigns the ending value of the range. To list values or ranges of values, enclose the
list in parentheses.

USAge is

Specifies the storage format of data elements. USAGE defaults to
CONDITION-NAME for level-88 elements and to DISPLAY for all others.

Element Substatement

Chapter 14: Schema Statements 399

BIT

Values are stored as bits containing 0s or 1s. Bit elements must always be described

in multiples of 8. (CA IDMS/DB does not provide slack bits.) The multiples of 8,
however, can range over adjacent elements. For example, five bits can be described
in one element and three in the next.

COMPUTATIONAL/COMp/BINary

Numeric values are stored in binary format with the following space requirements:

■ 1 to 4 decimal digits require 2 bytes (1 halfword).

■ 5 to 9 decimal digits require 4 bytes (1 fullword).

■ 10 to 18 decimal digits require 8 bytes (1 doubleword).

COMPUTATIONAL-1/COMP-1/SHOrt-point

Numeric values are stored in internal floating point (short precision) format,
requiring 4 bytes. Do not code a PICTURE clause with this usage.

Note: VS2 COBOL does not support COMPUTATIONAL-1.

COMPUTATIONAL-2/COMP-2/LONg-point

Numeric values are stored in internal floating point (long precision) format,
requiring 8 bytes. Do not code a PICTURE clause with this usage.

Note: VS2 COBOL does not support COMPUTATIONAL-2.

COMPUTATIONAL-3/COMP-3/PACked

Numeric values are stored in packed decimal format, requiring a half byte for each
decimal digit plus a half byte for a sign, rounded up to the next full byte.

CONdition-name

The element does not occupy storage. CONDITION-NAME is assumed if level 88 is
specified for the element. Note that CONDITION-NAME can be used in CA ADS
dialogs and COBOL programs only. Do not code a PICTURE clause with this usage.

DISplay

Values are stored 1 character to a byte, according to EBCDIC conventions.

DISplay-1

One character occupies 2 bytes. DISPLAY-1 must be specified for double-byte

character string (DBCS) data items.

Element Substatement

400 Database Administration Guide

POInter

Values are stored as fullwords. POINTER is used for elements tha t are to be used as

address constants. Do not code a PICTURE clause with this usage.

SYNChronized

Documents the following alignments for usages of COMP, COMP-1, and COMP-2:

■ COMP—Halfword (1 to 4 decimal digits) or fullword (5 to 18 decimal digits)
alignment

■ COMP-1—Fullword alignment

■ COMP-2—Doubleword alignment

The SYNCHRONIZED specification does not force alignment, but rather documents
user-imposed alignment. If synchronized is specified, fi l ler elements must be used
to align numeric data according to the above rules.

OCCurs occurrence-count times

Specifies the number of times that the element is to be repeated. Occurrence-count

must be an unsigned integer in the range 1 through 32,767. Individual occurrences
of the element are referenced in application programs by placing a subscript after
the element name.

Observe the following rules when using the OCCURS clause:

■ An element containing an OCCURS clause cannot be a CALC, sort control, or
foreign key element, nor can an element subordinate to an element containing
an OCCURS clause be a CALC, sort control, or foreign key element.

■ Neither an element containing an OCCURS clause nor an element subordinate
to an element containing an OCCURS clause can contain a VALUE clause.

■ OCCURS clauses can be nested no more than three deep for use in COBOL
programs. Otherwise, any depth of nesting is permissible.

Element Substatement

Chapter 14: Schema Statements 401

occurrence-count times DEPending on control-element-name

Defines a control element within the record that determines the actual number of

times the COBOL element will occur.

Occurrence-count must be an integer in the range 1 through 32,767.
Control-element-name must identify an elementary data element that precedes the

element being defined in the record. It must be defined as a signed computational
element with a picture in the range S9 through S9(9) or 9 through 9(9). Runtime
values of control-element-name must be in the range 0 through 32,767 (but not
exceeding occurrence-count).

Individual OCCURS DEPENDING ON elements are referenced in the same fashion as
individual OCCURS elements. Observe the same rules as for the OCCURS clause with
the following additions:

■ Only one OCCURS DEPENDING ON clause can appear in a record description.

The group or elementary item description containing the clause must be the
last one in the record description (that is, no element description with the
same or lower level number can follow an OCCURS DEPENDING ON element).

■ Control-element-name cannot contain an OCCURS or REDEFINES clause, nor can
it be subordinate to elements that do.

■ The element containing an OCCURS DEPENDING ON clause can have
subordinate elements that contain OCCURS clauses.

0 to occurrence-count times DEPending on control-element-name

Indicates that the multiply-occurring group occurs from 0 to occurrence-count times
depending on the value of the control -element. Rules for occurrence-count and
control-element-name appear above.

JUStify RIGht

Specifies that when the element's runtime value is not as long as the element's
picture allows, the value will occupy the rightmost positions of the element. JUSTIFY
RIGHT is valid for alphanumeric or alphabetic elements only (group item or one

whose PICTURE is specified with Xs or As).

BLAnk when ZERo

Specifies that when the element's runtime value is zero, the value will be changed
to spaces.

SIGn is LEAding

Specifies that the sign of a numeric field is to appear in the leading position. This
clause is valid for numeric display elements only.

Element Substatement

402 Database Administration Guide

SIGn is TRAiling

Specifies that the sign of a numeric field is to appear in the trail ing position. This

clause is valid for numeric display elements only.

SEParate character

Causes the sign of a numeric field to appear as a separate byte. This clause is valid

for numeric display elements only.

element-synonym-specification

Associates a synonym (alternative name) with the element specified in the
ELEMENT substatement. These synonyms are language dependent: each DML

precompiler will automatically include the synonym associated with the
compiler-specific programming language.

language

Specifies the host language with which the synonym will be used. Valid values are

any languages associated with the record's synonyms.

synonym-name

Specifies the name of the synonym to be associated with the primary element

name; it must be specified according to the rules for the host language with which
the synonym is being used and must follow the rules specified above for element
names.

INDexed BY index-name

Defines an index to be used at runtime for a multiply-occurring element (that is,

one whose definition contains an OCCURS or OCCURS DEPENDING ON clause). This
index is used in COBOL SET and SEARCH operations, and is therefore used as a
subscript when accessing the associated OCCURS or OCCURS DEPENDING ON
element.

Index-name must be a 1- to 30-character name; the characters can be A through Z
(at least one), 0 through 9, or the hyphen (except as the first or last character or
following another hyphen). It cannot duplicate any element named in the schema.

Index-name is implicitly defined as a fullword binary item.

You can specify more than one index by creating a l ist of names enclosed in
parentheses.

Element Substatement

Chapter 14: Schema Statements 403

INDex KEY is index-name

Specifies one or more record-specified index keys for a multiply-occurring group

record element or a subordinate record element. Index-name identifies an
elementary element that is subordinate to the associated element. It must be the
primary name of the subordinate element; it cannot be a synonym.

You can specify more than one index key by creating a l ist enclosed in parentheses.
Each key can be either ascending or descending.

Note that the INDEX KEY clause allows a mixed collating sequence (that is, a mixture
of ascending and descending keys); the ASCENDING/DESCENDING KEY IS clause

does not.

ASCending

Sorts the designated key in ascending order.

DEScending

Sorts the designated key in descending order.

ASCending/DEScending KEY is index-name

Specifies one or more record-specific index keys for the multiply-occurring group
element or subordinate element.

Index-name must be the primary name of an element that is subordinate to the
named group element. ASCENDING and DESCENDING sorts the subordinate
elements within a multiply-occurring field in ascending or descending order,
respectively.

You can specify more than one index key by creating a l ist enclosed in parentheses.

EDIT TABle is

Specifies an edit table associated with the record element. An edit table contains a
l ist of valid or invalid values for the record element used by the DC/UCF mapping

facil ity.

VALid

Indicates the edit table contains valid values for the record element. VALID is the
default.

INValid

Indicates the edit table contains invalid values for the record element.

'value'

Specifies a value for the edit table. Value is a 1- to 34-character value enclosed in
quotes. Separate one value from another with a blank or comma; for example, ('A'

'E' 'G' THRU 'M' 'X').

THRu 'value'

Specifies a range of values for the edit table.

Element Substatement

404 Database Administration Guide

CODe TABle is

Specifies a translation table to be associated with the record element; for example,

a record element containing state abbreviations could have a code table that
identifies the name of the state:

code table is ('ak' 'alaska' 'al' 'alabama' 'ar' 'arkansas'...)

Code tables are used by the DC/UCF mapping facil ity.

'encode-value'

Identifies the value to be translated. Encode-value is a 1- to 34-character value
enclosed in quotes.

'decode-value'

Identifies the translated value. Decode-value is a 1- to 64-character value enclosed
in quotes. Null values ('') and NOT FOUND are also valid.

EXTernal PICture is picture

Defines the display format for record-element data. The picture is available to all
map fields that use the record element.

OLQ header

Defines one or more column headers to be used in place of the element name in CA
OLQ reports.

CULprit header

Defines one or more column headers to be used in place of the element name in CA
Culprit reports.

COMments

Defines comments to be associated with the element description.

DEFinitions

Defines a description of use or purpose for the record element

comment-key

Defines a user-supplied name to be associated with comments about the record

element. If comment-key contains embedded blanks or delimiters, enclose it in
quotes.

Element Substatement

Chapter 14: Schema Statements 405

comment-text

Specifies text associated with headings, definitions, or comments. Comment-text

can be any length; nonnumeric l iterals must be enclosed in quotes. Note, however,
that when coding headers, the rules for header definition must be applied to
comment-text. See the CA OLQ Reference Guide or the CA Culprit for further details.

Comment-text can be continued for any number of l ines. To continue a header or
comment to the next l ine, code a hyphen in the next l ine, and code a quote
followed by the text of the continued comment after the hyphen. Code a closing
quote after the text of the final l ine.

Comments appear in schema source listings and subschema dictionary l istings, and
in DML listings when the SCHEMA-COMMENTS option is specified to the DML
precompiler.

NULl

Removes text associated with headings, definitions, or comments.

Usage

Naming Elements

When naming schema element types, be sure that the selected names conflict neither

with the naming conventions of the programming language(s) that will be used with the
CA IDMS Data Manipulation Language (DML) nor with the DML precompilers
themselves. As a rule, schema element types should bear names that coincide with the

language used most often; use element synonyms to accommodate other languages
(see the ELEMENT SYNONYM NAME clause later). In addition to the element naming
rules stated above, consider the following points when selecting names (or synonyms)
for schema element types:

■ Assembler names should not exceed eight bytes in length and should not contain
hyphens. When the Assembler DML precompiler (IDMSDMLA) generates a DC or
DSECT from a schema element description, it uses the element name as the DC or

DSECT name. If the element name exceeds eight bytes in length, IDMSDMLA
truncates it, possibly causing duplicate names to appear in the program.

■ COBOL requires names that do not exceed 30 bytes in length and do not contain
the characters #, $, or @. When the COBOL DML precompiler (IDMSDMLC)

generates a field description from a schema element description, it uses the
element name as the field name. If the element name exceeds 30 bytes in length,
IDMSDMLC truncates it, possibly causing duplicate names to appear in the program.

■ PL/I requires names that do not exceed 31 bytes in length and do not contain
hyphens. When the PL/I DML precompiler (IDMSDMLP) generates a data field
declaration from a schema element description, it changes hyphens in the element
name to underscores. If the element name exceeds 31 bytes in length, IDMSDMLP

truncates it, possibly causing duplicate names to appear in the program.

Element Substatement

406 Database Administration Guide

SQL synonyms

When using SQL to access a non-SQL defined database, each record in the non-SQL

schema is accessed as a table. The name of a column of the table is either:

■ The element synonym for language SQL, if one exists

■ The element name within the schema record

In either case, hyphens within the name are converted to underscores so that it does
not have to be enclosed in quotes within SQL statements.

Elements which occur a fixed number of times within the record have a suffix appended
to their name to distinguish occurrences. The suffix is composed of occurrence numbers
for each level of nested occurs. For example, if element QUARTERLY-QUOTA occurs 4

times, the corresponding column names are:

■ QUARTERLY_QUOTA_1

■ QUARTERLY_QUOTA_2

■ QUARTERLY_QUOTA_3

■ QUARTERLY_QUOTA_4

If QUARTERLY_QUOTA is a sub-element within element ANNUAL- SALES which occurs 3
times, the corresponding column names would be:

■ QUARTERLY_QUOTA_1_1...QUARTERLY_QUOTA_1_4

■ QUARTERLY_QUOTA_2_1...QUARTERLY_QUOTA_2_4

■ QUARTERLY_QUOTA_3_1...QUARTERLY_QUOTA_3_4

Since column names are restricted to 32 characters, it may be necessary to define an
SQL synonym for a multiply occurring element so that CA IDMS/DB can append the

required suffix.

Function of element level numbers

The function of level numbers 02 through 49 is to create a hierarchy among the element
descriptions for a record so that a programmer can, with a single reference, access
elements discretely or in groups. The technique is to follow an element description of

one level with element description(s) of a higher numbered level. For example, a level
03 element is subordinate to a level 02 element.

Element Substatement

Chapter 14: Schema Statements 407

Group items and elementary items

A group item contains two or more subordinate elements. A DML reference to a group

item gains access to all subordinate items. A subordinate item can, in turn, be a group
item, with nesting permitted until level 49 is reached (unless otherwise excepted). An
item description that has no subordinate items is called an elementary item.

The following example outlines the element descriptions for the EMPLOYEE record:

02 EMP-ID... elementary item

02 EMP-NAME... group item

 03 EMP-FNAME... elementary items subordinate

 03 EMP-LNAME... to EMP-NAME

02 EMP-SEX... elementary item

02 EMP-ADDRESS... group item

 03 EMP-STREET... elementary items subordinate

 03 EMP-CITY... to EMP-ADDRESS

 03 EMP-STATE...

 03 EMP-ZIP... group item subordinate to

 EMP-ADDRESS

 04 EMP-ZIP-FIRST-5... elementary items subordinate

 04 EMP-ZIP-LAST-4... to EMP-ZIP

Minimum element substatements

The minimum element substatement required for the element to be a valid schema
component depends on whether the element is a group or elementary item:

■ Group items require level number and name only.

■ Elementary items require level number, name, and picture (or usage, where the
item's usage prohibits picture specification).

PICTURE formats for alphanumeric data

Alphanumeric data is described by the following characters:

■ X—The character X represents one alphanumeric character. Note, however, that if

USAGE IS BIT (see the USAGE clause in this section), X represents one bit.

■ (n)—An integer in parentheses can be placed after an X to represent n repetitions
of the alphanumeric character (for example, X(4) means XXXX).

PICTURE formats for alphabetic data

Alphabetic data is described by the following characters:

■ A—The character A represents one alphabetic character (A through Z and space
only).

■ (n)—An integer in parentheses can be placed after an A to represent n repetitions
of the alphabetic character (for example, A(4) means AAAA).

Element Substatement

408 Database Administration Guide

PICTURE formats for DBCS edited data

For DBCS edited data, the PICTURE character string can contain these symbols:

Symbols Description

G Each G represents a single DBCS character position (two bytes). When

you use this picture, the element USAGE clause must specify
DISPLAY-1. Any associated VALUE clause must specify a GRAPHIC literal
or the figurative constant SPACES.

B Each B represents the position used for a space character.

In the following example, the DBCS value represents a string of up to five characters. So
and si represent the shift-out and shift-in characters, respectively:

02 zip-code pic g(5) usage display-1

 value g'sodbcs-valuesi'.

PICTURE formats for fixed decimal data

Fixed decimal data is described by the following characters:

■ 9—The character 9 represents one numeric character.

■ (n)—An integer in parentheses can be placed after a 9 to represent n repetitions of
the numeric character (for example, 9(4) means 9999).

■ V—The character V represents an assumed decimal point. No more than one V can

appear in an element picture. If the V is omitted and P is not used, the assumed
decimal point is after the rightmost 9.

■ P—The character P represents an assumed zero. Any number of Ps can be placed in
the leftmost or rightmost (but not both) positions of an element picture. An

assumed decimal point is automatically placed before the first P when the Ps are
leftmost and after the last P when the Ps are rightmost.

■ S—The character S indicates that the number is maintained as either positive or
negative. When used, the S must be the first character in the element picture.

When the S is omitted, values for the element description are considered positive.

PICTURE formats for external floating point data

External floating point data is described in two parts: the mantissa, which represents
the decimal part (fractional part) of the element, and the exponent, which represents

the power of 10 to which the base of one (1) must be raised before being multiplied by
the mantissa to determine the element's actual value.

Syntax for the floating point picture is shown next:

►►─┬─ + ─┬─ mantissa E ─┬─ + ─┬─ exponent ────────────────────────────────────►◄
 └─ - ─┘ └─ - ─┘

Element Substatement

Chapter 14: Schema Statements 409

Symbol Description

+/- The plus sign or the minus sign indicates whether the mantissa is
positive or negative.

mantissa The numeric part of the mantissa is described by the following

characters: 9, which represents one numeric character; (n), following
a 9, which represents n repetitions of the numeric character; and V,
which represents an assumed decimal point.

At least one 9 is required. No more than one V can appear in the

mantissa; if the V is omitted, the assumed decimal point is after the
rightmost 9.

E The character E signifies the beginning of the exponential portion of
the picture.

+/- The plus sign or the minus sign indicates whether the exponent is
positive or negative.

exponent The numeric part of the exponent is described by the following

characters: 9, which represents one numeric character; and (n),
following a 9, which represents n repetitions of the numeric
character.

At least one 9 is required; no more than two 9s (or the equivalent

9(2)) can be coded.

Element Substatement

410 Database Administration Guide

PICTURE formats for numeric edited data

Numeric edited data i s described by using the numeric data characters described above,

along with the following editing characters:

Z + ,

B CR -

0 DB *

$.

These characters represent edit symbols used in reporting data; quotes are not
required. For the individual interpretations of these symbols, refer to the appropriate

programming language manual.

Note that if the current decimal point default is DECIMAL-POINT IS COMMA, a period (.)
is interpreted as an insertion character and a comma (,) is interpreted as a decimal
point.

Data formats described only in elementary items

The actual formats of data can be described only in elementary items. Consequently,
the PICTURE, USAGE (except BIT), SYNCHRONIZED, BLANK WHEN ZERO, and SIGN
clauses are prohibited in group element descriptions. During programming operations,

however, data is accessible not only through its elementary item description, but also
through all group items under which it falls. The element EMP-ADDRESS, for example,
could be referred to directly in a program.

COBOL condition names

The function of level number 88 is to assign COBOL condition names to specific runtime
values of an element. A level 88 element does not occupy storage at runtime: it merely
provides a name for a particular value that the preceding element's (level 02 through

49) runtime storage may contain. The name of the level -88 element is known as a
condition name. A level -88 ELEMENT substatement must immediately follow either the
substatement describing the element for which the level -88 element provides a

condition name or another level 88 ELEMENT substatement. The following example
il lustrates the description of a level -88 element; see the presentation of the VALUE
clause for further details:

add record name is expertise

 .

 .

 .

 02 skill-level-0425 picture is xx.

 88 expert-0425 usage is condition-name

 value is '04'.

 88 proficient-0425 usage is condition-name

 value is '04'.

 88 competent-0425 usage is condition-name

 value is '04'.

Element Substatement

Chapter 14: Schema Statements 411

 88 elementary-0425 usage is condition-name

 value is '04'.

Usage clause restrictions for PICTURE clause data types

Alphanumeric, alphabetic, external floating point, and numeric edited descriptions must
always have a usage of DISPLAY. Fixed decimal element descriptions can have a usage of

DISPLAY, COMP, COMP-3, or COMP-4.

The exact runtime characteristics of an element depend not only on the PICTURE
specification, but also on other specifications for the element's format, such as USAGE.
The following table i l lustrates several PICTURE specifications in combination with VALUE

specifications.

Usage Picture Sample Value Storage Requirements

DISPLAY X(5) T0241 5 bytes

 X(10) JUNE 10 bytes—Padded on right with blanks

 9(7) 2376600 7 bytes

 9(10) 2376600 10 bytes—Padded on left with zeros

 9(7)V99 2376600.59 9 bytes—Assumed decimal point
requires no space

 9(5)PP 2376600 5 bytes—Assumed zeros require no

space

 +99E-9 .0000059 6 bytes

DISPLAY-1 G(5) DBCS

character

string

10 bytes

COMP 9(4) 2376 2 bytes

 9(7)V99 2376600.59 4 bytes

COMP-1 none 2376600.59 4 bytes

COMP-2 none 2376600.59 8 bytes

COMP-3 9(7) 2376600 4 bytes

 9(7)V99 2376600.59 5 bytes

BIT X 1 1 byte

 X(7) FILLER

Element Substatement

412 Database Administration Guide

How the COBOL DML precompiler handles bit elements

When a COBOL program copies a record that contains a bit element, the DML

precompiler does the following:

■ If the bit element starts on a byte boundary, it assigns a usage of DISPLAY and a
picture of X(n); n is the number of bytes before the next bit item that starts on a

byte boundary.

■ If the bit element does not start on a byte boundary, it is not reflected in the COBOL
program.

Element storage characteristics due to usage and picture

The following table i l lustrates how values are stored with different us ages.

Usage Alphanumeric Value Internal Representation in hexadecimal

DISPLAY BILL BALL C2 C9 D3 D3 40 C2 C1 D3 D3

DISPLAY 4857964 F4 F8 F5 F7 F9 F6 F4

COMP 4857964 00 4A 20 6C

COMP-1 4857964 40 4A 20 6C

COMP-2 4857964 40 00 00 00 00 4A 20 6C

COMP-3 4857964 48 57 96 4C

BIT B'11110000' F0

POINTER 4857964 00 4A 20 6C

OCCURS DEPENDING ON creates variable-length records

The OCCURS DEPENDING ON clause makes a record variable in length. If the MINIMUM
ROOT LENGTH and/or MINIMUM FRAGMENT LENGTH clauses are not included in the

record description, the defaults (CONTROL LENGTH and four bytes) are assigned. The
total space required in main storage for a variable-length record is:

main storage space = F + (V * M)

 where F = the length of the record's fixed

 portion

 V = the length of one occurrence of

 the record's variable portion

 M = the maximum number of times the control element

 can occur

Element Substatement

Chapter 14: Schema Statements 413

For example, the total main storage required for the ABRIDGED-DENTAL-CLAIM record
described next under "Examples" is 20 + 15 + 2 + 9 + 2 + ((2 + 2 + 2 + 2) * 10) = 128

bytes. The actual size of a specific occurrence of the record (data portion) as stored in
the database, however, is as follows:

database storage space = F + (V * C)

 where F = the length of the record's fixed

 portion

 V = the length of one occurrence of

 the record's variable portion

 C = the value of the control element

 in the specific record occurrence.

A value of 2 for DC-NUMBER-OF-PROCEDURES, for example, indicates two DC-DENTIST

elements and a record length of 20 + 15 + 2 + 9 + 2 + ((2 + 2 + 2 + 2) * 2) = 64 bytes.

SQL Considerations

If you intend to use SQL to access the data described by a non-SQL schema record,
consider the following when designing your record elements:

■ Group elements are not visible as columns in SQL, but elementary items within

group elements are

■ Fillers, condition names, redefining elements and elements subordinate to
redefining elements are not visible as columns

■ Elements containing an OCCURS DEPENDING ON clause and elements subordinate

to such an element are not visible as columns

■ The datatype of a column is derived from the picture and usage of the
corresponding element as follows:

Picture and Usage Data Type

PIC X(n) usage DISPLAY CHAR(n)

PIC A(n) usage DISPLAY CHAR(n)

Numeric edited1 CHAR(l), l=byte length

External floating point2 CHAR(l), l=byte length

PIC G(n) usage DISPLAY GRAPHIC(n)

PIC S9(t)V9(s) usage DISPLAY NUMERIC(t+s,s)

PIC SP..9(p) usage DISPLAY3 NUMERIC(p,p)

PIC S9(p)P.. usage DISPLAY3 NUMERIC(p,0)

PIC 9(t)V9(s) usage DISPLAY UNSIGNED NUMERIC(t+s,s)

Element Substatement

414 Database Administration Guide

Picture and Usage Data Type

PIC P..9(p) usage DISPLAY3 UNSIGNED NUMERIC(p,p)

PIC 9(p)P.. usage DISPLAY3 UNSIGNED NUMERIC(p,0)

PIC S9(t)V9(s) usage COMP-3 DECIMAL(t+s,s)

PIC SP..9(p) usage COMP-33 DECIMAL(p,p)

PIC S9(p)P.. usage COMP-33 DECIMAL(p,0)

PIC 9(t)V9(s) usage COMP-3 UNSIGNED DECIMAL(t+s,s)

PIC P..9(p) usage COMP-33 UNSIGNED DECIMAL(p,p)

PIC 9(p)P.. usage COMP-33 UNSIGNED DECIMAL(p,0)

PIC S9(n), n<5 usage COMP4 SMALLINT

PIC S9(n), 4<n<10 usage COMP4 INTEGER

PIC S9(n), 9<n usage COMP4 LONGINT

PIC 9(n) usage COMP4 BINARY(l), l=byte length

PIC X(n) usage BIT BINARY(l), l=byte length

USAGE POINTER BINARY(4)

USAGE COMP-1 REAL

USAGE COMP-2 DOUBLE PRECISION

1. Numeric edited includes any element whose usage is DISPLAY and:

■ Whose picture contains any of the editing symbols: + - Z B 0 $ CR DB . , *

■ Whose picture clause contains only the symbols: 9 (n) V S P but whose element

description also includes the SIGN LEADING or SEPARATE CHARACTER
specification

2. External floating point includes any element whose usage is DISPLAY and whose

picture is: +/- mantissa E +/- exponent

3. The scaling character "P" in a picture clause is ignored in value representations of
associated columns. This has the effect of representing values of such columns as a
power of 10 greater than or smaller than their actual value. For example, if an element

is described as PIC S9(5)PPP, a value of 123000 will be represented in SQL as 123. If an
element is described as PIC SPPP9(5), a value of .000123 will be represented in SQL as
.123.

Element Substatement

Chapter 14: Schema Statements 415

4. Computational elements also include those whose USAGE is BINARY and COMP-4. If
the picture of a computational item includes an implied decimal point, it is ignored in

determining the data type of the column. This has the effect of representing values of
such columns as a power of 10 greater than their actual values. For example, if an
element is described as PIC S9(5)V99 USAGE COMP, a value of 123.56 will be

represented in SQL as 12345.

Elements whose usage is BIT are not represented by columns except as noted:

■ Group elements in which all subordinate elements have a usage of BIT and
which start on a byte boundary are represented by columns with a data type of

BINARY. The length of the column is the length in bytes from the start of the
group element to the start of the next element at the same level which begins
on a byte boundary. If groups are nested within groups, the group element
with the lowest level number in which all subordinate elements are bits is the

element represented by a column. Intervening and subordinate elements are
not represented by columns.

■ BIT elements occurring a fixed number of times and beginning on a byte

boundary are represented by columns with a data type of BINARY. The length
of the column is the length in bytes from the start of the element to the start of
the next element at the same level which also begins on a byte boundary.
Intervening elements are not represented by columns.

■ Other BIT elements which begin on a byte boundary are represented by
columns with a data type of BINARY. The length of the column is the length in
bytes from the start of the element to the start of the next element at the

same level which also begins on a byte boundary. Intervening elements are not
represented by columns.

Examples

Minimum element substatement

Minimal ELEMENT substatements are i l lustrated next:

02 claim-date.

 03 claim-year picture 99.

 03 claim-month picture 99.

 03 claim-day picture 99.

A valid element description also requires usage information. In the above example, the
schema compiler defaults to assign USAGE IS DISPLAY to each element.

Element Substatement

416 Database Administration Guide

Redefining the same element storage area

In the following example, one record type holds data relating to four different types of

facil ities and, accordingly, requires four definitions of the same storage area:

modify record name is facility.

 02 fc-id pic x(4).

 02 fc-lunchroom.

 03 fc-l1-length pic 99.

 03 fc-l1-width pic 99.

 03 fc-l1-tables pic 99.

 03 fc-l1-seats pic 9(4).

 03 fc-l1-pots pic 99.

 02 fc-lounge redefines fc-lunchroom.

 03 fc-l2-chairs pic 99.

 03 fc-l2-ashtrays pic 99.

 03 fc-l2-tables pic 99.

 03 filler pic 9(6).

 02 fc-emp-library redefines fc-lunchroom.

 03 fc-l3-desks pic 99.

 03 fc-l3-tables pic 99.

 03 fc-l3-bookcases pic 99.

 03 fc-l3-mag-racks pic 99.

 03 filler pic 9(4).

 02 fc-hallway redefines fc-lunchroom.

 03 fc-h-length pic 99.

 03 fc-h-width pic 99.

 03 filler pic 9(8).

Base-element-name cannot contain OCCURS clause

In the following example, any element except EXP-SKILL-DATE-N can contain an OCCURS
clause:

05 exp-skill-date.

 10 exp-skill-date-n.

 15 exp-skill-year-n pic 99.

 15 exp-skill-month-n pic 99.

 15 exp-skill-day-n pic 99.

 10 exp-skill-date-x redefines exp-skill-date-n.

 15 exp-skill-year-x pic 99.

 15 exp-skill-month-x pic 99.

 15 exp-skill-day-x pic 99.

Element Substatement

Chapter 14: Schema Statements 417

Group elements have implied pictures

In this example, group elements, COV-SELECT-DATE and COV-TERMIN-DATE have

implied pictures of X(6). Group elements have implied pictures of X(n), where n equals
the total number of bytes required by all subordinate elements.

modify record name is coverage.

 02 cov-select-date.

 02 cov-select-year pic 99.

 02 cov-select-month pic 99.

 02 cov-select-day pic 99.

 02 cov-termin-date.

 02 cov-termin-year pic 99.

 02 cov-termin-month pic 99.

 02 cov-termin-day pic 99.

 02 cov-type pic x.

 02 cov-insplan-code pic xxx.

Assigning condition values to level-88 elements

These two examples show different ways of assigning condition values for the same
record definition:

■ Example 1:

modify record name is structure.

 02 struct-code pic xx.

 88 president value 'a1'.

 88 sr-vice-president value 'a2'.

 88 vice-president value 'a3'.

 88 sr-manager value 'b1'.

 88 mid-manager value 'b2'.

 88 lower-manager value 'b3'.

 88 supervisor value 'c1'.

 88 senior value 'd1'.

 88 regular value 'd2'.

 88 trainee value 'd3'.

 02 struct-effective-date.

 03 struct-effect-year pic 99.

 03 struct-effect-month pic 99.

 03 struct-effect-day pic 99.

Element Substatement

418 Database Administration Guide

■ Example 2:

modify record name is structure.

 02 struct-code pic xx.

 88 president value 'a1'.

 88 vice-presidents value ('a2' 'a3').

 88 managers value 'b1' thru 'b3'.

 88 supervisor value 'c1'.

 88 technicians value ('d1' 'd2' 'd3').

 02 struct-effective-date.

 03 struct-effect-year pic 99.

 03 struct-effect-month pic 99.

 03 struct-effect-day pic 99.

In a COBOL program using this record description, the following statements have the

same meaning:

if president then perform 0500-bigwig.

if struct-code = 'a1' then perform 0500-bigwig.

Variable-length record description

The following example describes a variable number of DC-DENTIST-CHARGES elements
within the ABRIDGED-DENTAL-CLAIM record type:

modify record name is abridged-dental-claim.

 02 dc-dentist-address.

 03 dc-dent-street pic x(20).

 03 dc-dent-city pic x(15).

 03 dc-dent-state pic xx.

 03 dc-dent-zip pic x(9).

 02 dc-number-of-procedures pic 99 comp.

 02 dc-dentist-charges occurs 0 to 10 times

 depending on

 dc-number-of-procedures.

 03 dc-tooth-number pic 99.

 03 dc-service-date.

 03 dc-serv-year pic 99.

 03 dc-serv-month pic 99.

 03 dc-serv-day pic 99.

Element Substatement

Chapter 14: Schema Statements 419

Repeating group items

The following example defines eight occurrences of the DC-CLAIM-DATE element:

02 dc-claim-date occurs 8 times.

 03 dc-claim-year pic 99.

 03 dc-claim-month pic 99.

 03 dc-claim-day pic 99.

The total length of all DC-CLAIM-DATE elements is 8 * (2 + 2 + 2) = 48 bytes. To
reference the second DC-CLAIM-DATE element, the programmer can code
DC-CLAIM-DATE(2) or DC-CLAIM- DATE(subscript), where subscript is an elementary

item that contains the value 2. To reference only the DC-CLAIM-MONTH element of the
second DC-CLAIM-DATE element, the programmer can code DC-CLAIM-MONTH(2) or
DC-CLAIM-MONTH(subscript).

The previous example can be expanded as follows to include a second level of

multiply-occurring elements:

02 dc-claim-date occurs 8 times.

 03 dc-claim-year pic 99.

 03 dc-claim-month pic 99.

 03 dc-claim-day pic 99.

 03 dc-claim-time occurs 6 times.

 05 dc-claim-hour pic 9.

 05 dc-claim-am-or-pm pic xxxx.

The total length of the DC-CLAIM-DATE element now is 8 * ((2 + 2 + 2) + (6 * (1 + 4))) =
288 bytes. To refer to the fourth DC-CLAIM-TIME element subordinate to the second
DC-CLAIM-DATE element, the programmer can code DC-CLAIM-TIME(2,4) or

DC-CLAIM-TIME(subscript-1, subscript-2), where subscript-1 is an elementary item that
contains the value 2 and subscript-2 is an elementary item that contains the value 4.

Indexing a multiply-occurring element

In the following example, the DC-DENTIST-CHARGES element defines an index named

DCX:

02 dentist-charges-0405

 occurs 0 to 10 times

 depending on number-of-procedures-0405

 indexed by dcx.

COPY ELEMENTS Substatement

420 Database Administration Guide

Associating comments with element descriptions

The following example il lustrates the use of element comments in the COVERAGE

record:

modify record name is coverage.

 02 cov-select-date.

 02 cov-select-year pic 99.

 02 cov-select-month pic 99.

 02 cov-select-day pic 99.

 02 cov-termin-date.

 02 cov-termin-year pic 99.

 02 cov-termin-month pic 99.

 02 cov-termin-day pic 99.

 02 cov-type pic x.

 comments 'this is the type assigned to the coverage by

 - 'our company''s insurance professionals'.

 02 cov-insplan-code pic xxx.

 comments 'this is the code assigned to the coverage by

 - 'the insurance company'.

More Information

■ For more information about mixing element substatements with the COPY
ELEMENTS substatements, see "Usage" under COPY ELEMENTS.

■ For more information about code tables and external pictures, see the CA IDMS
Mapping Facility Guide.

COPY ELEMENTS Substatement

The COPY ELEMENTS substatement requests inclusion of all elements from a record

description already stored in the dictionary. The record description may have been
stored through another schema or the IDD DDDL compiler. COPY ELEMENTS can be used
in place of ELEMENT substatements to define all of the record's elements or only some
of them. When COPY ELEMENTS supplies some of the record's elements, use ELEMENT

substatements to supply the rest.

Unlike the SHARE clause of the RECORD statement, COPY ELEMENTS generates a new
copy of the record structure for record-name (the object of the ADD or MODIFY).

COPY ELEMENTS Substatement

Chapter 14: Schema Statements 421

Syntax

COPY ELEMENTS substatement

►►─── COPy ELements from record base-record-name ─────────────────────────────►

 ►─┬──┬───────────────►◄
 ├─ version-specification ──────────────────────────────────┤
 └─ of SCHema base-schema-name ─┬─────────────────────────┬─┘
 └─ version-specification ─┘

Parameters

COPy ELements from record base-record-name

Identifies the record whose structure is to be copied into the description of
record-name (the object of the ADD or MODIFY). Copied elements have the same

level numbers in record-name that they have in the base record.

Base-record-name must identify a record already defined in the dictionary and can
be a primary name or a synonym (as described under "RECORD statements," in this
chapter).

version-specification

Uniquely qualifies base-record-name with a version number. The default is the
current session option for existing versions.

Note: Expanded syntax for version-specification is presented in Chapter 13,
“Parameter Expansions".

of SCHema base-schema-name

Qualifies descriptions of records that participate in a schema. Base-schema-name
must be the name of a schema, already defined in the dictionary, in which

base-record-name participates.

version-specification

Uniquely qualifies base-schema-name with a version number. The default is the
current session option for existing versions.

Note: Expanded syntax for version-specification is presented in Chapter 13,
“Parameter Expansions".

COPY ELEMENTS Substatement

422 Database Administration Guide

Usage

Mixing Element and COPY ELEMENTS Substatements

Element and COPY ELEMENTS substatements can be mixed in any sequence necessary
to describe the structure of the record. However, because the level numbers of copied

elements are the same as those in the base record, you should exercise care in mixing
elements of different levels. To mix element and COPY ELEMENTS substatements and to
change the level numbers within the record, do the following:

1. Code ELEMENT and COPY ELEMENTS substatements to place the elements into

their appropriate positions, as shown in the exa mple that follows this discussion.

2. Online, issue a DISPLAY RECORD with AS SYNTAX and VERB MODIFY for the record;
in batch mode, code PUNCH instead of DISPLAY.

3. Change the affected level numbers only. Do not erase unaffected elements: all

elements for a single record must always be presented together.

4. Submit the new statement to the compiler.

Examples

In the following example, the structure of NEW-COVERAGE is generated by copying

elements from the COVERAGE record and the DDDL-built CARRIER-DETAIL record, and
by coding new element descriptions in l ine.

add record name is new-coverage

 location mode is via emp-coverage set

 within emp-demo-region area.

 copy elements from record coverage

 of schema empschm version 1.

 02 cov-carrier-id pic 99.

 02 cov-carrier-name pic x(20).

 copy elements from record carrier-detail.

SET Statement

Chapter 14: Schema Statements 423

The previous example effectively produces a new record description, NEW-COVERAGE,
that has the following structure:

01 new-coverage.

 02 cov-select-date.

 03 cov-select-year pic 99.

 03 cov-select-month pic 99.

 03 cov-select-day pic 99.

 02 cov-termin-date.

 03 cov-termin-year pic 99.

 03 cov-termin-month pic 99.

 03 cov-termin-day pic 99.

 02 cov-type pic x.

 02 cov-insplan-code pic xxx.

 02 cov-carrier-id pic 99.

 02 cov-carrier-name pic x(20).

 02 cov-carr-no-of-claims

 pic 99 comp.

 02 cov-carr-claims-processed

 occurs 0 to 100

 depending on

 cov-carr-no-of-claims.

 03 cov-carr-payment pic x.

 88 prompt value '9'.

 88 over-30-days value '4'.

 88 over-60-days value '1'.

 03 cov-carr-courtesy pic x.

 03 cov-carr-check pic x.

 88 cleared value 'c'.

 88 bounced value 'b'.

SET Statement

The SET statements identify and describe a set. Depending on the verb, the SET
statements can add, modify, delete, display, or punch the set description.

The schema compiler applies SET statements to the current schema.

Note: For an explanation of schema currency see 9.7, “Establishing Schema and
Subschema Currency”.

SET Statement

424 Database Administration Guide

Syntax

ADD/MODIFY SET statement

►►─┬─ ADD ────┬─ SET name is set-name ──►
 └─ MODify ─┘

 ►─┬──►─
 └─ SAMe AS SET base-set-name ──

─►──┬───────────────►
 ─── of SCHema base-schema-name ─┬─────────────────────────┬─┘
 └─ version-specification ─┘

 ►─┬─────────────────────────┬──►
 └─ ORDer is ─┬─ FIRst ──┬─┘
 ├─ LASt ───┤
 ├─ NEXt ───┤
 ├─ PRIor ──┤
 └─ SORted ─┘

 ►─┬──┬───────────────────►
 └─ MODe is ─┬─ CHAin ─┬───────────────────┬──────────┬─┘
 │ └─ LINked to PRIor ─┘ │
 ├─ VSAm INDex ───────────────────────────┤
 └─ INDex indexed-set-mode-specification ─┘

 ►─┬───┬──────────────────────►
 ├─ OWNer is record-name ─┬────────────────────────┬─┤
 │ └─ owner-record-options ─┘ │
 └─ OWNer is SYStem ─┬──────────────────────┬────────┘
 └─ area-specification ─┘

 ►─┬──┬─►◄
 │ ┌──┐ │
 └─▼─┬─────────────┬─ MEMber is record-name ─┬─────────────────────────┬┴─┘
 ├─ INClude ◄──┤ └─ member-record-options ─┘
 └─ EXClude ───┘

Expansion of indexed-set-mode-specifications

►►─┬─ USIng symbolic-index-name ──┬─►◄
 └─ BLOck CONtains key-count keys ─┬────────────────────────────────────┬─┘
 └─ DISplacement is ─┬─ 0 ◄─────────┬─┘
 └─ page-count ─┘

Expansion of owner-record-options

►►─┬──┬───────────────────►
 └─ NEXt dbkey POSition is ───┬─ next-dbkey-position ─┬─┘
 └─ AUTo ────────────────┘

 ►─┬──┬───────────────────►
 └─ PRIor dbkey POSition is ─┬─ prior-dbkey-position ─┬─┘
 └─ AUTo ─────────────────┘

 ►─┬──┬─────────────────────────►◄
 └─ PRImary KEY is ─┬─ system-owned-index-name ─┬─┘
 ├─ CALc ────────────────────┤
 └─ NULl ────────────────────┘

SET Statement

Chapter 14: Schema Statements 425

Expansion of area-specification

►►─── WIThin AREa area-name ──►

 ►─┬───┬────►◄
 ├─ SUBarea symbolic-subarea-name ─────────────────────────────────────┤
 └─ OFFset ─┬─ 0 ◄──────────────────────┬── for ─┬─ 100 PERcent ◄─────┬┘
 ├─ offset-page-count PAGes ─┤ ├─ percent PERcent ──┤
 └─ offset-percent PERcent ──┘ └─ page-count PAGes ─┘

Expansion of member-record-options

►►─┬──┬─────────────────►
 └─ INDex dbkey POSition is ─┬─ OMItted ────────────────┬─┘
 ├─ index-dbkey-position ───┤
 └─ AUTo ───────────────────┘

 ►─┬──┬─────────────────────►
 └─ NEXt dbkey POSition is ─┬─ next-dbkey-position ─┬─┘
 └─ AUTo ────────────────┘

 ►─┬──┬───────────────────►
 └─ PRIor dbkey POSition is ─┬─ prior-dbkey-position ─┬─┘
 └─ AUTo ─────────────────┘

 ►─┬──┬─►
 └─ LINked to OWNer ─┬──┬─┘
 └─ OWNer dbkey POSition is ┬ owner-dbkey-position ┬┘
 └ AUTo ────────────────┘

 ►──┬───┬─►
 └─ FOReign KEY is ─┬──┬─┘
 ├─ element-name ──────┬────────────┬─────────────┬─┘
 │ └─ NULlable ─┘ │
 │ │
 │ ┌────────────────────────────────┐ │
 │ ▼ │ │
 ├─ (── element-name ──┬────────────┬──┴──) ───┤
 │ └─ NULlable ─┘ │
 └─ NULl ───┘

 ►─┬─ MANdatory ──┬──┬─ AUTomatic ──┬───►
 └─ OPTional ───┘ └─ MANual ─────┘

 ►─┬──────────────────┬───►◄
 └─ key-expression ─┘

Expansion of key-expression

►►─┬──────────────┬─ KEY is ──►
 ├─ ASCending ──┤
 └─ DEScending ─┘

 ►─┬─ sort-element-name ─┬───────────────┬───────────────┬────────────────────►
 │ ├─ ASCENDING ◄──┤ │
 │ └─ DEScending ──┘ │
 │ ┌───┐ │
 ├─ (─▼─ (sort-element-name ─┬───────────────┬─┴─) ─┤
 │ ├─ ASCending ◄──┤ │
 │ └─ DEScending ──┘ │
 └─ DBKey ─┬───────────────┬───────────────────────────┘
 ├─ ASCending ◄──┤
 └─ DEScending ──┘

SET Statement

426 Database Administration Guide

 ►─┬────────────────────┬─┬────────────────┬──────────────────────────────────►
 └─ NATural sequence ─┘ ├─ COMpressed ───┤
 └─ UNCOMpressed ─┘

 ►─┬────────────────────────────────────┬─────────────────────────────────────►◄
 └─ DUPlicates are ─┬─ FIRst ───────┬─┘
 ├─ LASt ────────┤
 ├─ UNORDered ───┤
 ├─ NOT allowed ─┤
 └─ by DBKey ────┘

DELETE SET statement

►►─── DELete SET name is set-name ──►◄

DISPLAY/PUNCH SET statement

►►─┬─ DISplay ─┬─ SET name is set-name ───────────────────────────────────────►
 └─ PUNch ───┘

 ►─┬───────────────────────────────────────┬──────────────────────────────────►
 │ ┌───────────────────────────────────┐ │
 │ │ ┌───────────────┐ │ │
 └─▼─┬─ WITh ──────┬─▼─┬─ DETails ─┬─┴─┴─┘
 ├─ ALSo WITh ─┤ ├─ ALL ─────┤
 └─ WITHOut ───┘ └─ NONe ────┘

 ►─┬──────────────────────┬───►
 └─ VERB ─┬─ ADD ─────┬─┘
 ├─ MODify ──┤
 ├─ DELete ──┤
 ├─ DISplay ─┤
 └─ PUNch ───┘

 ►─┬─────────────────────┬──►
 └─ AS ─┬─ COMments ─┬─┘
 └─ SYNtax ───┘

 ►─┬─────────────────────────────────┬──►◄
 └─ TO ─┬─ module-specification ─┬─┘
 └─ SYSpch ───────────────┘

Parameters

SET name is set-name

Identifies the database set description. Set-name must be a 1- to 16- character
name. Apply the following considerations when selecting set names:

■ Set-name must not be the same as the schema name or the name of any other

component (including synonyms) within the schema.

■ Because set-name will be copied into DML programs, it must not be the name
of a keyword known to either the DML precompiler or the host programming
language.

SAMe AS SET base-set-name

Copies the entire set description (order, mode, owner, and members) from
base-set-name of another schema into the description set-name (the object of the
ADD or MODIFY). Base-set-name must identify an existing set.

SET Statement

Chapter 14: Schema Statements 427

of SCHema base-schema-name

Identifies the schema that contains base-set-name. The base schema must have a

status of VALID.

version-specification

Uniquely qualifies the schema with a version number. The default is the current

session option for existing versions. If the schema version that corresponds to
HIGHEST or LOWEST does not contain base-set-name, the schema compiler issues
an error message.

Note: Expanded syntax for version-specification is presented in the chapter

“Parameter Expansions".

ORDer is

Specifies the logical order of adding new member record occurrences to a set
occurrence at runtime.

FIRst

Positions the new record immediately after the owner record, becoming the first
member in the set (a LIFO stack).

LASt

Positions the new record immediately before the owner record, becoming the last
member in the set (a FIFO stack). If MODE IS CHAIN is also coded, include LINKED
TO PRIOR in the MODE clause.

NEXt

Positions the new record immediately after the current of set.

PRIor

Positions the new record immediately before the current of set. If MODE IS CHAIN
is also coded, include LINKED TO PRIOR in the MODE clause.

SORted

Positions the new record according to the value of one or more of its data elements
(called a sort control element) relative to the values of the same elements in other
member records of the same type. ORDER IS SORTED must be specified for native

VSAM sets.

MODe is

Specifies the characteristic of the set that tells CA IDMS/DB how pointers are to be
maintained at runtime.

SET Statement

428 Database Administration Guide

CHAin

Links each record in the set to the next record (establishes the NEXT pointer for the

set) and is mandatory for all set types except indexed sets and native VSAM sets.

LINked to PRIor

Specifies that each record in a chained set will be chained to the prior record

(establishes the PRIOR pointer for the set) as well as to the next record. LINKED TO
PRIOR is required if LAST or PRIOR was specified in the ORDER clause.

When using LINKED TO PRIOR and assigning pointers manually (see the OWNER and
MEMBER clauses, later), be sure to code the PRIOR DBKEY POSITION clause of the

OWNER and MEMBER clauses.

VSAm INDex

Identifies the set as a native VSAM set representing either a primary index on a
KSDS fi le or an alternate index on an ESDS or KSDS fi le. Each VSAM set must be
represented by a KSDS or PATH fi le in the physical database definition.

VSAM sets can have, as members, only records whose location mode is VSAM OR
VSAM CALC; owner records are not specified for VSAM sets.

INDex indexed-set-mode-options

Identifies the set as an indexed set. This option is not valid for multiple-member
sets.

USIng symbolic-index-name

Specifies the name of a symbol representing the index. The symbolic index is
assigned values in a corresponding physical area definition that identify either:

■ The number of entries in each bottom-level index (SR8) record and, optionally,
the displacement of the bottom-level index records from their owners

■ The values required by CA IDMS/DB to calculate the number of entries in each
bottom-level (SR8) record and i ts displacement from its owner

INDex BLOck contains key-cnt keys

Establishes the number of entries in each bottom-level index record (SR8 system
record). Key-cnt must be an unsigned integer in the range 3 through 8180.

Note: For the rationale used in determining a value for key-cnt, see the Database
Design Guide.

SET Statement

Chapter 14: Schema Statements 429

DISplacement is page-cnt pages

Indicates how far away from their owners the bottom level index records are to be

stored. Page-cnt must be an unsigned integer in the range 0 through 32,767; 0 is
the default.

OWNer is record-name

Identifies the record type that owns the set; record-name must name a record
associated with the current schema. This format of the OWNER clause is required
for:

■ Chained sets

■ Indexed sets in which the owner is a user-defined record (see also the OWNER
IS SYSTEM clause)

It is not allowed for native VSAM sets.

owner-record-options

Identifies the positions within the owner record's prefix to be used for next and

prior (if any) pointers of the set being described and optionally identifies the owner
record's primary key.

The defaults for next and prior pointer positions depend on the set's mode as

shown in the table under the "Usage" topic. The defaults for each set mode are:

■ MODE IS CHAIN causes a default of NEXT DBKEY POSITION IS AUTO; the LINKED
TO PRIOR clause causes a default of PRIOR DBKEY POSITION IS AUTO.

■ MODE IS VSAM is not applicable to next and prior set pointers.

■ MODE IS INDEX causes defaults of NEXT DBKEY POSITION IS AUTO and PRIOR
DBKEY POSITION IS AUTO, unless OWNER IS SYSTEM is also coded.

next-dbkey-position

Represents the sequential position of the NEXT set pointer within the owner

record's prefix; it must be a whole integer in the range 1 through 8180.

SET Statement

430 Database Administration Guide

prior-dbkey-position

Represents the sequential position of the PRIOR set pointer within the owner

record's prefix; it must be a whole integer in the range 1 through 8180.

When assigning pointer positions manually, remember to specify a prior db-key
position if either of these conditions is true:

■ LINKED TO PRIOR is specified in the MODE clause.

■ INDEX is specified in the MODE clause and OWNER IS SYSTEM is not specified.

AUTo

Causes the schema compiler to automatically assign a set pointer position within

the owner record's prefix when the schema description is validated. Until the
schema description is validated, a DISPLAY or PUNCH of the set will indicate AUTO
for pointer positions; after the schema description has been validated, DISPLAY or
PUNCH indicates the sequential pointer positions that the validation resolved (see

14.8, “VALIDATE Statement").

PRImary KEY is

For SQL access against a non-SQL defined database, defines a primary key field in
the owner record.

system-owned-index-name

Identifies a system-owned index as the primary key. To use this specification, the
owner record must be a member of the named index and the named index must be
a mandatory automatic set defined as duplicates not allowed. No elements named

as the keys for the system-owned index can be group elements.

CALc

Identifies the primary key as the owner record's CALC key. To use this specification,
the owner record must be stored with a location mode of CALC in which duplicates

are not allowed. The CALC key must not contain a group element.

NULl

Removes the primary key from the set and all foreign keys associated with the

primary key.

OWNer is SYStem

Specifies that the indexed set being described is owned by an internal owner record
(SR7 system record). A single occurrence of the SR7 record type owns the set
containing all member occurrences (identified in the MEMBER clause, shown next).

OWNER IS SYSTEM establishes a relationship that is functionally, though not
internally, the same as that of a one-of-a-kind (OOAK) record to its set members.

OWNER IS SYSTEM is not valid in the following instances:

■ If the set mode is CHAIN

■ If the set mode is VSAM INDEX

SET Statement

Chapter 14: Schema Statements 431

area-specification

Specifies the area in which the owner record (SR7) and the index structure is to

reside. If this clause is not coded, the owner record and index structure will be
stored in the same area as the member record (specified in the MEMBER clause).

WIThin AREa area-name

Specifies the name of the area. Area-name must be the name of an area already
defined as part of the current schema.

Defaults for the WITHIN AREA clause are as follows:

■ If WITHIN AREA is coded with neither SUBAREA nor OFFSET, the SR7 owner

record is stored within the named area's page range.

■ If WITHIN AREA is not coded, CA IDMS/DB will place the owner record in the
same area and page range as the set member (in the MEMBER clause).

SUBarea symbolic-subarea-name

Names a symbol representing a page range (or subarea). Within the physical area

definition, the symbolic subarea is assigned the actual range of pages in which CA
IDMS/DB will store the system-owned index structure.

OFFset

Specifies a relative range of pages in the physical area, in terms of either a
percentage of the area or a number of pages, in which CA IDMS/DB will store the
owner record and the index structure.

offset-page-count PAGes

Determines the first page in which CA IDMS/DB will store the owner record based
on the lowest page number of the area:

record lopage = (LPN + offset-page-count)

 where LPN = the lowest page number in the physical area

Offset-page-count must be an integer in the range 0 through the number of pages
in physical-area-name minus 1.

SET Statement

432 Database Administration Guide

offset-percent PERcent

Determines the first page in which CA IDMS/DB will store the owner record based

on the initial page range of the physical area:

record's lopage = (LPN + (INP * offset-percent * .01))

 where LPN = the lowest page number in the physical area

 and INP = the initial number of pages in the physical area

Offset-percent must be an integer in the range 0 through 100.

FOR page-count PAGes

Determines the last page in which CA IDMS/DB will store the owner record based
on the record's low page:

record's hipage = (RLP + page-count - 1)

 where RLP = the first page in which the SR7 can be stored

The calculated page must not exceed the highest page number in the physical area.

FOR percent PERcent

Determines the last page in which CA IDMS/DB will store the owner record based

on the record's low page and the total number of pages in the physical area:

record's hipage = (RLP + (TNP * percent * .01) - 1)

 where RLP = the first page in which the SR7 can be stored

 and TNP = the total number of pages in the physical area

Percent must be an integer in the range 1 through 100. The default is 100. If percent
causes the calculated high page to be greater than the highest page number in the
physical area, CA IDMS/DB will ignore the excessive page numbers, and will store

the record occurrences up to and including the last page in the physical area.

SET Statement

Chapter 14: Schema Statements 433

INClude MEMber is record-name

Identifies a record type that is to participate as a member of the set. Record-name

must name a record associated with the current schema. Code as many MEMBER
clauses as are necessary to declare all of the set's member record types (note that
indexed sets and native VSAM sets must include only one member record type).

EXClude MEMber is record-name

Identifies a record type that is no longer to participate as a member of the set.
Record-name must name a record type that was previously included in the set
definition. Additional options of the MEMBER clause are invalid.

member-record-options

Specifies additional information about set members in order to maintain the set at
runtime.

AUTo

Causes the schema compiler to automatically assign a set pointer position within
the member record's prefix when the schema description is validated. Until the
schema description is validated, a DISPLAY or PUNCH of the set will indicate AUTO

for pointer positions; after the schema description is validated, DISPLAY or PUNCH
indicates the pointer positions that the validation resolved.

Defaults assigned by the schema compiler depend on the set mode specified for the set,
as shown in the following table.

Mode Defaults

MODE IS CHAIN Causes a default of NEXT DBKEY POSITION IS AUTO; the LINKED
TO PRIOR clause causes a default of PRIOR DBKEY POSITION IS
AUTO.

MODE IS INDEX Causes a default of INDEX DBKEY POSITION IS AUTO. (Note that
if the DBA codes NEXT or PRIOR, the schema compiler accepts
the statement, but changes the specification to INDEX.)

MODE IS VSAM Is not applicable to next and prior set pointers.

SET Statement

434 Database Administration Guide

OMItted

Indicates no pointer will be maintained in the member record for the index. For a

system-owned index, this means there are no index pointers in the member
records. If you use this option for a system-owned index, you must also specify the
MANDATORY AUTOMATIC set options.

index-dbkey-position

Assigns the sequential position of the index set pointer within the member record's
prefix. Index-dbkey-position must be an integer in the range 1 through 8180. The
default for the index pointer position depends on the set mode as shown in the

table under the "Usage" topic

When assigning pointer positions manually, remember to specify this value if the
set is an indexed set.

next-dbkey-position

Assigns the sequential position of the next set pointer within the member record's
prefix. Next-dbkey-position must be an integer in the range 1 through 8180. The
default for the next pointer position depends on the set mode as shown in the table

under the "Usage" topic.

prior-dbkey-position

Assigns the sequential position of the prior set pointer within the member record's
prefix. Prior-dbkey-position must be an integer in the range 1 through 8180. The
default for the prior pointer position depends on the set mode as shown in the

table under the "Usage" topic. Remember to specify this value if LINKED TO PRIOR
is specified in the MODE clause.

LINked to OWNer

Links each member record of the named type in the set to the owner record.

OWNer dbkey POSition is owner-dbkey-position

Assigns the owner pointer position manually. Owner-dbkey-position represents a
relative position in the member record's prefix to be used for storing the database
key of the owner record of the set; it must be an unsigned integer in the range 1

through 8180. Do not specify this clause for:

■ Indexed sets whose owner is SYSTEM

■ Native VSAM sets

OWNer dbkey POSition is AUTo

Causes the schema compiler to automatically assign the owner pointer position
within the member record's prefix when the schema is validated. AUTO is the
default.

Until the schema description is validated, a DISPLAY or PUNCH of the set will

indicate AUTO for the pointer position; after validation, these statements will
indicate the actual sequential pointer position.

SET Statement

Chapter 14: Schema Statements 435

FOReign KEY is

For SQL access against a non-SQL defined database, identifies or removes a foreign

key in the member record.

NULl

Removes a previously defined foreign key from the member record; if specified, the

owner record must be defined without a primary key.

element-name

Identifies an element or a l ist of elements enclosed in parenthesis that identify the
foreign key. The elements cannot be group elements and must match the data type

and length of the corresponding element in the primary key.

NULlable

Indicates that the foreign key element can contain NULL values. To use this
specification, the following rules apply:

■ The membership option of the member record cannot be mandatory automatic

■ The foreign key element cannot be a control key or subordinate to a control
key in any sorted set

■ The foreign key element cannot be a CALC key

■ The foreign key element must be defined as NULLABLE in all primary/foreign
key sets in which it is named

MANdatory

Specifies that occurrences of this record type cannot be disconnected from the set

other than through an ERASE function. MANDATORY must be specified for native
VSAM sets and index sets in which the index db-key position is omitted.

OPTional

Specifies that occurrences of this record type can be disconnected from the set

without being erased.

Note: Either MANDATORY or OPTIONAL must be specified when including a
member into a set.

AUTomatic

Specifies that occurrences of this record type are connected implicitly to the set as
part of the STORE function. AUTOMATIC must be specified for native VSAM sets and
index sets in which the index db-key position is omitted.

MANual

Specifies that occurrences of this record type are connected to the set only when
the CONNECT function is issued.

Note: Either AUTOMATIC or MANUAL must be specified when including a member
into a set.

SET Statement

436 Database Administration Guide

key-expression

Identifies a sorted set. This clause is required if SORTED has been specified in the

ORDER statement and is invalid for other set orders.

Note: In a multiple-member set, record occurrences are maintained in order within
their record type, but are maintai ned in no predictable order with respect to

records of other types within the set.

sort-element-name

Identifies the member record element(s) on whose values the set is to be sorted
(that is, the sort control element).

Sort-element-name specifies the name of a group or elementary data item defined
in an element description statement for the named member record type, with the
following restrictions:

■ No element named FILLER can be used in the sort control element.

■ No element that redefines another element or is subordinate to an element
that redefines another element can be used in the sort control element.

■ No repeating element (that is, one defined with an OCCURS clause) and no

element subordinate to a repeating element can be used in the sort control
element.

■ No element exceeding 256 bytes can be used in the sort control element.

Multiple sort-element-name values (each with its own order) can be coded, forming

a compound sort control element and thereby allowing the member records to be
sorted on more than 1 element within the record. The element names that make up
the sort control element need not be contiguous within the member record. Note,

however, that the combined lengths of the elements (as defined in the PICTURE and
USAGE clauses of the ELEMENT substatement) must not exceed 256 bytes. Do not
code multiple sort-element-names for native VSAM sets.

DBKey

For indexed sets only, specifies that the member record's database key is the set

control element. Duplicates are not allowed.

ASCending

Sorts the specified sort-element or database key in ascending order. ASCENDING is
the default. ASCENDING must be specified for native VSAM sets.

Note that if you specify ASCENDING before the KEY keyword, you cannot specify
ASCENDING or DESCENDING anywhere else in key-expression.

DEScending

Sorts the specified sort-element or database key in descending order.

Note that if you specify DESCENDING before the KEY keyword, you cannot specify
ASCENDING or DESCENDING anywhere else in key-expression.

SET Statement

Chapter 14: Schema Statements 437

NATural sequence

Indicates that the values of the key fields will be sorted and evaluated with negative

values before positive values. By default, CA IDMS/DB sorts and evaluates the key
fields using a standard collating sequence, which sorts information according to its
hexadecimal representation.

Even if NATURAL SEQUENCE is specified, the schema compiler may use a standard
sort sequence if an element in the sort key is a group element. If the data types of
the elements subordinate to the group do not affect the natural sort sequence, CA
IDMS/DB uses the natural sequence. Otherwise, it uses the standard sort sequence

and issues a warning message.

Note: If STANDARD SEQUENCE is assumed and the CONTROL FIELDS will allow
NATURAL SEQUENCE, NATURAL SEQUENCE will be selected. Control fields that are
display will be set to NATURAL SEQUENCE.

UNCOMpressed

Applies to sorted indexed sets only and specifies that similar index entries will be
maintained in their entirety.

COMpressed

Applies to sorted indexed sets only and specifies that similar index entries will be
maintained in compressed form. COMPRESSED saves index space by compressing
repeated characters and by causing like index entries to be stored in part: the initial
l ike portion of the entry is stored once for all similar entries and only the different

remaining portions are stored for each entry.

DUPlicates are

Specifies how CA IDMS/DB handles a record occurrence whose sort key duplicates
an existing occurrence's sort key.

FIRst

Logically positions record occurrences before the occurrence(s) with the duplicated
sort key. FIRST is not valid for native VSAM sets.

LASt

Logically positions record occurrences after the occurrence(s) with the duplicated
sort key. LAST is not valid for native VSAM sets.

NOT allowed

Does not allow record occurrences with duplicate sort keys.

UNORDered

For native VSAM only, retrieves record occurrences in the order in which they were
stored, regardless of the direction in which the set is being searched.

by DBkey

For MODE IS INDEX sets only, sorts record occurrences with duplicate key values by
db-key.

SET Statement

438 Database Administration Guide

DETails

Displays or punches the entire set description.

ALL

Displays or punches the entire set description.

NONe

Displays or punches only the set name.

Usage

Set Automatically Deleted if Owner Record is Deleted

If a set's owner record is deleted (by a DELETE RECORD statement), the set is

automatically deleted. Additionally, the deleted record and set are deleted from all
subschema descriptions associated with the current schema. But if a set's member
record is deleted (by a DELETE RECORD statement), the set remains.

Explicitly deleting a set

To delete the set (if it has no other member records), use the DELETE SET statement.
DELETE deletes the named set description from the data dictionary. Cons equently, the
set is removed not only from the current schema, but also from the descriptions of all
subschemas associated with the current schema. No optional clauses are valid for

DELETE operations.

Default automatic pointer assignments for owner records

A valid set description requires pointer positions for the owner record and for each

member record.

The defaults for the owner pointer positions depend on the set's mode specification as
shown in the following table. Positions for which "none" is indicated have no default
and must not be specified; there is no such pointer position for these modes.

Set mode NEXT PRIOR

CHAIN (without LINKED TO PRIOR) AUTO none

CHAIN (with LINKED TO PRIOR) AUTO AUTO

VSAM none none

INDEX (with user-defined record type as owner) AUTO AUTO

INDEX (with SYSTEM as owner) none none

SET Statement

Chapter 14: Schema Statements 439

Default automatic pointer assignments for member records

A valid set description requires pointer positions for the owner record and for each

member record. The defaults for the member record pointer positions depend on the
set's mode specification as shown in the following table. Positions for which "none" is
indicated have no default and must not be coded; these modes have no such pointer

position.

Set mode NEXT PRIOR INDEX

CHAIN

(without LINKED TO PRIOR)

AUTO none none

CHAIN

(with LINKED TO PRIOR)

AUTO AUTO none

VSAM none none none

INDEX none none AUTO

Unlinked indexes

An unlinked index is a system-owned index in which there are no index pointers in the

member records. You specify an unlinked index by using the OMITTED option on the
INDEX DBKEY POSITION clause of the MEMBER RECORD clause. Unlinked indexes
provide the fol lowing advantages:

■ You can load and rebuild unlinked indexes faster

■ You can add or remove an unlinked index without restructuring the database,
provided the control length of a compressed or variable length member record is
not changed

However, unlinked indexes may increase processing overhead. For a more thorough
discussion of the considerations, see the CA IDMS Database Design Guide.

The set options for an unlinked index must be MANDATORY AUTOMATIC.

SET Statement

440 Database Administration Guide

Pointer positions in a record

Note that for a given record, each position must be assigned to only one set pointer, and

the positions within the record must be contiguous.

SAME AS SET clause reduces coding

Because SAME AS SET copies an existing description, it can relieve the DBA of a

considerable amount of coding. The DBA can create a base set description with SAME AS
SET and code additional clauses to alter the description of the new set as desired.

Restrictions for SAME AS SET clause

SAME AS SET must not be specified for a set to which order, mode, owner, or member

already is assigned. Consequently, placement of the SAME AS SET clause is restricted as
follows:

■ ADD operation—When used in an ADD operation, SAME AS SET must precede all
other optional clauses.

■ MODIFY operation—SAME AS SET cannot be used in a MODIFY operation unless the
set was added with no optional clauses.

Don't change set pointers for existing databases

Do not change set pointers for existing databases. Use the NEXT DBKEY POSITION,

PRIOR DBKEY POSITION, INDEX DBKEY POSITION only when adding new sets or when
changing sets in a schema for which a database is not yet defined. If you must change
set pointers, for example because a set is deleted, you must restructure your database.

Determine pointer positions before assigning pointers

For a given record, each position must be assigned to only one set pointer, and the
positions within the record must be contiguous. When assigning positions manually,
determine the pointer positions for all sets in the schema before coding set
descriptions. This will avoid any conflicts (such as attempting to use the same position

twice) and will speed up the mechanical process of adding set descriptions to the
schema description.

Percentage offsets assist database maintenance

Of the page limiting options, OFFSET with percentage specifications is the most flexible.

As a database grows and must eventually be expanded, the physical areas of the
database must also be expanded. If the DBA originally expressed the owner record's
page range as a percentage of an area, the range need not be respecified to fit the new
physical area description; the runtime system will automatically assign the owner record

to the same relative position in the new physical area.

SET Statement

Chapter 14: Schema Statements 441

Foreign keys and control length

The specification of a foreign key does not affect the control length of the member

record. Foreign key elements may occur beyond the last control key even if the record is
compressed or variable in length. However, if a foreign key element does begin after the
control length and the record has a database procedure which will change the value of

the foreign key field on a store or modify (for example, to convert it to upper case), then
you should not use SQL INSERT statements to store new occurrences, nor SQL UPDATE
statements to change the value of the foreign key. If you do use these statements, the
value of the foreign key field before the procedure is executed will be used to validate

the primary/foreign key relationship. This may cause the update to fail on a referential
constraint violation or it may cause the member record to be associated with an
incorrect owner.

Mixed page groups

Chained sets may not cross page group boundaries regardless of the MIXED PAGE
GROUP BINDS ALLOWED option setting.

Examples

Minimum SET statement

The following example supplies the minimum SET statement required for the set to be a
valid schema component:

add set name is insplan-rider

 order is last

 mode is chain

 owner is insplan

 member is rider

 mandatory automatic.

Defining a chained set

The following example specifies that new records in the COVERAGE-CLAIMS set are

added immediately before the owner record, and that both next l inkages (required) and
prior l inkages (optional) are used:

add set name is coverage-claims

 order is last

 mode is chain linked to prior

 .

 .

 .

SET Statement

442 Database Administration Guide

Defining an indexed set

The following example identifies INDEX-JOB-TITLE as an indexed set; each of the set's

bottom-level internal index records will contain 50 entries.

add set name is index-job-title

 order is sorted

 mode is index block contains 50 keys

 .

 .

 .

Using SAME AS SET to reduce coding

As stated earlier, SAME AS SET copies all information from the copied set to the new set
description; the schema compiler treats all subsequent clauses as MODIFY operations. In
the following example, the MODE clause is treated as though the statement were a

MODIFY SET statement; the statement creates the EMP-POSITION set, which is identical
to EMP-POS set, except for its mode, and associates the new set with the current
schema.

add set name is emp-position

 same as set emp-pos of schema testschm version is 1

 mode is chain linked to prior.

Calculating the page range of owner records

In the following example, physical area EMP-DEMO-REGION contains 1000 pages,

numbered from 1 through 1000. At runtime, CA IDMS/DB will use the offset specified
for the system owner record and store the record on pages 51 ((1000 * 5 * .01) + 1)
through 1000.

... owner is system

 within area emp-demo-region

 offset 5 percent for 95 percent.

In the following example, ORG-DEMO-REGION contains 240 pages, numbered from 2001
through 2240. At runtime, CA IDMS/DB will store the owner record on pages 2041 (2001
+ 40) through 2240.

... owner is system

 within area org-demo-region

 offset 40 pages for 200 pages.

SET Statement

Chapter 14: Schema Statements 443

Manually setting pointer positions

The following MEMBER clause example establishes the EMPOSITION record as a

member of the JOB-POSITION set. EMPOSITION has NEXT and PRIOR pointers for this set
in positions 1 and 2 of the record prefix; owner l inkage is maintained, with the OWNER
pointer in position 3 of the record prefix. Runtime opera tions for EMPOSITION are

governed by the OPTIONAL disconnect and MANUAL connect option.

add set name is job-position

 order is next

 mode is chain linked to prior

 owner is job

 next dbkey position is 1

 prior dbkey position is 2

 member is emposition

 next dbkey position is 1

 prior dbkey position is 2

 linked to owner

 owner dbkey position is 3

 optional manual.

Examples of sorted sets

The following example il lustrates two sorted sets:

add set name is ooak-skill

 order is sorted

 mode is chain linked to prior

 owner is ooak

 next dbkey position is 1

 prior dbkey position is 2

 member is skill

 next dbkey position is 1

 prior dbkey position is 2

 optional automatic

 key is skill-name ascending

 duplicates not allowed.

SET Statement

444 Database Administration Guide

add set name is emp-expertise

 order is sorted

 mode is chain linked to prior

 owner is employee

 next dbkey position is 10

 prior dbkey position is 11

 member is expertise

 next dbkey position is 4

 prior dbkey position is 5

 linked to owner

 owner dbkey position is 6

 mandatory automatic

 key is emp-expertise ascending

 duplicates first.

Examples of indexed sets

The following example defines sets similar to those in the previous example. in this
example the sets are implemented as indexed sets:

add set name is ooak-skill

 order is sorted

 mode is index

 block contains 70 keys

 owner is system

 member is skill

 index dbkey position is 1

 optional automatic

 key is skill-name ascending

 compressed

 duplicates not allowed.

add set name is emp-expertise

 order is sorted

 mode is index

 block contains 50 keys

 owner is employee

 next dbkey position is 10

 prior dbkey position is 11

 member is expertise

 index dbkey position is 4

 linked to owner

 owner dbkey position is 5

 mandatory automatic

 key is emp-expertise ascending

 duplicates first.

SET Statement

Chapter 14: Schema Statements 445

Example of a multiple-member set

The following example il lustrates a set with three member record types; the db-key

position specification defaults to AUTO:

add set name is coverage-claims

 order is last linked to prior

 mode is chain

 owner is coverage

 member is hospital-claim

 mandatory automatic

 member is non-hosp-claim

 mandatory automatic

 member is dental-claim

 mandatory automatic.

Primary/Foreign key usage:

Defining primary and foreign keys for network sets allows SQL to treat sets as referential
constraints between network records. Incorporating a foreign key into the member
record of a set and identifying the primary and foreign keys in the SET definition

statement, allows standard application development tools that use JDBC and ODBC
metadata functions, to discover the relationship between the network records in a set
relationship. This also enables the use of standard SQL statements to INSERT, UPDATE,

and DELETE rows in the owner and member records and eliminates the need for SQL
syntax extensions and table procedures. If the department ID is defined in the
EMPLOYEE record as DEPT-ID-4015, the following example shows how the
DEPT-EMPLOYEE set can be defined as a referential set.

add set name is dept-employee

 .

 .

 .

 owner is department

 .

 .

 .

 primary key is calc

 member is employee

 .

 .

 .

 foreign key is dep-id-0415

Note: For more information about pointer positioning, system-owned index sets and
system record types, and how CA IDMS/DB compresses index entries, see the CA IDMS
Database Design Guide.

VALIDATE Statement

446 Database Administration Guide

VALIDATE Statement

The VALIDATE statement verifies the relationships among all components of the schema
that is current for update and sets the status of the schema to VALID (if no errors exist)
or IN ERROR (if errors exist). CA IDMS/DB requires that a valid schema reside in the
dictionary before any other activity involving the database can begin.

Only the schema compiler updates the status.

Syntax
►►─── VALIDATE ───►◄

Usage

Effect of VALIDATE on schema

When the schema compiler validates the schema, it takes one of the following actions:

■ If it finds no errors, the compiler sets the schema's status to VALID. VALID indicates
that the schema is usable by other CA IDMS/DB software.

■ If it finds errors, the compiler sets the schema's status to IN ERROR and issues
messages indicating the exact nature of each error. The DBA uses these messages
to determine what changes must be made for the schema to be valid. As long as the

status is IN ERROR, other CA IDMS/DB software (such as the subschema compiler
and util ities) cannot use the schema.

Must validate the schema following ADD and MODIFY

The schema compiler sets the schema's status to IN ERROR after the successful

execution of an ADD SCHEMA or MODIFY SCHEMA statement. You must validate the
schema to make it available to other CA IDMS/DB software.

VALIDATE resolves pointers

In addition to the verification described above, VALIDATE causes the schema compiler to
resolve the pointer positions for which AUTO was specified in set description

statements.

VALIDATE can be used at any time during schema definition

The VALIDATE statement can be used at any time to verify the relationships of schema

components. For example, if the DBA has not yet defi ned sets, but wishes to verify the
schema's record structures, VALIDATE can be used; in this case, however, the DBA
should anticipate a warning for records whose location mode is VIA an undefined set.

REGENERATE Statement

Chapter 14: Schema Statements 447

REGENERATE Statement

The REGENERATE statement regenerates subschema load modules following changes to
the schema that is current for update.

Syntax
►►─── REGenerate ─┬─ AFFected ─┬─ SUBSChemas ─────────────────────────────────►
 └─ ALL ──────┘

 ►─┬───┬────────────────────────────────►◄
 └─ as LOAd MODule Version version-number ─┘

Parameters

AFFected

Instructs the schema compiler to regenerate only those subschemas that have been
affected by the schema modification.

ALL

Instructs the schema compiler to regenerate all subschemas associated with the
current schema.

as LOAd MODule Version version-number

Specifies the version number to be assigned to the subschema load modules.
Version-number must be an unsigned integer in the range 1 through 9999. The

default is 1.

Note: Unlike other version numbers, the load module version number does not
default to the current session option.

REGENERATE Statement

448 Database Administration Guide

Usage

Effect of REGENERATE on Subschemas

In response to the REGENERATE statement, the schema compiler identifies each
subschema that must be regenerated and verifies the relationships among the

components of each identified subschema. Based on this verification, the schema
compiler takes one of the following actions:

■ If it finds no errors, the compiler invokes the subschema compiler to create
subschema tables and store the tables as a load module in the dictionary load area

(DDLDCLOD). The subschema is marked as VALID.

■ If it finds errors, the compiler issues messages indicating the name of the invalid
subschema and the exact nature of each error and marks the subschema IN ERROR.
The DBA uses these messages to determine what changes must be made for the

subschema to be valid and uses the subschema compiler to make any necessary
changes to the subschema.

Using the subschema compiler to regenerate subschemas

Alternatively, after modifying and validating a schema, the DBA can use the subschema
compiler (IDMSUBSC) to validate and regenerate subschemas. To regenerate

subschemas, use either the schema compiler or the subschema compiler: using both
causes needless duplication of processing. Note that if a subschema requires changes in
addition to those necessitated by changes in the schema, the DBA need not use

REGENERATE. The DBA can, after validating the schema, use the subschema compiler
both to make the additional changes and to generate the new subschema load module.

Chapter 15: Subschema Statements 449

Chapter 15: Subschema Statements

This section contains the following topics:

Overview (see page 449)
SUBSCHEMA Statement (see page 450)
AREA Statement (see page 463)

RECORD Statement (see page 469)
SET Statement (see page 477)
LOGICAL RECORD Statement (see page 481)

PATH-GROUP Statement (see page 486)
VALIDATE Statement (see page 513)
GENERATE Statement (see page 514)
LOAD MODULE Statement (see page 515)

DISPLAY/PUNCH SCHEMA Statement (see page 519)

Overview

This chapter describes SUBSCHEMA statements. Syntax, parameter descriptions, usage
information, and examples are presented for each statement.

Syntax Order

ADD/MODIFY syntax is presented first, followed by DELETE syntax. DISPLAY/PUNCH
syntax is presented last.

Expansion Variables

Diagrams for expansion variables (indicated by underscore and italics) are shown at the
end of the current syntax diagram. Expansions for common clauses are handled in a
separate chapter, and those expansions are referenced in the parameter description.

Note: For more information about DISPLAY ALL syntax, see Chapter 11,
“Compiler-Directive Statements”.

SUBSCHEMA Statement

450 Database Administration Guide

SUBSCHEMA Statement

The SUBSCHEMA statements identify the subschema as a whole, and establish
subschema currency as described in 9.7, “Establishing Schema and Subschema
Currency”.

In addition to the functions stated above, SUBSCHEMA statements can:

■ Add, modify, delete, display, or punch a subschema description

■ Establish security for the subschema

■ Authorize users to issue specific verbs against the subschema

Syntax

Syntax: ADD/MODIFY SUBSCHEMA

►►─┬─ ADD ────┬─ SUBschema name is subschema-name ────────────────────────────►
 └─ MODify ─┘

 ►─┬───┬────────────►
 └─ of SCHema name is schema-name ─┬─────────────────────────┬─┘
 └─ version-specification ─┘

 ►─┬──────────────────────┬───►
 └─ user-specification ─┘

 ►─┬───┬────────────────────────────►
 └─ subschema DEScription is description-text ─┘

 ►─┬──┬───────────────────►
 └─┬─ PROgram REGistration REQuired ─┬─ is ─┬─ ON ────┬─┘
 └─ AUThorization ─────────────────┘ └─ OFF ◄──┘

 ►─┬──────────────────────────┬───►
 └─ USAge is ─┬─ DML ─────┬─┘
 ├─ LR ──────┤
 └─ MIXed ◄──┘

 ►─┬───┬────────────────────────────────►
 │ ┌─────────────────────────────────────┐ │
 └─▼- statistics-transfer-specification ─┴─┘

 ►─┬──────────────────────────────┬───►
 └─ LR CURrency ─┬─ RESet ◄───┬─┘
 └─ NO RESet ─┘

 ►─┬───┬──►
 │ ┌───┐ │
 └─▼─┬─────────────┬─ USEr is user-id ─┬──────────────────────────────┬┴─┘
 ├─ INClude ◄──┤ └─ user-options-specification ─┘
 └─ EXClude ───┘

 ►─┬──┬───────────────────────────►
 └─ PUBlic ACCess is allowed for ─┬─ DELete ──┬─┘
 ├─ DISplay ─┤
 ├─ MODify ──┤
 ├─ UPDate ──┤
 ├─ ALL ◄────┤
 └─ NONe ────┘

SUBSCHEMA Statement

Chapter 15: Subschema Statements 451

 ►─┬──┬─►
 │ ┌──┐ │
 └─▼─┬─────────────┬─ class-name is attribute-name ┬───────────────────┬┴─┘
 ├─ INClude ◄──┤ └ TEXT is user-text ┘
 └─ EXClude ───┘

 ►─┬───────────────────────────────────────┬──────────────────────────────────►◄
 └─┬─ COMments ────┬──┬─ comment-text ─┬─┘
 └─ comment-key ─┘ └─ NULl ─────────┘

Expansion of statistics-transfer-specification

►►─── TRAnsfer statistics to SUBschema name subschema-name ───────────────────►

 ►─┬───┬────────────►
 └─ of SCHema name is schema-name ─┬─────────────────────────┬─┘
 └─ version-specification ─┘

 ►─┬──┬─────────►◄
 └─ FOR PROgram name is program-name ─┬─────────────────────────┬─┘
 └─ version-specification ─┘

Syntax: DELETE SUBSCHEMA

►►─── DELete SUBschema name is subschema-name ────────────────────────────────►

 ►─┬───┬────────────►
 └─ of SCHema name is schema-name ─┬─────────────────────────┬─┘
 └─ version-specification ─┘

 ►─┬──────────────────────┬───►◄
 └─ user-specification ─┘

Syntax: DISPLAY/PUNCH SUBSCHEMA

►►─┬─ DISplay ─┬─ SUBschema name is subschema-name ───────────────────────────►
 └─ PUNch ───┘

 ►─┬───┬────────────►
 └─ of SCHema name is schema-name ─┬─────────────────────────┬─┘
 └─ version-specification ─┘

 ►─┬──┬───────────────────────►
 └─ PREpared by user-id ─┬────────────────────────┬─┘
 └─ PASsword is password ─┘

 ►─┬───┬────────────────►
 │ ┌───┐ │
 │ │ ┌─────────────────────────────────┐ │ │
 └─▼─┬─ WITh ──────┬─▼─┬─ ALL COMment TYPes ─────────┬─┴─┴─┘
 ├─ ALSo WITh ─┤ ├─ AREas ─────────────────────┤
 └─ WITHOut ───┘ ├─ ATTributes ────────────────┤
 ├─ COMments ──────────────────┤
 ├─ DEFinitions ───────────────┤
 ├─ DETails ───────────────────┤
 ├─ ELements ──────────────────┤
 ├─ HIStory ───────────────────┤
 ├─ LRS ───────────────────────┤
 ├─ PATh-groups ───────────────┤
 ├─ PROgrams ──────────────────┤
 ├─ RECords ───────────────────┤
 ├─ SETs ──────────────────────┤
 ├─┬─ USEr DEFINED COMments ─┬─┤
 │ └─ UDCs ──────────────────┘ │
 ├─ USErs ─────────────────────┤
 ├─ ALL ───────────────────────┤
 └─ NONe ──────────────────────┘

SUBSCHEMA Statement

452 Database Administration Guide

 ►─┬──────────────────────┬───►
 └─ VERB ─┬─ ADD ─────┬─┘
 ├─ MODify ──┤
 ├─ DELete ──┤
 ├─ DISplay ─┤
 └─ PUNch ───┘

 ►─┬─────────────────────┬──►
 └─ AS ─┬─ COMments ─┬─┘
 └─ SYNtax ───┘

 ►─┬─────────────────────────────────┬──►◄
 └─ TO ─┬─ module-specification ─┬─┘
 └─ SYSpch ───────────────┘

Parameters

SUBschema name is subschema-name

Identifies the subschema description to the dictionary. Subschema-name specifies
the name of the subschema. Subschema-name must be a 1- to 8-character
alphanumeric value.

of SCHema name is schema-name

Associates the subschema with a previously compiled schema. Schema-name is the
name of a valid schema for which the named subschema represents a program

view. This clause is required for ADD operations; it is required for all other
operations if the subschema name is not unique in the dictionary.

version-specification

Specifies the version number of the schema. The version number defaults to the
current session option for existing versions.

Note: Expanded syntax for version-specification is presented in Chapter 13,
“Parameter Expansions".

user-specification

Identifies the user using the subschema description.

Note: Expanded syntax for user-specification is presented in Chapter 13,
“Parameter Expansions".

subschema DEScription is description-text

Optionally specifies a name that is more descriptive than the 8-character
subschema name required by CA IDMS/DB, but can be used to store any type of
information; SUBSCHEMA DESCRIPTION is purely documentational. Description-text
is a 1- to 40-character alphanumeric field; if it contains spaces or delimiters, it must

be enclosed in quotes.

For CA OLQ users, the descriptive information appears on the CA OLQ screen to
select subschemas.

SUBSCHEMA Statement

Chapter 15: Subschema Statements 453

PROgram REGistration REQuired/AUThorization is ON

Specifies that programs must be registered with the named subschema in order to

be compiled against the subschema. AUTHORIZATION is a synonym for PROGRAM
REGISTRATION REQUIRED.

To register a program with a subschema, use the IDD DDDL PROGRAM statement. A

program naming the subschema is not eligible for compilation by the DML
precompilers unless it is registered with the subschema.

PROgram REGistration REQuired/AUThorization is OFF

Specifies that programs do not have to be registered with the named subschema to

be compiled against the subschema. AUTHORIZATION is a synonym for PROGRAM
REGISTRATION REQUIRED. OFF is the default. Any program naming the subschema
can be compiled by the DML precompilers.

USAge is DML

Specifies that programs using the subschema can access database records only.

Attempts to access logical records will result in the return of an error-status code of
2010 to the requesting program.

USAge is LR

Specifies that programs using the subschema can access logical records only.
Attempts to access database records will result in the return of an error -status code
of nn10 to the requesting program.

USAge is MIXed

Specifies that programs using the subschema can access both database records and
logical records. MIXED is the default.

statistics-transfer-specification

Transfers compile-time program statistics from the current subschema to another
subschema. Statistics can be transferred for all programs associated with the

current subschema or for a specific program. Statistics can be viewed in standard
dictionary (DREPORTs) activity reports (see the CA IDMS Reports Guide), as follows:

■ Area statistics by area and by program

■ Set statistics by set and by program

■ Record statistics by record and by program

■ Logical record statistics by logical record and by program

TRAnsfer statistics to SUBschema name subschema-name

Identifies the subschema to receive the transferred statistics.

SUBSCHEMA Statement

454 Database Administration Guide

of SCHema name is schema-name

Identifies the schema with which the subschema receiving the transferred statistics

is associated; this clause is required if subschema-name is not unique.

version-specification

Uniquely qualifies schema-name with a version number. The default is the current

session option for existing versions.

Note: Expanded syntax for version-specification is presented in Chapter 13,
“Parameter Expansions".

FOR PROgram name is program-name

Identifies a program for which statistics have been collected under the current
subschema. The statistics for and registration of the named program are
transferred to the subschema named in the TRANSFER STATISTICS clause. If this
clause is omitted, the statistics for all programs associated with the subschema will

be transferred.

version-specification

Uniquely qualifies program-name with a version number. The default is the current
session option for existing versions.

Note: Expanded syntax for version-specification is presented in Chapter 13,
“Parameter Expansions".

LR CURrency RESet

For subschemas containing logical-record definitions, specifies that the CA IDMS
Logical Record Facil ity (LRF) is to reset currency and restore the logical record's

program variable storage area before iterating a path. RESET is the default.

LRF sets the currency to that which existed at the termination of the previous
execution of the path and restores the logical record's variable storage area with
the records obtained during the previous execution of the path. LRF resets currency

by issuing FINDs by DBKEY for all logical-record elements previously located up to,
but not including, that element at which iteration is to commence. LRF restores
storage by additionally issuing GETs for those elements retrieved as well as located

during the previous execution of the path.

LR CURrency NO RESet

Specifies that LRF is not to reset currency or restore variable storage.

SUBSCHEMA Statement

Chapter 15: Subschema Statements 455

INClude USEr is user-id

Associates a user with the subschema description. User-id must be the name of a

user as defined in the dictionary.

user-options-specification

Registers the user to access the subschema description, places security on the

subschema description, and documents the user's association with the subschema.
The options available with this clause are valid for INCLUDE only.

Note: Expanded syntax for user-options-specification is presented in Chapter 13,
“Parameter Expansions".

PUBlic ACCess is allowed for

Specifies which operations are available, for the current subschema and its
components, for public access (that is, to all users who can sign on to the
subschema compiler. When coded, the keyword ALLOWED can be abbreviated to

no fewer than four characters (ALLO).

DELete

Allows unregistered users to DELETE, DISPLAY, and PUNCH the subschema and its

components.

DISplay

Allows unregistered users to DISPLAY and PUNCH the subschema and its
components.

MODify

Allows unregistered users to MODIFY, DISPLAY, and PUNCH the subschema and its
components.

UPDate

Allows unregistered users to ADD, MODIFY, DELETE, DISPLAY, and PUNCH the
subschema and its components. Unlike ALL, UPDATE does not allow unregistered

users to change the subschema's PUBLIC ACCESS specification.

ALL

Allows unregistered users to ADD, MODIFY, DELETE, DISPLAY, and PUNCH the

subschema and its components. Additionally, ALL allows all users to change the
subschema's PUBLIC ACCESS specification, thus enabling them to change security
for the subschema.

SUBSCHEMA Statement

456 Database Administration Guide

NONe

Prohibits unregistered users from accessing the subschema.

INClude class-name is attribute-name

Provides a way for the DBA to classify the subschema for documentational purposes
by associating an attribute with the subschema.

Class-name must be the name of a class as defined in the dictionary through the
IDD DDDL compiler. If the dictionary entry for the class specifies that attributes
must be added manually, attribute-name must be the name of an attribute already
associated with class-name; if not, attribute-name can be any 1- to 40-character

value, enclosed in quotes if it contains spaces or delimiters.

Note: For instruction in defining classes and attributes, see the CA IDMS IDD DDDL
Reference Guide.

EXClude class-name is attribute-name

Dissociates an attribute with the subschema. Class-name must be the name of a

class for which an attribute already is associated with the subschema;
attribute-name names the attribute in order to be dissociated from the subschema.

TEXT is user-text

On INCLUDE class-name operations, supplies additional documentation of the
assignment of a specific attribute to the subschema. User-text is 1 to 40 characters
of text; if it contains spaces or delimiters, it must be enclosed in quotes.

COMments/comment-key is comment-text/NULl

Provides a way for the DBA to maintain comments about the subschema.
Comment-key is the value assigned in the USER DEFINED COMMENTS clause of the
IDD DDDL MODIFY ENTITY statement. NULl disassociates text from the current
subschema.

Note: Coding rules for comment-text are presented in 10.5.4, "Coding Comment
Text".

ALL COMment TYPes

Displays and punches all comment entries (COMMENTS, DEFINITIONS, ELEMENT

DEFINITIONS, CULPRIT HEADERS, OLQ HEADERS, REMARKS, and user-defined
comment keys) associated with the requested subschema.

AREas

Displays and punches all areas included in the subschema.

SUBSCHEMA Statement

Chapter 15: Subschema Statements 457

ATTributes

Displays and punches all classes and attributes assigned to the subschema.

COMments

Displays and punches all COMMENTS clauses included both in the SUBSCHEMA
statement and in all logical -record definitions in the subschema.

DEFinitions

Displays and punches all definitions associated with the subschema.

DETails

Displays and punches the following information about the subschema:

■ The AUTHORIZATION clause specified for the subschema

■ The USAGE clause specified for the subschema

■ The LR CURRENCY clause specified for the subschema

ELements

Displays and punches the following information:

■ When LRS and DETAILS are also specified, database records contained in a
logical record definition

■ When RECORDS and DETAILS are also specified, elements (fields) previously

specified in a subschema record definition

HIStory

Displays and punches the date and time that the subschema was created or last
modified.

LRS

Displays and punches all logical records included in the subschema.

PATh-groups

Displays and punches all logical-record path groups included in the subschema.

PROgrams

Displays and punches all programs associated with the subschema.

RECords

Displays and punches all database records included in the subschema.

SETs

Displays and punches all sets included in the subschema.

SUBSCHEMA Statement

458 Database Administration Guide

USEr DEFINED COMments/UCDS

For subschema with user-defined comment keys only, displays and punches all

user-defined comment keys associated with the requested subschema.

USErs

Displays and punches all users associated with the subschema, including the

REGISTRATION, RESPONSIBILITY, and PUBLIC ACCESS clauses.

ALL

Displays and punches the entire subschema description.

NONe

Displays and punches only the subschema name and associ ated schema name and

version number.

Usage

Effect of ADD on Subschema

ADD creates a new subschema source description in the dictionary. Default values

established through the SET OPTIONS statement can be used to supplement the
user-supplied description.

ADD also sets the subschema's status to IN ERROR. The status must be set to VALID
before a subschema load module can be generated; a load module must be generated

before programs can use the subschema to access the database.

Effect of MODIFY on Subschema

MODIFY modifies an existing subschema source description in the dictionary. All clauses

associated with an ADD operation can be specified for MODIFY operations.

MODIFY also sets the subschema's status to IN ERROR. The status must be set to VALID

before a subschema load module can be generated. Note, that if modification involves
the following changes, and if the subschema already has a load module, a new load
module need not be produced:

■ Documentation

■ Program registration

■ Statistics transfer

■ Users included or excluded

■ Public access

SUBSCHEMA Statement

Chapter 15: Subschema Statements 459

Effect of DELETE on Subschema

DELETE deletes an existing subschema source description from the dictionary. The

subschema load module (if any) remains intact, unless the SET OPTION statement
specifies DELETE IS ON, in which case the subschema compiler:

■ Logically deletes version 1 of the subschema load module from the load area of the

dictionary (load modules qualified by another version number must be explicitly
deleted).

■ Automatically erases version 1 of any PROG-051 dictionary record occurrence
associated with the subschema load modul e, provided the record was built by the

subschema compiler and is not related to any other entity type in the dictionary.

SUBSCHEMA Statement Defines Its Use by Program

The SUBSCHEMA statement defines the following information about its use by
programs:

■ Program authorization—The SUBSCHEMA statement specifies whether programs

using the subschema must be registered with the subschema (by means of the IDD
DDDL compiler) in the dictionary in order to be eligible for compilation by the CA
IDMS Data Manipulation Language (DML) precompilers.

■ DML usage—The SUBSCHEMA statement specifies whether programs using the
subschema can issue only DML requests, only logical-record DML requests, or both.

The SUBSCHEMA statement can also be used to transfer the statistics (such as database
access statistics) for the named subschema to another subschema.

ADD Interpreted as MODIFY

If, on an ADD operation, a subschema of the same name within the same schema
already exists in the dictionary, the action taken by the subschema compiler varies
depending on the current session option for DEFAULT:

■ If DEFAULT IS ON is specified, the subschema compiler interprets the ADD as a

MODIFY for the named subschema.

■ If DEFAULT IS OFF is specified, the subschema compiler issues an error message and
terminates processing of the ADD SUBSCHEMA statement. Note that, in this case,

subschema currency will be null for subsequent statements.

SUBSCHEMA Statement

460 Database Administration Guide

User-Specification Required for Secured Subschemas

If the user-specification clause is not used, user-id and password default to the current

session options.

User-specification is used when the subschema compiler checks security. If either the
subschema compiler or the specific subschema is secured, the compiler rejects the

operation unless it finds the name and password of an authorized user in one of the
following places:

■ The SUBSCHEMA statement

■ The current session value

Note: For a detailed description of security, see the CA IDMS Security Administration
Guide.

Transferring Statistics for Some, But Not All, Programs

To transfer statistics for multiple (but not all) programs, repeat the TRANSFER
STATISTICS clause for each program. To transfer statistics for all programs registered

with the subschema, include a single TRANSFER STATISTICS clause that does not specify
a program name.

Existing User Registration Replaced by New One

When modifying a user's registration, the option specified in the REGISTERED FOR
clause replaces the previous specification. In the following example, the second
REGISTERED FOR clause removes BARBER's ability to delete subschema empss01.

add subschema empss01

 user is barber

 registered for update.

mod subschema empss01

 user is barber

 registered for modify.

SUBSCHEMA Statement

Chapter 15: Subschema Statements 461

Existing User Responsibility Replaced by New One

When modifying a user's responsibility documentation, the option specified in the

RESPONSIBLE FOR clause replaces the previous specification. In the following example,
the second RESPONSIBLE FOR clause removes CREATE from BAKER's documentation of
responsibilities.

add subschema empss02

 user is baker

 responsible for creation and update.

mod subschema empss02

 user is baker

 responsible for update.

Registered Users Can Perform Non-Public Access Operations

To perform any operation not available for public access, the user must be registered for
that operation in the current subschema. Registered users can also perform operations
available for public access.

At Least One User Must Be Registered for ALL

When a subschema is added to the dictionary, public access defaults to ALL and cannot
be changed until at least one user is registered for ALL operations. The first registration
of a user for ALL operations changes public access to NONE. Note that the last user with
ALL registration cannot be excluded from the subschema description until public access

is changed to ALL. Thus the subschema compiler ensures that no inaccessible
subschema description exists in the dictionary. The following example il lustrates the
various stages of public access:

add subschema empss01.

Public access defaults to all.

mod subschema empss01.

 user is mjj

 registered for all

 public access is modify.

SUBSCHEMA Statement

462 Database Administration Guide

Public access changes from NONE to MODIFY with PUBLIC ACCESS is MODIFY.

mod subschema empss01.

 exclude user mjj.

This statement is not possible. Public access must first be changed to all.

Assigning Text to a Comment Key

Before entering comment-text for a comment-key in the COMMENTS clause, the
comment key must have been previously defined in the USER DEFINED COMMENTS

clause of the IDD DDDL MODIFY ENTITY statement.

Before specifying EXCLUDE in the USER DEFINED COMMENTS clause of an IDD DDDL
MODIFY ENTITY statement, you must first specify NULL for the comment key in the
SUBSCHEMA COMMENTS clause.

Examples

Minimum SUBSCHEMA Statement

The following example supplies the minimum SUBSCHEMA statement required for the
purpose of later establishing a functional subschema:

add subschema name is dehss01

 of schema empschm version 100.

Securing the subschema for LRF Usage

This example modifies subschema DEHSS01 so that any program that uses the
subschema must first be registered. It also designates that these programs can access
logical records only.

mod subschema dehss01

 program registration is on

 usage is lr .

Registering a User For All Operations

This example indicates user DEH has authority to perform all basic entity operations and
to issue the PUBLIC ACCESS clause. All other users are allowed to display or punch the
subschema.

mod subschema dehss01

 include user deh

 registered for all

 public access is allowed for display.

AREA Statement

Chapter 15: Subschema Statements 463

Documenting Subschema Revisions

In the following example, the DBA documents subschema revisions and the purpose of

those revisions; note that the DBA first defined revision number as a class in the
dictionary:

modify subschema name is culss01

 prepared by dba password is tennis

 revision number is '6.5'

 text is 'accommodate new billing restrictions'.

Note: For more information about when to specify LR CURRENCY RESET or NO RESET,

see the CA IDMS Logical Record Facility Guide.

AREA Statement

The AREA statements identify a subschema area. Depending on the verb and options
coded, the AREA statements can also:

■ Copy an area description from the schema with which the current subschema is

associated

■ Determine the usage modes in which programs using the current subschema can
ready the area

■ Determine the default usage mode for programs that do not issue READY
statements

■ Delete an area from the subschema

■ Display or punch a subschema area

The subschema compiler applies AREA statements to the current subschema.

Note: For more information about subschema currency, see the CA IDMS Security
Administration Guide.

AREA Statement

464 Database Administration Guide

Syntax

Syntax: ADD/MODIFY AREA

►►─┬─ ADD ────┬─ AREa name is area-name ──────────────────────────────────────►
 └─ MODify ─┘

 ►─┬───┬────────────►
 │ ┌───┐ │
 └─▼─┬─────────────┬──┬─ UPDate ────┬─ is ─┬─ ALLowed ◄────┬─┴─┘
 ├─ EXClusive ─┤ └─ RETrieval ─┘ └─ NOT ALLowed ─┘
 ├─ PROtected ─┤
 └─ SHAred ────┘

 ►─┬──┬───►◄
 └─ DEFault USAge is ─┬─┬─────────────┬──┬─ UPDate ────┬──┬─────────┬─┬─┘
 │ ├─ EXClusive ─┤ └─ RETrieval ─┘ └─ FORce ─┘ │
 │ ├─ PROtected ─┤ │
 │ └─ SHAred ────┘ │
 └─ NULl ◄───────────────────────────────────────┘

Syntax: DELETE AREA

►►─── DELete AREa name is area-name ──►◄

Syntax: DISPLAY/PUNCH AREA

►►─┬─ DISplay ─┬─ AREa name is area-name ─────────────────────────────────────►
 └─ PUNch ───┘

 ►─┬───────────────────────────────────────┬──────────────────────────────────►
 │ ┌───────────────────────────────────┐ │
 │ │ ┌───────────────┐ │ │
 └─▼─┬─ WITh ──────┬─▼─┬─ DETails ─┬─┴─┴─┘
 ├─ ALSo WITh ─┤ ├─ ALL ─────┤
 └─ WITHOut ───┘ └─ NONe ────┘

 ►─┬──────────────────────┬───►
 └─ VERB ─┬─ ADD ─────┬─┘
 ├─ MODify ──┤
 ├─ DELete ──┤
 ├─ DISplay ─┤
 └─ PUNch ───┘

 ►─┬─────────────────────┬──►
 └─ AS ─┬─ COMments ─┬─┘
 └─ SYNtax ───┘

 ►─┬─────────────────────────────────┬──►◄
 └─ TO ─┬─ module-specification ─┬─┘
 └─ SYSpch ───────────────┘

AREA Statement

Chapter 15: Subschema Statements 465

Parameters

AREa name is area-name

Identifies an area description. Area-name must be the name of an area defined in
the schema with which the current subschema is associated.

UPDate

Specifies an area ready mode of UPDATE. Run units can ready the area for shared
update, protected update, or exclusive update.

RETrieval

Specifies an area ready mode of RETRIEVAL. Run units can ready the area for shared
retrieval, protected retrieval, or exclusive retrieval.

EXClusive

Specifies an area ready mode of EXCLUSIVE UPDATE or EXCLUSIVE RETRIEVAL.

PROtected

Specifies an area ready mode of PROTECTED UPDATE or PROTECTED RETRIEVAL.

SHAred

Specifies an area ready mode of SHARED UPDATE or SHARED RETRIEVAL.

is ALLowed

Specifies that run units using the current subschema can ready the area in the
specified ready mode. ALLOWED is the default.

is NOT ALLowed

Specifies that run units using the current subschema cannot ready the area in the
specified ready mode.

DEFault USAge is

Specifies the default ready mode, if any, in which the named area is to be readi ed
for programs using the current subschema.

UPDate

Specifies the default ready mode is UPDATE. The area can be readied in SHARED
UPDATE, EXCLUSIVE UPDATE, or PROTECTED update.

RETrieval

Specifies the default ready mode is RETRIEVAL. The area can be readied in SHARED
RETRIEVAL, EXCLUSIVE RETRIEVAL, or PROTECTED RETRIEVAL.

EXClusive

Specifies the default ready mode is either EXCLUSIVE UPDATE or EXCLUSIVE
RETRIEVAL.

AREA Statement

466 Database Administration Guide

PROtected

Specifies the default ready mode is either PROTECTED UPDATE or PROTECTED

RETRIEVAL.

SHAred

Specifies the default ready mode is either SHARED UPDATE or SHARED RETRIEVAL.

FORce

Specifies that the area is automatically readied even if explicit READY statements
for other areas have already been issued. If this parameter is omitted, then
automatic ready is disabled after any explicit READY statement.

Note: For more information about FORCE, see the Usage (see page 466) section.

NULl

Specifies that programs accessing this area must issue an explicit READY statement
for the area. NULL is the default.

DETails

Displays and punches the ready modes in which the area can or cannot be readied
and the default ready mode in which the area will be readied for programs using
the current subschema.

ALL

Displays and punches the entire area description.

NONe

Displays and punches only the name of the area.

Usage

Effect of ADD on Areas

ADD copies the area description from the schema description into the subschema
description.

Effect of DELETE on Areas

DELETE removes the area from the current subschema description in the dictionary; the
area remains associated with the schema.

AREA Statement

Chapter 15: Subschema Statements 467

AREA Statement Determines How Programs Can Ready the Area

ADD and MODIFY AREA operations can restrict the ready modes in which programs

using the current subschema can ready the area, and can specify a default ready mode
in which the area will be readied for programs using the current subschema.

The UPDATE (RETRIEVAL) IS ALLOWED clause can be repeated for as many different

ready modes as required.

Specify Default Ready Mode for All Subschema Areas or use the FORCE Option

If a program issues an explicit READY for one area, it must issue an explicit READY for all
areas to be accessed unless the areas use the default usage mode with the FORCE
option. The automatic READY mechanism is turned off as soon as one area is readied

explicitly by a program and then only areas using the default usage option FORCE are
automatically readied.

Considerations for Using the FORCE Option with ADS Dialogs

The FORCE option is provided to allow application changes to be deferred when a record
in an index set is moved to a different area . This type of change might be done to

implement a Mixed Page Group Index Set. When the FORCE option is used on an AREA
referenced by ADS dialogs having extended run units, those dialogs must be modified in
some manner, as indicated in the scenarios and workarounds outlined below.

Three types of issues can occur with respect to the use of the FORCE option with areas
that ADS dialogs access using an extended run unit:

1. Negative impact on performance

Most ADS dialogs READY all areas for RETRIEVAL, therefore the default usage
modes are often defined as RETRIEVAL. However, UPDATE dialogs require one or
more areas to be readied for UPDATE. In cases where a new area is defined using

the FORCE option and the subschema is referenced in one or more UPDATE dialogs,
the RETRIEVAL/UPDATE clause for the new area must be set to UPDATE to allow
updating the index set. Applying this setting changes all RETRIEVAL dialogs which

reference that subschema area to UPDATE, which can cause degradation in
performance, or in some cases may cause deadlocks to occur due to increased
locking.

Workaround

Identify the dialogs that UPDATE the index (there should not be too many). Change
the UPDATE dialogs by one of the two following methods:

■ Add a READY UPDATE statement in the process code (instead of using the Area

FORCE option).

■ Use a new tailored subschema that readies the new area using the FORCE and
UPDATE options.

This workaround only functions if the run units are not extended.

AREA Statement

468 Database Administration Guide

2. Abends in dialogs using extended run units.

This issue can occur in situations such as this example:

An update dialog readies one area for UPDATE and another for RETRIEVAL. This
dialog then LINKs to a dialog that does not ready the second area, but also readies
the first area for UPDATE to allow updates to an indexed set that the upper -level

dialog does not use. For efficiency, ADS keeps the run unit open through both
dialogs. If one record of the indexed set is moved from the UPDATE area to the
RETRIEVAL area, the lower-level dialog needs UPDATE access to the new area.

As the run unit is rebound only when the dialogs are recompiled, the second run

unit does not have UPDATE access to the second area. ERROR-STATUS abends such
as 0801 and 1209 can occur.

Workaround

Change the subschema to ready its second area for UPDATE using the FORCE

option. Be aware that doing so can cause the locking problems described in the
preceding issue.

Note: Using a tailored subschema for the lower-level dialog is not an option

because the run unit would no longer be extended.

3. Incomplete recovery after an abend of an extended run unit

When two dialogs use the same subschema with extendable attributes, the run unit
is extended if one dialog LINKs to the other. When an indexed set is modified to
span page groups, then neither of these dialogs is able to access the new area

unless the dialogs are recompiled or the subschema is modified to FORCE a READY
for the new area.

Problems can occur in the situation when a subschema is changed to add a new
area using the FORCE and UPDATE options. When a lower-level dialog in an

extended run unit is recompiled, its RAT (READY AREA TABLE) is changed to access
the new area and the run unit from the higher-level dialog will no longer be
extended. In normal situations, the dialog performs as before, except that multiple

run units are bound and finished during each execution of the transaction. If an
abend occurs, only part of the transaction is rolled back because multiple run units
were bound.

Workaround

Recompile all dialogs in the run unit thread if the FORCE option is used on an AREA
referenced by ADS dialogs having extended run units.

RECORD Statement

Chapter 15: Subschema Statements 469

Example

This example adds area EMP-DEMO-REGION to the current subschema.
EMP-DEMO-REGION can be readied for SHARED UPDATE or SHARED RETRIEVAL. The
default ready mode is SHARED RETRIEVAL.

add area name is emp-demo-region

 shared update is allowed

 default usage is shared retrieval.

Note: For more information about area ready modes and ready options, see the CA
IDMS Navigational DML Programming Guide.

RECORD Statement

The RECORD statements identify a subschema record. Depending on the verb and
options coded, the RECORD statements can also:

■ Copy a record description from the schema with which the current subschema is
associated

■ Define a subschema view of the record; a s ubschema view determines:

– Which record elements can be accessed through the subschema

– Which DML verbs can be issued against the record

■ Establish a priority, within the subschema, for the record

■ Delete a record from the subschema

■ Display or punch a subschema record description

The subschema compiler applies RECORD statements to the current subschema.

Note: For an explanation of subschema currency, see 9.7, “Establishing Schema and
Subschema Currency”.

RECORD Statement

470 Database Administration Guide

Syntax

Syntax: ADD/MODIFY RECORD

►►─┬─ ADD ────┬─ RECord name is database-record-name ─────────────────────────►
 └─ MODify ─┘

 ►─┬──────────────────────┬───►
 └─ VIEw ID is view-id ─┘

 ►─┬───┬────────────────────────────►
 │ ┌───┐ │
 └─▼─┬─ CONnect ────┬─ is ─┬─ ALLowed ◄────┬─┴─┘
 ├─ DISconnect ─┤ └─ NOT ALLowed ─┘
 ├─ ERAse ──────┤
 ├─ FINd ───────┤
 ├─ GET ────────┤
 ├─ KEEp ───────┤
 ├─ MODify ─────┤
 └─ STOre ──────┘

 ►─┬─────────────────────────────────────┬────────────────────────────────────►
 │ ┌──────────────┐ │
 └─ ELements are ─┬─▼- field-name ─┴─┬─┘
 └─ ALL ────────────┘

 ►─┬─────────────────────────────────────┬────────────────────────────────────►◄
 └─ PRIority is ─┬─ record-priority ─┬─┘
 └─ NULl ────────────┘

Syntax: DELETE RECORD

►►─── DELete RECord name is database-record-name ─────────────────────────────►◄

Syntax: DISPLAY/PUNCH RECORD

►►─┬─ DISplay ─┬─ RECord name is database-record-name ────────────────────────►
 └─ PUNch ───┘

 ►─┬──┬─────────────────────────────────►
 │ ┌────────────────────────────────────┐ │
 │ │ ┌────────────────┐ │ │
 └─▼─┬─ WITh ──────┬─▼─┬─ DETails ──┬─┴─┴─┘
 ├─ ALSo WITh ─┤ ├─ ELements ─┤
 └─ WITHOut ───┘ ├─ ALL ──────┤
 └─ NONe ─────┘

 ►─┬──────────────────────┬───►
 └─ VERB ─┬─ ADD ─────┬─┘
 ├─ MODify ──┤
 ├─ DELete ──┤
 ├─ DISplay ─┤
 └─ PUNch ───┘

 ►─┬─────────────────────┬──►
 └─ AS ─┬─ COMments ─┬─┘
 └─ SYNtax ───┘

 ►─┬─────────────────────────────────┬──►◄
 └─ TO ─┬─ module-specification ─┬─┘
 └─ SYSpch ───────────────┘

RECORD Statement

Chapter 15: Subschema Statements 471

Parameters

RECord name is database-record-name

Names a database record described in the schema with which the current
subschema is associated. Database-record-name can be a record synonym of a

schema record, in which case it must not exceed 16 characters.

VIEw ID is view-id

Copies a predefined view of the record description into the subschema, or it defines
a view being created by the current subschema for this record description.

If view-id exists in the dictionary, that view is copied into the subschema. In this
case, view-id must be the identifier of a database record placed in the dictionary by
previous execution of the subschema compiler for another subschema, or by the
IDD DDDL compiler (via DDDL RECORD entity-type syntax). If view-id does not

already exist in the dictionary, it defines a new view of database-record-name in the
dictionary, and it can subsequently be used for another subschema compiled under
any schema that copies the same database record.

View-id must be a 1- to 32-character alphanumeric value. Additiona lly, it must be
unique for the record, but need not be unique among all records defined in the
dictionary.

CONnect

Specifies that programs using the current subschema can or cannot issue CONNECT

commands against database-record-name.

DISconnect

Specifies that programs using the current subschema can or cannot issue
DISCONNECT commands against database-record-name.

ERAse

Specifies that programs using the current subschema can or cannot issue ERASE
commands against database-record-name.

FINd

Specifies that programs using the current subschema can or cannot issue FIND
commands against database-record-name.

RECORD Statement

472 Database Administration Guide

GET

Specifies that programs using the current subschema can or cannot issue GET

commands against database-record-name.

KEEp

Specifies that programs using the current subschema can or cannot issue KEEP

commands against database-record-name.

MODify

Specifies that programs using the current subschema can or cannot issue MODIFY
commands against database-record-name.

STOre

Specifies that programs using the current subschema can or cannot issue STORE
commands against database-record-name.

is ALLowed

Specifies that the program using the current subschema can issue the specified

DML function against the database record. ALLOWED is the default.

is NOT ALLowed

Specifies that the program using the current subschema cannot issue the specified

DML function against the database record.

ELements are field-name

Identifies the schema-defined fields to be included in the subschema description of
database-record-name. Field-name must identify a field defined for
database-record-name in the schema associated with the current subschema. (This

is also true if database-record-name is a synonym.)

Note: For more information about using this clause, see "Usage" in this section.

ELements are ALL

Includes all schema-defined fields to be in the subschema description of

database-record-name.

PRIority is record-priority

Specifies a priority to be assigned to the record in the runtime subschema tables.
The PRIORITY clause is used to sequence record descriptions according to their
priority in the subschema tables. For example, heavily-used records should receive

a higher priority than less-frequently used records.

Record-priority is an unsigned integer in the range 0 through 9999, where 0
represents the lowest priority and 9999 represents the highest priority. If the

PRIORITY clause is not included for a record, the record's sequence in the runtime
subschema tables will correspond to that in which it was included in the current
subschema. Records with the same priority are organized in the order included,
within priority.

RECORD Statement

Chapter 15: Subschema Statements 473

PRIority is NULl

Specifies that this record description is to be assigned no priority (that is, it will be

placed at the end of the subschema tables).

DETails

Displays and punches the elements, access restrictions, view, and priority defined in

the subschema record description. Note that only those elements previously
specified in a subschema RECORD statement are displayed.

ELements

When DETAILS is also specified, displays and punches the elements specified in the

ELEMENTS ARE clause of the subschema record definition.

ALL

Displays and punches the entire record description.

NONe

Displays and punches only the name of the record.

RECORD Statement

474 Database Administration Guide

Usage

Effect of ADD on Records

ADD copies the record description from the schema description into the subschema.
The record can be copied into the subschema with its primary name or with any of its

synonyms.

Note: A record description can be copied only once into a subschema, regardless of the
number of record synonyms that exist for that record.

The following il lustrates the use of the ADD RECORD statement. The left-hand side

il lustrates the original schema record description. The right-hand side il lustrates a
subschema record description, a subset of the schema.

SCHEMA SUBSCHEMA

ADD RECORD NAME IS EMPOSITION ADD RECORD NAME IS EMPOSITION
 LOCATION MODE IS VIA EMP-POSITION SET STORE IS NOT ALLOWED
 WITHIN EMP-DEMO-REGION AREA. ERASE IS NOT ALLOWED
 02 POS-START-DATE. ELEMENTS ARE
 03 POS-START-YEAR PIC 99. POS-FINISH-DATE
 03 POS-START-MONTH PIC 99. POS-START-DATE.
 03 POS-START-DAY PIC 99. ┌───────────────┬────────────────┐
 02 POS-FINISH-DATE. │POS-FINISH-DATE│ POS-START-DATE │
 03 POS-FINISH-YEAR PIC 99. └───────────────┴────────────────┘
 03 POS-FINISH-MONTH PIC 99.
 03 POS-FINISH-DAY PIC 99.
 02 POS-SALARY-GRADE PIC 99.
 02 POS-SALARY-AMOUNT PIC S9(7)V99 COMP-3.
 02 POS-BONUS-PERCENT PIC S999 COMP-3.
 02 POS-COMM-PERCENT PIC S999 COMP-3.
 02 POS-OVERTIME-RATE PIC S999 COMP-3.
 ┌──────────────┬───────────────┬──┬─────────────┐
 │POS-START-DATE│POS-FINISH-DATE│ │ │
 ├─────┬─────┬──┴─┬─────────────┴──┴─────────────┘
 │ │ │ │ ▲ ▲
 └─────┴─────┴────┘ POS-SALARY-GRADE │
 ▲ ▲ ▲ POS-SALARY-AMOUNT -─┘
 │ │ └──── POS-OVERTIME-RATE
 │ └────────── POS-COMM-PERCENT
 └──────────────── POS-BONUS-PERCENT

Effect of DELETE on Records

DELETE removes the record from the current subschema description in the dictionary;
the record remains associated with the schema.

How DELETE RECORD Affects Set Definitions

If the record owns a subschema set, DELETE RECORD deletes the set. If the record is a
member of a subschema set, DELETE RECORD has no effect on the set.

The subschema DELETE RECORD statement does not affect the schema description of
sets.

RECORD Statement

Chapter 15: Subschema Statements 475

How ELEMENTS and VIEW ID Clauses Determine the Record Description

The combination of the ELEMENTS clause specification and the VIEW ID clause

specification determines which fields are copied into the subschema description of
database-record-name. The following table l ists the possible combinations of the
ELEMENTS clause and VIEW ID clause specifications and the resulting subschema view of

the record.

No VIEW ID Clause VIEW ID Clause

No ELEMENTS Clause All schema-defined fields Fields defined for record

identified by view ID

ELEMENTS ARE ALL All schema-defined fields All schema-defined fields;
new view ID created

ELEMENTS ARE field
name

Schema-defined fields named
in ELEMENTS clause

Schema-defined fields
named in ELEMENTS clause;
new view ID created

Note: When the ELEMENTS clause is used for a view ID associated with other

subschemas, the subschema compiler ignores the VIEW ID clause, c reating a new
subschema view with a null ID.

RECORD Statement

476 Database Administration Guide

Considerations Specifying Fields in the ELEMENTS Clause

The following considerations apply to copying schema -defined fields into the subschema

description of the record:

■ Schema-defined fields can be named in any order in the ELEMENTS clause; the
order in which they are named is the order in which they will participate in the

subschema view of the record.

■ If a group field is included in the subschema record description, all of its
subordinate fields will be included and will retain their schema -defined order.

■ FILLER fields cannot be included in the subschema record description, except as

automatically included under groups.

■ Redefining fields (or their subordinate fields) cannot be included in the subschema
record description. Note, however, that if a redefined field is included, all redefining
fields (and their subordinate fields) for that field will be included in the record

description.

■ Individual fields subordinate to an OCCURS field cannot be included in the record
description. The OCCURS field itself must be included, in which case all fields

subordinate to it will automatically be included as well.

■ If an OCCURS DEPENDING ON field is included, the field on which that fiel d depends
must also be included in the record description.

■ If an OCCURS DEPENDING ON field is included, it must be named last in the

ELEMENTS clause.

■ All fields named in the ELEMENTS clause must have the same level number.

■ Bit fields cannot be included in the ELEMENTS clause.

PRIORITY Clause Can Optimize Use of Subschema Tables at Runtime

The PRIORITY clause permits the DBA to optimize runtime use of the subschema tables

when a frequently used subschema includes many record types, of which only a few are
used heavily. Those records used most heavily should be assigned high priorities. The
PRIORITY clause is useful primarily in subschemas in which only a few record types are

accessed frequently.

SET Statement

Chapter 15: Subschema Statements 477

Example

This example adds a view of schema record EMPLOYEE to the current subschema. The
view includes the employee ID and employee name. Programs accessing the EMPLOYEE
record through the current subschema will not be able to access other elements defined

for the EMPLOYEE record.

add record name is employee

 view id is dehview

 elements are emp-id-0415

 emp-name-0415 .

SET Statement

The SET statements identify a subschema set. Depending on the verb, the SET
statements can also:

■ Copy a set description from the schema

■ Determine which DML verbs can be issued against the set

■ Delete a set description from the subschema

■ Display or punch a subschema set description

The subschema compiler applies SET statements to the current subschema.

Note: For an explanation of subschema currency, see 9.7, “Establishing Schema and
Subschema Currency”.

Syntax

Syntax: ADD/MODIFY SET

►►─┬─ ADD ────┬─ SET name is set-name ──►
 └─ MODify ─┘

 ►─┬───┬────────────────────────────►◄
 │ ┌───┐ │
 └─▼─┬─ CONnect ────┬─ is ─┬─ ALLowed ◄────┬─┴─┘
 ├─ DISconnect ─┤ └─ NOT ALLowed ─┘
 ├─ FINd ───────┤
 └─ KEEp ───────┘

Syntax: DELETE SET

►►─── DELete SET name is set-name ──►◄

SET Statement

478 Database Administration Guide

Syntax: DISPLAY/PUNCH SET

►►─┬─ DISplay ─┬─ SET name is set-name ───────────────────────────────────────►
 └─ PUNch ───┘

 ►─┬───────────────────────────────────────┬──────────────────────────────────►
 │ ┌───────────────────────────────────┐ │
 │ │ ┌───────────────┐ │ │
 └─▼─┬─ WITh ──────┬─▼─┬─ DETails ─┬─┴─┴─┘
 ├─ ALSo WITh ─┤ ├─ ALL ─────┤
 └─ WITHOut ───┘ └─ NONe ────┘

 ►─┬──────────────────────┬───►
 └─ VERB ─┬─ ADD ─────┬─┘
 ├─ MODify ──┤
 ├─ DELete ──┤
 ├─ DISplay ─┤
 └─ PUNch ───┘

 ►─┬─────────────────────┬──►
 └─ AS ─┬─ COMments ─┬─┘
 └─ SYNtax ───┘

 ►─┬─────────────────────────────────┬──►◄
 └─ TO ─┬─ module-specification ─┬─┘
 └─ SYSpch ───────────────┘

Parameters

SET name is set-name

Identifies a set defined in the schema associated with the current subschema.

CONnect

Specifies that programs using the current subschema can or cannot issue CONNECT
commands against set-name.

DISconnect

Specifies that programs using the current subschema can or cannot issue
DISCONNECT commands against set-name.

FINd

Specifies that programs using the current subschema can or cannot issue FIND
commands against set-name.

SET Statement

Chapter 15: Subschema Statements 479

KEEp

Specifies that programs using the current subschema can or cannot issue KEEP

commands against set-name.

is ALLowed

Specifies that the program using the current subschema can issue the specified

DML function against the set. ALLOWED is the default. This clause can be repeated
for as many operations as required.

is NOT ALLowed

Specifies that the program using the current subschema cannot issue the specified

DML function against the set. This clause can be repeated for as many operations as
required.

DETails

Displays and punches access restrictions defined for the set priority defined in the
record description.

ALL

Displays and punches the entire set description.

NONe

Displays and punches only the name of the set.

Usage

Effect of ADD on Sets

ADD copies the set description from the schema description into the subschema

description.

Before a set can be added to the subschema, the record that owns that set must be
present in the subschema. Note, however, that system-owned indexed sets and sets
based on native VSAM data sets) are excluded from this rule, since the owner record is

not specified in the subschema.

For a set to be a valid subschema component, at least one member record must be
present in the subschema.

Note: For information about validation, see 14.8, “VALIDATE Statement".

SET Statement

480 Database Administration Guide

Effect of MODIFY on Sets

MODIFY modifies some aspect of the set's participation in the subschema. All clauses

associated with an ADD operation can be specified for MODIFY operations.

Effect of DELETE on Sets

DELETE removes the set from the current subschema description in the dictionary; the

set remains associated with the schema.

Set Automatically Deleted When Owner Record Deleted

If the set's owner record is deleted, either from the schema or from the subschema, the
set is automatically deleted from the subschema.

Explicitly Delete Set After Deleting Member Records

If the set's member record is deleted, either from the schema or from the subschema,
the set remains in the subschema. To delete the set, delete all the member records
associated with the set before issuing the DELETE SET statement.

Example

In the following example, an attempt is made to add the DEPT-EMPLOYEE set to the
current subschema. The subschema compiler returns error messages indicating that the
owner of the set (the DEPARTMENT record) has not been added to the subsc hema:

add set name is dept-employee.

Produces these messages:

*+ E DC643023 OWNER OF SET NOT IN SUBSCHEMA

*+ W DC601017 FORWARD SPACING TO NEXT PERIOD

LOGICAL RECORD Statement

Chapter 15: Subschema Statements 481

LOGICAL RECORD Statement

The LOGICAL RECORD statements define a logical record that programs using the
current subschema can access. Depending on the verb, the LOGICAL RECORD
statements can also modify, delete, display, or punch a logical-record description.

A logical record is defined by naming the logical record and all the subschema records

that participate in it; these subschema records are known as logical-record elements.
The records must participate in the subschema (through ADD RECORD statements)
before they can be named as logical record elements in the LOGICAL RECORD
statement.

Note: IDD work records used as logical-record elements do not need a subschema ADD
RECORD statement.

The subschema compiler applies LOGICAL RECORD statements to the current

subschema.

Syntax

Syntax: ADD/MODIFY LOGICAL RECORD

►►─┬─ ADD ────┬─┬─ LOGical RECord ─┬─ name is logical-record-name ────────────►
 └─ MODify ─┘ └─ LR ─────────────┘

 ►─┬───┬────────────────►
 │ ┌──────────────────────────────────────┐ │
 └─ ELements are -▼─┬─ subschema-record-specification ─┬─┴─┘
 └─ idd-record-specification ───────┘

 ►─┬───────────────────────────────┬──►
 └─ ON LR-ERROR ─┬─ CLEar ─────┬─┘
 └─ NOClear ◄──┘

 ►─┬───────────────────────────────────┬──────────────────────────────────────►
 └─ ON LR-NOT-FOUND ─┬─ CLEar ─────┬─┘
 └─ NOClear ◄──┘

 ►─┬─────────────────────────┬──►◄
 └─ COMments comment-text ─┘

Expansion of subschema-record-specification

►►─── subschema-record-name ─┬──────────────────────────┬─────────────────────►◄
 └─ ROLe name is role-name ─┘

Expansion of idd-record-specification

►►─── idd-record-name ──►

 ►─── version-specification ──►

 ►─┬──────────────────────────┬───►◄
 └─ ROLe name is role-name ─┘

LOGICAL RECORD Statement

482 Database Administration Guide

Syntax: DELETE LOGICAL RECORD

►►─── DELete ─┬─ LOGical RECord ─┬─ name is logical-record-name ──────────────►◄
 └─ LR ─────────────┘

Syntax: DISPLAY/PUNCH LOGICAL RECORD

►►─┬─ DISplay ─┬─┬─ LOGical RECord ─┬─ name is logical-record-name ───────────►
 └─ PUNch ───┘ └─ LR ─────────────┘

 ►─┬──┬─────────────────────────────────►
 │ ┌────────────────────────────────────┐ │
 │ │ ┌────────────────┐ │ │
 └─▼─┬─ WITh ──────┬─▼─┬─ COMments ─┬─┴─┴─┘
 ├─ ALSo WITh ─┤ ├─ DETails ──┤
 └─ WITHOut ───┘ ├─ ALL ──────┤
 └─ NONe ─────┘

 ►─┬──────────────────────┬───►
 └─ VERB ─┬─ ADD ─────┬─┘
 ├─ MODify ──┤
 ├─ DELete ──┤
 ├─ DISplay ─┤
 └─ PUNch ───┘

 ►─┬─────────────────────┬──►
 └─ AS ─┬─ COMments ─┬─┘
 └─ SYNtax ───┘

 ►─┬─────────────────────────────────┬──►◄
 └─ TO ─┬─ module-specification ─┬─┘
 └─ SYSpch ───────────────┘

Parameters

LOGical RECord/LR name is logical-record-name

Names a logical record. For ADD operations, logical-record-name must uniquely
identify a logical record in the current subschema.

Logical-record-name cannot duplicate the name of a database record described in

the same subschema. Note that synonyms cannot be defined for logical records;
logical records with different names (such as names for COBOL versus those for
Assembler) must be defined in different subschemas.

Logical-record-name must be a 1- to 16- character name. Note that LOGICAL

RECORD and LR are synonymous.

When naming logical records, be sure that the selected names do not conflict with
the CA IDMS Data Manipulation Language precompiler with which the logical

records will be used.

ELements are

Identifies either a subschema record described in the current subschema or a
record described in the dictionary, but not in the schema that owns the current

subschema. Multiple subschema and dictionary records can be defined as elements
of a logical record.

All elements named in the ELEMENTS clause of the DDL RECORD statement or the
DDDL RECORD statement are included i n the logical record.

LOGICAL RECORD Statement

Chapter 15: Subschema Statements 483

subschema-record-specification

Identifies a record described in the current subschema and optionally assigns a

unique ID to a logical record element that occurs more than once in the logical
record description.

subschema-record-name

Identifies the name of a subschema record described in the current subschema.

ROLe name is role-name

Assigns a unique ID to a logical -record element that occurs more than once in a
single logical record; it can also be used for logical-record elements that occur only
once in the logical record.

Role-name is a 1- to 16-character name. Role-name cannot be the name of a record
or record synonym defined in the schema that owns the current subschema, or the
name of a logical record used in the subschema.

Each role name can be assigned to only one record type per subschema; it can be

assigned to that record type in any number of LOGICAL RECORD statements.

idd-record-specification

Identifies a record described in the dictionary, but cannot be the name of a record
or record synonym defined in the schema that owns the current subschema. IDD
records commonly are included in logical records to introduce work fields into the

logical-record path logic.

idd-record-name

Names the dictionary record.

version-specification

Qualifies the dictionary record with a version number. This clause is required for

dictionary records. The version number defaults to the current session option for
existing versions.

Note: Expanded syntax for version-specification is presented in Chapter 13,

“Parameter Expansions".

ROLe name is role-name

Assigns a unique ID to a logical -record element that occurs more than once is a
single logical record. The syntax rules that appear above apply, with one exception:

for dictionary records, role-name can be up to 32 characters long.

LOGICAL RECORD Statement

484 Database Administration Guide

ON LR-ERROR CLEar

Indicates that variable-storage allocated to the logical record in the program gets

set to low values if a program request for access to the named logical record results
in the return of the LR-ERROR path status.

ON LR-ERROR NOClear

Indicates that variable-storage allocated to the logical record in the program does
not get set to low values if a program request for access to the named logical record
results in the return of the LR-ERROR path status. NOCLEAR is the default.

ON LR-NOT-FOUND CLEar

Indicates that variable-storage allocated to the logical record in the program gets
set to low values if a program request for access to the named logical record results
in the return of the LR-NOT-FOUND path status.

ON LR-NOT-FOUND NOClear

Indicates that variable-storage allocated to the logical record in the program does

not get set to low values if a program request for access to the named logical record
results in the return of the LR-NOT-FOUND path status. NOCLEAR is the default.

COMments comment-text

Permits documentational entries for the named logical record.

Note: For rules on coding comment-text, see 10.5.4, "Coding Comment Text".

COMments

Displays and punches all comment text included in the logical-record definition.

DETails

Displays and punches the following information about the logical record:

■ All subschema records that participate as elements in the logical record

■ The ON LR-ERROR clause specified for the logical record

■ The ON LR-NOT-FOUND clause specified for the logical record

ALL

Displays and punches the entire logical-record description.

NONe

Displays and punches only the name of the logical record.

LOGICAL RECORD Statement

Chapter 15: Subschema Statements 485

Usage

Sequence of LR Elements in Program Storage Same as DDL Sequence

When a DML precompiler copies a logical -record description into a program's
description of variable storage, each logical-record element is subordinate to the logical

record itself. The sequence of logical-record elements in the copied description is the
same as that in DDL LOGICAL RECORD statement. If a subschema record occurs more
than once in a single logical record, the additional occurrences must be assigned unique
IDs, called roles.

Must Modify Logical Record if Records Used in Logical Record Change

If any record used as a logical -record element is modified (through the schema compiler
or the IDD DDDL compiler), the logical record must also be modified (through the
subschema compiler) before the subschema load module is generated.

Must Use Role Names in PATH-GROUP Syntax

Once a role name has been assigned, that name must be used whenever PATH-GROUP
syntax requires a logical -record element name.

Document All Logical Record Definitions

The following information should be included as COMMENTS for every logical record
defined in the subschema:

■ The DML verbs that a program using the subschema can issue in connection with
logical-record-name

■ The selection criteria that a program can include with each permitted logical-record

DML verb

■ The DBA-defined path statuses that can be returned for each permitted DML verb

■ The sequence in which data is returned to the program

Examples

Adding Logical Record Elements

This example adds two subschema records to a newly created logical record:

add lr name is dehlr

 elements are employee department.

PATH-GROUP Statement

486 Database Administration Guide

Using Role Names

The following examples compare a valid way to use a role name more than once with an

invalid one:

VALID

 add lr name is manager-staff

 elements are employee

 structure

 employee role name is staff.

 add lr name is dept-roster

 elements are department

 employee role name is staff.

INVALID

 add lr name is emp-hosp-claims

 elements are employee

 coverage

 hospital-claim role name is claim.

 add lr name is emp-dental-claims

 elements are employee

 coverage

 dental-claim role name is claim.

Note: For more information about logical record path statuses (LR-ERROR and
LR-NOT-FOUND), see the CA IDMS Logical Record Facility Guide.

PATH-GROUP Statement

The PATH-GROUP statements define, modify, delete, display, or punch processing paths
for a specific logical record. At runtime, LRF services program requests by following one

of the paths to access the logical record.

For each logical record, at least one path group, and at most four (one for each DML
verb that can access the logical record), must be defined. A path group can contain any

number of paths. Which path LRF uses at runtime is determined by selection criteria,
both in the path group and in the program requesting LRF's services.

The subschema compiler applies PATH-GROUP statements to the current subschema.

PATH-GROUP Statement

Chapter 15: Subschema Statements 487

Syntax

Syntax: ADD/MODIFY PATH-GROUP

►►─┬─ ADD ────┬─ PATh-group name is ─┬─ ERAse ──┬─ logical-record-name ───────►
 └─ MODify ─┘ ├─ MODify ─┤
 ├─ OBTain ─┤
 └─ STOre ──┘

 ►─┬──┬───────────►◄
 │ ┌──┐ │
 │ │ ┌──────────────────────────────────────┐ │ │
 └─▼- select-clause -▼─┬─ compute-clause ─────────────────┬─┴─┴─┘
 ├─ connect-clause ─────────────────┤
 ├─ disconnect-clause ──────────────┤
 ├─ erase-clause ───────────────────┤
 ├─ evaluate-clause ────────────────┤
 ├─ find-obtain-calckey-clause ─────┤
 ├─ find-obtain-current-clause ─────┤
 ├─ find-obtain-dbkey-clause ───────┤
 ├─ find-obtain-index-clause ───────┤
 ├─ find-obtain-owner-clause ───────┤
 ├─ find-obtain-set-or-area-clause ─┤
 ├─ find-obtain-sortkey-clause ─────┤
 ├─ get-clause ─────────────────────┤
 ├─ if-empty-clause ────────────────┤
 ├─ if-member-clause ───────────────┤
 ├─ keep-clause ────────────────────┤
 ├─ modify-clause ──────────────────┤
 ├─ on-error-clause ────────────────┤
 └─ store-clause ───────────────────┘

Expansion of select-clause

►►─── SELect ───►

 ►─┬────────────────────────────────┬───►
 └─ USIng INDex indexed-set-name ─┘

 ►─┬─────────────────────────────────────┬────────────────────────────────────►◄
 └─ for ─┬─ ELement lr-element-name ─┬─┘
 ├─ FIEldname lr-field ──────┤
 ├─ FIELDNAME-EQ lr-field ───┤
 └─ KEYword keyword ─────────┘

Expansion of compute-clause

►►─── COMpute lr-field OF LR = ─┬─ 'character-string-literal' ─┬──────────────►◄
 ├─ numeric-literal ────────────┤
 ├─ arithmetic-expression ──────┤
 └─ lr-field OF LR ─────────────┘

Expansion of connect-clause

►►─── CONnect database-record-name TO set-name ───────────────────────────────►◄

Expansion of disconnect-clause

►►─── DISconnect database-record-name FROM set-name ──────────────────────────►◄

PATH-GROUP Statement

488 Database Administration Guide

Expansion of erase-clause

►►─── ERAse database-record-name ───►

 ►─┬───────────────────────────┬──►◄
 └─┬─ PERmanent ─┬─ MEMbers ─┘
 ├─ SELECTIVE ─┤
 └─ ALL ───────┘

Expansion of evaluate-clause

►►─┬───────────────────────────────┬──►◄
 └─ EVALuate boolean-expression ─┘

Expansion of find-obtain-calckey-clause

►►─┬─ FINd ───┬─┬────────────────────────┬────────────────────────────────────►
 └─ OBTain ─┘ └─ KEEp ─┬─────────────┬─┘
 └─ EXClusive ─┘

 ►─┬───────────┬─ database-record-name ───────────────────────────────────────►
 ├─ FIRst ◄─ ─┤
 ├─ NEXt ────┤
 └─ EACh ────┘

 ►─── WHEre CALckey ─┬─ EQ ─┬─┬─ 'character-string-literal' ─┬────────────────►
 ├─ IS ─┤ ├─ numeric-literal ────────────┤
 └─ = ──┘ ├─ arithmetic-expression ──────┤
 └─ lr-field ─┬─ OF LR ──────┬──┘
 └─ OF REQUEST ─┘

 ►─┬──────────────────────────┬───►◄
 └─ AND boolean-expression ─┘

Expansion of find-obtain-current-clause

►►─┬─ FINd ───┬─┬────────────────────────┬────────────────────────────────────►
 └─ OBTain ─┘ └─ KEEp ─┬─────────────┬─┘
 └─ EXClusive ─┘

 ►──── CURrent ─┬─ database-record-name ─┬────────────────────────────────────►
 ├─ WIThin set-name ──────┤
 └─ WIThin area-name ─────┘

 ►─┬────────────────────────────┬───►◄
 └─ WHEre boolean-expression ─┘

Expansion of find-obtain-dbkey-clause

►►─┬─ FINd ───┬─┬────────────────────────┬─ database-record-name ─────────────►
 └─ OBTain ─┘ └─ KEEp ─┬─────────────┬─┘
 └─ EXClusive ─┘

 ►─── WHEre DBkey ─┬─ EQ ─┬─┬─ numeric-literal ───────────┬───────────────────►
 ├─ IS ─┤ ├─ arithmetic-expression ─────┤
 └─ = ──┘ └─ lr-field ─┬─ OF LR ──────┬─┘
 └─ OF REQUEST ─┘

 ►─┬──────────────────────────┬───►◄
 └─ AND boolean-expression ─┘

PATH-GROUP Statement

Chapter 15: Subschema Statements 489

Expansion of find-obtain-index-clause

►►─┬─ FINd ───┬─┬────────────────────────┬────────────────────────────────────►
 └─ OBTain ─┘ └─ KEEp ─┬─────────────┬─┘
 └─ EXClusive ─┘

 ►─── EACh database-record-name ──►

 ►─── USIng ─┬─ INDex ────────────┬───►
 └─ indexed-set-name ─┘

 ►─┬────────────────────────────┬───►◄
 └─ WHEre boolean-expression ─┘

Expansion of find-obtain-owner-clause

►►─┬─ FINd ───┬─┬────────────────────────┬────────────────────────────────────►
 └─ OBTain ─┘ └─ KEEp ─┬─────────────┬─┘
 └─ EXClusive ─┘

 ►─── OWNer ─┬────────────────────────┬───────────────────────────────────────►
 └─ database-record-name ─┘

 ►─── WIThin set-name ──►

 ►─┬────────────────────────────┬───►◄
 └─ WHEre boolean-expression ─┘

Expansion of find-obtain-set-or-area-clause

►►─┬─ FINd ───┬─┬────────────────────────┬────────────────────────────────────►
 └─ OBTain ─┘ └─ KEEp ─┬─────────────┬─┘
 └─ EXClusive ─┘

 ►─┬─ FIRst ──────┬─ database-record-name ────────────────────────────────────►
 ├─ LASt ───────┤
 ├─ NEXt ───────┤
 ├─ PRIor ──────┤
 ├─ EACh ───────┤
 └─ EACh PRIor ─┘

 ►─── WIThin ─┬─ set-name ──┬───►
 └─ area-name ─┘

 ►─┬────────────────────────────┬───►◄
 └─ WHEre boolean-expression ─┘

Expansion of find-obtain-sortkey-clause

►►─┬─ FINd ───┬─┬────────────────────────┬────────────────────────────────────►
 └─ OBTain ─┘ └─ KEEp ─┬─────────────┬─┘
 └─ EXClusive ─┘

 ►─┬───────────┬─ database-record-name ───────────────────────────────────────►
 ├─ FIRst ◄──┤
 └─ EACh ────┘

 ►─── WIThin set-name ──►

 ►─── WHEre SORtkey ─┬─ EQ ─┬─┬─ 'character-string-literal' ─┬────────────────►
 ├─ IS ─┤ ├─ numeric-literal ────────────┤
 └─ = ──┘ ├─ arithmetic-expression ──────┤
 └─ lr-field ─┬─ OF LR ──────┬──┘
 └─ OF REQUEST ─┘

 ►─┬──────────────────────────┬───►◄
 └─ AND boolean-expression ─┘

PATH-GROUP Statement

490 Database Administration Guide

Expansion of get-clause

►►─── GET database-record-name ───►◄

Expansion of if-empty-clause

►►─── IF set-name is ─┬───────┬─ EMPty ───────────────────────────────────────►◄
 └─ NOT ─┘

Expansion of if-member-clause

►►─── IF ─┬───────┬─ set-name MEMber ───►◄
 └─ NOT ─┘

Expansion of keep-clause

►►─── KEEp ─┬─────────────┬─ CURrent ─┬─ database-record-name ─┬──────────────►◄
 └─ EXClusive ─┘ ├─ WIThin set-name ──────┤
 └─ WIThin area-name ─────┘

Expansion of modify-clause

►►─── MODify database-record-name ──►◄

Expansion of on-error-clause

►►─── ON idms-error-status ─┬─ DO nested-block END ────────────┬──────────────►◄
 ├─ ITErate ────────────────────────┤
 ├─ NEXt ───────────────────────────┤
 └─┬─────────┬─ RETurn path-status ─┘
 └─ CLEar ─┘

Expansion of store-clause

►►─── STOre database-record-name ───►◄

Syntax: DELETE PATH-GROUP

►►─── DELete PATh-group name is ─┬─ ERAse ──┬─ logical-record-name ───────────►◄
 ├─ MODify ─┤
 ├─ OBTain ─┤
 └─ STOre ──┘

PATH-GROUP Statement

Chapter 15: Subschema Statements 491

Syntax: DISPLAY/PUNCH PATH-GROUP

►►─┬─ DISplay ─┬─ PATh-group-name is ─┬─ ERAse ──┬─ logical-record-name ──────►
 └─ PUNch ───┘ ├─ MODify ─┤
 ├─ OBTain ─┤
 └─ STOre ──┘

 ►─┬───────────────────────────────────────┬──────────────────────────────────►
 │ ┌───────────────────────────────────┐ │
 │ │ ┌───────────────┐ │ │
 └─▼─┬─ WITh ──────┬─▼─┬─ DETails ─┬─┴─┴─┘
 ├─ ALSo WITh ─┤ ├─ ALL ─────┤
 └─ WITHOut ───┘ └─ NONe ────┘

 ►─┬──────────────────────┬───►
 └─ VERB ─┬─ ADD ─────┬─┘
 ├─ MODify ──┤
 ├─ DELete ──┤
 ├─ DISplay ─┤
 └─ PUNch ───┘

 ►─┬─────────────────────┬──►
 └─ AS ─┬─ COMments ─┬─┘
 └─ SYNtax ───┘

 ►─┬─────────────────────────────────┬──►◄
 └─ TO ─┬─ module-specification ─┬─┘
 └─ SYSpch ───────────────┘

Parameters

PATh-group name is ERAse logical-record-name

Specifies an ERASE path-group for which the subsequent path definitions are
available to service program requests. Logical-record-name must be the name of a
logical record defined for the current subschema.

PATh-group name is MODify logical-record-name

Specifies a MODIFY path-group for which the subsequent path definitions are
available to service program requests. Logical-record-name must be the name of a

logical record defined for the current subschema.

PATh-group name is OBTain logical-record-name

Specifies an OBTAIN path-group for which the subsequent path definitions are
available to service program requests. Logical-record-name must be the name of a
logical record defined for the current subschema.

PATh-group name is STOre logical-record-name

Specifies a STORE path-group for which the subsequent path definitions are
available to service program requests. Logical-record-name must be the name of a
logical record defined for the current subschema.

PATH-GROUP Statement

492 Database Administration Guide

select-clause

Delimits paths within a path group. Thus, at least one SELECT clause must precede

the database commands that constitute a path definition.

Multiple paths can be defined for a single path group; LRF executes only one path
per program request. LRF chooses that path based on the selectors coded in the

FOR options of the multiple SELECT clauses. The first SELECT clause whose selectors
match those of the program request is the path that LRF executes.

USIng INDex indexed-set-name

Identifies the indexed set (if any) that LRF uses when executing a database
command specified using the find-obtain-index-clause (described later).

Indexed-set-name must be a sorted indexed set included in the current subschema.
When coded, the USING INDEX clause must precede the FOR clause(s) of the SELECT
clause.

for

Identifies selectors to be used as the basis of path selection to service logical -record
requests. For a path to be chosen, the WHERE clause of the program DML request
must supply information that matches all selectors specified in any one of the

path's SELECT clauses.

A SELECT clause can contain any number of selectors, including zero. A SELECT
clause with no selectors will always cause the path to be selected. Four types of
selectors can be included in the SELECT clause, in any combination: KEYWORD,

FIELDNAME-EQ, FIELDNAME, and ELEMENT.

ELement lr-element-name

Specifies that the WHERE clause of a request to be serviced by the path must
reference a field in the named logical-record element (database record) in any

manner.

FIEldname lr-field

Specifies that a request to be serviced by the path must reference the named
logical-record field (in any manner).

The optional qualifier OF lr-element-name names the logical-record element that
contains the logical -record field. This qualifier is required if lr-field-name is not
unique within the subschema.

Note: Expanded syntax for lr-field is presented in Chapter 13, “Parameter

Expansions”.

PATH-GROUP Statement

Chapter 15: Subschema Statements 493

FIELDNAME-EQ lr-field

Specifies that the WHERE clause of a request to be serviced by the path must

reference the named logical-record field in a logically conjunctive single-value
equality comparison. For example, LRF will service the following requests:

where fieldname eq 123

where fieldname eq 123 and ...

The following requests will not be serviced:

where lr-field-name eq 12 / 3

where lr-field-name eq 123 or ...

The optional qualifier OF lr-element-name names the logical-record element that
contains the logical -record field. This qualifier is required if lr-field-name is not
unique within the subschema. FIELDNAME-EQ selectors are intended for paths that
util ize CALCKEY, SORTKEY, or DBKEY access. Therefore, the named field is usually

qualified with an OF REQUEST clause in a path DML statement, but not in the
SELECT statement

Note: Expanded syntax for lr-field is presented in Chapter 13, “Parameter
Expansions”.

KEYword keyword

Specifies that the WHERE clause of a request to be serviced by the path must
include the named keyword in an affirmative and logically conjunctive manner. For
example, LRF will service the following types of requests:

where keyword

where keyword and ...

The following types of requests will not be serviced:

where not keyword

where keyword or ...

PATH-GROUP Statement

494 Database Administration Guide

compute-clause

Sets the value of the left operand (lr-field-name) to equal the value represented by

the right operand. Note that all named fields used with COMPUTE must be fields
within the logical record named in the PATH-GROUP statement.

lr-field OF LR

In the left operand, lr-field names the receiving data field. If
logical-record-field-name occurs more than once within the logical record, it must
be qualified by OF lr-element-name. Lr-element-name must identify the
logical-record element containing the data field, as follows:

■ If the logical-record element was assigned a role name in the LOGICAL RECORD
statement, lr-element-name must specify that role name.

■ If the logical-record element was not assigned a role name in the LOGICAL
RECORD statement, lr-element-name must specify the logical -record element

name.

Note: Expanded syntax for lr-field is presented in Chapter 13, “Parameter
Expansions”.

'character-string-literal'

Specifies an alphanumeric l iteral enclosed in single quotes.

numeric-literal

Specifies a numeric l iteral as the right operand. A minus sign (-) can precede the
numeric l iteral.

arithmetic-expression

Specifies either a simple arithmetic expression (containing only 1 operator) or a
compound arithmetic expression (containing multiple operators). Arithmetic
operators permitted in an arithmetic expression are +, -, *, and /. Operands can be
numeric l iterals (without quotes) and logical-record field names.

lr-field OF LR

In the right operand, specifies a data field that participates in the current logical
record. Rules for qualifying this name are the same as those for qualifying the left

operand.

PATH-GROUP Statement

Chapter 15: Subschema Statements 495

connect-clause

Establishes the current occurrence of the named database record as a member of

the current occurrence of the named set.

database-record-name

Names the type of record to be connected. Database-record-name must be

included in the current subschema.

set-name

Names the set to which the database record will be connected. Set-name must be
included in the current subschema.

disconnect-clause

Disconnects the current occurrence of the named database record from the current
occurrence of the named set.

database-record-name

Names the type of record to be disconnected. Database-record-name must be

included in the current subschema.

set-name

Names the set from which the database record will be disconnected. Set-name

must be included in the current subschema.

erase-clause

Erases the current occurrence of the named database record.

database-record-name

Specifies the type of record to be erased. Database-record-name must be included

in the current subschema.

PERmanent MEMbers

Erases the specified record and its mandatory set members. Optional member
records are disconnected but not erased. All erased mandatory members that, in
turn, own set occurrences are treated as if ERASE PERMANENT commands had

been issued for those erased records (that is, all mandatory members of the erased
records' sets are also erased). This process continues through the database
structure until all mandatory records in the sequence have been treated.

SELECTIVE MEMbers

Erases the specified record and its mandatory set members. Optional member
records are erased only if they do not currently participate as members in other set
occurrences. All erased records that, in turn, own set occurrences are treated as if

ERASE SELECTIVE commands had been issued for those erased records.

PATH-GROUP Statement

496 Database Administration Guide

ALL MEMbers

Erases the specified record and all of its mandatory and optional set members. All

erased records that, in turn, own set occurrences are treated as if ERASE ALL
commands had been issued for those eras ed records.

evaluate-clause

Determines whether the specified boolean expression is true or false, allowing
specific PATH-GROUP logic to be performed based on the outcome of the
evaluation.

If the expression is true, CA IDMS/DB returns an error status of 0000. If the

expression is false, CA IDMS/DB returns an error status of 2001. The error status
can be checked with the ON clause, thus allowing conditional processing. Use of
EVALUATE implies ON 0000 NEXT and ON 2001 ITERATE.

boolean-expression

Specifies a boolean expression. In EVALUATE, comparisons within the boolean

expression must specify logical-record-field-name OF LR.

Note: Expanded syntax for boolean-expression is presented in Chapter 13,
“Parameter Expansions”.

find-obtain-calckey-clause

Specifies that a database record is to be located or obtained by means of its CALC
key.

FINd

Finds (locates) the named database record.

OBTain

Finds (locates) and obtains the named database record.

KEEp

Places a shared lock on the record occurrence.

PATH-GROUP Statement

Chapter 15: Subschema Statements 497

EXClusive

Places an exclusive lock on the record occurrence.

FIRst

Specifies that the first record occurrence encountered containing the indicated
CALC-key value is to be accessed. FIRST is the default.

NEXt

Specifies that a record occurrence containing the same CALC-key value as the
current record of the specified record type is to be accessed. NEXT assumes
previous retrieval of a record containing the specified CALC-key value and accesses

a record containing a duplicate CALC key.

EACh

Specifies that each record containing the indicated CALC-key value is to be
accessed. EACH indicates that this FIND/OBTAIN command can be iterated.

Every time the command is iterated, LRF retrieves another occurrence of the named
record that contains the specified CALC key. This iteration permits LRF to access all
records that contain that CALC key.

database-record-name

Specifies the type of record to be accessed. Database-record-name must be a
record whose location mode is CALC.

WHEre CALCkey EQ/IS/=

Specifies the CALC-key value to be used when accessing the database record.

'character-string-literal'

Specifies an alphanumeric l iteral enclosed in single quotes.

PATH-GROUP Statement

498 Database Administration Guide

numeric-literal

Specifies a numeric value to be used as the CALC key.

arithmetic-expression

Specifies an arithmetic expression whose result is to be used as the CALC key. The
expression can be designated as a simple arithmetic operation or as a compound

arithmetic operation. Arithmetic operators permitted in an arithmetic expression
are +, -, *, and /. Operands can be literals, logi cal-record fields, or database fields.

lr-field

Specifies that the CALC-key value to be used is in the named logical-record field. If

the database record's CALC key is made up of noncontiguous fields,
logical-record-field-name must be the same size as the total length of all fields in
the CALC key. To accomplish this, define an IDD record type that contains
logical-record-field-name and name the IDD record as an element of the logical

record.

Note: Expanded syntax for lr-field is presented in Chapter 13, “Parameter
Expansions”.

OF LR

Specifies that the CALC-key value to be used is in the named logical-record field in
program variable storage. The path DML statement must initialize the field to the
appropriate value before the FIND/OBTAIN request is issued. Note that LRF uses the
contents of the named field, even if the request's WHERE clause also specifies a

CALC-key value.

OF REQUEST

Specifies that the CALC-key value is passed in the request's WHERE clause.
Logical-record-field-name is equated in the WHERE clause to a l iteral value, a

program variable, or the value of a logical-record field. Note that if OF REQUEST is
specified, logical-record-field-name should also be named in a SELECT FOR
FIELDNAME-EQ clause in the path containing this FIND/OBTAIN command.

AND boolean-expression

Specifies boolean selection criteria that further identify the database record
occurrence to be accessed.

Note: Expanded syntax for boolean-expression is presented in Chapter 13,

“Parameter Expansions”.

PATH-GROUP Statement

Chapter 15: Subschema Statements 499

find-obtain-current-clause

Specifies that the database record that is current of the named record type, set, or

area is to be located or obtained.

FINd

Finds (locates) the named database record.

OBTain

Finds (locates) and obtains the named database record.

KEEp

Places a shared lock on the record occurrence.

EXClusive

Places an exclusive lock on the record occurrence.

database-record-name

Specifies the type of record to be accessed. Database-record-name must be
included in the current subschema.

WIThin set-name

Specifies the database record occurrence that is current of the named set.
Set-name must be included in the current subschema.

WIThin area-name

Specifies the database record occurrence that is current of the named area.

Area-name must be included in the current subschema.

WHEre boolean-expression

Specifies boolean selection criteria that further identify the database record

occurrence to be accessed.

Note: Expanded syntax for boolean-expression is presented in Chapter 13,
“Parameter Expansions”.

find-obtain-dbkey-clause

Specifies that a database record is to be located or obtained by means of its db-key.

FINd

Finds (locates) the named database record.

OBTain

Finds (locates) and obtains the named database record.

KEEp

Places a shared lock on the record occurrence.

PATH-GROUP Statement

500 Database Administration Guide

EXClusive

Places an exclusive lock on the record occurrence.

database-record-name

Specifies the type of record to be accessed.

number-literal

Specifies a l iteral value to be used as the db-key. Numeric-literal must be a 1- to
10-digit unsigned numeric value.

arithmetic-expression

Specifies an arithmetic expression whose result is to be used as the db-key. The
expression can be designated as a simple arithmetic operation or as a compound

arithmetic operation. Arithmetic operators permitted in an arithmetic expression
are +, -, *, and /. Operands can be a l iteral, logical-record field, and database field.

lr-field

Specifies that the value in the named field is to be used as the db-key.

Logical-record-field-name must be a full binary field or a 4-byte packed (COMP-3)
field.

Note: Expanded syntax for lr-field is presented in Chapter 13, “Parameter

Expansions”.

OF LR

Specifies that the db-key value to be used is in the named logical -record field in
program variable storage. The path DML statement must initialize the field to the
appropriate value before the FIND/OBTAIN request is issued. The value of the

named field is a fullword binary value; if the field is a packed data field, CA IDMS/DB
converts its value to binary. Note that LRF uses the contents of the named field,
even if the request's WHERE clause also specifies a db-key value.

OF REQUEST

Specifies that the db-key value is passed in the request's WHERE clause.

Logical-record-field-name is equated in the WHERE clause to a l iteral value, to a
fullword binary field, or to a logical -record field that contains a fullword binary
value (if the field is a packed data field, CA IDMS/DB converts its value to binary).
Note that if OF REQUEST is specified, logical-record-field-name should also be

named in a SELECT FOR FIELDNAME-EQ clause in the path containing this
FIND/OBTAIN command.

AND boolean-expression

Specifies boolean selection criteria that further identify the database record
occurrence to be accessed.

Note: Expanded syntax for boolean-expression is presented in Chapter 13,
“Parameter Expansions”.

PATH-GROUP Statement

Chapter 15: Subschema Statements 501

find-obtain-index-clause

Specifies that a database record is to be located or obtained on the basis of its

membership within a sorted indexed set.

FINd

Finds (locates) the named database record. In this clause, FIND searches the index

and thus does not establish currency for database-record-name. To establish such
currency, use OBTAIN.

OBTain

Finds (locates) and obtains the named database record.

KEEp

Places a shared lock on the record occurrence.

EXClusive

Places an exclusive lock on the record occurrence.

EACh database-record-name

Specifies that each member of the indexed set is to be accessed.

EACH specifies that each member of the indexed set is to be accessed. EACH
indicates that this FIND/OBTAIN command can be iterated. Every time the

command is iterated, LRF retrieves another occurrence of the named record via the
index. This iteration permits LRF to access all records in the indexed set.

Database-record-name specifies the type of record to be accessed. It must name a
record defined as a member of the named set.

USIng INDex

Indicates that the set used for retrieval is the set named in the USING INDEX clause
of the SELECT clause that caused the path to be selected. That is, the set name
coded in the SELECT clause replaces the word INDEX when LRF interprets the DML
command.

In the following example, a program request that includes a reference to
EMP-NAME causes LRF to interpret the path DML command as OBTAIN EACH
EMPLOYEE USING IND-EMP-NAME. A program request that includes a reference to

EMP-ZIP-CODE causes LRF to interpret the command as OBTAIN EACH EMPLOYEE
USING IND-EMP-ZIP-CODE.

add path-group name is obtain lr-employee

 select using index ind-emp-name

 for fieldname emp-name

 select using index ind-emp-zip-code

 for fieldname emp-zip-code

 obtain each employee using index.

PATH-GROUP Statement

502 Database Administration Guide

USIng indexed-set-name

Identifies the name of a sorted indexed set to which database-record-name

belongs. Indexed-set-name must be included in the current subschema. This option
must be used if the path's SELECT clause does not include USING INDEX for the set.

WHEre boolean-expression

Specifies boolean selection criteria that further identify the database record
occurrence to be accessed. If the WHERE clause contains any reference to the
indexed set's sort control element, LRF uses the index (rather than checking val ues
in each record) to satisfy the WHERE clause criteria.

Note: Expanded syntax for boolean-expression is presented in Chapter 13,
“Parameter Expansions”.

find-obtain-owner-clause

Specifies that the owner of the current occurrence of the named set is to be located
or obtained.

FINd

Finds (locates) the named database record.

OBTain

Finds (locates) and obtains the named database record.

KEEp

Places a shared lock on the record occurrence.

EXClusive

Places an exclusive lock on the record occurrence.

OWNer database-record-name

Identifies the occurrence (role) of the set's owner as a record within the
subschema. Database-record-name need not be coded if the owner record is
specified only once in the LOGICAL RECORD statement.

WIThin set-name

Specifies the set owned by the database record. Set-name must be included in the
current subschema.

Note: If the set membership option for the named set is not mandatory automatic,
the path should test for set membership before issuing this command.

WHEre boolean-expression

Specifies boolean selection criteria that further identify the database record
occurrence to be accessed.

Note: Expanded syntax for boolean-expression is presented in Chapter 13,
“Parameter Expansions”.

PATH-GROUP Statement

Chapter 15: Subschema Statements 503

find-obtain-set-or-area-clause

Specifies that a database record is to be located or obtained on the basis of its

logical location with a set or its physical location within an area.

FINd

Finds (locates) the named database record.

OBTain

Finds (locates) and obtains the named database record.

KEEp

Places a shared lock on the record occurrence.

EXClusive

Places an exclusive lock on the record occurrence.

FIRst

Specifies that the first record in the named set or area is to be accessed.

LASt

Specifies that the last record in the named set or area is to be accessed.

NEXt

Specifies that the next record in the named set or area is to be accessed. NEXT
assumes that currency has been established in the named set or area and accesses
the next record in relation to the record previously accessed in the set or area by

either program request or path command.

PRIor

Specifies that the prior record in the named set or area is to be accessed. PRIOR

assumes that currency has been established in the named set or area and accesses
the prior record in relation to the record previously accessed in the set or area by
either program request or path command.

PATH-GROUP Statement

504 Database Administration Guide

EACh

Specifies that each record in the named set or area is to be accessed, beginning

with the first record occurrence in the set or area. EACH indicates that this
FIND/OBTAIN command can be iterated.

Each time the command is iterated, the next record occurrence is accessed in the

set or area, based on the currency established by the previous execution of the
command. This iteration permits LRF to walk the named set or sweep the named
area.

EACH PRIor

Specifies that each prior record occurrence in the set or area is to be accessed,
beginning with the last record occurrence in the set or area. EACH PRIOR indicates
that this FIND/OBTAIN command can be iterated.

Each time the command is iterated, the prior record occurrence in the set or area is

accessed, based on the currency established by the previous execution of the
command. This iteration permits LRF to walk the named set or sweep the named
area in a prior direction.

database-record-name

Specifies the type of record to be accessed. Database-record-name must be
included in the current subschema.

WIThin set-name

Specifies a database record occurrence that is defined to the named set. Set-name

must be included in the current subschema.

WIThin area-name

Specifies a database record occurrence that is defined to the named area.
Area-name must be included in the current subschema.

WHEre boolean-expression

Specifies boolean selection criteria that further identify the database record
occurrence to be accessed.

Note: Expanded syntax for boolean-expression is presented in Chapter 13,

“Parameter Expansions”.

find-obtain-sortkey-clause

Specifies that a database record in a sorted set is to be accessed on the basis of its
sort-key value.

FINd

Finds (locates) the named database record.

OBTain

Finds (locates) and obtains the named database record.

PATH-GROUP Statement

Chapter 15: Subschema Statements 505

KEEp

Places a shared lock on the record occurrence.

EXClusive

Places an exclusive lock on the record occurrence.

FIRst

Specifies that the first record occurrence encountered containing the indicated
sort-key value is to be accessed. FIRST is the default.

EACh

Specifies that each record containing the indicated sort-key value is to be accessed.
EACH indicates that this FIND/OBTAIN command can be iterated.

Every time the command is iterated, LRF retrieves another occurrence of the named
record that contains the specified sort key. This iteration permits LRF to access all
records that contain that sort key.

database-record-name

Specifies the type of record to be accessed. Database-record-name must be defined
as a member of the named set.

WIThin set-name

Specifies the set of which database-record-name is a member. Set-name must be
included in the current subschema.

WHEre SORtkey EQ/IS/=

Specifies the sort-key value to be used when accessing the database record.

'character-string-literal'

Specifies an alphanumeric l iteral enclosed in single quotes.

numeric-literal

Specifies a numeric value to be used as the sort key.

PATH-GROUP Statement

506 Database Administration Guide

arithmetic-expression

Specifies an arithmetic expression whose result is to be used as the sort key. The

expression can be designated as a simple arithmetic operation or as a compound
arithmetic operation. Arithmetic operators permitted in an arithmetic expression
are +, -, *, and /. Operands can be literals, logical-record fields, or database fields.

lr-field

Specifies that the sort-key value to be used is in the named logical-record field. If
the sort key is made up of noncontiguous fields, logical-record-field-name must be
the same size as the total length of all fields in the sort key. To accomplish this,

define an IDD record type that contains logical-record-field-name and name the IDD
record as an element of the logical record.

Note: Expanded syntax for lr-field is presented in Chapter 13, “Parameter
Expansions”.

OF LR

Specifies that the sort-key value to be used is in the named logical-record field in
program variable storage. The path DML statement must initialize the field to the
appropriate value before the FIND/OBTAIN request is issued. Note that LRF uses the

contents of the named field, even if the request's WHERE clause also specifies a
sort-key value.

OF REQUEST

Specifies that the sort-key value is passed in the request's WHERE clause.

Logical-record-field-name is equated in the WHERE clause to a l iteral value, a
program variable, or the value of a logical-record field. Note that if OF REQUEST is
specified, logical-record-field-name should also be named in a SELECT FOR
FIELDNAME-EQ clause in the path containing this FIND/OBTAIN command.

AND boolean-expression

Specifies boolean selection criteria that further identify the database record
occurrence to be accessed.

Note: Expanded syntax for boolean-expression is presented in Chapter 13,
“Parameter Expansions”.

PATH-GROUP Statement

Chapter 15: Subschema Statements 507

get-clause

Moves the located occurrence of the named database record to the corresponding

logical-record element in the variable-storage location assigned to the logical record
named in the PATH-GROUP NAME clause.

database-record-name

Specifies the type of record to be moved. Database-record-name must be included
as a logical-record element.

if-empty-clause

Tests the current occurrence of the named set to determine whether it contains

any member record occurrences. If the set does not contain members, the error
status is set to 0000; otherwise the error status is set to 1601.

set-name

Specifies the name of the set to be tested. Set-name must be included in the

current subschema.

NOT

Reverses the default ON conditions for the IF SET EMPTY command. Refer to
"Usage" for specific path commands using default ON clauses.

if-member-clause

Tests the record that is current of run unit to determine whether it participates as a
member of any occurrence of the named set.

If the record is a member of the set, the error status is set to 0000; otherwise, the

error status is set to 1601. Refer to "Usage" for specific path commands using
default ON clauses.

NOT

Reverses the default ON condi tions for the IF SET MEMBER command.

set-name

Names the set on which the member test is to be performed. Evaluates to true if
the current record of run unit does participate as a member of any occurrence of
the named set. Set-name must be included in the current subschema.

keep-clause

Places a shared or exclusive lock on the record occurrence that is current of the
named record type, set, or area.

KEEp CURrent

Places a shared lock or the current record occurrence.

PATH-GROUP Statement

508 Database Administration Guide

KEEp EXClusive CURrent

Places an exclusive lock or the current record occurrence.

database-record-name

Places the lock on the current occurrence of the named database record type.
Database-record-name must be included in the current subschema.

WIThin set-name

Places the lock on the current occurrence of the named set. Set-name must be
included in the current subschema.

WIThin area-name

Places the lock on the current occurrence of the named area. Area-name must be
included in the current subschema.

modify-clause

Modifies the named database record by using data present in the variable-storage
location assigned to the logical record. The requesting program must initialize

variable storage to the appropriate value before LRF executes this path command.

database-record-name

Identifies a logical -record element of the logical record named in the PATH-GROUP

statement.

on-error-clause

Specifies the action to be taken in the event that CA IDMS/DB returns the error
status indicated by idms-error-status. This path command can be used to override

the default ON clauses generated automatically by the subschema compiler as
shown in the "Usage" topic.

idms-error-status

Specifies a 4-digit value of which the first two digits represent the CA IDMS/DB
major error code and the last two digits represent the minor error code value.

Note: For more information about CA IDMS/DB runtime error-status codes, see the
CA IDMS Navigational DML Programming Guide.

DO nested-block END

Specifies that a nested block of path commands following this ON command is to be
executed. The keyword END is required at the termination of the nested block. The
block of commands included with an ON DO command can itself include ON DO
statements; up to 32 levels of nested blocks are permitted.

ITErate

Specifies that the most recent successfully executed path command containing an
EACH clause is to be reexecuted. See the table under "Usage" in this section for a
l ist of the ON ITERATE clauses generated automatically by the subschema compiler.

PATH-GROUP Statement

Chapter 15: Subschema Statements 509

NEXt

Specifies that if CA IDMS/DB returns idms-error-status, the next command in the

path is to be executed. The subschema compiler automatically generates an ON
0000 NEXT command for every path command (with the exception of IF NOT EMPTY
and IF NOT MEMBER, for which it generates ON 1601 NEXT).

RETurn path-status

Specifies that LRF is to interrupt path processing and return path-status to the
requesting program. (An LR-NOT-FOUND path status terminates path processing.)
Path-status must be a 1- to 16-character alphanumeric string, without enclosing

quotes.

CLEar RETurn path-status

Specifies that the contents of the logical record in program variable storage are to
be cleared to low values. If CLEAR is not specified, LRF will return partial logical

records.

store-clause

Stores a new occurrence of the named database record by using data present in the
variable-storage location assigned to the logical record. The requesting program

must initialize variable storage to the appropriate value before LRF executes this
path command.

database-record-name

Identifies a logical -record element of the logical record named in the PATH-GROUP

statement.

DETails

Display and punches the entire path group description.

ALL

Display and punches the entire path group description.

NONe

Display and punches only the name of the path group.

PATH-GROUP Statement

510 Database Administration Guide

Usage

Path Group Can Include Multiple Paths

A path group can include any number of paths, each of which must be preceded by at
least one SELECT clause.

Commands Allowed for OBTAIN Path-Groups

Paths included in a path group for OBTAIN logical-record requests cannot include
database modification commands (MODIFY, STORE, ERASE, CONNECT, DISCONNECT).
OBTAIN paths can include only the following database commands:

■ FIND (all formats)

■ OBTAIN (all formats)

■ GET

■ KEEP

Identifying a Database Record in a Path-Group

The path DML commands require identification of the database record to be acted
upon. Specify the database record as follows:

■ If the database record is not an element of the path group's logica l record, specify
the database record name as defined in the subschema.

■ If the database record is an element of the path group's logical record, specify one
of the following names:

– Logical-record element name—If the database record's position within the

logical record is not assigned a role name, specify the logical-record element
name (the subschema record name).

– Role name—If the database record's position within the logical record is
assigned a role name, specify the role name.

Note: For more information about the position of logical record elements
within logical records, see 15.6, "LOGICAL RECORD Statement".

Access Restrictions Apply to Logical Record Navigation

Access restrictions specified for records, sets, and areas apply to DML commands
included in paths.

Terminate PATH-GROUP Statement With a Period

Each PATH-GROUP statement contains only one period, at the very end of the
statement.

PATH-GROUP Statement

Chapter 15: Subschema Statements 511

Logical Record Placed in Program Variable Storage

For OBTAIN and GET path DML commands, the retrieved record is placed in the

program's variable storage. The record is placed in its corresponding logical-record
element within the logical record named in the PATH GROUP statement. For MODIFY
and STORE path DML statements, the data used to update the database is taken from

this same location.

Note: In a DML program, the programmer can specify that the record be placed in and
taken from an alternative variable-storage location. To do this, the programmer codes
an INTO clause on the OBTAIN logical -record request and a FROM clause on the

MODIFY, STORE, and ERASE logical-record requests. See the CA IDMS Navigational DML
Programming Guide for details.

Coding find-obtain-index-clause can reduce I/O

When LRF encounters the find-obtain-index-clause, it looks for any reference to the set's
sort control element in the WHERE clauses of both this path's command and the

program request. If such a reference is found, LRF uses the index (rather than c hecking
values in each record) to satisfy the WHERE clause criteria. Using the index usually takes
fewer I/O operations than does checking each member record's sort-key value. Thus,

when accessing each member of a sorted indexed set, this form of FIND/OBTAIN is
preferable to another.

PATH-GROUP Statement

512 Database Administration Guide

Default ON Clauses for Specific Path Commands

This table shows the path commands for which ON clauses are automatically generated
by the subschema compiler. These ON clauses are overridden by the path definition.

Path Command Default ON Clause

FIND/OBTAIN WHERE DBKEY

FIND/OBTAIN WHERE CALCKEY

FIND/OBTAIN WITHIN SET WHERE
SORTKEY

FIND/OBTAIN WITHIN SET USING INDEX

ON 0000 NEXT

ON 0326 ITERATE

FIND/OBTAIN WITHIN SET/AREA ON 0000 NEXT

ON 0307 ITERATE

IF SET EMPTY

IF SET MEMBER

ON 0000 NEXT

ON 1601 ITERATE

IF NOT SET EMPTY

IF NOT SET MEMBER

ON 0000 ITERATE

ON 1601 NEXT

FIND/OBTAIN CURRENT

FIND/OBTAIN OWNER WITHIN SET

GET

MODIFY

STORE

CONNECT

DISCONNECT

ERASE

KEEP

COMPUTE

ON 0000 NEXT

EVALUATE ON 0000 NEXT

ON 2001 ITERATE

On-error-clause follows if-empty/member-clause

An on-error-clause follows a if-member-clause or a if-empty-clause either explicitly, if
coded by the DBA, or implicitly by the subschema compiler. The on-error-clause
indicates the action to be taken based on the error-status code returned by CA

IDMS/DB.

VALIDATE Statement

Chapter 15: Subschema Statements 513

Example

This example modifies the OBTAIN DEHLR path group. The SELECT statement of the path
group obtains employee records using the employee ID as the CALC key:

mod path-group name is obtain dehlr

 select for element employee

 obtain employee where calckey is emp-id-0415 of request.

Note: For more information about logical records and path groups, see the CA IDMS

Logical Record Facility Guide.

VALIDATE Statement

The VALIDATE statement instructs the subschema compiler to verify the relationships
among all components of the subschema that is current for update. If no errors occur
during the validation, the subschema compiler sets the status of the subschema to

VALID; if errors exist, the subschema compiler sets the status to IN ERROR.

Authorization

The user requires authorization to modify the current subschema.

Note: See the USER clause under the SUBSCHEMA statements for more information.

Syntax

►►─── VALIDATE ───►◄

Usage

Effect of VALIDATE on Subschemas

When the subschema compiler validates the subschema, it takes one of the following
actions:

■ If it finds no errors, the compiler sets the subschema's status to VALID. A VALID

status means the subschema load module can be generated.

■ If it finds errors, the compiler issues messages indicating the exact nature of each
error and sets the subschema's status to IN ERROR. The DBA uses these messages
to determine what changes must be made for the subschema to be valid.

GENERATE Statement

514 Database Administration Guide

Must Validate the Subschema Following ADD and MODIFY

The subschema compiler also sets the subschema's status to IN ERROR under these

conditions:

■ The subschema was just created with an ADD SUBSCHEMA statement

■ The subschema was modified with a MODIFY SUBSCHEMA statement

■ The schema associated with the subschema was modified in a way that affects the
subschema; for example, a set deletion

■ Any component of the subschema as added, modified, or deleted

VALIDATE Typically Used to Check Errors

VALIDATE is typically used for dry runs of the subschema compiler, since it causes the
compiler to check the components but not to create subschema load modules.

GENERATE Statement

The GENERATE statement instructs the compiler to create subschema tables for the

subschema that is current for update and to store them as a load module in the
dictionary load area. For GENERATE to produce the new subschema load module, the
current subschema must be valid. So, if a VALIDATE statement has not been specified
for the subschema, the GENERATE statement causes the compiler to perform validation

before creating the subschema tables.

Authorization

The user requires authorization to modify the current subschema.

Note: See the USER clause under the SUBSCHEMA statements for more information.

Syntax

►►─── GENerate ───►

 ►─┬───┬──────────────────────────►◄
 └─ as LOAd MODule Version ─┬─ version-number ─┬─┘
 └─ 1 ◄─────────────┘

LOAD MODULE Statement

Chapter 15: Subschema Statements 515

Parameters

as LOAd MODule Version version-number

Specifies the version number to be assigned to the subschema load module.
Version-number must be an unsigned integer in the range 1 through 9999. 1 is the

default.

Note: Unlike other version numbers, the load module version number does not
default to the current session option.

LOAD MODULE Statement

The LOAD MODULE statements identify a subschema load module stored in the load

area of the dictionary (DDLDCLOD). The MODIFY and DELETE statements update the
load module stored in the dictionary load area.

A load module is stored in the dictionary load area as a result of one of the following
statements:

■ A subschema GENERATE statement

■ An IDD DDDL ADD LOAD MODULE statement followed by an object deck

Only a load module identified with a load module type of SUBSCHEMA can be

processed.

Depending on the verb and options submitted to the subschema compiler, the LOAD
MODULE statements can:

■ Delete, display, or punch a load module

■ Change the RMODE or the AMODE of a load module

Syntax

Syntax: MODIFY LOAD MODULE

►►─┬─ MODify ─┬─ LOAd MODule name is load-module-name ────────────────────────►
 └─ DELete ─┘

 ►─┬───┬──────────────────────────────►
 └─ Version is ─┬─ version number ─────────┬─┘
 └─┬────────┬─┬─ HIGhest ─┬─┘
 └─ NEXt ─┘ └─ LOWest ──┘

LOAD MODULE Statement

516 Database Administration Guide

 ►─┬──────────────────────┬───►
 └─ user-specification ─┘

 ►─┬────────────────────────┬───►
 └─ AMOde is ─┬─ 24 ────┬─┘
 └─ ANY ◄──┘

 ►─┬────────────────────────┬───►◄
 └─ RMOde is ─┬─ 24 ────┬─┘
 └─ ANY ◄──┘

Syntax: DISPLAY/PUNCH LOAD MODULE

►►─┬─ DISplay ─┬─ LOAd MODule name is load-module-name ───────────────────────►
 └─ PUNch ───┘

 ►─┬─────────────────────────┬──►
 └─ version-specification ─┘

 ►─┬──┬───────────────────────►
 └─ PREpared by user-id ─┬────────────────────────┬─┘
 └─ PASsword is password ─┘

 ►─┬───────────────────────────────────────┬──────────────────────────────────►
 │ ┌───────────────────────────────────┐ │
 │ │ ┌───────────────┐ │ │
 └─▼─┬─ WITh ──────┬─▼─┬─ DETails ─┬─┴─┴─┘
 ├─ ALSo WITh ─┤ ├─ HIStory ─┤
 └─ WITHOut ───┘ ├─ ALL ─────┤
 └─ NONe ────┘

 ►─┬───────────────┬──►◄
 └─ WITh SYNtax ─┘

Parameters

LOAd MODule name is load-module-name

Identifies an existing load module. Load-module-name must be a 1- to 8-character
alphanumeric value.

Version is

Supplies the version number of the load module. The version number defaults to
the current session option for existing versions.

version-number

Specifies an explicit version number and must be an unsigned integer in the range 1
through 9999.

NEXt

Instructs the subschema compiler to assign the next highest or next lowest version
number to load-module-name

LOAD MODULE Statement

Chapter 15: Subschema Statements 517

HIGhest

Instructs the subschema compiler to assign the highest existing version number to

load-module-name.

LOWest

Instructs the subschema compiler to assign the lowest existing version number to

load-module-name.

user-specification

Identifies the user and the user's password. The default is the current session
options.

If either the subschema compiler or the specific load module is secured, the

compiler rejects the operation unless it finds the name and the password of an
authorized user in one of the following places:

■ The LOAD MODULE statement user-specification clause

■ The current session option

Note: Expanded syntax for user-specification is presented in Chapter 13,
“Parameter Expansions”.

AMOde is ANY

Indicates that the module is invoked in 31-bit addressing mode. ANY is the default.

If RMODE is ANY, then AMODE must be ANY.

AMOde is 24

Indicates that the module is invoked in 24-bit addressing mode.

RMOde is ANY

Indicates that the module can be loaded above or below the 16-megabyte line. ANY
is the default residency mode.

RMOde is 24

Indicates that the module must be loaded below the 16-megabyte line.

DETails

Display and punches load module length, entry point address, number of RLD
(relocation directory) entries, security class, logical deletion flag, and module type
(subschema).

HIStory

Display and punches the date and time the load module was created.

LOAD MODULE Statement

518 Database Administration Guide

ALL

Display and punches the entire load module description.

NONe

Display and punches only the load module name and version.

WITh SYNtax

For PUNCH only, punches an object deck accompanied by the ADD LOAD MODULE
syntax described in the CA IDMS IDD DDDL Reference Guide. This option is useful
for producing an object deck that is to be placed in a load area other than the
system load library.

Usage

Effect of DELETE on Load Modules

DELETE deletes the named load module from the load area of the dictionary. The
subschema compiler also automatically erases the PROG-051 dictionary record

occurrence associated with the load module, except if the record:

■ Was not built by the subschema compiler

■ Participates in other entity relationships, for example, maps

Effect of DISPLAY on Load Modules

DISPLAY displays online output at the terminal and lists batch output in the compiler's
activity l isting. The output always appears as comments regardless of the default option
in effect.

Effect of PUNCH on Load Modules

PUNCH writes output to the system punch fi le or to a module in the dictionary. All
punched output is also l isted in a subschema compiler's activity l isting.

The subschema compiler produces an object (relocatable) deck accompanied by ADD
LOAD MODULE syntax from the named load module. The object deck can subsequently

be link edited and placed in a load library. You can also use this option to move a load
module from one dictionary to another.

Note: When you punch a load module from the dictionary load area (DDLDCLOD area)
into an object module, the DDDL compiler omits the RMODE/AMODE attributes because

the RMODE/AMODE clause is not acceptable to the linkage editor. If you are punching
the load module to add it to a different dictionary, then you must edit the punched
syntax to include the RMODE/AMODE clause.

DISPLAY/PUNCH SCHEMA Statement

Chapter 15: Subschema Statements 519

Systems with 24-bit Addressing Load Modules Below the Line

For DC/UCF systems running in 24-bit mode, modules are loaded below the

16-megabyte lines regardless of the RMODE specification.

Residency Mode Determines Which Program Pool to Use

For DC/UCF systems running in 31-bit mode, modules with an RMODE of ANY are loaded

into XA program pools (above the 16-megabyte line); modules with an RMODE of 24 are
loaded into non-XA program pools (below the 16-megabyte line).

Examples

This example modifies the residency mode of load module DEHSS01:

modify load module name is dehss01

 rmode is any.

Note: For more information about defining load modules, see the LOAD MODULE
statement in the CA IDMS IDD DDDL Reference Guide.

DISPLAY/PUNCH SCHEMA Statement

The DISPLAY and PUNCH SCHEMA statements produce as output the commented DDL
statements that describe components of the schema that owns the current subschema.

Note: For a description of currency, see 9.7, “Establishing Schema and Subschema
Currency”.

Syntax
►►─┬─ DISplay ─┬─ SCHema ───►
 └─ PUNch ───┘

 ►─┬───┬──────────────────────────►
 └─┬─ AREa ───┬─ name is entity-occurrence-name ─┘
 ├─ RECord ─┤
 └─ SET ────┘

 ►─┬──┬───────────────────────►
 │ ┌──┐ │
 │ │ ┌──────────────────────────┐ │ │
 └─▼─┬─ WITh ──────┬─▼── entity-option-keyword ─┴─┴─┘
 ├─ ALSo WITh ─┤
 └─ WITHOut ───┘

DISPLAY/PUNCH SCHEMA Statement

520 Database Administration Guide

 ►─┬──────────────────────┬───►
 └─ VERB ─┬─ ADD ─────┬─┘
 ├─ MODify ──┤
 ├─ DELete ──┤
 ├─ DISplay ─┤
 └─ PUNch ───┘

 ►─┬─────────────────────────────────┬──►◄
 └─ TO ─┬─ module-specification ─┬─┘
 └─ SYSpch ───────────────┘

Parameters

SCHema

Displays or punches the commented description of the schema associated with the

current subschema.

AREa name is entity-occurrence-name

Displays or punches the commented description of the named schema area entity.

FILe name is entity-occurrence-name

Displays or punches the commented description of the named schema fi le entity.

RECord name is entity-occurrence-name

Displays or punches the commented description of the named schema record
entity.

SET name is entity-occurrence-name

Displays or punches the commented description of the named schema set entity.

entity-option-keyword

Names an option to be displayed or punched. The value of entity-option-keyword
depends on the schema component. The following table l ists values for
entity-option-keyword.

Option SCHEMA AREA RECORD SET

ALL x x x x

ALL COMMENT TYPES x x

AREAS x x

ATTRIBUTES x

COMMENTS x x

CULPRIT HEADERS x x

DETAILS x x x x

ELEMENTS x x

DISPLAY/PUNCH SCHEMA Statement

Chapter 15: Subschema Statements 521

Option SCHEMA AREA RECORD SET

HISTORY x

NONE x x x x

OLQ HEADERS x x

RECORDS x

SCHEMAS x

SETS x

SHARED STRUCTURES x x

SUBSCHEMAS x

SYMBOLS x x x x

SYNONYMS x x

USERS x

Example

This example displays the description of the DEPARTMENT record associated with the
subschema's schema. Note that the subschema compiler produces commented output.

display schema record name is department without elements .

*+ ADD

*+ RECORD NAME IS DEPARTMENT

*+ SHARE STRUCTURE OF RECORD DEPARTMENT VERSION 100

*+ RECORD ID IS 410

*+ LOCATION MODE IS CALC USING (DEPT-ID-0410) DUPLICATES ARE

*+ NOT ALLOWED

*+ WITHIN AREA ORG-DEMO-REGION OFFSET 2 PAGES FOR 48 PAGES

*+ RECORD NAME SYNONYM IS DEPARTMT FOR LANGUAGE ASSEMBLER

*+ .

Chapter 16: Writing Database Procedures 523

Chapter 16: Writing Database Procedures

This section contains the following topics:

Database Procedures (see page 523)
Specifying a Procedure (see page 523)
Common Uses of Database Procedures (see page 524)

Coding Database Procedures (see page 527)
Methods for Invoking Procedures (see page 540)
Database Procedure Example (see page 545)

Database Procedures

Special-Purpose Subroutines

Database procedures are special -purpose subroutines designed to perform functions
such as data compression and decompression. You write and compile these procedures
as subroutines that are executed by the database management system whenever an

access is made to an area or a record. User-written database procedures can be
specified for non-SQL defined databases only.

Specifying a Procedure

Procedures are Called in the Schema

You specify as part of the schema definition when a procedure is to be called. At
runtime, these procedures are called automatically; the call is transparent to the
application program. You can specify that a procedure be called before or after any of
the following DML statements or on an error condition resulting from execution of one

of the commands in the following table.

Command Description

READY Prepares database areas for processing.

FINISH Commits changes to the database and terminates the run unit.

COMMIT Commits changes to the database.

ROLLBACK Rolls back database changes and optionally terminates the run

unit.

STORE Adds a new record occurrence to the database.

CONNECT Links a record occurrence to a set.

Common Uses of Database Procedures

524 Database Administration Guide

Command Description

MODIFY Changes the data content of an existing record occurrence.

DISCONNECT Removes a member record occurrence from a set.

ERASE Deletes a record occurrence from the database.

FIND Locates a record occurrence in the database.

GET Moves all data associated with a previously located record
occurrence into the requesting program's variable storage.

The OBTAIN DML command combines the functions of the FIND and GET commands;
thus, to perform a database procedure on an OBTAIN command, specify the procedure

on a FIND and/or GET.

Common Uses of Database Procedures

Compression and Decompression

Data compression replaces repeating characters (most frequently blanks and binary
zeros) and common character combinations with codes that decrease the amount of
data stored in the database. Data decompression returns compressed data to its original
form for use by an application program. A compression procedure (IDMSCOMP) and a

decompression procedure (IDMSDCOM) are provided with CA IDMS/DB in source and
object form.

The IDMSCOMP database procedure compresses record occurrences before storage, as

follows:

■ Converts repeating blanks into a 2-byte code

■ Converts repeating binary zeros into a 2-byte code

■ Converts other repeating characters into a 3-byte code

■ Converts a number of commonly used character pairs into a 1-byte code

Data that does not fall into any of the above categories remains as is. Each group of as -is
data is prefixed by a 2-byte length code.

CA IDMS/DB decompresses records after retrieval through the IDMSDCOM database

procedure. These procedures are invoked automatically by CA IDMS/DB if you have
coded the appropriate CALL parameters in the schema RECORD and AREA definitions.

Note: You can also use CA IDMS Presspack to compress data. For more information, see

the CA IDMS Presspack User Guide.

Common Uses of Database Procedures

Chapter 16: Writing Database Procedures 525

Data Validation

Data validation involves checking data being stored to ensure that items :

■ Are alphabetic or numeric

■ Fall in user-specified ranges

■ Are equal to specific values

If an item fails the check, the procedure can disallow storage of the record.

Privacy/Security

You can use database procedures to perform the following privacy/security functions:

■ Encoding/decoding data to ensure physical data security

■ Prohibiting programs from reading restricted data (record-occurrence level)

■ Requiring passwords for access to restricted data (area level)

■ Restricting use of a qualified ERASE DML command

Data Collection

Data collection procedures accumulate statistics and other information from areas and
records being accessed.

Record Length for Variable-Length Native VSAM Records

Use the IDMSNVLR database procedure, provided with CA IDMS to transmit the length
of a native VSAM variable-length record from an application program to the DBMS

before a STORE or MODIFY DML command, and from the DBMS to the program after a
GET DML command. The IDMSNVLR procedure is intended for use by programs
accessing native VSAM variable-length records that do not contain an

OCCURS-DEPENDING-ON field. IDMSNVLR allows the length to be communicated in the
record's DBA-DEFINED-RDW (RECORD-DESCRIPTOR-WORD).

Common Uses of Database Procedures

526 Database Administration Guide

To use IDMSNVLR, the schema record description must provide for a standard
DBA-DEFINED-RDW field (two-byte field plus two bytes of fi l ler) as the last field in the

record. The schema record description must be defined as follows:

 record description.

 record name is record-name

 record id is record-id

 location mode is ...

 call idmsnvlr before store.

 call idmsvnlr before modify.

 call idmsvnlr after get.

 03 ...

 03 dba-defined-rdw

 comment 'this word is not maintained in the database.'

 05 rdw-len pic S9(4) comp.

 05 filler pic XX.

The DBA-DEFINED-RDW is not part of the physical record stored in the database. Before
a STORE or MODIFY DML command is executed, IDMSNVLR strips off the
DBA-DEFINED-RDW (the last four bytes of the record) by specifying RDW-LEN minus 4 as
the record length. The DBA-DEFINED-RDW always includes the length of the

DBA-DEFINED-RDW itself.

Before issuing a STORE or MODIFY DML command, the application program must move
the length of the variable-length record (since that record was defined in the

subschema) into the RDW-LEN. IDMSNVLR passes this value (minus 4) to the DBMS.
After a GET DML command, IDMSNVLR returns the length of the subschema view of the
record in the RDW-LEN field.

Although the schema description must specify the DBA-DEFINED-RDW as the last field of

the record, the subschema description can specify the DBA-DEFINED-RDW as the first
field of the record.

Coding Database Procedures

Chapter 16: Writing Database Procedures 527

Coding Database Procedures

This section provides information to assist in writing database procedures.

You do not have to code or compile database procedures provided with CA IDMS/DB
(for example, the IDMSNVLR procedure).

Considerations

There are two ways in which a database procedure can be invoked:

■ It can be directly called by IDMSDBMS

■ It can be called through a stub module that is called by IDMSDBMS.

Only fully reentrant assembler and LE-compliant COBOL and PL/I procedures can be

invoked directly by IDMSDBMS. All other procedures must be called indirectly, at a cost
in performance.

■ Database procedures that are invoked directly by IDMSDBMS execute in s ystem

mode and MPMODE=ANY.

■ For performance reasons, we recommend that all database procedures be written
in fully reentrant assembler code.

Note: The methods that can be used for invoking a procedure depend on many factors

including its language, call ing conventions, reentrancy, and whether it issues CA IDMS
DML Commands. For more information about the different methods for invoking
procedures and how to choose one based on a procedure's characteristics, see 16.5,

“Methods for Invoking Procedures”.

Coding Database Procedures

528 Database Administration Guide

Issuing CA IDMS DML Commands in a Database Procedure

■ While it is possible for database procedures to issue IDMS DML commands like

navigational and SQL DML commands and commands that manipulate storage,
scratch and queue resources, any such command can potentially result in a wait. A
wait can result in deadlocks or degraded system performance because DBMS may

be holding buffer locks when the procedure is called. If it is necessary to issue IDMS
DML commands from within the procedure, consider the following:

– Do not use the DBSTUB1 method described in B1 method described.

– A directly-invoked assembler procedure must follow DC system mode call ing

conventions. For more information about DC system calling conventions and
MPMODE, see "Calling Conventions for Numbered Exits" in the CA IDMS System
Operations Guide.

– A procedure that contains only IDMS DML commands associated with accessing

a database can be compiled with a protocol of BATCH and execute in either a
DC/UCF or a local mode address space. A COBOL or PL/I procedure that
contains other (non-database access) IDMS DML commands must be compiled

using the IDMS-DC protocol and can execute only in the DC/UCF address space.
An assembler procedure can contain non-database access IDMS DML
commands and execute in either environment provided the requested services
are available. For example, requests for storage and scratch can be issued in

either environment, whereas queue-related requests can only be issued within
DC/UCF.

– If the procedure accesses the database by binding a run unit or starting an SQL
session, its database session is subordinate to that of the run unit under which
the procedure is invoked. Therefore, actions such as FINISH or ROLLBACK that

impact the invoking run-unit automatically have a similar impact on the
procedure's database session if it is sti ll active.

– If the procedure accesses the same database as the invoking run-unit and

database locks are being maintained, deadlocks between the two sessions are
possible unless they are made to share the same transaction, see "Sharing
Transactions Among Sessions" in the CA IDMS Navigational DML Programming
Guide.

■ Avoid using operating system functions that may cause the central version region to
wait. This degrades performance.

■ Ensure the module name is the name specified in the schema CALL statement.

Database procedures are no longer l inked with subschema modules. They are
dynamically loaded by DBMS on the first call. The entry point name can be different
from the module name.

Coding Database Procedures

Chapter 16: Writing Database Procedures 529

Area Procedures

You must write area procedures to accept the following five blocks of information which
are passed when the database procedure is executed by CA IDMS/DB:

■ Procedure control block (20 bytes)

■ Application control block (236 bytes)

■ Application program information block (user-specified length)

■ Area control block (28 bytes)

■ IDMS statistics block (100 bytes)

Record Procedures

You must write record procedures to accept the following five blocks of information
which are passed when the database procedure is executed by CA IDMS/DB:

■ Procedure control block (20 bytes)

■ Application control block (236 bytes)

■ Application program information block (us er-specified length)

■ Record control block (56 bytes)

■ Record occurrence block (length specified in schema)

Record procedures have access to the entire data portion of the schema -defined
records. They are not restricted to the subschema views seen by application programs.

Database Procedure Blocks

The following tables show the format of the database procedure blocks.

Procedure Control Block

This is the first block of information passed to both area and record procedures. It
contains information that reflects the general conditions under which the database

procedure is being invoked. Total length is 20 bytes.

Item Usage Length Description

Entry Level Alphanumeric 4 bytes Level at which the procedure is invoked:

REC or AREA

Entry Time Alphanumeric 4 bytes The time the procedure is invoked:
BFOR, AFTR, or ERR

Coding Database Procedures

530 Database Administration Guide

Item Usage Length Description

Major Code Alphanumeric 2 bytes Major DML code of the DML command

for which the procedure is being invoked
(that is, 12 for STORE, or 03 for FIND, and
so forth)

IDBMSCOM
Code

Binary 2 bytes IDBMSCOM code of the DML command
for which the procedure is being invoked
(that is, 14 for FIND NEXT WITHIN SET, or
15 for FIND NEXT WITHIN AREA, and so

forth)

Cancel
Indicator

Binary 2 bytes Zero indicates that the DML command
should be performed; nonzero requests
cancellation of the DML command. The

initial value of zero can be reset by a
BEFORE procedure.

Record

Indicator

Binary 1 byte Indicates whether record is present in

the Record Occurrence Block

0 - record is not present

1 - record is present

Fil ler Alphanumeric 1 byte Reserved

User Item Binary 4 bytes For user storage, as needed (normally, an
address); initialized to zero. This value is
preserved across calls to the procedure.

Application Control Block

This is the second block of information passed to both area and record procedures. It
contains information that reflects the status of the application program at procedure
execution time. Total length is 236 bytes.

Item Usage Length Description

Subschema

Name

Alphanumeric 8 bytes Name of subschema being used

Program
Name

Alphanumeric 8 bytes Name of application program

Error-Status

Indicator

Alphanumeric 4 bytes Major DML code (first two bytes) of

the command for which the
procedure is being invoked, and the
minor error-status code (second two
bytes)

Coding Database Procedures

Chapter 16: Writing Database Procedures 531

Item Usage Length Description

Database Key Binary 4 bytes The database key that is current of

run unit

Record Name Alphanumeric 18 bytes Name of record type that is current of
run unit

Area Name Alphanumeric 18 bytes Name of area to which current of run
unit is assigned

Fil ler Alphanumeric 18 bytes Reserved for future use

Error-Set

Name

Alphanumeric 18 bytes Name of error-set type, if applicable

Error-Record
Name

Alphanumeric 18 bytes Name of error-record type, if
applicable

Error-Area

Name

Alphanumeric 18 bytes Name of error area, if applicable

IDBMSCOM
Array

Alphanumeric 100 bytes System IDBMSCOM array for passing
function information

Direct Db-key Binary 4 bytes Item used by application program to
specify a database key for storing a
record in DIRECT storage mode

Application Program Information Block

This is the third block of information passed to both area and record procedures. It
contains information (if any) passed between the application program and database
procedure. Total length is determined by user.

Item Usage Length Description

Application
Program

Information

DBA-defin
ed

DBA-define
d

Information passed from application
program using a BIND PROCEDURE

statement; if not used, this field must be
defined as a 4-byte alphanumeric item

Coding Database Procedures

532 Database Administration Guide

Area Control Block

This is the fourth block of information passed to area procedures. It contains

information about the area for which the procedure is being invoked. Total length is 28
bytes.

Item Usage Length Description

Area
Name

Alphanumeric 18 bytes Name of area for which DML command is
being invoked

Fil ler Alphanumeric 2 bytes

Low Page Binary 4 bytes Number of lowest page in area

High
Page

Binary 4 bytes Number of highest page in area

CA IDMS Statistics Block

This is the fifth block of information passed to area procedures. It contains runtime
statistics for the application program (same statistics obtained by the DML command
ACCEPT IDMS-STATISTICS). Total length is 100 bytes.

Item Usage Length Description

Date Alphanumeric 8 bytes Today's date in the format mm/dd/yy

Time Alphanumeric 8 bytes The time of the last occurrence of BIND

RUN-UNIT, FINISH, or run-unit abort; in
the format hhmmsshh

Pages Read Binary 4 bytes Total pages read by application program

Pages
Written

Binary 4 bytes Total pages written by application
program

Pages
Requested

Binary 4 bytes Total pages requested by application
program

CALC Records Binary 4 bytes Total CALC records stored with no
overflow

CALC

Overflow

Binary 4 bytes Total CALC records that overflowed

VIA Records Binary 4 bytes Total VIA records stored with no overflow

VIA Overflow Binary 4 bytes Total VIA records that overflowed from
target page

Coding Database Procedures

Chapter 16: Writing Database Procedures 533

Item Usage Length Description

Records

Requested

Binary 4 bytes Total number of records accessed by the

DBMS

Records
Current

Binary 4 bytes Total number of records established as
current of run unit

Calls to CA
IDMS/DB

Binary 4 bytes Total calls made for DBMS services

Fragments
Stored

Binary 4 bytes Total variable length record fragments

Records
Relocated

Binary 4 bytes Total records relocated

Locks
Requested1

Binary 4 bytes Total number of record locks requested

Select Locks
Held2

Binary 4 bytes Number of shared locks now held

Update Locks

Held2

Binary 4 bytes Number of exclusive locks now held

Run Unit Id2 Binary 4 bytes LID: Local Identification number of
transaction for journaling purposes;
incremented by one and carried across

central versions until the journal is
reinitialized

Task Id2 Binary 4 bytes Identification number of central version

task; reinitialized for each central version
run and incremented by 1, beginning at 2
(0 and 1 are reserved for system)

Local

Identification
2

Alphanumeric 8 bytes Identification code of batch or TP

program to facil itate location of dumps
and elements in the central version log

Fil ler Alphanumeric 8 bytes Reserved

1. As a lock is released, this value is not decremented

2. Applies to central version only

Coding Database Procedures

534 Database Administration Guide

Record Control Block

This is the fourth block of information passed to record procedures. It contains

information regarding the record type for which the procedure is being invoked. Total
length is 56 bytes.

Item Usage Length Description

Record Name Alphanumeri
c

18 bytes Name of record type for which DML
command is being invoked

Area Name Alphanumeri

c

18 bytes Name of area to which record is assigned

Record ID Binary 2 bytes Identification number of record type for
which DML command is being invoked

Record

Length

Binary 2 bytes Length (data only), in bytes, of record

Control
Length

Binary 2 bytes Length (data only), in bytes, of record up
to and including the last CALC or

sort-control field

Maximum
Length

Binary 2 bytes Actual length of fixed-length record or
maximum length of variable-length
record, in bytes

Database Key Binary 4 bytes Database key of record

Low Page Binary 4 bytes Number of lowest page on which records
of this type can exist

High Page Binary 4 bytes Number of highest page on which
records of this type can exist

Record Occurrence Block

This is the fifth block of information passed to record procedures. It is used to pass the

actual record occurrence for which the procedure is invoked. There are situations in
which the record occurrence is not available to be passed to the procedure. Total
length is defined in the record type's schema description.

Item Usage Length Description

Record Occurrence As defined in schema As defined in schema Actual record that is the
target of the DML

command

Coding Database Procedures

Chapter 16: Writing Database Procedures 535

Whenever possible, the record occurrence for which the procedure is being invoked is
passed, but under some conditions the DBMS may not have immediate access to this

data. In all cases, the fifth parameter is passed to the procedure, but its validity is not
guaranteed under all scenarios. The following table indicates the availability of the
record occurrence block data relative to procedure call times:

DML Verb Procedure Call Times BEFORE Procedure Call Times
AFTER

Procedure Call Times ON
ERROR

CONNECT Present if last good verb was

an OBTAIN, STORE, or MODIFY
for target record type, else
uncertain

Present if last good verb

was an OBTAIN, STORE, or
MODIFY for target record
type, else uncertain

Present if last good verb

was an OBTAIN, STORE, or
MODIFY for target record
type, else uncertain

DISCONNECT Present if last good verb was

an OBTAIN, STORE, or MODIFY
for target record type, else
uncertain

Present if last good verb

was an OBTAIN, STORE, or
MODIFY for target record
type, else uncertain

Present i f last good verb

was an OBTAIN, STORE, or
MODIFY for target record
type, else uncertain

ERASE Present if last good verb was
an OBTAIN, STORE, or MODIFY
for target record type, else
uncertain

Present if last good verb
was an OBTAIN, STORE, or
MODIFY for target record
type, else uncertain

Present if last good verb
was an OBTAIN, STORE, or
MODIFY for target record
type, else uncertain

FIND Unavailable unless access is
CALC, then calckey fields are
available

Available if FIND executed
as part of OBTAIN else
unavailable. If access is

CALC, calckey fields are
available

Unavailable unless access is
CALC, then calckey fields
are available

GET Available if GET executed as
part of an OBTAIN, else

unavailable

Available Available if GET executed as
part of an OBTAIN, else

uncertain

MODIFY Available, contains data
passed from user program

Available, contains data
passed from user program

Available, contains data
passed from user program

STORE Available, contains data
passed from user program

Available, contains data
passed from user program

Available, contains data
passed from user program

Coding Database Procedures

536 Database Administration Guide

Establishing Communication Between Programs and Procedures

Program/Procedure Communication

Some database procedures may require specific information from the call ing application
program (for example, a password for a security routine). Use the application program

information block to pass this information. Using the BIND PROCEDURE DML command,
the programmer binds space in program variable storage for the information to be
passed. At program runtime, whenever the procedure is called, the information in the
program space bound to the procedure is placed in the procedure's application program

information block.

Executing Under the Central Version in a Different Address Space

If the application program is executing under the central version and in a different
address space, the program must bind a 256-byte space in variable storage. Programs
running in the same address space as the central version or in local mode can bind a

variable amount of space, but 256 bytes is recommended in case of future changes in
the operating configuration.

In the central version environment, the BIND procedure DML has the function of passing
the information in the application program information block to the database
procedure. To get information back from the database procedure, the application

program should issue an ACCEPT...FROM...PROCEDURE DML statement. If the
application program wishes to send new information to the database procedure, the
application program should alter the data in the application program information block

and then issue another BIND procedure DML statement, which will cause the central
version's copy of the application program information block to be refreshed.

No Information Passed

Usually, no information is passed between the program and the database procedure,

since database procedures are normally transparent to application programs. When no
information is passed, the database procedure must define the application progr am
information block as a 4-byte alphanumeric item.

Coding Database Procedures

Chapter 16: Writing Database Procedures 537

Specifying When to Call Database Procedures

Using CALL

To specify when a database procedure is to be called at runtime, you use the CALL
statement in the schema DDL for areas and records. You can use database procedures

with any number of DML commands for any number of areas or records. For example,
to compress/decompress JOB records with the CA IDMS/DB-supplied procedures,
specify the following CALL statements for the JOB record type:

call idmscomp before store.

call idmscomp before modify.

call idmsdcom after get.

Note: If the schema contains any records for which IDMSCOMP or IDMSDCOM is called,

IDMSDCOMP and IDMSDCOM must be called as area procedures 'BEFORE FINISH' and
'BEFORE ROLLBACK' to release the storage used for internal
compression/decompression work areas.

Link Editing Database Procedures

You must l ink database procedures as standalone modules. Database procedures l inked
with subschema modules are no longer supported.

Procedures Written in COBOL under z/VSE

For database procedures written in COBOL that will execute under z/VSE, assemble the

following CSECT and catalog it into the appropriate relocatable l ibrary:

ILBDMNS0 CSECT

 DC X'FF'

 END

Assign to the CSECT a l ibrary member name other than ILBDMNS0 so that the CSECT will
not be linked to all COBOL programs. This CSECT name must be included in the link edit

of the COBOL database procedure. The procedure checks the field contained in this
CSECT to establish the appropriate l inkage with CA IDMS/DB.

Coding Database Procedures

538 Database Administration Guide

Executing Database Procedures

When a DML command is issued at application run time, all BEFORE procedures are
executed in the order specified in the schema. A BEFORE procedure can prevent
execution of the DML command in either of the following ways :

■ By resetting the cancel indicator in the procedure control block to a nonzero value

■ By resetting the error-status indicator in the application control block to a nonzero
value

The DML command is not executed if either of the above conditions exists when all
BEFORE procedures have been completed. If the cancel indicator in the procedure

control block is reset to a nonzero value, control passes directly to the AFTER
procedures. If the error-status indicator in the application control block is reset to a
nonzero value, control passes directly to the ON-ERROR procedures.

Note: To prevent execution of a FINISH DML command, a BEFORE FINISH procedure

must reset the error-status indicator to a nonzero value. You cannot use the cancel
indicator for this purpose.

Resetting the Error-Status Indicator

In resetting the error-status indicator, the procedure should change only the last two

bytes (the minor code); the procedure should leave the first two bytes (the major code)
unchanged. However, when the value of the error-status indicator is zero, the
procedure should reset the indicator with the value from the major code item of the
procedure control block.

Note: To avoid confusion, user-defined error-status codes should not duplicate CA
IDMS/DB error-status codes.

At this point, if the DML command has not been canceled, the command is executed.
ON-ERROR procedures are executed if errors have occurred during validation by the

DBMS or if the error-status indicator contains a value other than 0000. If, because of
validation errors, execution immediately drops through to an ON-ERROR procedure,
BEFORE procedures and the DML command itself are not performed. The error -status
indicator can be reset by either a BEFORE procedure or the DML command.

Coding Database Procedures

Chapter 16: Writing Database Procedures 539

If the error-status is 00, any AFTER procedures are now executed. However, if the
error-status is not 00, AFTER procedures are not executed unless at least one ON-ERROR

procedure has been defined for the verb. Because AFTER procedures can be executed
when the DML command has been suppressed or a non-zero error-status has been
returned they should always check the values of the cancel indicator and error -status

indicator.

Methods for Invoking Procedures

540 Database Administration Guide

Methods for Invoking Procedures

A database procedure is called as an extension of the database engine. A procedure can
be called directly by IDMSDBMS. This is referred to as the Direct invocation method.
Alternatively, a procedure can be invoked indirectly by using one of two techniques
referred to as DBSTUB1 and DBSTUB2. These are described later in this section.

The methods that can be used to invoke a given procedure depend on several factors:

■ Language of the procedure

■ Reentrancy or LE-compliance

■ Calling conventions that it uses

■ Whether it issues IDMS DML requests

The following table identifies the methods that can be used for invoking procedures
with differing characteristics. Where multiple invocation methods are l isted as valid, the
recommended method is highlighted.

Language Comments IDMS DML Issued
by Procedure

Valid Invocation
Methods

Assembler Reentrant, DC call ing

conventions

Does not matter Direct, DBSTUB1,

DBSTUB2

Assembler Non-reentrant, DC
call ing conventions

No DBSTUB1

Assembler Reentrant, IBM calling

conventions

No DBSTUB1, DBSTUB2

Assembler Non-reentrant, IBM
calling conventions

No DBSTUB1, DBSTUB2

Assembler Reentrant, IBM calling
conventions

Yes DBSTUB2

VS Cobol Non-LE-compliant No DBSTUB1, DBSTUB2

VS Cobol Non-LE-compliant,

reentrant

Yes DBSTUB2

VS Cobol/2 Non-LE-compliant,
reentrant

Does not matter DBSTUB2

LE-compliant
Cobol

LE-compliant,
reentrant

Does not matter Direct, DBSTUB2

PL/I Non-LE-compliant,
reentrant

Does not matter DBSTUB2

Methods for Invoking Procedures

Chapter 16: Writing Database Procedures 541

Language Comments IDMS DML Issued
by Procedure

Valid Invocation
Methods

PL/I LE-compliant,
reentrant

Does not matter Direct, DBSTUB2

DBSTUB1 Invocation Method

The DBSTUB1 invocation method is valid only for calling a COBOL program compiled
with VS-COBOL or a non-reentrant assembler program. It is not valid for any other
program such as a program written in COBOL, PL/I or any LE-compliant language.

DBSTUB1 is an assembler front end that is l inked with the actual procedure. The linked
module name must match the name in the schema CALL statement. The entry point
must point to DBSTUB1's entry point.

DBSTUB1 is written with DC system calling conventions. It runs in MPMODE=DB, which

means that it holds a lock on MPMODE DB when it gains control. No other program that
runs in MPMODE DB can run at the same time. Once it has control, it calls the database
procedure that is l inked with it. The procedure called must not issue any IDMS calls
because during such a call, the MPMODE DB lock protection is lost.

Note: For more information about DC system calling conventions and MPMODE, see
"Calling Conventions for Numbered Exits" in the CA IDMS System Operations Guide.

A unique DBSTUB1 must be written for and linked with each database procedure that

needs this interface. Usually only the entry point that is called must be changed.

Following is a sample of DBSTUB1 that calls the CHECKIT database procedure.

DBSTUB1 TITLE 'Example of a DB procedure'

 #MOPT CSECT=DBSTUB1,ENV=SYS

*

* The following code shows how a COBOL database procedure might

* be called in a multi-tasking environment. This program is

* linked with the COBOL procedure. The module name must be the

* same as the name coded in the Schema CALL statement.

* The entry point is STUBEP1.

*

* The following code emulates how DBMS calls DB procedures.

* When this procedure receives control the task is single

* threaded on the MPMODE=DB lock.

*

* On Entry: R1 already points to plist.

*

Methods for Invoking Procedures

542 Database Administration Guide

 USING CSA,R10

STUBEP1 #START MPMODE=DB

 L R15,=V(CHECKIT) Base linked DB Procedure.

 CLC =X'4700',0(R15) Bif DC mode prog.

 BE STUB010

*

 #CHKSTK =(18+1) Make sure room on stack,

* for the savearea.

 BALR R14,R15 Call Standard mode program.

 B STUB020

*

STUB010 #CALL (R15) Call DC mode program.

*

STUB020 #RTN Return to DBMS.

 LTORG

 COPY #CSADS

 END

Following is how DBSTUB1 would be linked with CHECKIT.

INCLUDE OBJLIB(DBSTUB1)

INCLUDE OBJLIB(CHECKIT)

ENTRY STUBEP1

MODE AMODE(31),RMODE(ANY)

NAME CHECKIT(R)

DBSTUB2 Invocation Method

The DBSTUB2 invocation method is valid for calling a program written in COBOL or PL/I
compiled with any compiler supported by CA IDMS. Usage of this method is optional

and not recommended when the program is compiled with an LE-compliant compiler
because of performance. This program is an assembler front end that is l inked
separately from the procedure it calls. The DBSTUB2 program must be linked as the

name specified in the Schema CALL statement. The database procedure must be linked
as a second name and defined to DC in the SYSGEN.

DBSTUB2 is written with DC system mode call ing convention. It runs in
MPMODE=CALLER which means multiple task threads can be running through it at the
same time and this code must be totally reentrant.

Once DBSTUB2 gains control it activates the real procedure with a #LINK command.
IDMS/DC will setup and call the program in user mode.

When the procedure ends, control is returned to DBSTUB2.

This method violates the principal of maintaining control of the CPU. One or more

#WAITs can occur during the execution of the #LINK. This increases the likelihood of
deadlocks or performance problems.

Methods for Invoking Procedures

Chapter 16: Writing Database Procedures 543

Following is a sample of DBSTUB2 that calls the CHECKIT database procedure. However,
in this case DBSTUB2 has been linked as CHECKIT a nd the COBOL CHECKIT has been

linked as CHECKIT2.

DBSTUB2 TITLE 'Example DB procedure'

 #MOPT CSECT=DBSTUB2,ENV=SYS

*

* The following code shows how a database procedure might call

* a program written in a high level language like COBOL II.

*

* The name in the Schema CALL statement must be this module.

* The module this program #LINKs must be defined in the DC

* SYSGEN. In this example the CHECKIT database procedure

* would have been renamed to CHECKIT2 and this procedure

* would be called CHECKIT.

*

* By #LINKing the DB procedure, the current system mode

* environment is preserved. The #LINKed subprogram is setup

* and called based on how it is defined to DC. For example

* a COBOL program would get called as a quasi-reentrant with

* DC allocating the private copy of WORKING-STORAGE for it.

*

* ON Entry: R1 points to the procedure parmlist

*

 USING CSA,R10

STUBEP1 #START MPMODE=CALLER

* #GETSTK =8,REG=R11 get 8 words for plist

 USING LWA,R11

*

 LM R3,R7,0(R1) get db parameters

 #LINK PGM='CHECKIT2',PARMS=((R3),(R4),(R5),(R6),(R7)), X

 PLIST=SYSPLIST link to DB procedure

 *

 #RTN return to the DBMS

 LTORG

 LWA DSECT local work area

 SYSPLIST DS 8F PLIST for #LINK

 COPY #CSADS

 END

Methods for Invoking Procedures

544 Database Administration Guide

Following is how DBSTUB2 would be linked.

INCLUDE OBJLIB(DBSTUB2)

ENTRY STUBEP1

MODE AMODE(31),RMODE(ANY)

NAME CHECKIT(R)

CHECKIT would get l inked:

INCLUDE OBJLIB(CHECKIT)

ENTRY CHECKIT

MODE AMODE(31),RMODE(ANY)

NAME CHECKIT2(R)

In Conclusion

The methods described in this section solve the problem of call ing database procedures
that are not reentrant or are written in COBOL or PL/I and compiled with a
non-LE-compliant compiler. The overhead of using the methods will be high. DBSTUB1
will have less overhead than DBSTUB2. For performance reasons, we recommend

avoiding these methods by writing database procedures as fully reentrant assembler
programs. The second best option is to write a database procedure in COBOL or PL/I and
compile it with an LE-compliant compiler.

Considerations for Non-Reentrant or Non-LE-Compliant Database Procedures

Invoking Non-Reentrant or Non-LE-Compliant Procedures

There are special considerations for invoking these types of procedures.

■ In a multi-tasking environment, a non-reentrant database procedure written in

assembler can only be called indirectly using the DBSTUB1 approach described in
this section.

■ Database procedures written in COBOL or PL/I that are compiled with a
non-LE-compliant compiler (such as, COBOL/II, PL/I 2.3) must be called indirectly

using the DBSTUB2 approach described in this section.

Note: LE is the abbreviation for Language Environment.

Database Procedure Example

Chapter 16: Writing Database Procedures 545

Database Procedure Example

Using the Employee database, a company uses a database procedure to perform validity
checks on employee identification numbers (ID-0415) before EMPLOYEE records are
stored in the employee database. A COBOL program CHECKID functions as follows:

■ Describes (in the program's LINKAGE SECTION) the five blocks of information that

CA IDMS/DB passes to all database procedures

■ Performs the validity checks by using the first four bytes of the EMPLOYEE record,
as passed to the program's record occurrence block

■ Sets the error-status indicator in the application control block to 99 if the employee

id (ID-0415) fails validity checks

Sample Database Procedure

The LINKAGE SECTION describes the five blocks of information that CA IDMS/DB passes

to the procedure. ID-0415 (employee ID) is the first four bytes of the record occurrence
passed to the procedure. If ID-0415 does not pass the validity check, the error-status
indicator in the application control block is set to 99 to prevent execution of the DML
command for which the procedure was called.

Sample database procedure

**

 IDENTIFICATION DIVISION.

**

 PROGRAM-ID. CHECKID.

 DATE-WRITTEN. JUNE 15, 1991.

 AUTHOR. COMMONWEATHER CORP.

 REMARKS. VALIDATES INCOMING EMPLOYEE NUMBERS.

**

 ENVIRONMENT DIVISION.

**

**

 DATA DIVISION.

**

Database Procedure Example

546 Database Administration Guide

LINKAGE SECTION.

 01 PROC-CTRL.

 02 PC-ENTRY-LEVEL PIC X(4).

 02 PC-ENTRY-TIME PIC X(4).

 02 PC-MAJOR-CODE PIC XX.

 02 PC-IDBMSCOM-CODE PIC 9(4) COMP.

 02 PC-CANCEL-SWITCH PIC 9(4) COMP.

 02 FILLER PIC XX.

 02 PC-USER-AREA PIC 9(8) COMP.

 01 APPLIC-CTRL.

 02 SC-SUB-NAME PIC X(8).

 02 SC-PROG-NAME PIC X(8).

 02 SC-ERROR-STATUS.

 03 SC-ERR-MAJOR PIC XX.

 03 SC-ERR-MINOR PIC XX.

 02 SC-DBKEY PIC 9(8) COMP.

 02 SC-REC-NAME PIC X(18).

 02 SC-AREA-NAME PIC X(18).

 02 FILLER PIC X(18).

 02 SC-ERR-SET-NAME PIC X(18).

 02 SC-ERR-REC-NAME PIC X(18).

 02 SC-ERR-AREA-NAME PIC X(18).

 02 SC-IDBMSCOM PIC X(100).

 02 SC-DIRECT-DBKEY PIC 9(8) COMP.

Database Procedure Example

Chapter 16: Writing Database Procedures 547

 01 A-P-COMM-DATA PIC X(4).

 01 REC-CTRL-BLOCK.

 02 RC-REC-NAME PIC X(18).

 02 RC-AREA-NAME PIC X(18).

 02 RC-REC-ID PIC 9(4) COMP.

 02 RC-REC-LENGTH PIC 9(4) COMP.

 02 RC-REC-CTRL-LEN PIC 9(4) COMP.

 02 RC-REC-MAX-LEN PIC 9(4) COMP.

 02 RC-DBKEY PIC 9(8) COMP.

 02 RC-LPL PIC 9(8) COMP.

 02 RC-HPL PIC 9(8) COMP.

 01 EMPLOYEE.

 02 ID-0415 PIC X(4).

 02 FILLER PIC X(103).

**

 PROCEDURE DIVISION USING PROC-CTRL

 APPLIC-CTRL

 A-P-COMM-DATA

 REC-CTRL-BLOCK

 EMPLOYEE.

**

 IF ID-0415 NOT NUMERIC

 OR ID-0415 LESS THAN '0001'

 OR ID-0415 GREATER THAN '9999'

 THEN MOVE 99 TO SC-ERR-MINOR.

 GOBACK.

Schema Statement

Include the following clauses in the record description for EMPLOYEE in the Employee

schema:

CALL CHECKID BEFORE STORE.

CALL CHECKID BEFORE MODIFY.

Any program using a subschema compiled under this schema automatically invokes the
database procedure CHECKID before storing or modifying an EMPLOYEE record
occurrence.

Chapter 17: Allocating and Formatting Files 549

Chapter 17: Allocating and Formatting Files

This section contains the following topics:

Making Files Accessible to CA IDMS/DB (see page 549)
Types of Files (see page 549)
File Access Methods (see page 551)

Creating Disk Files (see page 552)
Formatting Files (see page 556)
Considerations for Native VSAM Files (see page 557)

Making Files Accessible to CA IDMS/DB

Steps

To make a fi le accessible to CA IDMS/DB, follow these steps:

1. Use physical DDL statements to: define the fi le within a new or existing segment

and associate it with one or more new or existing areas; include the segment
definition, with any fi le and/or area overrides, in a DMCL.

2. Make available the DMCL in which the fi le's segment is included.

3. Create the fi le using facil ities provided by your operating system.

4. Format the fi le.

This chapter describes steps 3 and 4.

Types of Files

Available Options

CA IDMS/DB can access data stored in the following types of fi les:

File Type Access Method File Structure

Direct access EXCP (z/OS, z/VSE) A fi le block corresponds to a
database page

Physical sequential

EXCP (z/OS)

SAM (z/VSE)

A fi le block corresponds to a

database page

Types of Files

550 Database Administration Guide

File Type Access Method File Structure

CMS format minidisk DASD block I/O (z/VM) A fi le block corresponds to a

database page

VSAM database VSAM (z/OS, z/VSE) An ESDS VSAM file in which each
Control Interval contains a single

database page plus 8 bytes of
control information used by VSAM

Native VSAM VSAM (z/OS, z/VSE) An ESDS, KSDS, or RRDS VSAM file
or PATH in which each VSAM

record corresponds to an IDMS
record

Specifying the File Type in the FILE Statement

When you define a fi le using a physical DDL FILE statement, you specify the fi le's type
using these parameters:

FILE Statement Parameter Corresponding File Type

NONVSAM or BDAM Direct access (z/OS, z/VSE)

Physical sequential (z/OS)

CMS format minidisk (z/VM)

VSAM VSAM database (z/OS, z/VSE)

ESDS

KSDS

RRDS

PATH

Native VSAM (z/OS, z/VSE)

File Access Methods

Chapter 17: Allocating and Formatting Files 551

File Access Methods

Determines How CA IDMS/DB Gains Access to Files

When an application program issues a call to CA IDMS/DB for retrieval or storage of a
record or row of data, CA IDMS/DB maps the database page that contains the record or
row to the corresponding block or blocks in the fi le. The means by which this mapping

occurs varies according to the access method in use:

■ EXCP (z/OS, z/VSE)

■ SAM (z/VSE)

■ DASD Block I/O (z/VM)

■ VSAM (z/OS, z/VSE)

EXCP Access Method

The EXCP access method is used in z/OS and z/VSE to take advantage of extended

addressing. Using EXCP as an access method, CA IDMS/DB maps the database page
number to a relative track and record number. The database page size must equal the
block size of the fi le.

SAM Access Method

Using SAM as an access method, CA IDMS/DB maps the first database page number to a

relative block number (RBN) within the sequential access fi le. It then reads forward
sequentially from that RBN. The database page size must equal the block size of the fi le.

DASD Block I/O

In z/VM, all CA IDMS/DB fi les are allocated as separate minidisks and are accessed using

DASD Block I/O.

Note: For more information, see the CA IDMS Installation and Maintenance
Guide—z/VM.

VSAM Access Method

CA IDMS/DB can take advantage of extended addressing when accessing data by means
of the VSAM access method. All VSAM macros use the AMODE=31 and RMODE=31
parameters. Therefore, all VSAM control blocks are allocated above the 16-megabyte
line.

Accessing VSAM Database Files

Using VSAM as an access method to VSAM database fi les, CA IDMS/DB maps the
database page number to a VSAM control interval and issues a request to VSAM for that
control interval.

Creating Disk Files

552 Database Administration Guide

Accessing Native VSAM Files

Existing VSAM files to be accessed by CA IDMS/DB are referred to as native VSAM files

because they are not formatted into pages as is the case with all other fi le types. CA
IDMS/DB accesses native VSAM files using VSAM record-level services. A native VSAM
file can have one of the following structures:

■ Key-sequenced (KSDS)

■ Entry-sequenced (ESDS)

■ Relative record (RRDS)

Regardless of the type of fi le being accessed, each is represented by a single record type

described to CA IDMS/DB in a non-SQL schema definition.

Note: For more information, see 17.6, “Considerations for Native VSAM Files".

Choosing Between VSAM and Non-VSAM File Types

In z/OS and z/VSE, you may define database fi les as either VSAM or non-VSAM.

z/VSE: To define non-VSAM files on FBA disk devices (type 3310 or type 3370), use a
sequential label (that is, an SD attribute on the DLBL statement).

Creating Disk Files

Use Operating System Facilities

Use facil ities provided by your operating system to create and catalog the fi les.

File Placement on Disk

You can reduce I/O response time by planning where you place fi les on a disk. In
general, spread high activity fi les across disk devices and channels. Particularly, consider

the placement of disk journal fi les used by systems engaged in high-volume update
activity.

Creating Disk Files

Chapter 17: Allocating and Formatting Files 553

Multi-volume Files

CA IDMS does not support fi les that span multiple physical volumes. If an area is too

large to reside on a single volume, it must be mapped to multiple fi les, each residing on
a single physical volume.

Parallel Access Volume Exploitation

Parallel Access Volumes (PAV devices) allow concurrent I/O against individual fi les. If a
database is allocated on a PAV device, it may reduce I/O wait times and thus increase
transaction throughput and improve response times. Similar, although less significant,
benefits may be achieved by allocating a journal fi le on a PAV device since I/O

contention with the journal archive util ity may be reduced.

No special action is needed to exploit this feature beyond allocating a database or
journal fi le on a properly configured PAV device.

Valid Disk Devices for Archive and Tape Journal Files

The following table summarizes the disk device types CA IDMS/DB supports for archive

and tape journal fi les:

System Device Types

z/OS Any supported by QSAM

z/VSE Any supported by SAM

z/VM Any supported by QSAM

Valid Device Types for Disk Journal Files and Database Files

The following table summarizes the device types CA IDMS/DB supports for disk journal
fi les and database fi les:

System Device Types

z/OS Any supported by BDAM or VSAM

z/VSE Any supported by SAM

z/VM Any supported by DASD Block I/O

Creating Disk Files

554 Database Administration Guide

Maximum Area Page Sizes

When allocating non-VSAM files in z/OS and z/VSE operating systems, the page size of

an area is restricted by the track size of the disk device being used. The following table
identifies the maximum page size for non-VSAM files in z/OS and z/VSE operating
systems:

Disk Device Maximum Page Size Bytes per Track

2311 3624 3625

2314 7292 7294

2321 2000 2092

3330/3330B 13028 13030

3340 8368 8535

3350 19068 19254

3375 32764 36000

3380 32764 47476

3390 32764 56664

File Characteristics

Non-VSAM Files in z/OS

To create a non-VSAM file in z/OS, use a JCL statement or a facil ity such as TSO. The DCB

characteristics of the fi le must be:

Parameter Value

DSORG PS or DA

BLKSIZE Page size of the area(s) mapped to the fi le

RECFM F

Creating Disk Files

Chapter 17: Allocating and Formatting Files 555

VSAM Files

To create a VSAM database or journal fi le, you use the IDCAMS util ity from IBM. The

following IDCAMS statements are used:

■ DEFINE SPACE—Allocates disk space for one or more VSAM files; alternatively, the
database fi le can be defined in its own data space

■ DEFINE CLUSTER—Creates the database fi le as an ESDS VSAM cluster specifying the
following attributes:

Attribute Description

RECORDS Assign:

■ PRIMARY SPACE as the number of pages mapped to
the fi le

SECONDARY SPACE as the value 2

RECORDSIZE Assign:

■ AVERAGE as the page size of the area mapped to
the fi le

MAXIMUM as the page size of the area mapped to the
fi le

CONTROL INTERVALSIZE ■ For database fi les,assign a value at least 8 bytes
larger than the page size of the area mapped to the

fi le, but less than twice the page size minus 8 ((2 *
page size)- 8)

■ For disk journal fi les, assign a value that is the same

as the page size of the journal buffer

SHAREOPTIONS Assign (3 3)

REUSE SUBALLOCATE or
UNIQUE

NONSPANNED

NONINDEXED

More Information

■ For more information about creating CMS-format minidisks to be used by CA

IDMS/DB, see the CA IDMS Installation and Maintenance Guide—z/VM.

■ For more information about defining and accessing native VSAM files, see 17.6,
“Considerations for Native VSAM Files".

Formatting Files

556 Database Administration Guide

Formatting Files

What Formatting Means

Formatting means initializing database or disk journal fi les into database pages or blocks
according to information provided by the DMCL.

Important! NEVER format native VSAM files

Formatting Database Files

When you issue a FORMAT command against a database fi le, CA IDMS/DB:

■ Establishes space management pages (SMPs) for the area(s) that map to the fi le

■ Initializes the space management entry for each database page

■ Establishes a header and footer on each database page

■ Sets all data portions of database pages to binary zeros

Formatting Journal Files

When you issue a FORMAT command against a disk journal fi le, CA IDMS/DB formats
the fi le into blocks according to the journal fi le specification in the DMCL module. The
disk journal fi le contains:

■ Journal header records at the beginning

■ Binary zeros in the remainder

Before You Begin

Before you format a fi le, the DMCL that contains the fi le definition must be available.
The DMCL provides the information CA IDMS/DB needs to format the fi le into database
pages or journal fi le blocks.

Formatting Options

You can specify four options on the FORMAT util ity statement. The following table

identifies when to use these options:

Action FORMAT Option

Format newly-created database fi le(s) FILE or SEGMENT

Re-format non-empty database fi le(s) 1 AREA or SEGMENT*

Format a disk journal fi le JOURNAL

Note: VSAM database fi les can only be formatted using the AREA option.

Considerations for Native VSAM Files

Chapter 17: Allocating and Formatting Files 557

Example

The following example instructs CA IDMS/DB to format all the database fi les contained

in segment EMPSEG:

format segment empseg;

Considerations for Native VSAM Files

About Native VSAM Files

A native VSAM file is a fi le that is already defined to VSAM and contains VSAM records.

Even though a native VSAM file is not structured as a CA IDMS database fi le, users can
gain access to it using CA IDMS/DB DML. To access data in native VSAM data sets, CA
IDMS/DB converts DML statements issued by an application program into record-level
(not control-interval) VSAM requests and passes control to VSAM. A CA IDMS/DB local

run unit or the central version appears to VSAM as a single application that:

1. Opens VSAM data clusters

2. Activates VSAM paths using local-shared resources (LSR) or non-shared resources

(NSR)

3. Accesses data records

4. Closes the clusters and paths

Native VSAM Files Contain Data

CA IDMS/DB can access native VSAM files only if they contain at least one record; that

is, the fi les cannot be empty. This also implies that empty native VSAM files cannot be
loaded using CA IDMS/DB services.

Defining Native VSAM to CA IDMS

Before an existing VSAM file can be accessed using CA IDMS/DB DML statements, both a
logical and physical description must be provided using non-SQL schema and physical

DDL statements.

Note: For more information about defining native VSAM files, see Appendix D, "Native
VSAM Considerations".

Considerations for Native VSAM Files

558 Database Administration Guide

More Information

■ For more information about creating and forma tting z/VM files, see CA IDMS
Installation and Maintenance Guide—z/VM.

■ For more information about loading fi les, see Chapter 22, "Loading a Non-SQL

Defined Database" and Chapter 4, “Defining Segments, Files, and Areas” and
Chapter 27, “Modifying Physical Database Definitions”.

■ For more information about disk journal fi le definition and modification, see
Chapter 5, “Defining, Generating, and Punching a DMCL” and Chapter 27,

“Modifying Physical Database Definitions”.

■ For more information about syntax for the FILE and DISK JOURNAL statements, see
Chapter 7, “Physical Database DDL Statements”.

■ For more information about loading fi les, see Chapter 22, “Loading a Non -SQL

Defined Database” and Chapter 23, “Loading an SQL-Defined Database”

■ For more information about IDCAMS, see the appropriate IBM publication.

■ For more information about using native VSAM files, see the CA IDMS Database

Design Guide.

Chapter 18: Buffer Management 559

Chapter 18: Buffer Management

This section contains the following topics:

Planning Database Buffers (see page 559)
Managing Buffers Dynamically (see page 565)
Tuning Buffers for Performance (see page 566)

Using Chained Reads (see page 567)
Using Read and Write Drivers (see page 570)

Planning Database Buffers

Tradeoffs to Consider

Buffers use space in main memory, but reduce the amount of I/O performed on behalf
of your applications. You want to choose the optimal buffer attributes to achieve a
balance between storage resources and I/O.

Considerations for assigning values to these attributes appear next, beginning with a

discussion on how many database buffers to define.

Planning Database Buffers

560 Database Administration Guide

How Many Buffers Do You Need?

Multiple Buffers Allowed

As a general rule, one large buffer is often adequate for most processing situations.
However, you may need to define more buffers to:

■ Enhance database performance

■ Optimize storage use

Separate Buffers to Enhance Performance

To enhance run-time performance, you can associate individual fi les with separate

buffers. This reduces contention for buffer pages.

For example, you can assign a frequently-used index to a separate fi le and then assign
the fi le to a separate buffer. Applications can access this index in its own buffer, while
CA IDMS/DB uses other buffers to hold database pages.

Separate Buffers to Optimize Storage Use

The size of a buffer page must be as large as the largest database page that uses the
buffer. Therefore, you can optimize storage use by assigning fi les that contain the same

or similar block sizes to the same buffer.

Planning Database Buffers

Chapter 18: Buffer Management 561

How Many Pages Should a Buffer Contain?

Minimum Number of Pages

The minimum number of pages in a buffer is three. However, a value of at least five is
recommended to avoid excessive database I/O operations and to reduce contention

among transactions for space in the buffer.

Maximum Number of Pages

The maximum number of pages is constrained only by available memory resources.
However, if you allocate too many pages, you may degrade performance by increasing

the amount of virtual paging performed by the operating system.

Choosing an Optimum

Choosing an optimum number of pages comes with experience gained from tuning your
database. However, if most fi les in the DMCL use a common buffer, a rule of thumb

indicates that the number of buffer pages should be at least three times the maximum
number of anticipated concurrent database transactions.

Manage the Size of the Buffer Dynamically in Response to Need

Once a database is in operation under the central version, you can dynamically change
the number of pages in the central version buffer with a DCMT VARY BUFFER statement.
By changing the size dynamically, you can determine the optimum size for the buffer by
monitoring the buffer utilization ratio, which is described in 18.3, “Tuning Buffers for

Performance".

Local Mode vs. Central Version Specifications

You can size a buffer differently for local mode and central version use. This feature

allows you to optimize use of memory resources. For example, you could specify that a
particular buffer will hold 100 pages when used in local mode and 500 pages when us ed
under the central version. Under local mode, the buffer is smaller because it supports
only a single application; under the central version, the buffer is larger because it

supports multiple, concurrent applications.

Initial and Maximum Allocations Under the Central Version

Buffers defined to run under the central version can be assigned an initial number of

pages and a maximum number of pages. Depending on the amount of system activity,
you can use the DCMT VARY BUFFER command to change the number of pa ges in the
buffer; for example, use the DCMT VARY BUFFER command to increase the number of
buffer pages during peak system usage or to reduce the number of buffer pages at other

times.

Planning Database Buffers

562 Database Administration Guide

You Can Use JCL to Increment Size of Local Mode Buffer

At z/OS sites, you may want to increase the size of the buffer for a specific application,

such as loading a database. You can do this without modifying the buffer definition by
specifying additional buffer pages in the BUFNO parameter of the JCL statement
identifying a fi le associated with the buffer. At runtime, CA IDMS/DB acquires storage

for the buffer equal to the number of pages specified in the DMCL's buffer definition
plus the value assigned to BUFNO for each fi le associated with the buffer.

Buffers and File Caching

In certain operating systems, you can cache database fi les in a separate storage area

called a cache. There are two types of caching available:

■ Memory caching in which fi les are cached in a dataspace or in z-storage (storage
above the 64-bit address l ine)

■ Shared caching in which fi les are cached in a coupling facility.

Note: For more information about how to enable fi le caching and the options available
in different operating systems, see DMCL Statements.

If a fi le is cached, CA IDMS reads database pages from the cache into the database

buffer. If it modifies the database page, CA IDMS writes the modified page back to disk
and to the cache. One advantage of a cache is a reduction in the number of I/Os to th e
fi le. Another advantage is that you may be able to reduce the number of pages in your
buffer pool, relying on the cache to hold pages while not in use.

Memory caching provides larger caching capabilities than database buffers (even those
allocated above the 16-megabyte line). However, you must have sufficient expanded
storage on your machine to support the use of memory caching. Without adequate

storage, the paging overhead associated with the system can increase significantly.

If using a coupling facil ity cache, you must have enough coupling facility space to hold
the most frequently accessed pages, to make its use worthwhile. An additional
advantage of a coupling facility cache is that it can be shared by more than one central

version.

File caching is not available for native VSAM files.

Using Batch LSR for VSAM Files

At z/OS sites, VSAM database fi les can make use of IBM's Batch Shared Resources
Subsystem (Batch LSR) by specifying the SUBSYS JCL parameter. At runtime, CA IDMS/DB
opens the VSAM database fi le and the VSAM Batch LSR subsystem converts the buffer
management technique to LSR processing and allows the buffer pool to be created in

hyperspace. Batch LSR is also supported for native VSAM files.

Planning Database Buffers

Chapter 18: Buffer Management 563

Batch LSR Improves Performance for Actively Used Files

By using Batch LSR, you can reduce the number of pages in the buffer associated with

the fi le in your DMCL because VSAM and the Batch LSR subsystem can create a large
buffer pool in hyperspace which will minimize the number of I/Os. This feature offers
performance improvements for fi les that are actively used.

SUBSYS Subparameters

Use of the Batch LSR subsystem and the number and location of the buffers is controlled
by use of the SUBSYS JCL parameter and its subparameters. Use the MSG=I
subparameter to display the batch LSR subsystem mes sages on the job log. Do not use

DEFERW=YES because it could affect the integrity of your database in the event of a
system failure.

How Large Should a Buffer Page Be?

Pages as Large as Largest Database Page

The page size for a buffer must be able to hold the largest database page that will be
read into that buffer. Therefore, to conserve system resources, try to assign fi les to the
buffer with roughly equivalent block sizes (a bl ock equals a database page).

Planning Database Buffers

564 Database Administration Guide

Choosing a Method for Storage Acquisition

Choosing IDMS or OPSYS

The IDMS and OPSYS options on the BUFFER statements determine how CA IDMS/DB
acquires storage for the buffer and the source of this storage:

■ If you specify OPSYS storage, CA IDMS/DB issues one or more requests to the
operating system for a contiguous block of storage. If the operating system
supports extended addressing, the storage will be acquired above the 16-megabyte
line.

■ If you specify IDMS storage, CA IDMS/DB issues separate storage requests for each
page in the buffer. The storage is acquired from IDMS-managed storage and will
reside above the 16-megabyte line under the following conditions:

– In local mode, if the operating system supports extended addressing

– Under the central version, if an XA storage pool exists which supports
system-type storage.

Advantages of Using OPSYS Storage

The OPSYS storage option offers an advantage to sites that define large buffers because
of the way storage is acquired. For example, a buffer defined with an initial number of
pages of 1000 will result in a single storage request for the entire 1000 pages if OPSYS is
specified or 1000 storage requests if IDMS is specified. Another advantage is that the

OPSYS storage is acquired outside the IDMS storage pool while IDMS storage is acquired
from the IDMS storage pool. Therefore, the storage pool must be large enough to hold
the buffer.

Insufficient Storage Under the Central Version

When initially allocating a buffer or when increasing the size of a buffer in response to a

DCMT command, CA IDMS/DB may be unable to acquire all the necessary storage. If this
occurs and the storage acquisition mode is OPSYS, CA IDMS/DB will attempt to ac quire
the storage from the IDMS storage pool. Whenever acquiring storage from the IDMS

storage pool, if the necessary storage cannot be acquired or if the DC/UCF system is
placed in a short-on-storage condition, the number of pages in the buffer is reduced by
half until the necessary storage can be acquired without a short-on-storage condition.

Managing Buffers Dynamically

Chapter 18: Buffer Management 565

Managing Buffers Dynamically

Changing Buffer Characteristics

Once a database is in operation, you can vary the characteristics of buffers dynamically
by issuing the DCMT VARY BUFFER statement.

By making a temporary change to a buffer setting online, you can evaluate the potential

impact this change might have on overall sys tem performance. This allows you to
identify the optimal settings for your buffers. When you have identified the optimal
settings, you can make permanent changes to the buffer definitions by using the ALTER
BUFFER DDL statement.

Types of Changes

The following buffer characteristics can be changed using DCMT commands:

■ The number of pages in the buffer pool

■ The number of pages to be acquired in each storage request (this value defaults to
the initial number of pages in the buffer pool)

■ The maximum number of pages in the buffer pool

■ The storage acquisition mode (OPSYS or IDMS)

■ Whether the chained read facil ity is activated and the number of pages that must
be in the buffer to invoke chained reads as described under 18.4, “Using Chained
Reads”

■ Whether a fi le is cached using a DCMT VARY FILE/AREA/SEGMENT command

If the number of pages in the buffer pool is changed to any value between the initial and
maximum number of pages, the change is effective immediately. Changing the number
of pages in the buffer pool beyond this range or changing other buffer characteristics

takes effect only after the buffer is closed and re-opened. The buffer can be closed using
a DCMT VARY BUFFER command and it will be re-opened automatically when the next
read occurs for a fi le associated with the buffer.

Varying a DMCL

The following buffer changes can be made dynamically by varying a new copy of the
DMCL:

■ The page size of a buffer can be changed

■ New buffers can be added to the system

■ Existing buffers can be removed from the system

■ Files can be associated with a different buffer

Tuning Buffers for Performance

566 Database Administration Guide

Other characteristics, such as the number of pages in the buffer or the storage
acquisition mode, are not affected by varying a new copy of the DMCL. To dynamically

make such changes, use the DCMT VARY BUFFER command.

Tuning Buffers for Performance

When to Add More Database Buffers

If your monitoring operations reveal contention among applications for use of your

buffers, you may need to add more buffers. For example, you may create a new buffer
and assign it to a fi le that is accessed frequently; fi les that are accessed infrequently can
share buffers without incurring contention among applications.

To determine which fi les within a buffer are accessed most frequently, issue the DCMT

DISPLAY STATISTICS BUFFER command with the FILE option. This will show the number
of pages requested as well as the number of reads and writes issued for each fi le
associated with a specific buffer.

When to Change the Database Buffer Page Size

You may have to change the buffer's page size if you associate different fi les with the
buffer. The buffer's page size must be as large as the largest database page in any fi le
associated with the buffer. Therefore, if new fi les assigned to the buffer contain larger

database pages, the buffer page must be increased accordingly; l ikewi se, if the fi les are
removed from the buffer, you may be able to decrease the buffer page size to conserve
memory resources.

When to Change the Number of Database Buffer Pages

You can use the buffer utilization ratio to determine if a buffer has the optimal number
of pages. This ratio is the number of database pages requested to the number of
database pages CA IDMS/DB reads from disk. A high ratio (above 2) indicates an

effective buffer size. A lower ratio indicates that the buffer has too few pages.

You can use the DCMT DISPLAY STATISTICS BUFFER command to determine these
values. You can also obtain them from the Performance Monitor, JREPORTs, and
SREPORTs.

Using Chained Reads

Chapter 18: Buffer Management 567

Using Chained Reads

What Chained Reads Do

Chained reads allows CA IDMS/DB to read multiple blocks from disk with a single I/O
request. It can significantly reduce both elapsed and CPU times for applications that
process multiple contiguous pages within an area.

CA IDMS/DB automatically uses chained reads under z/OS and z/VSE both in local and
central version processing under these conditions:

■ Prefetch processing has not been disabled by issuing a DCMT VARY command or
through a PREFETCH SYSIDMS parameter

■ The fi le being accessed is non-VSAM

■ The fi le is not cached

■ The buffer pool for the fi le contains a page count of at least 255 pages

Using Chained Reads

568 Database Administration Guide

■ And, one or more of the following applies:

– An area sweep is being performed.

– An SQL request is processed in such a way that multiple contiguous pages wil l
l ikely be accessed (walking a clustered set or index, performing an index scan).

– The number of pages in the buffer pool exceeds the pre-fetch limit. The default

pre-fetch limit is 500 but this can be overridden using a DCMT VARY BUFFER
command or through a PREFETCH_BUF SYSIDMS parameter.

– One of the following util ity functions is executing:

– ARCHIVE LOG

– BACKUP

– BUILD INDEX

– CLEANUP

– MAINTAIN INDEX

– PRINT LOG

– PRINT SPACE

– REORG

– RESTRUCTURE

– RESTRUCTURE CONNECT

– UNLOAD

– UPDATE STATISTICS

– VALIDATE

Note: Several other util ities such as ARCHIVE JOURNAL use QSAM processing
for their sequential processing.

How Chained Reads Work

When chained reads is active, a single start I/O reads up to an entire track at one time.

If some of the pages are already in core, those pages are skipped (that is, they are not
read).

When IDMS/DB processes an entire area, it issues multiple start I/Os. Under the central

version, without read drivers, two start I/Os will be issued; in local mode, as many as ten
start I/Os will be issued (subject to buffer pool size). IDMS/DB overlaps multiple start
I/Os to reduce elapsed time.

Using Chained Reads

Chapter 18: Buffer Management 569

Controlling the Use of Chained Reads

Under the central version, use the PREFETCH option of the DCMT VARY DMCL, AREA,

FILE, or BUFFER commands to control when to use chained reads. ON is the default
unless it is overridden by a PREFETCH=OFF SYSIDMS parameter. OFF takes precedence
over ON for subordinate entities. For example, varying PREFETCH OFF for an area will

disable it for all fi les associated with that area.

The default prefetch limit of 500 pages can be overridden by specifying a
PREFETCH_BUF SYSIDMS parameter. In central version, it can also be overridden by
using the following command:

DCMT VARY BUFFER <buffer-name> PREFETCH <limit>

For example, if the limit for a buffer pool is set to 300, then (provided that there are at

least 300 buffer pages) chained reads will be us ed for all access to fi les associated with
the buffer unless it is explicitly disabled at the fi le, area, or system level.

Monitoring Effectiveness

To determine the effectiveness of chained reads in your system, use the OPER WATCH

DB IO command, which displays the number of start I/Os and pages read using chained
I/O for a given task.

It is possible that certain applications or processing loads may either experience no

improvement or incur increased overhead because chained reads may cause pages to
be prematurely flushed from the buffer. If such a situation occurs, you can disable
chained reads for local mode or central version by specifying PREFETCH=OFF as a
SYSIDMS parameter.

Using Read and Write Drivers

570 Database Administration Guide

Using Read and Write Drivers

Read Drivers

A read driver performs "look-ahead" reads when CA IDMS/DB is instructed to sweep an
area. When it is activated, it uses chained reads to read a track of pages beginning with
the third or fourth tracks from the start of the area sweep and attempts to prefetch the

pages that will be needed by the application. Use the DCMT VARY DB READ ON/OFF
command to activate or de-activate the read driver for an area.

Write Drivers

A write driver facil itates writing pages from the buffer to disk. CA IDMS/DB invokes a

write driver under these conditions:

■ When a transaction is committed and the buffer contains at least five updated
pages. The driver writes all the pages in the buffer updated by the transaction.

■ When more than 75% of the pages in the buffer are updated pages.

Use the DCMT VARY DB WRITE DRIVER ON/OFF command to activate or de-activate the
write driver.

More Information

■ For more information about defining database buffers, see Chapter 5, “Defining,
Generating, and Punching a DMCL”.

■ For more information about caching fi les, see 7.13, “DMCL Statements".

■ For more information about DCMT commands, see the CA IDMS System Tasks and

Operator Commands Guide.

■ For more information about shared cache, see the CA IDMS System Operations
Guide.

Chapter 19: Journaling Procedures 571

Chapter 19: Journaling Procedures

This section contains the following topics:

Journaling Overview (see page 571)
Journal Files (see page 573)
Formatting Journal Files (see page 580)

Offloading Disk Journal Files (see page 580)
User Exits and Reports for Journal Management (see page 585)
Influencing Journaling Performance (see page 586)

Journaling Overview

Journals Log Database Activity:

Journals log database activity. Specifically, journals log:

■ Before and after images of modified records and rows

■ Status of transactions accessing the database

Note: Throughout the remainder of this chapter, the term record is used to mean both
record and row

Journaling Overview

572 Database Administration Guide

Journaling Under the Central Version

Update and Retrieval Transactions

Under the central version, several transactions can update the database concurrentl y.
CA IDMS/DB writes information about all update transactions to the journal fi les. CA

IDMS/DB also writes status information about retrieval -only transactions if JOURNAL
RETRIEVAL is specified in the system generation SYSTEM statement.

Use Disk Journals Under the Central Version

You must use disk journals for automatic recovery under the central version. Automatic

recovery occurs during warmstart, following the abnormal termination of a transaction,
and following the execution of an SQL statement during which errors were encountered.

Note: For more information about automatic recovery, see 21.2, “Backup Procedures”.

Need at Least Two Disk Journals

Under central version, you need at least two disk journals. As one fi le becomes full, CA
IDMS/DB automatically switches to an alternate fi le. While CA IDMS/DB writes to the
alternate fi le, the full disk journal fi le must be offloaded using the ARCHIVE JOURNAL

util ity statement. This procedure is described in more detail later in this chapter.

Journaling in Local Mode

Journaling May Not Be Necessary

When you execute an application in local mode, that application is the only one that has

access to any areas it updates. Therefore, journaling may not be necessary in local
mode, provided you backup the database fi les before and after executing an application
that updates the database. Typically, you journal in local mode when your database is
too large to backup in a reasonable amount of time.

Must Use Tape Journals in Local Mode

To journal in local mode, you must use a DMCL that defines a tape journal fi le. You can
assign the tape journal fi le to either a disk or tape device. However, if you journal to a

disk device, you must copy the fi le to a tape device before using it in a manual recovery
operation.

Journal Files

Chapter 19: Journaling Procedures 573

Journal Files

Journal Record Types

Database activity is recorded on a journal fi le (tape or disk). CA IDMS/DB writes the
following information to the journal:

■ Journal record entries that contain the image of database records

■ Checkpoints that describe the status of transactions accessing the database

Writing Journal Blocks

CA IDMS/DB accumulates journal records in the journal buffer. It writes the journal
buffer to a journal fi le when one of the following conditions occurs:

■ The buffer is full.

■ A page containing an updated record occurrence whose before image is in the
journal buffer, is to be written back to the database.

■ A database transaction is committed or backed out. A transaction commits or backs

out as the result of an explicit request, such as a FINISH or ROLLBACK or because
the application aborts.

Note: All journal fi le blocks are the same length, whether or not the buffer is full when
written to a journal fi le.

Journal Record Entries

Log Changes in Records

CA IDMS/DB uses journal record entries to log changes to the records in a database. A
journal record entry is an image of a database record. As a database record is added,

deleted, or modified, CA IDMS/DB writes a before image that contains the image of the
record before update and an after image that contains the image of the record after
update.

Journal Files

574 Database Administration Guide

Journal Images For Modified Records

On a change to an existing record, the contents of before and after images are

dependent on how the processing of the DML statement affects the database record:

Affect on Database Record Contents of Journal Record Entry

Data in the record changes ■ Database key of the record occurrence

■ Prefix portion of the record occurrence

■ Data portion of the record occurrence

Record's relationships in a set

changes
■ Database key of the record occurrence

■ Prefix portion of the record occurrence

Journal Images For New or Deleted Records

If a DML statement adds a new record occurrence into the database, the before image
of the record is null. Similarly, if a DML statement removes a record occurrence, the

after image of the record is null.

Checkpoints

Describe Transaction Status

Checkpoints describe the status of database transactions. CA IDMS/DB writes these

checkpoints to the journal fi le:

Checkpoint Description

BGIN Written to the journal fi le to mark the beginning of local work
done by a transaction branch. This checkpoint is written when a
database transaction is initiated if JOURNAL RETRIEVAL is specified
in the system generation, or when the first update occurs,

otherwise.

ENDJ Written to the journal fi le during a commit operation to mark the
successful completion of a transaction branch.

COMT Written to the journal fi le during a commit operation to mark the
successful completion of a transaction branch. A COMT is similar
to an ENDJ checkpoint except that it enables work done after the
commit to be recorded on the journal fi le using the same local

identifier (LID).

ABRT Written to the journal fi le during a backout operation to mark the
abnormal completion of a transaction branch.

Journal Files

Chapter 19: Journaling Procedures 575

Checkpoint Description

AREA Written for each area readied by an explicit DML READY command

or readied automatically by the DBMS.

RTSV Written automatically to the journal fi le each time CA IDMS/DB
encounters an error while executing an SQL or physical DDL

statement that updated the database. During recovery, CA
IDMS/DB rolls back to the journal record designated by the RTSV
checkpoint record.

TIME Written to a journal each time the journal's buffer is initialized.

However, the time and date fields contain binary zeros until the
journal buffer is written to the journal fi le.

BFOR Written to a journal each time a record is updated and carries the
image of that record before the change was made

AFTR Written to a journal each time a record is updated and carries the
image of that record after the change was made

CKPT Written to a journal to mark the simultaneous successful

completion of multiple branches of a local transaction. This
checkpoint is used to coordinate the commit of a local transaction
involving multiple branches.

USER Written to a journal via the WRITE JOURNAL command issued by a

user program

JSEG Written to a journal at the beginning of each disk journal segment.
This record identifies the transactions that were active when that

journal segment was started.

DSEG Written periodically to the journal to identify the transactions that
are active at a given point in time.

DCOM Written to the journal fi le during a two-phase commit operation to

mark the successful completion of a distributed transaction. It is
written to the coordinator's journal fi le at the start of the second
phase of the commit operation and to a participant's journal fi le

when it is informed that its changes should be committed.

DBAK Written to the journal fi le during a two-phase commit operation to
mark the abnormal completion of a distributed transaction. It is
written to the coordinator's journal fi le during the first phase of

the commit operation as soon as it is determined that the
transaction's changes should be backed out and to a participant's
journal fi le when it is informed that its changes should be backed
out.

Journal Files

576 Database Administration Guide

Checkpoint Description

DFGT Written to the journal fi le at the end of a two-phase commit

operation to mark the end of the distributed transaction. It is
written to a coordinator's or participant's journal fi le if any other
distributed checkpoint (DCOM, DBAK, DPND, and DIND) had been

previously written for the transaction.

DIND Written to a participant's journal fi le during a two-phase commit
operation to note that the participant is prepared to commit its
portion of the distributed transaction. The participant will wait for

a directive from the coordinator as to whether to complete the
commit operation or to back out changes.

DPND Written to the journal fi le during a two-phase commit operation to
mark an interim result for a dis tributed transaction. It may be

written for several reasons, such as when a participant is forced to
complete a transaction heuristically or when a coordinator is
unable to communicate with a participant during the second

phase of the commit operation.

Note: ENDJ, COMT, and ABRT checkpoints are written to the journal fi le only by
transactions for which a BGIN checkpoint is also written.

Avoiding Duplicate LID Values

An LID is a serially incremented 4-byte value that uniquely identifies work done by a
local transaction branch. With the increased need for non-stop operations, there is a
greater chance that LID values may wrap within the lifetime of a central version. This, in
turn, could lead to a situation in which duplicate LID values are in use, if a database

session existed long enough for its LID value to be repeated. To minimize this possibility,
you can force the assignment of a new LID value each time a long running database
session commits or backs out its work. Doing so has the added benefit of reducing

recovery time.

To force the assignment of a new LID value, specify ON COMMIT WRITE ENDJ NEW ID
and ON ROLLBACK NEW ID on the SYSTEM or TASK statements in the system definition
or specify this dynamically using the DCMT VARY TASK or VARY DYNAMIC TASK

commands.

Note: There is no need to specify this for system run units, since a new LID value is
always assigned when they are committed or backed out.

Journal Files

Chapter 19: Journaling Procedures 577

More Information

■ For more information about improving recovery times, see 19.6.3, "Reducing

Recovery Time".

■ For more information about specifying system definition parameters, see the CA
IDMS System Generation Guide.

■ For more information about DCMT commands, see the CA IDMS System Tasks and
Operator Commands Guide.

Two-Phase Commit Journaling

Journaling and Two-Phase Commit

Journaling is integral to the two-phase commit process. As a distributed transaction
progresses through the commit process, distributed checkpoint records are written to
the journal fi le to record its changing state. These checkpoints are used in the event of a
system failure to rebuild incomplete transactions so that they can be completed through

a process of resynchronization with other systems.

Note: For a complete discussion of two-phase commit within CA IDMS, see Chapter 20,
“Two-Phase Commit Processing".

Distributed Checkpoints

The following distributed checkpoints can be written in support of a two-phase commit
operation:

■ DIND (In doubt) - Written by a participant after it has successfully prepared its

resources for commit and prior to returning an OK response to its coordinator.

■ DCOM (Commit) - Written by a coordinator to signify that a transaction's changes
will be committed. Its existence separates the first and second phases of the
commit process. A participant also writes a DCOM immediately upon receiving a

Commit request from its coordinator.

■ DBAK (Backout) - Written by a coordinator to signify that a transaction's changes
will be backed out. Its existence demarcates the first and second phases of the

commit process. A participant also writes a DBAK immediately upon receiving a
Backout request from its coordinator, but only if a DIND had been previously
written.

Journal Files

578 Database Administration Guide

■ DPND (Pending) - Written by a coordinator during the second phase of a commit
operation if some participant is unable to complete its commit processing due to a

failure. By writing this record, the coordinator is able to forget some participants
while remembering others. It is also written to record the heuristic completion of a
transaction.

■ DFGT (Forget) - Written by coordinators and participants when they have
completed their two-phase commit processing for a transaction. A DFGT record is
written only if some other distributed checkpoint record was previously written.

Each distributed checkpoint contains a distributed transaction identifier (DTRID), a

16-byte value assigned by CA IDMS to uniquely identify a distributed transaction across
all participating systems.

Relating Local and Distributed Journal Entries

BGIN, COMT, ENDJ and ABRT checkpoints and BFOR and AFTR journal entries log work
done by a transaction branch within the local system. They contain a 4 -byte local

identifier (LID) that uniquely identifies this work. To associate work done locally with a
distributed transaction, DIND, DCOM and DBAK checkpoints contain a l ist of LID values
representing the local work units that are part of the distributed work unit.

The following il lustrates the sequence in which local and distributed journal records may
be written to a journal fi le for a distributed transaction:

■ BGIN - indicating the start of work done locally

■ BFOR/AFTR - one or more pairs

■ DIND - on a participant only

■ DCOM or DBAK - on a participant and a coordinator

■ COMT or ENDJ - if a DCOM was written

■ ABRT - if a DBAK was written

■ DPND - on a coordinator if the commit operation was interrupted; on a participant
if the transaction was heuristically completed

■ DFGT - on a participant and a coordinator if any other distributed checkpoint was

written

Journal Files

Chapter 19: Journaling Procedures 579

Participants and Coordinators

DIND, DCOM, DBAK and DPND records also contain information about a participant's

coordinator and about a coordinator's participants. The specific information that is
recorded varies depending on the type of the coordinator or participant. For example,
the node name, resource name, and remote transaction branch identifier are recorded

for CA IDMS participants. The RRS URID (Unit of Recovery Identifier) is recorded for an
RRS coordinator or participant.

Splitting Distributed Checkpoints

Distributed checkpoint records can be larger than a single disk journal block. If this is the

case, they are split into as many journal blocks as are necess ary to hold the entire
record. It is also possible for a distributed checkpoint to be split across disk journal fi les
and, hence, across archive fi les. The manual recovery util ities reassemble the record,
provided that all necessary archive fi les are processed in a single execution of the util ity.

They ignore partial records in which not all segments are present in the input fi le.

I/O Error or Corruption of a Journal File

While CV is active, if a journal encounters an I/O error, or some type of corruption, IDMS
will stop using the journal. If the error occurred to the active journal, IDMS will switch to

the next journal, and disable the use of this journal. If the error occ urred to a journal
that was not the active journal, then IDMS will not switch to this journal. It will remain
disabled to IDMS until the journal fi le is corrected.

If two journals are defined to the system, and one becomes corrupted, IDMS will journal
to just one journal. When that journal fi lls, IDMS will wait until the journal is offloaded
by the ARCHIVE JOURNAL, before it starts to journal again. All update activity to the
database will stop until the ARCHIVE JOURNAL is done. Therefore, it is recommended

that you define three or more journals to the system. Most users run with four or more
journal fi les.

To correct the disabled journal; Run an Archive Journal - to offload any data on the

corrupted journal. If the offload will not run, identify the journal fi le that is corrupt and
resubmit the Archive Journal using the READ parameter.

DCMT VARY JOURNAL journal -fi le-name INACTIVE. This makes sure the journal is
'offl ine' or disabled to IDMS. IDMS will not use the journal at this time.

Format the journal. Run the IDMS FORMAT Util ity, specifying just the journal fi le with
the error.

DCMT VARY JOURNAL journal -fi le-name ACTIVE. This brings the journal back 'online' to

IDMS. After this command is issued, IDMS will automatically switch to this journal when
the prior journal is full. Until this journal is switched to, the Segment number for this
journal will be '0'.

Formatting Journal Files

580 Database Administration Guide

Formatting Journal Files

Before a journal fi le can be used by a system, it must be formatted. When doing so, it
might be necessary to specify a size for the journal data store. This is an area reserved at
the start of every journal fi le that is used to record information about other systems
with which a system communicates. In most cases, the default size is sufficient and no

explicit size parameter is needed; however, if a system's journal block size is very small,
or if it communicates with many other CA IDMS or CICS systems, it may be necessary to
reserve additional space. If a journal's available space is exhausted, attempts to
communicate with a new system will fail. It will then be necessary to shut down the

system, offload and format the journal fi les, and restart the system before
communicating with a new system.

You specify a size for the journal data store by specifying a DATA STORAGE SIZE
parameter on the FORMAT JOURNAL statement. All journal fi les used by a system must

be formatted with the same data store size. Once a journal fi le has been formatted for
the first time, it can be reformatted using the FAST option. This parameter directs the
util ity to format only the journal headers which is a much faster process than formatting
the entire fi le.

For more information about formatting journal fi les, see the CA IDMS Utilities Guide.

Offloading Disk Journal Files

What Happens When You Offload a Disk Journal File

The ARCHIVE JOURNAL util ity statement offloads the contents of a disk journal fi le to an

archive journal fi le. It also rebuilds the disk journal fi le, condensing all before images for
each active transaction into new journal blocks at the beginning of the fi le. This process
creates a journal fi le that contains only those before images that are needed if an active
transaction aborts or requests rollback.

Creating Multiple Archive Files

CA IDMS/DB will offload the disk journal fi les to multiple archive fi les if more than one is
defined in the DMCL used when executing the ARCHIVE JOURNAL util ity statement. By
creating multiple archive fi les, you increase the likelihood that a readable archive fi le is

available in the event it is needed for manual recovery. If an I/O error is encountered
while writing to one of the archive fi les, a warning message is issued and offloading
continues without further writes to the damaged fi le. If all archive fi les incur write

errors, execution is aborted.

Offloading Disk Journal Files

Chapter 19: Journaling Procedures 581

When to Offload

You normally offload disk journal fi les only when:

■ CA IDMS/DB switches to another disk journal fi le

■ The DC/UCF system is shut down and the database is backed up

The procedure for each scenario is provided next followed by a description of how to

restart an offload operation.

When CA IDMS/DB Switches Journal Files

When Switch Occurs

CA IDMS/DB switches to another disk journal fi le when:

■ The active disk journal becomes full

■ You issue a DCMT VARY JOURNAL command under the central version

■ An I/O error is detected on the active disk journal fi le

What Happens When the Switch Occurs

When CA IDMS/DB switches to another disk journal fi le, it writes a message to the
operator, indicating that a swap has occurred and that the previously active journal fi le
needs offloading. The operator should respond to this message by offloading the full
fi le.

Eliminating Operator Intervention

You can eliminate the need for operator intervention by using a write-to-operator exit
routine that intercepts and reviews the message to the operator and responds by
automatically submitting a job to offload the full journal fi le.

Note: For information about the WTOEXIT user exit and sample routines for each
operating system, see the CA IDMS System Operations Guide.

Offloading Disk Journal Files

582 Database Administration Guide

How to Offload the Disk Journal

ARCHIVE JOURNAL Utility Statement

To offload the journal, you execute the ARCHIVE JOURNAL util ity statement using the
batch command facil ity. You should use the default option of AUTO so that the oldest

non-archived journal fi le is selected for processing.

If change tracking is in effect for the CV whose journals are being offloaded, you should
reference the CV's SYSTRK fi le in your ARCHIVE JOURNAL execution jcl so that the
archive job is sharing the description of the journal fi les that are currently in use by CV.

Note: For more information about change tracking and how to reference a SYSTRK fi le,
see "Change Tracking" in the CA IDMS System Operations Guide.

System Failure During Offload

If the operating system fails while an ARCHIVE JOURNAL statement is executing,

resubmit the ARCHIVE JOURNAL job using the RESTART parameter and identifying the
journal fi le that was being processed at the time of failure.

Potential Problems While Offloading

You may encounter two types of problems when you offload journal fi les in an active
system:

1. The offloaded journal fi le is sti ll full following the offload because it contains before
images for uncommitted transactions active at the time of the offload. The ARCHIVE
JOURNAL util ity statement issues messages indicating how full the disk journal file is

after being offloaded. If it is full, it is usually because a long-running batch job is
updating the database without issuing intermediate COMMIT statements. If all
journal fi les fi l l, the system will halt database processing until corrective action is
taken. See 19.4.3, “Handling Full Journal Files" for how to recover from this

situation.

2. The remaining disk journal fi les fi ll before ARCHIVE JOURNAL completes offloading a
single fi le. When this occurs, CA IDMS/DB temporarily halts further database

activity until the offload job is complete.

Prevention For Problem 1

To prevent a full disk journal following an offload, take one or more of the following
steps:

■ Ensure that batch update programs issue frequent COMMITs to reduce the number

of before images that must be retained on the journal fi le

■ Allocate larger disk journal fi les

■ Execute long-running update programs in local mode

Offloading Disk Journal Files

Chapter 19: Journaling Procedures 583

Prevention For Problem 2

To prevent future disk journal fi le overloading, take one or more of the following steps:

■ Allocate larger disk journal fi les

■ Increase the number of disk journal fi les

■ Execute long-running update programs in local mode.

Handling Full Journal Files

Long running transactions that do not commit their changes can fi l l the journals because
the ARCHIVE JOURNAL util ity is unable to remove the BFOR images for uncommitted
transactions. The ARCHIVE JOURNAL util ity generates a warning message when the

journal fi le that is being archived remains nearly full after the process completes. The
ARCHIVE_JOURNAL_WARNING_PERCENT SYSIDMS parameter di ctates the threshold
used to trigger the message. If this message appears, it indicates that the journal fi les
are fi l l ing and corrective action may be needed.

When the journals are close to being full, the CA IDMS system halts database activity. To
recover from this situation, the task that is fi l l ing the journals must be canceled.

To assist in this process, the following message is written for each task that is waiting to
write to a full journal fi le:

DC205024 Journal Write waiting on full Journal

The message will be repeated every few seconds until tasks are no longer waiting on a
full journal.

Offloading Disk Journal Files

584 Database Administration Guide

To recover from this situation, the task that is fi l ling the journal fi les must be identified
and aborted. To assist in this effort, CA IDMS will display message DC205030 showing

details of the task causing the journal swap. This is most l ikely the task causing excessive
journaling activity, although it may not be. To determine if this is the offending task,
display detailed transaction information by issuing DCMT DISPLAY TRANSACTION

commands or using the transaction detail function of the real time monitor within CA
IDMS Performance Monitor.

Look for the transaction that has written the largest number of BFOR journal images.
Cancel its associated task by issuing a DCMT VARY ACTIVE TASK command.

When the cancelled task has terminated, issue a DCMT VARY JOURNAL command to
force the central version to swap to a new active journal fi le allowing the full fi le to be
offloaded and condensed by ARCHIVE JOURNAL. It is l ikely that DCMT VARY JOURNAL
will need to be issued more than once, since several journal fi les may have fi l led and

require offloading.

Once the system swaps back to the first journal fi le on which tasks waited, processing
should continue without the need for further intervention.

After System Shutdown

Offload All Files

After a normal system shutdown, you may offload all non-empty journal fi les, by
executing an ARCHIVE JOURNAL util ity statement with the ALL option:

archive journal all;

Usually Done in Conjunction With Backup

Offloading all journal fi les following a system shutdown is usually performed in
conjunction with backing up the database.

Note: For more information about backup, see 21.2, “Backup Procedures".

User Exits and Reports for Journal Management

Chapter 19: Journaling Procedures 585

User Exits and Reports for Journal Management

User exits

The following table describes user exits that you can use in managing your journals:

User Exit Description

IDMSAJNX Can be used to collect statistics on database activities; CA IDMS/DB
invokes this exit as it offloads a journal record page to the archive fi le

IDMSDPLX Can be used to maintain duplicate journal fi les; CA IDMS/DB invokes
this exit each time it writes to the disk journal or a database fi le;

IDMSJNL2 Can be used for duplicating journal information and statistics
collection; CA IDMS/DB invokes this exit each time it writes a journal
buffer to the journal fi le

WTOEXIT Can be used to automatically initiate a journal offload following a
switch to a new journal fi le. CA IDMS/DB invokes the exit each time a
message is written to the operator.

Note: For more information about these user exits and how to invoke them, see the CA

IDMS System Operations Guide.

Reports

The following table summarizes reports you can use to manage your journals:

Reports Description

JREPORTs Report on the content of the journal fi le as follows:

■ Transaction summary

■ Program termination statistics

■ Program I/O statistics

■ Program summary

■ Transactions within an area

■ Programs within an area

■ Area summary

You can also request a formatted dump of the journal fi le

PRINT JOURNAL
util ity

Reports on checkpoint information for transactions recorded on
the archive fi le; this information is useful for rollback and
rollforward operations

Influencing Journaling Performance

586 Database Administration Guide

Note:

■ For more information about JREPORTs, see the CA IDMS Reports Guide.

■ For more information about the PRINT JOURNAL util ity, see the CA IDMS Utilities
Guide.

Influencing Journaling Performance

CA IDMS/DB provides facilities to:

■ Reduce the amount of I/O activity for journal fi les under the central version

■ Reduce the time needed to warmstart a central version following abnormal
termination

■ Reduce the time needed to recover long running database sessions

Reducing Journal File I/O

Increasing Journal Buffer Size

If your system encounters frequent or sizable rollback operations, it may be possible to
reduce the I/O to the journal fi le by increasing the number of pages in the journal

buffer. Minimally, the journal buffer should hold at least 5 pages. Increasing the number
of pages may significantly improve performance.

Deferring Journal Writes

You can reduce the amount of journal I/O by instructing CA IDMS/DB to defer the
writing of journal buffers. Normally CA IDMS/DB forces the writing of a journal buffer to

the journal fi le whenever a COMT, ENDJ, or ABRT record is wri tten to the journal buffer
or when an updated database page is written to disk and the journal buffer contains a
before image for a record on that page. You can request that CA IDMS/DB defer the

journal write by specifying a non-zero JOURNAL TRANSACTION LEVEL either in the
system generation SYSTEM statement or in a DCMT VARY JOURNAL command.

Influencing Journaling Performance

Chapter 19: Journaling Procedures 587

How Transaction Levels Work

When the number of active transactions in the central version is greater than the

journal transaction level, CA IDMS/DB defers the writing of a journal buffer. If the
journal write is deferred, the task requiring the write is placed in a wait state until the
journal block is written. The journal block is written when:

■ The number of active transactions falls below the journal transaction level

■ The journal buffer is full

Note: An 'active transaction' is one for which journal records are being created.

By deferring the journal write, CA IDMS/DB is able to place more information on a

journal block, thus reducing the need to write as many blocks .

Considerations

The establishment of a journal transaction level is most effective in an active system;
that is, one in which many update transactions are active at one time. If used, you

should set the journal transaction level to be at least 4. The lower the number, the
longer tasks deferring their journal writes may wait.

Influencing Journaling Performance

588 Database Administration Guide

Improving Warmstart Performance

Reducing Warmstart Time

You can reduce the time it takes to warmstart a central version following an abnormal
termination by specifying a non-zero value for a JOURNAL FRAGMENT INTERVAL in the

system generation SYSTEM statement or in a DCMT VARY JOURNAL command.

How the Journal Fragment Works

The journal fragment interval designates an interval for writing dummy segment (DSEG)
records to the journal fi le. DC/UCF uses the DSEG records in the event of a system crash

to determine the appropriate starting place for warmstart processing, as shown in the
following steps:

1. The new journal fi le is activated. It begins with header records. These records
contain:

■ Information on currently open transactions

■ The relative block number (RBN) of the DSEG record. The RBN signifies which
DSEG record is used to start forward processing in the event of a warmstart.

2. If the journal fragment interval is 500, the DC/UCF system will do the following
before it writes the 509th journal block:

■ Creates and writes the DSEG record

■ Updates the DSEG RBN in the journal header

Influencing Journaling Performance

Chapter 19: Journaling Procedures 589

3. In the event of a system crash, the warmstart forward processing starts at the DSEG
record at RBN 509 instead of at the JSEG record. This saves the time it would have

taken for processing to read the first 500 journal blocks.

Considerations

If your journal fi les are large (in terms of the number of pages), a journal fragment

interval can significantly reduce the amount of time it takes to warmstart a DC/UCF
system. The warmstart logic goes to the most recently accessed journal fragment and
starts its recovery processing from that point. However, because there is overhead

required to write dummy segment headers, your journal fragment interval should be at
least 100. Choose an interval that is between 100 and half the number of blocks in your
journal fi le.

Reducing Recovery Time

Another way to reduce recovery time for all types of recovery operations is to force the
writing of an ENDJ checkpoint instead of a COMT for long-running database sessions
that periodically commit their changes. This is especially useful for long running s essions
that infrequently perform a burst of updates and then issue a commit. Forcing an ENDJ

reduces recovery time because less data has to be examined to locate the start of a
recovery unit. This can benefit all types of recovery: warmstart, automatic recovery, and
manual recovery.

To force the writing of an ENDJ during commit operations, specify ON COMMIT WRITE

ENDJ on the SYSTEM or TASK statement in the system definition or specify this
dynamically using the DCMT VARY TASK or DCMT VARY DYNAMIC TASK commands.

Note: There is no need to specify this for system run units, since an ENDJ checkpoint is

always written when they are committed.

Influencing Journaling Performance

590 Database Administration Guide

More Information

■ For more information about defining and modifying journal fi les, see Chapter 5,
“Defining, Generating, and Punching a DMCL”and Chapter 27, “Modifying Physical
Database Definitions”.

■ For more information about database backup and recovery, see 21.2, “Backup
Procedures”.

■ For more information about allocating and formatting disk journal fi les, see Chapter
17, “Allocating and Formatting Files”.

■ For more information about user exits, see the CA IDMS System Operations Guide.

■ For more information about and the complete syntax and syntax rules for the
ARCHIVE JOURNAL util ity statement, see the CA IDMS Utilities Guide.

■ For more information about DCMT VARY JOURNAL and DCMT VARY FILE

commands, see the CA IDMS System Tasks and Operator Commands Guide.

■ For more information about journal system generation parameters, see the SYSTEM
statement in the CA IDMS System Generation Guide.

Chapter 20: Two-Phase Commit Processing 591

Chapter 20: Two-Phase Commit Processing

This section contains the following topics:

Two-Phase Commit Overview (see page 591)
Two-Phase Commit within CA IDMS (see page 595)

Two-Phase Commit Overview

Two-phase commit is a protocol used to ensure that all changes made within the scope

of a distributed unit of recovery are either applied (committed) or backed out. As the
name implies, a two-phase commit process is divided into two phases. In the first
phase, resource managers participating in the unit of recovery prepare their resources

to be committed. If they cannot do so, they inform the request or of the failure. In the
second phase, the resource managers either make their changes permanent or back
them out based on the overall outcome of the transaction.

If a resource manager indicates that it has successfully prepared its resources to be
committed, it guarantees that the resources can be committed even if some adverse

condition, such as a system failure, occurs prior to completion of the commit process. It
is this guarantee that ensures that all changes are either applied or backed out in their
entirety.

The remainder of this section first introduces some terminology related to two-phase

commit processing and then describes some of the key aspects of a two-phase commit
operation.

Two-Phase Commit Overview

592 Database Administration Guide

Terminology

The following terms are associated with two-phase commit processing:

A Resource Manager is a software component that controls access to and the state of
one or more recoverable resources. A CA IDMS central version is an example of a

resource manager.

A Transaction Manager is a software component that directs commit and backout
processes. Multiple transaction managers may be involved in a single commit or
backout operation. If so, their actions are coordinated to achieve transaction

consistency. Every CA IDMS system has a transaction manager as a component.

A Coordinator is a transaction manager that initiates a two-phase commit operation and
is responsible for its overall outcome. A coordinator is sometimes referred to as an
initiator.

A Participant is a resource manager or a transaction manager other than the
coordinator that participates in a two-phase commit operation. A participant is
sometimes referred to as an agent.

A Distributed Transaction is a unit of recovery in which more than one resource
manager participate.

Two-Phase Commit Overview

Chapter 20: Two-Phase Commit Processing 593

Typical Commit Flows

The following diagram il lustrates the communications that take place during a typical
two-phase commit operation involving three systems. In this example, A is the
coordinator since it initiates the commit operation, and B and C are participants.

In this example, A forwards a Prepare request to each of its participants, directing them
to prepare for a commit. After B and C both respond positively, A then directs them to
complete the commit operation.

Two-Phase Commit Overview

594 Database Administration Guide

The following diagram il lustrates another typical commit flow. In this example, A is again
the overall transaction coordinator, and B and C are participants. However, in this case,

B plays a dual role. It is both a participant with respect to A and a coordinator with
respect to C since it forwards the Prepare and Commit directives that it receives from A
to C. Such a situation might arise because an application on A starts a remote SQL

session on B that, in turn, updates resources on C through an SQL procedure.

Prepare and Commit Outcomes

When a participant receives a Prepare request, it does whatever is necessary to
guarantee that a subsequent Commit request can be honored. This may involve such

things as flushing buffers or forwarding requests to other participants. If all of these
activities are completed successfully, the participant signals its willingness to commit by
responding OK to the Prepare request. If it is unable to successfully complete its

preparations, it indicates this by responding BACKOUT to the Prepare request.

The coordinator gathers the responses from its participants and determines the final
outcome for the commit operation. If all participants indicate that they are will ing to
commit, then the coordinator proceeds with the second phase and the transaction will

complete successfully as indicated by a final outcome of OK. If any participant indicates
that it cannot commit, then the coordinator directs its participants to back out their
changes instead of committing them. The final commit outcome in this case is

BACKOUT.

Two-Phase Commit within CA IDMS

Chapter 20: Two-Phase Commit Processing 595

A participant can respond to a Prepare request in ways other than OK or BACKOUT. It
can respond FORGET to signal that it made no updates within the transaction being

committed and so need not participate in the second phase. This has the potential for
reducing the number of communications needed to complete the commit operation. A
participant can also respond "heuristically", indicating that its resources have already

been committed or backed out. A transaction might be completed heuristically because
it was forced to complete through some administrative action. Such heuristic actions
defeat the two-phase commit process and can lead to mixed outcomes in which some
changes are committed while others are backed out.

Note: While CA IDMS does not make heuristic decisions on its own, it does allow an
administrator to commit or backout a transaction using a DCMT command, following an
interruption in the commit process.

Recovery From Failure

Failures in communications, operating systems, or resource or transaction managers can
interrupt the two-phase commit process. The point at which the failure occurs
determines whether a transaction's changes are ultimately committed or backed out. If
the failure occurs during the first phase in the process, changes are backed out. If the

failure occurs during the second phase, changes are committed.

Recovery from failure during a two-phase commit involves a process called
resynchronization, in which messages are exchanged between a coordinator and a

participant in order to complete the transaction. To facil itate resynchronization, both
the coordinator and the participant write additional journal records at critical points
during the two-phase commit process.

Two-Phase Commit within CA IDMS

This section describes the two-phase commit support provided by CA IDMS. While some

of the information may not be necessary for day-to-day operations, it facil itates
understanding the output from recovery util ities and DCMT commands and may prove
useful in recovery situations.

Two-Phase Commit within CA IDMS

596 Database Administration Guide

Use of Two-Phase Commit

Two-Phase in Central Version

Central version always uses a two-phase commit protocol to commit resources. When a
commit operation initiates within a central version, that system becomes the

coordinator. Any other central version involved in the transaction becomes a
participant.

Requesting Two-Phase Commit

The DML commands that an application issues to commit tasks and database

transactions (for example, FINISH TASK or COMMIT CONTINUE) always initiate a two
phase-commit. This ensures that all changes made even by a distributed transaction are
either committed or backed out as a single unit. A number of optimizations are
supported to minimize overhead, especially for transactions in which only a single

resource manager has made changes. See "Commit Optimizations" later in this section
for a description of the optimizations supported by CA IDMS.

Support for Pre-Release 16.0 Central Versions

Prior to Release 16.0, CA IDMS did not support a two-phase commit protocol. Such a
system is referred to as a "one-phase commit only" resource manager, since it can

accept only a single commit request rather than separate Prepare and Commit requests.
CA IDMS supports one-phase commit only resource managers in the following way.

If there is a single one-phase commit only participant in a distributed transaction, CA

IDMS first sends Prepare requests to all other participants before sending a commit
request to the one-phase commit only participant. If this latter request is successful,
then the commit operation proceeds to a successful conclusion; otherwise, the
transaction is backed out.

If a distributed transaction has multiple one-phase commit only participants, only one of
them can be the last one invoked and so there is an unavoidable possibility that the
transaction may complete with mixed results, meaning that some changes are

committed while others are backed out.

Two-Phase Commit within CA IDMS

Chapter 20: Two-Phase Commit Processing 597

Support for Batch Applications

All changes made by a batch application are committed or backed out as a single unit

provided at least one of the following is true:

■ All updates are made through a single transaction

■ Updates are made through multiple transactions serviced by a single central version

and a task-level commit request is issued.

■ Batch RRS support is enabled and all updates are made through transactions
executing on one or more central versions running within the same operating
system image as the batch application.

Note: For more information about RRS, see the CA IDMS System Operations Guide.

External Coordinators and Participants

External Coordinators

A central version can participate in a two-phase commit operation controlled by the

following external coordinators:

■ CICS Transaction Server

■ RRS-IBM's system-level resource recovery platform for z/OS

■ An XA transaction manager supported by CA IDMS Server

By participating in externally-controlled transactions, updates to CA IDMS resources can
safely be coordinated with those of other resource managers supported by the above
transaction managers.

Note: For more information about CICS Transaction Server and RRS, see the CA IDMS
System Operations Guide.

Two-Phase Commit within CA IDMS

598 Database Administration Guide

External Participants

A central version can coordinate transactions in which external resource managers are

participants. It does this in one of two ways: by enlisting the services of RRS or by using
a resource manager interface tailored to both the CA IDMS environment and the
external resource manager.

If the external resource manager supports RRS as a coordinator, using RRS as an
intermediary is the easiest way for an external resource manager to participate in a
transaction coordinated by a central version. In this way, any resource manager that
supports RRS as a coordinator can potentially participate in a CA IDMS-controlled

transaction.

If the resource manager does not support RRS as a coordinator, then an interface that is
tailored to the external resource manager and that supports the CA IDMS transaction
manager protocol must be written to enable the resource manager to be a direct

participant in a CA IDMS-controlled transaction.

Resource Managers, Interfaces and Exits

Resource Managers

When discussing commit protocols, the term "resource manager" traditionally refers to

a software component that manages recoverable resources. However, in CA IDMS this
term refers to both the resource manager and the interface used to communicate with
it.

The DCMT DISPLAY DISTRIBUTED RESOURCE MANAGER command can be used to obtain
a l ist of all resource managers known to a central version or to display the details of a
specific resource manager.

Note: For more information about DCMT commands, see the CA IDMS System Tasks

and Operator Commands Guide.

CA IDMS Resource Managers

When one CA IDMS system accesses another, each one becomes a resource manager to
the other. On the front end, the partner system is identified by its node name and an
interface name of "DSI_CLI"; on the back end, the partner system is identified by its

node name and an interface name of "DSI_SRV". A central version may have knowledge
of several resource managers whose interface name is DSI_CLI or DSI_SRV, since it may
communicate with several CA IDMS systems. Furthermore, a central version may have

knowledge of two resource managers with the same node name, one for each of the
two interfaces, since a system can act as both front-end and back-end to another
system.

Two-Phase Commit within CA IDMS

Chapter 20: Two-Phase Commit Processing 599

External Resource Managers

When a CICS system is used to access a central version, it becomes a known resource

manager on the backend with a node name that is the concatenation of "CICS" and the
CICS system name and an interface name that is specified by the IDMSINTC interface
module through which access is made.

When RRS is activated within a central version, it is known as a resource manager whose
node name is that of the local system and whose interface name is "RRS_RMI".

Note: For more information about CICS and RRS, see the CA IDMS System Operations
Guide.

Interfaces and Exits

To participate in a two-phase commit operation coordinated by CA IDMS, a resource
manager makes its existence known by registering with the local tra nsaction manager.
When registering, the resource manager interface identifies exit routines to be invoked
by the transaction manager during the commit process. In this way, the resource

manager interface acts as a bridge between the local transaction manager and the
resource or transaction manager to which it provides access. It is the resource manager
interface's responsibility to forward Prepare, Commit, and Backout directives and return

appropriate responses to the local transaction manager.

When a resource manager's exit is invoked, it returns outcomes that are similar to those
outlined in 20.2.8, “Transaction Outcomes". For example, a resource manager's prepare
exit can return a FORGET outcome to signify that it has made no changes within the

scope of the transaction and therefore need not participate in the second phase of the
commit operation.

Two-Phase Commit within CA IDMS

600 Database Administration Guide

Interests and Roles

Transaction Interests

For a resource manager to participate in a transaction, it must register an interest in that
transaction. The existence of an interest informs the transaction manager that the

resource manager's exits should be invoked during commit and backout processing for
the transaction.

Roles

When an interest is registered, the role that the resource manager is to play with

respect to the transaction is specified. CA IDMS recognizes the following roles:

■ Communications Resource Manager (CRM) - indicating that the resource manager is
a remote participant in the transaction.

■ Participant (PART) - indicating that the resource manager is a local participant in the

transaction.

■ Server Distributed Resource Manager (SDSRM) - indicating that the resource
manager is the coordinator for the transaction.

When a central version application calls a resource manager interface to access a
remote resource, the interface registers a CRM interest in the application's current

transaction, since it is acting as a remote participant in that transaction. An SDSRM
interest is registered before or during the prepare stage of transaction processing to
record a remote transaction manager as the coordinator for a transaction.

As a two-phase commit operation proceeds, interests are assigned states similar to
those outlined in 20.2.7, "Transaction States". For example, if an interest's prepare exit
returns OK, then the state of the interest is set to InDoubt, reflecting the fact that the
associated resource manager is waiting for the final commit or backout directive.

Commit Optimizations

Types of Optimizations

To minimize the cost of doing a two-phase commit operation, CA IDMS supports the
Read Only, Single Agent, and Presumed Abort optimizations.

Read Only

The Read Only optimization reduces the number of communications needed to commit
a distributed transaction. A participant that has not updated resources within the scope

of the transaction can respond FORGET to a Prepare request. CA IDMS does not include
such read-only participants in the second phase of the commit operation, thus
eliminating at least one communication. Additionally, the read-only participant writes
no journal records in support of the two-phase commit operation.

Two-Phase Commit within CA IDMS

Chapter 20: Two-Phase Commit Processing 601

Single Agent

CA IDMS uses the Single Agent optimization to reduce the flows needed to commit a

distributed transaction. At the point when a Prepare request is to be sent to the last
remaining participant, if all other participants have responded FORGET or if this is the
only participant in the transaction, then a OnePhaseCommit request is sent instead of a

Prepare. This results in only a single communication with the participant to complete
the commit operation. Furthermore, if there is only a single participant, the coordinator
writes no journal records in support of the distributed transaction.

Presumed Abort

CA IDMS uses a Presumed Abort protocol to reduce journaling overhead. Simply put, this

means that while a coordinator retains knowledge of a committed transaction until all
of its participants indicate that they have completed the second phase of the commit
operation, the coordinator can immediately forget transactions whose outcome is
BACKOUT. Consequently, no journaling activity for a distributed transaction takes place

at a coordinator until all Prepare votes have been collected and then only if the
outcome is OK. The absence of knowledge of a transaction signifies that its outcome is
BACKOUT.

The alternative to Presumed Abort is Presumed Nothing. Under this protocol, a
coordinator retains knowledge of the outcome of a commit operation until all
participants indicate that it can be forgotten, regardless of whether the final outcome is
OK or BACKOUT. Consequently, a coordinator must journal the existence of a

transaction prior to forwarding the first Prepare request, and it must retain knowledge
of backed out transactions longer. CA IDMS does not support the Presume Nothing
protocol.

Transaction Identifiers

Multiple Identifiers

Transactions can have multiple identifiers. CA IDMS assigns two types of identifiers: a
local identifier and a distributed transaction identifier. External transaction managers
may assign transaction identifiers of their own, generically referred to as external

transaction identifiers.

Local Identifier

A Local (transaction) Identifier (LID) is a four-byte value that identifies the work done by

a local transaction branch. It is used to distinguish the work done by one branch from
that of another within a central version and is recorded in the journal records that are
used to track local database changes (for example, BGIN, BFOR, AFTR). Local transaction
identifiers are unique only within a central version.

Two-Phase Commit within CA IDMS

602 Database Administration Guide

Distributed Transaction Identifier

A Distributed Transaction Identifier (DTRID) is a 16-byte value that uniquely identifies a

distributed transaction across all participating nodes. It is assigned by the CA IDMS
system that is acting as the coordinator for the transaction or by a CICS interface. Every
distributed transaction processed by a CA IDMS system is assigned a DTRID, regardless

of whether the transaction also has externally assigned identifiers. The DTRID is
recorded in the distributed transaction journal records that are written during the
two-phase commit process (for example, DIND, DCOM, DFGT).

A DTRID value is comprised of an 8-character prefix followed by an 8-byte hexadecimal

value. If assigned by a CA IDMS system, the prefix is the system's node name and the
suffix is an 8-byte internal format timestamp. If the DTRID is assigned by a CICS
interface, the 8-character prefix consists of "CICS" concatenated with the 4-character
CICS system name. The 8-byte hexadecimal value is the UOW (Unit of Work) identifier

assigned by CICS to the work unit being committed.

External Identifiers

External transaction managers may also assign their own identifiers to a distributed
transaction in which CA IDMS is a participant. The following types of external identifiers

are recognized by CA IDMS and are recorded in the distributed transaction journal
records written by the central version that interfaces directly with the external
transaction manager. These journal entries provide a cross reference between internal
and external identifiers.

■ RRS URID - the Unit of Recovery (URID) assigned by RRS. A URID is a 16-byte
hexadecimal value.

■ XA XID - the transaction identifier assigned by an XA transaction manager. An XID is
a hexadecimal value which can be up to 140 bytes long.

Two-Phase Commit within CA IDMS

Chapter 20: Two-Phase Commit Processing 603

Transaction Branch

A Transaction Branch represents a separately identifiable portion of a transaction within

which deadlocks cannot occur. Unless transaction sharing is in effect, every database
session (every run unit or SQL database session) is associated with a separate
transaction branch. When transaction sharing is in effect, multiple database sessions

may share a single transaction branch. In so doing, they avoid deadlocking amongst
themselves, since deadlocks are not possible for work performed under a single
transaction branch.

An application is associated with multiple transaction branches if it opens concurrent

non-sharing database sessions. Multiple branches can also result from the use of system
services that access a dictionary, such as loading from a load area or accessing a queue
area. If more than one transaction branch exists, they are organized hierarchically,
meaning that there is a single top-level branch and one or more subordinate branches.

The top-level branch represents either the work done by a single database session or all
work done by a task. A subordinate branch always represents the work done by a
database session or multiple sessions if transaction sharing is in effect. A subordinate

branch may, in turn, have subordinate branches of its own, perhaps as a result of an SQL
routine that opens its own database session.

Note: For more information about the relationship between database sessions and
transactions and the use of transaction sharing to avoid deadlocks, see either CA IDMS

Navigational DML Programming Guide or CA IDMS SQL Programming Guide.

Branch Identifiers

Every transaction branch is assigned a unique identifier that never changes. This Branch
Identifier (BID) is an eight-byte hexadecimal value that is sometimes qualified by the
node name of the local system to make it a globally unique value. A BID is different from

an LID, since an LID is assigned each time a transaction is started, whereas a BID is
assigned only when a branch is created. If multiple transactions are ser ially associated
with a transaction branch, because an associated database session commits its work

without terminating, then the branch's LID value will change, but its BID will not.

Two-Phase Commit within CA IDMS

604 Database Administration Guide

A commit operation is always targeted to a single transaction branch and encompasses
all of its subordinate branches. The target branch becomes the top-level branch of the

transaction and its subordinates become the subordinate branches of the transaction. If
a task-level commit operation is initiated, the target branch is always the top-level
branch in the task's hierarchy. If a database session-level commit operation is initiated,

the target branch is the one associated with the database session through which the
commit request is issued.

It is possible that more than one set of Prepare/Commit flows are sent to a single
participant for a transaction, each directed to a different target branch. The BID of the

target branch is carried in the associated distributed journal records, in order to
distinguish one set from another. The target branch is also included in several messages
that may be generated during a two-phase commit operation.

A DCMT DISPLAY DISTRIBUTED TRANSACTION command for a specific transaction lists

all of the local branches associated with a distributed transaction. For a description of
this command, see the CA IDMS System Tasks and Operator Commands Guide.

Transaction States

Transaction State

Transaction state is an attribute of a distributed transaction that reflects its progress
through a two-phase commit operation. The CA IDMS transaction manager assigns the
following transaction states for this purpose:

■ InReset - This is the initial state prior to the start of a commit or backout operation.

■ InFlight - This state is assigned at the start of a two-phase commit operation and
persists while the transaction manager is assessing the need for and the ability to
proceed with the two-phase commit operation.

■ InPrepare - This state is assigned when the transaction manager determines that a
full two-phase protocol is needed to guarantee the integrity of a commit operation.

Two-Phase Commit within CA IDMS

Chapter 20: Two-Phase Commit Processing 605

■ LastAgent - This state is assigned by a coordinator's transaction manager when
there is only a single participant and consequently a full two-phase protocol is not

needed to guarantee the integrity of a commit operation.

■ InDoubt - This state is assigned by a participant's transaction manager when it
writes a DIND journal record for the trans action and persists until it receives a

Commit or Backout directive from the coordinator.

■ InCommit - This state is assigned when a DCOM journal record is written for the
transaction and persists until all processing for the transaction is complete.

■ InBackout - This state is assigned when it is determined that the outcome of the

distributed transaction is BACKOUT and persists until all processing for the
transaction is complete.

■ Forgotten - This state is assigned when the two-phase commit operation is
complete.

State Transitions

The following diagram il lustrates the transitions that can occur from one state to
another as a transaction proceeds through a two-phase commit operation.

Two-Phase Commit within CA IDMS

606 Database Administration Guide

Transaction Outcomes

Transaction Outcomes

Fundamentally, a distributed transaction can have only one of the following three
outcomes: all changes were committed, all changes were backed out, or some changes

were committed while others were backed out. However, it is useful to support
variations of these especially as interim results of individual Prepare and Commit
requests.

CA IDMS recognizes the following outcomes:

■ OK - The request is complete and the transaction's changes have been committed.

■ FORGET - The request is complete, but no changes were committed since none
were made (that is, this is a read-only transaction).

■ OK_PENDING - The request is not yet complete, but changes have been or will be
committed.

■ BACKOUT - The request is complete but changes have been backed out.

■ BACKOUT_PENDING - The request is not yet complete, but changes have been or
will be backed out.

■ HC - The request is complete, and the transaction's changes have been heuristically

committed.

■ HR - The request is complete, but the transaction's changes have been heuristically
backed out.

■ HM - The request is complete, but some changes have been committed while
others have been backed out.

Heuristic Outcomes

Heuristic outcomes are the result of a commit or backout decision made by a participant

rather than a coordinator. The use of DCMT VARY DISTRIBUTED TRANSACTION to force
an InDoubt transaction to commit or back out results in a heuristic outcome.

Chapter 21: Backup and Recovery 607

Chapter 21: Backup and Recovery

This section contains the following topics:

Database Backup and Recovery Overview (see page 607)
Backup Procedures (see page 608)
Automatic Recovery (see page 618)

Distributed Transaction Recovery Considerations (see page 629)
Manual Recovery (see page 637)
Recovery Procedures After a Warmstart Failure (see page 651)

Recovery Procedures from Database File I/O Errors (see page 653)
Recovery Procedures from Journal File I/O Errors (see page 657)
Recovery Procedures for Local Mode Operations (see page 662)
Recovery Procedures for Mixed-Mode Operations (see page 664)

Data Sharing Recovery Considerations (see page 666)
Considerations for Recovery of Native VSAM Files (see page 670)

Database Backup and Recovery Overview

Protects Your Data

Database backup and recovery are maintenance tasks that protect the changes made to
your database:

■ Backup is a routine database maintenance task that produces a copy of the
database. If necessary, this backup copy can be used to restore lost data.

■ Recovery restores the contents of the database when an error occurs that corrupts
the database or disk journal fi le. Recovery procedures restore altered areas to their
original state.

Types of Recovery

Under the central version, recovery occurs automatically with no intervention from the

DBA. If automatic recovery fails you must recover the database manually. You must also
recover the database manually for local mode update jobs that terminate abnormall y.

Backup Procedures

608 Database Administration Guide

Backup Procedures

Perform Backups Often

Backup procedures are an essential part of database administration. To help protect the
integrity of your database, you should perform backups as often as possible. As a
general rule, always back up the database:

■ At regular, scheduled intervals, such as daily or weekly

■ Before and after structural changes to the database

■ Whenever you initialize journal fi les

■ Since automatic recovery is not available in local mode, before and after executing

an application run in local mode.

Design a Backup Plan

To ensure that your backup procedures meet the data processing needs of your

company, you need to decide how often to take backups and how long to retain them.
Develop a schedule and procedures for performing backups and stick to it.

General Guidelines

The following list identifies some guidelines to follow in designing a backup plan:

■ Define the backup and recovery requirements for an application while the

application is being designed. Test all backup and recovery procedures before the
application is put into production.

■ Make sure you backup the database after making changes to its physical definition
(such as changing the page size, page range, and so on).

■ Identify all archive fi les created since the last backup.

■ If you need to concatenate archive tapes for historical records, make sure that the
tapes included in the concatenation are not required for recovering the database.

For example, you might concatenate the archive tapes from the previous week at
the end of the current week.

■ Bear in mind that restoring a database from a date several weeks in the past can be
a very time-consuming process because of the volume of journal data that needs to

be processed.

Backup Procedures

Chapter 21: Backup and Recovery 609

BACKUP Utility Statement

The examples outlined in this chapter use the BACKUP util ity statement provided with

CA IDMS/DB to backup the database. You can use other util ities (such as IEBGENER in
z/OS) to perform the backup and recovery operation provided they restore disk fi les to
the state they were in when copied.

If you use the CA-provided BACKUP util ity statement for regularly scheduled backups,
specify the FILE option rather than the AREA option. FILE lets you recover an individual
fi le in the event it is damaged rather than having to recover the entire area. Use the
AREA option only if multiple areas are stored in a single fi le.

Back Up After a Normal System Shutdown

Steps

While the system is inactive, back up the database using the following procedure:

Action Statement

Offload all the non-empty journal fi les ARCHIVE JOURNAL util ity statement with the
ALL or AUTOALL option

Copy all fi les associated with the

database

BACKUP util ity statement or any comparable

backup util ity

Backup While the DC/UCF System is Active

Types of Backup While System is Active

There are two types of backup that can be done while DC/UCF remains active:

■ A quiesced backup during which no updates are made to the areas being copied

■ A hot backup during which the areas that are copied are updated by transactions
executing within the central version

While it is preferable to back up a database when it is quiesced, a site with
high-availability requirements may not be able to disable updates long enough to
complete the backup.

Backup Procedures

610 Database Administration Guide

Considerations

If you decide to use a hot backup strategy, consider the following:

■ The time to recover using a hot backup may be longer than with a bac kup produced
while the area was quiesced due to additional steps in the recovery process.

■ To recover using a fi le produced during a hot backup, all archive journal fi les

created while the backup was taking place must also be available; without these
fi les, the backup fi le cannot be used. Although the EXTRACT JOURNAL util ity
statement can be used to preprocess the journal images generated during this time
period, the original archive fi les must also be available to perform a successful

recovery.

■ To ensure the availability of the archive journal fi les you should treat them in the
same way as the backup fi le; for example, if a copy of the backup fi le is sent offsite,
a copy of all corresponding archive fi les should also be sent offsite.

Note: For more information about the impact of a hot backup on recovering a
database, see 21.5, “Manual Recovery".

Quiesced Backup Procedure

The procedure outlined below describes how to perform a quiesced backup.

Action Steps

Quiesce update activity in the target
areas. (See considerations)

Issue one or more of the following commands:

■ DCMT VARY AREA ... RETRIEVAL

■ DCMT VARY AREA ... OFFLINE

■ DCMT QUIESCE AREA ...

■ DCMT VARY SEGMENT ... RETRIEVAL

■ DCMT VARY SEGMENT ... OFFLINE

■ DCMT QUIESCE SEGMENT ...

■ DCMT QUIESCE DBNAME ...

■ DCMT VARY RUN UNIT ... OFFLINE

Note the quiesce point Record the date and time that the areas were
quiesced.

Optionally force a new archive journal fi le to be
created:

■ Issue a DCMT VARY JOURNAL command

■ Execute the ARCHIVE JOURNAL util ity
statement

Backup Procedures

Chapter 21: Backup and Recovery 611

Action Steps

Copy all fi les containing the target

areas.

Execute the BACKUP util ity statement using the

FILE option or any comparable backup util ity.

Restart update activity in the target
areas.

Issue one or more of the following commands:

■ DCMT VARY AREA ... ONLINE

■ DCMT VARY SEGMENT ... ONLINE

■ DCMT VARY ID ... TERMINATE

■ DCMT VARY RUN UNIT ... ONLINE

Hot Backup Procedure

The procedure for a hot backup is similar to that for a quiesced backup, except that
updates are re-enabled before the backup is complete. The procedure described next
includes establishing a second quiesce point. This is not necessary if the appropriate
recovery procedure is followed.

Note: For more information about the impact of a hot backup and a second quiesce
point on recovery, see 21.5, "Manual Recovery".

Action Steps

Quiesce update activity in the target
areas. (See considerations)

Issue one or more of the following commands:

■ DCMT VARY AREA ... RETRIEVAL

■ DCMT VARY AREA ... OFFLINE

■ DCMT QUIESCE AREA ...

■ DCMT VARY SEGMENT ... RETRIEVAL

■ DCMT VARY SEGMENT ... OFFLINE

■ DCMT QUIESCE SEGMENT ...

■ DCMT QUIESCE DBNAME ...

■ DCMT VARY RUN UNIT ... OFFLINE

Note the quiesce point Record the date and time that the areas were

quiesced.

Optionally force a new archive journal fi le to be
created:

■ Issue a DCMT VARY JOURNAL command

■ Execute the ARCHIVE JOURNAL util ity
statement

Backup Procedures

612 Database Administration Guide

Action Steps

Restart update activity in the target

areas.

Issue one or more of the following commands:

■ DCMT VARY AREA ... ONLINE

■ DCMT VARY SEGMENT ... ONLINE

■ DCMT VARY ID ... TERMINATE

■ DCMT VARY RUN UNIT ... ONLINE

Copy all fi les containing the target
areas.

Execute the BACKUP util ity statement using the
FILE option or any comparable backup util ity.

Optionally, establish a second

quiesce point for the target areas.

Issue one or more of the following commands:

■ DCMT VARY AREA ... RETRIEVAL

■ DCMT VARY AREA ... OFFLINE

■ DCMT QUIESCE AREA ...

■ DCMT VARY SEGMENT ... RETRIEVAL

■ DCMT VARY SEGMENT ... OFFLINE

■ DCMT QUIESCE SEGMENT ...

■ DCMT QUIESCE DBNAME ...

■ DCMT VARY RUN UNIT ... OFFLINE

Mark the end of the backup process. Force a new archive journal fi le to be created:

■ Issue a DCMT VARY JOURNAL command

■ Execute the ARCHIVE JOURNAL util ity

statement

If a second quiesce point was established,
record its date and time.

If a second quiesce point was
established, restart update activity
in the target areas.

Issue one or more of the following commands:

■ DCMT VARY AREA ... ONLINE

■ DCMT VARY SEGMENT ... ONLINE

■ DCMT VARY ID ... TERMINATE

■ DCMT VARY RUN UNIT ... ONLINE

Backup Procedures

Chapter 21: Backup and Recovery 613

Quiescing Update Activity

Both DCMT VARY AREA (and SEGMENT) and DCMT QUIESCE can be used to quiesce

update activity in one or more areas of the database. Consider the following when
choosing which of these to use:

■ If DCMT VARY is used, tasks which subsequently attempt to access a target area in

an update mode (or any mode if the area is varied offline) will receive an 0966 error
status. Unless the application program handles this condition, the associated task
will fail. If DCMT QUIESCE is used, such tasks will wait until update activity is
restarted, unless their quiesce wait time is exceeded.

■ DCMT QUIESCE provides more control over the quiesce operation. For example, it is
possible to specify how long the quiesce operation should wait for conflicting tasks
to finish and what action should be taken in the event that the quiesce point has
not been reached in the specified time interval.

■ In a data sharing environment, DCMT QUIESCE will quiesce update activity across all
members of the data sharing group. DCMT VARY will quiesce update activity only
within the DC/UCF system in which it is executed.

■ DCMT QUIESCE can be used to automate much of the backup process.

More Information

■ For more information about backup automation, see 21.2.4, "Automating the
Backup Process".

■ For more information about the DCMT system task, see the CA IDMS System Tasks

and Operator Commands Guide.

Quiescing Update Activity for System Areas

When backing up a system area, such as a load area, it may be necessary to terminate
predefined system run units by issuing a DCMT VARY RUN UNIT ... OFFLINE command.
This will be necessary if predefined run units for the target area have been defined in

the system definition and such run units access the area in update mode. You can
determine this by issuing a DCMT DISPLAY RUN UNIT command.

Varying a system run unit offl ine does not prevent overflow run units from being started

to service requests for the area. It simply terminates predefined run units of the
specified type. Since varying an area offline will impact the system's ability to service
requests for the area, it is advisable to quiesce update activity to system areas either by
varying their status to retrieval or by using the DCMT QUIESCE command.

Backup Procedures

614 Database Administration Guide

Depending on the options specified when issuing a DCMT VARY AREA, DCMT VARY
SEGMENT, or DCMT QUIESCE command, the system may automatically terminate

conflicting predefined system run units.

Note: For more information about when predefined system run units are automatically
terminated, see the individual commands in the CA IDMS System Tasks and Operator

Commands Guide.

Data Sharing Considerations

In a data sharing environment, whenever update activity is quiesced, it must be
quiesced in all DC/UCF systems that are members of the data sharing group. If a DCMT

QUIESCE command is used, then update activity will automatically be quiesced on all
members within the group. If a DCMT VARY AREA or DCMT VARY SEGMENT command is
used, it must be executed on each system that is a member of the group. This can be
accomplished by broadcasting the DCMT command.

Note: For more information about broadcasting DCMT commands, see the CA IDMS
System Tasks and Operator Commands Guide.

Back Up Before and After Local Mode Jobs

Two Options

To protect data to be accessed by an update job running in local mode, you can either:

■ Use local mode journaling. This option is best for large databases that would
require a long time to backup and restore.

■ Back up the database before and after you run the job. This option is best for small
databases that can be backed up within a reasonable time frame.

Note: For information about local mode journaling, see Chapter 19, “Journaling
Procedures”.

Backup Procedures

Chapter 21: Backup and Recovery 615

Steps to Back Up the Database

Follow the steps below to back up a database before and after running an update
application in local mode:

Action Steps

Make the areas to be accessed by
the application unavailable under the

central version

DCMT VARY AREA or SEGMENT with the
OFFLINE, RETRIEVAL, or TRANSIENT RETRIEVAL

option

Before running an application, back
up each fi le of the database

BACKUP or any comparable backup util ity

Dummy the journal fi le by adding a
dummy fi le definition statement in
the execution JCL of the local mode
application if the DMCL being used

has a tape journal fi le defined

After running the application,back up
each fi le of the database

BACKUP or any comparable backup util ity

Swap to another disk journal fi le to
coordinate CVs archive journal fi les
with the backup

DCMT VARY JOURNAL

Re-activate the areas for use under

the central version
■ If the areas are OFFLINE or in RETRIEVAL

mode,issue DCMT VARY AREA or SEGMENT
ONLINE

■ If the areas are in TRANSIENT RETRIEVAL

mode, first vary them OFFLINE and then
ONLINE.

CA ADS: When you vary an area in preparation for a local mode update, CA ADS users
should vary the area to either OFFLINE or TRANSIENT RETRIEVAL mode; do not use

RETRIEVAL mode.

Backup Procedures

616 Database Administration Guide

Automating the Backup Process

Exploiting DCMT QUIESCE

Backing up a database while the DC/UCF system is active can be automated through the
use of the DCMT QUIESCE command. To assist in this effort, the following can be

specified as options:

■ A unique identifier for use in subsequent DCMT DISPLAY ID and DCMT VARY ID
commands to query or terminate an outstanding quiesce operation.

■ The action that should be taken in the event that a quiesce point cannot be reached

within a specified time interval. The available choices are to abandon the quiesce
operation or force the quiesce by canceling conflicting tasks.

■ An indication of whether a new archive journal fi le should be created when the
quiesce point is reached.

■ An indication of whether update activity in the target areas should be restarted
automatically once the areas are quiesced.

Quiesce User Exit

When a quiesce point is achieved, numbered exit, Exit 38 is invoked. This exit can be
used to initiate the next step in the backup process. For example, it can submit a job to

the internal reader, thus enabling the QUIESCE task to automatically initiate a copy
operation. Once the fi les are copied, a subsequent UCF batch job step can invoke
further system tasks to complete the backup process.

Rather than submitting a batch job, exit 38 might instead use an API to directly interface
to a "zero-time copy" facil ity if the database resides on a storage device that provides
such a capability.

More Information

■ For more information about how to code an Exit 38 routine, see the CA IDMS

System Operations Guide.

■ For more information about the DCMT QUIESCE command, see the CA IDMS System
Tasks and Operator Commands Guide.

Backup Procedures

Chapter 21: Backup and Recovery 617

Automating a Quiesced Backup

The following il lustrates how the DCMT QUIESCE command can be used to automate a

quiesced backup operation.

Activity Description

dcmt quiesce dbname
CUST hold swap CUSTBKP

This command initiates a quiesce operation identified as
CUSTBKP. All areas in all segments included in the
database name CUST will be quiesced. When the quiesce
point is reached, a new archive journal fi le will be created

and exit 38 will be invoked. The quiesce point will be held
until the quiesce operation is explicitly terminated.

Exit 38 is invoked Exit 38 submits a batch job through the internal reader
(or an equivalent mechanism) to initiate the copy

operation.

Batch job is executed The batch job first copies all fi les containing areas of the
CUST database and then invokes a UCF batch job step

that terminates the quiesce operation by issuing a DCMT
VARY ID command.

dcmt vary id CUSTBKP
terminate

This command terminates the quiesce operation and
makes the CUST areas available for update.

Automating a Hot Backup

The following il lustrates how the DCMT QUIESCE command can be used to automate a
hot backup operation.

Activity Description

dcmt quiesce dbname
CUST nohold swap

CUSTBKP1

This command initiates a quiesce operation identified as
CUSTBKP1. All areas in all segments included in the database

name CUST will be quiesced. When the quiesce point is
reached, a new archive journal fi le will be created and exit 38
will be invoked. The quiesce operation will then terminate

and make the areas available for update.

Exit 38 is invoked Exit 38 submits a batch job through the internal reader (or an
equivalent facil ity depending on the operating system) to
initiate the copy operation.

Automatic Recovery

618 Database Administration Guide

Activity Description

Batch job is executed The batch job first copies all fi les containing areas of the CUST

database and then invokes a UCF batch job step.

The UCF batch job step either initiates a second quiesce
operation by issuing a DCMT QUIESCE command or forces a

new archive journal fi le to be created by issuing a DCMT VARY
JOURNAL command.

dcmt quiesce dbname
CUST nohold swap

CUSTBKP2

This command initiates a quiesce operation identified as
CUSTBKP2. All areas in all segments included in the database

name CUST will be quiesced. When the quiesce point is
reached, a new archive journal fi le will be created and exit 38
will be invoked. The quiesce operation will then terminate
and make the areas available for update.

Exit 38 examines the quiesce identifier and determines that
no further action is needed.

dcmt vary journal This command forces the use of another disk journal fi le

which in turn causes a batch execution of the ARCHIVE
JOURNAL util ity statement.

Note: Automatic submission of the ARCHIVE JOURNAL job is
dependent on the implementation of a site-specific means

(such as WTOEXIT) to examine console messages and use
operating system facil ities to submit a batch job.

Automatic Recovery

Available Only Under the Central Version

Automatic recovery is available only under the central version. Automatic recovery
occurs when CA IDMS/DB:

■ Warmstarts, following a system failure

■ Automatically rolls back a fail ing transaction

■ Automatically rolls back the changes made by a physical DDL or SQL statement that
encountered errors

Automatic Recovery

Chapter 21: Backup and Recovery 619

Warmstart

Due to System Failure

Warmstart occurs when CA IDMS starts up and, by examining the journal fi les, it detects
that the previous execution of the DC/UCF terminated abnormally CA IDMS uses the

journal fi les to rollback or restart all transactions that were active when the system
failed.

How You Respond to a System Failure

In response to a DC/UCF system failure, you should immediately restart the system. In a

data sharing environment, or if distributed transactions were active at the time of
failure, it is particularly important to restart fail ing systems as soon as possible, since
some data may be inaccessible within other systems until the fail ing system has
completed its warmstart.

Note: Do not offload any journal fi les between the time of system failure and your first
attempt to warmstart the system. If you must offload, use the READ option of the
ARCHIVE JOURNAL util ity statement.

Data Sharing Considerations

In general, you respond to a DC/UCF system failure in the same way regardless of

whether the system is a member of a data sharing group. However, certain types of
failures, such as a loss in connectivity to a coupling facility, require special action.
Additionally, if a member is unable to warmstart and manual recovery becomes

necessary, then data sharing introduces additi onal considerations.

More Information

■ For more information about recovery considerations in a data sharing environment,
see the CA IDMS System Operations Guide.

■ For more information about the impact of data sharing to manual recovery, see
21.5, “Manual Recovery”.

Automatic Recovery

620 Database Administration Guide

Incomplete Distributed Transactions at Startup

When restarting a failed central version, warmstart identifies incomplete distributed

transactions that were active at the time of failure. Depending on where in the commit
process the failure occurred, these transactions are completed by warmstart or are
restarted. If restarted, the transactions remain active until resynchronization takes place

with the other resource or transaction managers involved in the transaction or until the
transactions are manually completed.

If a restarted transaction is in an InDoubt state, then any locks held by that transaction
at the time of failure are reacquired and held until the transaction is completed. Since

these locks prevent access to resources that were updated by the transaction, it is
important to restart all failed systems as soon as possible in order that
resynchronization can complete the transaction and free the locks.

Note: For more information about recovering distributed transactions, see 21.3.3,

“Resynchronization” and 21.4, “Distributed Transaction Recovery Considerations”.

The following sample messages might be displayed when a distributed transaction is
restarted:

IDMS DC202038 V74 In-Doubt Transaction-ID 1416 will be added to the

unrecovered transaction list

IDMS DC202051 V74 Warmstart COMPLETE, but recovery of SOME transactions

have been DEFERRED until later in the startup

IDMS DB342017 V74 T1 Will lock Transaction-ID 1416

IDMS DB342019 V74 T1 DTRID SYSTEM74::01650C90A708A9B2-01650C8C4207D9FF

active at startup

IDMS DB342020 V74 T1 DTRID SYSTEM74::01650C90A708A9B2-01650C8C4207D9FF

has been restarted

IDMS DB342022 V74 T1 In-Doubt Transaction 1416 has been restarted

Automatic Recovery

Chapter 21: Backup and Recovery 621

Incomplete Warmstart

Certain errors, such as I/O errors or open failures, may prevent warmstart from rolling

out the changes in one or more database fi les. If this occurs, warmstart will continue,
the system will start up and the transactions affected by the error will be restarted.
Once restarted, automatic rollback will be invoked to again attempt to remove the

effect of the unrecovered transactions. If automatic rollback is successful, no further
action is necessary although the reason for the original failure should be investigated
and corrective action taken if necessary. If automatic rollback is not successful, the
unrecovered transactions will be suspended just as if they had encountered an I/O

error. To correct the situation, You respond as if a database fi le I/O error occurred. First
take whatever action is necessary to make the fi le available, such as restoring a
damaged fi le or using DCMT commands to correct a data set name. Then restart the
suspended transactions by issuing a DCMT VARY FILE ACTIVE command.

Note: For more information about responding to I/O errors, see 21.7, "Recovery
Procedures from Database File I/O Errors".

How Warmstart Works

During warmstart, CA IDMS/DB does the following:

1. Establishes which disk journal fi le was active at the time of the failure

2. Locates the last journal record written before the system failed

3. Either restarts or rolls back and writes ABRT checkpoints for all incomplete

transactions.

Automatic Recovery

622 Database Administration Guide

Example

The following example shows how a warmstart operation is done. In this example, the

two transactions are active at the time of the system crash. Both are recovered
automatically when the system is restarted.

Automatic Recovery

Chapter 21: Backup and Recovery 623

Automatic Rollback

Due to Transaction Failure

Automatic rollback occurs when a transaction fails or an application requests recovery
by means of the ROLLBACK command. CA IDMS/DB writes an ABRT checkpoint for the

transaction and automatically rolls out the changes made to the database by the
transaction. The recovery occurs while the system continues to process requests by
other concurrently active transactions.

Note: Automatic rollback also occurs when an error is encountered executing SQL or

physical DDL statements. In these cases, an RTSV checkpoint record is written instead of
an ABRT checkpoint, but in other respects, the two recovery operations are the s ame.

Automatic Recovery

624 Database Administration Guide

Example

The following example shows how an automatic rollback occurs. In this example,

transaction B aborts. CA IDMS/DB then performs an automatic rollback for transaction B
while other transactions continue to process.

Automatic Recovery

Chapter 21: Backup and Recovery 625

Automatic Recovery

626 Database Administration Guide

Resynchronization

What is Resynchronization?

Resynchronization is a process in which information is exchanged between two systems
to establish attributes relevant to the two-phase commit process and to complete

outstanding distributed transactions following a failure. This chapter focuses on
resynchronization between CA IDMS systems.

Note: For information about resynchronization between CICS or RRS and CA IDMS see
the CA IDMS System Operations Guide.

When Does It Occur?

Resynchronization between CA IDMS sys tems occurs at the following times.

■ When a central version is started, resynchronization is initiated with each known
backend system. A backend system is known if it was accessed by a database

session since the last time the journal fi les were formatted. If the started system
cannot communicate with one or more of its backend systems, resynchronization
with those systems is retried on a periodic basis until communication is

reestablished.

■ When a remote database session is started, resynchronization is initiated with the
backend system if it was previously unknown (that is, if this is the first time the
backend system has been accessed since the journal fi les were formatted) or if the

backend system has been recycled since resynchronization previously took place
between the two systems.

Note: A remote database session is started when an application binds a run unit or

connects an SQL session to a remote database. It is also started when a DCUF task
establishes a remote dictionary as a default.

■ When manually driven through a DCMT VARY DISTRIBUTED RESOURCE MANAGER
command, resynchronization is attempted with the specified resource manager.

Note: For more information about DCMT and DCUF, see the CA IDMS System Tasks and
Operator Commands Guide.

Automatic Recovery

Chapter 21: Backup and Recovery 627

What Does It Entail?

Resynchronization begins with an exchange of startup times and journal timestamps

between the two systems. As the name implies, the startup time is the time at which a
system was started and is used to detect when a partner system is recycled.

The journal timestamp is assigned by a central version the first time it opens a set of

journal fi les after they have been formatted. It is subsequently used to detect when a
partner's journal fi les have been reformatted since the last time the two systems
resynchronized with each other.

If no distributed transactions involving the two systems exist at the time that

resynchronization takes place, the two systems simply exchange the above information,
update their journal fi les with new or changed partner information, a nd record each
other as open resource managers.

If distributed transactions involving the two systems do exist at the time of
resynchronization, each system compares its partner's current journal timestamp with

the one that it had saved previously. If the timestamps are the same, resynchronization
proceeds by exchanging information about the incomplete distributed transactions that
are pending resynchronization. If the timestamps are not the same, it indicates that one

of the following has occurred:

■ The partner system's journal fi les have been prematurely formatted.

■ The partner system has been started with incorrect journal fi les.

■ The partner system has been started with an incorrect DCNAME parameter.

Any of these conditions result in a resynchronization failure.

Automatic Recovery

628 Database Administration Guide

Responding to Resynchronization Failures

If resynchronization detects a journal stamp mismatch with a system for which

incomplete distributed transactions exist, resynchronization cannot complete. When
this occurs, messages are displayed that show the old and new journal stamps and the
incomplete distributed transactions that are impacted by the mismatch. The operator is

prompted as to what action should be taken. The following example shows the
messages that are displayed as a result of a mismatch in SYSTEM74's journal stamps as
they are known to SYSTEM73.

DC329021 V73 T23 Journal stamp mismatch for SYSTEM74::DSI_SRV *OLD

2002-12-14-07.20.36.376737

DC329021 V73 T23 Journal stamp mismatch for SYSTEM74::DSI_SRV *NEW

2003-01-30-08.07.42.278334

DC329022 V73 T23 RM Name Dtrid Branch

 State

DC329023 V73 T23 SYSTEM74::DSI_SRV SYSTEM74::01650D6EDFB1AB93-

01650D6A79F31E50 InDoubt

DC329024 V73 REPLY 01 T23 Reply with resynchronization action for

SYSTEM74::DSI_SRV (Ignore,Defer):

Before replying to message DC329024, the cause of the mismatch should be
determined. The appropriate response should then be made as outlined in the following

table. Until a response is made to the DC329024 message, no database access is
permitted with the identified resource manager. Any task attempting such access waits
until a response has been made or its wait time is exceeded.

Reply Meaning and Considerations

IGNORE This reply specifies that resynchronization with the resource manager
should continue. The distributed transactions l isted in the preceding

DC329023 messages require manual completion.

IGNORE is appropriate if the partner system's journal fi les have been
prematurely formatted. In this case, the only way to complete the affected
transactions is to do so manually, since the journal entries required to

complete the transactions automaticall y are no longer available on the
partner system's journal fi les.

For guidance on how to manually complete the transactions, see
"Completing Transactions Manually".

Distributed Transaction Recovery Considerations

Chapter 21: Backup and Recovery 629

Reply Meaning and Considerations

DEFER This reply specifies that resynchronization with the resource manager

should be postponed until a later time. Database access with the identified
resource manager is disallowed until resynchronization has completed
successfully.

DEFER is appropriate if the mismatch can be corrected by recycling one or
the other system. Perhaps one of the systems was started with incorrect
journal fi les or the partner system was started with an incorrect DCNAME
parameter.

After replying DEFER, the system in error should be shutdown and restarted
correctly. It may then be necessary to initiate resynchroniza tion using a
DCMT VARY DISTRIBUTED RESOURCE MANAGER command.

Distributed Transaction Recovery Considerations

Recovery is Automatic

The primary responsibility for effecting recovery of distributed transactions l ies with
warmstart and resynchronization. Consequently, manual intervention should almost

never be required provided that correct operating procedures are followed.

System Interdependence

The one important consideration when dealing with distributed transaction recovery is

that systems are no longer independent with respect to recovery. Information on a
coordinator's journal fi les might be needed to complete the recovery process for a
participant.

Distributed Transaction Recovery Considerations

630 Database Administration Guide

Restarting Failed Systems

When restarting a failed central version, it is advisable to restart it on the same logical

operating system image as the one on which it abnormally terminated. This ensures
that the restarted system can access (and be accessed by) the same systems with which
it was able to communicate prior to the abnormal termination regardless of the

intersystem access methods available for use. If the restarted system cannot
communicate with another system, it is not able to resynchronize with that system. This
may leave incomplete transactions holding locks that prevent access to portions of the
database. Resynchronization will eventually complete these transactions when the

necessary intersystem communications are re-established.

Completing Transactions Manually In rare circumstances following a resynchronization
failure, it may be necessary to complete a distributed transaction manually. CA IDMS
provides two ways to do this: either by using DCMT commands or through facil ities

provided by the manual recovery util ities. Only transactions that are pending
resynchronization should be completed manually. This restriction is enforced if using the
DCMT commands.

Distributed Transaction Recovery Considerations

Chapter 21: Backup and Recovery 631

Completing InDoubt Transactions

Regardless of how it is done, when manually completing a transaction whose state is

InDoubt, you must specify whether to commit or back out the transaction's changes.
You should research the situation carefully before taking any action. If you make the
wrong decision, the distributed transaction will have a mixed outcome, meaning that

some of its changes will be committed while others will be backed out.

The following sources of information might be helpful in determining the correct action
to take:

■ The output from a DCMT DISPLAY DISTRIBUTED TRANSACTION command. This will

indicate what system is acting as the coordinator for the transaction and can be
used if the transaction is sti ll active within the participant. Similar information can
be obtained from the detailed reports produced by the PRINT JOURNAL or FIX
ARCHIVE util ities.

■ Facilities provided by the coordinator for determining the outcome of a transaction.

– If the coordinator is a CA IDMS system, its journal fi les will contain a DCOM
record for the transaction if its changes should be committed. Use the PRINT

JOURNAL summary report to see all incomplete distributed transactions or
J-Report 8 to see a l ist of all distributed checkpoints. (Before generating either
report, be sure to offload and include all journal fi les created since the point of
failure.) If there is no DCOM entry for the transaction, then the transaction's

changes should be backed out.

– If the coordinator is RRS, use the RRS ISPF panels to determine the outcome of
the transaction. For more information about RRS panels, see the IBM guide

MVS Programming: Resource Recovery.

– If the coordinator is CICS, examine its LOG fi le or use CEMT commands to
determine the outcome of the transaction.

Distributed Transaction Recovery Considerations

632 Database Administration Guide

Completing Distributed Transactions Using DCMT

Completing InDoubt Transactions Using DCMT

Once you have determined whether an InDoubt transaction's changes should be
committed or backed out, issue a DCMT VARY DISTRIBUTED TRANSACTION command

specifying COMMIT or BACKOUT as appropriate.

Completing a transaction in this way will mark it as heuristically committed or backed
out (with an outcome of HC or HR respectively). After the DCMT command is issued, the
transaction will hold no locks, but it will remain active until either:

■ Resynchronization with the coordinator takes place, or

■ The transaction is forced to end by a DCMT VARY DISTRIBUTED TRANSACTION
command that specifies FORGET.

If resynchronization is allowed to complete the transaction, a check will be made to see

if its overall outcome is consistent (meaning that the transaction's changes were either
all committed or all backed out). If a mixed outcome is detected, this fact will be
reported on the log and the transaction will remain active on the coordi nator until a

DCMT command is issued causing it to be forgotten.

Completing InCommit or InBackout Transactions Using DCMT

A transaction whose state is InCommit or InBackout holds no locks and, therefore, is not
preventing access to any part of the database. Consequently, there is no urgency

involved in completing such transactions and they should normally be allowed to
complete automatically through resynchronization. However, if resynchronization fails
due to an uncorrectable error, such as premature forma tting of a journal fi le, the DCMT

VARY DISTRIBUTED TRANSACTION command specifying FORGET can be used to force
completion of InCommit or InBackout transactions.

Note: Even specifying FORGET will not cause a transaction to complete if it cannot
successfully communicate with all resource managers that stil l require notification.

Distributed Transaction Recovery Considerations

Chapter 21: Backup and Recovery 633

Incomplete Transactions and Manual Recovery

The Impact of Distributed Transactions

If manual recovery becomes necessary, the process is generally the same regardless of
whether the archive journal fi les contain distributed transaction checkpoint records or

not.

However, special action may be needed when a ROLLFORWARD operation terminates or
a ROLLBACK operation begins at a point in time when a distributed transaction is active
and in an InDoubt state. The problem that arises in these situations is that the recovery

util ity does not know whether to commit the local changes made by the InDoubt
transaction or back them out. Since the util ity has no way of communicating with a
coordinator to determine what action to take, it may be necessary for the DBA to
explicitly specify the final outcome for the transaction.

Determining If InDoubt Transactions Exist

All recovery util ities that report transaction information, also report on distributed
transactions. For example, the PRINT JOURNAL and FIX ARCHIVE util ities include
information about all distributed transactions in their detailed report and list
incomplete transactions in their summary report. Incomplete transactions that are in an

InDoubt state will be among those listed in the summary report.

Why There are Incomplete InDoubt Transactions

A distributed transaction is in an InDoubt state when the last journal record written for

that transaction is a DIND. Normally, a DCOM or a DBAK record follows a DIND, and its
presence determines whether a transaction's changes should be committed or back out
respectively. The absence of a DCOM or DBAK record may be because:

■ It exists but on a later archive journal fi le that is not being processed in the current

execution of the recovery util ity.

■ It exists but is split between two archive journal fi les, only the first of which is being
processed in the current execution of the recovery util ity.

■ It has not been written because resynchronization with the transaction's
coordinator has not completed.

The first two conditions may indicate that not all required journal records are being
processed. The third condition may necessitate an explicit specification of how to

complete the transaction.

Note: For more information about the journal records that are written in support of
distributed transactions, see "Two-Phase Commit Journaling" in 19.2.4, “Two-Phase

Commit Journaling”.

Distributed Transaction Recovery Considerations

634 Database Administration Guide

How Utilities Deal with InDoubt Transactions

By default, the recovery util ities leave an InDoubt transaction in its InDoubt state,

meaning that its changes are not rolled out. A DBA can override this default behavior by
adding an entry to a manual recovery control fi le to explicitly specify the action to be
take for an InDoubt transaction.

When to Manually Complete Transactions

Explicitly overriding the default action should normally not be necessary. In fact, the
presence of InDoubt transactions at the end of a ROLLFORWARD or the beginning of a
ROLLBACK operation should be researched to determine the reason for their existence

and to ensure that the recovery procedure being followed is valid and includes all
necessary journal input.

For example, an InDoubt transaction might validly be encountered when recovering a
damaged database fi le. In this case, the transaction should be allowed to remain

InDoubt. When the recovered fi le is subsequently varied active to the central version,
the transaction will be completed (backed out or committed) automatically.

The only time that an InDoubt transaction should be explicitly completed is in

exceptional situations that prevent resynchronization from completing the transaction
automatically, such as:

■ When a coordinator is permanently inaccessible

■ When a coordinator's journal fi les have been prematurely formatted

■ When a participant's journal fi les have been damaged or prematurely formatted.

Even in the first two situations, if the transaction is sti ll active within the participant
central version it should be completed using a DCMT VARY DISTRIBUTED TRANSACTION

command rather than using a manual recovery control fi le override.

Distributed Transaction Recovery Considerations

Chapter 21: Backup and Recovery 635

How to Explicitly Complete InDoubt Transactions

Before taking any action to complete an InDoubt transaction, you must first determine

whether its changes should be committed of backed out. This will typically require using
facil ities provided by the coordinator to determine the final transaction outcome.

Note: See "Distributed Transaction Recovery Considerations" in 21.4, “Distributed

Transaction Recovery Considerations” for potential sources of information.

To explicitly complete an InDoubt transaction, an entry must be added to a manual
recovery control fi le. The following util ities will read a manual recovery control fi le for
this purpose:

■ EXTRACT JOURNAL (unless ALL is specified)

■ FIX ARCHIVE

■ MERGE ARCHIVE (if COMPLETE is specified)

■ PRINT JOURNAL

■ ROLLBACK

■ ROLLFORWARD (unless ALL is specified)

To complete a transaction, you must specify its DTRID and an action of either COMMIT

or BACKOUT.

If an InDoubt transaction is completed by a util ity that creates an output archive fi le (FIX
ARCHIVE, EXTRACT JOURNAL and MERGE ARCHIVE), the util ity will write additional
distributed transaction checkpoint records that complete the transaction in the

specified way.

Note: For more information about the format and use of a manual recovery control fi le,
see the above util ities in the CA IDMS Utilities Guide.

Distributed Transaction Recovery Considerations

636 Database Administration Guide

Deleting Resource Managers

When to Delete a Resource Manager

A resource manager should only be deleted if it no longer exists or if it is permanently
inaccessible. Even in these cases, there is often no need to explicitly delete a resource

manager, since it will disappear when the journal fi les are next formatted. However, if
incomplete, distributed transactions exist that involve an inaccessible resource manager
as a participant, then you may want to explicitly delete the resource manager to enable
the transactions to be completed.

How to Delete Resource Managers

You can delete a resource manager by issuing a DCMT VARY DISTRIBUTED RESOURCE
MANAGER command specifying DELETE. This removes the resource manager from the
system, purges it from the journal fi les and deletes all associated transaction interests.

Clearly, this command should be used with care.

The following procedure should be followed to delete a resource manager:

1. Obtain a l ist of transactions in which the resource manager has an interest by
issuing a DCMT DISPLAY DISTRIBUTED RESOURCE MANAGER command for the
target resource manager.

2. For each listed transaction determine whether the resource manager is a
coordinator or a participant by displaying its detail using a DCMT DISPLAY
DISTRIBUTED TRANSACTION command.

3. Complete each transaction for which the resource manager is a coordinator by
issuing one or more DCMT VARY DISTRIBUTED TRANSACTION commands.

4. Issue a DCMT VARY RESOURCE MANAGER ... DELETE to delete the resource
manager.

5. Complete each transaction for which the resource manager was a participant by
issuing a DCMT VARY DISTRIBUTED TRANSACTION command.

Note: For information about using DCMT commands to complete transactions, see

21.4.1, “Completing Distributed Transactions Using DCMT” Using DCMT.

Manual Recovery

Chapter 21: Backup and Recovery 637

Manual Recovery

Before You Begin

Before you attempt to manually recover the areas or fi les of the database, gather the
available facts, such as:

1. The time of the system or transaction failure

2. Whether the failure occurred under the central version or in local mode

3. What applications were running at the time the system failed

4. Which areas of the database were in use and whether these were in update mode

5. The time of the preceding quiesce point

You can use the PRINT JOURNAL or MERGE ARCHIVE util ity statements to determine the
information in items 3, 4, and 5.

Locate Backup and Archive Files

After you've determined the nature of the failure, locate the most recent backup of the

database and all archive journal fi les created since the backup.

Note: To successfully recover the database, all of the archive fi les must be readable. To
increase the likelihood of this, you can define multiple archive fi les in the DMCL used to
execute the ARCHIVE JOURNAL util ity statement. This directs CA IDMS/DB to create

multiple archive fi les during offload.

Determine if InDoubt Transactions Need Special Attention

Depending on the nature of the recovery operation, incomplete InDoubt transactions
may need to be completed manually as part of the recovery process.

Note: For more information about dealing with InDoubt transactions during manual

recovery process, see 21.4.2, “Incomplete Transactions and Manual Recovery”.

Minimize Scope of Recovery

You can limit the recovery process by recovering only the areas or fi les that were

impacted by the failure. Areas that were available for retrieval do not have to be
recovered. Depending on the nature of the failure, recovery may be restricted to an
individual fi le. If the recovery is due to an application error, all areas updated by the
application may need to be recovered to insure the logical integrity of the database.

This may in turn necessitate the recovery of other areas, if another application has
updated both the original and additional areas.

Manual Recovery

638 Database Administration Guide

After You Are Done

After you recover an area or fi le, check the validity of the recovery by:

■ Following procedures you designed to check the validity of the data; for example,
by executing a report you run regularly and comparing the output to output
produced before the recovery

■ Verifying the structure of the database by executing the IDMSDBAN util ity

Note: For more information on IDMSDBAN, see the CA IDMS Utilities Guide.

The remainder of this chapter describes manual recovery procedures under the
following circumstances:

■ After a warmstart fails

■ I/O errors in a database fi le

■ I/O errors in a journal fi le

■ When journaling in local mode

■ When using the database in both local mode and under the central version

(mixed-mode recovery)

It also provides special considerations for data sharing environments and native VSAM
files.

Recovery From a Quiesced Backup

Quiesced Backup

A quiesced backup is a backup that is performed while no updates are being made to
the data that is being copied. The following types of backup are quiesced backups:

■ A backup performed after the DC/UCF system is shutdown

■ A backup performed while the DC/UCF system is active, provided that the affected
areas are quiesced at the time of the backup

■ A backup performed before and after a local mode job

Note: For more information about how to backup a database, see see 21.2, “Backup
Procedures”.

Manual Recovery

Chapter 21: Backup and Recovery 639

Recovery Procedure

The procedure outlined below describes the general approach to recovery from a

quiesced backup. See the later sections in this chapter for additional considerations
specific to certain types of failures.

Action Steps

Copy the fi les that need to be
recovered from the backup

When required: Always.

Execute the RESTORE util ity statement using
the FILE option or another comparable
util ity.

Consolidate, in the sequence in which
they were created, the archive journal
fi les created since the quiesce point
established at the start of the backup

procedure.

When required: This step is necessary
only under the following conditions:

■ In z/OS environments, if the
subsequent ROLLFORWARD util ity
statement will be executed with
the SEQUENTIAL option and more

than one archive journal fi le must
be processed.

In a data sharing environment, if more

than one member has updated the
affected areas and the subsequent
ROLLFORWARD util ity statement will be
executed with either the SEQUENTIAL

or the ALL and STOP TIME options.

Execute one of the following and use as input
the properly concatenated set of archive
fi les:

■ FIX ARCHIVE util ity statement

■ MERGE ARCHIVE util ity statement

■ EXTRACT JOURNAL util ity statement

■ another comparable util ity

If consolidating archive fi les from multiple
members and the subsequent rollforward
will be executed with either the SEQUENTIAL
or the ALL and STOP TIME options, use the

MERGE ARCHIVE util ity statement.

Note: For more information, see 21.11,
“Data Sharing Recovery Considerations”.

If recovery involves local mode journal fi les,
the MERGE ARCHIVE util ity statement can be
used to consolidate both local mode journal
fi les and archive fi les.

Note: For more information, see 21.10,
“Recovery Procedures for Mixed-Mode
Operations”.

Manual Recovery

640 Database Administration Guide

Action Steps

Reapply to the restored fi les all updates

made since the backup was taken

When required: Always.

Execute the ROLLFORWARD util ity statement

using either the consolidated journal fi le or
individual archive fi les concatenated in the
sequence in which they were created.

If the journal fi les were consolidated using
the EXTRACT JOURNAL util ity, specify the
FROM EXTRACT option.

If FROM EXTRACT is not specified, then the

following considerations apply:

■ Specify the SORTED option unless there
is insufficient disk space available.
SORTED must be specified if:

■ A consolidated journal fi le is not used as
input in z/OS environments and more
than one archive fi le must be processed.

■ The input journal fi le is on a device, such
as a disk or a 3490 that does not support
reading backwards.

■ Running ROLLFORWARD in a z/VM

environment.

If the SEQUENTIAL option is used and the
quiesce point for the affected areas does not

coincide with the start of the first input fi le,
use the START TIME parameter to identify
the quiesce point.

Manual Recovery

Chapter 21: Backup and Recovery 641

Recovery From a Hot Backup

Hot Backup

A hot backup is a backup that is performed while the database is being updated. The
steps that must be taken to create a usable hot backup are described in 21.2, “Backup

Procedures”.

Recovery Procedures

Following are two approaches to recovery from a hot backup. The first involves the use
of both the ROLLBACK and ROLLFORWARD util ity statements; the second involves two

executions of the ROLLFORWARD util ity statement. Either approach can be used to
successfully recover from a hot backup; however certain condi tions must be satisfied to
use the second approach.

Note: For additional considerations associated with specific types of failure, refer to

later sections in this chapter.

InDoubt Transaction Considerations

With either approach, there is no need to take any special action with regard to
incomplete InDoubt transactions during the first recovery operation (during a ROLLBACK
in approach 1 or the first ROLLFORWARD in approach 2), since the util ity will handle

them correctly.

However, depending on the nature of the recovery, you may need to take some action
for InDoubt transactions that remain at the end of the final ROLLFORWARD operation.

For more information, see 21.4.2, “Incomplete Transactions and Manual Recovery”.

Restore Procedure 1

This approach can always be used to recover from a hot backup provided that the
correct procedures were followed when the backup was taken and the necessary
journal and backup fi les are available.

Action Steps

Copy the fi les that need to be recovered
from the backup.

When required: Always.

Execute the RESTORE util ity statement
using the FILE option or another

comparable util ity.

Manual Recovery

642 Database Administration Guide

Action Steps

Identify:

■ The quiesce point that was taken at the
beginning of the backup procedure.

■ The archive journal fi les created since

this quiesce point up to and including
the one created at the end of the
backup procedure.

■ All archive journal fi les created since

the quiesce point up to the point of
failure.

When required: Always.

Use the PRINT JOURNAL util ity

statement, or if the quiesce point was
established using the DCMT QUIESCE
command, examine the operating

system log for the DC/UCF system on
which the DCMT command was issued.

Consolidate, in the sequence in which they

were created, the archive journal fi les
created between the quiesce point and the
end of the backup procedure.

When required: This step is necessary only
under the following conditions:

■ In z/OS environments if more than one
input journal fi le must be processed.

In a data sharing environment, if the
SEQUENTIAL option will be specified on the
subsequent ROLLBACK util ity statement and

more than one member's journal images
must be processed.

Execute one of the following and use as

input the properly concatenated set of
archive fi les:

■ FIX ARCHIVE util ity statement

■ MERGE ARCHIVE util ity statement

■ Another comparable util ity

If consolidating archive fi les from
multiple members and the subsequent

rollback will be executed with the
SEQUENTIAL option, use the MERGE
ARCHIVE util ity statement.

Note: For more information, see Data
Sharing Recovery Considerations (see
page 666).

This and the subsequent step can be

combined by using a sort util ity to do
the consolidation unless the use of
MERGE ARCHIVE is required.

If backward read is not supported, presort
the journal blocks created between the
quiesce point and the end of the backup
procedure in reverse sequence.

Multiple archive fi les may be consolidated
into a single sorted output fi le.

When required: This step is necessary in a
z/VM environment or if the journal fi les

reside on devices such as disk or 3490s that
do not support backward read.

Execute the sort util ity and use as input
either a set of archive journal fi les or the
consolidated journal fi le produced in the
preceding step.

Note: For the sort parameters to use,
see the ROLLBACK util ity statement in
the CA IDMS Utilities Guide.

Manual Recovery

Chapter 21: Backup and Recovery 643

Action Steps

Remove from the restored fi les the effects

of all updates made between the quiesce
point and the end of the backup process.

When required: Always

Execute the ROLLBACK util ity statement

specifying the HOTBACKUP option and
using either the consolidated journal fi le
or individual archive fi les concatenated

in the sequence in which they were
created.

If the quiesce point for the affected
areas does not coincide with the start of

the input (or the end of the input if it
was sorted in reverse sequence), use the
STOP TIME parameter to identify the
quiesce point.

If STOP TIME is specified, also specify
ACTIVE; otherwise specify ALL.

If backward read is not supported for

the device on which the input journal
fi le resides, specify ROLLBACK3490 in
the SYSIDMS parameter fi le associated
with the ROLLBACK job step. This

parameter is not necessary in a z/VM
environment.

If a consolidated journal fi le is not used

as input in z/OS environments, specify
the SORTED option.

Manual Recovery

644 Database Administration Guide

Action Steps

Consolidate, in the sequence in which they

were created, the archive journal fi les
created since the quiesce point established
at the start of the backup procedure.

When required: This step is necessary only
under the following conditions:

■ In z/OS environments, if the subsequent
ROLLFORWARD util ity statement will be

executed with the SEQUENTIAL option
and more than one archive journal fi le
must be processed.

In a data sharing environment, if more than

one member has updated the affected areas
and the subsequent ROLLFORWARD util ity
statement will be executed with either the

SEQUENTIAL or the ALL and STOP TIME
options.

Execute one of the following and use as

input the properly concatenated set of
archive fi les:

■ FIX ARCHIVE util ity statement

■ MERGE ARCHIVE util ity statement

■ EXTRACT JOURNAL util ity statement

■ Another comparable util ity

If consolidating archive fi les from

multiple members and the subsequent
rollforward will be executed with either
the SEQUENTIAL or the ALL and STOP
TIME parameters, use the MERGE

ARCHIVE util ity statement.

Note: For more information, see Data
Sharing Recovery Considerations (see

page 666).

If recovery also involves local mode
journal fi les, the MERGE ARCHIVE util ity
statement can be used to consolidate

local mode journal fi les and archive fi les.

Note: For more information, see
Recovery Procedures for Mixed-Mode

Operations (see page 664).

Manual Recovery

Chapter 21: Backup and Recovery 645

Action Steps

Reapply to the restored fi les all updates

made since the quiesce point established at
the beginning of the backup procedure.

When required: Always.

Execute the ROLLFORWARD util ity

statement using either the consolidated
journal fi le or individual archive fi les
concatenated in the sequence in which

they were created.

If the journal fi les were consolidated
using the EXTRACT JOURNAL util ity,
specify the FROM EXTRACT option.

If FROM EXTRACT is not specified, then
the following considerations apply:

■ Specify the SORTED option unless
there is insufficient disk space

available. SORTED must be specified
if:

■ A consolidated journal fi le is not

used as input in z/OS environments
and more than one archive fi le must
be processed.

■ The input journal fi le is on a device,

such as a disk or a 3490 that does
not support reading backwards.

■ Running ROLLFORWARD in a z/VM

environment.

If the SEQUENTIAL option is used and
the quiesce point for the affected areas
does not coincide with the start of the

first input fi le, use the START TIME
parameter to identify the quiesce point.

Manual Recovery

646 Database Administration Guide

Restore Procedure 2

The use of this approach requires that:

■ Two quiesce points were established during the hot backup procedure

■ Backward read is supported for the input journal fi les. Backward read is not
available in z/VM environments nor when the journal fi les reside on disk or a device

such as a 3490

If either of these conditions are not satisfied, the first recovery approach must be
followed.

Action Steps

Copy the fi les that need to be recovered
from the backup

When required: Always.

Execute the RESTORE util ity statement
using the FILE option or another
comparable util ity.

Identify the two quiesce points that were
taken during the backup process. Also
identify the archive journal fi les that were

created between those quiesce points and
after the second quiesce point.

When required: Always.

Use the PRINT JOURNAL util ity
statement, or if the quiesce point was
established using the DCMT QUIESCE

command, examine the operating
system log for the DC/UCF system on
which the DCMT command was issued.

Consolidate, in the sequence in which they

were created, the archive journal fi les
created between the two quiesce points
established during the backup procedure.

When required: This step is necessary only
in z/OS, and data sharing environments if
more than one archive journal fi le must be
processed.

Execute one of the following and use as

input the properly concatenated set of
archive fi les:

■ FIX ARCHIVE util ity statement

■ MERGE ARCHIVE util ity statement

■ Another comparable util ity

Note: If consolidating archive fi les from
multiple data sharing members, use the

MERGE ARCHIVE util ity statement. For
more information, see Data Sharing
Recovery Considerations. (see page 666)

Manual Recovery

Chapter 21: Backup and Recovery 647

Action Steps

Reapply to the restored fi les all updates

made between the two quiesce points.

Execute the ROLLFORWARD util ity

statement specifying the SEQUENTIAL
option and using either the consolidated
journal fi le or individual archive fi les

concatenated in the sequence in which
they were created.

If the first quiesce point for the affected
areas does not coincide with the start of

the first input fi le, use the START TIME
parameter to identify the quiesce point.

If the second quiesce point does not
coincide with the end of the last input

fi le, use the STOP TIME parameter to
identify the second quiesce point.

Note: Output from the EXTRACT util ity

statement cannot be used to apply the
images during this step.

Consolidate, in the sequence in which they
were created, the archive journal fi les

created after the second quiesce point
established during the backup procedure.

When required: This step is necessary only

under the following conditions:

■ In z/OS environments, if the subsequent
ROLLFORWARD util ity statement will be
executed with the SEQUENTIAL option

and more than one archive journal fi le
must be processed.

■ In a data sharing environment, if more

than one member has updated the
affected areas and the subsequent
ROLLFORWARD util ity statement will be
executed with either the SEQUENTIAL

or the ALL and STOP TIME options.

Execute one of the following and use as
input the properly concatenated set of

archive fi les:

■ FIX ARCHIVE util ity statement

■ MERGE ARCHIVE util ity statement

■ EXTRACT JOURNAL util ity statement

■ Another comparable util ity

If consolidating archive fi les from
multiple members and the subsequent

rollforward will be executed with either
the SEQUENTIAL or the ALL and STOP
TIME parameters, use the MERGE

ARCHIVE util ity statement.

Note: For more information, see Data
Sharing Recovery Considerations (see
page 666).

If recovery also involves local mode
journal fi les, the MERGE ARCHIVE util ity
statement can be used to consolidate
local mode journal fi les and archive fi les.

Note: For more information, see
Recovery Procedures for Mixed-Mode
Operations (see page 664).

Manual Recovery

648 Database Administration Guide

Action Steps

Reapply to the restored fi les, all updates

made since the second quiesce point.

Note: Updates made prior to the second
quiesce point may also be reapplied during

this step; however there is no need to do so.

When required: Always.

Execute the ROLLFORWARD util ity

statement using either the consolidated
journal fi le or individual archive fi les
concatenated in the sequence in which

they were created.

If the journal fi les were consolidated
using the EXTRACT JOURNAL util ity,
specify the FROM EXTRACT option.

If FROM EXTRACT is not specified, then
the following considerations apply:

■ Specify the SORTED option unless
there is insufficient disk space

available to perform the sort.
SORTED must be specified if a
consolidated journal fi le is not used

as input in z/OS environments and
more than one archive fi le must be
processed.

■ If the SEQUENTIAL option is used

and the quiesce point for the
affected areas does not coincide
with the start of the first input fi le,

use the START TIME parameter to
identify the quiesce point.

Reducing Recovery Time

Ways to Reduce Recovery Time

It is often critical to recover a database as quickly as possible to meet availability
demands. The length of time it takes to recover can be reduced by:

■ Limiting the scope of the recovery

■ Reducing the time between backups

■ Sorting journal images

■ Pre-processing archive fi les

Limiting Scope of Recovery

One of the most significant factors affecting recovery time is the number of fi les being
recovered. If recovering due to an I/O error, only a single fi le may need to be recovered.
If recovering due to a journal I/O error, it may be necessary to recover all fi les in the
database. To reduce time, recover only those fi les or areas impacted by the failure.

Manual Recovery

Chapter 21: Backup and Recovery 649

Reducing Time Between Backups

Another factor that affects recovery time is the number of journal images that must be

applied to a restored fi le. One way to reduce the volume of journal images is to backup
more frequently. Backups should be taken frequently enough that recovery times meet
your operational requirements.

Sorting Journal Images

Another way to reduce the number of journal images applied to a restored fi le is to use
the SORTED option of the ROLLFORWARD or ROLLBACK util ity statement. By specifying
this option, only the last AFTR image (in the case of ROLLFORWARD) or the first BFOR

image (in the case of ROLLBACK) is applied to the database. While time and resources
are required to sort the journal images, the number of I/Os to the database (and
therefore the length of time needed to recover) may be significantly reduced using this
option.

Note: There are restrictions on the use of the SORTED option when recovering from a
hot backup. For more information, see 21.5.2, “Recovery From a Hot Backup”.

Preprocessing Archive Files

Another way to reduce the time needed to recover is to preprocess journal images using

the EXTRACT JOURNAL util ity statement. This util ity eliminates redundant journal
images by retaining only the last AFTR image for a dbkey. It creates an output fi le (cal led
an extract fi le) that subsequently can be used as input to the ROLLFORWARD util ity
statement.

A backup plan may include the regular use of EXTRACT JOURNAL to pre-process archive
journal fi les. If a recovery then becomes necessary, the extract fi les already exist and
can be used in place of the original archive fi les to reduce the volume of journal images
that must be applied to the database, thereby reducing the length of time it takes to

recover.

Manual Recovery

650 Database Administration Guide

To il lustrate how this may be done, the EXTRACT JOURNAL util ity might be executed
each night. Its input would consist of all archive fi les produced since the previous night's

extract or since the previous backup, whichever occurred most recently. If a recovery
becomes necessary, the EXTRACT JOURNAL util ity must be executed one more time to
process the remaining archive fi les. After the database fi les are restored from the

backup, the ROLLFORWARD util ity is used to reapply updates. Its input is the
concatenated set of extract fi les produced since the backup.

Note: There are restrictions on the use of extract fi les when recovering from a hot
backup.

More Information

■ For more information, see 21.5.2, “Recovery From a Hot Backup”.

■ For more information about and for considerations in the use of the EXTRACT
JOURNAL util ity statement in a data sharing environment, see 21.11, “Data Sharing

Recovery Considerations”.

Recovering a Large Number of Files

Operating System File Limitations

Some operating systems impose a l imit on the number of fi les that can be accessed

within a single job step. Except when exploiting extended fi le support in z/OS, the limit
for a central version is the same as that for a batch job and so there are no specia l
considerations involved in recovery.

Extended File Support

CA IDMS has extended the number of fi les that can be accessed by a central version in a
z/OS operating system to exceed that which can be accessed by a batch job step. While
useful, this capability may impact manual recovery.

Extended File Support and Manual Recovery

Under rare circumstances, it may be necessary to recover more fi les than can be
accessed by a single batch job step. If this occurs, it will be necessary to split the

recovery operation into multiple job steps each of which recovers a subset of the areas,
fi les or segments within the DMCL. Each job step can access up to 3273 fi les.

Recovery Procedures After a Warmstart Failure

Chapter 21: Backup and Recovery 651

Recovery Procedures After a Warmstart Failure

Before You Begin

Before you begin the recovery process, determine why the warmstart failed. Start by
checking any shutdown or warmstart messages. The failure could be due to:

■ Changes made to the DMCL or startup JCL

■ Hardware problems

■ Software maintenance

■ Disabling change tracking

Corrective Action

If the failure is due to:

Change Action

Changes in the DMCL and a

timestamp mismatch is detected

Warmstart the system using the prior version of

the DMCL load module

Note: The warmstart failure could have been
avoided through the use of change tracking by
the CV.

Changes in the startup JCL Correct the JCL and restart the system

Note: The warmstart failure could have been
avoided through the use of change tracking by
the CV.

Software maintenance Back out the maintenance and restart the system

Disabling change tracking Warmstart the system specifying an
IGNORE_SYSTRK_DMCL SYSIDMS parameter and

ensure that the correct DMCL load module and
startup JCL is used

Recovery Procedures After a Warmstart Failure

652 Database Administration Guide

Note: For more information about implementing change tracking, see "Change
Tracking" in the CA IDMS System Operations Guide.

Steps

In the unlikely event that hardware or software problems prevent the warmstart
process from recovering the database, follow these steps:

Action Statement

Offload all journal fi les ARCHIVE JOURNAL with the FULL option to
offload all full journal fi les. This should be

followed by an ARCHIVE JOURNAL with the
READ option to offload the journal that was
active when the abnormal system failure
occurred.

Check for incomplete InDoubt
transactions.

Be sure to include all archive fi les

created since the last quiesce point.

PRINT JOURNAL and FIX ARCHIVE

If incomplete InDoubt transactions exist,
complete them manually by creating a
new archive fi le.

For more information, see 21.4.2,
“Incomplete Transactions and Manual
Recovery”.

FIX ARCHIVE using manual recovery control
fi le input to complete the InDoubt
transactions.

Recover the transactions that were
active at the time of the system failure
(that is, abended transactions)

ROLLBACK with the ACTIVE option

Unlock the areas that were not accessed

during the rollback process. The
ROLLBACK statement identifies what
areas it unlocked.

UNLOCK

Reinitialize the journal fi les FORMAT JOURNAL

Data Sharing Considerations

If a member of a data sharing group is unable to warmstart and manual recovery must
be undertaken, any shared area that was being updated by the fail ing member must be

quiesced in all other members of the data sharing group before the ROLLBACK util ity is
executed. To quiesce the area, change its status to OFFLINE or TRANSIENT RETRIEVAL.
Do not use the DCMT QUIESCE command to quiesce the area.

Note: For additional data sharing considerations, see 21.11, "Data Sharing Recovery

Considerations".

Recovery Procedures from Database File I/O Errors

Chapter 21: Backup and Recovery 653

Recovery Procedures from Database File I/O Errors

What an I/O Error Means

An I/O error occurring on a database fi le indicates that an error occurred trying to read
or write to the fi le. This may be caused by hardware malfunctions such as a channel
problem, which if corrected, means that no recovery operation is needed. An I/O er ror

can also be caused by a physically damaged fi le or disk device; this type of error requires
recovery of the fi le.

Identifying a Database File I/O Error

When CA IDMS/DB encounters an I/O error in a database fi le, the following events

occur:

1. CA IDMS/DB issues one of the following messages:

■ DC205007, which indicates a read error

■ DC205008, which indicates a write error

2. The transaction abends with a code of 3010 or 3011.

3. CA IDMS/DB performs automatic recovery processing.

If Recovery is Successful

If the recovery process is successful, CA IDMS/DB continues processing. To fix the I/O

error, you must follow these steps:

Action Statement

Take the area(s) associated with the bad

database fi le offl ine

DCMT VARY AREA with the OFFLINE

option

Identify the problem and fix it. If the
problem is not associated with the

database fi le itself (for example, the
problem is due to a bad channel), perform
step 3 after the problem is corrected; if
the problem is due to a damaged fi le,

perform the steps outlined for an
unsuccessful recovery.

Bring the area(s) associated with the

database fi le online

DCMT VARY AREA with the ONLINE option

Recovery Procedures from Database File I/O Errors

654 Database Administration Guide

If the Recovery is Unsuccessful

If the recovery process is unsuccessful, CA IDMS/DB suspends the transaction and issues

the following message:

DC205009 TRANSACTION SUSPENDED. TRANSACTION ID: transaction-id

When CA IDMS/DB issues this message, quiesce the area in which the problem occurr ed
as quickly as possible to prevent additional transactions from readying the area. The

following table identifies all the steps:

Action Statement

Quiesce the affected area (see

Considerations in this section)

DCMT VARY AREA with the TRANSIENT

RETRIEVAL or OFFLINE options

Switch to a new journal fi le DCMT VARY JOURNAL

De-allocate the fi le DCMT VARY FILE with the DEALLOCATE option;
use the FORCE option if the fi le cannot be

closed (for example, because of a channel
problem)

Restore a copy of the damaged fi le

using the last backup tape as input.
If the FORCE option was used in step
3, recreate the fi le with a new name

RESTORE with the FILE option

Rollforward the restored copy of the

fi le using the archive journal fi les in
the order they were created

Various. See 21.5, “Manual Recovery"

If the fi le was restored to a new

location:

■ Recatalog it in z/OS

■ Update the standard labels in
z/VSE

Operating system facil ities

If the fi le was renamed in z/OS or
z/VM, change its dataset name

DCMT VARY FILE with the DSNAME option

Make the new fi le available to the

central version

DCMT VARY FILE with the ALLOCATE option

Re-activate the suspended
transactions so they complete
automatic recovery

DCMT VARY FILE with the ACTIVE option

Recovery Procedures from Database File I/O Errors

Chapter 21: Backup and Recovery 655

Action Statement

Re-activate the area for update

processing
■ If the area was varied OFFLINE, issue DCMT

VARY AREA with the ONLINE option

■ If the area was varied to TRANSIENT
RETRIEVAL mode, first vary it OFFLINE and

then ONLINE

Considerations

Quiescing the Area

Quiesce the area by varying it offl ine or retrieval. The differences are as follows:

■ If the area is varied offline, no new transactions will be able to access the area until
the recovery is complete and the area is varied online; existing transactions will
complete if possible.

■ If the area is varied to transient retrieval, transactions can continue to read data

from the area but cannot update until the recovery is complete and the area is
varied offline and back online. This may be useful if the area is mapped to many
fi les (only one of which is damaged) or if only a small portion of the f i le is damaged.

It can also be beneficial if most of the fi le blocks are in a buffer or a dataspace.

If the area to be recovered is a system area, it may be necessary to terminate
predefined system run units by issuing a DCMT VARY RUN UNIT ... OFFLINE command to
quiesce activity to the area. It is advisable to vary the status of a system area to

transient retrieval rather than offline.

In a data sharing environment, it is important to quiesce a shared area in all members of
the data sharing group. The broadcast capability of DCMT commands can be used to do

this easily.

Recovery Procedures from Database File I/O Errors

656 Database Administration Guide

Renaming the File

If you restored the fi le under a new name, you must make sure that the correct fi le is

used the next time the system is started. If change tracking is in effect for the DC/UCF
system, CA IDMS automatically ensures that the correct fi le is used when the system is
restarted following an abnormal termination. However, if change tracking is not in use

or if you shut down the system, you must do one of the following:

■ Rename (and recatalog) the restored fi le to its original name before restarting the
DC/UCF system.

■ Alter the system startup JCL to reference the new dataset name.

■ After recovery is complete, modify the dataset name in the definition of the fi le,
regenerate all DMCLs which include the fi le's segment and make the new DMCL
available to the DC/UCF system.

If you fail to do one of the above, CA IDMS/DB will attempt to access the wrong fi le the

next time the system is started. This may have serious consequences if the original fi le
stil l exists.

More Information

■ For more information about making a DMCL available to a runtime system, see see
7.13, “DMCL Statements”.

■ For more information about implementing change tracking, see "Change Tracking"
in the CA IDMS System Operations Guide.

Use of Deallocate Force

If the damaged fi le was de-allocated using the FORCE option, the DC/UCF system marks
the fi le as closed and de-allocated but does not actually issue the corresponding
operating system requests. For this reason, you must restore the fi le under a different
dataset name. When the DC/UCF system is eventually shutdown, it will not shutdown

successfully because the operating system will attempt to close the original fi le. This
will either cause an abend or the DC/UCF system will hang. In either case, examine the
messages produced on the log. If the following message appears, the database system

has completed processing and no additional action is required:

DC200010 CA IDMS/DB Inactive

If this message does not appear, you should restart the system (after taking appropriate
steps such as renaming the fi le) and then shut it down.

Recovery Procedures from Journal File I/O Errors

Chapter 21: Backup and Recovery 657

Correcting the Lock Option of an Area and File

If the area associated with a damaged database fi le is in retr ieval mode or offl ine and

the fi le was restored with the area lock on, then the area status is incompatible with the
fi le status. If you try to vary the area online, IDMS responds with an error. To correct
this situation, issue a DCMT VARY AREA command with the UPDATE LOCKED option. This

command allows IDMS to vary the area to an update mode even though the fi le is
locked.

InDoubt Transaction Considerations

No special action regarding InDoubt transactions should be necessary, since they will

complete once the fi le is varied active and resynchronization takes place with the
coordinator.

Recovery Procedures from Journal File I/O Errors

If an I/O error is encountered when accessing a journal fi le, the system responds

differently depending on whether a read or write error is encountered:

■ If a write error occurs, CA IDMS/DB swaps to a new journal fi le, re-issues the journal
write and disables the use of the fi le on which the error occurred.

■ If a read error occurs, CA IDMS/DB writes message DC205007 to the system log,

indicating a read error and disables the journal fi le from further use.

The DC/UCF system will continue to operate without the use of the damaged journal
fi le, although processing may be slower due to the availability of fewer journal fi les.

Automatic Recovery Failure

If a transaction abends (or issues a rollback) and, in order to recover, CA IDMS/DB must
access a disabled journal fi le, it places the fail ing transaction in a suspended state and
issues the following message to the log:

DC205009 Transaction suspended. Transaction id xxxxxx

Recovery Procedure Steps

To recover from an I/O error on a journal fi le, follow these steps:

Action Statement

1. Vary the affected journal fi le offl ine DCMT VARY JOURNAL FILE OFFLINE

2. Monitor the status of the journal fi le within
the system.

DCMT DISPLAY JOURNAL FILE

Recovery Procedures from Journal File I/O Errors

658 Database Administration Guide

Action Statement

3. If the journal fi le's status changes to

OFFLINE, continue with Step 4. Otherwise,
perform the steps outlined for unable to reach
offline status.

4. Identify the problem and correct it. If the
problemis not associated with the journal fi le
itself (the problem is due to a bad channel for
example), correct the problem and continue

with Step 5. If the problem is due to a
damaged fi le, proceed with the steps outlined
in "Repairing a Damaged Journal File."

5 Vary the affected journal fi le online. DCMT VARY JOURNAL FILE ONLINE

If the Journal Does Not Reach Offline Status

There are two conditions that may prevent a journal fi le from reaching an offline status:

■ One or more active transactions are stil l dependent on the fi le for recovery

■ The journal fi le has not been archived

If the journal fi le does not reach offline status, take the following actions:

Action Statement

1. Determine if active transactions still

depend on the journal fi le.

DCMT DISPLAY JOURNAL FILE PENDING

TRANSACTIONS

2. If no pending transactions exist:

2.1 Offload the journal fi le ARCHIVE JOURNAL

2.2 If the archive is successful, the journal

fi le will reach offline status, so proceed
with Step 4 in the preceding table.

2.3 If the archive is not successful,

perform a quiescedbackup of all areas that
were in update mode at the time of the
I/O error and then proceed with the steps
outlined in "Repairing a Damaged Journal

File."

Various

See "Quiesced Backup Procedure" in 21.2,
“Backup Procedures".

3. If pending suspended transactions exist,
quiesce all update activity within the

system.

DCMT VARY AREA OR SEGMENT

Recovery Procedures from Journal File I/O Errors

Chapter 21: Backup and Recovery 659

Action Statement

4. If pending non-suspended transactions

exist:

4.1 Wait for them to complete. Do not
cancel them.

4.2 If there are pending InDoubt
distributed transactions, try to complete
them by initiating resynchronization with
their coordinator.

Various

See 21.3.3, “Resynchronization”

5. If only pending suspended transactions
exist, cancel the system and proceed with
the steps outlined in "Manual Recovery
Following a Journal File I/O Error."

Operating system facil ities

Repairing a Damaged Journal File

Take the following actions to repair a damaged journal fi le while the DC/UCF system
remains active:

Action Statement

1. De-allocate the journal fi le DCMT VARY JOURNAL FILE DEALLOCATE

Use the FORCE option if the fi le cannot be

closed (for example, because of a channel
problem)

2. Allocate a new journal fi le; if the FORCE

option was used in Step 1, create the fi le
with a new name

Operating system faci l ities

3. Format the new journal fi le FORMAT JOURNAL

4. If the fi le was allocated in a new location

or with a new name

■ Recatalog it in z/OS

Update the standard labels in z/VSE

Operating system facil ities

5. If the fi le was allocated with a new
name, make the name known to the
DC/UCF system

DCMT VARY JOURNAL FILE DSNAME

6. Make the new fi le available to the

DC/UCF system

DCMT VARY JOURNAL FILE ONLINE

Recovery Procedures from Journal File I/O Errors

660 Database Administration Guide

Considerations for Renaming the File

If you allocated the new journal fi le using a new name, you must make sure that the

correct fi le is used the next time the system is started. If change tracking is in effect for
the DC/UCF system, CA IDMS automatically ensures that the correct fi le is used when
the system is restarted following an abnormal termination. However, if change tracking

is not in use or if you shutdown the system, you must do one of the following:

■ Rename (and recatalog) the new journal fi le to the original name before restarting
the DC/UCF system.

■ Alter the system startup JCL to reference the new dataset name.

■ If using dynamic allocation for journal fi les, after recovery is complete, modify the
dataset name in the definition of the journal fi le, regenerate the impacted DMCL
and make the new DMCL available to the DC/UCF system.

If you fail to do one of the above, CA IDMS attempts to access the wrong journal fi le the

next time the system is started. This may have serious consequences if the original fi le
stil l exists.

More Information

■ For more information about making a DMCL available to a runtime system, see see
7.13, “DMCL Statements”.

■ For more information about the use of change tracking, see "Change Tracking" in
the CA IDMS System Operations Guide.

Manual Recovery Following a Journal File I/O Error

If one or more transactions cannot be rolled back due to their dependence on the
damaged journal fi le, take the following actions to complete the recovery process:

Action Statement

1. Restore all areas that were open at the
time of the I/O error (including load and
queue areas)

RESTORE

2. Check for incomplete InDoubt
transactions using the archive journal fi les
created since each backup was taken

PRINT JOURNAL or FIX ARCHIVE

3. If incomplete InDoubt transactions

exist, complete them manually by creating
a new archive fi le.

FIX ARCHIVE using manual recovery

control fi le input to complete the InDoubt
transactions

4. Roll forward all restored areas using the

archive journal fi les created since each
backup was taken or the corrected fi le
created in the preceding step

ROLLFORWARD with the COMPLETED and

AREA options

Recovery Procedures from Journal File I/O Errors

Chapter 21: Backup and Recovery 661

Action Statement

5. Initialize all journal fi les FORMAT JOURNAL with the ALL option

6. Backup all recovered database areas BACKUP with the FILE option

7. Re-start the system

8. Re-run all transactions that were not

recovered

Considerations

Quiescing System Activity

In a data sharing environment, it is important to quiesce a shared area in all members of

the data sharing group. The broadcase capability of DCMT commands can be used to do
this easily.

Conservative Approach

The steps outlined above take a conservative approach to the recovery process in two

ways:

■ No attempt is made to try and offload the damaged journal fi le. If the fi le can be
offloaded, then the areas can be recovered using ROLLBACK (with the ACTIVE

option) rather than using RESTORE and ROLLFORWARD.

■ All areas being updated by the system are recovered. If you identify the areas that
were being updated by the suspended transactions, then recovery can be limited to
those areas and other areas which are logically-associated. To identify the areas

that were being updated, you can use the DCMT DISPLAY TRANSACTION command
for the suspended transactions or the DCMT DISPLAY AREA command which will
identify the areas that have not quiesced.

Distributed Transaction Considerations

If journal information was lost due to the I/O error and areas had to be restored, any

transactions whose journal images were lost were effectively backed out. This can lead
to a mixed result for distributed transactions, since changes on other systems may have
been committed. Unfortunately, there may be no way to determine what other systems

are impacted due to the loss in journal information.

If you do know of another system that might be involved in one of these transactions,
use their journal or log information to identify distributed transactions impacted by the
failure. Look for distributed transactions in which the failed system was involved (as

either a participant or a coordinator) and that were committed subsequent to the point
to which an impacted area was restored.

Recovery Procedures for Local Mode Operations

662 Database Administration Guide

Recovery Procedures for Local Mode Operations

Recovery procedures for local mode operations differ depending on whether you are
journaling and if so, whether you are journaling to a disk device or tape device. The
following topics provide the recovery procedures for each situation.

No Journaling

Use the Backup File

If you are not maintaining journal fi les during execution of a local mode job and the job
terminates abnormally, you must restore all areas updated by the local mode
application.

Journaling to a Tape Device

Steps

To recover a local mode database when journaling to a tape device, follow these steps:

Action Statement

Rollback the database or areas of the
database using as input the tape
journal fi le created by the local mode

job

■ If the job can be re-started from the last
COMMIT point, useROLLBACK with the
ACTIVE option

■ If the job has to be re-run from the
beginning, use ROLLBACK with the ALL
option

Re-run the application

Journaling to a Disk Device

Steps

If you are journaling a local mode job to a disk device, follow these steps:

Action Statement

Copy the journal fi le to a tape device Operating system util ity

Follow the steps outlined above for
journaling to a tape device above

Recovery Procedures for Local Mode Operations

Chapter 21: Backup and Recovery 663

Using an Incomplete Journal File

What is an Incomplete Journal File?

An incomplete journal fi le is a journal fi le that does not contain a final ABRT checkpoint
for the active transaction or even an end-of-fi le mark. This occurs when the journal fi le

has been unexpectedly interrupted, for example, when the operating system crashes.
An incomplete journal fi le is not suitable for recovering your database. To make a
suitable journal fi le for recovery, use the FIX ARCHIVE util ity statement, which:

■ Reads the damaged fi le and creates a new one

■ Writes an ABRT checkpoint at the end of the new fi le

Steps

To recover a database in local mode, using an incomplete journal fi le, follow these
steps:

Action Statement

Fix the journal fi le FIX ARCHIVE

Recover the database using the output
from the FIX ARCHIVE util ity statement as
described for journaling to a tape device
above.

Recovery Procedures for Mixed-Mode Operations

664 Database Administration Guide

Recovery Procedures for Mixed-Mode Operations

What is a Mixed-Mode Operation?

When database areas have been updated both in local mode and under the central
version (for example, when an area has been varied offline, subsequently updated by a
local transaction that used journaling, and then varied back online), the database must

be restored by using both the local and the central version journals.

Mixed Mode Recovery

The following scenario is an example of synchronizing the recovery operations by
explicitly using both the central version and local journals to ensure proper recovery of

all database areas:

6 a.m. Nightly backups taken

8 a.m. System startup: AREA1, AREA2,

 AREA3 are readied in update

 mode under the central version.

10:30 a.m. AREA1 is varied offline.

 While offline, a local mode program

 (using a tape journal) updates

 AREA1 while the central version

 continues to update AREA2 and

 AREA3.

11:30 a.m. A VARY JOURNAL command is issued

 for the central version journal.

 AREA1 is varied back online and

 the central version continues to

 update AREA1, AREA2, and AREA3.

12:00 p.m. Database file I/O error occurs

 on AREA1.

When the database fi le I/O error occurs, the affected fi le associated with AREA1 must
be restored by using both the local and central version journals.

Recovery Procedures for Mixed-Mode Operations

Chapter 21: Backup and Recovery 665

Steps to Recover the Database

The following steps i l lustrate one approach to recovery, given the situation outlined

above. Note that with this approach two separate rollforward operations are used. To
process journal images from both central version and local mode operations in a single
execution of the ROLLFORWARD util ity, you must use the alternate recovery approach

described next.

Action Statement

Restore the damaged fi le using the backup

tapes produced at 6 a.m.

RESTORE with the FILE option

Rollforward all archive fi les produced
before 11:30

ROLLFORWARD FILE specifying ALL

Rollforward the local journal fi le, restoring

the fi le up to 11:30 a.m.

ROLLFORWARD FILE specifying ALL

Rollforward using the archive fi les
produced between 11:30 a.m. and 12:00

p.m.

ROLLFORWARD FILE with the COMPLETE
option

For a complete description of the recovery process, see 21.7, “Recovery Recovery
Procedures from Database File I/O Errors".

An Alternate Approach

The following steps i l lustrate an alternate approach to recovery in a mixed-mode

environment. With this approach, the local mode journal fi le is first merged with the
archive fi les produced by the central version and the merged output fi le is used to
recover the database in a single rollforward operation.

Action Statement

Restore the damaged fi le using the backup
tapes produced at 6 a.m.

RESTORE with the FILE option.

Merge the local mode journal fi le with all
archive fi les produced since 8 a.m.

MERGE ARCHIVE specifying the COMPLETE
option

For a complete description of the recovery process, see 21.7, "Recovery Procedures
from Database File I/O Errors".

Data Sharing Recovery Considerations

666 Database Administration Guide

Data Sharing Recovery Considerations

Quiescing Update Activity

Whenever it becomes necessary to quiesce access to an area during a recovery
operation, the quiesce must apply to all members of a data sharing group. For recovery
purposes, the quiesce will usually be done by varying the area status to OFFLINE or

TRANSIENT RETRIEVAL using a DCMT VARY command. This command must be executed
in every member to establish a group-wide quiesce for a shared area. To do this easily,
the command may be broadcast to other members of the group.

Occasionally, it will be sufficient to quiesce update access to an area through the use of

a DCMT QUIESCE command. This command will automatically propagate the quiesce for
a shared area to all group members, so there is no need to execute it on more than one
member of the group.

Note: For more information about DCMT commands and how to broadcast them, see
the CA IDMS System Tasks and Operator Commands Guide.

Data Sharing Recovery Considerations

Chapter 21: Backup and Recovery 667

Recovery from a Warmstart Failure

If warmstart fails for one or more members of a data sharing group, recovery can

proceed just as if the DC/UCF systems were not data sharing members. This is true even
if manual recovery is necessary provided that all shared areas being updated by the
members at the time of failure are quiesced in the remaining members of the group.

The quiesce should be done by varying the status of the affected areas to OFFLINE using
a DCMT VARY command.

If manual recovery is necessary, each member can be recovered independently
provided that:

■ Only the ROLLBACK recovery util ity is used

■ The ACTIVE option is specified when executing ROLLBACK, and

■ Executions of the ROLLBACK util ity are serialized

Failure to comply with these conditions, may result in database corruption.

Recovery from Other Types of Failures

Except when following the above procedure to recover from a warmstart failure, the
archive fi les from all members that have updated a shared area since the backup was

taken must be included in any manual recovery. Furthermore, the journal images from
all members must be processed together in the same execution of the ROLLFORWARD
or ROLLBACK util ity. It is not valid to process the images from one member in one
execution followed by the images from another member in another execution, since

journal images must be processed in chronological sequence.

Recovery from a warmstart failure is an exception to this rule only because records
updated by one member cannot be accessed by another member until the changes are

committed or rolled out. If warmstart fails, the unrecovered records remain locked, so
no other member can update them. This means that there will never be more than a
single member with a before image for an unrecovered record and so inter -member
sequencing is not important.

Data Sharing Recovery Considerations

668 Database Administration Guide

Using MERGE ARCHIVE

The MERGE ARCHIVE util ity is used to merge the journal images from multiple members

so that they are in chronological sequence. As noted above, most recovery util ities
require that journal images be processed chronologically. In a data sharing environment,
the journal images produced by each member are in chronological sequence, but the

images for areas concurrently updated by multiple members are contained in each
member's archive fi les. The MERGE ARCHIVE util ity interleaves the journal images from
multiple members so that they occur in date/time sequence. The resulting output fi le
may then be used as input to a ROLLFORWARD, ROLLBACK, or EXTRACT JOURNAL util ity

statement.

When executing the MERGE ARCHIVE util ity statement, the input consists of a
concatenated set of archive fi les and optionally a merge archive fi le produced from a
previous execution of the MERGE ARCHIVE util ity. Archive fi les produced by a single

member must be processed in the order in which they were created. Archive fi les from
different members may be processed in any order relative to those of other members.

When to Use MERGE ARCHIVE

The output of the MERGE ARCHIVE util ity can always be used as input to the
ROLLFORWARD, ROLLBACK, and EXTRACT JOURNAL util ity statements in place of the
original archive fi les. It can also be used to combine local mode journal fi les and archive
fi les when mixed-mode updates must be recovered.

However, while optional in most cases, MERGE ARCHIVE must be used to merge the
journal images of multiple data sharing group members before those images are
processed by:

■ ROLLFORWARD or ROLLBACK util ity statements that specify the SEQUENTIAL
option.

■ ROLLFORWARD, ROLLBACK, or EXTRACT JOURNAL util ity statements that specify
both the ALL and STOP TIME options.

Data Sharing Recovery Considerations

Chapter 21: Backup and Recovery 669

Using EXTRACT JOURNAL

The EXTRACT JOURNAL util ity is used to preprocess journal images in order to reduce

recovery time. This util ity can also be used in a data sharing environment. Any of the
following are valid approaches to its use:

■ Separately preprocess the archive fi les of each member

■ Preprocess the archive fi les of multiple members together

■ Merge the archive fi les of multiple members using the MERGE ARCHIVE util ity and
then preprocess the merge fi le

You must use the third approach if the ALL and STOP TIME parameters are specified on

the EXTRACT JOURNAL util ity statement; otherwise, any of the above approaches can be
used to preprocess journal fi les in a data sharing environment.

If using either of the first two approaches, the EXTRACT JOURNAL util ity statement can
be executed on a periodic basis to preprocess the archive fi les created since its previous

execution, or since a backup was taken. If recovery becomes necessary, all extract fi les
produced since the backup must be concatenated as input to a single execution of the
ROLLFORWARD util ity. The order in which the extract fi les are concatenated must be

such that the journal images for each member are in chronological sequence. It makes
no difference in which order the images of one member occur in relation to those of
another member.

If using the third approach, the entire set of archive fi les produced by group members

that have updated the affected areas must be merged prior to executing the EXTRACT
JOURNAL util ity. The MERGE ARCHIVE util ity can be executed on a periodic basis to
merge the archive fi les created since its previous execution with the previously created

merge fi le. The EXTRACT JOURNAL util ity can then be used to preprocess the final merge
fi le.

Note: For more information about executing both the MERGE ARCHIVE and the
EXTRACT JOURNAL util ity statements, see the CA IDMS Utilities Guide.

Coupling Facility Failures

Certain types of failures are unique to a data sharing environment, such as the loss of a
coupling facility or a structure within the coupling facility. In some cases, all members of

a group will fail and recovery must be coordinated across the group, a pr ocess called
"group restart."

Note: For more information about recovering from coupling facil ity failures and group
restart, see the CA IDMS System Operations Guide.

Considerations for Recovery of Native VSAM Files

670 Database Administration Guide

Considerations for Recovery of Native VSAM Files

About Recovery for Native VSAM Files

CA IDMS/DB performs journaling for native VSAM files just l ike it does for other types of
fi les it supports. The recovery procedures described in this chapter apply to native
VSAM files also. The processing difference i s that the BACKUP and RESTORE util ity

statements cannot be used with native VSAM files. Instead, use IDCAMS or some other
util ity for backing up and restoring the fi le.

Potential Problems

Since VSAM controls the actual updating of the data sets, recovery problems may occur.

If a total system failure occurs after CA IDMS/DB passes control to VSAM, automatic
recovery is not guaranteed. Therefore, you should back up native VSAM data sets
frequently, as described in the appropriate VSAM documentation. Recovery can then be

accomplished by restoring your fi le Using IDCAMS (or some other util ity) and
ROLLFORWARD util ity statements.

File Verification After Failure

If a DC/UCF system fails or a local mode application terminates abnormally, you must

issue the IDCAMS VERIFY command for native VSAM files that were open for update at
the time of the failure.

Limitations for ESDS Areas

You cannot use the ROLLBACK util ity statement for an ESDS area to which a record has
been added, because VSAM does not allow the necessary erase.

Limitations for KSDS Areas

Due to l imitations within the VSAM access method, ROLLFORWARD and ROLLBACK
cannot be run with the SORTED option to recover native VSAM KSDS areas. If you need

to use the SORTED option, because of the volume of data, and a database that contains
a mixture of KSDS, ESDS, and/or RRDS native VSAM files, follow these steps:

Action Statement

Restore the native VSAM files Operating system facil ity

Rollforward or rollback the area that maps
to the KSDS fi le; the util ity statement

recovers the KSDS fi le and any associated
alternate indexes.

ROLLFORWARD or ROLLBACK with the
SEQUENTIAL option

Rollforward or rollback all the remaining
areas or fi les.

ROLLFORWARD or ROLLBACK with the
SORTED option

Considerations for Recovery of Native VSAM Files

Chapter 21: Backup and Recovery 671

Chapter 22: Loading a Non-SQL Defined Database 673

Chapter 22: Loading a Non-SQL Defined
Database

This section contains the following topics:

Database Loading (see page 673)
Loading Database Records Using FASTLOAD (see page 674)

FASTLOAD Procedure (see page 677)
Loading Database Records Using a User-Written Program (see page 677)

Database Loading

Loading Options

To load a database defined with non-SQL DDL statements, you can use either:

■ The FASTLOAD util ity statement

■ A user-written load program

FASTLOAD Utility Statement

To use FASTLOAD, you must write and compile a format program that specifies how to
load the data. After executing the format program, you invoke the FASTLOAD util ity
statement, which loads record occurrences into the database and makes set
connections using the output from the format program. It also builds indexes during the

load process.

User-Written Program

You can also load a database by using DML commands in a user -written application. The

application can be written in any of the languages CA IDMS/DB s upports.

If you use a user-written program to load the database, you should organize the record
occurrences in the input fi le so that they mimic the structure of the database. For
example, you should sort the records so that a CALC record is followed by its VIA

member record occurrences. Steps for organizing the input fi le appear in more detail
later in this chapter.

Advantages of FASTLOAD

FASTLOAD is often more efficient than a user-written program for loading a database

with complicated structures (for example, multiple-member sets or multi -level record
relationships). Additionally, FASTLOAD does not require pre-sorted data. As part of its
internal processing, FASTLOAD sorts the data at certain points during the load process.

Loading Database Records Using FASTLOAD

674 Database Administration Guide

Loading Database Records Using FASTLOAD

Requires a User-Written Format Program

To use FASTLOAD, you must write a format program that uses subroutines provided by
CA to prepare data for input to the FASTLOAD util ity statement.

Note: For more information about and a description of the format program, see the

FASTLOAD statement in the CA IDMS Utilities Guide.

Loading Database Records Using FASTLOAD

Chapter 22: Loading a Non-SQL Defined Database 675

General Considerations

Always Load in Local Mode

You must load a database in local mode. Journaling is not required, and is not
recommended when loading a database for these reasons:

■ The load util ity does not maintain checkpoints

■ It's easier to re-run a failed job step than to recover the database

■ Journaling can impact performance

Cross-Area Sets

■ If the owner and member records of an automatic set exist in different database
areas, load the areas together.

■ If the owner and member records of a manual set exist in different database areas,
either:

– Load the areas together

– Run a user-written program to connect the records after loading the entire
database

CALC Records

The target page for CALC records to be loaded into a database can be determined in one
of two ways:

■ By the standard CA IDMS/DB CALC routine (IDMSCALC).

■ By a user-written CALC exit routine (IDMSCLCX) that was compiled and link-edited
with IDMSUXIT.

Important: If you determine the target page using IDMSCALC, you must use it

whenever the database is accessed; l ikewise, if you use the IDMSCLCX user exit, you
must continue to use an IDMSUXIT module with which it is l inked.

Note: For more information on enabling user exits by l inking IDMSUXIT, refer to the
"User Exits" section of the CA IDMS Systems Operations Guide.

Compressed Data

If the schema definition specifies compression for a record type, CA IDMS/DB
compresses the record before it stores it during a load operation. Therefore, before you

begin the load procedure, be sure the schema definition includes the information it
requires to compress the record occurrences.

Loading Database Records Using FASTLOAD

676 Database Administration Guide

Reserving Space on the Page

To reserve space for the storage of additional records on a page or for increases in the

length of records stored on a page, add an area override to the DMCL that specifies a
page reserve. When the load is complete, you can remove the area override.

Buffers

The DMCL that you use to load the database should contain a local mode buffer that
contains at least 10 pages. One large buffer should be sufficient. However, you may
obtain performance improvements by assigning the fi les associated with each area to a
separate buffer. If you don't have enough resources, then try to assign the fi les

associated with the following areas to separate buffers:

■ Index area

■ Areas for which the owner record exists in one area and the member record exists
in another area

Considerations for Large Databases

A large database should be loaded in portions. The FASTLOAD statement assumes that
all record occurrences that are connected by automatic sets will be loaded at the same

time. For a large database, this assumption can be limiting. To load a large database:

1. Group the record types so that there are not automatic sets between the groups

2. Load each group of record types

3. If manual set connections exist between records in different groups, connect the

records by executing a user-written program

Subschema Requirements

The subschema that you use in the load process must:

■ Include all records being loaded and all set relations hips in which the records
participate

■ Allow all affected areas to be readied in exclusive update mode

FASTLOAD Procedure

Chapter 22: Loading a Non-SQL Defined Database 677

FASTLOAD Procedure

Steps

To load a database for the first time, follow these steps:

1. Write and compile a format program that specifies how to load the data. For more
information about the format program, see the CA IDMS Utilities Guide

2. Link-edit the format program with IDMSDBLU

3. Define the segments, areas, and fi les that represent the physical database

4. Add the segment definition to the DMCL and make the DMCL available to the
runtime environment

5. Format the database fi les to be loaded using the FORMAT util ity statement with the
FILE option

6. Execute the format program

7. Load the database using the output from the format program as the input to
FASTLOAD

8. Back up the database areas using the BACKUP util ity statement or any comparable
backup util ity

9. Verify the validity of the loaded database using:

■ IDMSDBAN, to verify the physical integrity of the database

■ CA OLQ, CA Culprit, or some other retrieval job to verify the data in the

database

Loading Database Records Using a User-Written Program

Before you load a database using a user-written program, you must firs t organize the
data in the input fi le. This section Discusses how to organize the record occurrences
followed by the procedure to load the database.

Loading Database Records Using a User-Written Program

678 Database Administration Guide

Organizing Input Data for a User-Written Program

Organize Record Occurrences to Match Schema

To make the database load as efficient as possible, you need to organize the record
occurrences to match the structure of the database. For example, you want a CALC

owner record to be followed by its VIA member records. The discussion below identifies
how to organize the data.

Step 1: Identify the Record Types

The first step in organizing input data is to identify the type of each record. To identify

the type of record, add the record's ID to the beginning of each record occurrence. For
example, the ID of the DEPARTMENT record is 410; the ID of the EMPLOYEE record is
415.

Step 2: Identify CALC Clusters

A CALC cluster is an occurrence of a CALC record, all of its VIA member records, and all
VIA member records of a VIA member record occurrence. For efficient database
processing, all the records within a CALC cluster should fit on one page (and thereby,

can be processed with one I/O). If the records do not fit on one page, then store the
most frequently accessed record types immediately following the CALC record
occurrence so that they have a better chance of being stored on the same page as the
owner.

Step 3: Form CALC Cluster Hierarchies

A hierarchy is a collection of CALC clusters. For example, if a CALC record occur rence in
one cluster is owned by a record in another cluster, you have a hierarchy of CALC

clusters. In the Commonweather database, both the OFFICE and DEPARTMENT records
own occurrences of the EMPLOYEE record, which in turn owns VIA member record
occurrences. In deciding what records to include in the CALC cluster hierarchy, consider
the number of CALC record occurrences. For example, if the DEPARTMENT record has

many more occurrences then the OFFICE record, then store the EMPLOYEE records
immediately after the owning DEPARTMENT record. This potentially saves an I/O
because you won't need to reestablish currency on the DEPARTMENT record occurrence

later on.

Hierarchies are loaded from top-to-bottom, left-to-right order. When you store the
owner of a CALC cluster, you establish currency to store the member of a CALC cluster.

Loading Database Records Using a User-Written Program

Chapter 22: Loading a Non-SQL Defined Database 679

Step 4: Sort the Records in a Hierarchy

To sort records within a hierarchy, add a prefix to the beginning of the record

occurrence. The prefix contains the record id and sequence number for each level of the
hierarchy. For example, the DEPARTMENT, EMPLOYEE, EMPOSITION record hierarchy
might have a prefix that looks l ike this:

ID and sequence number of each level in
hierarchy

Record ID Record
Occurrence

410/1 0/0 0/0 410 Department

record 1

410/1 415/1 0/0 415 Employee
record 1

410/1 415/1 420/1 420 Emposition
record 1

410/1 415/1 420/2 420 Emposition

record 2

Step 5: Order the Occurrences of Each Hierarchy

A database page will typically hold more than one database cluster. Therefore, you can

load multiple clusters with one I/O if you load all the hierarchies that target to the same
database page. To sort the hierarchy occurrences, add the CALC target page number of
the top cluster in the hierarchy to the beginning of the input record.

Note: To determine the CALC target page, use IDMSCALC in the program that creates
the input fi le; for more information about IDMSCALC, see the CA IDMS Utilities Guide.

Step 6: Include Records Excluded from the Hierarchies

Some records do not fall within a hierarchy. For example, suppose you did not include

the OFFICE record, which owns EMPLOYEE record occurrences in a CALC cluster
hierarchy. To load owner records that fall outsi de of a hierarchy:

1. Position the non-VIA owner records at the beginning of the input fi le, before any

records that form part of a hierarchy, by adding an identifier to the beginning of
each input record. For example, the identifier of the OFFICE record type might be 4
and the identifier of the DEPARTMENT, EMPLOYEE, EMPOSITION hierarchy might be
5.

2. Add the key of the non-VIA owner record to the end of the hierarchy record
occurrence; at load time, use the key to find the owner before storing the member.
For example, add the OFFICE-CODE-0450 field to the end of each EMPLOYEE record
occurrence.

Loading Database Records Using a User-Written Program

680 Database Administration Guide

Step 7: Order Sorted and Indexed Sets

Sorted sets should always be loaded in the same order as the sort sequence. To sort the

input data:

■ For a set within a hierarchy, replace the sequence number field at the record's level
in the hierarchy with the sort key of the set; for example, if the EMP-EMPOSITION

set is a sorted set, replace the sequence number for occurrences of the
EMPOSITION record with the record's sort key in the prefix portion of the input
record.

■ For a set outside of a hierarchy, follow these steps:

1. Re-define the set as manual

2. Create a fi le containing records with these fields: the owner's page, the set
name, the owner's CALC key, the set's sort key, the dbkey of the member
record

3. Sort the fi le in:

– Descending order by page

– Ascending order by set name and owner key

– Either ascending or descending order by sort key

4. After loading the database, connect the set members using a user-written
program

Step 8: Sort the Input Records

Sort the input records in:

■ Ascending order by identifier

■ Descending order by target page number

■ Ascending order by the concatenation of all ID and sequence fields that represent a
hierarchy

Note: If records are to be stored VIA a system-level index, they should be sorted in the
reverse order of their VIA index so records at the end of the index will be processed first

by the user-written format program. This ensures that the physical sequence of the
records on the database matches the sequence of the index.

Loading Database Records Using a User-Written Program

Chapter 22: Loading a Non-SQL Defined Database 681

Loading the Database

To load a database for the first time using a user-written program, follow these steps:

Action Statement

Write and compile a load program that
specifies how to load the data.

Optionally, tailor the DMCL to be used
for the load operation

ALTER DMCL

If altered, make the DMCL available to
the local mode runtime environment

See Chapter 5, "Defining, Generating, and
Punching a DMCL"

Format the database fi les to be loaded FORMAT

Load the database using as input the

sorted input fi le

Execute the user-written program

If necessary, connect members to sets
treated as manual during the load

Execute the user-written program

Back up the database areas BACKUP or any comparable backup util ity

Verify the validity of the loaded
database

CA OLQ, CA Culprit, or some other retrieval
job to verify the data in the database

Loading Database Records Using a User-Written Program

682 Database Administration Guide

Example

The following example shows code to load the DEPARTMENT hierarchy:

read an input record

repeat until end-of-file

 if record-id = 410

 move DEPARTMENT record

 store DEPARTMENT

 else if record-id = 415

 move OFFICE key

 find calc OFFICE

 move EMPLOYEE record

 store EMPLOYEE

 else if record-id = 420

 move JOB key

 find calc job

 move EMPOSITION record

 store EMPOSITION

 else if record-id = 425

 move SKILL key

 find calc SKILL

 move EXPERTISE record

 store EXPERTISE

 end-if

read next input record

end-repeat

More Information

■ For more information about util ity statements mentioned, see the CA IDMS Utilities
Guide.

■ For more information about loading an SQL-defined database, see Chapter 23,

“Loading an SQL-Defined Database”.

■ For more information about the IDMSCLCX user exit, see the CA IDMS System
Operations Guide.

Chapter 23: Loading an SQL-Defined Database 683

Chapter 23: Loading an SQL-Defined
Database

This section contains the following topics:

Database Loading (see page 683)
Loading Considerations (see page 686)

Contents of the Input File (see page 690)
Loading Procedures (see page 691)

Database Loading

Loading SQL Defined Databases

CA IDMS provides util ities to efficiently load a database that has been defined with SQL

DDL statements. The entire load operation can be performed as a single operation using
the LOAD util ity statement, or it can be executed as separate operations using a
combination of the LOAD, BUILD, and VALIDATE util ity statements. Regardless of which

method is used, loading an SQL-defined database consists of multiple phases and steps
within those phases.

Loading Phases

The following table summarizes the phases involved with loading an SQL-defined

database. The load process was designed to accommodate both small databases and
very large databases and allow flexibility in tailoring the load process to the
characteristics of the data being loaded:

Phase What it does

Load Loads the specified tables

Build Builds indexes and linked index constraints for the specified tables; this

phase can be bypassed if neither l inked index constraints nor
non-clustering indexes are defined on the specified tables

Validate Validates referential constraints in which the specified tables participate

Database Loading

684 Database Administration Guide

Steps Within Phases

Each of these phases, in turn, is composed of sub-phases called steps. The following

table summarizes the function of each step:

Phase Step What it does

Load Step 1 Processes data in preparation for sorting; this step can be
bypassed if data is already sorted

 Step 2 ■ Loads the table rows

■ Connects l inked, clustered constraints

■ Builds clustering indexes

Build Step 1 Performs an area sweep in the absence of an intermediate
extract fi le

 Step 2 Finds the db-keys of rows that participate in the referenced

table of a l inked index referential constraint

 Step 3 Builds non-clustering indexes and linked indexes

 Step 4 Updates the prefixes of rows that participate as the

referencing table of a l inked index referential constraint

Validate Step 1 Validates only those constraints that can be processed
efficiently in a single pass and extracts information about
other referential constraints

 Step 2 Validates any referential constraints bypassed in Step 1

Loading Options

CA IDMS/DB offers you the following loading options:

Option Description When to use it

Full load Loads, builds and validates the
specified tables

Always, unless special
considerations apply

Phased load Executes each phase (load, build,
and validate) separately

When loading a number of tables
one at a time or in groups; defer
build and validate phases until all

the tables have been loaded

Segmented load

Loads portions of input in
separate operations

When loading extremely large
tables; defer the build and
validate steps until all the input

records have been processed

Database Loading

Chapter 23: Loading an SQL-Defined Database 685

Option Description When to use it

Stepped load

Executes each step of a phase

(load, build, and validate)
separately

When loading extremely large

tables for which external sort
packages may be more efficient
or when space for intermediate

work fi les or tape drives is at a
premium

Load Flow Diagram

The following diagram il lustrates the load and build phases of the process described

above:

Loading Considerations

686 Database Administration Guide

CA IDMS/DB Enforces All Constraints During the Load

CA IDMS/DB enforces all constraints during the load process. That is, it enforces:

■ Referential constraints

■ Data type constraints

■ Check constraints

■ Unique constraints

For example, if a table allows only specified values to be stored in a column, CA
IDMS/DB stores only valid values. CA IDMS/DB also assigns default values for columns
for which no input values are supplied, provided the column was defined to allow null or

default values.

Loading Considerations

Loading Multiple Tables

If you are loading multiple tables, it may be necessary to split the process into separate

load operations and process them in a certain order. Use these rules to determine
whether this is necessary and the correct sequence in which to perform the load
operations.

■ Tables clustered through a l inked or unlinked constraint cannot be loaded until the

referenced table is loaded and any index on the referenced key has been built.

■ Linked index constraints cannot be built until the referenced table is loaded and any
index on the referenced key has been built.

Using Pre-Sorted Data

Before CA IDMS/DB loads data, it sorts the data using a sort sequence best suited to the

table's characteristics. If you have already sorted the input data, you can tell CA
IDMS/DB to skip the sort phase.

Providing Sorted Data

To sort the data yourself, follow these recommendations to achieve the most efficient
load for your tables:

Table Characteristic Recommended Sort Sequence

Table has a clustered index Sort on index key

Table has a clustered
referential constraint

Sort on foreign key of the referencing table

Loading Considerations

Chapter 23: Loading an SQL-Defined Database 687

Table Characteristic Recommended Sort Sequence

Table has a CALC key Sort on CALC-key target page; to do this, use the

IDMSCALC util ity program to determine the target page
and append the target page to the input record

Database Buffers Used During Load

You must load a database in local mode. The DMCL that you use for the load should
specify buffers for the areas being loaded that contain at least 10 pages. The larger the
buffer, the more efficient the load.

Reserving Space on the Page

If you want to leave free space on the database pages following the load, add an area
override in the DMCL that specifies a page reserve. After the load is complete, remove
the area override so that new rows and index entries can use the free space. This

technique is especially useful for areas that contain only indexes or that contain tables
clustered on an index.

Error Handling

CA IDMS/DB may encounter errors during each phase of the load process. You can
instruct CA IDMS/DB what to do in response to these errors, for exa mple, to continue

processing or to quit following a specified number of errors. The following table
summarizes the types of errors that can occur within each phase:

Phase Type of Error Corrective Action

All phases Table not defined in the catalog Define the table in the catalog

Load ■ Check constraint violation

■ Invalid data values

■ Unique constraint violation on
a CALC key,clustering index, or
l inked clustered constraint

■ Referential constraint

violation on a l inked clustered
constraint

No corrective action needed;
however, row is not inserted and

subsequent build and validate
phases may fail.

Ensure that the referenced table has
been loaded and any referenced key
index built prior to loading the
referencing table.

Loading Considerations

688 Database Administration Guide

Phase Type of Error Corrective Action

Build ■ Unique constraint violation on

non-clustering indexor l inked
index constraint

■ Referential constraint

violation on a l inked index
constraint

FIX PAGE util ity statement or reload

data

Validate Invalid referential constraint ■ INSERT to store missing owner

■ UPDATE to change invalid

foreign key

■ DELETE to remove invalid
referencing rows

Input Data Used in the Build Phase

You can enter the BUILD phase of the load process using data stored in intermediate
work fi les created by the LOAD phase or by instructing CA IDMS/DB to extract the
necessary information as the first step in the build process. Intermediate work fi les are

generally used when you intend to enter the BUILD phase immediately following the
LOAD phase; typically, you instruct CA IDMS/DB to extract the information if some time
elapses between the two phases.

The following table summarizes how to specify these opti ons:

BUILD Phase
Input

Load and Build
Option

LOAD Statement BUILD Statement

Intermediate
work fi le

Phased load and build LOAD NO VALIDATE None

 Stepped load LOAD STEP1
EXTRACT

Start with BUILD
STEP2

Extracted work
fi le

Phased load LOAD NO BUILD Start with BUILD
STEP1

Loading Considerations

Chapter 23: Loading an SQL-Defined Database 689

Enhancing Load Performance

The following list identifies some ways to enhance the performance of your load

operations:

■ If possible, load several tables at the same time

■ Validate several tables at once

■ Always load using sorted data; either letting CA IDMS/DB sort the data or by
supplying pre-sorted data

■ Increase the number of pages in the buffer(s)

Contents of the Input File

690 Database Administration Guide

Contents of the Input File

Mixed Input Records

The input fi le to the load process can contain different types of input records. For
example, the input fi le might contain an EMPLOYEE record, followed by a DEPARTMENT
record, followed by an OFFICE record and so on; to distinguish the different types of

records, you must include a record identifier (in this example, at the end of the record):

0574SMITH JOHN 254 WILLOW ST NEEDHAM MA 4035 415

4001PERSONNEL MASON PAULA 5538 0020 410

0020CHICAGO 3 CORPORATE PLACE 450

Note: By including record identifiers at the end of the input records, you may be able to
avoid l isting individual column definitions in the LOAD statement.

Loading Multiple Tables

You can load more than one table in the same load operation by using one of the
following techniques:

■ By specifying selection criteria applied against records in the input fi le. For example,

to load the EMPLOYEE table, using the example above, you could select all input
records with value '415' as a record identifier.

■ By selecting specific fields from one input record that contains data pertinent to
multiple tables. For example, the input record may contain values to be stored in

table EMPLOYEE and values to be stored in table DEPARTMENT.

Identifying Columns Implicitly

If, in the LOAD statement, you do not explicitly l ist the columns in the table to be

loaded, CA IDMS/DB assumes that values are supplied for all columns in the table. It
starts with position 1 of the input record and extracts input values for each column of
the table. To be successful, the input data must match the order, data type, length, and
null criteria specified in the table definition. Columns that allow null values must be

represented by a data field and an indicator field, which is described under "Null
values".

Identifying Columns Explicitly

If you supply values for only some of the columns within the table or if the order or data
types of the values in the input fi le do not match that of the columns in the table, you
must tell CA IDMS/DB:

■ Where to find the column values in the input record by specifying their start

position relative to the beginning of the input record

■ The data type of the input record value

■ The null value criteria for input values, if applicable

Loading Procedures

Chapter 23: Loading an SQL-Defined Database 691

If you omit a column name, the col umn must either:

■ Allow null values

■ Allow a default value

Data Types

If you explicitly l ist the columns to be loaded, the data type of the value to be stored can
be different from the data type defined for the column provided the data types are
compatible. For example, a column defined as CHARACTER is compatible with data types

VARCHAR, DATE, TIME, and TIMESTAMP.

Note: For more information about compatible data types, see the CA IDMS SQL
Reference Guide.

Null Values

Null values in an input fi le can be represented as either:

■ A specific data value, designated by you in the NULL IF clause of the LOAD
statement.

■ An indicator field, immediately following the data field. This field is either a 1, 2, or
4 byte binary field and must contain a value of:

– 0, to indicate a non-null data value

– -1, to indicate a null value

If you do not explicitly l ist the columns to be loaded, then all columns that permit
null values must be followed by a 4-byte indicator field.

Loading Procedures

The remainder of this chapter provides procedures and examples for:

■ Steps that apply to all load procedures

■ A full load procedure

■ A phased load procedure

■ A segmented load procedure

■ A stepped load procedure

Note: Only one LOAD, BUILD, or VALIDATE statement may be performed during one
execution of the batch command facil ity; for example, you cannot submit two LOAD

statements at one time.

Loading Procedures

692 Database Administration Guide

Steps That Apply to All Load Procedures

Steps Before the Load

Regardless of what load procedure you use, perform the following actions before
loading the data:

Action Statement

Define the tables to be loaded CREATE TABLE

Create the input fi le or fi les of data to be

loaded using CA Culprit, CA OLQ (batch),
or a user-written program

Vary the areas in which the tables reside
offline to DC/UCF

BACKUP or a comparable backup util ity

Steps After the Load

After loading the data, perform these steps:

Action Statement

Optionally, verify the result by retrieving
data from the loaded tables

SELECT statements

Back up the areas in which the tables

reside

BACKUP or a comparable backup util ity

Vary the areas online DCMT VARY AREA with the ONLINE option

Full Load Procedure

Steps

Follow these steps to perform a full load of an SQL-defined database:

Action Statement

In local mode, load, build, and validate one or more database
tables

LOAD

Loading Procedures

Chapter 23: Loading an SQL-Defined Database 693

Example

This example loads, builds, and validates tables ASSIGNMENT, CONSULTANT, EXPERTISE,

SKILL, and PROJECT. Each of these tables is independent of those in other areas of the
EMPLOYEE database. By default, CA IDMS/DB sorts the input data before it loads the
tables. Also by default, if it finds any errors during any phase of the load procedure, it

stops.

To load each table, CA IDMS/DB applies selection criteria against each input record it
reads. For example, the ASSIGNMENT table receives all input records where the value in
position 210 of the input record equals '512'. Similarly, the EXPERTISE table receives all

input records where the value in position 210 equals '320'.

load

 into demoproj.assignment

 where position 210 = '512'

 (emp_id position 1 smallint,

 proj_id position 3 char(4),

 start_date position 13 date,

 end_date position 23 char(8) null if '01-01-01')

 into demoproj.consultant

 where position 210 = '222'

 into demoproj.expertise

 where position 210 = '320'

 (emp_id position 1 smallint,

 skill_id position 3 smallint,

 skill_level position 5 char(2) null if '99',

 exp_date position 7 date)

 into demoproj.project

 where position 210 = '416'

 into demoproj.skill

 where position 210 = '445';

Loading Procedures

694 Database Administration Guide

Phased Load Procedure

Steps

Follow the steps shown next to perform a phased load:

Note: Optionally, back up the database areas between the load and build steps if you

want to recover the data in the event of a failed job step.

Action Statement

Identify the following tables:

■ All tables clustered through referential constraints; if
multiple levels of clustering exist, the tables in each level
must be loaded in a separate operation before those at a
lower level

■ All referencing tables in l inked index constraints where
the referenced key is an index; if multiple levels of such a
structure exist, the tables in the higher levels must be

loaded before those at a lower level

In local mode, load and build all tables not identifi ed in Step 1
above.

LOAD with the NO
VALIDATE option

■ For each clustering level,load and build all tables clustered

through referential constraints

■ For each linked index level, load and build all tables that
participate in l inked index constraints

LOAD with the NO

VALIDATE option

Validate the referential constraints of all the loaded tables VALIDATE SEGMENT

Example

In this example, the tables BENEFITS, COVERAGE, EMPLOYEE, and POSITION are loaded
in a phased load procedure. The tables have the following characteristics:

Table Characteristics

BENEFITS References EMPLOYEE in a l inked, clustered constraint

COVERAGE References EMPLOYEE in a l inked, clustered constraint

EMPLOYEE References DEPARTMENT in an unlinked constraint

POSITION References EMPLOYEE in a l inked, clustered constraint

Loading Procedures

Chapter 23: Loading an SQL-Defined Database 695

To load the tables, load and build the EMPLOYEE table first, followed by the remaining
tables. After all 4 tables are loaded, validate the referential constraints that exist

between them. Each of these statements must be executed in a separate job step:

load

 into demoempl.employee

 where position 150 = '415'

 no validate;

load

 into demoempl.benefits

 where position 150 = '478'

 into demoempl.coverage

 where position 150 = '488'

 into demoempl.position

 where position 150 = '492'

 no validate;

 validate segment demoempl;

Segmented Load Procedure

Steps

Follow the steps l isted next, to perform a segmented load:

Action Statement

Load the input records in groups; for

example, the first 1,000,000, the second
1,000,000 and so on

LOAD NO BUILD using the FROM and FOR

clauses for each group of input records

Build the table indexes BUILD INDEXES NO VALIDATE

Build the indexed constraints BUILD CONSTRAINTS NO VALIDATE

Validate the referential constraints of
the tables within the segment

VALIDATE

Loading Procedures

696 Database Administration Guide

Example

This example uses a segmented load to load table EMPLOYEE, which contains more than

2,000,000 rows. By default, each input record is to be stored in the EMPLOYEE table,
with each field in the input record corresponding in length and data type to each
column defined for the EMPLOYEE table.

The first LOAD statement loads 1,000,000 rows in the table, starting with the first input
record. CA IDMS/DB will notify the user for each 100,000 input records processed. The
second LOAD statement processes the next 999,999 input records beginning with input
record 1,000,001. The third LOAD statement processes the remaining input records.

Because the table is so large, indexes and indexed constraints are built in separate steps
using the BUILD statements. Finally, the referential constraints for the table are
validated.

load

 into demoempl.employee

 no build

 for 1000000

 notify 100000;

load

 into demoempl.employee

 no build

 from 1000001

 for 999999

 notify 100000;

load

 into demoempl.employee

 no build

 from 2000000

 notify 100000;

build indexes

 for demoempl.employee

 no validate

 notify 100000;

build constraints

 for demoempl.employee

 no validate

 notify 100000;

validate table demoempl.employee

 notify 100000;

Loading Procedures

Chapter 23: Loading an SQL-Defined Database 697

Stepped Load Procedure

Steps

Follow the steps l isted next, to perform a stepped load:

Note: If you want to be able to recover the database in the event of a failed job step,

back up the database areas between each job step.

Action Statement

1. In local mode, load one or more database tables choosing one

of the following options. If you intend to build indexes and
relationships for the tables immediately following the load step,
choose one of the options that creates an intermediate work
fi le:

1.1Load, creating intermediate extract fi les for the build phase LOAD STEP1
EXTRACT BOTH (the
default)

1.2 Load, creating an intermediate extract fi le for building
indexes

LOAD STEP1
EXTRACT INDEXES

1.3 Load, creating an intermediate extract fi le for building
relationships

LOAD STEP1
EXTRACT

RELATIONSHIPS

1.4 Load, creating no intermediate extract fi le LOAD STEP1 NO
EXTRACT

2. If you specified WITHOUT PRESORT, skip this step. Otherwise,
sort the data using an external sort program and the sort cards
supplied by CA IDMS/DB. Then continue the load phase of the
stepped load procedure.

LOAD STEP2

3. If you specified LOAD STEP1 NO EXTRACT, perform this step
to collect the data necessary to build the table indexes and
indexed constraints

BUILD STEP1

4. Sort the data using an external sort program and the sort
cards supplied by CA IDMS/DB

5. After all of the tables have been loaded or after
completingthe previous step, determine the db-keys of rows in

any tables that participate as the referenced table in a l inked
index referential constraint

BUILD STEP2

6. Sort the data using an external sort program and the sort
cards supplied by CA IDMS/DB

Loading Procedures

698 Database Administration Guide

Action Statement

7. Build unclustered indexes and linked index

referentialconstraints

BUILD STEP3

8. Sort the database using an external sort program and the sort
cards supplied by CA IDMS/DB

9. Update the prefixes of any tables that participate as
thereferencing table in a l inked index referential constraint

BUILD STEP4

10. Perform the first pass at validating the relationships
between tables that participate in referential constraints

VALIDATE STEP1

11. Sort the database using an external sort program and the
sort cards supplied by CA IDMS/DB

12. Perform the second pass of validatingreferential constraints;
generally, a second pass is required for unlinked relationships if

either the referenced table or referencing table contains a CALC
key.

VALIDATE STEP2

Loading Procedures

Chapter 23: Loading an SQL-Defined Database 699

Example

In the next example, the DBA loads an SQL-defined database in the following steps:

■ Loads tables CUSTOMER and INVENTORY using pre-sorted data

■ Loads tables ORDERS and PARTS using pre-sorted data

■ Using an area sweep, extracts information for building indexes and indexed

constraints

■ Builds the indexes and constraints for the table using separate steps and external
sorts

■ Validates referential constraints

load step1

 into custschm/customer

 where position 300 = '435'

 into custschm.inventory

 where position 300 = '457'

 without presort

 no extract;

load step1

 into custschm.orders

 where position 200 = '335'

 into custschm.parts

 where position 200 = '345'

 without presort

 no extract;

build step1

 for custschm.customer

 custschm.inventory

 custschm.orders

 custschm.parts;

Sort the data:

build step2;

Sort the data:

build step3;

Sort the data:

build step4;

validate step1;

Loading Procedures

700 Database Administration Guide

Sort the data:

validate step2;

More Information

■ For more information about the BACKUP, LOAD, BUILD, VALIDATE util ity statements
and the IDMSCALC util ity program, see the CA IDMS Utilities Guide.

■ For more information about SQL data types, see the CA IDMS SQL Reference Guide.

■ For more information about loading a non-SQL defined database, see Chapter 22,

“Loading a Non-SQL Defined Database”.

■ For more information about DCMT commands, see the CA IDMS System Tasks and
Operator Commands Guide.

■ For more information about CA Culprit and CA OLQ, see the document set for each
product.

Chapter 24: Monitoring and Tuning Database Performance 701

Chapter 24: Monitoring and Tuning
Database Performance

This section contains the following topics:

Monitoring Guidelines (see page 701)
Monitoring Facil ities (see page 702)

Items to Monitor and Tune (see page 706)
Reducing I/O (see page 717)

Monitoring Guidelines

Why You Need to Monitor

Eventually, a database may begin to outgrow its initial allocation of space, with resulting

increased I/O and poor response time. If you don't monitor your databases on a regular
basis, these conditions can become critical, forcing you to take emergency actions at an
inconvenient time.

Suggested Monitoring Schedule

Consider using the following schedule as the basis for monitoring database
performance:

Monitoring tool Monitoring
frequency

Information provided

JREPORT 004 Daily Summary information on the database processing

activities for each program recorded in the journal
fi le

IDMSDBAN report
2

Weekly Area detail statistics, such as number of logically
full pages and number of relocated records

IDMSDBAN report
5

Monthly Set detail statistics, such as the number of pages
needed to store a chained set

PRINT SPACE Daily Area space util ization statistics

IDMSDBAN (all

reports)

Monthly or as

needed

Set statistics, including broken chains, record data,

and area data

Monitoring Facilities

702 Database Administration Guide

Keep a History of Meaningful Statistics

Keep a history of meaningful statistics so that you can identify abnormal conditions

when they arise.

SQL Considerations

Most of the information in this chapter applies to both SQL and non-SQL defined

databases. Text that applies to only one or the other will be noted. In addition, much of
the chapter applies to the physical structures that underlie the database definition.
Therefore, one set of terms will be used for these physical entities. For example, chain
sets are the physical structure used to implement both SQL linked constraints and

non-SQL sets defined with the MODE IS CHAIN clause.

Monitoring Facilities

Online and Batch Components

CA IDMS/DB offers the following online and batch tools for you to use to monitor the

performance of your databases:

Facility Uses

Performance Monitor To monitor:

■ Real-time database and system statistics

■ System-wide, wait-time statistics for a unit of time

Statistics about resource usage by individual programs

DCMT commands To display definitions and run-time statistics for entities

associated with a DC/UCF system

IDMSDBAN util ity program To check for broken chains and to display statistics and
data for sets, records, and areas

OPER WATCH commands To display dynamic run-time statistics associated with
DC/UCF systems

PRINT INDEX util ity
statement

To monitor the structure of user-owned and
system-owned indexes

PRINT SPACE util ity
statement

To monitor space util ization in segments or areas

PRINT JOURNAL util ity

statement

To display checkpoint information about transactions

recorded on an archive or tape journal fi le

PRINT util ity statement To display the contents of requested database pages

JREPORTs To monitor journal and database usage statistics

Monitoring Facilities

Chapter 24: Monitoring and Tuning Database Performance 703

Facility Uses

SREPORTs To monitor system and database usage statistics

Online print log (PLOG) To display system messages, system trace information,
and snap dumps from the DDLDCLOG area

UPDATE STATISTICS util ity

statement

To refresh statistical information about SQL defined

databases, and non-SQL defined databases that are
accessed by SQL commands.

More Information

■ For more information about Performance Monitor, see the CA IDMS Performance

Monitor User Guide.

■ For more information about util ity programs and statements, see the CA IDMS
Utilities Guide.

■ For more information about DCMT and OPER commands, see the CA IDMS System

Tasks and Operator Commands Guide.

■ For more information about JREPORTs and SREPORTs, see the CA IDMS Reports
Guide.

Database Statistics

What is Collected

The DBMS collects a number of statistics on a run-unit or SQL transaction level that are
categorized as basic and extended statistics. The following tables provide a description

of each.

Basic Statistics

Run-unit or SQL

Transaction Level

Description

Pages read Specifies the number of database pages physically read.

Pages written Specifies the number of requests made to write a database

page.

Pages requested Specifies the number of times the DBMS requested that a
database page can be read.

CALC record on target

page

Specifies the number of times a CALC record was stored and

the record occurrence fit on its target page.

CALC record overflow Specifies the number of times a CALC record was stored and
the record occurrence overflowed its target page.

Monitoring Facilities

704 Database Administration Guide

Run-unit or SQL
Transaction Level

Description

VIA record on target
page

Specifies the number of times a VIA record was stored and the
record occurrence fit on its target page.

VIA record overflow Specifies the number of times a VIA record was stored and the

record occurrence overflowed its target page.

Record requested Specifies the total number of record occurrences the DBMS
accessed to satisfy DML requests.

Records current of

run-unit

Specifies the number of record occurrences that were made

current of run-unit.

Calls to the DBMS Specifies the total number of DML commands passed from the
user application to the DBMS.

Fragments stored Specifies the number of variable length record fragments

(SR4) stored by the run-unit.

Relocated records With a non-SQL defined database: Specifies the number of
variable length record fragments or relocated records brought

back to their original root or target page.

With an SQL defined database: Specifies the number of
records relocated from or returned to their original target
page.

Locks requested Specifies the total number of record locks requested.

Select locks held Specifies the number of select (shared) locks held at the end
of the run-unit.

Update locks held Specifies the number of update (exclusive) locks held at the
end of the run-unit.

Extended Statistics

Run-unit or SQL
Transaction Level

Description

SR8 records split Specifies the number of SR8 records that were split during

the life of the run-unit.

SR8 spawns Specifies the number of times that a new level of an index
was created due to the splitting of the index's top level
SR8.

SR8 records stored Specifies the number of SR8 records of all levels that were
stored into the database.

SR8 records erased Specifies the number of SR8 records of all levels that were
erased from the database.

Monitoring Facilities

Chapter 24: Monitoring and Tuning Database Performance 705

Run-unit or SQL
Transaction Level

Description

SR7 records stored Specifies the number of SR7 records stored into the
database.

SR7 records erased Specifies the number of SR7 records erased from the

database.

Total binary searches Specifies the total number of times the DBMS initiated a
binary search against an index.

Levels searched Incremented every time that the DBMS goes down a level

during a binary search throughout the life of the entire
run-unit across all accessed indexes.

Orphans adopted Specifies the number of orphaned user records that were
adopted back to their referencing level -0 SR8.

Fewest levels searched Specifies the fewest number of levels walked during a
binary search throughout the life of the run-unit.

Most levels searched Specifies the greatest number of levels walked during a

binary search throughout the life of the run-unit.

Where to find the statistics

The database statistics are initially accumulated on the run-unit level and can be
accessed through the following facilities:

■ JREPORTS report on the basic statistics from information written to the journal fi les.

■ ACCEPT 'statistics' DML commands allow the user to access both the basic and
extended statistics from a currently running program.

■ GET STATISTICS SQL DML commands allow an application program or the command
facil ity to access both the basic and extended statistics for the current SQL
transaction.

CA IDMS also consolidates the statistics from all run-units active for a CV task. These

values can be accessed through the foll owing facilities:

■ SREPORTs report on both the basic and extended statistics from data written to the
DCLOG.

■ PMARPTs report on the basic statistics from data written by the ApplicationMonitor
component of the Performance Monitor.

Items to Monitor and Tune

706 Database Administration Guide

Items to Monitor and Tune

Monitoring the Database

For your database, the major areas of degradation are:

■ Pages over 70% full

■ CALC and VIA (clustered) record overflow

■ Fragmented records

■ Inefficient index structures

■ An increase in logically-deleted or relocated records

Journal Use

Useful Statistics to Monitor

Statistic Meaning Action

Journal read

waits

Indicates CA IDMS/DB must wait to

read a page from a journal fi le into
the journal buffer during a rollback
operation.

Increase the number of pages

in the journal buffer

Journal page
util ization

Indicates the fullness of journal
pages written from the journal
buffer.

Create fuller journal buffers by:

■ Adjusting the journal
buffer page size in the
definition of the journal

buffer

■ Increasing the journal
TRANSACTION LEVEL

option at system
generation or using a
DCMT VARY JOURNAL
command

Where the Statistics are Reported

■ ARCHIVE JOURNAL util ity statement report

■ JREPORT 004

■ Performance Monitor

■ DCMT DISPLAY JOURNAL

Items to Monitor and Tune

Chapter 24: Monitoring and Tuning Database Performance 707

Buffer Utilization

Useful Statistics to Monitor

Statistic Meaning Possible action

Buffer util ization
ratio

Indicates the ratio of the number of
pages requested to the number
read; values less than 2 indicate a
problem with the buffer size or with

the design of the database

■ Increase the number
of buffer pages

■ Reassign fi les to
buffers

Forced writes Indicates the number of times CA
IDMS/DB had to write a buffer page
to storage in order to read a

database page

■ Increase the number
of buffer pages

■ Reassign fi les to

buffers

■ Issue COMMITs more
frequently in update

jobs

Buffer waits Indicates the number of times the
buffer was requested but was not
available

■ Increase the number
of buffer pages

■ Reassign fi les to

buffers

Where the Statistics are Reported

■ Performance Monitor

■ SREPORT 003

■ DCMT DISPLAY/VARY BUFFER

Space Management and Database Design

Useful Statistics to Monitor

Statistic Meaning Possible Action

Clustering ratio Indicates the ratio of the
number of records requested

to the number of pages
requested; ratios less than 4
indicate poor database design

or space availability problems

■ Redesign the database using
clustering more effectively

■ Increase the area's page size or
page range andunload and
reload the database

■ Reassign fi les to buffers

Items to Monitor and Tune

708 Database Administration Guide

Statistic Meaning Possible Action

Page space

availability

Indicates how full database

pages are
■ Increase the database page size

■ Increase the number of pages

Fragments
stored

Indicates the number of
fragments stored for a

variable-length record.

■ Increase the page size and read
each record in an update mode

■ Increase the page reserve size

■ Change fragmentation
specifications

Records

relocated

Indicates the number of

expanded records moved to a
new page due to lack of space

■ Unload/reload the database

■ Increase the page size and read
each record in an update mode

CALC cluster
ratio

Indicates the ratio of CALC
records stored on the target

page to the total number
(that is, hits plus overflow)
stored; values less than 1

indicate space availability
problems

Increase the area's page size or
number of pages and unload and

reload the database

VIA cluster ratio Indicates the ratio of VIA (or
clustered) records stored on

the target page to the total
number (that is, hits plus
overflow) stored; values less

than 1 indicate large clusters,
space availability problems, or
small page size

Increase the area's page size or
number of pages and unload and

reload the database

Effectiveness

ratio

Indicates the ratio of number

of records CA IDMS/DB
requests to the number that
are current-of-run-unit.

Values much higher than 1
indicate poor program logic
or set options

Review application/database

design. Consider use of PRIOR or
OWNER pointers and possible
elimination of some sorted sets.

(Note that l inked constraints in
SQL-defined databases always
include PRIOR and OWNER
pointers.)

Logically deleted
records

Indicates the number of
logically deleted records

Physically delete the logically
deleted records using the CLEANUP
util ity statement

Items to Monitor and Tune

Chapter 24: Monitoring and Tuning Database Performance 709

Where Statistics are Reported

■ JREPORT 004

■ SREPORTs 003, 007, and 009

■ Performance Monitor

■ IDMSDBAN util ity report 5

■ PRINT SPACE util ity statement report

■ PRINT JOURNAL util ity statement

■ UPDATE STATISTICS util ity statement report for the SQL catalog

Indexing Efficiency

Useful Statistics to Monitor

Statistic Meaning Possible action

Orphan

count

Indicates the number of

orphaned SR8 records.

Tune or rebuild the index if more than

25% of the member records are
orphaned.

Index
levels

Indicates the number of levels
in the index.

Tune or rebuild the index if the number
of levels exceeds the number originally

calculated

SR8 split Indicates the number of SR8
splits.

If the number of SR8 splits is high,
determine if applications frequently

insert a large group of index entries in
one spot; tune or rebuild the index to
balance it and cleanup orphan index
records.

Where the Statistics are Reported

■ Performance Monitor (Realtime monitor) Run Unit Detail screen

■ PRINT INDEX util ity statement

■ IDMSDBAN util ity report 5

Items to Monitor and Tune

710 Database Administration Guide

Tuning an Index

Tuning of an index should be done when any of the following conditions exist:

■ Index usage performance degradation

■ Index needs redimensioning

One way to tune an index is to rebuild it: for a non-SQL defined database, use MAINTAIN
INDEX, for an SQL-defined database, drop the index and recreate it.

An alternative way of index tuning is to use the TUNE INDEX util ity statement. TUNE
INDEX compares to rebuilding the index as follows:

TUNE INDEX Rebuild Index

Operating mode and
area availability to
applications

Local mode: offl ine

CV and batch-CV: online

Local mode: offl ine

Specialized
DMCL/schema needed

No Yes

Attributes that can

change

INDEX BLOCK CONTAINS and

PAGE RESERVE

All

You can run the TUNE INDEX command to do the following:

■ Enhance performance

– Eliminate orphans at all levels of the index. This improves performance if the

index is accessed at the bottom level.

– Rebalance SR8's. In an unbalanced index, more records have to be accessed
when traversing the index from the top to the bottom.

– Resequence SR8's. Optimum performance is obtained if the top level SR8
resides on the same page as the index owner and if the bottom level SR8's are
in physical sequence.

■ Rebuild the index to accommodate future growth

– Specify TEMPORARY PAGE RESERVE and TEMPORARY INDEX UTILIZATION to
define the attributes with which to tune the index.

Run TUNE INDEX online or in batch through central version mode if the affected area or
areas must remain online while the index is tuned.

Items to Monitor and Tune

Chapter 24: Monitoring and Tuning Database Performance 711

Database Locks

Useful Statistics to Monitor

Statistic Meaning Possible action

Number of
non-share
locks held

Indicates the number of non-share
locks (primarily update locks) held.
The larger the number of update
locks held, the greater the

probability of contention between
the tasks holding the locks and
other tasks accessing the same
database.

Issue COMMITs more frequently
in update jobs

Task wait
status

Indicates whether a task is waiting
for access to an area or record

■ Tasks that are waiting on
locks have an ECB type of
'LMGR Lock'.If you notice a

task waiting a long time on
one or more locks, review
ready modes and database
design, especially for

contention for OOAK and
FOAK records, by examining
all tasks exhibiting this

behavior for common
programs, functions, and
database references.

■ If overall throughput is

constrained, identify the
source; for example, CPU or
DASD usage.

■ If overall throughput is not
constrained, identify
potential deficiencies in
database or application

design or implementation;
for example, look at the
number of locks held by
individual programs;

determine if tasks contend
for OOAK and FOAK records
in which case lowering the

DEADLOCK DETECTION
INTERVAL might improve
the situation.

Items to Monitor and Tune

712 Database Administration Guide

Statistic Meaning Possible action

ECB type Denotes the type of resource being

waited on. In the case of area locks
and dbkey locks, this statistic will
contain the literal 'LMGR ECB'.

Note: in the Performance Monitor
this information is l isted under the
column headings 'First ECB',
'Second ECB', and 'Third ECB'.

Number of
shared locks
held

Indicates the number of share locks
held. Share locks allow transactions
other than the owning transaction
to read the row, but not to update

it. Thus, higher levels of share locks
can impede concurrency (and
throughput) if they are placed on

rows in areas that are heavily
accessed.

The number of locks held can be
reduced by increasing the
COMMIT frequency within the
application.

ISO (SQL only) Indicates the isolation level of the
transaction. The isolation level of a

transaction defines how long
retrieval locks are held.

Ensure that the transaction is
running in the appropriate

isolation level for the level of
data integrity required by the
application.

State (SQL
only)

Indicates the state of the
transaction which defines how the
transaction is affecting the data it is
processing:

■ Read only (RO) specifies that
the transaction is reading data
but not adding or updating.

■ Read write (RW) specifies that
the transaction intends to add
and update data.

Ensure that the transaction state
is appropriate for the type of
processing being performed.
Transactions that only read data

should have a state of RO.

Items to Monitor and Tune

Chapter 24: Monitoring and Tuning Database Perfo rmance 713

Statistic Meaning Possible action

Ratio of global

resource lock
requests to
local lock

requests

Indicates the number of times that

CA IDMS had to acquire or alter a
global lock on an area, page, or
record in order to service the

indicated number of local lock
requests. The larger this ratio, the
greater the inter-member
contention for resources, since CA

IDMS acquires global record and
page locks only if contention exists
between members.

■ Issue COMMITs more

frequently in update
transactions

■ Disperse frequently updated

data across more pages
within the area

■ Increase the size of the area,
especially if frequently

inserting or deleting data in
an area that is more than 70
percent full

■ Split the workload between

members to minimize
inter-member contention
for resources

Ratio of the
number of
global lock
waits to the

number of
global lock
requests.

Indicates the number of times that
CA IDMS had to wait for a global
lock request to complete. This ratio
is a measure of one or more of the

following types of contention:

■ Inter-member contention for
transaction resources

■ False contention caused by
synonyms when hashing to the
global lock table

■ Contention for operating

system resources such as
channels

■ Use operating system tools
to determine the nature of
the contention

■ Take the actions outlined

above to reduce
inter-member contention
for transaction resources

■ Increase the number of lock
table entries to reduce false
contention

Items to Monitor and Tune

714 Database Administration Guide

Statistic Meaning Possible action

Number of

times lock
storage
overflowed

Indicates the number of times that

CA IDMS had to acquire lock
storage dynamically in order to
satisfy a lock request. The larger

this number the more CPU cycles
that were expended to satisfy lock
requests. Additionally the storage
pool may become fragmented since

dynamically acquired storage may
not always be releasable.

■ Examine the overflow

details to determine the
type of storage overflows
that occurred

■ Determine the applicable
base factor for the type of
overflowing storage:

■ Session and class storage i s

based on the number of
logical terminal elements
(LTERMs) defined for the
system.

■ Resource and proxy storage
is based on the SYSLOCKS
system definition parameter

■ XES Request storage is
based on the maximum
number of tasks specified in
the system definition.

■ Increase the appropriate
base factor (the number of
LTERMs, SYSLOCKS, or

maximum number of tasks)
to increase the size of the
initial storage allocation,
and thus reduce the number

of overflows.

Items to Monitor and Tune

Chapter 24: Monitoring and Tuning Database Performance 715

Where the Statistics are Reported

■ For area contention:

– SREPORTs

– JREPORT 006

– Performance Monitor (Realtime monitor): Active User Task Detail, Active

System Task Detail screen, Transaction Detai l screen, and SQL Detail screen

– DCMT DISPLAY ACTIVE TASKS

– Area status codes from DCMT DISPLAY TRANSACTION transaction id

– Area status codes from OPER WATCH DB

– OPER WATCH TIME

■ For record contention:

– Status codes from OPER WATCH DB

– Status codes from DCMT DISPLAY TRANSACTION transaction id

– DCMT DISPLAY LOCK (shows longterm and notify locks held by logical
terminals)

■ For lock storage overflows:

– DCMT DISPLAY LOCK STATS

■ For inter-member contention in a data sharing environment:

– DCMT DISPLAY LOCK STATS

– DCMT DISPLAY DATA SHARING XES LOCKS

Reducing Area Contention

■ Ready areas in shared ready modes

■ Create a window for batch jobs

Reducing Record Contention

■ Have the application issue more COMMITs

■ Run applications that contend for a record serially, rather than concurrently

■ Have some applications use a different access route that avoids the record under

contention

■ Change the database design so that access can be less serialized

Items to Monitor and Tune

716 Database Administration Guide

Longterm Locks

Useful Statistics to Monitor

Statistic Meaning Possible action

Tasks having areas
locked

Shows which tasks have
areas locked

Use this information to identify tasks
that ready an area in protected or
exclusive mode, since this increases
the potential for throughput

degradation

Longterm/ notify
locks

Displays longterm or
notify lock statistics by
logical terminal

Use this information to identity tasks
that hold a large number of longterm
and/or notify locks

Where the Statistics are Reported

■ DCMT DISPLAY AREA

■ DCMT DISPLAY LOCK AREA/LTERM

SQL Processing

Useful Statistics to Monitor

Statistic Meaning Possible Action

Sorts performed The number of sorts performed as
the result of an SQL statement (the
result of processing the ORDER BY
clause)

Add additional indexes or
sorted constraints to reduce
the number of sorts

Maximum rows
sorted

The largest number of rows sorted
as the result of an ORDER BY clause

Add additional indexes to
eliminate the sort

AM recompiles The number of times access

modules were automatically
recompiled at runtime because of a
recompilation of the corresponding
program or dialog, or because of a

change in the underlying database
definition.

Examine the cause of

compilations. If necessary,
move frequently altered tables
to areas with table level stamp
synchronization.

Reducing I/O

Chapter 24: Monitoring and Tuning Database Performance 717

Where the Statistics are Reported

■ SREPORTs

■ Performance Monitor

■ IDMSDBAN util ity reports (database structure)

Reducing I/O

I/O can be reduced through:

■ Caching fi les in memory

■ Database reorganization

■ Application design

■ Database design

■ The UPDATE STATISTICS util ity command (for SQL-accessed databases)

Each of these is discussed as follows.

Reducing I/O

718 Database Administration Guide

By Caching Files in Memory

If a database fi le is cached in memory, the DBMS looks in the cache before reading a
database page from disk. If the page resides in the cache, the retrieval I/O is eliminated.
If the page must be read from the disk, it is saved in the cache to satisfy future retrieval

operations. Database fi les with a high number of I/Os are good candidates for caching in
memory.

There are two basic types of fi le caching: shared cache which uses coupling facil ity
services to enable a single cache to be shared by multiple central versions and memory

cache which is accessible only by a single central version. The remainder of this
discussion focuses on memory cache. For information about shared cache, see the CA
IDMS System Operations Guide.

Note: Memory caching is available only for non-native VSAM files.

To enable the use of memory cache, take the following steps:

■ Decide which fi les to cache by using standard performance-monitoring tools to
determine the database fi les with the most I/O. For example, you can use the DCMT

DISPLAY STATISTICS FILES to get a l ist of all fi les and their associated I/O counts or
look at gathered operating system statistics. Choose fi les with the highest retrieval
counts.

■ Change the DMCL definition to specify MEMORY CACHE YES for each fi le to be

cached. For details, see DMCL Statements. Alternatively, use the DCMT VARY FILE
command to dynamically initiate the use of memory cache for one or more fi les. For
more information, see the CA IDMS System Tasks and Operator Commands Guide.

■ Compute the total amount of storage that is needed to cache the selected fi les. To
do this, for each fi le, multiply the number of blocks in the fi le by the fi le's block size
and total the results. The resulting value is the amount of storage needed. Ensure
that sufficient storage of the required type is available to all jobs that use the

altered DMCL.

If the operating system supports 64-bit storage, the cache is allocated in 64-bit storage if
sufficient memory is available. If no or not enough 64-bit storage is available to hold the

entire fi le, the fi le will not be cached in memory. For details, see 7.13, "DMCL
Statements".

Note: For more information about operating-specific considerations in using memory
cache and 64-bit storage, see the CA IDMS System Operations Guide.

Reducing I/O

Chapter 24: Monitoring and Tuning Database Performance 719

Through Database Reorganization

Database reorganization includes:

■ Reducing full pages by changing the size of a database page or increasing the
number of pages

■ Reducing overflow by changing the size of a database page or increasing the
number of pages

■ Decreasing fragmentation for non-SQL defined databases by:

– Specifying page reserve

– Changing page size

– Reassigning records

– Redefining fragmentation specifications

– Increasing the number of pages

■ Increasing the efficiency of an index's structure by decreasing the number of levels
in the index and/or assigning SR8 records to a separate page range

■ Reducing logically deleted and/or relocated records by physically deleting logically

deleted occurrences using the CLEANUP util ity statement and/or unloading and
reloading the data

■ Reducing the number of fragments and/or relocated records by increasing the page
size and reading all records in an update mode

More Information

■ For more information about changing page size, see Chapter 27, “Modifying
Physical Database Definitions"

■ For more information about modifying indexes, see Chapter 31, “Modifying

Indexes, CALC Keys, and Referential Constraints” and Chapter 33, “Modifying
Schema Entities”

■ For more information about reassigning records and redefining fragmentation

specifications, see Chapter 33, "Modifying Schema Entities".

■ For more information about util ity statements, see the CA IDMS Utilities Guide.

Reducing I/O

720 Database Administration Guide

Through Application Design

Selecting the Optimal Path

The first step to determine if the application is optimally designed is to determine if it is
accessing the data it needs, using the access path that will create the fewest number of

I/Os. To determine if this is true:

1. Walk through the application and identify the actual transaction path

2. Review the existing database design and determine if there is a more efficient way
to:

■ Access the needed records

■ Process the necessary relationships

Through Database Design

Take into account the following database design considerations for reducing I/O:

■ Adding sets, indexes, pointers, redundancy

■ Changing set type, set (index) order for non-SQL defined databases

■ Changing location (area) of record or index, index and/or set stored VIA (or
clustered)

■ Changing UNLINKED constraints to LINKED (SQL-defined databases) or repeating
item (non-SQL defined databases)

■ Splitting a record

Reducing I/O

Chapter 24: Monitoring and Tuning Database Performance 721

By Using UPDATE STATISTICS (SQL-Accessed Databases)

When to Use UPDATE STATISTICS

Execute the UPDATE STATISTICS util ity statement at the following times:

■ Periodically (according to the needs of the application) to reflect shifts in the
distribution of data in the database (for example, changes in owner/member ratios,
area space util ization, index layout)

■ After individual applications that alter the distribution of data; for example,

monthly or year-end summary and offload processing

Use UPDATE STATISTICS on SQL-Defined Tables or Areas

Run UPDATE STATISTICS on individual tables or whole areas. The resulting statistics are
stored in the SQL catalog and are used by the Access Module Compiler to generate
optimal access strategies for SQL processing. Access modules that reference the tables
whose statistics have been updated can then be recompiled to take advantage of the

updated information. Table/access module cross -reference information on the catalog
can be used to determine which access modules to recompile.

Use UPDATE STATISTICS on NON-SQL Schemas If They are Accessed by SQL

Run UPDATE STATISTICS on some or all areas defined in a non-SQL Schema. The

resulting statistics are kept in the dictionary that defines the non-SQL schema. If the
database is accessed by SQL the statistics will be used by the Access Module Compiler to
generate optimal access strategies for SQL processing.

Restrictions on Statistics and Non-SQL Schemas

Non-SQL statistics are kept with the schema definition in the dictionary. This means
statistics may be kept for only one physical database per schema. When processing an

SQL command, only the current set of statistics will be used for that command
regardless of the physical database being accessed by that command. The user must
decide which physical database will provide the statistics that best meets their needs

and run UPDATE STATISTICS against that database.

Chapter 25: Dictionaries and Runtime Environments 723

Chapter 25: Dictionaries and Runtime
Environments

This section contains the following topics:

Dictionaries (see page 723)
CA-supplied Dictionary Definitions (see page 728)

Defining New Dictionaries (see page 734)
Establishing a Default Dictionary (see page 740)
Runtime Environments (see page 741)

Dictionaries

A dictionary is a special CA IDMS database that contains definitions of other databases,

DC/UCF systems, and applications. Information in the dictionary is organized into entity
types that correspond to major data processing components (for example, tables,
records, programs). The dictionary becomes populated with information about the data

processing environment as various CA IDMS/DB software components are executed.

System and Application Dictionaries

Each DC/UCF system must contain a system dictionary. Any number of application
dictionaries can also exist in a CA IDMS/DB runtime environment. The following table
describes both types of dictionaries:

Dictionary Description

System Includes all information required to establish, maintain, and control
the processing environment:

■ The DC/UCF system definition

■ The physical database definitions

Each runtime environment must have a system dictionary named

SYSTEM.

Application Optional dictionaries that contain information specific to a particular
application, group of applications, or development groups:

■ The logical database definitions

■ Maps, dialogs, records, programs, elements

A runtime environment may contain zero or more application
dictionaries the names of which are user-defined.

Dictionaries

724 Database Administration Guide

Physical Components of a Dictionary

Dictionary Areas

Dictionaries are composed of the following areas:

Area name Description

DDLDML Contains the following types of information:

■ DC/UCF system definitions

■ Non-SQL schema and subschema definitions

■ Maps

■ Dialogs

■ Source modules

■ Record and element descriptions

■ IDD users

■ Classes and attributes

DDLDCLOD Contains load modules associated with entities contained in the

DDLDML area; for example:

■ Map load modules

■ Dialog load modules

■ Subschema load modules

DDLCAT Contains definitions of physical databases (segments, DMCLs,
database name tables); at sites with the SQL option, contains
definitions of SQL entities (tables, constraints, indexes, and so on)

DDLCATX Contains indexes defined on entities stored in the DDLCAT area

DDLCATLOD Contains:

■ DMCL load modules

■ Database name table load modules

■ Access modules at sites with the SQL option

DDLDCMSG Contains system and user-defined messages

Dictionaries

Chapter 25: Dictionaries and Runtime Environments 725

Logical Components of a Dictionary

Dictionary Components

You can group the six areas of the dictionary into logical components based on the
inherent relationships that exist between the dictionary areas:

Logical Component Dictionary Areas

Base definition component DDLDML DDLDCLOD

Message component DDLDCMSG

Catalog component DDLCAT DDLCATX DDLCATLOD

Components of a System Dictionary

A system dictionary always contains all three components:

■ A base definition component

■ A catalog component

■ A message component

Components of an Application Dictionary

An application dictionary may contain all or a subset of the components. At sites
without the SQL option, an application dictionary usually contains only a base definition

component and a shared message component.

Sharing the Message Area

In most cases, an application dictionary will not have its own message area. Since the

runtime system uses only the system message area (SYSMSG.DDLDCMSG) to display
messages, most application dictionaries will share the system message area, rather than
having a separate message area.

Dictionaries

726 Database Administration Guide

Assigning Dictionary Areas to Segments

Segment by Component

The six areas that make up a dictionary should be segmented by logical component.
That is, a segment should be defined for each of the base definition, catalog, and

message components of a dictionary.

In most cases, a dictionary will not have its own message component, but will share the
system message area SYSMSG.DDLDCMSG. Sites without the SQL option do not need to
define a catalog segment for their application dictionary.

Define a Database Name

If a dictionary is made up of more than one segment, you must define a database name
to represent the dictionary. The database name identifies all of the segments that
together make up the dictionary.

The one exception to this is a dictionary comprised of only two segments, one of which
is the SYSMSG segment. A database name is unnecessary because CA IDMS/DB
automatically uses the system message area (in the SYSMSG segment) if no message

area is associated with the dictionary.

Dictionaries

Chapter 25: Dictionaries and Runtime Environments 727

Sharing Dictionary Areas

Sharing Components

By separating dictionary components into segments, you can share those components
between dictionaries, as i llustrated next:

To share SEG1 between dictionary A and dictionary B, define a database name for each
that includes the SEG1 segment.

System Dictionary Components

You should not share the base definition component and the catalog component of the
system dictionary with application dictionaries. Since the system dictionary contains
critical information needed to control and execute your CA IDMS environment, it should
be accessed only by authorized personnel and should be reserved for the following

information:

■ DC/UCF system definitions

■ Physical database definitions

CA-supplied Dictionary Definitions

728 Database Administration Guide

Sharing Individual Areas

It is possible to separate a component into multiple segments so that individual areas

(such as a load area) can be shared across dictionaries. While this is supported, it is not
recommended because of the potential for naming conflicts between the dictionaries.
For example, a dialog in one dictionary could have the same name as a map in another

dictionary, both of which have an associated load module.

Important: Under no circumstances should the DDLCAT and DDLCATX areas be placed in
different segments.

Page Groups

All segments associated with a dictionary must have the same page group (and
maximum number of records per page). If you have different page groups, you will
receive errors when you attempt to access the dictionary through IDD or other
dictionary tools.

This rule also applies to the system message area (SYSMSG.DDLDCMSG). It can only be
included in dictionaries whose other segments have the same page group as the
SYSMSG segment. When processing a dictionary with a difference page group, IDD

cannot be used to display or update messages. Maintenance of the system message
area can only be done from a dictionary that has the same page group as the SYSMSG
segment.

Page Groups and SQL

When defining an application dictionary that contains a catalog component, the page
groups of the base and catalog components may be different. The page group of the
catalog component has no impact on the page group of data that may be accessed while

connected to the dictionary.

CA-supplied Dictionary Definitions

Provided on Install Tape

As part of installation, you receive definitions for entities required to operate your CA
IDMS environment. These definitions are described next:

Definition Description

Non-SQL descriptions of the

dictionary

A schema and subschemas describing the base

definition and message components and that part
of the catalog component used for physical
database definitions

CA-supplied Dictionary Definitions

Chapter 25: Dictionaries and Runtime Environments 729

Definition Description

At sites with the SQL option, an

SQL description of the catalog
component

Table definitions of the catalog component of the

SYSTEM schema and views based on those tables
in the SYSCA schema

Runtime messages Messages used by CA-written software

Entity, class, and attribute
definitions

Definitions of base entity, class, and attributes
used by CA IDMS tools

Protocols and standard error
routines

Generalized source modules that the DML
processors use to convert DML statements into

calls for DBMS services

DC/UCF device types, task, and
program definitions

Definitions used to generate DC/UCF systems

CA Culprit report modules CA Culprit source modules used to produce

standard reports; for example, JREPORTs,
SREPORTs, and DREPORTs

Nondatabase structures Records that are not associated with a CA IDMS

database. CA IDMS/DB stores the definitions of
nondatabase structures as records in the
dictionary; applications can copy the definitions of
the records at compile time by means of COPY

IDMS or INCLUDE IDMS compiler-directive
commands.

How the Dictionary Gets Populated

Dictionaries are populated with CA-supplied definitions in one of three ways:

Definition Description

IDMSDIRL Loads the non-SQL schema and subschemas that

define the base definition and message
components of the dictionary

IDD, IDMSCHEM, IDMSUBSC Populates the base definition and message

components of the dictionary using source
members provided at installation

Command facil ity Populates the catalog component of the
dictionary with system table and view definitions

(SQL-option only)

CA-supplied Dictionary Definitions

730 Database Administration Guide

Where Information Should Reside

The information listed above can reside in either a system dictionary or an application

dictionary, or both:

Information Where it should reside

Non-SQL schema and subschema
describing the dictionary

In one dictionary associated with each system; the
definitions may be shared across systems

SQL definitions In all dictionaries having a catalog component
(SQL-option only)

Messages In all system message areas

Entity, class, and attribute
definitions

In all system and application dictionaries

Protocols and standard error

routines

In all application dictionaries

DC/UCF device types, task, and
program definitions

In all system dictionaries

CA Culprit report modules In the same dictionary that contains the non-SQL
schema and subschema definitions of the
dictionary

Logical Database Definitions

CA-Supplied Schema

The following table describes the non-SQL schema supplied by CA that describes a

dictionary. Its definitions are stored in a dictionary by the IDMSDIRL util ity.

Schema Areas

IDMSNTWK DDLDML DDLDCLOD DDLCAT DDLCATX DDLDCMSG

CA-supplied Dictionary Definitions

Chapter 25: Dictionaries and Runtime Environments 731

CA-Supplied Subschemas

The following table describes subschemas supplied by CA and the CA IDMS products or

facil ities that make use of them. Most of these subschemas are distributed as object
modules only. The source definitions of IDMSNWKA and IDMSNWKG are also stored in a
dictionary by IDMSDIRL for user-reporting purposes.

Subschema Areas Used By

IDMSCATL DDLCATLOD ■ Loader processing

■ CLOD DC/UCF system task

■ PUNCH util ity statement

Database administrators when executing
util ities such asUNLOAD/RELOAD against the
DDLCATLOD area

IDMSCATZ DDLCAT DDLCATX
DDLCATLOD

■ The command facil ity for SQL processing
andphysical database definition

■ User applications issuing dynamic SQL

requiring automatic recompilation of an
access module or issuing SQL DDL
statements

■ Database administrators when executing

util ities such as UNLOAD/RELOAD against
the DDLCAT and DDLCATX areas

IDMSNWKA DDLDML

DDLDCLOD
DDLDCMSG

■ IDD DDDL compiler (IDMSDDDL)

■ DC/UCF system generation compiler
(RHDCSGEN)

■ DC/UCF startup

■ Schema and subschema compilers

(IDMSCHEM and IDMSUBSC)

■ CA IDMS/DC mapping compilers (MAPC
and batch)

■ CA ADS compilers

■ CA OLQ

■ CA Culprit

■ The Automatic System Facil ity (ASF)

IDMSNWKL DDLDCLOD Loader processing and the CLOD DC/UCF
system task

CA-supplied Dictionary Definitions

732 Database Administration Guide

Subschema Areas Used By

IDMSNWKT DDLDML SQL processing to access non-SQL defined

database descriptions

IDMSNWKU DDLDML
DDLDCLOD

DDLDCMSG
DDLCAT DDLCATX

Database administrators when executing
util ities such as UNLOAD/RELOAD against

dictionary areas DDLDML, DDLDCLOD, and
DDLDCMSG

IDMSNWKG DDLDML
DDLDCLOD

DDLDCMSG
DDLCAT DDLCATX

IDMSRPTS

IDMSNWK6 DDLDCMSG System message processing

IDMSNWK7 DDLDCRUN QUED and QUEM DC/UCF system tasks and

queue processing

IDMSNWK8 DDLDML CLIST and send-message processing

IDMSNWK9 DDLDCLOG Online print log (OLP) and PRINT and ARCHIVE

LOG util ity statements

Note: Additional non-SQL schemas and subschemas are supplied at installation time. For more information, see
the CA IDMS Security Administration Guide.

SQL Table Definitions

At sites with the SQL option, CA IDMS/DB also provides the table and view defin itions

that describe the catalog component of the dictionary. These definitions are distributed
under two schema names:

Definition Description

SYSTEM Contains the catalog table definitions; no changes can be made to any of
the entities in the SYSTEM schema

SYSCA Contains the CA-supplied views of the SYSTEM tables and records in the

IDMSNWK schema; these views restrict access to table definition
information based on a user's SELECT authority on the table.

Note: For more information and a description of the table definitions, see the CA ADS
Reference Guide.

CA-supplied Dictionary Definitions

Chapter 25: Dictionaries and Runtime Environments 733

Protocols, Nondatabase Structures, and Modules

The following table summarizes the protocols, nondatabase structures, and modules
placed in the dictionary at installation time:

Language Protocol Non-database structure Module

COBOL BATCH

BATCH-AUTOSTATUS

CICS

CICS-AUTOSTATUS

CICS-EXEC

CICS-EXEC-AUTO

CICS-STANDARD

CICS-STD-AUTO

DC-BATCH

IDMS-DC

IDMS-DC-NONAUTO

IDMSDML-PROTOCOL-S
QL

DB-STATISTICS

SUBSCHEMA-CTRL for

 IDMS-DC

 IDMS-DC-NONAUTO

 DC-BATCH

 CICS

 CICS-AUTOSTATUS

 CICS-EXEC

 CICS-EXEC-AUTO

 CICS-STANDARD

 CICS-STD-AUTO

SUBSCHEMA-LR-CTRL

IDMS-STATUS for

BATCH-AUTOSTATUS

IDMS-DC

DC-BATCH

all others

PL/I BATCH

CICS

CICS_EXEC

DC_BATCH

IDMS_DC

IDMSDML_PROTOCOL_
SQL

DB-STATISTICS

SUBSCHEMA_CTRL for

 CICS

 CICS_EXEC

 IDMS_DC

 DC_BATCH

SUBSCHEMA_LR_CTRL

IDMS_STATUS

IDMS_STATUS

(IDMS_DC)

Assembler BATCH

CICS

CICS-AUTOSTATUS

CICS-EXEC

CICS-EXEC-AUTO

IDMSDC

SSCTRL for

 CICS

 CICS-AUTOSTATUS

 CICS-EXEC

 CICS-EXEC-AUTO

SSLRCTL

DBSTATS

Defining New Dictionaries

734 Database Administration Guide

Defining New Dictionaries

Defining New Catalog Components

Physical Characteristics

The segment definition for all catalog components must have the following

characteristics:

■ The names of the areas must be DDLCAT, DDLCATX, and DDLCATLOD

■ The page size of the areas should be at least 4856 plus page reserve

All other physical characteristics can be chosen based on processing requirements,

hardware configuration, and standard database design techniques. For example, choose
an access method and page size appropriate for your disk devices and consider using a
page reserve on the DDLCATX area.

Catalog Components for Non-SQL Use

Without the SQL option, only a system dictionary requires a catalog component. When
defining the corresponding segment, specify FOR NONSQL (or take the default).

Catalog Components For SQL Use

If the SQL option has been installed at your site, one or more of your application

dictionaries will have an associated catalog component in order to define tables and
views. The corresponding segment must have the following attributes:

■ FOR SQL specification on the segment

■ STAMP BY AREA for the DDLCAT and DDLCATLOD areas

■ STAMP BY TABLE for the DDLCATX area

The catalog associated with the system dictionary can also be defined with these
attributes. If it is, SQL can be used to examine the physical database definitions stored in

the system dictionary.

When a new SQL catalog component is defined, take the following steps after the new

segment has been formatted:

1. Define the system tables and views in the new catalog using the TABLEDDL and
VIEWDDL members in the installation source library

2. Issue the UPDATE STATISTICS util ity statement against the new DDLCAT area

3. Grant appropriate authorities to permit authorized users to create schemas in the
new dictionary

Defining New Dictionaries

Chapter 25: Dictionaries and Runtime Environments 735

Defining New Application Dictionaries

Steps

To create a new application dictionary, follow these steps:

Action Steps

Start a session in the command facil ity CONNECT TO SYSTEM

Define segments for the base definition
and the catalog components of the

dictionary

Note that you need the catalog
component only if the SQL option is
installed at your site.

CREATE SEGMENT

Add the new segment(s) to the DMCL
used at runtime

ALTER DMCL with the ADD SEGMENT
clause

If you created two segments, define a new

database name in the database name
table

CREATE DBNAME

Generate, punch, and linkedit the new
DMCL

See Chapter 27, “Modifying Physical
Database Definitions”

If you created a new database name,
generate, punch, and linkedit the new
database name table

See Chapter 28, “Modifying Database
Name Tables”

Create and format new dictionary fi les See Chapter 17, “Allocating and
Formatting Files”

Make the DMCL available to the runtime
system

See Chapter 27, “Modifying Physical
Database Definitions”

Populate the dictionary with CA-supplied
definitions

Use IDD DDDL statements to add entity,
class, and attribute definitions, protocols,
and standard error routines

If you created a new catalog component:

■ Populate it with the system table and view definitions

■ Execute UPDATE STATISTICS for the DDLCAT area of the new dictionary

■ Grant appropriate authorities to define schemas in the new dictionary

Defining New Dictionaries

736 Database Administration Guide

Example

The following example il lustrates how to define a new application dictionary. It consists

of a new definition component in segment TESTDICT, a new catalog component in
segment TESTCAT, and the system message component.

The database name for the dictionary is TESTDICT.

1. Define the new TESTDICT and TESTCAT segments and their areas and fi les.

create segment testdict

 for nonsql

 page group 0

 maximum records per page 255;

add file testdml

 assign to testdml

 dsname 'test.ddldml';

add file testlod

 assign to testlod

 dsname 'test.ddldclod';

add area ddldml

 primary space 10000 pages

 from page 5000001

 maximum space 20000 pages

 page size 4276

 within file testdml

 from 1 for all blocks;

add area ddldclod

 primary space 1000 pages

 from page 5020001

 maximum space 5000

 page size 8196

 within file testlod

 from 1 for all blocks;

Defining New Dictionaries

Chapter 25: Dictionaries and Runtime Environments 737

create segment testcat

 for sql

 page group 0

 maximum records per page 255

 stamp by area;

add file testcat

 assign to testcat

 dsname 'test.testcat';

add file testcatx

 assign to testcats

 dsname 'test.testcatx';

add file testcatl

 assign to testcatl

 dsname 'test.testcatl';

add area ddlcat

 primary space 5000 pages

 from page 5030001

 maximum space 10000 pages

 page size 8196

 within file testcat;

add area ddlcatx

 primary space 1000 pages

 from page 5040001

 maximum space 3000 pages

 page size 8196

 within file testcatx;

add area ddlcatlod

 primary space 500 pages

 from page 5045001

 maximum space 5000 pages

 page size 8196

 within file testcatl;

Defining New Dictionaries

738 Database Administration Guide

2. Modify the DMCL

3. Generate, punch, and linkedit the new DMCL:

generate dmcl idmsdmcl;

4. Define a new database name for the dictionary

add dbname alldbs.testdict

 segment testdict

 segment testcat

 segment sysmsg;

5. Generate, punch, and link the database name table:

generate table dbtable alldbs;

6. Create and format new dictionary fi les:

format segment testdict;

format segment testcat;

7. Populate the dictionary using the appropriate source from the installation source
library.

8. Execute UPDATE STATISTICS for the new DDLCAT area:

update statistics for area testcat.ddlcat;

9. Assign appropriate authorities within the new dictionary.

Defining New System Dictionaries

Steps

To create a system dictionary for a new system, follow these steps:

Action Steps

Start a session in the command facil ity CONNECT TO SYSTEM

Defining New Dictionaries

Chapter 25: Dictionaries and Runtime Environments 739

Action Steps

Create new segments that contain these

dictionary areas

■ DDLDML

■ DDLDCLOD

■ DDLCAT

■ DDLCATX

■ DDLCATLOD

■ DDLDCMSG

Note: Use segment names that are
different than existing segment names.

CREATE SEGMENT

If you created more than one segment,
create a database name table entry that

contains all the segments you created

CREATE DBNAME

Add the segment(s) to the DMCL ALTER DMCL with the ADD SEGMENT
clause

Generate, punch, and link the DMCL See Chapter 27, “Modifying Physical
Database Definitions"

If you created more than one segment,
generate, punch, and link the database

name table

See Chapter 28, “Modifying Database
Name Tables"

Format the new dictionary fi les FORMAT FILE/SEGMENT

Grant appropriate administrative

privileges to authorized individuals on and
within the new dictionary

See the CA IDMS Security Administration

Guide

Re-define the dictionary segment(s) in the
new dictionary by either:

■ Creating the segments directly

■ Punching the segment definitions
from the current SYSTEM dictionary

and re-adding them to the new
dictionary

Make sure the segment name of the
message area in the new dictionary is

SYSMSG. Define additional segments
necessary for a complete runtime
environment.

■ CREATE SEGMENT

■ PUNCH SEGMENT

Establishing a Default Dictionary

740 Database Administration Guide

Action Steps

Define a database name table that

includes the database name SYSTEM;
SYSTEM must identify the new dictionary
segments. Add additional entries as

necessary.

■ CREATE DBTABLE

■ CREATE DBNAME

Create a new DMCL with associated
database buffers,a journal buffer, and
journal fi les

See Chapter 5, "Defining, Generating, and
Punching a DMCL"

Add the new segments and associate the
database name table with the new DMCL

ALTER DMCL

Generate, punch, and link the new DMCL See Chapter 5, "Defining, Generating, and
Punching a DMCL"

Generate, punch and link the new
database name table

See Chapter 6, "Defining a Database Name
Table"

Populate the system dictionary with the

following CA-supplied definitions:

■ Entity, class, and attribute definitions

■ DC/UCF device types, tasks, and
programs

If the new catalog segment was defined as
FOR SQL, complete its definition.

See 25.3.1, "Defining New Catalog
Components".

Establishing a Default Dictionary

What is a Default Dictionary

A default dictionary is the dictionary that will be accessed by CA IDMS tools if you don't
specify a dictionary by other means such as using a DCUF SET DICTNAME command or a

CONNECT statement.

Defining a Default Dictionary

To define a default dictionary for your runtime environment, include a subschema
mapping in the database name table associated with the runtime DMCL for the

IDMSNWK subschemas. For example, the following statement establishes TESTDICT as
the default dictionary for the runtime environment using the ALLDBS database name
table:

create dbtable alldbs

 add subschema idmsnwk? maps to idmsnwk? dbname testdict;

Runtime Environments

Chapter 25: Dictionaries and Runtime Environments 741

Runtime Environments

Central Version or Local Mode

CA IDMS/DB can run within a DC/UCF system as a central version or in local mode:

■ Central version operations provide database services to batch or online
applications. Multiple users can gain access to a database concurrently.

■ Local mode operations are batch operations that do not run under a central
version. In local mode, only one user at a time has access to a database area in
update mode.

Data Sharing Environment

Data sharing is an environment in which two or more central versions operate

cooperatively through the use of a coupling facility. In this environment, multiple central
versions may concurrently access a database area in update mode.

Central Version Runtime Components

The following table l ists the components needed for a central version runtime
environment:

Component Description

System dictionary Defines the DC/UCF system and physical database entities

DDLDCLOG Contains central version log records when the log fi le for
the central version is assigned to the database

DDLDCRUN Contains runtime queue information used by CA-supplied
tools and online user programs

DDLDCSCR Contains runtime scratch information used by CA-supplied
tools and online user programs

SYSMSG.DDLDCMSG Contains CA-supplied and user-defined messages

DDLSEC Contains user and group information

Application dictionaries

User databases

SYSTRK reference Contains a description of the central version's database

environment.

Runtime Environments

742 Database Administration Guide

Considerations

■ The segment name of the system message area must be SYSMSG.

■ The segment(s) associated with DDLDCLOG and DDLDCRUN must be included in the
SYSTEM database name.

■ Each central version must have its own DDLDCLOG. In a non-data sharing

environment, each central version must also have its own DDLDCRUN area. In a
data sharing environment, the DDLDCRUN area may be shared among members of
a data sharing group.

■ The DDLDCSCR component is not needed if scratch information is maintained in

memory. If the DDLDCSCR component is used, each central version must have its
own and the segment associated with the DDLDCSCR must be included in the
SYSTEM database name.

■ The DDLSEC area may not be necessary depending on your security

implementation.

■ The SYSTRK reference is needed if change tracking is in effect for the central
version.

More Information

■ For more information about sharing the DDLDCRUN area, see the CA IDMS System
Operations Guide.

■ For more information about security, see the CA IDMS Security Administration
Guide.

■ For more information about specifying the location of scratch information, see the
CA IDMS System Generation Guide.

■ For more information about Change Tracking and referencing SYSTRK fi les, see
"Change Tracking" in the CA IDMS System Operations Guide.

Local Mode Runtime Components

The following table l ists the components needed for a local mode runtime environment:

Component Description

System dictionary Defines the DC/UCF system and physical database
entities

SYSMSG.DDLDCMSG Contains CA-supplied and user-defined messages

DDLSEC Contains user and group information

DDLOCSCR Contains runtime scratch information used by local
mode CA-supplied tools and user programs issuing
SQL requests

Application dictionaries

Runtime Environments

Chapter 25: Dictionaries and Runtime Environments 743

Component Description

User databases

SYSTRK reference Enables the local mode application to share the
database environment of a CV.

Considerations

The segment name of the system message area must be SYSMSG.

■ The DDLSEC area may not be necessary depending on your security
implementation.

■ The DDLOCSCR is always optional. If it is not available, scratch information is stored

in memory or in the DDLDCSCR area.

■ At least the default dictionary should be available in local mode. Additional
application dictionaries may be needed for loading subschemas and processing SQL
requests.

■ Including a reference to a SYSTRK fi le is only available if the central version is using
change tracking.

More Information

■ For more information about security, see the CA IDMS Security Administration

Guide.

■ For more information about specifying the location of scratch information, see the
CA IDMS System Generation Guide.

■ For more information about Change Tracking and referencing SYSTRK fi les, see

"Change Tracking" in the CA IDMS System Operations Guide.

SYSIDMS Parameter File

About SYSIDMS Parameters

A SYSIDMS parameter is a parameter that can be added to the JCL stream of a batch job

running in local mode or under the central version. You can use SYSIDMS parameters to
specify:

■ Physical requirements of the environment, such as the DMCL and database to use
at runtime

■ Runtime directives that assist in application execution

■ Operating system-dependent fi le information

For a complete l ist of the parameters that can be specified, see the CA IDMS Common

Facilities Guide.

Runtime Environments

744 Database Administration Guide

Establishing Session Options

Established at Signon

CA IDMS establishes options for your runtime session when you signon on to a DC/UCF
system or when CA IDMS/DB issues its first database request from a batch application

(in local mode or under the central version) or external teleprocessing monitor. The
manner in which CA IDMS implements the options and how they affect your session
depends on the runtime environment.

Specifying a Default Database or Dictionary

CA IDMS/DB provides several ways to specify a session default dictionary or database.
The methods available depend on the runtime environment.

Online Processing

To specify a session default in an online environment, you can:

■ Specify DICTNAME/DICTNODE or DBNAME/DBNODE attributes in a system or user

profile

■ Issue a DCUF command

■ Issue a compiler SIGNON or CONNECT statement naming the dictionary and/or
database from within an online CA IDMS/DB compiler or tool (this will update the

default dictionary for the runtime session)

Batch Processing

To specify a session default dictionary for a batch central version or external
teleprocessing monitor application, you can use:

■ An IDMSOPTI module (for non-SQL applications only)

■ A SYSCTL fi le

■ A SYSIDMS parameter fi le

Note: For more information about how CA IDMS/DB determines which database or

dictionary to access when provided with information by the program, IDMSOPTI
module, SYSCTL fi le, and SYSIDMS fi le, see the CA IDMS System Operations Guide.

Local Mode Processing

To specify a session default for local mode, you can use:

■ An IDMSOPTI module (for non-SQL applications only)

■ A SYSIDMS parameter fi le

Runtime Environments

Chapter 25: Dictionaries and Runtime Environments 745

More Information

■ For more information about database name tables, see Chapter 6, “Defining a
Database Name Table".

■ For more information about the SYSCTL fi le and IDMSOPTI module, see the CA IDMS

System Operations Guide.

■ For more information about dictionary entities, see the CA IDMS IDD DDDL
Reference Guide.

■ For more information about SYSIDMS parameter syntax, see the CA IDMS Common

Facilities Guide.

Chapter 26: Migrating from Test to Production 747

Chapter 26: Migrating from Test to
Production

This section contains the following topics:

Migration (see page 747)
Establishing Migration Procedures (see page 748)

Implementing Migration Procedures (see page 749)
Identification Aids (see page 757)
Migration Tools (see page 760)
General Methods (see page 761)

Additional Considerations (see page 772)

Migration

Migrate Definitions from One Dictionary to Another

Whether you have multiple dictionaries under a single CA IDMS/DB system or several

dictionaries under separate CA IDMS/DB systems, you probably need to migrate
definitions from one dictionary to another. Typically, migration occurs when testing is
complete and an application is ready for production. At that time, the database and
application definitions must be moved from the test into the production environment.

Considerations for Non-SQL and SQL Defined Data

The need to migrate applies to SQL-defined and non-SQL defined databases and to
applications using SQL or navigational DML. Most of this chapter applies to both SQL
and non-SQL equally. Text that applies specifically to one or the other will be noted.

Migration Aids

CA IDMS Dictionary Migrator is a product supplied by CA that can be extremely helpful

for migrating applications from one environment to another. For more information, see
the CA IDMS Dictionary Migrator User Guide.

Establishing Migration Procedures

748 Database Administration Guide

Establishing Migration Procedures

Considerations

Because many of the pieces of an application, such as subschemas, maps, and dialogs,
exist in both source and load module format, you must consider the following questions
when you migrate from one dictionary to another:

■ Should you copy or move the components?

■ Should you migrate and recompile source code to produce load modules?

■ Should you migrate just the load modules?

Accessibility of the Source Code

The major benefit of a complete, fully documented application is that the proper source
code is accessible when needed for debugging. If a problem arises and the source code
resides in a properly controlled production environment, the source code can easil y be

found and it will correspond exactly to the load module(s) where the problem was
encountered.

Availability of Disk Space

A trade-off to migrating a fully documented application is the amount of disk space
required. The space may be in one environment, such as production, or may be spread

out over a number of environments, such as development, test, and production.
Determining exactly how much disk space is necessary depends on whether you decide
to copy the application into the production environment or simply move it.

Redundancy

If you choose to maintain separate copies of the application, you must contend with the

trade-offs of redundancy. Often, updates to one copy must also be made to the other,
and they both must be made within a short period of time to maintain consistency.

Accessibility of Information

If you maintain only one copy of the application, you use a minimum amount of disk
space and do not have to contend with redundancy. However, accessibility of

information becomes a consideration. If the information is secured so that only one
person is able to access it, procedures must be developed that allow maintenance
programmers and all members of the staff to obtain reports of component definitions.

At the same time, you must ensure that there is ample security so that no one can make
accidental or malicious updates that would invalidate production applications.

Implementing Migration Procedures

Chapter 26: Migrating from Test to Production 749

Implementing Migration Procedures

Steps

There are essentially four steps involved in migration:

1. Determine the types of components to migrate

Carefully examine the circumstances for dependencies and other relationships

among the components involved.

2. Determine the sequence of migration

Components that do not depend on the definitions of other components should be
first on the list.

3. Identify the components

Identify the names, version numbers, and, as appropriate, languages of the
individual components that you need to migrate.

4. Migrate the components using the batch and online compilers and util ities

These steps are discussed on the following pages.

Before You Begin

Before you begin a migration, you may want to back up all involved fi les. These fi les can
include:

■ Source and target DDLDML, DDLDCLOD, DDLCAT, DDLCATX, and DDLCATLOD areas

■ Source and target source libraries

■ Source and target load libraries

■ Source and target JCL procedure libraries

These backups provide coverage during the migration as well as after the migration is
complete. If problems arise at any time, you can restore individual components or entire
fi les from the backups.

Implementing Migration Procedures

750 Database Administration Guide

Step 1: Determine the Types of Components to Migrate

The components to be migrated should include not only what needs to be migrated but
also what is affected by the migration. The descriptions that follow identify components
typically involved in migration and how these affect other components.

CA ADS Application Structure

The application structure is saved as a load module in the DDLDCLOD area of the data
dictionary; no source definitions for the application are stored in the DDLDML area. The
application structure is relatively autonomous. If you make changes to the application

structure, you do not need to recompile any other application components.

Changes to the application structure, however, can logically affect other components,
specifically dialogs. For example, if you change a response name, you will want to
change the response field value of any response processes you expect to execute before

control is passed to the response. The application will execute without modifying the
dialog, but it will not produce the expected results.

Maps

Changes to maps fall into two categories:

■ Critical changes

■ Noncritical changes

Critical changes update the date/time stamp. Any dialogs that use the map must be
recompiled before they can be executed. Critical changes to maps include:

■ Adding a data field to the map

■ Deleting a data field from the map

Noncritical changes to maps do not cause the map date/time stamp to be updated and,
therefore, do not affect any other application components.

Implementing Migration Procedures

Chapter 26: Migrating from Test to Production 751

Dialogs

Dialogs associate subschemas or access modules, maps, and process code. The dialog

load module contains executable process source code. Recompiling a dialog containing
SQL statements creates a new relational command module (RCM). Any access modules
that include that RCM must then be recompiled also. Recompiling a dialog does not

affect any other application component.

Process Source Code

Process source code is stored in the data dictionary. Process code is compiled by the
dialog compiler and becomes executable when the dialog is compiled. To have changes

to process source code reflected in the dialog load module, you must recompile the
dialog.

RCMs (SQL DML Applications Only)

If a program/dialog containing SQL statements is recompiled, an RCM is automatically

created for it and stored as a load module in the DDLDCLOD area. If the program/dialog
load module is copied intact to the production system, the RCM load module must also
be copied.

Subschemas (Navigational DML Applications Only)

If you change a subschema associated with a dialog, map, or program, you do not need
to recompile the dialog, map or program. If the subschema changes cause you to
change the logic of a process module, you will need to recompile the dialog(s) in which
the module is used. If the subschema changes affect the lengths of data elements or

records or the procedural code in a program, you will need to recompile and relink the
program.

Access Modules (SQL DML Applications Only)

Access modules must be compiled from scratch using the catalog that defines the

database to be accessed. They cannot be copied in load module form like other
application components. A typical migration would copy the RCM load modules, apply
any needed database definition changes and then create all access modules used by the

application, using the CREATE ACCESS MODULE command.

Implementing Migration Procedures

752 Database Administration Guide

Non-SQL Data Definitions

Non-SQL data is defined in records that consist of record elements. Records are either

database records, which are included in a schema, or work records, which are defined
through the DDDL compiler.

Changes to database records require that all subschemas that use those records be

recompiled. All SQL access modules that reference those records must also be
recompiled for SQL applications that access non-SQL defined databases. Changes to
either database records or work records may require map and/or dialog recompilation.

Some changes to database records require some form of restructuring to incorporate

those changes into the existing database.

Note: For more information about modifying the schema definition of a non-SQL
defined database, see Chapter 33, “Modifying Schema Entities".

SQL Data Definitions

Data is defined in tables that consist of columns. Changes to these tables require that all

access modules that use those tables be recreated. Depending on the definition of a
particular access module, this recreation may occur automatically or may have to be
initiated manually. These changes may require map and dialog recompilation.

Some changes to table definitions require some form of restructuring to incorporate
those changes into the existing database.

Note: For more information about modifying the s chema definition of an SQL defined
database, see Chapter 30, “Modifying Schema, View, Table, and Routine Definitions".

Adaptive Query Management

Adaptive query management is a feature of the IDMS SQL option that automatically
recompiles access modules in response to certain kinds of changes in a database
application. For example, if a dialog/program has been recompiled, the runtime SQL
engine detects whether corresponding access modules have been recompiled to include

the new RCM. If not, it automatically recompiles the access module at runtime (if the
AUTO RECREATE ON option was specified when the access module was created or last
altered). Adaptive query management applies to SQL DML applications that access

either non-SQL or SQL-defined databases.

Adaptive query management also automatically recompiles existing access modules that
access SQL-defined databases when the definitions of those databases change. Note
that this does not happen for non-SQL defined databases. It is the responsibility of the

applications administrator to manually recompile any access modules affected by
changes to a non-SQL defined database.

Implementing Migration Procedures

Chapter 26: Migrating from Test to Production 753

Edit and Code Tables

Changes to stand-alone edit and code tables that are associated with a map require that

the map be recompiled only if the tables are linked to the map. Changes to unlinked
tables do not affect the map load module.

Examples

Example 1──Adding a Data Item to a Screen

Suppose users of an application request an additional data item on a screen. To

determine what is affected, consider the relationship between the map and the new
data item:

For an application using navigation DML, you need to do the following if the data item is

from a database record already being used by the map:

1. Change the map to display the data item

2. Recompile the map

3. Recompile any dialogs that use the map

To take these actions, you need to migrate the map and the dialogs.

For an application using navigation DML, you need to do the following if the database
record is part of the subschema used by the map, but the record is not already in use by
the map:

1. Add the record to the map definition

2. Change the map to display the data item

3. Recompile the map

4. Recompile any dialogs that use the map

To take these actions, you need to migrate the map and the dialogs.

For an application using navigation DML, you need to do the following if the database

record is not already part of the subschema:

1. Add the record to the subschema

2. Recompile the subschema

3. Add the record to the map definition

4. Change the map to display the data item

5. Recompile the map

6. Recompile any dialogs that use the map

To take these actions, you need to migrate the subschema, map, and dialogs.

Implementing Migration Procedures

754 Database Administration Guide

If the data item can be derived (for example, calculated) from data already available to
the application, you need to:

1. Create a work record for the map and add it to the map definition or modify the
existing work record

2. Change the map to display the data item

3. Recompile the map

4. Change any processes that must derive the data item

5. Recompile any dialogs that use the map

To take these actions, you need to migrate the record, subschema, map, affected

processes, and dialogs.

If the application uses SQL DML, a work record will already have been defined to move
data between the map and the SQL statements in the dialog. To add another database
item to the screen, you need to:

1. Add the item to the work record already defined for the host variables referenced

in the SQL DML statements.

2. Change the map to display the data item.

3. Recompile the map.

4. Make necessary changes to the SQL statements to retrieve the data item from the
database.

5. Recompile any dialogs that contain altered SQL statements and any dialogs that use
the map.

6. Recompile (using the ALTER ,kACCESS MODULE statement) any access modules that
contain the recompiled dialogs.

Example 2──Implementing a New Application

Suppose you implement an entirely new application based on an existing database.
When the new application has been adequately tested, all of the application

components need to be migrated from the test system to the production system. In
addition, you must also consider what database components to migrate:

■ If you have not made any changes to the structure of the database, then the

existing schema and physical definitions are not affected

■ Depending on the volume and type of activity involved in the new application, you
may need to adjust the buffers and review the adequacy of the journals in the
global DMCL

■ If the application uses navigational DML and you used existing subschemas, they,
too, are unaffected by the migration. However, if you created new subschemas for
the application, you must migrate them.

■ If the application uses SQL DML, you must migrate any RCMs and access modules

that were created as part of the application.

Implementing Migration Procedures

Chapter 26: Migrating from Test to Production 755

Step 2: Determine the Sequence of Migration

Can Migrate Load Module at Any Time

If you choose to migrate only load modules, the sequence in which you migrate them
does not matter.

Sequence Matters for Source Code Migration

If you migrate any source code, the sequence is very important because there are

dependencies among the components.

In some migrations, certain components will already be in place; in others, you will need
to migrate all components. The list below shows the sequence required if all

components were to be migrated.

Non-SQL database definitions

1. Elementary data items

2. Group level data items

3. Database records

4. Schemas

5. Subschemas

SQL database definitions

1. Schemas

2. Tables

3. CALC keys

4. Indexes

5. Constraints

Physical database definitions

1. Segments

2. Areas

3. Files

4. DMCL modules

5. Database name tables

Implementing Migration Procedures

756 Database Administration Guide

Application components definitions

1. Edit and code tables

2. Work records for elementary data items,group level data, maps, and dialogs

3. CA ADS process modules

4. Modules called by CA ADS processes or other programs

5. Maps

6. CA ADS application structures

7. CA ADS dialogs

8. RCMs (for SQL DML applications only)

9. Access modules (for SQL DML applications only)

Components that can be migrated in any sequence

1. Load modules

2. Source code for batch and online programs

3. CA Culprit source code

4. JCL

Step 3: Identify the Individual Components

Having determined the types of components you need to migrate, you can begin to
identify the individual occurrences. To identify them uniquely, you need both their

names and version numbers. For modules, programs, and edit/code tables, you also
need the name of the language in which they are programmed.

Step 4: Migrate the Components

Depending on the volume of information and the configuration of your dictionaries, you

can use batch or online facil ities to move or copy the component definitions to their
target dictionary.

Identification Aids

Chapter 26: Migrating from Test to Production 757

Using Online Compilers for Migration

If the volume of information is small and both dictionaries are under the control of the

same CA IDMS/DB or DC/UCF system, you can use the online compilers for most of the
migration.

Using Batch Compilers for Migration

If the volume is large or if the dictionaries are under the control of separate CA IDMS/DB
or DC/UCF systems, you need to use the batch compilers and util ities.

Migrating Only Load Modules

If you only want to create an executable application in the production environment, you
migrate just the essential load modules. Note that for SQL DML applications, the access

modules must stil l be compiled from scratch on the production system.

Migrating the Complete Application

If you want a complete, fully documented application in the production environment,
you need to:

■ Migrate the source for all components

■ Recompile the components

■ Recompile the corresponding load modules

Identification Aids

The descriptions below identify facil ities or techniques you can use to identify the
individual application components you need to migrate. To extract information on
components stored in l ibraries or other data sets, use an appropriate operating system
util ity.

IDD DISPLAY Statement

Using either the online or batch dictionary compiler, you can list the names and version
numbers of entity occurrences with a simple form of the DISPLAY ALL statement. Any of

the IDD entity types can be displayed.

Using an optional WHERE clause on the DISPLAY ALL statement, you can more closely
select the occurrences you want displayed. With any entity types, you can qualify the
occurrence name. For some entity types, there are additional selection criteria that you

can specify, such as the user ID of the person who created the entity.

Note: For more information on the DISPLAY ALL statement and its WHERE clause, see
the discussion on entity-occurrence display in CA IDMS IDD DDDL Reference Guide.

Identification Aids

758 Database Administration Guide

Command Facility

With either the online or batch command facil ity, you can:

■ Display physical database definitions

■ Use a SELECT statement to l ist, but not display the syntax of, SQL entity definitions

IDMSRPTS

IDMSRPTS is a util ity that produces reports on information stored in the dictionary. One
of its options, the Program Cross -Reference Listing, is particularly useful for migration
operations if you are using program registration. The report l ists all subschemas for a
specified schema and all of the programs registered against those subschemas.

Note: For a sample of this report and instructions on how to run the IDMSRPTS util ity,
see the CA IDMS Utilities Guide.

DREPORTs

DREPORTs also report on information stored in the dictionary. There are some
DREPORTs that summarize information for dictionary entities and some that present

detailed information on these entities.

From the summary reports, you can obtain the names and version numbers of the
components that need to be migrated. If you need to know whether other related

components will be affected, you can run one or more of the reports that present
detailed information.

Note: For more information about DREPORTs, see the CA IDMS Reports Guide.

AREPORTs

AREPORTs report on CA ADS dialogs, application structures, and their associated

components (such as subschemas, RCMs, maps, and processes) from the information
stored in the DDLDML area of the dictionary.

The complete detail report is most useful when you are planning the migration of an
entire application. When planning the migration of more than one dialog, run the report

that keys in on only the dialogs you need.

Note: For more information about AREPORTs, see the CA IDMS Reports Guide.

SQL Catalog

The SQL catalog contains the definitions of all SQL-defined database entities. It also
contains information on all access modules and the tables that they reference (or
records, for SQL DML applications that access non-SQL defined databases). Since the
catalog is itself an SQL-defined database, SQL SELECT statements may be used to query

its contents.

Identification Aids

Chapter 26: Migrating from Test to Production 759

Dictionary Classes and Attributes

Classes and their attributes are primarily a means of extending the documentation

capabilities in the dictionary. When migrating, documentation by class and attribute
provides a powerful mechanism to analyze and identify the components involved. Using
classes and attributes provides you with the capability to display a simple l ist of names

or to report on the details of all components having the same attribute. For example,
using the DDDL compiler, you can display all modules associated with attribute TEST
within class STATUS:

display attribute test within class status with modules.

Note: For more information about creating classes and attributes and display entities

based on class and attribute, see the CA IDMS IDD DDDL Reference Guide. For more
information about reporting by class and attribute, see the CA IDMS Reports Guide.

Naming Conventions

Naming conventions help in identifying and migrating components.

Although there are no hard-and-fast rules for designing naming conventions, there are a

few factors that you should keep in mind:

■ Collating sequence

Many of the DREPORTs display the components sorted in ascending order by name.

If the names of all components of an application begin with the same few
characters, it is easy to distinguish one application from another, but more difficult
to distinguish components within an application. Likewise, if the names of all
elements within a record begin with the same few characters, it is easy to

distinguish one record from another in a l ist, but more difficult to distinguish
elements within a record.

■ Acceptable name lengths

The software permits names of different lengths for different components. If you
want several characters of every name to identify the application, select a small

number (for example, 2 or 3) of characters for this purpose, in order to leave
enough characters for other purposes.

■ Consistent number of characters

Consider selecting a consistent number of characters to identify the record in which
an element is placed or components within a particular application. If you choose a
standard number of characters and place them in a standard position, it will be easy
to sort information or to scan lists or reports for a particular item.

As an alternative to embedding an application identifier in component names, you may
choose to use a class/attribute pair. This arrangement allows more characters per name
for other purposes, while stil l providing a connection between components of the same
application.

Migration Tools

760 Database Administration Guide

Migration Tools

Most of the compilers and util ities you use to create database and application
components also have options that support migration. The table below summarizes
these tools:

Component Tool Task Code Batch Program

Non-SQL defined schema
source

Schema compiler SCHEMA IDMSCHEM

SQL-defined schema

source

Command facil ity OCF IDMSBCF

Physical database
definitions

■ Segments, areas, fi les

■ Database name
tables

■ DMCL source and

load modules

Command facil ity OCF IDMSBCF

Subschema source Subschema compiler SSC IDMSUBSC

Subschema load module DDDL compiler 1;

subschema compiler

IDD; SSC IDMSDDDL;

IDMSSUBC

Definitions of:

■ Elements

■ Messages

■ Modules

■ Programs

■ Records

DDDL compiler 1 IDD IDMSDDDL

Edit/code table source DDDL compiler 1 IDD IDMSDDDL

Map source Mapping util ity
Mapping compiler

 RHDCMPUT
RHDCMAP1

Module source

■ Copybook-style
modules

■ CA ADS process code

DDDL compiler 1 IDD IDMSDDDL

General Methods

Chapter 26: Migrating from Test to Production 761

Component Tool Task Code Batch Program

Load modules for:

■ Applications

■ Dialogs

■ Maps

■ Edit/code tables

■ RCMs

DDDL compiler 1 IDD IDMSDDDL

Access modules Command facil ity OCF IDMSBCF

1. All definitions that can be migrated using the DDDL compiler can also be migrated

from the command facil ity.

General Methods

Migration Tasks

Migration generally consists of two or three tasks:

■ Punching or decompiling components from a dictionary to a temporary work fi le or
external fi le

■ Compiling the components from the temporary work fi le or external fi le into the
target dictionary

■ Recompiling load modules, as necessary, in the target dictionary

The options of the schema, subschema, DDDL compilers, and command facil ity that you
use for these tasks function identically. Different options exist in the mapping compilers
and the mapping util ity, and CA ADS compilers.

The following discussions explore the methods of migration using the DISPLAY and

PUNCH statement options of the schema, subschema, and DDDL compilers and the
command facil ity, and the various parameters of the mapping compilers and the
mapping util ity.

General Methods

762 Database Administration Guide

Using the DISPLAY statement

Use for Small Volumes of Data

The DISPLAY statement of the schema, subschema, and DDDL compilers, and command
facil ity is useful for moving small volumes of information between dictionaries under

the control of the same DC/UCF system. Because this technique occurs online, system
resources, such as response time and storage pool space, will l imit the volume you are
able to migrate.

Steps

There are four steps in the technique:

1. Sign on to the dictionary containing the components (the source dictionary)

2. Display the individual components using the AS SYNTAX clause.

This step accomplishes the task of decompiling the components to a temporary
work fi le. If you need to modify existing components in the target dictionary, use

the VERB MODIFY option of the DISPLAY statement (DISPLAY ADD is the default
action):

display subschema empss01 as syntax verb mod.

3. While the components are in the compiler's work fi le, insert a SIGNON statement
for the target dictionary into the work fi le as the first statement.

This step prepares for the task of compiling the components from the temporary
work fi le into the target dictionary. At the conclusion of this step, the work fi le
contains a SIGNON statement for the target dictionary, followed by ADD or MODIFY

statements for those components you want to migrate.

Note: Typically the output of the previous step includes an echo of the input, so
the first statement in the output is the DISPLAY statement. The DISPLAY statement
is not necessary, so you can replace it with the SIGNON statement.

4. Invoke the compiler

The compiler signs you off the source dictionary, signs you on to the target
dictionary, and adds or modifies the components in the work fi le.

General Methods

Chapter 26: Migrating from Test to Production 763

Final Tasks for Schemas and Load Modules

This technique will copy the source to the target dictionary, but it does not

automatically validate schemas or recompile load modules for subschemas and edit and
code tables. You can perform these additional functions in one of two ways:

■ After you compile the source into the target dictionary, establish currency on the

appropriate component and issue the VALIDATE or GENERATE statement. To
establish currency, issue a simple MODIFY statement for the component. For
example:

modify subschema empss01.

generate.

■ Before you compile the source into the target dictionary, edit the work fi le by

inserting the VALIDATE or GENERATE statement after the source for the
component.

General Methods

764 Database Administration Guide

Using the PUNCH Statement

Used for Batch Migration

The PUNCH statement of the schema, subschema, and DDDL compilers and command
facil ity is useful for batch migrations. If you perform the migration in batch mode, the

PUNCH statement allows you to migrate larger volumes of information. It also allows
you to migrate between dictionaries under the control of different DC/UCF systems.

Writes Information to File or Module

The PUNCH statement has the same options as the DISPLAY statement. However, it

writes the requested information to one of two destinations: an external fi le or an IDD
module.

Use Files or Modules to Accumulate Large Numbers of Components

The fi le or module provides an intermediate place to store the information you want to

migrate. As a result, you can:

■ Accumulate components in one or more modules over the course of several
terminal sessions

■ Accumulate several fi les of components over the course of separate executions of
the batch compiler

■ Edit the content of the modules or fi les; For example, to change the STATUS of
components from TEST to PRODUCTION

Technique 1

This technique is very similar to the technique for the DISPLAY statement described
above. Because it occurs in batch, however, you can migrate larger volumes of

information.

General Methods

Chapter 26: Migrating from Test to Production 765

Steps

The steps in this technique follow:

1. In the first execution of the compiler, sign on to the source dictionary in batch
mode and punch the individual components to an external fi le.

In the PUNCH statement, use the AS SYNTAX clause. In addition, specify VERB MOD

if you are migrating existing components. Define the fi le as SYSPCH in the JCL.

To avoid having to specify these clauses in every PUNCH statement, you can issue a
SET OPTIONS statement before the PUNCH statements:

set options display as syntax verb mod.

2. When the job ends, edit the external fi le as follows:

■ Insert a SIGNON statement for the target dictionary as the first statement.

■ Insert the following statement after the SIGNON statement:

set options input 1 thru 80.

This step prepares for the task of compiling the components from the
temporary fi le into the target dictionary. Be sure the SIGNON and SET OPTIONS

statements start between columns 1 and 72.

■ Execute the compiler a second time, using the edited fi le as input.

The compiler signs on the target dictionary and adds or modifies the

components in the fi le.

Technique 2

With this technique, you create a dictionary module in the source dictionary to hold the
components you want to migrate. You migrate the module to the target dictionary,
extract the ADD or MODIFY statements for the individual components, and store or

modify each of the components in the target dictionary.

Steps

The steps in this technique follow:

1. In batch or online mode, sign on to the source dictionary and create a module

occurrence to hold the components to be moved. For example:

add module holdit.

2. While signed on to the source dictionary, punch the components to be moved into
the module using the TO MODULE and AS SYNTAX clauses:

punch element emp-last-name

 to module holdit

 as syntax.

General Methods

766 Database Administration Guide

The module source for HOLDIT now consists of the ADD ELEMENT EMP-LAST_NAME
statement.

You can perform this step in batch or online mode, and you can punch more than
one component to the module. If you use the SET OPTIONS statement following
signon, your input appears as follows:

set options input 1 thru 80

 default is on

 punch to module holdit

 as syntax.

punch element emp-last-name.

 .

 .

 .

This statement automatically changes an ADD to MODIFY if the entity already exists
in the dictionary and punches the entity as syntax.

3. In batch mode, sign on to the source dictionary and punch the module to an
external fi le.

The input to the compiler consists of only two statements: a SIGNON statement for
the source dictionary and a PUNCH statement for the module. In the PUNCH
statement, use the AS SYNTAX and TO SYSPCH clauses. Also, be sure to define the
fi le as SYSPCH in the JCL.

At the end of this step, the external fi le contains only one statement: an
ADD/MODIFY MODULE statement. Within the MODULE statement, however, the
module source consists of the ADD or MODIFY statement for the individual

components that you want to mi grate.

4. Edit the external fi le as follows:

■ Insert a SIGNON statement for the target dictionary as the first statement

■ Insert the following statement after the SIGNON statement:

set options input 1 thru 80.

■ Insert an INCLUDE MODULE statement as the last statement.

As a result of the editing, the external fi le contains four statements:

■ A SIGNON statement

■ A SET OPTIONS statement

■ An ADD MODULE or MODIFY MODULE statement

■ An INCLUDE MODULE statement.

General Methods

Chapter 26: Migrating from Test to Production 767

For example:

 signon user dba password pass dictname target.

 set option input 1 thru 80.

add module holdit

 .

 .

 .

module source follows

add element emp-last-name

 version is 1

 pic is x(20)

 .

 .

 .

msend.

include module holdit.

5. Execute the compiler in batch mode, using the edited fi le as input.

The compiler signs on to the target dictionary and adds or modifies the module. The
INCLUDE statement brings the module source into the compiler's work fi le. The
content adds or modifies the individual components to the target dictionary.

Final Tasks for Schemas and Load Modules

As with the DISPLAY statement, the PUNCH statement does not automatically validate
the schemas or generate the load modules for subschemas and edit/code tables. To
perform these function, use one of the methods described earlier in 26.6.1, "Using the

DISPLAY statement".

Technique 3

This technique combines parts of the Technique 2 presented above and parts of the
online DISPLAY technique described earlier in 26.6.1, "Using the DISPLAY statement".
Because this technique entails an online migration, you need to moderate the volume of

information you punch.
St eps

General Methods

768 Database Administration Guide

The steps in this technique follow:

1. In online mode, sign on to the source dictionary and create a module occurrence to

hold the components to be moved.

2. While signed on to the source dictionary, punch the components to be moved to
the module.

As above, direct the output of the punch to the module by including the TO
MODULE clause in each PUNCH statement or in a SET OPTIONS statement. Also,
specify the AS SYNTAX clause and the VERB ADD or VERB MODIFY clause, a s
appropriate.

3. Clear the compiler's work fi le.

4. Display the module.

This step brings the module (with all of its source) into the compiler's work fi le. In
the DISPLAY statement, use the AS SYNTAX clause.

5. Edit the work fi le as follows:

■ Insert a SIGNON statement for the target dictionary as the first statement.

■ Insert an INCLUDE MODULE statement as the last statement.

This step prepares the work fi le for the task of compiling the module and then the
components into the target dictionary. As a result of the editing, the work fi le
contains three statements:

■ A SIGNON statement

■ An ADD MODULE or MODIFY MODULE statement

■ An INCLUDE MODULE statement

6. Invoke the compiler

The compiler signs on to the target dictionary and adds or modifies the module. The
INCLUDE statement brings the module source into the compiler's work fi le and
executes the content of the work fi le. The content adds or modifies the individual
components to the target dictionary.

Final Steps for Schemas and Load Modules

As with the other techniques, this technique does not automatically validate schemas or
generate load modules for subschemas and edit/code tables. To perform these
functions, use one of the methods described earlier in 26.6.1, "Using the DISPLAY
statement".

General Methods

Chapter 26: Migrating from Test to Production 769

Using the Mapping Compiler and Mapping Utility

Steps

There are three steps to migrate maps between dictionaries (whether under the same
CA IDMS/DB or DC/UCF system or not):

1. Decompile the maps from the source dictionary.

For this step, use the decompile function of the mapping util ity (RHDCMPUT). You
can decompile one or several maps in a single execution:

PROCESS=DECOMPILE

MAP=map1-name

MAP=map2-name

 .

 .

 .

The output of the decompilation consists of the source form of the maps, typically

stored in a temporary fi le.

2. Compile the maps into the target dictionary.

For this step, use the fi le of decompiled maps from the previous step as input to the
mapping compiler (RHDCMAP1). The mapping compiler places a source description

of the map in the DDLDML area of the target di ctionary.

3. Generate the load modules for the maps in the target dictionary.

For this step, use either the online mapping facil ity or the load function of the

mapping util ity (RHDCMPUT). If you use the load function of the mapping util ity,
you can generate multiple load modules in a single execution:

PROCESS=LOAD

MAP=map1-name

MAP=map2-name

 .

 .

 .

Specify Source and Target Dictionary

The source and target dictionaries are typically part of multiple dictionary
environments. Consequently, you must indicate which of the dictionaries the mapping

compiler and mapping util ity should run against. There are several techniques for
specifying a particular dictionary in a multiple dictionary environment.

Note: For more information, see Chapter 25, “Dictionaries and Runtime Environments”.

General Methods

770 Database Administration Guide

For SQL-Defined Entities

Using DISPLAY and PUNCH

SQL-defined entities (schemas, tables, and so on) can be migrated using the DISPLAY
and PUNCH techniques described earlier in this chapter. This approach is useful for

creating a second entity that has the same definition as one in test.

Including All Related Entities

To generate syntax for all entities related to an entity whose definition is being
displayed or punched, specify the FULL option.

For example, the following statement will generate syntax for all entities in the EMP
schema.

display schema emp full as syntax

The next statement will generate syntax for the EMP.DEPT table and its associated
indexes, constraints and calc keys.

display table emp.dept full as syntax

Replicating Physical Attributes

By default, when a DISPLAY or PUNCH statement is used to recreate the DDL for an
SQL-defined entity such as a schema, the definition will be logically identical to the
original. However, certain physical attributes that normally are assigned internally by
the DBMS when an entity is created will not be the same if the generated DDL is used to

create a new entity. These attributes include such things as a table's numeric identifier
(its table ID) and the timestamps that are used to track when an entity's definition is
changed.

Ensuring that physical (as well as logical) attributes are identical for all entities
associated with an area or segment, facil itates copying of data from one area or
segment to another. For example, you could use operating system facil ities to copy
production fi les to a quality assurance environment for testing purposes if the physical

attributes of both are identical.

Note: To copy fi les this way, the definitions of the segments in which the fi les are
defined must also be identical except for segment name and page group.

It is possible to define new entities with the same physical attributes as those of another
entity by specifying the FULL PHYSICAL clause on the DISPLAY or PUNCH statement. This
will cause additional syntax to be generated that will explicitly establish values for the
physical attributes of the new entity.

General Methods

Chapter 26: Migrating from Test to Production 771

The following entities have physical attributes that need to be considered:

■ Schema

■ Table

■ View

■ Table Procedure

■ Procedure

■ Function

■ Index

■ Area

Keeping Physical Attributes Identical

Each time an SQL-defined entity definition is directly or indirectly changed, its definition
timestamp is changed automatically. For example, if a new index is added to a table, the
table's timestamp is updated automatically. To keep two or more entity definitions
identical, and after making the same change to the cloned definition, you must use an

ALTER statement to set the cloned entity's timestamp to be the same as that of the
original entity.

For example, the following procedure ensures that two tables have the same timestamp

after adding an index to each of them.

1. Add the index to the first table:

create index emp.depts on emp.dept (name)

2. Determine its new timestamp value:

display table emp.dept with timestamp

3. Add the index to the second table:

create index emp2.depts on emp2.dept (name)

4. Force the second table's timestamp to be the same as the first:

alter table emp2.dept timestamp 'yyyy-mm-dd-hh.mm.ss.tttttt'

Note: For more information about SQL DDL, DISPLAY and PUNCH statements, see the
CA IDMS SQL Programming Guide.

Area-Level Timestamps

If an area was defined with the STAMP BY AREA clause, then each time a change is made

to the definition of any table stored in the area, the area's timestamp is updated. This is
the timestamp that must be manipulated to maintain identical definitions. An area's
timestamp is also updated whenever an associated table is created or dropped.

Additional Considerations

772 Database Administration Guide

Additional Considerations

When to Migrate

You can perform most migration activities during regular working hours. Obviously,
identifying, punching or decompiling components, and adding or modifying source
definitions of components will not disturb programs or systems that are currently

executing.

Perform Some Tasks After System Shutdown

Depending on the specifics of the migration, you may not have to do any of it after
regular working hours. To be on the safe side, however, you should plan to migrate or
recompile load modules during off-peak hours. You must also perform any restructuring

operations on the production database while no application access is taking place. Note
that if it is an SQL-defined database, the restructuring occurs immediately as part of the
execution of the DDL statement that define the change. Therefore, you may want to

delay execution of the DDL statements until a time when the database is not being
accessed by application programs.

Making Load Modules Available

If you migrate or recompile new copies of existing load modules while the system is

down, they automatically come into use when you bring the system back up. If you
migrate or recompile existing load modules while the system is up, you can control the
time at which the new load modules take effect through the NEW COPY option of the
SYSTEM system generation statement or DCMT VARY PROGRAM command.

NEW COPY Options

Using the NEW COPY option of the SYSTEM system generation statement, you can
designate whether new load modules should be loaded automatically by the system or
manually through explicit commands. If you choose to control loading manually, issue

the DCMT VARY PROGRAM command with the NEW COPY option.

If you are migrating a new system whose tasks and programs are not enabled in the
system generation, then you can migrate or recompile all of its load modules at any
time. Access to the load modules will not be possible until the tasks and programs are

enabled.

Check Your Work

When you have completed the mechanical migration of components, run a series of
reports or issue a series of DISPLAY statements to check your work. However, to verify
that the migration is complete and successful, you must test the new components in

their new environment.

Additional Considerations

Chapter 26: Migrating from Test to Production 773

Additional Tasks

Updating System Generation

A new application may have an impact on system generation. Minimally, it may require
a new task definition. Other system resources, such as program pool and storage pool

space, may also need to be adjusted.

Updating Users

New user IDs may have to be defined and existing user definitions reviewed.

Updating the Task Application Table

If you choose to recreate and recompile an application structure in a target dictionary,

the recompilation automatically updates the task application table (TAT) for that
dictionary. If you choose simply to migrate the load module of an application structure,
you must manually update the TAT for the target dictionary.

There are two util ities for updating the TAT:

■ ADSOTATU works in online mode

■ ADSOBTAT works in batch mode

Note: For information about how to execute these util ities, see the CA ADS Reference
Guide.

Backup the New Files

After you have migrated and tested the components, back up the fi les in the new
environments.

Cleanup

The migration methods described throughout this chapter create copies of components.
They do not physically move the components or automatically delete them from the
source dictionary after the migration is complete.

If you decide to maintain a single copy of all components, you need to delete the

unwanted copies. Be sure to delete all versions of both source definitions and load
modules. Also be sure to delete copies of load modules from both the dictionary load
areas and load libraries.

Chapter 27: Modifying Physical Database Definitions 775

Chapter 27: Modifying Physical Database
Definitions

This section contains the following topics:

Modifications You Can Make (see page 775)
Making the Changes Available Under the Central Version (see page 781)

Dynamic DMCL Management (see page 783)
Changing the Access Method of a File (see page 785)
Increasing the Size of an Area (see page 786)
Adding or Dropping Files Associated With an Area (see page 789)

Changing the Page Size of a Disk Journal (see page 790)
Changing the Access Method of a Disk Journal (see page 791)

Modifications You Can Make

Changes You Can Make and What To Do

The following tables summarize the changes you can make to physical database
definitions and how to make the change. In most cases, all you need to do is:

■ Alter the entity's definition

■ Generate, punch, and link all DMCLs associated with the entity definition

However, if the entity is defined to the runtime DMCL, some changes affect how CA
IDMS/DB processes a request to make the modified DMCL available dynamically. The
following tables identify those changes.

When the tables indicate that you must unload and reload a segment or an area, you
can use any of the fol lowing to accomplish this:

■ The REORG util ity statement

■ The UNLOAD and RELOAD util ity statements

■ CA IDMS/DB Reorg

Note: For more information about REORG and UNLOAD/RELOAD, see the CA IDMS
Utilities Guide. For more information about CA IDMS/DB Reorg, see the CA IDMS/DB
Reorg User Guide.

Modifications You Can Make

776 Database Administration Guide

Segment Definition

Change you can make How to make it

■ The schema reserved for
defining tables and indexes

within areas associated with the
segment

■ The segment's page group

Alter the segment's definition and generate,
punch, and link all DMCLs to which the segment

is defined

The maximum number of records or

rows per page
■ Alter the segment definition and generate,

punch, and link a DMCLin which the
segment is included.

■ If the segment is empty, use this DMCL to
execute a FORMAT SEGMENT util ity

statement.

■ If the segment is not empty, use this and a
DMCL containing the original segment

definition to execute the CONVERT PAGE
util ity statement.

■ Generate, punch, and link all remaining
DMCLs in which the segment is included.

File Definition

Change you can make How to make it

■ The external fi le name

■ The fi le's allocation information,
such as the data set name and
disposition

Alter the fi le's definition and generate, punch,
and link all DMCLs in which the segment that
contains the fi le is defined

The fi le's access method (VSAM or
non-VSAM)

See 27.4, "Changing the Access Method of a
File"

Modifications You Can Make

Chapter 27: Modifying Physical Database Definitions 777

Area Definition

Change you can make How to make it

Change the page range (but not the
number of pages) assigned to an area

■ Alter the area's definition and
generate, punch, and link a DMCLin

which the area's segment is included.

■ If the area is empty, use this DMCL to
format all fi les in the area

■ If the area is not empty, use this DMCL

and a DMCL containing the original
segment definition to execute the
CONVERT PAGE util ity statement.

■ Generate, punch, and link all

remaining DMCLs in which the
segment is included.

Increase the area's page size See 27.5.1, "Increasing the Page Size of an

Area"

Extend the area's page range See 27.5.2, "Extending the Page Range of
an Area"

Change the primary number of pages

assigned to the area'spage range

If the area is not empty, unload and reload

the area

Decrease the size of the area's pages If the area is not empty, unload and reload
the area

Increase or decrease the page reserve ■ Use an area override in the DMCL
definitionfor special operations, such
as loading a database; then remove
the area override

■ To make a permanent change, alter
the area definition; if the area is not
empty, changing the page reserve

affects only subsequent store and
insert operations

■ Generate, punch and link the DMCL(s)
that contain the area override or the

segment that contains the defined
area

Add, modify, or drop a symbolic definition
1

Alter the area's definition and generate,
punch, and link all DMCLs in which the

segment that contains the area is defined

Re-assign the area to new or different
fi les

See 27.6, "Adding or Dropping Files
Associated With an Area"

Modifications You Can Make

778 Database Administration Guide

Change you can make How to make it

Update an area's timestamp Alter the area's definition and specify the

new timestamp value. This applies only to
areas defined for SQL use.

1. If changing the page range of a subarea associated with a record in a non-empty area,

unload and reload the area. If changing the page range of a subarea associated with an
index in a non-empty area, use the MAINTAIN INDEX util ity statement to rebuild the
index in the new page range as described in the CA IDMS Utilities Guide.

Modifications You Can Make

Chapter 27: Modifying Physical Database Definitions 779

DMCL Definition

Change you can make How to make it

■ Reassign the buffer associated with a
fi le

■ Associate or disassociate a database
name table

■ Add or remove a segment

■ Change an area's startup or warmstart

status

■ Change an area's page reserve

■ Change the external fi le name for a fi le

■ Change the disposition for a fi le

■ Change the use of memory caching for
a fi le

■ Change the shared cache assigned to a

fi le

Alter the DMCL definition and generate,
punch, and link the DMCL

Database Buffer Definitions

Change you can make How to make it

■ Change the buffer page size

■ Change the buffer page count

■ Change how the CA IDMS/DB acquires

storage for the buffer

■ Add or remove buffers

Alter the buffer definition and generate,
punch, and link the DMCL with which the
buffer is associated

Journal Buffer Definition

Change you can make How to make it

Change the size of the journal buffer pages See 27.7, "Changing the Page Size of a
Disk Journal".

Change the number of journal buffer pages

Alter the definition of the journal buffer
and generate, punch, and link the DMCL
with which the journal buffer is
associated.

Modifications You Can Make

780 Database Administration Guide

Disk Journal Definition

Change you can make How to make it

■ Change the external fi le name

■ Add or remove a disk journal fi le

■ Change the fi le's allocation information,
such as its data setname

■ Change the number of pages in the disk
journal fi le

■ If altering the characteristics of or
removing an existingjournal fi le,

offload its contents

■ Alter the journal fi le's definition and
generate, punch, and link the DMCL

■ Format the journal fi le

■ Change the fi le's access method See 27.8, "Changing the Access Method
of a Disk Journal".

Change you can make How to make it

■ Change the external fi le name

■ Add or remove a disk journal fi le

■ Change the fi le's allocation information,
such as its data setname

■ Change the number of pages in the disk

journal fi le

■ If altering the characteristics of or
removing an existing journal fi le,

offload its contents

■ Alter the journal fi le's definition and
generate, punch, and link the DMCL

■ Format the journal fi le

■ Change the fi le's access method See 27.8, "Changing the Access Method
of a Disk Journal".

Archive Journal Definition

Change you can make How to make it

■ Change the fi le's block size

■ Change the fi le's external fi le name

■ Add or remove archive journal fi les

Alter the archive fi le's definition and

generate, punch, and link the DMCL
with which the archive fi le is associated

Tape Journal Definition

Change you can make How to make it

Change the fi le's external fi le name

Alter the tape fi le's definition and
generate, punch, and link the DMCL

with which the tape journal fi le is
associated

Making the Changes Available Under the Central Version

Chapter 27: Modifying Physical Database Definitions 781

Changes You Cannot Make

■ Segment's type (that is, SQL or NONSQL)

■ Name of a segment containing SQL tables

Making the Changes Available Under the Central Version

Most Changes Can Be Implemented Dynamically

Most physical database changes can be made effective to a CV without recycling by

issuing a DCMT VARY DMCL command.

Some changes require fi les to be deallocated and reallocated. The ability to deallocate
and reallocate fi les dynamically depends on the operating system and the information
provided in the fi le definition.

Note: For more information, see 7.14, "FILE Statements".

Some changes require that the use of areas or journal fi les be quiesced. CA IDMS does
this automatically as part of the vary operati on. However, this may take a significant

amount of time if long-running transactions are in progress.

Note: For more information about the impact of each type of change, see 27.3,
“Dynamic DMCL Management".

JCL Considerations

If CV's execution JCL contains DD statements for fi les whose data set name is changed
by a DCMT VARY DMCL command, remove those DD statements before cycling the
system.

Making the Changes Available Under the Central Version

782 Database Administration Guide

Restart Considerations

If using VARY DMCL to implement your changes, you must consider how to handle an

unanticipated failure during and after the operation.

The recommended approach is to use change tracking so that no manual intervention is
needed to restart the CV after an abnormal termination. CA IDMS automatically restarts

the system correctly using the informati on stored in the SYSTRK fi les.

If change tracking is not in effect, you are responsible for maintaining a copy of the old
DMCL load module. You may need to restart the CV using the old DMCL if an abnormal
termination occurs while the VARY DMCL command is i n progress. Additionally, you may

need to update the execution JCL before restarting the system to ensure that the
correct data set names are being referenced.

Note: For more information on change tracking, see "Change Tracking" in the CA IDMS
System Operations Guide.

Making Disk Journal File Changes

If making changes to disk journal fi les, do not change or replace all fi les at the same
time. For example, you cannot change the dataset name or number of pages of all
journal fi les with a single DCMT VARY DMCL command. To accomplish this, implement

the changes in two separate operations, changing only some of the journal fi les each
time.

Because of this restriction, you cannot change the page size of the disk journal fi les
dynamically since all journal fi les must have the same page size. To change the journal

page size, you must shutdown and restart the CV using a DMCL with the new journal
buffer page size.

Data Sharing Considerations

In a data sharing environment, most changes to an area or its associated fi les will not
take effect until the area is varied offline in all group members in which it is shared since

most area (and associated fi le) characteristics must be identical across a ll sharing
members. For a l ist of these characteristics, see Sharing Update Access to Data.

The following procedure is recommended for making shared area or fi le changes:

■ Modify and generate a new DMCL for all affected members

■ Vary the area offline in all sharing members

■ Vary a new copy of the altered DMCL in all affected members

■ Vary the area online in all affected members

Note: For more information about data sharing, see the CA IDMS System Operations

Guide.

Dynamic DMCL Management

Chapter 27: Modifying Physical Database Definitions 783

Dynamic DMCL Management

Impact of Changes

When a DMCL is being varied, certain changes cause:

■ Areas to be quiesced

■ Files to be deallocated and reallocated

Change Quiesce area? Reallocate file?

Segment changes

Dropping and recreating the segment Yes Yes

Page group Yes Yes

Maximum number of records per page Yes Yes

Segment's schema No No

Area changes

Adding an area Allocate

Dropping an area Yes Deallocate

Primary page range Yes Yes

Extending page range Yes Yes

Page size Yes Yes

Original page size Yes Yes

Symbolic parameters Yes Yes

Area-to-fi le mapping Yes Yes

Page reserve No No

Maximum space No No

Area's timestamp No No

File changes

Dataset name Yes Yes

z/VM user id/virtual address Yes Yes

Access method Yes Yes

Disposition No Yes

External name (DDNAME) No Yes

DMCL changes

Dynamic DMCL Management

784 Database Administration Guide

Change Quiesce area? Reallocate file?

Adding a segment Allocate

Dropping a segment Yes Deallocate

Buffer associated with a fi le No 1 No

Shared cache usage for a fi le No No

File's external name (DDNAME) No Yes

File's disposition No Yes

Area status No Yes

Shared cache for a fi le No Yes

Disk Journal changes

Adding a disk journal Allocate

Dropping a disk journal Yes (2) Deallocate

Number of pages in fi le Yes (2) No

Dataset name Yes (2) Yes

File's external name (DDNAME) No Yes

1 If a fi le is associated with a new buffer, the area's pages are first purged from the

buffer pool.

2 Use of the disk journal fi le is quiesced.

Considerations

■ Changing the page size of a buffer causes the buffer to be closed and re-opened
with the new size. All other buffer changes (such as the number of pages) are

ignored. To change these parameters while the system is active, issue a DCMT VARY
BUFFER command.

■ Changes to a journal buffer, tape, or archive journal fi le have no impact on the
runtime system.

■ In a data sharing environment, if an area is shared, most changes to the area and its
associated fi les will not take effect until the area is varied offline in all group
members in which it is shared.

Changing the Access Method of a File

Chapter 27: Modifying Physical Database Definitions 785

Changing the Access Method of a File

Procedure

You can change the format of database fi les from non-VSAM to VSAM and vice versa. To
complete this process, you need to:

1. Expand the page size of the fi le's area, if necessary

2. Alter the fi le definition to change its access method (and optionally to specify a new
database name or other location information) and generate, punch, and link all
DMCLs in which the fi le's segment is included.

3. Allocate a new VSAM or non-VSAM data set, as described in Allocating and

Formatting Files.

4. Make the area to be processed unavailable for update under the central version.

5. Copy the old VSAM or non-VSAM file to the new data set.

6. Make the new DMCLs and fi le available to the runtime environment.

Steps 1 and 5 are discussed next.

Step 1: Expand the Page Size

Converting from Non-VSAM to VSAM

When you convert a non-VSAM file to VSAM, expand the area's page size first if the
page size of the area is significantly smaller than the size of the VSAM control interval.
The optimal page size is 8 bytes less than the VSAM control interval.

Converting from VSAM to non-VSAM

When you convert a VSAM file to non-VSAM, consider expanding the area's page size

either before or after the conversion if the page size of the area is inefficient for the
device type.

Note:

■ For optimal page sizes based on device type, see the CA IDMS Database Design

Guide.

■ For the steps involved in expanding the page size of an area, see 27.5.1, "Increasing
the Page Size of an Area".

Increasing the Size of an Area

786 Database Administration Guide

Step 5: Copy the Data to the New File

Options

To copy the data, use one of the following options:

1. Use the BACKUP and RESTORE util ity statements

2. Use the IDCAMS util ity

Option 1: Backup and Restore

To use BACKUP and RESTORE to copy the database fi les, take the following steps:

1. Offload the data in the old fi le(s) using the BACKUP util ity statement and the old
DMCL. If all fi les within a multi -fi le area are being converted, use the AREA option

on the BACKUP statement; otherwise, use the FILE option.

2. If the backup was performed wi th the AREA option, format the new fi les using the
new DMCL before executing Step 3.

3. Reload the data into the new fi le(s) using the RESTORE util ity statement and the

new DMCL. If the data was offloaded with the AREA option, restore with the AREA
option; otherwise, restore with the FILE option.

Option 2: Using IDCAMS

The REPRO command of the IDCAMS util ity can be used to copy the data between a
VSAM and non-VSAM file and vice versa. If you use this approach, be sure to copy all

pages (blocks) in the fi le in their entirety without reblocking.

Note: For more information about IDCAMS, see the appropriate IBM documentation.

Increasing the Size of an Area

Available Options

To increase the size of an area, you can:

1. Increase the page size of the area by using the EXPAND PAGE util ity statement

2. Extend the number of pages in the area by using the EXTEND SPACE clause of the
AREA statement

3. Increase the current number of pages assigned to the area by unloading and
reloading the area

Increasing the Size of an Area

Chapter 27: Modifying Physical Database Definitions 787

Which Option to Use

Both options 1 and 3 distribute free space throughout an area. While option 1 is faster

(and therefore less disruptive) than option 3, it does not reorga nize indexes or improve
the placement of existing data which may have overflowed due to lack of space on a
page. Option 1 is most effective if used before the area approaches a full condition.

Option 2 adds free space only at the end of an area. This can be useful where records or
tables have a location mode of direct or are clustered around a dbkey index or an OOAK
record. It can also be used as a temporary means of increasing space in an area whose
page size cannot be increased (due to device or VSAM restrictions).

If the area to be extended contains CALC records, these records will continue to only

target pages in the original page range. If no space is available to hold the new
occurrences, they will overflow into the extended page range. The area must continue
to be defined as being extended until the records are unloaded and reloaded into a new
database in which the entire extended page range is defined as the original page range.

Failure to do this results in 0326 errors when CALC retrieval is attempted.

In order to extend an area, there must be unassigned page numbers following the
current page range. If these page numbers are already assigned to another area, the

current page range cannot be extended. Either Option 1 or 3 must be used; or the
current page range must be converted to a new range and that range extended.

Procedures

Procedures for the first two options follow.

Note: For information about unloading and reloading an area, see the CA IDMS Utilities
Guide.

Increasing the Size of an Area

788 Database Administration Guide

Increasing the Page Size of an Area

Steps

To increase the page size for an area, follow these steps :

1. For each fi le associated with the area, allocate a new fi le having the larger page

size.

2. Copy the contents of each existing fi le to its new counterpart by executing the
EXPAND PAGE util ity statement once for each fi le.

3. Delete the old fi les and rename the new fi les to the old names.

4. Alter the area definition by removing the WITHIN FILE clause and replacing it with
REMOVE FILE.

5. Alter the area by:

■ Changing the page size

■ Adding the ORIGINAL PAGE SIZE clause

■ Re-adding the WITHIN FILE clause

6. Generate, punch, and link all DMCLs in which the fi le's segment is included

Extending the Page Range of an Area

Steps

To extend the number of pages in an area, follow these steps:

1. If the additional pages being added to the area will reside in a new fi le, define the

fi le.

2. Change the definition of the area specifying the number of additional pages to add
to the area by using the EXTEND SPACE clause. On the EXTEND SPACE clause,
specify to which fi le the additional pages will be mapped by using the WITHIN FILE

clause.

If the additional pages would cause the number of pages in the area to exceed the
maximum space allowed, you can use the MAXIMUM SPACE clause to increase the

maximum provided the page numbers are not assigned to another area that will be
used in the same DMCL as the area being expanded.

3. Generate, punch and link all DMCLs that contain the segment with which the area is
associated.

Adding or Dropping Files Associated With an Area

Chapter 27: Modifying Physical Database Definitions 789

4. Allocate a new database fi le to contain the additional pages and initialize the fi le
using the new DMCL.

5. If new pages are being added to the last fi le of the area:

■ Make the area to be processed unavailable for update under the central
version.

■ Backup the area using an old DMCL.

■ Restore the area using an old DMCL, but referencing the new fi le through JCL
statements.

Note: If the area maps to its fi le on a one-to-one basis, it is necessary to

include IDMSQSAM=ON in the RESTORE util ity's SYSIDMS fi le.

■ Delete the old fi le and rename the new fi le.

■ Backup the expanded area.

6. Make the DMCLs and the new fi le available to the runtime environment.

Adding or Dropping Files Associated With an Area

Types of Changes

The pages of an area can be mapped to different fi les provided that all the pages are
accounted for. For example, two fi les can be combined into one fi le or one fi le can be

separated into multiple fi les.

Steps

To add or remove fi les from an area, follow these steps:

1. Define the new fi les.

2. Change the definition of the area by excluding all fi les associated with the area and

re-assigning the pages of the area to fi le blocks.

3. Drop all unused fi les.

4. Generate, punch and link all DMCLs that contain the segment with which the area is

associated.

Changing the Page Size of a Disk Journal

790 Database Administration Guide

5. Allocate and format new database fi les.

6. Make the area to be processed unavailable for update under the central version. (If

re-using some of the existing fi les, take the area offline to the central version.)

7. Backup the area using the AREA option of the BACKUP util ity statement and the old
DMCL.

8. Restore the area using the AREA option of the RESTORE util ity statement and the
new DMCL.

9. Make the DMCLs and the new fi les available to the runtime environment.

Changing the Page Size of a Disk Journal

Steps

To change the page size of a disk journal, follow these steps:

1. Change the size of the journal buffer page.

2. Generate, punch, and link the DMCL.

3. Shut down the system.

4. Offload all currently used journals using the ARCHIVE JOURNAL util ity statement
with the ALL option and the old DMCL.

5. Allocate and format new disk journal fi les.

6. Restart the system with the new DMCL and the new journal fi les.

Changing the Access Method of a Disk Journal

Chapter 27: Modifying Physical Database Definitions 791

Changing the Access Method of a Disk Journal

Steps

You can change the access method used for a disk journal fi le from non-VSAM to VSAM
or vice versa. To do this you must:

1. Change the definition of the disk journal fi le specifying the desired access method.

Alter the page size of the journal buffer:

■ If changing from non-VSAM to VSAM, the page size should be 8 bytes less than
the control interval size

■ If changing from VSAM to non-VSAM, choose an optimal page size for the

device type

2. Generate, punch, and link the DMCL.

3. Shut down the system.

4. Offload all currently used journals using the ARCHIVE JOURNAL util ity statement
with the ALL option and the old DMCL.

5. Allocate and format new disk journal fi les.

6. Restart the system with the new DMCL and the new journal fi les.

More Information

■ For more information about segment, area, and fi l e definition, see Chapter 4,
“Defining Segments, Files, and Areas".

■ For more information about DMCL, database buffer, journal buffer, and journal fi le

definition, see Chapter 5, “Defining, Generating, and Punching a DMCL".

■ For more information about the syntax for physical database entities, see Chapter
7, “Physical Database DDL Statements".

■ For more information about DCMT commands, see the CA IDMS System Tasks and
Operator Commands Guide.

■ For more information about util ity statement syntax, see the CA IDMS Utilities
Guide.

■ For more information about data sharing, see the CA IDMS System Operations
Guide.

Chapter 28: Modifying Database Name Tables 793

Chapter 28: Modifying Database Name
Tables

This section contains the following topics:

Changes You Can Make (see page 793)
Procedure for Modifying Database Name Tables (see page 793)

Changes You Can Make

You can modify the following characteristics of a database name table definition:

■ What databases are associated with the database name table (through the
DBNAME statement)

■ What segments and/or subschema mappings are associated with a database name

■ Generic subschema mappings defined to the database name table

■ The MIXED PAGE GROUP BINDS option setting for a DBNAME

■ What database groups are associated with the database name table (through the

DBGROUP statement)

■ The usage option for a DBNAME

Procedure for Modifying Database Name Tables

Steps

To modify a database name table, follow these steps:

Action Statement

Modify the database name, database

group, and/or database name table
■ CREATE, ALTER, or DROP DBNAME

■ CREATE, ALTER, or DROP DBGROUP

ALTER DBTABLE

Regenerate the database name table GENERATE DBTABLE

Punch and link the database name

table to a load library

PUNCH DBTABLE LOAD MODULE

Make the database name table
available under the central version

DCMT VARY DBTABLE NEW COPY

Procedure for Modifying Database Name Tables

794 Database Administration Guide

Example

In the following example, the DBA adds a new database name to an existing database

name table. After generating and punching the database name table load module, the
DBA instructs CA IDMS/DB to load the updated database name table:

create dbname alldbs.benefits

 add segment empseg

 add segment projseg

 add segment beneseg;

generate dbtable alldbs;

punch dbtable load module alldbs;

After l ink-editing the modified database name table to a load library, make it available

under the central version:

dcmt vary dbtable alldbs new copy

More Information

■ For more information about defining database name tables and database names,
see Chapter 6, “Defining a Database Name Table".

■ For more information, syntax, and syntax rules for the DBTABLE, DBGROUP, and
DBNAME statements, see Chapter 7, “Physical Database DDL Statements”.

■ For more information about DCMT commands, see the CA IDMS System Tasks and
Operator Commands Guide.

■ For more information about the PUNCH util ity statement, see the CA IDMS Utilities
Guide.

■ For more information about database groups and dynamic routing, see the CA IDMS
System Operations Guide.

Chapter 29: Modifying SQL-Defined Databases 795

Chapter 29: Modifying SQL-Defined
Databases

This section contains the following topics:

What You Can Modify (see page 795)
Maintaining Identically-Defined Entities (see page 795)

Methods for Modifying (see page 798)

What You Can Modify

You can modify an SQL-defined database by:

■ Adding or dropping tables

■ Modifying table components

■ Adding, modifying, or dropping indexes and referential constraints

■ Adding, modifying, or dropping schemas

■ Adding or dropping views

■ Adding, modifying or dropping SQL routines

■ Adding or dropping keys associated with SQL routines

Note: For more information about maintaining physical definitions, see the chapter
“Modifying Physical Database Definitions".

Maintaining Identically-Defined Entities

Why Identical Definitions are Useful

Maintaining entities with identical definitions can be useful in situations such as the
following:

■ Taking a snapshot copy of a production database for testing purposes

■ Moving a test database into production

■ Implementing database segmentation so that multiple segments can be accessed
through a single referencing schema and set of access modules

■ Restoring a back-version of a database and its definition

Maintaining Identically-Defined Entities

796 Database Administration Guide

How to Maintain Identical Definitions

To maintain identically defined entities, you must explicitly specify physical attributes

whose values would otherwise be automatically assigned when the entity is created or
altered. The physical attributes that must be explicitly specified for this purpose are:

■ Numeric table identifier assigned to a table when it is created

■ Numeric index identifier assigned to an index when it is created

■ Synchronization timestamps associated with an area, table, view, procedure, table
procedure or function

The appropriate DDL statements (such as CREATE TABLE, ALTER AREA, and so on)

provide clauses for the specification of these physical attributes.

Determining the Physical Attributes of Existing Entities

You can determine the values of the physical attributes assigned to an existing entity by
specifying either FULL PHYSICAL or WITH TIMESTAMP on a DISPLAY or PUNCH
statement for the entity. The FULL PHYSICAL option generates syntax for all attributes of

an entity including physical attributes such as table IDs and synchronization stamps. The
WITH TIMESTAMP option generates only the syntax for specifying a synchronization
timestamp.

If you display a schema specifying FULL PHYSICAL, syntax is generated for all entities in
the schema. The syntax includes specifications for al l physical attributes of those
entities. A final set of ALTER statements is generated to establish the value for the
synchronization timestamp for all entities that have one.

Note: For more information about these clauses and the syntax used to specify physical
attributes, see the SQL Reference Guide.

Maintaining Identically-Defined Entities

Chapter 29: Modifying SQL-Defined Databases 797

Specifying Synchronization Timestamps

While the ability to specify physical attributes can be useful in certain situations, it

should be used with care. If you change the value of a synchronization timestamp, you
can disable the ability for the database engine to detect definition-based changes. This
could result in data corruption if an out-of-date access module updates the database.

At a minimum, you should ensure that every version of an entity's definition has a
unique synchronization timestamp associated with it. You should also be aware that
while some entities, such as indexes and constraints, do not have an associated
timestamp, changing their definition is, in effect, changing the definition of their

associated table(s) and must also result in a unique sychronization stamp value.

If a table resides in an area that is controlled by area -level synchronization stamps, you
must update the area's synchronization timestamp. Updating the table's
synchronization stamp is optional but recommended. If a table resides in an area that is

controlled by table-level synchronization stamps, you must update the table's stamp
and cannot update that of the area.

Specifying Table and Index IDs

It is not always possible to create a table with a specific table ID or an index with a
specific index ID. You are able to do so only if the value specified is not assigned to
another table or index in the same area. Consequently, manipulation of physical
attributes is generally only appropriate for schemas that define the entire contents of a

database area or segment.

Stamp Synchronization

The SYNCHRONIZE STAMPS util ity lets you compare stamps in the data area and the
catalog and to update one from the other.

This util ity provides an alternative mechanism for maintaining identical synchronization

timestamps and may be an aid in recovery situations in which either the catalog or a
data area must be restored independently of the other.

For example, suppose that you want to take a copy of a production database for testing

purposes. Assuming that the definitions of both are identical except for the
synchronization timestamps, you can use operating system facil ities for copying the data
fi les and then use the SYNCHRONIZE STAMPS util ity to update the copied areas with the
timestamps from the test catalog.

Note: For more information about the SYNCHRONIZE STAMPS util ity, see the CA IDMS
Utilities Guide.

Methods for Modifying

798 Database Administration Guide

Methods for Modifying

You can use the following methods to change an SQL-defined database:

■ Single DDL statement

You use a single DDL statement to make the change. The change takes effect
immediately. For example, you use a single DDL statement when adding a check

constraint.

■ Multiple DDL statements

You use multiple DDL statements to make the change. The particular SQL DDL
statements you use depend on the type of change being made. For example, to

change certain index characteristics (such as the order in which index keys are
stored) you can use these SQL statements:

– DROP INDEX

– CREATE INDEX

The change takes effect upon completion of these statements.

■ Combination of DML and DDL statements

You use a combination of DML and DDL statements to modify a definition. This
method often involves dropping, redefining, and reloading a table to make the

change.

Once the data has been reloaded, the change takes effect. For example, to move a
table to a new area, you use DML or util ity statements to:

1. Create a new table in the new area (DDL CREATE)

2. Copy the rows of data to the new table (DML INSERT)

3. Delete the existing table (DDL DROP)

Methods for Modifying

Chapter 29: Modifying SQL-Defined Databases 799

Choosing a Modification Method

In some cases, you may choose the method to use. In other cases, the method is

dictated by database factors such as whether the table contains data or whether it
participates in a referential constraint.

Each modification is discussed in detail in the foll owing chapters.

Inform Your Users

Some changes you make to the database will have a direct impact on your users. For
example, if you drop a table or a view, users will no longer have access to the data.

Before you make a change such as dropping a table, you can use SELECT statements to

determine where the entity to be changed is used. Specifically, look for:

■ Views that reference the table

■ Referential constraints in which the table participates

■ Access modules that access the table

This indicates the potential impact the change may have and provides information
about determining the best method to use to make the change.

Chapter 30: Modifying Schema, View, Table, and Routine Definitions 801

Chapter 30: Modifying Schema, View, Table,
and Routine Definitions

This section contains the following topics:

Overview (see page 801)
Maintaining Schemas (see page 801)

Maintaining Views (see page 803)
Maintaining Tables (see page 805)
Dropping and Recreating a Table (see page 814)
Maintaining Routines and Their Keys (see page 818)

Overview

This chapter describes methods for creating, dropping, and changing schemas, views,
tables, and routines.

Note: For more information about the SQL DDL statements used in the procedures in

this chapter, see the CA IDMS SQL Reference Guide.

Maintaining Schemas

This section describes how to:

■ Drop a schema

■ Change a component of a schema

Maintaining Schemas

802 Database Administration Guide

Dropping an Existing Schema

DROP SCHEMA Statement

To drop a schema, use an SQL DDL DROP SCHEMA statement. This removes the named
schema only if no tables or views are associated with it.

CASCADE Option

If you specify the CASCADE option, you also delete:

■ The definition of each table and view associated with the named schema

■ The data stored in each table associated with the schema

■ The definition of each referential constraint, index, and CALC key defined on the
tables associated with the named schema

■ The view definition of each view derived from one or more of the tables associated
with the named schema

■ All privileges granted on tables dropped as a result of cascade processing

Considerations

If all tables and indexes on those tables are in a segment in which no other table or
index from another schema resides, then you can use the FORMAT util ity to erase rows
and indexes before using DROP SCHEMA. This will enable more efficient execution.

Example

In the following example, a schema and its associated tables are dropped.

drop schema demoempl cascade;

Modifying a Schema

To modify a schema, use the SQL DDL ALTER SCHEMA statement.

Considerations

Changing the default area associated with the schema does not affect existing tables.

Example

In the following example, the schema's default area is changed.

alter schema demoempl

 default area demoempl.emplarea;

Maintaining Views

Chapter 30: Modifying Schema, View, Table, and Routine Definitions 803

Maintaining Views

This section describes how to:

■ Drop a view

■ Change a view definition by dropping and recreating it

Dropping a View

DROP VIEW Statement

To drop a view, use the SQL DDL DROP VIEW statement.

CASCADE Option

Use the CASCADE option if the view being dropped participates in any other view

definitions. CASCADE directs CA IDMS/DB to drop the named view and all v iews derived
from the named view.

When you drop a view (without CASCADE), the following definitions are removed from
the dictionary:

■ The view

■ All privileges granted on the view

If you specify CASCADE, these additional definitions are removed from the dictionary:

■ All views in which the view is referenced and all views referencing those views

■ All privileges granted on views dropped as a result of cascade processing

Considerations

You must specify CASCADE if there are views defined on the view you are dropping.

Example

In the following example, the view EMP_HOME_INFO is dropped. This also drops any
views derived from this view.

drop view emp_home_info cascade;

Maintaining Views

804 Database Administration Guide

Modifying a View

To modify a view, use the SQL DDL DROP VIEW statement to drop the view and then use
the SQL DDL CREATE VIEW statement to re-add the view.

Before modifying a view, you can use the SELECT SYNTAX FROM SYSCA.SYNTAX

statement to display the syntax used to create a view.

select syntax from sysca.syntax

 where schema=HR

 and table=EMP-SALARY;

Note: For more information about SYSCA.SYNTAX table, see the CA IDMS SQL Reference
Guide.

Example

In the following example, the syntax for the view EMP_HOME_INFO is displayed using

the SELECT SYNTAX statement. The view is then dropped (DROP) and re-added
(CREATE) with an additional column (CITY).

This SELECT SYNTAX statement:

select syntax from sysca.syntax

 where schema=demoempl

 and table=emp_home_info;

Displays this view syntax:

create view emp_home_info

 as select emp_id, emp_lname, emp_fname, phone

 from employee;

DROP VIEW AND CREATE VIEW are used to modify the view.

drop view emp_home_info;

create view emp_home_info

 as select emp_id, emp_lname, emp_fname, phone, city

 from employee;

Maintaining Tables

Chapter 30: Modifying Schema, View, Table, and Routine Definitions 805

Maintaining Tables

This section describes how to:

■ Create or drop a table

■ Create or drop a column

■ Change column characteristics

■ Add or remove data compression

■ Create, drop, or modify check constraints

■ Revise the table's estimated row count

■ Change the table's area

■ Drop the default index associated with the table

Creating a Table

CREATE TABLE Statement

To create a table, use the SQL DDL CREATE TABLE statement.

Considerations

The area in which the table's rows are to reside must be defined in the application
dictionary and be accessible to the runtime environment in which the CREATE TABLE

statement is issued.

Maintaining Tables

806 Database Administration Guide

Dropping a Table

DROP TABLE Statement

To drop a table, use the SQL DDL DROP TABLE statement. Use the CASCADE option if the
table participates in a referential constraint or is referenced in one or more view

definitions.

No CASCADE

When you drop a table (without CASCADE), the following definitions are removed from
the dictionary:

■ The table

■ Its CALC key (if any)

■ All indexes defined on the table

■ All privileges granted on the table

Table rows and indexes are removed from the database.

With CASCADE

If you specify CASCADE, these additional definitions are removed from the dictionary:

■ All referential constraints in which the table participates

■ All views in which the table is referenced and all views referencing those views

■ All privileges granted on views dropped as a result of cascade processing

Considerations

Using FORMAT to Erase Table Rows

If the table you want to drop is the only table in an area, it participates in no linked
constraints and its indexes (if any) also reside in areas in which no other table or index
resides, you can use the FORMAT util ity to drop the table more efficiently:

1. Format the area(s) containing the table and indexes

2. Drop the table

Note: For more information about FORMAT, see the CA IDMS Utilities Guide.

Maintaining Tables

Chapter 30: Modifying Schema, View, Table, and Routine Definitions 807

Dropping All Tables in a Schema

If you want to drop all tables in a schema, use the DROP SCHEMA statement with the

CASCADE option rather than dropping each table individually.

Example

In the following example, these entities are dropped: the BENEFITS table, its CALC key,

all indexes defined on it, all privileges on it, all referential constraints in which BENEFITS
participates, all views in which this table is referenced and all views referencing that
view, and all privileges granted on all those views. In addition, all data will be deleted.

drop table demoempl.benefits cascade;

Adding a Column to a Table

ALTER TABLE Statement

With the ALTER TABLE statement, you can make the following column changes:

■ Add a column

■ Change a column’s data type or null attribute

■ Drop or change a column’s default clause

■ Rename a column

■ Drop a column

For instructions on using the ALTER TABLE statement, see the SQL Reference Guide.

Considerations

Add a Column

The definition of the table is updated to include the new column definition, and the
new column becomes the last column in the table. Table rows are not updated as
part of the ALTER TABLE processing; instead, the column is added to an existing row
only when that row is next updated.

When adding a column, if the table is not empty, you much supply a default value
for the added column. You do this in one of the following ways:

■ Specify that the column is to have a default value. All existing rows are then

considered to have the default value for the new column.

■ Allow the column to have a null val ue. All existing rows are then considered to
have a null value for the column.

Note: For more information about choosing a value, see the SQL Reference Guide.

Maintaining Tables

808 Database Administration Guide

Compressed Rows

If a new column in a compressed table will be used as an index key or as a

referencing column, consider placing the column near the front of the table.
Otherwise, the compression potential of the table will be greatly reduced.

To do this, the table must be dropped and re-added with a new column order.

When you put the rows back into the table, make sure the data is in the new
column order.

Effect on Programs and View Definitions

Adding a column to a table does not impact existing programs or view definitions
except under the following circumstances:

■ If your host language programs include SELECT * from the table, they will
receive runtime errors because of the added column.

■ If a view definition includes a SELECT * from the affected table, it becomes
invalid and must be dropped and recreated.

Add a Default to a Column

Allowing a column to have a default value affects only the table’s definition; existing
table rows are not affected.

Remove a Column’s Default

If the table is populated and the column does not allow null values, every existing

row must contain a value in the changed column. To ensure this, each row is
accessed and updated if it does not contain a value for the column.

Rename a Column

A column that is named in a check constraint or a view cannot be renamed.

The definition of all referential constraints, sort keys, CALC keys and indexes in

which the column participates are updated to show the new column name.

Drop a Column

Every row in the table is updated to remove the column value.

If a column is named in a check constraint or is part of the CALC key of a populated
table, you cannot drop the column.

If you do not specify CASCADE, the column must not be one of the following types
of columns:

■ A column in a CALC key

■ A referenced or foreign key column in a referential constraint

■ An indexed column

■ A sort column of a l inked constraint

■ Named in a view

Maintaining Tables

Chapter 30: Modifying Schema, View, Table, and Routine Definitions 809

If you specify CASCADE, how the column is used determines what other items are
dropped:

■ Dropping a CALC key column also drops the CALC key

■ Dropping a referenced or foreign key column in a referential constraint also
drops the constraint

■ Dropping an indexed column also drops the index

■ Dropping a sort column of a l inked constraint also drops the constraint

■ Dropping a column named in a view also drops the view

Change a Column’s Null Attribute

The following situations apply when you change a column's null attribute:

■ When the column is part of a CALC key of a populated table, or is a referenced
column in a constraint, the ALTER statement fails.

■ When you change a null attribute, every row in the table is updated to add or
remove the null attribute byte for that column.

■ When the changed column is a sort column, every index and linked indexed
constraint is automatically rebuilt.

■ When disallowing nulls and the value of the column is null for a row in the

table, the ALTER statement fails.

Change a Column’s Data Type

The following situations apply when you change a column's data type:

■ When the column is part of a CALC key of a populated table, or is a referenced
column in a constraint, the ALTER statement fails.

■ When changing a column’s data type, the new data type you enter must be
compatible for assignment with the original data type.

■ Every row in the table is restructured to convert the column value to the new
type. This might involve increasing or decreasing the length of the row.

■ The ALTER statement will fail if a loss of data (such as truncation of a non-blank
character or numeric overflow) would occur as part of the conversion.

■ When you change data type, every index and linked indexed constraint in

which the column is a sort column is rebuilt.

Maintaining Tables

810 Database Administration Guide

Maximum Row Length

Adding a column to a table or changing a column's attributes might increase the

length of the table row beyond the maximum allowed.

For compressed tables, the maximum is 32760. If the new column would cause this
to be exceeded, the column cannot be added to the table; instead, consider

creating a second table to hold the additional information.

For uncompressed tables, the maximum depends on the page size of the area in
which the table resides. If the new column would cause the length of the row to be
greater than (page size - 40), then do one of the following:

■ Use the EXPAND PAGE util ity statement to increase the page size of the areas.

Note: For more information about EXPAND PAGE, see the Utilities Guide.

■ Compress the table.

■ Create a second table to hold the new or expanded information.

Note: The maximum length of an uncompressed row can be as much as (page size -
40); however, it is recommended that row lengths be no more than 30% of the size
of the page.

Expanding Space in an Area

If an area is becoming full, consider expanding its space before increasing the length
of table rows. The chapter “Modifying Physical Database Definitions” describes
methods you can use to expand an area.

Adding or Removing Data Compression

Drop/Add Table

To add or remove compression, you must drop and redefine the table, as described in
30.5, “Dropping and Recreating a Table”. When redefining the table, add or remove the
COMPRESS clause as desired.

Considerations

■ By removing compression, the table will occupy more space in the database and
may overflow a database that is already near capacity

■ By adding compression, you may incur a modest increase in CPU time during

subsequent DML processing of the table

Note: For more information about data compression, see the CA IDMS Presspack User
Guide.

Maintaining Tables

Chapter 30: Modifying Schema, View, Table, and Routine Definitions 811

Adding a New Check Constraint

ALTER TABLE statement

To add a new check constraint, use the SQL DDL ALTER TABLE statement with the ADD
CHECK option.

Considerations

■ Adding a check constraint will append the new check constraint to any check
constraints currently on the table

■ If current data does not conform to the new check constraint, you will receive an

error when CA IDMS/DB processes the ALTER TABLE command

Example

In the following example, a new check constraint is added to the BENEFITS table.

alter table emp.benefits

 add check (fiscal_year > 1920);

Dropping a Check Constraint

ALTER TABLE Statement

To drop a check constraint, use the SQL DDL ALTER TABLE statement with the DROP
CHECK option. DROP CHECK deletes all check constraints associated with the table.

Example

In the following example, all check constraints associated with the BENEFITS table ar e
dropped.

alter table emp.benefits

 drop check;

Maintaining Tables

812 Database Administration Guide

Modifying a Check Constraint

To modify a check constraint, follow these steps:

1. Drop the existing check constraint, as described above

2. Add the new check constraint, as described above

Note: Use SELECT SYNTAX from SYSCA.SYNTAX to display the existing check constraints
before dropping it:

select syntax from sysca.syntax

 where schema='EMP' and

 table = 'BENEFITS';

Example

alter table emp.benefits

 drop check;

alter table emp.benefits

 add check (fiscal_year > 1930);

Maintaining Tables

Chapter 30: Modifying Schema, View, Table, and Routine Definitions 813

Revising the Estimated Row Count for a Table

ALTER TABLE Statement

To change the estimated row count on the table definition, use the SQL DDL ALTER
TABLE statement with the ESTIMATED NUMBER OF ROWS option.

Considerations

■ Changing the estimated number of rows for a table will not affect default index
sizing unless you drop and re-add the index or referential constraint. The estimated
number of rows is used for index calculations only if it is greater than the

NUMROWS column in SYSCA.TABLE. NUMROWS is updated whenever an UPDATE
STATISTICS util ity statement is issued for the table or the table's area.

Note: For more information about index calculations, see the CA IDMS SQL
Reference Guide.

■ Changing the estimated row count may affect the access paths chosen by the
access module compiler for SQL DML statements that reference the table. Unlike
other table modifications, though, changing the estimated row count will not cause

existing access modules that reference the table to be automatically recompiled. If
recompilation of selected access modules is desired, you must use the ALTER
ACCESS MODULE statement to force reoptimization.

Note: Estimated number of rows is used for optimization purposes only if the

NUMROWS column of SYSCA.TABLE is 0.

Example

In the following example, the estimated row count for the EMPLOYEE table is revised.

alter table emp_employee

 estimated row count 750000;

Changing the Area of a Table

Drop/Add Table

To change the area in which the rows of a table are stored, you must drop the table and
redefine it specifying the new area.

Note: For the steps and considerations involved in this process, see 30.5, “Dropping and
Recreating a Table”.

Dropping and Recreating a Table

814 Database Administration Guide

Dropping the Default Index Associated with a Table

ALTER TABLE Statement

To drop the default index associated with a table, use the SQL DDL ALTER TABLE
statement with the DROP DEFAULT INDEX option.

Considerations

■ Do not drop the default index on a table until the CALC key, indexes, and referential
constraints in which the table participates have been defined. If no other index
exists on the table, an area sweep will be initiated each time one of the above

components is defined.

■ Dropping the default index could change the location mode of a table.

■ Default indexes can be useful whenever it is anticipated that a table will be
accessed without WHERE clauses specifying index or CALC keys and without joins

that might use referential relationships wi th other tables. In short, they are useful
whenever it is anticipated that the optimizer would otherwise choose area sweeps
to satisfy access requests on the table. This is particularly true when it is a sparse

table, since a sweep of the default index wil l only access data pages that contain
rows of the table; whereas, an area sweep will access every page of the area.

Note: For more information about when you would choose to drop the default index,
see the CA IDMS Database Design Guide.

Example

In the following example, the default index for the EMPLOYEE table is dropped.

alter table emp.employee

 drop default index;

Dropping and Recreating a Table

Considerations for Dropping/Adding a Table

Many types of changes can only be implemented by dropping and redefining a table.
There are two major considerations involved with this process:

■ Preserving the table's data

■ Re-establishing the table's relationships with other tables and views

This section outlines two approaches that can be used to drop and recreate a table:

■ Method 1—Uses a combination of DDL and DML statements to perform the
operation

■ Method 2—Uses DDL and util ity statements

Dropping and Recreating a Table

Chapter 30: Modifying Schema, View, Table, and Routine Definitions 815

Considerations

Select the approach based on the size of the table and the importance of minimizing the

time during which the table cannot be accessed. Consider the following:

■ Method 1 requires there be enough space in the database to hold two copies of the
data simultaneously. It also builds indexes and validates relationships as the data is

being inserted into a new table, potentially requiring a large number of row locks
and journal images.

■ Method 2 reloads the data in local mode usi ng the LOAD util ity statement.
Therefore, the table and all other tables in the same area cannot be accessed while

the load is taking place.

For these reasons, Method 1 is more appropriate for small tables, while Method 2 is
more suited for large tables.

Method 1—Using DDL and DML Statements

Steps

To use a combination of DDL and DML statements to recreate a table, follow these
steps:

1. Define a new table that has the same definition as the original table except for the

desired changes.

2. Define the same indexes and CALC keys for the new table as for the old (unless
changes in these are desired).

3. For each referential constraint in which the original table is the referencing table,
define a similar constraint on the new table. The new constraint must be defined
with a different name and if the referenced table is not empty, it must be defined
as unlinked. (The unlinked constraint may also require that an index be defined,

including the foreign key of the new table).

4. For each referential constraint in which the original table is the referenced table,
determine if the referencing table is empty. If it is, define a similar constraint with a

different name in which the new table is the referenced table. If the referencing
table is not empty, determine if additional indexes are needed, including the
foreign key of the referencing table, to support a similar constraint defined as
unlinked. If additional indexes are required, create them now.

Dropping and Recreating a Table

816 Database Administration Guide

5. For each view in which the original table is referenced (or views of those views),
display the definition syntax by selecting from SYSCA.SYNTAX. Save the resulting

output so the views can be recreated later.

6. Copy the data from the original table to the new table using an INSERT statement
with the SELECT option.

7. For each referential constraint in which the original table is the referenced table and
the referencing table is not empty, define a constraint in which the new table is the
referenced table. The new constraint must have a different name and be defined as
unlinked.

8. Drop the original table using the CASCADE option of DROP table.

9. For each self-referencing constraint defined on the original table, define a similar
constraint on the new table. (A self-referencing constraint is a referential constraint
in which the referenced and referencing table are the same.)

10. Complete the transition to the new table as follows:

■ Define a view on the new table with the same name as the original table and
including all of its columns.

■ Recreate the views whose syntax was previously saved; examine those view
definitions to see if changes are required.

■ Re-specify privilege definitions on the individual table and views if access is
controlled through CA IDMS internal security.

Guaranteeing Integrity of the Data

Steps 6 through 8 should be performed within a single transaction to minimize the
potential of changes to the data in the original table and any of its related tables until
the entire operation is completed. To ensure that no changes are made between the
time the data is copied and the time the table is dropped, take one of the following

actions just prior to issuing the SELECT statement:

■ Prohibit access to the table by explicitly dropping all views that reference it. This is
effective only if all update access to the table is done through a view.

■ Revoke all INSERT, UPDATE, and DELETE privileges from the table (and any
matching wildcarded table names) if access is controlled through CA IDMS internal
security.

■ Alter the original table and add a dummy column. This has the effect of prohibiting

access to the table until the transaction has terminated.

Recreating Empty Tables

If the table to be recreated is empty, you need not define a new table. Instead, simply

drop and redefine the table making the desired cha nges to its definition. However, be
sure to take appropriate steps to preserve referential constraints, views derived from
the table, and privilege definitions.

Dropping and Recreating a Table

Chapter 30: Modifying Schema, View, Table, and Routine Definitions 817

Method 2—Using DDL and Utility Statements

Steps

To use a combination of DDL and util ity statements to drop and recreate a table, take
the following steps:

1. Identify all tables related through a l inked constraint to the target table (the table
whose definition is to be changed). Either the related tables must be unloaded and
reloaded together with the target table or the constraints will become unlinked
when they are redefined.

2. For each view in which the target table is referenced (or views of those views),
display the definition syntax by selecting from SYSCA.SYNTAX. Save the resulting
output so the views can be recreated later.

3. For each table to be unloaded, extract the data to a sequential fi le using either:

■ A user-written program

■ A CA Culprit report

Use separate extract fi les for each table or place an indicator in each output record
to identify the table from which the data was extracted. Be sure the data was
extracted successfully before proceeding to the next step.

4. Drop the target table (specifying the CASCADE option) and delete the rows from the
related tables that were unloaded by using a DELETE statement. If no other tables
or indexes exist within the affected areas and all relationships are within those

areas (and were unloaded), format the area before issuing the DROP and DELETE
statements. Be sure to vary the areas offl ine to the DC/UCF system before
formatting them.

5. Redefine the table making any necessary changes.

6. Redefine the indexes and CALC key on the target table.

7. Redefine the referential constraints in which the target table participates. If any of
the constraints involve non-empty tables, those constraints must be defined as

unlinked.

8. Reload the tables using the LOAD util ity statement and the sequential fi le as input.

Note: For more information about how to perform the load operation, see Chapter
23, “Loading an SQL-Defined Database".

9. Complete the process as follows:

■ Recreate the views whose syntax was previously saved; examine those view
definitions to see if changes are required

■ Respecify privilege definitions on the target table and its referencing views if
access is controlled through CA IDMS internal security

Maintaining Routines and Their Keys

818 Database Administration Guide

Guaranteeing the Integrity of the Data

You must ensure that no updates are made to any of the unloaded tables once their

data has been extracted. To ensure that no changes are made between the time the
data is extracted and the time the tables have been reloaded:

■ Prohibit access to the tables by explicitly dropping all views that reference it. This is

effective only if all update access to the table is done through a view.

■ Revoke all INSERT, UPDATE, and DELETE privileges from the tables (and any
matching wildcarded table names) if access is controlled though CA IDMS internal
security.

Maintaining Routines and Their Keys

A routine is either an SQL procedure, table procedure or function. This section describes
how to:

■ Drop a routine

■ Change a routine definition and associate or disassociate keys

Dropping a Routine

DROP Routine Statements

To drop a routine, use one of the following statements:

■ DROP PROCEDURE to drop an SQL procedure

■ DROP TABLE PROCEDURE to drop a table procedure

■ DROP FUNCTION to drop an SQL scalar function defined by a CREATE FUNCtion
statement

No CASCADE

When you drop a routine (without CASCADE), the following definitions are removed
from the dictionary:

■ The procedure, table procedure or function that is the target of the drop

■ All keys defined on the target routine

■ All privileges granted on the routine

Maintaining Routines and Their Keys

Chapter 30: Modifying Schema, View, Table, and Routine Definitions 819

With CASCADE

If you specify CASCADE, these additional definitions are removed from the dictionary:

■ All views in which the routine is referenced and all views referencing those views.

■ All privileges granted on views dropped as a result of cascade processing

Example

In the following example, the table procedure WORK_SCHEDULE is dropped. This also
drops any views derived from this table procedure.

drop table procedure work_schedule cascade;

Modifying a Routine

Types of Changes You Can Make

The following attributes of a routine can be changed:

■ External name of the routine

■ Estimated rows and I/O counts

■ Work area usage, size and attributes

■ Mode in which the routine executes

■ Definition timestamp

■ Default database in effect when the routine is invoked

■ Whether the routine should share the encompassing SQL session's transaction

■ Programming language that the routine is written in

Additionally, you can also add or remove a key from a procedure or table procedure.
Keys are used to assist CA IDMS/DB in calculating the amount of resources that will be

consumed by a given routine invocation.

Maintaining Routines and Their Keys

820 Database Administration Guide

Statements That Modify Routines

To modify a routine's attributes, use one of the following statements:

■ ALTER PROCEDURE to alter an SQL procedure

■ ALTER TABLE PROCEDURE to alter a table procedure

■ ALTER FUNCTION to alter an SQL scalar function defined by a CREATE FUNCTION

statement

To associate a new key with a procedure or table procedure, use the CREATE KEY
statement. To drop a key, use a DROP KEY statement.

Examples

In the following example, function CORP_DATE is altered to change the external name
of the function.

alter function corp_date external name corpdate:

Chapter 31: Modifying Indexes, CALC Keys, and Referential Constraints 821

Chapter 31: Modifying Indexes, CALC Keys,
and Referential Constraints

This section contains the following topics:

Overview (see page 821)
Maintaining Indexes (see page 821)

Maintaining CALC Keys (see page 823)
Maintaining Referential Constraints (see page 824)

Overview

This chapter describes methods for creating, dropping, and changing indexes, CALC
keys, and referential constraints.

Note: For more information about the SQL DDL statements used in the procedures in
this chapter, see the CA IDMS SQL Programming Guide.

Maintaining Indexes

This section describes how to:

■ Create or drop an index

■ Change index characteristics

■ Move an index from one area to another

Maintaining Indexes

822 Database Administration Guide

Creating an Index

To create a new index on a column or columns in a table, use the SQL DDL CREATE
INDEX statement. If the index is going to map to a new area, see Defining Segments,
Files, and Areas for information about defining an area.

Considerations

■ If you specify that the index is unique, and data in the key columns is not unique,
you will receive an error and the index will not be created.

■ Each index implies additional runtime processing to handle INSERT, UPDATE, and

DELETE statements for the index itself.

Note: For more information about designing indexes, see the Database Design Guide.

Example

In the following example, an index is built on the LAST_NAME column in the BENEFITS

table.

create index be_lname (last_name) on emp.benefits;

Dropping an Index

To drop an index from an existing table, use the SQL DDL DROP INDEX statement.

Considerations

A unique index or CALC key is required on all referenced columns in a constraint, and an
index including the referencing (foreign key) columns or a CALC key on al l referencing
columns must exist to support unlinked constraints. If dropping an index would violate

either of these rules, the DROP will not be allowed.

Example

In the following example, an optional index is dropped from a table:

drop index be_lname from emp.benefits;

Maintaining CALC Keys

Chapter 31: Modifying Indexes, CALC Keys, and Referential Constraints 823

Changing Index Characteristics/Moving an Index

To modify index characteristics or to move an index from one area to another, use the
SQL DDL ALTER INDEX statement.

Types of Changes You Can Make:

The following attributes of a referential constraint can be changed:

■ Index block specification

■ Index uniqueness

■ The area in which an index resides

Statements That Modify Indexes:

To modify index attributes, use the ALTER INDEX statement.

Considerations

■ If changing index tuning options, remember to observe referential constraint rules.

Example: Index altered on the BENEFITS table

alter index emp_lname (last_name) on emp.benefits

 displacement is 40 pages

 index block contains 30 keys

 in area emp.emp1;

Maintaining CALC Keys

This section describes how to:

■ Create a CALC key

■ Drop a CALC key

Creating a CALC Key

To create a CALC key for an empty table, use the SQL DDL CREATE CALC statement.

If the table is not empty, you must drop and recreate the table, adding the CALC key
before reloading the table's data.

Note: For the steps involved in this process, see Chapter 30, “Modifying Schema, View,
Table, and Routine Definitions” .

Maintaining Referential Constraints

824 Database Administration Guide

Considerations

Only one location mode is permitted for a table. If the table is stored clustered on an

index or constraint, you must drop the clustering index or constraint and re-add it as
non-clustered before you can create a CALC key.

Example

In the following example, a unique CALC key is created for the EMPLOYEE table.

create unique calc key on emp.employee (emp_id);

Dropping a CALC Key

To drop a CALC key from an empty table, use the SQL DDL DROP CALC statement.

If the table is not empty, you must drop and recreate it.

Note: For the steps involved in this process, see Chapter 30, “Modifying Schema, View,
Table, and Routine Definitions".

Considerations

You cannot drop a CALC key that is required for implementation of a referential

constraint if no index exists to support it. If necessary, either drop the constraint or
create an index to support it before dropping the CALC key.

Example

In the following example, the CALC key is dropped from the EMPLOYEE table.

drop calc key from emp.employee;

Maintaining Referential Constraints

This section describes how to:

■ Create or drop linked or unlinked referential constraints

■ Modify the tuning characteristics of referential constraints

Maintaining Referential Constraints

Chapter 31: Modifying Indexes, CALC Keys, and Referential Constraints 825

Creating a Referential Constraint

To create an unlinked or linked referential constraint, use the SQL DDL CREATE
CONSTRAINT statement. CA IDMS/DB checks and rejects any invalid CREATE
CONSTRAINT statements.

Considerations

■ To create a linked constraint if both tables are not empty, you must drop and
recreate the tables, defining the linked constraint before reloading the data.

Note: For steps and considerations involved with this process, see Chapter 30,

“Modifying Schema, View, Table, and Routine Definitions.

■ When adding an unlinked constraint on a non-empty table, CA IDMS/DB ensures
that all rows of the table satisfy the constraint. If one or more rows do not satisfy
the constraint, the create will not be allowed.

Example

In the following example, a l inked referential constraint has been created to make sure
that the employee ID in the benefits table is a valid ID by checking it against the
employee IDs in the employee table. The referential constraint is indexed and ordered
by the fiscal year.

create constraint emp_benefits

 benefits (emp_id)

 references employee (emp_id)

 linked index

 order by (fiscal_year desc);

Maintaining Referential Constraints

826 Database Administration Guide

Dropping a Referential Constraint

To drop an unlinked referential constraint, or a linked referential constraint, use the SQL
DDL DROP CONSTRAINT statement.

Considerations

If you drop a clustered constraint, the location mode of the referencing table will
change as follows:

■ If a default index exists , CA IDMS/DB will use it as the clustering index.

■ Otherwise, it uses a direct location mode which means that all new rows will be

stored in the first page containing enough space to hold the row.

Example

In the following example, the EMP_BENEFITS constraint is removed from the BENEFITS
table:

drop constraint emp_benefits from benefits;

Modifying Referential Constraint Tuning Characteristics

To modify referential constraint tuning characteristics (for example, changing from
unlinked to l inked or adding an ORDER BY option) use the SQL DDL DROP CONSTRAINT
statement, then re-add the constraint using the SQL DDL CREATE CONSTRAINT

statement. Certain referential constraint characteristics can be changed with the SQL
DDL ALTER CONSTRAINT statement.

For more information about SQL DDL statements see the SQL Reference Guide.

Using ALTER CONSTRAINT

Types of Changes You Can Make:

The following attributes of a referential constraint can be changed:

■ Index block specification

■ Index uniqueness

Statements That Modify Constraints

To modify referential constraint attributes, use the ALTER CONSTRAINT statement.

Maintaining Referential Constraints

Chapter 31: Modifying Indexes, CALC Keys, and Referential Constraints 827

Considerations

All considerations for modifying a referential constraint apply.

Example: Indexed constraint characteristics are changed

alter constraint dept_empl on demo.empl

 displacement is 50 pages

 index block contains 10 keys;

Using DROP/CREATE CONSTRAINT

Considerations

All considerations for dropping and creating a referential constraint apply.

Example: Linked referential constraint has been changed to unlinked

drop constraint emp_benefits from benefits;

create constraint emp_benefits

 benefits (emp_id)

 references employee (emp_id);

Chapter 32: Modifying Non-SQL Defined Databases 829

Chapter 32: Modifying Non-SQL Defined
Databases

This section contains the following topics:

Types of Modifications (see page 829)
Changes to Schemas and Subschemas (see page 829)

Types of Modifications

Modification of a non SQL-defined database involves modifying any of the components
you defined earlier for the schema or subschema. This includes:

■ Adding or deleting schemas

■ Adding, modifying, or deleting schema areas

■ Adding, modifying, or deleting schema records

■ Adding, modifying, or dropping indexes and sets

Note: For more information about modifying physical definitions, see Chapter 27,

“Modifying Physical Database Definitions".

Changes to Schemas and Subschemas

In general, when you change a database, you must modify the schema code and
revalidate the schema. However, changing the schema has an impact on other
components of the CA IDMS/DB environment. If you add or delete an area from a

schema, you may have to add or delete that area in one or more segments and
regenerate DMCLs. You will also have to modify and recompile some or all subschema
definitions compiled under the original schema to reflect changes made to the schema.

If you access the non-SQL defined data through SQL, you may also need to recompile
access modules and drop and recreate SQL view definitions.

The primary tool for changing a schema is the schema compiler.

Changes to Schemas and Subschemas

830 Database Administration Guide

Steps to Modify the Schema

The steps to make any schema modification are as follows:

1. Change and re-validate the necessary schema and subschema definitions

2. Change the actual data (if it exists) to fit the new database specifications using the
RESTRUCTURE, MAINTAIN INDEX, REORG or UNLOAD/RELOAD util ity statements

3. Revise and recompile any application programs that may have been affected by the
above changes

4. Test to ensure that the change has been made correctly.

Changes to Subschemas

Subschemas identify selected areas, records, elements, and sets of the database. They

also define logical records and establish security by restricting runtime access to the
database.

Any time you make a change to any of the above components in your CA IDMS/DB
environment, you will have to change one or more of your subschemas.

The primary tool for changing subschemas is the subschema compiler.

Methods for Modifying

Depending on the type of change you want to make to a non-SQL defined database, you
would do one of the following:

■ Change the definition

■ Change the definition and additionally use one or more util ity statements

Basic Definition Change

To change a logical database definition when there is no impact on data, you can use
the schema compiler (or another compiler). This type of change takes effect without
requiring the use of a util ity statement.

An example of a change in which there is no data impact is adding a new area to a

schema.

Changes to Schemas and Subschemas

Chapter 32: Modifying Non-SQL Defined Databases 831

Definition Change Using Utility Statements

For database changes that have an impact on data, you must change the database

definition and additionally use an appropriate util ity statement:

■ RESTRUCTURE—Modifies record occurrences to fit new schema specifications.
RESTRUCTURE allows you to:

– Insert new data items anywhere in a record

– Delete existing data items

– Change the length and position of data items

– Change the format of a record from fixed length to variable length or from

variable length to fixed length

– Add or remove record compression

– Delete chained sets and add or delete set pointers

■ REORG and UNLOAD/RELOAD—Reorganizes data when changes are made to the

placement of records and indexes within the database (for example, moving a
record from one area to another).

■ MAINTAIN INDEX—Builds, rebuilds, or deletes indexes in the database. You use this

util ity whenever you need to make a structural change to the database involving
indexes (for example, adding a new index to the database).

Procedure for Modifying the Non-SQL Definitions

Step 1: Copy the Original Schema and Global Subschema

1. Create a new schema which is identical to the original schema.

2. Create a global subschema for the new schema with a name which is different from
that of any other subschema in the dictionary. Include in the subschema all areas,
records, and sets associated with the schema.

Changes to Schemas and Subschemas

832 Database Administration Guide

Step 2: Modify the New Schema and Subschema

1. Make the necessary changes to the new schema definition.

2. Validate the schema.

3. Regenerate the global subschema, modifying it if necessary.

Step 3: Modify the Segment and DMCL, If Necessary

Note: You need to modify segments and DMCLs only if you add or remove an area or
make other changes to the physical definition in addition to changing the schema.

1. Make the appropriate changes in the segment definition. Make sure that subareas
and other symbolics are defined appropriately.

2. Generate, punch, and link all DMCLs containing the altered segment.

Step 4: Make Changes to the Data

Note: Not all schema changes require data changes. See Chapter 33, “Modifying
Schema Entities” for the steps needed in each case.

1. Backup the area or fi les.

2. Use the appropriate util ity or user-written program to change the data.

3. Verify the change using IDMSDBAN and/or a retrieval program, CA OLQ, or CA
Culprit.

4. Backup the altered areas or fi les.

Step 5: Complete the Change

1. Update the original schema in the same way that the copy was changed.

2. Regenerate all subschemas associated with the original schema that are affected by
the change, modifying them if necessary to add new areas, records, or sets.

3. Recompile all access modules affected by the change, using the ALTER ACCESS
MODULE statement with the REPLACE ALL option.

4. Drop and recreate all SQL views affected by the change.

5. Make the new subschemas, DMCLs, and fi les available to your runtime

environment.

Changes to Schemas and Subschemas

Chapter 32: Modifying Non-SQL Defined Databases 833

Considerations

The procedure outlined above requires that changes first be made to a copy of the

original schema and only after all other steps have been completed are the changes
made to the original schema. This approach ensures that the original schema continues
to describe the data until the altered areas are made available to the runtime

environment. You should use this (or a similar approach) if during the process:

■ CA OLQ, CA Culprit, or dynamic SQL users will be accessing the original schema
definition

■ Application programs will be compiled against the original schema and must access

the data before it has been changed.

If the above is not a concern or if no data changes are necessary, then the initial
modifications can be made to the original schema rather than a copy, avoiding the
necessity of replicating those changes later.

RESTRUCTURE Utility Statement

What RESTRUCTURE Does

The RESTRUCTURE util ity statement modifies record occurrences to fit new schema
specifications. You run RESTRUCTURE in local mode using a subschema associated with

a schema that describes the database before restructuring.

RESTRUCTURE does not require that the database be unloaded and reloaded. Database
keys remain unchanged. New database procedures can be executed during

restructuring. For example, IDMSCOMP can be executed to compress previously
uncompressed records.

Steps for RESTRUCTURE

To make changes using RESTRUCTURE, follow the procedure described in the section
“Procedure for Modifying the Non-SQL Definitions”, except add the steps l isted in the

following table.

After ... Do this

Modifying the schema and

subschemas

Execute the schema compare util ity (IDMSRSTC) to

generate IDMSRSTT macro statements for use in the
database restructure

Executing IDMSRSTC Assemble the IDMSRSTT statements into a base

restructuring table and use the table with the
RESTRUCTURE util ity statement; use a subschema that
describes the database before restructuring

Changes to Schemas and Subschemas

834 Database Administration Guide

After ... Do this

Executing RESTRUCTURE Connect any new pointers to existing sets using the

RESTRUCTURE CONNECT util ity statement; use a
subschema that describes the database after
restructuring

Executing RESTRUCTURE
CONNECT

Write a program to connect pointers in new sets to
existing records

Note: For more information about IDMSRSTC, RESTRUCTURE, and RESTRUCTURE
CONNECT, see the Utilities Guide.

REORG and UNLOAD/RELOAD Utility Statements

What REORG and UNLOAD/RELOAD Do

The REORG and UNLOAD/RELOAD util ity statements reorganize databases by unloading
existing records and reloading them into another database. To reorganize a database,

you follow one of two approaches:

■ Use the UNLOAD util ity statement to offload data to an intermediate fi le. Use the
RELOAD util ity statement to store the record data into another database, build
index structures, and connect related records together in set structures.

■ Use the REORG util ity statement to both offload and reload data.

The choice of which approach to use depends on a number of factors:

■ The operating system in which the util ity is to execute. Currently, REORG is only
supported in z/OS.

■ The size of the database and the amount of time that you have available to
reorganize it. REORG uses parallel processing to reduce the elapsed time that i t
takes to reorganize a database.

■ The types of changes being made. The REORG util ity supports more types of

changes and in certain cases makes implementing those changes easier. For
example, the REORG util ity allows you to:

– Change the CALC key of a record without unloading and reloading twice

– Change the fields comprising an index key

– Change the order of an index

Note: For more information about the types of changes that can be made through
the two util ities, see the CA IDMS Utilities Guide.

Changes to Schemas and Subschemas

Chapter 32: Modifying Non-SQL Defined Databases 835

Steps for unloading and reloading a database

To make changes using REORG or UNLOAD/RELOAD, follow the procedure described in

32.2.2, "Procedure for Modifying the Non-SQL Definitions", adding the steps l isted in the
following table.

After ... Do this

Modifying the schema and
subschemas

Use the REORG or UNLOAD/RELOAD statements to
reorganize the data using subschemas that reflect both
the old and new schema definitions.

Unloading the data Use the FORMAT util ity statement to initialize the fi les
into which the data will be reloaded.

Note: For more information about REORG, UNLOAD and RELOAD, see the CA IDMS
Utilities Guide.

MAINTAIN INDEX Utility Statement

What MAINTAIN INDEX Does

The MAINTAIN INDEX util ity statement allows you to build, rebuild, and delete both
system-owned and user-owned indexes (indexed sets). You can also change the

characteristics of an index, such as changing an index key from a compressed to an
uncompressed format.

Steps to Modify Indexes

To make changes to an index, follow the procedure described in 32.2.2, "Procedure for

Modifying the Non-SQL Definitions", adding the steps l isted in the following table.

After ... Do this

Modifying the schema and

global subschema

For system-owned indexes:

Use MAINTAIN INDEX to build, rebuild, or delete an index.

For user-owned indexes (indexed sets):

Write a program that calls IDMSTBLU and passes
descriptor information

Changes to Schemas and Subschemas

836 Database Administration Guide

Note: Depending on the operation, you will need either a subschema reflecting the old
schema, the new schema, or both.

Note: For more information about MAINTAIN INDEX and IDMSTBLU, see the CA IDMS
Utilities Guide.

Chapter 33: Modifying Schema Entities 837

Chapter 33: Modifying Schema Entities

This section contains the following topics:

Overview (see page 837)
Modifications to an Unloaded Database (see page 837)
Schema Modifications (see page 838)

Area Modifications (see page 839)
Record Modifications (see page 841)
Set Modifications (see page 852)

Index Modifications (see page 859)

Overview

This chapter describes:

■ The procedure to modify a schema or schema entities when the database is empty.

■ Specific procedures to add, delete, or modify schema or schema entity definitions

when the database is not empty. These procedures include only those that require
a util ity to effect the change.

Modifications to an Unloaded Database

What components are affected

Changes to a schema or schema entity in an unloaded database affects:

■ The schema

■ The subschemas that reference the schema

■ The access modules that reference the schema

■ SQL views that reference the schema

Steps

1. Modify the schema and any schema entities, as desired

2. Validate the schema

3. Regenerate any affected subschemas

4. Drop and recreate SQL views that reference the schema, as necessary

5. Alter affected access modules using the REPLACE ALL option

Schema Modifications

838 Database Administration Guide

Schema Modifications

This section describes how to:

■ Delete a schema

■ Change schema characteristics

Deleting a Schema

What Components are Affected

When you delete a schema, the definitions of the schema and all subschemas associated
with the schema are removed from the dicti onary.

Steps to delete a schema

To delete a schema from the dictionary:

1. Delete the schema

2. Delete load modules associated with the deleted subschemas

3. Delete fi les that contain the data

4. Delete the segment(s) corresponding to the schema

5. Regenerate all affected DMCLs

6. Remove the segment(s) from the database name table

7. Delete SQL schema(s) referencing the non-SQL schema

Considerations

When you delete a schema, subschemas associated with that schema are also deleted.
The subschema load modules are not deleted.

In addition, the physical database definition(s) that apply to the schema's areas are not

automatically deleted. You must modify the physical database definitions to delete the
areas and regenerate all affected DMCLs.

Area Modifications

Chapter 33: Modifying Schema Entities 839

Changing Schema Characteristics

Schema characteristics include:

■ Description

■ Memo date

■ Assignment rules for record IDs

■ Security specifications

■ User-defined information (class/attribute and user-defined comments)

What components are affected

When you modify characteristics of a schema, only the schema definition is affected.

These characteristics do not impact critical definitions within the schema or its
subschemas, so a VALIDATE statement is not required.

Area Modifications

Types of changes

This section describes how to make the following area -related changes:

■ Add or delete an area in an existing schema definition

■ Add, remove, or change procedures associated with the area

Adding or Deleting an Area

What Components are Affected

Adding or deleting an area in the schema affects the schema and subschemas
referencing the area to be deleted, segments describing related physical databases, and
DMCLs in which those segments are included.

Steps to add an area

1. Modify the schema

2. Add the new area

3. Define one or more records or system-owned indexes associated with the area

4. Validate the schema

5. Add the new area to one or more subschemas

6. Format the new area using the FILE option of the FORMAT util ity statement

Area Modifications

840 Database Administration Guide

Steps to delete an area

1. Modify the schema

2. Modify existing records mapping to the area to be deleted so that they map to a
different area

3. Delete the area

4. Validate the schema

5. Regenerate any affected subschemas

Considerations

■ If existing records are to reside in a new area, see 33.5.6, “Changing a Record's

Area".

■ If an existing index is to reside in a new area, see 33.7.2, “Changing the Location of
an Index".

■ After you have added an area to a schema or deleted an area from a schema, make

sure you update the DMCL module appropriately.

Changing Area Characteristics

What components are affected

When you add or delete area procedures, the area and schema definitions are affected.

All subschemas which include the area must be regenerated and all access modules
accessing a record in the area must be altered.

Steps to change area characteristics

See 33.2, "Modifications to an Unloaded Database" for the steps to modify an empty

database.

Considerations

Remember to respecify all database procedures in the order that they are to be called
when you add, remove, or change the procedures associated with a n area.

Record Modifications

Chapter 33: Modifying Schema Entities 841

Record Modifications

Types of changes

This section describes the following record-related changes:

■ Adding or deleting a record in your schema

■ Changing a record's CALC key

■ Changing a record's location mode

■ Changing a record's area

■ Changing a record element

■ Changing record procedures

Adding Schema Records

What components are affected

Adding schema records affects the schema.

Steps to add a record

1. Add the record using DDDL statements

2. Modify the schema

3. Add the record to the schema using SHARE STRUCTURE

4. Validate the schema

5. Modify any subschemas that should contain the new record

6. Add the new record to each subschema

7. Regenerate the subschemas

Considerations

If the record participates in a set with existing records, you must use the RESTRUCTURE
util ity statement to add pointer positions to the existing records. You must also write a
program that connects the records into proper set occurrences.

Note: For more information about adding a set to a schema, see the section "Adding or

Deleting a Set".

Record Modifications

842 Database Administration Guide

Deleting Schema Records

What components are affected

Deleting schema records affects the schema and the data. It also affects subschemas
and access modules that reference the record and any other records connected to the

record through sets. SQL views referencing the record become invalid.

Steps to delete a record

To delete a record from the schema where data has been loaded:

1. Write and execute a program to erase all occurrences of the record

2. Create a new schema based on the original schema omitting the record and

omitting any affected sets

3. Validate the schema

4. Use the schema compare util ity (IDMSRSTC) to generate the IDMSRSTT macro
statements

5. Restructure the database using the RESTRUCTURE util ity statement

Note: If the record does not participate in any set relationships, there is no need to
restructure the database.

6. Complete the process by updating the original schema defini tion, regenerating

subschemas, altering affected access modules, and dropping affected views

Considerations

■ If you created the record using DDDL statements, the record definition will remain
in the dictionary after it has been deleted from the schema

■ If you created the record using schema DDL and the record has not been copied
into any other schema, its definition will be deleted from the dictionary after it has
been deleted from the schema definition.

■ If the record participates in a set relationship, you have to remove the set from the

schema definition or modify the definition before validation

■ Regenerating affected subschemas will remove the record from the subschema
definition

■ When you erase occurrences of the record, you may have to use a subschema

derived from a schema where the sets in which the record is an owner have been
changed to optional. This permits the member record to be disconnected from the
owner record rather than being erased.

Record Modifications

Chapter 33: Modifying Schema Entities 843

Changing a Record's CALC Key

Types of Changes

You can make the following changes to a record's CALC key:

■ Replace one or more elements in the CALC key

■ Add or remove elements in the CALC key

■ Change the picture or usage of an element in the CALC key

What components are affected

Both the schema record definition and the data are affected. Subschemas and a ccess

modules that reference the record are also affected.

Steps to change the CALC key

To change the CALC key of a schema record where data has been loaded:

1. Add a new schema based on the original schema

2. Modify the record in the new schema specifying the new CALC key or any changes

to fields currently participating in the record's CALC key

3. Validate the schema

4. Execute the RESTRUCTURE util ity if any fields within the record's CALC key have had
their definitions changed or any of the conditions discussed under "Considerations"
apply

5. Create a new global subschema if applicable

6. Unload and reload the database

7. Complete the process by updating the original schema definition, regenerating

subschemas, and altering affected access modules

Record Modifications

844 Database Administration Guide

Considerations

■ If a field to be added to the CALC key does not exist in the record, add the field

using RESTRUCTURE and initialize it before unloading and reloading the data.
Initialize the field using restructure or a user-written program.

Note: For information about adding a new record element, see 33.5.7, "Modifying

Record Elements".

■ If using UNLOAD and RELOAD (instead of REORG) to change a CALC key, the
following additional considerations apply:

– If the control length of the record is changing as a result of the change to the

CALC key and the record is compressed or variable length, you must do one of
the following:

■ Use RESTRUCTURE to alter the control length before unloading and
reloading the data.

■ Unload and reload the data twice (using the old subschema on the first
unload and the new subschema on the second)

– UNLOAD/RELOAD clusters VIA records based on the CALC key defined in the
subschema used to unload the data. Therefore, you need to do a second

UNLOAD/RELOAD to properly cluster VIA records if the subschema used to
unload the data describes the old CALC key.

As an alternative, you can use the new subschema for unloading. This ensures
that the new CALC key is used to determine target pages for both the CALC

record and its associated VIA records. However, the new subschema can be
used to unload data only if no other changes have been made to the record
(such as the record's area, set pointers, etc.).

In some cases, multiple changes can be accommodated by using an

intermediate schema/subschema to unload the data. For example, to change
the CALC key of a record and also move it to a new area, unload the data using
a subschema that describes the record's new CALC key but old area. Reload the

data using a subschema describing the new CALC key and the new area.

Record Modifications

Chapter 33: Modifying Schema Entities 845

Changing the DUPLICATES Option on a CALC or SORT Key

Types of Changes

You can make the following changes to the DUPLICATES option on a record's CALC or
sort key:

■ Duplicates first to duplicates last

■ Duplicates last to duplicates first

■ Duplicates not allowed to duplicates first/last

■ Duplicates first/last to duplicates not allowed

What components are affected

The schema definition is affected. Depending on the change, the data may also be
affected. All subschemas and access modules referencing the record are also affected.

Steps to change the duplicates option

See 33.2, "Modifications to an Unloaded Database" at the beginning of this chapter for

the steps to change the duplicates option from:

■ Duplicates first/last to duplicates not allowed

■ Duplicates not allowed to duplicates first/last

To change the duplicates option from first to last or from last to first:

1. Write a program using a subschema that specifies duplicates first for the CALC or

sort key. The program must

■ Modify the CALC or sort key value to a dummy value

■ Modify the CALC or sort key value to its original value

■ Read each record that has duplicate va lues, using either OBTAIN CALC
DUPLICATE or OBTAIN NEXT IN SET to retrieve duplicate records in the current
order

This has the effect of reversing the order of the duplicate records.

2. Modify the schema

3. Modify the record changing the duplicates option

4. Validate the schema

5. Regenerate any affected subschemas

6. Alter affected access modules using the REPLACE ALL option

Record Modifications

846 Database Administration Guide

Considerations

■ When you change from duplicates first or last to duplicates not allowed, make sure

that no duplicate key values exist in the database.

■ When changing from duplicates first to last or last to first, write a conversion
program to logically reorder the record occurrences in the database.

Using the approach described above, the program must execute using a subschema
specifying duplicates first. Therefore, it should use a subschema created either
before or after the schema has been changed depending on whether the duplicates
option is being changed from or to duplicates first.

Changing the Location Mode of a Record

Types of Changes

These are the possible location mode changes for a record in the database:

■ CALC to VIA

■ CALC to DIRECT

■ DIRECT to CALC

■ DIRECT to VIA

■ VIA to CALC

■ VIA to DIRECT

■ VIA one set in the schema to VIA another set

What components are affected

The record definition and the data are affected. Subschemas and access modules

referencing the record are also affected.

Steps to change the location mode

To change the location mode of a schema record where data has been loaded:

1. Add a new schema based on the original schema

2. Modify the record in the new schema to specify the new location mode

3. Validate the schema

4. Create a new global subschema

5. Unload and reload the database

6. Complete the process by updating the original schema, regenerating affected
subschemas, and altering affected access modules.

Record Modifications

Chapter 33: Modifying Schema Entities 847

Considerations

■ If the storage mode is being changed to VIA:

– If the set does not exist, take the following actions before unloading and
reloading the data:

■ Add the set to the schema and subschemas

■ Write a program to connect the members to the appropriate owner
occurrence

– Unload and reload the data using either the REORG or the UNLOAD/RELOAD
util ities.

– If the REORG util ity is used, the unload phase takes additional time to retrieve
the member records because it does so by walking the new (non-clustering)
VIA set

– If UNLOAD/RELOAD are used, you must do one of the following:

■ Either unload and reload the data a second time in order to cluster the
member records correctly

■ Use an intermediate subschema to unload the data. The intermediate

subschema must describe the original database except that the member
record is VIA the new set. Using this technique results in longer unload
times because the member records are retrieved by walking the new
(non-clustering) VIA set.

■ If the storage mode is being changed to CALC, see 33.5.3, "Changing a Record's

CALC Key" for considerations on doing this.

■ If the storage mode is being changed to DIRECT:

– You must unload and reload the data if the original location mode was CALC
but not if it was VIA.

– The record is reloaded into the same page if the page is within the record's
target page range. If the old page is not part of the target page range, the
record is stored in its target range proportionally to its position in its original

range. If this is not acceptable, you may need to write a user-written program
to unload the database and the FASTLOAD util ity to reload it.

Record Modifications

848 Database Administration Guide

Changing a Record's Area

Types of Changes

You can move a record from one area to another or change the portion of an area in
which a record is stored.

Note: If a subarea symbolic is associated with the record, you change the portion of the
area in which the record is stored by changing the physical area definition and
regenerating DMCLs. See Chapter 27, “Modifying Physical Database Definitions” for
more information.

What components are affected

The schema record definition and data area affected. Subschemas and access module
that reference the record are also affected.

Steps to change the record's area

To change the area (or portion of an area) in which record occurrences are stored when
data has been loaded:

1. Create a new schema based on the original schema

2. Add the area, if necessary, to the new schema

3. Modify the record in the new schema to specify the new area or subarea/offset

4. Validate the schema

5. Create a new global subschema

6. Unload and reload the database

7. Complete the process by updating the original schema, regenerating affected

subschemas, and altering affected access modules.

Considerations

■ If you had to add the area to the schema, you must explicitly add it to subschemas
associated with the record. You must also explicitly add the area to all applicable
physical database definitions and regenerate affected DMCLs.

■ If you increase the page range of a record whose location mode is other than CALC,
you do not need to unload and reload the data provided the new page range
includes all pages of the original range.

Record Modifications

Chapter 33: Modifying Schema Entities 849

Modifying Record Elements

Types of changes

These are changes you can make to an element within a schema record:

■ Adding or removing a record element

■ Changing the picture or usage mode of an element

What components are affected

The record definition is affected. If data has been loaded, the data may also be affected.
Subschemas in which the record is included are affected as are programs compiled from

those subschemas. Access modules and SQL views that reference the record are also
affected.

Steps to change the record element

To make any of the above changes when data has been loaded:

1. Using DDDL statements, create a record with a new version number and same

name having the revised structure

2. Create a new schema based on the original schema with the new record

3. Validate the schema

4. Use the schema compare util ity (IDMSRSTC) to generate the IDMSRSTT macro

statements

5. Restructure the database

6. Complete the process by updating the original schema, regenerating affected

subschemas, altering access modules, and dropping and recreating affected SQL
views

Considerations

■ You can replace fi l ler elements with record elements whose total length equals that
of the fi l ler element without creating a new version of the record. The new

elements are immediately reflected in the schema. The next time any programs
that use that schema record are compiled, the new elements appear. Affected
subschemas are flagged for regeneration.

■ You should initialize any 'fi l ler' fields or fields whose picture or usage has been

changed using either RESTRUCTURE or a user-written program.

■ A record element in a schema-owned record can be replaced with elements of the
same name

Record Modifications

850 Database Administration Guide

■ If you want to maintain consistency among the record version numbers in your
schema:

1. Complete all of the steps above

2. Delete the original version of the record

3. Modify the record using DDDL statements to change its version number

You do not have to modify the schema.

■ Non-structural changes can be made directly to schema -owned records using DDDL.
For example, you can change the external picture of a record element even if it is
associated with a schema.

Note: For more information about the types of changes that can be made to
schema-owned records, see the CA IDMS IDD DDDL Reference Guide.

■ If you change the format (picture or usage) of an element used in a CALC or sort
key, additional steps may be needed to convert the data.

Changing Other Record Characteristics

Types of Changes

You can make the following changes to the characteristics of a record (changes other
than those described previously in this chapter):

■ Record ID

■ Record synonyms

■ VSAM type

■ Minimum root and minimum fragment length

■ Whether the record is compressed or uncompressed

Note: For information about dropping or adding a database procedure associated with
a record, see 33.5.9, “Adding and Dropping Database Procedures”.

What components are affected

The record definition is affected and the data is affected if changing the record ID or
compression. All subschemas and access modules that reference the record are
affected. SQL views are affected only if the SQL synonym for an element is changed.

Steps to make the change

To modify the VSAM type, record synonyms, or minimum root and fragment lengths,

follow the procedure described in Modifications to an Unloaded Database at the
beginning of this chapter.

Record Modifications

Chapter 33: Modifying Schema Entities 851

Considerations

■ To change the record ID when data exists, write a program that offloads and

reloads that data.

■ Optionally, unload and reload the data to reorganize existing data after changing
the minimum root or minimum fragment.

■ To change a record from compressed to uncompressed, you must either unload and
reload the data or use RESTRUCTURE to alter the data.

■ If changes to the record elements do not affect control fields, all you need to do is
issue a DDDL MODIFY RECORD statement.

Note: For more information about modifying non-IDD owned records, see the CA
IDMS IDD DDDL Reference Guide.

■ If you change the SQL synonym for one or more elements, then you must drop and
recreate all SQL views that reference the record. You must also change all programs

that refer to those elements in an SQL statement.

■ If you change the VSAM type, ensure that appropriate changes, if necessary, are
made to the VSAM definition using the IDCAMS util ity.

Adding and Dropping Database Procedures

What components are affected

If you implement a new database procedure, or change the name of an existing
procedure, it will affect the schema and one or more subschemas. It may also require

that you restructure the database, if the purpose of the procedure is to alter the
physical data (for example, record compression). All subschemas and access modules
that reference the record are also affected by procedure changes.

Steps to make the change

To add, modify, or delete database procedures that have no effect on the data, follow
the procedure described in 33.2, "Modifications to an Unloaded Database".

Set Modifications

852 Database Administration Guide

Considerations

■ If a new database procedure does affect the data, write and compile the new

procedure and then use the RESTRUCTURE util ity statement to change the existing
data by specifying the new procedure in a NUPROCS macro.

If database procedures are already associated with the record, they may need to be

removed from the schema and subschema before executing RESTRUCTURE. The
existing procedures, if invoked, will be called after all NUPROCS procedures have
been called. If, for example, the new procedure compresses the data in the record,
the existing procedures may not work properly. To overcome this problem, either

execute RESTRUCTURE using a subschema derived from an intermediate schema in
which all procedures normally called before the new procedure have been removed
from the record or unload and reload the data to add the new procedure.

■ You can add or remove procedures that affect the data by unloading and reloading

it. To do this, create a new schema and subschema containing the revised
procedure calls. Unload the data using the old subschema and reload it using the
new subschema.

■ To change a database procedure for an area, all calls must be respecified.

Set Modifications

Types of changes

The following set-related changes can be made:

■ Add or remove a set

■ Change the mode (index or chain)

■ Add or remove set pointers

■ Change set order

■ Change membership options

Adding or Deleting a Set

What components are affected

The schema set definition and data are affected. Segments and DMCLs may also be

affected if a set is indexes and a symbolic index specification needs to be added,
removed, or replaced in the physical definition. Subschemas and access modules that
reference either the owner or member of the set are also affected.

Set Modifications

Chapter 33: Modifying Schema Entities 853

Steps to add or delete a set

To add or delete a set when data has been loaded:

1. Create a new schema based on the original schema but containing the new set or
omitting the deleted set

2. Validate the schema

3. Create a global subschema for the new schema

4. Use the schema compare util ity (IDMSRSTC) to generate the IDMSRSTT macro
statements

5. Restructure the database using the RESTRUCTURE util ity statement

6. If adding a set, write a program to connect member record occurrences to the
appropriate owner occurrences.

7. Complete the change by updating the original schema, regenerating affected
subschemas, and altering affected access modules.

Considerations

■ Both records participating in a new set must be defined to the schema

■ If you replace an existing set with a new set, do not use the AUTO parameter;
specify the actual pointer positions. This eliminates the possibility that the schema

compiler will identify different pointer positions than exist in the loaded database.

■ When deleting an existing set from a schema and a participating record contains
pointer positions for sets beyond the deleted set's pointer positions, you must
renumber the remaining positions. You cannot leave unused pointer positions.

■ If you delete a set, the set is also deleted from all subschema descriptions.

■ If you delete the owner record within a set, the set is automatically deleted and
both the set and deleted record are removed from all subschema descriptions.

■ If you delete the member record within a set, the set remains. You receive an error
on validation if there are no remaining members in the set (as in a multimember

set)

■ If you want a new set to be included in a subschema, you must modify the
subschema and add the set to the subschema.

■ Regenerating affected subschemas will remove a deleted set from all subschemas.

■ When you delete a set, alter and recompile all programs that use the set

Set Modifications

854 Database Administration Guide

Changing Set Mode

Types of changes

You can change the mode of a set from chain to index or vice versa.

What components are affected

The schema set definition and data are affected. All subschemas and access modules
that reference either the owner or member records are also affected.

Steps to change from chained to indexed

To change a chained set to an indexed set when data has been l oaded:

1. Create a new schema based on the original schema

2. Modify the set in the new schema to change the set mode

3. Validate the schema

4. Create a global subschema

5. Write a program that sweeps the area, walks each set, and calls IDMSTBLU to

perform a BUILD function.

6. Restructure the database if needed to remove old pointer positions and add new
ones.

7. Execute MAINTAIN INDEX from SORT3 using the output from step 5 as input

8. Complete the change by updating the original schema, regenerating affected
subschemas, and altering affected access modules.

Steps to change from indexed to chained

To change an indexed set to a chained set when data has been loaded:

1. Create a new schema based on the original schema

2. Modify the set in the new schema to change the set mode

3. Validate the schema

4. Create a global subschema

5. Write a program that sweeps the area and calls IDMSTBLU to perform a DELETE
function and also produces a work fi le for input to step 8.

Set Modifications

Chapter 33: Modifying Schema Entities 855

6. Use the output generated by IDMSTBLU as input to MAINTAIN INDEX and run it
from SORT3 to delete each index occurrence

7. Restructure the database as needed to remove old pointers positions and add new
ones

8. Sort the workfile produced by IDMSTBLU by owner key, member symbolic key, or

set position.

9. Write a program to:

a. Read the sorted output

b. Obtain owner by db-key

c. Obtain member by db-key

d. Connect the member to the set

10. Complete the change by updating the original schema, regenerating affected
subschemas, and altering affected access modules.

Considerations for the change from indexed to chained

■ When you submit the RESTRUCTURE util ity statement to initialize pointers (and
possibly to delete pointers), you must initialize all existing pointer positions in the
owner and member records that will be re-used for the chained set. If this is not

done, you will be unable to connect the members to their owners in Step 9.

■ The work fi le produced in Step 5 should contain the following information:

– The dbkey of each owner record occurrence

– The dbkey of each member record occurrence

– The position of each member record with the set (if its necessary to maintain
the same set order)

– The sort key of the member record within the set (if the set order is changing
or the order of duplicates does not have to be maintained)

Set Modifications

856 Database Administration Guide

Adding and Dropping Set Pointers

Types of changes

You can make the following changes to set pointers:

■ Add or remove prior or owner pointers from a chain set

■ Add or remove owner pointers from an indexed set

What components are affected

When you change the prior or owner pointers defined to a set, the schema set
definition and data are affected. Subschemas and access modules that reference either

the owner or member records are also affected.

Steps to add or drop set pointers

To add or drop set pointers when data has been loaded:

1. Create a new schema based on the original schema but containing the modified set
pointers

2. Validate the schema

3. Create a global subschema

4. Use the schema compare util ity (IDMSRSTC) to generate the IDMSRSTT macro
statements

5. Restructure the database using RESTRUCTURE

6. If you add a prior or owner pointer to an existing set, fi l l in the pointer values using
RESTRUCTURE CONNECT

7. Complete the process by modifying the original schema, regenerating affected
subschemas, and altering affected access modules.

Considerations

■ When adding or deleting pointers, do not use the AUTO parameter; specify the
actual pointer positions. This eliminates the possibility the schema compiler will

identify different pointer positions than exist in the loaded database.

■ When deleting a pointer from a set in a schema and a participating record contains
pointer positions beyond the deleted pointer, you must renumber the remaining
positions. You cannot leave unused pointer positions.

Set Modifications

Chapter 33: Modifying Schema Entities 857

Changing Set Order

Types of changes

You can make the following order-related changes:

■ Change from SORTED to unsorted (NEXT, PRIOR, FIRST, LAST) order

■ Change from unsorted to sorted

■ Change one of the unsorted orders to another

■ Change the sort key or collating sequence of a s orted set

What components are affected

When you change NEXT, PRIOR, FIRST, LAST, or SORTED specifications, the schema set
definition and data are affected. Subschemas and access modules that reference either
the owner or member records area are also affected.

Steps to change set order

Follow the steps l isted in 33.2, "Modifications to an Unloaded Database" at the

beginning of this chapter if both of the following statements are true:

■ You are changing a chained or an unsorted indexed set to NEXT, PRIOR, FIRST, or
LAST

■ It is not important to re-order existing data

Steps to re-order chain and unsorted indexed sets

To change the set order of a chained or unsorted indexed set, member records must be
re-ordered:

1. Create a new schema based on the original

2. Modify the set to change the set order

3. Validate the schema

4. Create a global subschema

5. Write a conversion program that disconnects and re-orders (in the desired

sequence) each member record occurrence

6. Complete the process by updating the original schema, regenerating affected
subschemas and altering affected access modules

Set Modifications

858 Database Administration Guide

Steps to re-order sorted indexed sets

To change the sort key of a sorted indexed set or to change an indexed set from

unsorted to sorted and vice versa, follow the procedure for re-ordering chain sets
except replace Step 5 with the following:

1. Write a program that sweeps the area and call IDMSTBLU with a REBUILD function

2. Use the output from the step above as input to MAINTAIN INDEX and run
MAINTAIN INDEX from SORT3

Considerations

When you change the set order from or to SORTED or when you change the sor t key of a

sorted set, the control length of the member record may change. If it does, and the
member record is compressed or variable in length, you must use RESTRUCTURE to
change the control length of existing record occurrences.

Changing Set Membership Options

Types of changes

You can change a MANDATORY set to OPTIONAL and vice versa. You can also change an
AUTOMATIC set to MANUAL.

What components are affected

When you change membership options, the schema set definition is affected.
Subschemas and access modules that reference either owner or member record are also
affected.

Steps to change membership options

To change membership options, regardless of whether data is loaded, follow the steps
outlined in 33.2, "Modifications to an Unloaded Database".

Index Modifications

Chapter 33: Modifying Schema Entities 859

Considerations

Changing membership options may impact existing application programs. Consider the

following:

■ If you change from AUTOMATIC to MANUAL or vice versa, programs that STORE
member records may need to connect records into the set using a CONNECT

statement or no longer issue such a CONNECT.

■ If you change from OPTIONAL to MANDATORY, programs that DISCONNECT
members from the set must be changed and programs that ERASE owner records
may need to be changed.

■ If you change from MANDATORY AUTOMATIC to any other option, programs that
obtain the owner of the set may be affected (because a given member occurrence
may not have an owner).

Index Modifications

Types of changes

You can make the following types of changes to system-owned indexes:

■ Add or remove an index

■ Change the area in which an index resides

■ Change index characteristics

■ Change from linked to unlinked or vice versa

Adding or Deleting System-Owned Indexes

What components are affected

When you add or remove a system-owned index, the schema set definition and the data
are affected. All subschemas and access modules that reference the member record are
also affected.

Index Modifications

860 Database Administration Guide

Steps to add an index

To add an index when data has been loaded:

1. Add a new schema based on the original schema adding the new index

2. Validate the schema

3. Create a global subschema for the new schema

4. If the index is l inked, add the index pointer position to the member record using the
schema compare util ity (IDMSRSTC) and RESTRUCTURE

5. Build the index structure using the new subschema using the MAINTAIN INDEX
util ity statement

6. Complete the process by updating the original schema, regenerating affected
subschemas, and altering affected access modules

Steps to remove an index

To remove an index when data has been loaded:

1. Add a new schema based on the original schema removing the index

2. Validate the schema

3. Create a global subschema for the new schema

4. Delete the index structure using an old subschema and the MAINTAIN INDEX util ity

statement

5. If the index is l inked, remove the index pointed from the member record using the
schema compare util ity (IDMSRSTC) and the RESTRUCTURE util ity statement

6. Complete the process by updating the original schema, regenerating affected

subschemas, and altering affected access modules

Considerations

■ The index you delete from the schema will automatically be deleted from any
affected subschemas when you request that affected subschemas be regenerated.

■ If an index is added or removed, it may change the control length of the record. If it

does and the record is compressed or variable in length, you must change the
control length of existing data using RESTRUCTURE.

Index Modifications

Chapter 33: Modifying Schema Entities 861

Changing the Location of an Index

Types of changes

You can change the area (or portion of an area) in which the index structure resides.

What components are affected

The schema set definition and data are affected. Subschemas and access modules that
reference the member record are also affected.

Note: If a subarea symbolic is associated with the index, you change the portion of the
area in which the index is stored by changing the physical area definition and

regenerating DMCLs. See Chapter 27, “Modifying Physical Database Definitions” for
more information.

Steps to change the area

To change the area (or portion of an area) in which an index resides when data has been
loaded:

1. Add a new schema based on the original schema

2. Add the area, if necessary

3. Modify the indexed set to map to the new area or subarea/page range

4. Validate the schema

5. Create a new global subschema

6. Rebuild the index using both an old and new subschema us ing the MAINTAIN INDEX
util ity statement

Considerations

■ If the area does not exist in the subschema, you will receive an error when you
issue REGENERATE AFFECTED SUBSCHEMAS.

Index Modifications

862 Database Administration Guide

Changing Index Characteristics

Types of changes

You can change the following index-related characteristics:

■ Key compression

■ Number of entries in an SR8 record

■ Index displacement

■ Index key or collating sequence

What components are affected

The schema set definitions and data are affected. Subschema and access modules that
reference the member record are also affected.

Steps to change index characteristics

To change index characteristics when data has been loaded:

1. Add a new schema based on the original schema modifying the set characteristics

2. Validate the schema

3. Create a global subschema

4. Rebuild the index using the MAINTAIN INDEX util ity and the REBUILD option

5. Complete the process by updating the original schema, regenerating affected

subschemas, and altering affected access modules

Considerations

■ If you change the index key, the control length of the member record may change.
If it does, and the member record is compressed or variable in length, you must use

RESTRUCTURE to change the control length of existing record occurrences.

■ When you execute the MAINTAIN INDEX util ity statement, use the REBUILD option:

– If you change key compression, you must specify the name of an old
subschema in the USING parameter and the name of a new subschema in the

NEW SUBSCHEMA parameter.

– If you change the symbolic key or the collating sequence, you must specify the
new subschema in the USING parameter.

If both types of change are being made at once, you will need to run MAINTAIN

INDEX twice, once to delete the existing index (using the old subschema) and once
to build the new index (using the new subschema).

Index Modifications

Chapter 33: Modifying Schema Entities 863

Adding or Deleting Index Pointers

Types of changes

You can delete or add index pointers. The index pointer in a member record is optional
for system-owned indexes.

Adding or deleting index pointers

To add or delete an index pointer:

1. Modify the schema specifying INDEX POSITION IS NONE

2. Add or delete the pointer position using the RESTRUCTURE util ity statement

3. Rebuild the index using the MAINTAIN INDEX util ity statement

Chapter 34: Modifying Subschema Entities 865

Chapter 34: Modifying Subschema Entities

This section contains the following topics:

Overview (see page 865)
Modifying or Deleting a Subschema (see page 866)
Adding, Modifying, or Deleting a Record (see page 867)

Adding, Modifying, or Deleting a Set (see page 868)
Adding, Modifying, or Deleting an Area (see page 868)
Adding, Modifying, or Deleting a Logical Record or Path Group (see page 869)

Overview

Affect on Applications Associated with the Subschema

Changes you make to a subschema impact application programs associated with that
subschema. In general, when you add, modify, or delete a subschema entity and
regenerate the subschema, follow the appropriate procedure in the following table:

If a program... You should...

Is associated with the subschema but does not

need to access the new entity (area, record, or
set)

Not have to recompile the program

Is associated with the subschema and needs
access to a new entity or has access to a

modified entity

■ Alter the program as needed

■ Recompile the program

Regenerating the Subschema

Before you can use the subschema, you must regenerate it as described in Chapter 15,

“Subschema Statements".

If you want to use the subschema before the system is recycled, you must issue a DCMT
VARY PROGRAM .. NEW COPY command. This statement causes the regenerated
subschema to be loaded into the program pool the next time it is requested.

Identifying Programs Associated with a Subschema

If your site updates the dictionary every time a program is compiled, the dictionary will
contain the necessary information to identify the programs associated with a modified
subschema.

Modifying or Deleting a Subschema

866 Database Administration Guide

If this information is stored in the dictionary, you can run IDMSRPTS Program
Cross-Reference Listing report. For each program associated with a subschema, the

report l ists:

■ Name

■ Version number

■ Date last compiled

■ Number of times compiled

■ Language

Note: For more information about IDMSRPTS, see the CA IDMS Utilities Guide.

If your site does not update the dictionary when a program is compiled, such
information must be maintained manually.

Modifying or Deleting a Subschema

Modifying a Subschema

When You Might Want to Make This Change

There are several modifications you may want to make to the subschema definition
itself (other than modifications to set, area, and record definitions). These modifications

include:

■ Description

■ Program registration

■ Authorization

■ Usage

■ Information on transferring statistics

■ Logical record currency

■ Security

■ User-defined information (class/attribute and user-defined comments)

Adding, Modifying, or Deleting a Record

Chapter 34: Modifying Subschema Entities 867

What Components are Affected

The definition of the subschema as it resides in the dictionary is affected by such

modifications.

Example

In the following example, program registration has been turned on. This requires that all

programs using this subschema be registered with the named subschema in order to be
compiled against it.

modify subschema empss01

 program registration required is on.

generate.

Deleting a Subschema

When You Might Want to Make This Change

If there is no longer a need for a subschema, you may want to delete it.

What Components are Affected

The subschema source is affected by the deletion of a subschema. The subschema load
module is not affected.

Considerations

■ When you delete a subschema, programs associated with that subschema can no
longer be compiled. You must associate each program with a new subschema.

■ If you have not specified DELETE IS ON in the SET OPTIONS statement, the
subschema load module is not automatically deleted when you delete the

subschema definition. You must explicitly delete the associated load module.

Example

In the following example, the subschema EMPSS01 is deleted.

delete subschema empss01.

Adding, Modifying, or Deleting a Record

What Components are Affected

The record definition portion of the subschema is affected by such a modification.

Adding, Modifying, or Deleting a Set

868 Database Administration Guide

Considerations

■ If you include a new record in the subschema and that record participates in a

mandatory automatic set, you have to include the owner of that set in the
subschema (or the set itself) so that application programs using the subschema can
store occurrences of the new record.

When you regenerate the subschema, you will receive a notice of an access
restriction.

■ If you modify a record so that some elements are omitted, you may have to modify
and regenerate maps for online programs as well as the programs or dialogs

themselves.

■ If you add a record that is stored in an area not currently participating in this
subschema, you must add that area to the subschema if a program is to access the
new record. You will receive an error on generation if the area is not added.

Adding, Modifying, or Deleting a Set

What Components are Affected

The set definition portion of the subschema is affected by such a modification.

Considerations

■ If you do not add the set owner and member record types to the subschema, your

program cannot access the new set.

■ If you add the set and the set member record type but not the owner record type,
the application program will not be able to obtain the owner of the set.

■ If you add the set and the set owner record type but not the member record type,

the application program will not be able to walk the set.

■ If you delete a set but not its owner or member record type, currency will not be
maintained for that set and, although an application program can access the owner,

it cannot walk a set to obtain all members. In addition, the application program
cannot connect a member into the set, and, if the set is mandatory automatic, the
application program cannot store a new record occurrence.

Adding, Modifying, or Deleting an Area

When You Might Want to Make This Change

You can add areas to or delete areas from a subschema or make a modification to an
existing area. Normally this is done in conjunction with adding or deleting a record or
index structure stored in that area or to move records i nto a new area for performance
reasons.

Adding, Modifying, or Deleting a Logical Record or Path Group

Chapter 34: Modifying Subschema Entities 869

What Components are Affected

The area definition portion of the subschema is affected by such a modification.

Considerations

■ If you modify the usage mode so that a mode is no longer allowed, you may have to
modify the READY mode of your program to match.

■ If you modify the default usage mode, you should check programs using the
subschema to see that there is no conflict.

■ If you delete an area, make sure that there are no records or indexes mapping to
that area stil l in the subschema.

■ If an area is renamed or deleted, all ADS dialogs that use the subschema must be
recompiled if they use neither READY ALL nor DBMS autoready.

Adding, Modifying, or Deleting a Logical Record or Path Group

What Components are Affected

Only the definition of either the logical record or a path group is affected.

Considerations

■ If you modify a logical record so that some elements are omitted, you may have to
modify and regenerate maps for online programs as well as the programs
themselves.

■ If you remove a path group from the subschema, you must modify and recompile
any program or dialog associated with that subschema using the deleted path
group.

■ If you have changed the selection criteria in a path, you need to modify the

program requests in programs or dialogs associated with that subschema.

Note: For more information about Logical Record Facil ity, see the CA IDMS Logical
Record Facility Guide.

Chapter 35: Space Management 871

Chapter 35: Space Management

This section contains the following topics:

Space Management (see page 871)
Database Pages (see page 871)
Database Keys (see page 874)

Area Space Management (see page 878)

Space Management

Definitions of Areas and Pages

A CA IDMS database contains one or more areas. Each database area is a named

subdivision of addressable storage in the database. A CA IDMS area is subdivided into
database pages. Most database pages are used to hold actual record occurrences (or
rows). Some pages are reserved by CA IDMS for space management.

Note: Record occurrences and rows of an SQL-defined table are stored in the same way

in a CA IDMS database. For simplification, the term record occurrence will be used to
indicate both row and record occurrence, and record type to indicate both table and
record type.

Definition of Database Key

Each record occurrence in a CA IDMS database is uniquely identified by a database key

(db-key) that specifies the physical location of the occurrence. Database keys are used
as pointers to related record occurrences or index records.

The format of a database key can vary from database to database. The variable format

of the db-key allows you to tailor space management factors to different processing
requirements.

Database Pages

Size of Database

A database can have from 2 to 1,073,741,822 pages. Each area contains pages of equal

size. Each page can contain up to 32,756 bytes of data. For details, see 35.3, “Database
Keys". Database pages are mapped to BDAM, or DAM blocks, or VSAM control intervals
(for details, see Chapter 17, “Allocati ng and Formatting Files"). Each database page is

identified by a unique page number and data transfers are accomplished one page at a
time.

Database Pages

872 Database Administration Guide

Page Format

All database pages, regardless of size, have a header and footer with the same general

format as shown in the following diagram. A database page always has a header at the
beginning of the page and a footer at the end; free space is in the middle.

Header

The header occupies the first 16 bytes of each page and is formatted as follows:

■ Page number (4 bytes)—A unique, system-assigned number of the page.

■ SR1 system record (12 bytes)—An SR1 record is stored on each page during

initialization by the FORMAT util ity. Each SR1 record contains the space available
count (that is, the number of bytes of free space on the page).

Database Pages

Chapter 35: Space Management 873

Footer

The footer occupies the last 16 bytes of each page and is formatted as follows:

■ Line index 0 (8 bytes)—Identifies the location and length of the SR1 system record

■ Line space count (2 bytes)—Number of bytes used for l ine indexes and the footer

■ Filler (2 bytes)—Reserved space

■ Page number (4 bytes)—The unique system-assigned number of the page

Note: Numeric fields maintained by CA IDMS are in binary format, although this manual
represents them as decimal numbers.

To simplify the il lustrations, the page size (800 bytes) in the figures of this manual is

unusually small.

Database Page Layout

Except for the header and the footer, pages are fi l led with the following entries:

■ Record occurrences—The actual record occurrences are positioned on the page
from top to bottom immediately following the header. Each occurrence consists of

a prefix (containing pointers) and a data portion. A page can hold from 3 to 2,727
record occurrences depending on user specification (for details, see 35.3, “Data base
Keys".)

■ Line indexes—The line indexes identify the locations of record occurrences on the
page and are positioned on the page from bottom to top, immediately preceding
the footer. A page contains one line index per record occurrence on the page. Each
line index has the following format:

– Record id (2 bytes)—Identification of the record type

– Displacement (2 bytes)—Location of the record occurrence relative to the
beginning of the page, where the first byte on the page is position 0

– Record length (2 bytes)—Length of the entire record occurrence stored on this

page (data plus prefix) in bytes

– Prefix length (2 bytes)—Length of the prefix portion of the record in bytes

Database Keys

874 Database Administration Guide

Record occurrences are added from the top down; l ine indexes from the bottom up.
Free space is always in the middle.

Database Keys

Identify Each Record Occurrence

Each record occurrence in a CA IDMS database is uniquely identified by a database key
(db-key), which indicates the occurrence's physical location in the database. A db-key is

assigned when a record occurrence is stored in the database. The db-key never changes
as long as the record remains in the database (that is, until the record is erased or until
the database is unloaded and subsequently reloaded).

Database Keys

Chapter 35: Space Management 875

Used as Pointers

Database keys are used as pointers to related record occurrences or index records. As

such, database keys are found in the system-maintained prefixes that precede the data
portion of the record occurrence. For example, a record occurrence's prefix may contain
the database keys of the next, prior, and owner records of the chained set in which that

occurrence is a member.

A db-key is a 4-byte (32 bit) binary number. The Database Management System (DBMS)
creates a db-key for a record occurrence by concatenating the following numbers:

■ Page number—The page on which the record occurrence is stored

■ Line number—The position of the record occurrence's l ine index on the page
relative to the other l ine indexes, where the line index for the SR1 record is l ine
index 0

Db-key Format

The db-key format is variable. The number of bits reserved in the db-key for the page

number and line number, respectively, can vary from one physical database to another,
as long as the total number of bits used is 32. You identify the db-key format to be used
by specifying the maximum number of record occurrences to be stored on one database

page in the CREATE SEGMENT statement.

Default Db-Key Format

In the default db-key format, 24 bits are allocated for the page number and eight bits for
the line number. This format allows a maximum of 16,777,214 pages in the database,

with each page containing up to 255 record occurrences.

Variable Format

The variable format of the db-key allows you to tailor space management factors to
different processing requirements. For storage of small records, specify a database with
many record occurrences per page and a smaller number of pages. For storage of large

records, specify a database with few record occurrences per page but a large number of
pages. For these different requirements, adjust the db-key format as follows:

■ To allow more record occurrences per page, increase the number of bits for the line

index. (The line number must be from 2 to 12 bits in length.)

■ To allow more pages per database, increase the number of bits for the page
number.

Database Keys

876 Database Administration Guide

As the number of record occurrences allowed on a page increases, the number of pages
allowed in the database decreases. Conversely, the more pages in the database, the

fewer occurrences each page can hold.

Note: The MIXED PAGE GROUP BINDS ALLOWED option for a DBNAME may be used to
increase the number of records accessible in a database from a single database

transaction.

The following diagram shows the db-key formats for n CA IDMS database with three

possible formats: 255 record occurrences per page (the default size); the greatest
possible number of occurrences per page; and the greatest possible number of pages.

Database Keys

Chapter 35: Space Management 877

Determining the Db-Key Format

Using the decimal value that you specify in the MAXIMUM RECORDS PER PAGE clause

on the CREATE SEGMENT statement, CA IDMS/DB determines the db-key format, as
follows:

■ To determine the total possible number of line indexes for a page , CA IDMS/DB

adds 1 to the maximum number of record occurrences per page. (This number
represents l ine index 0, reserved for the SR1 record.)

■ To determine the size of the line number portion of the db-key, CA IDMS/DB
identifies the number of bits required to store the largest possible l ine index.

■ To determine the size of the page number portion of the db-key, CA IDMS/DB
subtracts the number of bits for the line number from 32 (the total number of bits
in a db-key).

For example, the default number of record occurrences per page is 255. In this case, the
total number of l ine indexes is 256 (that is, l ine index 0 through 255). Since the decimal

number 255 takes eight bits of storage in binary format, the line number portion of the
db-key for this database is eight bits, and the page number portion is 24 bits.

Note: CA IDMS uses all 32 bits of the db-key for the page number and the line number.

If you want to reserve a bit in the db-key as a sign bit (that is , if you will write routines
that perform arithmetic operations using the db-key sign bit), make sure that the
db-keys created for your occurrences can be stored in only 31 bits.

Conversion Algorithms

Use the following algorithms to convert a db-key into individual page and line numbers:

dbkey-page = dbkey/2**bits-for-line

dbkey-line = dbkey - (dbkey-page * (2**bits-for-line))

where:

■ dbkey = the 4-byte binary database key

■ dbkey-page = the binary database page number

■ dbkey-line = the binary database line number

■ bits-for-line = the number of bits for the line number in the database key

Area Space Management

878 Database Administration Guide

Area Space Management

What is an Area?

A CA IDMS database is divided into one or more areas. Each database area is a named
subdivision of addressable database s torage. Each area can contain one or more record
types, according to varying processing requirements, but all occurrences of a particular

record type must be in the same area.

Managing Space in an Area

To manage space in an area, CA IDMS/DB keeps track of available space on each page.
CA IDMS reserves selected pages called space management pages (SMPs) for this
purpose. The first page in each area is an SMP. Depending on the number and size of

pages in the area, CA IDMS may reserve additional SMPs throughout the area.

Since you frequently assign several record types to an area, data pages in these areas
are typically fi l led with record occurrences of different record types and the

occurrences' corresponding line indexes. For example, in the sample employee
database, the DEPARTMENT, JOB, OFFICE, and SKILL records are all assigned to the
ORG-DEMO-REGION area. Thus, occurrences of all of these record types can be stored
on the same page.

Sample Page

The following drawing shows a sample page in the ORG-DEMO-REGION. Typically,
except for the header and footer, a page in an area is fi l led with occurrences of different
record types. Page 7130 in the ORG-DEMO-REGION area contains occurrences of the
OFFICE, JOB, and DEPARTMENT record types.

Area Space Management

Chapter 35: Space Management 879

Space Available

To manage space, CA IDMS/DB keeps track of the available space on each page. The

space available is maintained in the following locations:

■ SR1 records—System records in each page's header which contain the space
available count for the page

■ Space management pages (SMPs)—One or more system-reserved pages which
contain entries that indicate whether each page (in a range of pages) is empty or
full

SR1 records and space management pages are discussed separately next.

SR1 Records

Each database page in an area contains an SR1 record in the page header. Each
occurrence of the SR1 record contains the space available count for that page. The SR1
record type is the owner of a set used by CA IDMS/DB to keep track of CALC records (for

details, see "Storing CALC records" in Chapter 36, “Record Storage and Deletion”).

SR1 Record Format

The SR1 record is formatted as follows:

■ Next pointer for CALC set (4 bytes)—Database key (next pointer) of the CALC
record, targeted to that page, with the lowest CALC key

■ Prior pointer for CALC set (4 bytes)—Database key (prior pointer) of the CALC
record, targeted to that page, with the highest CALC key

■ Space available count (2 bytes)—Number of bytes of free space remaining on the

page

■ Filler (2 bytes)—Reserved space

Line Index

Every line index 0 in an area identifies the location of an SR1 record and always contains
the following values:

■ record identification = 1

■ displacement = 4

■ record length = 12

■ prefix length = 8

Area Space Management

880 Database Administration Guide

The following diagram shows an empty page in an area. This is what a page would look
like after initialization by the FORMAT util ity.

Note: The space available count for an empty page is always the page size minus 32 (in
this case, 800 - 32 = 768) and the line space count for an empty page is always 16. The
CALC set pointers in the SR1 record on an empty page point back to the SR1 record itself

since it is the only record in the set.

Space Management Pages

What is a Space Management Page?

CA IDMS reserves selected pages, called space management pages (SMPs), to keep
track of the available space on each page. These pages are fi l led with 2-byte items called
space management entries. Each space management entry, depending on the entry's

relative position on the page, corresponds to a page in the area. The first entry
corresponds to the space management page itself, the second entry to the first page
following the space management page, and so on.

Area Space Management

Chapter 35: Space Management 881

Number of Pages Managed by SMP

The number of pages managed by one space management page is the page size minus

32 (header and footer) divided by 2 (two bytes per space management entry).

For example, a space management page for an area whose page size is 800 bytes holds
384 entries. The first entry is for the space management page itself. If the area

contained 900 pages, the area would require three space management pages. The first
space management page would be the first page in the area, the second would be the
385th page, and the third would be the 769th page.

FORMAT Utility Initializes SMP Entries

For pages that will contain record occurrences, the FORMAT utility initializes space

management entries to a value equal to the page size of the area minus the number of
bytes used by the header and footer (that is, the amount of usable space on each page).
The first space management entry is for the space management page and is initialized to
zero. In the previous example, the space management entries for data pages would be

initialized to a value of 768.

Accessing Space Management Pages

After initialization, space management pages are accessed only in the following
situations:

■ STORE command—If CA IDMS/DB cannot store a record occurrence on the target

page because insufficient space exists on that page, the space management page is
consulted for the next page that has sufficient space. Further, if the space available
count field on the target page shows that more than 70 percent of the usable space

is used, the space management page is accessed and the space management entry
is changed to the actual space available. Also, if CA IDMS/DB uses the last available
l ine index on a page to store a record, a halfword of 2 is entered in the space
management entry, indicating that the page is logically full.

■ ERASE command—When the actual space available for a page is shown in the space
management entry (that is, when the page is more than 70 percent full) and a
record occurrence is deleted from the page, CA IDMS/DB accesses the space

management page and does one of the following:

– If the page is sti l l more than 70 percent full, CA IDMS/DB moves the new space
available count from the page to the space management entry.

– If the page is now less than 70 percent full, CA IDMS/DB reinitializes the space

management entry to the value of the page size minus the length of the header
and the footer (that is, the decimal value 32).

Area Space Management

882 Database Administration Guide

Actual Space Available

The actual space available for each page is not maintained constantly to avoid accessing

the space management page each time a record is stored or erased. Instead, a page is
considered empty (for space management purposes) until either of the following
conditions occurs:

■ A store operation for a record occurrence puts the space used over the 70 percent
threshold.

■ All l ine indexes on that page have been used (that is, the page is logically full).

A page returns to the empty status when an erase operation puts the space used back
below the 70 percent threshold.

Consequently, unless a large enough page size is specified, CA IDMS/DB might attempt
to store records that will not physically fit on a page.

Suppose, for example, that a page is 60 percent full and marked as empty in the space
management page, and that a record occurrence being stored is 45 percent of the page

size. Using information maintained in the space management page, CA IDMS/DB would
determine that the record occurrence could fit on the page, when it could not.

To ensure that CA IDMS/DB can successfully store all records, specify a page size that

allows CA IDMS/DB to store the largest fixed-length record on 30 percent of the page.

Determining Minimum Page Size

Use the following algorithm to determine minimum page size:

min-page-size = ((record-length + 8) / 0.30) + head-foot-length

where:

■ min-page-size = the decimal value of the minimum page size

■ record-length = the length of the largest fixed-length record type (data plus prefix)

■ 8 = the length of the line index

■ head-foot-length = the maximum length of a header and footer on a page; the
decimal value 32

Reporting on Area Space Utilization

The PRINT SPACE util ity statement reports on:

■ Space util ization based on the contents of the SMPs

■ With the FULL option, space util ization based on the actual contents of each
database page (using the space available count)

Area Space Management

Chapter 35: Space Management 883

Use of the Space Management Page

The following diagram shows the use of the space management page.

CA IDMS/DB changes the space management entry for page 7120 from 768 (the page
size minus 32) to 36 (the actual number of bytes left on page 7120) after storing the JOB
3027 record. Thus, after consulting the space management page, CA IDMS/DB knows

that it cannot store the DEPT 2000 record (72 bytes long) on page 7120 because of
insufficient space, and stores it on the next page.

When the OFFICE 1 record is deleted from page 7120, the page is sti l l more than 70
percent full, so CA IDMS/DB moves the value 124 (the actual amount of space available)

to the space management entry.

When the JOB 3027 record is deleted, however, page 7120 is less than 70 percent full
and the space management entry is reinitialized to 768 bytes.

Area Space Management

884 Database Administration Guide

Chapter 36: Record Storage and Deletion 885

Chapter 36: Record Storage and Deletion

This section contains the following topics:

Record Storage (see page 885)
Record Deletion (see page 898)

Record Storage

Determining the Target Page

To store a record in the database, CA IDMS/DB first determines a target page. Storage
mode specifications govern the selection of the target page, as follows:

■ In CALC storage mode, CA IDMS/DB calculates the number of the target page by

executing a randomizing routine against the CALC key.

■ In VIA or CLUSTERED storage mode, which is used to store related record
occurrences (or rows) on the same page or on as few pages as possible, CA
IDMS/DB determines the number of the target page from:

– For non-SQL, the number of the page that contains the current record of the
VIA set

– For SQL, the referenced row of a clustered constraint

■ In DIRECT storage mode, the user explicitly specifies the target page. (Note that if
you specify the value -1, the target page is the first page assigned to the record
type.)

Storing the Record Occurrence

If the target page has sufficient space to store the entire record occurrence (fixed-length

uncompressed records) or the record's minimum root, CA IDMS/DB then stores the
record occurrence on the target page. If the target page does not have sufficient free
space to store the record occurrence, CA IDMS/DB stores the record occurrence on the
next page that has sufficient space. The search for free space always proceeds in a

forward (higher database key) direction. If the end of the area (or the page range
assigned to the record type) is reached before space is located, the search wraps around
to the beginning of the area (or the page range assigned to the record type).

Record Storage

886 Database Administration Guide

After identifying the first available free page, CA IDMS/DB performs the following
operations to store a record occurrence:

■ Creates a line index and positions it at the end of the free space or an unused line
index.

■ Positions the prefix and data (as retrieved from the program variable storage) at

the beginning of the free space.

When storing a fixed-length uncompressed record, CA IDMS/DB places the entire
record occurrence on the target page. When storing a variable-length record
occurrence, CA IDMS/DB places as much of the record occurrence as possible on

the target page. (For details, see 36.1.3, “Storing Variable-Length Records”.)

■ Updates the space available count in the header and the line space count in the
footer.

■ Updates the record's pointers as follows:

– Updates the pointers for all user sets in which the record is an automatic

member

– Sets the pointers to null (-1) for all sets in which the record is a manual member

– Sets the pointers to the database key of the object record itself for all owner

records (indicating an empty set)

– For SQL, sets the pointers to null (-1) for l inked constraints in which the table is
the referencing table if one or more columns of the forei gn key are null;
otherwise, sets the pointers to the db-keys of related rows

– For SQL, sets the pointers to the database key of the object row itself for l inked
constraints in which the table's the referenced table

■ Updates the record's CALC set pointers (if any).

■ Updates the pointers in all other records affected by the stored record's automatic

(and CALC, if applicable) set connections.

For example, if record B2 is being stored between records B1 and B3 in set A-B, B2's
next pointer is set to B3's database key, while B2's prior pointer is set to B1's

database key. Additionally, B1's next pointer is changed from B3's database key to
B2's, and B3's prior pointer is changed from B1's database key to B2's.

Record Storage

Chapter 36: Record Storage and Deletion 887

Storing CALC Records

Stored On or Near Calculated Page

CA IDMS/DB stores records that have a storage mode of CALC on or near the page
calculated from the record's CALC key (a schema-specified symbolic key). CA IDMS/DB

uses the system-owned CALC set to keep track of all CALC records that randomize to a
specific page. The CALC set's owner is the system-owned SR1 record type. The CALC
set's members are all of the user records with a storage mode of CALC. The set is sorted
in ascending sequence on the CALC key of each member record occurrence.

Example of a System-Owned CALC Set

The following diagram shows the system-owned CALC set for the sample employee
database.

Note: The system-owned CALC set is an internal set. It should not be included in the

user's schema or in structural diagrams.

One System-Owned CALC Set Per Database

There is one system-owned CALC set type per database; there is one CALC set
occurrence for each page in the area. The CALC set is sorted in ascending sequence

based on the CALC key of each member occurrence.

Record Storage

888 Database Administration Guide

SR1 System Record

On a page that contains record occurrences, the SR1 record on a data page owns all

CALC records that randomize to that page at store time, including records that end up
on another page due to overflow conditions.

The following diagram shows the format and occurrences of the CALC set on page 7120

of the sample database. The CALC set for page 7120 includes all CALC records
randomized to that page.

Note: DEPT 2000 belongs to the CALC set for page 7120 even though DEPT 2000 was
actually stored on page 7121 (due to lack of space on its ta rget page).

Retrieving a CALC Record

To retrieve a record occurrence stored CALC, CA IDMS/DB accepts from the user the
value of the record's CALC key and calculates a page number from the key. CA IDMS/DB
then enters this database page on the SR1 record and follows the page's CALC chain
until either the requested record is located or a record of the same type with a higher

key value is located; in the latter case, CA IDMS/DB returns an error status of 0326
(record not found) to the user.

Record Storage

Chapter 36: Record Storage and Deletion 889

Storing a CALC Record

In adding the DEPT 3100 record to page 7126, CA IDMS/DB creates a record prefix

(shaded portion) that consists of pointers for the CALC set and for the DEPT-EMPLOYEE
set. The prefix and data (as found in program variable storage) are positioned at the
beginning of the free space. A l ine i ndex is created at the end of the free space. The

space available count is decremented, and the line space count is incremented.

Note: The CALC pointers in the SR1 record are updated to point to the DEPT 3100
record, while the CALC pointers in the DEPT 3100 record are set to point to the SR1
record. All other pointers in the DEPT 3100 record point back to the record itself

because its DEPT-EMPLOYEE set occurrence is empty.

Record Storage

890 Database Administration Guide

Storing Another CALC Record

The EMPLOYEE 23 record randomizes to and is stored on page 7026. The prefix of the

EMPLOYEE 23 record supplies the following information: EMPLOYEE 23 (the only
member of the CALC set on page 7008) and EMPLOYEE 19 are the only members of the
DEPT-EMPLOYEE set for OFFICE 3100; EMPLOYEE 19 is next of set in the

DEPT-EMPLOYEE set for DEPT 3100; all of the set occurrences that EMPLOYEE 23 owns
are empty.

Clustering Records

In the VIA or CLUSTERED storage mode, CA IDMS/DB stores related records together on
the same page or on as few pages as possible. A record can be clustered through a
chained set (a l inked clustered constraint), an indexed set (a clustering index), or an

unlinked constraint (SQL only).

Record Storage

Chapter 36: Record Storage and Deletion 891

Clustering records around a chained set

Storage Strategy

If a record has a storage mode of VIA a chained set (or CLUSTERED around a referential
constraint), CA IDMS/DB uses the location of the current record of set (always the

referenced row of referential constraints) to determine where to store the new record,
as follows:

■ If the current record of set is a member of the set, the DBMS stores the new record
as close as possible to the current record of set.

■ If the current record of set is an owner of the set, CA IDMS/DB determines where to
store the member record, as follows:

If the members and owners in the
specified set are assigned to the same
page range, and if you have not specified
displacement in the non-SQL schema...

CA IDMS/DB stores the member record
occurrence as close as possible to the
owner

If the members and owners in the
specified set are assigned to the same
page range, and you have specified
displacement in the non-SQL schema...

CA IDMS/DB stores the member record
occurrence as close as possible to the
owner, allowing for displacement

If the members and owners in the
specified set are assigned to different
page ranges...

CA IDMS/DB stores the member record
occurrence as close as possible to the
page (within the member record's page

range) that is proportional to the location
of the owner (within the owner's page
range)

The following diagram shows how CA IDMS/DB stores a record through a chained set.

For a discussion of how CA IDMS/DB stores a record through an indexed set, see
36.1.2.2, “Storing records via an indexed set”.

Record Storage

892 Database Administration Guide

Example

In this example, EMPLOYEE 23 has randomized to page 7026. EMPLOYEE 23's

EMPOSITION record is stored VIA EMPLOYEE 23 on page 7026. To locate the
EMPOSITION record, CA IDMS/DB applies the randomizing routine to EMPLOYEE 23
(giving page number 7026), enters page 7026 on the SR1 record, and follows the CALC

set until the EMPLOYEE 23 record is located. CA IDMS/DB then obtains the EMPOSITION
record through the EMP-EMPOSITION chain.

Storing records via an indexed set

Storage Order

Indexed sets can be used to store member records in a physical order that reflects the
order of the member's db-key or symbolic key in the index, by defining the member
record's storage mode as via (or clustered) an indexed set that is sorted on db-key or

symbolic key.

Record Storage

Chapter 36: Record Storage and Deletion 893

Determining the Target Page

CA IDMS/DB determines the target page on which to store a member occurrence via an

indexed set, as follows:

If this is the first record occurrence

stored via a user-owned index set or a
system-owned index with the same
page range as the member record...

CA IDMS/DB determines the target page as

follows:

■ If the member or owner in the set are
assigned to the same page range, CA
IDMS/DB stores the member record

occurrence as close as possible to the
owner record (allowing for record
displacement if specified).

■ If the member and owner in the set are

assigned to different page ranges, CA
IDMS/DB stores the member record as
close as possible to the page (within the

member's page range) that is
proportional to the location of the owner
(within the owner's page range).

If this is the first record occurrence

stored via a system-owned index with
a separate page range from that of
the member...

The target page is the low page of the

member's page range

If other record occurrences have
already been stored (that is, if the
index is not empty)...

CA IDMS/DB determines the target page, as
follows:

■ If the set is sorted by db-key, CA IDMS/DB
finds the highest db-key of a record that is

already a member of the indexed set, and
uses the page specified in this db-key as
the target page.

■ If the set is sorted by symbolic key, CA
IDMS/DB determines the target page for
the new record as follows:

■ Identifies the SR8 record that will hold the

symbolic key for the new record

■ Finds the db-key of the record with the
preceding or following symbolic key in the
index and uses the page specified in this

db-key as the target page

Record Storage

894 Database Administration Guide

Example

For example, the EMP-EXPERTISE set in the sample order entry database is an indexed

set, and EXPERTISE records are stored in physical -sequential order based on the value of
the SKILL-LEVEL field. The non-SQL schema DDL statements necessary to specify
physical-sequential placement of the EXPERTISE record are as follows:

 RECORD NAME EXPERTISE

 LOCATION MODE VIA EMP-EXPERTISE SET ...

 SET NAME EMP-EXPERTISE

 ORDER SORTED

 MODE INDEX ...

 OWNER EMPLOYEE

 MEMBER EXPERTISE ...

 DESCENDING KEY SKILL-LEVEL ...

In this case, CA IDMS/DB stores each EXPERTISE record as close as possible to the record
with the next lower SKILL-LEVEL.

Storing Variable-Length Records

Types of Variable-Length Records

Internally, CA IDMS/DB treats the following types of records as variable-length:

Description

Fixed-length compressed

records

Records with a fixed length that are compressed through

a specified compression routine. Although the length of
these record types is fixed from the point of view of user
programs, compression makes them internally variable.

Variable-length records Records (either compressed or uncompressed) the
length of which depends on a variable field (that is,
records that contain an OCCURS DEPENDING ON clause).

Since you cannot anticipate the total length of either of these types of records, specify,

in the schema, the following information:

■ The record's minimum root—The smallest amount of the data to be stored on the
record's home page

■ The record's minimum fragment—The smallest amount of data to be stored on any
additional page

Record Storage

Chapter 36: Record Storage and Deletion 895

Steps to Store a Variable-Length Record

Using the values specified for minimum root and minimum fragment, CA IDMS/DB

performs the following steps to store a variable-length record:

1. CA IDMS/DB stores either the entire record or as much of the record as possible on
the target page (provided that the space available is sufficient for the minimum

root specification in the schema). This page, the first page on which CA IDMS/DB
stores either the entire record or a portion of the record, is referred to as the
record's home page; the portion of the record placed on the home page is called
the root.

2. CA IDMS/DB stores the remainder of the record on subsequent pages, by working in
a forward direction and wrapping around to the beginning of the area (or the page
range assigned to the record), if necessary. Each subsequent portion of the record
that exists on a separate page is called a fragment. No fragment except the last one

will be less than the schema minimum fragment specification.

Variable-Length Indicator

In the root, CA IDMS/DB places an extra pointer at the end of the prefix to point to the
first fragment. At the beginning of the data portion of the root, CA IDMS/DB adds a

4-byte variable-length indicator (VLI) The VLI contains a 2-byte counter used to keep
track of the size of the data portion of the entire record (including four -bytes for the
VLI). The record-length field in the line index for a root segment contains the length of
the portion of the record (prefix and data) that is stored on the home page.

SR4 System Record

Each fragment contains a one-pointer prefix that points to the next fragment; the last
fragment points back to the root. Fragments are placed on a page in the same manner
as any record. A fragment is considered an SR4 system record; the record-id field in the

line index of a fragment is always set to a value of 4.

Record Storage

896 Database Administration Guide

Storing a Variable-Length Record

In the following example, the JOB 5023 record fits entirely on page 7130; because the

JOB record is a compressed record, it is a variable-length record and CA IDMS/DB
includes a 4-byte variable-length indicator (VLI) in it, bringing the total data length of the
record to 300 bytes. CA IDMS/DB cannot store the entire JOB 5025 record on page 7130;

however, the page does have sufficient space for a root. CA IDMS/DB stores the root
portion of JOB 5025 on page 7130 and includes a VLI, bri nging the data portion of the
entire record to 280 bytes. CA IDMS/DB stores the remainder of the record on page
7131 as a fragment. Note that the record-id field for the last l ine index on page 7131 is

4, indicating that the record is a fragment.

Returning Fragments to the Home Page

On future accesses (GET, OBTAIN, or SELECT) of a fragmented variable-length record, CA

IDMS/DB may reduce the number of fragments. If the area is readied in update mode
and the home page has sufficient space to hold the entire record, CA IDMS/DB returns
the fragments to the page. The fragments (minus fragment pointers) are concatenated
to the root and physically deleted from the pages on which the fragments were located;

the fragment pointer in the root is set to point to itself. Adjustments are made to the
space available count in the page header and to the record length in the record's l ine
index.

Record Storage

Chapter 36: Record Storage and Deletion 897

Page Reserve

When the size of a variable-length record is increased by a DML MODIFY command, CA

IDMS/DB may create additional fragments for the record. If you anticipate a general
increase in the size of variable-length records in an area, specify a page reserve for the
area to decrease the possibility that CA IDMS/DB will create fragments.

A page reserve sets aside a specified number of bytes on each database page in an area
for modification of variable-length records. CA IDMS/DB cannot use this reserved space
to store any kind of record.

Specify an area's page reserve in the physical database definition(s) for the area using
either a CREATE AREA statement or in an area override s tatement within the DMCL(s)

that include the area's segment. An adequate page reserve is typically 30 percent of the
area's size. Use the following criteria to estimate the size of the page reserve:

■ The likelihood that variable-length records will be modified

■ The anticipated increase in the number of variable-length records

When you specify a page reserve, you do not affect the physical structure of the
database. In fact, you can vary the page reserve for an area by using (at different times)
several DMCL modules with different page reserves.

Relocated Records

Records Relocated Because of Increased Size

When increasing record sizes in areas, the RESTRUCTURE util ity statement may
occasionally relocate a record if the record no longer fits on its home page. Similarly, if a

table has been altered to add one or more columns, CA IDMS/DB may relocate a row
when it is next updated because it will no longer fit on its original page. The dictionary
migration util ity (RHDCMIG1 and RHDCMIG2) may also relocate records. When a record
is stored on a new page, the relocated record is considered an SR3 system record and

the line index created for the record on the new page contains a record id of 3.

Record Identified by SR2 System Record

To preserve the integrity of the record's database key, CA IDMS/DB leaves an 8-byte
control record (an SR2 system record) on the home page in place of the relocated
record. The SR2 system record has a record id of 2 and contains the following

information about the relocated record:

■ Database key (4 bytes)—The pointer (db-key) to the new location of the relocated
record

■ Record id (2 bytes)—The original record id of the relocated record

■ Length (2 bytes)—The total length (fixed-length records) or root length
(variable-length records) of the relocated record

Record Deletion

898 Database Administration Guide

Returning Relocated Record to its Home Page

On future accesses (GET, OBTAIN, or SELECT) of a relocated record, CA IDMS/DB may

return the relocated record to its home page. If the area is readied in update mode and
the home page has sufficient space to hold the relocated record, CA IDMS/DB returns it
to the page.

In the following example, the OFFICE 1 record, increased in size by RESTRUCTURE, is
moved from page 7120 to 7121.

Record Deletion

Operations Performed

To erase a record (or delete a row), CA IDMS/DB performs the following operations:

■ Disconnects and/or erases all records owned by the object record , depending on the

nature of the ERASE DML command issued by the program (that is, ERASE, ERASE
ALL, ERASE PERMANENT, or ERASE SELECTIVE).

Note: When using SQL, the row must not be referenced by any other row.

■ Disconnects the object record from all indexed sets in which it participates as a

member.

Record Deletion

Chapter 36: Record Storage and Deletion 899

■ Disconnects the object record from all chained sets (with prior pointers) in which it
participates as a member.

■ Deletes the record either physically or logically, as follows:

– If all chained sets in which the record participates as a member have prior
pointers, CA IDMS/DB physically deletes the record.

– If any of the chained sets in which the record participates as a member do not
have prior pointers, CA IDMS/DB logically deletes the record.

Note: If CA IDMS/DB has identified the prior record in each chained set
(without prior pointers) in which the record participates (for example, walking

the set), CA IDMS/DB physically deletes the record.

Note: All l inked clustered constraints have prior pointers.

Physical Deletion

Operations Performed

CA IDMS/DB performs the following operations to physically delete a record:

1. Removes the record's data and prefix from the database.

2. Moves all records following the deleted record on the page, so that all free space
remains in the middle of the page.

3. Performs the following operations, depending on the location of the record's l ine
index on the page:

■ If the line index is contiguous with the free space on the page (that is, if the

record's l ine index is the last index on the page), CA IDMS/DB removes the line
index and updates the line space count in the footer.

■ If the record's l ine index is not contiguous with the free space on the page, CA
IDMS/DB sets the record's l ine index to zeros.

4. Updates the space available count in the header.

Record Deletion

900 Database Administration Guide

Example

In this example, the first EMPOSITION record for EMPLOYEE 23 has prior pointers. In

erasing the record, CA IDMS/DB removes the record completely (data and prefix), shifts
the remaining EMPOSITION record up on the page, and sets the line index for the
deleted record to zeros. The remaining EMPOSITION record, although now physically

the second record on the page, remains as l ine number 3. Line index 2 is reused when a
new record is added to the page.

Record Deletion

Chapter 36: Record Storage and Deletion 901

Use of Record's Line Index

Line indexes cannot be shifted down because the position of the line index relative to

other l ine indexes determines the line number, and changing a record's l ine number
would invalidate the record's database key. Existing l ine indexes for physically deleted
records are either reused as new records are added to the page (as shown in the

previous diagram or removed as further deletions make them contiguous to the free
space.

Logical Deletion

Pointers Deleted

To avoid consuming unnecessary time and I/O disconnecting records from sets without
prior pointers, CA IDMS/DB does not physically delete the record when an ERASE
command is issued. Instead, the next time CA IDMS/DB encounters a logically deleted
record while walking a chained set of which the record is a member, CA IDMS/DB

disconnects the record from the set, provided that the record's area was readied in
update mode. Since the record prior to the logically deleted record is sti l l current of run
unit, CA IDMS/DB can update the record's next pointer and disconnect the logically
deleted record. To be physically deleted, the record must have been disconnected from

all sets in which the record was a member.

Operations Performed

CA IDMS/DB performs the following operations to logically delete a record:

■ Removes the record's data from the database, but leaves the prefix

■ Moves all records following the deleted record on the page, so that all free space
remains in the middle of the page

■ Sets the logical delete flag (the first bit) in the record id field of the record's l ine
index

■ Updates the space available count field in the header

Record Deletion

902 Database Administration Guide

Example

In the following example, assume that the EMPOSITION records do not have prior

pointers in the EMP-EMPOSITION set. When erasing an EMPOSITION record, CA
IDMS/DB removes only the data and flags the record's l ine index. The EMPOSITION
record is logically deleted. The next time CA IDMS/DB is walking this occurrence of the

EMP-EMPOSITION set in update mode and encounters the flagged record, CA IDMS/DB
physically deletes the record.

Consideration

Occasionally, in recovering from an error during a store operation, CA IDMS/DB may
create a logically deleted record. If CA IDMS/DB has stored a record and is in the process
of making the automatic connections when CA IDMS/DB discovers an error condition

(for example, no currency established in one of the automatic sets), CA IDMS/DB must
erase the record being stored. If one of the chained sets to which the record has already
been connected has next pointers only, CA IDMS/DB logically deletes the record.

Chapter 37: Chained Set Management 903

Chapter 37: Chained Set Management

This section contains the following topics:

Overview (see page 903)
Chained Sets (see page 903)

Overview

Physically Link Record Occurrences Together

Chained sets can be used to physically l ink related record occurrences together. In a
chained set, a pointer in each member record occurrence's prefix contains the db-key of
the logically next occurrence of the set.

Defining a Chained Set

Define a set as chained as follows:

Name Description

Non-SQL schema definition MODE IS CHAIN on the SET statement.

SQL schema definition LINKED CLUSTERED on the CONSTRAINT statement.
When a constraint is implemented as a chained set, the

referenced table is the owner of the set and the
referencing table is the member.

Chained Sets

Use

A chained set is used to establish a logical relationship between two or more
user-defined record types and consists of an owner record type and one or more
member record types.

The following diagram uses standard CA IDMS database notation to describe a chained
set type; the diagram includes the name of the set, l inkage options, membership
options, sort sequence (if any), and sort key (if any).

Chained Sets

904 Database Administration Guide

This example shows a chained set (the DEPT-EMPLOYEE set) between two user-defined
record types. The owner of the DEPT-EMPLOYEE set type is the user-defined

DEPARTMENT record type; the member is the EMPLOYEE record type.

Next, Prior, and Owner Pointers

A chained set occurrence consists of one occurrence of the owner record type and any
number of member record occurrences. The prefix of each record occurrence that
participates in a set contains a next pointer (that is, the db-key of the next logical record
occurrence in the set occurrence). Optionally, record occurrences can include prior

pointers, which link records together in the logically prior direction, and owner pointers,
which link member record occurrences to the owner occurrence.

Note: SQL-defined constraints implemented as a chained set always have next, prior,

and owner pointers.

Chained Sets

Chapter 37: Chained Set Management 905

Basic Structure of a Chained Set Occurrence

A record occurrence in a chained set occurrence always contains in its prefix a next

pointer that points to the logically next record occurrence in the set occurrence.

Connecting Records to Chained Sets

Operations Performed

CA IDMS/DB performs the following operations to connect a record (that has previously
been stored) to a chained set:

■ Updates the prefix of the record being connected to reflect the record's next, prior,

and owner (as applicable) pointers in the set

■ Updates pointers in all other records affected by the new set connections

Chained Sets

906 Database Administration Guide

In the following example, EMPLOYEE 19 and EMPLOYEE 23 have been stored on pages
7023 and 7026, respectively. Connecting each to DEPT 3100 as members of the

DEPT-EMPLOYEE set affects the DEPT 3100 record on page 7126. Its prefix must be
updated to point to the next and prior members of the set.

Disconnecting Records

Operations Performed

To disconnect a record occurrence from a chained set without erasing the record

occurrence, CA IDMS/DB must update pointers in the current, prior, and next records, as
described next:

■ For the record being disconnected, CA IDMS/DB adjusts all the record occurrence's
pointers to null (minus 1) for the set from which the record is being disconnected.

■ For the prior record in the chain, CA IDMS/DB adjusts the next pointer for the set
from which the record occurrence is being dis connected so that the prior record
points to the next record.

■ For the next record in the chain (if the set has prior pointers), CA IDMS/DB adjusts
the prior pointer for the set from which the record occurrence is being
disconnected so that the next record points to the prior record.

Chained Sets

Chapter 37: Chained Set Management 907

The following diagram shows disconnecting a record. The EMPLOYEE 19 record is
disconnected from the DEPT-EMPLOYEE set for DEPT 3100. EMPLOYEE 19's pointers for

that set are changed to null. The prior pointer in the EMPLOYEE 23 record is adjusted to
point to the DEPT 3100 record, while the next pointer in the DEPT 3100 record must be
adjusted to point to the EMPLOYEE 23 record.

Adjusting the Pointer

To adjust the next pointer in the prior record, CA IDMS/DB must access the prior record.
In a set without prior pointers, however, CA IDMS/DB must walk the entire set to access

the prior record. For this reason, prior pointers are typically included in all sets to which
the DISCONNECT (or ERASE) DML command might be applied.

Chained Sets

908 Database Administration Guide

Retrieving Records

Walking a Set

A program using navigational DML or CA IDMS/DB in response to an SQL request can
access all of the members of a chained set in the following manner: starting with the

owner record occurrence, a program can use the next pointers to access each member
occurrence in the chain until the program reaches the owner record again. Accessing
members in a chain in this way is known as "walking a set."

Assume that the DEPT-EMPLOYEE set in the sample database is a chained set sorted by

employee identification number (EMP-ID-0415). To retrieve an occurrence of the
EMPLOYEE record, a program could issue the following requests:

MOVE '0050' TO DEPT-ID-0410

OBTAIN CALC DEPARTMENT.

OBTAIN NEXT WITHIN DEPT-EMPLOYEE SET.

Processing the Request

CA IDMS/DB processes this request as follows:

1. Using the value '0050' placed by the program in the DEPT-ID-041 0 field, CA
IDMS/DB obtains the DEPARTMENT record with an identification number of '0050'.

2. CA IDMS/DB then finds the record occurrences pointed to by DEPARTMENT 50's

next DEPT-EMPLOYEE pointer.

Retrieving an Owner

A program can issue the following request to retrieve an occurrence of the
DEPARTMENT record associated with an employee:

MOVE '0019' TO EMP-ID-0415.

OBTAIN CALC EMPLOYEE.

OBTAIN OWNER WITHIN DEPT-EMPLOYEE SET.

Processing the Request

CA IDMS/DB processes this request as follows:

1. Using the value '0019' placed by the program in the EMP-ID-0415 field, CA IDMS/DB
obtains the EMPLOYEE record with an identification number of '0019'.

2. If the DEPT-EMPLOYEE set has owner pointers, CA IDMS/DB uses the EMPLOYEE
record's owner pointer to retrieve the owning DEPARTMENT.

3. If the DEPT-EMPLOYEE set does not have owner pointers, CA IDMS/DB uses the
EMPLOYEE record's next pointer to walk the set until it retrieves the owner
occurrence (that is, an occurrence of the DEPARTMENT record type).

Chapter 38: Index Management 909

Chapter 38: Index Management

This section contains the following topics:

Indexed Sets (see page 909)
Structure of Indexes (see page 912)
Connecting Records to Indexed Sets (see page 919)

Disconnecting Records from Indexed Sets (see page 924)
Retrieving Indexed Records (see page 925)

Indexed Sets

Use

Indexed sets can be used to physically l ink related record occurrences together or to
provide alternate access to a record. In an indexed set, a pointer array associated with
each owner occurrence contains the db-keys of all related member record occurrences.

Types of Indexed Sets

There are two types of indexed sets:

Set Description

User-owned The owner of the set is a user-defined record.

System-owned The owner of the set is a system-defined SR7 record. The location
mode of an SR7 record is CALC on the set name for non-SQL
defined indexes or on an internally-generated name for SQL

defined indexes. There is at most one occurrence of an SR7
record for each system-owned index.

How to Define an Indexed Set

Use the following clauses on the SET statement to define an indexed set in a non-SQL
schema definition:

Set Description

User-owned

MODE IS INDEX

Indexed Sets

910 Database Administration Guide

Set Description

System-owned

MODE IS INDEX

OWNER IS SYSTEM

Use the following SQL statements to implement an SQL defined constraint as an indexed

set:

Set Description

User-owned Use this clause on the CONSTRAINT statement:

LINKED INDEX

System-owned Use the CREATE INDEX statement

When you implement a constraint as an indexed set, the referenced table is the owner
of the set and the referencing table is the member.

Set Order

An indexed set can have any of the following set orders: FIRST, LAST, NEXT, PRIOR, or
SORTED. If it is SORTED, it can be sorted either on a user-specified symbolic key (sort
key) or on the db-key of the member record occurrences.

Using SQL, the set order of a LINKED INDEX constraint is:

■ SORTED, if you specify the ORDER BY clause

■ Otherwise, LAST

The set order of an indexed set created using the CREATE INDEX statement is:

■ SORTED on a symbolic key if you specify the ORDER BY clause

■ Otherwise, SORTED on db-key

Indexed Sets

Chapter 38: Index Management 911

Notation

The following diagram uses standard CA IDMS database notation for two indexed s ets,

SKILL-EXPERTISE and EMP-LNAME-NDX. The descriptions of the indexed set
relationships in the figure include the name of the set, l inkage options, membership
options, and the sort sequence and symbolic key.

The left side of the figure il lustrates an indexed set (the SKILL-EXPERTISE set) between
two user-defined record types. The owner of the SKILL-EXPERTISE set is the user-defined
SKILL record; the member, EXPERTISE, is the indexed database record.

The right side of the figure il lustrates an indexed set (the EMP-LNAME-NDX set) used to

place an index on a user-defined member record type. The owner of the
EMP-LNAME-NDX set is a system record, represented by a triangle; the member,
EMPLOYEE, is the indexed database record.

Indexed Set Occurrence

An indexed set occurrence consists of one occurrence of the owner record, type, an
index, and any number of member record occurrences. The owner occurrence contains
next and prior pointers to the index; the bottom-level of the index contains the member
record occurrences' db-keys in the specified set order. If the indexed set has a

user-defined owner record, each member occurrence contains an index pointer to the
bottom-level of the index, and optionally, a pointer that l inks them directly to the owner
occurrence. If the indexed set is system-owned, each member occurrence may

optionally contain an index pointer.

Note: AN SQL defined linked constraint implemented as an indexed set always has
owner pointers.

Structure of Indexes

912 Database Administration Guide

Basic Structure of an Indexed Set: The member record occurrences in an indexed set
point to the index that is chained to the owner record by next, prior, and owner

pointers. The owner record contains next and prior pointers that chain it to the index.

Structure of Indexes

Index Creation

The creation of an index is transparent to application programs. An index is created
according to your specifications, but the actual creation and storage of the index is
performed by CA IDMS/DB. An index is composed of SR8 system record occurrences

chained (by next, prior, and owner pointers) to the owner occurrence and each other.

Structure of Indexes

Chapter 38: Index Management 913

SR8 Records in an Index

Thus, an index is a chained set between the indexed set's owner record and the SR8

records. An index contains SR8 records chained by next, prior, and owner pointers to
the indexed set's owner record. For simplicity, prior and owner pointers are not
included in the next figure):

Initially, the index is composed of a single SR8 member record. When the first SR8
record is full, additional SR8 records are added to the index as chained records.

Bottom-Level SR8 Record and Database Record Occurrences

An SR8 record, shown in the following diagram, contains from 3 to 8,180 index entries
(as specified in the schema or segment definition) and a cushion (that is, a field the

length of the largest possible index entry).

Structure of Indexes

914 Database Administration Guide

The SR8 record in the diagram contains four entries and a cushion. Ea ch index entry
contains an index pointer that points to a database occurrence that is a member of the

indexed set; each member occurrence contains an index pointer that points to that SR8
record. (Note that, for simplicity, prior and owner pointers are not included in this
figure.)

Content of an Index Entry

The actual content of an index entry depends on the indexed set's characteristics, as
follows:

■ Unsorted set—An index entry contains only the db-key of a member record

occurrence.

■ Sorted set—SR8 records for sorted indexed sets are arranged in levels to form a
tree structure to facil itate a binary search. Consequently, an index entry contains
the db-key of a member record occurrence or the db-key of another SR8 record

occurrence. Additionally, for indexed sets sorted on a symbolic key, an index entry
is composed of a db-key and a symbolic key. A symbolic key is a key constructed of
one or more record elements (or columns) in the order specified in the schema (up
to 256 bytes in length). (For a detailed discussion of indexed set structure for sorted

indexed sets, see 38.3.2, “Connecting Members to Sorted Indexed Sets".)

Structure of Indexes

Chapter 38: Index Management 915

Example

In this example, there is a single SR8 record chained to the indexed set's owner. The SR8

record contains three entries . Each entry contains an index pointer that points to a
member database occurrence; each member occurrence contains an index pointer that
points to that SR8 record. Additionally, the member occurrences contain owner pointers

that point back to the set's owner.

Indexed Set with Sorted Set Order

For sorted indexed sets, you can specify that CA IDMS/DB keep the index entries within
the SR8 records in ascending, descending, or mixed order according to the member
record's db-key or symbolic key. You can also specify whether numeric fields should be
collated so that negative values are lower than positive values (natural sequence) or

whether they should collate based on their bit pattern. If you specify that an indexed set
be sorted on symbolic key, you can also specify whether duplicate symbolic keys are
allowed or disallowed. Even if you specify that duplicate symbolic keys are allowed, CA

IDMS/DB does not store the same symbolic key more than once in the index. For
example, the first time a record with a symbolic key ADAMS is added to the indexed set,
CA IDMS/DB adds the symbolic key ADAMS to the index and associates the record
occurrence's db-key to the key ADAMS. Later, if you add another record with the

symbolic key ADAMS to the indexed set, CA IDMS/DB associates the db-key of the new
record to the existing symbolic key of ADAMS in the SR8 record.

Structure of Indexes

916 Database Administration Guide

Specifying Compression

Additionally, you can specify that CA IDMS/DB store symbolic keys in either compressed

or uncompressed format. (Note that CA IDMS/DB always strips trailing pad characters
from an indexed set's symbolic keys.) If you specify compression, CA IDMS/DB applies a
2-level compression algorithm to the symbolic key before inserting the key into the

index, as follows:

■ Prefix compression—CA IDMS/DB compares (left to right) the symbolic key of the
record being inserted into the index with adjacent symbolic keys and removes like
characters. For example, if there are two symbolic keys, JOHNSON and JONES, CA

IDMS/DB stores the JOHNSON key in its entirety and stores JONES as NES.

■ Repeating character compression—CA IDMS/DB compresses three or more
repeating single characters within each symbolic key into two bytes, and
compresses 2 through 64 repeating blanks or nulls into one byte.

Specify compression of symbolic keys if the keys have either of the following

characteristics:

■ Commonly share the same prefix

■ Contain many repeating characters (including blanks or nulls)

How the Index is Organized

To facil itate the process of locating an index entry for sorted sets, CA IDMS/DB organizes

an index for sorted records into levels. In this case, when the first (top-level) SR8 record
is full, CA IDMS/DB performs the following processing:

1. Splits the SR8 record into two parts. These two SR8 records stay at the same level.

2. Constructs a new higher level with two entries. Each entry points to one of the SR8
records created by Step 1.

CA IDMS/DB repeats this process as the index expands. Indexes can have any number of
intermediate levels. As CA IDMS/DB adds new entries, it splits SR8 records and spawns

new levels of SR8 records. An entry on one level points to an SR8 record at a lower level;
the bottom-level entries point to the indexed database records themselves.

Therefore, in a sorted indexed set with three levels (top, intermediate, and bottom), the
index is structured as follows:

■ The top level is made up of one SR8 record that contains index entries. Each entry is

composed of a pointer to (that is, the database key of) an intermediate-level SR8
record and the highest symbolic key contained therein.

Structure of Indexes

Chapter 38: Index Management 917

■ The intermediate level is made up of one SR8 record for each entry in the top level.
Each entry is composed of a pointer to a bottom-level SR8 record and the highest

symbolic key contained therein.

The bottom level is made up of one SR8 record for each entry in the intermediate level.
Each entry is composed of a symbolic key and a pointer to a database record

occurrence.

Example

For example, the sample database includes the indexed set EMP-LNAME-NDX. The
EMP-LNAME-NDX set, shown in the following diagram and table shows the function of
index levels and the search process. This simple index contains only three entries per

SR8 record. The figure represents index and database records. (For simplicity, prior and
owner pointers are not included in this figure.) The table shows the index pointers and
symbolic keys.

To locate LONG in this 3-level index, CA IDMS/DB performs the following steps:

1. Accesses the SR7 owner record by using the set name as the CALC key

Note: For SQL-defined indexes, it uses a CALC key based on a number assigned to
each index.

2. Accesses the top-level SR8 record by using the next pointer in the SR7 record

3. Searches this top-level SR8 record for the first entry with a symbolic key equal to or
greater than LONG

4. Uses the db-key in this entry to access an intermediate-level SR8 record (that is, the
NELSON/WEST SR8 record)

5. Searches this intermediate-level SR8 record (that is, the NELSON/WEST SR8 record)
for the first entry equal to or greater than LONG

6. Uses the db-key in this entry to access a lower level SR8 record (that is, the
JONES/NELSON SR8 record at the bottom level)

7. Searches this bottom-level SR8 record (the JONES/NELSON SR8 record) for the

LONG entry

8. Uses the db-key in the LONG entry to access the requested member database
record occurrence

Structure of Indexes

918 Database Administration Guide

Note: Since previous processing deleted indexed records, not all of the index entries in
each SR8 record are presently used (for instance, the STUART and UPTON/WEST SR8

records at the bottom level). Consequently, this index has space for expansion without
spawning a new level.

In this example, each SR8 record is composed of a maximum of three entries. Each entry

is composed of a symbolic key value and a db-key. The shaded entries are used to locate
the LONG record in the database. In the top and intermediate levels, the db-key in each
entry points to another SR8 record. In the bottom level, the db-key in each entry points
to a database record. (Note that, for simplicity, prior and owner pointers are not

included in this figure; also, since two employees are named BENN, there are two
database member occurrences with that name.)

The entries in the 3-level index are shown next. Each entry is composed of a symbolic
key and a db-key. The shaded entries are used to locate the LONG record in the
database. The index entries in the top and intermediate levels point to SR8 records at

the next lowest level. Only the bottom-level entry points to the database record. Note
that since two employees are named BENN, there are two db-keys (one to each
database member occurrence) for that symbolic key.

SR8 db-key SR8 Index Entries

Connecting Records to Indexed Sets

Chapter 38: Index Management 919

SR8 db-key SR8 Index Entries

Top level SR8 records 90002:3 Innis

West

90004:10

90004:57

Intermediate level
SR8 records

90004:10 Carr
Ferro

Innis

90015:13
90016:40

90030:6

 90004:57 Nelson
Stuart
West

90021:3
90018:53
90030:6

Bottom-level SR8
records

90015:13 Benn
Carr

721009:147
723006:105

 90016:40 Davis

East
Ferro

720617:201

721592:63
722310:16

 90030:6 Grey
Hall

Innis

720016:31
727160:52

725921:74

 90021:3 James
Long

Nelson

726412:4
724263:12

727160:90

 90018:53 Stuart 720039:37

 90030:12 Upton
West

720715:52
725129:2

Connecting Records to Indexed Sets

All set orders (that is, FIRST, LAST, NEXT, PRIOR, and SORTED) are supported for indexed
sets. Indexed set order determines the way CA IDMS/DB builds the index when new

member record occurrences are connected to the indexed set.

Connecting members to indexed sets ordered FIRST, LAST, NEXT, or PRIOR is discussed
next, followed by a separate discussion of connecting members to indexed sets with a
set order of SORTED.

Connecting Records to Indexed Sets

920 Database Administration Guide

Connecting Members to Unsorted Indexed Sets

To connect new members to indexed sets with FIRST, LAST, NEXT, and PRIOR set order,
CA IDMS/DB inserts a new index entry between existing index entries. When one SR8
record fi l ls, CA IDMS/DB creates a new SR8 record; there is only one level of SR8 records

in an unsorted index.

Once a request has been made to connect a member occurrence to an indexed set, CA
IDMS/DB first checks whether other entries exist. If no other entries exist, CA IDMS/DB
creates and stores the first SR8 record (containing the first entry) and connects it to the

owner occurrence with next, prior, and owner pointers. The target page for the first SR8
record is the page of the owner of the indexed set occurrence (plus displacement, if
any).

CA IDMS/DB Actions

If other entries do exist, CA IDMS/DB takes the following acti ons:

Step 1

Identifies the appropriate SR8 record and insertion point based on the set order, as
follows:

■ NEXT—The insertion point is physically after the index entry for the current SET

occurrence.

■ FIRST—The insertion point is physically the first index entry in the first SR8 record.

■ PRIOR—The insertion point is physically before the index entry for the current SET

occurrence.

■ LAST—The insertion point is physically the last index entry in the last SR8 record.

Note: SQL-defined unsorted indexed constraints have an internal order of LAST.

Connecting Records to Indexed Sets

Chapter 38: Index Management 921

Step 2

Inserts the new entry into the index, as follows:

■ If there is enough space in the target SR8 record for the new entry (that is, the
insertion of this entry would not exceed the maximum allowable entries, and the
target SR8's page has sufficient available space), CA IDMS/DB inserts the new entry

into the target SR8 record.

■ If there is not enough space in the target SR8 for the new entry, CA IDMS/DB inserts
the new entry based on the location of the identified insertion point, as follows:

– If the identified insertion point is physically first in the target SR8 record, CA

IDMS/DB checks whether there is enough space in the prior SR8 record:

■ If there is enough space in the prior SR8 record, CA IDMS/DB inserts the
new entry as the physically last entry in the prior SR8 record.

■ If there is not enough space in the prior SR8 record, CA IDMS/DB splits the

target SR8 record.

– If the insertion point is physically last in the target SR8 record, CA IDMS/DB
checks whether there is enough space in the next SR8 record:

■ If there is enough space in the next SR8 record, CA IDMS/DB inserts the

new entry in the next SR8 record.

■ If there is not enough space in the next SR8 record, CA IDMS/DB splits the
target SR8 record.

– If the insertion point is neither the physically first nor last in the target SR8

record, CA IDMS/DB checks whether there is enough space in the next SR8
record:

■ If there is enough space in the next SR8 record, CA IDMS/DB moves the last
entry to the SR8 record

■ If there is not enough space in the next SR8 record, CA IDMS/DB splits the
target SR8 record.

Index Pointers for Split SR8s

When CA IDMS/DB splits an SR8 record (Record A) into two SR8 records (Records A and

B), the entries relocated to Record B point to member occurrences that stil l contain
index pointers pointing to Record A if index pointers are maintained for the set (index
pointers are optional for system-owned indexes). If index pointers are maintained,
splitting Record A causes CA IDMS/DB to set the orphan count in Record A equal to the

number of entries moved to Record B.

Connecting Records to Indexed Sets

922 Database Administration Guide

Splitting an SR8 Record

The following diagram shows splitting an SR8 record to add a member occurrence to an

indexed set with a set order of NEXT. (Note that, for simplicity, prior and owner pointers
are not included in this figure.)

Connecting Records to Indexed Sets

Chapter 38: Index Management 923

Connecting Members to Sorted Indexed Sets

Spawning

CA IDMS/DB organizes an index for sorted records into levels. When a top or
intermediate SR8 record is full, CA IDMS/DB spawns a new level through the following

steps:

1. CA IDMS/DB splits the SR8 record into two SR8 records.

2. CA IDMS/DB constructs a new higher-level SR8 record. This new full -size SR8 record
contains only two entries. Each entry points to one of the SR8 records created by

Step 1.

CA IDMS/DB determines the target page of a new SR8 record, as follows:

■ If displacement has been specified and if the new record is a bottom-level SR8
record, the target page is the page of the owner of the indexed set occurrence

plus displacement.

■ Otherwise, the target page is the page of the owner of the indexed set
occurrence.

CA IDMS/DB repeats this process as the index expands. Indexes can have any number of
intermediate levels. As CA IDMS/DB adds new entries, it splits SR8 records and spawns
new levels of SR8 records. An entry on one level points to an SR8 record at a lower level;
the bottom-level entries point to the indexed database records themselves.

Connecting New Members

To connect new members into a sorted index, CA IDMS/DB first identifies the
appropriate insertion point of the new entry based on the symbolic key or db-key. If this
is the first entry (and, therefore, the first SR8 record), CA IDMS/DB creates, stores and
connects a new SR8 record to the owner occurrence. CA IDMS/DB determines the target

page for the new SR8 record as described above.

If this is not the first entry, CA IDMS/DB identifies the insertion point of the new entry
based on the symbolic key or db-key. Once the appropriate insertion point is identified,

CA IDMS/DB inserts the new entry into the index, as follows:

■ If there is space in the target SR8 record (that is, if insertion of this entry would not
exceed maximum allowable entries and the target SR8 record's page has sufficient
available space, CA IDMS/DB inserts the new entry in the target SR8 record.

■ If space in the target SR8 record is insufficient for the new entry, CA IDMS/DB
attempts to move a number of entries to a prior or next SR8 record if space is
available. Otherwise, a split occurs which may cause spawning depending on the

available space in the higher-level SR8 records.

Disconnecting Records from Indexed Sets

924 Database Administration Guide

Disconnecting Records from Indexed Sets

Assume that the DEPT-EMPLOYEE set in the sample database is an indexed set sorted by
employee identification number (EMP-ID-0415). To disconnect an occurrence of the
EMPLOYEE record, a program could issue the following requests:

MOVE '0019' TO EMP-ID-0415.

FIND CALC EMPLOYEE.

DISCONNECT EMPLOYEE FROM DEPT-EMPLOYEE.

Processing the Request

CA IDMS/DB processes these requests as follows:

1. Finds the SR8 record pointed to by EMPLOYEE record 19's index pointer.

2. Searches the SR8 record for EMPLOYEE 19's db-key. If CA IDMS/DB finds EMPLOYEE
19's db-key, processing skips to Step 3. If CA IDMS/DB does not find EMPLOYEE 19's
db-key, processing continues as follows:

a. CA IDMS/DB decrements the SR8 record's orphan count by 1. If the SR8
contains no entries and the orphan count is 0 CA IDMS/DB erases the SR8
record.

b. CA IDMS/DB follows SR8 records until it finds the db-key.

c. CA IDMS/DB updates EMPLOYEE 19's index pointer to point to the correct SR8
record.

3. Removes EMPLOYEE 19's key entry from the bottom-level SR8 record and rewrites

that SR8 record.

4. If this were an unsorted set, processing would be complete. Since this is a sorted
set, if EMPLOYEE 19's symbolic key is the highest key in the SR8 record, CA IDMS/DB
passes up the key to each level in which the key is the highest and removes the

entry for EMPLOYEE 19 from each successive SR8 record.

Retrieving Indexed Records

Chapter 38: Index Management 925

Retrieving Indexed Records

In contrast to locating member records of a chained set, CA IDMS/DB locates member
record occurrences in an index by searching the index. CA IDMS/DB does not have to
access each member record occurrence as with chain l inkage.

Types of Processing

Because CA IDMS/DB searches the index rather than actual record occurrences, indexed
sets provide a quick and efficient method for the following types of processing:

■ Random retrieval by symbolic key or generic key—CA IDMS/DB can retrieve
individual records randomly by means of a symbolic key. CA IDMS/DB can also

retrieve a group of records by using a partial (generic) symbolic key. A string of
characters, up to the length of the symbolic key, can be used as a generic key.

■ Sorted retrieval by db-key, symbolic key, or generic key—CA IDMS/DB can retrieve
records in sorted order if the index is ordered on db-key or symbolic key. In this

case, the db-keys or symbolic keys in an index are automatically maintained in
sorted order and records therefore can be retrieved in ascending or descending
order by db-key or symbolic key. Because records can be accessed through more
than one index, they can be retrieved in more than one sort sequence.

■ Unsorted in exceptionally long sets—To locate the db-keys of members in an
indexed set, CA IDMS/DB walks the index. Since accessing member record
occurrences' db-keys in an index requires less database I/O than accessing the
record occurrences themselves, CA IDMS/DB can retrieve the db-keys of member

records in exceptionally long sets more efficiently if the records are related using an
index rather than a chain. This type of processing is useful for finding the nth record
in a set or for manipulating l ists of db-keys.

■ Physical sequential processing by db-key—Member record occurrences can be
clustered through an index. With this storage mode, the physical location of
member records reflects the ascending or descending order of their db-key. If
occurrences of a record type are to be retrieved in sequential order, clustering

them through an index reduces I/O. This type of processing is most efficient when
used with a stable database.

Retrieving Indexed Records

926 Database Administration Guide

Example When Owner Pointers

Assume that the DEPT-EMPLOYEE set in the sample database is an indexed set sorted by

employee identification number (EMP-ID-0415). To retrieve an occurrence of the
EMPLOYEE record, a program might issue the following requests:

MOVE '0019' TO EMP-ID-0415.

OBTAIN CALC EMPLOYEE.

OBTAIN NEXT WITHIN DEPT-EMPLOYEE SET.

To fulfi l l the prior request, CA IDMS/DB performs the following processing:

Step 1

Using the value '0019' placed by the program in the EMP-ID-0415 field, obtains the
EMPLOYEE record with an identification number of '0019'.

Step 2

Obtains the EMPLOYEE record with the next-highest identification number as follows:

1. Finds the SR8 record pointed to by EMPLOYEE 19's index pointer.

2. Searches the SR8 record for EMPLOYEE 19's db-key. If CA IDMS/DB finds EMPLOYEE
19's db-key, processing skips to Step 3. If CA IDMS/DB does not find EMPLOYEE 19's
db-key, processing continues as follows:

a. Decrements the SR8 record's orphan count by 1. If the orphan count is now 0,
CA IDMS/DB erases the SR8 record if it is empty or rewrites it if it sti l l contains
entries.

b. CA IDMS/DB searches the next SR8 record in the index until it finds the db-key.
At this time, CA IDMS/DB updates the EMPLOYEE record's index pointer to
point to the correct SR8 record.

Note: CA IDMS/DB only updates pointers and the orphan count at this time if

both the area that contains the SR8 records and the area that contains the
EMPLOYEE records were readied in update mode.

Retrieving Indexed Records

Chapter 38: Index Management 927

Step 3

Obtains the EMPLOYEE record whose db-key is adjacent to current of set (that is, the

next EMPLOYEE record).

Example When No Owner Pointers

If the EMPLOYEE record did not have owner pointers, a program could issue the

following request to retrieve an occurrence of the DEPARTMENT record:

MOVE '0019' TO EMP-ID-0415.

OBTAIN CALC EMPLOYEE.

OBTAIN OWNER WITHIN DEPT-EMPLOYEE SET.

When fulfi l ling the above request, the DBMS would discover the lack of an owner
pointer in the set and use the EMPLOYEE record's index pointer to find the bottom-level
SR8 record that contains the key for the requested EMPLOYEE record. CA IDMS/DB will

then use the owner pointer contained in that SR8 record to obtain the DEPARTMENT
record.

SR8 Record Currency

When a program uses a subschema that contains records in an indexed set, CA IDMS/DB
changes SR8 record currency only when it accesses a member record through the

index, since CA IDMS/DB keeps track of SR8 record currency internally. When CA
IDMS/DB accesses a member record in any other manner, CA IDMS/DB does not change
SR8 record currency.

For example, a program might issue the following commands:

MOVE '0019' TO EMP-ID-0415.

OBTAIN CALC EMPLOYEE.

OBTAIN NEXT WITHIN EMP-LNAME-NDX SET.

Retrieving Indexed Records

928 Database Administration Guide

CA IDMS/DB then fulfi l ls these requests as follows:

1. Using the value '0019' for CALC entry into the database, CA IDMS/DB accesses the

EMPLOYEE record with that identification number. EMPLOYEE 19 is now current of
run unit, record, and the EMP-LNAME-NDX set. At this point, since CA IDMS/DB has
not accessed an SR8 record, internal currency is not created for the SR8 structure of

the index set.

2. On OBTAIN NEXT, CA IDMS/DB accesses the SR8 record that contains the index
entry for EMPLOYEE 19. At this time, CA IDMS/DB makes this SR8 record the current
record of the SR8 structure of the index set.

3. CA IDMS/DB finds the next index entry (either in that SR8 record or the next SR8
record). The SR8 record containing that index entry is now current of the SR8
structure.

4. Using the next index entry, CA IDMS/DB obtains the corresponding EMPLOYEE

record. That EMPLOYEE record is now current of run unit, record, and the
EMP-LNAME-NDX.

RETURN and FIND Commands

When a program uses a subschema that contains records in an index, use:

■ The RETURN command to retrieve database keys and/or symbolic keys from the
index without accessing database records.

■ The FIND command to maintain indexed set currency.

Chapter 39: Lock Management 929

Chapter 39: Lock Management

This section contains the following topics:

Controlling Access to CA IDMS Databases (see page 929)
Readying Areas (see page 930)
Physical Area Locks (see page 937)

Locking Within Central Version (see page 939)
Locking Within a Data Sharing Group (see page 947)
Controlling Access to Native VSAM Files (see page 950)

Deadlocks (see page 951)

Controlling Access to CA IDMS Databases

Factors Controlling Access to Data

The primary means of influencing how CA IDMS/DB controls access to data is in the way
areas are readied and the status assigned to areas within a central version. These

factors ultimately determine which transactions can access and update data within a CA
IDMS database and whether concurrent access is controlled at the area or record
occurrence level.

The remainder of this section discusses:

■ Readying areas

■ The status of areas under the central version

■ Default ready modes

■ Ready modes and SQL access to data

Later sections in this chapter discuss how these factors determine the types of locks CA
IDMS uses to control access to data.

Readying Areas

930 Database Administration Guide

Readying Areas

Area Ready Modes

Types of Ready Modes

A transaction can restrict runtime operations in a database area by readying that area

with a mode of update or retrieval, as follows:

Type Description

Update The readying transaction can both retrieve and update data

within the area.

Retrieval The readying transaction cannot update data in the area.

Ready Mode Qualifiers

You can qualify the specified area ready mode with a shared (default), protected, or
exclusive option to prevent update or retrieval of an area by other transactions
executing concurrently under the same central version or, in the case of a shared area,
under other central versions that are members of the same data sharing group. The

qualified ready modes are:

Ready Mode Description

Shared update If a transaction has readied the area in shared update
mode, other transactions executing concurrently can ready
the area in shared update or shared retrieval mode.

Shared retrieval If a transaction has readied the area in shared retrieval

mode, other transactions executing concurrently can ready
the area in shared update, shared retrieval, protected
retrieval, or protected update mode.

Protected update If a transaction has readied the area in protected update
mode, other transactions executing concurrently can ready
the area in shared retrieval mode only.

Protected retrieval If a transaction has readied the area in protected retrieval

mode, other transactions executing concurrently can ready
the area in shared retrieval or protected retrieval mode.

Exclusive update and
exclusive retrieval

If a transaction has readied the area in exclusive update or
exclusive retrieval mode, other transactions executing

concurrently cannot ready the area in any mode. Exclusive
retrieval is available only using navigational DML.

Readying Areas

Chapter 39: Lock Management 931

Ready Mode Description

Transient retrieval A ready mode of transient retrieval cannot be explicitly set

by application programs or access module specifications.
Instead, transient retrieval is automatically used by a
transaction accessing an area in a retrieval mode, if either

of the following conditions apply:

■ The status of the area within the central version is
transient retrieval

■ The isolation level of the SQL transaction readying the

area is transient read

If a transaction has readied an area in transient retrieval
mode, other transactions executing concurrently can ready
the area in any mode.

Note: Both area status and transaction isolation levels area discussed under 39.2.2,
"Central Version Area Status" and 39.2.4, “Ready Modes and SQL Access”, respectively.

Compatibility of Ready Modes

The mode in which one transaction readies an area restricts the mode in which other

transactions executing under the same central version or in the case of a shared area,
within the same data sharing group, can ready that area. This table shows the modes in
which transaction B can ready an area, depending on the mode in which transaction A
has readied the area. Y(es) signifies that the second transaction can ready the area in

the specified mode; N(o) signifies that it cannot.

Readying Areas

932 Database Administration Guide

Concurrent Use of an Area Within a Central Version or Data Sharing Group

When a transaction cannot ready an area because of a protected or exclusive

restriction, CA IDMS/DB places the transaction in a wait state. When the restriction i s
l ifted, the transaction can proceed.

Example of Concurrent Area Usage

The following diagram shows concurrent use of an area by transactions executing under
a central version or data sharing group. Concurrently, transaction A readies AREA1 in

protected update mode, transaction B readies the area in shared retrieval mode, and
transaction C attempts to ready the area in exclusive update mode. The system puts
transaction C into a wait state until both transactions A and B terminate. Transactions D

and E, attempting to ready the area, must wait until transaction C terminates.

Central Version Area Status

Area Status and Ready Modes

Each area accessible from within a central version has a status associated with it. The
status of an area affects the mode in which transactions executing under the central

version can ready the area:

Mode Description

UPDATE (or

ONLINE)

Transactions executing under the central version can ready the

area in any mode

RETRIEVAL Transactions executing under the central version can ready the
area in any retrieval mode (EXCLUSIVE, PROTECTED, SHARED or

TRANSIENT)

TRANSIENT
RETRIEVAL

Transactions executing under the central version can ready the
area in any retrieval mode, but the CA IDMS/DB automatically
changes the mode to TRANSIENT RETRIEVAL

Readying Areas

Chapter 39: Lock Management 933

Mode Description

OFFLINE Transactions executing under the central version cannot ready

the area in any mode

Establishing the Area Status

The status of an area within a central version is initially established by specifications

made within the DMCL used by the DC/UCF system. An area's status may subsequently
be changed by DCMT commands.

Permanent Area Status

When an area's status is changed through a DCMT command, it may be designated as

permanent. A permanent area status persists across both normal and abnormal system
terminations until it is subsequently changed by another DCMT command or until the
journal fi les associated with the central version are initialized. Whether an area's status
has been designated as permanent is indicated on the output from a DCMT DISPLAY

AREA command.

At System Startup

If a permanent area status is not in effect, the first time a system is started and each

time it is subsequently started after a normal shutdown, the status of the area is set to
that specified in the ON STARTUP parameter of the ADD SEGMENT or ADD AREA
statement within the DMCL definition. The default area status i s UPDATE.

Following an Abnormal System Termination

If a permanent area status is not in effect, when restarting a system following an

abnormal termination, the status of the area is set to that specified in the ON
WARMSTART parameter of the ADD SEGMENT, or ADD AREA statement within the
DMCL definition. The area can be set to what it was at the time of the failure (the
default) or it can be set to an explicit value.

Readying Areas

934 Database Administration Guide

Changing Area Status

You can change the status of an area within a central version by iss uing a DCMT VARY

AREA or VARY SEGMENT command. In certain cases, CA IDMS cannot change the status
of the area immediately because existing transactions are accessing the area. In addition
to active transactions, longterm or notify locks held by pseudo-conversational

applications may prevent the area status from being changed. If CA IDMS cannot change
the status immediately, it initiates an internal task that completes the DCMT VARY
operation when no more conflicts exist. During the time it takes to complete the vary,
transactions attempting to ready the area in a mode that is incompatible with the new

area status receive an error.

Note: For more information about the DCMT VARY AREA and VARY SEGMENT
commands, see the CA IDMS System Tasks and Operator Commands Guide.

Default Ready Mode Using Navigational DML

You can specify a default ready mode for a database area in a subschema definition. The
specified default mode determines the mode in which the area is to be readied for
programs using that subschema. If you specify a default mode for a database area,
programs using the subschema do not have to issue a READY command for the area. If a

program issues a READY command for one area in the subschema, the automatic
readying mechanism is disabled. In this case the program must issue a READY command
for all areas to be accessed unless the FORCE option is specified for the default usage

mode. Areas using the default usage mode combined with the FORCE option are
automatically readied even if the run-unit already issued READY for other areas.

Note: For more information on the limitations of using the FORCE option with ADS
dialogs, see the Usage (see page 466) information in the Area Statement section.

Ready Modes and SQL Access

Factors Affecting SQL Lock Management

When accessing data using SQL, the way in which an area is readied depends on several
factors:

■ The transaction state

■ The isolation level

■ The requested ready mode

■ The status of areas within central version

Readying Areas

Chapter 39: Lock Management 935

Transaction State

A transaction initiated using SQL has one of two states:

State Description

READ ONLY Data can be read, but not updated; updates to temporary tables are

allowed

READ WRITE Data can be both read and updated using DML and DDL statements

Default is READ WRITE

Unless otherwise specified, the transaction state is READ WRITE. You can override the

default when you define an access module or by issuing a SET TRANSACTION statement
at runtime.

Isolation Level

A transaction initiated using SQL also has one of two isolation levels:

Isolation Level Description

CURSOR STABILITY Guarantees read integrity. Read integrity ensures that:

■ All data accessed by the transaction is in a committed

state

■ The most-recently accessed row of an updatable cursor is
protected from update by other transactions while it
remains current

TRANSIENT READ Does not guarantee read integrity. For this reason, a
transaction executing under transient read is not allowed to
update the database. If the isolation level of a transaction is
transient read, the transaction state is automatically READ

ONLY.

Readying Areas

936 Database Administration Guide

Default is CURSOR STABILITY

Unless otherwise specified, the isolation level of a transaction is CURSOR STABILITY. You

can override the default when you define an access module or by issuing a SET
TRANSACTION statement at runtime.

Requested Ready Modes

You can specify within the access module definition the modes in which CA IDMS/DB is
to ready the areas accessed by non-dynamic SQL statements embedded in an
application. Otherwise, CA IDMS/DB determines the ready mode at runtime. It also
determines the ready mode at runtime for dynamic SQL statements.

Runtime Ready Modes

The ready mode in which an area is accessed at runtime depends on the requested
ready mode, the transaction state, the isolation level, and the area's availability:

Transaction State Isolation Level Area Ready Mode

READ ONLY TRANSIENT READ Transient retrieval mode; no row locks
are placed.

READ ONLY CURSOR STABILITY Retrieval modes only.

If update modes were specified on the
CREATE or ALTER ACCESS MODULE
statement, CA IDMS/DB changes them to
shared retrieval. If no ready option was

specified, the default is shared retrieval.

READ WRITE CURSOR STABILITY All areas are accessed using the mode
specified on the CREATE ACCESS
MODULE.

If no mode was specified, the default is:

■ Shared update in local mode and
under the central version, if the area

status is update

■ Shared retrieval under the central
version, if the area status is retrieval

Under central version, if an area is being readied in a retrieval mode and the status of

the area is transient retrieval, CA IDMS/DB changes the ready mode to transient
retrieval.

Physical Area Locks

Chapter 39: Lock Management 937

Physical Area Locks

CA IDMS/DB maintains a physical area lock as a flag within the first space management
page of an area. It examines and sets the lock whenever the area is opened for update.
This occurs when:

■ A local mode transaction readies the area in an update mode

■ A DC/UCF system is started in which the area status in the DMCL is UPDATE

■ A DCMT VARY AREA command changes the status of the area to UPDATE

Unlocking the Physical Area

Once a physical lock is placed on an area, it remains set until:

■ The local mode transaction or central version terminates normally

■ Manual recovery procedures are used to roll out the effects of a fail ing local mode
transaction

■ A central version is restarted after an abnormal termination and subsequently

shutdown normally

■ The area status within central version is changed from update to another status

Physical Area Locks and Shared Areas

In a data sharing environment, the physical area lock in a shared area is set by the first

member of a data sharing group to open the area for update and it is reset by the last
member to relinquish control.

Physical Area Locks

938 Database Administration Guide

Controlling Update Access

Purpose of Physical Area Locks

Physical area locks prevent concurrent update by independent transactions (that is
transactions executing outside of a single central version or data sharing group) and

prevent update access to an area requiring recovery of incomplete transac tions.

How Locking Works

CA IDMS/DB provides this protection as follows:

Protection
Name

Description

Local mode As each area is readied in any update mode, CA IDMS/DB checks the
lock. If the lock is set, the transaction receives an error and access to

the area is not allowed.

If the lock is not set, the local mode transaction causes the lock to be
set and the space management page is rewritten immediately. If the

transaction terminates abnormally (that is , without issuing a FINISH or
COMMIT WORK), the lock remains set. Further update access is
prevented until the area is recovered (through CA IDMS recovery
procedures).

Central
version

At system startup, the central version checks the locks in all areas
intended for update. If the physical lock is set and the area is not
shared, or the area is shared but is not currently being updated by

another member of the central version's data sharing group, then a
warning message is displayed at the console and the area status is
changed to offl ine. The central version proceeds without the use of
that area and any transaction attempting to ready that area will

receive an error. If the physical lock is subsequently removed from the
area, the status of the area can be varied to update.

Locking Within Central Version

Chapter 39: Lock Management 939

Locking Within Central Version

Logical Locks

Control Access to Resources

Logical locks are used within a central version and within a data sharing group to control

access to database resources by concurrently executing transactions. Before a
transaction can access a resource, it places a lock on the resource which prevents other
transactions from modifying or, in some cases, accessing the resource while the lock is
maintained.

In a data sharing environment, CA IDMS uses global transaction locks, maintained in a
coupling facility lock structure to control inter-member access to shared resources.

Note: For more information about global locking, see 39.5, “Locking Within a Data

Sharing Group”.

Wait States

If a transaction attempts to lock a resource which is locked by another transaction with
a conflicting mode, the first transaction will wait until the lock is released. If the waiting
transaction exceeds the internal wait interval specified at system generation, CA IDMS

aborts the transaction and rolls out its updates. If one transaction is waiting to place a
lock and the transaction that holds it then waits on a lock held by the first transaction, a
deadlock condition exists. CA IDMS resolves this condition by aborting and roll ing back
one of the transactions.

Note: For more information about detecting and resolving deadlocks, see 39.7,
"Deadlocks".

Hierarchical Locking

CA IDMS/DB uses a hierarchical locking scheme in which locks are placed at area and
record occurrence (row) levels. Area locks control access to the area, and by

implication, all record occurrences stored within the area. Record locks control access
to individual record occurrences or rows.

A transaction intending to access data within an area must first place a lock at the area

level. Depending on the strength of that lock (its mode), the transaction may or may
not also place locks on individual record occurrences as it retrieves or updates them.

In a data sharing environment, CA IDMS uses a three-level hierarchy to control
inter-member access to shared resources: area, proxy, and record occurrence.

Note: For more information about this additional level, see 39.5.3, “Proxy Locks”.

Locking Within Central Version

940 Database Administration Guide

Types of Locks

Lock Modes

Each logical lock has an associated lock mode. The mode of the lock determines
whether the lock conflicts with other locks already held on the resource and with locks

subsequently requested by other transactions.

The following types of locks (lock modes) are used for both area and record locks:

Mode Identifier Description

Share S Typically used to guarantee that no updates are made to data
while a transaction is accessing it. A share lock is compatible
with other share locks but not with exclusive locks. A share
lock placed on an area implies a share lock on each record

within the area.

Exclusive X Typically placed on a resource to protect transactions from
accessing data that is being updated by the issuing transaction.

An exclusive lock is incompatible with both share and other
exclusive locks. An exclusive lock placed on an area implies an
exclusive lock on all records within the area.

Null-lock NL A null-lock is a special type of lock which is placed on a record

to signify a notify lock and on an area to signify transient
retrieval access. Null -locks provide no protection against
concurrent access.

Intent Locks on Areas

The following types of locks are placed only on areas:

Mode Identifier Description

Intent share IS Allows share (S) locks to be placed on records within the
area.

Intent

exclusive

IX Allows exclusive (X) locks to be placed on records within

the area.

Update intent
exclusive

UIX Allows exclusive locks to be placed on records within the
area by the issuing transaction, but not by other
transactions.

Locking Within Central Version

Chapter 39: Lock Management 941

In addition to the above lock modes, the following lock mode has been provided for but
is currently not used:

■ Update (U)---An update lock is placed on a resource if it might be updated after it is
retrieved (in which case the lock would be upgraded to an exclusive lock).

Compatibility of Locks

For two transactions running within the same DC/UCF system to access the same area
or row concurrently, their lock types must be compatible. When two transactions

attempt to set locks that are not compatible, the first transaction to set a lock causes
the second transaction to wait until the resource is freed.

Note: CA IDMS ensures that a transaction does not compete with itself for locks.

Compatibility Chart

The following chart shows which lock modes are compatible and which are
incompatible. The plus sign (+) indicates a situation in which two lock modes are
compatible. The minus sign (-) indicates a situation in which two lock modes are

incompatible.

NL IS IX S U UIX X

NL + + + + + + +

IS + + + + + + -

IX + + + - - - -

S + + - + + - -

U + + - + - - -

UIX + + - - - - -

X + - - - - - -

Example

If TRANSACTION1 holds a share (S) lock on an area, TRANSACTION2 can set a null -lock
(NL), intent-share (IS), share (S), or update (U) lock on the same area.

Locking Within Central Version

942 Database Administration Guide

Logical Area Locks

Effect of Ready Mode

To control concurrent access to areas within a central version, the mode in which an
area is readied is translated into a logical lock on the area. As an area is readied, CA

IDMS/DB attempts to place an appropriate lock based on the ready mode. If the new
lock doesn't conflict with locks already held by other transactions, access is granted to
the area. If a conflict exists, the transaction is placed in a wait state until the conflicting
locks are released.

Area Lock Depends on Area Ready Mode

The type of lock (lock mode) placed on an area depends on the mode in which the area
is being readied:

Ready mode Lock mode

Transient retrieval Intent Share (NL)

Shared retrieval Intent Share (IS)

Shared update Intent Exclusive (IX)

Protected retrieval Share (S)

Protected update Update Intent Exclusive (UIX)

Exclusive retrieval Exclusive (X)

Exclusive update Exclusive (X)

When Area Locks are Acquired

For transactions initiated through navigational DML, CA IDMS/DB acquires area locks
when either of the following occur:

■ The first non-ready DML (other than BIND RECORD) statement is issued following

one or more READY statements

■ The first non-bind statement is issued within a transaction using default ready
modes specified by the subschema

For SQL-initiated transactions, when area locks are acquired depends on the area
acquisition mode specified within an access module or in effect for dynamic SQL.

Note: For more information, see 39.4.4, “Area Locking for SQL Transactions".

Locking Within Central Version

Chapter 39: Lock Management 943

Area Acquisition Threshold

If a transaction is locking multiple areas at one time, and must wait to place a lock on

one of the areas, CA IDMS/DB releases the locks on all other areas before placing the
transaction in a wait state. This helps to avoid deadlocks between two or more
transactions trying to gain access to areas. However, it also means that another

transaction can gain access to an area whose lock was released by the waiting
transaction. To avoid this pre-emption, you can specify an area acquisition threshold at
system generation that l imits the number of times a transaction will wait on an area lock
before it no longer releases other area locks.

Area Locking for SQL Transactions

When Area Locks are Acquired

The time at which area locks are acquired for SQL transactions varies depending on the
lock acquisition mode in effect. There are two lock acquisition modes:

■ Preclaim

■ Incremental

On First Database Access

The preclaim mode directs CA IDMS to place locks on all areas in a transaction that use

the preclaim acquisition mode as soon as the first statement that requires acc ess to the
database is executed.

You can use the preclaim mode to reduce the likelihood of deadlocks. A transaction that

uses the preclaim option to lock an area will not wait for an area that is held by another
transaction while it holds a lock on an area .

On First Area Access

The incremental mode directs CA IDMS to delay placing a lock on an area until the first
statement in the transaction that requires access to the area is executed.

You can use the incremental mode to increase database concurrency. A transaction that
uses the incremental mode does not place a lock on an area until the area is actually
required for processing. This makes the area accessible to other transactions for a
longer period of time. In general, if a transaction does not always access every area in its

access path, you should assign the incremental mode to those areas that are least l ikely
to be accessed.

Locking Within Central Version

944 Database Administration Guide

Example

Suppose a transaction needs to access three different tables, each of which is stored in a

different area:

Table Area Acquisition mode

T1 AREA1 Preclaim

T2 AREA2 Incremental

T3 AREA3 Preclaim

Locks would be acquired in the manner shown next:

TRANSACTION A

 .

 .

 .

SELECT * FROM T1; ◄--------------- Locks are placed on both

 . AREA1 and AREA3.

 .

 .

SELECT * FROM T2; ◄--------------- A lock is placed on AREA2.

 .

 .

 .

SELECT * FROM T3;

 .

 .

 .

Record Locks

Purpose of Record Locks

Record locks are used within the central version to control concurrent access to
individual record occurrences (rows). Occurrence-level record locks (in conjunction with

area locks) are used to:

■ Protect against concurrent update of the same record by two or more transactions

■ Prevent record occurrences that are current within one transaction from being
updated by another transaction

Locking Within Central Version

Chapter 39: Lock Management 945

Implicit record locks

CA IDMS/DB automatically places locks on records accessed by a transaction if the area

in which the record resides is readied in any of the following modes:

Area ready mode Record lock

Shared retrieval on read
records

Shared (S) locks

Shared update Shared (S) locks on read records; exclusive (X) locks on
updated records

Protected update Exclusive (X) locks on updated records

Note: You can use system generation options to inhibit record locking for navigational
DML applications, as discussed in 39.4.6, “System Generation Options Affecting Record
Locking".

Shared Record Locks

If shared locks are being maintained, CA IDMS/DB places one on each record as it is
accessed. Shared locks are also maintained on:

■ The most-recently accessed record of its type (the most-recently accessed row of

each table)

■ The most-recently accessed record in each set (the most-recently accessed row of
each constraint or index)

■ The most-recently accessed record in each area.

Note: Additional shared locks are maintained on the current row of each updatable
cursor open within an SQL transaction.

CA IDMS/DB releases these locks as the transaction accesses different record
occurrences. These implicit record locks guarantee the integrity of the currencies used

by navigational DML applications and provide the protection necessary for SQL
applications executing with an isolation level of cursor stability.

Note: For more information about isolation levels, see 39.2.4, "Ready Modes and SQL

Access".

Exclusive Record Locks

If exclusive locks are being maintained, CA IDMS/DB places them on all records altered
by a DML or DDL statement until the recovery unit terminates (that is a COMMIT
(CONTINUE), ROLLBACK (CONTINUE) or FINISH is issued) or until the transaction abends.

Locking Within Central Version

946 Database Administration Guide

Implicit Page Locks

Implicit locks are used in a special way to control user access to pages for which the

amount of available space has been altered. When the available space on a page is
changed as a result of an update operation, CA IDMS/DB places a speci al implicit
exclusive lock on the page, allowing retrieval to continue. If a subsequent DML or DDL

command from a different transaction requests further modification to available space
on that page, the request is delayed until the lock is released (that i s, until the recovery
unit that caused the lock to be set terminates).

Explicit Record Locks

The navigational programmer can set explicit record locks with the DML KEEP command.
The KEEP verb or the KEEP option of a FIND or OBTAIN verb places a shared lock on the
record occurrence. KEEP with the EXCLUSIVE option places an exclusive lock on the
record occurrence. CA IDMS/DB holds explicit record locks until the transaction

terminates or a COMMIT ALL statement is executed.

System Generation Options Affecting Record Locking

Two system generation options affect whether CA IDMS/DB maintains record locks for
navigational DML transactions. These options are:

Option Description

RETRIEVAL LOCK/NOLOCK Specifies whether CA IDMS/DB places shared locks on

records in an area readied in SHARED RETRIEVAL

UPDATE LOCK/NOLOCK Specifies whether CA IDMS/DB places exclusive locks on
records updated in an area readied in PROTECTED UPDATE

Note: These system generation parameters affect only navigational DML applications;

they do not apply to SQL applications.

Reading Uncommitted Data

If RETRIEVAL NOLOCK is specified, a transaction may read uncommitted data; that is, it
may read data that has been updated by another transaction before those changes have
been committed or data that has been accessed by a retrieva l transaction may be

concurrently updated while the retrieval transaction is sti ll active. This may result in
inconsistencies in the data processed by the shared retrieval transaction. These
inconsistencies may also include transient 11xx abends from the DBMS.

Locking Within a Data Sharing Group

Chapter 39: Lock Management 947

If UPDATE NOLOCK is specified, a transaction updating data in an area readied in
PROTECTED UPDATE does not protect transactions readying the area in SHARED

RETRIEVAL. As with RETRIEVAL NOLOCK, it is possible for a transaction which has
readied the area in SHARED RETRIEVAL to read a record updated by a PROTECTED
UPDATE transaction before it has been committed.

Since both options affect the protection afforded shared retrieval transactions, it is
typical (though not required) to set both parameters in the same way. In systems in
which there is a high volume of updates, you might want to consider specifying LOCK for
both.

Note: No inter-CV retrieval protection is provided except for shared areas accessed

through members of a data sharing group. If an area is not shared, then regardless of
the system lock options in effect, it is possible for a shared retrieval transaction
executing in a central version whose area status is retrieval to read uncommitted data
updated by another central version.

TRANSIENT RETRIEVAL area status

As an alternative to using system generation parameters to reduce the volume of record
locks maintained, consider using a central version's area status of TRANSIENT RETRIEVAL

instead. Provided the area is not updated within the central version, a status of
transient retrieval can be used to eliminate the locking of records within the area.

Locking Within a Data Sharing Group

Within a data sharing group, locking is used to control inter-member access to shared
resources, just as it is used to control access to resources within a central version. The

basic locking scheme used within a central version is extended for data sharing in the
following ways:

■ Global transaction locks are used to control inter-member access

■ An additional level is introduced in the locking hierarchy

■ Page locks are used to protect database pages while they reside in a buffer pool

Note: For more information about data sharing, see the CA IDMS System Operations
Guide.

Locking Within a Data Sharing Group

948 Database Administration Guide

Inter-CV-Interest

Inter-CV-interest denotes a state in which an area is being shared by:

■ At least one group member with an area status of UPDATE, and

■ More than one group member with an area status of RETRIEVAL or UPDATE.

Members accessing an area in TRANSIENT RETRIEVAL, have no impact on
inter-CV-interest.

Conflict for the area (and the records and pages in the area) can only occur if there is
inter-CV-interest in the area. This is significant because if there is no inter-CV-interest in

an area, the overhead associated with controlling access to it is reduced.

Whether there is inter-CV-interest in an area is indicated on the output from a DCMT
DISPLAY AREA command.

Global Transaction Locks

Global transaction locks are locks that reside within a coupling facil ity lock structure and
are used to control inter-member access to data in shared areas. Whenever a
transaction places a lock on a shared area or on a record that resides in a shared area
and there is inter-CV-interest in that area, global locks ensure that no other transaction

in the data sharing group is accessing the same resource in a conflicting mode.

Managing Global Locks

Global locking relies on a coupling facility lock structure to record and manage global
locks. Global locks are acquired by the CA IDMS lock manager whenever a transaction
places a lock on a resource and a sufficiently strong global lock is not already held by

that CV. Global locks are retained until no transaction within a CV requires a lock of that
strength, at which point the global lock may be released, downgraded, or retained,
depending on the resource type and whether there is contention for the resource

between group members.

Inter-CV-Interest and Global Locking

Global transaction locks are not acquired if there is no inter-CV-interest in an area. If
inter-CV-interest begins because another member accesses the area in a potentially

conflicting mode, global transaction locks will be acquired by every sharing member in
which a transaction holds a lock on the area or any of its records.

Locking Within a Data Sharing Group

Chapter 39: Lock Management 949

Proxy Locks

A proxy lock is a global lock used within a data sharing group to represent a lock on all
the records within a page of a shared area. Proxy locks are held by members of a data
sharing group and not by individual transactions.

An Additional Hierarchy Level

Proxy locks represent an additional level in the locking hierarchy used by CA IDMS to
control access to data.

Normally CA IDMS uses a two-level locking hierarchy: area and record. Before placing a

lock on a record, a transaction must place a lock on the area in which the record resides.
Depending on the mode of the area lock, it may be possible to avoid placing locks on
individual records within the area.

For shared areas, the locking hierarchy expands to three levels: area, proxy, and record.
Before a lock is placed on a record in a shared area, a lock must be held on a proxy that

represents the record's page and before this can be done, a lock must be held on the
area in which the record resides.

Proxy Lock Modes

A proxy can be locked in one of two modes: Share or Exclusive. At least a share lock

must be held on a proxy before a transaction can place a share or null (notify) lock on a
record represented by the proxy. Similarly, an exclusive proxy lock must be held before
a transaction can place an exclusive lock on a record represented by the proxy.

Managing Proxy Locks

An exclusive proxy lock held by one member does not prohibit access by another
member. Instead the purpose of proxy locks is to detect inter-CV contention for
resources and to eliminate the use of global record locks where possible. As long as all
members holding a lock on a proxy hold it in share mode, there is no contention for

resources on the page and no need to globally lock individual records on that page.
However, if at least two members hold a lock on a proxy and at least one of those is an
exclusive lock, then there is possible contention for individual records, necessitating the
use of global record locks to control access to individual records.

The acquisition and management of proxy locks is done automatically by the CA IDMS
lock manager. Application programs do not need to explicitly acquire or manage proxy
locks. However, database administrators should be aware of their existence and their

impact on recovery and resource util ization.

Controlling Access to Native VSAM Files

950 Database Administration Guide

Page Locks

A page lock is a lock that is used within a data sharing group to protect database pages
while they reside in a member's local buffer pool. Page locks are only placed on pages of
areas that are designated for data sharing and only if there is inter -CV interest in the

area.

Managing Page Locks

The coupling facil ity lock structure associated with the data sharing group is used to
record and manage global page locks, just as is done for global transaction locks. And

just as a proxy represents all of the records on the page, it also represents the page
itself. Therefore, proxy locks reduce the need to acqui re and release global page locks
each time a page is moved into and out of the buffer pool.

Page Lock Protection

Before a database page is read into the buffer pool, an exclusive or shared lock is placed

on that page, depending on whether the active transaction intends to update the page.
Once the lock is acquired, no other group member may place a conflicting lock on the
page until the first member relinquishes its lock. This means that no other sharing
member may read the page contents while another member has it locked exclusively.

Page locks are held until another group member wants access to the page in a
conflicting mode. Before an exclusive page lock can be released on an updated page, the
page is written to the disk and to the shared cache.

Controlling Access to Native VSAM Files

Physical Area Locks Not Set

CA IDMS does not maintain physical area locks for areas that map to native VSAM data
sets. Therefore, a combination of SHAREOPTIONS, JCL, and operational procedures is
used to control updates of native VSAM data sets by CA IDMS, local transactions, and

non-CA IDMS programs.

DEFINE CLUSTER Command

For example, you can prevent concurrent update by specifying the parameter

SHAREOPTIONS(2,3) in the DEFINE CLUSTER command during VSAM cluster definition.
This parameter permits only one application program to open the data set for update,
thereby preventing concurrent update of the data set by two application programs
executing in different regions. Within a central version, access to native VSAM files is

controlled through the use of logical locks on areas and records just as for CA IDMS
database fi les.

Deadlocks

Chapter 39: Lock Management 951

CA IDMS/DB Facilities

You can use CA IDMS facil ities to further control access to native VSAM data sets. For

example, to protect a data set from being updated, set the status within central version
to TRANSIENT RETRIEVAL or RETRIEVAL. In this case, no application program running
under the central version can ready the area in update mode.

To ensure read integrity of the area when accessed by transactions executing under a
central version, you can use the following procedure when updating the data set using
non CA IDMS programs:

1. Vary offl ine the CA IDMS area that maps to the VSAM data set by means of the

DCMT VARY AREA OFFLINE command.

2. Run the job to update the VSAM data set.

3. Vary the area to retrieval access mode using the DCMT VARY AREA RETRIEVAL
command, thus making the area once again available under the central version.

Deadlocks

A deadlock is an unresolvable contention between multiple requestors for a resource.
Resources are either DC/UCF system resources (such as programs and storage) or
database resources (such as areas and records). CA IDMS/DB uses different control

block structures to track contention for DC/UCF system resources and database
resources. Although it tracks deadlocks using different control block structures, the
same deadlock detection mechanism is used to resolve deadlocks.

How the System Detects a Deadlock

Deadlock detection is a process performed on a time interval basis. It is carried out in
four major phases:

1. Identifying stalled tasks—To identify tasks that are stalled, all dispatch control
elements (DCEs) in the system are examined. Any DCE found stalled while waiting

on an internal resource is entered into the deadlock detection matrix (DDM). All
subsequent processing begins with the DCE address stored in the DDM table. This
eliminates the need to scan all DCEs in the system.

2. Identifying task dependencies—Next, the dependencies between the stalled tasks
are identified. The deadlock detection matrix is updated. For each task on which
another task is waiting, a bit in the deadlock detection matrix is set to one.

3. Identifying deadlocks—To determine which tasks are involved in a deadlock cycle, a

transformation is performed on the matrix. From this process, a pair of deadlocked
tasks is identified. From this pair, a victim is selected.

Deadlocks

952 Database Administration Guide

4. Selecting a victim—The task running for the shortest period of time is chosen as the
victim of the two tasks as long as:

■ The priority of the victim task is less than that of the other task

■ The victim task's wait was not entered with COND=NONE and the other task's
wait was entered with COND=DEAD

The task running for the shortest period of time is chosen as the victim because it is
more likely that it will have consumed fewer resources than a longer running task.
As a result, less duplication of work should be required when the victim is restarted,
with these exceptions:

■ If the other task is of a higher priority, implying that it is of more importance

■ If the victim task entered the deadlock with COND=NONE and the other task
specified COND=DEAD. In this case, the task specifying COND=DEAD is chosen
as the victim since COND=DEAD indicates that the task is designed to handle

and recover from deadlock situations. This prevents an abend.

Victim Selection User Exit

The algorithm used to select a victim in a deadlock situation may not be optimal for your
installation or applications. User exit 30 allows victims to be selected based upon

specific requirements. The exit is passed the DCE addresses of each pair of deadlocked
tasks and may take one of two actions:

■ Choose one of the tasks as the victim task

■ Return control to the deadlock detector by requesting that the default deadlock

detection logic be applied

Note: For a discussion of user exit 30, see the CA IDMS System Operations Guide.

Deadlock Detection Interval

You can control the frequency with which the deadlock detection mechanism searches
for deadlocked tasks using the DEADLOCK DETECTION parameter of the SYSTEM

statement.

The DEADLOCK DETECTION parameter allows you to specify the amount of time that
elapses before the deadlock detection mechanism searches for deadlocked tasks. Note

that in an idle system, deadlock detection is also idled until new tasks are started. This
eliminates CPU consumption for deadlock detection when no tasks could possibly be
deadlocked.

You can use the DCMT VARY DEADLOCK command at runtime to override the system

generation specification.

Deadlocks

Chapter 39: Lock Management 953

More Information

■ For more information about the DEADLOCK DETECTION parameter of the SYSTEM
statement, see the CA IDMS System Generation Guide.

■ For more information about the DCMT VARY DEADLOCK command, see the CA

IDMS System Tasks and Operator Commands Guide.

Global Deadlock Detection

What is a Global Deadlock?

A global deadlock is a situation in which unresolvable contention exists for shared

resources between tasks executing on different members within a data sharing group.

Detecting Global Deadlocks

A global deadlock is possible if at least one stalled task is waiting on a global resource. In
a potential global deadlock situation, each member passes information to the one acting

as the global deadlock manager. The global deadlock manager examines the informati on
gathered from the other members and determines which tasks, if any, are deadlocked.

Resolving Global Deadlocks

If a global deadlock exists, user exits are invoked, to assist in selecting a victim task. If
these exits are not provided, the task running for the shortest period or with the lowest

priority is designated as the victim. Once the victim is determined, the member on
which the victim is executing is directed to cancel the task.

Global Deadlock User Exits

Two user exits are used in selecting a victim in a global deadlock situation:

■ Exit #35 is invoked when a group member is collecting information about a s talled

task to send it to the global deadlock manager. The exit provides the opportunity
for a site to collect additional information that may be relevant to the victim
selection process.

■ Exit #36 is invoked by the global deadlock manager when a victim is being selected.
Its function is similar to exit #30, but it is passed different parameters. Instead of
being passed the DCE addresses of two deadlocked tasks, it is passed a pair of
parameters for each task, one of which is the information collected by exi t #35. In

this way, site-specific criteria can be used in selecting a victim even though the
deadlocked tasks may be executing on a group member that is different than that
of the global deadlock manager.

Note: For details on coding these exits, see the CA IDMS System Operations Guide.

Appendix A: Sample SQL Database Definition 955

Appendix A: Sample SQL Database
Definition

Sample Database Definition

 CREATE SCHEMA DEMOEMPL;

 SET SESSION CURRENT SCHEMA DEMOEMPL;

 CREATE TABLE BENEFITS

 (FISCAL_YEAR UNSIGNED NUMERIC(4,0) NOT NULL,

 EMP_ID UNSIGNED NUMERIC(4,0) NOT NULL,

 VAC_ACCRUED UNSIGNED DECIMAL(6,2) NOT NULL WITH DEFAULT,

 VAC_TAKEN UNSIGNED DECIMAL(6,2) NOT NULL WITH DEFAULT,

 SICK_ACCRUED UNSIGNED DECIMAL(6,2) NOT NULL WITH DEFAULT,

 SICK_TAKEN UNSIGNED DECIMAL(6,2) NOT NULL WITH DEFAULT,

 STOCK_PERCENT UNSIGNED DECIMAL(6,3) NOT NULL WITH DEFAULT,

 STOCK_AMOUNT UNSIGNED DECIMAL(10,2) NOT NULL WITH DEFAULT,

 LAST_REVIEW_DATE DATE ,

 REVIEW_PERCENT UNSIGNED DECIMAL(6,3) ,

 PROMO_DATE DATE ,

 RETIRE_PLAN CHAR(6) ,

 RETIRE_PERCENT UNSIGNED DECIMAL(6,3) ,

 BONUS_AMOUNT UNSIGNED DECIMAL(10,2) ,

 COMP_ACCRUED UNSIGNED DECIMAL(6,2) NOT NULL WITH DEFAULT,

 COMP_TAKEN UNSIGNED DECIMAL(6,2) NOT NULL WITH DEFAULT,

 EDUC_LEVEL CHAR(06) ,

 UNION_ID CHAR(10) ,

 UNION_DUES UNSIGNED DECIMAL(10,2) ,

 CHECK ((RETIRE_PLAN IN ('STOCK', 'BONDS', '401K')) AND

 (EDUC_LEVEL IN ('GED', 'HSDIP', 'JRCOLL', 'COLL',

 'MAS', 'PHD'))))

 IN SQLDEMO.EMPLAREA;

Deadlocks

956 Database Administration Guide

 CREATE TABLE COVERAGE

 (PLAN_CODE CHAR(03) NOT NULL,

 EMP_ID UNSIGNED NUMERIC(4,0) NOT NULL,

 SELECTION_DATE DATE NOT NULL WITH DEFAULT,

 TERMINATION_DATE DATE ,

 NUM_DEPENDENTS UNSIGNED NUMERIC(2,0) NOT NULL WITH DEFAULT)

 IN SQLDEMO.EMPLAREA;

 CREATE TABLE DEPARTMENT

 (DEPT_ID UNSIGNED NUMERIC(4,0) NOT NULL,

 DEPT_HEAD_ID UNSIGNED NUMERIC(4,0) ,

 DIV_CODE CHAR(03) NOT NULL,

 DEPT_NAME CHAR(40) NOT NULL)

 IN SQLDEMO.INFOAREA;

 CREATE TABLE DIVISION

 (DIV_CODE CHAR(03) NOT NULL,

 DIV_HEAD_ID UNSIGNED NUMERIC(4,0) ,

 DIV_NAME CHAR(40) NOT NULL)

 IN SQLDEMO.INFOAREA;

 CREATE TABLE EMPLOYEE

 (EMP_ID UNSIGNED NUMERIC(4,0) NOT NULL,

 MANAGER_ID UNSIGNED NUMERIC(4,0) ,

 EMP_FNAME CHAR(20) NOT NULL,

 EMP_LNAME CHAR(20) NOT NULL,

 DEPT_ID UNSIGNED NUMERIC(4,0) NOT NULL,

 STREET CHAR(40) NOT NULL,

 CITY CHAR(20) NOT NULL,

 STATE CHAR(02) NOT NULL,

 ZIP_CODE CHAR(09) NOT NULL,

 PHONE CHAR(10) ,

 STATUS CHAR NOT NULL,

 SS_NUMBER UNSIGNED NUMERIC(9,0) NOT NULL,

 START_DATE DATE NOT NULL,

 TERMINATION_DATE DATE ,

 BIRTH_DATE DATE ,

 CHECK ((EMP_ID <= 8999) AND (STATUS IN ('A', 'S', 'L', 'T'))))

 IN SQLDEMO.EMPLAREA;

Deadlocks

Appendix A: Sample SQL Database Definition 957

CREATE TABLE INSURANCE_PLAN

 (PLAN_CODE CHAR(03) NOT NULL,

 COMP_NAME CHAR(40) NOT NULL,

 STREET CHAR(40) NOT NULL,

 CITY CHAR(20) NOT NULL,

 STATE CHAR(02) NOT NULL,

 ZIP_CODE CHAR(09) NOT NULL,

 PHONE CHAR(10) NOT NULL,

 GROUP_NUMBER UNSIGNED NUMERIC(4,0) NOT NULL,

 DEDUCT UNSIGNED DECIMAL(9,2) ,

 MAX_LIFE_BENEFIT UNSIGNED DECIMAL(9,2) ,

 FAMILY_COST UNSIGNED DECIMAL(9,2) ,

 DEP_COST UNSIGNED DECIMAL(9,2) ,

 EFF_DATE DATE NOT NULL)

 IN SQLDEMO.INFOAREA;

 CREATE TABLE JOB

 (JOB_ID UNSIGNED NUMERIC(4,0) NOT NULL,

 JOB_TITLE CHAR(20) NOT NULL,

 MIN_RATE UNSIGNED DECIMAL(10,2) ,

 MAX_RATE UNSIGNED DECIMAL(10,2) ,

 SALARY_IND CHAR(01) ,

 NUM_OF_POSITIONS UNSIGNED DECIMAL(4,0) ,

 EFF_DATE DATE ,

 JOB_DESC_LINE_1 VARCHAR(60) ,

 JOB_DESC_LINE_2 VARCHAR(60) ,

 CHECK (SALARY_IND IN ('S', 'H')))

 IN SQLDEMO.INFOAREA;

 CREATE TABLE POSITION

 (EMP_ID UNSIGNED NUMERIC(4,0) NOT NULL,

 JOB_ID UNSIGNED NUMERIC(4,0) NOT NULL,

 START_DATE DATE NOT NULL,

 FINISH_DATE DATE ,

 HOURLY_RATE UNSIGNED DECIMAL(7,2) ,

 SALARY_AMOUNT UNSIGNED DECIMAL(10,2) ,

 BONUS_PERCENT UNSIGNED DECIMAL(7,3) ,

 COMM_PERCENT UNSIGNED DECIMAL(7,3) ,

 OVERTIME_RATE UNSIGNED DECIMAL(5,2) ,

 CHECK ((HOURLY_RATE IS NOT NULL AND SALARY_AMOUNT IS NULL)

 OR (HOURLY_RATE IS NULL AND SALARY_AMOUNT IS NOT NULL)))

 IN SQLDEMO.EMPLAREA;

 CREATE SCHEMA DEMOPROJ;

 SET SESSION CURRENT SCHEMA DEMOPROJ;

Deadlocks

958 Database Administration Guide

 CREATE TABLE ASSIGNMENT

 (EMP_ID UNSIGNED NUMERIC(4,0) NOT NULL,

 PROJ_ID CHAR(10) NOT NULL,

 START_DATE DATE NOT NULL,

 END_DATE DATE)

 IN PROJSEG.PROJAREA;

 CREATE TABLE CONSULTANT

 (CON_ID UNSIGNED NUMERIC(4,0) NOT NULL,

 CON_FNAME CHAR(20) NOT NULL,

 CON_LNAME CHAR(20) NOT NULL,

 MANAGER_ID UNSIGNED NUMERIC(4,0) NOT NULL,

 DEPT_ID UNSIGNED NUMERIC(4,0) NOT NULL,

 PROJ_ID CHAR(10) ,

 STREET CHAR(40) ,

 CITY CHAR(20) NOT NULL,

 STATE CHAR(02) NOT NULL,

 ZIP_CODE CHAR(09) NOT NULL,

 PHONE CHAR(10) ,

 BIRTH_DATE DATE ,

 START_DATE DATE NOT NULL,

 SS_NUMBER UNSIGNED NUMERIC(9,0) NOT NULL,

 RATE UNSIGNED DECIMAL(7,2) ,

 CHECK ((CON_ID >= 9000 AND CON_ID <= 9999)))

 IN PROJSEG.PROJAREA;

 CREATE TABLE EXPERTISE

 (EMP_ID UNSIGNED NUMERIC(4,0) NOT NULL,

 SKILL_ID UNSIGNED NUMERIC(4,0) NOT NULL,

 SKILL_LEVEL CHAR(02) ,

 EXP_DATE DATE)

 IN PROJSEG.PROJAREA;

Deadlocks

Appendix A: Sample SQL Database Definition 959

 CREATE TABLE PROJECT

 (PROJ_ID CHAR(10) NOT NULL,

 PROJ_LEADER_ID UNSIGNED NUMERIC(4,0) ,

 EST_START_DATE DATE ,

 EST_END_DATE DATE ,

 ACT_START_DATE DATE ,

 ACT_END_DATE DATE ,

 EST_MAN_HOURS UNSIGNED DECIMAL(7,2) ,

 ACT_MAN_HOURS UNSIGNED DECIMAL(7,2) ,

 PROJ_DESC VARCHAR(60) NOT NULL)

 IN PROJSEG.PROJAREA;

 CREATE TABLE SKILL

 (SKILL_ID UNSIGNED NUMERIC(4,0) NOT NULL,

 SKILL_NAME CHAR(20) NOT NULL,

 SKILL_DESC VARCHAR(60))

 IN PROJSEG.PROJAREA;

 CREATE UNIQUE CALC KEY ON DEMOEMPL.DEPARTMENT(DEPT_ID);

 CREATE UNIQUE CALC KEY ON DEMOEMPL.DIVISION(DIV_CODE);

 CREATE UNIQUE CALC KEY ON DEMOEMPL.EMPLOYEE(EMP_ID);

 CREATE UNIQUE CALC KEY ON DEMOEMPL.INSURANCE_PLAN(PLAN_CODE);

 CREATE UNIQUE CALC KEY ON DEMOEMPL.JOB(JOB_ID);

 CREATE UNIQUE CALC KEY ON DEMOPROJ.CONSULTANT(CON_ID);

 CREATE UNIQUE CALC KEY ON DEMOPROJ.PROJECT(PROJ_ID);

 CREATE UNIQUE CALC KEY ON DEMOPROJ.SKILL(SKILL_ID);

Deadlocks

960 Database Administration Guide

 CREATE UNIQUE INDEX AS_EMPROJ_NDX ON

 DEMOPROJ.ASSIGNMENT(EMP_ID,PROJ_ID);

 CREATE UNIQUE INDEX EX_EMPSKILL_NDX ON

 DEMOPROJ.EXPERTISE(EMP_ID, SKILL_ID);

 CREATE INDEX CO_CODE_NDX ON DEMOEMPL.COVERAGE(PLAN_CODE)

 IN SQLDEMO.INDXAREA;

 CREATE INDEX DE_CODE_NDX ON DEMOEMPL.DEPARTMENT(DIV_CODE);

 CREATE INDEX DI_HEAD_NDX ON DEMOEMPL.DIVISION(DIV_HEAD_ID);

 CREATE INDEX DE_HEAD_NDX ON DEMOEMPL.DEPARTMENT(DEPT_HEAD_ID);

 CREATE INDEX EM_MANAGER_NDX ON DEMOEMPL.EMPLOYEE(MANAGER_ID)

 IN SQLDEMO.INDXAREA;

 CREATE INDEX EM_NAME_NDX ON DEMOEMPL.EMPLOYEE(EMP_LNAME, EMP_FNAME)

 IN SQLDEMO.INDXAREA;

 CREATE INDEX EM_DEPT_NDX ON DEMOEMPL.EMPLOYEE(DEPT_ID)

 IN SQLDEMO.INDXAREA;

 CREATE INDEX IN_NAME_NDX ON DEMOEMPL.INSURANCE_PLAN(COMP_NAME)

 COMPRESSED;

 CREATE INDEX PO_JOB_NDX ON DEMOEMPL.POSITION(JOB_ID)

 IN SQLDEMO.INDXAREA;

 CREATE INDEX CN_NAME_NDX ON DEMOPROJ.CONSULTANT(CON_LNAME,CON_FNAME);

 CREATE CONSTRAINT EMP_BENEFITS

 DEMOEMPL.BENEFITS (EMP_ID) REFERENCES

 DEMOEMPL.EMPLOYEE (EMP_ID)

 LINKED CLUSTERED

 ORDER BY (FISCAL_YEAR DESC);

Deadlocks

Appendix A: Sample SQL Database Definition 961

 CREATE CONSTRAINT INSPLAN_COVERAGE

 DEMOEMPL.COVERAGE (PLAN_CODE) REFERENCES

 DEMOEMPL.INSURANCE_PLAN (PLAN_CODE)

 UNLINKED;

 CREATE CONSTRAINT EMP_COVERAGE

 DEMOEMPL.COVERAGE (EMP_ID) REFERENCES

 DEMOEMPL.EMPLOYEE (EMP_ID)

 LINKED CLUSTERED

 ORDER BY (PLAN_CODE) UNIQUE;

 CREATE CONSTRAINT DIVISION_DEPT

 DEMOEMPL.DEPARTMENT (DIV_CODE) REFERENCES

 DEMOEMPL.DIVISION (DIV_CODE)

 UNLINKED;

 CREATE CONSTRAINT EMP_DEPT_HEAD

 DEMOEMPL.DEPARTMENT (DEPT_HEAD_ID) REFERENCES

 DEMOEMPL.EMPLOYEE (EMP_ID)

 UNLINKED;

 CREATE CONSTRAINT EMP_DIV_HEAD

 DEMOEMPL.DIVISION (DIV_HEAD_ID) REFERENCES

 DEMOEMPL.EMPLOYEE (EMP_ID)

 UNLINKED;

 CREATE CONSTRAINT DEPT_EMPLOYEE

 DEMOEMPL.EMPLOYEE (DEPT_ID) REFERENCES

 DEMOEMPL.DEPARTMENT (DEPT_ID)

 UNLINKED;

 CREATE CONSTRAINT MANAGER_EMP

 DEMOEMPL.EMPLOYEE (MANAGER_ID) REFERENCES

 DEMOEMPL.EMPLOYEE (EMP_ID)

 UNLINKED;

 CREATE CONSTRAINT SKILL_EXPERTISE

 DEMOPROJ.EXPERTISE (SKILL_ID) REFERENCES

 DEMOPROJ.SKILL (SKILL_ID)

 LINKED CLUSTERED;

 CREATE CONSTRAINT EMP_POSITION

 DEMOEMPL.POSITION (EMP_ID) REFERENCES

 DEMOEMPL.EMPLOYEE (EMP_ID)

 LINKED CLUSTERED

 ORDER BY (JOB_ID) UNIQUE;

Deadlocks

962 Database Administration Guide

 CREATE CONSTRAINT JOB_POSITION

 DEMOEMPL.POSITION (JOB_ID) REFERENCES

 DEMOEMPL.JOB (JOB_ID)

 UNLINKED;

 CREATE CONSTRAINT PROJECT_ASSIGN

 DEMOPROJ.ASSIGNMENT (PROJ_ID) REFERENCES

 DEMOPROJ.PROJECT (PROJ_ID)

 LINKED CLUSTERED;

 CREATE CONSTRAINT PROJECT_CONSULT

 DEMOPROJ.CONSULTANT (PROJ_ID) REFERENCES

 DEMOPROJ.PROJECT (PROJ_ID)

 LINKED INDEX ORDER BY (PROJ_ID);

 ALTER TABLE DEMOEMPL.COVERAGE

 DROP DEFAULT INDEX;

 ALTER TABLE DEMOEMPL.DEPARTMENT

 DROP DEFAULT INDEX;

 ALTER TABLE DEMOEMPL.DIVISION

 DROP DEFAULT INDEX;

 ALTER TABLE DEMOEMPL.EMPLOYEE

 DROP DEFAULT INDEX;

 ALTER TABLE DEMOEMPL.INSURANCE_PLAN

 DROP DEFAULT INDEX;

 ALTER TABLE DEMOEMPL.POSITION

 DROP DEFAULT INDEX;

 ALTER TABLE DEMOPROJ.ASSIGNMENT

 DROP DEFAULT INDEX;

 ALTER TABLE DEMOPROJ.CONSULTANT

 DROP DEFAULT INDEX;

 ALTER TABLE DEMOPROJ.EXPERTISE

 DROP DEFAULT INDEX;

Deadlocks

Appendix A: Sample SQL Database Definition 963

 CREATE VIEW DEMOEMPL.EMP_VACATION

 (EMP_ID, DEPT_ID, VAC_TIME)

 AS SELECT E.EMP_ID, DEPT_ID, SUM(VAC_ACCRUED) - SUM(VAC_TAKEN)

 FROM DEMOEMPL.EMPLOYEE E, DEMOEMPL.BENEFITS B

 WHERE E.EMP_ID = B.EMP_ID

 GROUP BY DEPT_ID, E.EMP_ID;

 CREATE VIEW DEMOEMPL.OPEN_POSITIONS

 (JOB_ID, JOB_NAME, OPEN_POS)

 AS SELECT J.JOB_ID, J.JOB_TITLE,

 (J.NUM_OF_POSITIONS - COUNT(P.JOB_ID))

 FROM DEMOEMPL.JOB J, DEMOEMPL.POSITION P

 WHERE P.FINISH_DATE IS NULL AND P.JOB_ID = J.JOB_ID

 PRESERVE DEMOEMPL.JOB

 GROUP BY J.JOB_ID, J.JOB_TITLE, J.NUM_OF_POSITIONS

 HAVING (J.NUM_OF_POSITIONS - COUNT(P.JOB_ID)) > 0;

 CREATE VIEW DEMOEMPL.EMP_HOME_INFO

 AS SELECT EMP_ID, EMP_LNAME, EMP_FNAME, STREET, CITY, STATE,

 ZIP_CODE, PHONE

 FROM DEMOEMPL.EMPLOYEE;

 CREATE VIEW DEMOEMPL.EMP_WORK_INFO

 AS SELECT EMP_ID, MANAGER_ID, START_DATE, TERMINATION_DATE

 FROM DEMOEMPL.EMPLOYEE;

Appendix B: Sample Non-SQL Database Definition 965

Appendix B: Sample Non-SQL Database
Definition

Sample Database Schema Definition

 ADD SCHEMA NAME IS EMPSCHM VERSION IS 100

 SCHEMA DESCRIPTION IS 'EMPLOYEE DEMO DATABASE'

 COMMENTS 'INSTALLATION: COMMONWEATHER CORPORATION'

 .

 ADD AREA NAME IS EMP-DEMO-REGION

 .

 ADD AREA NAME IS ORG-DEMO-REGION

 .

 ADD AREA NAME IS INS-DEMO-REGION

 .

 ADD RECORD NAME IS COVERAGE

 SHARE STRUCTURE OF RECORD COVERAGE VERSION IS 100

 RECORD ID IS 0400

 LOCATION MODE IS VIA EMP-COVERAGE SET

 WITHIN AREA INS-DEMO-REGION

 OFFSET 5 PAGES FOR 45 PAGES

 .

 ADD RECORD NAME IS DENTAL-CLAIM

 SHARE STRUCTURE OF RECORD DENTAL-CLAIM VERSION IS 100

 RECORD ID IS 0405

 LOCATION MODE IS VIA COVERAGE-CLAIMS SET

 WITHIN AREA INS-DEMO-REGION

 OFFSET 5 PAGES FOR 45 PAGES

 MINIMUM ROOT LENGTH IS 130 CHARACTERS

 MINIMUM FRAGMENT LENGTH IS RECORD LENGTH

 .

Deadlocks

966 Database Administration Guide

 ADD RECORD NAME IS DEPARTMENT

 SHARE STRUCTURE OF RECORD DEPARTMENT VERSION IS 100

 RECORD ID IS 0410

 LOCATION MODE IS CALC USING DEPT-ID-0410

 DUPLICATES NOT ALLOWED

 WITHIN AREA ORG-DEMO-REGION

 OFFSET 5 PAGES FOR 45 PAGES

 .

 ADD RECORD NAME IS EMPLOYEE

 SHARE STRUCTURE OF RECORD EMPLOYEE VERSION IS 100

 RECORD ID IS 0415

 LOCATION MODE IS CALC USING EMP-ID-0415

 DUPLICATES NOT ALLOWED

 WITHIN AREA EMP-DEMO-REGION

 OFFSET 5 PAGES FOR 95 PAGES

 .

 ADD RECORD NAME IS EMPOSITION

 SHARE STRUCTURE OF RECORD EMPOSITION VERSION IS 100

 RECORD ID IS 0420

 LOCATION MODE IS VIA EMP-EMPOSITION SET

 WITHIN AREA EMP-DEMO-REGION

 OFFSET 5 PAGES FOR 95 PAGES

 .

 ADD RECORD NAME IS EXPERTISE

 SHARE STRUCTURE OF RECORD EXPERTISE VERSION IS 100

 RECORD ID IS 0425

 LOCATION MODE IS VIA EMP-EXPERTISE SET

 WITHIN AREA EMP-DEMO-REGION

 OFFSET 5 PAGES FOR 95 PAGES

 .

 ADD RECORD NAME IS HOSPITAL-CLAIM

 SHARE STRUCTURE OF RECORD HOSPITAL-CLAIM VERSION IS 100

 RECORD ID IS 0430

 LOCATION MODE IS VIA COVERAGE-CLAIMS SET

 WITHIN AREA INS-DEMO-REGION

 OFFSET 5 PAGES FOR 45 PAGES

 .

 ADD RECORD NAME IS INSURANCE-PLAN

 SHARE STRUCTURE OF RECORD INSURANCE-PLAN VERSION IS 100

 RECORD ID IS 0435

 LOCATION MODE IS CALC USING INS-PLAN-CODE-0435

 DUPLICATES NOT ALLOWED

 WITHIN AREA INS-DEMO-REGION

 OFFSET 1 PAGE FOR 4 PAGES

 .

Deadlocks

Appendix B: Sample Non-SQL Database Definition 967

 ADD RECORD NAME IS JOB

 SHARE STRUCTURE OF RECORD JOB VERSION IS 100

 RECORD ID IS 0440

 LOCATION MODE IS CALC USING JOB-ID-0440

 DUPLICATES NOT ALLOWED

 WITHIN AREA ORG-DEMO-REGION

 OFFSET 5 PAGES FOR 45 PAGES

 MINIMUM ROOT LENGTH IS CONTROL LENGTH

 MINIMUM FRAGMENT LENGTH IS RECORD LENGTH

 CALL IDMSCOMP BEFORE STORE

 CALL IDMSCOMP BEFORE MODIFY

 CALL IDMSDCOM AFTER GET

 .

 ADD RECORD NAME IS NON-HOSP-CLAIM

 SHARE STRUCTURE OF RECORD NON-HOSP-CLAIM VERSION IS 100

 RECORD ID IS 0445

 LOCATION MODE IS VIA COVERAGE-CLAIMS SET

 WITHIN AREA INS-DEMO-REGION

 OFFSET 5 PAGES FOR 45 PAGES

 MINIMUM ROOT LENGTH IS 248 CHARACTERS

 MINIMUM FRAGMENT LENGTH IS RECORD LENGTH

 .

 ADD RECORD NAME IS OFFICE

 SHARE STRUCTURE OF RECORD OFFICE VERSION IS 100

 RECORD ID IS 0450

 LOCATION MODE IS CALC USING OFFICE-CODE-0450

 DUPLICATES NOT ALLOWED

 WITHIN AREA ORG-DEMO-REGION

 OFFSET 5 PAGES FOR 45 PAGES

 .

 ADD RECORD NAME IS SKILL

 SHARE STRUCTURE OF RECORD SKILL VERSION IS 100

 RECORD ID IS 0455

 LOCATION MODE IS CALC USING SKILL-ID-0455

 DUPLICATES NOT ALLOWED

 WITHIN AREA ORG-DEMO-REGION

 OFFSET 5 PAGES FOR 45 PAGES

 .

Deadlocks

968 Database Administration Guide

 ADD RECORD NAME IS STRUCTURE

 SHARE STRUCTURE OF RECORD STRUCTURE VERSION IS 100

 RECORD ID IS 0460

 LOCATION MODE IS VIA MANAGES SET

 WITHIN AREA EMP-DEMO-REGION

 OFFSET 5 PAGES FOR 95 PAGES

 .

 ADD SET NAME IS COVERAGE-CLAIMS

 ORDER IS LAST

 MODE IS CHAIN LINKED TO PRIOR

 OWNER IS COVERAGE

 NEXT DBKEY POSITION IS AUTO

 PRIOR DBKEY POSITION IS AUTO

 MEMBER IS HOSPITAL-CLAIM

 NEXT DBKEY POSITION IS AUTO

 PRIOR DBKEY POSITION IS AUTO

 MANDATORY AUTOMATIC

 MEMBER IS NON-HOSP-CLAIM

 NEXT DBKEY POSITION IS AUTO

 PRIOR DBKEY POSITION IS AUTO

 MANDATORY AUTOMATIC

 MEMBER IS DENTAL-CLAIM

 NEXT DBKEY POSITION IS AUTO

 PRIOR DBKEY POSITION IS AUTO

 MANDATORY AUTOMATIC

 .

 ADD SET NAME IS DEPT-EMPLOYEE

 ORDER IS SORTED

 MODE IS CHAIN LINKED TO PRIOR

 OWNER IS DEPARTMENT

 NEXT DBKEY POSITION IS AUTO

 PRIOR DBKEY POSITION IS AUTO

 MEMBER IS EMPLOYEE

 NEXT DBKEY POSITION IS AUTO

 PRIOR DBKEY POSITION IS AUTO

 LINKED TO OWNER

 OWNER DBKEY POSITION IS AUTO

 OPTIONAL AUTOMATIC

 ASCENDING KEY IS (EMP-LAST-NAME-0415

 EMP-FIRST-NAME-0415)

 DUPLICATES LAST

 .

Deadlocks

Appendix B: Sample Non-SQL Database Definition 969

 ADD SET NAME IS EMP-COVERAGE

 ORDER IS FIRST

 MODE IS CHAIN LINKED TO PRIOR

 OWNER IS EMPLOYEE

 NEXT DBKEY POSITION IS AUTO

 PRIOR DBKEY POSITION IS AUTO

 MEMBER IS COVERAGE

 NEXT DBKEY POSITION IS AUTO

 PRIOR DBKEY POSITION IS AUTO

 LINKED TO OWNER

 OWNER DBKEY POSITION IS AUTO

 MANDATORY AUTOMATIC

 .

 ADD SET NAME IS EMP-EMPOSITION

 ORDER IS FIRST

 MODE IS CHAIN LINKED TO PRIOR

 OWNER IS EMPLOYEE

 NEXT DBKEY POSITION IS AUTO

 PRIOR DBKEY POSITION IS AUTO

 MEMBER IS EMPOSITION

 NEXT DBKEY POSITION IS AUTO

 PRIOR DBKEY POSITION IS AUTO

 LINKED TO OWNER

 OWNER DBKEY POSITION IS AUTO

 MANDATORY AUTOMATIC

 .

 ADD SET NAME IS EMP-EXPERTISE

 ORDER IS SORTED

 MODE IS CHAIN LINKED TO PRIOR

 OWNER IS EMPLOYEE

 NEXT DBKEY POSITION IS AUTO

 PRIOR DBKEY POSITION IS AUTO

 MEMBER IS EXPERTISE

 NEXT DBKEY POSITION IS AUTO

 PRIOR DBKEY POSITION IS AUTO

 LINKED TO OWNER

 OWNER DBKEY POSITION IS AUTO

 MANDATORY AUTOMATIC

 DESCENDING KEY IS (SKILL-LEVEL-0425)

 DUPLICATES FIRST

 .

Deadlocks

970 Database Administration Guide

 ADD SET NAME IS EMP-NAME-NDX

 ORDER IS SORTED

 MODE IS INDEX BLOCK CONTAINS 40 KEYS

 OWNER IS SYSTEM

 WITHIN AREA EMP-DEMO-REGION

 OFFSET 1 PAGE FOR 4 PAGES

 MEMBER IS EMPLOYEE

 INDEX DBKEY POSITION IS AUTO

 OPTIONAL AUTOMATIC

 ASCENDING KEY IS (EMP-LAST-NAME-0415

 EMP-FIRST-NAME-0415)

 COMPRESSED

 DUPLICATES LAST

 .

 ADD SET NAME IS JOB-EMPOSITION

 ORDER IS NEXT

 MODE IS CHAIN LINKED TO PRIOR

 OWNER IS JOB

 NEXT DBKEY POSITION IS AUTO

 PRIOR DBKEY POSITION IS AUTO

 MEMBER IS EMPOSITION

 NEXT DBKEY POSITION IS AUTO

 PRIOR DBKEY POSITION IS AUTO

 LINKED TO OWNER

 OWNER DBKEY POSITION IS AUTO

 OPTIONAL MANUAL

 .

Deadlocks

Appendix B: Sample Non-SQL Database Definition 971

 ADD SET NAME IS JOB-TITLE-NDX

 ORDER IS SORTED

 MODE IS INDEX BLOCK CONTAINS 30 KEYS

 OWNER IS SYSTEM

 WITHIN AREA ORG-DEMO-REGION

 OFFSET 1 PAGE FOR 4 PAGES

 MEMBER IS JOB

 INDEX DBKEY POSITION IS AUTO

 OPTIONAL AUTOMATIC

 ASCENDING KEY IS (TITLE-0440)

 DUPLICATES NOT ALLOWED

 .

 ADD SET NAME IS MANAGES

 ORDER IS NEXT

 MODE IS CHAIN LINKED TO PRIOR

 OWNER IS EMPLOYEE

 NEXT DBKEY POSITION IS AUTO

 PRIOR DBKEY POSITION IS AUTO

 MEMBER IS STRUCTURE

 NEXT DBKEY POSITION IS AUTO

 PRIOR DBKEY POSITION IS AUTO

 LINKED TO OWNER

 OWNER DBKEY POSITION IS AUTO

 MANDATORY AUTOMATIC

 .

 ADD SET NAME IS OFFICE-EMPLOYEE

 ORDER IS SORTED

 MODE IS INDEX BLOCK CONTAINS 30 KEYS

 OWNER IS OFFICE

 NEXT DBKEY POSITION IS AUTO

 PRIOR DBKEY POSITION IS AUTO

 MEMBER IS EMPLOYEE

 INDEX DBKEY POSITION IS AUTO

 LINKED TO OWNER

 OWNER DBKEY POSITION IS AUTO

 OPTIONAL AUTOMATIC

 ASCENDING KEY IS (EMP-LAST-NAME-0415

 EMP-FIRST-NAME-0415)

 COMPRESSED

 DUPLICATES LAST

 .

Deadlocks

972 Database Administration Guide

 ADD SET NAME IS REPORTS-TO

 ORDER IS NEXT

 MODE IS CHAIN LINKED TO PRIOR

 OWNER IS EMPLOYEE

 NEXT DBKEY POSITION IS AUTO

 PRIOR DBKEY POSITION IS AUTO

 MEMBER IS STRUCTURE

 NEXT DBKEY POSITION IS AUTO

 PRIOR DBKEY POSITION IS AUTO

 LINKED TO OWNER

 OWNER DBKEY POSITION IS AUTO

 OPTIONAL MANUAL

 .

 ADD SET NAME IS SKILL-EXPERTISE

 ORDER IS SORTED

 MODE IS INDEX BLOCK CONTAINS 30 KEYS

 OWNER IS SKILL

 NEXT DBKEY POSITION IS AUTO

 PRIOR DBKEY POSITION IS AUTO

 MEMBER IS EXPERTISE

 INDEX DBKEY POSITION IS AUTO

 LINKED TO OWNER

 OWNER DBKEY POSITION IS AUTO

 MANDATORY AUTOMATIC

 DESCENDING KEY IS (SKILL-LEVEL-0425)

 DUPLICATES FIRST

 .

 ADD SET NAME IS SKILL-NAME-NDX

 ORDER IS SORTED

 MODE IS INDEX BLOCK CONTAINS 30 KEYS

 OWNER IS SYSTEM

 WITHIN AREA ORG-DEMO-REGION

 OFFSET 1 PAGE FOR 4 PAGES

 MEMBER IS SKILL

 INDEX DBKEY POSITION IS AUTO

 OPTIONAL AUTOMATIC

 ASCENDING KEY IS (SKILL-NAME-0455)

 DUPLICATES NOT ALLOWED

 .

 VALIDATE

 .

Deadlocks

Appendix B: Sample Non-SQL Database Definition 973

Sample Database Subschema Definition
 ADD SUBSCHEMA NAME IS EMPSS01

 OF SCHEMA NAME IS EMPSCHM VERSION 100

 COMMENTS 'THIS IS THE COMPLETE VIEW OF EMPSCHM'

 .

 ADD AREA NAME IS EMP-DEMO-REGION

 .

 ADD AREA NAME IS INS-DEMO-REGION

 .

 ADD AREA NAME IS ORG-DEMO-REGION

 .

 ADD RECORD NAME IS COVERAGE

 .

 ADD RECORD NAME IS DENTAL-CLAIM

 .

 ADD RECORD NAME IS DEPARTMENT

 .

 ADD RECORD NAME IS EMPLOYEE

 .

 ADD RECORD NAME IS EMPOSITION

 .

 ADD RECORD NAME IS EXPERTISE

 .

 ADD RECORD NAME IS HOSPITAL-CLAIM

 .

 ADD RECORD NAME IS INSURANCE-PLAN

 .

 ADD RECORD NAME IS JOB

 .

 ADD RECORD NAME IS NON-HOSP-CLAIM

 .

 ADD RECORD NAME IS OFFICE

 .

 ADD RECORD NAME IS SKILL

 .

 ADD RECORD NAME IS STRUCTURE

 .

 ADD SET COVERAGE-CLAIMS

 .

 ADD SET DEPT-EMPLOYEE

 .

 ADD SET EMP-COVERAGE

 .

 ADD SET EMP-EXPERTISE

 .

 ADD SET EMP-NAME-NDX

 .

Deadlocks

974 Database Administration Guide

 ADD SET EMP-EMPOSITION

 .

 ADD SET JOB-EMPOSITION

 .

 ADD SET JOB-TITLE-NDX

 .

 ADD SET MANAGES

 .

 ADD SET OFFICE-EMPLOYEE

 .

 ADD SET REPORTS-TO

 .

 ADD SET SKILL-EXPERTISE

 .

 ADD SET SKILL-NAME-NDX

 .

 GENERATE

 .

Appendix C: Native VSAM Considerations 975

Appendix C: Native VSAM Considerations

This section contains the following topics:

Overview (see page 975)
Native VSAM Data Set Structures (see page 975)
CA IDMS/DB Native VSAM Definitions (see page 976)

DML Functions with Native VSAM (see page 978)

Overview

An overview of batch compilation and the JCL/commands you need to execute non-SQL
schema and subschema statements under the central version or in local mode are

discussed in this section.

Native VSAM Data Set Structures

You can structure a native VSAM data set as a key-sequenced data set (KSDS), an
entry-sequenced data set (ESDS), or a relative record data set (RRDS). The following
table l ists the characteristics of each data set structure.

Native VSAM Data Set Structures

VSAM Structure 1 Access method Record Format

KSDS ■ Prime index

■ Alternate indexes

Fixed or variable Spanned or
nonspanned

ESDS ■ Relative byte
address (RBA)

■ Alternate indexes

Fixed or variable Spanned or
nonspanned

RRDS Relative record number Fixed Nonspanned

1 KSDS = key-sequenced data set

 ESDS = entry-sequenced data set

 RRDS = relative record data set

CA IDMS/DB Native VSAM Definitions

976 Database Administration Guide

CA IDMS/DB Native VSAM Definitions

To use native VSAM files in a CA IDMS environment, you define native VSAM structures
in the schema, segment, and DMCL. Schema, segment, and DMCL definitions are
discussed separately as follows.

Schema Definition

The schema establishes the correspondences between the logical characteristics of the
native VSAM file and CA IDMS/DB, as follows:

A File

A CA IDMS file represents a VSAM cluster or path:

■ A KSDS with a prime index or alternate indexes or both

■ An ESDS with or without alternate indexes

■ An RRDS

An area represents a KSDS, ESDS, or RRDS data component. You map one area to each

VSAM file; each area must have a unique page range. The page range is a function of the
VSAM data set structure. For more information about how to determine the page range,
see "AREA statements" in Physical Database DDL Statements.

A Schema Record

A schema record represents a VSAM data record:

■ All VSAM data records can be represented as a record with a location mode of
VSAM

■ A KSDS with a prime index or alternate indexes and an ESDS with an alternate index

can be represented as a CALC record

A Schema Set

A schema set represents the index of a VSAM data set and related records. These sets
are sorted and maintained through the following types of native VSAM data set
structures:

■ A KSDS with a prime or alternate index

■ An ESDS with an alternate index

You define sets with alternate indexes in the schema to allow record occurrences with

duplicate sort keys. These record occurrences are retrieved in the order in which the
records were stored, regardless of the order in which the set is searched. For sorted sets
that do not allow duplicate sort keys, you can use any index to maintain the set.

CA IDMS/DB Native VSAM Definitions

Appendix C: Native VSAM Considerations 977

Native VSAM sets allow you to code application programs that:

■ Access a specific record directly by sort key

■ Access records by generic sort key

■ Process the native VSAM file in sort-key sequence from the start of the fi le or from
a specified starting point.

Relationships Between VSAM and CA IDMS/DB Structures

The schema, AREA, RECORD, SET, and SET statements, and the segment statements

needed to represent native VSAM structures are l isted in the following table.

VSAM Structure CA IDMS/DB

Structure

DDL Statement

KSDS

ESDS

RRDS

PATH

File CREATE FILE segment.file-name

Data component: KSDS,
ESDS, RRDS

Area Schema definition:

 ADD AREA NAME IS area-name

 ...

Segment definition:

 CREATE AREA segment.area-name

 ...

VSAM data record Record ADD RECORD NAME IS record-name

 LOCATION MODE IS VSAM

 VSAM TYPE IS type

 WITHIN AREA area-name.

VSAM data record:

KSDS with prime

or

alternate index

ESDS alternate

index

CALC record ADD RECORD NAME IS record-name

 LOCATION MODE IS VSAM

 CALC

 USING calc-element-name

 DUPLICATES ARE duplicates-option

 VSAM TYPE IS type

 WITHIN AREA area-name.

DML Functions with Native VSAM

978 Database Administration Guide

VSAM Structure CA IDMS/DB
Structure

DDL Statement

KSDS prime or

alternate index

ESDS alternate

index

Set (sorted by prime
or alternate key)

ADD SET NAME IS set-name

 MODE IS VSAM

 INCLUDE MEMBER IS record-name

 MANDATORY AUTOMATIC

 ASCENDING KEY IS sort-key-name.

DMCL Definition

The DMCL module establishes the correspondences at runtime between physical
characteristics of the database and the native VSAM files. You describe native VSAM
files to be accessed by CA IDMS/DB in the DMCL BUFFER statements with the following:

■ PAGE CONTAINS specifies the size of the largest control interval of any native VSAM

file associated with the buffer

■ BUFFER CONTAINS specifies the number of I/O buffers in the buffer pool to be used
to transfer records between memory and auxiliary storage

■ NATIVE VSAM specifies that the buffer pool is for use exclusively with native VSAM
files

DML Functions with Native VSAM

To access information from a native VSAM data set, CA IDMS/DB converts DML
statements issued by the application program into record-level (not control -interval)

VSAM macro variations (for example, ACB, RPL) and passes control to VSAM. No
changes have to be made to the VSAM data set. A local run unit or central version
appears to VSAM as a single application that opens VSAM data clusters, activates VSAM

paths using local -shared resources (LSR) or nonshared resources (NSR), accesses data
records, and closes the clusters and paths.

The following table l ists different VSAM structures and the CA IDMS/DB DML functions
that can be used to access the VSAM structures.

DML Functions for Native VSAM Data Set Access

CA IDMS/DB DML Statement VSAM Structure

STORE last within area ESDS

STORE direct by db-key RRDS

STORE physical sequential KSDS

DML Functions with Native VSAM

Appendix C: Native VSAM Considerations 979

CA IDMS/DB DML Statement VSAM Structure

ERASE KSDS or RRDS

FIND/OBTAIN FIRST/NEXT WITHIN SET KSDS or ESDS with a primary index or
alternate indexes

FIND/OBTAIN LAST/PRIOR WITHIN SET KSDS or ESDS with a primary index or

alternate indexes

FIND/OBTAIN WITHIN SET USING SORT
KEY

KSDS or ESDS

FIND/OBTAIN FIRST/NEXT WITHIN AREA KSDS, ESDS, or RRDS

FIND/OBTAIN LAST/PRIOR WITHIN AREA KSDS, ESDS, or RRDS

FIND/OBTAIN CALC KSDS or ESDS with a primary index or
alternate indexes

FIND/OBTAIN CALC DUPLICATE KSDS or ESDS with a primary index or

alternate indexes

FIND/OBTAIN DB-KEY ESDS or RRDS

MODIFY, changing CALC key or sort key KSDS or ESDS with a primary index or

alternate indexes

MODIFY, without changing CALC key or
sort key

KSDS, ESDS, or RRDS

MODIFY, changing record length KSDS

ROLLBACK following STORE (without
restore and rollforward)

KSDS or RRDS

ROLLBACK following ERASE (without

restore and rollforward)

KSDS or RRDS

ROLLBACK following MODIFY (without
restore and rollforward)

KSDS or RRDS

Appendix D: Batch Compiler Execution JCL 981

Appendix D: Batch Compiler Execution JCL

This section contains the following topics:

Overview (see page 981)
Batch Compilation (see page 981)
z/OS JCL (see page 984)

z/VSE JCL (see page 988)
CMS Commands (see page 1001)

Overview

CA IDMS/DB can access information from native VSAM data sets. A native VSAM data

set is one that is defined to VSAM and contains VSAM records. Although a native VSAM
data set is not structured as a CA IDMS database, it can be accessed as if it were.

Note: Native VSAM files are different from database fi les that have VSAM as an access
method.

This appendix describes:

■ Native VSAM data set structures

■ Schema, segment, and DMCL considerations

■ DML functions that can be used to access native VSAM structures

Batch Compilation

Local Mode Considerations

The DDL compilers can be run under the central version or in local mode. If the central
version has access to the DDLDML or DDLDCLOD area of the dictionary in update usage

mode, an attempt to execute a compiler in local mode without specifying USAGE
RETRIEVAL in a SIGNON statement will terminate with an error code of 0966.

To ensure the integrity of the dictionary, either journal local mode compilations or back

up the dictionary before each local mode compilation. The central version uses
automatic recovery procedures to ensure the integrity of the dictionary.

Batch Compilation

982 Database Administration Guide

Naming the Dictionary and System

In an operating environment with multiple dictionaries, the name of the dictionary to be

accessed (or the DC/UCF system on which it resides) can be specified through SYSIDMS
parameters or on the compiler SIGNON statement or the command facil ity CONNECT
statement. If specified in both places, the SIGNON or CONNECT specification takes

precedence. If specified in the SYSIDMS fi le, the name of the dictionary is specified using
DICTNAME and the DC/UCF system on which it resides is specified using DICTNODE.

Note: For more information about the SYSIDMS parameter fi le, see Chapter 25,
“Dictionaries and Runtime Environments".

Compiling a Non-SQL Defined Schema

To compile a schema in batch mode, execute the program IDMSCHEM. Input and output
are as follows:

Mode Description

Input Schema source statements

Output ■ A source description of the schema stored in the dictionary

■ A Schema Compiler Activity List

A card image fi le containing schema syntax,if the source input contains a
PUNCH statement

Note: To compile an SQL-defined schema, you submit SQL DDL statements through the

CA IDMS Command Facil ity. For sample job streams, see the CA IDMS Common Facilities
Guide.

Batch Compilation

Appendix D: Batch Compiler Execution JCL 983

Compiling a Subschema

To compile a subschema in batch mode, execute the program IDMSUBSC. Input and

output are as follows:

Mode Description

Input Subschema source statements

Output ■ A source description of the subschema stored in thedictionary

■ A Subschema Compiler Activity List

■ A subschema load module stored in the dictionary load area

(DDLDCLOD), if the source input contains a GENERATE statement

A card image fi le containing schema syntax, if the source input contains
a PUNCH statement

Defining Segments, DMCLs, and Database Name Tables

To define a DMCL in batch mode, execute the program IDMSBCF (the CA IDMS
Command Facil ity). Input and output are as follows:

Mode Description

Input Segments, DMCL, and database name table source statements as

described in Physical Database DDL Statements.

Output ■ Segment, DMCL, and database name table sourcedescriptions stored
in the dictionary

■ A DMCL or database name table load module, if the source contains

a GENERATE statement

■ A command facil ity activity l isting

■ A card image fi le containing DDL syntax or DMCL or database name

table object code, if the source input contains a punch statement

z/OS JCL

984 Database Administration Guide

Note: For more information about sample IDMSBCF job streams, see the CA IDMS
Common Facilities Guide.

z/OS JCL

This section provides the z/OS JCL you need to run the schema and subschema
compilers (central version and local mode).

Schema Compiler

IDMSCHEM—Central Version IDMSCHEM (z/OS)

//SCHEMA EXEC PGM=IDMSCHEM,REGION=1024K

//STEPLIB DD DSN=idms.dba.loadlib,DISP=SHR

// DD DSN=idms.CUSTOM.LOADLIB,DISP=SHR

// DD DSN=idms.CAGJLOAD,DISP=SHR

//sysctl DD DSN=idms.sysctl,DISP=SHR

//dcmsg DD DSN=idms.sysmsg.ddldcmsg,DISP=SHR

//SYSLST DD SYSOUT=A

//SYSPCH DD DSN=&.&PCH., DISP=(NEW,PASS,DELETE),

 DCB=(RECFM=FB,BLKSIZE=9040,LRECL=80),

 SPACE=space-specification,

 UNIT=unit

//SYSIDMS DD *

Input SYSIDMS parameters, as required

/*

//SYSIPT DD *

Schema DDL source statements

Note: The SYSPCH DD statement is required only if the DDL specifies PUNCH TO
SYSPCH.

z/OS JCL

Appendix D: Batch Compiler Execution JCL 985

idms.dba.loadlib

Data set name of the load library containing the DMCL and database name table

load modules

idms.CUSTOM.LOADLIB

Data set name of the load library containing the customized CA IDMS executable

modules

idms.CAGJLOAD

Data set name of the load library containing the vanilla CA IDMS executable
modules

sysctl

DDname of the SYSCTL fi le

idms.sysctl

Data set name of the SYSCTL fi le

dcmsg

DDname of the message (DDLDCMSG) area

idms.sysmsg.ddldcmsg

Data set name of the message (DDLDCMSG) area

space-specification

Space specification for the punch fi le

unit

Symbolic device name

IDMSCHEM—Local Lode

To execute the schema compiler in local mode, remove the SYSCTL DD statement and
replace it with:

//dictdb DD DSN=idms.appldict.ddldml,DISP=SHR

//dloddb DD DSN=idms.appldict.ddldclod,DISP=SHR

//sysjrnl DD DSN=idms.tapejrnl,DISP=(NEW,KEEP),

// UNIT=tape

Additional journal file assignments, as required

Note: Include the dloddb DD statement only if the DDL contains the REGENERATE
statement.

dictdb

Ddname of the data dictionary DDLDML area

dloddb

Ddname of the data dictionary load area

z/OS JCL

986 Database Administration Guide

idms.appldict.ddldclod

Data set name of the tape journal fi le

idms.appldict.ddldml

Data set name of the data dictionary DDLDML area

sysjrnl

Ddname of the tape journal fi le; must be appropriate for the DMCL module being
used

tape

Symbolic device name for the tape journal fi le

Subschema Compiler

IDMSUBSC—Central Version IDMSUBSC (z/OS)

//SUBSCHEM EXEC PGM=IDMSUBSC,REGION=1024K

//STEPLIB DD DSN=idms.dba.loadlib,DISP=SHR

// DD DSN=idms.CUSTOM.LOADLIB,DISP=SHR

// DD DSN=idms.CAGJLOAD

//sysctl DD DSN=idms.sysctl,DISP=SHR

//dcmsg DD DSN=idms.sysmsg.ddldcmsg,DISP=SHR

//SYSLST DD SYSOUT=A

//SYSPCH DD DSN=&.&PCH., DISP=(NEW,KEEP,DELETE),

 DCB=(RECFM=FB,BLKSIZE=9040,LRECL=80),

 SPACE=space-specification,

 UNIT=unit

//SYSIDMS DD *

Input SYSIDMS parameters, as required

/*

//SYSIPT DD *

Subschema DDL source statements

Note: The SYSPCH DD statement is required only if the DDL specifies PUNCH TO

SYSPCH.

z/OS JCL

Appendix D: Batch Compiler Execution JCL 987

idms.dba.loadlib

Data set name of the load library containing the DMCL and database name table

load modules

idms.CUSTOM.LOADLIB

Data set name of the load library containing the customized CA IDMS executable

modules

idms.CAGJLOAD

Data set name of the load library containing the vanilla CA IDMS executable
modules

sysctl

DDname of the SYSCTL fi le

idms.sysctl

Data set name of the SYSCTL fi le

dcmsg

DDname of the message (DDLDCMSG) area

idms.sysmsg.ddldcmsg

Data set name of the message (DDLDCMSG) area

space-specification unit

See IDMSCHEM job stream

IDMSUBSC—Local Mode

To execute the subschema compiler in local mode, remove the SYSCTL DD statement

and replace it with:

//dictdb DD DSN=idms.appldict.ddldml,DISP=SHR

//dloddb DD DSN=idms.appldict.ddldclod,DISP=SHR

//sysjrnl DD DSN=idms.tapejrnl,DISP=(NEW,KEEP),

// UNIT=tape

Additional journal file assignments, as required

Note: Include the dloddb DD statement only if the DDL contains the REGENERATE
statement.

dictdb

DDname of the dictionary DDLDML area

idms.appldict.ddldml

Data set name of the dictionary DDLDML area

z/VSE JCL

988 Database Administration Guide

dloddb

DDname of the dictionary load area

idms.appldict.ddldclod

Data set name of the dictionary load area

sysjrnl

DDname of the tape journal fi le; must be appropriate for the DMCL module being
used

idms.tapejrnl

Data set of the tape journal fi le

tape

Symbolic device name

z/VSE JCL

The following z/VSE information is presented in this section:

■ =COPY facil ity for input parameter statements

■ z/VSE JCL to run the schema and subschema compilers (central version and local
mode)

=COPY Facility

Purpose

Under z/VSE, some or all of the input parameter statement to be submitted to a DDL
compiler can be stored as a member in a source statement l ibrary. To copy the library
member into the job stream, you use the =COPY IDMS statement.

The =COPY IDMS statement identifies the library member and is coded in the JCL along
with other input parameter statements (if any) to be submitted to the DDL compiler.
Multiple =COPY statements can be submitted.

=COPY IDMS statements and input parameter statements can be intermixed in the JCL.

The input parameters are submitted to the compiler in the order in which they occur,
whether they are coded directly in the JCL or copied in through the =COPY facil ity.

Syntax
►►─── =COPY IDMS ─┬──────────────────┬─ member-name ──────────────────────────►◄
 ├─ A. ◄ ───────────┤
 └─ sublibrary-id. ─┘

z/VSE JCL

Appendix D: Batch Compiler Execution JCL 989

Parameters

A/sublibrary-id

Identifies the source statement sublibrary that includes the member identified by
member-name. The default is A.

member-name

Identifies the source statement l ibrary member that contains the input parameter
statements to be submitted to the compiler.

Note: If the input parameter statements are stored as a member in a private source

statement l ibrary, the DLBL fi le type for the library must be specified as DA.

Schema Compiler

IDMSCHEM—Central Version IDMSCHEM (z/VSE)

// EXEC PROC=IDMSLBLS

// UPSI b If specified in the IDMSOPTI module

// DLBL idmspch,'temp.ddl',0

// EXTENT sys020,nnnnnn,,,ssss,llll

 ASSGN sys020,DISK,VOL=nnnnnn,SHR

// EXEC IDMSCHEM

Optional SYSIDMS parameters

/*

Schema DDL source statements

/*

Include the DLBL, EXTENT, and ASSGN statements for IDMSPCH only if the DDL specifies

PUNCH TO SYSPCH. See the CA IDMS System Operations Guide for details.

Overriding IDMSOPTI

At installation, you can define a SYSCTL procedure that overrides the IDMSOPTI
specifications for central version operations.

Note: For more information about the SYSCTL procedure, see the CA IDMS Installation
and Maintenance Guide—z/VSE.

z/VSE JCL

990 Database Administration Guide

IDMSLBLS

Name of the procedure provided at installation that contains the fi le definitions for

CA IDMS dictionaries and databases.

Note: For a complete l isting of IDMSLBLS, see E.4.6, “IDMSLBLS Procedure”.

IDMSLBLS references SYSIDMS, the input fi le you can use to specify runtime

parameters, such as DMCL or dictionary name.

Note: For more information about SYSIDMS parameters, see the CA IDMS Common
Facil ities Guide or CA IDMS Navigational DML Programming Guide.

b

Appropriate UPSI switch, 1-8 characters, as specified in the IDMSOPTI module

idmspch

Filename of the punched output (from IDMSPCH)

temp.ddl

File ID of the punched output (from IDMSPCH)

nnnnnn

Serial number of the disk volume

ssss

Starting track (CKD) or block (FBA) of disk extent

llll

Number of the tracks (CKD) or blocks (FBA) of disk extent

sys020

Logical unit assignment of the punched output

IDMSCHEM—Local Mode

To execute the schema compiler in local mode, remove the UPSI specification, and
include the following statements before EXEC IDMSCHEM:

// TLBL sysjrnl,'idms.tapejrnl',,nnnnnn,,f

// ASSGN sys009,TAPE,VOL=nnnnnn

sysjrnl

File name of the tape journal fi le

idms.tapejrnl

File ID of the tape journal fi le

z/VSE JCL

Appendix D: Batch Compiler Execution JCL 991

nnnnnn

Volume serial number

f

File number of the tape journal fi le

sys009

Logical unit assignment for the tape journal fi le

Subschema Compiler

IDMSUBSC—Central Version IDMSUBSC (z/VSE)

// EXEC PROC=IDMSLBLS

// UPSI b If specified in the IDMSOPTI module

// DLBL idmspch,'temp.ddl',0

// EXTENT sys020,nnnnnn,,,ssss,llll

 ASSGN sys020,DISK,VOL=nnnnnn,SHR

// EXEC IDMSUBSC

Optional SYSIDMS parameters

/*

Subschema DDL source statements

/*

Include the DLBL, EXTENT, and ASSGN statements for IDMSPCH only if the DDL specifies

PUNCH TO SYSPCH. To route punched output to a sequential disk fi le or to a tape fi le,
use SYSIDMS fi le parameters to override the default characteristics, if necessary. See the
CA IDMS System Operations Guide for details.

Overriding IDMSOPTI

At installation, you can define a SYSCTL procedure that overrides the IDMSOPTI
specifications for central version operations.

Note: For more information about the SYSCTL procedure, see the CA IDMS Installation
and Maintenance Guide—z/VSE.

z/VSE JCL

992 Database Administration Guide

IDMSLBLS

Name of the procedure provided at installation that contains the fi le definitions for

CA IDMS dictionaries and databases.

Note: For a complete l isting of IDMSLBLS, see IDMSLBLS Procedure.

IDMSLBLS references SYSIDMS, the input fi le you can use to specify runtime

parameters, such as DMCL or dictionary name.

Note: For more information about SYSIDMS parameters, see the CA IDMS Common
Facil ities Guide or CA IDMS Navigational DML Programming Guide.

b

Appropriate UPSI switch, 1-8 characters, as specified in the IDMSOPTI module

idmspch

Filename of the punched output (from IDMSPCH)

temp.ddl

File ID of the punched output (from IDMSPCH)

sys020

Logical unit assignment of the punched output disk extent

nnnnnn

Volume serial number

ssss

Starting track (CKD) or block (FBA) of the disk extent

llll

Number of the tracks (CKD) or blocks (FBA) of the disk extent

sysctl

Filename of the SYSCTL fi le

idms.sysctl

File ID of the SYSCTL fi le

sys008

Logical unit assignment of the SYSCTL fi le

z/VSE JCL

Appendix D: Batch Compiler Execution JCL 993

IDMSUBSC—Local Mode

To execute the subschema compiler in local mode, remove the UPSI specification, and

include the following statements before EXEC IDMSUBSC:

// TLBL sysjrnl,'idms.tapejrnl',,nnnnnn,,f

// ASSGN sys009,TAPE,VOL=nnnnnn

Note: These variables are described under the local mode discussion for the IDMSCHEM
job stream.

z/VSE JCL

994 Database Administration Guide

IDMSLBLS Procedure

IDMSLBLS is a procedure that contains fi le definitions for the dictionaries, sample
databases, disk journal fi les, and SYSIDMS fi le provided during installation.

You can tailor the following IDMSLBLS procedure (provided at installation) to reflect the

fi lenames and definitions in use at your site. Reference IDMSLBLS as shown in the
previous z/VSE JCL job stream.

* -------- LIBDEFS --------

// LIBDEF *,SEARCH=idmslib.sublib

// LIBDEF *,CATALOG=user.sublib

/* ------------------------- LABELS -------------------------

// DLBL idmslib,'idms.library',2099/365

// EXTENT ,nnnnnn,,,ssss,1500

// DLBL dccat,'idms.system.dccat',2099/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,31

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dccatl,'idms.system.dccatlod',2099/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dccatx,'idms.system.dccatx',2099/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,11

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dcdml,'idms.system.ddldml',2099/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,101

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dclod,'idms.system.ddldclod',2099/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,21

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dclog,'idms.system.ddldclog',2099/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,401

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dcrun,'idms.system.ddldcrun',2099/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,68

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dcscr,'idms.system.ddldcscr',2099/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,135

z/VSE JCL

Appendix D: Batch Compiler Execution JCL 995

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dcmsg,'idms.sysmsg.ddldcmsg',2099/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,201

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dclscr,'idms.sysloc.ddlocscr',2099/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dirldb,'idms.sysdirl.ddldml',2099/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,201

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dirllod,'idms.sysdirl.ddldclod',2099/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,2

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL empdemo,'idms.empdemo1',2099/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,11

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL insdemo,'idms.insdemo1',2099/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL orgdemo,'idms.orgdemo1',2099/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL empldem,'idms.sqldemo.empldemo',2099/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,11

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL infodem,'idms.sqldemo.infodemo',2099/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL projdem,'idms.projseg.projdemo',2099/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL indxdem,'idms.sqldemo.indxdemo',2099/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL sysctl,'idms.sysctl',2099/365,SD

// EXTENT SYSnnn,nnnnnn,,,ssss,2

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

z/VSE JCL

996 Database Administration Guide

// DLBL secdd,'idms.sysuser.ddlsec',2099/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,26

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dictdb,'idms.appldict.ddldml',2099/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,51

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dloddb,'idms.appldict.ddldclod',2099/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,51

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL sqldd,'idms.syssql.ddlcat',2099/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,101

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL sqllod,'idms.syssql.ddlcatl',2099/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,51

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL sqlxdd,'idms.syssql.ddlcatx',2099/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,26

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL asfdml,'idms.asfdict.ddldml',2099/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,201

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL asflod,'idms.asfdict.asflod',2099/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,401

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL asfdata,'idms.asfdict.asfdata',2099/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,201

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL ASFDEFN,'idms.asfdict.asfdefn',2099/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,101

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL j1jrnl,'idms.j1jrnl',2099/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,54

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL j2jrnl,'idms.j2jrnl',2099/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,54

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL j3jrnl,'idms.j3jrnl',2099/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,54

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL SYSIDMS,'#SYSIPT',0,SD

/+

/*

z/VSE JCL

Appendix D: Batch Compiler Execution JCL 997

idmslib.sublib

Name of the sublibrary within the library containing CA IDMS modules

user.sublib

Name of the sublibrary within the library containing user modules

idmslib

Name of the fi le containing CA IDMS modules

idms.library

ID associated with the fi le containing CA IDMS modules

SYSnnn

Logical unit of the volume for which the extent is effective

nnnnnn

Volume serial identifier of appropriate disk volume

ssss

Starting track (CKD) or block (FBA) of disk extent

dccat

Filename of the system dictionary catalog (DDLCAT) area

idms.system.dccat

ID of the system dictionary catalog (DDLCAT) area

dccatl

Filename of the system dictionary catalog load (DDLCATLOD) area

idms.system.dccatlod

ID of the system dictionary catalog l oad (DDLCATLOD) area

dccatx

Name of the system dictionary catalog index (DDLCATX) area

idms.system.dccatx

ID of the system dictionary catalog index (DDLCATX) area

dcdml

Name of the system dictionary definition (DDLDML) area

idms.system.ddldml

ID of the system dictionary definition (DDLDML) area

dclod

Name of the system dictionary definition load (DDLDCLOD) area

z/VSE JCL

998 Database Administration Guide

idms.system.ddldclod

ID of the system dictionary definition load (DDLDCLOD) area

dclog

Name of the system log area (DDLDCLOG) area

idms.system.ddldclog

ID of the system log (DDLDCLOG) area

dcrun

Name of the system queue (DDLDCRUN) area

idms.system.ddldcrun

ID of the system queue (DDLDCRUN) area

dcscr

Name of the system scratch (DDLDCSCR) area

idms.system.ddldcscr

ID of the system scratch (DDLDCSCR) area

dcmsg

Name of the system message (DDLDCMSG) area

idms.sysmsg.ddldcmsg

ID of the system message (DDLDCMSG) area

dclscr

Name of the local mode system scratch (DDLOCSCR) area

idms.sysloc.ddlocscr

ID of the local mode system scratch (DDLOCSCR) area

dirldb

Name of the IDMSDIRL definition (DDLDML) area

idms.sysdirl.ddldml

ID of the IDMSDIRL definition (DDLDML) area

dirllod

Name of the IDMSDIRL definition load (DDLDCLOD) area

idms.sysdirl.dirllod

ID of the IDMSDIRL definition load (DDLDCLOD) area

empdemo

Name of the EMPDEMO area

z/VSE JCL

Appendix D: Batch Compiler Execution JCL 999

idms.empdemo1

ID of the EMPDEMO area

insdemo

Name of the INSDEMO area

idms.insdemo1

ID of the INSDEMO area

orgdemo

Name of the ORGDEMO area

idms.orgdemo1

ID of the ORDDEMO area

empldem

Name of the EMPLDEMO area

idms.sqldemo.empldemo

ID of the EMPLDEMO area

infodem

Name of the INFODEMO area

idms.sqldemo.infodemo

ID of the INFODEMO area

projdem

Name of the PROJDEMO area

idms.projseg.projdemo

ID of the PROJDEMO area

indxdem

Name of the INDXDEMO area

idms.sqldemo.indxdemo

ID of the INDXDEMO area

sysctl

Name of the SYSCTL fi le

idms.sysctl

ID of the SYSCTL fi le

z/VSE JCL

1000 Database Administration Guide

secdd

Name of the system user catalog (DDLSEC) area

idms.sysuser.ddlsec

ID of the system user catalog (DDLSEC) area

dictdb

Name of the application dictionary definition area

idms.appldict.ddldml

ID of the application dictionary definition (DDLDML) area

dloddb

Name of the application dictionary definition load area

idms.appldict.ddldclod

ID of the application dictionary definition load (DDLDCLOD) area

sqldd

Name of the SQL catalog (DDLCAT) area

idms.syssql.ddlcat

ID of the SQL catalog (DDLCAT) area

sqllod

Name of the SQL catalog load (DDLCATL) area

idms.syssql.ddlcatl

ID of SQL catalog load (DDLCATL) area

sqlxdd

Name of the SQL catalog index (DDLCATX) area

idms.syssql.ddlcatx

ID of the SQL catalog index (DDLCATX) area

asfdml

Name of the asf dictionary definition (DDLDML) area

idms.asfdict.ddldml

ID of the asf dictionary definition (DDLDML) area

CMS Commands

Appendix D: Batch Compiler Execution JCL 1001

asflod

Name of the asf dictionary definition load (ASFLOD) area

idms.asfdict.asflod

ID of the asf dictionary definition load (ASFLOD) area

asfdata

Name of the asf data (ASFDATA) area

idms.asfdict.asfdat a

ID of the asf data area (ASFDATA) area

ASFDEFN

Name of the asf data definition (ASFDEFN) area

idms.asfdict.asfdefn

ID of the asf data definition area (ASFDEFN) area

j1jrnl

Name of the first disk journal fi le

idms.j1jrnl

ID of the first disk journal fi le

j2jrnl

Name of the second disk journal fi le

idms.j2jrnl

ID of the second disk journal fi le

j3jrnl

Name of the third disk journal fi le

idms.j3jrnl

ID of the third disk journal fi le

SYSIDMS

Name of the SYSIDMS parameter fi le

CMS Commands

This section provides the CMS commands to run the schema and subschema compilers

(under the central version and in local mode).

CMS Commands

1002 Database Administration Guide

Schema Compiler

IDMSCHEM—Central Version IDMSCHEM (CMS)

FILEDEF SYSLST PRINTER

FILEDEF SYSPCH DISK syspch output a (RECFM F LRECL 80

FILEDEF SYSIPT schema ddl a (RECFM F LRECL ppp BLKSIZE nnn

FILEDEF SYSIDMS DISK syidms parms a (RECFM F LRECL ppp BLKSIZE nnn

FILEDEF sysctl DISK sysctl idms a

EXEC IDMSFD

OSRUN IDMSCHEM

Note: Include the SYSPCH statement only if the DDL specifies PUNCH TO SYSPCH.

syspch output a

File name, type, and mode of the output punch fi le

schema ddl a

File name, type, and mode of the fi le that contains the schema DDL statements

ppp

Record length of fi le

nnn

Block size of fi le

sysidms parms a

File name, type, and mode of the fi le that contains the SYSIDMS parameters

sysctl

File name of the SYSCTL fi le

sysctl idms a

File name, type, and mode of the SYSCTL fi le

IDMSFD

Exec which defines all FILEDEFs, TXTLIBs, and LOADLIBs required by the system

CMS Commands

Appendix D: Batch Compiler Execution JCL 1003

IDMSCHEM—Local Mode

To execute the schema compiler in local mode, specify local mode in one of the

following ways:

■ Link IDMSCHEM with an IDMSOPTI program that specifies local execution mode

■ Specify *LOCAL* as the first input parameter in the SYSIPT fi le

■ Modify the OSRUN command:

OSRUN IDMSCHEM PARM='*LOCAL*'

Note: This option is valid only if the OSRUN command is issued from a System
Product interpreter or an EXEC2 fi le.

Creating the SYSIPT File

To create the SYSIPT fi le, enter these CMS commands:

XEDIT sysipt data a (NOPROF

INPUT

 .

 .

 .

Schema source statements

 .

 .

 .

FILE

Editing the SYSIPT File

To edit the SYSIDMS parameter fi le, enter these CMS commands:

XEDIT sysidms parms a (NOPROF

INPUT

 .

 .

 .

SYSIDMS parameters

 .

 .

 .

FILE

CMS Commands

1004 Database Administration Guide

Subschema Compiler

IDMSUBSC—Central Version IDMSUBSC (CMS)

FILEDEF SYSLST PRINTER

FILEDEF SYSPCH DISK syspch output a (RECFM F LRECL 80

FILEDEF SYSIPT subsch ddl a (RECFM F LRECL ppp BLKSIZE nnn

FILEDEF SYSIDMS DISK syidms parms a (RECFM F LRECL ppp BLKSIZE nnn

FILEDEF sysctl DISK sysctl idms a

EXEC IDMSFD

OSRUN IDMSUBSC

Note: Include the SYSPCH statement only if the DDL specifies PUNCH TO SYSPCH.

subsch ddl a

File name, type, and mode of the fi le that contains the subschema DDL statements

syspch output a

File name, type, and mode of the output punch fi le

ppp

Record length of fi le

nnn

Block size of fi le

sysidms parms a

File name, type, and mode of the fi le that contains the SYSIDMS parameters

sysctl

File name of the SYSCTL fi le

sysctl idms a

File name, type, and mode of the SYSCTL fi le

IDMSFD

Exec which defines all FILEDEFs, TXTLIBs, and LOADLIBs required by the system

CMS Commands

Appendix D: Batch Compiler Execution JCL 1005

IDMSUBSC—Local Mode

To execute the subschema compiler in local mode, specify local mode in one of the

following ways:

■ Link IDMSUBSC with an IDMSOPTI program that specifies local execution mode

■ Specify *LOCAL* as the first input parameter in the SYSIPT fi le

■ Modify the OSRUN command:

OSRUN IDMSUBSC PARM='*LOCAL*'

Note: This option is valid only if the OSRUN command is issued from a System
Product interpreter or an EXEC2 fi le.

Note: For more information about creating a SYSIPT fi le or editing the SYSIDMS fi le, see

the information provided with the IDMSCHEM jobstream.
S

Appendix E: System Record Types 1007

Appendix E: System Record Types

System Record Types for Space Management

CA IDMS/DB maintains the following nine system record types for space management:

Type Record ID Description

SR1 1 Participates as owner in the system-owned CALC set;
members are all user record types with a storage

mode of CALC; occurs once for each page in a standard
database area as bytes 5 through 16 in the header

SR2 2 Replaces records relocated by the RESTRUCTURE, and
the migration util ity (RHDCMIG1 and RHDCMIG2), and

SQL processing following the addition of a column to a
table; eight bytes in length

SR3 3 Identifies a user record as having been relocated; the

actual user-designated record identification can be
found in the relocated record's corresponding SR2
record

SR4 4 Identifies fragments of variable-length records; the

actual user-designated record identification can be
found in the line index of the root portion of the
record

SR5 5 Holds the area-level synchronization stamp for
SQL-defined segments and acts as an owner for the
table-level synchronization stamp records (SR9s)

SR6 6 Appears in the subschema tables for excluded owner

or member record definitions in set relationships ;
never occurs in the database

SR7 7 Participates as owner in an index; stores CALC under
the indexed set's name; occurs once for each indexed

set in the database that does not have a user-defined
owner record (for details, see Chapter 20, Two-phase
Commit Processing")

SR8 8 Contains index entries that point to lower level SR8
records or to an indexed set's member database
record occurrences; chained by next, prior, and owner
pointers to the owner record occurrence of an indexed

set (for details, see Chapter 20, "Two-phase Commit
Processing")

CMS Commands

1008 Database Administration Guide

Type Record ID Description

SR9 9 Holds the table identifier and synchronization stamp

for each table in the area

Appendix F: User-Exit Program for Schema and Subschema Compiler 1009

Appendix F: User-Exit Program for Schema
and Subschema Compiler

This section contains the following topics:

Overview (see page 1009)
When a User Exit is Called (see page 1009)

Rules for Writing the User-Exit Program (see page 1010)
Control Blocks and Sample User-Exit Programs (see page 1013)
Sample User-Exit Program for Schema and/or Subschema Compilers (see page 1015)

Overview

This appendix presents the procedures for coding a user-exit program, which is called by

the schema compiler and subschema compiler to:

■ Perform security checks

■ Enforce entity-occurrence naming conventions

■ Maintain an audit trail of dictionary activity

A common user-exit program can be coded to be shared by the schema compiler and
subschema compiler, or a specialized user-exit program can be coded for each or for
only one of the compilers.

The rules and procedures governing the user-exit program are the same for all
compilers that use it.

When a User Exit is Called

The user-exit module is called by the applicable compiler when it encounters any of

these four points:

■ SIGNON/SIGNOFF/COMMIT

After the signon procedure is complete and the compiler's security checks have
been passed, or immediately after signoff or COMMIT processing.

■ Major command

After an ADD, MODIFY, DELETE, DISPLAY or PUNCH request has been issued. The
program is invoked just after the applicable compiler has identified the entity that is

the object of the request and has successfully checked authorization requirements.
Object entities can be any standard schema or subschema entity type.

Rules for Writing the User-Exit Program

1010 Database Administration Guide

■ Card image

After each input statement (card image) is passed to the user-exit control block

after the statement has been:

– Scanned and printed on the applicable Compiler Activity List

– Displayed on the terminal

– Written to the print fi le (online compiler interface only)

The administrator can build an audit trail of accesses and updates to the dictionary.

■ End of converse

When one of the following occurs, you can perform a termination activity, such as a
write-to-log:

– Pressing Enter during an online compiler session

– A batch run of the compiler processes a SIGNOFF statement

– A batch run of the compiler detects an end-of-fi le condition

Rules for Writing the User-Exit Program

This section describes the rules that apply to writing the user-exit program.

■ Language

You can write the user-exit module in any language that supports OS call ing
conventions. However, it is recommended that you write user-exit modules in

Assembler to allow the online compiler to remain reentrant.

Note: User-exit modules cannot be CA ADS dialogs.

■ Versions

You can code and maintain separate versions of user-exit modules for the batch and

online compilers, or you can code modules that can be executed both in batch
mode and online.

■ Macros

The user-exit facil ity supports all CA IDMS/DC macros for exits to be used with the
online compilers. For exits to be used with the batch compilers, the only CA

IDMS/DC macros supported are: #WTL, #ABEND, #GETSTG, #FREESTG, #LOAD, and
#DELETE; under z/VSE, the only valid form of #DELETE is EPADDR=.

■ Run units

You can start a run unit within an exit; however, you should ensure that the run unit
does not deadlock with the applicable compiler run unit. If a user -exit run unit will
access a dictionary area, the run unit should ready the object area in a retrieval
usage mode.

Rules for Writing the User-Exit Program

Appendix F: User-Exit Program for Schema and Subschema Compiler 1011

■ Entry points

The user exit invoked by each compiler has a unique entry point name.

Compiler Name Description User Exit Entry Point

IDMSCHEM Batch schema compiler SCHEXITB

IDMSCHDC Online schema compiler SCHEXITO

IDMSUBSC Batch subschema compiler SUBEXITB

IDMSUBDC Online subschema compiler SUBEXITO

Although each exit has a unique entry point name, you can use the same exit code
for more than one compiler by assigning multiple entry point names to the same set

of code.

■ Enabling a compiler exit

To enable a user exit for the schema or subschema compilers, l ink your exit module
with IDMSUXIT.

Note: For more information on how to enable user exits by l inking them with

IDMSUXIT, refer to the "User Exits" section in the CA IDMS Systems Operations
Guide.

■ Interface

User exits written in COBOL to run under the applicable online compiler require a

user-exit interface, written in Assembler with an entry point appropriate to the
compiler for which it is to be invoked. This interface should issue a #LINK to the
COBOL program (with an entry point other than IDMSCHDC or IDMSUBDC) to

isolate it from IDMSCHDC or IDMSUBDC, which is storage-protected.

■ Register conventions

User-exit modules are called using the following OS register conventions:

R15 Entry point of module

R14 Return address

R13 18 fullword SAVEAREA

R1 Fullword parameter list

Rules for Writing the User-Exit Program

1012 Database Administration Guide

■ Parameters 3 and 4

For all four types of user exits, parameter 1 points to a user-exit control block and

parameter 2 points to a SIGNON element block. The information addressed in
parameters 3 and 4 varies based on the type of user exit, as follows:

– For the SIGNON/SIGNOFF/COMMIT and end-of-conversation exits, parameter

3 points to a SIGNON block.

– For the major command user exit, parameter 3 points to an entity control
block.

– For the card-image user exit, parameter 3 points to a card-image control block.

– For all user exits except the card-image user exit, parameter 4 is reserved for
use by the applicable compiler and should be defined as a PIC X(80) field in the
user-exit module.

– For the card-image user exit, parameter 4 points to the input card image,

which is defined as a PIC X(80) field.

The user-exit control blocks are described separately later in this appendix.

■ Information modification

With the exception of the fields identified within the user-exit control block, a

user-exit module should not modify any of the information passed.

■ Return codes

On return from a user-exit module, you must set a return code and, optionally,
specify a message ID and message text to be issued by the applicable compiler, as
follows:

Code Compiler Action

0 No message is issued; compiler continues with normal processing.

1 An informational message is issued; compiler continues with normal

processing.

4 A warning message is issued; compiler continues with normal processing.

8 An error message is issued; compiler initiates error processing.

Control Blocks and Sample User-Exit Programs

Appendix F: User-Exit Program for Schema and Subschema Compiler 1013

Control Blocks and Sample User-Exit Programs

This section presents the formats of these five control blocks:

■ User-exit control block

■ SIGNON element block

■ SIGNON block

■ Entity control block

■ Card-image control block

User-Exit Control Block

The following table shows how to define the user-exit control block:

Field Usage Size Picture Description

1 Char 8 X(8) Compiler name: IDMSCHEM or IDMSUBSC

2 Char 8 X(8) Compiler start date: mm/dd/yy

3 Char 8 X(8) Compiler start time: hhmmssmm

4 Binary 4 S9(8)
COMP

User field initialized to 0 (for use by
reentrant modules as a pointer to their

work area)

5 Binary 4 S9(8)
COMP

User return code (described next)

6 Char 8 X(8) Message ID returned by user, in the range

DC900000 through DC999999, or any
6-digit number; blank if no message is
returned

7 Char 80 X(80) Message text returned by user

SIGNON Element Block

The following table shows how to define the SIGNON element block:

Field Usage Size Picture Description

1 Binary 1 X Length of user ID for #WTLs (not

addressable by COBOL)

2 Char 32 X(32) SIGNON user ID

Control Blocks and Sample User-Exit Programs

1014 Database Administration Guide

SIGNON Block

The following table shows how to define the SIGNON block.

Field Usage Size Picture Description

1 Char 16 X(16) SIGNON, SIGNOFF, COMMIT or
END-OF-CONVERSE statement

2 Char 8 X(8) SIGNON dictionary name

3 Char 8 X(8) SIGNON node name

4A CHAR 32 X(32) User ID

5 Binary 2 S9(4) DDLDML area usage mode: 36=UPDATE;
38=PROTECTED UPDATE; 37=RETRIEVAL

6 Binary 2 S9(4) DDLDCLOD area usage mode

7 Binary 2 S9(4) DDLDCMSG area usage mode

8 Binary 10 X(10) Reserved

Note: Each bit in flag 0 and flag 1 must be tested separately. More than one bit may be

on at any one time.

Entity Control Block

The following table shows how to define the entity control block.

Field Usage Size Picture Description

1 Char 16 X(16) Major command (ADD, MODIFY, DELETE,
DISPLAY, or PUNCH)

2 Char 32 X(32) Entity type

3 Char 40 X(40) Entity occurrence

4 Binary 2 S9(4) Entity version number or number of records
requested

5 Char 64 X(64) Additional Qualifier

6 Char 32 X(32) PREPARED BY user ID

7 Char 32 X(32) REVISED BY user ID

Sample User-Exit Program for Schema and/or Subschema Compilers

Appendix F: User-Exit Program for Schema and Subschema Compiler 1015

Card-image Control Block

The following table shows how to define the card-image control block:

Field Usage Size Picture Description

1 Char 16 X(16) Compiler 'CARD IMAGE' command

2 Binary 2 S9(8) Input low-card column

3 Binary 2 S9(8) Input high-card column

Sample User-Exit Program for Schema and/or Subschema
Compilers

The following sample user-exit program can be used to enforce naming conventions for

elements in the batch and online versions of the schema and subschema compilers. The
source code for this program can be found in the installation source library under
member name IDDSUXIT.

**

IDDUXIT TITLE 'NAMING CONVENTION CHECKER'

**

*

*

* PROGRAM NAME : IDDUXIT

*

* DATE : 03/01/96

*

*

* DESCRIPTION : THIS IS AN EXAMPLE OF A USER EXIT. THIS PROGRAM

* SHOWS HOW A SHOP COULD CHECK THE ENTITY NAMES FOR

* A SHOP STANDARD. ANY VIOLATIONS OF THE NAMING

* CONVENTION ARE TREATED AS AN ERROR AND THE ACTION

* (ADD, MOD, DEL) IS NOT ALLOWED.

Sample User-Exit Program for Schema and/or Subschema Compilers

1016 Database Administration Guide

IDDUXIT CSECT

 #REGEQU

 ENTRY SCHEXITO

SCHEXITO DS 0H Online Schema compiler entry

 ENTRY SCHEXITB

SCHEXITB DS 0H Batch Schema compiler entry

 ENTRY SUBEXITO

SUBEXITO DS 0H Online Subschema compiler entry

 ENTRY SUBEXITB

SUBEXITB DS 0H Batch Subschema compiler entry

* SET UP ADDRESSABILITY *

 STM R14,R12,12(R13) SAVE CALLERS REGISTERS

 LR R12,R15

 USING IDDUXIT,R12

 L R4,12(R1) GET THE

 L R3,8(R1) CORRECT

 L R2,4(R1) PARAMETER

 L R1,0(R1) ADDRESSES

*

IDDUXITR DS 0H BASE THE CONTROL BLOCKS

*

 USING UXITCB,R1 USER EXIT CONTROL BLOCK

 MVC UXITRCDE,F0 ZERO OUT THE RETURN CODE

 MVC UXITMID(8),BLANKS BLANK OUT THE MESSAGE ID

 MVC UXITMTXT(80),BLANKS BLANK OUT THE MESSAGE

*

Sample User-Exit Program for Schema and/or Subschema Compilers

Appendix F: User-Exit Program for Schema and Subschema Compiler 1017

* INTERROGATE THE MAJOR COMMAND *

*

 SPACE

UXIENTY EQU *

 USING UXITECB,R3 ENTITY CONTROL BLOCK

*

 CLC UXITEVRB,UXICSON IS IT A SIGNON?

 BE USIGNON YES, CHECK THE USER NAME

*

 CLC UXITEVRB,UXICARD IS IT A CARD IMAGE EXIT?

 BE UCARD YES, CHECK THE CARD

*

 CLC UXITEVRB,UXICADD IS IT AN ADD?

 BE UXIECHK YES, CHECK THE ENTITY-NAME

*

 CLC UXITEVRB,UXICMOD IS IT A MODIFY?

 BE UXIECHK YES, CHECK THE ENTITY-NAME

*

 CLC UXITEVRB,UXICDEL IS IT A DELETE?

 BE UXIECHK YES, CHECK THE ENTITY-NAME

* NO

 MVC UXITMID(8),ELSEID MOVE IN 'ELSE' MESSAGE ID

 MVC UXITMTXT(80),ELSEMSG MOVE IN 'ELSE' MESSAGE

 B UXIEBYE

*

Sample User-Exit Program for Schema and/or Subschema Compilers

1018 Database Administration Guide

* CHECK THE CARD IMAGE *

*

 SPACE

UCARD EQU *

*

 MVC UXITMID(8),CARDID FILL IN THE MESSAGE ID

 MVC UXITMTXT(80),CARDMSG FILL IN THE MESSAGE TEXT

 B UXIEBYE BACK TO THE COMPILER

*

* CHECK THE USER NAME FOR ME *

*

 SPACE

USIGNON EQU *

*

 USING UXITSEB,R2 SIGNON ELEMENT BLOCK

 USING UXITSB,R3 SIGNON BLOCK

*

 CLC UXITUSER(3),WHOME IS IT ME

 BE UXIEDC YES GO CHECK FOR DC NAME

* NO, GO TO JAIL, GO DIRECTLY TO

* JAIL, DO NOT PASS GO DO NOT

USNAME EQU * COLLECT $200.

 MVC UXITRCDE,F8 FILL IN THE RETURN CODE

 MVC UXITMID(8),NOSNID FILL IN THE MESSAGE ID

 MVC UXITMTXT(80),NOSNMSG FILL IN THE MESSAGE TEXT

 B UXIEBYE BACK TO THE COMPILER

*

UXIEDC EQU *

 TM UXITFLG1,UXIT1DC ARE WE RUNNING DC

 BZ UXIEBYE NO, SKIP DC ID CHECK

*

 CLC UXITUSER,UXITIUSR IS THE USER THE SAME AS DC

 BE UXIEBYE YES, OK LET IT PASS

* NO, DON'T LET THEM SIGNON

 MVC UXITRCDE,F8 FILL IN THE RETURN CODE

 MVC UXITMID(8),NODCID FILL IN THE MESSAGE ID

 MVC UXITMTXT(80),NODCMSG FILL IN THE MESSAGE TEXT

 B UXIEBYE BACK TO THE COMPILER

*

Sample User-Exit Program for Schema and/or Subschema Compilers

Appendix F: User-Exit Program for Schema and Subschema Compiler 1019

* CHECK THE ENTITY-NAME FOR VALID NAMING CONVENTION *

*

 SPACE

UXIECHK EQU *

 USING UXITECB,R3 ENTITY CONTROL BLOCK

*

 CLC UXITENME(3),NAMECHK DOES THE NAME FOLLOW THE RULES?

 BE UXIEBYE YES, LET THIS ONE PASS.

* NO, RETURN AN ERROR

*

 MVC UXITRCDE,F8 FILL IN THE RETURN CODE

 MVC UXITMID(8),NONOID FILL IN THE MESSAGE ID

 MVC UXITMTXT(80),NONOMSG FILL IN THE MESSAGE TEXT

*

**

* RETURN BACK TO THE COMPILER *

**

*

 SPACE

UXIEBYE EQU *

 LM R14,R12,12(R13) RELOAD CALLER'S REGISTERS

 BR R14 RETURN TO CALLER

 EJECT

Sample User-Exit Program for Schema and/or Subschema Compilers

1020 Database Administration Guide

**

* CONSTANTS AND LITERALS *

**

UXICADD DC CL16'ADD '

UXICMOD DC CL16'MODIFY '

UXICDEL DC CL16'DELETE '

UXICSON DC CL16'SIGNON '

UXICARD DC CL16'CARD IMAGE '

NAMECHK DC CL3'XYZ'

WHOME DC CL3'XYZ'

WKLEN DC F'100'

NONOID DC CL8'DC999001'

NONOMSG DC CL80'NAMING CONVENTION VIOLATED - ACTION NOT ALLOWED'

NOSNID DC CL8'DC999002'

NOSNMSG DC CL80'SIGNON ERROR - USER NOT ALLOWED ACCESS'

NODCID DC CL8'DC999003'

NODCMSG DC CL80'SIGNON ERROR - USER NAME NOT DC USER NAME'

CARDID DC CL8'DC999004'

CARDMSG DC CL80'MESSAGE PRODUCED BY CARD IMAGE EXIT '

ELSEID DC CL8'DC999005'

ELSEMSG DC CL80'MESSAGE PRODUCED BY CARD IMAGE EXIT '

BLANKS DC CL80' '

F0 DC F'0' NORMAL RETURN CODE - NO ERRORS

F2 DC F'1' INFORMATION MESSAGE

F4 DC F'4' WARNING MESSAGE

F8 DC F'8' ERROR MESSAGE

*

**

* USER EXIT CONTROL BLOCK *

**

UXITCB DSECT

UXITCPLR DS CL8 COMPILER NAME 'IDMSCHEM' OR 'IDMSUBSC'

UXITDATE DS CL8 COMPILER START DATE MM/DD/YY

UXITTIME DS CL8 COMPILER START TIME HHMMSSMM

UXITWORK DS F USER FULLWORD INITIALIZED TO 0

UXITRCDE DS 0F RETURN CODE RETURNED BY USER

 DS XL3 UNUSED

UXITRC DS X

UXITRC00 EQU X'00' NORMAL RETURN CODE - NO ERRORS

UXITRC01 EQU X'01' INFORMATION MESSAGE

UXITRC04 EQU X'04' WARNING MESSAGE

UXITRC08 EQU X'08' ERROR MESSAGE

UXITMID DS CL8 USER MESSAGE ID RETURNED BY USER

UXITMTXT DS CL80 USER MESSAGE TEXT RETURNED BY USER

UXITCBLN EQU *-UXITCB USER EXIT CONTROL BLOCK LENGTH

*

Sample User-Exit Program for Schema and/or Subschema Compilers

Appendix F: User-Exit Program for Schema and Subschema Compiler 1021

**

* USER EXIT SIGNON ELEMENT BLOCK *

**

UXITSEB DSECT

UXITIDLN DS X LENGTH OF USERID FOR #WTL'S

UXITUSER DS CL32 USER ID

 DS 0A ROUND UP TO FULLWORD

UXITSNLN EQU *-UXITSEB LENGTH OF SIGNON ELEMENT

*

**

* USER EXIT SIGNON BLOCK *

**

UXITSB DSECT

UXITTYPE DS CL16 VERB

UXITDICT DS CL8 DICTIONARY NAME

UXITNODE DS CL8 NODE NAME

UXITIUSR DS CL32 USER ID

UXITIPSW DS CL8 USER'S PASSWORD

UXITFLG0 DS CL1 ENVIRONMENT FLAG

UXIT0DOS EQU X'80' COMPILER RUNNING UNDER z/VSE

UXIT0MEN EQU X'40' RUNNING UNDER 'MENU' MODE

UXITFLG1 DS CL1 ENVIRONMENT FLAG

UXIT1LCL EQU X'80' RUNNING IN INTERNAL SUBROUTINE MODE

UXIT1DC EQU X'40' COMPILER RUNNING UNDER DC

 DS CL2 RESERVED FOR FUTURE FLAGS

 DS CL20 RESERVED

UXITDMLM DS H DDLDML USAGE MODE

* 36=UPDATE

* 37=PROTECTED UPDATE

* 38=RETRIEVAL

UXITLODM DS H DDLDCLOD USAGE MODE

UXITMSGM DS H DDLDCMSG USAGE MODE

 DS CL10 RESERVED

UXITSLEN EQU *-UXITSB LENGTH OF USER EXIT SIGNON BLOCK

*

Sample User-Exit Program for Schema and/or Subschema Compilers

1022 Database Administration Guide

**

* USER EXIT ENTITY CONTROL BLOCK *

**

UXITECB DSECT

UXITEVRB DS CL16 VERB

UXITENTY DS CL32 ENTITY-TYPE

UXITENME DS CL40 ENTITY NAME

UXITEVER DS H VERSION

UXITEADQ DS CL64 ADDITIONAL QUALIFIER

UXITPREP DS CL32 PREPARED BY USER NAME

UXITREV DS CL32 REVISED BY USER NAME

UXITELEN EQU *-UXITECB LENGTH OF USER EXIT ENTITY CONTROL BLK

*

**

* END OF EXIT *

**

 END

Appendix G: Quick Reference Information 1023

Appendix G: Quick Reference Information

This section contains quick reference information which can be useful when performing
administration tasks in the database.

This section contains the following topics:

Editing Commands (see page 1023)

Record-Set Representation (see page 1025)
Lock Management (see page 1026)
Runtime Error-Status Codes (see page 1027)

Editing Commands

Edit Command Command Format

COPY Copy a single l ine:
 %C

Copy this l ine and the next n-1 l ines:
 %Cn

Copy a block of l ines:

 %CB (on the first l ine of the block)
 %CE (on the last l ine of the block)

You follow a COPY command with an AFTER or BEFORE
command.

DELETE Delete a single l ine:
 %D

Delete this l ine and the next n-1 l ines:

 %Dn

Delete a block of l ines:
 %DB (on the first l ine of the block)
 %DE (on the last l ine of the block)

MOVE Move a single l ine:
 %M

Move this l ine and the next n-1 l ines:
 %Mn

Move a block of l ines:
 %MB (on the first l ine of the block)
 %ME (on the last l ine of the block)

You follow a MOVE command with an AFTER or
BEFORE command.

Editing Commands

1024 Database Administration Guide

Edit Command Command Format

REPEAT Repeat a single l ine:

 %R

Repeat this l ine and the next n-1 l ines:
 %Rn

Repeat a block of l ines:
 %RB (on the first l ine of the block)
 %RE (on the last l ine of the block)

AFTER Place a COPY or MOVE block after the line on which

this command is placed:
 %A

BEFORE Place a COPY or MOVE block before the line on which
this command is placed:

 %B

TOP Reposition the work fi le so that the line on which the
command appears becomes the top line on the screen:

 %T

Record-Set Representation

Appendix G: Quick Reference Information 1025

Record-Set Representation

Lock Management

1026 Database Administration Guide

Lock Management

Ready Mode Compatibility

Lock Resource ID Format

Resource Type Bytes 1-4 Bytes 5-8

Dbkey X'nnnn00xx Dbkey

Page X'nnnn10xx' Page number

Space on a page X'nnnn20xx' Page number

Area X'nnnn80xx Area low page number

Area (transient retrieval) X'nnnnC0xx' Area low page number

Runtime Error-Status Codes

Appendix G: Quick Reference Information 1027

Runtime Error-Status Codes

Major DB Status Codes

Major

Code

Database Function

00 Any DML statement

01 FINISH

02 ERASE

03 FIND/OBTAIN

05 GET

06 KEEP

07 CONNECT

08 MODIFY

09 READY

11 DISCONNECT

12 STORE

14 BIND

15 ACCEPT

16 IF

17 RETURN

18 COMMIT

19 ROLLBACK

20 LRF requests

Minor DB Status Codes

Minor
Code

Database Function Status

00 Combined with a major code of 00, this code indicates successful completion

of the DML operation. Combined with a nonzero major code, this code
indicates that the DML operation was not completed successfully due to
central version causes, such as time-outs and program checks.

Runtime Error-Status Codes

1028 Database Administration Guide

Minor
Code

Database Function Status

01 An area has not been readied. When this code is combined with a major
code of 16, an IF operation has resulted in a valid false condition.

02 Either the db-key used with a FIND/OBTAIN DB-KEY statement or the direct

db-key suggested for a STORE is not within the page range for the specified
record name.

03 Invalid currency for the named record, set, or area. This can only occur when
a run unit is sharing a transaction with other database sessions. The 03

minor status is returned if the run unit tries to retrieve or update a record
using a currency that has been invalidated because of changes made by
another database session that is sharing the same transaction.

04 The occurrence count of a variably occurring element has been specified as

either less than zero or greater than the maximum number of occurrences
defined in the control element.

05 The specified DML function would have violated a duplicates -not-allowed

option for a CALC, sorted, or index set.

06 No currency has been established for the named record, set, or area.

07 The end of a set, area, or index has been reached or the set i s empty.

08 The specified record, set, procedure, or LR verb is not in the subschema or

the specified record is not a member of the set.

09 The area has been readied with an incorrect usage mode.

10 An existing access restriction or subschema usage prohibits execution of the

specified DML function. For LRF users, the subschema in use allows access to
database records only. Combined with a major code of 00, this code means
the program has attempted to access a database record, but the subschema
in use allows access to logical records only.

11 The record cannot be stored in the specified area due to insufficient space.

12 There is no db-key for the record to be stored. This is a system internal error
and should be reported.

13 A current record of run unit either has not been established or has been
nullified by a previous ERASE statement.

14 The CONNECT statement cannot be executed because the requested record
has been defined as a mandatory automatic member of the set.

15 The DISCONNECT statement cannot be executed because the requested
record has been defined as a mandatory member of the set.

16 The record cannot be connected to a set of which it is already a member.

17 The transaction manager encountered an error.

Runtime Error-Status Codes

Appendix G: Quick Reference Information 1029

Minor
Code

Database Function Status

18 The record has not been bound.

19 The run unit's transaction was forced to back out.

20 The current record is not the same type as the specified record name.

21 Not all areas being used have been readied in the correct usage mode.

22 The record name specified is not currently a member of the set name
specified.

23 The area name specified is either not in the subschema or not an extent

area; or the record name specified has not been defined within the area
name specified.

25 No currency has been established for the named set.

26 No duplicates exist for the named record or the record occurrences cannot

be found.

28 The run unit has attempted to ready an area that has been readied
previously.

29 The run unit has attempted to place a lock on a record that is locked already
by another run unit. A deadlock results. Unless the run unit issued either a
FIND/OBTAIN KEEP EXCLUSIVE or a KEEP EXCLUSIVE, the run unit is aborted.

30 An attempt has been made to erase the owner record of a nonempty set.

31 The retrieval statement format conflicts with the record's location mode.

32 An attempt to retrieve a CALC/DUPLICATE record was unsuccessful; the
value of the CALC field in variable storage is not equal to the value of the

CALC control element in the current record of run unit.

33 At least one set in which the record participates has not been included in the
subschema.

40 The WHERE clause in an OBTAIN NEXT logical-record request is inconsistent

with a previous OBTAIN FIRST or OBTAIN NEXT command for the same
record. Previously specified criteria, such as reference to a key field, have
been changed. A path status of LR-ERROR is returned to the LRC block.

41 The subschema contains no path that matches the WHERE clause in a
logical-record request. A path status of LR-ERROR is returned to the LRC
block.

42 An ON clause included in the path by the DBA specified return of the

LR-ERROR path status to the LRC block; an error has occurred while
processing the LRF request.

Runtime Error-Status Codes

1030 Database Administration Guide

Minor
Code

Database Function Status

43 A program check has been recognized during evaluation of a WHERE clause;
the program check indicates that either a WHERE clause has specified
comparison of a packed decimal field to an unpacked nonnumeric data field,

or data in variable storage or a database record does not conform to its
description. A path status of LR-ERROR is returned to the LRC block unless
the DBA has included an ON clause to override this action in the path.

44 The WHERE clause in a logical-record request does not supply a key element

(sort key, CALC key, or db-key) expected by the path. A path status of
LR-ERROR is returned to the LRC block.

45 During evaluation of a WHERE clause, a program check has been recognized
because a subscript value is neither greater than 0 nor less than its

maximum allowed value plus 1. A path status of LR-ERROR is returned to the
LRC block unless the DBA has included an ON clause to override this action
in the path.

46 A program check has revealed an arithmetic exception (for example:
overflow, underflow, significance, divide) during evaluation of a WHERE
clause. A path status of LR-ERROR is returned to the LRC block unless the
DBA has included an ON clause to override this action in the path.

53 The subschema definition of an indexed set does not match the indexed
set's physical structure in the database.

54 Either the prefix length of an SR51 record is less than zero or the data length

is less than or equal to zero.

55 An invalid length has been defined for a variable-length record.

56 An insufficient amount of memory to accommodate the CA IDMS
compression/decompression routines is available.

57 A retrieval-only run unit has detected an inconsistency in an index that
should cause an 1143 abend, but optional APAR bit 216 has been turned on.

58 An attempt was made to rollback updates in a local mode program. Updates

made to an area during a local mode program's execution cannot be
automatically rolled out. The area must be manually recovered.

60 A record occurrence type is inconsis tent with the set named in the
ERROR-SET field in the IDMS communications block. This code usually

indicates a broken chain.

61 No record can be found for an internal db-key. This code usually indicates a
broken chain.

62 A system-generated db-key points to a record occurrence, but no record

with that db-key can be found. This code usually indicates a broken chain.

Runtime Error-Status Codes

Appendix G: Quick Reference Information 1031

Minor
Code

Database Function Status

63 The DBMS cannot interpret the DML function to be performed. When
combined with a major code of 00, this code means invalid function
parameters have been passed on the call to the DBMS. For LRF users, a

WHERE clause includes a keyword that is longer than the 32 characters
allowed.

64 The record cannot be found; the CALC control element has not been defined
properly in the subschema.

65 The database page read was not the page requested.

66 The area specified is not available in the requested usage mode.

67 The subschema invoked does not match the subschema object tables.

68 The CICS interface was not started.

69 A BIND RUN-UNIT may not have been issued; the CV may be inactive or not
accepting new run units; or the connection with the CV may have been
broken due to time out or other factors. When combined with a major code

of 00, this code means the program has been disconnected from the DBMS.

70 The database will not ready properly; a JCL error is the probable cause.

71 The page range or page group for the area being readied or the page
requested cannot be found in the DMCL.

72 There is insufficient memory to dynamically load a subschema or database
procedure.

73 A central version run unit will exceed the MAXERUS value specified at

system generation.

74 The dynamic load of a module has failed. If operating under the central
version, a subschema or database procedure module either was not found in
the data dictionary or the load (core image) l ibrary or, if loaded, will exceed

the number of subschema and database procedures provided for at system
generation.

75 A read error has occurred.

76 A write error has occurred.

77 The run unit has not been bound or has been bound twice. When combined
with a major code of 00, this code means either the program is no longer
signed on to the subschema or the variable subschema tables have been

overwritten.

78 An area wait deadlock has occurred.

79 The run unit has requested more db-key locks than are available to the
system.

Runtime Error-Status Codes

1032 Database Administration Guide

Minor
Code

Database Function Status

80 The target node is either not active or has been disabled.

81 The converted subschema requires specified database name to be in the
DBNAME table.

82 The subschema must be named in the DBNAME table.

83 An error has occurred in accessing native VSAM data sets.

87 The owner and member records for a set to be updated are not in the same
page group or do not have the same db-key radix.

91 The subschema requires a DBNAME to do the bind run unit.

92 No subschema areas map to DMCL.

93 A subschema area symbolic was not found in DMCL.

94 The specified dbname is neither a dbname defined in the DBNAME table,

nor a SEGMENT defined in the DMCL.

95 The specified subschema failed DBTABLE mapping using the specified
dbname.

Note: For a complete description of DB runtime status codes, see the chapter "CA IDMS
Status Codes" in the Messages and Codes Guide.

Major DC Status Codes

Major
Code

Function

00 Any DML statement

30 TRANSFER CONTROL

31 WAIT/POST

32 GET STORAGE/FREE STORAGE

33 SET ABEND EXIT/ABEND CODE

34 LOAD/DELETE TABLE

35 GET TIME/SET TIMER

36 WRITE LOG

37 ATTACH/CHANGE PRIORITY

38 BIND/ACCEPT/END TRANSACTION STATISTICS

Runtime Error-Status Codes

Appendix G: Quick Reference Information 1033

Major
Code

Function

39 ENQUEUE/DEQUEUE

40 SNAP

43 PUT/GET/DELETE SCRATCH

44 PUT/GET/DELETE QUEUE

45 BASIC MODE TERMINAL MANAGEMENT

46 MAPPING MODE TERMINAL MANAGEMENT

47 LINE MODE TERMINAL MANAGEMENT

48 ACCEPT/WRITE PRINTER

49 SEND MESSAGE

50 COMMIT TASK/ROLLBACK TASK/FINISH TASK/WRITE JOURNAL

51 KEEP LONGTERM

58 SVC SEND/RECEIVE

Minor DC Status Codes

Minor
Code

Function Status

00 Combined with a major code of 00, this code indicates either successful

completion of the DML function or that all tested resources have been
enqueued.

01 The requested operation cannot be performed immediately; waiting will

cause a deadlock.

02 Either there is insufficient storage in the storage pool or the storage
required for control blocks is unavailable.

03 The scratch area ID cannot be found.

04 Either the queue ID (header) cannot be found or a paging session was in
progress when a second STARTPAGE command was received (that is, an
implied ENDPAGE was processed before this STARTPAGE was executed

successfully).

05 The specified scratch record ID or queue record cannot be found.

06 No resource control element (RCE) exists for the queue record; currency has
not been established.

Runtime Error-Status Codes

1034 Database Administration Guide

Minor
Code

Function Status

07 Either an I/O error has occurred or the queue upper l imit has been reached.

08 The requested resource is not available.

09 The requested resource is available.

10 New storage has been assigned.

11 A maximum task condition exists.

12 The named task code is invalid.

13 The named resource cannot be found.

14 The requested module is defined as nonconcurrent and is currently in use.

15 The named module has been overlaid and cannot be reloaded immediately.

16 The specified interval control element (ICE) address cannot be found.

17 The record has been replaced.

18 No printer terminals have been defined for the current DC system.

19 The return area is too small; data has been truncated.

20 An I/O, program-not-found, or potential -deadlock status condition exists.

21 The message destination is undefined, the long term ID cannot be found, or
a KEEP LONGTERM request was issued by a nonterminal task.

22 A record already exists for the scratch area specified.

23 No storage or resource control element (RCE) could be allocated for the

reply area.

24 The maximum number of outstanding replies has been exceeded.

25 An attention interrupt has been received.

26 There is a logical error in the output data stream.

27 A permanent I/O error has occurred.

28 The terminal dial -up line is disconnected.

29 An invalid parameter has been passed in the list set up by the DML

processor.

30 The named function has not yet been implemented.

31 An invalid parameter has been passed; the TRB, LRB, or MRB contains an

invalid field; or the request is invalid because of a possible logic error in the
application program. In a DC-BATCH environment, a possible cause is that
the record length specified by the command exceeds the maximum length
based on the packet size.

Runtime Error-Status Codes

Appendix G: Quick Reference Information 1035

Minor
Code

Function Status

32 The derived length of the specified variable storage is negative or zero.

33 Either the named table or the named map cannot be found in the data
dictionary load area.

34 The named variable-storage area must be an 01-level entry in the LINKAGE
SECTION.

35 A GET STORAGE request is invalid because the LINKAGE SECTION variable
has already been allocated.

36 The program either was not defined during system generation or is marked
out-of-service.

37 A GET STORAGE operand is invalid because the specified va riable storage
area is in the WORKING-STORAGE SECTION instead of the LINKAGE SECTION.

38 Either no GET STORAGE operand was specified or the specified LINKAGE
SECTION variable has not been allocated.

39 The terminal device being used is out of service.

40 NOIO has been specified but the datastream cannot be found.

41 An IF operation resulted in a valid true condition.

42 The named map does not support the terminal device in use.

43 A line I/O session has been cancelled by the terminal operator.

44 The referenced field does not participate in the specified map; a possible
cause is an invalid subscript.

45 An invalid terminal type is associated with the issuing task.

46 A terminal I/O error has occurred.

47 The named area has not been readied.

48 The run unit has not been bound.

49 NOWAIT has been specified but WAIT is required.

50 Statistics are not being kept.

51 A lock manager error occurred during the processing of a KEEP LONGTERM
request

52 The specified table is missing or invalid.

53 An error occurred from a user-written edit routine.

54 Either there is invalid internal data or a data conversion error has occurred.

55 The user-written edit routine cannot be found.

Runtime Error-Status Codes

1036 Database Administration Guide

Minor
Code

Function Status

56 No DFLDS have been defined for the map.

57 The ID cannot be found, is not a long-term permanent ID, or is being used by
another run unit.

58 Either the LRID cannot be found, the maximum number of concurrent task
threads was exceeded, or an attempt was made to rollback database
changes in local mode.

59 An error occurred in transferring the KEEP LONGTERM request to IDMSKEEP

60 The requested KEEP LONGTERM lock id was already in use with a different
page group

63 Invalid function parameters have been passed on the call to the DBMS.

64 No detail exists currently for update; no action has been taken.

Alternatively, the requested node for a header or detail is either not present
or not updated.

68 There are no more updated details to MAP IN or the amount of storage

defined for pageable maps at sysgen is insufficient. In the latter case,
subsequent MAP OUT DETAIL statements are i gnored.

72 No detail occurrence, footer, or header fields exist to be mapped out by a
MAP OUT RESUME command, or the scratch record that contains the

requested detail could not be accessed. The latter case is a mapping internal
error and should be reported.

76 The first screen page has been transmitted to the terminal.

77 Either the program is no longer signed on to the subschema or the variable
subschema tables have been overwritten.

80 The target node is either not active or has been disabled.

97 An error was encountered processing a syncpoint request; check the log for

details.

98 An unsupported COBOL compiler option (for example, DEBUG) has been
specified for an online program or a program running in a batch region has

issued a DML verb that is only valid when running online under CA
IDMS/DC/UCF.

99 An unexpected internal return code has been received; the terminal device
is out of service.

Note: For a complete description of DC runtime status codes, see the chapter "CA IDMS
Status Codes" in the Messages and Codes Guide.

Runtime Error-Status Codes

Appendix G: Quick Reference Information 1037

ERROR-STATUS Condition Names

Code Condition name Explanation

0000 DB-STATUS-OK No error

0307 DB-END-OF-SET End of set, area, or SPF index

0326 DB-REC-NOT-FOUND No record found

0001 to

9999

ANY-ERROR-STATUS Any nonzero status

0000 to

9999

ANY-STATUS Any status

3101 3201

3401 3901

DC-DEADLOCK Waiting will cause a deadlock

3202 3402 DC-NO-STORAGE Insufficient space available

4303 DC-AREA-ID-UNK ID cannot be found

4404 DC-QUEUE-ID-UNK Queue header cannot be found

4305 4405 DC-REC-NOT-FOUND Record cannot be found

3908 DC-RESOURCE-NOT-AVAI
L

Resource not available

3909 DC-RESOURCE-AVAIL Resource is available

3210 DC-NEW-STORAGE New space allocated

3711 DC-MAX-TASKS Maximum attached tasks

4317 DC-REC-REPLACED Record has been replaced

4319 4419

4519 4719

DC-TRUNCATED-DATA Return area too small; data has
been truncated

4525 4625 DC-ATTN-INT Attention interrupt received

4743 DC-OPER-CANCEL Session cancelled

Index 1039

Index

A

access modules • 717, 750
migrating • 750

statistics, monitoring • 717
access, restricting for DML programs • 465, 471, 478

area • 465

record • 471
set • 478

ADD operation • 305, 325, 326, 327, 355, 383, 458,
466, 474, 479

defaults • 325
effect on areas • 466
effect on non-SQL schema • 355
effect on records • 383, 474

effect on sets • 479
effect on subschema • 458
interpreted as MODIFY • 305, 355, 458

ALL clause • 343, 350, 452, 491
compiler operations for a user • 343
compiler operations for public access • 350, 452
in path-group ERASE • 491

ALLOWED • 350, 452, 465, 471, 478
for DML functions • 465, 471, 478
in PUBLIC ACCESS clause • 350, 452

application dictionary • 38, 723, 725, 735
components • 725
defining • 735
definition • 38

description • 723
archive journal fi le • 131, 134, 135, 580, 581

defining • 131, 135

dropping • 134
multiple • 580

ARCHIVE JOURNAL util ity • 582
CV tracking • 582

area • 724
dictionary • 724

area locks • 932, 942, 943
for SQL transactions • 943

status • 932
when acquired • 942

area ready modes • 930, 934, 937

default • 934
types • 930, 937

AREA statement (non-SQL schema) • 243
copying • 243
definition procedure • 243

AREA statement (subschema) • 256, 464

ADD/MODIFY/DELETE syntax • 464
definition procedure • 256

areas • 59, 60, 878, 880, 885

space management • 878, 880
space management page • 880
space management page (SMP) • 885

areas (subschema) • 465, 466

access restrictions • 465
ready mode • 465
readying • 466

areas, non-SQL schema • 359, 363, 365, 383, 839,
840

adding/deleting • 839
calls needed for compression • 363, 383

changing characteristics • 840
name • 359
qualification • 359
ready mode, for database procedures • 359

areas , physical • 47, 52, 60, 135, 146, 154, 156, 187,
786, 788, 789, 937, 939

adding pages • 154

AREA statement • 135, 156
contiguity of pages • 146
definition • 47, 52
dropping • 154

fi le blocks • 146
increasing size • 146, 786, 788
locks • 937, 939

mapping to fi les • 154
offsets • 146
override specification • 187
page range, extending • 788, 789

page ranges • 146
page size, increasing • 788
physical device blocking • 146

restrictions, native VSAM • 146
synchronization stamp • 60, 146

areas, subschema • 868
adding/modifying/deleting • 868

AS SYNTAX/COMMENTS clause • 305
setting the session default for • 305

1040 Database Administration Guide

ASCENDING KEY clause • 396, 426
COBOL elements • 396

sorted sets • 426
Assembler Language • 383, 405

element names • 405

record names • 383
asterisk • 276

significance in non-SQL DDL statements • 276
asterisk with plus sign • 276, 305

impact on ECHO • 305
impact on LIST • 305
in output of DISPLAY statements • 305
significance in non-SQL DDL statements • 276

authority • 331, 343, 355, 357, 458
to access entity descriptions • 331
to access schema descriptions • 343, 355

to access subschema descriptions • 458
AUTO • 368, 426

for assigning pointer positions • 426
for assigning record IDs • 368

automatic • 350, 355, 363, 368, 383, 396, 426, 438,
458, 474, 479, 491, 513

assignment of record IDs • 350, 368

assignment of set pointers • 426
change of hyphen to underscore for PL/I • 383
changes in PUBLIC ACCESS • 458
deletion of load module • 355

deletion of set • 383, 438, 474, 479
deletion of subschema area • 363
generation of ON clauses • 491

inclusion of correct synonym • 368, 396

B

backup • 607, 608, 609, 614

definition • 607
following normal system shutdown • 609
for local mode jobs • 614
procedures • 608

batch compilation • 981
non-SQL schema • 981
subschema • 981

boolean expression • 333, 334, 337
order of evaluation • 337
syntax • 333

buffers • 48, 73, 157, 161, 162, 559, 560, 561, 563,

564, 565, 566, 675, 686, 707, 978
acquisition • 161
changing characteristics of • 565, 566

database • 73
default • 162

definition • 73
dropping • 161, 162
for database load • 675, 686

for native VSAM files • 157
in DMCL • 48
in hyperspace • 561
incrementing through JCL • 561

management • 559
native VSAM file considerations • 978
nonshared resource buffer pools • 157
number of • 560

page count, central version • 161
page size • 563
sizing • 561

statistics, monitoring • 707
storage acquisition method • 564
tuning • 566

C

CA IDMS • 33, 34, 35, 38, 39, 40, 41, 44
application environments • 41

central version operations • 34
components • 33
database definition • 41
database design • 41

dictionaries • 38
installation • 40
loading the database • 41

local mode operations • 35
logical database definition • 39
physical database definition • 39
runtime components • 40

security • 39
CA IDMS/DB • 37

components • 37
CALC • 368, 879, 887, 890

control element • 368
element name • 368
location mode • 368

set • 879
storage mode • 887, 890

CALC keys • 230, 823, 824, 843, 845
changing • 843

changing the DUPLICATES option • 845
creating for a table • 823
defining • 230

Index 1041

dropping from a table • 824
unique • 230

CALL clause • 359, 368, 383
in area specification • 359
in record specification • 368

order of execution • 383
CALL statements • 383, 537

generated by PROCEDURE NAME • 383
specifying • 537

calls to database procedures • 523
location of • 523

card-image • 1009, 1015
control block • 1015

user exit • 1009
CASCADE option • 803, 806

for tables • 806

for views • 803
catalog • 724, 730, 734

areas • 724
defining • 734

schemas • 730
central version • 48, 177, 536, 561, 572, 582, 618,

741, 781, 790

binding programs • 536
buffers • 561
change tracking • 741
journaling • 48, 572

recovery, automatic • 618
runtime components • 741
tracking, disk journals • 177, 582, 781, 790

warmstart • 618
central version operations • 932, 938, 939

area lock status • 932
handling of physical area lock • 938

lock management • 939
chained reads • 570

and the read driver • 570
chained sets • 857, 903, 905, 906, 908, 909

connecting records to • 905, 906
database notation • 903
disconnecting records from • 906, 908

pointers • 903
reordering • 857
retrieving chained records • 908, 909

character • 305

decimal point • 305
quote • 305

CLEAR • 482, 491

in path-group ON • 491

logical-record variable-storage • 482
CLUSTERED storage mode • 890, 891, 892, 894

index • 892, 894
introduction to • 890, 891
l inked relationship • 891, 892

CMS commands • 1002, 1004
non-SQL schema compiler • 1002
subschema compiler • 1004

COBOL • 383, 396, 405

condition names • 396, 405
element names • 405
record names • 383

coding considerations • 274

for non-SQL schema and subschema compilers •
274

columns • 807

adding to an existing table • 807
comma • 275, 305, 334, 405

as decimal point • 305, 334, 405
in non-SQL DDL statements • 275

comment keys • 458
assigning text • 458

comments • 305

displaying options as • 305
COMMENTS clause • 305, 350, 368, 396, 452, 482

for record elements • 396
in logical-record display • 482

in non-SQL schema display • 350
in non-SQL schemas • 452
in record display • 368

in subschema display • 452
logical records • 482
setting DISPLAY/PUNCH default • 305
setting sequence numbers for • 305

communication • 536
between programs and procedures • 536

compiler-directive statements • 116, 131, 285, 289,
290, 298, 299, 301, 319, 320, 325

DISPLAY/PUNCH ALL • 116, 131, 290, 298
DISPLAY/PUNCH IDD • 298, 299
INCLUDE • 299, 301

overview • 289
SET OPTIONS • 301, 319
SIGNOFF • 319, 320
SIGNON • 320, 325

types of • 285
compression • 363, 383

calls needed for area • 363, 383

condition name • 396, 405

1042 Database Administration Guide

assigning a value to a • 396
defined • 405

CONNECT • 368, 471, 478, 491
DML restriction • 471, 478
in path group • 491

specifying database procedures for • 368
control element • 368, 396, 426

CALC • 368
sort • 426

variable-length records • 396
VSAM CALC • 368

COPY ELEMENTS substatement • 422, 423
mixing with element substatement • 422

copying • 359, 426
areas • 359
sets • 426

currency • 113, 269, 270, 347, 450
establishing, for non-SQL schemas and

subschemas • 269, 270
non-SQL schema • 347

physical database DDL entities • 113
subschema • 450

CV tracking • 177, 582, 651, 781, 790

ARCHIVE JOURNAL util ity • 582
disk journals • 177, 582, 781, 790
warmstart failure, recovery for • 651

D

data compression • 368
specifying • 368

data decompression • 368
specifying • 368

data types • 396, 405
alphabetic • 405

alphanumeric • 396, 405
external floating point • 405
fixed decimal • 405
numeric • 396

numeric edited • 405
database • 871, 874, 878, 885

areas • 878, 885

key • 874, 878
pages • 871, 874

database access • 94
access through referencing schema • 94

SQL applications • 94
database definition procedure • 224, 225, 237, 240,

271

non-SQL • 237, 271
SQL-defined • 224, 237

database key • 146, 215, 216, 874, 878
definition • 874
for VSAM ESDS fi les • 146

for VSAM KSDS fi les • 146
format • 874, 878
maximum number of records on • 216
variable format • 215

database loading, non-SQL • 675, 677, 682
considerations • 675
procedure using FASTLOAD • 677
techniques for large databases • 675

using user-written program • 677, 682
database loading, SQL • 683, 686, 690, 691, 692,

694, 695, 697, 700

BUILD phase • 686
considerations • 686
data types • 690
full load • 692, 694

input fi le • 690, 691
multiple tables • 690
null values • 690

options • 683
performance, enhancing • 686
phased load • 694, 695
procedures • 691, 700

process for • 683
segmented load • 695, 697
stepped load • 697, 700

table columns • 690
database name table • 49, 91, 95, 100, 104, 165,

169, 171, 174, 177, 793, 794
DBNAME statement • 91, 165, 171

DBTABLE statement • 171, 177
default dictionary • 100
defining • 104
definition • 49

generating • 104, 174
modifying • 793, 794
restrictions • 169

segments, specifying • 95
subschema mapping • 104, 174

database procedure calls • 523
location of • 523

database procedures • 363, 383, 523, 524, 527, 529,
536, 537, 538, 540, 544, 545, 549, 851

adding/dropping • 851

AFTER procedure • 538

Index 1043

BEFORE procedure • 538
calling • 363

call ing non-reentrant or non-assembler • 544
changing calls • 363
coding • 527, 536

common uses of • 524, 527
compression/decompression • 524
data collection • 524
data validation • 524

definition • 523
example • 545
executing • 538, 540
IDMSNVLR procedure • 524, 527

language of procedure • 540
LE-compliance • 540
l ink editing • 537, 538

ON-ERROR procedure • 538
privacy/security • 524
program/procedure communication • 536, 537
under central version • 536

updating, deleting • 383
variable-length native VSAM records • 524, 527
when no information is passed • 536

when to call • 537
database record field name • 337, 396, 510

assigning • 396
specifying in path group • 337, 510

DBCS edited data • 405
picture format • 405

DBKEY • 426

as control element for sorted sets • 426
DBNAME • 981

in JCL • 981
DCMT commands • 561, 567, 570, 586, 588

for database buffers • 561
for journaling • 586
for the read driver • 570
PREFETCH option, for chained reads • 567

decimal point character • 305, 334, 405
in boolean expression • 334
in PICTURE clauses • 405

setting the character for • 305
default dictionary • 740, 744

defining • 740
specifying • 744

DELETE clause • 305
in SET OPTIONS statement • 305

DELETE operation • 343, 350, 355, 383, 452, 458,

466, 474, 479, 518

allowed/disallowed for a user • 343
effect on areas • 466

effect on load modules • 518
effect on non-SQL schema • 355
effect on records • 383, 474

effect on sets • 479
effect on subschema • 458
for public access • 350, 452

DELETE RECORD • 474

effect on sets • 474
delimiter, end-of-fi le • 305
DESCENDING KEY clause • 396, 426

COBOL elements • 396

sorted sets • 426
dictionaries • 38, 44, 100, 174, 723, 724, 725, 726,

728, 730, 733, 734, 735, 740, 744

DDDL compiler • 44
default • 100, 174, 740, 744
defining • 735, 740
definition • 38, 723

definitions, CA-supplied • 728, 734
logical components • 725
logical definitions • 730

message area • 725
modules • 733
nondatabase structures • 733
physical components • 724

protocols • 733
segments • 726
subschemas • 730

dictionary • 305, 321, 482
displaying options • 305
node, specifying for compilation • 321
record types in logical records • 482

disallowing DML functions • 465, 471, 478
area ready modes • 465
record access functions • 471
set access functions • 478

DISCONNECT • 368, 471, 478, 491
DML restriction • 471, 478
in path group • 491

specifying database procedures for • 368
disk journals • 78, 177, 179, 183, 582, 781, 790, 791

considerations • 78
CV tracking • 177, 582, 781, 790

defining • 177, 183
large format fi les • 179
modifying the access method • 791

modifying the size • 790, 791

1044 Database Administration Guide

DISPLACEMENT • 368, 426
of index keys • 426

of VIA set members • 368
DISPLAY/PUNCH operations • 328, 343, 350, 452

allowed/disallowed for a user • 343

for public access • 350, 452
locations of output • 328

DISPLAY/PUNCH statements • 305, 331, 518, 762,
764, 769, 772

defaults • 331
displayed as syntax • 305
displayed at comments • 305
effect on load modules • 518

procedures • 772
setting the session defaults for • 305
used in migration • 762, 764

DMCL • 45, 48, 67, 80, 87, 89, 91, 183, 187, 197, 200,
785

central version • 67
components of • 48

default • 45
defining • 87, 91
definition • 45, 67

DMCL statement • 183, 200
DMCL, central version • 67
DMCL, local mode • 67
dynamic management • 785

external fi le names • 197
identifying to runtime system • 67
local mode • 67

making accessible at runtime • 89, 91
segments in central version DMCL • 80
segments in local mode DMCL • 80

DML functions, allowing/disallowing • 465, 471, 478

area ready modes • 465
record • 471
set • 478

documentational clauses • 343, 350, 396, 452, 482

COMMENTS • 350, 396, 452, 482
CULPRIT HEADER • 396
INCLUDE/EXCLUDE class-name • 350, 452

MEMO DATE • 350
OLQ HEADER • 396
RESPONSIBLE FOR • 343
SCHEMA DESCRIPTION • 350

SUBSCHEMA DESCRIPTION • 452
DUPLICATES • 368, 426

clause for CALC record types • 368

clause for sorted sets • 426

clause for VSAM CALC record types • 368

E

element • 396, 405, 415, 420, 471, 482
examples of definition • 415, 420

in logical records • 482
in subschema views • 471
levels • 405
multiply-occurring • 396

name • 396
nesting • 396, 405
observing language conventions • 405
PICTURE clause • 405

storage characteristics • 405
USAGE clause • 405

ELEMENT substatement • 393, 396, 405, 415, 421,

422
COPY ELEMENTS syntax • 421
minimum • 405
mixing with COPY ELEMENTS • 422

qualification • 421
required clauses • 415
syntax • 393

ELEMENTS clause • 471, 474, 482
logical-record specification • 482
records • 471
specifying fields • 474

end.disallowed specifications for • 426
end disallowed specifications for • 426

end.manual • 670

end manual • 670
entity • 274, 1014

control block • 1014
type, defined • 274

entity occurrence • 274
defined • 274

environment • 33
types of operation • 33

ERASE • 368
specifying database procedures for • 368

ERASE command • 471, 491, 880

DML restriction • 471
in path group • 491
path group • 491
space management considerations • 880

error messages • 305
displayed without l ine numbers • 305

ESDS • 146, 368

Index 1045

CALC keys • 368
database key construction • 146

location mode • 368
EXCLUDE clauses • 350, 359, 368, 426, 452

ALL CALLS (areas) • 359

ALL CALLS (record) • 368
class-name • 350, 452
MEMBER • 426
RECORD SYNONYM • 368

USER • 350, 452
EXCLUSIVE, area ready mode • 465

restricting DML programs from using • 465
setting as DML default • 465

F

fi les • 61, 74, 137, 146, 206, 207, 219, 549, 551, 552,

554, 556, 557, 690, 691, 785, 786, 789, 790
access method, modification • 785, 786
access to native VSAM • 551
access to VSAM database fi les • 551

accessing • 549
adding and dropping • 789, 790
blocks • 146

CA IDMS/DB access • 551
characteristics • 554, 556
creating • 552
data set name • 61

device types • 552
disk devices • 552
dropping • 206, 207

dynamic fi le allocation without DYNAM/D • 206
formatting • 556, 557
input load fi le • 690, 691
journal • 74

journal, block size • 219
maximum page size • 552
native VSAM • 557
preallocated, defining • 207

specifications • 137
types • 549, 551

FIND command • 368, 471, 478, 929

DML restriction • 471, 478
specifying database procedures for • 368
with indexed record • 929

FIND, in path group • 491

CURRENT options • 491
EACH/EACH PRIOR • 491
FIRST/LAST/NEXT/PRIOR • 491

OWNER • 491
using indexed set • 491

WHERE CALCKEY = • 491
WHERE DBKEY = • 491
WITHIN SET WHERE SORTKEY = • 491

FIRST • 368, 426, 491, 920
DUPLICATES option for CALC record types • 368
DUPLICATES option for sorted sets • 426
in path-group FIND/OBTAIN • 491

set order • 426, 920
fixed-compressed record • 390

minimum coding requirements • 390
format control statements • 287

EJECT statement • 287
SKIP statement • 287

FORMAT util ity statement • 806, 880

purpose • 880
to erase table rows • 806

G

GENERATE statement • 261
procedure • 261

GET • 368, 471, 491

DML restriction • 471
in path group • 491
specifying database procedures for • 368

H

headers • 305, 350
CA Culprit • 305, 350
CA OLQ • 305, 350

in compiler l isting • 305

I

IDD record • 383, 482
in logical records • 482
sharing the structure of an • 383

IDD source module • 299

inclusion in DDL input • 299
IDMSUBSC compiler • 988
INCLUDE clauses • 350, 368, 426, 452

class-name • 350, 452
MEMBER • 426
RECORD SYNONYM • 368
USER • 350, 452

index • 426, 710, 912, 919, 923, 924
definition of • 912
levels • 912

1046 Database Administration Guide

pointer • 426
set mode • 426

spawning and splitting • 912, 923, 924
structure of • 912, 919
tuning • 710

index entry • 912
for sorted set • 912
for unsorted set • 912
number of • 912

indexed set • 368, 426, 854, 857, 909, 912, 919, 920,
923, 924, 925, 929

changing to chained • 854
compressed entries • 426

connecting records to • 919, 924
DBKEY as sort control element for • 426
defining • 909

disallowed specifications for • 426
disconnecting records from • 924, 925
location mode for • 368
member • 426

mode • 426
notation • 909
owned by system record • 426

pointer defaults • 426
pointers • 426, 909
purposes of • 909
reordering • 857

retrieving indexed records • 925, 929
set order • 909, 920
sorted • 912, 923, 924

sorted retrieval • 925
structure of • 912, 919
types • 909
unsorted • 912, 920, 923

indexes • 137, 231, 233, 438, 711, 814, 822, 823
changing • 823
creating • 822
defining • 231

displacement • 137
dropping • 822
dropping default indexes • 233

dropping tablesdefault • 814
moving • 823
specifications • 137
statistics, monitoring • 711

unique • 231
unlinked • 438

indexes, non-SQL • 861, 862, 863

adding/deleting pointers • 863

changing characteristics • 862
changing the index area • 861

input format • 277, 305
non-SQL schema and subschema compilers • 277
specifying columns for • 305

installation defaults • 272
online compiler task codes • 272

invoking procedures • 540, 545
methods • 540, 545

J

JCL • 984, 988, 1001
CMS commands • 1001

z/OS • 984
z/VSE • 988

journal buffer • 74, 77, 78, 208, 209, 210, 211, 573

defining • 208, 211
definition • 74
dropping • 210
large format fi les • 209

number of pages • 78
page size • 77
writes to fi les • 573

journal fi les • 48, 74, 552, 572, 573
device types • 552
disk devices • 552
for the runtime environment • 48

record types • 573
types • 74
under the central version • 572

journaling • 78, 131, 133, 134, 135, 177, 183, 197,
217, 220, 572, 573, 580, 585, 586, 589, 591, 662,
663, 707, 790, 791

archive journal block size • 133, 134, 197

ARCHIVE JOURNAL util ity statement • 580, 585
archive journals • 131, 135
changing the disk journal fi le size • 790, 791
journal fi le, incomplete • 663

local mode • 572
multiple archive journals • 133
offloading • 580, 585

performance • 586, 589
procedures • 591
record types • 573
reports • 586

requirements • 133
statistics • 707
to disk device • 78, 177, 183, 662

Index 1047

to tape device • 217, 220, 662
under the central version • 572

user exits • 585

K

KEEP • 471, 478, 491
DML restriction • 471, 478
in path-group FIND/OBTAIN • 491
path-group DML command • 491

KSDS • 146, 368, 426
CALC keys • 368
database key construction • 146
DUPLICATES option • 368

location mode • 368
set mode • 426

L

Large format fi les • 179, 209
disk journals • 179
journal buffer • 209

LAST • 368, 426, 491, 920
DUPLICATES option for CALC record types • 368
DUPLICATES option for sorted sets • 426

in path-group FIND/OBTAIN • 491
set order • 426, 920

LE-compliance • 540
database procedures • 540

l istings from compilers • 270, 287
contents of • 287
format control statements • 287
to reports on schema/subschema definitions •

270
load module • 285, 305, 355, 447, 514, 515, 516,

518, 756, 772

24-bit mode • 518
at runtime • 285
automatic deletion • 305, 355
making available to runtime system • 772

migrating • 756
object module addressing • 516
residency mode • 516

storing • 285
subschema • 447, 514, 515
version • 447, 515

LOAD MODULE statement • 516

module residency mode • 516
name • 516
object module address mode • 516

local mode • 45, 48, 225, 561, 572, 662, 664, 741,
744, 938, 981

buffers • 561
compiling batch non-SQL DDL • 981
DMCL • 45

executing SQL DDL • 225
handling of physical area lock • 938
journaling • 48, 572
recovery • 662, 664

runtime components • 741
session defaults • 744

location mode • 846
changing • 846

LOCATION MODE clause • 368
in record display • 368
schema record specification • 368

lock management • 716, 930, 932, 934, 937, 939,
940, 944, 950, 951, 953

area lock status • 932
area ready modes • 930, 937

deadlock detection interval • 951
deadlocks • 951, 953
for SQL access • 934

isolation levels • 934
lock compatibil ity table • 940
native VSAM considerations • 950, 951
page locks • 944

physical area locks • 937, 939
record locks • 944
statistics, monitoring • 716

under the central version • 939
locks, logical • 940, 942

and area ready modes • 942
compatibil ity table • 940

modes • 940
logical record • 260, 261, 452, 482, 485, 486, 510,

869
about • 260, 261

access restrictions • 510
adding/modifying/deleting • 869
database records in • 482

definition procedure • 260
dictionary records in • 482
documenting • 485
error detection in • 482

in program variable storage • 510
name • 482
path group • 486

ready mode for • 452

1048 Database Administration Guide

record role in • 482
when to modify • 485

logical record elements • 482, 485
defining • 482
sequence in program storage • 485

logical record facility (LRF) • 462
securing the subschema • 462

M

migration • 748, 750, 755, 756, 757, 760, 761, 772,
773

components • 750, 755
components, identification methods • 757, 760

considerations • 772
facil ities • 756
procedures • 748, 757, 761

sequence • 755, 756
task application table • 773
tools • 760, 761

MINIMUM FRAGMENT clause • 368, 383

(figure) • 383
applied to fixed-length records • 383
compressed records • 383

default • 383
example • 383
schema specification • 368

MINIMUM ROOT clause • 368, 383

(figure) • 383
applied to fixed-length records • 383
compressed records • 383

default • 383
example • 383
schema specification • 368

MODIFY operation • 343, 350, 355, 368, 383, 452,

458, 471, 479, 491
allowed/disallowed for a user • 343
DML restriction • 471
effect on non-SQL schema • 355

effect on records • 383
effect on sets • 479
effect on subschema • 458

for public access • 350, 452
in path group • 491
path group • 491
specifying database procedures for • 368

monitoring • 701, 702, 703, 706, 707, 709, 711, 716,
717, 721

access modules • 717

buffer statistics • 707
database statistics • 703

facil ities • 702, 706
I/O • 717, 721
index efficiency • 711

journal statistics • 707
locking • 716
schedule • 701
space management statistics • 709

multiply-occurring elements • 339
using subscripts for • 339

N

naming conventions • 111, 113
physical database statements • 111, 113

native VSAM file • 146, 157, 368, 426, 524, 527, 551,

557, 559, 670, 673, 950, 951, 975, 978, 981
accessing • 551
buffer pool specification • 157
considerations • 978, 981

data set structure • 975
definition • 557
disallowed specifications for • 426

DML functions • 978
location mode • 368
lock management • 950, 951
record type • 368

recovery • 670, 673
restrictions • 146
set duplicates option • 426

set insertion option • 426
set member • 426
set mode • 426
set order • 426

set pointer defaults • 426
set removal option • 426
variable-length record • 524, 527

NEXT • 426, 491, 920

in path-group FIND/OBTAIN • 491
in path-group ON • 491
pointer • 426

set order • 426, 920
NONE • 350, 452

compiler operations for public access • 350, 452
non-SQL database definition • 54, 237, 271, 953

procedure • 237, 271
sample • 953
segment planning • 54

Index 1049

non-SQL DDL statements • 274, 275, 988
=COPY facil ity • 988

coding • 274
components • 274
end of statement delimiter • 275

option delimiters • 275
required delimiters • 275

non-SQL defined databases • 829, 830, 831, 833
modification methods • 830

modification procedure • 831
types of modifications • 829

non-SQL schema • 240, 241, 255, 263, 269, 270, 347,
350, 446, 829, 830, 837, 838, 839, 865, 953, 976,

981
changing schema characteristics • 839
changing the definition of • 830

compiler • 240
compiler l istings • 270
compiling, batch • 981
components • 241

currency • 269, 270, 347
definition • 241, 255
deleting • 838

modification procedure • 829
modifying when empty • 837
modifying when not empty • 865
name • 350

native VSAM considerations • 976
sample definition • 953
security checking • 263, 269

validation • 446
version • 350

non-SQL schema and subschema compilers • 272,
273, 274, 276, 277, 278, 280, 281, 283, 285, 287

batch compiling • 273
coding comment text • 283, 285
coding entity-occurrence names • 280
coding input non-SQL DDL statements • 274, 280

coding keywords • 280
coding user-supplied values • 281
comments • 276

contents of l istings • 287
ending a session • 272
error handling • 278, 280
format control for l istings • 287

input format • 277
load modules generated • 285
output • 285

recovering a session • 272

source generated • 285
starting a session • 272

non-SQL schema compiler • 289, 301, 325, 327, 355,
981, 984, 988, 989, 1002

automatic load module deletion • 355

batch execution • 981
CMS commands • 1002
compiler-directive statements • 289, 325
copying source code into • 988

session options • 301
status conditions • 327
z/OS JCL • 984
z/VSE JCL • 989

non-SQL schema DDL • 347, 357, 365, 423, 446, 447
area • 357
record • 365

SCHEMA statements • 347
schema validation • 446
set • 423
subschema regeneration in • 447

non-SQL SCHEMA statements • 347, 350
order of presentation • 347
syntax • 350

NOT ALLOWED • 368, 426, 465, 471, 478
DUPLICATES option for CALC record types • 368
DUPLICATES option for sorted sets • 426
DUPLICATES option for VSAM CALC record types

• 368
for DML functions • 465, 471, 478

NULL • 350, 368, 452, 465, 471

for default area ready mode • 465
for non-SQL schema comments • 350
for record fragment length • 368
for record root length • 368

for schema comments • 452
for subschema record priority • 471
for VSAM file device types • 368

O

OBTAIN, in path group • 491, 510
considerations • 510

CURRENT options • 491
EACH/EACH PRIOR • 491
FIRST/LAST/NEXT/PRIOR • 491
OWNER • 491

syntax • 491
using indexed set • 491
WHERE CALCKEY = • 491

1050 Database Administration Guide

WHERE DBKEY = • 491
WITHIN SET WHERE SORTKEY = • 491

OF SCHEMA clause • 359, 421, 426, 452
in ADD/MODIFY/DELETE operations • 359, 426,

452

in COPY ELEMENTS substatement • 421
to qualify areas • 359
to qualify records • 421
to qualify sets • 426

to qualify subschema • 452
OLQ HEADER clause • 350, 396

in ELEMENT substatement • 396
in non-SQL schema display • 350

ON clause • 491
automatic generation of • 491
in path group • 491

online compilation • 272, 305
installation default task codes for • 272
prompt for TTY devices • 305
redisplay of input • 305

optimization of subschema tables • 474, 477
PRIORITY clause • 474

OWNER clause • 426

in ADD/MODIFY/DELETE SET statement • 426
schema specification • 426

P

page • 215, 871, 880, 894
empty • 880
home • 894

layout • 871
location of records • 871
maximum number of records on • 215

page groups • 215, 727

assigning • 215
for dictionary segments • 727

page ranges • 55, 146, 788, 789
defining • 55, 146

extending • 146, 788, 789
page reserve • 80, 675, 686, 894

about • 894

area overrides • 80
changing • 80
for database load • 675, 686

page size • 77, 788, 880

calculating • 880
increasing • 788
journal buffer • 77

pages • 368, 426
for displacement of index keys • 426

for displacement of VIA set members • 368
for record placement within area • 368, 426

parameter expansion • 117, 290, 333, 337, 338 , 340,

341, 342, 344
boolean-expression • 333
conditional expression • 117, 290
db-record-field • 337

lr-field • 338
mask comparison • 117, 290
module-specification • 340
user-options-specification • 342

user-specification • 341
value comparison • 117, 290
version-specification • 344

PATH (VSAM) • 368, 426
CALC keys • 368
set mode • 426

path group • 333, 337, 338, 339, 510, 869

adding/modifying/deleting • 869
boolean expression in • 333
considerations • 510

database record field name in • 337
database record name in • 510
logical-record field name in • 338

PATH-GROUP statement • 261, 485, 510

definition procedure • 261
required use of role names • 485
terminating • 510

period • 274, 305, 334, 405
as decimal point • 305, 334, 405
in non-SQL DDL statements • 274

physical database • 39, 45, 48, 49, 51, 52, 57, 58, 59,

61, 74, 78, 80, 91, 107, 110, 220, 224, 953
areas • 52
buffers, journal • 74, 78
data set name • 61

database fi les • 52
database name table • 49, 91, 107
defining • 51

definition • 39, 45
DMCL • 48
journal • 80
journal fi les • 74, 80

journals, disk • 78
l imits • 220
records per page • 57

sample • 953

Index 1051

segments • 80
statement summary • 110

symbolics • 59
physical database statements • 107, 110, 111, 113,

114, 131, 135, 156, 163, 165, 171, 177, 183, 200,

208, 211, 217, 220
ARCHIVE JOURNAL • 131, 135
AREA • 135, 156
BUFFER • 156, 163

currency • 113
DBGROUP • 163, 165
DBNAME • 165, 171
DBTABLE • 171, 177

DISK JOURNAL • 177, 183
DISPLAY/PUNCH • 114
DMCL • 183, 200

FILE • 200, 208
JOURNAL BUFFER • 208, 211
keywords • 110
naming conventions • 111, 113

SEGMENT • 211, 217
separators • 110
statement summary • 107

TAPE JOURNAL • 217, 220
values • 110
verb synonyms • 110

physical definitions • 775, 785, 786, 788, 789, 790,

791, 793
access method, changing • 791
area size, increasing • 786, 788

DMCL, dynamic management • 785
fi le access method, changing • 785, 786, 791
fi les, adding or dropping • 789, 790
journal fi le, changing the size • 790, 791

modifying • 775, 793
page range, extending • 788, 789
page size, increasing • 788

PL/I • 383, 405

element names • 405
record names • 383

pointers • 438, 446, 447, 856

adding/dropping • 856
changing • 438
resolved by VALIDATE • 446

prefix • 871, 912

compression • 912
length • 871

PREPARED BY clause • 305, 341, 342, 350, 452

in ADD/MODIFY/DELETE operations • 342, 350,
452

populated by SIGNON • 305
setting the session default for • 305
when to use • 341

PRIOR • 426, 491, 920
in path-group FIND/OBTAIN • 491
pointer • 426
set order • 426, 920

program pools • 518, 519, 523
determined by residency mode • 518

program view of subschema • 474
(figure) • 474

programs • 458, 466, 536, 865
associated with a modified subschema • 865
communication with procedures • 536

readying areas • 466
transferring statistics • 458

PROTECTED, area ready mode • 321, 465
compiling in • 321

restricting DML programs from using • 465
setting as DML default • 465

PUBLIC ACCESS clause • 343, 350, 452, 458

assigning to a user • 343
automatic changes in • 458
clause • 350
syntax • 452

PUNCH operation • 305, 328, 518
effect on load modules • 518
location of output • 328

setting the session defaults for • 305

Q

quotation marks • 281, 305, 396

in comments • 281, 396
in expressions • 281
in user text • 281
setting the character for • 305

using • 281

R

READY • 359, 465
restricting for DML programs • 465
specifying database procedures for • 359
specifying database procedures for (table) • 359

specifying defaults for • 465
ready mode • 452, 465, 466, 469

defaults for subschema areas • 466

1052 Database Administration Guide

restricting for DML programs • 465
setting default for DML programs • 465

subschema • 452
ready modes • 321, 359, 930, 934, 937, 942

and logical locks • 942

area • 930, 937
default • 934
specifying database procedures for • 359
specifying database procedures for (table) • 359

specifying for dictionary • 321
record • 885, 894, 897, 898, 899, 901, 903, 905, 906,

908, 909, 919, 924, 925, 929
connecting to chained set • 905, 906

connecting to indexed set • 919, 924
defining • 903
disconnecting from chained set • 906, 908

disconnecting from indexed set • 924, 925
erasing • 898, 903
fixed-length compressed • 894
fragment • 894

logical deletion • 901
physical deletion • 899
relocated • 897, 898

retrieving from chained set • 908, 909
retrieving from indexed set • 925, 929
root • 894
storing • 885, 898

variable-length • 894, 897
record (non-SQL schema) • 365, 368, 383, 390, 393,

396, 426, 441

assigning to an area • 368, 426
compressed • 368, 383
copying • 368
examples of definition • 390, 393

fixed-compressed • 383
fixed-length • 383, 390
location mode • 368
modifying schema-built records • 383

modifying size • 383
name • 368
observing language conventions • 383

prefix • 426, 441
structure • 365, 368
unused • 383
using synonyms • 383

variable-length • 368, 383, 396
variable-length (figure) • 383

record (subschema) • 471

access restrictions • 471

priority • 471
view • 471

record description • 474
ELEMENTS and VIEW ID clauses • 474

record elements • 849

modifying • 849
RECORD entity type • 368

compression/decompression procedure • 368
data characteristic table • 368

RECORD ID clause • 368
in record display • 368
non-SQL schema specification • 368

record IDs • 368, 850, 871

assigning • 368
changing • 850
in l ine index • 871

record length • 368, 871
calculating • 871
in MINIMUM FRAGMENT LENGTH clause • 368
in MINIMUM ROOT LENGTH clause • 368

record locks • 491
on subschema record • 491
on subschema records • 491

record occurrence • 871
components • 871
on database page • 871

RECORD Statement (non-SQL schema) • 244, 252,

383, 390
clauses required for ADD • 390
COPY ELEMENTS substatement • 244

definition procedure • 244, 252
ELEMENT substatement • 244
OFFSET clause • 383
SHARE DESCRIPTION clause • 244

SHARE STRUCTURE clause • 244
RECORD statement (subschema) • 257, 471

definition procedure • 257
syntax • 471

record synonyms • 850
changing • 850

records, non-SQL schema • 841, 842, 843, 846, 848,

850
adding • 841
changing data compression • 850
changing the area • 848

changing the CALC key • 843
changing the location mode • 846
deleting • 842

records, subschema • 867

Index 1053

adding/modifying/deleting • 867
recovery • 607, 618, 619, 623, 651, 653, 657, 662,

663, 664, 670, 673
central version • 618
definition • 607

due to system failure • 619
due to transaction failure • 623
from database fi le I/O error • 653, 657
from journal fi le I/O error • 657, 662

journal fi le, incomplete • 663
journaling to disk device • 662
journaling to tape device • 662
local mode • 662, 664

mixed mode • 664, 670
native VSAM files • 670, 673
warmstart • 618

when warmstart fails • 651
referential constraint • 232, 825, 826

changing tuning characteristics of • 826
creating • 232, 825

dropping • 826
REGENERATE statement • 447, 448

effect on subschemas • 448

syntax • 447
regeneration • 448, 449, 450, 865

of a subschema after modification • 865
using the schema compiler • 448

using the subschema compiler • 448
registration • 452, 458, 462

for all operations • 462

for an operation • 458
of user • 458
program • 452
replacing • 458

restricting DML programs • 465, 471, 478
area ready modes • 465
record access • 471
set access • 478

restructure • 350
identifying base schema for • 350

retrieval • 925

physical sequential • 925
random • 925
sorted • 925
unsorted • 925

RETRIEVAL, area ready mode • 321, 465
compiling in • 321
restricting DML programs from using • 465

setting as DML default • 465

RETURN • 368
specifying database procedures for • 368

RETURN command • 491
in path-group ON • 491

REVISED BY clause • 305, 342, 350, 452

in ADD/MODIFY/DELETE operations • 342, 350,
452

populated by SIGNON • 305
setting the session default for • 305

rollback, automatic • 623
due to transaction failure • 623

RRDS • 368
location mode • 368

runtime • 174, 744, 745
database name table • 174
session options • 744, 745

S

SAME AS clause • 359, 363, 426, 438
area • 359, 363

set • 426, 438
Schema Compiler Activity List • 305

specifying the width of • 305

suppressing the header on • 305
SCHEMA statements • 241

definition procedure • 241
schema-built records • 383

modifying • 383
security • 39, 265, 305, 350, 452, 462

and CA IDMS • 39

non-SQL schema • 350
overriding • 305
registration override • 265
subschema • 452, 462

security checking • 263, 265, 269
non-SQL schema and subschema compilers •

263, 269
see=buffers physical database • 73

buffers, database • 73
see=CAIDMScommandfacil ity.command facil ity •

225

see=databasenametable DBNAME table • 49
see=DMCL physical database • 67

DMCL • 67
DMCL, central version • 67

see=DMCL runtime system • 67
identifying the DMCL • 67

1054 Database Administration Guide

see=non-SQLschemaandsubschemacompilers.compil
ers • 271

see=non-SQLschemacompiler schema compiler,
non-SQL • 44

see=readymodes area ready modes • 930

see=spacemanagementpage(SMP) SMP • 880
segments • 45, 51, 54, 80, 95, 726

definition • 45, 51
dictionary • 726

in central version DMCL • 80
in local mode DMCL • 80
planning • 54
specifying in database name table • 95

using area overrides • 80
using fi le overrides • 80

SELECT clause (logical-record path groups) • 510

considerations • 510
session options • 301, 305, 744, 745

displaying • 305
runtime • 744, 745

setting • 301
set • 383, 426, 438, 441, 446, 474, 478, 479, 481,

856, 920, 929

access restrictions • 478
automatic deletion of • 383, 438, 474, 479
examples of definition • 441
explicit deletion of • 438, 479

indexed • 929
insertion options • 426
l inkage • 426

member • 426
mode • 426
order • 426, 920
owner • 426

pointers • 426, 856
qualification • 426
removal options • 426

set membership options • 858

changing • 858
SET OPTIONS statement • 241, 301, 302, 355

available options • 301

default values • 241
DELETE clause • 355
syntax • 302

SET statement (non-SQL schema) • 252, 424, 438

ADD/MODIFY/DELETE syntax • 424
clauses required for ADD • 438
definition procedure • 252

SAME AS clause • 252

SET statement (subschema) • 258
definition procedure • 258

sets • 252
deleting records • 252

sets, non-SQL schema • 852, 854, 857

adding/deleting • 852
changing the mode • 854
changing the order • 857

sets, subschema • 868

adding/modifying/deleting • 868
SHARE clause • 368, 383

record specification • 368
SHARE DESCRIPTION • 368

SHARE STRUCTURE • 383
SHARE DESCRIPTION clause • 383

difference from SHARE STRUCTURE clause • 383

position of clause • 383
SHARE STRUCTURE clause • 350, 383

difference from SHARE DESCRIPTION clause •
383

in non-SQL schema display • 350
SHARED, area ready mode • 321, 465

compiling in • 321

restricting DML programs from using • 465
setting as DML default • 465

SIGNON • 1009, 1013, 1014
block • 1014

element block • 1013
user exit • 1009

SIGNON Statement • 321

security for • 321
syntax • 321

SORT keys • 845
changing the DUPLICATES option • 845

space management • 709
statistics, monitoring • 709

space management page (SMP) • 937
use in lock management • 937

SQL database definition • 750, 953
migrating entities • 750
sample • 953

SQL DDL • 225
embedded in application programs • 225

SQL schema • 226, 802
creating • 226

dropping • 802
modifying • 802

SQL transactions • 934, 943

area locks • 943

Index 1055

lock management • 934
SQL-defined data • 54, 55

segment planning • 54
SQL-defined database • 683, 701, 795, 798

loading • 683, 701

modification methods • 798
types of modifications • 795

SR1 system record • 871, 879, 880, 1004
definition of • 1004

location on page • 871
use of • 879, 880

SR7 system record • 1004
definition of • 1004

SR8 system record • 912, 920, 923, 924, 925, 1004
currency • 925
definition of • 1004

format of • 912
orphan count • 920
purpose of • 912
splitting • 912, 923

start.manual • 637
start manual • 637

statistics • 717

monitoring • 717
storage mode • 885, 887, 890, 894, 925

CALC • 887, 890
CLUSTERED • 890, 894

DIRECT • 885
discussion of • 885
VIA • 890, 894, 925

STORE • 368
specifying database procedures for • 368

STORE command • 471, 491, 880
DML restriction • 471

in path group • 491
path group • 491
space management considerations • 880

subschema • 174, 240, 241, 255, 261, 263, 269, 270,

285, 305, 363, 447, 450, 452, 462, 463, 465, 471,
474, 478, 482, 513, 514, 675, 750, 865, 866, 867,
868, 871, 953, 981

access restrictions • 465, 471, 478
compiler • 240
compiler l istings • 270
compiling, batch • 981

components • 255
considerations for modifying • 865
currencies • 269

currency • 270, 450

definition • 255, 263
deleting • 867

deleting areas • 363, 868
documenting revisions • 462
elements • 471, 482

generation • 447, 514
load module • 305, 447, 514
mapping • 174
migrating • 750

modifying • 865, 866, 871
name • 452
qualification • 452
ready mode • 452

record priority • 471
regeneration • 447
requirements for database load • 675

sample definition • 953
security • 462
set, modifying and deleting • 868
status • 261

storing load modules • 285
validation • 513
view of record • 471

view of record (figure) • 474
subschema compiler • 289, 301, 325, 327, 986, 988,

991, 1004
CMS commands • 1004

compiler-directive statements • 289, 325
copying source code into • 988
session options • 301

status conditions • 327
z/OS JCL • 986
z/VSE JCL • 991

Subschema Compiler Activity List • 305

specifying the width of • 305
suppressing the header on • 305

subschema DDL • 450, 463, 469, 477, 481, 486, 514,
515

area • 463
load module generation in • 515
logical record • 481

path group • 486
record • 469
set • 477
subschema • 450

subschema va l idation • 514
subschema load modules • 285

at runtime • 285

storing • 285

1056 Database Administration Guide

SUBSCHEMA statement • 255, 458, 462
definition of program use • 458

definition procedure • 255
minimum statement • 462

subschema validation • 513

after ADD and MODIFY operations • 513
subschemas • 730

dictionary • 730
symbolic key • 912

compression • 912
duplicate • 912

symbolics • 137
specifications • 137

subareas • 137
symbolic index • 137

synonym • 350, 368, 396

displaying • 350, 368
element • 396
in shared records • 368
record • 368

syntax format • 274
for non-SQL schema and subschema compilers •

274

SYSIDMS parameters • 567, 570, 743
described • 743
PREFETCH • 567

system dictionary • 38, 723, 725, 738

components • 725
defining • 738
definition • 38

description • 723
system generation parameters • 946

for lock management • 946
system-owned index • 426, 859, 909

adding/deleting • 859
defining • 426, 909

T

table • 60, 228, 805, 806, 807, 810, 811, 812, 813,
814

adding a check constraint • 811

adding a column • 807
adding/removing data compression • 810
changing its area • 813
creating • 228, 805

dropping • 806
dropping a check constraint • 811
dropping and recreating • 814

dropping the default index • 814
modifying check constraints • 812

revising the estimated row count • 813
synchronization stamp • 60

tape journals • 217, 220, 572

defining • 217, 220
in local mode • 572

TEXT clause • 343, 350, 452
in schema-attribute association • 350

in schema-user association • 343
in subschema-attribute association • 452

tuning • 566, 567, 826
buffers • 566

referential constraints • 826
two-phase commit processing • 591, 607

discussion • 591, 607

U

UNORDERED • 368, 426
DUPLICATES clause for VSAM CALC record types

• 368
DUPLICATES option for sorted sets • 426

UPDATE operation • 343, 350, 452

allowed/disallowed for a user • 343
for public access • 350, 452

UPDATE, area ready mode • 321, 465
compiling in • 321

restricting DML programs from using • 465
setting as DML default • 465

USAGE clause • 405, 452

area specification • 452
element specification • 405

USAGE MODE • 465
for database areas • 465

in ADD/MODIFY/DELETE AREA statement • 465
USER clause • 321

in SIGNON statement • 321
to access a secured dictionary • 321

user exits • 581, 585
IDMSAJNX • 585
IDMSCPLX • 585

IDMSJNL2 • 585
WTOEXIT • 581, 585

user ID • 355
when to specify • 355

user-owned index • 909
defining • 909

USERS • 350

Index 1057

in non-SQL schema display • 350
util ities • 580, 585, 673, 677, 830, 833, 834, 835, 880

ARCHIVE JOURNAL • 580, 585
FASTLOAD • 673, 677
FORMAT • 880

MAINTAIN INDEX • 830, 835
RELOAD • 830, 834
REORG • 830, 834
RESTRUCTURE SEGMENT • 830, 833

UNLOAD • 830, 834

V

VALIDATE Statement • 253, 261, 446, 513, 514

effect on subschemas • 513
for error checking • 513
purpose • 261

schema status • 253
syntax • 446, 513
validate procedure • 253, 261
verifying schema relationships • 253

variable-length record • 383
(figure) • 383

VERSION clauses • 305, 447, 515

DEFAULT FOR EXISTING VERSION • 305
DEFAULT FOR NEW VERSION • 305
for subschema load modules • 447, 515
in GENERATE statement • 515

in REGENERATE statement • 447
version number • 305, 383

automatic assignment • 383

explicit • 305
HIGHEST • 305
LOWEST • 305
NEXT HIGHEST • 305

NEXT LOWEST • 305
VIA storage mode • 890, 891, 892, 894, 925

introduction to • 890, 891
via a chained set • 891, 892

via an indexed set • 892, 894, 925
view • 235, 237, 803, 804

creating • 235

dropping • 803
modifying a • 804
updatable • 235

VIEW ID clause • 471

subschema specification • 471
VSAM CALC • 368

control element • 368

element name • 368
location mode • 368

VSAM database fi le • 561
and LSR buffer management • 561

VSAM TYPE clause • 157, 368

in BUFFER statement • 157
in record display • 368

VSAM types • 850
changing • 850

W

warmstart • 618, 626, 651
failure, recovery for • 651

recovery, automatic • 618, 626
WHERE clause • 117, 118, 121, 290, 291, 294, 491

in DISPLAY/PUNCH ALL statement • 117, 118,

290, 291
in DML program, relation to path-group SELECT

clause • 491
in path-group FIND/OBTAIN • 491

valid options (table) • 121, 294
WITH/ALSO WITH/WITHOUT clause • 305

setting the session default for • 305

WITHIN AREA clause • 368, 426
schema records • 368
schema sets • 426

Z

z/OS JCL • 984, 986
non-SQL schema compiler • 984
subschema compiler • 986

z/VSE • 988
sublibrary, using copied code from • 988

z/VSE JCL • 989, 991

non-SQL schema compiler • 989
subschema compiler • 991

	CA IDMS Database Administration Guide
	CA Technologies Product References
	Contact CA Technologies
	Documentation Changes
	Contents
	1: Introduction
	Who Should Use This Guide
	Using This Guide
	Syntax Diagram Conventions

	2: CA IDMS Environment
	Overview
	Multiuser Environment
	Single-user Environment
	Data Sharing Environment

	CA IDMS/DC and CA IDMS UCF
	CA IDMS/DB Components
	Database Management System
	Dictionaries
	Physical Database Definition
	Logical Database Definition

	Security
	Getting Started
	Towards a Production Environment

	Tools for Database Definition and Maintenance
	Command Facility
	Schema, Subschema, and DDDL Compilers
	Utilities

	3: Defining Physical Databases
	Overview
	Segments
	DMCLs
	Database Name Tables

	Separating Logical and Physical Database Definitions
	Advantages

	Before You Begin
	Design the Logical and Physical Databases
	Size the Physical Database

	4: Defining Segments, Files, and Areas
	Segments, Files, and Areas
	Segments
	Example

	Files
	Database Files Contain Data
	What a File Defines
	Example

	Areas
	Range of Database Pages
	Related Areas Generally Share Same Segment
	An Area Maps to Files
	What an Area Defines

	Planning
	Segment Boundaries
	One Schema One Segment
	Non-SQL Defined Data
	SQL Defined Data

	Mapping Areas to Files
	Page Ranges
	Page Groups
	Definition
	When to Use Page Groups
	Mixed Page Groups
	Page Groups and Run Units
	Page Groups and Dictionaries

	Records Per Page
	Maximum Records Per Page Affect Database Page Count
	What Value Should You Use?
	Maximum Records Per Page Restrictions
	Maximum Records Per Page and Transactions
	Maximum Records Per Page and Dictionaries

	Page Reserve
	Resolving Symbolic Parameters
	Areas Resolve Schema-defined Symbols
	An Example of Symbolics

	Synchronization Stamps
	Table and Area Level Stamps
	Which Type of Synchronization Stamp to Use

	Specifying Data Set Name Information
	Specifying a Data Set Name
	Reasons to Specify Dataset Information on the FILE Statement
	Controlling the Use of Dynamic Allocation in Local Mode

	Procedure for Defining Segments
	Steps
	Example of a Non-SQL Segment Definition
	Example of an SQL Segment Definition
	More Information

	5: Defining, Generating, and Punching a DMCL
	DMCLs
	DMCL Area/File Overrides
	Designating Areas as Shared
	DMCL Identifies Database Name Table
	Order of Component Definition
	DMCL Used Under the Central Version
	DCMLs Used in Local Mode
	Differences Between Central Version and Local Mode DMCLs
	DMCLs Used for Data Sharing
	Stored as a Load Module
	Identifying the DMCL to the Runtime System

	Data Sharing Attributes
	What Attributes Can Be Specified?
	Group Membership
	Specifying the Maximum Number of Members
	What is a Lock Structure?
	Specifying the Number of Lock Table Entries
	Conflicting Group Attributes
	What Is a Shared Cache?
	Coupling Facility Failures

	Database Buffers
	What Is a Database Buffer?
	CA IDMS/DB Acquires Space When It Opens Associated File
	CA IDMS/DB Searches Buffers Before Files
	Every File Must Be Associated with a Buffer
	What a Database Buffer Defines
	When to Define a Database Buffer

	Journal Buffers and Journal Files
	How Do You Use Journal Files?
	Journaling Entities
	When CA IDMS/DB Writes a Journal Page
	Types of Journal Files
	Files You Choose Depend on the Runtime Environment
	Multiple Archive Files
	Sizing Journal Buffers
	What the Journal Buffer Defines
	Buffer Page Size
	Number of Buffer Pages

	Sizing Journal Files
	Disk Journal Attributes
	Number of Disk Journals
	Batch Update Jobs May Require Added Files
	Place Files to Avoid Offload Contention
	Disk Journal File Size

	Adding Segments to the DMCL
	Required Segments
	Segments Required for Central Version
	Segments Required for Local Mode

	File Limitations
	Area Status
	Type of Access
	Retrieval Versus Transient Retrieval
	Permanent Area Status
	Status After System Termination

	Sharing Update Access to Data
	What Is a Shared Area?
	Designating an Area as Shared
	Shared Area Requirements

	Area Overrides
	File Overrides
	Overriding the External File Name
	Dataspace Usage
	Shared Cache Association

	Procedure for Defining a DMCL
	Steps for Defining the Central Version DMCL
	Example
	Steps for Defining a Local Mode DMCL

	Making the DMCL Accessible to the Runtime Environment
	Generate the DMCL Load Module
	Punch the DMCL
	Link-edit the DMCL
	Identify the DMCL to the Runtime System
	More Information

	6: Defining a Database Name Table
	Overview
	Contents of a Database Name Table
	Grouping Segments Together

	Planning
	SQL Considerations
	Non-SQL Considerations
	Identifying Segments
	Accessing a Single Segment
	Accessing Multiple Segments
	Using DBTABLE Mappings
	Using Subschema Mappings
	Additional Segments

	Restricting Subschema Names
	Application Dictionaries
	Database Name Required
	Sharing Areas
	Mixed Page Groups

	Defining the Default Dictionary
	What Is a Default Dictionary?
	Defining a Default Dictionary

	Conflicting Names
	Area Names
	Segment and Database Names
	Checking for Conflicts

	Mixed Page Groups and Maximum Records Per Page
	What Is Allowed?
	What Happens When Binding a Run Unit?
	Detecting Potential Problems
	Application Program Considerations
	Identifying Potential Problem Programs
	Dictionary Considerations

	Sharing Database Name Tables
	One Database Name Table Per Environment
	Missing Segments

	Defining and Generating the Database Name Table
	Steps to Follow
	Example
	More Information

	7: Physical Database DDL Statements
	Statement Summary
	Components of a Physical DDL Statement
	Keywords, Values, and Separators
	Where Separators Are Not Required
	Clauses in Syntax Statements Are Not Positional

	Naming Conventions
	Using Lowercase Letters in Identifiers
	Keywords as Identifiers
	Why Avoid Keywords as Identifiers

	Entity Currency
	Entities That Establish Currency
	How Is Currency Established?
	Use Fully-qualified Names if Currency Not Established

	Generic DISPLAY/PUNCH Statement
	Syntax
	Parameters
	Usage
	Examples
	Including All Display Options Except One

	DISPLAY/PUNCH ALL Statement
	Syntax
	Parameters
	Usage
	Output Contains Only Enough Information to Display/Punch Entity
	Valid Entity Option Keywords for Conditional Expressions
	Default Order of Precedence Applied to Logical Operators
	Date Selection Criteria
	Example

	ARCHIVE JOURNAL Statements
	Syntax
	Parameters
	Usage
	Archive Journal File Requirement
	Using Multiple Archive Journals as Backup
	Incompatibility of Tape and Archive Journal Files
	Archive Journal Block Size
	Examples
	Defining an Archive Journal File
	Changing the Block Size
	Dropping an Archive Journal File
	More Information

	AREA Statements
	Syntax
	Parameters
	Usage
	Unique Page Range
	Contiguity of Page Ranges
	Page Range Limits Depend on Maximum Number of Records Per Page
	Page Ranges for CALC Records
	What Happens to Offsets When You Expand an Area
	Percentage Offsets Most Flexible
	Page Range for RRDS Native VSAM Areas
	Page Range for RRDS Native VSAM Areas
	Page Range for ESDS Native VSAM Areas
	Physical Device Blocking
	Synchronization Stamps
	Specifying a Synchronization Stamp Value
	Contiguity of File Blocks
	Native VSAM File Restrictions
	Index Calculations
	Examples
	Mapping to a Single File
	Mapping to Two Files
	Adding Pages to an Area
	Dropping an Area
	More Information

	BUFFER Statements
	Syntax
	Parameters
	Usage
	Buffer Storage Not Acquired Until Needed
	Buffer Page Count Under the Central Version
	How CA IDMS/DB Acquires Storage for a Buffer
	Dropping a Buffer with Associated Files
	Examples
	Defining the Default Buffer
	Modifying the Page Count for Use Under the Central Version
	Dropping a Database Buffer
	More Information

	DBGROUP Statements
	Authorization
	Syntax
	Parameters
	Usage
	Examples
	Defining a Database Group
	More Information

	DBNAME Statements
	Authorization
	Syntax
	Parameters
	Usage
	Examples
	More Information

	DBTABLE Statements
	Syntax
	Parameters
	Usage
	Examples
	More Information

	DISK JOURNAL Statements
	Syntax
	Parameters
	Usage
	Examples
	More Information

	DMCL Statements
	Syntax
	Parameters
	Usage
	Examples
	More Information

	FILE Statements
	Syntax
	Parameters
	Usage
	Examples
	More Information

	JOURNAL BUFFER Statements
	Syntax
	Parameters
	Usage
	Examples
	More Information

	SEGMENT Statements
	Syntax
	Parameters
	Usage
	Examples
	More Information

	TAPE JOURNAL Statements
	Syntax
	Parameters
	Usage
	Examples
	More Information

	Summary of Physical Database Limits

	8: Defining a Database Using SQL
	Overview
	Executing SQL Data Description Statements
	Creating a Schema
	Creating a Table
	Defining a CALC Key
	Things You Can Specify
	Considerations
	Examples

	Defining an Index
	Things You Can Specify
	Considerations
	Specifying Physical Attributes
	Example

	Defining a Referential Constraint
	Things You Can Specify
	Considerations
	Example - Linked Referential Constraint
	Example - Unlinked Referential Constraint

	Dropping a Default Index
	Things You Can Specify
	Considerations
	Example

	Creating a View
	Things You Can Specify
	Specifying Physical Attributes
	Considerations
	Example - Single Table View
	Example - Updatable View
	Example - Nonupdatable View

	9: Defining a Database Using Non-SQL
	Overview
	Steps to Define a Database

	Schemas and Subschemas
	Schema and Subschema Compilers
	Schema Compiler
	Subschema Compiler
	Additional Functions of the Compilers

	Defining a Schema
	Order of Schema Component Definition
	SCHEMA Statement
	Procedure
	Examples

	AREA Statements
	Procedure
	Example

	RECORD Statements
	SHARE
	Two Schemas Sharing One Record Structure
	SHARE STRUCTURE
	Example
	SHARE DESCRIPTION
	Example
	COPY ELEMENTS
	Separate Record Structures with Identical Elements
	SHARE and COPY ELEMENTS
	ELEMENT Substatements
	Example
	Mixing ELEMENT and COPY ELEMENTS Substatements
	Example
	Procedure
	Example

	SET Statements
	Procedure
	Example

	VALIDATE
	Schema Status
	Verification
	Other Results of VALIDATE
	Procedure

	Defining a Subschema
	Order of Subschema Component Definition
	Subschema Statement
	What It Does
	Procedure
	Example

	AREA Statements
	Procedure
	Example

	RECORD Statements
	Procedure
	Example

	SET Statements
	Procedure
	Example

	LOGICAL RECORD Statements
	Procedure
	Example

	PATH-GROUP Statements
	Procedure
	Example

	Subschema Validation and Generation

	Security Checking
	Types of Security Checked
	Checking Compiler Security
	Checking Registration Override Security
	Checking Verb Security
	Checking Component Security
	PUBLIC ACCESS Clause
	Authorized Users

	Establishing Schema and Subschema Currency
	Example of Changes in Currency

	Reporting on Schema and Subschema Definitions
	More Information

	10: Using the Schema and Subschema Compilers
	Overview
	More Information

	Online Compiling
	Starting a Session
	Submitting Statements
	Ending a Session
	Recovering a Session

	Batch Compiling
	Coding DDL Schema and Subschema Statements
	Statement Components
	Five Components
	Example Statement
	Statement Exceptions

	Delimiting Statements
	Compiler Comments
	Input Format
	Error Handling
	Syntax Errors
	Logic Errors
	Example of a Logic Error
	FORWARD SPACING Message

	More Information about Messages

	Coding Keywords, Variables, and Comment Text
	Coding Keywords
	Coding Entity-Occurrence Names
	Valid Characters
	Program Language Restrictions

	Coding User-Supplied Values
	Using Quotes for Special Characters
	Default Quotation Mark

	Coding Comment Text

	Compiler-Directive Statements
	Output From the Compilers
	Source Code and Load Modules
	Schema Definition
	Subschema Definition
	Storing a Subschema Load Module in a Load Library
	Load Modules at Runtime

	Schema and Subschema Listings
	Contents of a Listing
	Format-Control Statements for Listings

	11: Compiler-Directive Statements
	Overview
	DISPLAY/PUNCH ALL Statement
	Syntax
	Parameters
	Usage
	Example

	DISPLAY/PUNCH IDD Statement
	Syntax
	Parameters
	Example

	INCLUDE Statement
	Syntax
	Parameters
	Usage
	Example

	SET OPTIONS Statement
	Syntax
	DISPLAY/PUNCH OPTIONS Statement

	Parameters
	Usage
	Examples
	More Information

	SIGNOFF Statement
	Syntax
	Usage

	SIGNON Statement
	Syntax
	Parameters
	Usage
	More Information

	12: Operations on Entities
	ADD Operations
	MODIFY Operations
	DELETE Operations
	VALIDATE Operations
	DISPLAY/PUNCH Operations
	Syntax
	Parameters
	Usage
	Examples
	More Information

	13: Parameter Expansions
	Overview
	Expansion of boolean-expression
	Syntax
	Parameters
	Usage

	Expansion of db-record-field
	Syntax
	Parameters
	Usage

	Expansion of lr-field
	Syntax
	Parameters
	Usage

	Expansion of module-specification
	Syntax
	Parameters
	Usage
	More Information

	Expansion of user-specification
	Syntax
	Parameters
	Usage

	Expansion of user-options-specification
	Syntax
	Parameters

	Expansion of version-specification
	Syntax
	Parameters
	Examples

	14: Schema Statements
	Overview
	SCHEMA Statement
	Syntax
	Parameters
	Usage
	Examples

	AREA Statement
	Syntax
	Parameters
	Usage
	Examples

	RECORD Statement
	Syntax
	Parameters
	Usage
	Examples
	More Information

	Element Substatement
	Syntax
	Parameters
	Usage
	Examples
	More Information

	COPY ELEMENTS Substatement
	Syntax
	Parameters
	Usage
	Examples

	SET Statement
	Syntax
	Parameters
	Usage
	Examples

	VALIDATE Statement
	Syntax
	Usage

	REGENERATE Statement
	Syntax
	Parameters
	Usage

	15: Subschema Statements
	Overview
	Syntax Order
	Expansion Variables

	SUBSCHEMA Statement
	Syntax
	Parameters
	Usage
	Examples

	AREA Statement
	Syntax
	Parameters
	Usage
	Example

	RECORD Statement
	Syntax
	Parameters
	Usage
	Example

	SET Statement
	Syntax
	Parameters
	Usage
	Example

	LOGICAL RECORD Statement
	Syntax
	Parameters
	Usage
	Examples

	PATH-GROUP Statement
	Syntax
	Parameters
	Usage
	Example

	VALIDATE Statement
	Syntax
	Usage

	GENERATE Statement
	Syntax
	Parameters

	LOAD MODULE Statement
	Syntax
	Parameters
	Usage
	Examples

	DISPLAY/PUNCH SCHEMA Statement
	Syntax
	Parameters
	Example

	16: Writing Database Procedures
	Database Procedures
	Specifying a Procedure
	Common Uses of Database Procedures
	Compression and Decompression
	Data Validation
	Privacy/Security
	Data Collection
	Record Length for Variable-Length Native VSAM Records

	Coding Database Procedures
	Area Procedures
	Record Procedures
	Database Procedure Blocks
	Establishing Communication Between Programs and Procedures
	Specifying When to Call Database Procedures
	Link Editing Database Procedures
	Executing Database Procedures
	Resetting the Error-Status Indicator

	Methods for Invoking Procedures
	DBSTUB1 Invocation Method
	DBSTUB2 Invocation Method
	Considerations for Non-Reentrant or Non-LE-Compliant Database Procedures

	Database Procedure Example
	Sample Database Procedure
	Schema Statement

	17: Allocating and Formatting Files
	Making Files Accessible to CA IDMS/DB
	Steps

	Types of Files
	Available Options
	Specifying the File Type in the FILE Statement

	File Access Methods
	Creating Disk Files
	File Characteristics
	More Information

	Formatting Files
	Considerations for Native VSAM Files
	More Information

	18: Buffer Management
	Planning Database Buffers
	How Many Buffers Do You Need?
	How Many Pages Should a Buffer Contain?
	How Large Should a Buffer Page Be?
	Choosing a Method for Storage Acquisition

	Managing Buffers Dynamically
	Tuning Buffers for Performance
	Using Chained Reads
	Using Read and Write Drivers
	More Information

	19: Journaling Procedures
	Journaling Overview
	Journals Log Database Activity:
	Journaling Under the Central Version
	Journaling in Local Mode

	Journal Files
	Journal Record Entries
	Checkpoints
	Avoiding Duplicate LID Values
	Two-Phase Commit Journaling
	I/O Error or Corruption of a Journal File

	Formatting Journal Files
	Offloading Disk Journal Files
	When CA IDMS/DB Switches Journal Files
	How to Offload the Disk Journal
	Handling Full Journal Files
	After System Shutdown

	User Exits and Reports for Journal Management
	Influencing Journaling Performance
	Reducing Journal File I/O
	Improving Warmstart Performance
	Reducing Recovery Time
	More Information

	20: Two-Phase Commit Processing
	Two-Phase Commit Overview
	Terminology
	Typical Commit Flows
	Prepare and Commit Outcomes
	Recovery From Failure

	Two-Phase Commit within CA IDMS
	Use of Two-Phase Commit
	External Coordinators and Participants
	Resource Managers, Interfaces and Exits
	Interests and Roles
	Commit Optimizations
	Transaction Identifiers
	Transaction States
	Transaction Outcomes

	21: Backup and Recovery
	Database Backup and Recovery Overview
	Backup Procedures
	Back Up After a Normal System Shutdown
	Backup While the DC/UCF System is Active
	Back Up Before and After Local Mode Jobs
	Automating the Backup Process

	Automatic Recovery
	Warmstart
	Automatic Rollback
	Resynchronization

	Distributed Transaction Recovery Considerations
	Completing Distributed Transactions Using DCMT
	Incomplete Transactions and Manual Recovery
	Deleting Resource Managers

	Manual Recovery
	Recovery From a Quiesced Backup
	Recovery From a Hot Backup
	Reducing Recovery Time
	Recovering a Large Number of Files

	Recovery Procedures After a Warmstart Failure
	Recovery Procedures from Database File I/O Errors
	Recovery Procedures from Journal File I/O Errors
	Recovery Procedures for Local Mode Operations
	No Journaling
	Journaling to a Tape Device
	Journaling to a Disk Device
	Using an Incomplete Journal File

	Recovery Procedures for Mixed-Mode Operations
	Data Sharing Recovery Considerations
	Considerations for Recovery of Native VSAM Files

	22: Loading a Non-SQL Defined Database
	Database Loading
	Loading Database Records Using FASTLOAD
	General Considerations

	FASTLOAD Procedure
	Loading Database Records Using a User-Written Program
	Organizing Input Data for a User-Written Program
	Loading the Database
	More Information

	23: Loading an SQL-Defined Database
	Database Loading
	Loading Considerations
	Contents of the Input File
	Loading Procedures
	Steps That Apply to All Load Procedures
	Full Load Procedure
	Phased Load Procedure
	Segmented Load Procedure
	Stepped Load Procedure
	More Information

	24: Monitoring and Tuning Database Performance
	Monitoring Guidelines
	Monitoring Facilities
	Database Statistics

	Items to Monitor and Tune
	Journal Use
	Buffer Utilization
	Space Management and Database Design
	Indexing Efficiency
	Tuning an Index
	Database Locks
	Longterm Locks
	SQL Processing

	Reducing I/O
	By Caching Files in Memory
	Through Database Reorganization
	More Information

	Through Application Design
	Through Database Design
	By Using UPDATE STATISTICS (SQL-Accessed Databases)
	When to Use UPDATE STATISTICS
	Use UPDATE STATISTICS on SQL-Defined Tables or Areas
	Use UPDATE STATISTICS on NON-SQL Schemas If They are Accessed by SQL
	Restrictions on Statistics and Non-SQL Schemas

	25: Dictionaries and Runtime Environments
	Dictionaries
	Physical Components of a Dictionary
	Logical Components of a Dictionary
	Assigning Dictionary Areas to Segments
	Sharing Dictionary Areas

	CA-supplied Dictionary Definitions
	Logical Database Definitions
	Protocols, Nondatabase Structures, and Modules

	Defining New Dictionaries
	Defining New Catalog Components
	Defining New Application Dictionaries
	Defining New System Dictionaries

	Establishing a Default Dictionary
	Runtime Environments
	SYSIDMS Parameter File
	Establishing Session Options
	More Information

	26: Migrating from Test to Production
	Migration
	Establishing Migration Procedures
	Implementing Migration Procedures
	Step 1: Determine the Types of Components to Migrate
	Step 2: Determine the Sequence of Migration
	Step 3: Identify the Individual Components
	Step 4: Migrate the Components

	Identification Aids
	Migration Tools
	General Methods
	Using the DISPLAY statement
	Using the PUNCH Statement
	Using the Mapping Compiler and Mapping Utility
	For SQL-Defined Entities

	Additional Considerations
	Additional Tasks

	27: Modifying Physical Database Definitions
	Modifications You Can Make
	Making the Changes Available Under the Central Version
	Dynamic DMCL Management
	Changing the Access Method of a File
	Step 1: Expand the Page Size
	Step 5: Copy the Data to the New File

	Increasing the Size of an Area
	Increasing the Page Size of an Area
	Extending the Page Range of an Area

	Adding or Dropping Files Associated With an Area
	Changing the Page Size of a Disk Journal
	Changing the Access Method of a Disk Journal
	More Information

	28: Modifying Database Name Tables
	Changes You Can Make
	Procedure for Modifying Database Name Tables
	More Information

	29: Modifying SQL-Defined Databases
	What You Can Modify
	Maintaining Identically-Defined Entities
	Methods for Modifying

	30: Modifying Schema, View, Table, and Routine Definitions
	Overview
	Maintaining Schemas
	Dropping an Existing Schema
	Modifying a Schema

	Maintaining Views
	Dropping a View
	Modifying a View

	Maintaining Tables
	Creating a Table
	Dropping a Table
	Adding a Column to a Table
	Adding or Removing Data Compression
	Adding a New Check Constraint
	Dropping a Check Constraint
	Modifying a Check Constraint
	Revising the Estimated Row Count for a Table
	Changing the Area of a Table
	Dropping the Default Index Associated with a Table

	Dropping and Recreating a Table
	Method 1--Using DDL and DML Statements
	Method 2--Using DDL and Utility Statements

	Maintaining Routines and Their Keys
	Dropping a Routine
	Modifying a Routine

	31: Modifying Indexes, CALC Keys, and Referential Constraints
	Overview
	Maintaining Indexes
	Creating an Index
	Dropping an Index
	Changing Index Characteristics/Moving an Index

	Maintaining CALC Keys
	Creating a CALC Key
	Dropping a CALC Key

	Maintaining Referential Constraints
	Creating a Referential Constraint
	Dropping a Referential Constraint
	Modifying Referential Constraint Tuning Characteristics
	Using ALTER CONSTRAINT
	Using DROP/CREATE CONSTRAINT

	32: Modifying Non-SQL Defined Databases
	Types of Modifications
	Changes to Schemas and Subschemas
	Methods for Modifying
	Procedure for Modifying the Non-SQL Definitions
	RESTRUCTURE Utility Statement
	REORG and UNLOAD/RELOAD Utility Statements
	MAINTAIN INDEX Utility Statement

	33: Modifying Schema Entities
	Overview
	Modifications to an Unloaded Database
	Schema Modifications
	Deleting a Schema
	Changing Schema Characteristics

	Area Modifications
	Adding or Deleting an Area
	Changing Area Characteristics

	Record Modifications
	Adding Schema Records
	Deleting Schema Records
	Changing a Record's CALC Key
	Changing the DUPLICATES Option on a CALC or SORT Key
	Changing the Location Mode of a Record
	Changing a Record's Area
	Modifying Record Elements
	Changing Other Record Characteristics
	Adding and Dropping Database Procedures

	Set Modifications
	Adding or Deleting a Set
	Changing Set Mode
	Adding and Dropping Set Pointers
	Changing Set Order
	Changing Set Membership Options

	Index Modifications
	Adding or Deleting System-Owned Indexes
	Changing the Location of an Index
	Changing Index Characteristics
	Adding or Deleting Index Pointers

	34: Modifying Subschema Entities
	Overview
	Modifying or Deleting a Subschema
	Modifying a Subschema
	Deleting a Subschema

	Adding, Modifying, or Deleting a Record
	Adding, Modifying, or Deleting a Set
	Adding, Modifying, or Deleting an Area
	Adding, Modifying, or Deleting a Logical Record or Path Group

	35: Space Management
	Space Management
	Database Pages
	Database Keys
	Area Space Management
	SR1 Records
	Space Management Pages

	36: Record Storage and Deletion
	Record Storage
	Storing CALC Records
	Clustering Records
	Clustering records around a chained set
	Storing records via an indexed set

	Storing Variable-Length Records
	Relocated Records

	Record Deletion
	Physical Deletion
	Logical Deletion

	37: Chained Set Management
	Overview
	Chained Sets
	Connecting Records to Chained Sets
	Disconnecting Records
	Retrieving Records

	38: Index Management
	Indexed Sets
	Structure of Indexes
	Connecting Records to Indexed Sets
	Connecting Members to Unsorted Indexed Sets
	Connecting Members to Sorted Indexed Sets

	Disconnecting Records from Indexed Sets
	Retrieving Indexed Records

	39: Lock Management
	Controlling Access to CA IDMS Databases
	Readying Areas
	Area Ready Modes
	Central Version Area Status
	Default Ready Mode Using Navigational DML
	Ready Modes and SQL Access

	Physical Area Locks
	Controlling Update Access

	Locking Within Central Version
	Logical Locks
	Types of Locks
	Logical Area Locks
	Area Locking for SQL Transactions
	Record Locks
	System Generation Options Affecting Record Locking

	Locking Within a Data Sharing Group
	Inter-CV-Interest
	Global Transaction Locks
	Proxy Locks
	Page Locks

	Controlling Access to Native VSAM Files
	Deadlocks
	How the System Detects a Deadlock
	More Information

	Global Deadlock Detection

	A: Sample SQL Database Definition
	Sample Database Definition

	B: Sample Non-SQL Database Definition
	Sample Database Schema Definition
	Sample Database Subschema Definition

	C: Native VSAM Considerations
	Overview
	Native VSAM Data Set Structures
	CA IDMS/DB Native VSAM Definitions
	Schema Definition
	DMCL Definition

	DML Functions with Native VSAM

	D: Batch Compiler Execution JCL
	Overview
	Batch Compilation
	z/OS JCL
	Schema Compiler
	IDMSCHEM--Central Version IDMSCHEM (z/OS)

	Subschema Compiler
	IDMSUBSC--Central Version IDMSUBSC (z/OS)

	z/VSE JCL
	=COPY Facility
	Syntax
	Parameters
	Schema Compiler
	Subschema Compiler
	IDMSLBLS Procedure

	CMS Commands
	Schema Compiler
	Subschema Compiler

	E: System Record Types
	System Record Types for Space Management

	F: User-Exit Program for Schema and Subschema Compiler
	Overview
	When a User Exit is Called
	Rules for Writing the User-Exit Program
	Control Blocks and Sample User-Exit Programs
	User-Exit Control Block
	SIGNON Element Block
	SIGNON Block
	Entity Control Block
	Card-image Control Block

	Sample User-Exit Program for Schema and/or Subschema Compilers

	G: Quick Reference Information
	Editing Commands
	Record-Set Representation
	Lock Management
	Ready Mode Compatibility
	Lock Resource ID Format

	Runtime Error-Status Codes
	Major DB Status Codes
	Minor DB Status Codes
	Major DC Status Codes
	Minor DC Status Codes
	ERROR-STATUS Condition Names

	Index

